

MICROPROCESSOR AND MICROCONTROLLER LAB

LABORATORY MANUAL

B.Tech. Semester –V

Subject Code: KEC-552

Session: 2023-24, Odd Semester

DRONACHARYA GROUP OF INSTITUTIONS DEPARTMENT OF ECE #27 KNOWLEDGE PARK 3 GREATER NOIDA

AFFILATED TO Dr. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

List of Experiments mapped with COs

S. No.	Name of the Experiment	Course
		Outcome
1	Write a program using 8085 Microprocessor for Decimal, Hexadecimal addition and subtraction of two Numbers.	CO 1
2	Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.	CO 1
3	To perform multiplication and division of two 8 bit numbers using 8085.	CO 2
4	To find the largest and smallest number in an array of data using 8085 instruction set.	CO 2
5	To write a program to arrange an array of data in ascending and descending order.	CO 3
6	To convert given Hexadecimal number into its equivalent ASCII number and vice versa using 8085 instruction set.	CO 5
7	To write a program to initiate 8251 and to check the transmission and reception of character.	CO 4
8	To interface 8253 programmable interval timer to 8085 and verify the operation of 8253 in six different modes.	CO 2
9	To interface DAC with 8085 to demonstrate the generation of square, saw tooth and triangular wave.	CO 3
10	Serial communication between two 8085 through RS-232 C port.	CO 5

EXPERIMENT-1

OBJECTIVE:

Write a program using 8085 Microprocessor for Decimal, Hexadecimal addition and subtraction of two Numbers.

APPARATUS REQUIRED: -

Sr.	Name of	Specification/range/rating/versi	Quantity
no.	equipments/components/software	on	
1	8085 Microprocessor programming kit,	SCIENTECH-8085	1
	instruction coding sheet.		
2.	Power supply	A.C (230V Mains)	

DESCRIPTION/ALGORITHM:-

Hexadecimal Addition: The program takes the content of 2009, adds it to 200B & stores the result back at 200C.

Steps: 1. Initialize HL Reg. pair with address where the first number is lying.

- 2. Store the number in accumulator.
- 3. Get the second number.
- 4. Add the two numbers and store the result in 200B.
- 5. Go back to Monitor
- Let: (2009 H) = 80 H(2008 H) = 15 H

Result = 80 H + 15 H = 95 H
(2009 H)
$$\longrightarrow$$
 A
A \longrightarrow B
(200B H) \longrightarrow A
A + B \longrightarrow A
A \longrightarrow (200C H)

LXIH, 2009	;	Point 1 st no.
MOV A, M	;	Load the acc.
INX H	;	Adv Pointer
ADD M	;	ADD 2 nd NO.
INX H	;	Adv Pointer
MOV M, A	;	Store Result
RST 5		

Decimal Addition:

Steps: 1. Initialize HL Reg. pair with address where the first number is lying.

- 2. Store the number in accumulator.
- 3. Get the second number.
- 4. Add the two numbers and store the result in 200B.
- 5. Go back to Monitor

FLOWCHART:-

LXIH, 2009	;	Point 1 st no.
MOV A, M	;	Load the acc.
INX H	;	Adv Pointer
ADD M	;	ADD 2 nd NO.
DAA	;	Adjust the decimal
INX H	;	Adv Pointer
MOV M, A	;	Store Result
RST 5		

RESULTS: - Thus the numbers at 2009H and at memory are added.

CONCLUSION: - Thus the program to add two 8-bit numbers was executed.

EXPERIMENT-2

<u>OBJECTIVE</u>:- Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.

APPARATUS REQUIRED: -

Sr. no.	Name of equipments/components/software	Specification/range/rating/version	Quantity
1	8085 Microprocessor programming kit,	SCIENTECH-8085	1
	instruction coding sheet.		
2.	Power supply	A.C (230V Mains)	

DESCRIPTION/ALGORITHM:-

Hexadecimal Subtraction : The program takes the content of 2009, subtracts it to 200B & stores the result back at 200C.

