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Preface

It is our privilege to bring out the present book titled “Engineering Physics − Theory and Practical” for engi-
neering students of U. P. Technical University, Lucknow. It is well known that Physics is not only the basic 
subject from which all the branches of engineering are derived but is also used in most of the technological 
developments and their advancements. In this regards, it becomes the compulsory course for all engineering 
graduated students. Since U. P. Technical University has revised the syllabus of Engineering Physics from 
academic session 2013−14, therefore the present textbook is an attempt to fulfil the needs of all engineering 
students according to the new revised syllabus.

The subject matter in the book has been presented in easy, effective and systematic way starting from 
basic concepts for the sake of continuity and better understanding of the subject. The whole subject matter 
has been divided into theory and practical sections as per the UPTU syllabus.

The University runs two courses of Engineering Physics (NAS-101 and NAS-201) in first and second 
semester, respectively. Therefore, the theory section of the book contains entire syllabus of both courses pre-
sented in 14 chapters according to the papers. Chapters 1−7 contain the syllabus of first paper (NAS-101) 
and Chapters 8−14 contain the syllabus of second paper (NAS-201).

		  Organization of the Book

NAS-101

	 1.	 Chapter 1 of the book explains the relativistic mechanics (Unit-I).
	 2.	 Chapter 2 describes the fundamentals of modern physics (Unit-II).
	 3.	 Physical optics of Unit-III Interference, Diffraction and Polarization is presented through Chapters 3, 

4 and 5, respectively.
	 4.	 Chapters 6 and 7 cover laser, fibre-optics and holography of Unit-IV.

NAS-201

	 1.	 Chapter 8 explains the crystal structure and X-ray diffraction of Unit-I.
	 2.	 Chapters 9 and 10 contain dielectric and magnetic properties of materials of Unit-II.
	 3.	 Unit-III consists the electromagnetic theory describes through Chapter 11.
	 4.	 Some technologically important materials such as semiconductors, superconductors and nanomaterials 

of Unit-IV are expressed through Chapters 12, 13 and 14, respectively.

		  Lab Manual

The practical section of book contains detailed theory, method, observation table and question and answer 
for viva-voce. It provides complete information on all experiments prescribed as per UPTU syllabus.
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		  Salient Features

	 1.	 Every topic is written and explained in a systematic and step-wise manner so that anyone can 
understand the subject without any difficulties. The language used is so lucid and comprehensive that 
a student lacking good knowledge of the subject can also be equally benefitted.

	 2.	 Review questions (related to the topics) and important points are provided at the end of the each 
chapter for further exposure and memories the contents.

	 3.	 Numerical problems with step-by-step solutions are provided in each chapter for understanding and 
practice.

	 4.	 Lab Manual: The experiments and their viva-voce aspect are incorporated in a very simple and 
systematic way in this book.

		  Acknowledgements

We owe a deep sense of gratitude to Manisha Bajpai, PDF Allahabad University, Allahabad and  
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the topics covered in the present book. We are thankful to publishers WILEY for providing constant sup-
port during the work and bringing the book in such a nice form. Although we have made our best efforts 
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any genuine and constructive suggestions for improving the quality of the present textbook.
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	 1.1	 Introduction

Theory of relativity is nothing but the branch of physics which deals with the motion of material bodies 
relative to each other and rest. It is also known as relativistic mechanics and is classified into two parts: 
Special theory of relativity and general theory of relativity. Special theory of relativity deals with the relative 
motion which remains at constant speed or at rest. General theory of relativity deals with the arbitrary 
relative motion which is not at constant speed and may be accelerated with respect to the material bodies. 
Before theory of relativity, the motion was described by Newton’s law under classical mechanics. In the very 
beginning it was thought that classical mechanics is applicable to all types of speed, but later the experimen-
tal fact revealed that classical mechanics is not applicable to bodies moving with the velocity comparable to 
the velocity of light. In classical mechanics, space and time are separable, or in other words, space and time 
are absolute and the transformations connecting the space−time coordinates of a particle are the Galilean 
transformations. These transformations are valid as far as Newton’s laws are concerned, but fail for bodies 
moving with the velocity of light.

The principle of relativity, when applied to the electromagnetic phenomena, asserts that the speed of 
light in vacuum is a constant of nature. This statement has been experimentally confirmed by various inves-
tigators and led Einstein to formulate the special theory of relativity in 1905. According to this theory, 
everything in the universe is relative, nothing is absolute, all rest and motions are relative, position and time are 
relative, etc. In other words, one can say that space and time are not independent of each other and the 
correct transformation equations are Lorentz transformations. We can understand it through following 
examples:

	 1.	 Consider an observer sitting in a moving train looking at distant stationary objects like trees or build-
ings. All these appear moving in the reverse direction of the motion of the train. It is easy to realize for 
a person standing outside the train that the observer of the train is moving in a particular direction, 
while for observer, the standing person would appear to move in a direction opposite to his own direc-
tion. It all concludes that the motion is relative.

•	 Frame of reference.
•	 Michelson−Morley experiment.
•	 Einstein postulates.
•	 Lorentz transformation equations.

•	 Length contraction and time dilation.
•	 Addition of velocities.
•	 Variation of mass with velocity.
•	 Mass energy equivalence.

LEARNING OBJECTIVES

After reading this chapter you will be able to understand:

Relativistic Mechanics1

Chapter 1.indd   1 4/14/2015   7:54:17 AM



2   •� CHAPTER 1/Relativistic Mechanics

	 2.	 If we compare the time in India during chat with a friend in China, we find that the time in India is 
different from the time in China. Hence, time is also relative.

	 3.	 Consider two people facing each other, standing on the opposite banks of the river and watching a 
boat moving in the river. For the first person the boat is towards his right while for the second one it is 
to his left. This clearly indicates that position is relative.

These examples make it clear that what an observer observes depends on his state or his frame of reference.
In this chapter we shall limit ourselves to the special theory of relativity, so first we will discuss frame 

of reference, ether hypothesis, Michelson−Morley experiments, the Galilean transformations and their fail-
ures and then we shall deduce the Lorentz transformations. After that, we will discuss the consequences of 
Lorentz transformations like length contraction, time dilation, velocity addition, etc. 

	 1.2	 Some Important Terms

Some common terms which are frequently used in relativistic mechanics are as follows:

	 1.	 Particle: A particle is a small piece of matter, having practically no linear dimension, but only a posi-
tion at a point. It is characterized by its mass and charge. Example: electron, proton, photon, etc.

	 2.	 Observer: A person who locates, records, measures and interprets an event is called an observer. The 
observer draws his interferences about the events on the basis of his observations.

	 3.	 Event: In relativity, an event implies anything that occurs suddenly or instantaneously at a point in 
space. It involves both a position and a time of occurrence.

	 1.3	 Frame of Reference

In order to specify the location of a point object in space, we require a coordinate system. A system of coor-
dinate axes which defines the position of a particle or specifies the location of an event is called a frame of refer-
ence. The simplest frame of reference is the Cartesian system of coordinates in which the location of a point is 
specified by the three (x, y and z) coordinates. For complete information about an event we must not only 
know about its locations but also its correct time of occurrence. Therefore, in addition to the three space 
coordinates, we need one more coordinate − time t − of its occurrence. A frame of reference having four 
coordinates, x, y, z and t is referred to as a space−time frame. If we are to describe events, our first step should 
be to establish a frame of reference. The frames of reference are classified into two groups:

	 1.	 Inertial frames of reference.
	 2.	 Non-inertial frames of reference.

1.3.1  Inertial Frames of Reference 
In inertial frames of reference, bodies obey Newton’s law of inertia and other laws of Newtonian or classical 
mechanics. In such a frame of reference, if no net external force acts upon a body, the body will move with 
zero acceleration − that is moving with a constant velocity. So it is also known as unaccelerated frames of 
reference. In other words, all those frames of reference which are either stationary relative to each other or are in 
uniform motion are called the inertial frames. Newton assumed that a frame of reference fixed with respect to 
the stars is an inertial system. A rocket ship drifting in outer space without spinning and with its engine cut 
off provides an ideal inertial system. Any set of axes moving at uniform velocity with respect to the earth, as 
in a train, ship or airplane, will be inertial because motion at uniform velocity does not introduce accelera-
tion. The special theory of relativity, which we consider here, deals only with the description of events by observers 
in inertial frames of reference.
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1.3.2  Non-Inertial Frames of Reference
The frames of reference in which Newton’s law is not valid is said to be non-inertial. In other words, the 
accelerated frames of reference are called non-inertial. A system of axes which accelerates with respect to the 
earth, such as one fixed to a spinning merry-go-round or to an accelerating car, is non-inertial system. A 
particle acted on by zero net external force will not move in straight line with constant speed according to 
an observer in such non-inertial system. 

	 1.4	 Earth: Inertial or Non-Inertial Frame of Reference?

We know that earth is not only rotating about its own axis but also orbiting around the sun. So accelera-
tions are present in both motions due to centripetal force. In this sense, one can say that earth is non-inertial 
frame of reference. However, in this study the speed of light is of the order of 2.99 × 108 m/sec and the earth 
is moving at a speed of 30 km/sec. So the effects of rotation and revolution of earth may be ignored. Thus, 
earth or any frame of reference set-up on earth is regarded as an inertial frame of reference.

	 1.5	 Ether Hypothesis

According to Maxwell, light waves are basically electromagnetic waves which are propagated through free 
space or vacuum with the speed of 2.99 × 108 m/sec. Till 19th century, all the waves known to mankind were 
mechanical waves, which required a material medium for their propagation. It was assumed that the entire 
space of the universe including vacuum is filled by a hypothetical medium called ether which is rigid, invisible, 
massless, perfectly transparent. On the necessity of the medium, scientists tried to detect and understand the 
relative motion of physical bodies with respect to ether. Many experiments were conducted in this direction; 
the most famous among them being Michelson−Morley experiment, which we will discuss next. However, 
negative results of this experiment ruled out the existence of this hypothetical ether medium. 

	 1.6	 Michelson−Morley Experiment

In 1887, Albert Michelson and Edward Morley carried out an experiment to detect the motion of the earth 
relative to ether medium at rest using Michelson interferometer. Michelson was awarded the Noble prize 
in physics for this experiment. The main objective of this experiment was to confirm the existence of ether. If 
we imagine ether to be fixed with respect to the sun, then the earth moves through the ether at a speed of 
30 km/sec in different directions in different seasons. Therefore, the time taken by the light to travel equal 
distance in different directions would be different. So we have to find this time difference from which the 
relative velocity between the ether and the earth could be estimated.

The arrangement for Michelson−Morley experiment is shown in Fig. 1. A beam of light from the source 
S is incident upon a 45° inclined glass plate P. It splits into two components: One is reflected and other is 
refracted. These beams travel at right angles to each other and are normally incident on mirrors M1 and M2 
placed at equal distances PM1 = PM2 = L′ from the glass plate P. After reflections from the mirrors, the two 
beams interfere at point P. The interference fringes are observed in the telescope. If the apparatus were at 
rest, the two beams would take the same time to return to P.

Let us consider that earth along with the apparatus moves with a velocity v in ether. Suppose c is the 
velocity of light through the ether. When light goes from P to M1, the relative velocity of light is c - v. From 
M1 to P the relative velocity is c + v. Finally, from either P to M2 or M2 to P, the relative velocity of light 
is (c2 − v2)1/2. Thus the time required by light to go along the parallel path from P to M1 and back to P, as 
measured by the observer O ′, is 

Chapter 1.indd   3 4/14/2015   7:54:18 AM



4   •� CHAPTER 1/Relativistic Mechanics

Terrestrial observer

Source of light

Earth’s motion

c + v

c − v

M2

P

v

S

O ′

M1

c 2 − v 2

Figure 1  Michelson−Morley experiment.
Note: PM1 = PM2 = L′.
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However, the time required to go along the perpendicular path from P to M2 and back to P, as measured 
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Finally, the whole apparatus is turned through 90° so that the path PM1 becomes longer than the path PM2 
by an amount ′L v c2 2/ . As a result, a path difference of same amount in opposite direction is introduced so 
that the total path difference between the two rays becomes 2 2 2′L v c/ . Thus, the fringe shift is
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Now put the value ′L  = 11 m (taken by Michelson and Morley), l = 6000 Å and v = 3 × 104 m/sec. We get

∆n
L v
c

= ′ ⋅ =2 1
0 4

2

2 l
.

A fringe shift of this amount is readily detected with the apparatus. Michelson and Morley were surprised 
to see that no shift in the fringe was observed even when the interferometer was rotated through 90°. This 
indicates that the relative velocity between the earth and the ether is zero. The experiments since then have been 
repeated several times under different circumstances but always the same negative result was obtained.

1.6.1  Explanation of the Negative Results of Michelson−Morley Experiment
There are many explanations and interpretations of negative results of the Michelson−Morley experiment 
to defend the concept of stationary hypothetical medium ether. But these have failed. Some of them are 
presented here:

	 1.	 Ether−Drag hypothesis: The moving earth drags the ether with it. Hence, there is no relative motion 
between the two and hence no shift is observed.

	 2.	 Fitzgerald−Lorentz contraction hypothesis: This hypothesis suggests that all material bodies are 
contracted in the direction of motion relative to stationary ether by a factor [ ( )] ./1 /− v c2 2 1 2  As a result, 
the time taken by the two rays in travelling towards the mirrors M1 and M2 would be equal. So ∆t = 0, 
which gives that there is no path difference and, hence, no shift would be expected.

	 3.	 Principle of constancy of speed of light: The velocity of light is constant and does not depend upon 
the motion of the source, observer or the medium.

1.6.2  Conclusions of Michelson−Morley Experiment 
The followings are the main conclusions of the Michelson−Morley experiment:

	 1.	 The velocity of light is same in all directions.
	 2.	 The effects of the presence of ether are undetectable.

	 1.7	 Einstein’s Postulates of Special Theory of Relativity

Einstein drew two important conclusions for the formulation of the special theory of relativity. These are 
known as the postulates of the special theory of relativity. These postulates are:

	 1.	 All the laws of physics are the same in every inertial frame of reference. This postulate implies that there is 
no experiment, whether based on the laws of mechanics or the laws of electromagnetism, from which 
it is possible to determine whether or not the frame of reference is in a state of uniform motion.

	 2.	 The speed of light is independent of the motion of its source. Einstein was inspired to make these postu-
lates through his study of the properties of Maxwell’s equations and not by the negative results of the 
Michelson−Morley experiment, of which he was apparently only vaguely aware. It is this postulate that 
forces us to reconsider what we understand by space and time.

One immediate consequence of these two postulates is that the speed of light is the same in all inertial 
frames of reference.
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	 1.8	 Galilean Transformation 

At any instant, the coordinates of a point or particle in space will be different in different coordinate sys-
tems. The equations which provide the relationship between the coordinates of two reference systems are called 
transformation equations. In Newtonian mechanics where the speed of the observer or object is very small 
compared to the speed of light, these relevant transformation equations are called Galilean transformation 
equations or Galilean transformations. Galilean transformations are used to transform the coordinates of 
position and time from one inertial frame to another.

In order to obtain the Galilean transformation equations, consider two frames of reference S and S ′ 
with axes (x, y, z) and (x ′, y ′, z ′), respectively. The frame S ′ is moving with a uniform velocity v along the 
x-axis. At t = 0, the two frames coincided which means that the axis of S and S ′ overlapped. At any time t, 
the x-coordinate of point P in S exceeds that in S ′ by vt, the distance covered by S ′ in time t in the positive 
x direction as shown in Fig. 2.

Y v

P
vt

Y′

x′

X′O′

Z′Z

O

x

X

S′S

(x′, y, z′, t′ )

(x, y, z, t)

Figure 2  Motion of frame S ′ with constant velocity v.

Therefore, the observed coordinates in the two frames are given by the following transformation equations:

	 ′ = − ′ = ′ = ′ =x x vt y y z z t t; ; ; 	 (1.1)

The set of equations (1.1) are known as Galilean transformations. We can consider that frame S is moving 
with velocity –v along the negative x-axis with respect to frame S ′. Then the transformation equations from 
S ′ to S are as follows:

	 x x vt y y z z t t= ′ + = ′ = ′ = ′         ; ; ; 	 (1.2)

These are known as inverse Galilean transformation equations.
The general form of transformation equations is r ′ = r - vt and that of inverse transformation equations 

is r = r ′ + vt.
The other assumption, regarding the nature of the space, is that the distance between two points is inde-

pendent of any particular frame of reference. For this purpose, we consider a rod of length L in the frame S 
with the end coordinates x1 and x2. Then using Galilean transformation equations we have

L = x2 - x1
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If at the same time the end coordinates of the rod in S′ are x1′ and x2′, then L′ = x2′ - x1′. According to 
Eq. (1.1) for any time t, we have

x2′ - x1′ = x2 - x1

Therefore, L′ = L. Thus, the length between two points is invariant under Galilean transformations. 
Differentiating the transformation Eq. (1.1), we get velocity transformation equations from S to S ′. 

These equations are as follows:

	

      ′ = −
′ =

′ =









u u v

u u

u u

x x

y y

z z

 
dx
dt

ux

′ = ′; 
dx
dt

ux=  	 (1.3) 

Thus, velocity is not invariant under Galilean transformations. In general, the velocity transformation is 
given by

dr

dt

dr
dt

v
′ = −   or  u′ = u − v

while the inverse velocity transformation is given by

u = u′ + v

The acceleration transformation equations are obtained by differentiating Eq. (1.3). We have

	
′ = ′ = ′ =a a a a a ax x y y z z; ; 	 (1.4)

Thus, the acceleration is invariant under Galilean transformations.
In classical physics the mass is also unaffected by the motion of the reference frame. Thus, the product 

ma will be the same for all inertial observers. According to Newton’s second law

F = ma  then  F ′ = ma′  [using Eq. (1.4)]

or	 F = F ′	

Similarly, we can prove that

F ′x = Fx,  F ′y = Fy , F ′z = Fz, 

Thus Newton’s law is valid in both S and S ′, that is S and S ′ are inertial frame of references. We may also say 
that Newton’s laws of motion are invariant under Galilean transformations.

1.8.1  Failure of Galilean Transformation 
The principle of relativity asserts that the laws of physics are invariant in all inertial systems, moving with 
constant relative velocity. It is to be mentioned that the Galilean transformations satisfy principle of relativ-
ity as for as Newton’s laws of motion are concerned, but as we shall see later that these transformation do not 
satisfy this principle for propagation of electromagnetic waves. In spite of this, if we measure the speed of 
light along the x-direction in the frame S which is to be c, then in the moving frame S ′ it will be c ′ = c - v. 
This violates the second postulate of the special theory of relativity. Therefore, a different transformation is 
required to satisfy the postulates of special theory of relativity.
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	 1.9	 Lorentz Transformations

A transformation that changes space−time coordinates (x, y, z, t) into (x ′, y ′, z ′, t ′) in such a way that the speed 
of light is constant in all unaccelerated coordinates system is satisfied was first obtained by Lorentz and is hence 
called Lorentz transformation.

In deriving this transformation, we will eventually make use of the constancy of the speed of light, but 
first we will derive the general form that the transformation law must take purely from kinematic/symmetry 
considerations. Refer Fig. 2 where we considered two inertial frames S and S ′, S ′ is moving with a veloc-
ity v relative to S. Let us consider that the origins of both frames coincide when the times on the clocks in 
each frame of reference are set to read zero, that is t = t ′ = 0. Now consider an event that occurs at the point 
P(x, y, z, t) as measured in S. The same event occurs at (x ′, y ′, z ′, t ′) in S ′. In our new transformation, the 
measurement in the x-direction made in frame S must be linearly proportional to that made in S ′. That is

	  x ′ = g (x - vt)	 (1.5)

where g  is the proportionality constant, which does not depend upon either x or t but may be a function 
of v. As the laws of physics are same in both frames S and S ′ (first postulate), therefore the corresponding 
equation of x in terms of x ′ and t ′ will have similar nature except that −v replaces v, so that 

	 x = g (x ′ + vt ′)	 (1.6)

where t ≠ t ′. Now substituting the value of x ′ from Eq. (1.5) into Eq. (1.6), we have

x = g [g (x - vt) + vt ′]

⇒ x = g 2 (x - vt) + g vt ′ 

⇒ (1 − g 2)x + g 2vt = g vt ′

	 ⇒ t ′ = g t + 
1 2−





g
gv

x = g t - g
g

x

v
1

1
2−







	 (1.7)

The value of g  can be evaluated with the help of second postulate. Let a light signal be given at the origin O 
at time t = 0, t ′= 0; this means O and O ′ coincide. The signal travels with a speed c which is same in both 
the frames: 

x = ct and x ′ = ct ′ (position in S and S ′ frame, respectively)

Substituting these values of x and x ′ in Eqs. (1.5) and (1.6), we get

ct ′ = g t(c - v) and ct = g t ′(c + v) 

After multiplying both these equations with each other, we get

	 c2 = g 2(c2 - v2)  ⇒ g
2 = 

c
c v

2

2 2( )−
  ⇒ g  = 

1

1 2 2− ( )v c/
	 (1.8)

Now, substituting the value of g  from Eq. (1.8) in Eq. (1.5), we get

	

′ = −
−

x
x vt

v c

  

1 2 2( / )
	 (1.9)
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Squaring and rearranging Eq. (1.9), we get

g 2 = 
1

1 2 2− ( / )v c
  or 

v
c

2

2 21
1= −

g

Substituting the value of 1 1 2− ( / )g  in Eq. (1.7) we get

	 - ′ = −t t
x

v
v
c

g
g 2

2   or  ′ =
−

−
t

t xv c

v c

( / )

( / )

2

2 21
	 (1.10)

Due to the relative motion of the two reference frames is in the x-direction, it is reasonable to expect that all 
distances measured at right angles to the x-direction will be same in both the frame S and S ′, that is

	 y = y ′  and  z = z ′	 (1.11)

Hence the Lorentz transformation equations for space and time are

 x ′ = 
x vt

v c

−
−

 

1 2 2( / )
;  y = y ′;  z = z ′ and t ′ = 

t xv c

v c

−

−

( / )

( / )

2

2 21

	 1.10	 Inverse Lorentz Transformations Equations

In order to obtain the space and time coordinates (x, y, z, t) in frame S, we replace v by –v in Eqs. (1.9), 
(1.10) and (1.11). The transformation equations are as follows:

	

x
x v t

v c
= ′ + ′

−
   

1 2 2( / )
	 (1.12)

	 y = y ′  and  z = z ′	 (1.13)

	
t

t xv c

v c
=

′ +

−

( / )

( / )

2

2 21
	 (1.14)

These equations are known as inverse Lorentz transformation equations.
Since, nothing can move with a velocity greater than the velocity of light this means that v should always 

be less than c. Therefore, the Lorentz transformation equations are reduced to the Galilean transformation 
equations.

When v‌ << c, that is 1 2 2− ( / )v c  ≈ 1 and t xv c− ( / )2

 ≈ t, then

          ′ = − = ′ = ′ = ′x x vt y y z z t t; ; ;

From a practical point of view, at low speeds, there is no difference between the Lorentzian and Galilean 
transformations and we use the later in most of the problems. However, for very fast particles having veloci-
ties comparable to the velocity of light, for example electrons in the atoms, cosmic ray particles, we must use 
the Lorentz transformation.

	 1.11	 Consequences of Lorentz Transformations

Let us now discuss the consequences of Lorentz transformations regarding the length of the bodies and the 
time intervals between given events.
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1.11.1  Length Contraction
The first of the interesting consequences of the Lorentz transformation is that the length no longer has an 
absolute meaning: The length of an object depends on its motion relative to the frame of reference in which 
its length is being measured. Lorentz and Fitzgerald observed that when an object moves with a velocity v 
(comparable with velocity of light) relative to a stationary observer, its length appears to be contracted by a factor 

1 2 2− ( / ),v c  in the direction of its motion whereas its other dimensions perpendicular to the direction of the 
motions are unaffected. This decrease in length in the direction of the motion is called the length contraction.

In order to obtain the expression for length contraction let us consider a rod parallel to the x-axis 
moving with a velocity v relative to a frame of reference S. This rod is stationary relative to a frame of refer-
ence S ′ which is also moving with a same velocity v relative to S.

As the rod is stationary in frame S ′, the ends of the rod will have coordinates x1′ and x2′ which remain 
fixed as functions of the time in S ′. The length of the rod, as measured in S ′, is then

	 l0 = x2′ − x1′	 (1.15)

where l0 is known as the proper length of the rod, that is l0 is its length as measured in a frame of reference 
in which the rod is stationary. Now we want to measure the length of the rod in frame S. In order to do this, 
we measure the x-coordinates of the two ends of the rod at the same time t by the clock in S. Suppose x2 
and x1 are the x-coordinates of the two ends of the rod as shown in Fig. 3. If the length of the rod is l then

	 l = x2 − x1	 (1.16)

Y

S

LO

S′

O′O

Y′

Z′Z

x′2

x1

x2

x′1
X

v

X′

Figure 3  The length of the rod as measured by an observer.

Turning now to the Lorentz transformation equations, we see that

′ =
−

−
x

x v t

v c
1

1

2 21

   

( / )
  and  ′ =

−
−

x
x v t

v c
2

2

2 21

   

( / )

Now

′ − ′ =
−

−
−

−
−

x x
x v t

v c

x v t

v c
2 1

2

2 2

1

2 21 1

      

( / ) ( / )

Using Eq. (1.15), we get

l
x v t

v c

x v t

v c

x x

v c
0

2

2 2

1

2 2

2 1

2 21 1 1
=

−
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From Eq. (1.16), we get

l
l

v c
0 2 21

=
− ( / )

Hence, 

	 l l v c= −0
2 21 ( / )	 (1.17)

Thus the length of the rod as measured in the frame of reference S with respect to which the rod is moving is 

shorter by a factor of 1 2 2− ( / )v c . A rod will be observed to have its maximum length when it is stationary.
This phenomenon is known as the Lorentz−Fitzgerald length contraction. It is not the consequence of 

some force ‘squeezing’ the rod, but it is a real physical phenomenon with observable physical effects. Note, 
however, that someone who actually looks at this rod as it passes by will not see a shorter rod. If the time 
that is required for the light from each point on the rod to reach the observer’s eye is taken into account, the 
overall effect is that of making the rod appear as if it is rotated in space.

1.11.2  Time Dilation
A clock moving with a uniform velocity v relative to an observer at rest appears to him to go slow by a factor

1 2 2− ( / )v c  than when at rest. This effect is said to be time dilation. In order to obtain a relation for time 
dilation, let a clock be placed at a point in the frame S and another at a point in the frame S ′ moving with 
velocity v with respect to the frame S along the positive x-axis. According to Lorentz transformation for time 

	 t = 
′ + ′

−

t x v c

v c

( / )

( / )

2

2 21
	 (1.18)

Again consider a light signal is emitted at point x′ at time t1′ and another at the same location at time t2′ in 
the frame S′ as measured by an observer in frame S. Therefore,

	 t1 = 
′ + ′

−
t x v c

v c
1

2

2 21

( )

( / )

/
  and  t

t x v c

v c
2

2
2

2 21
=

′ + ′
−
( )

( / )

/
	 (1.19)

Therefore

	 ∆ t t t
t x v c

v c

t x v c

v c
= − =

′ + ′
−

−
′ + ′

−
2 1

2
2

2 2

1
2

2 21 1

( )

( / )

( )

( / )

/ /
	 (1.20)

	 ⇒ = − =
′ − ′

−
∆ t t t

t t

v c
2 1

2 1

2 21 ( / )
	 (1.21)

	 ⇒ =
′

−
∆

∆
t

t

v c1 2 2( / )
� (1.22)

Since, v < c, 1 12 2− <( / )v c . Therefore,

	 ∆ ∆t t> ′	 (1.23)

In order to interpret this result, suppose ∆ ′t  is the time interval between two ‘ticks’ of the clock. Then 
according to the clocks in S, these two ‘ticks’ are separated by a time interval ∆ t  which, by Eq. (1.23) is 
greater than ∆ ′t . Thus the time interval between ‘ticks’ is longer, as measured by the clocks in S, than what 
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it is measured to be in S ′. In other words, from the point of view of the frame of reference S, the clock (and 
all the clocks in S ′) is running slow. It appears from S that time is passing more slowly in S ′ than it is in S. 
This is the phenomenon of time dilation. A clock will be observed to run at its fastest when it is in a stationary 
frame of reference. The clock is then measuring proper time.

This phenomenon is just as real as length contraction. One of its best known consequences is that of the 
increase in the lifetime of a radioactive particle moving at a speed close to that of light. For example, it has 
been shown that if the lifetime of a species of radioactive particle is measured while stationary in a labora-
tory to be T ′, then the lifetime of an identical particle moving relative to the laboratory is found to be given 
by T T v c= ′ −/ ( / ),1 2 2  in agreement with Eq. (1.22).

1.11.3  Experimental Verification of Time Dilation (Example of Real Effect)
Time dilation has been verified by p mesons or m mesons. These are created at the height of about 10 km in 
the earth atmosphere by the interaction of photons and are projected towards the earth surface with velocity 
2.29 × 108 m/sec (or v = 0.998c). These mesons are unstable and decay with an average life-time of approxi-
mately 1.8 × 10−8 sec and 2.0 × 10−6 sec for p mesons and m mesons, respectively. Hence, in this life-time  
m mesons can travel a distance

d = Velocity × Decay time = 2.29 × 108 × 2.0 × 10−6 ≈ 0.6 km

This distance is small compared to the distance of 10 km required to reach the earth surface. This is possible 
because of time dilation effect. So, dilated life-time due to relativistic effect is

T
T

v c
= ′

−1 2 2( / )
 = 

2 0 10

1
2 29 10
3 0 10

3 17 10
6

8

8

2

5.

.
.

.
×

− ×
×







≅ ×
−

−  sec

In this dilated life-time m mesons can travel a distance

d = Velocity × Dilated life-time = 2.29 × 108 × 3.17 × 10−5 ≈ 9.5 km

This explains the presence of m mesons on the earth surface. Thus, this experiment is evidence for time 
dilation.

	 1.12	 Twin Paradox in Special Relativity

Let us consider two twins A and B, each 30 years of age. Twin A remains at rest at the origin O and twin B 
takes a round trip space voyage to a star with velocity v = 0.99c relative to A. The star is 20 light years away 
from O. We want to determine the age of A and B as B finishes his journey. According to A, the time taken 
by B in the round trip is 

t
c

c
c1

30

0 99

30

0 99
30 3= = =

light years

. .
.  years

Thus, according to A his own age, as B completes the journey, is 30 + 30.3 = 60.3 years.
According to B, the time of journey (proper time interval) is as follows:

t v c2
2 2 230 1 30 1 99 4 2= × − = − =( / ) ( . ) .0  years

Hence, according to B, his own age after the journey is 30 + 4.2 = 34.2 years.
These two statements are different. After the space journey, will one of the two twins look younger than 

the other? This is twin paradox in the theory of special relativity.

Chapter 1.indd   12 4/14/2015   7:55:04 AM



1.13  Transformation of Velocities or Addition of Velocities� •   13

	 1.13	 Transformation of Velocities or Addition of Velocities

In order to obtain the transformation equations for velocities of a particle in the frame S and S ′, we consider 
the velocity in the frame S be u (ux , uy , uz) and that in S ′ be u′ (ux′, uy′, uz′). Therefore,

	
u

dx
dtx =   and  ′ = ′

′
u

dx
dtx 	 (1.24)

By Lorentz transformation equations

′ = −
−

x
x vt

v c

  

1 2 2( / )
,  y = y ′,  z = z ′,  ′ = −

−
t

t vx c

v c

( )

( / )

/ 2

2 21

Differentiating these equations, we get

dx
dx vdt

v c
′ = −

−
  

1 2 2( / )
,  dy = dy ′,  dz = dz ′,  dt

dt vdx c

v c
′ = −

−
( )

( / )

/ 2

2 21
 

Dividing dx ′, dy ′ and dz ′ by dt ′ we get

dx
dt

dx vdt

dt vdx c
′
′

= −
−

  

( )/ 2  ⇒ ′ = −

−
u

dx dt v
v
c

dx
dt

x

( )/  

1 2

  ⇒ ′ =
−

−
=



u

u v
v u
c

dx

dt
ux

x

x
x

  

1 2

∵

Similarly, 

′ =
′
′

=
−

−
=

−

−
=u

dy

dt

dy v c

dt vdx c

dy
dt

v c

v
c

dx
dt

u
y

1 1

1

2 2

2

2 2

2

( / )

( )

( / )

/
yy

x

v c
vu
c

1

1

2 2

2

−

−

( / )
, 

′ = ′
′

=
−

−
=

−

−
=

−
u

dz

dt

dz v c

dt
vdx
c

dz
dt

v c

v
c

dx
dt

u
z

z1 1

1

12 2
2 2

( / ) ( / )

2 2

(( / )v c
vu
c

x

2 2

1 − 2

Thus,

	

′ =
−

−
′ =

−

−
′ =

−

−
u

u v
vu
c

u
u v c

vu
c

u
u v c

x
x

x
y

y

x
z

z  

1

1

1

1

12

2 2

2

2 2

;
( / )

;
( / )
vvu
c

x
2

	 (1.25)

Equation (1.25) represents the relativistic velocity transformation. When the particle is moving along x-axis, 
then the component uy = uz = 0 and ux = u. Hence,

	

′ = −

−
u

u v
vu
c

x

  

1 2

	 (1.26)
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The inverse transformations are obtained by replacing v by –v in Eq. (1.25). We have

	 u
u v

vu
c

u
u v c

vu
c

u
u v c

x
x

x
y

y

x
z

z=
′ +

+
′ =

′ −

+ ′ =
′ −  

1

1

1

12 2 2 2

2 2

;
( / )

;
( / )

11 − ′vu
c

x
2

	 (1.27)

In the non-relativistic case ( / ) ,v c << 1  and so Eq. (1.27) reduces to

	
u u v u u u ux x y y z z= ′ + = ′ = ′  ; ; 	 (1.28)

Equation (1.28) is equivalent to classical results which is same as the Galilean transformations. If the par-
ticle is photon moving with the velocity of light in the positive x-direction, that is ′ =u cx , then its velocity 
observed by an observer in frame S is given by

u
u v

vu
c

c v
vc
c

c c v

c v
cx

x

x

=
′ +

+
′ = +

+
= +

+
=

  

1 12 2

( )

( )

From the above equation we can conclude that the velocity transformations are consistent with the hypoth-
esis of relativity, that is, no particle can move with the greater velocity than the velocity of light.

	 1.14	 Variation of Mass with Velocity

Up to now, we have discussed that length and time are not absolute but depend upon the frame of reference 
in which they are measured. Newtonian mechanics suggests that the mass of the body remains constant; 
however, from the relativistic point of view under all circumstances, the mass of a body is not a consistent 
property, but it is the function of velocity of the body. Thus, the change of mass with velocity will obviously 
change the momentum, energy and force. The variation of mass with velocity is shown through the follow-
ing relation:

m
m

v
c

=
−

0

2

21

where m0 the rest mass of the body and m is the moving body mass. In order to obtain the expression for 
the variation of mass with velocity, we consider two frames of reference S and S′. Frame S is at rest while S′ 
is moving with velocity v along the x-direction. Suppose two bodies with masses m1 and m2 travel with the 
corresponding velocities u′ and –u′ in the moving frame S′ and u1 and u2 in the frame S (Fig. 4).

S

O

y ′

O ′

u ′ −u ′

S ′

m1

m1

v

u1
u2

m2

m2

2121

Figure 4  Variation of mass with velocity.
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At the time of collision, the colliding particles are at rest with respect to the frame S ′ but move with 
velocity v relative to the frame S. Therefore, according to law of addition of relativistic velocities

	

u
u v

vu
c

1

21
=

′ +

+
′

  
	 (1.29)

and	 u
u v

vu
c

2

21
=

− ′ +

−
′

  
	 (1.30)

Using the principle of conservation of momentum, we can write

	 m u m u m m v1 1 2 2 1 2+ = +( ) 	 (1.31)

Substituting the values of u1 and u2 from Eqs. (1.29) and (1.30) in Eq. (1.31), we get

m
u v

v u
c

m
u v

v u
c

m m1

2

2

2

1

1 1

′ +

+
′

















+
− ′ +

−
′

















= +
    

( 22 1

2

2

21 1
)v m

u v
v u
c

v m v
u v

v u
c

⇒
′ +

+
′ −

















= +
′ −

−
′













    



Simplifying and cancelling the common terms, the above equation reduces to

	

m

m

vu
c
vu
c

1

2

2

2

1

1
=

+ ′

−
′ 	 (1.32)

Using Eqs. (1.29) and (1.30), we find out the values of the following:

1 1
1

1
1

1
2

2

2

2

2

2

− = −

′ +

+
′

















= −

′ +

+
′









u

c

u v
v u
c

c

u v
c
v u
c

  
  







=
+

′
+ ′ − ′ − − ′

+
′





=

2 2 2

4 2

2

2

2

2 2

2

2

1
2 2

1

1

v u
c

u v
c

u
c

v
c

u v
c

v u
c

−− ′





− − ′





+
′





=
− ′





u
c

v
c

u
c

v u
c

u
c

2

2

2

2

2

2

2

2

21

1

1

2

 −






+
′





1

1

2

2

2

2

v
c

v u
c

or	 1

1 1

1
2

2

2

2

2

1
2

2

+
′

=
− ′





−






−

v u

c

u
c

v
c

u
c

	 (1.33)
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Similarly, we can obtain

	

1

1 1

1
2

2

2

2

2

2
2

2

−
′

=
− ′





−






−

vu

c

u
c

v
c

u
c

	 (1.34)

Substituting the values from Eqs. (1.34) and (1.33) in Eq. (1.32), we get

m

m

u
c

v
c

u
c

u
c

v
c

1

2

2

2

2

2

1
2

2

2

2

2

2

1 1

1

1 1

=

− ′





−






−

− ′





−






−

=
−

−

1

1

1

2
2

2

2
2

2

1
2

2

u
c

u
c
u
c

If mass m2 in the system S is at rest before collision, that is u2 = 0, then

m

m

u

c
m

m

u
c

1

2

1
2

2 1
2

1
2

2

1

1

= − ⇒ =
−

If m1 = m, m2 = m0 the rest mass of the body, and u1 = v, then the above equation reduces to

m
m

v
c

=
−

0

2

21

This is the required formula for the variation of mass with velocity. The following are the important conclu-
sions from the above equation:

	 1.	 As the velocity v of the particle relative to the observer increases, the mass of the particle increases.
	 2.	 If v tends to the velocity of light c, then m tends to infinity that means no material particle can have a 

velocity equal to or greater than the velocity of light.
	 3.	 If v c<< , then v c2 2/  is very small and may be neglected compared to 1, that is m = m0.

	 1.15	 Expression for the Relativistic Kinetic Energy

According to classical mechanics, force is defined as the rate of change of linear momentum. This is true for 
the relativistic mechanics as well. Thus, the force applied on a particle moving with relativistic velocity v is 
as follows:

	
F

dP
dt

d
dt

mv= = ( )	 (1.35)
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where m is the relativistic mass of the particle. Since m is the variable quantity, therefore 

	
F m

dv
dt

v
dm
dt

= + 	 (1.36)

If a force F displaces the particle through distance ds, then the work has done by the force increases the 
kinetic energy of the particle by dEk. Therefore,

	
dE F ds m

dv

dt
v

dm

dt
dsk = ⋅ = +





⋅ 	 (1.37)

or
	

dE m
dv

dt
ds v

dm

dt
dsk = +

	

or
	

dE m
ds

dt
dv v

ds

dt
dmk = +

	

or	 dE mvdv v dmk = + 2 	 (1.38)

According to Einstein special theory of relativity,

m
m

v
c

=
−

0

2

21

  ⇒ =
−

m
m

v
c

2 0
2

2

21
  ⇒ − =1

2

2
2

0
2v

c
m m

 
⇒ ( )c v m m c2 2 2

0
2 2− =

	 ⇒ ( )c m v m m c2 2 2 2
0

2 2− = 	 (1.39)

Differentiating Eq. (1.39), we get

( )

[( ) ]

( )

c m dm v m dm v dv m

m c v dm mv dv

c v dm mv

2 2 2

2 2

2 2

2 2 2 0

2 0

− − =

⇒ − − =

⇒ − = ddv

Now substituting the value of mv dv in Eq. (1.38), we get

	 dE c v dm v dmk = − +( )2 2 2

  ⇒ =dE c dmk
2 	 (1.40)

Integrating Eq. (1.40) between m and m0 (when particle mass changes from rest mass m0 to effective mass m), 
we have

E dE c dm c m mk k

m

m

m

m

= = = −∫ ∫
0 0

2 2
0( )
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Since m
m

v c
=

−
0

2 21 ( / )
 therefore

	 E c
m

v
c

m m c
v
c

k =
−

−













=
−

−













2 0

2

2

0 0
2

2

21

1

1

1 	 (1.41)

This is the required expression for kinetic energy of particle.

	 1.16	 Einstein’s Mass−Energy Relation 

We know that the total energy of a moving particle is the sum of its kinetic energy and energy at rest, that is

	 E = Ek  + E0	 (1.42)

The rest energy of the particle is given by

	 E m c0 0
2= 	 (1.43)

Now substituting the values of Ek  and E0 from Eqs. (1.41) and (1.43) in Eq. (1.42), we get

E c
m

v
c

m m c
m c

v
c

=
−

−













+ =
−

2 0

2

2

0 0
2 0

2

2

21 1

Since m
m

v c
=

−
0

2 21 ( / )
, therefore

E mc= 2

This is well known Einstein mass−energy relation. The relativistic kinetic energy can be expressed as

E m m c c
m

v
c

m
m c

v
c

m ck = − =
−

−













=
−

−( )0
2 2 0

2

2

0
0

2

2

2

0
2

1 1

Using binomial theorem we have

E m c
v

c
m c m c

v
c

v
c

mk = −






− = + + +








 −0

2
2

2

1 2

0
2

0
2

2

2

4

4 01 1
1

2

3

8

/

� cc 2

Since v2/c2 << 1, we have

E m c
v
c

m c m vk = −






− =0
2

2

2

1 2

0
2

0
21

1

2

/

This relation is the classical result for the kinetic energy.
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	 1.17	 Relativistic Relation between Energy and Momentum

We know that total energy of a moving particle is

	

E mc
m c

v c
= =

−
2 0

2

2 21 ( / )
	 (1.44)

where m0 is the rest mass of the particle. Since p mv=  we have v p m= / . Substituting the value of v in 
Eq. (1.44) we get

E
m c

p
m c

m c

p c
m c

=
−

=
−

0
2

2

2 2

0
2

2 2

2 41 1

	

⇒ =
−

=
−

E
m c

p c
mc

m c

p c
E

0
2

2 2

2 2

0
2

2 2

21 1
( )

 [∵E mc= 2]	 (1.45)

Squaring Eq. (1.45), we get

E
m c

p c
E

2 0
2 4

2 2

21
=

−
 

⇒ −






=E
p c

E
m c2

2 2

2 0
2 41

	                  ⇒ E p c m c2 2 2
0

2 4− = 	 (1.46)
This is the required expression.

	 1.18	 Massless Particles

A particle which has zero rest mass is known as massless particle. According to the relativistic relation 
between energy and momentum

E p c m c2 2 2
0

2 4− =
For massless particle, m0 = 0. Therefore

E pc=   or  p
E
c

=

Thus, we can say that massless particle has energy pc and momentum E c/  and moves with the velocity of light.

		  Solved Examples

Example 1

Prove that x 2 + y 2 + z 2 − c 2t 2 is invariant under Lorentz transformation.
or

Show that space−time interval between two events remains invariant under Lorentz transformation.

Solution: The Lorentz transformation equations are

x
x v t

v c
= ′ + ′

−
   

1 2 2( / )
; y = y ′;  z = z ′;  t

t
xv
c

v c
=

′ +

−

2

2 21 ( / )
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Now

x y z c t
x v t

v c
y z c

t
xv
c2 2 2 2 2

2 2

2

2 2 2

1
+ + − = ′ + ′

−











+ ′ + ′ −
′ +   

( / )

22

2 2

2

2 2
2 2 2 2 2

1

1

1
2

−

















=
−

′ + ′ + ′ ′ − ′ −

( / )

( / )

v c

v c
x v t t vx c t

v
 

22 2

2
2 2

2 2
2 2 2 2 2

2

2

1

1

′ − ′ ′








 + ′ + ′

=
−

′ + ′ − ′ −

x
c

t vx y z

v c
x v t c t

v

( / )
 

′′







 + ′ + ′

=
−

′ −






+ ′ − ′

x

c
y z

v c
x

v

c
v t c t

2

2
2 2

2 2
2

2

2
2 2 21

1
1

( / )
 22 2 2

2 2
2

2

2
2 2

2

2

1

1
1 1









 + ′ + ′

=
−

′ −






− ′ −





y z

v c
x

v

c
c t

v

c( / ) 








 + ′ + ′

= ′ − ′ + ′ + ′

= ′ + ′ + ′ − ′

y z

x c t y z

x y z c t

2 2

2 2 2 2 2

2 2 2 2 2

[ ]

Hence, x2 + y2 + z2− c2t2 is invariant under Lorentz transformation.

Example 2

Determine the time taken by the rocket to reach a distant star and return to earth with a constant velocity 
v = 0 99. c, if the distance to the star is 6 light years.

Solution: Here, we have

x = 2 × 6 light years = 2 × 6 × 365 × 24 × 60 × 60 × c = 3.81 × 108c and v = 0 99. c 

Now 

	 t ′ = 
t xv c

v c

−
−
( )

( / )

/ 2

2 21
� (1.47)

where t is the time taken by the rocket to reach the star and back to the earth as measured by an observer 
in a stationary frame at earth and t′ is the time measured by the clock in the moving rocket for the total 
journey. Since t = x/v, therefore

t ′ = 

x
v

xv
c

v c

−

−

2

2 21 ( / )

	 ⇒ ′ = −t
x
v

v c1 2 2( / ) � (1.48)

Substituting the values of x and v in Eq. (1.48), we get

′ = × −t
c

c
c c

3 81 10

0 99
1 0 99

8
2 2.

.
( . / )

  

 
= 3.81 × 106 sec
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Example 3

In an inertial frame S, two lights (red and blue) are separated by a distance ∆x = 2.45 km, with the red 
light at the larger value of x. The blue light flashes and 5.35 microsecond later the red light flashes. Frame 
S ′ is moving in a direction of increasing x with speed of v = 0.85c. What is the distance between the two 
flashes and the time between them as measured in S ′?

Solution: According to Lorentz transformation equations

′ =
−

−
x

x v t

v c
1

1 1

2 21

   

( / )
  and  ′ =

−
−

x
x vt

v c
2

2 2

2 21 ( / )

′ =
−
−

t
t x v c

v c
1

1 1
2

2 21

( )

( / )

/
  and  ′ =

−
−

t
t x v c

v c
2

2 2
2

2 21

( )

( / )

/

The distance between the red light and blue light flashes with respect to an observer in moving frame S ′ is

∆ ′ = ′− ′ =
− − −

−
x x x

x x v t t

v c
2 1

2 1 2 1

2 21

( ) ( )

( / )

   

Here, ∆x = 2.45 km = 2.45 × 103 m, ∆ t  = 5.35 microsecond = 5.35 × 10−6 sec and c = 3 × 108 m. After 
substituting these values in the above equation, we get

∆ ′ = ×x 20 78 102.  m or 2.08 km

Similarly,

∆
∆

∆

′ = ′ − ′ =
− − −





−
=

−

−
t t t

t t v
x x

c

v c

t
v x
c

v
2 1

2 1
2 1

2

2 2

2

21 1

( )

( / ) ( /cc 2 )

Since v = 0.85c, we have

∆ ′ = − × −t 1 35 10 5. sec or −0.135 microsecond

Negative sign shows that red light flash comes before the blue one.

Example 4

How fast would a rocket have to go relative to an observer for its length to be contracted to 95% of its 
length at rest?

Solution: We have to find v. We have

l = 95% of l0 = 0.95 l0  or 
l
l0  

= 0.95

Therefore, 

l l v c
v

c

l

l

v

c
v= − ⇒ = −







= − ⇒ = ⇒ =0
2 2

2

2
0

2

21 1 1 0 95 0 0975 0 09( / ) ( . ) . . 775 c
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Example 5

Determine the length and orientation of a rod of length 10 m in a frame of reference which is moving 
with 0.6c velocity in a direction making 30° angle with the rod.

Solution:  The proper length of the rod along the direction of the moving frame is l0 10 30= °cos . 
Therefore, the measured length in the moving frame is

l l v c c cx = − = ° − = ° =0
2 2 2 21 10 30 1 0 6 8 30 4 3( / ) cos [( . ) / ] cos m

Since, the length does not contract perpendicular to the direction of the motion of moving frame, we have

l y = ° =10 30 5sin m

Hence, the length of the rod observed in the moving frame is given by

l l lx y= + = + = =2 2 48 25 73 8 54. m

If the rod makes an angle q l  with x-axis of the moving frame, then

tan .ql
l

l
y

x

= = =5

4 3
0 72  or  q l  = 35.8°

Example 6

Show that if V0 is the rest volume of a cube of side l0, then V0
2 1 21( ) /− b  is the volume viewed from a refer-

ence frame moving with uniform velocity v in a direction parallel to an edge of the cube.

or

A cube with its sides of proper length lo is viewed from a reference frame moving with uniform velocity v, 
parallel to an edge of the cube. Deduce the expression for the volume of the cube for the observer.

Solution:  Since one side of a cube is l0, therefore the rest volume of the cube for an observer with 
respect to the cube = lo × lo × lo = lo

3. Now the edge along x-axis as observed by an observer in moving 

frame will get contracted to l l v cx = −o 1 2 2( / ) . But no contraction will be observed in the length of the 
other two edges. Therefore, the volume observed by the observer is 

V l l l l
v

c
l l l

v

cx y z= = − ⋅ = −o o o o
31 1

2

2

2

2

Since v c2 2 2/ = b , therefore

V V 1= −0
2b   [∵ V l0

3= 0 ]
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Example 7

A rod placed in a frame of reference is moving with a velocity 0.6c in a direction parallel to its length. 
Calculate the percentage of contraction. 

Solution:  We know that

l l v c= −0
2 21 ( / )

Given that v = 0.6c. Therefore 

l l c c l l l= − = − = =0
2 2

0 0 01 0 6 1 0 36 0 64 0 8[( . ) / ] . . .

Percentage contraction is given by

Percentage contraction =
−

× =
l l

l
0 0

0

0 8
100 20

.
%

Example 8

A meson has a speed 0.8c relative to the ground. Find how far the meson travels relative to the ground if its 
speed remains constant and the time of its flight, relative to the system, in which it is at rest, is 2 × 10−8 sec.  
Also calculate the distance travelled by the meson in absence of relativity effect.

or

The proper mean life of a meson is 2 × 10−8 sec. Calculate the mean life of a meson moving with a velocity 0.8c.

Solution:  Time of flight of meson relative to the earth is

∆
∆

t
t

v c
=

′

−1 2 2( / )

We have

Proper mean life time of meson ∆ ′ = × −t 2 10 8 sec

Therefore

∆ t
c

c

= ×

−
= ×

−
= × = ×

− − −
−2 10

1
0 8

2 10

1 0 64

2 10

0 6
3 33 10

8

2

2

8 8
8

( . ) . .
. sec

Distance travelled by the mason relative to the ground is given by

Distance travelled = = × × = ×− −v t c c∆ 0 8 3 33 10 2 66 108 8. . .  or 7.98 m

Distance travelled by the meson in absence of relativity effect

v t c c∆ = × × = ×− −0 8 2 10 1 6 108 8. .
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Example 9

The proper life of meson is 2 ×10−8 sec. If a beam of these mesons of velocity 0.8c is produced, calculate 
the distance the beam can travel before the flux of the meson beam is reduced to 1/e2 times the initial flux.

Solution:  According to the time dilation formula

∆
∆

t
t

v c
=

′

−1 2 2( / )

Proper mean life time of meson ∆ ′ = × −t 2 10 8 sec. Therefore

∆ t
c

c

= ×

−
= ×

−
= × = ×

− − −
−2 10

1
0 8

2 10

1 0 64

2 10

0 6
3 33 10

8

2

2

8 8
8

( . ) . .
. sec

The distance travelled by the meson beam before the flux reduced to 1/e2 times the initial flux is

v t c c2 0 8 2 3 33 10 7 98 108 8∆ = × × × = ×− −. . .

Example 10

A clock keeps correct time. With what speed should it be moved relative to an observer so that it may 
seem to lose 2 minutes in 24 hours.

Solution:  Suppose the clock is at rest in frame S. In this frame the clock should show ∆ ′ = =t 23 58 1438h min min. 
∆ ′ = =t 23 58 1438h min min.  The observer relative to which frame S is moving with speed v will measure the time 

∆ t = =24 1440h min in his clock. Then according to the time dilation formula

∆
∆

t
t

v c v c

v

c

v

c

=
′

−
⇒ =

−
⇒ − =

⇒ − =

1
1440

1438

1
1

1438

1440

1

2 2 2 2

2

2

2

2

( / ) ( / )

11438

1440
1 0 9986 0 0014 0 0374 1 12 10

2 2

2
7



 ⇒ = − = ⇒ = ×v

c
v c. . . .or m// sec

Example 11

Prove that no signal can travel faster than the velocity of light.

Solution:  Put ′ =u cx  and v c=  in following relation: 

u
u v

vu
c

x
x

x

=
′ +

+
′

  

1 2
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We get

u
c c

cc
c

c
cx = +

+
= =

1

2

2
2

This means that the velocity of light in vacuum is the maximum velocity in nature and no signal can travel 
faster than light in vacuum.

Example 12

Prove that no velocity transformations are consistent with the hypothesis of relativity.

Solution:  Put ′ =u cx  in the following relation: 

u
u v

v u
c

x
x

x

=
′ +

+
′

  

1 2

We get

u
u v

v u
c

c v
v c
c

c c v

c v
cx

x

x

= ′ +

+ ′ = +

+
= +

+
=

  

1 12 2

( )

( )

Example 13

Show that a particle which travels with the speed of light must have a zero rest mass.

Solution:  We know that the relativistic mass of a particle with speed v is

m
m

v
c

=
−

0

2

21

where m0 is the rest mass. If v = c, then

m
m

m=
−

⇒ =0
0

1 1
0

Therefore, a particle travelling with the speed of light must have a zero rest mass.

Example 14

Calculate the velocity of a particle at which its mass will be 3 times of its rest mass.

Solution:  We know that

m
m

v
c

=
−

0

2

21
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Here m m= 3 0. So

3

1

1
1

9

8

90
0

2

2

2

2
2 2m

m

v
c

v
c

v c=
−

⇒ − = ⇒ =

 

⇒ = ⇒v c
2 2

3
v = 0.88 c 

Example 15

A particle is moving with 30% of the velocity of light. Compare its relativistic mass with its rest mass.

Solution:  We know that

m
m

v
c

=
−

0

2

21

We have
v

c
= =30

100
0 3.

So
m

m0
2

1

1 0 3
=

−
=

( . )  

0.11

Hence, the relativistic mass is 2.3 times the rest mass of the particle.

Example 16

Prove that 
1

2
2mv ,  where m

m

v c
=

−
0

2 21 ( / )
, is not equal to the kinetic energy of a particle moving at rela-

tivistic velocity.

Solution:  The relativistic kinetic energy can be expressed as

E m m c c
m

v c
m

m c

v c
m ck = − =

−
−









 =

−
−( )

( / ) ( / )
0

2 2 0

2 2 0
0

2

2 2 0
2

1 1

Using binomial theorem

E m c
v

c
m c m c

v
c

v
c

mk = −






− = + + +








 −0

2
2

2

1 2

0
2

0
2

2

2

4

4 01 1
1

2

3

8

/

� cc 2

Since ( / )v c2 2

 <<1, so

E m c
v

c
m c m vk = −







− =0
2

2

2

1 2

0
2

0
21

1

2

/

Since, m m≠ 0, therefore, 
1

2
2mv , is not equal to the kinetic energy of a particle moving at relativistic velocity.
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Example 17

Show that the momentum of a particle of rest mass m0  and kinetic energy Ek  is given by the expression

p
E

c
m Ek

k= +
2

2 02 .

Solution:  We know that

E m m c
m c

v
c

m c E m ck = − =
−

− = −( )0
2 0

2

2

2

0
2

0
2

1

where E m c p c= +0
2 4 2 2 . Now

E m c p c m c E m c m c p ck k= + − ⇒ + = +0
2 4 2 2

0
2

0
2

0
2 4 2 2

Squaring both sides and deleting common terms, we get

p
E

c
m E p

E

c
m Ek

k
k

k
2

2

2 0

2

2 02 2= + ⇒ = +

Example 18

The total energy of a particle is exactly thrice its rest energy. Find its speed.

Solution:  The total energy of a particle is given by

E m m c m c= − +( )0
2

0
2

Given that energy of a particle is exactly thrice its rest energy, so E m c= 3 0
2. Hence we have

3

1

1
1

9

2 2

3

0
2

0
2

0
2 2 0

2

2

2

2

2

m c m m c m c mc
m c

v
c

v
c

v c

= − + = =
−

⇒ − = ⇒ =

( )
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Example 19

Show that the rest mass of a photon is zero.

Solution:  We know that a photon travels with the velocity of light and its momentum is given by the 
following relation: 

p mv
m v

v
c

m
p

v
c

v
= =

−
⇒ =

−
0

2

2

0

2

2

1

1

Now for a photon v = c. Therefore we have

m
p

c
c

v0

2

21
0=

−
=

which implies that the rest mass of a photon is zero.

		  Short Answers of Some Important Questions

	 1.	 What is the role of relativity?
Answer: The role of relativity appears to be 
that of specifying the properties of space and 
time, the arena in which all physical processes 
take place.

	 2.	 Distinguish between inertial and non-inertial 
frames of reference.
Answer: In inertial frames of reference, bodies 
obey Newton’s law of inertia and other laws of 
Newtonian or classical mechanics. In such a 
frame of reference, if no net external force acts 
upon a body, the body will move with zero accel-
eration, that is, moving with a constant velocity. 
So it is also known as unaccelerated frames of 
reference. On the other hand, the frames of 
reference in which Newton’s law is not valid is 
said to be non-inertial. In other words, the accel-
erated frames of reference are called non-inertial.

	 3.	 Write down the postulates of special theory of 
relativity.
Answer: There are two postulates of special 
theory of relativity

1.	� All the laws of physics are the same in every 
inertial frame of reference.

2.	� The speed of light is independent of the 
motion of its source.

	 4.	 What do you understand by proper length?

Answer: The length l0 of the rod measured by 
an observer in the frame in which the rod is at 
rest is called proper length or actual length.

	 5.	 What is proper time?

Answer: A clock will be observed to run at its 
fastest when it is stationary in a frame of refer-
ence. The clock is then said to be measuring 
proper time.

	 6.	 What is massless particle?
Answer: A particle which has zero rest mass is 
known as massless particle. The massless parti-
cle has energy pc and momentum E/c and 
moves with the velocity of light. For example, 
photon is a massless particle.

	 7.	 Does light comprising photons have mass? If 
no, then how do photons have momentum?
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Answer: Since light is composed of photons 
and photon is a massless particle, therefore, the 
photon has energy and momentum but no 
mass. According to the relation E p c m c2 2 2

0
2 4− =

E p c m c2 2 2
0

2 4− = , we can prove that the energy and momen-
tum of the photon are E p c=  and p E c= / , 
respectively, due to zero rest mass of photon.

	 8.	 Why is E m c0 0
2=  called the rest mass of energy 

of an object?

Answer: We know that the total energy of an 

object is E
m c

v c
=

−
0

2

2 21 ( / )
. When the object is 

at rest, that is the velocity is zero, then energy 
will be m c0

2

 which is denoted by E0. This 
energy is known as rest mass energy.

		  Important Points and Formulas

	 1.	 According to special theory of relativity, every-
thing in the universe is relative, nothing is 
absolute, all rest and motions are relative, posi-
tion and time are relative, etc.

	 2.	 A system of coordinate axes which defines the 
position of a particle or specifies the location of 
an event is called a frame of reference.

	 3.	 The main objective of Michelson–Morley  exper-
iment was to confirm the existence of ether.

	 4.	 The fringe shift in Michelson−Morley experi-
ment is

∆n
L v
c

= ′ ⋅ =2 1
0 4

2

2 l
.

	 5.	 Lorentz transformation equations for space and 
time are

� x ′ = 
x v t

v c

   −
−1 2 2( / )

;  y = y ′; z = z ′ and  

t ′ = 
t

xv
c

v c

−

−

2

2 21 ( / )

	 6.	 Inverse Lorentz transformation equations are

		

x
x v t

v c
= ′ + ′

−
   

1 2 2( / )
, y = y′, z = z′ and  

t = 
′ +

−

t
xv
c

v c

2

2 21 ( / )

	 7.	 Length contraction equation

l l v c= −0
2 21 ( / )

	 8.	 Time dilation equation

∆
∆

t
t

v c
=

′

−1 2 2( / )

	 9.	 Relativistic velocity transformation equations

′ =
−

−
u

u v
v u
c

x
x

x

 

1 2

,  ′ =
−

−
u

u v c
vu
c

y
y

x

1

1

2 2

2

( / )
,  

′ =
−

−
u

u v c
vu
c

z
z

x

1

1

2 2

2

( / )

	10.	 Variation of mass with velocity

m
m

v
c

=
−

0

2

21

	11.	 Einstein’s mass−energy relation: E mc= 2.
	12.	 The relativistic kinetic energy

E m m c c
m

v
c

m

m c

v
c

m c

k = − =
−

−













=
−

−

( )0
2 2 0

2

2

0

0
2

2

2

0
2

1

1

	13.	 Energy momentum relation

E p c m c2 2 2
0

2 4− =
	14.	 A particle which has zero rest mass is known as 

massless particle.
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		  Multiple Choice Questions

	 1.	 Relativistic mechanics is applicable
	 (a)	 for low velocity
	 (b)	 for velocity close to the velocity of light
	 (c)	 for both low and high velocity
	 (d)	 None of above
	 2.	 Galilean transformations are applicable
	 (a)	 for relativistic motion
	 (b)	 for non-relativistic motion
	 (c)	 For both (a) and (b)
	 (d)	 Neither for (a) nor (b)
	 3.	 Which of the following is an invariant under 

Galilean transformations?
	 (a)	 Velocity	 (b)	 Momentum
	 (c)	 Acceleration	 (d)	 Charge
	 4.	 Lorentz transformations are applicable
	 (a)	 for relativistic motion
	 (b)	 for non-relativistic motion
	 (c)	 For both (a) and (b)
	 (d)	 None of these
	 5.	 An inertial frame of reference is one which
	 (a)	 does not accelerate
	 (b)	 remains at absolute rest
	 (c)	 remains at absolute motion
	 (d)	 attached to an observer
	 6.	 Michelson−Morley experiment showed that
	 (a)	 there is no absolute frame; all the frames 

are relative
	 (b)	 there is absolute frame; all the frames are 

relative
	 (c)	 relativistic mechanics is correct for high 

velocities
	 (d)	 relativistic mechanics is correct for low 

velocities
	 7.	 The rest mass of photon is
	 (a)	 infinity	 (b)	 zero
	 (c)	 E/c2	 (d)	 Ec2

	 8.	 The presence of m  mesons in the atmosphere 
of earth provided the experimental verification 
of

	 (a)	 length contraction
	 (b)	 time dilation
	 (c)	 Galilean transformation
	 (d)	 Michelson−Morley experiment

	 9.	 The expression of force for relativistic motion 
is

	 (a)	 F m
dv
dt

v
c

= −




0

2

2

1 2

1
/

	 (b)	 F m
dv

dt

v

c
= −





0

2

2

3 2

1
/

	 (c)	 F m
dv

dt

v

c
= −







−

0

2

2

1 2

1
/

	 (d)	 F m
dv

dt

v

c
= −







−

0

2

2

3 2

1
/

	10.	 Which of the following is an example of mass−
energy relation?

	 (a)	 Pair production
	 (b)	 Presence of m  mesons in earth atmosphere
	 (c)	 Both (a) and (b)
	 (d)	 None of these
	11.	 The relativistic velocity addition theorem is 

consistent with
	 (a)	 first postulate of special theory of relativity
	 (b)	 second postulate of special theory of relativity
	 (c)	 Einstein’s mass−energy relation
	 (d)	 None of these
	12.	 Ether concept was discarded after
	 (a)	 Michelson−Morley experiment
	 (b)	 the first postulate of special theory of relativity
	 (c)	 the second postulate of special theory of 

relativity
	 (d)	 None of these
	13.	 Two photons are approaching each other. The 

speed of one photon observed by the other 
will be

	 (a)	 zero	 (b)	 infinity
	 (c)	 c	 (d)	 None of these
	14.	 The velocity of massless particle is
	 (a)	 same as that of light in free space
	 (b)	 less than that of light in free space
	 (c)	 more than that of light in free space
	 (d)	 independent of light in free space
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	15.	 Massless particles are
	 (a)	 electrons	 (b)	 photons
	 (c)	 gravitons	 (d)	 neutrons
	16.	 Two particles came toward each other with 

speed 0.7c with respect to laboratory. What is 
their relative speed?

	 (a)	 0.939c	 (b)	 1.41c
	 (c)	 0.838c	 (d)	 0.56c
	17.	 At what speed will the mass of a body be 2.25 

times its rest mass?
	 (a)	 1.68 × 108 m/sec	 (b)	 2.68 × 108 m/sec
	 (c)	 0.983 × 108 m/sec	 (d)	 None of these

	18.	 The rest energy of a particle is
	 (a)	 mc2	 (b)	 E
	 (c)	 m0c

2	 (d)	 (m - m0)c
2

	19.	 The kinetic energy of a particle in relativistic 
mechanics is

	 (a)	 (m - m0)c
2	 (b)	 mc2

	 (c)	 m0c
2	 (d)	 None of these

	20.	 The speed of a 0.1 meV electrons according to 
relativistic mechanics is

	 (a)	 2.48 × 108 m/sec	 (b)	 1.64 × 108 m/sec
	 (c)	 0	 (d)	 c

		  Short Answer Type Questions 

	 1.	 What is principle of relativity?
	 2.	 What do you understand by frame of 

reference?
	 3.	 Define inertial and non-inertial frame of refer-

ence with suitable example.
	 4.	 How does the principle of relativity lead the 

constancy of speed of light in all inertial frames?
	 5.	 Explain whether earth is inertial or non-inertial 

frame of reference.
	 6.	 Write Galilean transformations for space and time.
	 7.	 Why was it assumed that the space is filled with 

hypothetical medium ether?

	 8.	 What is the objective of Michelson−Morley 
experiment?

	 9.	 Discuss the importance of negative results of 
Michelson−Morley experiment.

	10.	 State the postulate of special theory of 
relativity.

	11.	 Write down Lorentz and inverse Lorentz trans-
formation equations.

	12.	 What is length contraction?
	13.	 What do you mean by mass energy equivalence 

relation?
	14.	 What do you understand by rest mass?

		  Long Answer Type Questions 

	 1.	 What is principle of relativity? Discuss the 
invariance of speed of light.

	 2.	 What is frame of reference? Define inertial and 
non-inertial frame of reference with suitable 
example.

	 3.	 What are Galilean transformations for space 
and time?

	 4.	 What is objective of Michelson−Morley experi-
ment? Why was Michelson−Morley experiment 
performed?

	 5.	 State the postulate of special theory of relativity 
and derive Lorentz transformation.

	 6.	 Prove that E2 - p2c2 is invariant under Lorentz 
transformation.

	 7.	 Prove that no signal can travel faster than the 
velocity of light.

	 8.	 What is meant by relativistic length contrac-
tion? What is proper length?

	 9.	 What do you meant by time-dilation? What is 
proper time?

	10.	 Derive the expression for relativistic law of addi-
tion of velocities. Hence show that c is the ulti-
mate speed. Prove that the law is in conformity 
with the principle of constancy of speed of light.
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		  Answers

Multiple Choice Questions

		  Numerical Problems

	 1.	 Determine the time taken by the rocket to 
reach a distant star and return to earth with a 
constant velocity v = 0.8 c if the distance to the 
star is 3 light years.

