
 
 

 

 

Department of Computer Science & Engineering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LAB MANUAL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Program: Computer Science & Engineering 
 

Subject: Advanced Digital Image Processing 



 
 
 

Index 
 
 

 

Lab 1: Write a program for image enhancement 
 

Lab2: Write a program for image compression 
 

Lab3: Write a program for color image processing 
 

Lab4: Write a program for image segmentation 
 

Lab 5: Write a program for image morphology 
 

Lab 6: Image Restoration 
 

Lab 7: Edge detection 
 

Lab 8: Blurring 8 bit color versus monochrome 
 

Mini Project (Select One) 
 

1. Take a hand written document, Perform preprocessing and try to segment 

into characters  
 

2. Take an image, design fuzzy rules for content based image retrieval.  
 

3. Take an image, design a neural network for content based image retrieval. 



 
 
 

LAB 1: Write a program for image enhancement 
 
Adjusting Intensity Values to a Specified Range 

 
You can adjust the intensity values in an image using the imadjust function, where you specify 
the range of intensity values in the output image. 

 
For example, this code increases the contrast in a low-contrast grayscale image by remapping the 
data values to fill the entire intensity range [0, 255].  
I = imread('pout.tif'); 
J = imadjust(I); 
imshow(J)  
figure, imhist(J,64) 

 
This figure displays the adjusted image and its histogram. Notice the increased contrast in the 
image, and that the histogram now fills the entire range. 
 
Specifying the Adjustment Limits 

 
You can optionally specify the range of the input values and the output values using imadjust. 
You specify these ranges in two vectors that you pass to imadjust as arguments. The first vector 
specifies the low- and high-intensity values that you want to map. The second vector specifies the 
scale over which you want to map them. 

 
For example, you can decrease the contrast of an image by narrowing the range of the data. In the 
example below, the man's coat is too dark to reveal any detail. imadjust maps the range [0,51] in 
the uint8 input image to [128,255] in the output image. This brightens the image considerably, 
and also widens the dynamic range of the dark portions of the original image, making it much 
easier to see the details in the coat. Note, however, that because all values above 51 in the original 
image are mapped to 255 (white) in the adjusted image, the adjusted image appears washed out.  
I = imread('cameraman.tif');  
J = imadjust(I,[0 0.2],[0.5 
1]); imshow(I) 
figure, imshow(J) 
 
Setting the Adjustment Limits Automatically 

 
To use imadjust, you must typically perform two steps: View the histogram of the image to 
determine the intensity value limits. Specify these limits as a fraction between 0.0 and 1.0 so that 
you can pass them to imadjust in the [low_in high_in] vector. 

 
For a more convenient way to specify these limits, use the stretchlim function. (The imadjust 
function uses stretchlim for its simplest syntax, imadjust(I).) 



 
This function calculates the histogram of the image and determines the adjustment limits 
automatically. The stretchlim function returns these values as fractions in a vector that you can 
pass as the [low_in high_in] argument to imadjust; for example: 
I = imread('rice.png');  
J = imadjust(I,stretchlim(I),[0 1]); 

 
By default, stretchlim uses the intensity values that represent the bottom 1% (0.01) and the top 
1% (0.99) of the range as the adjustment limits. By trimming the extremes at both ends of the 
intensity range, stretchlim makes more room in the adjusted dynamic range for the remaining 
intensities. But you can specify other range limits as an argument to stretchlim. See the stretchlim 
reference page for more information. 
 
Gamma Correction 

 
imadjust maps low to bottom, and high to top. By default, the values between low and high are 
mapped linearly to values between bottom and top. For example, the value halfway between low 
and high corresponds to the value halfway between bottom and top. 

 
imadjust can accept an additional argument that specifies the gamma correction factor. 
Depending on the value of gamma, the mapping between values in the input and output images 
might be nonlinear. For example, the value halfway between low and high might map to a value 
either greater than or less than the value halfway between bottom and top. 