Steps:-

- 1. Initialize HL Reg. pair with address where the first number is lying.
- 2. Store the number in accumulator.
- 3. Get the second number.
- 4. Subtract second no from acc and store the result in 200B.
- 5. Go back to Monitor

FLOWCHART:-

End

PROGRAM:-

LXIH, 2009	;	Point 1 st no.
MOV A, M	;	Load the acc.
INX H	;	Adv Pointer

SUB M	;	Subtract IIND NO.
INX H	;	Adv Pointer
MOV M, A	;	Store Result
RST 5	-	

Decimal Subtraction :

Steps:-

- 1. Initialize HL Reg. pair with address where the first number is lying.
- 2. Store the number in accumulator.
- 3. Get the second number.
- 4. Subtract second no from acc and store the result in 200B.
- 5. Adjust the decimal
- 6. Go back to Monitor

FLOWCHART:-

PROGRAM:-

;	Point 1 st no.
;	Load the acc.
;	Adv Pointer
;	Subtract IIND NO.
	;;;;

DAA	;	Adj	ust the decimal
INX H	;	Adv	Pointer
MOV M, A	;	Store Re	sult RST
5			

RESULTS:- Numbers at 2009H and in HL pairs (Memory) are subtracted.

CONCLUSION:- Thus the subtraction operation is taken out using assembly language.

EXPERIMENT-03

<u>OBJECTIVE</u>:- To perform multiplication and division of two 8 bit numbers using 8085.

APPARATUS REQUIRED: -

Sr.	Name of	Specification/range/rating/versi	Quantity
no.	equipments/components/software	on	
1	8085 Microprocessor programming kit,	SCIENTECH-8085	1
	instruction coding sheet.		
2.	Power supply	A.C (230V Mains)	

DESCRIPTION/ALGORITHM:-

Steps: 1. Initialize HL Reg. pair with address where the first number is lying.

- 2. Store the number in accumulator.
- 3. Get the second number.
- 4. Add the two numbers and store the result in 200B.
- 5. Go back to Monitor

FLOWCHART:-

Steps:-

- 7. Initialize HL Reg. pair with address where the first number is lying.
- 8. Store the number in accumulator.
- 9. Get the second number.
- 10. Subtract second no from acc and store the result in 200B.
- 11. Adjust the decimal
- 12. Go back to Monitor

FLOWCHART:-

PROGRAM:-

LXI H, 2009	;	Point 1 st no.
MOV A, M	;	Load the acc.
INX H	;	Adv Pointer
SUB M	;	Subtract IIND NO.
DAA	;	Adjust the decimal
INX H	;	Adv Pointer
MOV M, A	;	Store Result RST
5		

RESULTS:-

The BCD numbers at 2009H and memory are added or subtracted.

CONCLUSION:-

Thus the subtraction operation is taken out using assembly language.

EXPERIMENT – 4

<u>OBJECTIVE:</u> To find the largest and smallest number in an array of data using 8085 instruction set

APPAKA	ATUS REQUIRED: -		
Sr. no.	Name of equipments/ components/ software	Specification/range/rating/	Quantity
		version	
1	8085 Microprocessor programming kit,	SCIENTECH-8085	1
	instruction coding sheet.		
2.	Power supply	A.C (230V Mains)	

DESCRIPTION/ALGORITHM:-

1) Start the program by loading HL register pair with address of memory location.

- 2) Move the data to a register (B register).
- 3) Get the second data and load into Accumulator.
- 4) Add the two register contents.
- 5) Check for carry.
- 6) Increment the value of carry.
- 7) Check whether repeated addition is over and store the value of product and carry in memory location.

FLOWCHART:

PROGRAM:

MVI D, 00	;	Initialize register D to 00
MVI A, 00	;	Initialize Accumulator content to 00
LXI H, 4150	;	HL Points 4150
MOV B, M	;	Get the first number in B - register
INX H	;	HL Points 4151
MOV C, M	;	Get the second number in C- reg.
LOOP : ADD B	;	Add content of A - reg to register B.
JNC NEXT	;	Jump on no carry to NEXT.
INR D	;	Increment content of register D
NEXT : DCR C	;	Decrement content of register C.
JNZ LOOP	;	Jump on no zero to address
STA 4152	;	Store the result in Memory
MOV A, D	;	Get the carry in Accumulator
STA 4153	;	Store the MSB of result in Memory
HLT	;	Terminate the program.

RESULTS:

-

Input: FF (4150) FF (4151)

Output: 01 (4152) FE (4153)

CONCLUSION:-

Thus the multiplication process is taken out using assembly language for 8085 microprocessor

EXPERIMENT – 5

<u>OBJECTIVE:</u> To write a program to arrange an array of data in ascending and descending order.