	 2.	 An event occurs at x = 100 km, y = 10 km and 
z = 1.0 km at t = 2.0 × 10-4 sec in a reference 
frame S. Another frame S´ is moving with 
speed 0.95 relative to S along the common  
x−x´ axis, the origins coinciding at t = t′ = 0. 
Compute the coordinates x´, y´, z´, t´ of events 
in S´.

	 3.	 A projectile is projected with a velocity v at an 
angle q  from the horizontal in a frame S. Show 
that in another frame S´ moving with velocity 
v cos q  relative to S along the positive x-direc-
tion, the projectile will appear to have only ver-
tical motion.

	 4.	 A spacing 50 m long passes the earth at a speed 
of 2.8 × 108 m/sec. What will be its apparent 
length?

	 5.	 How fast a rocket should be relative to an 
observer for its length to be contracted to 80% 
of its length at rest?

	 6.	 Determine the length and orientation of a rod 
of length 20 m in a frame of reference which is 
moving with 0.6c velocity in a direction making 
45° angle with the rod.

	 7.	 A rod placed in a frame of reference is moving 
with a velocity 0.8 c in a direction parallel to its 
length. Calculate the percentage of contraction. 

	 8.	 A meson has a speed 0.6c relative to the ground. 
Find how far the meson travels relative to the 
ground if its speed remains constant and the 
time of its flight, relative to the system, in 
which it is at rest, is 2.5 × 10−8 sec. Also calcu-
late the distance travelled by the meson in 
absence of relativity effect.

	 9.	 The proper life of meson is 2.5 × 10−8 sec. If a 
beam of these mesons of velocity 0.8c is pro-
duced, calculate the distance the beam can 
travel before the flux of the meson beam is 
reduced to 1/e4 times the initial flux.

	10.	 A clock keeps correct time. With what speed 
should it be moved relative to an observer so 
that it may seem to lose 4 minutes in 24 
hours.

	11.	 A clock keeps correct time. With what speed 
should it be moved relative to an observer  
so that it may seem to lose 4 minutes in 
36 hours.

	12.	 Calculate the velocity of a particle at which its 
mass will be 5 times of its rest mass.

	13.	 The mass of moving electron is 11 times its rest 
mass. Find its kinetic energy and momentum.

Numerical Problems
	 1.	 12.5 year 
	 2.	 x′ = 137.8 km, y′ = 10 km, z′ = 1.0 km, 

t′ = −3.74 × 10−4

	 4.	 18 m
	 5.	 0.45c
	 6.	 17.26 m, q  = tan−1(10/7)
	 7.	 40%

	 8.	 5.6 m, 4.5 m
	 9.	 40 m
	10.	 0.0744c
	11.	 0.0608c
	12.	 0.9798c
	13.	 5.12 MeV, 2.99 × 10−21 kg-m/sec

1.  (b)
2.  (b)
3.  (c)

4.  (a)
5.  (a)
6.  (a)

7.  (b)
8.  (b)
9.  (d)

10.  (a)
11.  (b)
12.  (a)

  13.  (c)
  14.  (a)
  15.  (c)

   16.  (a)
   17.  (b)
   18.  (c)

    19.  (a)
    20.  (b)

Chapter 1.indd   32 4/14/2015   7:56:50 AM



	 2.1	 Introduction

In the middle of the 19th and 20th century, a revolution in physics took place in explaining the particles of 
atomic dimensions. Classical mechanics could not explain the behavior of systems, such as atoms, molecules 
and nuclei. This revolutionary approach for atomic dimension systems is known as quantum mechanics or 
wave mechanics. Before going to quantum mechanical approach, one has to understand the shortcomings 
of classical mechanics. These are as follows:

	 1.	 It could not explain the stability of atoms.
	 2.	 It does not hold in the region of atomic dimensions.
	 3.	 It could not explain the observed spectrum of blackbody radiation.
	 4.	 It could not explain the observed variation of specific heat of metals and gases.
	 5.	 It could not explain the origin of discrete spectra of atoms.

Apart with the above, classical mechanics also could not explain a large number of observed phenomenon 
such as photoelectric effect, Compton effect, Raman effect, etc. Though there are many factors responsible 
for the failure of classical mechanics to explain the various phenomena, the most significant is the consid-
eration of continuous distribution of energy. In fact, at the microscopic level (in the region of atomic or 
subatomic level) the concept for interpretation of energy distribution is discrete rather than continuous.

This chapter is simply an introduction to understand the basic concepts of quantum mechanics such 
as wave-particle duality, de-Broglie waves and Heisenberg principle. Wave function and Schrödinger wave 
equation are also a part of this chapter.

	 2.2	 Wave-Particle Duality

Light, the electromagnetic radiation, possesses dual character of a particle as well as a wave. The wave-particle  
duality is only the concept of energy transmission of radiation. When we talk about particle concept, it is 
easy to understand if it is described by its properties like mass, velocity, momentum, energy and a definite 

•	 Wave-particle duality.
•	 de-Broglie matter waves.
•	 Phase and group velocities.
•	 Davisson–Germer experiment.
•	 Heisenberg uncertainty principle and its 

applications.

•	 Wave function and its significance.
•	 Schrödinger’s wave equation – particle in one-

dimensional potential box.
•	 Eigenvalues and eigenfunctions.

LEARNING OBJECTIVES

After completing this chapter, you will be able to understand:

Wave Mechanics2
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position in space. The phenomena like photoelectric effect, Compton effect take place due to interaction of 
radiation as particle with matter which evidently has particle properties. Planck’s quantum theory quanta 
successfully explain these phenomenon. On the other hand, wave concept is comparatively difficult to 
understand. Unlike particle, a wave is like a disturbance which spreads out over a large region. It cannot 
be located here or there. It is specified by its wavelength, frequency, amplitude, energy and momentum. 
Various optical phenomenon such as interference, diffraction and polarization strongly validate the wave 
character of electromagnetic radiation. Hence from the above facts it can be said that radiation some-
times behaves as particle nature and sometimes as wave and both cannot be separated. It can also be 
understood that both particle and wave properties of radiation cannot appear simultaneously.

	 2.3	 de-Broglie Hypothesis

In 1924, de-Broglie proposed that wave particle duality is not only associated with radiation, but matter 
such as electron, proton, neutron, etc. also possess this dualism characteristic. Therefore, a wave is 
always associated with the moving particle whether it is matter or radiation and controls the particle. 
He suggested that if electromagnetic radiation can act as a particle at some time and a wave at other 
time, then matter should also behave as particle at some time and wave at other. However, there was 
no experimental proof at that time and the hypothesis was totally theoretical and was simply based on 
the fact that nature loves symmetry. The occurrence of properties of wave or particle depends upon the 
conditions under which the particular phenomenon takes place. But remember both particle and wave 
cannot appear together.

According to de-Broglie hypothesis, a particle in motion always has a wave associated with it and  
the motion of the particle is guided by that wave. These waves are called de-Broglie waves or matter waves.  
The wavelength l  of matter waves associated with a moving particle is given by

	
l = =h

p

h

mv
 = h

mK2
	 (2.1)

where p is the momentum, m is the mass, v is velocity and K is the kinetic energy of the particle. This rela-
tion is true when v << c. However, when v is comparable to c then relativistic effects come into the picture 
and hence we cannot take m as the rest mass of the particle, but it will be the relativistic mass and will be 
given as

m
m

v c
=

−
0

2 21 ( / )

So, Eq. (2.1) will take the form

	
l = =

−h
p

h v c

m v

1 2 2

0

( / )
	 (2.2)

where m0 is the rest mass and c is the velocity of light.

	 2.4	 de-Broglie’s Wavelength

According to Planck’s hypothesis, the energy of a photon is given by

	 E h= n 	 (2.3)
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where h  is the Planck’s constant and n is the frequency. If mass of the particle is converted to energy, then 
energy is given by

	 E m c= 2 	 (2.4)

where m  is the mass of photon. From Eqs. (2.3) and (2.4), we have

h m cn = 2 Þ = =æ
è
ç

ö
ø
÷h

c
m c

c
l

n
l

2 ∵  ⇒ =l h
m c

If m is the mass of the particle and v is its velocity then

	
l = =h

p

h

mv
	 (2.5)

This wavelength is known as de-Broglie wavelength.

	
2.5

	 de-Broglie Wavelength for a Free Particle in Terms of its Kinetic 
Energy

The wavelength associated with a particle of mass m moving with velocity v can be obtained in similar 
manner as of photon of momentum p and energy E. For a free particle the total energy is same as its kinetic 
energy which is given by

E mv
m v

m
= =1

2 2
2

2 2

 ⇒ =E
p

m

2

2
  [∵ p mv= ]

Now

	

l = = =h

p

h

m

h

mEv 2
	 (2.6)

If a charged particle having charge q is accelerated through a potential difference of V volts then de-Broglie wave is

	

l = = =
h

p

h

mv

h

mqv2
  [∵E qv= ]	 (2.7)

For an electron

	

l =
×

× × × × ×
=

−

− −

6 62 10

2 9 0 10 1 6 10

12 2734

31 19

.

. .

.J-sec

kg C
A
o

V V
	 (2.8)

According to kinetic theory of gases, the average kinetic energy of material particle is given by

E mv k T= =1

2

3

2
2

where k  is Boltzmann’s constant and T is absolute temperature of the particle. Now

	

l = = =h
m

h

m E

h

mkTv 2 3
	 (2.9)

Thus, Eqs. (2.5)–(2.9) represent the de-Broglie wavelength of a wave associated with various moving particles.
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	 2.6	 Analysis of Matter Wave or de-Broglie Wave

de-Broglie’s suggestion that with any moving material particle there is a wave associated with it brings the 
problem of reconciliation of the two seemingly different manifestation of energy, that is, particle having mass 
which is localized in space and time while waves being massless are de-localized in space and time. The two 
possible solutions are either to de-localize the particle (no existing theory suggest it) or to localize a wave 
which is quite plausible using Principle of Superposition which suggests that it is possible to create waves of 
almost any shape (wave packet) by adding sine waves with properly chosen wave numbers (k), amplitudes 
and phases.

Further, while deriving the expression for velocity of de-Broglie wave, we will show a contradiction and 
thus led towards the idea that material particle cannot be equivalent to a single wave.
Let m be the mass of the particle and v be its velocity. Then

l = =
h

p

h

mv

Also we have
E = mc2 and E = hu  ⇒ u = mc2/h

Matter wave or de-Broglie wave velocity is

u = n l = (mc2/h)(h/mv) = c2/v

Clearly for any material particle if v < c, then u > c which is highly unexpected. Physically it means  
de-Broglie wave associated with a particle would travel faster than the particle itself, which indicates that 
material particle cannot be equivalent to a single wave.

Utilizing these above facts, one can visualize how a wave (not a single wave but a wave packet) resembles 
a particle. In other words, material particle (de-Broglie wave) in motion is equivalent to a wave packet rather 
than a single wave.

Wave packets have two velocities:

	 1.	 Phase velocity, vp = w/k,  by which individual wave constituting the packet moves.
	 2.	 Group velocity, vg = d dkw/ ,  by which the packet itself moves.

Clearly since phase velocity vp (earlier u) is always greater than c, it is group velocity by which the 
particle moves.

To show vg = v we have angular frequency

w pn
p

= =2
2 2mc

h

and propagation constant

k
mv

h
= =

2 2p
l

p

of de-Broglie wave associated with a particle of rest mass m0 and moving with velocity v. We also have

m
m

v c
=

−
0

2 21 ( / )
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Hence,
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The group velocity is given as
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Thus, a moving particle can be represented by a ‘wave group’ or ‘wave packet’. Finally, the phase velocity vp 
of the de-Broglie wave associated with a moving particle is given as

	 vp = 
w
k

E

p

E

p
= =

�
�

	 (2.10)

The total relativistic energy ‘E ’ of a particle is given by

	
E p c m c= +2 2

0
2 4 	 (2.11)

Substituting this value in Eq. (2.10), we have

v
p c m c

p

pc
m c

p

pp =
+

=
+2 2

0
2 4

0
2 2

21

But p = h/l. Therefore,

	
v c

m c

hp = + 





1 0

2l
	 (2.12)

This equation shows that the phase velocity of a wave associated with a moving particle is always greater 
than c and even in free space it is a function of l.

	 2.7	 Davisson and Germer Experiment

In order to confirm the de-Broglie hypothesis, Davisson and Germer performed an experiment in 1927 
to observe the diffraction of electrons. From this experiment the wavelength of the diffracted electrons  
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calculated from the diffraction pattern is nearly same as the value calculated from the de-Broglie hypothesis. 
This confirmed the de-Broglie hypothesis of matter waves.

Electron gun (G)

Primary electron beam

Diffracted
beam

Bragg’s plane

S

G

Ionization
chamber

Nickel single crystal (C)

V

q
q

f

+

_

F

Figure 1  Davisson and Germer experiment.

2.7.1  Experimental Setup
The Davisson and Germer apparatus is shown in Fig. 1. Electrons from a heated filament are acceler-
ated through a variable potential ‘V’ and emerge from the electron gun ‘G’ (variable electron energy). 
The electron beam falls normally on a nickel crystal ‘C’ (variable angle of incidence). The electrons are 
diffracted (read scattered) from the crystal in all directions. The intensity of the diffracted beam (read  
collection of electrons) in different directions is measured by a Faraday cylinder ‘F’ which is connected to 
a galvanometer and can move on a circular scale ‘S’ (variable detector position). The crystal can be turned 
about an axis parallel to the incident beam. The whole apparatus is enclosed in an evacuated chamber.

2.7.2  Method
The accelerating potential V is given a small value and the crystal is turned at any arbitrary azimuth.  
The Faraday cylinder is moved to various positions on a scale ‘S’ and the galvanometer current is noted at 
each position (see Fig. 1). The current is a measure of intensity of diffracted beam (read amount of electron 
collected). The current is then plotted against the angle f (angle between incident beam and the bean enter-
ing the cylinder). The observations are repeated for different accelerating potential and the corresponding 
curves are plotted. One such curve for V = 54 V between current and angle f is shown in Fig. 2 (see and 
verify the similarity between this and the figure in Bragg’s spectrometer (crystal-structure).
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V = 54 volts

0
f
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C
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re
nt

Figure 2  The intensity of the diffracted beam plotted against the diffracting angle f for V = 54 V.

2.7.3  Observations and Calculations
It has been observed that intensity of scattered beam is maximum at f = 50° with the original beam but incident  
and scattered beam makes an angle of q = 65° (180° - 50° = 130°, 130°/2 = 65°) with Bragg’s plane when 
the accelerating voltage V = 54 V.  Therefore, the theoretical value of l is given by de-Broglie hypothesis

	
l = 12 28.

V
Å  ⇒ l = 12.28

54
Å = 1.67 Å	 (2.13)

The experimental value of l as calculated using Bragg’s law

	 2d sin q = nl	 (2.14)

where q is angle of diffraction (as mentioned and measured in Bragg’s Law) and d is the interplanar spacing 
which is 0.91 Å in this case (measured independently by x-ray diffraction).
For 1st order, n = 1,

	 l = 2 × 0.91 Å × sin 65° = 1.65 Å	 (2.15)

which is very nearly equal to the value of l calculated from de-Broglie relation. This shows that electrons 
behave like wave in certain circumstances.

Davisson–Germer experiment, thus, provides direct verification of de-Broglie hypothesis.

	 2.8	 Bohr’s Quantization Condition

Another remarkable feature of de-Broglie hypothesis is that it beautifully fits in the Bohr’s atomic model 
and the famous Bohr’s quantization can easily be established. The wave character of electron can account 
for the limited number of permissible orbits in an atom and also for the quantized angular momentum 

�
L  

of an electron in an atom.
According to Bohr’s theory of Hydrogen atom, the electron revolves in non-radiating circular orbits 

around the nucleus. Since the electron does not radiate energy while moving in its orbit, the wave associated 
with it must be a stationary wave in which there is no transference of energy (Fig. 3).
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Figure 3  Interpretation of Bohr’s quantization rule on the basis of de-Broglie wave.

Using Bohr’s theory of Hydrogen atom, the velocity of electron in the 1st Bohr’s orbit is given by

v
e

mr
=

4 0pe

that is 	
1

4 0

2

2

2

pe
e

r

mv

r
=

Now the de-Broglie wavelength associated with this electron is

l
pe

= =h

mv

h

e

r

m

4 0

Substituting the values of h, e, m, e0 and r = 5.3 × 10-11 m (radius of 1st Bohr’s orbit) we get l = 33 × 10-11m.  
Now the circumference of 1st Bohr’s orbit is

2pr = 2 × 3.14 × 5.3 × 10-11 = 33 × 10-11m

which is same as the wavelength of de-Broglie wavelength associated with the electron moving in 1st Bohr’s 
orbit. Hence, it can be concluded that the electron wave can be adjusted around an orbit only when the 
circumference of its orbit is an integral multiple of the wavelength. This means that only those orbits are 
permitted for which

	 2pr = nl = 
nh
mv

  ⇒ mvr = 
nh
2p

	 (2.16)

But angular momentum is given by

	 L = mvr	 (2.17)

From Eqs. (2.16) and (2.17)

	
L

nh=
2p

	 (2.18)

which is the famous Bohr’s quantization condition.
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	 2.9	 Phase Velocity and Group Velocity

When plane waves of different wavelengths travel simultaneously in the same direction along a straight line 
through a dispersive medium (a medium in which the phase velocity of a wave depends on its wavelength), 
successive groups of the waves are produced. These wave groups are called ‘wave packet’. The velocity of each 
individual wave of a wave packet is known as phase velocity. The phase velocity is also called ‘wave velocity’ or 
‘velocity of propagation’. It is denoted by vp and defined as

v
kp = w

where w is the angular velocity and k is the propagation constant of the wave.
The average velocity through which the wave packet propagates in the medium is called group velocity (vg). 

The group velocity may also be defined as the velocity with which the energy in the group is transmitted. 
However, the individual waves travel inside the group with their own velocities. Mathematically, group 
velocity is given by

vg = 
d
dk

w

2.9.1  Expression for Phase Velocity
A plane harmonic wave travelling along the positive x-direction is given by

	 y = a sin(wt – kx)	 (2.19)

where a is the amplitude, w  = 2pn is the angular frequency and k = 2p/l is the propagation constant.
By definition, the ratio of angular frequency w to propagation constant k is wave velocity. Thus

	
v

kp = w
	 (2.20)

In Eq. (2.19), (wt – kx) is the phase of wave motion. Then the planes of constant phase (wave front) are 
defined as

	 wt – kx = constant	 (2.21)

Differentiating w.r.t. t, we get

w − =k
dx
dt

0  ⇒ 
dx
dt k

= w

but

	

dx
dt

v= p   ⇒ vp = 
w
k

	 (2.22)

Equation (2.22) is the required expression for phase velocity.

2.9.2  Expression for Group Velocity
Let us consider a wave group which consists of two components of equal amplitude ‘a’ and slightly different 
angular frequencies w1 and w2 and propagation constants k1 and k2, respectively. Their separate displace-
ment are given by
	 y1 = asin(w1t – k1x)	 (2.23)

	 y2 = asin(w2t – k2x)	 (2.24)
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Using principle of superposition we have

y = y1 + y2 = a [sin(w1t – k1x) + sin(w2t – k2x)]

= 2a sin
w w w w1 1 2 2 1 1 2 2

2 2
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	 (2.25)

Equation (2.25) represents a wave group of frequency (w1 + w2)/2 and amplitude

	 A = 2a cos
( ) ( )w w1 2 1 2

2 2

−
−

−





t k k x
	 (2.26)

Thus, the amplitude of the wave group is modulated both in space and time by a very slowly varying enve-
lope of frequency (w1 − w2)/2 and propagation constant (k1 – k2)/2. The maximum value of amplitude is 2a. 
This envelope is represented by the dotted curve as shown in Fig. 4.

y1
λ1=

O

O

P Q
O

y2

x1

y

2π
k

λ2= 2π
k+δk

Figure 4  Modulation of wave.

The velocity with which this envelope advances, that is, the velocity of maximum amplitude of the group 
is given by

	
v

k k kg =
−
−

=
w w w1 2

1 2

∆
∆

	 (2.27)

For infinitesimally small frequency interval, we can write

	
v

d
dkg = w

	 (2.28)

Equation (2.28) is the expression for group velocity.
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2.9.3  Relation between Phase Velocity (vp ) and Group Velocity (vg )
The group velocity is given by

	
v

d
dkg = w

	 (2.29)

and the phase velocity is given by

	 vp = 
w
k

	 (2.30)

or	 w = kvp	 (2.31)

Substituting the value of w in Eq. (2.29), we have

v
d kv

dk
k

dv

dk
vg

p p
p= = +

( )

But k = 2p/l. This implies

dk d= − 2
2

p
l

l

Therefore,

	
v v

dv

dg p
p= − 2

2

2p
l

l
p l

  ⇒ v v
dv

dg p
p= − l
l

	 (2.32)

Equation (2.32) is the required expression. Equation (2.32) shows that vg < vp when the medium is  
dispersive, that is, when vp is the function of l. If there is no dispersive medium, that is, waves of all the 
wavelengths travel with same speed then dv dp / .l = 0  So, Eq. (2.32) gives vg = vp. This result holds for elastic 
waves in homogeneous medium and electromagnetic waves in vacuum.

	 2.10	 Phase Velocity of de-Broglie Waves

Let w be the angular frequency and k be the propagation constant of de-Broglie wave. Then the phase veloc-
ity vp of this wave is given by

	
v

kp = w
	 (2.33)

According to de-Broglie hypothesis, the energy E and momentum p of a particle is given by

E = �w   and  p = �k
So,
	 E/p = w/k  or  vp = E/p	 (2.34)

Let m be the relativistic mass of the particle and v be its velocity. Then

E = mc2  and  p = mv
So,
	 vp = mc2/mv  or  vp = c2/v	 (2.35)

But the particle velocity v is always less than c. Therefore, the phase velocity vp is always greater than c.  
This is an unexpected result. According to this result, the wave associated with the moving particle would 
travel much faster than the particle itself and would leave the particle far behind. This is nothing but 
the failure of wave description of the particle. Therefore, the phase velocity has no physical meaning and  
the particle in motion is always associated with a wave packet.
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	 2.11	 Heisenberg’s Uncertainty Principle

Heisenberg in 1927 proposed an uncertainty principle which was direct consequence of dual nature of 
matter. It is well known that in classical mechanics a particle is described by its definite momentum 
(velocity) and position. Therefore, its position and velocity (momentum) both can be determined with 
desired accuracy. However, in quantum mechanics a particle is described by a wave packet moving with 
group velocity and particle can be located anywhere within the limit of wave packet. Therefore, position of 
particle in the packet is not certain. Further, the wave packet has a velocity spread; hence, the momentum 
of particle is also uncertain. For example, if the wave packet is large, the velocity spread is very small and 
it can be determined accurately, but at the same time the position in such large packet is very uncertain 
and cannot be determined accurately. On the other hand, when wave packet is small, the position of the 
particle is almost fixed, but the velocity spread is very large, hence very uncertain. Therefore, certainty in 
position and in velocity simultaneously is not possible in quantum mechanics. It can be demonstrated in 
the following way.

While analyzing the matter wave earlier we only developed the idea about how to bring two seem-
ingly different aspects such as particle and wave at convergence and for that the only plausible explana-
tion was – localizing a wave in space and time. Utilizing Principle of Superposition, wave packet having  
constructive interference over a small region and destructive elsewhere (requires a great number of waves 
with slightly different amplitude, wave number and phases) resembles a particle.

Here, it is also worth mentioning that space localization can be demonstrated as visualized space axes  
(x, y, z), but time localization cannot be demonstrated as time axis (t) and is not so easy to visualize.  
Hence, we take the help of analogies.
Now, a wave in space can be of two types:

Type (a): Diffuse wave packet is possible only when large number of waves with single wave number (k) 
superimpose.

λ

∆x

Δk → 0 and Δ x → ∞

Type (b): Sharp wave packet is possible only when large number of waves with different wave number  
(k) superimpose.

λ = ?

∆x

Δk → ∞ and Δx → 0

From the above two types, it is obvious that Δk and Δx are inversely related. If Δk → 0, then Δx → ∞ or if 
Δk → ∞, then Δx → 0. In other words, single k (certain k) gives diffuse wave packet (uncertain position) 
and indefinite k (uncertain k) generates sharp wave packet (certain position).
Thus, finally localizing the wave in space we get

	 Δk Δx ≈ 1	 (2.36)
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Likewise, localizing the wave in time we get

	 Δw Δt ≈ 1	 (2.37)

As discussed earlier, space variables are replaced by corresponding time variables while deriving expression for 
localized wave in time. In other words, k = 2p/l (space) is replaced by w = 2p/T (time) (also see, T is time cor-
responding to l space) and x by t. Thus, the requirement of localizing a wave in space and time further extends 
this idea, wherein uncertainty creeps in as one goes down to the realm of particles having size of the order 
of de-Broglie wavelength as Heisenberg’s Uncertainty Principle for position and momentum (∆ ∆x p ≥ �)  
with space localization of wave and energy and time (∆ ∆E t ≥ �) with time localization of wave, respectively.

Now, for uncertainty principle of position and momentum we have

	 Δ k = Δ (2p/l) = Δ (2pp/h) = (2p/h) Δp	 using de-Broglie expression

Finally, using Eq. (2.36) we get

(2p/h)Δp Δx ≈ 1

or	 Δp Δx ≈ (h/2p) = � 	 (reduced Planck’s constant)

The above condition assumes ideal instruments (with unlimited accuracy – not practical) but in practice it 
is still worse, hence, ‘≈’ should be replaced by ‘≥’, that is, ∆ ∆x p ≥ �.

Therefore, Heisenberg’s uncertainty principle can be defined as it is impossible to determine the exact position and 
momentum of a particle simultaneously.

Likewise for uncertainty principle for energy and time, we have

	 Δw = Δ(2p/T ) = Δ(2p v) = 2p Δv = 2p(ΔE/h)	 using Planck’s Expression

Finally, using Eq. (2.37) we get

2p(ΔE/h) Δt ≈ 1

or	 ΔE Δt ≈ h/2p = � �

Just as above ∆ ∆E t ≥ �. It is not possible to determine both the energy and time co-ordinate of a particle with 
unlimited precision.

2.11.1  Physical Significance of Heisenberg’s Uncertainty Principle
The uncertainty principle leads to the following conclusions:

	 1.	 If we measure the position ‘x’ of a particle then uncertainty in position Δx vanishes while uncertainty 
in momentum becomes infinite and vice-versa. Thus, if we design an experiment to measure ‘x’ or ‘px’ 
accurately, the other quantity will become completely uncertain.

	 2.	 We can measure both the quantities by means of experiment but only to a certain limit of accuracy 
specified by the uncertainty principle.

	 3.	 For a particle of mass ‘m’ moving with velocity ‘v’, the product of uncertainty Δx and uncertainty Δv 
is given by Δx Δv ≈ �/m. For a heavy particle �/m is very small and therefore, the uncertainty product 
Δx Δv becomes very small. For such a particle both the position ‘x’ and velocity ‘v’ can be determined 
accurately. For heavy bodies, if ‘m’ is such that �/m ≈ 0, then the uncertainty vanishes and all quanti-
ties can be determined with perfect accuracy. This is the limiting case of classical mechanics.

Thus classical mechanics is true for heavy bodies and the uncertainties are characteristics of quantum 
mechanics which is applicable to light particles such as electron, proton, neutron etc.
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2.11.2  Examples of Position-Momentum Uncertainty
2.11.2.1 � Determination of the Position of a Particle by Heisenberg’s Power Gamma 

Ray Microscope
In order to determine the position of an electron, let us take a high resolving power microscope. If Δx is the 
smallest distance between the two points which can be resolved through microscope, then

	
∆ x = l

q2sin
	 (2.38)

where l is the wavelength of light used and q  is the semi-vertical angle of the cone as shown in Fig. 5.

P

R

x

Q

O

y

Objective lens
of microscope

Microscops

Incident
photon

Recoiled
electron

Scattered
photonq

Figure 5  Heisenberg’s gamma ray microscope.

The electron is seen by the g -radiation scattered by it into the microscope. As a result, there will be a 
change in its momentum due to recoiling of the electron. Consider a scattered photon of wavelength l 
which enters the objective of the microscope anywhere between PQ and PR. Then the momentum of the 
scattered photon will be h/l. If the scattered photon enters the objective in the direction of PR, then its 
component in the direction of x-axis will be ( )sinh/l q.

If ′l  is the wavelength of g -radiation before scattering, then the momentum along x-axis is

p
h h

x =
′

−
l l

qsin

Now, when the scattered photon enters the objective in the direction of PQ, its component in the direction 
of x-axis will be −( )sinh/l q.  So the momentum of the electron along x-axis is

p
h h

x =
′

+
l l

qsin

Therefore, the uncertainty in measurement of the momentum of the electron is given by

	
∆p

h h h h h
x =

′
+



 −

′
−



 =

l l
q

l l l
qsin sin sin

2
	 (2.39)

Chapter 2.indd   46 4/14/2015   8:00:13 AM



2.11  Heisenberg’s Uncertainty Principle� •   47

From Eqs. (2.38) and (2.39), we have

∆ ∆x p
h

hx = × =l
q l

q
2

2

sin
sin

Therefore

∆ ∆x p ≥ �

This is in accordance with the Heisenberg’s uncertainty principle.

2.11.2.2  Diffraction of Electron Beam by a Single Slit
Let us consider a parallel beam of electron falling normally on a narrow slit AB of width ∆x.  Diffraction 
will occur at the slit and a central bright band surrounded by alternate bright and dark bands of decreasing 
intensity on both of its sides can be obtained on photographic plate which is situated at some distance from 
the slit as shown in Fig. 6. The first minimum of the diffraction (2d sinq = nl) is given by

∆ x sinq l=

where 2d = ∆ x,  n = 1 and q  is the angle through which the electron beam is diffracted by the slit.
Since determination of the exact position of the slit where the electron beams enters is uncertain,  

therefore, the uncertainty in measurement of the position of the electron along y-axis is given by

	 ∆ x = l
qsin

	 (2.40)

Photographic
plate

∆p

Slit
−p sin q

B

E

D

O

C

A

Electron

Beam

∆x
p sin q

q
q

Figure 6  Diffraction of electron by single slit.

Let p be the momentum of the electron. After diffraction, the electron moves along EC and ED.  
The momentum of the diffracted electron along OC and OD will be p sinq  and − p sinq , respectively.  
As momentum can lie anywhere in between p sinq  and − p sinq, therefore the uncertainty in measurement 
of the momentum of the electron along y-axis is given by

∆ p p p p= − − =( sin ) ( sin ) sinq q q2

or	 ∆ p
h= 2
l

qsin               ∵ p
h=



l

	 (2.41)
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From Eqs. (2.40) and (2.41), we have

∆ ∆x p
h

hx = × =l
q l

q
sin

sin
2

2

or	 ∆ ∆x p ≥ � 	

2.11.3  Applications of Uncertainty Principle
2.11.3.1  Non-Existence of Free Electron in Nucleus
Let us suppose that the electron is present inside the nucleus whose radius is typically of the order of  
0.5 × 10-14 m. Hence, its diameter would be 10-14 m. Therefore, the maximum uncertainty in the position 
of electron is nothing but the diameter of the nucleus, that is, Δ x = 10-14 m.

Then, according to uncertainty principle, the uncertainty in momentum is given by

Δpmin ≥ 
�

∆xmax

Therefore, minimum uncertainty in momentum

∆
∆

  kg m/secp
xmin

max

.

.
.= = ×

×
= ×

−

−
−� 6 62 10

6 28 10
1 05 10

34

14
20

Further, it is also important to note that minimum uncertainty in momentum physically means momentum 
itself, that is, Δpmin = p. Now, the total relativistic energy of a particle is given by

E p c m c  = +2 2
0
2 4

As the rest mass energy m0c
2 of an electron is only 0.51 MeV, which is very small and hence can be neglected, 

therefore, we have

E = pc or Emin = Pmin c = 1.05 × 10-20 × 3 × 108 = 3.15 × 10-12 Joules = 19.6 MeV

Thus, if a free electron exists inside the nucleus, it must have a minimum energy of about 19.6 MeV but 
experiments show that the b -particle (i.e. electron) emitted from a radioactive nuclei can have a maximum 
energy of about 4 MeV. It shows that the theoretical and experimental results do not agree at all. Therefore, 
it can be concluded that a free electron cannot exist inside the nucleus.

2.11.3.2  Existence of Protons, Neutrons within the Nucleus
Let us suppose that a proton, neutron or a -particle is present inside the nucleus. Then the maximum 
uncertainty in the position of proton, neutron and a -particle is nothing but the diameter of the nucleus, 
that is, Δ x = 2 × 10-14 m. Then, according to uncertainty principle, the uncertainty in momentum is given by

Δpmin ≥ 
�

∆xmax

Therefore, minimum uncertainty in momentum

∆
∆

    kg mp
xmin

max

.
. / sec= =

×
× ×

= ×
−

−
−� 6 62 10

2 2 10
5 3 10

34

14
21

p
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The corresponding energies of the proton, neutron or a -particle are given by

E
p

m
= = ×

× ×
= × = ×

×

−

−
−

−2 21 2

27
15

15

2

5 3 10

2 1 6 10
8 4 10

8 4 10

1 6

( . )

.
.

.

.

  
 J

110
5219− = keV

Since, the energies carried by the protons or neutrons emitted by the nuclei are higher than 52 keV and for 
a -particles more than 13 keV, so these particles can exist in the nuclei.

	 2.12	 Schrödinger Wave Equation

Schrödinger, in 1926, for the first time, gave the mathematical formulation to deal with the wave situation 
existing at the microscopic level, that is, the mathematical description of matter waves. The significance 
of Schrödinger equation is that it plays the same role in wave mechanics as the Newton’s laws for classical 
mechanics. Schrödinger equation was formulated as the differential equation for the de-Broglie waves asso-
ciated with the particles and describes the motion of particles.

Schrödinger has developed two wave equations known as time-independent and time-dependent 
Schrödinger wave equations. The applicability of wave equation depends upon the nature of physi-
cal problems. Here, we focus on the application of time-independent wave equation such as particle in 
one-dimensional box.

2.12.1  Time-Independent Schrödinger Wave Equation
The wave equation is a second-order differential equation whose solution gives the wave disturbances in the 
medium. The differential equation that can describe any kind of wave motion is given as

	
∇ = ∂

∂
2

2

2

2

1
u

v
u

t
	 (2.42)

Here u is any function and v is the velocity of wave. This equation is capable enough to describe the motion 
of all types of wave, for example, mechanical waves, EM waves and matter waves.

To describe the matter waves by using Eq. (2.42), Schrödinger introduced a mathematical function y  
which is the variable quantity associated with the moving particle. It is a complex function of space 
co-ordinate and time of the particle. y is known as wave function which describes the de-Broglie waves 
associated with the moving particle. So, for de-Broglie waves, Eq. (2.42) can be written as

	
∇ =

∂
∂

2
2

2

2

1y
y

 ( , )
( , )

r t
v

r t

t
	 (2.43)

The solution of Eq. (2.43) is given as

	 y y w( , ) ( )r t r e i t   = −
0 	 (2.44)

Partially differentiating Eq. (2.44) twice w.r.t. ‘t’ we get

	

∂
∂

= − −y
wy w( , )

( )
r t

t
i r e i t

0   ⇒ 
∂

∂
= − = −−

2

2
2

0
2y

w y w yw( , )
( ) ( , )

r t

t
r e r ti t 	 (2.45)

From Eqs. (2.43) and (2.45) we get

	
∇ = − = −2

2

2

2

2

4
y w y

p
l

y   ( , ) ( , ) ( , )r t
v

r t r t   ⇒  ∇ + =2
2

2

4
0y

p
l

y     ( , ) ( , )r t r t 	 (2.46)
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So far we have not used the concept of matter waves. Now to include the concept of matter waves, we put 
l = h mv/  in Eq. (2.46) and get

	
∇ + =2

2 2 2

2

4
0y

p
y ( , ) ( , )r t

m v

h
r t 	 (2.47)

Let E and V  be the total energy and potential energy, respectively. Then the kinetic energy is given by

K mv E V m v m E V= = − = = −1

2
22 2 2 ( )

Putting value of m2v2 in Eq. (2.47) we get

∇ +
−

=2
2

2

8
0y

p
y( , )

( )
( , )r t

m E V

h
r t

or	 ∇ + − =2
2

2
0y y( , )

( )
( , )r t

m E V
r t

�
 	 (2.48)

Here � = h/2p  is known as ‘reduced Planck’s constant’. This is time-independent Schrödinger wave equation.

2.12.2  Time-Dependent Schrödinger Wave Equation
For time-dependent Schrödinger wave equation, partially differentiating Eq. (2.44) w.r.t. ‘t’ we get

∂
∂

= − = − = − = −− −y
wy pn y p yw w( , )

( ) ( ) ( ) ( , )
r t

t
i r e i r e i

E
h

r t ii t i t
0 02 2 

EE
r t

i
i�

y ( , )

	 ⇒ E r t i
r t

t
y

y
( , )

( , )
=

∂
∂

 � 	 (2.49)

Substituting value of E r ty ( , ) in time-independent Schrödinger wave equation [Eq. (2.48)], we get

∇ +
∂

∂
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

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=2
2

2
0y
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 � (2.50)

Equation (2.50) is known as ‘time-dependent Schrödinger wave equation’. This equation is used in  
explaining the non-stationary phenomenon such as electronic transition between two states of an atom. 
Here [ ( ) ]− ∇ +�2 22/  m V  is known as ‘Hamiltonian’ and is denoted by ‘H’. It represents the total energy of 
the system.  /i t�( )∂ ∂  is energy operator which when operated on y ( , )r t   gives the energy.

2.12.3  Derivation of Time-Independent Equation from Time-Dependent Equation
The time-dependent Schrödinger wave equation is as follows:

− ∇ +








 =

∂
∂

�
�

2
2

2m
V r t i

r t

t
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y
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( , )
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For one-dimensional Schrödinger wave equation is

− ∂
∂

+ = ∂
∂

�
�

2 2

22m x
V i

t
y y y

  

Since  /i t�( )∂ ∂  is energy operator, therefore we can replace it by E. So

− ∂
∂

+ = ⇒ − ∂
∂

= −� �2 2
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V E
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2
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y y y y y y

⇒ ∂
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+ − =
2

2

2

2

y y y y
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E V

x
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E V
2 2

02 2� �
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This is Schrödinger one-dimensional time-independent wave equation.

	 2.13	 Physical Interpretation of Wave Function y
According to Max Born, the square of the magnitude of the wave function, that is, y 2

(or y y * if y is a 
complex quantity) calculated at a particular point represents the probability of finding the particle at that 
particular point. y 2

is also known as probability density while y is called probability amplitude.
According to this interpretation, the probability of finding a particle within an arbitrary volume element 

dt is y 2
dt. Since the particle will definitely present somewhere within this volume element, therefore the 

integral of y 2
dt over the entire space must be unity, that is, y t2

1d =
−∞

+∞

∫ .   A wave function which satis-

fies this equation is known as normalized wave function.

	 2.14	 Normalized Wave Function

Let us consider the case in which the motion of the particle is bounded to a limited region by some external 
forces. In such cases, the probability of finding the particle over the entire region will be unity. Since prob-
ability of finding a particle over a small volume element dt is y ( , )

�
r t

2
dt, therefore, probability of finding 

the particle over the entire space will be

	
y t( , )

�
r t d

2
1ò =   or  y y t( , ) ( , )

� �
r t r t d   *∫ = 1	 (2.51)

Those wave functions that satisfy Eq. (2.51) are known as normalized wave functions.  If a wave function is 
not normalized then it can easily be normalized in the following manner:

Let y y t( , ) ( , ) .
� �
r t r t d N   *∫ =  Then

1
1

N
r t r t dy y t( , ) ( , )
� �

  *∫ =  ⇒ 
y y

t
N N

d
*

=∫ 1  ⇒ y y t1 1 1 * d =∫

where y y/ N = 1 and y y* */ N = 1 . Here N  is called normalization factor. Since 1/ N  is a constant  
and does not depend upon space co-ordinate (x, y, z) and y is a solution of wave equation, therefore, 
y / N  will also be a solution of wave equation and will describe the same physical system.
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	 2.15	 Properties of Wave Function

Apart from being normalizable, a well-behaved or acceptable wave function must fulfill the following 
conditions:

	 1.	 The wave function y must be finite everywhere because if y is infinite at a particular point then it 
means that there is an infinitely larger probability of finding the particle at that particular point which 
is clear violation of uncertainty principle.

	 2.	 The wave function y must be single valued because if y has more than one values at a particular 
point then it means there is more than one value of probability of finding the particle at that particular 
point, which is not possible.

	 3.	 The wave function y must be continuous and must have continuous first-order derivative every-
where. This property is obvious from Schrödinger equation which itself shows that d 2y/dx2 must be 
finite everywhere. This is possible only if dy/dx has no discontinuity at any boundary where potential 
can change. Finally, if dy/dx is continuous then y will obviously be continuous.

	 2.16	 Eigenvalues and Eigenfunctions

When the Schrödinger time-independent wave equation is solved for any particle using its wave function 
under certain boundary conditions, the solutions exist only for particular values of energy En which are 
known as the eigenvalues and the corresponding wave function yn to the eigenvalues is called eigenfunction.

	 2.17	 Applications of Schrödinger Wave Equations

2.17.1  Free Particle
A particle is said to be free in certain region if its potential energy ‘V ’ is zero (V = 0), that is no net force is 
acting on the particle in that region. For such a region, time-independent Schrödinger wave equation can 
be written as

	 ∇ + − =2
2

2
0y y  ( , )

( )
( , )r t

m E V
r t

� 	

which reduces into the following Schrödinger wave equation for free particle:

	 ∇ + =2
2

2
0y y( , ) ( , )r t

mE
r t

� 	

Let the particle move in positive x-direction [here y ( , )r t  is replaced by y ( , )x t ]. Without any loss of gen-
erality, as the particle is restricted to move only along x-axis keeping y - and z-axis constant, ∇2 can be 
reduced to ∂2/∂x2 which in this situation is nothing but d 2/dx2. Then the wave associated with it can be  
represented by

	

d x t

dx
mE

x t
2

2 2

2
0

y
y

( , )
( , )+ =

�
  ⇒ 

d x t

dx
k x t

2

2
2 0

y
y

( , )
( , )+ = 	 (2.52)

where k mE2 22= /� . The general solution of Eq. (2.52) is

	 y ( , )x t Ae Beikx ikx= + − 	 (2.53)
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Here the term Aeikx represents the wave travelling in the positive x-direction whereas the term Be ikx−   
represents the wave travelling in the negative x-direction, that is, reflected wave. As the particle is free and 
there is no boundary by which reflection can take place, so the term Be ikx−  has no significance. So Eq. (2.53) 
reduces to

	 y ( , )x t Aeikx= 	 (2.54)

Equation (2.54) is used to describe the wave associated with the free particle moving in positive x-direction.
In three dimensions, Eq. (2.54) can be written as

	 y ( , ) ( )r t Ae Aei k x k y k z ik rx y z= =+ +   
� �
· 	 (2.55)

2.17.2  Particle in One-Dimensional Infinitely Deep Potential Well (Or Particle in 1D Box)
If one-dimensional (1D) motion of particle is assumed to take place in a given region such that its potential 
energy is zero within this region and infinity at the extremities and outside of this region, then it is described 
as ‘Particle in 1D Box’.

Let a particle of mass m travel along x-axis bouncing back and forth between the walls of the box  
(see Fig. 7). The box is supposed to have walls of infinite height at x = 0 and x = L. In terms of boundary 
conditions imposed by the problem, the potential function is given as

V x
x L x

x L
( ) =

∞ ≥ ≤
< <





 for  and 

 for  

0

0 0

Inside
the
box

Prohibited
area

Prohibited
area

Outside
the
box

L

00

Outside
the
box

U(x)

∞ ∞

Figure 7  Potential energy of a particle in a box.

For such a region time-independent Schrödinger wave equation can be written as

∇ + − =2
2

2
0y y( , )

( )
( , )r t

m E V
r t

 

�
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which reduces within the box into

∇ + =2
2

2
0y y( , ) ( , )r t

mE
r t

�

As the particle is within the 1D box [here y  ( , )r t  is replaced by y ( , ),x t  without any loss of generality, as 
particle is restricted to move only along x-axis keeping y- and z-axes constant, hence, ∇2 can be reduced to 
∂2/∂x2 which in this situation is nothing but d 2/dx2 then the wave associated with it can be represented by

	

d x t

dx
mE

x t
2

2 2

2
0

y
y

( , )
( , )+ =

�
  ⇒

d x t

dx
k x t

2

2
2 0

y
y

( , )
( , )+ = 	 (2.56)

where

	 k
mE2

2

2=
�

	 (2.57)

The general solution of Eq. (2.56) is given by

	 y ( )x Ae Beikx ikx= + − 	 (2.58)

Since the probability of finding the particle is zero at x = 0 and x = L. Therefore, y(x) = 0 at x = 0 which 
gives 

A + B = 0 ⇒ A = –B
and y(x) = 0 at x = L which gives

Ae BeikL ikL+ =− 0  ⇒ A e eikL ikL( )+ =− 0   ⇒ 2 0iA kLsin =

As A ≠ 0, therefore,

	 sin kL = 0 ⇒ kL = np  ⇒ k
n

L
=

p
� (2.59)

where n = 1, 2, 3, …. Putting value of k together with B in Eq. (2.58) we get

	
y p

n x A
n x
L

( ) sin= 	 (2.60)

	 2.18	 Energy Eigenvalues

From Eqs. (2.57) and (2.59) we have

k
mE2

2

2=
�

  and  k
n

L
2

2 2

2= p

which gives

	

n

L

2 2

2

p
 = 

2
2

mE
�

  or  E
n

mLn =
2 2 2

22

p �
  or  E

n h
mLn =
2 2

28
	 (2.61)

(Here we have deliberately introduced the subscript ‘n’ with energy ‘E’ in order to denote the energy of different 
energy levels). Equation (2.61) gives the allowed values of energy or the energy eigenvalues for the particle. 
From Eq. (2.60), we draw following conclusions:

	 1.	 We cannot take principal quantum number n = 0 because for n = 0 we have k = 0 and En = 0 and hence 
y = 0 everywhere in the box. This means that a particle with zero energy cannot be present in the box. 
In other words, a particle in a box cannot have zero energy.
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	 2.	 This equation shows that eigenvalues of energy are discrete and not continuous. These values are called 
energy level of the particle.

	 3.	 The lowest energy of the particle is obtained by putting n = 1 in Eq. (2.61), that is,

E
h
mL1

2

28
=   or  E n En = 2

1

	 4.	 The spacing between nth energy level and next higher level increases as

(n +1)2E1 – n2E1 = (2n + 1)E1

Figure 8  shows the energy level diagram of the particle.

y3

y2

y1 y1

0 L
Position

25 E1

16 E1

9 E1
4 E1
E1

Energy

L0

2

y2
2

y3
2

∞ ∞

Figure 8  Energy level.

	 2.19	 Eigenfunction (Normalization of Wave Function)

For the region 0 < x < L, the wave function is given by

y p
n x A

n x

L
( ) sin=

and for the region x ≤ 0 and x ≥ L, the wave function is given by

	 y n x( ) = 0 	

The value of constant ‘A’ can be found out from the normalization condition. Since the total probability of 
finding the particle within the box is unity, therefore

y yn n

L

x x dx( ) ( ) *  =∫ 1
0

 ⇒ =∫ y n

L

x dx( )
2

0

1  ⇒ =∫A
n x

L
dx

L
2 2

0

1sin
p

 

⇒ A
n x

L
dx

L
2

0

1

2
1

2
1−



 =∫ cos

p
 ⇒ A

x
L
n

n x
L

L2

02 2

2
1−





=
p

p
sin

⇒ A
L

2

2
1=  ⇒ A

L
= 2

Hence the normalized wave function is given by

y p
n x

L

n x
L

( ) sin  = 2
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The normalized wave functions for the three states (y1, y2 and y3) together with probability densities 
‌‌y y y1

2

2

2

3

2
, ,   are shown in Fig. 8. Although yn may be positive as well as negative, y n

2
 is always 

positive. Since yn is normalized, its value at a given ‘x’ is equal to the probability density of finding the 
particle there. In every case, y n

2

 
= 0 at x = 0 and x = L.

At a particular place in the box the probability of finding the particle may be very different for different 
quantum number. For instance, y1

2
 has its maximum value of 2/L in the middle of the box, while y 2

2

 
= 0  

there. A particle in the lowest energy level of n = 1 is most likely to be in the middle of the box, while a 
particle in the next higher state of n = 2 is never there.

		  Solved Examples

Example 1

Calculate the de-Broglie wavelength associated with a proton moving with a velocity equal to 1/20th the 
velocity of light. Given mass of proton m = × −1 67 10 27. kg, h = × −6 62 10 34. J-s.

Solution:  According to the de-Broglie hypothesis

l = h
mv

We have m = × −1 67 10 27. kg,  h = × −6 62 10 34. J-s. Now according to the question, it is given that velocity  
is equal to 1/20th the velocity of light. So

v = × × = ×1

20
3 10 1 5 108 7. m/s

The wavelength is

l = ×
× × ×

= ×
−

−
−6 62 10

1 67 10 1 5 10
2 643 10

34

27 7
14.

. .
. m

Example 2

Calculate the de-Broglie wavelength of a neutron having kinetic energy of 12.8 MeV. Mass of electron 
m = × −1 67 10 27. kg.

Solution:  According to the de-Broglie hypothesis

l = h

mE2

We have h = × −6 62 10 34. J-s, m = × −1 67 10 27. kg. Also, E = = × × × −12 8 12 8 10 1 6 106 19. . .MeV  J. The de- 
Broglie wavelength is

l = ×
× × × × × ×

= ×
−

− −

−6 62 10

2 1 67 10 12 8 10 1 6 10
8 02 10

34

27 6 19

15.

. . .
. m

Chapter 2.indd   56 4/14/2015   8:01:16 AM



Solved Examples� •   57

Example 3

Derive an expression for de-Broglie wavelength of helium atom having energy at temperature T K.

Solution:  According to the de-Broglie hypothesis

l = h

mE2

From kinetic theory of gases,

E kT= 3

2

where k is the Boltzmann constant. Substituting this value of E in the formula above we get the expression 
for de-Broglie wavelength as

l =
×

=h

m kT

h

mkT
2

3
2

3

Example 4

Compare the wavelength of a photon and an electron if the two have the same momentum.

Solution:  For photon as well as the electron the de-Broglie wavelength is

l = h
p

Since momentum of the particles is same, therefore according to the de-Broglie hypothesis

l lph e=

Example 5

Show that the de-Broglie wavelength of a particle of rest mass m0, potential V and charge q is given by

l =

+






h

m qV
qV

m c
2 1

20
0

2

Chapter 2.indd   57 4/14/2015   8:01:19 AM



58   •� CHAPTER 2/Wave Mechanics

Solution:  When an electron of mass m0 (rest mass) and having charge ‘q’ is accelerated through an 
ordinary  
potential V, then non-relativistic kinetic energy is considered. Hence,

l = = =h
p

h

m K

h

m qVo2 2 0

If potential is very high so that relativistic kinetic energy would be considered, then we have

E = K + m0c
2 ⇒ p c m c qV m c2 2

0
2 4

0
2+ = +

Squaring both sides, we get

p2c2 + m c0
2 4  = (qV )2 + m c0

2 4  + 2qVm0c
2

⇒  p = 2 1
20

0
2m qV

qV

m c
+







The de-Broglie wavelength is

l = =

+






h

p

h

m qV
qV

m c
2 1

20
0

2

Example 6

An electron has a speed of 600 m/s with an accuracy of 0.005%. Calculate the uncertainty with which we 
can locate the position of the electron. Given m = × −1 67 10 31. kg, h = × −6 62 10 34. J-s.

Solution:  By Heisenberg uncertainty principle

∆ ∆x p
h≥ ≥�

2p

⇒ ≥ ≥∆
∆ ∆

x
h

p

h
m v2 2p p

Now

∆v = × =0 005

100
600 0 03

.
. m/s

Given m = × −1 67 10 31. kg,  h = × −6 62 10 34. J-s.  So

∆x ≥ ×
× × ×

≥ ×
−

−
−6 6 10

2 9 1 10 0 03
4 86 10

34

31
3.

. .
.

p
m
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Example 7

A hydrogen atom is having the radius 0.53Å. Estimate the minimum energy an electron can have in this atom.

Solution:  We have ∆x = 0 53. Å = 5.3 × −10 11m.  Now

∆ ∆x p
h≥ ≥�

2p

⇒ ≥ ≥ ×
× ×

≥ ×
−

−
−∆

∆
p

h
x2

6 6 10

2 5 3 10
19 8 10

34

11
25

p p
.

.
.  kg-m/sec

Kinetic energy

K = 
p

m

2 25

31
19

2

19 8 10

2 9 1 10
10 8 10= ×

× ×
= ×

−

−
−.

.
.  J

Example 8

Calculate the energy difference between the ground state and first excited state for electron if the length 
of the box is 10−8 cm.

Solution:  We have

E
n h
mLn =
2 2

28

The lowest energy state corresponds to n = 1 and is

E
h
mL1

2

2

34

31 10
17

8

6 6 10

8 9 1 10 10
0 603 10= =

×
× × ×

= ×
−

− −
−.

.
.

J-s

kg m
J

In terms of eV

E1

17

19

0 603 10

1 6 10
37 7= ×

×
=

−

−

.

.
.eV eV

The first excited state corresponds to n = 2 and is

E
h

mL
E2

2 2

2 1

2

8
4 4 37 7 150 8= = = × =. .eV eV

Now the difference is

∆E E E= − = − =2 1 150 8 37 7 113 1. . .  eV
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		  Short Answers of Some Important Questions

	 1.	 What do you understand by wave-particle 
duality?
Answer: Radiation possesses dual nature. 
Sometimes it behaves as a wave when it inter-
acts with radiation, at other times it behaves as 
a particle when it interacts with matter.

	 2.	 State de-Broglie hypothesis.
Answer: According to de-Broglie hypothesis, 
a particle in motion always has a wave  
associated with it and the motion of the  
particle is guided by that wave. These waves 
are called de-Broglie waves or matter waves. 
The wavelength of matter waves is given by 
the relation

l = =h

p

h

mv
 = h

mK2

where m is the mass, v is the ordinary velocity 
and k is the kinetic energy of the particle.

	 3.	 What is the objective of Davisson and Germar 
experiment?
Answer: In order to confirm the de-Broglie 
hypothesis, Davisson and Germer performed 
an experiment in 1927 by diffraction of elec-
trons. In this experiment, the wavelength of 
electrons calculated from the diffraction pat-
tern is nearly the same as the value calculated 
from the de-Broglie hypothesis which con-
firmed de-Broglie hypothesis.

	 4.	 What is wave-packet?
Answer: When plane waves of different  
wavelengths travel simultaneously in the 
same direction along a straight line through a  
dispersive medium (a medium in which the 
phase velocity of a wave depends on its  
wavelength) successive groups of the waves 
are produced. These wave groups are called 
wave-packet.

	 5.	 What is phase velocity?
Answer: The velocity of each individual 
wave of a wave-packet is known as phase 
velocity. The phase velocity is also called 

‘wave velocity’ or ‘velocity of propagation’.  
It is denoted by vp and defined as

v
kp = w

where w is the angular velocity and k is the 
propagation constant of the wave.

	 6.	 What is group velocity?
Answer: The average velocity through which 
the wave-packet propagates in the medium is 
called group velocity (vg). The group velocity 
may also be defined as the velocity with which 
the energy in the group is transmitted. 
However, the individual waves travel inside the 
group with their velocities

vg = 
d
dk

w

	 7.	 State Heisenberg’s uncertainty principle.
Answer: It is impossible to determine the exact 
position and momentum of a particle simulta-
neously. If ∆x  and ∆p  are the position and 
momentum of a particle, respectively, then

∆ ∆x p ≥ �

	 8.	 What is wave function?
Answer: Schrödinger introduced a mathemati-
cal function y which is the variable quantity 
associated with the moving particle and is a 
complex function of space co-ordinate of par-
ticle and time. y is known as wave function.

	 9.	 What is normalized wave function?
Answer: If the total probability of finding the 
particle anywhere in the space is 1, then the 
corresponding wave function will be normal-
ized wave function.

	10.	 What are eigenvalues and eigenfunctions?
Answer: When the Schrödinger time-indepen-
dent wave equation is solved for any particle 
using its wave function under certain boundary 
conditions, the solutions exist only for particu-
lar values of energy En which are known as the 
eigenvalues. The corresponding wave function 
yn to the eigenvalue is called eigenfunction.
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		  Important Points and Formulas

	 1.	 According to dual nature of light, radiation 
sometimes behaves as particle and sometimes 
as wave. Both particle and wave properties of 
radiation cannot appear simultaneously.

	 2.	 A particle is specified by mass, velocity, energy 
and momentum; however, a wave is specified 
by frequency, wavelength, amplitude and 
intensity.

	 3.	 A particle in motion always has a wave associ-
ated with it and the motion of the particle is 
guided by that wave. These waves are called de-
Broglie waves or matter waves.

	 4.	 The wavelength l  of matter waves associated 
with a moving particle is given by

l = =h

p

h

mv
 = h

mK2

	 5.	 In order to confirm the de-Broglie hypothesis, 
Davisson and Germer performed an experiment 
in 1927 to observe the diffraction of electrons. 
From this experiment the wavelength of the  

diffracted electrons calculated from the diffraction  
pattern is nearly same as the value calculated 
from the de-Broglie hypothesis.

	 6.	 The expressions for group velocity and phase 
velocity are

v
d
dkg = w

 and vp = 
w
k

	 7.	 Heisenberg’s uncertainty principle can be 
defined as follows: “It is impossible to deter-
mine the exact position and momentum of a 
particle simultaneously.”

	 8.	 Schrodinger time-independent wave equation is

∇ + − =2
2

2

8
0y p y( , )

( )
( , )r t

m E V
h

r t

	 9.	 Schrodinger time-dependent wave equation is

− ∇ +








 =

∂
∂

�
�

2
2

2m
V r t i

r t

t
 y

y
( , )

( , )

	10.	 Energy eigenvalue E
n h
mLn =
2 2

28

		  Multiple Choice Questions

	 1.	 The idea of dual nature of light for all micro-
scopic particle was given by

	 (a)	 Einstein	 (b)	 Planck
	 (c)	 de-Broglie	 (d)	 None of these
	 2.	 Which of the following phenomena can be 

expressed by particle nature of light?
	 (a)	 Photoelectric effect
	 (b)	 Interference
	 (c)	 Diffraction
	 (d)	 Polarization
	 3.	 Which of the following phenomena can be 

expressed on the basis of wave nature of light?
	 (a)	 Interference	 (b)	 Photoelectric effect
	 (c)	 Compton effect	 (d)	 None of these
	 4.	 Which of the following phenomena can be 

expressed on the basis of both wave nature and 
particle nature of light?

	 (a)	 Diffraction
	 (b)	 Interference
	 (c)	 Polarization
	 (d)	 Refraction and reflection
	 5.	 The angular momentum of an electron in its 

orbit is given by

	 (a)	 h
3p

	 (b)	 nh
2p

	 (c)	 3

2

h
p

	 (d)	 4

2

h
p

	 6.	 A material particle in motion is equivalent to
	 (a)	 single wave	 (b)	 group of waves
	 (c)	 straight line	 (d)	 None of these
	 7.	 Which of the following is particle property?
	 (a)	 Wavelength	 (b)	 Frequency
	 (c)	 Momentum	 (d)	 None of these
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	 8.	 The matter wave associated with a particle of 
mass m and moving with velocity v is

	 (a)	 l = h
mv

2

2 	 (b)	 l = h
mv

	 (c)	 l = h
mv

	 (d)	 l = ( )mv
h

2

	 9.	 The wavelength of a wave associated with an 
electron accelerated through 150 V is

	 (a)	 1.38 Å	 (b)	
12 27.

V

	 (c)	
12 85.

V
	 (d)	

12 72
3 2

.
/V

	10.	 Davison and Germer experiment relates to
	 (a)	 electron diffraction
	 (b)	 electron interference
	 (c)	 polarization
	 (d)	 None of these
	11.	 Heisenberg’s uncertainty is

	 (a)	 ∆ ∆x p
h⋅ ≥
2

	 (b)	 ∆ ∆x p h⋅ = 2

	 (c)	 ∆ ∆x p h⋅ = 	 (d)	 ∆ ∆E p h⋅ =
	12.	 Uncertainty principle was discovered by
	 (a)	 Thomson	 (b)	 Heisenberg
	 (c)	 Einstein	 (d)	 de-Broglie
	13.	 The relation between vp and vg is

	 (a)	 v v
dv

dg p
p= − l
l

	 (b)	 v v
dv

dg p
p= + l
l

	 (c)	 v vg p= 	 (d)	 None of these

	14.	 For non-relativistic motion of a particle, the 
phase velocity will be

	 (a)	 v	 (b)	 v/2

	 (c)	
v
c

3

	 (d)	 c

	15.	 For relativistic motion of a particle, the phase 
velocity will be

	 (a)	 c	 (b)	 v/2

	 (c)	
c
v

2

	 (d)	
v
c

2

	16.	 For relativistic kinetic energy, the de-Broglie 
wavelength l  is

	 (a)	
hc

k k m c( )− 2 0
2

	 (b)	
hc

k k m c( )+ 2 0
2

	 (c)	
hc

k k m c( )− 2 0
2 	 (d)	 None of these

	17.	 The uncertainty principle is practically appli-
cable to

	 (a)	 macroscopic system
	 (b)	 microscopic systems
	 (c)	 Both (a) and (b)
	 (d)	 Neither microscopic nor macroscopic
	18.	 Which of the following is canonically conju-

gate quantity?
	 (a)	 ∆E  and ∆m 	 (b)	 ∆m  and ∆E

	 (c)	 ∆E  and ∆t 	 (d)	 ∆t  and ∆l
	19.	 The product of wave function y  and its com-

plex conjugate is known as
	 (a)	 probability density
	 (b)	 charge density
	 (c)	 mass density
	 (d)	 current density
	20.	 The normalized eigenfunction for one-dimension  

potential box of length ‘l’ is

	 (a)	
2

l
n l
x

sin
p

	 (b)	
2

l
n x

l
sin

p

	 (c)	
l n l

x2
sin

p
	 (d)	

l n x
l2

sin
p

	21.	 The eigenfunction for the particle in one-
dimension potential box of length l is

	 (a)	 E
n h
mln =
2 2

28
	 (b)	

n h
ml

2 2

216

	 (c)	
8 2

2 2

ml
n h

	 (d)	 None of these

	22.	 Schrodinger wave equation is applicable to
	 (a)	 non-relativistic motion
	 (b)	 relativistic motion
	 (c)	 Neither for (a) nor (b)
	 (d)	 Both (a) and (b)
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		  Short Answer Type Questions

	 1.	 What is dual nature of light?

	 2.	 What are matter waves?

	 3.	 What do you understand by de-Broglie 
wavelength?

	 4.	 What is wave packet?

	 5.	 What do you understand by uncertainty 
principle?

	 6.	 Give the relation between phase velocity and 
group velocity.

	 7.	 What do you understand by Schrödinger wave 
equation?

	 8.	 What is eigenfunction?
	 9.	 Write down the Schrödinger time-independent 

wave equation.
	10.	 Give the property of wave function.

		  Long Answer Type Questions

	 1.	 What are matter waves? Explain why a single 
wave cannot resemble a material particle.

	 2.	 Explain de-Broglie hypothesis and discuss how 
it is experimentally verified.

	 3.	 A photon of frequency n is scattered by an  
electron of rest mass m0. The scattered photon 
of frequency n ′ travels in a direction inclined at 
90° with the initial direction. Prove that the de-
Broglie wavelength of recoil electron is given by

l
n n

=
+
c

2 2′
	 4.	 Establish the following relations:
	 (a)	 vg = vp – l(dvp/dl)
	 (b)	 vg· vp = c2

	 5.	 Show that the phase velocity of a de-Broglie 
wave of wavelength l is given by

v c
m c

hp = +






1 0
2 2

2
2l

	 6.	 State Heisenberg's uncertainty principle. 
Discuss its significance and importance. 

	 7.	 Explain Heisenberg's uncertainty principle. 
Discuss one application of this principle.

	 8.	 What is uncertainty principle? Apply it to 
prove the non-existence of electron and exis-
tence of proton in the nucleus. 

	 9.	 What is physical significance of wave func-
tion? Derive time-independent Schrödinger 
wave equation. What happens if the particle 
is free?

	10.	 Derive time-dependent Schrödinger wave 
equation. What is the physical significance of 
wave function used in this equation? 

	11.	 Find an expression for eigenvalue and eigen-
function of a particle in one-dimensional 
potential box.

		  Numerical Problems

	 1.	 An electron and photon each has l = 2 Å. 
Compare their (a) momenta, (b) total energy 
and (c) ratio of kinetic energy.

	 2.	 What is the de-Broglie wavelength of an elec-
tron accelerated from rest through a potential 
difference of 100 V?
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		  Answers

Multiple Choice Questions

	 1.	 (c)
	 2.	 (a)
	 3.	 (a)
	 4.	 (d)
	 5.	 (b)

	 6.	 (b)
	 7.	 (c)
	 8.	 (b)
	 9.	 (b)
	10.	 (a)

	11.	 (a)
	12.	 (b)
	13.	 (a)
	14.	 (b)
	15.	 (c)

	16.	 (b)
	17.	 (b)
	18.	 (c)
	19.	 (a)
	20.	 (b)

	21.	 (a)
	22.	 (a)

Numerical Problems
	 1.	 (a) Momentum is equal (3.31 × 10-24 kg-m/sec);  

(b) 0.51 MeV, 6.21 KeV;
		  (c) 6.05 × 10-3

	 2.	 1.226 Å
	 3.	 2.697 × 10-2 m/sec
	 4.	 10 × 10-8 m

	 6.	 3.74 × 10-36 kg
	 7.	 0.628 Å
	 8.	 (a) 8.75 × 10-3 Å,
		  (b) 2.875 × 10-4 Å,
		  (c) 1.24 × 10-2 Å

	 3.	 How fast should an electron move in order to 
have its wavelength equal to the distance trav-
elled by it in one second?

	 4.	 Two particles A and B are in motion. If the 
wavelength associated with particle A is 5 × 
10-8m, calculate the wavelength of particle B if 
its momentum is half of that of A.

	 5.	 Show that the wavelength associated with an 
electron becomes equal to the wavelength 
associated with a proton if velocity of electron 
is 1836 times velocity of proton.

	 6.	 The sodium light has a characteristic yellow 
color due to wavelength 5890 Å. Find the mass 
equivalence of this photon.

	 7.	 Calculate de-Broglie wavelength associated 
with nitrogen at 3.0 atm. pressure and 27°C. 
Mass of N2 molecule 4.65 × 10-26 kg.

	 8.	 Calculate the wavelength associated with a (a) 
1 MeV electron, (b) 1 MeV proton and (c) 1 
MeV photon (KE).

Chapter 2.indd   64 4/14/2015   8:01:58 AM



	 3.1	 Introduction 

Optics is the branch of physics in which we study the nature of light and the phenomenon exhibited by it. 
Before 19th century many theories have been put forward in this direction. The most famous among them 
were Newton’s corpuscular theory, Huygen’s wave theory, Maxwell’s electromagnetic theory, Planck quan-
tum theory of light, etc.

According to corpuscular theory, light consists of very small, weightless and perfectly elastic particles 
called corpuscles. Reflection, refraction and rectilinear propagation can be explained by this theory but it 
fails to explain interference, diffraction and polarization.

Huygen’s suggested that light creates periodic disturbance which travels as waves in a manner very simi-
lar to that of sound waves. It explains reflection, refraction, interference and diffraction but fails to explain 
polarization and rectilinear propagation of light.

Thereafter, Maxwell’s considered the light to be electromagnetic in nature. Therefore, no material 
medium is required for its propagation. In this reference, Planck assumed that light consists of small par-
ticles in the form of discrete bundles of energy called quanta or photons and the energy of one photon is 
equal to hu where h is Planck constant and u is frequency. 