 
Gamma can be any value between 0 and infinity. If gamma is 1 (the default), the mapping is 
linear. If gamma is less than 1, the mapping is weighted toward higher (brighter) output values. If 
gamma is greater than 1, the mapping is weighted toward lower (darker) output values. 

 
The figure below illustrates this relationship. The three transformation curves show how values 
are mapped when gamma is less than, equal to, and greater than 1. (In each graph, the x-axis 
represents the intensity values in the input image, and the y-axis represents the intensity values in 
the output image.) 

 
The example below illustrates gamma correction. Notice that in the call to imadjust, the data 
ranges of the input and output images are specified as empty matrices. When you specify an 
empty matrix, imadjust uses the default range of [0,1]. In the example, both ranges are left empty; 
this means that gamma correction is applied without any other adjustment of the data.  
[X,map] = imread('forest.tif') 
I = ind2gray(X,map);  
J = imadjust(I,[],[],0.5); 
imshow(I) 
figure, imshow(J) 



 
 
 
 
 
 

 

Lab 2: Write a program for image compression 

 
Aa standard matlab wavelet code package,  WAVELAB 802, to perform the transforms. 
The wavelets we chose to use were the Deslauriers wavelets of polynomial size 3. 

 
The compression scheme we used was to set a threshold value that was some fraction of the norm 
of the entire wavelet transform matrix. If the magnitude of a wavelet in the representation was not 
larger than this value, it was not included in the compression. We then rebuilt an image which (to 
some degree that depended on how many bases we included) resembed the original image by 
running the inverse transform. 
 

 
ORIGINAL IMAGE  

The fabulous Lena 

http://www-stat.stanford.edu/~wavelab/




 
BASIS VECTORS 

 
These are some basis vectors obtained by running the inverse wavelet transform on a matrix 
with a single nonzero value in it. 

 
Deslaurier(1,1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deslaurier(10,10) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deslaurier(16,16) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deslaurier(4,2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
COMPRESSED IMAGES 
 

Threshold = .5, Bases included = 19, Compression ratio = 3400 : 1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Threshold = 1, Bases included = 470, Compression ratio = 140 : 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Threshold = 2, Bases included = 2383, Compression ratio = 27 : 1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Threshold = 4, Bases included = 6160, Compression ratio = 10 : 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Threshold = 8, Bases included = 12378, Compression ratio = 5 : 1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MATLAB CODE 
 
load /home/nirav/elec301/lena256.mat; 

imagesc(lena256); colormap(gray(256)); 
 
 
[qmf, dqmf] = MakeBSFilter('Deslauriers', 3); 
 
% The MakeBSFilter function creates biorthonormal filter pairs. The filter   
% pairs that we're making is an Interpolating (Deslauriers-Dubuc) filter   
% of polynomial degree 3  

 
wc = FWT2_PB(lena256, 1, qmf, dqmf); 
 
% wc correspond to the wavelet coefficients of the sample image   
% FWT2_PB is a function that takes a 2 dimensional wavelet transform   
% We specify the image matrix, the level of coarseness (1), the quadrature   
% mirror filter (qmf), and the dual quadrature mirror filter (dqmf)  

 
% we take a tolerance which is some fraction   
% of the norm of the sample image  

 
nl = norm(lena256) / (4 * norm(size(lena256))); 
 
% if the value of the wavelet coefficient matrix at a particular   
% row and column is less than the tolerance, we 'throw' it out   
% and increment the zero count.  

 
zerocount = 0; 
for i = 1:256 
for j = 1:256  

if ( abs(wc(i,j)) < nl) 



wc(i,j) = 0;  
zerocount = zerocount + 

1; end  
end 

end 

 
x = IWT2_PB(wc, 1, qmf, dqmf); 
imagesc(x); 
 
