
Lecture 3: Particle in a 1D Box

First we will consider a free particle moving in 1D so V (x) = 0. The
TDSE now reads

−
~

2

2m

d2ψ(x)

dx2
= Eψ(x)

which is solved by the function

ψ = Aeikx

where

k = ±
√

2mE

~

A general solution of this equation is

ψ(x) = Aeikx +Be−ikx

where A and B are arbitrary constants. It can also be written in terms of
sines and cosines as

ψ(x) = C sin(kx) +D cos(kx)

The constants appearing in the solution are determined by the boundary
conditions. For a free particle that can be anywhere, there is no boundary
conditions, so k and thus E = ~

2k2/2m can take any values. The solution
of the form eikx corresponds to a wave travelling in the +x direction and
similarly e−ikx corresponds to a wave travelling in the -x direction. These
are eigenfunctions of the momentum operator. Since the particle is free, it is
equally likely to be anywhere so ψ∗(x)ψ(x) is independent of x. Incidently,
it cannot be normalized because the particle can be found anywhere with
equal probability.
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Now, let us confine the particle to a region between x = 0 and x = L. To
do this, we choose our interaction potential V (x) as follows

V (x) = 0 for 0 ≤ x ≤ L

= ∞ otherwise

It is always a good idea to plot the potential energy, when it is a function of
a single variable, as shown in Fig.1. The TISE is now given by
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2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

First consider the region outside the box where V (x) = ∞. Since V (x)ψ(x)
has to be finite for finite energy, we insist that ψ(x) = 0. In other words, the
particle cannot go outside the box.

In the box, we have the TISE given by the free particle term

−
~

2

2m

d2ψ(x)

dx2
= Eψ(x)

now subjected to the boundary conditions given by

ψ(0) = ψ(L) = 0
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Thus, we take the general solution

ψ(x) = A sin(kx) +B cos(kx)

If we put x = 0, we get ψ(0) = B = 0. If we now put ψ(L) = 0, we get

A sin(kL) = 0 ork =
nπ

L

where n is any integer. Clearly n = 0 is not valid as the wavefunction van-
ishes. Also, we see that changing the sign of n simply changes the sign of the
wavefunction and as we said before, it does not produce a new wavefunction.

Thus the solution of the TISE that satisfies the boundary condition is
written as

ψn(x) = A sin(
nπx

L
) where n = 1, 2, 3, ...

The constant A is determined by the normalization condition to be
√

2/L.
The corresponding energy is given by

En =
~

2k2

2m
=

n2h2

8mL2

so we have quantization of energy with

E1 =
~

2k2

2m
E2 =

4~
2k2

2m

and so on. Notice that the lowest possible energy is not zero. This is referred
to as zero point energy. The first few wavefunctions are plotted schematically
as shown below. Notice that as the quantum number increases, the wave-
function becomes more oscillatory. For n = 2, the wavefunction is zero at the
midpoint of the box x = L/2. This point is a node of this wavefunction. A
node refers to a point (other than boundary points) where the wavefunction
goes to zero. For the particle in a 1D box, we see that the number of nodes
is equal to n− 1.

Though the particle in a 1D box is a simple model system, it illustrates the
important features of a quantum mechanical description. It is a very useful
first approximation to the behavior of π electrons in conjugated alkenes.
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