APPARATUS REQUIRED: -

Sr. no.	Name of	Specification/range/rating/versi	Quantity
	equipments/components/software	on	
1	8085 Microprocessor programming kit, instruction coding sheet.	SCIENTECH-8085	1
2.	Power supply	A.C (230V Mains)	

DESCRIPTION/ALGORITHM:-

1) Start the program by loading HL register pair with address of memory location.

- 2) Move the data to a register (E register).
- 3) Get the second data and load into Accumulator.
- 4) Add the two register contents.
- 5) Check for carry.
- 6) Increment the value of carry.
- 7) Check whether repeated addition is over and store the value of product and carry in memory location.
- 8) Terminate the program.

EXAMPLE :

Steps	Product	Multiplier	Comments
Step 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Initial Stage Shift left by 1 Don"t add since CY=
Step 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 1 0 0 1 0 1 00Add	Shift I multiplicand:CY=1
Step 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 0 0 0 1 0 0 0 D	Shift left by 1 on''t add since $CY=0$
Step 4	0 0 1 1 0 0 0 0	1 0 0 0 0 Ad	ld multiplicand;CY=1

PROGRAM:

LXI H, 2200 H	;	Initialize the memory pointer
MOV E , M	;	Get multiplicand
MVID, 00 H	;	Extend to 16 bits

	INX H	:	Increment memory pointer
	MOV A, M	;	Get Multiplier
	LXIH,0000H	;	Product = 0
	MVIB, 08 H	;	Initialize counter with count 8
LOOP:	DADH	;	Product = product X 2
	RAL		
	JNC XYZ	;	Is carry from multiplier 1?
	DAD D	;	Yes, product = product + multiplicand
XYZ:	DCR B	;	Is counter $= 0$
	JNZ LOOP	;	No, repeat
	SHLD 2300 H	;	Store the result
	HLT		

RESULTS:-

Multiplication has been carried out between the data of 2200H and 2201 H.

CONCLUSION:-

Thus the multiplication process for 8 bit binary numbers is taken out in 8085 microprocessor

EXPERIMENT-6

<u>OBJECTIVE:</u> To convert given Hexadecimal number into its equivalent ASCII number and vice vers using 8085 instruction set.

APPARATUS REQUIRED: -

Sr. no.	Name of equipments/components/software	Specification/range/rating/version	Quantity
1	8085 Microprocessor programming kit,	SCIENTECH-8085	1
	instruction coding sheet.		
2.	Power supply	A.C (230V Mains)	

DESCRIPTION/ALGORITHM:-

- 1) Start the program by loading HL register pair with address of memory location.
- 2) Move the data to a register (B register).
- 3) Get the second data and load into Accumulator.
- 4) Compare the two numbers to check for carry.
- 5) Subtract the two numbers.
- 6) Increment the value of carry.
- 7) Check whether repeated subtraction is over and store the value of product and Carry in memory location.
- 8) Terminate the program.

PROGRAM:

LXI H, 4150		
MOV B, M	;	Get the dividend in B – reg.
MVI C, 00	;	Clear C – reg for qoutient
INX H	;	
MOV A, M	;	Get the divisor in A – reg.
NEXT: CMP B	;	Compare A - reg with register B.
JC LOOP	;	Jump on carry to LOOP
SUB B	;	Subtract A – reg from B- reg.
INR C	;	Increment content of register C.
JMP NEXT	;	Jump to NEXT
LOOP: STA 4152	;	Store the remainder in Memory
MOV A, C	;	
STA 4153	;	Store the quotient in memory
HLT	;	Terminate the program.

RESULTS:

Input: FF (4150)

FF (4251)

Output: 01 (4152)-----Remainder FE (4153)----- Quotient

EXPERIMENT-7

<u>OBJECTIVE:</u>- To write a program to initiate 8251 and to check the transmission and reception of character.