% here is some sample code to view how these deslauriers wavelets look 

 
[qmf, dqmf] = MakeBSFilter('Deslauriers', 
3); for i = 1:256  
for j = 1:256 
wc(i,j) = 0;  

end 
end 
 
% this is the Deslauriers(4,2) matrix 
 
wc(4, 2) = 1000;  
x = IWT2_PB(wc, 1, qmf, dqmf); 
imagesc(x); 



 

 

LAB 3: Write a program for color image processing 
 
Color Approximation 

 
To reduce the number of colors in an image, use the rgb2ind function. This function converts a 
truecolor image to an indexed image, reducing the number of colors in the process. rgb2ind 
provides the following methods for approximating the colors in the original image: Quantization 
Uniform quantization Minimum variance quantization Colormap mapping 

 
The quality of the resulting image depends on the approximation method you use, the range of 
colors in the input image, and whether or not you use dithering. Note that different methods work 
better for different images. See Dithering for a description of dithering and how to enable or 
disable it. 
 
Quantization 
 

 
Reducing the number of colors in an image involves quantization. The function rgb2ind uses 
quantization as part of its color reduction algorithm. rgb2ind supports two quantization methods: 
uniform quantization and minimum variance quantization. 

 
An important term in discussions of image quantization is RGB color cube, which is used 
frequently throughout this section. The RGB color cube is a three-dimensional array of all of the 
colors that are defined for a particular data type. Since RGB images in MATLAB can be of type 
uint8, uint16, or double, three possible color cube definitions exist. For example, if an RGB 
image is of class uint8, 256 values are defined for each color plane (red, blue, and green), and, in 
total, there will be 224 (or 16,777,216) colors defined by the color cube. This color cube is the 
same for all uint8 RGB images, regardless of which colors they actually use. 

 
The uint8, uint16, and double color cubes all have the same range of colors. In other words, the 
brightest red in a uint8 RGB image appears the same as the brightest red in a double RGB image. 
The difference is that the double RGB color cube has many more shades of red (and many more 
shades of all colors). The following figure shows an RGB color cube for a uint8 image. 
 

 
Quantization involves dividing the RGB color cube into a number of smaller boxes, and then 
mapping all colors that fall within each box to the color value at the center of that box. 

 
Uniform quantization and minimum variance quantization differ in the approach used to divide 
up the RGB color cube. With uniform quantization, the color cube is cut up into equal-sized 
boxes (smaller cubes). With minimum variance quantization, the color cube is cut up into boxes 
(not necessarily cubes) of different sizes; the sizes of the boxes depend on how the colors are 
distributed in the image. 

 
Uniform Quantization. To perform uniform quantization, call rgb2ind and specify a tolerance. 
The tolerance determines the size of the cube-shaped boxes into which the RGB color cube is 
divided. The allowable range for a tolerance setting is [0,1]. For example, if you specify a 



 
tolerance of 0.1, the edges of the boxes are one-tenth the length of the RGB color cube and the 
maximum total number of boxes is  
n = (floor(1/tol)+1)^3 
 

 
The commands below perform uniform quantization with a tolerance of 0.1. 
RGB = imread('peppers.png');  
[x,map] = rgb2ind(RGB, 0.1); 
 

 
The following figure illustrates uniform quantization of a uint8 image. For clarity, the figure 
shows a two-dimensional slice (or color plane) from the color cube where red=0 and green and 
blue range from 0 to 255. The actual pixel values are denoted by the centers of the x's. 

 
After the color cube has been divided, all empty boxes are thrown out. Therefore, only one of the 
boxes is used to produce a color for the colormap. As shown earlier, the maximum length of a 
colormap created by uniform quantization can be predicted, but the colormap can be smaller than 
the prediction because rgb2ind removes any colors that do not appear in the input image. 