Presently, it is assumed that light behaves in a dual nature: one is particle and other wave nature. 
Therefore, on the basis of wave nature we can explain the phenomena of interference, diffraction and polar-
ization (also called wave optics). However, photoelectric effect and Compton effect can be explained by 
particle nature. In this section, we limit ourselves to the wave nature of light.

	 3.2	 Interference of Light

When two waves of same frequency and constant phase difference travel simultaneously in the same direc-
tion, then there is a change in the intensity of the waves due to superposition of two waves. This change in 
the intensity is said to be interference.

The points where change in intensity is greater than that of the sum of the intensities due to the indi-
vidual waves are called constructive interference whereas some other points where change in intensities is 
less than that of the sum of the intensities due to individual waves are called destructive interference.  

•	 Interference of light.
•	 Interference in thin films (parallel and wedge 

shaped film).

•	 Newton’s rings.

LEARNING OBJECTIVES

After reading this chapter you will be able to understand:

Wave Optics: Interference3
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In other words, one can say that interference is nothing but the redistribution of energy. After interference, 
we get interference fringes which are alternate dark and bright bands of regular or irregular shape (see Fig. 1).

	 3.3	 Superposition

We have already discussed in the previous section that when two waves travel in a medium, there is a modi-
fication in intensity of the waves due to superposition of two waves. As a result a new wave is formed whose 
amplitude is determined by superposition principle. Let A be the resultant amplitude and A1, A2, A3, A4, … 
be the amplitudes of the individual waves. Then

A A A A A= ± ± ± ±1 2 3 4 �

where ‘+ve’ sign stands for amplitude of waves in same direction whereas ‘–ve’ sign stands for opposite direc-
tion. Thus, the resultant amplitude at a point and at any instant of time is the algebraic sum of the amplitudes of 
the individual waves. This is known as a principle of superposition.

	 3.4	 Types of Interference

	 1.	 Division of wave fronts: In this case, the wave front is divided into two parts to produce interference 
fringes. For example, laser, Fresnel biprism, Young’s double slit experiment, Fresnel mirrors, etc.

	 2.	 Division of amplitude: Under this category, amplitude of the incident light is divided into two parts 
due to reflection or refraction to produce interference fringes. For example, thin films, Newton’s ring, 
Michelson interferometer, etc.

	 3.5	 Theory of Interference

To understand the phenomena of interference and derivation of an expression for the change in intensity at 
any point on the screen, consider a monochromatic light source S emitting waves of wavelength l. S1 and 
S2 are two narrow slits close together and equidistant from S as shown in Fig. 2. 

max (Bright)

(Dark)

(Dark)

(Dark)

(Dark)

(Bright)

(Bright)

(Bright)

(Bright)

max

min

min

min

min

max

max

max

Viewing
Screen

Interference pattern on screen

Double slit

Single slit

S1

S2Source

Figure 1  Fringe pattern.
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Figure 2  Theory of interference.

Let a and b be amplitudes of two waves at P from S1 and S2, respectively and y1 and y2 be the corresponding  
displacements. Then

	 y a t1 = sin( )w 	 (3.1)

	 y a t2 = +sin( )w d 	 (3.2)

where d  is the phase difference between the two waves. Using the phenomena of superposition, the resultant 
displacement is

	 y y y= +1 2  

	 = + +a t b tsin( ) sin( )w w d

	 = + +a t b t b tsin( ) sin cos cos sinw w d w d

	 = + +( cos )sin cos sina b t b td w w d 	 (3.3)

Let 

	 ( cos ) cosa b R+ =d q 	 (3.4)

	 b Rsin sind q= 	 (3.5)

where R and d  are the new constants. Now substituting the values of Eqs. (3.4) and (3.5) in Eq. (3.3) we get

	 y tR tR R t= + = +sin cos cos sin sin( )w q w q w q 	 (3.6)

Thus, the resultant displacement at point P on screen is simple harmonic of amplitude R and phase q. 
Squaring and adding Eqs. (3.4) and (3.5) we get

	

R R a b b

R a b ab

2 2 2 2 2 2

2 2 2 2 2

cos sin ( cos ) ( sin )

cos cos

q q d d

d d

+ = + +

⇒ = + + + bb a b ab2 2 2 2 2sin cosd d= + +
	 (3.7)

Since, we know that intensity I  is proportional to the square of the amplitude R 2. So,

	 I R a b ab= = + +2 2 2 2 cosd 	 (3.8)

Thus from Eq. (3.8) we can conclude that resultant intensity is different than the sum of the intensities due 
to individual waves.
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3.5.1  Constructive Interference or Maxima
We know that maximum and minimum value of cosine is +1 and −1 respectively. So

cosd  = +1  or  d  = 0, 2p, 4p, 6p, …

Generally, we can write

d p= 2n ,  n = 0, 1, 2, 3, …

Since

Path difference = 
l
p2  

Phase difference

therefore we have

	 Path difference = 
l
p

p l
2

2´ =n n 	 (3.9)

Thus, the path difference between two interfering waves is equal to integral multiples of l.
Putting the value of cos d  = +1 in Eq. (3.8) we get

	 I R a b ab a bmax max ( )= = + + = +2 2 2 22 	 (3.10)

Equation (3.10) clearly indicates that the maximum intensity is greater than the sum of the intensities due 
to two individual waves.

3.5.2  Destructive Interference or Minima
We know that

cosd  = −1  or  d  = p, 3p, 5p, …

Generally, we can write

d p= -( )2 1n ,  n = 1, 2, 3, …

or	 d p= +( )2 1n ,  n = 0, 1, 2, 3, …	

Since

Path difference = 
l
p2  

Phase difference

Therefore

Path difference = 
l
p

p l
2

2 1 2 1
2

´ - = -( ) ( )n n  

or	 = l
p

p l
2

2 1 2 1
2

´ + = +( ) ( )n n 	 (3.11)

Thus, path difference between two interfering waves is equal to odd multiples of l/2. Putting the value of 
cos d  = −1 in Eq. (3.8) we get

	 I R a b ab a bmin min ( )= = + - = -2 2 2 22 	 (3.12)
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Equation (3.12) clearly indicates that the minimum intensity is less than the sum of the intensities due to 
the individual intensities.

Let us see what happens if the amplitude of two waves is same, that is, a = b:  

	 I a a aa amax = + + =2 2 22 4 	 (3.13)

	 I a a aamin = + - =2 2 2 0 	 (3.14)

From Eq. (3.13) one can conclude that the resultant intensity is maximum or brightness occurs at points on 
which d p= 2n  and is 4a2; however, it is minimum or darkness appears at points on which d p= −( )2 1n   or 
( )2 1n + p and is zero. We plot the curve between maximum and minimum intensities with phase difference d.   
The intensity varies between zero and 4a2 depending upon the phase difference d  between two interfering 
waves as shown in Fig. 3; it is called the intensity distribution curve. The law of conservation of energy is also 
true in the formation of interference fringes.

Intensity

Y

I

X′ X

4a2

2a
2

−5p −4p −3p −2p 2p 3p 4p 5p−p pΟ
d

Figure 3  Variation of intensity with d .

Average Intensity: It is the average of the minimum and maximum intensities and it is given by
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The average intensity is equal to the sum of the separate intensities, that is, energy is neither created nor 
destroyed but it merely redistributes in the interference pattern. Thus, we prove that the phenomenon of 
interference is in accordance with the law of conservation of energy.

	 3.6	 Coherent Sources 

Coherent sources are nothing but two light waves of same frequency of wavelength having same amplitude 
and always a constant phase difference between them. In actual practice two independent sources cannot 
be coherent because they cannot maintain a constant phase difference between them. But for experimental 
purposes two virtual sources obtained from a single source can act as coherent.
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3.6.1  Condition for the Interference or Permanent or Sustained Interference 
The conditions for sustained interference are as follows:

	 1.	 The first and foremost condition is that the two interfering sources must be coherent, that is, they 
always should maintain constant phase difference.

	 2.	 The wavelength and time period of the two interfering sources must be the same.
	 3.	 The amplitude or intensities must be equal or very nearly equal.
	 4.	 The separation between the two coherent sources must be as small as possible.
	 5.	 Two sources should be narrow.
	 6.	 The distance between two sources and screen should be as large as possible.

	 3.7	 Fringe Width 

Let us consider S to be the source illuminated with monochromatic light having wavelength l (see Fig. 4). 
Let S1 and S2 be the two equidistant coherent sources from S. Let 2d be the separation between two narrow 
slits S1 and S2 and D be the distance of screen from two coherent sources. Let us consider P to be the point 
on the screen at a distance x from O where bright or dark bands are located. Thus

Path difference = S2P − S1P

D

N

O

M

P

x

p − X

p + X

S1

S2

S 2d

Figure 4  Young double slit experiment.

To determine the values of S2P and S1P,  we consider the triangles S2NP and S1MP in Fig. 4. Now

S2P − S1P = [( ) ( ) ( ) ( ) ]S N NP S M MP2 1
2 2 2 2+ - +

= [( ) ( ) ( ) ( ) ]D x d D x d2 2 2 2+ + - + -

= D x d

D
D

x d

D
1 1

2

2

1 2 2

2

1 2

+
+æ

è
ç

ö

ø
÷ - +

-æ

è
ç

ö

ø
÷

( ) ( )
/ /

Using Binomial theorem and neglecting higher terms, we get

	 S2P − S1P = D x d
D

D
x d

D D
x d x d1

2
1

2

1

2

2

2

2

2
2 2+

+æ

è
ç

ö

ø
÷ - +

-æ

è
ç

ö

ø
÷ = + - -

( ) ( )
[( ) ( ) ] = 2xd

D
	 (3.15)

If d  is the corresponding phase difference, then

d p
l

= ×2 2xd
D
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3.7.1  Bright Fringe or Maxima
For maxima, path difference should be nl. Therefore

2xd
D

n= l Þ =x
nD

d
l

2

If xn is the position of nth bright fringe, then

x
nD

dn =
l

2
,   n = 0, 1, 2, 3, …

Fringe width: It is defined as the separation between two consecutive bright fringes. Hence, fringe width 
(w) is given by

	 w = x x
nD

d
n D

d
D

dn n- = -
-

=-1 2

1

2 2

l l l( )
	 (3.16)

3.7.2  Dark Fringe or Minima
For minima, path difference should be ( ) .2 1 2n − l/  Therefore

2
2 1

2

xd

D
n= −( )

l

 
Þ =

-
x

n D

d

( )2 1

4

l

If xn is the position of the nth dark fringe, then

x
n D

dn =
-( )2 1

4

l
,  n = 1, 2, 3, …

Fringe width: It is defined as the separation between two consecutive dark fringes. Hence, fringe width (w) 
is given by

	 w = x x
n D

d

n D

d
D

dn n- =
-

-
- -

=-1

2 1

4

2 1 1

4 2

( ) [ ( ) ]l l l
	 (3.17)

From Eqs. (3.16) and (3.17), it is clear that fringe width varies directly with D and l, and inversely with 2d. 
We can also conclude that all bright and dark fringes are of equal width.

	 3.8	 Interference in Thin Films

We know that when white light falls on a thin film of oil spread on the surface of water, beautiful colors are 
seen. Similar colors are also produced by the thin film of soap bubble. This phenomenon can be explained 
on the basis of interference in thin films.

3.8.1  Interference in Thin Film Due to Reflected Light
Consider a thin film of refractive index m and thickness t (see Fig. 5). Let a ray SA fall on the upper surface 
of the film at incident angle i. The ray is partly reflected along AE and partly refracted along AB at angle r. 
Lower surface also reflects the ray along BC and finally, the ray emerges out from the upper surface of the 
film along CD. To evaluate the path difference between AE and CD, we draw perpendiculars CF and AG 
on AE and BC, respectively.

The optical path difference between AE and CD is

	 Δ = m(AB + BC) – AF	 (3.18)
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Figure 5  Thin film interference.

From Snell’s law, in triangles AFC and AGC

	
m = sin

sin

i
r
 = 

AF/AC

CG/AC
=

AF

CG�
(3.19)

therefore we have

	 AF CG= m 	 (3.20)

Putting the value of AF from Eq. (3.20) in Eq. (3.18), we have

	 Δ = m (AB + BC) – m CG	
	 = m m( ) ( )AB BC CG HC CG+ - = - 	
	 = m HG	 (3.21)
In the triangle AGH,

cos r  = 
HG

AH  
Þ HG = AH cos r  = 2t cos r  

(Since triangle AQB congruent triangle BQH, hence AQ = QH = 2t.) Now ∆ = 2mt rcos .  A phase change 
of p  equivalent to a path difference of l/2 is produced when a ray of light is reflected from the denser 
medium (Stokes’ theorem). Therefore, the effective path difference in this case is

	 ′ = −∆ 2
2

m l
t rcos 	 (3.22)

3.8.1.1  Condition for Constructive Interference or Maximum Intensities or Brightness
If the path difference ′ =∆ nl where n = 0, 1, 2, 3, … then constructive interference takes place and the film 
appears bright in the reflected light:

	 2
2

2 2 1
2

m l l m l
t r n t r ncos cos ( )− = ⇒ = + 	 (3.23)
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3.8.1.2 � Condition for Destructive Interference or Minimum Intensities  
or Darkness

If the path difference ′ = +∆ ( ) ,2 1 2n l/  where n = 0, 1, 2, 3, …, then destructive interference takes place 
and the film appears dark in the reflected light:

2
2

2 1
2

2 1m l l m lt r n t r ncos ( ) cos ( )− = + ⇒ = +

Since n is an integer, therefore (n + 1) can also be taken as n. Thus

	 2m lt r ncos = 	 (3.24)

3.8.2  Interference in Thin Film Due to Reflected Light

A

B
i

P

O

M

Q

N

R
C

S

r

r

i

Figure 6  Interference in thin film due to transmitted light

The interference in thin film due to transmitted light is takes place between the ray BO and MN. The optical 
path difference between the transmitted light BO and MN as shown in Fig. 6 is

	 Δ = m (BC + CM) – BP	

Draw a normal from M on BO at P and from B on CM at Q. From Δ BPM and Δ BQM by Snell’s law

m = = =
sin

sin

BP BM

QM BM

BP

QM

i

r

/

/

or	 BP = mQM

Then

Δ = m(BC + CM) – mQM = m(BC + CM – QM)

Since Δ BRC and RSC are congruent, therefore

BC = CS  and  BR = RS
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So
Δ = m(SM – QM) = mSQ

Now
	 SQ = BS cos r = 2t cos r

Hence

	 ∆ = 2mt rcos 	 (3.25)

Since no light is reflected from rare-denser medium, hence no additional path difference appears as in 
reflected case.

3.8.2.1 � Condition for Constructive Interference or Maximum Intensities  
or Brightness

If the path difference D = nl where n = 0, 1, 2, 3, …, then constructive interference takes place and the film 
appears bright in the transmitted light:

	 2m lt r ncos = 	 (3.26)

3.8.2.2 � Condition for Destructive Interference or Minimum Intensities or Darkness
If the path difference ∆ = +( )2 1 2n l/   where n = 0, 1, 2, 3, …, then destructive interference takes place and 
the film appears dark in the transmitted light:

	
2 2 1

2
m l

t r ncos ( )= + 	 (3.27)

Important Points to Remember

	 1.	 If the film is very thin, that is, t → 0 then the net path difference is l/2 which is the condition of 
destructive interference and the film will appear dark.

	 2.	 Equations (3.23), (3.24), (3.26) and (3.27) represent that the conditions for maxima and minima 
in the reflected light are just reverse of the transmitted light. Hence, interference in thin film due to 
reflected light will be complementary to that observed in transmitted light.

	 3.9	 Colors of Thin Films

If a thin film is exposed with white light, the light will not contain the color whose wavelength satisfies the 
equation 2m lt r ncos =  in the reflected system. Therefore, the film will appear colored depending upon 
the thickness and the angle of inclination. For example, if r and t are constants, the color will be uniform, 
whereas if r and t vary then different colors are seen (in the case of oil on the water).

	
3.10

	 Interference in Thin Film Due to Wedge-Shaped or Thin Film 
Interference of Increasing Thickness

If there are two surfaces inclined at angle q at one end and the other end having regularly varying thickness, 
then it is known as wedge-shaped film. Consider a wedge-shaped film of refractive index m  enclosed by two 
plane surfaces OA and OB at an angle q. The thickness of the film gradually increases when we move from 
O to A (see Fig. 7).
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Figure 7  Wedge-shaped film.

Let SP be the incident ray of monochromatic light on the upper surface of the film, PN be the reflected ray 
and PR be the refracted ray at angle r as shown in Fig. 7. The lower surface also reflects the ray along RT 
and finally, the ray emerges out from the upper surface of the film along TM. To evaluate the path difference 
between PN and TM, we draw perpendiculars TQ and TN on PN and PR, respectively. The optical path 
difference between PN and TM is therefore given as

	 Δ = m(PR + RT) – PQ = m(PN + NR + RT) – PQ	 (3.28)

From simple geometry it may be shown that ∠ =PTK i  and ∠ =PTN r . Now

	 m = 
sin

sin

i
r

= =PQ/PT

PN/PT

PQ

PN 	

	 PQ PN= m 	 (3.29)

Putting the value of PQ from Eq. (3.29) into Eq. (3.28), we have

 Δ = m(PN + NR + RT) – mPN = m(NR + RT)

Now triangles RTH and RHL are congruent. So

	 TH = HL = t and RT = RL	 (3.30)

Then

	 Δ = m(NR + RL) = m(NL)	 (3.31)

From right-angled triangle TNL we have

	
NL

TL
 = cos( )r + q  Þ NL = TL cos( )r + q 	

	 Þ NL = 2TH cos( )r + q  Þ NL = 2t rcos( )+ q 	 (3.32)
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From Eqs. (3.31) and (3.32), we have

Δ = 2m qt rcos( )+

Since the ray PN is reflected from a denser medium, therefore a phase change p or path difference l/2 is 
produced. Hence, the effective path difference is

Δ′ = 2m qt rcos( )+  – 
l
2

3.10.1 � Condition for Constructive Interference or Maximum Intensities  
or Brightness

If the path difference ′ =∆ nl  where n = 0, 1, 2, 3, …, then constructive interference takes place and the 
film appears bright in the reflected light:

	
2

2
2 2 1

2
m q l l m q l

t r n t r ncos( ) cos( ) ( )+ − = ⇒ + = + 	 (3.33)

3.10.2 � Condition for Destructive Interference or Minimum Intensities or Darkness
If the path difference ′ = +∆ ( )2 1 2n l/  where n = 0, 1, 2, 3, …, then destructive interference takes place and 
the film appears dark in the reflected light:

2
2

2 1
2

2 1m q l l m q lt r n t r ncos( ) ( ) cos( ) ( )+ − = + ⇒ + = +

Since n is an integer, therefore (n + 1) can also be taken as n. Thus

	 2m q lt r ncos( )+ = 	 (3.34)

	 3.11	 Fringe Width

Let the fringes be obtained at a distance xn from the edge as shown in Fig. 8. Then

t xn= tanq
N

B

H
A

R

xn

P
q

O

i

r

t
S

Monochromatic
light source T

Figure 8  Fringe width in wedge-shaped film.

For small value of q ,

tanq q=   and  cos( )r + =q  1

Hence from Eq. (3.34), we get

	 2m q lx nn = 	 (3.35)
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Similarly, if (n + 1) dark fringe is obtained at distance xn+1 then

	 2 11m q lx nn+ = +( ) 	 (3.36)

From Eqs. (3.35) and (3.36), we get

2 1mq l( )x xn n+ − =
So

Fringe width (separation between two consecutive bright or dark fringes) = x xn n
n

+ − =1 2

l
mq

Hence fringe width decreases with increase in wedge angle q.

	 3.12	 Newton Rings

When a plano-convex lens of large radius of curvature is placed on a plane glass plate, a thin wedge-shaped 
air film is developed between the lower surface of the lens and the upper surface of the plane glass plate. The 
thickness of the film is zero at the point of contact and gradually increases as we move away from the centre 
or the point of contact. When a monochromatic light falls normally on the air film, we get alternatively 
bright and dark circular rings around the point of contact. The fringes are circular because the air film devel-
oped between the lower surface of plano-convex lens and plane glass plate is symmetrical about the point of contact. 
This was first investigated by Newton and hence they are called Newton’s rings.

3.12.1  Experimental Arrangement
Let S be an extended source of monochromatic light placed at the focus of lens L1. The light rays emitted 
from S are made parallel by a lens L1. The parallel rays fall on a glass plate G inclined at 45o to the parallel 
rays. The light reflected from the glass plate falls normally on the air film enclosed between the upper and 
lower surfaces of the film. The light rays reflected from upper surface of the thin film interfere with light 
reflected from lower surface of the film. The interference rings are viewed with a microscope focused on the 
air film where the rings are formed as shown in Fig. 9.

G

S

L1

M

A B

P QO

Monochromatic
light source

Glass plate 
inclined at 45°

Plano-convex lens (AOB)

Plane glass plate (POQ)

Figure 9  Newton’s ring experiment.
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3.12.2  Newton’s Rings by Reflected Light
The phenomenon of Newton’s rings was satisfactorily explained by Young. These rings are produced as a 
result of interference between the light waves reflected from the upper and the lower surfaces of the air film 
formed between the plano-convex lens and the plane glass plate as shown in Fig. 10.

S

P

O

1
2

Air film
t

Figure 10  Formation of rings.

The effective path difference between the interfering rays in reflected light is

	 Δ = 2m qt rcos( )+  – 
l
2 	

For normal incidence, r = 0 and for a very small angle q  = 0. So

cos( )r + @q 1

Hence, net path difference between rays 1 and 2 is

Δ = 2mt  – 
l
2

3.12.3 � Condition for Constructive Interference or Maximum Intensities  
or Brightness

If the path difference D = nl where n = 0, 1, 2, 3, …, then constructive interference takes place and the film 
appears bright in the reflected light:

	
2

2
2 2 1

2
m l l m l

t n t n− = ⇒ = +( ) 	 (3.37)

3.12.4  Condition for Destructive Interference or Minimum Intensities or Darkness
If the path difference ∆ = +( )2 1 2n l/  where n = 0, 1, 2, 3, …, then destructive interference takes place and 
the film appears dark in the reflected light:

2
2

2 1
2

2 1m l l m lt n t n− = + ⇒ = +( ) ( )

Since n is an integer, therefore (n + 1) can also be taken as n. Thus

	 2m lt n= 	 (3.38)
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3.12.5  Diameters of Dark and Bright Rings
To evaluate the diameter of bright and dark rings, a plano-convex lens is placed on the plane glass plate. 
Let R be the radius of the curved surface of the lens and t be the thickness of the film at the certain point 
(see Fig. 11).

(2R − t)

B

L

A

O

P
t

r

R

C

F

L′

Figure 11  Determination of diameter of Newton’s ring.

From the property of the circle

	 AP × AB = OA × AF	

But AP = AB = r, the radius of the ring passing through P.  We have

	 r2 = t(2R – t) = 2Rt – t2	

In actual practice R is quite large and t is very small.  Therefore t2 may be neglected in comparison with 2Rt. 
Now

	 r2 = 2Rt Þ =t
r
R

2

2
	 (3.39)

For bright rings, substituting this value of t from Eq. (3.39) in Eq. (3.37), we get

	 2mt = (2n + 1) 
l
2 	

	 Þ 2m 
r
R

2

2
 = (2n + 1) 

l
2 	

	 Þ r
2 = 

( )2 1

2

n R+  l
m

This denotes the radius of nth bright ring. Thus we have

	 r
n R

n
2 2 1

2
=

+( )l
m

	 (3.40)
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If Dn is the diameter of the nth bright ring, we have

	 rn = 
Dn

2 	
Therefore Eq. (3.40) becomes

	
D n Rn

2

2 1

2

2
æ
è
ç

ö
ø
÷ =

+( )l
m  

Þ =
+

D
n R

n
2 4 2 1

2

( ) l
m  

Þ
+

D
n R

n
2 2 2 1
=

 ( ) l
m 	

For air film m  = 1. So

	 Dn
2 = 2(2n + 1)lR Þ Dn = 2 2 1( )n R+  l  Þ Dn = 2lR  2 1n +  Þ Dn µ 2 1n + 	

As n = 0, 1, 2, 3 … (2n + 1) is an odd number, the diameters of successive bright rings are proportional to 
the square root of the odd natural numbers.

For dark rings, substituting the value of t in Eq. (3.38), we get

	 2m
r

R
n
2

2
 = nl  Þ =r

n R
n
2 l

m
	

If Dn is the diameter of the nth dark ring, we have

	 rn = 
Dn

2 	
Therefore

	 D
n R

n
2 4

=
l
m

	

For air film m  = 1. So

Dn
2 = 4nlR Þ Dn = 4n Rl

Þ Dn = 4lR n

Þ Dn = 4lR

Thus the diameter of successive dark rings is proportional to the square root of the natural numbers.

3.12.6  Determination of Wavelength of Light Used
We know that the diameter of nth dark ring is given by

	 Dn
2 = 4nlR	 (3.41)

Diameter of (n + p)th dark ring is given by

	
Dn p+

2  = 4(n + p)lR	 (3.42)

From Eqs. (3.41) and (3.42), we have

Dn p+
2

 
− Dn

2 = 4(n + p)lR − 4nlR Þ Dn p+
2  − Dn

2

 = 4plR
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		  Solved Examples

Example 1

Prove that 
I I

I I
max min

max min

−
+

=
+

2

1

a
a

, where a  is the ratio of two intensities.

Solution:  Let us consider I1 and I2 to be the intensities and a and b the amplitudes of the two coherent 
sources. Then according to the question

I

I

a

b
1

2

2

2
=    Þ = =

a

b

I

I
1

2

a

Now

I a bmax ( )= + 2  and  I a bmin ( )= - 2 

So

I I

I I
a b a b

a b a b

ab

a b

a
bmax min

max min

( ) ( )

( ) ( )

-
+

=
+ - -
+ + -

=
+

=
2 2

2 2 2 2

2
2 ææ

è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷ +

=
+a

b

2

1

2

1

a
a

	 Þ l =
-+   D D

pR
n p n
2 2

4 	 (3.43)

Equation (3.43) represents the wavelength of light used.

	 3.13	 Determination of the Refractive Index of a Liquid

In order to determine the refractive index of given liquid, first the experiment is performed in air. So

	
( )D Dn p n+ -2 2

air = 4plR	 (3.44)

Now the liquid whose refractive index (m) is to be determined is introduced between the plano-convex lens 
and plane glass plate. Hence,

	
( )D Dn p n+ -2 2

liquid 
= 4plR/m	 (3.45)

From Eqs. (3.44) and (3.45), we have

m =
-

-
+

+

( )

( )

D D

D D
n p n

n p n

2 2

2 2

air

liquid

This is required expression for refractive index of liquid.
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Example 3

Light of wavelength 5893 Å is reflected at nearly normal incidence from a soap film of refractive index 
1.42. What is the least thickness of the film that will appear black?

Solution:  We know that the condition for dark ring or black in reflected light is

2m lt r ncos =

According to the question, n = 1 (for least thickness), l = 5893 Å, m = 1.42. For normal incidence r = 0. 
Hence

t =
´
´ ´

=
1 5893

2 1 42 1
2075

.  
Å

Example 2

In an interference pattern with two coherent sources the amplitude of the intensity variation is found to 
be 5% of the average intensity. Calculate the relative intensities of the interfering sources.

Solution:  Consider the amplitude ratio of the two sources to be a:1. Then Imax and Imin is (a + 1)2 and 
(a − 1)2, respectively,

I

I
a
a

max

min

( )

( )
=

+
-

1

1

2

2

Since, intensity variation is found at 5%, then the maximum is 105 and minimum is 95. So

I

I

a

a
max

min

( )

( )

( )

( )
=

+
-

=
1

1

105

95

2

2

2

2

Þ
+
-

=
a

a
1

1
1 05.  Þ a @ 40

Therefore,
I

I

a1

2

2 2

1

40

1

1600

1
= = =

( )

Example 4

Two glass plates enclose a wedge-shaped air film, touching at one edge and separated by a wire of 0.05 mm 
diameter at a distance of 10 cm from the edge. Calculate the fringe width of l = 5500 Å from a broad 
source that falls normally on the film.

Solution:  Fringe width

w l
mq

=
2 n
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Example 5

If the angle of wedge is 0.15o of arc and the wavelength of sodium D lines are 5890 Å and 5896 Å, find 
the distance from the apex of the wedge at which the maximum due to each wavelength first coincide.

Solution:  If the two wavelengths are coincide and t is the thickness of the film. Thus,

2t = (2n + 1 )l1/2 = (2n + 3 )l2/2 

So, 

n =
-
-

( )

( )

3

2
2 1

1 2

l l
l l

Now

2t = 
l l

l l
1 2

1 2-

Suppose qn is the angle of wedge and x is the distance from the apex of the wedge. Then t = x qn. So 

2 x qn = 
l l

l l
1 2

1 2-

Substituting l1 = 5896 × 10–8 cm, l2 = 5896 × 10–8 cm and qn = 0.15° = 0.15 p/180 radian in above 
equation, we get

 x = 
5896 10 5890 10 180

5896 10 5890 10 2 0

8 8

8 8

      

    

´ ´ ´ ´
´ - ´ ´ ´

- -

- -( ) .. .
.

15 3 14
11 05

´
=

 
cm

We have l = 5500 A
o

 = 5500 10 8´ -  cm, t = 0.05 mm = 0.005 cm, distance (x) = 10 cm and for air film m = 1.

B

0.005 cm

C

A
qn

10 cm

Figure 12  Wedge-shaped film.

From Fig. 12

qn

BC
AB

= =
0 005

10

.

So

w l
mq

= =
´ ´
´

= ´
-

-

2

5500 10 10

2 0 005
5 5 10

8
3

n .
.  cm
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Example 7

Newton’s rings are observed in reflected light of wavelength 6000 Å. The diameter of the 10th dark ring is 
0.5 cm. Find the radius of curvature of the lens and the thickness of the corresponding air film. 

Solution:  The diameter of the dark ring is

Dn
2 = 4nlR

We have Dn = 0.5 cm, n = 10 and l = 6000 10 8´ -
 cm. So

R = 
D

n
n
2 2

84

0 5

4 10 6000 10
104

l
=

´ ´ ´
=-

( . )
cm

The thickness of the film in terms of diameter is given by

t
D

R
n= =

´
= ´ -

2 2
4

8

0 5

4 104
3 14 10

( . )
. cm

Example 6

Newton’s rings are made with light of wavelength l = 6400 Å and a thin layer of oil with m = 1.60 formed 
between the curved surface of a plano-convex lens (radius of curvature 80 cm, m = 1.65) and a plane glass 
plate with m = 1.55. Calculate the radius of the smallest dark ring.

Solution:  We have the condition for smallest dark ring

	 2
2

m l
oil t = � (3.46)

If r is the radius of ring, then

	 t
r
R

=
2

2  
or  2

2

moil t
r
R

= � (3.47)

From Eqs. (3.46) and (3.47), we get

r
R

=
l
m2 oil

Given R = 100 cm, l = 6000 A
o

 = 6400 × 10−8 cm and a thin layer of oil m = 1.60. So

r =
´ ´

´
=

-100 6000 10

2 1 60
0 0433

8

.
.

 
cm
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		  Short Answers of Some Important Questions

	 1.	 What is interference?
Answer: When two waves of the same fre-
quency and constant phase difference travel 
simultaneously in the same direction, then 
there is a change in the intensity of the waves 
due to superposition of two waves. This change 
in the intensity is said to be interference.

	 2.	 What do you understand by constructive and 
destructive interference?
Answer: Some points where the change in 
intensity is greater than the sum of the intensi-
ties due to the individual waves is called con-
structive interference whereas some other 
points where change in intensities is less than 
the sum of the intensities due to individual 
waves is called destructive interference.

	 3.	 What do you understand coherent sources?

Answer: If the phase difference is constant 
between the two sources, then they are said to 
be coherent.

	 4.	 Why can two independent sources not be 
coherent?

Answer: Two independent sources cannot be 
coherent because they cannot maintain con-
stant phase difference between them.

	 5.	 What do you understand by wedge-shaped film?
Answer: If two surfaces are inclined at angle q 
at one end and other end has regularly varying 
thickness, then they form wedge-shaped film.

	 6.	 What are Newton rings?
Answer: When a plano-convex surface is placed 
on a glass plate, an air film of gradually increas-
ing thickness is formed between the two. When 
monochromatic light is allowed to fall nor-
mally on the film and viewed in reflected light, 
alternate dark and bright rings are observed. 
These are Newton’s rings.

	 7.	 Why are Newton rings circular?
Answer: These rings are foci of constant thick-
ness of the air film and since the foci are con-
centric circle, hence fringes are circular.

	 8.	 What is the importance of extended source?

Answer: To view the whole thin film, an 
extended source is necessary.

	 9.	 What happens when the order of rings 
increases?

Answer: The rings get closer when order of 
rings increases. This is due to the fact that the 
radii of dark rings are proportional to square 
root of natural numbers while those of bright 
rings are proportional to square root of odd 
natural numbers.

	10.	 Why is central ring dark?

Answer: At the point of contact the two inter-
fering rays are opposite in phase and produce 
zero intensity.

		  Important Points and Formulas

	 1.	 When two waves of same frequency and con-
stant phase difference travel simultaneously in 
the same direction, then there is a change in the 
intensity of the waves due to superposition of 
two waves. This change in the intensity is said 
to be interference.

	 2.	 The resultant amplitude at a point and at any 
instant of time is the algebraic sum of the 

amplitudes of the individual waves. This is 
known as a principle of superposition.

	 3.	 Path difference = 
l
p2  

Phase difference.

	 4.	 Coherent sources are nothing but two light 
waves of same frequency of wavelength having 
same amplitude and always a constant phase 
difference between them.
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		  Multiple Choice Questions

	 1.	 The phenomenon’s of interference of light has 
proved

	 (a)	 wave nature
	 (b)	 particle nature
	 (c)	 wave and particle and both
	 (d)	 None of these
	 2.	 In interference the energy is only transferred 

from the points of
	 (a)	 maximum to the minimum displacement
	 (b)	 minimum to the maximum displacement
	 (c)	 Both (a) and (b)
	 (d)	 None of these
	 3.	 Interference fringes are
	 (a)	 of different widths
	 (b)	 independent of width
	 (c)	 of equal width
	 (d)	 None of these
	 4.	 In an interference pattern, the intensity at a 

point is maximum if the phase difference 
between the two interfering light beams at that 
point is

	 (a)	 even multiple of p
	 (b)	 odd multiple of p
	 (c)	 integral multiple of p
	 (d)	 None of these
	 5.	 In an interference pattern, the intensity at a point 

is minimum if the phase difference between the 
two interfering light beams at that point is

	 (a)	 even multiple of p
	 (b)	 odd multiple of p
	 (c)	 integral multiple of p
	 (d)	 None of these
	 6.	 Which of the following device is an example of 

division of wave front?
	 (a)	 Newton’s ring
	 (b)	 Fresnel’s mirrors
	 (c)	 Michelson interferometer
	 (d)	 None of these
	 7.	 The actual shape of interference fringes in 

Young’s double slit experiment is
	 (a)	 elliptical
	 (b)	 parabolic
	 (c)	 hyperbolic
	 (d)	 circle
	 8.	 Two independent sources should not be coher-

ent because they
	 (a)	 cannot have constant phase difference
	 (b)	 cannot have different phase difference
	 (c)	 are independent of phase different
	 (d)	 None of these
	 9.	 The wedge fringe pattern will always begin 

with
	 (a)	 dark fringe
	 (b)	 bright fringe
	 (c)	 maximum intensity
	 (d)	 None of these

	 5.	 Fringe width (w) is given by

w
l l

l

= − =
−

−
− −

=

−x x
n D

d

n D

d
D

d

n n 1

2 1

4

2 1 1

4

2

( ) [ ( ) ]

	 6.	 Fringe width (separation between two consecu-

tive bright or dark fringes) w l
mq

=
2 n

	 7.	 The diameters of successive bright rings are 
proportional to the square root of the odd nat-
ural numbers.

	 8.	 The diameters of successive dark rings are pro-
portional to the square root of the natural 
numbers.

	 9.	 The wavelength of light used in Newton’s ring 
experiment is

l =
-+   D D

pR
n p n
2 2

4

	10.	 The refractive index is

m =
-

-
+

+

( )

( )

D D

D D
n p n

n p n

2 2

2 2

air

liquid
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	 1.	 What do you understand by interference? 
Explain types of interference.

	 2.	 Explain the interference film in thin film due 
to reflected light.

	 3.	 What is a wedge-shaped film? Determine the 
condition for maxima and minima.

	 4.	 Prove that interference in thin film due to 
reflected light is complementary with transmit-
ted light.

	 5.	 What do you understand by Newton’s rings? 
Explain their experimental arrangement.

	 6.	 Explain the formation of Newton’s rings.
	 7.	 How can you determine the wavelength of 

light used by Newton’s rings?
	 8.	 Determine the diameter of rings for maximum 

and minimum intensity.

		  Short Answer Type Questions 

	 1.	 What do you meant by interference?
	 2.	 Explain the types of interference.
	 3.	 What do you understand by coherent sources?
	 4.	 How are coherent sources obtained in practice?
	 5.	 Discuss why two independent sources of light 

of same wavelength cannot show interference.

	 6.	 What is thin film interference?
	 7.	 Explain the maxima and minima in thin film 

interference due to reflected light.
	 8.	 Why are Newton rings circular?

		  Long Answer Type Questions 

		  Numerical Problems

	 1.	 If in an interference pattern, the ratio between 
maximum and minimum intensities is 36:1, 
find the ratio between the amplitude and inten-
sities of the two interfering waves.

	 2.	 In an interference pattern, the amplitude of 
intensity variation is found to be 10% of the 
average intensity. Calculate the relative intensi-
ties of the interfering sources.

	 3.	 In a Young’s double slit experiment the angular 
width of a fringe termed on a distant screen is 0.1o.  
The wavelength of light used is 6000 Å. What 
is the spacing between the slits?	

	 4.	 Calculate the thickness of the thinnest film  
(m = 1.5) in which interference of violet com-
ponent (l = 4000 Å) of incident light can take 
place by reflection.

	 5.	 Two glass plates enclose a wedge-shaped air 
film, touching at one edge and are separated by 
a wire of 0.03 mm diameter at a distance of  

12 cm from the edge. Calculate the fringe 
width of l = 6000 Å from a broad source that 
falls normally on the film.

	 6.	 If the angle of wedge is 0.25o of arc and the 
wavelength of sodium D lines are 5890 × 10–8 
and 5896 × 10–8 cm, find the distance from the 
apex of the wedge at which the maximum due 
to each wavelength first coincide.

	 7.	 Newton’s rings are made with light l = 6400 Å 
and a thin layer of oil m = 1.60 formed between 
the curved surface of a plano-convex lens 
(radius of curvature 80 cm, m = 1.65) and a 
plane glass plate m = 1.55. Calculate the radius 
of the smallest dark ring.

	 8.	 In an arrangement for observing Newton’s 
rings with two different media between the 
glass surfaces, the nth rings have diameters as 
10: 7. Find the ratio of the refractive indices of 
the two media.
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Numerical Problems
	 1.	 I1:I2 = 49:25 
	 2.	 I1:I2 = 400:1
	 3.	 3.44 × 10−2 cm
	 4.	 1.33 × 10−5 cm 

	 5.	 1.08 × 10−6 cm 
	 6.	 6.63 cm 
	 7.	 0.04 cm 
	 8.	 49 : 100 

		  Answers

Multiple Choice Questions

	 1.	 (a)
	 2.	 (b)

	 3.	 (c )
	 4.	 (a )

	 5.	 (b)
	 6.	 (b)

	 7.	 (c )
	 8.	 (a )

	 9.	 (a)
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	 4.1	 Introduction

We have seen that the sunlight comes in a dark room through a hole in the window in straight line. Similarly, a 
sharp shadow of an opaque object implies rectilinear propagation of light. But in 1665, Grimaldi observed that 
when a beam of light passes through a small aperture or a narrow slit, it does not follow rectilinear path but bends 
around the corners of the obstacles (slit or aperture). This bending of light depends on the size of slit or aperture 
and wavelength of light wave. This bending or deviation is extremely small when the wavelength is small in com-
parison to size of slit or aperture and much more if wavelength is comparable to size of slit or aperture. Thus the 
diffraction phenomenon is the bending of light from the edges or corners of slit or obstacle and spreading 
in the region or geometrical shadow and distribution of intensity in the form of bright and dark fringes on 
screen which is called diffraction pattern (see Fig. 1).

•	 Single, double and N-slit diffraction.
•	 Diffraction grating.
•	 Grating spectra.

•	 Dispersive power.
•	 Rayleigh’s criterion.
•	 Resolving power of grating.

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

Diffraction of Light4

Opaque object

Source

Slit

ScreenScreen

Source

Figure 1  The bending of light round corners of an object.

	 4.2	 Classification of Diffraction

The phenomena of diffraction can be classified into two following categories:

	 1.	 Fresnel diffraction: In Fresnel diffraction, the source or screen or both are at finite distance from 
obstacles. 

	 2.	 Fraunhofer diffraction: In Fraunhofer diffraction, the source or screen or both are at infinite distance 
from obstacles.
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The differences between Fresnel and Fraunhofer diffractions are given in Table 1.

Table 1  Differences between Fresnel and Fraunhofer diffractions

S. No. Fresnel Diffraction Fraunhofer Diffraction

1. Source or screen or both are at finite distance 
from obstacle.

Source or screen or both are at infinite distance 
from obstacle.

2. No lens is used. Combination of lenses is used.

3. Incident wave front is generally spherical or 
cylindrical.

Incident wave front is plane.

4. Diffraction pattern is a shadow of obstacle. Diffraction pattern is an image of obstacle.

5. Central point in diffraction pattern is either 
dark or bright depending on the number of 
Fresnel zones.

Central point is always bright.

	 4.3	 An Important Mathematical Analysis

This mathematical treatment is required in the formulation of intensity variation relation in single slit 
which in turn helps in analysis of double slit and multiple slit (grating) diffraction. Also it gives a glimpse of 
how mathematical relation having physical reality makes the understanding of a system easy.

a
(n − 1)d

a

a

a
2d

3d

a AO

R

P

df

Figure 2  Determination of resultant amplitude and phase.

Here we consider waves having equal amplitude ‘a’ and having common phase difference d between suc-
cessive waves, that is, phase increases in AP. To find the resultant amplitude R and phase q, a polygon is 
constructed as shown in Fig. 2. Resolving a along and perpendicular to the first side, we get
	 Rcosq = a + a cosd + a cos2d + a cos3d + � + a cos(n − 1)d	 (4.1)
	 R sinq = 0 + a sind + a sin 2d + a sin 3d + � + a sin(n − 1)d	 (4.2)
Multiplying Eq. (4.1) by 2 sind/2 and using trigonometric identities, we get

2R cosq sin d/2 = a [2sin (d/2) + 2sin (d/2) cos d + 2sin (d/2) cos2d + � + 2sin (d/2) cos (n − 1)d ]
= �a [2sin (d/2) + {sin(3d/2) − sin (d/2)} + {sin (5d/2) − sin (3d/2)}+ � + {sin (n −1/2)d  

− sin (n −3/2)d }]
= a [sin (d/2) + sin(n −1/2)d ] = 2a sin (nd/2) cos (n−1/2)d
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So

R cosq = [a sin(nd/2) cos(n − 1)d/2]/ sin d/2

Similarly,

R sinq = [a sin(nd/2) sin(n − 1)d/2]/ sin d/2

Squaring and adding the above equations, we have

R = a sin(nd/2)/sin(d/2) 

and	 tan q = tan(n − 1)d/2 Þ q = (n − 1)d/2	

Let nd = 2a. Then R = a sina/sin(a /n). a/n is very small as n is infinitely large. Hence

R = a sina/(a/n) = na sina/a = A sin a/a 

and	 q = (n − 1)d/2 ≈ n d/2 = a	

As n is very large then n ≈ n − 1. Since Fraunhofer diffraction is much more important than Fresnel diffrac-
tion, therefore in the next section we will discuss the simple diffraction phenomena.

	 4.4	 Fraunhofer Diffraction at a Single Slit

A

S
O

K

Y

X

M
C

Screen

Single slit

D

q q

q
P

BL1 L2

E

Figure 3  Fraunhofer diffraction at a single slit.

Let a monochromatic light of wavelength l be incident on collimating lens L1 (see Fig. 3). A parallel beam 
of light emerges out from L1 and normally falls upon a slit AB, whose length is large compared to its width a. 
The diffracted light is focused by another lens L2. The diffraction pattern obtained on the screen consists of 
a central bright band having alternate dark and bright bands of decreasing intensity on both sides.

The rays diffracted along the direction of incident rays are focused at C while those diffracted at an angle q are 
focused at P. Since all the wavelets from AB reach C in the same phase, hence intensity at C is maximum whereas 
the wavelets reach P at different times due to unequal distance. Hence, they have different path and phase.

Let AK be perpendicular to BK. The path difference between the rays originating from extreme points 
A and B is given by

	  BK = AB sinq = a sinq	 (4.3)
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where a is the width of slit AB. Now, the corresponding phase difference between the rays originating from 
extreme points A and B is

	
2p
l

q´ a sin 	

Let the aperture AB be divided into a large number n of equal parts, each part being the source of secondary 
wavelets. The amplitude of vibrations at P due to each part will be the same, say a, but their phase will vary 
gradually from 0 to ( / ) sin2p l q´ a . The phase difference between the waves from two consecutive parts is 

	 d
p

l
q= ´

1 2

n
a sin  	 (4.4)

where n is the number of vibrations. The resultant amplitude at P is given by

	
R a

n
a

a

a n
= =

sin( )

sin( )

sin sin )

sin( sin )

d
d

p q l
p q l

/

/

( /

/

2

2
	 (4.5)

	 Þ	 R a
n

=
sin

/
 

a
asin( )

	 (4.6)

where a p q l=( sin )a / . Since a/n is very small, therefore, sin(a/n) = (a/n). So we have 

	
R a

n
na= =

sin

/

a
a

a
a

sin
  ⇒  R A=

sina
a

	 (4.7)

where A = na is the amplitude of all the vibrations in same phase. Now intensity at P is

	
I R A= =2 2

2

2

sin a
a

	 (4.8)

For intensity to be maximum or minimum

dI
da

= 0
 
⇒ d

d
A

a
a

a
2

2

2
0

sinæ

è
ç

ö

ø
÷=

 
⇒ A2

2 2

4

2 2
0

a a a a a
a

sin cos sin-æ

è
ç

ö

ø
÷=

 

⇒ A2
2

2

3

2 2
0

sin cosa a
a

a
a

-
æ

è
ç

ö

ø
÷=

 sin
 ⇒ A2

2

2
0

 sin cos sina
a

a a a
a

−



 =

Now,

Either 
sina

a
=0  or 

a a a
a

cos sin-æ
è
ç

ö
ø
÷=

2
0

	 ⇒ Either sina =0  or  a a acos sin- =0	

	 ⇒ (a) sin a = 0  or  (b) a = tan a 	

Condition for Minimum Intensity: When sina a/ = 0, then intensity is zero. So

sin a = 0 ⇒ a = ± mp ⇒ 
p q

l
p

a
m

sin
= ±

⇒	 a msinq l= ± � (4.9)
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Equation (4.9) gives the position of 1st, 2nd, 3rd,… minima corresponding to m = 1, 2, 3 and so on. Here  
m ≠ 0 because when m = 0 then a sinq =0 which is the condition of maximum intensity.

Condition for Maximum Intensity: For maximum intensity a = tan a. This equation can be solved 
graphically by plotting the curves y = a and y = tan a as shown in Fig. 4.
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Figure 4  Curves between y = a and y = tan a.

The abscissa of the points of intersection of these curves gives the required value of a for which intensity is 
maximum.
Principal maximum  For central maximum a = 0 so (sin )a a/ ®1. From Eq. (4.8) we have

I = A2 = I0 (say)

Secondary maxima  Secondary maxima falls at the points of intersection of two curves which are nearly 
at a = odd number multiples of l/2:

	 a
l

= ±
+( )2 1

2

m
	 (4.10)

	 ⇒ p q
l

pa msin ( )
= ±

+2 1

2
 ⇒ a

m
sin

( )
q

l
= ±

+2 1

2
	 (4.11)

If we put m = 1, 2, 3, …we get the position of 1st, 2nd, 3rd, … secondary maxima, respectively. Now putting 
m =1, 2, 3, … in Eq. (4.11) we get

	 a p p p
=

3

2

5

2

7

2
, , , …

	
Intensity of 1st secondary maxima 
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Intensity of 3rd secondary maxima 
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2 2 0
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Thus the relative intensities of successive maxima are

I I I I0 1 2 3 2 2 2
1

4

9

4

25

4

49
: : : : : : … …=

p p p

Thus, most of the light is concentrated in the central maxima and intensity of secondary maxima goes on 
decreasing. In short, we can say that the diffraction pattern consists of a bright central maxima surrounded 
alternately by minima of zero intensity and feeble secondary maxima of rapidly decreasing intensities.

The intensity distribution curve is shown in Fig. 5.

Central maximum

I

O

In
te

ns
ity

Secondary
maximum

−5p −4p −3p −2p 2p 3p 4p 5p−p p
a

Figure 5  The intensity distribution curve.

	 4.5	 Fraunhofer Diffraction due to Double Slit

Let AB and GH be the two parallel slits of equal width a and separated by an opaque distance b. Let a plane 
wave front be incident normally upon the slits. The light diffracted from these slits is focused by lens L2 on 
the screen XY as shown in Fig. 6.

N

a+b

H

A

B

G

L1 L2
S2

S1

S C

P

X

Y

q

q

q

Figure 6  Fraunhofer diffraction due to double slit.

The diffraction at double slit is a case of diffraction as well as interference. The pattern obtained on the 
screen consists of equally spaced interference fringes in the region normally occupied by the central maxima 
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in the single slit diffraction, while in the region of secondary maxima of single slit diffraction, the diffraction 
fringes of low intensity are observed.

Basically, if a plane wave front is incident normally on the slits, all the points within the slits act as a source 
of secondary wave. The secondary waves travelling in the direction of incident light come to focus at C while 
the other secondary waves travelling in a direction q with the direction of incident light come to focus at P.

According to theory of diffraction at a single slit, the resultant amplitude R due to all the secondary 
waves diffracted from each slit along the direction q is

	
R A=

sina
a

	

where A is the resultant amplitude due to each single slit in the direction q = 0° and a p q l=( )asin / . The 
phase difference between the secondary waves starting from extreme points of a slit is 

	
2

2
p q

l
a

a sin
=

	
In ∆ AGN

	 sin
GN

AG

GNq = =
+a b 	

or	 Path difference GN = (a + b) sinq	

and	 Phase difference Φ = +
2

( b)sin
p

l
qa

	
The resultant amplitude of both slits (by vector sum; see Fig. 7) is

R

R

Φ

R ′

Figure 7  Determination of resultant amplitude.
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2
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Putting the value of R and Φ in above equation, we get

	
¢ =R A2 2

2

2
24

sin
cos

a
a

b 	 (4.12)

where  b p
l

q= = +
F
2

( )sina b .

The intensity at point ‘P’ is given by

	
I A= 4 2

2

2
2 

sin
cos

a
a

b	 (4.13)
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Thus, the resultant intensity at any point depends on two variable factors which are reflected through Fig. 8:

	 1.	 The factor A2 2 2(sin )a a/  which represents the intensity distribution in diffraction pattern due to any 
individual slit − diffraction term.

	 2.	 The factor cos2 b which gives the interference pattern due to waves starting from two parallel slits − 
interference term.

Thus, the resultant intensity at any point is given by the product of these two factors and will be zero if 
either of these factors is zero.

O
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Y

Y
A2sin2a

a 2
=

−3p −2p −p p 2p 3p
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O

(b)

Y Y = cos2b

−4p

−4 −3 −2 −1 1 2 3 4

−3p −2p −p p 2p 3p 4p
b

O
(c)

I

2sin2 m4A2
a 2 cos2b

q

Figure 8  Intensities distribution.

4.5.1  Direction of Maxima and Minima
We can calculate the direction of maxima and minima due to these two terms separately:

	 1.	 Maxima and minima due to diffraction term A2 2 2(sin )a a/ : Central maxima at a = 0 having alter-
nate minima and secondary maxima.

	 Minima at a = ±p, ±2p, ±3p, …	

	 Secondary maxima is given by a p p p
= ± ± ±

3

2

5

2

7

2
, , , …
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	 2.	 Maxima and minima due to interference term cos2 b :

For maxima  cos2 b  = 1, that is b = ± np. So

( ) sina b   n+ = ±q l

		  Now when n = 0, q = 0 that is we have central maxima. Again

For minima  cos2 b  = 0, that is, b = ±(2n − 1)p/2, so	

( ) sin
( )

a b   
n

+ = ±
-q l2 1

2

Now, if a is kept constant and b (hence a b+ ) is varied, position of maxima and minima due to diffraction 
remains unchanged while those due to interference undergo change.

	 4.6	 Condition for Absent Spectra or Missing Spectra 

It has been observed that certain order of interference maxima may not appear in the diffraction pattern.
These are called absent spectra. The direction of principal maxima is given by

	 ( )sina b nn+ = ±q l   (Interference maxima)	 (4.14)

where n is order of principal maxima. The direction of diffraction minima is given by

	 a sinq = ± ml  (Diffraction minima)	 (4.15)

If the values of a and b are such that both Eqs. (4.14) and (4.15) are satisfied simultaneously for same 
values of q, then the position of certain interference maxima corresponds to diffraction minima are absent. 
Dividing Eq. (4.14) by Eq. (4.15) we get

	

a b

a

n
m

+
=  ⇒ n

a b
a

m=
+æ

è
ç

ö
ø
÷ � (4.16)

Equation (4.16) represents the condition for nth order spectrum to be absent from the spectra.

Case 1: When b = a, then n = 2m. If m = 1, 2, 3, … then n = 2, 4, 6, …. Thus the 2nd, 4th, 6th, … order 
will be absent.

Case 2: When b = 2a, then n = 3m. If m = 1, 2, 3, … then n = 3, 6, 9, .... Thus the 3rd, 6th, 9th, … order 
will be absent.

	 4.7	 Fraunhofer Diffraction due to N Slits or Plane Diffraction Grating

An arrangement consisting of large number of parallel slits of equal width and separated from each other by equal 
opaque spaces is called a ‘diffraction grating’.

A grating is made by ruling a large number of fine equidistant and parallel lines with a diamond point 
on an optically plane glass plate − true grating. The ruled widths are opaque to the light, while the spaces 
between any two lines are transparent. Such a grating is called ‘transmission grating’. There are about 15,000 
lines per inch in such a grating. In practice, the replicas of original gratings − workable gratings − are pro-
duced by pouring collodian solution on a true grating which is allowed to harden, then removing the film 
and fixing it between the glass plates.
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Let a wave front of monochromatic light is incident on ‘N’ parallel slits each of width ‘a’ and separated 
by opaque space ‘b’.
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Figure 9  N-slits diffraction.

The light diffracted through N slits is focused by lens L on the screen XY placed in the focal plane of lens L 
(see Fig. 9). When the wave front reaches the plane of the slits, each point in the slit sends out secondary 
wavelets in all directions. From Fraunhofer diffraction at single slit all the secondary waves proceeding from 
slits in a direction q are equivalent to a single wave of amplitude

R
A

=
sina
a

 where a p q
l

=
a sin

Path difference between two successive waves = ( )sina b+ q

The corresponding phase difference = 
2

2
p

l
q b( )sina b+ =

As we pass from one vibration to another, the phase goes on increasing by the same amount 
( )( )sin2p l q/ a b+ . Thus, in order to find the amplitude in a direction q we have to find the resultant 
amplitude of N waves each having amplitude R and common phase difference ( )( )sin2p l q/ a b+ .

Using the standard result, the resultant amplitude in a direction q is given by

′ = =R R
N

A
Nsin sinb

b
a

a
b

bsin

sin 

sin 
The resultant intensity at point P is given by

	
I R

A N
= ′ =2

2 2

2

2

2

sin sin

sin

a
a

b
b

	 (4.17)

The factor ( sin )A2 2 2a a/  gives the intensity distribution in the diffraction pattern due to a single slit 
while the factor sin sin2 2N b b/  gives the distribution of intensity due to interference caused by waves from 
all the slits.

4.7.1  Direction of Principal Maxima and Minima
The direction of principal maxima is as follows: 

sin b = 0 ⇒ b = ±np
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	 ⇒ 
p
l

q p( )sina b n+ = ±  ⇒ ( )sina b n+ =q l	 (4.18)

When n = 0 we have q = 0. This gives the direction of 0th order principal maxima or central maxima. If we 
put n = 1, 2, 3, … we get 1st, 2nd, 3rd, … order maxima, respectively. The resultant intensity of principal 
maxima is given by

	
I A N= 2

2

2
2sin a

a
	 (4.19)

where

lim
sin

sinb p

b
b®±

=
n

N
N

Hence if we increase the number of slits, the intensity of principal maxima increases.
The direction of minima is given by 

sin Nb = 0 ⇒ Nb = ±mp

	 ⇒ N a b m
p
l

q p( )sin+ = ±  ⇒ N a b m( )sin+ = ±q l	 (4.20)

Here m can take all integral values except m = 0, N, 2N, 3N, … because these values give sin b = 0 which 
gives the position of principal maxima. The ± sign indicates that the minima of a given order lie symmetri-
cally on both sides of the central maxima. It is also clear from Eq. (4.20) that m = 0 gives principal maxima 
of 0th order. m = 1, 2, 3,…, (N − 1) gives minima and m = N gives principal maxima of 1st order. 

4.7.2  Direction of Secondary Maxima
The direction of secondary maxima is given by

dI
d b

= 0

	 ⇒ A
N N N N2

2

2 2
2 0

sin cos sin
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b
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b b b b
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sin
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sin  cosæ

è
ç

ö

ø
÷

-
=

	
	 ⇒ N N Ncos sin sin cosb b b b= 	

	 ⇒ N Ntan tanb b=  ⇒ tan tanN Nb b= 	 (4.21)

In order to find the intensity of secondary maxima, let us consider Fig. 10 from which we have
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Figure 10  Determination of Nb.
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Figure 11  The intensity distribution curve.

Thus the intensity of secondary maxima is given by

	
I A

N

N
=

+ -
2

2

2

2

2 21 1

sin

( )sin

a
a b

	 (4.22)

From Eqs. (4.19) and (4.22)

	

Intensity of secondary maxima

Intensity of principal maxima
==

+ −
1

1 ( 1) sin2 2N b
	 (4.23)

Hence as N increases, the intensity of secondary maxima decreases. When N is very large, as in case of dif-
fraction grating, the secondary maxima are not visible in the spectrum. In such cases there is uniform dark-
ness between any two consecutive principal maxima (see Fig. 11).

4.7.3  Width of Principal Maxima
The angular width of principal maxima of any order is defined as the angular separation between the first 
two minima lying on its either side. The direction of nth order principal maxima is given by

	 ( )sina b nn+ = ±q l	 (4.24)

If (qn + dqn) and (qn − dqn) represent the direction of 1st outer and inner sided minima adjacent to the nth 
maxima, then dqn will be the angular half width of nth principal maxima.

The direction of minima are given as

	 N a b m( )sin+ =q l	 (4.25)

As the first outer and inner sided minima are adjacent to nth order principal maxima, these are obtained in 
the direction qn ± dqn. This corresponds to m = nN ± 1. Hence from above equation, we have

	 N a b d nNn n( )sin( ) ( )+ ± = ±q q l1 	 (4.26)

For small values of dqn, cos dqn = 1 and sin dqn = dqn. So the above equation becomes

	 N a b N a b d nNn n n( )sin ( )cos+ ± + = ±q q q l l	 (4.27)

From Eq. (4.25) we have 

	 N a b Nnn( )sin+ =q l	 (4.28)

From Eqs. (4.27) and (4.28)

nN N a b d nNn nl q q l l± + = ± ( )cos
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	 ⇒ d
N a bn

n

q l
q

=
+( )cos

	

Thus, the angular half width is inversely proportional to N. If N is sufficiently large, the angular half width 
will be small and hence the principal maxima will be sharp.

The width of nth order principal maxima is

2 dqn = 
2 l

qN a b n( )cos+

4.7.4  Formation of Spectrum with Grating
The direction of principal maxima is

( )sina b nn+ = ±q l

where a is the width of transparent portion, b is the width of opaque portion and (a b+ ) is the grating ele-
ment. From the above equation, we have the following:

	 1.	 For a particular value of l, the directions of principal maxima of different orders are different.
	 2.	 For a given value of n, the angle of diffraction qn varies with the wavelength. The angle of diffraction 

increases with increase in l. As lR > lv, therefore qn(R) > qn(v). Hence if white light is incident normally 
on a grating, each order will contain principal maxima of different wavelengths in different directions 
as shown in Fig. 12.

I order

I order

Zero order
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R1

R2

V2

V1
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II order

}
}
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Figure 12  Grating spectra.

It is also clear that for n = 0 we have q = 0 for all values of l, that is, the 0th order principal maxima for 
all wavelengths lie in the same direction. Thus the 0th order principal maxima will be white. The 1st order 
principal maxima of all the wavelengths form the 1st order spectrum. Similarly, the 2nd order principal 
maxima of all the wavelengths form the 2nd order spectrum and so on. Most of the light is concentrated in 
the principal maxima of 0th order.

Thus, the spectrum consists of white maxima of 0th order having on either side of it the 1st order spec-
tra, the 2nd order spectra and so on. The spectra of each order consist of colors from violet to red.

4.7.5  Condition for Absent Spectra or Missing Spectra in a Grating Spectrum
The direction of principal maxima obtained with grating is

	 ( )sina b nn+ = ±q l	 (4.29)
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where n is the order of principal maxima. The direction of diffraction minima is

	 a sinq = ± m l	 (4.30)

If the values of a and b are such that both Eqs. (4.29) and (4.30) are satisfied simultaneously for same values 
of q, then the position of certain interference maxima corresponds to diffraction minima are absent.

Dividing Eq. (4.29) by Eq. (4.30), we have

	

a b
a

n
m

+
=  ⇒ n

a b
a

m=
+æ

è
ç

ö
ø
÷ 	 (4.31)

Equation (4.31) represents the condition for nth order spectrum to be absent from grating spectra.

Case 1: When b = a, then n = 2m. If m = 1, 2, 3, … then n = 2, 4, 6, …. Thus, the 2nd, 4th, 6th, … orders 
will be absent.

Case 2: When b = 2a, then n = 3m. If m = 1, 2, 3, … then n = 3, 6, 9, .... Thus the 3rd, 6th, 9th, … orders 
will be absent.

	 4.8	 Dispersive Power of Diffraction Grating

The dispersive power of a diffraction grating is defined as the rate of change of angle of diffraction with the 
wavelength of light. If dq is change in the angle of diffraction corresponding to the light of wavelength dl, 
then dq/dl is known as dispersive power.

For a plane transmission grating

	 ( )sina b nn+ = ±q l	 (4.32)

Differentiating Eq. (4.32) w.r.t. l, we get

	
( ) cosa b   

d
d

n+ =q q
l

	 (4.33)

Therefore, dispersive power
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where dq is the angular separation between two lines having wavelength difference dl. From the above 
equation we can conclude the following:

	 1.	 The dispersive power is directly proportional to the order of the spectrum, n. Thus higher the spec-
trum, greater is the dispersive power. For this reason, the angular separation of two spectral lines is 
double in 2nd order spectrum in comparison to 1st order spectrum.
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	 2.	 The dispersive power is inversely proportional to grating element ( )a b+ . This means that it is directly 
proportional to the number of lines/cm. Thus the angular dispersive power of two given lines is greater 
with a grating having larger number of lines/cm.

	 3.	 The dispersive power is inversely proportional to cos q. Thus larger the value of q greater is the 
dispersive power.

4.8.1  Determination of Grating Element (a + b) 
On a grating the number of rulings/inch is given by the manufacturer. If N is the number of rulings/inch 
then 

N( )a b+  = 1″ = 2.54 cm  ⇒  ( )a b+  = 2.54/N cm

	 4.9	 Difference Between Prism and Grating Spectra

The differences between prism and grating spectra are as follows:

	 1.	 The prism spectrum is produced by dispersion while grating spectrum is produced by diffraction.
	 2.	 A prism gives only one spectrum but a grating gives a number of spectra of different order on both 

sides of central maxima.
	 3.	 The prism spectrum is brighter than the grating spectrum.
	 4.	 In case of prism, the deviation is least for red and greatest for violet color while in case of grating, the 

deviation is least for violet and greatest for red. Thus, the order of colors in the two spectra is opposite.
	 5.	 The dispersive power of a grating is 

d
d

n
a b   

q
l q

=
+( ) cos

		  which is constant for a given order. Thus the spectral lines are evenly distributed. Hence, the spectrum 
obtained with a grating is said to be rational.

		    The dispersive power of a prism is d m m/( )-1  which has a higher value in the violet region than in 
the red region of spectrum. Hence, spreading of lines increases as we move from red end to violet end, 
that is, spectral lines are not evenly distributed. Hence, the spectrum obtained with a prism is said to 
be irrational.

	 6.	 The resolving power of diffraction grating is much greater than that of a prism. Hence the same two 
nearby spectral lines appear better resolved with a grating than with a prism.

	 7.	 The prism spectrum depends upon the material of the prism while grating spectrum is independent of 
the material.

	 4.10	 Resolving Power

When two objects are very close to each other or very far from our eye, then our naked eye may not be able 
to see those objects separately and an optical instrument is required to see them as separate. The ability of 
an optical instrument to just resolve the images of two nearby point sources/objects is called its resolving 
power. But in case of instruments like prism or grating, it is the ability to just resolve two close spectral 
lines.

An optical instrument is said to have resolved the two point sources/spectral lines when their corre-
sponding diffraction pattern are sufficiently separated from each other so that the two images can be distin-
guished from each other.
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	 4.11	 Rayleigh’s Criterion for Resolution

According to Lord Rayleigh, the two point sources or two spectral lines of equal intensity are just resolved 
by an optical instrument when the central maxima of diffraction pattern due to one falls on the first mini-
mum of the diffraction pattern of the other. The two curves then intersect each other, just at the midpoint 
(as intensity is equal) between the two principal maxima.

In Fig. 13(c), A and B are the central maxima of the diffraction patterns of two spectral lines of wave-
lengths l and l + dl. The difference in the angle of diffraction is large and the two images can be seen as 
separate ones. Hence, the two spectral lines will appear well resolved. 

In Fig. 13(b), the position of central maxima of A coincides with the position of first minima of B. 
Similarly, the position of central maxima of B coincides with the position of first minima of A. Further, the 
resultant intensity curve shows a dip at C, that is, in the middle of A and B. The intensity at C is approxi-
mately 20% less than that at A and B. The spectral lines can be distinguished from one another and are said 
to be just resolved.

In Fig. 13(a), the central maxima corresponding to wavelengths l and l + dl are very close. As the angle 
of diffraction for first minima of A is greater than the angle of diffraction for central maxima of B, the two 
lines overlap and they cannot be distinguished as separate images. In this case, the two spectral lines are not 
resolved.

All types of optical instruments have single aperture; hence expression for the intensity variation due 
to diffraction with single slit is I = A2sin2a/a2 with a = ±p for the first minima on either side of central 
maxima but here we take a = p on one side.

Further, at the point of intersection that lies at the midpoint we have a = p/2. Hence, 

I1 = I2 = A2 sin2(p/2)/(p/2)2 = 4A2/p2

Thus, the resultant intensity at the midpoint is due to the contribution of intensity of each object. Also we 
know that intensity adds like scalars. Hence,

Imid = I1 + I2 = 8A2/p2

But Imax = A2 = I0. Hence, finally Imid/Imax = 8/p2 = 0.81, that is, the two spectral lines/two images are said to 
be just resolved when the intensity at the dip in the middle is 81% of the intensity at either maxima.