APPARATUS REQUIRED: -

Sr. no.	Name of equipments/components/software	Specification/range/rating/version	Quantity
1	8085 Microprocessor programming kit,	SCIENTECH-8085	1
	instruction coding sheet.		
2.	Power supply	A.C (230V Mains)	

PROGRAM:

MV	IE, 00 H	;	Quotient = 0
LH	LD 2200 H	;	Get Dividend
LE	ОА 2300 Н	;	Get Divisor
МО	VB,A	;	Store Divisor
MV	ЧС,08Н	;	Count = 08
NEXT : DAI	ОН	;	Dividend = Dividend X 2
МО	VA,E		
RLO	C		
МО	VE,A	;	Quotient = $X 2$
МО	VA,H		
SUI	3 B	;	Is MSB of dividend > divisor
JC S	SKIP	;	No go to next step
МО	VH,A	;	Yes subtract divisor
INR	E	;	Quotient = Quotient + 1
SKIP : DCF	RC	;	Count = count - 1
JNZ	L NEXT	;	Is $count = 0$ repeat
МО	VA,E		
STA	А 2401 Н	;	Store Quotient
МО	VA,H		
STA	A 2401 H	;	Store Remainder
HL	Г	;	End of program

RESULTS:-Number at 220H is divided from the number at 2300H

CONCLUSION:-

Thus the division process is taken out in 8085 microprocessor

EXPERIMENT- 8

<u>OBJECTIVE</u>:- . To interface 8253 programmable interval timer to 8085 and verify the operation of 825 in six different modes.

APPARATUS REQUIRED: -

Sr. no.	Name of equipments/components/software	Specification/range/rating/version	Quantity
1	8085 Microprocessor programming kit,	SCIENTECH-8085	1
	instruction coding sheet.		
2.	Power supply	A.C (230V Mains)	

DESCRIPTION/ALGORITHM:-

Write a program to find the largest number in a given array of 16 elements. The array is stored in

memory from 9200H onwards. Store the result at the end of the array.FLOWCHART:-

PROCEDURE:-

To find largest of given no. of a given string we compare all given no. one by one. Suppose given no. is 2, 4, 3, 1, 0 1st we compare 2 & 4 (2 is in register A & 4 is in Register B). A < B so put B into (A) & Compare with next number i.e. 3 Here A > B so directly compare 4 with 1 then 0.

RESULT AND INFERENCE:-

The largest number from the array of 16 numbers from memory location 9200H is found out and stored at 9210H

<u>PRECAUTION</u>:- Take memory locations according model of kit.

EXPERIMENT-9

<u>AIM:-</u> To interface DAC with 8085 to demonstrate the generation of square, saw tooth and triangular wave.

REQUIREMENT:- 8085 microprocessor programming kit, instruction coding sheet.

<u>THEORY:</u> Same as largest no. we compare two number one by one but comparison process is reverse.

PROCEDURE:-

RESULTS:

Smallest number has been found out from a 16 bit array starting from 9200H and is stored at 9210H. **CONCLUSION:**

Thus the smallest number has been found out from the array in assembly language for 8085 microprocessor

EXPERIMENT-10

OBJECTIVE:- Serial communication between two 8085 through RS-232 C port. **APPARATUS REQUIRED:** -Sr. no. Name of equipments/components/software Specification/range/rating/version

- 1 8085 Microprocessor programming kit, instruction coding sheet.
- Specification/range/rating/version Quantity SCIENTECH-8085 1

2. Power supply

A.C (230V Mains)

DESCRIPTION/ALGORITHM:-

Steps:

- 1. Intitialize timer IC
- 2. Move the mode command word to A
- **3.** Output it to port address C2
- 4. Moce the command instruction word to A reg.
- 5. Output it to port address C2
- 6. Move the data to be transferred to A
- 7. Output it to port address C0
- 8. Reset the system
- 9. Get data from input port C0
- **10.** Store the value in memory
- **11.** Reset the system

PROGRAM:

MVI A,36H

Out CEH MVIA,0AH Out C8H LXI H,4200H MVI A,4EH

Out C2H MVIA, 37H Out C2H MVIA, 42H Out C0H RST 1 ORG 4200H In C0H STA 4500H RST 1

RESULT

Output at 4500=1

CONCLUSION

Thus the 8251 was initiated and the transmission and reception character was done successfully.

This lab manual has been updated by

Faculty Name Prof. Sandeep Mishra sandeep.mishra@gnindia.dronacharya.info

> Cross checked By HOD ECE/EEE/ECZ

Verified By Director, DGI Greater Noida

Please spare some time to provide your valuable feedback

Department of ECE, Dronacharya Group of Institutions, Greater Noida.