 
Minimum Variance Quantization. To perform minimum variance quantization, call rgb2ind and 
specify the maximum number of colors in the output image's colormap. The number you specify 
determines the number of boxes into which the RGB color cube is divided. These commands use 
minimum variance quantization to create an indexed image with 185 colors.  
RGB = imread('peppers.png'); 
[X,map] = rgb2ind(RGB,185); 
 
 
 
 
Minimum variance quantization works by associating pixels into groups based on the variance 
between their pixel values. For example, a set of blue pixels might be grouped together because 
they have a small variance from the center pixel of the group. 

 
In minimum variance quantization, the boxes that divide the color cube vary in size, and do not 
necessarily fill the color cube. If some areas of the color cube do not have pixels, there are no 
boxes in these areas. 

 
While you set the number of boxes, n, to be used by rgb2ind, the placement is determined by the 
algorithm as it analyzes the color data in your image. Once the image is divided into n optimally 
located boxes, the pixels within each box are mapped to the pixel value at the center of the box, 
as in uniform quantization. 

 
The resulting colormap usually has the number of entries you specify. This is because the color 
cube is divided so that each region contains at least one color that appears in the input image. If 
the input image uses fewer colors than the number you specify, the output colormap will have 
fewer than n colors, and the output image will contain all of the colors of the input image. 

 
The following figure shows the same two-dimensional slice of the color cube as shown in the 
preceding figure (demonstrating uniform quantization). Eleven boxes have been created using 
minimum variance quantization. 



 
For a given number of colors, minimum variance quantization produces better results than 
uniform quantization, because it takes into account the actual data. Minimum variance 
quantization allocates more of the colormap entries to colors that appear frequently in the input 
image. It allocates fewer entries to colors that appear infrequently. As a result, the accuracy of the 
colors is higher than with uniform quantization. For example, if the input image has many shades 
of green and few shades of red, there will be more greens than reds in the output colormap. Note 
that the computation for minimum variance quantization takes longer than that for uniform 
quantization. 
 
Colormap Mapping 

 
If you specify an actual colormap to use, rgb2ind uses colormap mapping (instead of 
quantization) to find the colors in the specified colormap that best match the colors in the RGB 
image. This method is useful if you need to create images that use a fixed colormap. For example, 
if you want to display multiple indexed images on an 8-bit display, you can avoid color problems 
by mapping them all to the same colormap. Colormap mapping produces a good approximation if 
the specified colormap has similar colors to those in the RGB image. If the colormap does not 
have similar colors to those in the RGB image, this method produces poor results. 

 
This example illustrates mapping two images to the same colormap. The colormap used for the 
two images is created on the fly using the MATLAB function colorcube, which creates an RGB 
colormap containing the number of colors that you specify. (colorcube always creates the same 
colormap for a given number of colors.) Because the colormap includes colors all throughout the 
RGB color cube, the output images can reasonably approximate the input images.  
RGB1 = imread('autumn.tif'); 
RGB2 = imread('peppers.png');  
X1 = rgb2ind(RGB1,colorcube(128)); 
X2 = rgb2ind(RGB2,colorcube(128)); 



 

 

Lab 4: Write a program for image segmentation 
 
demonstration of global and local thresholding for segmentation 
 
% threshdemo.m   
% Demonstration of global and local threshold operations of an image  
 

 
clear all 
[tmp,idx]=imread('lena.bmp');  
a=ind2gray(tmp,idx); % gray scale image of lena, value between 0 and 1 
clear tmp idx  
figure(1),clf,colormap('gray'),imshow(a),title('original Lena 
image') [m,n]=size(a); % size of image a  
b=reshape(a,m*n,1); % into a column vector 
figure(2),hist(b,50),title('histogram of image') 
% first do global thresholding  
mu=rand(2,1); % value betwen 0 and 1, two clusters only 
[W,iter,Sw,Sb,Cova]=kmeansf(b,mu);% W is the mean, 
% Cova is the covariance matrices   
% member: membership of each X: K by 1 vector of elements 1 to c 
[d,member]=kmeantest(b,sort(W));   
c=reshape(member-1,m,n); 
clear d member b   
figure(3),clf,colormap('gray'),imshow(c) 
title('global threshold')  
 