Resultant
intensity

Resultant
intensity

Dip

A B

(a) (b) (c)

A

A

B

B

C l + dl

l + dl
l + dl

l

l
l

q

q ′

q ′q q ′q

Figure 13  The intensity distribution curves of two wavelengths l and l + dl.
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Notes:
	 1.	 If resultant intensity is more than 81% of either maxima, then it is not resolved
	 2.	 If resultant intensity is equal to 81% of either maxima, then it is just resolved
	 3.	 If resultant intensity is less than 81% of either maxima, then it is fully resolved

	 4.12	 Resolving Power of Plane Transmission Grating

Resolving power of grating can be defined as the ratio of the wavelength of either spectral line with the 
smallest wavelength difference of two close spectral lines which can be just resolved. Let a beam have wave-
lengths l and l + dl (as in sodium light we have two wavelengths 5890 Å and 5896 Å ; here l = 5890 Å 
with dl = 6 Å; see Fig. 14). We have to form the expression for the resolving power of the diffraction grat-
ing, that is to say finding the limiting value of dl out of l. For this purpose, we put the Rayleigh’s criterion 
and for that matter have to discuss positions of principal maxima and first minima adjacent to principal 
maxima.

Telescope
lens

P2

B

dq

dq

A

P1

Collimating
lens

Slit

q

q
q

l + dl

l

Figure 14  Resolving power of a plane transmission grating.

The direction of (say) nth principal maxima is given by 

( )a b+ sin q = nl
The direction of minima is given by

N( )a b+ sin q = ml

where m can take any integer value except m = 0, N, 2N, 3N, …, nN (for nth order mixima). Then the first 
minima adjacent to this nth principal maxima in q increasing direction (i.e., q + dq; mind it that on the 
other side, minima is at q − dq) with m = nN + 1 will be obtained by 

	 N( )a b+ sin (q + dq) = (nN + 1)l	 (4.34)

Rayleigh’s criterion suggests that spectral lines l and l + dl are just resolved when nth order maxima of 
l + dl (say) falls on (or overlaps with) the first minima of l (mind it − adjacent to its nth order maxima) 
(see in Fig. 14). In other words, for just resolution of spectral lines l and l + dl, the nth maxima of l + dl 
and first minima of l (adjacent to its nth maxima) should be formed in the same direction (condition of 
overlapping), that is, q + dq.
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Further, we have nth order maxima of l + dl in q + dq direction given by

	 ( )a b+ sin(q + dq) = n(l + dl)	

or	 N( )a b+ sin(q + dq) = Nn(l + dl)	 (4.35)

Now, applying Rayleigh’s criterion implies nth order maxima of l + dl by Eq. (4.35) and first minima of l by 
Eq. (4.34) should overlap, that is, mathematically both Eqs. (4.34) and (4.35) must hold simultaneously. We get

	 (nN + 1)l = Nn (l + dl)	

or	 l/dl = nN = N ( )a b+  sinq/l	

Thus the resolving power of grating is the product of the order of spectrum with total number of lines on 
the grating. Further, we have dispersive power given by

	 dq/dl = n/( )a b+  cosq	
Hence,

l/dl = nN = N ( )a b+  cosq dq/dl = A dq/dl
This implies

	 Resolving Power (RP) = Aperture × Dispersive Power (DP)	

Finally, a distinction between RP and DP is that DP is angular separation of two spectral lines while RP is 
closeness of two spectral lines that can be distinguished.

		  Solved Examples

Example 1

A light of wavelength 6500 Å falls normally on a slit of width a. For what value of a first minimum for 
light falls at an angle of 30°?

Solution:  We know that the minimum intensity in single slit is

a msinq l= ±

According to the question l = 6500 Å = 6.5 × 10−5cm, q = 30° and m = 1. Hence,

a
m

= æ
è
ç

ö
ø
÷ =

´ ´
= ´

-
-l

qsin

.

sin
.

1 6 5 10

30
1 3 10

5
4 cm

Example 2

A light of wavelength 6000 Å falls normally on a straight slit of width 0.1 mm. Calculate the total angular 
width of the central maximum and also the linear width as observed on a screen placed 1 m away.

Solution:  We know that the total angular width of the central maxima will be 2q if the first minimum 
is formed at an angle q. Hence, minimum intensity in single slit is
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Example 3

Find the angular separation between the first-order minima on either side of central maxima when slit is 
6 × 10−4 cm wide. Given wavelength of light l = 6000 Å.

Solution:  We know that the minimum intensity in single slit is

a msinq l= ±

According to the question l = 6000 Å = 6 × 10−5 cm, a = 6 × 10−4 cm and m = 1. Hence,

q l
= æ

è
ç

ö
ø
÷ =

´ ´
´

= = ° ¢ ¢¢-
-

-
-sin sin ( . )1

5

4
11 6 10

6 10
0 1 5 44 21

m
a

Angular separation between the first-order minima 2q = 2 × 5 44 21 11 28 42° ¢ ¢¢ = ° ¢ ¢¢.

asin q = ±ml

According to the question l = 6000 Å = 6 × 10−5cm, a = 0.1 mm = 0.01 cm and m = 1. Hence,

q l
= æ

è
ç

ö
ø
÷ =

´ ´
= °-

-

sin
.

.1
51 6 10

0 01
0 344

m
a

Total angular width of the central maxima = 2 q = 2 × 0 344 0 688. .° = °

Total linear width of central maxima = 
2 2 100 6 10

0 01
1 2

5D
a

l
=

´ ´ ´
=

-

.
. cm

Example 4

A diffraction grating used at normal incidence gives a green line (5400 Å) in a certain order superimposed 
on the violet line (4050 Å) of the next higher order. If the angle of diffraction is 30°, how many lines per 
cm are there in grating?

Solution:  We know that the nth order principal maxima is

(a + b) sin q = nl

According to the question, for the green light l = 5400 Å , q = 30° and the order is n. So

	 (a + b) sin30° = 5400 n� (4.36)
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Example 5

How many orders will be visible if the wavelength of incident radiation is 5000 Å and the number of lines 
on the grating is 2620 per inch?

Solution:  We know that the nth order principal maxima is

( )sina b n+ =q l

According to the question, for maxima q = 90°, l = 5000 Å = 5 × 10−5 cm and ( ) ( . / )a b+ = 2 54 2620 cm. So

n
a b

=
+

=
´

=
( ) .

.
l

2 54

2620 2620
19 39

For the violet light l = 4050 Å, q = 30° and the order is n + 1. So

	 (a + b) sin30° = 4050(n + 1)� (4.37)

From Eqs. (4.36) and (4.37), we have

5400n = 4050(n + 1) Þ n = 3

Substituting this value in Eq. (4.36) we get

	 (a + b) sin30° = 5400 × 3(a + b) = 32400 Å = 3.24 × 10−4 cm�

Number of lines per cm = 
1 1

3 24 10 4( ) .a b+
=

´ -  = 3086.42

Example 6

A diffraction grating has a resolving power R Mn= =l lD . Show that the corresponding frequency 
range Ñn that can be just resolved is given by 

	 Dn
l

=
c

Mn

Solution:  The resolving power of two wavelengths with difference Dl is 

R Mn= =l
l∆

M is total number of lines on grating and n is order of spectrum. If n is the frequency corresponding to  
l and Dn is the range of frequency corresponding to Dl then 

n
l

=
c

                                                  [c is velocity of light]
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		  Short Answers of Some Important Questions

	 1.	 What is diffraction?
Answer: When a beam of light passes through 
small aperture or a narrow slit, it does not 
follow rectilinear path but bends rounds cor-
ners of the obstacles (slit or aperture). Thus, 
the bending of light from obstacles (slit or 
aperture) is known as diffraction.

	 2.	 What do you understand by Fraunhofer 
diffraction?
Answer: In Fraunhofer diffraction, source or 
screen or both are at infinite distance from 
obstacles.

	 3.	 What is the effect of intensity when single slit 
is replaced by double slit?
Answer: When single slit is replaced by double 
slit then the intensity will be four times.

	 4.	 What do you understand by resolving power of 
an optical instrument?
Answer: The ability of an optical instrument to 
just resolve the images of two nearby point 
sources/objects is called its resolving power.

	 5.	 What is dispersive power of grating?
Answer: The dispersive power of a diffraction 
grating is defined as the rate of change of angle 
of diffraction with the wavelength of light.

	 6.	 Why is diffraction not observed for light pass-
ing through a window in a room?
Answer: The minima and the secondary 
maxima will come very close to each other 
and merge, that is why diffraction is not 
observed for light passing through a window 
in a room.

	 7.	 What is the effect of increasing the wavelength 
on single slit Fraunhofer diffraction pattern?
Answer: If we increase the wavelength of light, 
the nth order minimum angle increases and as 
a result, the spectrum becomes wider.

	 8.	 Under what situations certain orders in optical 
gratings are missing or what is missing order in 
diffraction grating?
Answer: If the maximum intensity due to 
interference and the minimum intensity due to 
diffraction term are simultaneously satisfied, 
those orders are missing from the spectrum.

	 9.	 What is Rayleigh criterion for resolution?
Answer: According to Rayleigh, “two very close 
spectral lines are said to be resolved if the princi-
pal maxima in the diffraction pattern of one 
object or wavelength coincides with the first 
minimum in the diffraction pattern of the other.”

and	  D
Dn l
l

= -c
2

The magnitude is given by	

D
Dn

l
l

l
= æ

è
ç

ö
ø
÷

c
= æ

è
ç

ö
ø
÷

c
Mnl
1

�
∵

Dl
l

=é
ëê

ù
ûú

1
Mn

or	 Dn
l

=
c

Mn
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		  Important Points and Formulas

	 1.	 The bending of light from obstacles (slit or 
aperture) is known as diffraction.

	 2.	 The phenomena of diffraction can be classified 
into two following categories:

	 	 • � Fresnel diffraction: In Fresnel diffraction, 
the source or screen or both are at finite dis-
tance from obstacles.

	 	 • � Fraunhofer diffraction: In Fraunhofer dif-
fraction, the source or screen or both are at 
infinite distance from obstacles.

	 3.	 The direction of principal maxima is given by

( )sina b nn+ = ±q l  (Interference maxima)

	 4.	 The direction of diffraction minima is given by

a sinq = ± ml  (Diffraction minima)

	 5.	 Dispersive power 

d

d

n

a b   

q
l q

=
+( ) cos

	 6.	 The ability of an optical instrument to just 
resolve the images of two nearby point sources/
objects is called its resolving power.

		  Multiple Choice Questions

	 1.	 Bending of light around sharp edges of an 
object is known as

	 (a)	 scattering
	 (b)	 diffraction
	 (c)	 reflection
	 (d)	 refraction

	 2.	 The total path difference depends only on the 
angle of diffraction in

	 (a)	 Fraunhofer diffraction
	 (b)	 Fresnel diffraction
	 (c)	 Both (a) and (b)
	 (d)	 Neither (a) nor (b)

	 3.	 Which one of the following quantity remains 
constant during diffraction process?

	 (a)	 Speed
	 (b)	 Wavelength
	 (c)	 Frequency
	 (d)	 All the above
	 4.	 The distance between slit and screen is finite in
	 (a)	 Fresnel diffraction
	 (b)	 Fraunhofer diffraction
	 (c)	 Both (a) and (b)
	 (d)	 Neither (a) nor (b)

	 5.	 In Fraunhofer diffraction, the distance between 
slit and screen is

	 (a)	 finite	 (b)	 infinite
	 (c)	 1.25 cm	 (d)	 None of these

	 6.	 In Fresnel diffraction, the wave front incident 
on the slit is

	 (a)	 circular
	 (b)	 spherical
	 (c)	 cylindrical
	 (d)	 either cylindrical or spherical

	 7.	 The wave front incident on the slit in 
Fraunhofer diffraction is

	 (a)	 circular	 (b)	 spherical
	 (c)	 cylindrical	 (d)	 plane

	 8.	 In Fraunhofer single slit diffraction, the path 
difference between rays from the slit is

	 (a)	 a sin q	 (b)	 a cos q

	 (c)	 a sec q	 (d)	
a

sinq

	 9.	 In Fraunhofer single slit diffraction, the phase 
difference between rays from the slit is

	 (a)	
2 2p
l

qa sin 	 (b)	
2p
l

qa sin

	 (c)	 a sin q	 (d)	
2p l q
a

sin
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		  Short Answer Type Questions 

	 1.	 Explain the difference between interference 
and diffraction.

	 2.	 What do you understand by single slit 
diffraction?

	 3.	 What is Fresnel diffraction?

	 4.	 What are missing orders?
	 5.	 What is Rayleigh criterion of resolution?
	 6.	 What is resolving power of grating?
	 7.	 What is dispersive power of grating?
	 8.	 What do you understand by grating element?

		  Long Answer Type Questions

	 1.	 What is diffraction of light? Distinguish 
between Fresnel and Fraunhofer diffraction.

	 2.	 Discuss Fraunhofer diffraction pattern due to a 
single slit. Find the expression for the width of 
the central maximum.

	 3.	 Derive an expression for the intensity distribu-
tion due to Fraunhofer diffraction at a single 
slit and show that the intensity of the first 
subsidiary maximum is about 4.5% of that of 
the principal maximum.

	 4.	 Discuss the phenomenon of Fraunhofer dif-
fraction at a single slit and show that the rela-
tive intensities of the successive maximum are

1 : 
4

9 2p
 : 

4

25 2p
: 

4

49 2p
: �

	 5.	 Describe the Fraunhofer diffraction pattern due 
to a double slit. What are the missing orders?

	 6.	 Describe the feature of a double slit Fraunhofer’s 
diffraction pattern. What is the effect of 
increasing the following:

	 (a) Slit width.
	 (b) Slit separation.
	 (c) Wavelength.

	 7.	 What do you understand by missing order 
spectrum? What particular spectra would be 
absent if the width of transparencies and opaci-
ties of grating are equal?

	 8.	 Show that only first order of spectra is possible 
if the width of a grating element is less than 
twice the wavelength of light.

	 9.	 Explain the formation of spectra by a plane 
transmission grating. What are its chief 
characteristics?

	10.	 Show that the rays forming spectrum in a grat-
ing suffer minimum deviation when angle of 
incidence equals the angle of diffraction.

	11.	 Define dispersive power of a grating and obtain 
an expression for it.

	12.	 Explain Rayleigh criterion of resolution. Define 
limit of resolution and resolving power.

	10.	 In Fraunhofer diffraction at a single slit, the 
intensity of first secondary maximum is

	 (a)	 9.5%	 (b)	 0.45%
	 (c)	 4.5%	 (d)	 1.62%

	11.	 In Fraunhofer single slit diffraction, the mini-
mum intensities are formed at angles

	 (a)	 sin- æ
è
ç

ö
ø
÷

1 n
a
l

	 (b)	 cos- æ
è
ç

ö
ø
÷

1 n
a
l

	 (c)	 sin- æ
è
ç

ö
ø
÷

1 a
nl

	 (d)	 None of these
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Numerical Problems

	 1.	 5000 A
o

	 2.	 5000 A
o

	 3.	 (a) 6.0 × 10−3 cm, (b) 1.2 cm 

	 4.	 1.68 × 10−2cm 
	 5.	 1.33 mm, 2.66 mm, 5.32 mm and 6.6 mm 
	 6.	 20,000 A

o

		  Numerical Problems 

	 1.	 In Fraunhofer diffraction due to narrow slit,  
a screen is placed 2 m away from the lens to 
obtain the pattern. If the slit width is 0.2 mm 
and first minima lie 5 mm on either side of  
the central maximum, find the wavelength  
of light.

	 2.	 Light of wavelength 5000 A
o

 is incident nor-
mally on a single slit. The central maximum 
falls out at 30° on both sides of the direction of 
the incident light. Calculate the slit width. For 
what width of the slit the central maximum 
would spread out to 90° from the direction of 
the incident light.

	 3.	 Plane wave of l = 6.0 × 10−5 cm falls normally 
on a slit of width 0.20 mm. Calculate (a) the 
total angular width of the central maximum 
and (b) the linear width of the central maxi-
mum on a screen placed 2 m away.

	 4.	 In a single slit diffraction pattern the distance 
between the first minimum on the right and 
the first minimum on the left is 5.2 mm. The 
screen on which the pattern is displaced is 80 
cm from the slit and the wavelength is 5460A

o
. 

Calculate the slit width.
	 5.	 Two parallel slits have widths 0.15 mm each 

and separation between them is 0.30 mm. They 
are illuminated normally by light l = 6000A

o
 

and the emergent light is focused by a conver-
gent lens of 100 cm focal length. Deduce the 
positions of the first four interference maxima 
on one side in the focal plane of the lens.

	 6.	 A parallel beam of monochromatic light is 
allowed to be incident normally on a plane grat-
ing having 1250 lines per cm and second-order 
spectral lines are observed to be deviated through 
30°. Calculate the wavelength of the spectral line.

		  Answers

Multiple Choice Questions

	 1.	 (b)
	 2.	 (a)

	 3.	 (d)
	 4.	 (a)

	 5.	 (b)
	 6.	 (d)

	 7.	 (d)
	 8.	 (a)

	 9.	 (b)
	10.	 (c)

	11.	 (a)
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	 5.1	 Introduction

We have already discussed the phenomenon of interference and diffraction in Chapters 3 and 4 which vali-
dates the wave nature of light. Since these phenomenon are exhibited by transverse and longitudinal waves, 
therefore, they cannot explain the motion of wave. For example, whether the light waves are longitudinal 
and transverse or whether the vibrations are linear, circular, or elliptical. The drawbacks were explained on 
the basis of polarization of light. Now the following question arises: What is polarization?

According to the theory of electromagnetism, electric vector E and magnetic field vector H are mutually 
perpendicular to each other and also perpendicular to its direction of propagation of light. Most of the opti-
cal phenomenon can be explained by the electric vector E (also known as light vector) which vibrates in all 
directions in a plane perpendicular to the direction of propagation. Thus, the phenomenon of restricting the 
vibrations of electric vector E of light in a particular plane is called the polarization of light.

To understand this phenomenon consider a tourmaline crystal cut with its plane parallel to the crystal-
lographic axis and exposed with unpolarized light; only parallel vibrations of light to the crystallographic 
axis pass through the crystal. This means that emerging light has vibrations in only one plane, that is, said 
to be plane polarized light. In this case, tourmaline crystal acts as a polarizer. 

5.1.1  Unpolarized Light
The light wave that has vibrations in all directions perpendicular to the direction of propagation of light is 
known as unpolarized light as shown in Fig. 1.

Figure 1  Unpolarized light.

•	 Phenomena of double refraction.
•	 Nicol prism.
•	 Production and analysis of plane.

•	 Circular and elliptical polarized light.
•	 Retardation plate.

LEARNING OBJECTIVES

After reading this chapter you will be able to understand:

Polarization of Light5
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5.1.2  Plane Polarized Light
The light wave that has vibrations in one plane is said to be plane polarized light. In other words, one can 
say that vibrations along one straight line perpendicular to the direction of propagation of light is called 
plane polarized light. It is as shown in Fig. 2. In this figure, the arrows represent vibrations confined to the 
plane of a paper whereas the dots represent the vibrations perpendicular to the plane of a paper.

(a) (b)

Figure 2  Plane polarized light.

5.1.3  Plane of Vibration
A plane in which the vibrations of polarized light are confined is called plane of vibration of plane polarized 
light. In Fig. 3, ABCD represents the plane of vibration.

5.1.4  Plane of Polarization
The plane perpendicular to the plane of vibration is called the plane of polarization of plane polarized light. 
In Fig. 3, PQRS represents the plane of vibration.

A
D

P

B C

R

Q S

Plane

Plane of polarization

Plane of vibration

Figure 3  Plane of polarization and plane of vibration.

	 5.2	 Transverse Nature of Light

The phenomenon of polarization confirm the nature of light whether it is transverse or longitudinal. For 
this purpose, let us take a tourmaline crystal T1. Cut it with its face parallel to its crystallographic axis. 
When light beam falls normally on T1, the emergent beam will be observed to be slightly colored. If this 
light is allowed to pass another tourmaline crystal T2 cut similar to T1, the emergent light shows a variation 
in intensity as T2 is rotated [Fig. 4(a)] and when the axes T1 and T2 are perpendicular to each other, no light 
comes out from T2 [Fig. 4(b)]. These variations in intensities prove the transverse nature of light because 
longitudinal waves do not undergo polarization. 
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T1 T2

T1

T2

No light

(b)

(a)

Plane polarized light Plane polarized light

Plane polarized light

Figure 4  Transverse nature of light.

	 5.3	 Double Refraction and Doubly Refracting Crystals

If unpolarized light or ordinary light pass through glass (or any isotropic medium), the refraction takes 
place in only one direction whereas if this light is allowed to pass through calcite or tourmaline crystal  
(i.e., anisotropic medium) then refraction takes place in two directions. One that is everywhere perpendicular 
to the optic axis and follows all the laws of refraction is called ordinary ray or O-ray, whereas the other that is 
parallel to the optic axis and does not follow the laws of refraction is called extraordinary or E-ray as shown 
in Fig. 5. Thus, the phenomenon in which incident light ray splits into ordinary or O-ray and extraordinary or 
E-ray by quartz, calcite or tourmaline crystals is known as double refraction and the crystals which show double 
refraction are known as doubly refracting crystals.

A
S

N

N1

r1

r2

109°

71°

E

O

Figure 5  Double refraction.
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On the basis of optic axis, there are two types of doubly refracting crystals:

	 1.	 Uniaxial doubly refracting crystals: In this crystal there is one optic axis along which two refracted 
light rays travel with the same velocity. Calcite, quartz and tourmaline crystals are examples of uniaxial 
crystals. 

	 2.	 Biaxial doubly refracting crystals: In this crystal there are two optic axes along which two refracted 
light rays travel with the same velocity. Mica, topaz and aragonite crystals are examples of biaxial 
crystals.

	 5.4	 Huygen’s Theory of Double Refraction 

Huygen explained the phenomenon of double refraction on the basis of secondary wavelets. According to 
this theory:

	 1.	 If the light waves are incident on the surface of uniaxial doubly refracting crystals, each point on the 
surface of the crystal becomes the origin of two secondary wavelets, O-ray and E-ray.

	 2.	 The wavefront of O-ray is spherical because it travels with the same velocity in all directions.
	 3.	 The wavefront of E-ray is ellipsoid because it travels with different velocities in different directions.
	 4.	 Along optic axis, the velocities of O-ray and E-ray are constant.
	 5.	 In negative crystals (calcite) m0 > mE, hence v0 < vE. This means that velocity of E-ray is greater 

than that of O-ray inside the crystal. That is why the spherical wavefront lies inside the ellipsoid as  
shown in Fig. 6.

	 6.	 In positive crystals (quartz) m0 < mE, hence v0 > vE. This means that velocity of O-ray is greater than 
that of E-ray inside the crystal. That is why the spherical wavefront lies outside the ellipsoid as shown 
in Fig. 6.

Optic axis Optic axis

Negative crystal
(Calcite)

Positive crystal
(Quartz)

E
E

O
O

Figure 6  Double refraction on the basis of Huygen’s theory.
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	 5.5	 Nicol Prism

In 1828, William Nicol invented an optical device which is used for producing and analyzing the plane 
polarized light.

5.5.1  Principle
The principle of Nicol prism is based on the phenomenon of double refraction. As we know, if unpolarized 
light passes through calcite crystal, it splits into O-ray which has vibrations perpendicular to the principal 
section of the crystal and E-ray which has vibrations parallel to the principal section inside the crystal. If 
somehow one of the two beams is eliminated then only one beam is transmitted through the crystal. In 
Nicol, O-ray is eliminated by the total internal reflection and E-ray is transmitted through the crystal which 
is plane polarized light.

5.5.2  Construction
For the construction of Nicol prism, a calcite crystal whose length is three times its width is taken. The two 
end faces A´D and BC´ of the crystal are cut in such a way that they make an angle of 68° instead of 71°. 
Resulting part of the crystal is then cut along A´C´ so that it makes an angle 90° with the two end faces as 
shown in Fig. 7. The two surfaces are grounded, polished optically flat and then cemented together with a 
transparent material called Canada balsam whose refractive index lies midway between the refractive index 
of O-ray and E-ray. For sodium light, refractive indices are 1.66, 1.55 and 1.49 for O-ray, Canada balsam 
and E-ray, respectively.

S2

S1

S
M

D

68°

A A′

71°

14°
14°

B

E

Plane polarized light

ray

Lamp black surface

C
O

C′

Figure 7  Nicol prism.

5.5.3  Working
If an ordinary light falls on the face A´D parallel to the face DC´, it splits into O-ray and E-ray having 
vibrations parallel and perpendicular to the principal section inside the crystal. It is clear that Canada 
balsam layer is more dense than calcite for E-ray and less dense for O-ray (because for O-ray, the angle of 
incidence at the Canada balsam layer is higher than the critical angle of calcite and Canada balsam), that is

Critical angle = sin−1(1.55/1.66) = sin−1(0.933) ≈ 69°

Therefore, O-ray is reflected from the layer of Canada balsam by total internal reflection and absorbed by 
the lamp black surface DC´ (see Fig. 7). The E-ray transmitted from Canada balsam layer is plane polarized 
light. In this way Nicol prism acts as a polarizer.
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5.5.4  Nicol Prism as an Analyzer 
If two Nicol prisms N1 and N2 are parallel to each other then only E-ray passes through both the Nicol 
prisms. In this case, the first Nicol acts as a polarizer and the other acts as an analyzer as shown in Fig. 8(a).  
When the second Nicol N2 is gradually rotated then the intensity of E-ray decreases and if N1 and N2 
are perpendicular to each other then no light comes out from the second Nicol N2 [Fig. 8(b)]. Further, if 
N2 is rotated, the intensity of emergent light increases. In this way we can say that Nicol prism acts as an 
analyzer.

(a)

(b)

E

O

N2

N2

Polarizer Analyzer

Polarizer
Analyzer

Plane polarized 
light

N1

N1

Figure 8  Nicol prism as a polarizer and as an analyzer.

	
5.6

	 Mathematical Treatment for Production and Analysis of Plane, 
Circularly and Elliptical Polarized Light

Let a beam of plane polarized light fall normally on a calcite crystal cut with faces parallel to the optic axis. 
The vibrations of a beam make an angle q with the optic axis. The amplitude A of the vibrations is resolved 
parallel and perpendicular to the optic axis because of doubly refracting calcite crystal. The component 
parallel to the optic axis is the magnitude of E-ray and the component perpendicular to the optic axis is the 
magnitude of O-ray as shown in Fig. 9. Since both vibrations (E and O rays) have different velocities in 
same direction, therefore a phase difference d is introduced between them. Thus, the displacements of both 
waves can be written as

Y
O

A cos q 
Optic axis

A
 s

in
 q

A

N

X

P

q
Ε

Figure 9  Resolving of amplitude.
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	 x A t= +cos sin ( )q w d   for E-ray	 (5.1)

and	 y A t= sin sinq w   for O-ray	 (5.2)

Now a  =  A cosq  and A sinq = b. So we get

	
x a t

x
a

t t= + Þ = +sin ( ) sin cos cos sinw d w d w d 	 (5.3)

and	 y b t
y

b
t= Þ =sin sinw w 	 (5.4)

From Eqs. (5.3) and (5.4), we have

x
a

y

b
y b= + -cos ( ) sind d1 2/ ∵ cos sin ( ) sinw w dt t y b= - = -( )1 12 2/

or	
x
a

y

b
y b− = −cos ( ) sind d1 2/ 	 (5.5)

Squaring both sides of Eq. (5.5), we get

	

x

a

y

b
y b

x
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y

b

xy
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-æ

è
ç

ö
ø
÷ = -( ) Þ + - =cos ( ) sin cos sind d d d
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2 2

2

2

2
21

2
/ 	 (5.6)

Equation (5.6) is general equation of ellipse. The exact nature of the emerging light from the crystal can be 
obtained by substituting the value of d  in this equation.

Special cases:

	 1.	 When d  = 0, 2p, 4p, …, 2np, then cos d = 1 and sin d = 0. Therefore Eq. (5.6) reduces to
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		  This is the equation of straight line. Thus, the light will be plane polarized [Figs. 10(a) and (e)].

	 2.	 When d  = p, 3p, 5p, …, (2n + 1)p, then cos d  = −1 and sin d  = 0. Therefore Eq. (5.6) reduces to
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2

2

2

2

2
2

0 0+ + = Þ +æ
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ç
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÷ =

 
or  y
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x= - 	 (5.8)

		  This is again the equation of straight line. Thus, again the light will be plane polarized [Fig. 10(c)].

	 3.	 When d  =  p/2, 3p/2, 5p/2, …, (2n+1)p/2 and a ≠ b, then cos d  = 0 and sin d  =  1. Therefore  
Eq. (5.6) reduces to

	

x
a

y

b

2

2

2

2
1+ = 	 (5.9)

		  This is the equation of ellipse. Thus, the light will be elliptically polarized [Figs. 10(b) and (d)].
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a

a

(a)

d = p/2

d = 2p

d = 3p/2d = pd = 0

(b) (c) (d)
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Figure 10  Polarization of vibration.

	 4.	 When d  = (2n + 1)p/2 and a = b, then cos d  = 0 and sin d  =  1. Therefore Eq. (5.6) reduces to

	 x y a2 2 2+ = 	 (5.10)

		  This is the equation of circle. Thus, the light will be circularly polarized when q = 45° [Figs. 10(f) and (g)].

5.6.1  Plane and Circularly Polarized Lights are Special Case of Elliptically Polarized Light
From Eq. (5.6), we understand that generally the light coming from the quarter wave plate is elliptically 
polarized. When q = 0° and 90° with the optic axis of quarter wave plate, the transmitted light from the 
quarter wave plate is plane polarized; however, when v = 45°, the transmitted light from the quarter wave 
plate is circularly polarized. Thus, we can say that plane and circularly polarized lights are special cases of 
elliptically polarized light.

	 5.7	 Retardation Plates

It is used to produce a phase difference between ordinary and extraordinary rays during the transmission 
through doubly refracting crystals. There are two types of retardation plates: Quarter-wave and half-wave 
plates.

5.7.1  Quarter-Wave Plate
It is a uniaxial doubly refracting crystal of suitable thickness cut with its optic axis parallel to the refracting 
faces so that a phase change of p /2 or path difference l/4  is produced between O-ray and E-ray.

Let m0 and mE be the refractive index of O-ray and E-ray, respectively. As we have earlier discussed, in 
a negative (calcite) crystal E-ray travels faster than O-ray, so m0 > mE. Therefore, the path difference intro-
duced between O-ray and E-ray is

Δ = (m0 − mE)t

The path difference l/4 is produced between O-ray and E-ray. Hence

l
4

 = (m0 − mE)t Þ =
-

t
l

m m4 0( )E  
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For positive (quartz) crystal

t =
−

l
m m4 0( )E

5.7.2  Half-Wave Plate
It is also a uniaxial doubly refracting crystal of suitable thickness cut with its optic axis parallel to the refracting  
faces so that a phase change of p  or path difference l/2  is produced between O-ray and E-ray.

Let m0 and mE be the refractive index of O-ray and E-ray, respectively. As we have earlier discussed, in 
negative (calcite) crystal E-ray travels faster than O-ray, so m0 > mE. Therefore, the path difference intro-
duced between O-ray and E-ray is

Δ = (m0 − mE)t

The path difference l/2 is produced between O-ray and E-ray. Hence

l
2

 = (m0 − mE)t Þ =
-

t
l

m m2 0( )E  
 

For positive (quartz) crystal

t =
-

l
m m2 0( )E

	
5.8

	 Production and Analysis of Plane, Circularly and Elliptical 
Polarized Light

5.8.1  Production of Plane Polarized Light
If unpolarized light passes through a Nicol prism, it splits into O-ray and E-ray. O-ray is reflected by the 
layer of Canada balsam and E-ray is transmitted by the prism. In this way, the emerging light will be plane 
polarized light.

5.8.2  Production of Circularly and Elliptically Polarized Light
If the emerging light from a Nicol prism is allowed to fall on a quarter wave plate such that its vibrations 
make an angle 45° with the optic axis of quarter wave plate, the emergent light will be circularly polarized.

If the plane polarized light normally falls on quarter wave plate such that the vibration of incident light 
makes an angle other than 45° with the optic axis of quarter wave plate, the emergent light will be ellipti-
cally polarized.

5.8.3  Detection of Plane, Circularly and Elliptical Polarized Light
5.8.3.1  Detection of Plane Polarized Light
For detection of plane polarized light, it is made to fall on rotating Nicol. If the intensity of emergent 
light changes from maximum to zero minimum twice in each rotation, then the emerging light is plane 
polarized.
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5.8.3.2  Detection of Circularly Polarized Light
For detection of circularly polarized light, it is made to fall on rotating Nicol. If the intensity of emergent 
light remains uniform, then emerging light is either circularly polarized or unpolarized.

To differentiate between the two, the beam is allowed to be incident on a quarter wave plate and then 
on a rotating Nicol. The variation in intensity is observed from zero to maximum, the emerging light is 
circularly polarized whereas no variation in intensity, the light is unpolarized.

5.8.3.3  Detection of Elliptical Polarized Light 
For detection of elliptical polarized light, it is made to fall on rotating Nicol. If the intensity of emergent 
light varies from maximum to minimum value but minimum ≠ 0, then emerging light is either elliptically 
polarized or partially polarized.

To differentiate between the two, the beam is allowed to be incident on a quarter wave plate and then on 
a rotating Nicol. Then variation in intensity will be observed from zero to maximum for elliptically polar-
ized light whereas for partially polarized light intensity varies but minimum intensity ≠ 0.

		  Solved Examples

Example 1

Calculate the thickness of a quarter wave plate for the wavelength of light of 589 nm and mE  = 1.54 and 
m0  = 1.55. 

Solution:  We know that the thickness of quarter wave plate is

t =
-
l

m m4 0( )E  

Given l  = 589 nm = 5.89 × 10−5 cm, mE  = 1.54 and m0  = 1.55. Hence,

t =
´
-

= ´
-

-5 89 10

4 1 55 1 54
1 47 10

5
4.

( . . )
.

  

 
cm

Example 2

The values of mE and m0 for quartz are 1.5508 and 1.5418, respectively. Calculate the phase retardation 
for l = 5000 Å when the plate thickness is 0.032 mm.

Solution:  The path difference introduced between O-ray and E-ray for quartz is

Δ = ( mE − m0)t
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The corresponding phase difference or phase retardation is

d p
l

p
l

m m= = -
2 2

0D ( )E t

Given l  = 5000 Å = 5.0 × 10−5 cm, mE = 1.5508 and m0 = 1.5418t = 0.32 mm = 0.0032 cm. The phase 
retardation is given by

d p
=

´
- ´ =-

2

5 0 10
1 5508 1 5418 0 0032 3 62

5.
( . . ) . . radian

Example 3

Plane polarized light passes through the quartz plate with its axis parallel to its face. Calculate the thick-
ness of the plate so that the emergent light may be plane polarized. For quartz mE  = 1.55 and m0  = 1.54, 
l  = 589 nm. 

Solution:  We know that if plane polarized light passes through a half-wave plate then emerging light 
will be plane polarized. The thickness of quarter-wave plate is

t =
-

2
4 0

l
m m( )E  

Given l  = 589 nm = 5.89 × 10−5 cm, mE  = 1.55 and m0  = 1.54. Hence,

t = ×
−

= ×
−

−5.89  10

(1.55 1.54) 
cm

5

2
2 84 10 4.

		  Short Answers of Some Important Questions

	 1.	 What is polarization?
Answer: The phenomenon of restricting the 
vibrations of electric vector E of light in a par-
ticular plane is called the polarization of light.

	 2.	 What do you understand by plane of 
polarization?
Answer: The plane containing the vibrations as 
well as directions of waves is known as plane of 
polarization.

	 3.	 What do you understand by double refraction?

Answer: If the incident light ray splits into 
ordinary (or O-ray) and extraordinary (or 
E-ray) by quartz, calcite or tourmaline crystals 
then it is known as double refraction.

	 4.	 What is quarter-wave plate?

Answer: It is a uniaxial doubly refracting crys-
tal of suitable thickness cut with its optic axis 
parallel to the refracting faces so that a phase 
change of p /2  or path difference l/4  is pro-
duced between O-ray and E-ray.
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		  Important Points and Formulas

	 1.	 The phenomenon of restricting the vibrations 
of electric vector E of light in a particular plane 
is called the polarization of light.

	 2.	 The phenomenon in which incident light ray 
splits into ordinary or O-ray and extraordinary 
or E-ray by quartz, calcite or tourmaline 
crystals is known as double refraction and the 
crystals which show double refraction are 
known as doubly refracting crystals.

	 3.	 An optical device which is used for producing 
and analyzing the plane polarized light is 
known as Nicol prism.

	 4.	 Principle of Nicol prism is based on the phe-
nomenon of double refraction.

	 5.	 Thickness of the quarter wave plate for positive 

crystal t =
−

l
m m4 0( )E

	 6.	 Thickness of the half wave plate for positive crystal 

t =
-

l
m m2 0( )E

	 7.	 The phase difference or phase retardation

d p
l

p
l

m m= = -
2 2

0D ( )E t

		  Multiple Choice Questions

	 1.	 The nature of light can be obtained in
	 (a)	 interference	 (b)	 diffraction
	 (c)	 polarization	 (d)	 None of these
	 2.	 The amplitude of vibrations varies only in the 

case of
	 (a)	 transverse vibrations
	 (b)	 longitudinal vibrations
	 (c)	 Both (a) and (b)
	 (d)	 None of these
	 3.	 The light beam having vibrations along all pos-

sible planes perpendicular to the direction of 
propagation is

	 (a)	 polarized
	 (b)	 unpolarized
	 (c)	 circularly polarized
	 (d)	 elliptically polarized
	 4.	 The light having vibrations along a single direc-

tion perpendicular to the direction of propaga-
tion of light is

	 (a)	 unpolarized
	 (b)	 circularly polarized
	 (c)	 linearly or plane polarized
	 (d)	 elliptically polarized
	 5.	 The plane containing the direction of propaga-

tion of light but containing no vibrations is

	 (a)	 plane of polarization
	 (b)	 plane of vibrations
	 (c)	 Both (a) and (b)
	 (d)	 Neither (a) nor (b)
	 6.	 The ray which obeys the ordinary laws of 

refraction is
	 (a)	 E-ray
	 (b)	 O-ray
	 (c)	 Both (a) and (b)
	 (d)	 None of these
	 7.	 The ray which does not obey the laws of  

refraction is
	 (a)	 E-ray	 (b)	 O-ray
	 (c)	 Both (a) and (b)	 (d)	 None of these
	 8.	 The E-ray travels faster as compared to O-ray in
	 (a)	 biaxial crystals
	 (b)	 uniaxial negative crystals
	 (c)	 uniaxial positive crystals
	 (d)	 None of these
	 9.	 Which of the following is a uniaxial crystal?
	 (a)	 Topaz	 (b)	 Copper sulphate
	 (c)	 Mica	 (d)	 Tourmaline
	10.	 Which of the following is a biaxial crystal?
	 (a)	 Topaz	 (b)	 Calcite
	 (c)	 Tourmaline	 (d)	 Quarts
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	11.	 The uniaxial negative crystal is
	 (a)	 quartz	 (b)	 iron oxide
	 (c)	 tourmaline	 (d)	 mica
	12.	 The uniaxial positive crystal is
	 (a)	 ruby	 (b)	 tourmaline
	 (c)	 mica	 (d)	 quartz
	13.	 Nicol prism is based on the principle of

	 (a)	 double refraction
	 (b)	 interference
	 (c)	 total internal reflection
	 (d)	 diffraction
	14.	 Nicol prism act as
	 (a)	 polarizer	 (b)	 analyzer
	 (c)	 Both (a) and (b)	 (d)	 Neither (a) nor (b)

		  Short Answer Type Questions

	 1.	 What do you mean by plane-polarized light?
	 2.	 What is polarization?
	 3.	 What do you understand by unpolarized light?
	 4.	 What is plane of vibration?
	 5.	 What are doubly refracting crystals?

	 6.	 Define optic axis and principle section of a 
crystal.

	 7.	 What is the difference between negative and 
positive crystals?

	 8.	 What is a Nicol prism?

		  Long Answer Type Questions 

	 1.	 What do you understand by double refraction? 
What are ordinary and extra- ordinary rays in a 
uniaxial crystal?

	 2.	 Explain the Huygen’s theory of double 
refraction.

	 3.	 Describe the construction and working of 
Nicol prism.

	 4.	 What is the principle of Nicol prism? Explain 
its working.

	 5.	 Explain how Nicol prism acts as a polarizer and 
analyzer.

	 6.	 Explain the production and detection of plane 
circular and elliptical light.

		  Numerical Problems

	 1.	 Find the thickness of a quarter-wave plate when 
the wavelength of light is equal to 5890 Å.  The 
refractive index of O- and E-rays are m0 = 1.55 
and mE = 1.54 respectively.

	 2.	 Find the thickness of a half-wave plate of quartz 
for sodium light of wavelength 5893 Å.  The 
ordinary and extraordinary refractive indices 
for sodium are 1.54 and 1.55, respectively.

	 3.	 Calculate the thickness of a calcite plate which 
would convert plane polarized light into circu-

larly polarized light. The principal refractive 
indices are m0 = 1.658 and mE = 1.486 and the 
wavelength of light used is 5890 Å.

	 4.	 A beam of linearly polarized light is changed 
into circularly polarized light by passing it 
through a slice of crystal 0.005 cm thick. 
Calculate the difference in the refractive index 
of the two rays in the crystal assuming this to 
be minimum thickness that will produce the 
effect and that the wavelength is 5 × 10−5 cm.
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		  Answers

Multiple Choice Questions

	 1.	 (c)
	 2.	 (a)

	 3.	 (b)
	 4.	 (c)

	 5.	 (a)
	 6.	 (b)

	 7.	 (a)
	 8.	 (b)

	 9.	 (d)
	10.	 (a)

	11.	 (c)
	12.	 (d)

	13.	 (a)
	14.	 (c)

Numerical Problems

	 1.	 1.47 × 10−3 cm 
	 2.	 2.95 × 10−3 cm 

	 3.	 8.56 × 10−5cm 
	 4.	 2.5 × 10−3
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	 6.1	 Introduction

In the present day, if someone asks you about the perfect coherent source of light, then our answer will 
be LASER. Laser is a monochromatic, collimated, unidirectional, intense and highly coherent beam of 
light with small divergence. The word LASER stands for Light Amplification by Stimulated Emission of 
Radiation. The principle of LASER depends on the phenomenon of stimulated emission. Before we know 
what stimulated emission is, let us see the development of laser.

The first theoretical concept of laser was given by Einstein in 1917. This theoretical concept was used 
practically by Townes and his group in 1954 and built MASER which is a device that amplifies microwaves. 
Thereafter, Schawlow and group extended MASER principle for visible range in 1958. In this context,  
T. H. Maiman developed the first laser device in 1960 using ruby as an active medium. Hence, it is called 
Ruby laser. Thus, we conclude that laser is nothing but it is the outgrowth of maser.

	 6.2	 Characteristics of Laser Beam

The characteristics of laser beam are as follows:

	 1.	 Coherence: The laser beam is completely coherent due to stimulated emission of radiation.
	 2.	 Monochromaticity: The laser beam is perfectly monochromatic because the emitted light is in a 

narrow frequency band and so the spread is of the order of a few angstroms.
	 3.	 Unidirectional: Ordinary light source radiates light in all directions. However, a laser beam emits 

radiation only in one direction due to the resonant cavity.
	 4.	 High intensity: The laser beam is highly intense due to concentrated energy in a very small region.  

If P is the power of the source at a distance r, the intensity is given by

I
P

r
=

4 2p

•	 Spontaneous and stimulated emission of 
radiation.

•	 Population inversion.

•	 Concept of 3 and 4 level Lasers.
•	 Construction and working of Ruby, He−Ne 

lasers and laser applications.

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

Laser6
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	 5.	 Brightness: Light from laser is much more brighter than other ordinary sources; mathematically, it is 
defined as

Brightness( )=
Power of the source

Area Solid angle
B

×

	 6.3	 Concept of Coherence

If the phase difference between the two light beams remains constant with time then beams are said to be 
coherent. There are two types of coherency: Temporal coherence and spatial or lateral coherence.

If the phase difference between two points along the direction of wave propagation remains constant, 
the coherence is the called temporal coherence [Fig. 1(a)]. However, if the phase difference between the two 
points on a plane perpendicular to the direction of propagation remains constant, the coherence is spatial 
or lateral coherence [Fig. 1(b)].
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2 =

 x
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Figure 1  (a) Temporal coherence; (b) spatial coherence.

	 6.4	 Absorption of Radiation 

To understand the phenomenon of absorption, let us consider the two energy levels E1 and E2 of any atomic 
system as shown in Fig. 2. If an atom in the ground state of energy E1 is subjected to incident light radia-
tion, it absorbs the radiation as photon (hv) and jumps to the higher energy state E2. The photon will be 
absorbed only if its energy is equal to the energy difference between the excited state E2 and the ground state E1  
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(i.e. E2 − E1), otherwise photon will not be absorbed and the atom remains in its ground state. Thus, absorp-
tion is the process in which a photon is absorbed by the atom and increasing the number of atoms to its excited state. 

Before AfterE2

E = E2 - E1

E2

E1E1

Excited state

Ground state

Figure 2  Absorption of radiation.

	 6.5	 Spontaneous Emission of Radiation

When an atom in its excited state E2 makes a transition to its ground state by emitting a photon of energy E2 − E1 
without any outside influence then it is known as spontaneous emission of radiation.

We are familiar with absorption of radiation through which an atom is excited by photon from ground 
state E1 to excited state E2. But E2 is not a stable state and after a short interval (10−8 sec) of time, the atom 
jumps back to the ground state by emitting a photon as shown in Fig. 3.

E2 Excited state

Ground state

hv

E1

E2 − E1

Figure 3  Spontaneous emission of radiation.

The probability of absorption transition E1 ® E2 is proportional to the energy density u(v) of radiation of 
frequency v. Thus, P12 = B12 u(v), where B12 is a proportionality constant and known as Einstein coefficient 
of radiation.

The probability of spontaneous emission E2 ® E1 is independent of energy density u(v), and expressed 
as P 21(spontaneous) = A21, where A21 which is called Einstein coefficient of spontaneous emission of radiation.

Spontaneous emission is incoherent because during spontaneous emission radiation is a random mixture of 
quanta with various wavelengths. That is why waves neither coincide in wavelength nor in phase. 

	 6.6	 Stimulated Emission of Radiation

When an outside photon of energy hv = E2 − E1 interacts with an atom present in the excited state E2 as 
shown in Fig. 4, the photon forces the atom or stimulates it to jump to the lower energy state E1, emitting 
an additional photon of same energy.

Thus, stimulated emission is the process by which an atom is induced with photon to make transition from 
higher energy level to lower energy level by emitting an additional photon of same energy. 
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Figure 4  Stimulated emission of radiation.

The probability of stimulated emission transition E2 ® E1 is proportional to the energy density u(v) of the 
stimulated radiation and is given by P21(spontaneous) = B21 u(v), where B21 is the Einstein coefficient of stimu-
lated emission of the radiation.

Thus total probability for transition 2 ® 1 is

P21 = A21 + B21 u(v) 

The differences between spontaneous and stimulated emission are as follows:

	 1.	 In spontaneous emission, transition occurs from higher energy to lower energy without any outside 
influence. However, in stimulated emission, transition occurs due to induced atom from higher energy 
to lower energy by emitting photon’s energy.

	 2.	 Spontaneous emission is incoherent but stimulated emission is coherent.
	 3.	 Spontaneous emission is less intense whereas stimulated emission is highly intense.
	 4.	 Spontaneous emission has a broad spectrum but stimulated emission has single wavelength.

	 6.7	 Principle of Laser Action

Active system, population inversion, pumping and optical resonator are the main components of laser 
action. An active system is that where population inversion can be achieved by increasing more atoms in 
excited state than in ground state. For laser action, this excited state is a metastable state where atom can stay 
for longer time, about 10−3seconds. This condition is maintained due to continuous supply of energy. When 
number of atoms in metastable state is higher than lower energy level, the stimulated emission is prompted. 
Two photons of same frequency are emitted on striking of one photon to excited atom. The emitted pho-
tons of same frequency and phase interact with other excited state atoms and produce large number of 
similar photons. This process is continued and this way a highly intense and unidirectional monochromatic 
coherent beam of light as laser is produced.

6.7.1  Population Inversion 
Population inversion is a necessary phenomenon for the working of laser in which the population of atoms 
in upper energy state should be more than the ground state. Normally the atoms are available in ground 
state. When these atoms are given energy by any means they excite to higher energy state and stay there 
for a short period of 10−8 sec. The excited atoms then go to a lower metastable state by radiation of energy 
and can reside there for a period of 10−3 sec which is much larger than the period of stay in higher energy 
level. This process is continued and the number of atoms in metastable state increases. When the number 
of atoms in this state is more than the ground state we call it population inversion. The stimulated emission 
takes place from the metastable state. So the population inversion is to increase the probability of stimulated 
emission, the number of atoms in higher energy state (N2) must be made greater than that of the number of atoms 
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in lower energy state (N1). The system where population inversion is achieved is known as active system and 
it can be achieved by pumping techniques.

If N1 and N2 are the number of atoms in energy states E1 and E2, respectively, then relative population 
inversion in two states is

N

N
e E E k T2

1

2 1= - -( )/

where k is Boltzmann constant and T is the absolute temperature.

6.7.2  Pumping 
The process by which we can raise atoms from lower energy state to higher energy state is known as pump-
ing. Mainly the following four methods are used for the pumping process:

	 1.	 Optical pumping: In optical pumping the light energy in the form of short flashes is supplied. The 
ground state atoms absorb this light energy (photons) and excite to higher energy state. This type of 
pumping used in Ruby laser.

	 2.	 Electrical pumping: In this method, gas is ionized by means of a suitable potential difference. Strong 
electric fields accelerate the cathode emitted electrons which collide with the gaseous atoms of the 
medium. During collision these accelerated electrons give up their energy to gaseous atoms which 
excite in higher energy state. This type electric pumping is used for population inversion in gas lasers 
such as He–Ne laser.

	 3.	 Direct electric pumping: Under this pumping system population inversion is achieved in semicon-
ductor lasers. Here electric current directly creates enough mobile charges (population) at the inter-
phase of two different types of semiconductors. GaAs laser is the example of direct electric pumping.

	 4.	 Chemical pumping: The exothermic chemical reactions generate enough heat energy to utilize for 
pumping the atoms to higher energy levels. It can be used in CO2 laser. 

	 6.8	 Various Levels of Laser System

Since two-level pumping is not suitable for obtaining population inversion for laser action, therefore we 
have introduced three-level and four-level atoms.

6.8.1  Two-Level Laser System
To achieve population inversion in two-level lasers, the number of atoms in excited state E2 should be higher 
than ground state E1. It can be done only if the upper state is a metastable state that is the stay time is greater 
than 10−8 sec. But in two-state system the probability of stimulated absorption is equal to stimulated emis-
sion and therefore population inversion cannot be achieved for laser action.

6.8.2  Three-Level Laser System
In this system there are three energy levels E1, E2 and E3 having populations N1, N2 and N3, respectively, 
introduced for laser action as shown in Fig. 5. According to the figure, the higher energy level E3 is known as 
pumping level, lower energy level E1 is called lower lasing level and the intermediate state E2 is a metastable 
state with lifetime 10−3 sec. The atoms are raised from E1 to E3 by pumping process where after time 10−8 
sec atoms make a transition from E3 to E2 state by non-radiative spontaneous transition and then from E2 
to E1 which is lasing transition. The problem with three-level laser systems is that it is difficult to produce 
population inversion because it requires very high pumping power.
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Figure 5  Three-level laser system.

The ruby laser is an example of three-level laser in which ruby crystal is pumped by pulsating light source. 
It produces a strong pulse of light that is designed to excite the atoms from their ground level to higher level 
for achieving population inversion.

6.8.3  Four-Level Laser System
In the four-level laser systems, there are four energy levels E1, E2, E3 and E4 having population of atoms N1, 
N2, N3 and N4, respectively, for laser action as shown in Fig. 6. The pumping process takes the atoms from 
ground state E1 to excited state E4. The excited atom makes spontaneous transition from E4 to lower meta-
stable energy state E3. The lasing transition is from E3 to E2 energy state which is then followed by another 
spontaneous transition to ground state energy level E1. He–Ne and Nd–Yag laser are examples of four-level 
laser systems. The advantage of four-level laser systems is the wideness of exited band and narrowness of 
metastable band which is required for better lasing action. The only disadvantage of this four-level laser is 
that more transitions lead to additional loss of energy.

Pumping
transition

Excited state

Ground state

N4

N3
(Metastable)

Lasing transition

N2 E2

E3

E4

E1
N1

(10−8 sec)
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Figure 6  Four-level laser system.

	 6.9	 Ruby Laser 

In 1960, Maiman developed the first laser which was based on three energy level system and was called 
Ruby Laser. Ruby is a crystal of Al2O3 (aluminium oxide) doped with a small amount of Cr2O3 (chromium 
oxide). Cr+3 ions which are the active material in ruby rod cause the pink color of the crystal and are respon-
sible for laser action. Ruby laser operates in a pulse mode laser beam of wavelength 6943 Å.

6.9.1  Construction
In this laser, there is a ruby rod in the form of a cylindrical rod whose ends are optically flat and parallel. 
One of the end face is completely silvered and other is only partially silvered. This ruby rod is surrounded 
by a helical xenon flash tube which provides the pumping light to raise the Cr+3 ions to upper energy level 
as shown in Fig. 7.
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Figure 7  Schematic diagram of ruby laser.

6.9.2  Working 
When the flash of light produced by xenon flash tube falls upon the ruby rod, the Cr+3 ions in the ground 
state absorb light of wavelength around 5500 Å (5000−6000 Å) and excited to the upper energy state  
(see Fig. 8). Thus Cr+3 ions are pumped to the excited energy state E3. The xenon flash tube consumes  
several thousand joules of energy but only a part of this energy is used in pumping the Cr+3 ions; rest of the 
energy heats up the experiment, therefore a proper cooling arrangement is also made.
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transition
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Figure 8  Energy level diagram of ruby laser.

Due to very small mean lifetime of atoms in the excited state (10−8 sec) some atoms jump back to the 
ground state E1. However some jump to metastable state E2. Since lifetime of metastable state is in 
milliseconds (10−3 sec) therefore more Cr+3 ions are available in this state due to continuous pumping 
and deficiency pronounced in the ground state. As a result, population inversion is established and then 
transitions occur from metastable state E2 to ground state E1 by emitting a stimulated photon of wave-
length 6943 Å.
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6.9.3  Drawbacks of Ruby Laser 
Some drawbacks of Ruby laser are as follows:

	 1.	 Due to three-level laser systems, high power pumping system is required for population inversion.
	 2.	 The output beam occurs in the form of microsecond’s duration of pulses.
	 3.	 The efficiency of Ruby laser is very low because it uses only green part of the pumping light.

	 6.10	 Helium–Neon (He–Ne) Laser

Helium–neon laser is the gas laser based on four-level laser systems. It was successfully operated first time in 
1961. It used a mixture of He and Ne in the ratio of 10:1 or 7:1 at a low pressure. This laser is superior to 
Ruby laser because it gives continuous laser beams of wavelength 6328 Å, 33913 Å and 11523 Å.

6.10.1  Construction
He–Ne laser consists of a glass tube of length 10–100 cm and a narrow diameter of about 2–10 mm. The 
tube contains the mixture of helium and neon gases. One end of the glass tube is highly silvered whereas 
other is partially silvered. Two electrodes are inserted in the tube to give high power to achieve population 
inversion by electric discharge method as shown in Fig. 9.

Partially

Mirror

Laser beam

Power  supply

Helium &  Neon

 Mirror

Highly

Figure 9  Schematic diagram of He–Ne laser.

6.10.2  Working
The energy level diagram of He–Ne laser is shown in Fig. 10.
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Pumping 
process Energy transferred 

by collisions

Figure 10  Energy level diagram of He–Ne laser.

A high voltage is applied across the electrodes to ionize the gas. Due to high concentration of the He atoms, the 
probability of collision of electron and ions with He atoms is higher than that with Ne atom. As a result, He 
atoms reach the higher energy states. Here some of the excited He atoms collide with Ne atoms and transfer 
their energy to Ne atoms which excite to Ne4 and Ne6 levels to achieve population inversion. This population 
inversion condition in these levels is maintained at all times due to continuous supply of energy through elec-
tric discharge. Ne2, Ne4, Ne6 all are the metastable states for Ne atoms. The transition from Ne6 to Ne5 and Ne3 

Chapter 6.indd   134 4/14/2015   8:19:15 AM



Short Answers of Some Important Questions� •   135

gives rise to radiations of wavelength 33913 Å and 6328 Å, respectively, whereas transition from Ne4 to Ne3 
gives radiation of wavelength 11523 Å. The radiation from lower metastable Ne2 state to the ground state Ne1 
is non-radiative transition. Thus continuous laser beams are obtained in He–Ne laser. He–Ne laser is advanta-
geous and superior to Ruby laser because it produces a continuous beam unlike short pulse in Ruby laser. The 
gas laser is highly monochromatic, unidirectional, has narrow width of emission and large power output lasers.

	 6.11	 Applications of Laser

Laser has unique properties and is therefore used in various fields of industry, medical, science and engineering.  
Some of them are described as follows:

	 1.	 Industrial applications of lasers:
		  (a)	�Welding: High power laser is focused on the line of contact to weld the two metal plates. It is used 

in automobile, ship building, etc. CO2 and Nd−YAG lasers are used for this purpose.
		  (b)	�Cutting: High power lasers are used for cutting the metal sheets. CO2 or Nd−YAG lasers are also 

used for this purpose.
		  (c)	�Hardening: CO2 lasers are used for hardening purposes by heating their surface rapidly followed 

by rapid cooling.
		  (d)	�Drilling: High power pulse lasers are used to drill in to the materials. Nd−YAG laser is used for 

this purpose.
	 2.	 Medical applications: Lasers are used in laser diagnosis, ophthalmology, bloodless surgeries, derma-

tology, painless surgeries like cancer treatment, dental, etc. Ruby, CO2 and Nd−YAG lasers are used for 
medical applications.

	 3.	 Other fields: In addition to the above, Ruby, CO2, He–Ne, and Nd–YAG lasers are used in optical 
communication, holography, lidar, metrology, etc.

		  Short Answers of Some Important Questions

	 1.	 What do you understand by LASER?
Answer: The word LASER stands for Light 
Amplification by Stimulated Emission of 
Radiation. It is a device which is used to pro-
duce monochromatic, collimated, unidirec-
tional, intense and highly coherent beam of 
light with small divergence.

	 2.	 What is the principle of laser?
Answer: The principle of laser depends on the 
phenomenon of stimulated emission.

	 3.	 What do you mean by coherence?
Answer: If the phase difference between two 
beams remains constant then they are said to be 
coherent.

	 4.	 What is absorption of radiation?
Answer: Absorption is the process of raising 
the atom to its excited state by which a photon 
is absorbed by the atom.

	 5.	 What do you understand by spontaneous 
emission?
Answer: When an atom in its excited state 
energy state E2 makes a transition to its ground 
state by emitting a photon of energy E2 − E1 
without any outside influence, then it is known 
as spontaneous emission of radiation.

	 6.	 Why is spontaneous emission incoherent?
Answer: Spontaneous emission is incoherent 
because during spontaneous emission radiation 
is a random mixture of quanta with various 
wavelengths. This is why waves neither coin-
cide in wavelength nor in phase.

	 7.	 What is stimulated emission?
Answer: Stimulated emission is the process by 
which an atom is induced with photon to make 
transition from higher energy level to lower 
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energy level by emitting an additional photon 
of same energy. 

	 8.	 What is population inversion?
Answer: To increase the probability of stimu-
lated emission, the number of atoms in higher 
energy state (N2) must be made greater than 

the number of atoms in lower energy state 
(N1). This is called population inversion.

	 9.	 What is pumping?
Answer: The process by which we can raise 
atoms from lower energy state to higher energy 
state is known as pumping.

		  Important Points and Formulas

	 1.	 The word LASER stands for Light 
Amplification by Stimulated Emission of 
Radiation.

	 2.	 The laser beam is highly intense due to concen-
trated energy in a very small region. If P is the 
power of the source at a distance r, the intensity 
is given by

I
P

r
=

4 2p

	 3.	 Light from laser is much more brighter than 
other ordinary sources; mathematically, it is 
defined as

Brightness( )
Power of the source

Area Solid angle
B =

×

	 4.	 When an atom in its excited state E2 makes a 
transition to its ground state by emitting a 
photon of energy E2 − E1 without any outside 
influence then it is known as spontaneous 
emission of radiation.

	 5.	 Stimulated emission is the process by which an 
atom is induced with photon to make transi-
tion from higher energy level to lower energy 
level by emitting an additional photon of same 
energy.

	 6.	 Two-level pumping is not suitable for obtaining  
population inversion for laser action,

		  Multiple Choice Questions

	 1.	 Laser is
	 (a)	 name of scientist
	 (b)	 light absorption by stimulated emission of 

radiation
	 (c)	 light amplification by spontaneous emission  

of radiation
	 (d)	 light amplification by stimulated emission 

of radiation
	 2.	 The emission of photon without any external 

effect is known as
	 (a)	 induced absorption
	 (b)	 stimulated emission
	 (c)	 spontaneous emission
	 (d)	 light amplification

	 3.	 The principle of laser is
	 (a)	 stimulated emission	
	 (b)	 spontaneous emission
	 (c)	 induced absorption
	 (d)	 light amplification
	 4.	 Laser produces
	 (a)	 monochromatic beam of light
	 (b)	 coherent beam of light
	 (c)	 low divergence
	 (d)	 All the above
	 5.	 The population inversion in ruby laser is  

produced by
	 (a)	 electrical discharge
	 (b)	 optical pumping
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	 (c)	 direct conversion
	 (d)	 chemical excitation
	 6.	 The population inversion in He−Ne laser is 

produced by
	 (a)	 optical pumping
	 (b)	 photon excitation
	 (c)	 inelastic atomic collisions
	 (d)	 chemical reaction
	 7.	 A laser beam consists of
	 (a)	 highly coherent photons
	 (b)	 light material particles
	 (c)	 cosmic rays
	 (d)	 electrons
	 8.	 Which of the following is the most stable 

energy state?
	 (a)	 Metastable state	 (b)	 Ground state
	 (c)	 Excited state	 (d)	 None of these
	 9.	 Which of the following is the least stable energy 

state?
	 (a)	 Metastable state	 (b)	 Ground state
	 (c)	 Excited state	 (d)	 All the above

	10.	 The average lifetime of an atom in its metastable  
state is

	 (a)	 10−8 second	 (b)	 10−3 second
	 (c)	 1 second	 (d)	 10−6 second

	11.	 The average lifetime of an atom in excited state is
	 (a)	 10−8 second	 (b)	 10−3 second
	 (c)	 1 second	 (d)	 10−6 second

	12.	 The average lifetime of an atom in its ground sate is
	 (a)	 10−8 second	 (b)	 10−3 second
	 (c)	 1 second	 (d)	 unlimited

	13.	 The Ruby laser is
	 (a)	 pulsed laser	 (b)	 continuous laser
	 (c)	 Both (a) and (b)	 (d)	 None of these

	14.	 The He−Ne laser is
	 (a)	 pulsed laser	 (b)	 continuous laser
	 (c)	 Both (a) and (b)	 (d)	 None of these

	15.	 In He−Ne laser, a mixture of He and Ne gas is 
in the ratio

	 (a)	 1:7	 (b)	 1:10
	 (c)	 7:1	 (d)	 None of these

		  Short Answer Type Questions

	 1.	 What is a LASER? Who invented the first laser 
and when?

	 2.	 Name the characteristics of laser light.
	 3.	 Explain spatial and temporal coherence with 

suitable diagram.
	 4.	 What is pumping?
	 5.	 Give the name of different types of pumping.

	  6.	 What are the differences between ordinary 
light and monochromatic light?

	  7.	 What is active medium?
	  8.	 Why it is easier to achieve the lasing action in a 

four-level system compared to a three-level system?
	  9.	 Why is He–Ne laser superior to Ruby laser?
	10.	 Give some examples of laser.

		  Long Answer Type Questions

	 1.	 What do you mean by LASER? Explain spon-
taneous and stimulated emission of radiations.

	 2.	 What is the principle of laser? Explain the char-
acteristics which differentiate and make laser 
light useful compared to normal light.

	 3.	 What do you understand by pumping? Explain 
various types of pumping with suitable 
examples.

	 4.	 Explain the basic components of laser system.

Chapter 6.indd   137 4/14/2015   8:19:16 AM



138   •� CHAPTER 6/Laser

	 5.	 Describe the construction and working of 
Ruby laser.

	 6.	 Describe the working of He–Ne laser with 
energy level diagram.

	 7.	 Discuss the applications of laser in material.

	 8.	 What are the characteristics and applications of 
laser?

	 9.	 Why is He–Ne laser superior to Ruby laser? 
Explain.

		  Answers

Multiple Choice Questions

	 1.	 (d)
	 2.	 (c)
	 3.	 (a)

	 4.	 (d)
	 5.	 (b)
	 6.	 (c)

	 7.	 (a)
	 8.	 (b)
	 9.	 (c)

	  10.	(b)
	  11.	(a)
	  12.	(d)

	   13.	(a)
	   14.	(b)
	   15.	(c)
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	 7.1	 Introduction

Fiber optics is the modern technology for data communication or data transfer. In our traditional electronic 
communication system, information is transferred using radio waves and microwaves over copper wires or 
coaxial cables. However, the limited bandwidth of this system restricts the data-carrying capacity and is 
not sufficient for our modern needs. On the other hand, light waves (frequency is in the range of 1015 Hz) 
guided over a hair-like thin fiber enhance bandwidth tremendously and a large amount of data (informa-
tion) can be transferred simultaneously. The advantage of optical fiber is that it not only increases the rate 
of data transfer but also has low signal loss, light weight, no electric short circuiting and has secure transfer 
of data. Optical communication began in 1880 with the first experimental efforts of Alexander Graham 
Bell who transmitted his own speech using photo phone. Later by 1960, it was established that light waves 
could be guided with glass fiber and it was possible to transfer information through optical communication, 
though it was not practicable due to heavy attenuations of light wave signals. The main components of opti-
cal communication are mode (optical fiber) and carrier wave (light waves). After the invention of LASER 
in 1970 and fabrication of low-loss glass fibers, the attenuation loss decreased and the optical communica-
tion became practicable. Today optical fiber has proven to be more versatile than copper wire and it is just a 
matter of time when glass would replace copper totally. In addition to communication channel, optical fiber 
is also used in other areas like making sensors for detecting different types of energies, in display systems, 
photocopying machines, fibro scopes, etc.

Optical fiber is a very thin (as thin as human hair) flexible glass or plastic medium of cylindrical shape 
which can guide light wave along their length. Light is propagated through fiber along its length due to suc-
cessive total internal reflection (TIR) from the walls of fiber as shown in Fig. 1. In general, a fiber consists of 
three coaxial sections: Core, cladding and sheath (protecting jacket).

Core is the innermost light-guiding cylindrical region having diameters in the range of 2−50 mm. It 
is surrounded by another cylindrical coaxial region called cladding whose diameter can be up to 125 mm. 
The refractive index of cladding is always less than the refractive index of core (mcore > mcladding) to fulfill the 
condition of total internal reflection. Hence, cladding restricts the light to travel through core. Now both 

•	 Fundamental ideas about optical fiber.
•	 Propagation mechanism.
•	 Acceptance angle and cone.
•	 Numerical aperture.

•	 Single and multimode fibers.
•	 Basic principle of holography.
•	 Construction and reconstruction of image on 

hologram and applications of holography.

LEARNING OBJECTIVES

After reading this chapter you will be able to understand:

Fiber Optics and Holography7
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Figure 1  Schematic diagram of optical fiber.

core and cladding are covered by the outermost region called sheath. It basically protects the core and clad-
ding from harmful influence of moisture, abrasions and provides the mechanical strength to the fiber. Its 
diameter is about 150 mm.

	 7.2	 Light Propagation in an Optical Fiber

As we know that light deviates from its original path while travelling from one medium to another. When 
light travels from denser medium to rarer medium, the refracted ray will go away from the normal as shown 
in Fig. 2(a).
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Figure 2  Total internal reflection.

Let us consider the light propagation in an optical fiber. If the light enters the fiber, it follows two necessary 
conditions for total internal reflection:

	 1.	 Light wave should be propagated from denser medium to rarer.
	 2.	 The angle of incident should be greater than the angle of incidence.