% next do local threshold, partition the image into 64 x 64 blocks   
% and do threshold within each block   
c=zeros(512,512); trials=0; 
for i=1:8,  

for j=1:8, 
trials=trials+1;  
disp([int2str(trials) ' of 64 iterations ...']); 
tmp=a(64*(i-1)+1:64*i,64*(j-
1)+1:64*j); tmpi=reshape(tmp,64*64,1);  
mu=sort(rand(2,1)); % value betwen 0 and 1, two clusters only 
[W,iter,Sw,Sb,Cova]=kmeansf(tmpi,mu);% W is the mean,  
% Cova is the covariance matrices   
% member: membership of each X: K by 1 vector of elements 1 to c 
[d,member]=kmeantest(tmpi,sort(W)); c(64*(i-1)+1:64*i,64*(j-
1)+1:64*j)=reshape(member,64,64);   

end 
end  
figure(4),clf,colormap('gray'),imshow(c-
1), title('local threshold, 64x64 block'); 



 

Lab 5: Write a program for image morphology 

 
demonstrate boundary extraction, interior filling 
 
% demonstrate morphological boundary extraction  
% 
clear all, close all 
 
A0=imread('myshap4.bmp');  
imshow(A0); % a heart shape hand drawing 
title('original image'); 
pause  
% A0 contains mostly 1s and the drawing contains 0s, uint8 
A1=1-double(A0); % invert black and white 
 
B=ones(3); 
A2=imopen(imclose(A1,B),B); % fill 1 pixel hole and remove sticks 
 
A3=imfill(A2,[100 100]); % fill the interior 
 
A=double(A2) + double(A3); 

 
imshow(A),title('after interior filling using 
imfill'); pause 
Ab=A-double(erode(A,B)); 
 
imshow(Ab), title('extracted boundary'); 
 
clear A1 A2 A3; Ac=Ab; 
 
vidx=[[1:20:280] 280]; 
 
Ac(vidx,:)=1; Ac(:,vidx)=1; 
 
imshow(Ac) 



 
 

 

Lab 6: Program for Image Restoration 
 
% load image  
X = double(imread('midterm.bmp')); 

X = X-mean(X(:)); 
[m,n] = size(X); 
 

 
% show image and 

DFT fX = fft2(X); 

figure(1) 

imshow(real(X),[]); 
 
title('original 
image') figure(2)  
imshow(fftshift(log(1+abs(fX))),[]) 

title('log(1+|DFT|)) original image'); 

 
% model blurring 
filter s = 24; t= 0;   
u = 1; v=0;  

g = [ones(s,1);zeros(m-s-t,1); ones(t,1)];  
 
%g = [ones(s,1);0.99; zeros(m-s-t-2,1);0.99; 
ones(t,1)]; g = g/sum(abs(g));  
 
h = [ones(u,1); zeros(n-u-v,1); 
ones(v,1)]; h = h/sum(abs(h));  

f =g*h';  
 
ff = fft2(f); 

figure(3)  
 
imshow(fftshift(log(1+abs(ff))),[]) 

title('amplitude: log(1+|OTF|)'); 

figure(4) 

imshow(fftshift(angle(ff)),[]) 

title('phase of OTF');  

 

% get pseudo inverse filter  
 
ff(find(abs(ff)==0))=NaN; 

aff = abs(ff);  
pff = ff./aff; 

apiff = 1./aff; 

ppiff = conj(pff);  
ppiff(find(isnan(ppiff))) = 
0; cap = 11;  
apiff(find(apiff > cap)) = 

cap; apiff(find(isnan(apiff))) 

= 0; piff = apiff.*ppiff; 
 
 

 
% deblur and show 

frX = piff.*fX;  
rX =real(ifft2(frX)); 

figure(5)  
imshow(fftshift(log(1+abs(frX))),[]) 



 
title('log(1+|DFT|)) restored 
image') figure(6)  
imshow(rX(:,5:n),[]); 

title('restored image') 



 

 

Lab 7: Program for Edge detection 
 
% demonstrate edge detection  

 

% numbers of 
colors sncols=128; 

ncols=32;  

 

% get image from MATLAB 
image load('trees');  

 

% show original image 
figure(1); 

showgimg(real(X),sncols); 

drawnow;  

 

 

% construct convolution 
functions [m,n] = size(X);  
 
gs = [1 -1]; ge = []; 
hs = [1 -1]; he = [];  
 
g = [gs,zeros(1,m-length(gs)-length(ge)),ge]; 
h = [hs,zeros(1,n-length(hs)-length(he)),he];  

 

% construct convolution matrices as sparse 
matrices Y = spcnvmat(g);  
 
Z = spcnvmat(h); 

Wg = Y*X;   
Wh = X*Z';  

 

% show transformed images  
figure(2); 
showgimg(Wg,ncols);  
drawnow; 
 
figure(3) 
showgimg(Wh,ncols); 
drawnow; 
 
figure(4)  
showgimg(abs(Wg)+abs(Wh),ncols); 
drawnow; 



 

Lab 8: Blurring 8 bit color versus monochrome 
 

 
% smoothing in eight bit color and monochrome   
% parameter definition  
 

 

% get image from MATLAB 
library load('clown');  

 

% construct convolution functions   
[m,n] = size(X);  
gs = [0.5 0.5]; ge = []; 
hs = [0.5 0.5]; he = [];  
g = [gs,zeros(1,m-length(gs)-length(ge)),ge]; 
h = [hs,zeros(1,n-length(hs)-length(he)),he]; 

 
% construct convolution matrices and blur sparse 
matrices Y = spcnvmat(g);  
 
Z = spcnvmat(h); 

W = Y*X*Z';  

 

% show original and blurred images  
figure(1);  
imshow(X,[]); 
figure(2);  
imshow(W,[]); 
figure(3); 
imshow(X,[]);  
colormap(map) 
figure(4);  
imshow(W,[]); 
colormap(map) 



 
 

Mini Project 

 
 

 

Segmentation in handwritten document 
 
 

Horizontal and Vertical Histogram 
 
Horizontal and Vertical Histogram technique is one the handwritten script identified technique which uses 
the Matra/Shirorekha based feature, In this technique longest horizontal run of black pixels on the rows of 
a Bangla text word will be much longer than that of English script. This is so because the characters in a 
Bangla word are generally connected by matra/Shirorekha (see Fig.2). Here row-wise histogram of the 
longest horizontal run is shown in the right part of the words. This information has been used to separate 
English from Bangla script. Matra feature is considered to be present in a word, if the length of the 
longest horizontal run of the word satisfies the following two conditions: (a) if it is greater than 45% of 
the width of a word, and (b) if it is greater than thrice of the height of busy-zone. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The matra/Shiroreka feature in Bangla and English words 
 

 

Curvature Information and Local Extreme of Curvature 
 

 
Curvature information gives a unique, viewpoint independent description for local shape. In 

differential geometry, it is well known that a surface can be reconstructed up to second order (except for a 
constant term) if the two principal curvatures at each point is known, by using the first and second 

fundamental forms Therefore, curvature information provides a useful shape descriptor for various tasks in 
computer vision, ranging from image segmentation and feature extraction, to scene analysis and object 
recognition . In the field of handwritten alphanumeric character recognition , many researcher use 
difference method for recognition such as geometrical and topological feature , statistic feature , and other 

algorithms to perform recognition based on character shape. But for a good handwritten recognition system 
depends on main two attributes, first selected feature gathering from a handwritten character, second the 
recognizers that trained to remember feature of each character in order to cluster and recognize each input 
character. In curvature information handwritten character is used as a sequence of curve segments. Each 
curve segment is characterized by its degree of curvature which is measure by the cumulative angle 

difference from all sampling points with in the segments. If the cumulative is minus, it is a clockwise 
curve. Since some characters may consist of the same number of segments with the same curve (ex. one 
segment with clockwise curve) other features of segments are gathering to distinguish thes



characters. 
 