In the fiber, the refractive index of the core n1  is greater than that of the refractive index of the cladding  
n2  ( n1  > n2 ). Hence, first condition is satisfied. Therefore, from Snell’s law

n n r1 2sin sinf =
This means that angle of incident increases the angle of refraction (Fig. 3). If the angle of incident is equal 
to the critical angle of the core−cladding surface then the light ray makes 90° to the normal as shown in  
Fig. 2(b). Here f f= c  and r = 90°.

	
fc =

æ

è
ç

ö

ø
÷

-sin 1 2

1

n

n
	 (7.1)

If incident angle is greater than critical angle of core−cladding surface then light ray is reflected in the same 
medium [Fig. 2(c)]. In this case, the reflected light ray is said to be totally internally reflected and this 
phenomena is used to propagate the light in optical fiber (Fig. 3).
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Figure 3  Light propagation in optical fiber using multiple internally reflection.

	 7.3	 Acceptance Angle, Acceptance Cone and Numerical Aperture

7.3.1  Acceptance Angle
As we have already discussed, light signal can be propagated in the fiber using the phenomena of TIR in 
which incident angle is greater than critical angle of core−cladding surface. In this way, light signal travels in 
the fiber. Thus, the maximum angle at which light entering the core is transmitted through the fiber and propa-
gated without being refracted is known as acceptance angle.

To determine an expression for acceptance angle and numerical aperture, let us consider that the ray 
of light enters at angle i having refractive index n0 of the surrounding medium. If light ray is refracted at 
point P making an angle r with the axis inside the core of refractive index n1 as shown in Fig. 4, then using 
Snell’s law

	 n i n r0 1sin sin=  Þ =
sin

sin

i

r

n

n
1

0

	 (7.2)
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Figure 4  Light propagation in optical fiber.

In D PQR

	 r = -90 f  or sin sin( ) cosr = - =90 f f 	 (7.3)

From Eqs. (7.2) and (7.3), we have

sin cosi
n
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But sin .fc = n n2 1/  So
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This is the required expression for acceptance angle of a fiber.

7.3.2  Acceptance Cone
When the incident ray in launching medium is rotated by 360° about the axis of fiber, it makes a cone 
which is called acceptance cone. The light coupled with fiber within the acceptance cone is trapped by the 
core and propagated down the length of fiber (see Fig. 5).
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Core axis

q0

a
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Cladding

Figure 5  Acceptance cone.

7.3.3  Numerical Aperture
Numerical aperture is an important parameter of the optical fiber. It determines the light gathering ability 
of fiber, that is, the amount of light that can be accepted by a fiber. It is defined as sine of acceptance angle:

NA = = - = + - = - =
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where D is the relative refractive index given by

D =
-n n

n
1 2

1

The low value of NA indicates a small acceptance angle. It is for single-mode step index fiber. A multimode 
fiber has higher NA which can accommodate number of paths of light. Therefore, a fiber with low NA such 
as 0.1−0.3 is good for longer distance communications while 0.4−0.5 works well for short distances.
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	 7.4	 Modes of Fiber and Normalized Frequency

Light waves are normally propagated through fiber in a zigzag path due to successive reflection from the 
core−cladding surface if light waves are incident at the surface with an angle greater than critical angle. 
However all such waves, even if incident at angle greater than critical angle, do not propagate through fiber 
and only certain ray directions are allowed. These allowed ray paths correspond to the modes of the fiber. 
So the modes of the fiber are the number of paths of light. These depend on the ratio of diameter of fiber 
(d ) and the wavelength of light (l). The number of mode that is supported by a fiber is determined from 
V-number or normalized frequency which is given by

V
a

n n= -
2

1
2

2
2p

l
where a is the radius of the core of the optical fiber, l is the wavelength of the light used and n1 and n2 are 
the refractive index of core and cladding, respectively. The number of modes for step and grade index fibers 
are V 2 2/ and V 2 4/ , respectively. For a typical fiber if V is less than 2.405, the fiber is single mode. For 
V >2 405. , it is said to be multimode fiber.

	 7.5	 Types of Fiber

Optical fibers are classified on the basis of modes supported by the fiber and the refractive index profile of 
the core and cladding of fibers. These are classified into three categories: Single-mode step index, multimode 
step index and the multimode graded index fibers.

7.5.1  Single-Mode Step Index (SMSI) Fiber
The single-mode step index fiber is a mono-mode that can support only one mode. There is only one path 
of light or sole ray to travel down the length. The diameter of the core of such fiber is very small, less than 
about 10 times the wavelength of the propagating light, and can be 2−10 mm (see Fig. 6). If the refractive 
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Figure 6  Single-mode step index fiber.
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index of fiber changes from core to cladding in steps then it is called step index. There is an abrupt change in 
the index at core−cladding surface. Being single mode the dispersion losses are very minimum and hence the 
highest transmission bandwidth. A very high quality, focused, nearly monochromatic light source is used for 
communication. The numerical aperture and acceptance angle of this fiber are small due to which coupling 
of light is difficult. Even then because of superior transmission characteristics, these fibers are widely used 
for long distance communication.

7.5.2  Multimode Step Index (MMSI) Fiber
This fiber is the simplest but poorest in performance. Step index multimode fiber allows more than one 
mode of wavelength of light to propagate from one end to another as shown in Fig. 7. The core diameter of 
multimode fiber is in the range 50 mm–200 mm. The refractive index of this fiber, similar to single mode, 
also abruptly changes at core−cladding surface in steps; hence called step index. Being large core diameter, it 
can accommodate many rays of light travelling in different paths incident at different angles. Since different 
modes have different path lengths causing broadening of transmission light pulse, hence dispersion losses 
are more and the bandwidth length product is small. It is least expensive compared to other fibers but not 
suitable for large distance communication. So it is used for short distance communication for which signals 
distortion due to intermodal dispersion is not significant.
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Figure 7  Multimode step index fiber. 

7.5.3 Graded Index Optical Fiber
The refractive of the core medium of this fiber is modified in such a way so as to minimize time difference 
between different modes and hence reduce modal dispersion. The refractive index of the core varies in para-
bolic form (see Fig. 8). It gradually decreases from the axis of the fiber to the core−cladding surface. When 
light is incident to the fiber it travels in continuous decreasing refractive index medium from axis to core−
cladding surface and in increasing refractive index from core−cladding interface to axis of fiber. Therefore 
light follows a sinusoidal path instead of straight as in step index fiber. Here the mode having a longer 
path travels in rare medium with greater speed than a mode having smaller path length in denser medium. 
Hence, the time difference between modes is reduced which ultimately decreases the modal dispersion. 
Such fiber can be used for moderate distances.
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	 7.6	 Comparison of Single-Mode and Multimode Index Fiber

S. No. Parameters Single-Mode Fiber Multimode Fiber

1. Mode Only one mode is available 
for propagation of light

More than one mode is available for 
propagation of light

2. Core diameter The core diameter is very 
small

The core diameter is large

3. Light source Sophisticated light source is 
used for the propagation of 
light in a small core 

It does not require any sophisticated 
light source for the propagation of 
light

4. Intermodal dispersion It is free from intermodal 
dispersion

Intermodal dispersion occurs 

5. Distance communication It is used for long distance 
communication

It is used for short distance 
communication

6. Bandwidth Single-mode fiber have higher 
bandwidth

Low bandwidth

7. V-number V-number is less than 2.405, 
V <2 405.

V-number is greater than 2.405, 
V >2 405.
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	 7.7	 Advantages of Optical Fiber Communication

There are many advantages of an optical fiber over others, which are as follows:

	 1.	 Optical fibers are not affected by atmospheric conditions; therefore, they have a longer life than copper 
cables.

	 2.	 Due to low transmission losses quality of communication is better.
	 3.	 Information carrying capacity of a fiber is higher than that of the other system.
	 4.	 Since bandwidth of an optical fiber is higher than that of an equivalent wire, therefore, more channels 

become available, due to which data transfer speeds are longer.
	 5.	 It is cheaper and easier to handle and install.
	 6.	 It is smaller in size and lighter in weight.
	 7.	 Material cost is lower than that of any other system.
	 8.	 It is unaffected by electrical noise and cross-talk.
	 9.	 It provides signal security.
	10.	 Attenuation in optical fiber is much lower than coaxial cable.

	 7.8	 Applications of Optical Fiber

Optical fibers are used in various fields such as communication, industry, research, military, medical and in 
other different appliances. Some of the important applications are given below:

	 1.	 First and foremost optical fibers are used in telecommunication field to transfer information from one 
place to other.

	 2.	 They are used in computer applications and broadband applications.
	 3.	 Optical fibers are used in industrial applications.
	 4.	 They are used in medical fields such as in endoscopy and in angioplasty.
	 5.	 Optical fibers are used for undersea transmission cables.
	 6.	 They are used in various military applications for a secure information communication.
	 7.	 They are used in space applications.
	 8.	 Fibers are also used in making different type of sensors.

	 7.9	 Holography 

Holography is a technique by which three-dimensional image of an object can be produced. It was 
invented by a Hungarian physicist Dennis Gabor in 1947 for which he was awarded a Noble Prize in 
1971. The coherence properties of laser light are employed to record the image of an object in the form of 
interference pattern called hologram. The word hologram is the combination of two Greek words ‘holos’ 
which means ‘complete’ and ‘gram’ which means ‘message’, the complete message or information. Now, 
the question arises: What is the difference between the photography and holography? The answer is: The 
conventional lens photography is a two-dimensional recording of a three-dimensional object. Here the 
point-to-point recording of amplitude (intensity variation) of the light reflected from object is made on 
photographic plate as image. The phase information of light in this process is completely lost and hence 
three-dimensional information is also lost. However, in holography technique, both amplitude as well as 
phase information are recorded as hologram. Here the information of every part of the object is recorded 
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over the entire area of the hologram. The hologram later produces three-dimensional image through 
diffraction phenomenon.

7.9.1  Principle of Holography 
The principle of holography is based on the phenomena of interference between two beam, that is, object 
beam and reference beam. The incident laser light is split into two beams. One beam reaches the photo-
graphic plate after reflection from the object and is called the object beam. The other beam falls on a plane 
mirror which reflects it towards the photographic plate and is called reference beam. Both reference and 
object beams having information of amplitude and phase of the light wave interfere and produce a complete 
interference pattern. This pattern is recorded on the photographic plate which is called hologram. One can 
reproduce the three-dimensional image exactly as object from this hologram.

7.9.2  Construction of Hologram
For the construction of image, that is, hologram with holography technique, a laser light is split by a split-
ter into two beams. One beam is incident on the object whose image is to be formed and other on a plane 
mirror. The object beam reflected from object towards photographic plate and the reference beam reflected 
from mirror are the coherent beams and produce an interference pattern which is recorded on the film as 
shown through Fig. 9. The photographic plate carrying the interference pattern is called hologram. Since 
this was first invented by Dennis Gabor, therefore, it is also known as Gabor zone plate in honor of Gabor. 
This hologram basically has the varying intensity pattern which can act as diffraction grating and produce 
the image of the object by diffraction of light.

Photographic
plate

Laser beam

Object beam

Reference

beam

Object

Mirror

Figure 9  Construction process.

7.9.3  Reconstruction Process
The formation of image from hologram is known as reconstruction of image. In this process, the holo-
gram is exposed by a collimated laser beam which undergoes diffraction process (according to the 
diffraction theory, when the hologram is exposed with reference beam then hologram behaves like a 
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diffraction grating whose every point diffracts the part of the reference beam to reconstruct the wave 
front from its point source; these individual wave fronts add together to reconstruct the whole of the 
object beam). One of the diffracted beams emerges from the hologram and provides the virtual image of 
the object. On the other hand, the second wave converges to form a real image of the object which can 
be recorded on a photographic plate as shown in Fig. 10. The virtual image has all the characteristics of 
the object like 3D view which exhibits parallax. That is the different views of image appear by changing 
the position of the eye.

7.9.4  Characteristics of Hologram
The holograms have some important characteristics as follows:

	 1.	 The image constructed by hologram has three-dimensional view and therefore is more realistic than 
that formed in ordinary photography.

	 2.	 In ordinary photography, point-to-point image of an object is recorded on the photographic plate. 
Therefore, destruction of any part of the image results in complete loss of the information of the object 
and corresponds to the destructed part. However in holography, the information of every part of the 
object is recorded on the entire space of hologram. Here every point of the hologram receives light 
reflected from all parts of the object. Therefore, destruction of any part of hologram does not lose the 
information of object and it can be retraced from any other part of the hologram. If the hologram is 
fragmented into different pieces, even a single fragment is enough to reproduce entire image of the 
object, only with reduced brightness, clarity and definition of the image.

Laser

Virtual image

Hologram

Real image

Eye

Figure 10  Reconstruction process.
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	 3.	 In photography only one image can be recorded at one place, however in holography more than one 
image can be recorded in a single hologram. Here different object beams from various objects at differ-
ent angles are incident and interfere with same reference beam. Therefore various interference patterns 
corresponding to the objects are made and recorded at same photographic plate at different angles. 
Hence the storing capacity of hologram is extremely high. The holography technique allows to store 
information in a three-dimensional medium at a very high density.

7.9.5  Applications of Holography
Holography is an important tool and has variety of applications in various fields such as industry, science, 
research, education, etc. Some of the important applications are mentioned below:

	 1.	 Data storage: Holography can be used to store information at high density at depth inside crystals or 
photopolymers.

	 2.	 Security: Holograms are widely used for security purposes on many currencies, credit cards, bank 
cards as well as DVDs, etc. because it is difficult to forge.

	 3.	 Holographic interferometry: It is an important technique which enables displacement of objects 
(static and dynamic) with optically rough surfaces to be measured to optical interferometric precision. 
With this technique the defects in air craft tyres, automobile engines, artificial bones and quality 
control are checked.

	 4.	 To detect optical path: Holography can also be used to detect optical path length variations in trans-
parent media.

	 5.	 Holography in engineering structures: It can also be used to measure stress, strain and vibration in 
engineering structures.

	 6.	 It is used to study the electric and magnetic field in thin films.
	 7.	 It is used to make a hologram of any wave.
	 8.	 It is used to determine 3D size of a package in post offices, shipping firms.

		  Solved Examples

Example 1

A silica glass optical fiber has a core refractive index of 1.5 and cladding refractive index of 1.450. Calculate 
the numerical aperture of the optical fiber.

Solution:  We know that the numerical aperture is

NA = = - =sin ( ) ( )maxi n n n1
2

2
2

1 2D

Here n1 = 1.5 and n2 = 1.450. So the numerical aperture is

NA = = - =sin ( . ) ( . ) .maxi 1 5 1 450 0 3842 2

or	 NA = ´( ) = ´ =1 5 2 0 033 1 5 0 257 0 385. . . . .
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Example 2

The fraction change of refractive index between the core material and the cladding material of a fiber is 1%. 
If the refractive index of the core material is 1.46, calculate the numerical aperture and acceptance angle.

Solution:  The refractive index of the core material is 1.46 and the fractional difference of the refractive 
index between the core and cladding material, D = 1% of 1.46 = 0.0146. We have n1 = 1.46. The 
numerical aperture is

NA = n1 2D = ´1 46 2 0 00146. . = ´1 46 0 171. .  = 0.25

The acceptance angle is

imax sin ( . ) .= = °-1 0 25 14 5

Example 3

Calculate the numerical aperture, acceptance angle and the critical angle of the fiber from the following 
data: n1 1 50= .  and n2 1 45= . .

Solution:  We know that the numerical aperture is

NA = = - =sin ( ) ( )maxi n n n1
2

2
2

1 2D

Here n1 = 1.50 and n2 = 1.45. So the numerical aperture is 

NA = = - =sin ( . ) ( . ) .maxi 1 5 1 450 0 3842 2

or	 NA = ´ = ´ =1 5 2 0 033 1 5 0 257 0 384. ( . ) . . .

The acceptance angle is

imax sin ( . ) .= = °-1 0 384 22 58

The critical angle is

fc = = 



 = °− −sin sin

.

.
.1 2

1

1 1 45

1 50
75 16

n

n

Example 4

If the fractional difference between the core and cladding refractive indices of the optical fiber is 0.0135 
and numerical aperture NA is 0.2425, calculate the refractive indices of core and cladding materials.

Solution:  We have NA = n1 2D . Now

D =
-n n

n
1 2

1
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Given NA = 0.2425 and ∆ = 0 0135. .  So

n1
2

0 2425

0 1643
1 48= = =

NA

D
.

.
.

D = =
-

=
-

0 0135
1 48

1 48
1 2

1

2.
.

.

n n

n

n

Þ  1 48 0 0135 1 482. . .- = ´n

Þ n2 1 476 0 02 1 46= - =. . .  

Example 5

A step index fiber has core refractive index 1.466, cladding refractive index 1.46. If the operating wave-
length of the rays is 0.85 mm, calculate the cutioff parameter or normalized frequency and the number of 
modes which the fiber will support. The diameter off core is 50 mm.

Solution:  We know that cut-off parameter or cut-off number or normalized frequency is

V
a

n n= -
2

1 2

p
l

where a is the radius of the core, n1 is the refractive index of the core, n2 is the refractive index of the clad-
ding and l  is the operating wavelength. We have a = =50 2 25/ m,m  l = 0 85. mm, m1 1 466= . , m2 1 46= . .  
So

V =
´ ´

-
2 3 14 25

0 85
1 466 1 462 2.

.
( . ) ( . ) =184 70 2 149 2 131. . .- = 184 70 0 134. .´ = 24 75.

The number of modes is given by

N
V

= = »
2 2

2

24 75

2
306

( . )

		  Short Answers of Some Important Questions

	 1.	 What do you understand by fiber optics?
Answer: Fiber optics is made of glass or plas-
tic pipes as thin as human hair, through 
which light can be propagated. It consists of 
essentially three regions. The innermost 
region is known as core. It is made of glass or 
plastic. The middle region which covers the 
core with another layer of glass or plastic is 

called the cladding. The outermost region is 
called jacket. It is also made of plastic or 
polymers.

	 2.	 What is the principle of fiber optics?
Answer: Fiber optics is based on the principle 
of total internal reflection (TIR) so that optical 
signal can travel long distances with negligible 
loss.
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	 3.	 Give the necessary conditions for total internal 
reflection.
Answer: The necessary conditions for total 
internal reflection are as follows:

		  • � Light wave should be propagated from 
denser medium to rarer.

		  • � The angle of incident should be greater than 
critical angle.

	 4.	 What is acceptance angle and numerical aperture?
Answer: The maximum angle at which light 
entering the core is transmitted through the 
fiber and propagated without being refracted is 
known as acceptance angle. The sine of accep-
tance angle is known as numerical aperture.

	 5.	 How is light transmitted through fiber optics?
Answer: When the light signal is incident on 
the core and makes an angle of incidence 
greater than the critical angle of the core−

cladding surface, multiple total internal reflec-
tion phenomena occurs. In this way, light 
signals can be propagated or transmitted 
through the fiber. 

	 6.	 What do you understand by modes of 
propagation?
Answer: When light ray travels along different 
ray paths in fiber, these paths are known as 
modes of propagation.

	 7.	 Distinguish between holography and 
photography.
Answer: A photograph is a two-dimensional 
recording of a three-dimensional scene; how-
ever, holography is a technique of producing 
three-dimensional image of an object. In pho-
tography only amplitude of light coming from 
the object is recorded on photographic plate 
whereas in holography, amplitude as well as 
phase are recorded.

		  Important Points and Formulas

	 1.	 Optical fiber is a very thin (as thin as human hair) 
flexible glass or plastic medium of cylindrical shape 
which can guide light waves along their length.

	 2.	 Light is propagated through fiber along its 
length due to successive total internal reflection 
(TIR) from the walls of fiber.

	 3.	 The maximum angle at which light entering 
the core is transmitted through the fiber and 
propagated without being refracted is known as 
acceptance angle.

i
n n

nmax sin=
( ) - ( )é

ë

ê
ê

ù

û

ú
ú

-1 1

2

2

2

0

	 4.	 Numerical aperture is an important parameter 
of the optical fiber. It determines the light gath-
ering ability of fiber, that is, the amount of 
light that can be accepted by a fiber. It defined 
as sine of acceptance angle. 

NA = = −

= + − = −

=
−

sin ( ) ( )

( )( ) ( )

maxi n n

n n n n n n n

n
n n

1
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2
2

1 2 1 2 1 1 2

1
2 1 2

2

2
nn

n
1

1 2






= ∆

		  Multiple Choice Questions

	 1.	 The principle of fiber optics is
	 (a)	 TIR		  (b)	 reflection
	 (c)	 refraction		  (d)	 None of these

	 2.	 In fiber optics, the core is surrounded by a 
cladding of

	 (a)	 reflecting medium
	 (b)	 transport medium of lower refraction 

index

	 (c)	 transport medium of higher refractive index
	 (d)	 opaque medium

	 3.	 In which form are telephone signals sent 
through optical fiber?

	 (a)	 Sound
	 (b)	 Visible or infrared light
	 (c)	 Radio frequency
	 (d)	 All the above
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	 4.	 In single mode fiber, the diameter of the core is
	 (a)	 60 mm		  (b)	 100 mm
	 (c)	 10 mm		  (d)	 10 m

	 5.	 Loss of power during transmission through 
optical fiber is

	 (a)	 Attenuation		  (b)	 Modification
	 (c)	 Energy loss		  (d)	 None of these

	 6.	 In optical fiber, numerical aperture is defined as 
sine of

	 (a)	 core		  (b)	 cladding
	 (c)	 acceptance angle		  (d)	 critical angle

	 7.	 The best fiber for very long distance communi-
cation is

	 (a)	 multimode step index fiber
	 (b)	 single mode step index
	 (c)	 graded index multimode fiber
	 (d)	 None of these

	 8.	 Attenuation in fiber optics is due to
	 (a)	 absorption		  (b)	 scattering
	 (c)	 radiation loss		  (d)	 All the above

	 9.	 Image is stored on a hologram in the form of
	 (a)	 interference pattern
	 (b)	 diffraction pattern
	 (c)	 Both (a) and (b)
	 (d)	 None of these

	10.	 Holography records
	 (a)	 amplitude
	 (b)	 phase
	 (c)	 both amplitude and phase
	 (d)	 None of these

	11.	 Photography means
	 (a)	 amplitude
	 (b)	 phase
	 (c)	 both amplitude and phase
	 (d)	 None of these

	12.	 During reproduction of the image, the holo-
gram acts as

	 (a)	 mirror		  (b)	 photograph
	 (c)	 diffraction grating		 (d)	 transparent film

		  Short Answer Type Questions

	 1.	 Explain the basic structure of an optical fiber.

	 2.	 Why is refractive index of core higher than that 
of the cladding?

	 3.	 What is the use of the cladding in fiber optics?

	 4.	 What is step index fiber?

	 5.	 What do you mean by mode of propagation?

	 6.	 What is the physical significance of V-number?

	 7.	 Give the name of different types of optical 
fiber.

	 8.	 What do you understand by dispersion?

	 9.	 Distinguish between step index and graded 
index fiber.

	10.	 Give two applications of optical fiber.

	11.	 What is the principle of optical fiber?

		  Long Answer Type Questions

	 1.	 What is the principle of optical fiber? Explain 
different types of fiber with suitable diagrams.

	 2.	 What do you mean by optical fiber? Explain 
the propagation mechanism in optical fiber.

	 3.	 What is the mode of propagation? Give some 
examples of fiber optics.

	 4.	 Explain acceptance angle, acceptance cone, 
numerical aperture and critical angle for an 
optical fiber.

	 5.	 What is the principle of holography? Explain 
its applications.

	 6.	 Describe hexagonal close pack structure.

	 7.	 What are the characteristics and applications of 
laser?

	 8.	 What do you mean by construction and recon-
struction of hologram?

	 9.	 Write some applications of holography.
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		  Numerical Problems

	 1.	 A silica glass optical fiber has a core refractive 
index of 1.48 and cladding refractive index of 
1.46. Calculate the acceptance angle and 
numerical aperture of the optical fiber.

	 2.	 If the fractional difference between the core 
and cladding refractive indices of the optical 
fiber is 0.014 and numerical aperture NA is 
0.235, calculate the refractive indices of core 

and cladding materials. Also calculate the 
critical angle of the core−cladding surface.

	 3.	 A step index fiber has core refractive index 1.47, 
cladding refractive index 1.46. If the operating 
wavelength of the rays is 0.85 mm, calculate the 
cut-off parameter or normalized frequency and 
the number of modes which the fiber will 
support. The diameter of the core is 50 mm.

		  Answers

Multiple Choice Questions

	 1.	 (a)
	 2.	 (b)
	 3.	 (d)

	 4.	 (c)
	 5.	 (a)
	 6.	 (c)

	 7.	 (b)
	 8.	 (d)
	 9.	 (a)

	10.	 (c)
	11.	 (a)
	12.	 (c)

Numerical Problems

	 1.	 14°, 0.2425 

	 2.	 1.41 and 1.39, fc =






= 





− −sin sin
.

.
1 2

1

1 1 39

1 41

n
n

 

	 3.	 24.75 and 306
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	 8.1	 Introduction

We have already studied in earlier classes that elements and their chemical compounds are present in the 
form of solids, liquids and gases. All these materials consist of atoms or molecules. In solids and liquids, 
an inter-atomic distance is of the order of a few Angstrom; however, in the case of gases it is approximately  
30 Å, which is reflected through Fig. 1.

(a) (b) (c)(c)

Figure 1  Arrangements of atoms in (a) solid, (b) liquid and (c) gas crystals.

A perfect crystal is considered to be constructed by the infinite regular repetition of identical structural 
units in space. Thus, a crystal is a solid in which it is possible to choose a small group of atoms or molecules which 
can be assumed to be considered in a regular-sided ‘box’ or unit cell. There are three different types of solids: 
Crystalline, polycrystalline and amorphous. Each type is characterized by the size of an ordered region 
within the material. 

•	 Space lattice.
•	 Basis.
•	 Unit cell.
•	 Lattice parameter.
•	 Seven crystal systems and fourteen Bravais 

lattices.
•	 Crystal system structure.
•	 Packing factor (cubic, body and face).

•	 Crystal structure of NaCl and diamond.
•	 Lattice planes and Miller indices.
•	 Reciprocal lattice.
•	 Diffraction of X-rays by crystal.
•	 Laue’s experiment.
•	 Bragg’s Law.
•	 Bragg’s spectrometer.

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

Crystal Structure8
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8.1.1  Crystalline Solids
In crystalline solids, the atoms or molecules are arranged in regular repeated pattern. So, these materials 
have long-range orders in their structures [Fig. 2(a)]. Rock salts, quartz and metals are some examples of 
crystalline solids. 

8.1.2  Polycrystalline Solids
In polycrystalline solids, the atoms or molecules are arranged in random directions. Polycrystalline materials 
have a high degree of order over many atomic or molecular dimensions. These ordered regions, or single-
crystal regions, vary in size and orientation with respect to one another [Fig. 2(b)]. Ceramics is an example 
of polycrystalline.

8.1.3  Amorphous Solids
Amorphous solids are those which lack the regular arrangement of atoms or molecules. So, these materials 
have short-range orders in their structure [Fig. 2(c)]. Glass, silicon are examples of amorphous solids. 

(a) (b) (c)

Figure 2  Structure of solids: (a) Crystalline, (b) amorphous, (c) polycrystalline.

	 8.2	 Space Lattice or Crystal Lattice

The periodic arrangement of atoms in a crystal is called a lattice. In other words, lattice is a regular periodic 
arrangement of points in space that look like a net structure as shown in Fig. 3. The points where the atoms 
are situated in the lattice are known as lattice points and the space with these points is known as space lattice.

In other words, an array of points where an environment around any one point is identical with that 
of any other point is called plane lattice. If plane lattice is studied in three dimensions then it is said to be 
space lattice.

Figure 3  Space lattice.

	 8.3	 Crystal Translational Vectors

The position vector of any lattice point in two-dimensional lattices by choosing any other lattice point as 
origin is represented by

� � �
T n a n b= +1 2
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where n1 and n2 are integers and 
�
a,

�
b are vectors and are called the primitives. For a three-dimensional crystal 

structure, the arrangements of points can similarly be represented by translational or lattice vector

� � � �
T n a n b n c= + +1 2 3

where 
�
a,

�
b , 

�
c are translational vectors or basis vectors called the primitives along x-, y-, z-axis, respectively, 

as shown in Fig. 4.

y

c

b

ab

g

x

z

a

Figure 4  Translational vectors.

	 8.4	 Unit Cells

We shall now discuss further the periodicity of structure which is the fundamental feature of a crystal. Let 
us consider part of a two-dimensional crystal, atoms of which are arranged in a pattern as shown in Fig. 5.  
It is observed that when a parallelogram such as ABCD is repeatedly translated by the vectors 

�
a  and 

�
b  

corresponding to AB and AD, respectively, to obtain the whole pattern of crystal lattice then fundamental 
unit ABCD is called a unit cell. Similarly Á B́ Ć D́  is also a unit cell. In other words, we can say that the area 
of the parallelogram whose sides are the basis vectors 

�
a  and 

�
b is called a unit cell of a lattice.

In three dimensions, the parallelepiped formed by using the basis vectors
�
a, 

�
b and 

�
c as concurrent edges 

is called the unit cell of the space lattice (see Fig. 4). The angles formed between the primitives 
�
b and �c , �c

and 
�
a, 

�
a  and 

�
b are denoted by a, b and g , respectively.

C

C′

B

B′

A A′

D D′
b

a

Figure 5  Unit cell.
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	 8.5	 Lattice Parameters

Unit cell is nothing but the fundamental elementary pattern of a number of lattice points. For example, the 
number of lattice points per unit cell for simple cubic (SC), body-centered cubic (BCC) and face-centered 
cubic (FCC) are one, two and four, respectively. We know that unit cell may not be complete without 
having a quantitative estimate of its volume which is calculated through the following relation:

V = ⋅ ×a b c( )

were V stands for the volume of the cell; a, b and c, defined so far as the measure of unit cell edges are 
known as lattice parameters.

	 8.6	
Density of an Element in terms of Lattice Parameter  
or Lattice Constant

Let us consider a cubic lattice with each side of the cube as a. If V is the volume of the unit cell and r  is the 
density of the crystal, then the volume V of each unit cell is a3  and the mass of the each unit cell is

	 Mass of unit cell = Volume × Density = a3r � (8.1)

If the molecular weight of the material is M and N is the Avogadro number, then

Mass of each molecule = M
N

Now if the number of molecules per unit cell is n, then mass of n atoms in unit cell will be

	 Mass = n × 
M
N

� (8.2)

From Eqs. (8.1) and (8.2), we get

a3r = n × M
N

   or  r = 
nM
Na3

The lattice constant a is

a
nM

N
=





r

1 3/

	 8.7	 Seven Crystal Systems

Crystals are classified into seven types of crystal systems depending on their axial ratio (a : b: c) and angles 
between them. These differ on the basis of size of unit cell, number of nearest atoms, angular inclinations 
between the edges of unit cell. The various types are as follows: 

	 1.	 Triclinic: This is the most general type of lattice in which all the translational vectors are unequal and 
all the axes are not mutually perpendicular. That is a b c≠ ≠ and a b g p≠ ≠ ≠ /2. It is the simple 
lattice (P) and is shown in Fig. 6.

	 2.	 Monoclinic: In monoclinic crystals, all the three translation vectors or sides are unequal, with one 
axis perpendicular to the other two. That is a b c≠ ≠ and a b p g= = ≠/2 . There are two types of 
monoclinic crystal: simple and base-centered as shown in Fig. 6.
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	 3.	 Orthorhombic: In this crystal, all the sides are unequal, but all the angles are equal, each equal to p / .2  
That is a b c¹ ¹  and a b g p= = = /2. There are four types of orthorhombic crystals: Simple, base-
centered, body-centered and face-centered as shown in Fig. 6.

Simple Simple Base-centred 

Monoclinic-BMonoclinic-PTriclinic-P

Simple Face-centeredBody-centeredBase-centered

Tetragonal-P

Hexagonal-P

Tetragonal-I Trigonal-R

Cubic-FCubic-ICubic-P

12
0°

Simple Body-centered

Orthorhombic-F Orthorhombic-IOrthorhombic-BOrthorhombic-P

Simple Body-centered

Face-centered 

Figure 6  Seven crystal systems.

	 4.	 Tetragonal: In this crystal, two sides are equal and all the angles are mutually perpendicular. That is 
a b c= ≠  and a b g p= = = /2. There are two types of tetragonal crystals: Simple and body-centered 
as shown in Fig. 6.

	 5.	 Cubic: In this crystal, all the sides are equal and all the angles are equal to p /2. That is a b c= =  and 
a b g p= = = /2. There are three types of cubic crystals: Simple, body-centered and face-centered as 
shown in Fig. 6. 

	 6.	 Trigonal: In this crystal, all the sides are equal and all the angles are equal and less than 2 3p /  but not 
equal to p /2. That is a b c= =  and a b g p= = ≠ /2, but less than 2 3p / . If all the angles are equal to 
p /2 then it will be cubic lattice as shown in Fig. 6. 

	 7.	 Hexagonal: In this crystal, two sides are equal and inclined at 2 3p /  and the third side is perpendicular 
to both of them (see Fig. 6). That is a b c= ≠  and a b p= = / ,2  and g = 2 3p / .
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	 8.8	 Bravais Lattices

Bravais, in 1948, stated that there are 14 possible ways to arrange atoms in a unit cell under the seven crystal 
systems. These are frequently called the Bravais lattices. The seven crystal systems together with the essential 
symmetry elements are summarized in Table 1.

Table 1  Seven crystal systems together with the essential symmetry elements

S. No. Name of System Nature of Unit Cell
Axes and Angles

No. of Lattices
in Systems

Examples

1. Triclinic a b c≠ ≠ anda b g
p

≠ ≠ ≠
2

1 (P) CuSO4, K2Cr2O7

2. Monoclinic a b c≠ ≠ anda b
p

g= = ≠
2

2 (PB) FeSO4, Na2SO4

3. Orthorhombic a b c¹ ¹ anda b g
p

= = =
2

4 (PBIF) BaSO4, KNO3

4. Tetragonal a b c= ≠ anda b g
p

= = =
2

2 (PI) NiSO4, TiO2

5. Cubic a b c= = anda b g
p

= = =
2

3 (PIF) NaCl, Cu

6. Trigonal a b c= = anda b g
p

= = ≠
2

1 (R) Sb, CaSO4, Bi

7. Hexagonal a b c= ≠ anda b
p

= =
2

, g =
2

3

p
1 (P) Cd, Mg, Quartz

Total no. of lattices = 14

Here P is primitive or simple; B is base-centered; I is body-centered; F is face centered.

Cubic system: There are three types of cubic lattices which are as follows:

	 1.	 Simple cubic or P type lattice: In simple cubic crystal there are eight lattice points at the eight corners 
of the unit cell. There is no lattice point inside the unit cell [see Fig. 7(a)].

	 2.	 Body-centered or I lattice: In body-centered cubic crystal there is one additional lattice point situated 
at the center that belongs exclusively to each cell besides the eight situated at the corners as shown in 
Fig. 7(b).

(a) (c)(b)

Figure 7  Cubic systems: (a) Simple, (b) body-centered, (c) face-centered.
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	 3.	 Face-centered cubic or F lattice: In face-centered cubic crystal there are six lattice points situated at 
the center of each face in addition to those situated at the corners as shown in Fig. 7(c).

	 8.9	 Atomic Radius

Atomic radius is half the distance between the nearest neighbors which are supposed to be in contact with 
each other along the line of their bonding direction. Atomic radius is represented by r and expressed in 
terms of cube edge a.

	 1.	 For simple cubic structure, atoms touch each other along the lattice as shown in Fig. 8. Therefore

r + r = a   or  2r = a  ⇒ r = a/2

a

2 r

Figure 8  Atomic radius in SCC.

	 2.	 For body-centered cubic structure, atoms touch each other along the diagonal of the cube as shown in 
Fig. 9. Therefore

(4 r)2 = 3 (a)2 ⇒  r2 = 3a2/16 ⇒  r = 3 a/4

B

C

A

a

4r

2a
a

Da

Figure 9  Atomic radius in BCC.

[(AB)2 = (BC)2 − (CA)2]
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	 3.	 For face-centered cubic structure, atoms touch each other along the diagonal of the any face of the 
cube as shown in Fig. 10. Therefore

(4 r)2 = (a)2 +(a)2 ⇒  r2 = 2a2/16 ⇒ r = 2 a/4

4r a

a

Figure 10  Atomic radius in FCC.

	 8.10	 Co-Ordination Number and Nearest Neighbor Distance

Co-ordination number is defined as the number of nearest neighbors around any point or atom in the 
crystalline lattice. Generally, (r + r) = 2r or r1 + r2 when the atoms are in contact with each other is called 
nearest neighbor distance.

	 8.11	 Crystal Structure 

As we have already discussed in Section 8.2 that lattice is a regular periodic arrangement of points in space 
that look like a net structure and the points where the atoms are situated in the lattice are known as lattice 
points. In the simple crystals, there is a single atom or ion at each lattice point. However, in case of compounds, 
there is a group of two or more atoms or ions at each lattice point. This group of atoms is called a basis. Basis is 
repeated in space to form the crystal. Thus, we can obtain crystal structure when a basis is added to each lattice 
point in space. The logical relation is

Lattice + Basis = Crystal structure

In other words, one can say that it is an assembly of one or more atoms which when attached identically to each 
lattice point gives rise to crystal structure which is reflected through Fig. 11.
On the basis of crystal structure, crystals may be divided into four classes:

	 1.	 Metal crystals.
	 2.	 Ionic crystals.
	 3.	 Valence crystals.
	 4.	 Van der Waals crystals.
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(a) Space lattice

(b)  Basis containing two different ions

(c) Crystal structure

Figure 11  Formation of crystal structure.

8.11.1  Metal Crystals
Cubic and hexagonal close packed structures are known as metallic crystals. In cubic structure, we find 
simple cubic (SC), body-centered cubic (BCC) and face-centered cubic (FCC).

8.11.1.1  Simple Cubic Structure (SC)
In this structure, there is one atom at each of the 8 corners of unit cell and each atom is surrounded by six 
nearest neighbors. Therefore, the co-ordination number is 6. The contribution of each atom to our cell is 
only 1 8/ . So the total number of atom per unit cell is ( / )1 8 8 1× = . If a is the distance between the centers 
of two nearest neighbors, then the atomic radius r is a/2 (because atomic radius is equal to half the near-
est neighbors distance) as shown in Fig. 12. Let v be the volume of the atoms in the unit cell and V be the 
volume of the unit cell. The packing factor (PF) is

PF
Number of atoms per unit cell  Volume of one atom

Volume of pr
= =

×v
V iimitive cell

or Volume of one ato=
× × 





= =
1

4
3 2

6
0 52 52

3

3

p
p

a

a
. % ∵ mm =





4

3
3p r

Since the value is low compared to other structures so it is called loosely packed structure. Polonium is an 
example of this structure.
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2r = a

Figure 12  Unit cell of an SCC.

8.11.1.2  Body-Centered Cubic Structure (BCC)
In this structure, there is one atom at each of the eight corners of unit cell and also one atom at the center 
of the cell. Hence, the unit cell contains ( / )1 8 8 1 2× + =  atoms per unit cell. Each atom is surrounded by 
eight nearest neighbors. Therefore, the co-ordination number is 8. Since, the nearest neighbors distance is 
a 3 2/  so that the atomic radius is a 3 4/  as shown in Fig. 13. The packing factor (PF) is

PF
Number of atom per unit cell  Volume of one atom

Volume of pri
= =

×v

V mmitive cell

or=
× ×







= =
2

4
3

3
4 3

8
0 68 68

3

3

p
p

a

a
. %

This is a close-packed structure. Cr, Mn, Fe, Ba, etc. are examples of BCC lattices.

3/22 r = a 

Figure 13  Unit cell of a BCC.

8.11.1.3  Face-Centered Cubic Structure (FCC)
In this structure, there is one atom at each of the eight corners of unit cell and also one atom at the center 
of the six faces of the cube. Hence, the unit cell contains ( / ) ( / )1 8 8 1 2 6 4× + × = atoms per unit cell. Each 
face-centered atom touches the four corner atoms and four face-centered atoms in its own cell and another 
four face-centered atoms in the outer cell. Therefore, the co-ordination number is 12.

Since, the nearest neighbors distance is a / 2  so that the atomic radius is a / 2 2  (Fig. 14). The pack-
ing factor (PF) is
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PF
Number of atom per unit cell  Volume of one atom

Volume of pri
= =

×v

V mmitive cell

or=
× × 





= =
2

4
3 2 2

3 2
0 74 74

3

3

p
p

a

a
. %

This structure is highly close-packed compared to SCC and BCC structures. Cu, Ag, Ca, Al are examples 
of this structure.

8.11.1.4  Hexagonal Close-Pack Structure
It is also closest packing structure with 74% as the packing factor, equal to that of the FCC structure. 
Number of atoms in an hcp unit cell is obtained through following relation:

N
N N N

= + +c f i

6 2 1

where N c  is the total number of corner atoms in the unit cell. There is one atom at each of the 12 corners 
of the hexagon. N f  is the total number of facial atoms in the cell. There is one atom at the center of the top 
and bottom faces. Each atom at the center of the top or bottom faces is shared by two hexagonal cells. N i  
is the interior atom well within the cell. There are 3 atoms within the cell as shown in Fig. 15.
Hence, the total number of atoms per unit cell is

N = + + =12

6

2

2

3

1
6

Since in hcp the corner atoms touch along the edges, each atom touches six atoms in its plane, three atoms 
below its plane and three atoms above its plane. Therefore, coordination number is 12. Zn, Cd, Mg, Co are 
some examples of hcp structure.

22 r = a /

Figure 14  Unit cell of an FCC.
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Figure 15  Hexagonal crystal structure.

8.11.2  Ionic Crystal
Basically, ionized crystals come in this group. NaCl, KCl, etc. are some examples of ionic crystals.

8.11.2.1  NaCl Structure
In sodium chloride crystal, there are two different atoms Na and Cl having atomic number 11 and 17, 
respectively. Sodium atom loses its outermost orbit electron and so acquires an excess of positive charge. On 
the other hand, chlorine atom absorbs the electron lost by the sodium atom and at the same time acquires 
an excess of negative charge. In Fig. 16, black dots represent the positions of chlorine ions and the circles 
that of sodium ions. The unit cell is FCC structure; the basis consists of one Na atom and one Cl atom 
separated by one-half of the body diagonal of a unit cube. In each unit cube, there are four units of NaCl in 
which the ions are at the following positions:

Na 0 0 0,
1

2

1

2
0,

1

2
0

1

2
, 0

1

2

1

2

Cl
1

2

1

2

1

2
, 0 0

1

2
, 0

1

2
0,

1

2
0 0

Each atom has six nearest neighbors of opposite kind and therefore, the coordination number is 6.

Na ions
Cl ions

Figure 16  Crystal structure of NaCl.
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11.8.3 Valence Crystals
Valence crystals can be obtained by the sharing of valence electrons between neighboring atoms. Diamond, 
zinc blend, etc. are some examples of the valence crystals.

11.8.3.1  Diamond Structure
Diamond structure is the combination of two interpenetrating face-centered cubic sub-lattices. This structure 
is shown through Fig. 17. From the figure we see that the points 0 and 1 2/  are on one sublattice; however, 
the points at 1 4/  and 3 4/  are on the other sublattice, displaced along the body of the diagonal by one-

fourth of its length. Its unit cell has in all eight atoms with a basis of two atoms located at 0 0 0, 
1

4

1

4

1

4
.

Its structure is loosely packed structure. The coordination number is four and consequently the atomic 
packing factor is very low at 34%. The number of atoms per unit cell of diamond structure is 8. If a is the 
distance between the centers of two nearest neighbors and r is the radius of each atom, then the relation 
between a and r is

a
r= 8

3

C, Si, grey tin are examples of this structure.

Y

Z

X
Oa/4

1/21/2

1/2

1/2

1/4

1/4

3/4

3/4

0

0

0

00

a/4

Figure 17  Crystal structure of diamond.

11.8.4  van der Waals Crystals
The rare gases such as argon and organic compounds such as tetraphenyl methane have van der Waals crys-
tal structure.

	 8.12	 Lattice Planes and Miller Indices

The parallel equidistant planes in a crystal which contain a large number of atoms are known as lattice 
planes and are described by three integers h, k, l simply enclosed in parentheses. Thus, Miller indices are 
nothing but the notations used to describe lattice planes and directions in the crystal. In other words, the recip-
rocals of the intercepts made by a plane on the crystallographic axes when reduced to smallest numbers are 
known as Miller indices. Parallel planes may have the same Miller indices.
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Following are the rules to determine the Miller indices:

	 1.	 Find the intercepts on the axes in terms of the lattice constants a, b and c. For example, consider 2a, 
3b and 4c as the intercepts of a plane.

	 2.	 Express the intercepts as multiplies of lattice parameters along the respective axes. For the plane, these 
are 2a/a, 3b/b and 4c/c that is 2, 3 and 4.

	 3.	 Take the reciprocal of these numbers, that is, 1/2, 1/3 and 1/4.
	 4.	 Reduce these fractions to the smallest triad of integers h, k, l having the same ratio. The quantity (h k l )  

is then the Miller index of that system of planes.

8.12.1  Interplaner Spacing in Terms of Miller Indices
Consider a family of parallel planes (h k l). The spacing d between the adjacent planes of this family can be 
calculated by taking any lattice point as origin, erecting coordinate axes in a, b, c directions and finding the 
perpendicular distance between this origin and the plane which is nearest to this origin. This plane would 
obviously have a/h, b/k and c/l as intercepts on the axes a, b, c, respectively. Now

a
h

dcosa =  ⇒  cos
/

a = d
a h

b
k

dcos b =  ⇒  cos
/

b = d
b k

c
l

dcosg =  ⇒  cos
/

g = d
c l

where d is the interplanar spacing. But we know that

cos cos cos2 2 2 1a b g+ + =

Substituting the values of cosa, cos b  and cosg  in this above equation we get

dh

a

dk

b

dl

c




 + 



 + 



 =

2 2 2

1

⇒ 



 + 



 + 
















=

⇒ =




 +

d
h

a

k

b

l

c

d
h
a

2
2 2 2

2

1

1

kk
b

l
c





 + 





2 2

If a = b = c (for cubic structure) then

d
a

h k l
hkl =

+ +2 2 2
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	 8.13	 Reciprocal Lattices

Up to now we have discussed that in a crystal there exist a number of sets of parallel planes with different 
orientations and spacing, which can diffract a given beam of X-rays. Practically the visualization of such 
planes is too difficult. These problems can be simplified by consideration of reciprocal lattice.
To understand the visualization, we adopt the following procedure:

	 1.	 As the orientation of a plane is determined by its normal, we draw the normal to various sets of planes.
	 2.	 The lengths of the normals are taken proportional to the reciprocals of the interplanar spacing, that is 

1/dhkl.

Thus, we get a group of space lattices. This new arrangement of space lattices in reciprocal space is known as 
the reciprocal lattice. Reciprocal lattice vector is

�
s hkl

hkld
= 1

where 1/ dhkl  is the magnitude of reciprocal vector 
�

s hkl  and whose direction is parallel to the normal to the 
(h k l ) plane. Since the normal to a plane can be represented by a unit vector n̂, we have

�
s hkl

hkld
= 1

n̂

For (100) plane 
�

s100
100

1=
d

n̂

But we know that

�
s100

100

1= = ×
d V

n̂
b c

  and  V = ⋅ ×a (b c)

Therefore
�

s100 = ×
⋅ ×
b c

a (b c)

Similarly, we can write reciprocal lattice vector for the planes (010) and (001) as

�
s 010 = ×

⋅ ×
c a

a (b c)
  and 

�
s 001 = ×

⋅ ×
a b

a (b c)

In terms of reciprocal translational vector

a* = 
�

s100 = ×
⋅ ×
b c

a (b c)

b* = 
�

s 010 = ×
⋅ ×
c a

a (b c)

c* = 
�
s001 =

´
× ´
a b

a (b c)
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	 8.14	 Diffraction of X-Rays by Crystal

Diffraction is nothing but the deviation of light from a straight line when an obstacle or an aperture of size 
comparable to the wavelength of light falls in its path. Diffraction techniques are generally used for the 
determination of crystal structure. Since wavelength of X-rays is very small (1 Å − 100 Å), therefore, it is 
not feasible to construct a grating having grating element of the order of 1 Å. In this sense, Laue in 1913 
suggested that crystal can be used for the diffraction of X-rays due to periodic arrangement of atoms with 
spacing of the order of 1 Å. 

8.14.1 Laue’s Experiment
In Laue’s experiment X-rays were allowed to pass through a pinhole in lead screens and therefore, the 
output is in the form of narrow beam of X-rays. This collimated beam is further allowed to pass through a 
thin crystal of either zinc sulphide or sodium chloride (Fig. 18). The rays emerging from the crystal form 
diffraction pattern on the screen. The diffraction pattern consists of a central spot surrounded by many 
other low-intensity spots spaced in definite manner. The pattern is obtained due to diffraction of X-rays 
from the various lattice planes. These spots are known as Laue’s spots.

Slits

S

ZnS

O

Figure 18  Laue pattern.

The conclusions from Laue’s experiment are as follows:

	 1.	 The X-rays are electromagnetic radiations of very short wavelength.
	 2.	 The atoms in a crystal are arranged in a regular three-dimensional array.

A grating having grating element of the order of wavelength of visible light (4000−7000 Å) is used to 
study diffraction pattern.

8.14.2  Bragg’s Law
In 1912, W. L. Bragg developed a technique to explain the diffraction of X-rays by a crystal. According to 
Bragg, X-rays can be diffracted by various parallel atomic planes of crystals when the rays are incident on 
their surface at glancing angle q. The diffracted beams are found due to constructive interference between 
refraction from the various planes of atoms. 

In order to derive an expression for Bragg’s law, consider a set of parallel planes in a crystal with inter-
planar spacing d. Suppose an X-ray falls on atoms A and B of atomic planes at a glancing angle q as shown 
in Fig. 19.
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C

A

d

B

q

q q

q

S2

S1 R1

R2

D
Various parallel

atomic planes

of the crystals

Incident rays
Refracted rays

Figure 19  Bragg’s Law.

These rays are scattered by atoms A and B along the directions AR1 and BR2, respectively. Draw the perpen-
diculars AC and AD on S1A and S2B. The path difference between the two rays is

Δ = CB + BD

From Δ ACB,

sinq = CB/AB ⇒  CB = AB sinq = d sinq 

Similarly, from Δ ADB, 

DB = d sinq 

Therefore the path difference is

Δ = d sinq + d sinq = 2 d sinq

But we know that constructive interference takes place between the rays reflected from the various atomic 
planes. Therefore

Δ = ± nl ⇒ 2 d sinq = nl  where n = 1, 2, 3, …

This is known as Bragg’s law and n = 1, 2, 3, … correspond to first-, second-, third-order spectrum and 
so on.

8.14.3  Bragg’s X-Rays Spectrometer
For the detailed study of crystal structure, Bragg and his son designed an apparatus known as Bragg’s 
spectrometer. In this apparatus there is a turn table which is capable of rotation about a vertical axis passing 
through its center. The rotation can be read on a circular graduated scale V1. X-rays from an X-ray tube are 
made incident through slits S1 and S2 to obtain a narrow beam, which is then allowed to fall on a crystal 
C mounted on turn table. The reflected beam enters the ionization chamber (which is used to measure the 
intensities of the diffracted X-rays in terms of ionization current) filled with ethyl bromide. The position of 
the ionization chamber can be read through V2 as shown in Fig. 20.
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V1

Slits
X-Ray tube C

S1 S2

2

E

Ionization
chamber 

θ
θ

Figure 20  Bragg’s spectrometer.

The angle for which the diffraction intensities are maximum gives the value of q which satisfies the Bragg’s law

2d sin q = nl 

where n = 1, 2, 3, … corresponds to first-, second-, third-order spectrum and so on.
For first-order spectrum

n = 1   and   2d sin q1 = l
For second-order spectrum

n = 2   and   2d sin q2 = 2l
For third-order spectrum

n = 3   and   2d sin q3 = 3l
Hence

sin q1: sin q2: sin q3 = 1: 2: 3

Thus, the glancing angle can be directly measured from the graph for the different orders. If a graph is plot-
ted between the ionization current and the glancing angles, some peaks A1, A2 and A3 are obtained, which 
represent the values of glancing angles satisfying Bragg’s law as shown in Fig. 21(a). If the two wavelengths 
are used then corresponding B1, B2 and B3 peaks are also observed satisfying Bragg’s law [Fig. 21(b)].
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θ1 q2 θ2 q3 θ3q1′ ′ ′

Figure 21  The glancing angle for different orders and wavelength l1 and l2.
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		  Solved Examples

Example 1

Calculate the lattice parameters of NaCl crystal if it’s density (r) is 2189 Kgm−3and the Avogadro 
constant NA is 6.02×1023/ gm-mole.

Solution:  Sodium chloride is a cubic crystal and it’s lattice is FCC. The lattice constant a  is

a
nM

N
=





r

1 3/

where M is the molecular weight of NaCl, r is the density of NaCl crystal, n = 4 (NaCl has FCC lattice). So

a = ×
× ×







= × = ×− −4 58 5

6 02 10 2189
177 10 5 61 1026

1 3
30 3 1 3 1.

.
( ) .

/
/m 00 5 61m = . Å

Example 2

Copper has a density of 8.96 gm/cm3 and an atomic weight of 63.5. Calculate the distance between the 
two nearest copper atoms in the FCC structure. Given, Avogadro constant is 6.02 × 1023/ gm-mole.

Solution:  The lattice constant a  is

a
nM

N
=







= × =−

r

1 3

83 61 10 3 61
/

. .cm Å

The nearest neighbour distance in the FCC lattice is a / 2 . Therefore the distance between two nearest 
neighbour Cu atoms is

d
a= = =
2

3 61

2
2 55

.
.Å Å

Example 3

The density of a -iron is 7870 Kgm −3 and its atomic weight is 55.8. If it crystalizes in FCC lattice, deduce 
its lattice constant. The Avogadro constant NA is 6.02 × 1023/ gm-mole.

Solution:  For an FCC lattice, n = 4. Therefore

a
nM

N
=

× ×






= ×
× ×





A 100

2 55 8

6 02 10 7870

1 3

23

1 3

r

/ /.

.

= [ . ] . ./23 5 10 2 86 10 2 8630 1 3 10× = × =− − m Å
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Example 4

In a crystal, a lattice plane cuts intercepts of a, 2b and 3c along the three axes where a,
��

b,
��

c
�

 are the primi-
tive vectors of the unit cell. Determine the Miller indices of the given plane.

Solution:  From the law of rational indices, we have

a b c
a
h

b
k

c
l

: : : :2 3 =

where h,k,l are the Miller indices. Therefore

1 1 1
1 2 3 1

1

2

1

3
6 3 2

h k l
h k l: : : : : : : : : := ⇒ = =

Therefore, the plane is (6 3 2).

Example 5

Deduce the Miller indices of a plane in an orthorhombic crystal which cuts intercepts of 3a, −2b, 3 2c /  
along the three axes.

Solution:  From the law of rational indices, we have

3 2
3

2
a b

c a
h

b
k

c
l

: : : :− =

⇒ − =

⇒ − =

⇒ −( ) =

3 2
3

2

1 1 1

1

3

1

2

2

3
2 3 4

: : : :

: : : :

: : : :

h k l

h k l

h k l

Therefore Miller indices = (2, 3 ,4).

Example 6

Calculate the Miller indices of a plane which intercepts the three axes in ratio a : 3b : 4c, where a, b, c are 
primitive lattice translation vectors. 

Solution:  Comparing the ratios with intercepts made by a (h k l ) plane we get

a : 3b : 4c ::
a
h

b
k

c
l

: :
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or	 1 : 3 : 4 ::
1 1 1

h k l
: :

or	 h : k : l ::1
1

3

1

4
: :

or	 h : k : l ::12 4 3: :

Hence, the Miller indices (h k l) for the plane are (12, 4, 3).

Example 7

Determine the interplanar spacing of a lattice plane in a simple cubic lattice with edge 2 Å which cuts the 
axes in intercepts ratio 3 : 4 : 5.

Solution:  According to the relation between interplanea spacing and Miller indices

d
h
a

k
b

l
c

=




 + 



 + 





1
2 2 2

If a = b = c = 2 (for cubic structure) then

d
a

h k l
=

+ +2 2 2

We have

3: 4: 5::
a
h

b
k

c
l

: :

or	 3: 4: 5::
2 2 2

h k l
: :

or	 h : k : l::
2

3

2

4

2

5
: :

or	 h : k : l:: 40 30 24: :

So

d =
+ +

=2

40 30 24

2

29762 2 2
Å
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Example 9

Electrons are accelerated by 844 V and are reflected from a crystal. The reflection maximum occurs when 
the glancing angle is 58°. Determine the spacing of the crystal.

Solution:  The wavelength of the wave associated with electrons is

l = h
mv

 = h

mE2
∵E mv=





1

2
2  = h

meV2
( )∵E eV=

We have m = the mass of the election = 9.1 × 10−31 kg, e = the charge of electron = 1.6 × 10−19 C,  
V = accelerating potential = 844 V and h = Planck constant = 6.626 × 10−34 Js. Using these values,  
l = 0.042 nm. From Bragg’s law,

2d sinq = n l

	 ⇒ d = l
q2sin

	 (n = 1 for reflection maximum )

=
× °

=0 042

2 58
0 025

.

sin
. nm

Example 8

Calculate the glancing angle of the (1 1 0) plane of a simple cubic crystal (a = 2.814 Å) corresponding to 
the second-order diffraction maximum for X-rays of wavelength 0.710 Å.

Solution:  The distance between successive lattice planes is given by

d
a

h k l

d

hkl =
+ +

⇒ =
+ +

=

2 2 2

110 2 2 2

2 814

1 1 0

2 814

2

. .
Å

From the Bragg equation for X-ray diffraction

2 110d nsinq l=

Therefore

sin
.

.
. sin ( . )q l q= = ×

×
= ⇒ = = °−n

d2

2 0 710

2 1 990
0 357 0 357 21

110

1
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		  Short Answers of Some Important Questions

	 1.	 Distinguish between amorphous and crystal-
line solids.
Answer:  In crystalline solids, the atoms or 
molecules are arranged in regular repeated 
pattern. So, these materials have long-range orders 
in their structures. However, the amorphous 
solids are those which lack the regular arrange-
ment of atoms or molecules. So, these materials 
have short-range orders in their structure.

	 2.	 What do you mean by primitive cell?
Answer: The smallest volume that contains the 
full pattern is called a unit cell. If a unit cell 
contains lattice points only at its corners then it 
is called a primitive unit cell or simple unit cell.

	 3.	 What is lattice?
Answer: The periodic arrangement of atoms in 
a crystal is called a lattice.

	 4.	 Explain plane lattice and space lattice.
Answer: An array of points where the environ-
ment around any one point is identical with 
that of any other point is called plane lattice. If 
plane lattice is studied in three dimensions 
then it is said to be space lattice.

	 5.	 Explain space lattice in terms of lattice points.
Answer: The points where the atoms are situ-
ated in the lattice are known as lattice points 
and the space with these points is known as 
space lattice.

	 6.	 Distinguish between primitive cell and unit 
cell.

Answer: A unit cell which has only one lattice 
point per unit volume is known as a primitive 
cell. The remaining cells are called unit cells. 
All primitive cells are unit cells but all unit cells 
may not be primitive cells.

	 7.	 How many primitive cells are there in Bravais 
lattices?
Answer: There are only seven primitive cells in 
Bravais lattices.

	 8.	 How is a crystal structure obtained?
Answer: A crystal structure is obtained by 
combining the space lattice with a basis.

	 9.	 What are Miller indices?
Answer: The reciprocals of the intercepts made 
by a plane on the crystallographic axes when 
reduced to smallest numbers are known as 
Miller indices. Parallel planes may have the 
same Miller indices.

	10.	 What is reciprocal lattice?
Answer: The arrangement of space lattices in 
reciprocal space is known as the reciprocal 
lattice.

	11.	 Explain diffraction of X-rays.
Answer: Since wavelength of X-rays is very 
small (1−100 Å), therefore, it is not feasible to 
construct a grating having grating element of 
the order of 1 Å. In this sense, Laue in 1913 
suggested that crystal can be used for the 
diffraction of X-rays due to periodic arrange-
ment of atoms with spacing of the order of 1 Å. 

		  Important Points and Formulas

	 1.	 A crystal is a solid in which it is possible to 
choose a small group of atoms or molecules 
which can be assumed to be considered in a 
regular-sided ‘box’ or unit cell.

	 2.	 Lattice is a regular periodic arrangement of 
points in space that look like a net structure.

	 3.	 The points where the atoms are situated in the 
lattice are known as lattice points and the space 
with these points is known as space lattice.

	 4.	 The parallelepiped formed by using the basis 
vectors

�
a, 

�
b  and 

�
c as concurrent edges is called 

the unit cell of the space lattice.
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	 5.	 There are 14 possible ways to arrange atoms in 
a unit cell under the seven crystal systems. 
These are frequently called the Bravais lattices.

	 6.	 Atomic radius is half the distance between the 
nearest neighbors.

	 7.	 The total number of atom per unit cell in SCC 
is ( / )1 8 8 1× = .

	 8.	 The total number of atom per unit cell in BCC 
is ( / )1 8 8 1 2× + =

	 9.	 The total number of atom per unit cell in FCC 
is ( / ) ( / )1 8 8 1 2 6 4× + × =

	10.	 The reciprocals of the intercepts made by a 
plane on the crystallographic axes when 

reduced to smallest numbers are known as 
Miller indices. Parallel planes may have the 
same Miller indices.

	11.	 New arrangement of space lattices in reciprocal 
space is known as the reciprocal lattice. 
Reciprocal lattice vector is

�
s hkl

hkld
= 1

	12.	 2d sinq = nl, where n = 1, 2, 3, …. This is 
known as Bragg’s law and n = 1, 2, 3, … cor-
respond to first-, second-, third-order spectrum 
and so on.

		  Multiple Choice Questions

	 1.	 A regular arrangement of atoms in a matter is 
known as

	 (a)	 crystal	 (b)	 amorphous
	 (c)	 materials	 (d)	 None of the above

	 2.	 The individual crystals have dimension 
	 (a)	 10−7 cm	 (b)	 10−4 cm
	 (c)	 10−10 m	 (d)	 10−10 cm

	 3.	 The crystal structure can be studied with 
	 (a)	 1 − 100 Å	 (b)	 4000 − 6000 Å
	 (c)	 Both (a) and (b)	 (d)	 None of the above

	 4.	 The wavelength of X-rays is
	 (a)	 10−8 m	 (b)	 10−6 cm
	 (c)	 10−3 m	 (d)	 10−10 m

	 5.	 The array of lattice point in three-dimensional 
crystal is called

	 (a)	 basis	 (b)	 space lattice
	 (c)	 crystal structure	 (d)	 unit cell

	 6.	 Crystal formation consists of 
	 (a)	 basis and unit cell
	 (b)	 unit and lattice point
	 (c)	 basis and lattice point
	 (d)	 None of the above

	 7.	 Basis of the crystal is the
	 (a)	 arrangement and orientation of atoms
	 (b)	 regular arrangement of atoms

	 (c)	 arrangement of atoms
	 (d)	 orientation of atoms

	 8.	 A crystalline substance has basis containing 
more than two atoms. Such basis is called

	 (a)	 triatomic	 (b)	 diatomic
	 (c)	 multiatomic	 (d)	 tetra-atomic

	 9.	 If a b g= = ≠ ≠ ≠90  and a b c  then crystal 
system is

	 (a)	 cubic crystal system
	 (b)	 monoclinic
	 (c)	 triclinic
	 (d)	 tetraclinic

	10.	 Which of the following is correct for an ortho-
rhombic crystal system?

	 (a)	 a b g= = = ≠ ≠90 and a b c
	 (b)	 a b g= = = ≠ =90 and a b c
	 (c)	 a b g= = = ≠ ≠90 120,  and a b c
	 (d)	 a b g= = ≠ ≠ ≠90 90,  and a b c

	11.	 The coordination number in case of simple 
cubic crystal lattice is

	 (a)	 12	 (b)	 2
	 (c)	 6	 (d)	 1

	12.	 In a simple cubic lattice the ratio d100 : d110 : d111 is

	 (a)	 6 : 3 : 1	 (b)	 3 6 1: :

	 (c)	 6 3 2: : 	 (d)	 6 3 2: :
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	13.	 Which of the following Bravais lattice is not 
found in a cubic crystal?

	 (a)	 Simple cubic	 (b)	 Face centered
	 (c)	 Body centered	 (d)	 Base centered

	14.	 The packing fraction of a diamond crystal 
structure is

	 (a)	 34%	 (b)	 52%
	 (c)	 68%	 (d)	 74%

	15.	 Which one of the following unit cell is a primi-
tive cell?

	 (a)	 Simple and cubic	 (b)	 BCC
	 (c)	 FCC	 (d)	 None of the above

	16.	 The packing factor of FCC structure is
	 (a)	 52%	 (b)	 68%
	 (c)	 92%	 (d)	 None

	17.	 The number of atoms per unit cell in BCC is
	 (a)	 1	 (b)	 2
	 (c)	 4	 (d)	 8

	18.	 The number of atoms per unit cell in FCC is
	 (a)	 1	 (b)	 2
	 (c)	 4	 (d)	 8

	19.	 The atomic packing fraction for a face centered 
cubic cell is

	 (a)	 0.34	 (b)	 0.52
	 (c)	 0.68	 (d)	 0.74

	20.	 Relation between atomic radius R and lattice 
constant a in a body centered cubic cell is

	 (a)	 R a= / 2 	 (b)	 R a= 3 4/
	 (c)	 R a= 3 2/ 	 (d)	 R a= / 2 2

		  Short Answer Type Questions

	 1.	 What is a crystalline solid?
	 2.	 Define crystal structure.
	 3.	 What are crystal and Bravais lattices?
	 4.	 What is primitive cell?
	 5.	 What are plane lattice and space lattice?
	 6.	 Define Miller indices.

	 7.	 Explain reciprocal lattice.
	 8.	 What do you understand by Laue’s method?
	 9.	 Explain Bragg’s law.
	10.	 What do you mean diffraction of X-rays?
	11.	 Write the conclusion of Laue’s method.

		  Long Answer Type Questions

	 1.	 Explain crystalline and amorphous solids.
	 2.	 Define crystal structure, crystal lattice and 

Bravais lattice. Also describe how atoms are 
arranged in cubic crystal.

	 3.	 What do you understand by crystal systems? 
Explain 14 types of space lattices.

	 4.	 Explain simple cubic, base-centered cubic 
structure and face-centered cubic structures.

	 5.	 What is crystal structure? Explain its types.
	 6.	 Describe hexagonal close pack structure.
	 7.	 What are Miller indices? How are they 

obtained?

	 8.	 What do you mean by reciprocal lattice?
	 9.	 Explain diffraction of X-rays by Laue’s crystal 

diffraction.
	10.	 What are Laue spots? Explain diffraction of 

X-rays by Laue experiment.
	11.	 What is Bragg’s law? Explain how the wave-

length of given X-rays beam is determined.
	12.	 Describe Bragg’s spectrometer and explain how 

it is used to study the crystal structure.
	13.	 Derive Bragg’s equation for reflection of X-ray 

by crystal planes.
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		  Numerical Problems 

	 1.	 Calculate Miller indices of a plane which inter-
cepts the three axes in ratio 2a : 4b : 1c, where 
a, b, c are primitive lattice translation vectors. 

	 2.	 Determine interplanar spacing of a lattice plane 
in a simple cubic lattice with edge 1 Å which 
cuts the axes in intercepts ratio 2:3:4. 

	 3.	 In Bragg’s reflection for X-ray a reflection was 
found at 30° glancing angle with lattice planes 
of spacing 1.87 Å. If this is second-order reflec-
tion, calculate the wavelength of X-rays.