 
 

Topological Features 
 

 
Topological features such as loops is a group of white pixels surrounded by black ones ,end points is 
point with exactly 1 neighboring point ,dots a cluster of say 1-3 pixels and junction is a point with more 
than 2 neighbors all in thinned black and white images are shown in fig 3. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3.  Loop, End points, a Dot and Junctions. 

 
Dots: Dots above the letters “i” and “j” can be identified with a simple set of rules. Short, isolated strokes 
occurring on or above the half-line are marked as potential dots. 

 
Junctions: Junctions occur where two strokes meet or cross and are easily found in the skeleton as points 
with more than two neighbors. 

 
Endpoints: Endpoints are points in the skeleton with only one neighbor and mark the ends of strokes, 
though some are artifacts of the skeletonization algorithm. 

 
Loops: Loops are found from connected-component analysis on the smoothed image, to find areas of 
background color not connected to the region surrounding the word. A loop is coded by a number 
representing its area. 
 
 

 

Parameters of polynomials 
 
Recognition for handwritten mathematical expressions is more complicated than for ordinary handwriting 
because of the two-dimensional nature of the input, because there are more symbols involved, and because 
the greater difficulty of using contextual information (e.g. harder to provide a dictionary of words or 
phrases against which the input is probably coming from). Since past techniques have not provided a 
complete solution. To overcome this problem we use parameters of polynomial as one of the technique for 
feature extraction. Here we take the idea of Chebyshev polynomials. Using a collection of writing samples 
of mathematical symbols, we find that in many cases it provides a succinct way to model the stylus 
movements of actual test users. The principal contributions of this technique are: 
 
• To find that modeling x(t) and y(t) as Chebyshev series accurately captures the shape of handwritten 
mathematical characters using few parameters.  
 
• To find the polynomial coefficients from the writing samples form clusters which often contain the same 
character as written by different test users.  



 
 
For our analysis, we assume that handwriting traces are provided as sequences of (xi, yi, ti) tuples that 

have been normalized so t0 = 0 and tn = 1. The (x,y) trace of character is shown in figure 4. For basis 

functions we use Chebyshev polynomials of the first kind, defined by Tn(t) ≡ cos(n arccos t) and 
orthonormal for the inner product (f, g ) = ∫ f(t)g(t)dt with limit (-1,1)t. The Chebyshev series for X and Y 
is 
 

 
∞ 

 
X(t) =  ∑ αiTi(t) 
 

i=0 
 

 
∞ 

 
Y(t) =  ∑ βiTi(t) 
 

i=0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The (x, y) trace of G 
 

Contour  Information 
 
Given a binary image, it is scanned from top to bottom and right to left, and transitions from white 
(background) to black (foreground) are detected. The contour is traced counterclockwise outside the pattern 
(clockwise for interior contours) and expressed as an array of contour elements shown in figure 5. Each 
contour element represents a pixel on the contour and contains fields for the x,y coordinates of the pixel, 
the slope or direction of the contour into the pixel, and auxiliary information such as curvature. 



 
 
 
 
 
 
 
 
 

 
Techniques that are useful in recognition of words are described in this subsection: (i) Determination of 
upper and lower contours of the word, (ii) Determination of significant local extrema on the contour, (iii) 
Determination of reference lines, and (iv) Determination of word length. 
 

 
1. Upper and lower contours: Division of an exterior contour into upper and lower parts (Figure 6) involves 

the detection of two “turnover” points on the contour - the points at which the lower contour changes to upper 

contour and vice versa. Given that the exterior contour is traced in the counterclockwise direction, the upper 

contour runs predominantly from right to left and the lower predominantly from left to right. The left end of the 

leading ligature and the right end of the ending ligature constitute turnover points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Splitting a contour to upper and lower parts. The upper contour is shown in 
dotted lines and the lower contour is shown in bold lines 
 
2. Local Contour Extrema: Local extrema represent a powerful abstraction of the shape of the word. 
Local Y-extrema is simply derived from the y-coordinates of the pixels on the chaincoded contour. The 

primary challenge is the detection and rejection of spurious extrema arising from irregularities in the 
contour. Heuristic filters are used to eliminate spurious extrema. These include checks on the distance of 
the detected extremum from previous extrema detected, spatial postion relative to other extrema, the slope 
of the contour in the neighborhood of the extremum, and so forth. Majority of spurious extrema in discrete 

writing are due to ends of strokes used to form characters, and generally occur in the middle zone of the 
word. Fragmentation in the binary image due to suboptimal binarization or poor resolution often leads to 
broken strokes and spurious extrema. Since the upper contour flows effectively from right to left, left to 
right excursions of the contour must be followed by right to left retraces, and this leads to additional 

extrema being detected. Extrema found on such uncharacteristic excursions must be discarded lest they 
lead to spurious ascenders. A similar problem arises with right-to-left stretches of the lower contour in the 
context of spurious descenders. Let us refer to extrema on such uncharacteristic excursions of the upper 
and lower contours as being directionally invalid. Directional validity is conveniently determined from the 
slopes of the contour elements into and out of the extremum and is sufficient to discard most spurious 

extrema.  
 

 

3. Reference Line:  



 
A time-tested technique for global reference line determination is based on the vertical histogram of pixels 
. The method makes the implicit assumption that the word was written horizontally and scanned in without 
skew. Consequently, the method fails for words with significant baseline skew. Unfortunately, baseline 
skew is present to varying degrees in most freeform handwriting. Baseline skew can be corrected by 
estimating the skew of the word and applying a rotation or shear transformation on the image. An 

alternative to skew correction is the use of reference lines of the form ri(x)= m *x+c where m is the skew 

angle and c is the offset of the corresponding reference line from the x-axis. Angled reference lines may be 
computed from the angular histogram at the skew angle. 
 
The best-fit line through the minima points may be determined by a least-square linear regression 
procedure (Figure 7). Minima that do not fall in the vicinity of the implicit baseline either correspond to 
descenders, or are spurious. The halfline may be determined as the regression line through upper contour 
maxima. However upper contour maxima are often poorly aligned, and spurious points are difficult to 
detect and remove, especially in more discrete writing (non-cursive) styles. Consequently the resulting 
halfline is often erroneous. Reference lines computed from the angular histogram at the skew angle of 
the baseline have proved to be more reliable (Figure 7(c)). 
 
 
 
 

a) b) c) 
 
 
 

 
. (a) Exterior contour of word showing lower-contour minima. (b) Baseline determined as regression 
line through minima. (c) Angular reference lines from angular histogram at skew angle. 
 

 
4. Word Length, Ascenders, and Descenders: The number of minima on the lower contour of a word 

image is a good estimate of the length of a word. It is expected that such a length would be proportional to 
the number of letters in the word. Figure 4 shows the length estimate of the word as 11 and also shows one 
ascender and one descender. The positions of ascsenders and descenders along with the length of the word 
are used as features. An ascender refers to the portion of a letter in a word that rises above the general 
body of the word. A descender refers to the portion of the word that falls below the general body of the 
word. Ascenders and descenders can be appropriately selected from the extremas of the upper and lower 
contour of the word. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Local contour extrema: maximas and minimas on the exterior and interior 

contours are marked along with the reference lines. The loop associated with  
‘b’ that rises above the reference lines in the middle is called an ascender and the 
loop associated with the ’q’ that falls below the reference lines in the middle is 
called a descender. 