		  Answers

Multiple Choice Questions
  1.   (a)
  2.   (b)
  3.   (a)
  4.   (d)

	 5.	 (b)
	 6.	 (c)
	 7.	 (a)
	 8.	 (c)

	 9.	 (b)
	10.	 (a)
	11.	 (c)
	12.	 (d)

	13.	 (d)
	14.	 (a)
	15.	 (a)
	16.	 (d)

	17.	 (b)
	18.	 (c)
	19.	 (d)
	20.	 (b)

Numerical Problems

  1.   (4 2 8) 	 2.	 0.13 Å 	 3.	 0.935 Å
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	 9.1	 Introduction

So far we have restricted ourselves to a discussion of the electric field in free space or on the surface of a 
conductor. Although we are familiar with dielectrics studied in the earlier classes, but have not discussed 
how they react in the presence of applied external electric fields. In this chapter, we shall study the effect of 
dielectric materials under the action of external electric field. First of all, we have to be familiar with matter. 
Matter of course comes in many forms − solids, liquids, gases, metals, etc. Basically, dielectrics are non-
conducting materials like insulators. So first of all we have to know the difference between dielectric and 
insulator. There is a slight difference between dielectric and insulator which is the function they perform. 
The main function of a dielectric material is to store electrical energy in the form of potential energy while 
the function of an insulator is to obstruct of flow of current.

In dielectric or insulator, positive and negative charges are tightly bound and do not contain any free 
charge carriers for conduction. If these materials are subjected to an external electric field, positive and 
negative charges are displaced from their equilibrium position and they form electric dipoles, which are 
responsible for the characteristic behavior of dielectric materials as shown in Fig. 1. On the basis of the 
interaction of the field with the dielectric, linear, homogeneous and isotropic are the types of dielectric.

Let us see what happen if dielectric materials are placed between the plates of a parallel plate capacitor. 
The answer is: The capacitance of the capacitor increases. This is due to the polarization of dielectric materi-
als, where positive charges shifting slightly towards one side and the negative charges towards the other side; 
this causes the formation of electric dipoles. As a result, an additional field 

�
E1 is generated due to induced 

charges of dielectric slab which opposes the applied external electric field 
�
E0. Thus, the resultant electric field �

E  decreases as a result of the capacitor increases:

	
�
E  = 

� �
E E0 1− � (9.1) 

•	 Dielectric constant and polarization of dielectric 
materials.

•	 Types of polarization.
•	 Polarizability.
•	 Equation of internal fields in liquid and solid 

(one-dimensional).

•	 Clausius−Mossoti equation.
•	 Frequency dependence of dielectric constant.
•	 Dielectric losses.
•	 Important applications of dielectric material.

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

Dielectrics9
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Charge

Resultant electric field  E = E0 – E1

Applied
electric
field(E0)

Electric dipoles produce field E1

−+ −+ −+
−+ −+ −+
−+ −+ −+

−+ −+ −+
−+ −+ −+
−+ −+ −+

−+ −+ −+
−+ −+ −+
−+ −+ −+

+Q −Q

Figure 1  Polarized molecules in presence of external electric field.

	 9.2	 Dielectric Constant

We have studied that capacitance C of a parallel plate capacitor having area A, permittivity e  and distance d 
between the plates can be expressed as

	
C

A
d

= e
� (9.2)

If the medium is air, then the capacitance C0 of the same capacitor is given as

	
C

A

d0
0=

e
� (9.3)

where e0 is the permittivity of the free space. From Eqs. (9.2) and (9.3) we can write

	

C
C0 0

= e
e

� (9.4)

But we know that e e e/ r0 =  where e r is relative permittivity; it is also known as dielectric constant K.
Thus, dielectric constant is the ratio of the capacitance of the capacitor filled with dielectric material to the 

capacitance of the capacitor with air medium for the same capacitor.
If we talk about electric field and potential difference then the dielectric constant of the material can be 

given as

	
K

C
C

E

E

V

V
= = = = =e e

er
0 0

0 0 � (9.5)

	 9.3	 Polar and Non-Polar Molecules

We have discussed in Section 9.1 that the molecular positive and negative charges in equal magnitudes are 
displaced from their equilibrium position. The positive charges are concentrated at a single point called 
center of gravity of the positive charges; and the negative charges are concentrated at other single point 
called center of gravity of negative charges.
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When centers of gravity of positive and negative charges coincide, the molecule is said to be non-polar.  
The non-polar molecules have zero permanent dipole moment due to symmetrical structure. Some examples of 
non-polar molecules are H2, N2, Cl2, O2,CCl4, BF3, CO2, etc. as shown in Fig. 2. 

When the centers of gravity of positive and negative charges do not coincide but are rather separated by some 
distance, the molecule is said to be polar. The polar molecules have permanent dipole moment due to non-symmetrical 
structure. Some examples of polar molecules are H2O, HCl, NH3, CH3Cl, CO, etc. as shown in Fig. 2.

Non-polar

Non-polar

Polar 

H CI
CI

H

H

H
H

F

FF

B

H

N

CI

C1

CI CI

C

C

Polar 

Polar 

H

Figure 2  Structure of polar and non-polar molecules. 

	 9.4	 Dielectric Polarization

When a dielectric material is subjected to an external electric field then dipoles are created. These dipoles 
acquire an induced electric dipole moment due to the displacement of charged particles in the direction of 
the applied external electric field. This induced dipole moment per unit volume is called polarization and the 
materials are said to be polarized.

It has been observed that induced dipole moment p is directly proportional to the applied external 
electric field, that is, 

	 p E= ⋅a � (9.6)

where a  is known as proportionality constant and is said to be atomic or molecular polarizibility. If N is the 
total number of atoms per unit volume then according to the definition of polarization (P)

	 P N p N E= ⋅ = a � (9.7)

	 9.5	 Types of Polarization

There are four types of polarization based on different atomic mechanisms:

	 1.	 Electronic polarization.
	 2.	 Ionic polarization.
	 3.	 Orientational polarization.
	 4.	 Space charge polarization.

These will be discussed in the following subsections.
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9.5.1  Electronic Polarization
Electronic polarization occurs due to displacement of electron clouds from the nucleus. Usually in an atom, 
nucleus and electron clouds are tightly attached and electrons revolve around the nucleus. If the same atom 
is subjected to an external electric field then center of electrons cloud and positive nucleus are displaced due 
to Lorentz force till it is equal to a Colombian force developed between them as shown in Fig. 3. Let the 
center of electrons cloud be displaced with x distance from center of positive nucleus.

Applied field, (E ≠ 0)No field, (E = 0)

+ +−

Figure 3  Displacement of electron clouds from nucleus in presence of electric field.

Suppose if the charges on electron clouds and nucleus are –Ze and +Ze, respectively. Then the volume 
charge density is

	
r

p
= = −Charge

Volume

Ze

R( / )4 3 3 � (9.8)

where R is the radius of the sphere. In the presence of external electric field induced charge due to 
displacement

	 Charge Volume= × r = × −4

3

3

4
3

3p
p

x
Ze
R  

= −Ze
x
R

3

3 � (9.9)

Hence, Colombian force due to induced charge is

	 Colombian force = 
1

4 0

3

3pe
( )Ze Ze

x

R
−







� (9.10)

Since Lorentz force must be equal to Colombian force, so

	 − =ZeE  
1

4 0

3

3pe
( )Ze Ze

x

R
−






� (9.11)

	
⇒ =x

R E

Ze

4 0
3pe

� (9.12)

According to the definition of dipole moment

	 pe = Charge Displacement×  = ×Ze
R E

Ze

4 0
3pe

� (9.13)

We know that

	 P Np R NEe e= = 4 0
3pe � (9.14)

Thus Eq. (9.14) represents that electronic polarization or polarizing vector is directly proportional to the 
applied external electric field, that is

	 P Ee ∝ � (9.15)

or	 P N Ee e= a � (9.16)
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where N is the total number of atoms per unit volume and ae  is the electronics polarizibility and it is  
temperature independent.

Now comparing Eqs. (9.14) and (9.15) we get

	 a pee = 4 0
3R � (9.17)

9.5.2  Ionic Polarization
Ionic polarization occurs due to the displacement of ions under the action of external electric field which 
gives rise to a net dipole moment as shown in Fig. 4. It has been observed that dipole moment of ionic 
materials due to ionic polarization is directly proportional to the applied external electric field:

	 p Ei ∝ � (9.18)

	 p Ei i= a � (9.19)

where a i is known as ionic polarizibility and it is also temperature independent. If N is the total number of 
atoms per unit volume, then the ionic polarization is given by

	 P N Ei i= a � (9.20)

Applied field (E ≠ 0)No field (E = 0)

ad

+ +− −

Figure 4  Ionic polarization.

For most of the materials the ionic polarizibility is less than the electronic polarizibility:

	
a ai e= 1

10
� (9.21)

9.5.3  Orientational Polarization
In absence of an external electric field, atoms or molecules are randomly oriented. Hence, the net dipole 
moment of the material is zero. However, in presence of external electric field, a torque is exerted on the 
dipoles and the dipoles tend to align themselves along the direction of applied external electric field and 
the dielectrics get polarized as shown in Fig. 5. This type of polarization which occurs in polar substances is 
known as orientational polarization and is represented by P0. 

Applied field (E ≠ 0)No field (E = 0)

Figure 5  Orientational polarization.
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It has been observed that dipole moment of polar molecules due to orientational polarization is directly 
proportional to the applied external electric field:

	 p E0 ∝ � (9.22)

	 ⇒ =p E0 0a � (9.23)

where a 0 is known as orientational polarizibility and it is highly temperature dependent; it decreases with 
increase in temperature. If N is the total number of atoms per unit volume, then the orientational polariza-
tion is given by

	 P N E0 0= a � (9.24)

The orientational polarizability a 0 in terms of Boltzmann’s constant k and absolute temperature T is

a 0

2

0

3
=

p

kT

9.5.4  Space Charge Polarization
The space charge polarization is nothing but redistribution of charges in the presence of applied external 
electric field which is not much significant in most of the dielectric materials. It has been observed that 
dipole moment of dielectric materials due to space charge polarization is directly proportional to the applied 
external electric field:

	 p Es ∝ � (9.25)

	 ⇒ =p Es sa � (9.26)

where a s is known as space charge polarizibility and it is also temperature dependent. If N is the total 
number of atoms per unit volume, then the space charge polarization is given by

	 P N Es s= a � (9.27)

	 9.6	 Displacement Vector

We know that the electric field strength E at a distance r from a charge q is given by

	

� �
�E
qr

r
= 1

4 3pe
� (9.28)

From this equation we can say that electric field strength 
�
E  depends not only on position 

�
r  and magnitude 

of the charges but also on dielectric medium permittivity e  in which the field is measured. It is desirable to 
associate the charge q with an additional second electrical quantity which will be independent of medium 
involved. This second electrical quantity is known as electric displacement vector and is represented by 

�
D. 

The unit of displacement vector is coulomb/m2:

	

� �
�D
qr

r
= 1

4 3p
� (9.29)

Comparing Eqs. (9.28) and (9.29) we get

	
�

D = e  
�
E � (9.30a)

or	                   
�

D = e e0 r  
�
E         (for free space er = 1)� (9.30b)
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	 9.7	 Relation between D, E and P

We know that the resultant field inside the dielectric material is

	
�
E  = 

� �
E E0 1− � (9.31)

where 
�
E  is the resultant electric field, 

�
E0 is the applied field and 

�
E1 is the field create by dielectric material. 

If s  and ′s  are the surface charge density of free and bound (induced) charges on the capacitor plates 
and dielectric within the plates respectively, then the magnitudes of electric field due to surface charge 
densities are

	
E0

0

= s
e

  and  E1
0

=  s
e

′
� (9.32)

Now putting the value of E0 and E1 from Eq. (9.32) in Eq. (9.31) to determine the field E we get

	
E = −s

e
s
e0 0

′
  or  e s s0E = − ′ � (9.33)

Mathematically, s = q A′/  and if we multiply and divide by some finite distance, say d, then the product 
of charge and distance is dipole moment and the product of area and distance is volume. Hence, dipole 
moment per unit volume is known as polarization. So surface charge density s ′ is equal to the magnitude 
of polarization P. Thus Eq. (9.33) becomes

	 s e= +P E0 � (9.34)

From Eq. (9.29) we can say that magnitude of displacement vector D represents the surface charge density 
of free charges. Therefore Eq. (9.34) takes the form

	 D E P= +e0 � (9.35)

Thus, D is related to only free charges, P is related to bound charges; however, E is related to both free and 
bound charges.

	 9.8	 Relation between P and K

Since surface charge density s ′ is equal to the magnitude of polarization P hence

	
E

P
1

0 0

= = s
e e

′
� (9.36)

We know that �
E  = 

� �
E E0 1−  ⇒ = −E E

P
0

0e
 

⇒ = −





P E
E

E
e0

0 1  

	 ⇒ = −P E Ke0 1( )      [using Eq. (9.5)]� (9.37)

This is the required expression for polarization vector P and dielectric constant K. This indicates that in free 
space where K = 1, the polarization P is zero.
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	 9.9	 Relation between Electrical Susceptibility be and K

We know that polarization is directly proportional to the field and is given by the following expression:

	 P E= ce � (9.38)

Substituting the values of Eqs. (9.30a) and (9.38) in Eq. (9.35) and after solving we get

	
e

c
er = +1

0

e � (9.39)
This is the required relation.

	 9.10	 Internal Fields in Liquids and Solids

The electric field is very much affected by the presence of external electric field. When a field is applied to a 
dielectric, their atoms get polarized and become electric dipoles, which also sets up their own electric field. 
The atoms in the material are closely packed and every atom is surrounded by many other atoms. Therefore, 
the field at any atomic point is due to the resultant field of all neighboring electric dipoles and the external 
applied field. This total electric field responsible for producing electric dipole at site of atom is called inter-
nal or local field. Thus, local or internal field at any point in the dielectric can be defined as the sum of the 
external field and all other effective fields produced by the induced electric dipoles.

To understand the local field, we consider that a dielectric material is placed between the parallel plate 
capacitor. Due to the presence of external electric field, atoms or molecules of dielectric materials get 
polarized. From Fig. 6, we can note that the field of consists of three components:

E0

E2

r

E1

E

−
−
−
−
−

+
+
+
+
+

++
+
+

+

+
+
+
+

−
−
−
−

−

−
−
−
−

Figure 6  Uniform polarized dielectric between the plates of capacitor.

	 E E E Ei = + +0 1 2� (9.40)

E0 is the external field due to the free charges and is given by

	
E0

0

=
s
e

f � (9.41)

E1 is the field due to the bound charges on the outer surface of dielectric and is given by

	
E

P
1

0 0

=
−

=
s
e e

b � (9.42)

E2 is the field at O due to bound charges on the surface of sphere and is given by

	
E

qd

r2
0

3

1

4
=

pe
� (9.43)

where q is the average bound charges and d is the vector from the negative center to the positive center. But 
we know that

	 qd p P V= = ×  = ×P r
4

3
3p � (9.44)

Chapter 9.indd   188 4/14/2015   8:26:28 AM



9.11  Clausius−Mossotti  Equation� •   189

So we have

	
E

P r
r2

0

3

3

1

4

4 3=
pe

p( )/

 
= P

3 0e
� (9.45)

Now substituting the values of E0, E1 and E2 from Eqs. (9.41), (9.42) and (9.45), respectively, in Eq. (9.40) 
we get

	
E

D P P
i = − +

e e e0 0 03
� (9.46)

	        ⇒ =
+

− +E
E P P P

i

e
e e e

0

0 0 03
    [D E P= +e0 ]� (9.47)

	
⇒ = +E E

P
i 3 0e

� (9.48)

This is the required expression for internal field or local field. It is also known as Lorentz field equation for 
local field.

	 9.11	 Clausius−Mossotti Equation

Clausius–Mossotti equation basically provides a relation between dielectric constant of a dielectric material 
with its atomic polarizibility. It has been observed that in the presence of local field Ei , each atom in polar-
ized by an amount
	 p E= a i � (9.49)

where a  is the polarizability of the atoms or molecules. According to the definition of polarization 

	 P Np N E= = a i � (9.50)
From Eq. (9.48)

	
P N E

P= +








a

e3 0

� (9.51)

Using relation 

	 P E= −e e0 1( )r  ⇒ =
−

E
P

e e0 1( )r

� (9.52)

we get

	
P N

P P=
−

+








a

e e e0 01 3( )r

� (9.53)

or

	

e
e

a
e

r

r

−
+

=
1

2 3 0

N
� (9.54)

Equation (9.54) is known as Clausius−Mossotti equation.
In terms of Avogadro number

	
N

Na
M

= r
� (9.55)

where r is the density and M is the molecular weight of the material. Then,

	

e
e

r a
e

r

r

−
+

=
1

2 3 0

Na
M

� (9.56)

	 ⇒
−
+







=M Na
r

e
e

a
e

r

r

1

2 3 0

� (9.57)
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Thus, Clausius−Mossotti equation relates microscopic polarization a to macroscopic dielectric constant 
(er). It is applicable to gases and neutral liquids.

According to the electromagnetic theory, dielectric constant er of the material is equal to the square root 
of the refractive index:

	 er = n � (9.58)

Thus, Clausius−Mossotti equation is also applicable to the optical frequency range and becomes

	

M n

n

Na

r
a

e

2

2
0

1

2 3

−
+







= � (9.59)

	 9.12	 Frequency Dependence of the Dielectric Constant

If the dielectric is subjected to an external alternating  electric field, its polarization changes according to 
the field. The total polarization is the contribution of electronic, ionic and orientation polarizations which 
are individually frequency-dependent. Hence total polarization depends on how the atoms get oriented 
themselves with the applied field. The relative permittivity of dielectrics varies with the frequency of the 
field. When an electric field with certain frequency is applied to a dielectric, the electric dipoles are oriented 
themselves each time with the change of field. The average time taken by the dipoles to reorient themselves 
in the field direction in one complete cycle is known as relaxation time and reciprocal of the relaxation time 
is called relaxation frequency. The relaxation frequencies of different types of polarization mechanisms are 
different and any type of polarization mechanism will not continue if relaxation frequency of that is less 
than the frequency of electric field. The frequency-dependent dielectric constant curve is plotted in Fig. 7 
which tells the existence of different types of polarization at different frequencies. Following are some points 
regarding the curve:

	 1.	 Below the frequency of 106 Hz, all types of polarization contribute in total polarization, thus polariza-
tion follows the field reversal as a result. The dipoles align themselves along the direction of external 
electric field. 

	 2.	 In the frequency range 106 − 1011 Hz, dipoles fail to follow the field reversal, that is, orientational 
polarization ceases; thus the total polarization comes due to the ionic and electric polarization.

Frequency (Hz)
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Figure 7  The variation of dielectric constant as a function of frequency.
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	 3.	 In the frequency range 1011 − 1014 Hz, the contribution comes in the total polarization due to the 
electronic polarization.

	 4.	 For frequency > 1015 Hz, electric polarization fails to follow the field reversal; thus, the total polariza-
tion becomes zero and according to equation

e
er = +1

0

P
E

		  the dielectric constant becomes unity.

	 9.13	 Dielectric Loss and Loss Tangent

To understand the phenomenon of dielectric loss, we consider the case of charging and discharging of a 
capacitor. When a capacitor is charged through potential V then the amount of energy received by the 
capacitor is (1/2) CV 2. This amount of energy is stored as electrostatic potential energy (or polarization 
energy) in the dielectric medium placed between the plates of the parallel plate capacitor. During the dis-
charging of the capacitor, it is expected that the same amount of energy should be released. However, it has 
been observed that only a part of energy is released while rest is dissipated in the form of heat energy. Thus, 
we can say that the amount of energy dissipated in the form of heat by a dielectric medium under the action of 
external electric field is known as dielectric loss.

In order to determine dielectric losses we consider the permittivity as a complex number given by 

	 e e e∗ ′ ″= − i � (9.60)

The real part e ′ of Eq. (9.60) represents the ability of a material to be polarized by the action of external 
electric field. However, the imaginary part e ″  of the same equation is called loss factor.

We know that the applied field is

	 E E i t= 0 exp ( )w � (9.61)

where E0 is the amplitude of the electric field, w  is the angular frequency and t is the time. Thus, polariza-
tion P of the dielectric under the action of external electric field is

	
P E= Real part of ( )e ∗ � (9.62)

Now, substituting the values of e∗ and E from Eq. (9.60) and (9.61), respectively, in Eq. (9.62), we get

	 P i E i t= −Real part of [( ) exp( )]e e w′ ″ 0 � (9.63)

⇒ = − +P i E t i tReal part of [( ) (cos sin )]e e w w′ ″ 0

	 ⇒ = +P E t t0 ( cos sin )e w e w′ ″ � (9.64)

Consider
	 P E0 0cosd e= ′ � (9.65)

and	 P E0 0sind e= ″ � (9.66)

Substituting the values of E0e ′ and E0e ″  from Eqs. (9.65) and (9.66) in Eq. (9.64), we get

P P t t= +0 (cos cos sin sin )w d w d

	 ⇒ = −P P t0 cos( )w d � (9.67)

Dividing Eq. (9.66) by Eq. (9.65) we get

	
tand e

e
= ″

′
� (9.68)
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tan d  is known as loss tangent. It represents the loss of electrical energy in terms of heat and, therefore, it 
is also called the dissipation factor. Now differentiating Eq. (9.67) with respect to time, then the current 
passing through the dielectric is given by

i
dP
dt

d
dt

= = [P t0 cos( )w d− ]  or  i = − w P t0 sin( )w d−

Suppose i0 =w  P0. Then i = −i t0 sin( )w d− . Since power loss in dielectric is due to the imaginary part e ″ of 
the dielectric constant, therefore,

P V i PV= =e e w″ ″0 0 0 0 ⇒ =P CVe w″ 0
2       [P CV0 0= ]

	 ⇒ =P CVe w d′ 0
2 tan � (9.69)

This is the required expression for dielectric loss.

	 9.14	 Application of Dielectrics

Dielectrics are used in a number of electrical and electronics devices as per the property of the materials. 
Some examples where dielectrics are used are electrical bulbs, electrical insulators armature winding, iron 
electronics valves, switches and in capacitors.

		  Solved Examples

Example 1

Calculate the displacement vector D and electric permittivity in a dielectric material with dielectric 
constant 2.5 and polarization P = 2.1 × 10−8 C/m2. 

Solution: The polarization P of the material is related to its dielectric constant K or  er .  Now 

P E= −e e0 1( )r   and  e
e0E
D=

r

    [using Eq. (9.30b)]

So
D

P
=

−
e

e
r

r 1
Here er or K = 2.5 and P = 2.1 × 10−8 C/m2. So

D = × ×
−

= ×
−

−2 1 10 2 5

2 5 1
3 5 10

8
8. .

.
.  C/m2 

and                               e e= = × × = ×− −
0

12 122 5 8 85 10 22 13 10K . . .  C N m2 1 2− −  

Example 2

The electrical susceptibility of material is 1.4 × 10−10 C N m2 1 2− − . Find the dielectric constant and electric 
permittivity.
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Solution: The dielectric constant of the material is given by

e
c
er

e= + = + ×
×

=
−

−1 1
1 4 10

8 85 10
15 82

0

10

12

.

.
.  

e e= = × × = ×− −
0

12 1015 82 8 85 10 1 4 10K . . .  C N m2 1 2− −

Example 3

At 0°C and 1 atmosphere pressure, the dielectric constant of helium is 1.000074. Determine the induced 
dipole moment on each helium atom and electric polarization when the gas is subjected to an electric field 
strength of 200 V/m.

Solution: Here, we have K = 1.000074, Na = 6.02 × 1023, V  = 22.4 liters = 22.4 × 10−3 m3 and E = 200 V/m.  
Using Eq. (9.7) and (9.37), we get

P E K Np= − =e0 1( )

Therefore

p
E K

N

E K V

N
=

−
=

−e e0 01 1( ) ( )

a

  ∵N
Na

V
=





Thus, induced dipole moment on each helium atom is

p =
× × × − × ×

×
= ×

− −
−8 85 10 200 1 000074 1 22 4 10

6 02 10
48 84 10

12 3

23

. ( . ) .

.
. 440

 
Cm

The electric polarization is

P Np= = 8 85 10 200 1 000074 1 13 09 1012 14. ( . ) .× × × − = ×− −  Cm−2 

Example 4

The dielectric constant of sulphur is 1.000025. Determine the induced dipole moment on each sulphur 
atom when the gas is subjected in electric field strength of 200 V/m. The atomic weight and density of 
sulphur are 32 and 2.08 g cm−3, respectively.

Solution: Here we have

K  = 1.000025, Na = 6.02 × 1023, r  = 2.08 g cm−3 = 2.08 × 103 kg m−3, M = 32 and E = 200 V/m. Using 
Eqs. (9.7) and (9.37), we have

P E K Np= − =e0 1( )
Therefore

p
E K

N

E K M

N
=

−
=

−e e
r

0 01 1( ) ( )

a

  ∵N
N

M
=





a r

Thus, induced dipole moment on each sulphur atom is

p =
× × × − ×

× × ×
= ×

−8 85 10 200 1 000025 1 32

6 02 10 2 08 10
11 30 1

12

23 3

. ( . )

. .
. 00 40−

 
Cm
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Example 5

A dielectric material having 0.6 cm2 thickness and dielectric constant 7 is filled inside the plates separated 
by 1 cm and of area 100 cm2. If developed potential difference between the plates is 200 V then find out 
the value of D, E and P.

Solution: Here we have V0 = 200 V, d = 1 cm = 10 2−  m and K = 7. Electric field E0 between the plates of 
the capacitor is

E
V

d0
0

2
4200

10
2 10= = = ×−  V/m

Since K = E0/E, therefore

E = 
2 10

7
2 85 10

4
3× = ×.  V/m

Electric displacement is

D = K e0E  = 7 × 8.85 × 10−12 × 2 85 103. ×  = 1.76 × 10−7 Cm−2

and polarization is

P = (K − 1) e0E  = 6 × 8.85 × 10−12 × 2 85 103. ×  = 1.51 × 10−7 Cm−2

Example 6

Find the electrical susceptibility if dielectric constant of the insulator is 7 filled between the plates of the 
capacitor.

Solution: Here we have 

c e ee r= −0 1( ) = 8.85 × 10−12 (7 − 1) = 5.3 × 10−11 C N m2 1 2− −

Example 7

Consider a point nucleus +q surrounded by a uniformly charged spherical cloud −q of radius a. Calculate 
the atomic polarizability of such an atom. 

Solution: As we have discussed in the chapter, the nucleus will be shifted slightly to the right and electron 
cloud to the left in presence of an external electric field E. Now the field at a distance d from the center of 
a uniformly charged sphere is

E
qd

a
= 1

4 0
3pe

    or    p qd a E= = 4 0
3pe

Since p E= a , therefore
a pe= 4 0

3a
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Example 8

The number of atoms per unit volume of neon gas is 2.5 × 1026. If the radius of the neon gas is 0.53 A 
determine the polarizability and relative permittivity.

Solution: We have
a pe= = × ×4 4 3 140

3a .  8.85 × 10−12 × (0.53 × 10−10)3

= 1.6 × 10−41 Fm2

The relative permittivity

e
e

a
er

P

E

N E
E

= + = +1 1
0 0

Now substituting a pe= 4 0
3a  and after solving we get

e pr = + = + ×1 4 1 4 3 140
3Na .  × 2.5 × 1026 × (0.53 × 10−10)3 = 1 + 0.0004 = 1.0004

Example 9

The atomic weight and density of sulphur are 32 and 2.08 g/(Cm)3, respectively. Relative dielectric con-
stant of the atom is 3.8. If sulphur solid has cubic symmetry, determine electronic polarazibility.

Solution: In terms of Avogadro’s number, density and atomic weight, the Clausius−Mossotti equation 
becomes

M N

r
e
e

a
e

r

r

a−
+







=
1

2 3 0

⇒
×

−
+





 = ×

× × −

32

2 08 10

3 8 1

3 8 2

6 02 10

3 8 85 103

26

12.

.

.

.

.

a

After solving we get
a  = 3.28 × 10−40 Fm2

		  Short Answers of Some Important Questions

	 1.	 What do you understand by dielectrics?

		  Answer: Dielectrics are non-conducting mate-
rials like insulators.

	 2.	 What is the difference between dielectrics and 
insulators? 

		  Answer: There is a slight difference between 
dielectrics and insulators which is the func-
tion they perform. The main function of a 
dielectric material is to store electric energy in 

the form of potential energy while the func-
tion of an insulator is to obstruct of flow of 
current.

	 3.	 What is dielectric constant? 

		  Answer: Dielectric constant is the ratio of the 
capacitance of the capacitor filled with 
dielectric material to the capacitance of the 
capacitor with air medium for the same 
capacitor.

Chapter 9.indd   195 4/14/2015   8:27:22 AM



196   •� CHAPTER 9/Dielectrics

	 4.	 What do you understand by polarization? 

		  Answer: Induced dipole moment per unit 
volume is called polarization and the materials 
are said to be polarized. 

	 5.	 What do you understand by polar and non-
polar molecules?

Answer: When centers of gravity of positive and 
negative charges coincide, the molecule is said to 
be non-polar. The non-polar molecules have 
zero permanent dipole moment due to symmet-
rical structure. Some example are H2, N2, Cl2, 
O2, CCl4, BF3, CO2, etc. When the centers of 
gravity of positive and negative charges do not 
coincide, the molecule is said to be polar. The 
polar molecules have permanent dipole moment 
due to non-symmetrical structure. Some exam-
ples are H2O, HCl, NH3, CH3Cl, CO, etc.

	 6.	 Define electric dipole and electric dipole 
moment? 

		  Answer: A pair of equal and opposite charges 
separated by a small distance is known as an 
electric dipole. However the product of magni-
tude of one of the charges and the distance 
between the two charges is called the dipole 
moment.

	 7.	 What is internal field in dielectric?
		  Answer: Internal field or local field is the sum 

of external field and the field generated by 
dielectric molecules.

	 8.	 What is dielectric loss?
		  Answer: The amount of energy dissipated in 

the form of heat by a dielectric medium under 
the action of external electric field is known as 
dielectric loss.

		  Important Points and Formulas

	 1.	 Dielectrics are non-conducting materials like 
insulators.

	 2.	 The main function of a dielectric material is to 
store electric energy in the form of potential 
energy while the function of an insulator is to 
obstruct of flow of current.

	 3.	 On the basis of the interaction of the field with 
the dielectric, the various types of dielectric are 
linear, homogeneous and isotropic.

	 4.	 Dielectric constant is the ratio of the capaci-
tance of the capacitor filled with dielectric 
material to the capacitance of the capacitor 
with air medium for the same capacitor.

	 5.	 Induced dipole moment per unit volume is 
called polarization and the materials are said to 
be polarized: 

P N p N E= ⋅ = a
	 6.	 Electronic polarization occurs due to displace-

ment of electron clouds from the nucleus.
	 7.	 Ionic polarization occurs due to the displace-

ment of ions under the action of external 

electric field. For most of the materials the 
ionic polarizibility is less than the electronic 
polarizibility:

a ai e= 1

10

	 8.	 The orientational polarizability a 0 in terms of 
Boltzmann’s constant k and absolute tempera-
ture T is 

a 0

2

0

3
=

p

kT

	 9.	 Internal field E E
P

i = +
3 0e

	10.	 Clausius−Mossotti equation 
e
e

a
e

r

r

−
+

=
1

2 3 0

N

	11.	 The amount of energy dissipated in the form 
of heat by a dielectric medium under the 
action of external electric field is known as 
dielectric loss.
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		  Multiple Choice Questions

	 1.	 Dielectric is
	 ( a )	 conducting material
	 (b)	 non-conducting material
	 ( c )	 semiconducting material
	 (d)	 None of these

	 2.	 The difference between dielectric and insulator is
	 ( a )	 function
	 (b)	 electric field
	 ( c )	 current
	 (d)	 None of the above

	 3.	 The relation between flux density and electric 
field is

	 ( a )	 D = e0E	 (b)	 D = e/E
	 ( c )	 D = eE	 (d)	 D = E/e
	 4.	 Which of the following is a dielectric medium?
	 ( a )	 Aluminium	 (b)	 Copper
	 ( c )	 HCl and Water	 (d)	 Germanium

	 5.	 HCl and water have permanent dipole moment 
even in absence of external electric field due to

	 ( a )	 the difference in electronegativity
	 (b)	 internal field
	 ( c )	 magnetic field
	 (d)	 None of these

	 6.	 In a dielectric, the polarization is
	 ( a )	 exponential function of applied field
	 (b)	 logarithmic function of applied field

	 ( c )	 linear function of applied field
	 (d)	 None of these
	 7.	 The unit of dipole moment per unit volume is
	 ( a )	 C/m2	 (b)	 C/m3

	 ( c )	 C/m	 (d)	 None of these

	 8.	 The polarization that occurs in the frequency 
range 1012 Hz is

	 ( a )	 electronic	 (b)	 ionic
	 ( c )	 orientational	 (d)	 electronic and ionic

	 9.	 The relation between D, E and P is
	 ( a )	 D = e0E + P	 (b)	 D = eE +P
	 ( c )	 D = e0E − P	 (d)	 None of these

	10.	 Orientational polarization occurs in
	 ( a )	 polar liquids
	 (b)	 non-polar liquids
	 ( c )	 homogeneous solids
	 (d)	 heterogeneous solids

	11.	 Electronic polarization occurs in
	 ( a )	 ionic solids
	 (b)	 non-polar solids
	 ( c )	 elemental solids
	 (d)	 All of these

	12.	 The dielectric loss in a perfect dielectric is
	 ( a )	 zero	 (b)	 infinite
	 ( c )	 100	 (d)	 None of these

		  Short Answer Type Questions

	 1.	 What do you understand by dielectrics?

	 2.	 What are polar and non-polar molecules?

	 3.	 Define polarization in dielectric.

	 4.	 Name of different types of polarization.

	 5.	 What do you understand by internal fields?

	 6.	 What is displacement vector?

	 7.	 Write the relation between polarization and 
dielectric constant.

	 8.	 What do you understand by Clausius−Mossotti 
equation?

	 9.	 What is frequency dependence of dielectric 
constant?

	10.	 What are dielectric loss and loss tangent?
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		  Answers

Multiple Choice Questions

	 1.  (b)
	 2.  (a)
	 3.  (c)

	 4.  (c)
	 5.  (a)
	 6.  (c)

  7.  (a)
  8.  (b)
  9.  (a)

 10.  (a)
 11.  (d)
 12.  (a)

Numerical Problems

	 1.	 2.25 × 10−39 C-m
	 2.	 4, 35.4 × 10−12 C2N−1m−2 and 2.25 × 10−8 C/m2 

	 3.	 48.31%
	 4.	 7.54 × 10−40 Fm2

		  Long Answer Type Questions

	 1.	 What do you understand by dielectrics? 
Differentiate between polar and non-polar 
dielectrics.

	 2.	 What happens when dielectric material is 
placed in external electric field? Explain it.

	 3.	 What do you mean by polarization of sub-
stance? Write different mechanisms of polariza-
tion in a dielectric.

	 4.	 What do you mean by polarization in dielec-
trics? Explain different types of polarization.

	 5.	 Discuss polar and non-polar molecules with 
suitable examples.

	 6.	 What are internal fields? Discuss Lorentz field 
equation for a non-polar isotropic dielectric.

	 7.	 Derive the Clausius−Mossotti relation. Discuss 
the physical significance of Clausius−Mossotti 
relation.

	 8.	 Discuss frequency dependence of dielectric 
constant and dielectric loss. Give some applica-
tions of dielectrics.

		  Numerical Problems

	 1.	 The dielectric constant of helium atom at 0°C 
and 1 atmosphere pressure is 1.0000686. Find 
the dipole moment induced in each helium 
atom when the gas is in an electric field of 
intensity 100 V/m.

	 2.	 The electrical susceptibility of a material is 27.4 ×  
10−12 C2N−1m−2. What are the values of dielectric 
constant and the permittivity of the material? 
Also find the polarization if D = 3 × 10−8 C/m2.

	 3.	 Determine the percentage of ionic polarizabil-
ity in NaCl crystal which has the optical index 
of refraction and the static dielectric constant 
as 1.4 and 3.6, respectively.

	 4.	 Calculate the electronic polarizability of an 
Argon atom, given K  = 1.0023 at NTP and N 
= 2.7 × 1025 atoms/m3.
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	 10.1	 Introduction

Magnetism in a material arises due to the atomic orbital and spin motion of electrons. The electrons revolve 
in the orbit of atom which is equivalent to a tiny current loop and capable of producing magnetic field. 
Therefore, each atom of the material behaves as a small magnet with north and south poles and has a mag-
netic dipole moment. This magnetic dipole moment of the atom is not only because of the orbital motion 
but also due to the spin of electron. Normally in any material these atomic dipoles are randomly oriented 
with their magnetic dipole moments in different directions and hence there is no net magnetic moment in 
any direction which makes the material unmagnetized. However, in the presence of external magnetic field, 
the randomized nature of atomic dipoles is affected either by alignment or by the motion of electron. It all 
depends on the nature and property of the material.

On the basis of the magnetic behavior, materials are generally classified in the following three types:

	 1.	 Diamagnets. 
	 2.	 Paramagnets.
	 3.	 Ferromagnets.

Since magnetization, magnetic dipole moment, magnetic susceptibility, permeability and magnetic inten-
sity play an important role in studying the magnetic properties of materials, therefore first and foremost we 
have to discuss these before the classification of materials.

	 1.	 Magnetic field (B): The region around a magnet in which other magnets or an object made of mag-
netic material like iron, nickel or a moving charge particle experiences force is called a magnetic field.
The unit of magnetic field is Weber/m2.

	 2.	 Magnetic intensity (H ): When a magnetic material is placed in a magnetic field, it becomes magne-
tized. The capability of the magnetic field to magnetize a material is said to be the magnetic intensity 
of the field. The unit of H is Ampere/meter.

	 3.	 Magnetization (I ): When a ferromagnetic material is subjected to an external magnetic field, it expe-
riences a magnetic dipole moment mm. This magnetic dipole moment per unit volume of the material 
is known as magnetization or intensity of magnetization. Mathematically,

•	 Magnetization.
•	 Origin of magnetic moment.
•	 Diamagnetism, paramagnetism and 

ferromagnetism.

•	 Langevin’s theory for diamagnetic material.
•	 Phenomena of hysteresis and its applications.

LEARNING OBJECTIVES

After reading this chapter you will be able to understand:

Magnetic Properties of Materials10
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	 I
V

=
mm � (10.1)

Its unit is Ampere-turn/meter.

	 4.	 Magnetic permeability: It is the ratio of magnetic flux density B to the magnetic field intensity H and 
is denoted by m. So 

	
m = B

H

��
��� � (10.2)

		  Its unit is Weber/ampere-meter or Henry/meter. For free space

	
m0

0=
B

H

���
��� � (10.3)

		  From Eqs. (10.2) and (10.3), we get

	

m
m

m
0 0

= =B

B

��
��� r � (10.4)

	 5.	 Magnetic susceptibility: When a magnetic material is subjected to an external magnetic field, the 
material gets magnetization which is proportional to the applied magnetizing field. Hence magnetic 
susceptibility is the ratio of intensity of magnetization I to the magnetizing field intensity H and is 
denoted by cm. 

	
cm = I

H

�
��� � (10.5)

For vacuum cm = 0.

	 10.2	 Magnetic Dipole Moment due to an Electron: Bohr Magneton

We know that an electron not only spins, but also revolves in the orbits around the nucleus. This revolving 
electron can be treated equal to a tiny current loop. If an electron of charge −e revolves in the orbit of radius 
r and completes a round in time T then current at any point in the loop can be expressed as

	
I

e

T
= = −Charge

Time period
� (10.6)

	
⇒ = −

I
ew
p2

  ∵T =





2p
w

� (10.7)

If A is the area of the current loop then orbital magnetic dipole moment is

	 p IAm = = − ×e
r

w
p

p
2

2 = −e rw
2

2

	 (10.8) 

If the electron with mass m is linearly moving with speed v, then orbital angular momentum acquired by 
the electron is

	 L mvr mr= = 2w � (10.9)
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From Eq. (10.9) the orbital magnetic dipole moment is

	
p

eL
mm = −

2
� (10.10)

Negative sign indicates induced magnetic dipole moment. According to Bohr’s concept, angular momen-
tum for revolving electrons should be equal to an integral multiple of h/2p:

	
p

e
m

n
h

m = − 



2 2p

 ⇒ = − 





p n
eh

mm 4p
� (10.11)

The quantity eh m/4p  is known as a Bohr magneton ( )pB :

	
p

eh

mB = 



4p

 = 9.27 × 10−24 Ampere-m2� (10.12)

	 10.3	 Classification of Materials

10.3.1  Diamagnetic Materials 
There are certain magnetic materials whose atoms do not have permanent magnetic dipole moment. The 
electrons in the atomic orbit are generally in even numbers and moving in such a way that the magnetic 
moment of one electron is cancelled by the other. Hence net magnetic moment of atom and material is 
always zero. When the external magnetic field is applied to such materials, the speed of that electron which 
produces magnetic moment in opposite direction of applied field increases and the speed of other electron 
which produces magnetic moment in the direction of applied field decreases. Hence, the net magnetic 
moment is developed in the opposite direction of applied field and the material is weakly magnetized in the 
opposite direction of the applied magnetic field. Since there is no orientation of atomic dipole, therefore 
diamagnetism is independent of temperature. Further important points regarding diamagnetism are:

	 1.	 If these materials are placed in the presence of an external magnetic field, they are feebly magnetized in 
the direction opposite to that of the applied eternal magnetic field.

	 2.	 Since atomic number of these materials is generally even, therefore the net magnetic moment is zero.
	 3.	 Diamagnetism arises due to orbital motion of electrons.
	 4.	 Magnetic susceptibility of these materials is low and negative and also independent of temperature.
	 5.	 Relative permeability of these materials is less than 1.
	 6.	 Magnetic moment is low and in opposite direction to the applied magnetic field.
	 7.	 Ag, Cu, Au, Bi, etc. are examples of diamagnetic materials. 

10.3.2  Paramagnetic Materials
Paramagnetic materials are those materials whose atoms have permanent magnetic dipole moment. In 
absence of any external magnetic field, the atomic dipoles are randomly oriented in different directions. As 
a result, net magnetic moment of these dipoles is zero. On the application of external magnetic field, these 
atomic dipoles are aligned to some extent in the direction of applied field and produce a weak net magnetic 
moment in the direction of applied magnetic field. Hence the material is weakly magnetized in the direction 
of applied magnetic field. Further important points regarding paramagnetism are:

	 1.	 If these materials are placed in the presence of an external magnetic field, they are feebly magnetized in 
the direction of the applied external magnetic field.
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	 2.	 Since the atomic numbers of these materials is generally odd, therefore the net magnetic moment is 
not zero.

	 3.	 Paramagnetism arises due to spin motion of electrons.
	 4.	 Magnetic susceptibility of these materials is low but positive and inversely proportional to the absolute 

temperature (T ):

	
cm = C

T
� (10.13)

		  Here C is Curie constant.
	 5.	 Relative permeability of these materials is greater than 1.
	 6.	 Magnetic moment is low but along the direction of the applied magnetic field.
	 7.	 Mn, Na, Al, Pt, etc. are examples of paramagnetic materials.

10.3.3  Ferromagnetic Materials
The atoms of these materials like paramagnetic material have permanent magnetic dipole moment. The 
similar natures of dipoles are grouped in small region called domain. These domains have a net magnetic 
moment in a particular direction. In the material, there are large number of domains having magnetic 
moments in different directions which makes the net magnetic moment of entire material zero. When the 
external magnetic field is applied to such ferromagnetic materials, then either the domains are oriented in 
such a way so as to align with the direction of field or the size of favorable domain increases. Generally, in 
strong applied field the domains are aligned and in weak field the size of favorable domain increases. In both 
the cases, the material is strongly magnetized in the direction of applied external magnetic field. Further 
important points regarding ferromagnetism are:

	 1.	 If these materials are placed in the presence of an external magnetic field, they are strongly magnetized 
in the direction of the applied external magnetic field.

	 2.	 Due to unpaired electrons, the atoms of ferromagnetic materials have net magnetic dipole moment.
	 3.	 Ferromagnetism arises due to formation of domains.
	 4.	 Magnetic susceptibility of these materials is high and positive and also inversely proportional to the 

absolute temperature:

	
cm

c

=
−
C

T T
� (10.14)

		  where Tc is Curie temperature.
	 5.	 Relative permeability of these materials is much greater than 1.
	 6.	 Magnetic moment is high but along the direction to the applied magnetic field.
	 7.	 Fe, Ni, Co, etc. are examples of paramagnetic materials.

	 10.4	 Langevin’s Theory of Diamagnetism

The theory of diamagnetism was given by Langevin in 1905, on the basis of electron theory using the fact 
that diamagnetism arises due to the orbital motion of electrons. We have already discussed in Section 9.5.1 
that the electron revolves around the nucleus and revolving of electron is equivalent to the current loop. So 
the current at any point in the loop is expressed as

	 I
e

T
= = −

Charge

Time period
� (10.15)
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But T = 2p w/ . Hence,

	 I
e= − w
p2

� (10.16)

If A is the area of the current loop then orbital magnetic moment is given as

p IAm =

Now

I
e

r= − ×w
p

p
2

2

where r is the radius of current loop
So

	
p

e r
m = −

w
2

2

� (10.17)

Since electron revolves in a circular orbit, therefore centripetal force acts along the radial inward direction

	
F

mv
r

mr= =
2

2w  [v r= w ]� (10.18)

Under the action of an external magnetic field, an additional force (i.e. Lorentz force) acts on the electron in 
the radial direction (see Fig. 1); this force is denoted by Fm and is mathematically expressed as

	 F evB er Bm = = w � (10.19)

where e is the charge on electron, r is the radius of current loop, w is angular frequency and B is the mag-
netic flux density.

B
Bw + ∆w

n + ∆nw
pm − ∆pm

pm + ∆p

n − ∆n

w − ∆w

Figure 1  Lorentz force.

Thus, the resultant force acting on the revolving electron is

	 F F F′ = ± m
� (10.20)

where ‘+’ ve sign stands for radially inward and ‘−’ ve for radially outwards directions. If Δw is a charge in 
angular frequency under the action of external magnetic field, then

	 F mr′ = +( )w w∆ 2 � (10.21)
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Using Eqs. (10.19), (10.20) and (10.21), we get

mr mr er B( )w w w w+ = +∆ 2 2

⇒ + + = +mr mr mr mr er Bw w w w w w2 2 22∆ ∆

Since, w  >> ∆w , ∆w 2 can be neglected. So

mr mr mr er Bw w w w w2 22+ = +∆

	
⇒ =∆w eB

m2
� (10.22)

Now, change in magnetic moment in presence of an external magnetic field is

∆ ∆p e rm = − 1

2
2w

⇒ = −∆p
e r
m

Bm

1

4

2 2

Thus, the total magnetic moment in the presence of external magnetic field is

	
p pm m= ∑ ∆  or p

e r

m
Bm = −





∑ 1

4

2 2

� (10.23)

If n is the total number of atoms/unit volume, then magnetization of unit volume is

	
I np

ne B
m

r= = − ∑m

2
2

4
� (10.24)

But we know that B H= m0 and hence

	
I

ne H

m
r= − ∑

2
0 2

4

m
� (10.25)

⇒ = − ∑I
H

ne

m
r

2
0 2

4

m

According to the definition of susceptibility

	
c

m
m = = − ∑I

H

ne

m
r

2
0 2

4
� (10.26)

Equation (10.26) is the required expression for the susceptibility of diamagnetism. From the above equation 
we can say that the susceptibility of diamagnetic material is negative and temperature independent.

	 10.5	 Hysteresis

When a ferromagnetic material is subjected to an external gradually increasing magnetic field, the magneti-
zation of the material increases in the direction of the field and reaches a saturation point. It decreases with 
the decrease of external field but retains some magnetization even if the field is completely removed. Now 
when the direction of external field is reversed and it increases gradually, the material magnetizes in the 
reverse direction. After reaching saturation point of magnetization, if the external field is further reduced to 
bring it at zero value, the material still retains some magnetization in the direction opposite to the previous 

Chapter 10.indd   204 4/14/2015   8:28:38 AM



10.7   Hysteresis Loss in B−H Curve� •   205

one. So it can be said that the magnetization is always lagging behind the field. This lagging of magnetization 
behind magnetic field is called hysteresis and a curve plotted between the magnetization I and magnetizing field H 
is known as hysteresis curve (see Fig. 2). In complete round of the magnetization of the material, some energy 
is left in the material which is later lost as heat. This loss of energy is known as hysteresis loss which is equal 
to the area enclosed by the closed hysteresis curve or loop.

In opposite directionSaturation in opposite
direction

in opposite direction

Saturation
Intensity of
magnetization

Magnetizing field Magnetizing field
H−H

Coercivity

Retentivity

I

−I

O

e

f

a

b

c

d

Figure 2  Hysteresis curve.

In this context, a ferromagnetic material is placed in a magnetizing field H. If we increase H, then mag-
netization I increases but not uniformly and goes to maximum value of I at a point a as shown in Fig. 2. 
At point a, intensity of magnetization does not increase on further increasing H. This is the condition of 
magnetic saturation. If H now decreases, I also decreases but it follows a new path ab instead of original path 
oa. When H reduces to zero, I still has some value which is equal to ob and is known as retentivity (the mag-
netism that remains in the material after removing the magnetizing field is called retentivity or rememance). 
If the direction of the magnetizing field is increased in negative direction of the field then magnetization 
traces the path bc and becomes zero at point c; the value oc is called coercivity or coercive force of the mate-
rial. Further, if we increase H, saturation point is also observed. Finally, if we reverse the direction of the 
magnetizing field, the specimen traces the path along defa. Thus, the closed loop abcdefa is obtained which 
is called the hysteresis curve (see Fig. 2).

	 10.6	 Hysteresis Loss

In ferromagnetic materials the spontaneously magnetized domains play an important role for the magneti-
zation of the specimen. In presence of an external magnetic field, the domains of these materials align them-
selves along the direction of the applied magnetic field. In this alignment process, the specimen absorbs 
some energy; one can expect that the same amount of energy should be released when we remove the 
magnetizing field. However, the supplied energy to the specimen is not fully recovered on removing of field and 
remains in the specimen. This unrecovered energy which may be later lost as heat is called hysteresis loss and equal 
to the area of hysteresis loop. 

	 10.7	 Hysteresis Loss in B−H Curve

Let us consider a ring of ferromagnetic material having N turns, cross-sectional area A, permeability m  and 
circumferential length l. If the coil produces magnetic induction B in presence of the current I then the total 
flux associated with the coil is 

	 fm = NBA � (10.27)
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The magnetic field due to the current is

	
H

Ni
l

=  ⇒ =i
Hl
N

� (10.28)

We know that induced e.m.f. is given by

	
e

d

dt
NA

dB
dt

= − = −
fm � (10.29)

The work done dw in presence of the current is

	 d eidtw = � (10.30)

Now putting the values of e and i from Eqs. (10.29) and (10.28) in Eq. (10.30), we get

d AlHdBw =

In opposite directionSaturation in opposite 
direction

in opposite direction

Saturation

H−H
Magnetizing field Magnetizing field

Coercivity

Retentivity

B or I

−I or B

O

s p
qr

c f

e

d

a

b

Figure 3  Hysteresis loss in B − H (or I  − H) curve.

Since,  Al is the volume, hence the work done per unit volume

	
dw

AlHdB
Al

HdB= = � (10.31)

From Fig. 3 area of the shaded strip pqrs is HdB. Thus, the work done per unit volume for a complete cycle 
(hysteresis loss) is given by integrating Eq. (10.31) from B1 to B2:

	
w dw

B

B

= ò
1

2

�

	 Hysteresis loss = HdB = Area of the B  − H curve� (10.32)

	 10.8	 Hysteresis Loss in I−H Curve

We know that

	 B H I= +m0( ) � (10.33)

Differentiating the above equation, we get

dB dH dI= +m0( )
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Multiplying by H we get
HdB HdH HdI= +m m0 0

If we plot a graph between H and dH,  straight line can be obtained and the area covered by the straight line 
is zero. Hence,

HdB HdI= m0

Thus, hysteresis loss in I  − H curve is

	 Hysteresis loss = HdI = m0 ×  Area of the I H−  curve� (10.34)

	 10.9	 Comparison between Soft Iron and Steel

We have compared the magnetic properties of steel and soft iron through Fig. 4 on the basis of their 
hysteresis curve.

	 1.	 The area of the hysteresis in steel is more, therefore hysteresis loss is high; in soft iron the area of the 
hysteresis is less, therefore hysteresis loss is low.

	 2.	 The value of retentivity in steel is low as compared to soft iron; however the value of coercivity in steel 
is higher than observed in soft iron.

	 3.	 The value of permeability is low in steel but high in soft iron.
	 4.	 The value of susceptibility is also low in steel but high in soft iron.

Retentivity

Soft iron
(Or B)

I

Steel

H

Coercivity

Figure 4  Comparison between steel and soft iron.

	10.10	 Use of Hysteresis Curve

Hysteresis curve is useful in choosing the material for making permanent magnets, electromagnets and 
transformer cores.

10.10.1  Permanent Magnets
The material used for permanent magnet should have high saturation magnetization and large value of 
coercivity so that these are not easily demagnetized. Steel is used for making permanent magnets due to the 
low value of retentivity, permeability, susceptibility and high value of coercivity.
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10.10.2  Electromagnets
Soft iron is used for making electromagnets due to the high value of retentivity, permeability, susceptibility 
and low value of coercivity.

10.10.3  Transformer Cores
Soft iron is also used for making transformer cores due to the high value of retentivity, permeability, suscep-
tibility and low value of coercivity.

		  Solved Examples

		  Short Answers of Some Important Questions

	 1.	 What is diamagnetic substancs?
Answer: The substances which when placed in 
a magnetic field, acquire feeble magnetized in 
the direction opposite to that of the external 
magnetic field are known as diamagnetic 
substances.

	 2.	 What do you understand by magnetic 
susceptibility?
Answer: When a magnetic material is subjected 
to an external magnetic field, the material gets 
magnetization which is proportional to the 
applied magnetizing field. Hence magnetic  

Example 1

A bar magnet has a coercivity of 7 × 103 A/m. It is desired to demagnetize it by inserting it inside a sole-
noid 20 cm long and having 50 turns. What current should be sent through the solenoid?

Solution:  We have H = 7 × 103 A/m, l = 20 cm = 0.2 m and N = 50 turns. Now we have

H = Ni/l

or 	 I = Hl/N = 7 × 103 × 0.2/50= 28 A

Example 2

A magnetic material has a magnetization of 3000 A/m and flux density 0.005 Weber/m2. Determine the 
magnetizing force and the relative permeability of material.

Solution:  We have I = 3000 A/m, m p0
74 10= × −  Henry/m and B = 0.005 Weber/m2. Since B = m0  

(I + H), we have 

H
B

I= −
m0

=
×

−−

0 005

4 10
30007

.

p  
= 980 A/m

We know that relative permeability mr is given by

mr

I
H

= +1 = + =3000

980
1 4 06.
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susceptibility is the ratio of intensity of magneti-
zation I to the magnetizing field H and is denoted 
by cm. 

cm = I

H

�
���

	 3.	 What is intensity of magnetization?
Answer: When a ferromagnetic material is 
subjected to an external magnetic field, it 
experiences a magnetic dipole moment mm. This 
magnetic dipole moment per unit volume of the 
material is known as magnetization or intensity 
of magnetization. Mathematically,

I
V

=
mm

Its unit is Ampere-turn/meter.

	 4.	 What is hysteresis loss?
Answer: In complete round of the magnetization 
of the material, some energy is left in the material 
which is later lost as heat. This loss of energy is 
known as hysteresis loss which is equal to the area 
enclosed by the closed hysteresis curve or loop.

	 5.	 What do you understand by hysteresis and hys-
teresis curve?
Answer: The magnetization is always lagging 
behind the field. This lagging of magnetization 
behind magnetic field is called hysteresis and a 
curve plotted between the magnetization I and 
magnetizing field H is known as hysteresis curve.

	 6.	 What is retentivity?
Answer: The magnetism that remains in the 
material after removing the magnetizing field is 
called retentivity or rememance.

		  Important Points and Formulas

	 1.	 Magnetism in a material arises due to the 
atomic orbital and spin motion of electrons.

	 2.	 The quantity eh m/4p  is known as a Bohr 
magneton.

	 3.	 If diamagnetic materials are placed in the pres-
ence of an external magnetic field, they are 
feebly magnetized in the direction opposite to 
that of the applied eternal magnetic field.

	 4.	 If paramagnetic materials are placed in the 
presence of an external magnetic field, they are 
feebly magnetized in the direction of the 
applied eternal magnetic field.

	 5.	 If paramagnetic materials are placed in the 
presence of an external magnetic field, they are 

strongly magnetized in the direction of the 
applied eternal magnetic field.

	 6.	 The required expression for the susceptibility 
of diamagnetism. 

c
m

m = = − ∑I
H

ne

m
r

2
0 2

4

	 7.	 The susceptibility of diamagnetic material is 
negative and temperature independent.

	 8.	 In complete round of the magnetization of the 
material, some energy is left in the material which 
is later lost as heat. This loss of energy is known 
as hysteresis loss which is equal to the area 
enclosed by the closed hysteresis curve or loop.

	 9.	 Hysteresis loss = HdB = Area of the B−H curve. 

		  Multiple Choice Questions

	 1.	 The relation between B, M and H is
	 (a)	 B H M= +m0( ) 	 (b)	 H B M= +m0( )

	 (c)	 B H M= −m0( ) 	 (d)	 B H= m

	 2.	 The susceptibility of diamagnetic materials is
	 (a)	 positive	 (b)	 negative
	 (c)	 more positive	 (d)	 None of these

	 3.	 The susceptibility of paramagnetic materials is
	 (a)	 positive	 (b)	 negative
	 (c)	 large	 (d)	 small
	 4.	 The susceptibility of ferromagnetic materials is
	 (a)	 small	 (b)	 large
	 (c)	 very large	 (d)	 negative
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	 5.	 Spontaneous polarization occurs in
	 (a)	 paramagnetic materials
	 (b)	 dimagnetic materials
	 (c)	 ferromagnetic materials
	 (d)	 antiferromagnetic materials

	 6.	 Hysteresis loss occurs in
	 (a)	 AC voltage
	 (b)	 DC voltage

	 (c)	 Both (a) and (b)
	 (d)	 None of these

	 7.	 The unit of magnetic flux is
	 (a)	 Wb/m
	 (b)	 Wb/m2

	 (c)	 Wb
	 (d)	 Ampere

		  Short Answer Type Questions

	 1.	 What is magnetism?
	 2.	 Define Curie temperature for ferromagnetism.
	 3.	 Mention two properties of diamagnetic materials.
	 4.	 What is the advantage of hysteresis?

	 5.	 Distinguish between diamagnetic and para-
magnetic substances.

	 6.	 Why transformer cores are made of soft iron?

		  Long Answer Type Questions 

	 1.	 What are diamagnetic, paramagnetic and 
ferromagnetic substances? Establish the relation 
B = m0 (I + H ).

	 2.	 Differentiate between diamagnetic, paramag-
netic and ferromagnetic substances.

	 3.	 Discuss Langevin’s theory of diamagnetism.
	 4.	 Show that susceptibility of diamagnetic material 

is negative and independent of temperature. 

	 5.	 What is meant by hysteresis? Explain hysteresis 
loss. How would you use the hysteresis curves 
to select the material for the construction of 
permanent magnet?

	 6.	 What is hysteresis? Discuss the importance of 
this curve.

	 7.	 Differentiate between steel and soft iron.

		  Numerical Problems

	 1.	 A magnetic material has a magnetization of 
3000 A/m and flux density 0.005 Weber/m2. 
Determine the magnetizing force and the 
permeability of material.

	 2.	 An iron rod 0.2 m long, 10 mm in diameter 
and of relative permeability 100 is placed inside 
a long solenoid wound with 300 turns/meter. 

If a current of 0.5 A is passed through the sole-
noid, find the magnetic moment of the rod.

	 3.	 A bar magnet has a coercivity of 5 × 103 A/m. 
It is desired to demagnetize it by inserting it 
inside a solenoid 10 cm long and having 50 
turns. What current should be sent through the 
solenoid?

		  Answers

Multiple Choice Questions
	 1.	 (a) 	 2.	 (b) 	 3.	 (a) 	 4.	 (c) 	 5.	 (c) 	 6.	 (a) 	 7.	 (b)

Numerical Problems
	 1.	 980 A/m and 4.06 	 2.	 0.233 A-m2 	 3.	 10 A
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	 11.1	 Introduction

You have already studied static (i.e. time independent) electric and magnetic fields in electrostatics and 
magnetostatics, respectively in previous classes. These fields are produced by the charges at rest and steady 
currents respectively, and can be analyzed independently. But if these fields vary with time, one cannot 
analyze them independently. Now the question arises: Why? The answer is: Faraday’s law of electromagnetic 
induction shows that a time-varying magnetic field produces an electric field while Ampere’s law shows that 
a time-varying electric field produces a magnetic field. Thus, changing of electric and magnetic field with 
time, a field of other kind is induced in the adjacent space which produces electromagnetic waves consisting 
electric and magnetic fields.

11.1.1  Laws of Electromagnetics Before Maxwell 
There are four basic laws of electricity and magnetism before Maxwell which are as follows:
	 1.	 Gauss’ law of electrostatics

∇ ⋅ =
�� �

E
r
e0

    or  
� �

� E dS
q

⋅ =∫ e0

		  Here q is charge and r is the volume charge density.
	 2.	 Gauss’ law of magnetostatics

∇ ⋅ =
�� ��

B 0     or  
� �

�B dS⋅ =∫ 0
	 3.	 Faraday’s law of induction

Ñ ´ = -
¶
¶

�� �
�

E
B
t

    or    E d l
t
B

�� �
� ⋅ = −

∂
∂∫
f

		  where fB is the magnetic flux.
	 4.	 Ampere’s law

∇ × =
�� �� ��

B Jm0     or    B d l I J dS
S

�� � � �
� ⋅ = = ⋅∫ ∫m m0 0

		  Here I is current and J  is current density.

•	 Displacement current.
•	 Equation of continuity.
•	 Maxwells equations (integral and differential forms).
•	 Poynting vector and Poynting theorem.

•	 Electromagnetic wave equation and its propaga-
tion characteristics in free space.

•	 Non-conducting and in-conducting media.
•	 Skin depth.

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

Electromagnetics11
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These equations are the relation between the field and their source and are used to solve the problems of 
electromagnetic theory since long, even before the Maxwell started his work. Among the above four equa-
tions, the Ampere’s law in the present form is true only for steady case. Maxwell noticed this inconsistency 
in equation during his study while applying Ampere’s law to a capacitor. Thus, Maxwell formulated the 
concept of displacement current to remove this inconsistency and modified the Ampere’s law which will be 
discussed in following sections.

	 11.2	 Displacement Current 

The concept of displacement current was first conceived by Maxwell to explain the production of magnetic 
field in empty space. According to him, it is not only the current in a conductor that produces a magnetic 
field, but a changing electric field in a vacuum or in a dielectric also produces a magnetic field. This means 
that a changing electric field is equivalent to a current and gives same effect to magnetic field as the conduc-
tion current. This equivalent current is known as displacement current which exists in the space as long as the 
electric field is changing and is expressed as

e
f

o

d

dt
E

In order to explain the displacement current mathematically, we consider the case of parallel-plate capacitor. 
Let at any particular instant, q be the charge on capacitor plate. According to the definition, conduction 
current at any instant is

	
i

dq

dtc = � (11.1)

We have already discussed about electrical displacement (D = eo E ) in dielectrics (Chapter 9). Therefore,

	
D

q

A
= =s � (11.2) 

where s  is the surface charge density and A is the area of the parallel-plate capacitor. From Eq. (11.2)  
we have

	 q DA= � (11.3)

Now substituting the value of q from Eq. (11.3) in Eq. (11.1), we get

	
i

d
dt

DA A
dD
dtc = =( ) � (11.4)

Maxwell suggested that the term i
d

dtd o
E= e

f
 should be considered as the current inside the dielectric. This 

current is called as displacement current and is denoted by id. Hence,

	
i

d
dtd o

E= e f
  ⇒  i A

dE
dtd o= e   ⇒  i A

dD
dtd =   ⇒  i EAd = � (11.5)
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We know that Jd = i Ad /  is current density. Therefore Eq. (11.5) may be written in terms of current density 
Jd as

	

�
�

J
dD
dtd = � (11.6)

or		
�
J

dE
dtd = e0         [∵

�
D E= e0 ]� (11.7)

Thus, the current arising due to time-varying electric field between the plates of a capacitor is called the displace-
ment current.

11.2.1  Characteristics of Displacement Current 
	 1.	 Displacement current is a current only in the sense that it produces a magnetic field. It has none of the 

other properties of current because it is not related to the motion of charges.
	 2.	 Inside the dielectric there will be a displacement current which is equal to conduction current.
	 3.	 Displacement current is only an apparent current representing the rate at which flow of charge takes 

place from one plate to another plate.
	 4.	 Displacement current in good conductors is almost nil as compared to conduction current below the 

frequency 1015 Hz.

	 11.3	 Equation of Continuity 

Continuity equation is the consequence of conservation of charge. Law of conservation of charges states 
that electric charges can neither be created nor destroyed. Therefore, the total current flowing out of the 
system of some volume must be equal to the rate of decrease of charge within the volume. Therefore, when 
the current flows at any region of volume V, bounded by a closed surface S then

	
i

dq

dt
J dS

S

= − = ⋅∫
� �

� � (11.8)

But we know that total charge is enclosed by the close surface in terms of volume charge density r with in 
volume V, that is,

	
q dV= ∫ r

V

� (11.9)

Therefore

i
dq

dt
J dS

t
dV

S V

= − = ⋅ = − ∂
∂∫ ∫

� �
�

r

or	
� �

� J dS
t

dV
S V

⋅ + ∂
∂

=∫ ∫
r

0 � (11.10)

From the fundamental theorem of divergence, which is a relation between surface integral to volume 
integral, we have

� � �� �
� J dS J dV
S V

⋅ = ∇ ⋅∫ ∫

Þ Ñ × +
¶
¶

æ
è
ç

ö
ø
÷ =ò

�� �
J

t
dV

V

r
0
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which is true for any arbitrary volume, therefore,

	
Ñ × +

¶
¶

�� �
J

t
r = 0� (11.11)

This equation is the continuity equation and is based on the conservation of charge. When we use time 
derivative term

¶
¶

=
r
t

0

the above continuity equation is reduced to

	 ∇ ⋅ =
�� �

J 0 � (11.12)

That is, the net flux of current through any closed surface is zero which is the case of steady state.

	 11.4	 Modification of Ampere’s Law

	 1.	 Integral form of Ampere’s law: Maxwell modified the Ampere’s law by introducing the term of 
displacement current from the study of charging and discharging of a capacitor. If we look at the 
simple circuit with a capacitor C in Fig. 1, the current flows in the circuit after proper connection, the 
charges start accumulating on the capacitor plates and the magnetic field between the plates as well as 
outside plate (around wire) is observed. As there is no actual flow of charges between plates, there is no 
conduction current as well, but the electric field in space due to charges on plates continuously changes 
with the time as long as the charges on plates change. This changing electric field cause the generation 
of magnetic field between the plates.

		    Now in Fig. 1, we consider a small loop around the wire just to analyze the magnetic field due to 
conduction current i in wire, then according to present Ampere’s law “The line integral of magnetic 
induction B around a closed path is equal to µ0 times the current enclosed by the path.” Mathematically

	
B d l io

�� �
� × =ò m � (11.13) 

		  If the loop encloses a surface area S1 then according to Stokes’ theorem

	
B d l B d S i

S

�� � �� �� �
� × = Ñ ´ × =òò ( ) mo

1

� (11.14)

C
i

R E

S

S1

S2

Figure 1  Modification in Ampere’s law.
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		  But if the loop encloses a surface area S2 (according to fundamental theorem of curl, i.e. Stokes’ theo-
rem, no matter what surface you consider, if it is bounded with the same loop), no conduction current 
passes through this surface. Then,

	
B d l B d S

S

�� � �� �� �
� × = Ñ ´ × =òò ( ) 0

2

� (11.15)

		  The above two equations for the same loop with different surfaces are not same and the right-side 
values of equations contradict, therefore, both cannot be true. Hence, the present form of Ampere’s 
law is inconsistent or not true for all cases.

		    Now from the definition of displacement current which is

i
d

dtd o
E= e

f

		  which is developed in the space between capacitor plate at surface S2 and equal to the conduction cur-
rent in magnitude. Hence, either the conduction or the displacement current is present at any surface 
under consideration, therefore both currents are to be considered in the Ampere’s law and equation is 
modified in following form:

	
B d l i

d

dt
i io o

E
d

�� �
� × = +æ

è
ç

ö
ø
÷ = +ò m e f

� (11.16)

		  Now after modification of equation as in above case, when S1 surface is considered, id is absent and if 
S2 surface is considered, the only id is present and anomaly or inconsistency in equation is removed.

	 2.	 To look at the differential form of Ampere’s law,

	
B d l I J dS

S

�� � �� �
� × = = ×ò òm m0 0 � (11.17)

		  where
�
J  is the current density in the conductor having cross-sectional area 

�
S . Using Stokes’ law which 

is a relation between line integral and surface integral, we have

	
B d l B d S J d S

S S

�� � �� �� � �� �
� ⋅ = ∇ × ⋅ = ⋅∫ ∫ ∫( ) m0 � (11.18)

		  Since surface is arbitrary, so we have

	 Ñ ´ =
�� �� ��

B Jm0     or    Ñ ´ =
�� ��� ��

H J � (11.19)

		  Taking divergence on both sides of Eq. (11.19), we have

Ñ × Ñ ´ = Ñ ×
�� �� ��� �� ��

( )H J

		  Since Ñ × Ñ ´ =
�� �� ���

( )H 0, then also 

	 ∇ ⋅ =
�� �

J 0 � (11.20)

		  Equation (11.20) is valid only for steady current. For other non-steady cases ∇ ⋅ ≠
�� �

J 0. In other words, 
J is not always a solenoidal vector, hence Eq. (11.19) is inconsistent.
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		  Also from the equation of continuity

∇ ⋅ + ∂
∂

=
�� �

J
t
r

0     or  
∂
∂

=r
t

0

		  Here r  is constant that shows charge density is not changing with the time. As a result, Ampere’s law 
should be modified for time-varying field using a quantity J D

��
 which is to be added to the right-hand side 

of Eq. (11.19), so that J together with J D

��
 becomes the solenoidal vector whose divergence is always 

zero. Therefore, the following equation after introducing J D

��
 is true for all cases.

	 Ñ ´ = +
�� ��� �� ��

H J J D � (11.21)

		  It can be explained in the following way: The equation of continuity

Ñ × +
¶
¶

=
�� �

J
t

r
0

		  from differential form of Gauss law (first Maxwell equation) 

∇ ⋅ =
�� �

E
r
e0

    or     r = ∇ ⋅
�� ���

D

		  Then 

	
∇ ⋅ + ∂

∂
= ∇ ⋅ + ∇ ⋅ ∂

∂
= ∇ ⋅ + ∂

∂

�� ��
��

���
�� �� ��

���
���

�� ��
���
��J

t
J

D

t
J

D

t

r ��








 = 0 � (11.22)

		  Here J D t
�� ��� �

+ ∂ ∂( ) is the solenoidal vector whose divergence is always zero. To remove the in-

consistency in Ampere’s law, Maxwell suggested that the current density J
��

should be replaced by 

J D t
�� ��� �

+ ∂ ∂( ) in Eq. (11.19). Hence, by introducing the term J D t
�� ��� �

+ ∂ ∂( ) in Eq. (11.19), the follow-

ing is the correct modified differential form of Ampere’s law which is true for time varying as well as 

for steady currents.

Ñ ´ = +
¶
¶

æ

è
ç

ö

ø
÷

�� ��� �
�

H J
D
t

		  or	 ∇ × = + ∂
∂

�� ��� �
�

H J
E
t

e0 � (11.23)

	 11.5	 Maxwell’s Equations

Maxwell, in 1864, theoretically derived the connection between the charges at rest (electrostatics), charges 
in motion (current electricity), electric and magnetic field (electromagnetic) and summarized in terms of 
four equations: Gauss’ law in electrostatic, Gauss’ law in magnetostatics, Ampere’s law and Faraday’s laws. 
These equations are called Maxwell’s equations. Table 1 gives the four Maxwell’s equations in differential 
and integral forms.
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Table 1  Maxwell’s equations in differential and integral form

S. No. Differential Form Integral Form

1. div
�
E = r

e0

	 or	 ∇ ⋅ =
�� �

E
r
e0

� �
� E dS

q
⋅ =∫ e0

  or 
� �

� E dS dV⋅ =∫ ∫
1

0e
r

2. div B
��

= 0	 or	 ∇ ⋅ =
�� ��

B 0
� �

�B dS⋅ =∫ 0

3. curl
�

�
E

B
t

= -
¶
¶

	 or	 Ñ ´ = -
¶
¶

�� �
�

E
B
t

E d l
t
B

�� �
� ⋅ = −

∂
∂∫
f

4. curl H J
D

t

��� �
�

= +
¶
¶

æ

è
ç

ö

ø
÷.   or  Ñ ´ = +

¶
¶

æ

è
ç

ö

ø
÷

�� ��� �
�

H J
D

t
. H dl J

D

t
d S

S

��� � ��
���

�
� ⋅ = + ∂

∂






⋅∫ ∫
where
r  is the charge density.
�

D = e0

�
E , electric displacement vector, e0  is the 

permittivity of the free space and 
�
E  is the electric 

field strength.� �
B H= m0 , where m0 is the magnetic permeability of 
free space and 

�
H  is the magnetic field intensity.

11.5.1  Derivation of Maxwell’s First Equation 
According to Gauss’ law in electrostatics ‘The net flux passing through a closed surface is equal to 1 0/e  times 
the total charge q contained in the volume enclosed by surface.’ Mathematically,

	
f

eE E dS
q

= ⋅ =∫
� �

�
0

� (11.24)

where E d S
�� �

� ×ò  represents the total flux passing through closed surface S. But we know that total charge 

enclosed in the surface in terms of volume charge density r  with in volume V is

	
q dV

V

= ∫ r � (11.25)

From Eqs. (11.24) and (11.25), we get that 
� �

� E d S dV⋅ =∫ ∫
1

0e
r

or	 D d S dV
S V

��� �
⋅ =∫ ∫ r       (∵

��� ��
D E= e0

)

By Gauss’ divergence theorem

D d S D dV dV
S V V

��� � ��� ��
⋅ = ⋅ =∫ ∫ ∫(div ) r

⇒ − =∫ ( )div D dV
V

���
r 0
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Since volume is arbitrary, hence

	 div D
���

− r  = 0    or    div D
���

= r � (11.26)

In free space, volume charge density r  is zero. Therefore, Maxwell’s first equation in free space is

	 div D D
��� �� ���

= Ñ × = 0 � (11.27)

11.5.2  Maxwell’s Second Equation
We know that magnetic monopole does not exist in the nature. Since magnetic lines of force entering or 
leaving a closed surface are equal, therefore, the net magnetic flux passing through the area d S

�
of a closed 

surface S is zero:

	
B d S

S

�� �
× =ò 0 � (11.28)

Using Gauss’ divergence theorem which is a relation between surface integral to volume integral as given below

B d S B dV
S V

�� � �� ��
� ⋅ = ∇ ⋅∫ ∫ ( )

( )∇ ⋅ =∫
�� ��

B dV
V

0

Since the volume is arbitrary

	 ∇ ⋅ =
�� ��

B 0 � (11.29)

This is the requirement of Maxwell’s second equation and it is true for free as well as material medium.

11.5.3  Maxwell’s Third Equation
According to Faraday’s law of electromagnetic induction the induced electromagnetic force around a closed 
circuit is equal to the negative time rate of charge of magnetic flux linked with the circuit. Thus,

	
e

d
dt

= − f
� (11.30)

But we know that

e E d l
d
dtc

= ⋅ = −∫
�� �

�
f

	
Þ × = -

×
= -

¶
¶

×ò
ò

òE d l

d B d S

dt

B

t
d S

c

S
�� �

�� �
��

�
� � (11.31)

From Stokes’ fundamental theorem
� ��� �� �� �

� E dl E d S
c
∫ ∫⋅ = ∇ × ⋅( )

Þ Ñ ´ × = -
¶
¶

×ò ò( )
�� �� �

���
�

E d S
B

t
d S

Since surface S is arbitrary, hence

	
Ñ ´ = -

¶
¶

�� ��
��

E
B
t

� (11.32)

This is Maxwell’s third equation for free as well as for material medium.

Chapter 11.indd   218 4/14/2015   8:31:20 AM



11.6   Maxwell’s Equation in Integral Form� •   219

11.5.4  Maxwell’s Fourth Equation
The integral form of Maxwell fourth equation is

	
B d l i

d
dto o

�� �
� × = +æ

è
ç

ö
ø
÷ò m e f
� (11.33)

The current i in term of J and electric flux f  in terms of E for any surface can be expressed as

i J d S= ×ò
�� �

f = ×ò E d S
�� �

The right side of equation can be expressed as

	
i

d
dt

J d S
d E
dt

d So o+ = × + ×ò òe f e
�� �

��
�

� (11.34)

From Stokes’ theorem

	
B d l B d S
�� � �� �� �

� × = Ñ ´( ) ×òò � (11.35)

Therefore

( )Ñ ´ × = × + ×
é

ë
ê

ù

û
úò ò ò

�� �� � �� �
��

�
B d S J d S

d E

dt
d Som e0

	

= +
æ

è
ç

ö

ø
÷ ×

é

ë
ê
ê

ù

û
ú
ú

òm e0 J
d E

dt
d So

��
��

�
� (11.36)

Since surface S is arbitrary, hence
� � �

�
∇ × = +







B J
dE

dtom e0

	

� � �
�

∇ × = +






H J
dD
dt

          [ ( )]∵
� �

D Eo= e � (11.37)

This is Maxwell’s fourth equation in differential form.

	 11.6	 Maxwell’s Equation in Integral Form

	 1.	 Maxwell’s first equation in differential form is

	 ∇ ⋅ =
�� ���

D r � (11.38)

		  Integrating it with respect to volume V, we get

( )∇ ⋅ =∫ ∫
�� ���

D dV dV
V V

r

		  The volume integral can be changed into surface integral with the help of Gauss divergence theorem as

	
Ñ ×( ) = ×òò
�� ��� ��� �

�D dV D dS
V

� (11.39)
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D dS dV
V

��� �
� × = òò r

or
	

� �
� E d S

q
⋅ =∫ e0

� (11.40)

		  This is the integral form of Maxwell’s first equation.
	 2.	 Maxwell’s second equation in differential form is

	 ∇ ⋅ =
�� ��

B 0 � (11.41)

		  Integrating second equation with respect to the volume V, we get

( )∇ ⋅ =∫
�� ��

B dV
V

0

		  By Gauss’ divergence theorem

( )Ñ × = ×ò ò
�� �� �� �

�B dV B d S
V

	
B d S
�� �

� ⋅ =∫ 0 � (11.42)

		  where S is the surface enclosing volume V. This is the integral form of Gauss’ divergence theorem in 
magnetostatics.

	 3.	 Maxwell’s third equation in differential form is

	
Ñ ´ = -

¶
¶

�� �
��

E
B
t

� (11.43)

		  Integrating the above equation over an open surface S, we get

Ñ ´( ) = -
¶
¶

æ

è
ç

ö

ø
÷× ×ò ò

�� � �
�

�
E dS

B

t
dS

S S

		  The surface integral can be converted into line integral through Stokes’ theorem as

Therefore
	

Ñ ´( ) × = × = -
¶
¶

æ

è
ç

ö

ø
÷ ×

× = -
¶

ò ò ò

ò

�� �� � �� �
��

�

�� �

�

�

E d S E d l
B

t
d S

E d l
B

S S
���

�

�� �
∵

�� �
�

¶
æ

è
ç

ö

ø
÷ ×

× = -
¶
¶

= ×
æ

è
ç

ö

ø
÷

ò

ò ò

t
d S

E d l
t

B d S

S

B
B

S

f f � (11.44)

		  This is the integral form of Faraday’s law of electromagnetic induction. Equation (11.44) is the integral 
form of Maxwell’s third equation.

	 4.	 Maxwell’s fourth equation in differential form is

	
Ñ ´ = +

¶
¶

�� � �
���

H J
D
t

� (11.45)

Chapter 11.indd   220 4/14/2015   8:31:31 AM



11.8   Poynting Vector and Poynting Theorem � •   221

		  Integrating above equation with respect to S, we get

( )Ñ ´ × = +
¶
¶

æ

è
ç

ö

ø
÷ ×ò ò

�� � � �
���

�
H d S J

D
t

dS
S S

		  From Stokes’ theorem,

( )Ñ ´ × = × = +
¶
¶

æ

è
ç

ö

ø
÷ ×ò ò ò

�� ��� � ��� � ��
���

�
�H d S H d l J

D
t

d S
S S

 

H dl J d S
D

t
d S

S S

��� � �� �
���

�
� ⋅ = ⋅ + ∂

∂
⋅∫ ∫ ∫  

	
H dl i

d

dto
E

��� ���
� × = +æ

è
ç

ö
ø
÷ò e f

 ∵
��� �

fE

S

E d S= ⋅





∫ � (11.46)

		  Equation (11.46) is the integral form of Maxwell’s fourth equation. 

	 11.7	 Physical Significance of Maxwell’s Equations

11.7.1 Maxwell’s First Electromagnetic Equation
Because of time independence, Maxwell’s first electromagnetic equation is a steady-state equation. It rep-
resents the Gauss’ law in electrostatics which states that the electric flux through any closed hypothetical 
surface is equal to 1/e0 times the total charge enclosed by the surface.

11.7.2  Maxwell’s Second Electromagnetic Equation
Maxwell’s second electromagnetic equation represents Gauss’ law in magnetostatics. It states that the net mag-
netic flux through any closed surface is zero (i.e., the number of magnetic lines of flux entering any region is 
equal to the lines of flux leaving it). It also explains that no isolated magnetic pole exists.

11.7.3  Maxwell’s Third Electromagnetic Equation
Maxwell’s third electromagnetic equation represents Faraday’s law in electromagnetic induction. It states that 
an electric field is induced in the form of close lines when magnetic flux (or lines of magnetic force) changes 
through an open surface. The line integral of induced electric field around a close path is equal to the nega-
tive rate of change of magnetic flux.

11.7.4  Maxwell’s Fourth Electromagnetic Equation
Maxwell’s fourth electromagnetic equation represents the modified form of Ampere’s circuital law which states 
that a changing electric field produces a magnetic field and an electric field can also be produced by chang-
ing magnetic field. Therefore, Maxwell’s fourth electromagnetic equation gives the new concept of generation 
of magnetic field by displacement current.

	 11.8	 Poynting Vector and Poynting Theorem 

The moving oscillating coupled electric and magnetic fields behave as electromagnetic waves. These waves 
are transverse in nature where electric and magnetic vectors oscillate perpendicular to the direction of 
motion. During propagation, these waves also transport energy and momentum. The waves, when strike 
any surface, exert a pressure on the surface.
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Poynting Vector is defined as the energy transported by wave per unit area per unit time. It is denoted 
by a vector P and can be expressed by the cross product of electric and magnetic field in the following way

	
� � �
P E H= ×     or  

�
� �

P
E B

o

= ×
m

� (11.47)

The direction of the flow of this power through unit area is in the direction of propagation of wave. Its SI 
unit is Watt/m2.

Poynting theorem is a work–energy theorem of electromagnetics and expressed as work done on the 
charges by the electromagnetic forces is equal to the decrease in energy stored in the fields, and less than the energy 
that flows out through the surface. To derive and explain the Poynting theorem, let us take third and fourth 
Maxwell equations as follows:

	
Ñ ´ = -

¶
¶

�� �
�

E
B
t

� (11.48)

	
Ñ ´ = +

¶
¶

�� ��� �
�

H J
D
t

� (11.49)

Taking the dot product of 
�

H  with Eq. (11.48) and that of 
�
E  with Eq. (11.49), we have

	

� �� � �
�

H E H
B
t

× Ñ ´ = - ×
¶
¶

( ) � (11.50)

	

� �� ��� � � �
�

E H E J E
D
t

× Ñ ´ = × + ×
¶
¶

( ) � (11.51)

Subtracting Eq. (11.50) from Eq. (11.51), we get

� �� � � �� ��� �
�

� � �
�

�
�

H E E H H
B

t
E J E

D

t
H

B
× Ñ ´ - × Ñ ´ = - ×

¶
¶

- × - ×
¶
¶

= - ×
¶

( ) ( )
¶¶

+ ×
¶
¶

é

ë
ê

ù

û
ú - ×

t
E

D

t
E J

�
�

� �

From vectors product 

	
� �� � � �� ��� �� � ���

H E E H E H× Ñ ´ - × Ñ ´ = Ñ × ´( ) ( ) ( ) � (11.52)
Therefore,

	
Ñ × ´ = - ×

¶
¶

+ ×
¶
¶

é

ë
ê

ù

û
ú - ×

�� � ��� �
�

�
�

� �
( )E H H

B
t

E
D
t

E J � (11.53)

But 
�

D = e
�
E  and 

� �
B H= m . Therefore

∇ ⋅ × = − ⋅ ∂
∂

+ ⋅ ∂
∂









 − ⋅( )

� ��� �
�

�
�

� �
E H H

H
t

E
E
t

E Jm e

= − ∂
∂





 + ∂

∂












− ⋅
t

H
t

E E J
1

2

1

2
2 2m e

� �
  ∵

�
�

�
�

m m e eH
H
t t

H E
E
t t

E⋅ ∂
∂

= ∂
∂





 ⋅ ∂

∂
= ∂

∂












1

2

1

2
2 2and

� � � ���
E J

t
H

t
E E H⋅ = − ∂

∂




 + ∂

∂











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2

1

2
2 2m e ( )
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Taking the volume integral over a volume V enclosed by surface S, we get

	

( ) (
� � ��
E J dV

t
H

t
E dV

V V

× = -
¶
¶

æ
è
ç

ö
ø
÷ +

¶
¶

æ
è
ç

ö
ø
÷

é

ëê
ù

ûú
- Ñ ×ò ò

1

2

1

2
2 2m e

�� ���
E H dV

V

´ò ) � (11.54)

Using Gauss divergence theorem

Ñ × ´ =ò
�� � ���

( )E H dV
V

( )
� ���

� E H dS× ⋅∫
Hence,

	

� � � ���
�E J dV

t
H E dV E H dS

V V

⋅( ) = − ∂
∂

+











− × ⋅∫ ∫ ∫
1

2

1

2
2 2m e ( ) � (11.55)

Equation (11.55) represents the work energy theorem of electromagnetic and is called Poynting theorem for 
the flow of energy in an electromagnetic field.

	 1.	 The term ( )
� �
E J dV

V

⋅∫  represents the work done per unit time on the charges by electromagnetic 

fields.

	 2.	 The term − ∂
∂

+









∫ t

H E dV
V

1

2

1

2
2 2m e  represents the rate of decrease of stored energy in electric 

and magnetic fields in volume V.

	 3.	 − × ⋅∫ ( )
� ���

� E H dS represents the rate of flow of energy through surface area S enclosing volume V.

Here 
� � ���
P E H= ×  is the energy flowing through unit area and unit time and is known as the Poynting 

vector.

	 11.9	 Plane Electromagnetic Waves in Free Space 

We describe one of the important applications of Maxwell’s equations to derive electromagnetic wave equa-
tions for field vectors E


 and B


. In free space, where there is no charge or current (i.e. r = 0, 

�
J = 0, e e= 0, 

m m= 0, B H= m0  and D E= e0 ), Maxwell’s equations are as follows:

	 ∇ ⋅ =
�� �

E 0 � (11.56)

	 ∇ ⋅ =
�� ��

B 0 � (11.57)

	
Ñ ´ = -

¶
¶

�� �
�

E
B
t

� (11.58)

	
∇ × = ∂

∂

�� �� �
B

E
t

m e0 0 � (11.59)

Taking the curl on both sides of Eq. (11.58) we get

Ñ ´ Ñ ´ = Ñ ´ -
¶
¶

æ

è
ç

ö

ø
÷
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( )E

B
t
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Ñ Ñ × - Ñ = -
¶
¶

Ñ ´
�� �� �� �� ��

( ) ( )E E
t

B2

Using Eq. ∇ × = ∂
∂

�� �� �
B

E
t

m e0 0  and ∇ ⋅ =
�� �

E 0

	
∇ = ∂

∂
2

0 0

2

2E
E

t
m e � (11.60)

Similarly taking the curl of fourth equation (11.59) we get

Ñ ´ Ñ ´ = Ñ ´
¶
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÷
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( )B
E

t
m e0 0
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¶
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( ) ( )B B
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E2
0 0m e

Using Ñ ´ = -
¶
¶

�� �
�

E
B
t

 and ∇ ⋅ =
�� ��

B 0  we have

	
∇ = ∂

∂
2

0 0

2

2B
B

t
m e � (11.61) 

In vector form 

	
∇ = ∂

∂
2

0 0

2

2

�
�

E
E

t
m e ,    ∇ = ∂

∂
2

0 0

2

2

�
�

B
B

t
m e � (11.62)

The general wave equation for any function like u moving with speed v is

	
∇ = ∂

∂
2

2

2

2

1
u

v
u

t
� (11.63)

Therefore, from the above equation, Eq. (11.62) represents wave equations for E and B in free space. Each 
Cartesian component of E and B satisfies the three-dimensional wave equation.

So Maxwell’s equations imply that empty space supports the propagation of electromagnetic waves, 
travelling at a speed

m e0 0 2

1=
v

Þ = =
´ ´- -

v
1 1

4 10 8 85 100 0
7 12m e p( . )Weber/A-m)( C N-m2 2

= 2.99 ×108  m/s

Hence, electromagnetic waves propagate in free space with the speed of light:

	

c = 1

0 0m e
� (11.64)

In some other medium, velocity is given as

	

v = =1 1

0 0me m m e e( ) ( )r r

� (11.65)
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where mr and e r are relative permeability and relative permittivity, respectively. Using Eq. (11.64), Eq. (11.65) 
can be written as

v
c=

m er r

or	 v
c=
e r

    [For non-magnetic material mr = 1]

As we know that the refractive index n of the medium is

n
c
v

=

Therefore, 

	
n = e r � (11.66)

The speed of light in a material is always less than in vacuum because e r  has a value greater than one.

	11.10	 Transverse Nature of Electromagnetic Waves

The electromagnetic waves are transverse in nature where E and B vector oscillate perpendicular to the 
propagation direction. To explain the transverse nature, let us have the solution of wave equations which are 
mathematically second order differential equations. The equations are

	
Ñ

¶
¶

Ñ
¶
¶

=2
2

2

2
2

2

2

2

1
0

1
0E B- = -

c
E

t c
B

t
and � (11.67)

The general solution of these equation are respectively

� � � �
E r t E ei k r t( , ) ( )= ⋅ −

o
w  

and	
� � � �
B r t B ei k r t( , ) ( )= ⋅ −

0
w � (11.68)

where 
�
Eo  and 

�
B0 are the complex amplitudes for electric and magnetic fields, respectively, whose real part 

represent the physical value. 
�
k  is the wave vector and 

�
r  is position vector which are expressed as

�
k n

c
n

c
n

c
n= = = =

2 2 2p
l

p
u

pu wˆ ˆ ˆ ˆ
/

�
r xi yj zk= + +ˆ ˆ ˆ

n̂ is unit vector represents the wave propagation direction. Then

	
� � � � � � � �k r k i k j k k xi yj zk k x k y k zx y z x y z× = + + × + + = + +( ) ( ) ( ) �
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Now considering solution E

, we find the divergence of Eq. (11.56), that is, ∇ ⋅ =E 0.
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Since 
� �
∇ ⋅ =E 0 . So

	
� �
k E⋅ = 0 � (11.69)

or 
�
E  is perpendicular to 

�
k . Now 

�
k  has direction of wave propagation, so 

�
E  is perpendicular to the direc-

tion of propagation. Similarly, consider second equation (11.57),
� �
∇ ⋅ =B 0. We get

	
� � � �
∇ ⋅ = ⋅B i k B( ) ⇒ 

� �
k B⋅ = 0.� (11.70)

So 
�
B is perpendicular to the direction of wave propagation. Therefore EM wave is transverse in nature.

	11.11	 Characteristic Impedance

Consider Maxwell’s third equation

� �
∇ × = − ∂

∂
E

B
t

We solve it by considering E

 and B

 
as given by Eq. (11.68): 
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Hence from Ñ ´ = -
¶
¶

�� ��
��

E
B
t

, we have

	 i k i B k B(
� � � � � �

´ ) = Þ ´ =E Ew w � (11.71)

Similarly from Maxwell’s fourth equation 
� �

��
∇ ∂

∂
× =B m e0 0

E
t

, we have

	
� � �
k B E× = −wm e0 0 � (11.72)

From Eqs. (11.71) and (11.72) it can be concluded that electric and magnetic vectors 
�
E  and 

�
B  are mutu-

ally perpendicular to each other and perpendicular to the direction of propagation vector 
�
k  (see Fig. 2). 

Further from Eq. (11.71) we have
� � �
k × =E Bw

k E B( )n�
� �

× = w

c

E

ẑ

ˆ

→

→

→

B

E0

E0

y

k

c

i

Figure 2
The mod of the above equation is

k n E Bˆ ´ =
� �

w

E

B k
c k

z

��
�� = = =æ

è
ç

ö
ø
÷

w w

or	
E

H
c B H

��
���

��
= = =m

m
e

m0
0

0
0[ ]

E /H is the characteristic impedance or intrinsic impedance of free space denoted by Z0 and has the unit 
electrical resistance. Its value is

	
Z0

0

0

45 10= = =
−

−

m
e

×
×

Ω
7

128 86 10
376 7

.
. � (11.73)

This implies that electric vector 
�
E  and magnetic field vector 

�
B  are in the same phase.
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	11.12	 Electromagnetic Waves in Dielectric Medium 

Since we are familiar that there is no free charge in dielectric medium therefore, r = 0, s = 0, and hence �
J E= =s 0. However, m and e  have finite values. So Maxwell’s equations are as follows:

	 ∇ ⋅ =
�� �

E 0 � (11.74)

	 ∇ ⋅ =
�� ��

B 0 � (11.75)

	
Ñ ´ = -

¶
¶

�� �
�

E
B
t

� (11.76)

	
∇ × = ∂

∂

�� �� �
B

E
t

me � (11.77)

Taking curl on both sides of Eq. (11.76) we have

Ñ ´ Ñ ´ = Ñ ´ -
¶
¶

æ

è
ç
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ø
÷

�� �� �� ��
��

( )E
B

t

Ñ Ñ × - Ñ = -
¶
¶

Ñ ´
�� �� �� �� ��

( ) ( )E E
t

B2

Using Eq. (11.77) we have

∇ = ∂
∂

2
2

2E
E

t
me           [∵

�� ��
Ñ × E = 0]

Similarly taking curl of Eq. (11.77) we have 

Ñ ´ Ñ ´ = Ñ ´
¶
¶

æ

è
ç

ö

ø
÷

�� �� �� ��
��

( )B
E

t
me

Ñ Ñ × - Ñ = -
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¶

Ñ ´
�� �� �� �� ��

( ) ( )B B
t

E2 me

Using Eq. (11.76) we have

∇ = ∂
∂

2
2

2B
B

t
me         [∵

�� ��
Ñ × B = 0]

In vector form 

	
∇ = ∂

∂
2

2

2

�
�

E
E

t
me ,     ∇ = ∂

∂
2

2

2

�
�

B
B

t
me � (11.78)

Equation (11.78) represents wave equations for E and B in dielectric medium.

	11.13	 Electromagnetic Waves in Conducting Medium 

In conducting medium, the charge given to material is always lie at the surface and no charge stay inside 
the conducting material, hence charge density r = 0. So, for a conducting medium Maxwell’s equations are 
as follows:

∇ ⋅ =
�� �

D 0

∇ ⋅ =
�� ��

B 0
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Ñ ´ = -
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Ñ ´ = +
¶
¶

�� ��� �
�

H J
D
t

In conducting medium 
�

D = e
�
E , 

� �
B H= m , 

� �
J E= s , where s  represents the conductivity of the isotropic 

and homogeneous medium. Thus, Maxwell’s equations reduced to

	 ∇ ⋅ =
�� �

E 0 � (11.79)

	 ∇ ⋅ =
��

B 0 � (11.80)

	
Ñ ´ = -

¶
¶

�� �
��

E
B
t

� (11.81)

	
∇ × = + ∂

∂

�� �� �
�

B E
E
t

m s e� �� (11.82)

To derive wave equation in conducting medium take the curl on both sides of Eq. (11.81), we get
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Substituting the value of ∇ ×
�� ��

B from Eq. (11.82) in the above equation, we get
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2 m s e

Since ∇ ⋅
�� ��

B = 0 is from Maxwell’s first equation, we have

−∇ = − ∂
∂

− ∂
∂

2
2

2E
E
t

E
t

ms me

or	 ∇ − ∂
∂

− ∂
∂

=2
2

2 0
�

� �
E

E
t

E
t

ms me � (11.83)

Similarly, we can obtain wave equation for B by taking curl of Eq. (11.82) and using Eq. (11.80) as

	
∇ − ∂

∂
− ∂

∂
=2

2

2 0B
B
t

B
t

ms me � (11.84)

The above equations are wave equations in conducting medium. If we take s  = 0 and permeability and per-
mittivity for free space, the above equations will be for free space. In conducting medium, the wave vector k 
is a complex and the real part of it determines the physical values of wave such as wavelength and speed of 
wave. The imaginary part of wave vector results in an attenuation of wave (decreasing amplitude of E and B 
with depth of penetration in medium). Here unlike in free space, the electric and magnetic field vectors are 
no longer in phase, rather magnetic field lags behind the electric field (Fig. 3).
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B

E

z

x

y

Figure 3  Phase-diagram of electric and magnetic field vectors.

	11.14	 Skin Depth

Skin depth is an essential parameter for the wave when the electromagnetic waves penetrate in conducting 
medium. It is the depth in conducting medium in which the strength of electric field is reduced  1 e times of its 
original values.

The skin depth is frequency dependent for good conductor and frequency independent for poor con-
ductor. Consider the solution of wave equation (11.83) as

E r t E eo
j k r t( , ) .= −( )w

where k  is complex and can be expressed with real and imaginary term a  and b  respectively as k j= +a b . 
Now if wave is moving along z direction with E vector parallel to x, then E will be

E z t E ex ox
j j z t( , ) ( )= + −( )a b w

or	 E z t E e ex ox
z j z t( , ) = − −( )b a w

�
the attenuation factor is e z− b . Ex  should be (1/e) times its original value if bz = 1. In this case z, the depth 
in the medium becomes skin depth and is denoted by d as shown in Fig. 4. Hence, 

	
z = =d

b
1

� (11.85)

0 1 z

= 0.368
d

1.0

E

1
e

Figure 4  Skin depth.
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The value of a and b  can be obtained with wave equation
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∂
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ms me

and its solution
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For good conductor s ew�( ), Hence

b w me s
we

= æ
è
ç

ö
ø
÷2

or b msw=
2

Thus, skin depth

d
b msw

= =1 2

�
(11.87)

In terms of frequency ( f ) skin depth will be

	
d

p ms p ms
= =2

2

1

f f
� (11.88)

From Eq. (11.88), we can conclude that skin depth or penetration depth is inversely proportional to the root of 
frequency of wave.

For poor conductor s ew�( )

b w me s
w e

= +
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


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−
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2 2
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w e

= ×
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1

2

2

2 2

or		  b s m
e

=
2

Thus, skin depth

d
b s

e
m

= =1 2

�
(11.89)

From the above equation, we can conclude that skin depth or penetration depth is independent of frequency 
of wave.
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		  Solved Examples

Example 1

Prove that electromagnetic waves propagate with speed of light. 

Solution:  The wave equations for E

 and B


 in free space are as follows:

∇ = ∂
∂

2
0 0

2

2

�
�

E
E

t
m e ,    ∇ = ∂

∂
2

0 0

2

2

�
�

B
B

t
m e

In vacuum, then, each Cartesian component of E and B satisfies the three dimensional wave equation. 
Hence

∇ = ∂
∂

2
2

2

2

1
u

v
u

t

So Maxwell’s equations imply that empty space supports the propagation of electromagnetic waves, travel-
ling at a speed

m e0 0 2

1=
v

⇒ = =
× ×− −

v
1 1

4 10 8 85 100 0
7 12m e p( . )Weber/A-m)( C N-m2 2

= 2.99 × 108 m/s

Hence, electromagnetic waves propagate with the speed of light:

c = 1

0 0m e

From this result we can conclude that light is an electromagnetic wave.

Example 2

Prove that the speed of light in a material is always less than that in vacuum.

Solution:   We know that in vacuum material travels with velocity of light. In some other medium, 
velocity is given as

v = =1 1

0 0me m m e e( ) ( )r r

where mr  and e r  are relative permeability and relative permittivity, respectively. Since

c = 1

0 0m e
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therefore
v

c
=

m er r

or	 v
c

=
er

    [For non-magnetic material mr = 1]

The speed of light in a material is always less than that in vacuum because e r  has a value greater than one.

Example 3

Determine refractive index and velocity of light if the relative permittivity of distilled water is 64.

Solution:  The velocity of distilled water is given by 

v
c

=
m er r

where mr  = 1, c = 3 × 108 m/sec and e r  = 64. Therefore

v =
´

= ´
3 10

64
3 75 10

8
7. m/s

As we know, the refractive index n of the medium is n c v= / . Therefore, 

n = = =e r 64 8

Example 4

A uniform plane wave having electric field intensity in air as 7 × 103 V/m in the y-direction is propagating 
in the x-direction at a frequency of 2 × 108 rad/sec. Determine the frequency, wavelength, time-period 
and amplitude of H.

Solution:  We have
Ey = 7 × 103 cos (2 × 108t – px)

Here w = 2 × 108rad/sec, m p e0
7

0
124 10 8 85 10= ´ = ´- -Weber/A-m C N-m2 2, . . Now frequency is  

given by

u
p

= = ×
×

=w
2

2 10

2 3 14

8

.
318.5 × 105 Hz = 3 18 107. ×  Hz

Wavelength is given by

l n
u

= = ×
×

=3 10

3 18 10
9 43

8

7.
. m
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Time period is given by

l
u

= =
×

= × −1 1

3 18 10
3 14 107

8

.
.

 
sec

Amplitude of H is

E
H

E

H
= = = ≈0

0

0

0

376 77 377
m
e

. Ω

⇒ H = × =7 10

377

3

18.56 A/m

Therefore  

Hz = 18.56 cos (2 × 108 t – px)  

Example 5

If the magnitude of E in a plane wave is 377 V/m, determine the magnitude of H for a plane wave in free 
space.

Solution:   We have 
E

H
= =

m
e

0

0

377 Ω ⇒ = =H
377

377
1A/m

Example 6

A parallel-plate capacitor with circular plates of radius a = 0.055 m is being charged at a uniform rate so 
that the electric field between the plates changes at a constant rate

∂
∂

= ×
�
E
t

1 5 1013. V/m/s

Determine the displacement current for the capacitor.

Solution:  The displacement current density between the plates of the capacitor is

J
D
t

E
tD

�� � �
=

¶
¶

=
¶
¶

e0

Displacement current 

I a J a
E
t

D D

� � �
= =

¶
¶

( )p p e2 2
0

Here
∂
∂

= ×
�
E
t

1 5 1013. V/m/s , a = 0.055 m and e0
128 85 10= ´ -. C N-m2 2

Displacement current 
I a

E
t

D

� �
=

¶
¶

=p e2 0 1 3.  A
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Example 7

A lamp radiates 500 W power uniformly in all directions. Calculate the electric and magnetic field inten-
sities at 1 m distance from the lamp.

Solution:  As we know Poynting vector
� � ���
P E H= × is the energy flowing through unit area and unit 

time. Now

Area = 4 4 1 42 2p p pr = =( ) m2

Now �
P = 500

4p
 Joule/m2/sec

or	 EH = 500

4p
�

But we know that 
E

H

E

H
= = = ≈0

0

0

0

376 77 377
m
e

. Ω

So E H= 377 . Multiplying both sides by H and using the value of EH we get

377
500

4
2× =H

p
⇒ =

×
H 2 500

4 377p
⇒ =H 2 0 105.

⇒ H = 0.33 A-turn/m 
Now 

EH = 500

4p
⇒ =

×
=E

500

4 0 33
120 63

p .
. V/m

Example 8

Earth receives 2 calories of solar energy per minute per cm2 as an average over a year for whole surface. 
What are the amplitudes of average electric and magnetic field radiation?

Solution:  The energy received by an electromagnetic power flow is given by  
� � ���
P E H= ×

⇒ = × × =
�
P

2 4 2 10

60
1400

4.
Joule/m /s2

Now P = EH. So EH = 1400. But we know that 

E

H

E

H
= = = ≈0

0

0

0

376 77 377
m
e

. Ω

So

E
E

E E× = ⇒ = ⇒ =
377

1400 527240 726 12
avg A-turn/m.
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Similarly Havg can be calculated as

H
Eavg = 1400

⇒ =Havg A-turn/m1 928.

The amplitudes are calculated using the following expression:

E E0 2 1 414 726 1 1026 7= = × =avg A-turn/m. . .

Similarly H0 2 726= . A-turn/m.

		  Short Answers of Some Important Questions

	 1.	 How was the idea of electromagnetic waves 
conceived?

		  Answer: Faraday’s law suggests that a time-varying 
magnetic field produces an electric field while 
Ampere’s law shows that a time-varying electric 
field produces a magnetic field. Using this fact, 
Maxwell showed that if either of the electric or 
magnetic field changes with time, a field of another 
kind is induced in the adjacent space and produces 
waves which are called electromagnetic waves.

	 2.	 What do you understand by electromagnetic 
waves?

		  Answer: Electromagnetic waves consist of chang-
ing electric and magnetic fields. The electric and 
magnetic components of plane electromagnetic 
wave are perpendicular to each other and also 
perpendicular to the direction of the propaga-
tion. These waves propagate in space from one 
position to another even in absence of material 
medium.

Example 9

Calculate the skin depth for a frequency of 1020 Hz for silver if m p s0
7 74 10 3 10= × = ×− Weber/A-m S/m, .

Solution:  We know that

d
msw

= =1 2

k

Given that m p s0
7 74 10 3 10= × = ×− Weber/A-m S/m,  and w p= =2 1020f . So

d
p p

= =
× × × × ×−

1 2

4 10 3 10 2 107 7 20k
= 0.091 × 10−10 m  
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	 3.	 Write down some properties of electromagnetic 
waves.

		  Answer: The properties of electromagnetic waves 
travelling through free space are as follows:

		  1.	 �Electromagnetic waves travel with the speed 
of light.

		  2.	 Electromagnetic waves are transverse waves.
		  3.	� The ratio of electric to magnetic field in an 

electromagnetic wave equals the speed of 
light.

		  4.	 �Electromagnetic waves carry both energy 
and momentum.

	 4.	 Give some examples of electromagnetic waves.
		  Answer: Radio waves, light, X-rays, g -rays, etc. 

are the examples of electromagnetic waves.
	 5.	 What is displacement current?
		  Answer: The rate of change of electric displace-

ment vector with time is known as displace-
ment current. In other words, one can say that 
the displacement current is the current arising 
due to time-varying electric field between the 
plates of the capacitor.

	 6.	 What is the role of displacement current in 
electromagnetics?

		  Answer: On the basis of displacement current, 
the symmetry character of electric field and 
magnetic field is more prominent. With the 
introduction of current density, a changing 
electric field is now seen to produce magnetic 
field just as a changing magnetic field gives rise 
to electric field. Thus, higher degree of sym-
metry of electric and magnetic field is more 
satisfactory. Also on the basis of displacement 
current, both steady and non-steady current 
circuits may be analyzed as well as all the varia-
tions in AC circuits with a capacitor can be 
easily understood.

	 7.	 Differentiate between conduction current and 
displacement current.

		  Answer:
		  1.	� Conduction current is due to the actual 

flow of current in a conductor while 

displacement current is the result of time-
varying electric field in a dielectric.

		  2.	� Conduction current density is the product 
of electrical conductivity and electric field; 
however, displacement current density is 
the rate of change of electric displacement 
vector with time.

		  3.	� Conduction current obeys Ohm’s law while 
displacement does not obey Ohm’s law.

	 8.	 Write down Maxwell’s equations in dielectric 
media.

		  Answer: In dielectric medium there is no free 
charge. So s  = 0, J  = 0 and r = 0. Therefore, 
Maxwell’s equations are as follows:

∇ ⋅ =
�

D 0 ; ∇ ⋅ =B
��

0

∇ × = − ∂
∂

�
�

E
B
t

; ∇ × = ∂
∂

H
D
t

���
�

	 9.	 Show that 
� �
E B c/ = , where c is the velocity of 

electromagnetic wave.
		  Answer: We know that

� � �
k E wB× =

		  Since we have already discussed that electric 
field vector is perpendicular to the direction of 
propagation, so

� � �
k E wB⋅ =

		  or	

�
� �E

B

w

k
= = =2

2

pn
p l

nl
/

		  or	

�
�E
B

c= [ ]∵c = nl

	10.	 What is Poynting vector?
		  Answer: 

� � ���
P E H= × is the energy flowing 

through unit area and unit time and is known 
as the Poynting vector. It is also called the flux 
vector. The SI unit of Poynting vector is Wm−2.
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		  Important Points and Formulas

	 1.	 With the change in electric and magnetic field 
with time, a field of other kind is induced in the 
adjacent space which produces electromagnetic 
waves consisting electric and magnetic fields.

	 2.	 Maxwell formulated the concept of displace-
ment current to remove the inconsistency in 

Ampere’s law by adding the term J
D
tD

�� �
=

¶
¶

.

	 3.	 The current arising due to time-varying electric 
field between the plates of a capacitor is called 
the displacement current.

�
J

dE
dtd = e0

	 4.	 The equation of continuity is based on the con-
servation of charge.

	 5.	 Electromagnetic waves propagate with the 
speed of light

c = 1

0 0m e

	 6.	 The speed of light in a material is always less 
than in vacuum because e r  has a value greater 
than one.

	 7.	 According to Poynting theorem, the rate at 
which electromagnetic energy in a finite 
volume decreases with time is equal to the rate 
of dissipation of energy in the form of joule 
heat plus the rate at which energy flows out of 
the volume.

	 8.	
� � ���
P E H= × is the energy flowing through unit 
area and unit time and is known as the Poynting 
vector. It is also called the flux vector. The SI 
unit of Poynting vector is Wm−2.

	 9.	 Skin depth is the depth in conducting medium 
in which the amplitude of the electromagnetic 
wave is reduced (1/e) times of its original value.

	10.	 The skin depth is frequency dependent for 
good conductor and frequency independent in 
poor conductor.

		  Multiple Choice Questions 

	 1.	 Displacement current is due to
	 (a)	 displacement of electric charges
	 (b)	 time varying magnetic field
	 (c)	 time varying electric field
	 (d)	 Both (b) and (c)
	 2.	 Equation of continuity is based on
	 (a)	 conservation of charges
	 (b)	 conservation of momentum
	 (c)	 conservation of angular momentum
	 (d)	 None of these
	 3.	 Time varying electric field in the region 

between the plates is equivalent to
	 (a)	 conduction current 
	 (b)	 displacement current
	 (c)	 Both (a) and (b) 
	 (d)	 Neither (a) nor (b)
	 4.	 Who observed that a time varying magnetic 

field gave rise to an electric field.
	 (a)	 Maxwell	 (b)	 Ampere 
	 (c)	 Oersted	 (d)	 Faraday

	 5.	 Poynting theorem represents
	 (a)	 conservation of charges 
	 (b)	 conservation of momentum 
	 (c)	 conservation of energy 
	 (d)	 None of these
	 6.	 Maxwell observed and corrected a discrepancy in
	 (a)	 Ampere’s Law 
	 (b)	 Faraday’s Law
	 (c)	 Gauss Law for electrostatics 
	 (d)	 None of these
	 7.	 According to maxwell’s equation in free space; 

∇ ⋅ =E ?

	 (a)	 r 	 (b)	 0

	 (c)	 r e/ o 	 (d)	
e
r

0

	 8.	 In a conducting medium, the electromagnetic 
waves are.

	 (a)	 amplified 	 (b)	 attenuated 
	 (c)	 both (a) & (b)	 (d)	 None of the these
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	 9.	 Energy density in electric and magnetic field is
	 (a)	 Different	 (b)	 1.5 
	 (c)	 L/C	 (d)	 Same
	10.	 The wave velocity in non-conducting medium 

is

	 (a)	
1

me

	 (b)	 m e/  

	 (c)	
m
e

0

0

	 (d)	
1

m e0 0

	11.	 The characteristic impedance of free space is
	 (a)	 0	 (b)	 1
	 (c)	 377	 (d)	 None of these

		  Short Answer Type Questions 

	 1.	 What do you understand by electromagnetic 
waves?

	 2.	 What are Maxwell’s equations?
	 3.	 What do you mean by displacement current?
	 4.	 Differentiate between conduction current and 

displacement current.

	 5.	 What is current density?
	 6.	 Write down Maxwell’s equations for free space.
	 7.	 What is Poynting vector?
	 8.	 What do you understand by impedance?

		  Long Answer Type Questions 

	 1.	 Explain the concept of Maxwell’s displacement 
current and show how it led to the modifica-
tion of Ampere’s law.

	 2.	 Derive Maxwell’s equations. Explain the physi-
cal significance of each equation.

	 3.	 Derive the electromagnetic wave equations in 
vacuum. Hence show that the waves travel at a 
speed of light.

	 4.	 Derive Poynting theorem. Explain each term.
	 5.	 Prove that electromagnetic waves propagate 

with speed of light. 

		  Numerical Problems

	 1.	 Determine refractive index and velocity of light 
if the relative permittivity of distilled water is 81.

	 2.	 A uniform plane wave has electric field intensity 
in air as 7500 V/m in the y-direction. The wave 
is propagating in the x-direction at a frequency 
of 2 × 109 rad/s. Determine the frequency, 
wavelength, time-period and amplitude of H.

	 3.	 If the magnitude of E in a plane wave is 
455  V/m, determine the magnitude of H for a 
plane wave in free space.

	 4.	 A parallel-plate capacitor with circular plates 
of  radius a = 0.55 cm is being charged at 
a  uniform rate so that the electric field 
between the plates changes at a constant rate 
∂
∂

= ×
�
E
t

1 5 1013. V/m/s. Determine the displace

ment current for the capacitor.
	 5.	 A lamp radiates 400 W power uniformly in all 

directions. Calculate the electric and magnetic 
field intensities at 1.5 m distance from the lamp.

Chapter 11.indd   239 4/14/2015   8:33:40 AM



240   •� CHAPTER 11/Electromagnetics

Numerical Problems

	 1.	 9, 3.33 × 107 m/s 
	 2.	 3 18 108. ×  Hz, 0.94 m, 3 14 10 9. × −  s and 

19.89 A/m 
	 3.	 1.21 A/m 

	 4.	 1.3 × 10-2 A 

	 5.	 796.18 V/m and 0.04 A-turn/m

		  Answers

Multiple Choice Questions

	 1.	 (c)
	 2.	 (a)
	 3.	 (b)

	 4.	 (d)
	 5.	 (c)
	 6.	 (a)

	 7.	 (b)
	 8.	 (b)
	 9.	 (d)

	10.	 (a)
	11.	 (c)
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	 12.1	 Introduction

Semiconductors are materials that have their conductivity between conductor and insulator. The word semi-
conductor is derived from the combination of ‘semi’ which means half and ‘conductor’ which means metal. 
Thus, we can say that the semiconductor is a material which behaves sometimes as a metal and at other 
times as an insulator. The resistivity of semiconductor is greater than that of a conductor but less than that 
of an insulator. At room temperature, due to thermal energy, some of the electrons in the semiconductor 
are able to conduct electricity to a small extent. Germanium with resistivity of about 0.6 W-m and silicon 
having a resistivity of 1.5 × 103 W-m are examples of semiconductors.

	 12.2	 Types of Semiconductors

There are two types of semiconductors: One is intrinsic and the other is extrinsic semiconductor.

12.2.1  Intrinsic Semiconductors
A pure semiconductor without any impurities is known as intrinsic semiconductor. In intrinsic semi- 
conductor, the electron and hole concentrations are equal because these carriers within a pure material are 
created in pairs. For example, pure germanium (Ge) or Silicon (Si).

12.2.2  Extrinsic Semiconductors
A doped impure semiconductor is known as extrinsic semiconductor. Doping increases the conductivity 
of semiconductors. On the basis of doping extrinsic semiconductors are classified as n-type and p-type. 
The majority carriers in n-type and p-type are electrons and holes, respectively; the minority carriers in 
n-type and p-type are holes and electrons, respectively. For example, when a small amount of pentavalent 
impurity like arsenic or phosphorus is added to a pure germanium (Ge) or Silicon (Si), it is known as n-type 
semiconductor; however, when a small amount of trivalent impurity like gallium or boron is added to a pure 
germanium (Ge) or Silicon (Si), it is known as p-type semiconductor.

•	 Band theory of solids.
•	 Density of states.
•	 Fermi−Dirac distribution.
•	 Free carrier density (electrons and holes).

•	 Conductivity of semiconductors.
•	 Position of Fermi level in intrinsic and in 

extrinsic semiconductors.

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

Semiconductors12
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	 12.3	 Band Theory of Solids 

On the basis of free electron theory we can explain the phenomena of electrical conductivity, electron emis-
sion, etc. But this theory fails to explain why some solids are conductors, some are insulators and some are 
semiconductors. The free electron theory of metals assumes that potential is constant in a metal; however, 
the potential is not constant and may vary with the position of electrons in the metal. The actual nature of 
potential under which an electron moves in a metal is very complicated. Therefore, these phenomena can 
be explained on the basis of band theory of solids. According to this theory, the potential experienced by an 
electron passing through a metal is one which is perfectly periodic with period equal to the lattice constant 
for one-dimensional case. 

	 12.4	 Energy Bands in Solids

The electrons in an isolated atom have a well-defined set of energy levels. When two identical atoms are 
close together their electrons move under the influence of the combined electric fields of the two atoms and 
each previously single energy level splits into two levels, one higher and one lower than the corresponding 
level of the isolated atoms. When large numbers of atom are together, as in a crystal, the energy levels spread 
into bands. Such bands are called energy bands.

12.4.1  Valence Band
The outermost orbit electrons are called valence electrons. An energy band occupied by the valence electron 
is called valence band. This band may be completely or partially filled.

12.4.2  Conduction Band
The next higher permitted energy band is known as conduction band or the lowest unfilled energy band 
is called conduction band. At room temperature the valence electrons may become free; these are called 
conduction electrons. The range of energies possessed by these conduction electrons is known as conduction 
band.

12.4.3  Forbidden Band
Valence and conduction bands are separated by an energy gap; this gap is known as forbidden gap or forbid-
den band. In the forbidden band, no electron can stay because there is no allowed energy state. The energy 
gap for germanium is 0.72 eV and that for silicon is 1.12 eV. 

	 12.5	 Conductivity of Semiconductors 

Under the action of external electric field, the electrons drift toward the positive cathode and the holes 
move toward the negative electrode thereby constituting the current. A potential difference developed 
between both the ends of a sample makes the charge carrier attain the drift velocity vd . This drift velocity is 
proportional to applied external field strength E. Thus

	 v E v Ed d∝ ⇒ = m 	 (12.1)

where m is the mobility of charge carriers. We know that the current density due to electron is defined as

	 J n e vn dn= 	 (12.2)
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where vdn is the drift velocity of electron and can be obtained using Eq. (12.1) as

	 v Edn n= m � (12.3)

If sn is the conductivity of the semiconductor due to electrons, then the current density due to electrons 
will be

J En n= s

	
Þ =sn

nJ

E � (12.4)

Substituting the value of Jn from Eq. (12.2) into Eq. (12.4), we have

sn
dn=

nev

E

Using Eq. (12.3) we have

	 s
m

s mn
n

n n= Þ =
n e E

E
n e � (12.5)

This is the expression for conductivity of semiconducting material due to electrons. Similarly, we can obtain 
the expression of the conductivity for the hole, which is given by

	 s mp p= pe � (12.6)

Thus the total conductivity of the material is

s s s m m m m= + = + = +n p n p n pne pe e n p( )  

But in the case of intrinsic semiconductor n p n= = i. So

	 s m m= +e nn( )p i � (12.7) 

where ni is the number of electrons or holes per unit volume.

	 12.6	 Density of States

The number of electrons or holes per unit volume in conduction or valence band whose energy lies between 
E and E + dE is given by

	 n Z E F E dEi = ∫ ( ) ( ) 	 (12.8)

where F(E) is the Fermi–Dirac distribution function and depends upon the probabilities associated with the 
distribution of electrons of the system of energy E. Z E( ) is the energy density of the states. 

The density of states for electrons in a band yields the number of states in certain energy ranges. This 
function is important in electronic processes, particularly in transport phenomena. Thus, density of states 
[Z(E)dE] is defined as number of electron states per unit volume in the energy range E and E + dE.
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To evaluate Z(E), consider n-space with radius n. Therefore, the number of states lying in the cell, that 
is, in the energy range E and E + dE is 

 
Z E dE

V
n dn( ) =

1

8
4 2p

 

that is volume of the octant of the cell divided by volume of a single state (V ). In order to take into account 
the spin degeneracy (degenerate states have a common eigenvalue) we multiply this expression by 2. Hence

Z E dE
V

n dn( ) = ×2
1

8
4 2p

�
(12.9)

We know that energy (E ) of an electron of mass m in a box of side l in three dimensions is 

E
n h
ml

=
2 2

28    
or 

 
n

ml
h

E2
2

2

8
=

�
(12.10)

After differentiation we get

2
8 2

2
n dn

ml
h

dE=
 

or

	

dn
ml

nh
dE

ml

ml
h

E h

dE
ml

h
E= =

æ

è
ç

ö

ø
÷

=
æ

è
ç

ö

ø
÷

8

2

8

2
8

1

2

82

2

2

2

2

1 2

2

2

2

1 2

/

/

--1 2/ dE

�

(12.11)

Now substituting the values of n2 and dn from Eqs. (12.10) and (12.11), respectively, in Eq. (12.9) we have

 
Z E dE

V
ml
h

E
ml
h

E dE
V

ml
h

( )
/

/= × ×
æ

è
ç

ö

ø
÷ = ×-2

1

8
4

8 1

2

8
2

4

82

2

2

2

1 2

1 2
2

2
p p ææ

è
ç

ö

ø
÷

3 2

1 2

/

/E dE

or
	

Z E dE
h

m E dE( )
/ /= ( )4

2
3

3 2 1 2p

�
(12.12)

From Eq. (12.12), it is clear that the function Z(E) increases with E because the larger the energy, the greater 
the radius, and hence the volume of the shell, and consequently the larger the number of states lying with 
in it. It is also reflected that the larger the mass, the greater the density of states.

	 12.7	 Fermi−Dirac Distribution

Fermi−Dirac distribution is applicable to electrons in a solid crystal which obeys the restriction imposed 
by Pauli’s Exclusion Principle (that is, no two particles can occupy the same state). According to Fermi, the 
probability F(E) that a state of energy E is filled is given by

	 F E
e E E kT( ) ( )/=

+ −

1

1 F
	 (12.13)
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where EF is called the Fermi energy level and is defined as the highest energy that an electron can have in a 
conductor at absolute zero temperature, k is Boltzmann constant and T is absolute temperature.

	 12.8	
Free Carrier Density or Concentration of Electrons  
in the Conduction Band

In the conduction band, electrons are free to move anywhere as a free electrons, therefore the number of 
electrons in conduction band per unit volume whose energy lies between E and E + dE is given by

	 n Z E F E dE
E

e

C

=
∞

∫ ( ) ( ) 	 (12.14)

If Z E( ) is the energy density of the states at the bottom of the conduction band, then

	 Z E dE
h

m E E dE( ) ( ) ( )/ /= 



 −4

23
3 2 1 2p

e C � (12.15)

where EC is the energy at the bottom of the conduction band. According to Fermi−Dirac distribution, F(E) 
is given by

	 F E
e E E k T( ) ( )/=

+ −

1

1 F
� (12.16)

Putting the values from Eqs. (12.15) and (12.16) in Eq. (12.14), we have

n
h

m E E
e

dEE E k T
E

e e C F

C

= 



 −

+ −

∞

∫
4

2
1

13
3 2 1 2p

( ) ( )/ /
( )/

	

⇒ = 



 −

+

∞

−∫n
h

m E E
e

dEe C

E
E E k T

4
2

1

13
3 2 1 2p

( ) ( )/ /
( )/e

C

F

�

(12.17)

If E E kT− >>F  or ( )/E E kT− >>F 1, then the term i in the denominator is negligible. So the above equa-
tion will become

n
h

m
E E

e
dE

hE E k T
E

e e
C

F

C

= 





−
= 



−

∞

∫
4

2
4

3
3 2

1 2

3

p p
( )

( )
(/

/

( )/ 22 3 2 1 2m E E e dEE E kT

E

e C
F

C

) ( )/ / ( )/− − −
∞

∫

= 



 − − − + −

∞

∫
4

23
3 2 1 2p

h
m E E e dEE E E E k T

E

( ) ( )/ / ( )/
e C

C C F

C

 	
= 



 − − −

∞

∫
4

23
3 2 1 2p

h
m E E e e dEE E kT E E k T

E

( ) ( )/ / ( )/ ( )/
e C

F C C

C �
(12.18)
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Let 

E E

k T
P

−
=C

⇒ = ⇒ = ⇒ − =dE
kT

dP dE kTdP E E P kT( ) ( )/ / /
C

1 2 1 2 1 2

When E = ∞ we have x = ∞ and if E = EC then x = 0.
Now

n
h

m e e kTP kT dP

h

E E k T P
e e

F C= 





=

− −
∞

∫
4

2

4

3
3 2 1 2 1 2

0

3

p

p

( ) ( )/ ( )/ / /







= 





− −
∞

∫( ) ( )

(

/ ( )/ / /2

4
2

3 2 1 2 3 2

0

3

m e e P kT dP

h

E E k T P
e

F C

p
mm e kT e P dPE E kT P

e
F C) ( )/ ( )/ / /3 2 3 2 1 2

0

− −
∞

∫

After integration we get

e P dPP−
∞

=∫ 1 2

0 2
/ p

Hence

n
h

m e kTE E k T
e e

F C= 





−4
2

23
3 2 3 2p p

( ) ( )/ ( )/ /

	
⇒ = 





−n
m kT

h
e E E k T

e
e F C2

2
2

3 2p /
( )/

	
(12.19)

This is the required expression for the carrier density or concentration of electrons in conduction band.

	 12.9	
Free Carrier Density or Concentration of Holes  
in the Valence Band

In order to find the value of nh we shall use the term [1−F(E)] instead of F(E). Therefore

1 1
1

1
1 1 1− = −

+
= − +−

− −F E
e

eE E k T
E E k T( ) [ ]( )/

( )/

F

F

 

⇒ − = − − −1 1 1F E e E E k T( ) [ ]( )/F

 
⇒ − = − − −1 1 1F E e E E k T( ) [ ]( )/F

⇒ − = −1 F E e E E k T( ) ( )/F
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The value of Z(E) is given by

	
Z E dE

h
m E E dE( ) ( ) / /= 



 −( )4

23
3 2 1 2p

h V

�
(12.20)

where EV is the energy at the top of the valence band. Then the value of nh is

n Z E F E dE
EV

h = −
−∞
∫ ( ) ( ( ))1

n
h

m E E e dEE E k T
E

h h V
F

C

V

= 



 − −

−∞
∫

4
23

3 2 1 2p
( ) ( )/ / ( )/

= 



 − − + −

−∞
∫

4
23

3 2 1 2p
h

m E E e dEE E E E k T
E

( ) ( )/ / ( )/
h V

V F V

C

V

= 



 −

−
−

−∞
∫

4
23

3 2 1 2p
h

m e E E e dE
E E

k T E E k T
E

( ) ( )/ / ( )/
h V

V F

V

C

V

Let 
E E

k T
PV −

=

Then

− = ⇒ − =dE kTdP E E P k T( ) ( )/ / /
V

1 2 1 2 1 2

When E = -∞ then x = ∞ and if E = EV then x = 0. So

n
h

m e e k T P k T dP
E E

k T P
h h

V F
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


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After integration we get

e P dPP−
∞

=∫ 1 2

0 2
/ p

Hence

	
n

m kT

h
e

E E

kT
h

h
V F

= 



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−

2
2

2

3 2p /

�
(12.21)

This is the required expression for the carrier density or concentration of holes in valence band.

	12.10	 Position of Fermi Level in Intrinsic and Extrinsic Semiconductors 

Fermi energy is the highest energy of the electron in the valence band of a crystal in its ground state. Fermi 
level is used as a reference level. Let us study how the idea of Fermi level classifies a semiconductor.
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We know that in a semiconductor when all the electrons are present in the valence band then the 
probability

F(E) = 1

In this state the conduction band is vacant and the probability of the conduction band will be

F(E) = 0

Therefore, Fermi level having F(E) = 1/2 must be somewhere in between these two bands. In an intrinsic 
semiconductor the position of the Fermi level EF is midway in the forbidden energy gap as shown in Fig. 1.

Conduction Band

Valence Band

Ef Eg

EC

EV

Conduction band

Valence band

Figure 1  Fermi level in an intrinsic semiconductor.

When we dope pure semiconductor with donor impurities like phosphorous, arsenic, etc. then Fermi level 
EF rises above the mean level and when we add acceptor impurities like aluminium, boron, etc., the Fermi 
level falls below the mean level in the forbidden energy gap.

Thus, in an extrinsic p-type semiconductor, the Fermi level is nearer the valence band while in an extrin-
sic n-type semiconductor, it is nearer the conduction band as shown in Figs. 2 and 3, respectively.

Ef
Eg

Ei

Conduction band

Valence band

EC

EV

Figure 2  Fermi level in p-type extrinsic semiconductor.
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Ef

Eg

Ei

Conduction band

Valence band

EC

EV

Figure 3  Fermi level in an n-type extrinsic semiconductor.

		  Solved Examples

Example 1

In a sample of intrinsic germanium at room temperature, the mobility of electrons and holes is 0.40 m2/V-
sec and 0.23 m2/V-sec, respectively. If the electron and hole densities are each equal to 1.5 × 1023 m-3, find 
out the electrical conductivity and resistivity of germanium.

Solution:  Here we have mn = 0.40 m2/V-sec, m p = 0.23 m2/V-sec. Now n p= = × −1.5 10 m23 3. The 
conductivity of intrinsic semiconductor is given by

s m m= + = ´ ´ + ´ ´ = ´- -e n( ) . ( . . ) .n p i 1 6 10 0 40 0 23 1 512 1019 4 11.5 10 m23 W  

Resistivity of intrinsic semiconductor is given by

r
s

= =
´

= ´ - -1 1

1 512 10
0 66 10

4
4 1

.
. W m

Example 2

Find the temperature at which there is 1.0% probability that a state with energy 0.5 eV above Fermi 
energy will be occupied.

Solution:  Acording to Fermi distribution law

F E

e
E E

KT

( ) =
+

−

1

1
F

Chapter 12.indd   249 4/14/2015   8:37:06 AM



250   •� CHAPTER 12/Semiconductors

We have

F E

E E

k

( ) . % .

. . .

.

= =

− = = × × = ×

= ×

− −

−

1 0 0 01

0 5 0 5 1 6 10 8 10

1 38 10

19 20
F eV J J

223 J/K

Substituting these in the above formula we get

0 01
1

1

1 100
5797 1

4 595
8 10

1 38 10

5797 1

20

23

.
.

.
.

.

=

+

⇒ + = ⇒ = ⇒
×
×

−

−
e

e
T

T
T

T == 1261 6. K

Example 3

Find the probility with which an energy level 0.02 eV below Fermi level will be occupied at room  
temperature of 300 K and at 1000 K.

Solution:  Acording to Fermi distribution law

F E

e
E E

KT

( ) =
+

−

1

1
F

Now we have

E E

k

− = −

= × = ×− −

F 0 02

1 38 10 8 625 1023 5

.

. .

eV

J/K eV/K

For T = 300 K,

F E

e

( ) ..

.

=
+

=−
× ×−

1

1

0 6840 02

8 625 10 3005

For T = 1000 K,

F E

e

( ) ..

.

=
+

=−
× ×−

1

1

0 560 02

8 625 10 10005
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Example 4

Calculate the probability of an electron occupying an energy level 0.02 eV above the Fermi level at 200 K 
and 400 K in a material.

Solution:  Acording to Fermi distribution law

F E

e
E E

KT

( ) =
+

−

1

1
F

We have 

E E

k

− =

= × = ×− −

F 0 02

1 38 10 8 625 1023 5

.

. .

eV

J/K eV/K

For T = 200 K

F E

e

( ) ..

.

=
+

=
× ×−

1

1

0 240 02

8 625 10 2005

For T = 400 K

F E

e

( ) ..

.

=
+

=
× ×−

1

1

0 340 02

8 625 10 2005

Example 5

For an n-type semiconductor with energy gap Eg = 0.7 eV, calculate the concentration of n-type charge 
carriers at 300 K.

Solution:  The n-type charge carrier concentration is

n
m kT

h
e E kT

e
e g= 





2
2

2

p /

We have

m k T

h E

e

g

= × = × =

= ×

− −

−

9 1 10 1 38 10 300

6 63 10

31 23

34

. .

.

kg, J/K, K, 

 Js, == = × ×
−

0 7 0 7 1 6 10
19

. . .eV J

So

n ee = × × × ×
×







− −

−
− ×2

2 9 1 10 1 38 10 300

6 6 10

31 23

34 2
1 12 10p . .

( . )
( . −− −× × × = ×

19 232 1 38 10 300 193 34 10)/( . ) . /m3
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Example 6

The energy gap of silicon is 1.1 eV. Its electron and hole mobilities at room temperature are 0.45 and 
0.043 m2V -1s-1. Evaluate the carrier concentration and its electrical conductivity.

Solution:  The charge carrier concentration is

n
m kT

h
e E kT

e
e g= 





2
2

2

p /

We have

m k T h

E

e

g

= × = × = = ×

=

− − −9 1 10 1 38 10 300 6 63 10

1

31 23 34. . .kg, J/K, K,  Js

.. . . .1 1 1 1 6 10 1 76 10
19 19eV J J= × × = ×

− −

So

n ei = × × × × × ×
×







− −

−
−2

2 3 14 9 1 10 1 38 10 300

6 6 10

31 23

34 2
1. . .

( . )
( .776 10 2 1 38 10 300 1619 23

1 467 10× × × ×− −

= ×)/( . ) . /m3

s m m= + = ´ ´ ´ ´ + = ´- - -n ei e h( ) . . ( . . ) .1 467 10 1 6 10 0 45 0 043 1 16 1016 19 3 W 11 1m-

Example 7

Calculate the conductivity of pure silicon at room temperature when the concentration of carriers is 1.6 × 
1010 per cm3. Given that me = 1300 cm /V-s2  and 700 cm /V-s2 .

Solution:  We know that

s m mi n e= +i e h( )

We have

n ei e h= × = × = =−1 6 10 1 6 10 1300 70010 19. , ./cm C, cm /V-s, cm /V-s3 2 2m m

So

s i = ´ ´ ´ + = ´- -1 6 10 1 6 10 1300 700 5 12 1010 19 6. . ( ) . mho/cm
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Example 8

Calculate the number of donor atoms which must be added to an intrinsic semiconductor to obtains the 
resistivity as 10-6 ohm cm. Assume me = 100 cm /V-sec2 .

Solution:  We know that

r
s m

= =
1 1

n ee e

Now r m= = × =− −10 1 6 10 1006 19Ω-cm, C, cm /V-sec2e . e  and

ne =
× × ×

= ×− −

1

10 1 6 10 100
6 25 106 19

22

.
. /cm3

		  Short Answers of Some Important Questions

	 1.	 What are semiconductors?
Answer: Semiconductors are those materials 
which have their conductivity between con-
ductor and insulator.

	 2.	 What is intrinsic semiconductor?
Answer: A pure semiconductor without impu-
rities is known as intrinsic semiconductor. In 

intrinsic semiconductor, the electron and hole 
concentrations are equal because these carriers 
within a pure material are created in pairs.

	 3.	 What do you meant by energy bands?
Answer: When large numbers of atoms are 
together, as in a crystal, the energy levels spread 
in to bands. Such bands are called energy bands.

		  Important Points and Formulas
	 1.	 Semiconductors are materials that have their 

conductivity between conductor and insulator.
	 2.	 The resistivity of semiconductor is greater than 

that of a conductor but less than that of an 
insulator.

	 3.	 A pure semiconductor without any impurities 
is known as intrinsic semiconductor.

	 4.	 The outermost orbit electrons are called valence 
electrons. 

	 5.	 The next higher permitted energy band is 
known as conduction band.

	 6.	 Valence and conduction bands are separated by 
an energy gap; this gap is known as forbidden 

gap or forbidden band. In the forbidden band, 
no electron can stay because there is no allowed 
energy state. The energy gap for germanium is 
0.72 eV and that for silicon is 1.12 eV. 

	 7.	 The total conductivity of the material is

s s s m m m m= + = + = +n p n p n pne pe e n p( )

		  But in the case of intrinsic semiconductor
n p n= = i. So

s m m= +e nn( )p i

where ni is the number of electrons or holes per 
unit volume.
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		  Multiple Choice Questions

	 1.	 The forbidden energy gap in an insulator is
	 (a)	 6 eV	 (b)	 3 eV
	 (c)	 0 eV	 (d)	 1 eV
	 2.	 The forbidden energy gap in a semiconductor is
	 (a)	 6 eV	 (b)	 3 eV
	 (c)	 0 eV	 (d)	 1 eV
	 3.	 The resistivity of conductors
	 (a)	 increases with temperature
	 (b)	 decreases with temperature
	 (c)	 is independent of temperature
	 (d)	 None of these
	 4.	 The resistivity of insulator
	 (a)	 is low	 (b)	 is high
	 (c)	 remains constant	 (d)	 None of these
	 5.	 Conductivity of conductors near room 

temperature
	 (a)	 increases with increasing temperature
	 (b)	 decreases with increasing temperature
	 (c)	 remains constant
	 (d)	 first increases and then decreases
	 6.	 Conductivity of semiconductors near room 

temperature
	 (a)	 increases with increasing temperature
	 (b)	 decreases with increasing temperature
	 (c)	 remains constant
	 (d)	 first increases and then decreases
	 7.	 Position of Fermi level in intrinsic semi- 

conductor is

	 (a)	 above the valence bond
	 (b)	 below the conduction band
	 (c)	 midway of the valence and conduction 

band
	 (d)	 None of these

	 8.	 In p-type semiconductor the Fermi level lies
	 (a)	 above the valence bond
	 (b)	 below the conduction band
	 (c)	 midway of the valence and conduction 

band
	 (d)	 None of these

	 9.	 In n-type semiconductor the Fermi level lies
	 (a)	 above the valence bond
	 (b)	 below the conduction band
	 (c)	 midway of the valence and conduction 

band
	 (d)	 None of these

	10.	 For n-type semiconductors
	 (a)	 ne >> nh

	 (b)	 ne = nh

	 (c)	 ne << nh

	 (d)	 None of these

	11.	 For p-type semiconductors
	 (a)	 ne >> nh

	 (b)	 ne = nh

	 (c)	 ne << nh

	 (d)	 None of these

		  Short Answer Type Questions 

	 1.	 What do you understand by a semiconductor?
	 2.	 Differentiate between intrinsic and extrinsic 

semiconductors with examples.

	 3.	 Differentiate between conductor, semiconduc-
tor and insulator with suitable examples.

	 4.	 Explain band theory of solids.

	 8.	 In an intrinsic semiconductor the position of 
the Fermi level EF is midway in the forbidden 
energy gap.

	 9.	 In an extrinsic p-type semiconductor, the Fermi 
level is nearer the valence band while in an 
extrinsic n-type semiconductor, it is nearer the 
conduction band.
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		  Answers

Multiple Choice Questions

		  Numerical Problems

	 1.	 In a sample of intrinsic germanium at room 
temperature, the mobility of electrons and 
holes is 0.50 m2/V-sec and 0.13 m2/V-sec, 
respectively. If the electron and hole densities 
are each equal to 2.5 × 1023 m-3, find out the 
electrical conductivity and resistivity of 
germanium.

	 2.	 Calculate the number of donor atoms which 
must be added to an intrinsic semiconductor to 
obtains the resistivity as 10-6 ohm cm. Assume 
me = 1000 cm /V-sec2 .

	 3.	 Calculate the conductivity of pure silicon at 
room tmperature when the concentration of 
carriers is 1.6 × 1010 per cm3. Given that 
me = 1500 cm /V-s2  and 500 cm /V-s2 .

	 4.	 The energy gap of silicon is 1.1 eV. Its electron 
and hole mobilities at room temperature are 
0.48 and 0.013 m2V-1s-1. Evaluate the carrier 
concentration and its electrical conductivity.

	 5.	 For a p-type semiconductor with energy gap Eg 
= 0.7 eV, calculate the concentration of p-type 
charge carriers at 300 K.

	 1.  (c)
	 2.  (d)

	 3.  (a)
	 4.  (b)

	 5.  (a)
	 6.  (b)

	 7.  (c)
	 8.  (a)

	 9.  (b)
	10.  (a)

	11.  (c)

	 5.	 What do you understand by energy bands?
	 6.	 Explain conduction and valence band.
	 7.	 What is Fermi level?

	 8.	 What do you understand by conductivity in 
semiconductor?

		  Long Answer Type Questions

	 1.	 Prove that the density or concentration of elec-
trons in the conduction band of an intrinsic 
semiconductor is

n
m kT

h
e E E k T

e
e F C= 





−2
2

2

3 2p /
( )/

	 2.	 Prove that the density or concentration of elec-
trons in the valence band is 

n
m kT

h
e

E E

kT
h

h
V F

= 





−

2
2

2

3 2p /

	 3.	 Explain Fermi−Dirac distribution.

	 4.	 Explain with the help of diagrams, the effect of 
doping on Fermi level of semiconductors.

	 5.	 Differentiate between intrinsic and extrinsic 
semiconductors on the basis of Fermi level.

	 6.	 What is Fermi level? Why does a pure semicon-
ductor behave like an insulator at absolute 
zero?

	 7.	 What do you understand by conductivity in 
semiconductor?

	 8.	 Derive an expression for total conductivity in a 
semiconductor.

	 9.	 What is Fermi level? Explain Fermi level in 
n-type semiconductor.
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Numerical Problems
	 1.	 2.52 × 104 mho/cm and 0.396 × 10-4 W -m

	 2.	 6.25 × 1021 percm3

	 3.	 5.12 × 10-6 mho/cm 

	 4.	 1.16 × 10-3 W -1m-1

	 5.	 3.34 × 1019/m3
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	 13.1	 Introduction

Superconductivity is a phenomenon of disappearance of electrical resistance in some materials when cooled 
to a very low temperature. There are certain materials or alloys whose electrical resistivity suddenly drops to 
zero (or conductivity increases to infinite) when they are cooled to a very low temperature nearly absolute 
zero (often called liquid helium temperature range); these materials/alloys are called superconductors. The 
temperature at which the resistivity becomes zero or material becomes superconductor is called transition 
temperature or critical temperature. This phenomenon was discovered by Dutch physicist Heike Kamerlingh 
Onnes1 on April 8, 1911 in Leiden. He observed the resistance of Hg nearly zero at temperature 4.2 K. 
Like ferromagnetism, nanoscience, nanotechnology and atomic spectral lines, superconductivity is better 
explained by quantum mechanical phenomenon. It is characterized by the Meissner effect, the complete 
expulsion of magnetic field lines from the interior of the material as it transitions into the superconducting 
state. The occurrence of the Meissner effect indicates that superconductivity cannot be understood simply 
as the idealization of perfect conductivity in classical physics.

Thus, when a substance is cooled below a certain temperature (called transition temperature or critical tem-
perature), the electrical resistance of the substance suddenly drops to zero; this phenomenon is known as supercon-
ductivity and the substances which exhibit this property are known as superconductors.

OR
The phenomenon of disappearance of electrical resistance of material below a certain temperature is called super-
conductivity and the material is said to be superconductor.

•	 Temperature dependence of resistivity in super-
conducting materials.

•	 Effect of magnetic field (Meissner effect).
•	 Temperature dependence of critical field.

•	 Type I and Type II Superconductors.
•	 BCS theory (Qualitative).
•	 High temperature superconductors.
•	 Applications of superconductors.

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

Superconductivity13

1 Onnes was honored in 1913 with Noble prize in physics for his research of matter at low temperatures.
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	 13.2	 Temperature Dependence of Resistivity in Superconductors

During the study of electrical resistance of mercury at very low temperature, Onnes in 1911 observed that 
the electrical resistance of a pure mercury at very low temperatures2 decreases regularly like that of any other 
metal but at temperature about 4.2 K, it suddenly drops to zero as shown in Fig. 1. The temperature at which 
the normal material changes into superconducting state is called the critical temperature Tc. Other substances 
which exhibit this phenomenon are aluminium, silver, cadmium, lead, gallium, iridium, etc. There are so 
many other alloys and ceramics that behave as superconductors. It may be possible that individual elements 
may not be the superconductor but their alloy can be superconductor. Figure 1 shows the comparison of 
resistivity of normal metal and superconductor. From this figure, it is clear that the critical temperature 
separates the superconducting state from the normal state. Above critical temperature Tc the specimen is 
in the normal state with finite resistivity but below Tc, it changes into superconducting state with infinite 
conductivity. This critical temperature and its range are different for different materials and are affected very 
much by the impurity in the material. A small amount of impurity can change from steep fall of resistivity 
to gradual fall. Further, this transition of material is reversible and the material transforms to normal state 
when temperature rises above critical temperature.

Non-superconductive metal

R
es

is
ta

nc
e

Superconductor

TemperatureTC0 K

Figure 1  �Schematic representation of the electrical resistance of the normal metal and superconductor as a 
function of temperature.

	 13.3	 Critical Field

When the superconducting materials are subjected to a strong magnetic field, it will result in the destruc-
tion of the superconducting property below the critical temperature, that is, they return to the normal state. 
Thus, the minimum field required to destroy the superconducting property is called the critical field Hc. Its value 
depends upon the nature of the material and its temperature as shown in Fig. 2. The variation of Hc with 
temperature is nearly parabolic and can be expressed by the equation

H T H
T
Tc c

c

( ) ( )= −


















0 1
2

2 The study of the laws of perfect gases tells us that the lowest possible temperature on the centigrade scale is 273° below the melting 
point of ice. This temperature (−273°C) is taken as the zero of the absolute temperature scale. Thus, very low temperature means the 
region from 0°C to absolute zero (−273°C).
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where Hc ( )0  is the critical field at 0 K and H Tc ( ) is the critical field at temperature T. Below critical tem-
perature, the critical field decreases with increase of temperature. It is maximum at absolute zero and zero 
at critical temperature. It means that no field is required for transition from superconductor to normal state 
at critical temperature.

Normal state

T

Hc

TC

Hc(0)

C
rit

ic
al

 fi
el

d

Phase boundary

Superconducting
state

Temperature

Figure 2  Schematic representation of the critical field as a function of temperature.

	 13.4	 Critical Current and Current Density

The application of a large value of electric current to a superconducting material destroys its superconduct-
ing property. The current required for this is called critical current and the corresponding current density is 
called critical current density.

If a superconducting wire of radius r carries current I then critical current Ic is given by

I rHc c= 2p

At I = Ic superconductivity will be destroyed. In presence of applied transverse magnetic field H, the value 
of critical current decreases and expressed as

I r H Hc c= −2 2p ( )

This is called Silsbee’s rule.

Current Density 

J
I

A

I

rc = =c c 2A/m
p 2

	 13.5	 Effect of Magnetic Field (Meissner Effect)

The Meissner effect is an expulsion of a magnetic field from a material during its transition to the super-
conducting state. German physicists Walther Meissner and Robert Ochsenfeld discovered the phenom-
enon in 1933 by measuring the magnetic field distribution outside superconducting tin and lead specimen. 
The specimens, in the presence of an applied magnetic field, were cooled to a temperature below the 
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superconducting transition temperature. Until the transition temperature, the magnetic lines of force pen-
etrate the interior of specimen; however as the temperature decreases below the transition temperature, 
the magnetic flux is expelled out from the interior and goes round of the specimen as shown in Fig. 3. In 
fact, in the presence of magnetic field below the critical temperature, currents on the surface of the mate-
rial (persistent current) are generated which actually cancel the interior flux density of the superconductor. 
That is to say, below the transition temperature the material becomes perfectly diamagnetic. Thus, when a 
superconductor is placed in an external magnetic field and cooled below the critical temperature, all the magnetic 
flux is expelled or pushed out of it; this is called Meissner’s effect.

or

The phenomenon of an expulsion or pushing out of magnetic flux when it is cooled below the transition tempera-
ture is called Meissner’s effect.

The Meissner’s effect is of fundamental importance because it shows that in an external magnetic field, 
a metal in a superconducting state behaves as a perfect diamagnetic. If inside the specimen B = 0, then the 
relation between magnetizing field H, magnetic induction B and intensity of magnetization I is expressed as

B H I= + =m0 0( )

or	  
I
H

= −
 
1

According to the definition of susceptibility

cm = = −I
H

1

This shows that the susceptibility of a superconductor is −1 (negative) and the relative permeability is zero. 
This is one of the characteristics of a perfect diamagnetic.

B B

T >Tc T < Tc

Figure 3  Diagram of the Meissner effect. Magnetic field lines, represented as arrows, are excluded from a 
superconductor when it is cooled below critical temperature.
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We know that resistivity of a superconductor becomes zero; therefore, electric field E must be zero for 
finite current density. Now from Maxwell’s third equation, we have

∇ × = − ∂
∂

E
B
t

Since E = 0

∂
∂

=B
t

0   or  B = constant

This concludes that the magnetic flux in the interior of the superconductor is independent of the transi-
tion temperature. This contradicts Meissner effect. Hence, the resistivity and perfect diamagnetism are two 
independent and essential properties of a superconductor.

	 13.6	 Type I and Type II Superconductor

Superconducting materials are classified as Type I (soft) and Type II (hard) superconductors depending on 
their characteristic behaviors in the presence of an external magnetic field. Type I superconductors exhibit 
complete Meissner effect, that is below critical field Hc they are superconductors and at Hc they become 
normal as shown in Fig. 4(a). The value of Hc is very small and is of the order of 0.1 T.  This type of super-
conductivity is normally exhibited by pure metals, for example, aluminium, lead, indium and mercury.

On the other hand, Type II superconductors exhibit two critical magnetic fields Hc1 and Hc2 as materials 
behave in different ways [see Fig. 4(b)]. Below critical field Hc1, the magnetization increases linearly, the 
material is superconductor and exhibits complete Meissner effect that is complete expulsion of magnetic 
line of forces from the bulk material. Above Hc1, the magnetization decreases gradually and magnetic lines 
start penetrating the material. The material loses its superconducting state and comes to normal sate at Hc2. 
The region between Hc1 and Hc2 is called mix state. If we compare with Type I superconductor, there is 
abrupt fall in magnetization at A wherein Type II fall is gradual. Transition metals and alloys consisting of 
niobium and aluminium are examples of Type II superconductors. 

A material can change from Type I to Type II on addition of some impurities. For example, lead is a Type I  
superconductor with Hc = 4.8 × 104 A/m at 4°K and Hc2 = 7.96 × 104 A/m. On adding 20% of indium  
in lead, Hc1 = 5.6 × 103 A/m and Hc2 = 2.9 × 105 A/m. Magnetization curves for both Type I and Type II 
materials are reversible in case of the ideal superconductors.
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Figure 4  Magnetization versus magnetic field for (a) Type I and (b) Type II superconductors.
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	 13.7	 BCS Theory

John Bardeen, Leon N. Cooper and John R. Schrieffer (BCS) developed the quantum theory of superconduc-
tivity, the ability of certain metals at low temperatures to conduct electricity without electrical resistance. It is 
based on interaction of two electrons through the intermediary of phonons. The behavior of superconductors 
suggests that electron pairs are coupling over a range of hundreds of nanometers, there orders of magnitude 
larger than the lattice spacing. These pairs are called Cooper pairs. These coupled electrons can take the char-
acter of a boson and condense into the ground state as shown in Fig 5. BCS showed that the basis of interac-
tion responsible for superconductivity to be a pair of electron is by means of interchange of virtual phonons. 
Usually the electrons repel each other by the columbic force but in special case when temperature is lower 
than critical value, the attraction of electron is stronger than electrons columbic force. The attraction force 
can be explained in following way: Suppose that an electron approaches a positive core, it suffers attractive 
coulomb interaction. Due to this interaction ion core is set in motion and consequently distorts the lattice. 
Smaller the mass of the positive ion core, greater will be the distortion. Let another electron come towards 
that and see this distorted lattice. Then the interaction between distorted lattice and electron takes place 
which affects the lowering energy of the second electron. Thus, the second electron interacts via lattice distor-
tion or the phonon field resulting in the lowering of energy of the electrons. This lowering energy of electron 
implies that the force between the two electrons is attractive. This lowering of interaction is called electron-
lattice-electron interaction. It is strongest when the two electrons have equal and opposite spin and momenta. 
This is the state where Cooper pair of electrons smoothly ride over the lattice imperfections without exchang-
ing energy with them. Hence no transfer of energy takes place from the Cooper pair to the lattice ion.

Alternately, we can say that a pair of free electrons coupled through a phonon is called a Cooper pair. 
The energy of Cooper pair is lower than that of the individual electrons. Since electrons with opposite spin 
can become paired, therefore, the total spin of pair is zero. As a result the electrons pairs in a superconductor 
are bosons.

Phonon interaction

Copper pair
of electrons

lattice
spacing

0.1 − .4 nm

≈ 100 nm

e− e−

Figure 5  Schematic of cooper pair.

	 13.8	 High-Temperature Superconductivity

Until 1986, physicists had believed that BCS theory forbade superconductivity at temperatures above 
about 30 K. In that year, Bednorz and Müller discovered superconductivity in a lanthanum-based cuprate-
perovskite material, which had a transition temperature of 35 K (Nobel Prize in Physics, 1987). It was a 
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great achievement for discoverer to have the superconductors above 10 K transition temperature and the 
new nomenclature of high temperature superconductor was introduced. It was soon found that replac-
ing lanthanum with yttrium (i.e., making YBCO) raised the critical temperature to 92  K. This tem-
perature jump is particularly significant, since it allows liquid nitrogen as a refrigerant, replacing liquid 
helium. This can be commercially important because liquid nitrogen can be produced relatively cheap, 
even on-site, avoiding some of the problems (such as so-called ‘solid air’ plugs) which arise when liquid 
helium is used in piping. Many other cuprate superconductors have since been discovered, and the theory 
of superconductivity in these materials is one of the major outstanding challenges of theoretical con-
densed matter physics. Since about 1993, the highest temperature superconductor was a ceramic mate-
rial consisting of mercury, thallium, barium, calcium, copper, and oxygen (Hg12Tl3Ba30Ca30Cu45O125) with  
Tc = 133 − 138 K. The latter experiment (138 K) still awaits experimental confirmation. In February 2008, 
an iron-based family of high-temperature superconductors was discovered. However, the room temperature 
superconductor are yet to be discovered.

	 13.9	 Characteristics of Superconductors 

The following are the important characteristics of superconductors:

	 1.	 The current in superconductors can be sustained for a long period.
	 2.	 Magnetic field does not penetrate the superconductor.
	 3.	 Above critical magnetic field, a superconductor becomes normal metal.
	 4.	 The materials having high resistivity are superconductors.
	 5.	 Ferromagnetic and anti-ferromagnetic materials are not superconductors.

	13.10	 Applications of Superconductors

Superconducting magnets are some of the most powerful electromagnets. They are used in MRI/NMR 
machines, mass spectrometers, etc. The beam-steering magnets are used in particle accelerators. They can 
also be used for magnetic separation, where weakly magnetic particles are extracted from a background of 
less or non-magnetic particles, as in the pigment industries.

In the 1950s and 1960s, superconductors were used to build experimental digital computers using 
cryotron switches. More recently, superconductors have been used to make digital circuits based on rapid 
single flux quantum technology and RF and microwave filters for mobile phone base stations.

Superconductors are used to build Josephson junctions which are the building blocks of SQUIDs 
(superconducting quantum interference devices), the most sensitive magnetometers known. SQUIDs are 
used in scanning SQUID microscopes and magnetoencephalography. Series of Josephson devices are used 
to realize the SI volt. Depending on the particular mode of operation, a superconductor-insulator-super-
conductor Josephson junction can be used as a photon detector or as a mixer. The large resistance change 
at the transition from the normal to the superconducting state is used to build thermometers in cryogenic 
micro-calorimeter photon detectors. The same effect is used in ultrasensitive bolometers made from super-
conducting materials. Other early markets arise where the relative efficiency, size and weight advantages of 
devices based on high-temperature superconductivity outweigh the additional costs involved. Promising 
future applications include high-performance smart grid, electric power transmission transformers, power 
storage devices, electric motors (e.g. for vehicle propulsion, as in vactrains or maglevtrains), magnetic levita-
tion devices, fault current limiters, nanoscopic materials such as buckyballs, nanotubes, composite materials 
and superconducting magnetic refrigeration. However, superconductivity is sensitive to moving magnetic 
fields, so that applications that use alternating current (e.g. transformers) will be more difficult to develop 
than those that rely upon direct current.
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		  Solved Examples

Example 1

The critical field for Al is 1.2 × 104 A/m. Determine the critical current and current density which can 
flow through a long thin superconducting wire of aluminium of diameter 1 mm.

Solution:  Here we have diameter = 1 mm = 10−3 m, Hc = 1.2 × 104 A/m, radius = 0.5 × 10−3 m. Now

I rH Ac c= = × × × × × =−2 2 3 14 0 5 10 1 2 10 37 683 4p . . . .  

Current density

J
I

rc
c 2 2A/m A/m= =

× ×
= ×−p 2 4 2

837 68

3 14 0 5 10
48 10

.

. ( . )

Example 2

A superconducting material has a critical temperature of 3.7 K in zero magnetic field and a critical field of 
0.02 T at 0 K. Find the critical field of 3 K.

Solution:  Here we have Tc = 3.7 K, Hc ( )0  = 0.02 T and T = 3 K. Now
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Example 3

The critical field for lead is 1.2 × 105 A/m at 8 K and 2.4 × 105 A/m at 0 K. Find the critical temperature 
of the material.

Solution:  Here we have H Tc ( ) = 1.2 × 105 A/m, Hc ( )0  = 2.4 × 105A/m and T = 8 K. Now
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Example 4

The critical fields for lead are 1.2 × 105 A/m and 3.6 × 105 A/m at 12 K and 10 K, respectively. Find its 
critical temperature and critical field at 0 K and 3.2 K.
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Solution:  Here we have

H Tc ( ) = 1.2 × 105 A/m at T =12 K

H Tc ( ) = 3.6 × 105A/m at T = 10 K

Now
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Dividing Eq. (13.1) by Eq. (13.2), we get
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Now substituting the value of  Tc in Eq. (13.1) we get
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Hc ( )0  = 9.12 × 105 A/m

Critical field is given by
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Example 5

Determine the temperature at which the critical field becomes half of its value at 0 K if critical tempera-
ture of a superconductor when no magnetic field is present is Tc.

Solution:  Here we have
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we have
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		  Short Answers of Some Important Questions

	 1.	 What is superconductivity?
		  Answer: The phenomenon of disappearance of 

electrical resistance of material below a certain 
temperature is called superconductivity. 

	 2.	 What is a superconductor?
		  Answer: The material in which electrical resis-

tance of material disappears below a certain 
temperature is said to be superconductor.

	 3.	 What do you mean by critical field?
		  Answer: The minimum field required to 

destroy the superconducting property is called 
the critical field.

	 4.	 What do you understand by critical current 
and critical current density?

		  Answer: The current required to destroy the 
superconducting property of a superconducting 
material is called critical current and corre-
sponding current density is called critical cur-
rent density.

	 5.	 What is the effect of magnetic field on a 
superconductor?

		  Answer: When a superconductor is placed in 
an external magnetic field and cooled below 
the critical temperature, all the magnetic flux is 
expelled or pushed out of it. It is also known as 
Meissner’s effect.

	 6.	 What is the importance of Meissner’s effect?
		  Answer: Meissner’s effect is of fundamental 

importance because it shows that in an external 
magnetic field, a metal in a superconducting 
state behaves as perfect diamagnetic.

	 7.	 What are the essential properties of a super- 
conductor?

		  Answer: Zero resistivity and perfect diamagne-
tism are the two independent and essential 
properties of a superconductor. 

	 8.	 What is Cooper pair?
		  Answer: The behavior of superconductors sug-

gests that electron pairs couple over a range of 
hundreds of nanometers, there orders of mag-
nitude larger than the lattice spacing; such 
pairs are called Cooper pairs.

		  Important Points and Formulas

	 1.	 The phenomenon of disappearance of electrical 
resistance of material below a certain tempera-
ture is called superconductivity and the mate-
rial is said to be superconductor.

	 2.	 The temperature at which the normal material 
changes into superconducting state is called the 
critical temperature Tc.

	 3.	 The minimum field required to destroy the 
superconducting property is called the critical 
field Hc.

	 4.	 The variation of Hc with temperature is nearly 
parabolic and can be expressed by the 
equation
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2

		  where Hc ( )0  is thecritical field at 0 K and 
H Tc ( ) is the critical field at temperature T.
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	 5.	 The resistivity and perfect diamagnetism are 
two independent and essential properties of a 
superconductor.

	 6.	 A pair of free electrons coupled through a 
phonon is called a Cooper pair. The energy of 
Cooper pair is lower than that of the individual 
electrons. Since electrons with opposite spin 
can become paired, therefore, the total spin of 
pair is zero. As a result the electrons pairs in a 
superconductor are bosons.

	 7.	 If a superconducting wire of radius r carries 
current I then critical current Ic is given by

I rHc c= 2p
	 8.	 In presence of applied transverse magnetic field 

H, the value of critical current decreases and 
expressed as

I r H Hc c= −2 2p ( )

		  This is called Silsbee’s rule.

		  Multiple Choice Questions

	 1.	 A superconductor is
	 (a)	 paramagnet		  (b)	diamagnet 
	 (c)	 Both (a) and (b)		  (d) None of these

	 2.	 The energy gap in a superconductor
	 (a)	 increases with increasing temperature 
	 (b)	 is independent of temperature
	 (c)	 decreases with increasing temperature 
	 (d)	 None of these

	 3.	 The electrical resistance or resistivity of a pure 
superconductor at transition temperature

	 (a)	 gradually reaches zero 
	 (b)	 suddenly becomes zero 
	 (c)	 is independent of temperature
	 (d)	 None of these

	 4.	 The transition temperature of a superconductor
	 (a)	 depends on the isotropic mass
	 (b)	 is independent of mass
	 (c)	 does not depend on charge
	 (d)	 None of these

	 5.	 The number of critical field in a Type II super-
conductor is

	 (a)	 0	 (b)	 1
	 (c)	 2	 (d)	 4

	 6.	 Meissner effect takes place in
	 (a)	 liquid 
	 (b)	 superconducting magnet 
	 (c)	 MRI
	 (d)	 Maglev vehicle

		  Short Answer Type Questions

	 1.	 What do you understand by a supercon- 
ductor?

	 2.	 What is Meissner’s effect?
	 3.	 What do you understand by soft and hard 

superconductors?
	 4.	 Give some properties of superconductors.

	 5.	 What is critical current?
	 6.	 What do you understand by transition tem- 

perature?
	 7.	 Explain Type I superconductor.
	 8.	 What do you mean by high temperature 

superconductor?

		  Long Answer Type Questions

	 1.	 What do you understand by superconductiv-
ity? Discuss temperature dependence of 
superconductor.

	 2.	 What are superconductors? Describe the effect 
of magnetic field on superconductors.

	 3.	 Explain Meissner’s effect of superconductivity.
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	 4.	 What is critical current? Explain Silsbee’s effect 
in superconductors.

	 5.	 What do you understand by critical current 
density? 

	 6.	 What is critical field? Distinguish between soft 
and hard superconductors.

	 7.	 What is Meissner effect? Prove that Meissner 
effect and the disappearance of resistivity in a 
superconductor are mutually consistent.

	 8.	 Write a short note on Type I and Type II 
superconductors.

	 9.	 What are superconductors? Discuss applica-
tions of superconductor.

	10.	 What is BCS theory?
	11.	 Explain the behavior of a superconductor in 

magnetic field.
	12.	 Write a short note on high temperature 

superconductor.

		  Numerical Problems

	 1.	 The critical field for iridium is 3.4 × 104 A/m. 
Determine the critical current and current 
density which can flow through a long thin 
superconducting wire of iridium of radius  
1 mm.

	 2.	 A superconducting material has a critical tem-
perature of 4.8 K in zero magnetic field and a 
critical field of 3.4 × 104 A/m at 0 K. Find the 
critical field of 3.5 K.

	 3.	 A lead wire has a critical magnetic field of 5.5 × 
104 A/m at 0 K. The critical temperature is 6.2 
K. At what temperature would the critical field 
drop to 3.5 × 104 A/m?

	 4.	 The critical magnetic field for lead wire is 5.5 × 
104 A/m. What are the critical current and crit-
ical current density if the diameter of the wire 
is 1 mm?

	 5.	 A lead wire has a critical magnetic field of 5.5 × 
104 A/m at 0 K. The critical temperature is 
6.2 K. At what temperature would the critical 
field drop to 3.5 × 104 A/m? What is the criti-
cal current density at that temperature if the 
diameter of the wire is 1 mm?

	 6.	 The critical fields for lead is 1.8 × 106 A/m at 
6 K and 2.4 × 106 A/m at 0 K. Find the critical 
temperature of the material.

	 7.	 The critical fields for lead are 1.2 × 105 A/m 
and 2.4 × 105 A/m at 14 K and 13 K, respec-
tively. Find its critical temperature and critical 
field at 0 K and 4.2 K.

	 8.	 Determine the temperature at which the criti-
cal field becomes one-third of its value at 0 K if 
critical temperature of a superconductor when 
no magnetic field is present is Tc.

		  Answers

Multiple Choice Questions

1.  (b)	 2.  (a)	 3.  (b)	 4.  (a)	 5.  (c)	 6.  (d)

Numerical Problems

	 1.	 197.2 A and 197.2 × 106 A/m2

	 2.	 1.59 × 102 A/m
	 3.	 3.74 K
	 4.	 172.7 A and 220 × 106 A/m2

	 5.	 3.74 K, 126 × 106 A/m2

	 6.	 3 K
	 7.	 10 × 105 A/m and 9.2 × 105 A/m 
	 8.	 1.2 Tc
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	 14.1	 Introduction 

Nanotechnology, often shortened to ‘nanotech’, is the study of the control of matter on an atomic and 
molecular scale. Generally, nanotechnology deals with structures of the size 100 nanometers (one nanometre 
is 10 -9 m) or smaller in at least one dimension, and involves developing materials or devices within that 
size. Nanotechnology is very diverse, encompassing numerous fields in the natural sciences. It is devoted 
to develop, design, synthesize and apply the structure by manipulating atoms and molecules at nanoscale. 
Since, Classical or Newtonion mechanics is not applicable to explain the physical properties of materials 
such as mechanical, optical, electrical, chemical, etc. on moving macroscopic scale to nanoscale, therefore, 
these characteristics of different materials can be explained directly or indirectly by quantum mechanics.

Now-a-days, nanoscience and nanotechnology are concerned with the production of various materials 
having dimensions of the order of a billionth of a meter. These materials are known as nanomaterials and 
produced in nanoscale in one dimension (for example, thin surface coatings), in two dimensions (for exam-
ple, nanotubes and nanowires) and in three dimensions (for example, nanoparticles and quantum dots). 
Many other nanostructures such as semiconductor nanowire, nanofiber, nanorod components are synthe-
sized for nanodevices. One aspect of nanomaterials is to increase the surface area to volume ratio altering 
various properties like mechanical, thermal catalytic properties. It has huge potential to develop new mate-
rial and objects which can have a wide range of application in different areas and can be beneficial to make 
significant impact on society, such as healthcare, electronics, information technology and energy storage.

14.1.1  Nanoscience and Nanotechnology 
Nanoscience and nanotechnology deal with research and development of matter in the smallest range of 
scale. Nanoscience is the branch of physics in which we study the phenomenon and manipulation of mate-
rials at atomic, molecular and micromolecular scales. Nano is a Greek word that means dwarf (small). On 
the other hand, nanotechnology is a branch in which we study the design, characteristics, production and 
application of structure, devices and systems on the nanoscale. 

The growth of nanoscience and nanotechnology is in line with the tendency towards miniaturization. 
It is a cutting edge technology where objects or devices behave as a whole unit that has size from 1 to 

•	 Basic principle of nanoscience and technology.
•	 Structure, properties and uses of Fullerene and 

Carbon nanotubes.

•	 Applications of nanotechnology.

LEARNING OBJECTIVES

After reading this chapter, you will be able to understand:

Nanotechnology14
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100 nanometers. As nanoscience and nanotechnology develop, they make the obstacles between traditional 
scientific and technological disciplines more permeable.

We know that every matter consists of atoms or molecules which exist in solid, liquid and gaseous 
states. Nanoscience makes the study of solid particles, wires, thin films, etc. having dimensions below than  
100 nanometers interesting. The comparative size of nano and meter is same as that of a marble to the earth.

Nanoscience and nanotechnology have become worldwide interdisciplinary fields for research and 
development. Our traditional disciplines such as material science, applied physics, applied chemistry, chem-
ical engineering, mechanical engineering, electrical engineering, food engineering, biological engineering, 
etc. have become more on an application of nanotechnology. This technology is to understand and think of 
about the synthesis, properties and applications of material from existing scale to nanoscale.

The materials developed under nanotechnology show very different properties at nanoscale in comparison 
to macroscale though the properties hardly change at microscale. For instance, opaque substances at mac-
roscale become transparent at nanoscale (Cu). Materials having inert properties attain catalytic properties 
(Pt), stable materials turn into combustible materials (Al), solids turn into liquids (Au), insulators become 
conductors (Si), etc. Nanomaterials in powder forms (known as nanoparticles) are potentially important 
in ceramics, powder metallurgy, the achievement of uniform nanoporosity and similar applications.The 
differences in properties of same materials is due to their structure and bonding. So nanotechnology is the 
understanding of relationship between physical properties and nanoscale dimensions.

14.1.2  Nanoparticles
Nanoparticles are atomic clusters with grain size in nanometer range. Nanoparticles or nanocrystals (which 
are made of metal, semiconductors or oxides) are of great scientific interest for their mechanical, electrical, 
magnetic, opticle, chemical and other properties. Nanoparticles are effectively a bridge between macroscale 
and nanoscale. For example, Cu nanoparticles smaller than 50 nm are considered superhard materials while 
at 50 nm or above, movement occurs in the atoms/cluster (cluster is nothing but a group of metal atoms) of Cu.

Experimental evidences show that there are two types of structure in nanomaterials: one is geometrical 
structure and the other is electronic structure. In geometrical structure, possible arrangements of atoms for 
the cluster are as follows:

	 1.	 Face centered cubic (fcc)
	 2.	 Hexagonal closed pack (hcp)
	 3.	 Icosahedral structure (icos)

The geometrical structure of nanoparticles depends on size. The larger nanoparticles have fcc structure (e.g., 
aluminium nanoparticles of size 80 nm have fcc structure) and when the size becomes less than a critical 
size, deviations occur due to the formation of nanoparticles. On the other hand, electronic structure of 
nanoparticles depends on the size of the particle. If the size of particles is reached when the surfaces of the 
particles are separated by distances of the order of de-Broglie wavelengths associated with electrons, then the 
energy levels are to be modified by quantum mechanically. This spilitting of energy levels is known as quan-
tum size effect. Nanoparticles are used as quantum dots and as chemical catalyst. Since the nanoparticles 
can enter the cells and tissues, therefore these are also medically and environmentally dangerous. 

	 14.2	 Nanomaterials 

Nanomaterials are materials which are developed, designed, fabricated or manipulated at nanometer scale. 
As discussed, the various physical, electrical, mechanical, magnetic properties of material at this scale change 
drastically. These are fabricated from carbon, ceramic, ferrites, metals, polymers, semiconductors and silicas. 
For example, buckyballs, the structure of C60 atoms, nanotubes, nanogels, nanocrystals, Quantum dots, etc.
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14.2.1  Properties of Nanomaterials
There are some useful properties of nanomaterials which are as follows:

	 1.	 Nanomaterials are hard. 
	 2.	 Nanomaterials are exceptionally strong.
	 3.	 Nanomaterials are ductile at high temperature.
	 4.	 Nanomaterials are chemically very active.
	 5.	 Nanomaterials are wear resistant.

	 14.3	 Types of Nanomaterials

There are two types of nanomaterials: (a) Fullerenes and (b) Nanoparticles. We will discuss them in the fol-
lowing subsections.

14.3.1  Fullerenes
Fullerenes are a class of allotropes of carbon. Generally, graphene sheets are rolled into tubes or spheres. It is 
a one-atom thick layer of graphite. A fullerene commonly refers to a molecule with 60 carbon atoms, C60, 
and with an icosahedral symmetry; however, it also includes larger molecular weight fullerenes like C70, C76, 
C78, C80, and higher mass fullerenes, which possess different geometrical structure. For example, C60 has ico-
sahedral symmetry, C70 has a rugby ball-shaped symmetry and C80 molecule has icosahedron shape. Figure 1  
shows the structure and geometry of some fullerene molecules. The name ‘Fullerene’ was given to this 
family of carbon molecules because of the resemblance of these molecules to the geodesic dome designed 
and built by the American architect R. Buckminister Fuller, whereas the name of buckminister fullerene 
or buckyball was especially given to the C60 molecules, which are the most widely studied in the fullerene 
family because it is the smallest member of fullerenes family.

(a) (b)

(d)(c)

Figure 1 � (a) Icosahedral C60 molecule. (b) Rugby ball-shaped C70 molecule.  
(c) Extended rugby ball-shaped C80 molecule. (d) Icosahedron C80 molecule.

Basically, buckyball is a hollow cluster of C60 atoms and looks like a football. The 60 carbon atoms in C60 
are located at the vertices of a regular truncated icosahedral and every carbon site on C60 is equivalent to 
the other site. Each carbon atom is trigonally bonded. Buckyball is the roundest and the most symmetrical 
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molecule known in the world. In buckyball, there are 32 faces, 12 of which are pentagonal and 20 hexago-
nal which have a molecule diameter of 7.10 Å as shown in Fig. 2.

Figure 2  Structure of C60 atoms in fullerene or buckyball.

Properties of Buckyball

	 1.	 Due to hollow structure, buckyball holds other atoms inside it to create new molecules.
	 2.	 They have rigid structure.
	 3.	 It can also be used in various applications.
	 4.	 They are extremely stable and can withstand at very high temperature and pressure.

Uses of Buckyballs

	 1.	 Buckyballs are used for making medicine as well as diagnostic tools.
	 2.	 Buckyballs are also used for making anti-wrinkle cream.
	 3.	 Buckyballs are used in electronic circuits.
	 4.	 Buckyballs are used for making light detectors.

14.3.2  Carbon Nanotubes (CNTs) 
Carbon nanotubes are allotropes of carbon with a nanostructure or, in other words, we can say that it is a one-
dimensional wire or a seamless cylinder with diameter of the order of a nanometre made by rolling a sheet of 
graphene. CNTs were discovered by S. Lijima in 1991 and named them nanotubes (see Fig. 3). The name of 
CNTs was given on the basis of its size. Carbon nanotubes are also the members of fullerenes family.

Figure 3  Carbon nanotube.
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14.3.2.1  Types of Nanotubes 
Carbon nanotubes are divided into two categories:

	 1.	 Single-walled carbon nanotubes (SWCNTs): Single-walled carbon nanotubes (SWCNTs) can be 
formed by rolling of a one-atom thick layer of graphene into a seamless cylinder. The diameter of sin-
gle-walled carbon nanotubes ranges from 1 to 2 nanometer [see Fig. 4(a)]. SWCNT exhibit important 
electrical properties as they are excellent electric conductors and therefore utilized in running electri-
cal network. The development of first intramolecular field effect transistor (FET) is one of the useful 
application of single-walled carbon nanotube. 

	 2.	 Multi-walled carbon nanotubes (MWCNTs): Multi-walled carbon nanotubes (MWCNTs) consist of 
several nested coaxial single wall tubes. In other words, we can say that MWCNTs consist of multiple 
layers of graphite (called graphene) rolled in on themselves to form a tube shape as shown in Fig. 4. The 
distance between their walls is about 0.36 nanometer. It is most common and can be easily formed. The 
diameter of multi-walled carbon nanotubes ranges from 2 to 25 nanometer [see Fig. 4(b)].

Single-Walled
Nanotube
(SWCNT)

Multi-Walled
Nanotube
(MWCNT)

Graphene
(sp2 hybridized)

Roll-up

1-2 nm 2-25 nm

0.36 nm

0.
2-

5 
µm

(a) (b)

1-2 nm 2-25 nm

0.36 nm

0.
2-

5 
µm

Figure 4  (a) Single-walled carbon nanotube; (b) multi-walled carbon nanotube.

14.3.2.2  Structure of Carbon Nanotubes 
The structure of carbon nanotubes is cylindrical based on the hexagonal lattice of carbon atoms that form 
crystalline graphite. As the graphene sheets can be rolled in different ways, this leads to three types of nano-
tubes, called armchair, zig-zag and chiral nanotubes as shown in Fig. 5. From this figure, one can observe 
that it is possible to recognize armchair, zig-zag and chiral nanotubes by just following the pattern across the 
diameter of the tubes and analyzing their cross-sectional structure.

(a) (b) (c)

Figure 5  (a) Armchair, (b) zig-zag and (c) chiral nanotubes.
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14.3.2.3  Synthesis of Carbon Nanotubes
Various different techniques have been used to produce nanotubes in sizeable quantities. These are arc 
discharge; laser ablation, high pressure carbon monoxide (HiPCO), and chemical vapour deposition 
(CVD). We will discuss them in the following subsections.

14.3.2.3.1  Arc Discharge  From this method nanotubes were observed in 1991 in the carbon 
soot of graphite electrodes during an arc discharge. In this process, the carbon contained in the negative 
electrode evaporates because of the high temperature caused by the discharge. Since nanotubes were 
initially discovered using this technique, therefore this has been the widely used method of nanotube 
synthesis. This method is used to produce both single and multi-walled nanotubes with lengths up to 
50 micrometres.

14.3.2.3.2  Laser Ablation  In this process, a pulsed laser vaporizes a graphite target in a high 
temperature reactor while an inert gas is bled into chamber. The nanotubes develop on the cooler 
surfaces of the reactor, as the vaporized carbon condenses. A water cooled surface may be included in 
the system to collect the nanotubes. This method can produce about 70% primarily SWCNT with 
controlled diameter determined by reaction temperature. However, this process is more expensive than 
arc discharge method.

14.3.2.3.3  Chemical Vapour Deposition (CVD)  Chemical vapour deposition (CVD) is a 
common method for the commercial production of carbon nanotubes. In this method, two gases − a process 
gas such as ammonia, nitrogen, hydrogen and a carbon-containing gas such as methane − are abled into 
chamber. The carbon-containing gas is broken into carbon atoms at surface of the catalyst particle such 
as iron, and carbon is deposited to the edges of the iron particle forming nanotubes. The catalyst particles 
can stay at the trips of the growing nanotubes during the growth process or remain at the nanotube base 
depending on the adhesion between the catalyst particle and the substrate.

14.3.2.4  Properties of Carbon Nanotubes
Carbon nanotubes have some useful properties as described below:

	 1.	 Carbon nanotubes are metallic.
	 2.	 Carbon nanotubes are the strongest materials on earth in terms of tensile strength.
	 3.	 Carbon nanotubes are elastic.
	 4.	 Carbon nanotubes are very good thermal conductors.
	 5.	 Carbon nanotubes are light weight. 

14.3.2.5  Uses of Carbon Nanotubes
Carbon nanotubes can be used in various applications:

	 1.	 They are used for making transistors and memory devices about a nanometer wide.
	 2.	 They are used to made nanotubes wire which can conduct huge amount of current with less power 

wastage.
	 3.	 They are also used to develop nanoscale electric motors.
	 4.	 They are used in various medical applications.
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		  Short Answers of Some Important Questions

	 1.	 What do you understand by nanoscience?
Answer: Nanoscience is the branch of physics 
in which we study the phenomenon and 
manipulation of materials at atomic, molecular 
and micromolecular scales.

	 2.	 What is nanotechnology?
Answer: Nanotechnology is a branch in which 
we study the design, characteristics, production 
and application of structure, devices and 
systems on the nanoscale.

	 3.	 What do you meant by ‘nano’?
Answer: Nano is a Greek word that means 
dwarf (small).

	 4.	 What do you understand by fullerenes?
Answer: Fullerenes are a class of allotropes of 
carbon. Generally, graphene sheets are rolled 

into tubes or spheres. It is a one-atom thick 
layer of graphite. A fullerene commonly refers 
to a molecule with 60 carbon atoms, C60 and 
with an icosahedral symmetry, but also includes 
larger molecular weight fullerenes like C70, C76, 
C78, C80, and higher mass fullerenes, which 
possess different geometrical structures.

	 5.	 What is the structure of carbon nanotube?
Answer: The structure of carbon nanotubes is 
cylindrical based on the hexagonal lattice of 
carbon atoms that form crystalline graphite.

	 6.	 How many types of nanotubes exist?
Answer: There are three types of nanotubes: 
armchair, zig-zag and chiral.

		  Important Points and Formulas

	 1.	 Nanotechnology deals with structures of the 
size 100 nanometers. 

	 2.	 Nanoscience is the branch of physics in which 
we study the phenomenon and manipulation 
of materials at atomic, molecular and micro-
molecular scales. Nano is a Greek word that 
means dwarf (small).

	 3.	 Nanotechnology is a branch in which we 
study the design, characteristics, production 

and application of structure, devices and 
systems on the nanoscale. Nanotechnology is 
researched and technology development at 
1−100 nm range.

	 4.	 There are two types of nanomaterials:  
(a) Fullerenes and (b) nanoparticles.

	 5.	 Fullerenes are a class of allotropes of carbon. 
Generally, graphene sheets are rolled into tubes 
or spheres.

		  Multiple Choice Questions

	 1.	 Nanophase materials are in the range
	 (a)	 1-100 nm	 (b)	 100-200 nm
	 (c)	 1000 nm	 (d)	 None of these
	 2.	 The properties of nanoparticles can be 

explain by
	 (a)	 classical mechanics
	 (b)	 quantum mechanics
	 (c)	 statistical mechanics
	 (d)	 None of these

	 3.	 Fullerene is
	 (a)	 molecule
	 (b)	 chemical compound 
	 (c)	 Both (a) and (b)
	 (d)	 None of these

	 4.	 Carbon nanotubes are
	 (a)	 graphite sheet	 (b)	 plastic
	 (c)	 graphene sheet	 (d)	 None of these
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		  Short Answer Type Questions

	 1.	 What do you understand by nanomaterials?
	 2.	 What are fullerenes?
	 3.	 What is the structure of buckyballs?

	 4.	 What is a carbon nanotube?
	 5.	 What is the property of carbon nanotubes?

		  Long Answer Type Questions

	 1.	 What do you understand by nanoscience and 
nanotechnology?

	 2.	 What are nanomaterials? How can they be 
fabricated?

	 3.	 What are fullerenes? Discuss their properties 
and applications.

	 4.	 Explain the structure of buckyballs.
	 5.	 What are carbon nanotubes? Explain their dif-

ferent types.
	 6.	 Explain the structure of carbon nanotubes.
	 7.	 Explain the various properties of nanotubes.
	 8.	 Write some applications of carbon nanotubes.

		  Answers

Multiple Choice Questions 
	 1.  (a) 
	 2.  (b) 

	 3.  (a)
	 4.  (c)

	 5.  (a)
	 6.  (b) 

	 7.  (a)
	 8.  (a)

	 9.  (a)

	 5.	 Which of the following is carbon nanotube?
	 (a)	 Armchair
	 (b)	 Arch discharge
	 (c)	 Chemical discharge
	 (d)	 None of these

	 6.	 The surface to volume ratio is
	 (a)	 low
	 (b)	 high
	 (c)	 1
	 (d)	 None of these

	 7.	 Which of the following forms of pure carbon is 
similar to soccer ball?

	 (a)	 Fullerene	 (b)	 Diamond
	 (c)	 Graphite	 (d)	 None of these
	 8.	 The known third form of the carbon is
	 (a)	 fullerene	 (b)	 diamond
	 (c)	 graphite	 (d)	 None of these
	 9.	 Buckyball is the cluster of
	 (a)	 30 carbon atoms	 (b)	 60 carbon atoms
	 (c)	 90 carbon atoms	 (d)	 None of these
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Date: 

Objective

To determine the wavelength of monochromatic (sodium) light by Newton’s ring apparatus.

Apparatus

Traveling microscope, support for glass plate inclined at 45°, plano-convex lens, thin glass sheet, sodium 
lamp and spherometer.

Theory and Formula Used 

If the convex surface of a plano-convex lens is placed in contact with a plane glass surface, a thin air film will 
be formed in between them (Fig. 1). The thickness of the air film increases as one proceeds from the point 
of contact toward the periphery of the lens.

A

B B ′
DC

E1
E2

Figure 1

When a monochromatic beam of light is incident on plane surface of such lens, the light is partially 
reflected from the upper and partially from the lower surfaces of the air film as formed between the lens and 
the glass plate. Thus, a path difference is introduced between the two reflected rays and consequently the 
interference fringes are produced. As the loci of points of equal thickness of the air films are concentric circles 
with the point of contact as center, the alternate dark and bright fringes will be concentric rings with their center 
at contact point C.

Suppose the plano-convex lens touches the glass plate at the point E and B1, B2 lie on the nth bright 
ring whose radius is rn (Fig. 2). Let R be the radius of curvature of the curved surface of the lens. Then from 
geometry

Experiment 1
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Figure 2

With this thickness of the film, bright ring will occur at the point if

	 2 2 1
2

m a q l
t ncos( ) ( )+ = + 	 (2)

where m is the refractive index of the film, a is the angle of wedge film, q is the angle of incidence of light 
on film and n is any integer.

For air film, m q= =1 0,  (for normal incidence of the rays) and a = 0  for a lens of large radius of cur-
vature. Hence, Eq. (2) becomes

	
t n= +( )2 1

4

l
	 (3)

By Eqs. (1) and (3)

	
r n

R
n
2 2 1

2
= +( )

l
	 (4)

	 d n R d nn n
2 2 2 1= + =( ) ( )l diameter of the th bright ring 	 (5)

Similarly for ( )n m+ th  bright ring

	 d n m Rn m+ = + +2 2 2 1[ ( ) ]l 	 (6)
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	 ⇒ =
−+l

d d

R m
n m n
2 2

4
	 (7)

Equation (7) remains the same for dark rings.

Method

Place the plano-convex lens on glass plate in the provided box and place it in such away that sodium light 
reflected from the inclined glass plate falls normally on the plano-convex lens. The reflected light from both 
the surfaces of air thin film is received by a traveling microscope (see Fig. 3).

Sodium lamp

Plano-convex lens
Glass plate

Glass plate

Microscope

Figure 3

Adjust the microscope over the point of contact so that the rings are seen distinctly in the field of view as 
clear as possible. Set the cross wire on the center of the rings. Using vernier screw, now move the cross wires 
and set on say 15th bright ring on any side and read the vernier scale reading. Bring the cross wires of micro-
scope back toward the center, stopping on each ring for vernier readings. Continue to move on other side of 
center and take similar reading on other side in increasing order of rings until you reach the 15th ring again. 
Measure R using spherometer (generally given).

The diameters (d ) of the rings can be tabulated from the table by taking difference of left side and right 
side readings of same numbered ring. Square the value of each diameter and then take the difference of these 
square values of the diameters with some common interval of number m (say m = 5 ) of these bright rings. 
Now take mean of all such values to finally have value of d dn m n+ -2 2 .

Observations

Radius of curvature of plano-convex lens =  cm
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Least count of microscope cm  LC
Smallest division= =___________

  of main scale

Total no. of divisions on Vernier scale






No. of 
Rings

Microscope Reading Diameter in cm d 2 in cm d dn m n+ -2 2( )
m = 5

Mean 
Value

Left Side in cm Right side in cm

15 d d15
2

10
2- =

14

13 d d14
2

9
2- =

12

11 d d13
2

8
2- =

10

9 d d12
2

7
2- =

8

7 d d11
2

6
2- =

6

Calculation

The wavelength of light can be calculated using formula l =
−+d d

Rm
n m n
2 2

4

Conclusion

The wavelength of sodium light was found to be  Å.

Possible Errors

	 1.	 The error in setting the cross wires on the rings and in reading the vernier scale.
	 2.	 The fine screw may suffer from backlash error. To avoid this error, move the cross wire using screw only 

in one direction.
	 3.	 Error may occur during the measurement of R.

Viva-Voce

	 1.	 What are Newton’s rings?
		  Answer:  When a plano-convex surface is placed on a glass plate, an air film of gradually increasing 

thickness is formed between the two. When monochromatic light is allowed to fall normally on the 
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film and viewed with reflected light, the interference takes place and alternate dark and bright circular 
fringes are observed. These circular fringes called Newton’s rings.

	 2.	 State the necessity of large radius of curvature of lens.
		  Answer:  A large radius of curvature of lens is needed, so that the angle of the air film becomes small. 

As a result the rings observed have then a comparatively large diameter. Also, it (large radius of curvature 
of the plano-convex) makes a approximately equal to zero as otherwise Newton’s rings will not be 
observed.

	 3.	 What are circular rings?
		  Answer:  These rings are loci of constant thickness of the air film, these loci being concentric circle; 

hence fringes are circular.
	 4.	 What is the need for an extended source?
		  Answer:  To view the whole air film, an extended source is necessary.
	 5.	 Why do rings get closer as the order of the rings increases?
		  Answer:  This is due to the fact that the radii of dark rings are proportional to square root of natural 

numbers while those of bright rings are proportional to square root of odd natural numbers.  
(The observations near point of contact should not be taken because the settings of the cross wire in the middle 
of these bright rings is somewhat difficult due to their large width.)

	 6.	 Why does width of rings decreases with order?
		  Answer:  In case of wedge-shaped film, the fringe width is a function of a b l ma( / )= 2 . As the upper 

surface of film is curved (being the lens surface), a increases with the order of rings, hence fringe width 
decreases.

	 7.	 What do you understand by dark center?
		  Answer:  At the point of contact, the two interfering rays are opposite in phase (due to additional phase 

of p ) and produce zero intensity.
	 8.	 Why is sometimes the center bright?
		  Answer:  Due to dust particles coming between the two surfaces at the point of contact, as a result 

effective phase difference between the interfering rays at the point of contact is zero, which is a condi-
tion of bright ring.

		  Or
		  Light rays bend around the dust particle and reach to the central dark ring.
	 9.	 What is a microscope?
		  Answers:  Microscope is an optical instrument that is used to see magnified images of tiny objects. It 

can produce magnification of the order of 1000. It consists of two convex lenses: Objective (near the 
object) and Eye lenses (toward the eye) having short focal length and small aperture and large focal 
length and large aperture, respectively.

	10.	 Explain the different eyepieces.
		  Answer:  Huygen’s, Ramsden’s and Gauss (modified form of Ramsden’s) eyepieces. Huygen’s eyepiece 

is superior to Ramsden’s but not used in lab because the position of cross wires is as if used, it is to be 
put midway between the two lenses. This involves mechanical difficulty. However, in Ramsden’s eye-
piece, cross wires are placed outside the eyepiece, hence no mechanical difficulty arises. Therefore, 
Ramsden’s eyepiece is being used in measuring instruments.
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Objective

To determine the wavelength of a monochromatic light (sodium light) with the help of Fresnel’s bi-prism.

Apparatus 

Optical bench, bi-prism, micrometer with eyepiece and a monochromatic source (sodium lamp).

Theory and Formula Used

A bi-prism may be regarded as a make-up of two prisms of very small refracting angles placed base to base. 
In actual practice, a single glass plate is suitably grinded and polished to give a single prism of obtuse angle 
179° leaving remaining two acute angles of 30¢ each. This bi-prism device is used to produce two virtual 
coherent sources for interference from one actual source by dividing wave fronts.

The optical bench used in the experiment consists of a heavy cast iron base supported on four leveling 
screws. There is a graduated scale along its one arm. The bench is provided with four uprights, which can 
be clamped anywhere on bench and the position can be read by means of vernier attached to it. Each of the 
uprights is subjected to the following motions:

	 1.	 Motion along bench,
	 2.	 Transverse motion (motion at right angle to bench),
	 3.	 Rotation around the axis of the upright,
	 4.	 With the help of a tangent screw, the slit and bi-prism can be rotated in their own vertical plane.

The arrangement of apparatus is shown in Fig. 1.

Experiment 2

Bi-prismSlit
Sodium lamp

Optical bench

To mains

Lens Eyepiece

Figure 1
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where b is the fringe width, D the distance between slit and screen (in this case eyepiece) and 2d is the sepa-
ration of two virtual coherent sources and can be obtained by deviation method using following formula:

2 2 1d x= − ( )m a

where x is distance between slit and bi-prism, a is acute angle of bi-prism and m is the refractive index of 
bi-prism.

Method

Make one of the cross wires exactly vertical by rotating eyepiece around its own axis. With the help of the 
tangent screw, make the slit vertical by rotating it in its own plane. The slit is illuminated with the mono-
chromatic source of light, that is, sodium lamp (in this case), and made narrow. Similarly, with the help of 
tangent screw provided at bi-prism stand, make the edge of the bi-prism parallel to the slit. By moving the 
bi-prism stand laterally with the help of the screw provided at the side of the stand and observing through 
bi-prism, make two virtual coherent sources clearly visible. Now by adjusting the slit stand, bi-prism stand, 
and eyepiece stand, with the help of stand side screws providing for lateral motion, make all the stands in a 
straight line. Now in this situation the clear narrow fringes are observed through eyepiece. The fringes can 
be seen more distinct and clear by moving eyepiece away from the slit (i.e., by increasing D).

If the line joining the slit and the central edge of the bi-prism are not parallel to the length of the bench, 
fringes would shift laterally as the eyepiece moves away from slit. To overcome this problem, move the bi-
prism a small distance transversely to the bench, in a direction opposite to the direction of the shifting of 
fringes until this lateral shift vanishes.

For the measuring fringe width, set the cross wire at the center of the any bright fringe and the reading 
of the micrometer screw is taken. Now move the cross wire in one direction so that the cross wire falls in 
succession at the canters of the bright fringes (say 11th fringe) and take the corresponding readings. Hence, 
calculate the widths of a number of fringes (say 10) by subtracting the first fringe from 11th and so on. After 
taking the mean, fringe width b for one fringe is calculated.

S1

S2d

Eyepiece

S2

D

Region of
Interference

Figure 2

Monochromatic light from a source S falls on two surfaces of the bi-prism, which on refraction bends 
toward the base. These refracted lights appear to come from S1 and S2 (Fig. 2) and interfere and give inter-
ference pattern. The interference fringes are hyperbolic, but due to high eccentricity, they appear to be 
straight lines in the focal plane of eyepiece. The wavelength of sodium light is expressed by

	
l b= 2d

D
Å 	
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The distance between the eyepiece and the slit is measured as D and between slit and bi-prism as x. 
Knowing the value of a and m, the wavelength of sodium light can be calculated.

Observation

For the fringe width (b)

Least count of the micrometer screw cm LC
Pitch

Totalno.o
= =________

ff divisionsoncircular scale







Pitch
Distance move along the linear scale

No. of complete rotation
=

ss given to the circular scale

Sl. 
No.

First Micrometer Reading 
for Any Fringe (x)

Second Micrometer 
Reading for n Fringes ( y)

Separation of n 
Fringes ( y - x)

Fringe Width (cm) 
b = ( y - x)/n

1

2
3 Mean fringe width 

(cm) b = 

Positions of upright carrying slit (a) =  cm
Positions of upright carrying bi-prism (b) =  cm
Positions of upright carrying the eyepiece (c) =  cm
Value of D [(c) − (a)] =  cm
Value of x [(b) − (a)] =  cm

Calculations

The separation between coherent sources is 2 2 1d x= −( )m a

The wavelength of monochromatic light is l b= 2d
D

Conclusion

Wavelength of sodium light is found to be l = ________ Å

%
)

error = 
(Actual value Calculated value

Actual value

− ×100

Possible Errors

	 1.	 Error can take place in adjusting vertical and narrow slit.
	 2.	 There may be an error in making bi-prism edge parallel to the slit.
	 3.	 Measuring fringe width at a close distance may also create error.
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Viva-Voce

	 1.	 What is interference?
		  Answer:  When two waves superimpose, resultant intensity is modified. The modification in the distribu-

tion of intensity in the region of superposition is called interference. There is no loss of energy in interfer-
ence, but only there is redistribution of energy, that is, energy from dark places is shifted to bright places.

	 2.	 What are interference fringes?
		  Answer:  There are alternate straight bright and dark patches of light obtained in the region of super-

position of two wave trains of light.
	 3.	 What happens with small refracting angles of the bi-prisms?
		  Answer:  Due to small refracting angles of the bi-prisms, fringe width will be large.
	 4.	 What is the purpose of the bi-prism?
		  Answer:  The purpose of the bi-prism is to produce two coherent virtual sources from a given source (slit). 

Two coherent sources are situated symmetrically on either side of the slit and in the same plane as the slit.
	 5.	 What is the nature of fringes?
		  Answer:  The fringes are hyperbolic but due to large eccentricity of the hyperbola, they appear as 

straight fringes.
	 6.	 How should the cross wire be adjusted?
		  Answer:  Basically, cross wire should be adjusted in the middle of the fringe; however, it is difficult to 

adjust the cross wire in the middle of each fringe accurately, so it is suggested to coincide the cross wire 
with the left or right edge of each fringe.

	 7.	 What is lateral shift?
		  Answer:  The shifting of the fringes across the optical bench when eyepiece is moved toward or away 

from the bi-prism, is called the lateral shift. It shows that the line joining the center of the slit and the 
edge of the bi-prism is not parallel to the bed of the optical bench.

	 8.	 What is the effect of replacing monochromatic light by white light source?
		  Answer:  In case of white light, the interference pattern consists of a central white fringe in between a 

few colored fringes.
	 9.	 What is zero-order fringe?
		  Answer:  First of all the interference fringes are observed with monochromatic light. Then monochro-

matic light is replaced by white light. Now the cross wire is fixed at center white fringe. Again, replace 
the white light source by monochromatic light. The fringe on cross wire is a zero-order fringe.

	10.	 What is monochromatic source?
		  Answer:  It is a source of light that produces single wavelength. Although sodium light is not perfectly 

monochromatic (it has two close wavelengths 5890 Å and 5896 Å), but due to small difference of 6 Å 
it is practically treated as monochromatic light with wavelength 5893 Å. Laser light is perfectly mono-
chromatic source of light.

	11.	 What is the effect of blue light?
		  Answer:  Due to small wavelength of blue light fringe width decreases as a result fringes become denser.
	12.	 What is the effect of slit width?
		  Answer:  As the fringes are formed in the entire region between the bi-prism and eyepiece, so if we 

increase the slit width the fringes become poorer and poorer.
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Objective 

To draw hysteresis curve (B–H ) curve of a specimen in the form of a transformer and to determine its hys-
teresis loss.

Apparatus 

Cathode–Ray oscilloscope (CRO), potentiometeric resistor, specimen in the form of transformer, rheostat, 
condenser, AC voltmeter (0–10 V) AC milliammeter.

Theory and Formula Used 

The behavior of ferromagnetic materials in which magnetization lags behind the magnetizing field is known as 
hysteresis. In other words, we can say that when ferromagnetic materials are subjected to external magnetic fields 
then materials are magnetized in one direction and then in reverse direction. If we plot a graph between inten-
sity of magnetization and magnetizing field (H ), it may be represented by a curve known as hysteresis curve 
and the area of the closed curve is equivalent to hysteresis loss.

When a current I (ampere) flows through the primary of a transformer, the hysteresis loss per unit 
volume per cycle is given by

W
iV B H

f
=

⋅
⋅

area of curve

area of the rectangle
J/cycle

–

p

Method

First, make the connection as shown in Fig. 1. Switch on the CRO and adjust it properly for an intense point 
on the screen. The voltage V from the output of the transformer is applied to the y plate and the frequency 
selector of CRO is switched on to external position. The vertical and horizontal gains are so selected that 
B–H curve is obtained on the screen as shown in Fig. 2. After that, plot a B–H curve on a tracing paper. 
Similarly, we can also obtain different B–H curves for different set of values of V and i. Through graph 
paper, we can calculate the area of B–H curve and its rectangle in mm2.

Experiment 20
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Observations

Sl. No.  Current I (mA) Voltage V (V   ) Area of B–H Curve (mm2 ) Area of the Rectangle (mm2 )

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.

Horizontal plates

By

By

mA Specimen transformer

To vertical
plates

A

V

A
X X

Figure 1

B

O

b

c

H

Rectangle

Figure 2
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Calculation 

Hysteresis loss per unit volume per cycle is calculated from

W
iV B H

f
=

⋅
⋅

=
area of curve

area of the rectangle
J/cycle

–

p
________

Conclusion 

The hysteresis loss of the specimen per unit volume per cycle is  J/cycle

Possible Errors

	 1.	 The applied voltage to the CRO plates must be stabilized.
	 2.	 Horizontal and vertical gain knobs should be unchanged throughout the experiment.
	 3.	 The intensity of the spot should be very intense on the CRO screen.

Viva-Voce

	 1.	 What is hysteresis?
		  Answer:  The behavior of ferromagnetic materials in which magnetization lags behind the magnetizing 

field is known as hysteresis.
	 2.	 What is hysteresis loss?
		  Answer:  In absence of an external magnetic field, ferromagnetic materials are spontaneously 

magnetized but in random direction. Therefore, net magnetization is zero. However, in the presence of 
magnetic field, domains align along the direction of electric field and absorbs energy. When field is 
removed, the domains do not get back and hence energy is not recovered. Thus, retained energy by the 
specimen, dissipated in terms of heat, is known as hysteresis loss.

	 3.	 What is retentivity?
		  Answer:  The magnetism that retains the material after removing the magnetizing field is called reten-

tivity or remanence.
	 4.	 What is coercivity?
		  Answer:  If the direction of the magnetizing field is increased in negative direction of the field then 

magnetization traces the path bc and becomes zero at point c; the value oc is called coercivity or coercive 
force of the material (see Fig 2).

	 5.	 What is the use of hysteresis curve?
		  Answer:  Hysteresis curve is used for the selection of materials to make permanent magnet, electromag-

net or transformer cores.
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	 6.	 What is magnetization (I )?
		  Answer:  The total magnetic moment per unit volume of the material is known as magnetization or 

intensity of magnetization. Mathematically

I
V

m=
m

		  and its unit is Ampere-turn/meter.
	 7.	 What is magnetic susceptibility?
		  Answer:  It is the ratio of magnetization I to the magnetic field H and denoted by cm.

c cm

I

H
=

�
��� For vacuum  0m=
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Date: 

Objective 

To determine the wavelength of different spectral lines of mercury light using plane transmission grating.

Apparatus

Spectrometer, diffraction grating, source of spectrum (mercury light), prism and a reading lamp.

Theory and Formula Used 

A diffraction grating is an arrangement of N similar parallel slits each of width “e ” and separated by equal 
opaque spaces “d ”. A plane wave front of wavelength “l” light is incident normally on the grating. According 
to the Huygen’s theory, each point in each slit sends secondary wavelets in all possible directions (see Fig. 1). 
Let us find the resultant of wavelets diffracted at an angle q with the normal. Secondary disturbances issuing 
from each slit can be replaced by central disturbances C1D1, C2D2, …, CnDn, each of constant amplitude  
Ro = A (sin a /a) in the increasing phase in arithmetic progression by an amount of

	
d p

l
p
l

q b= = + =2 2
22 2C K e d( )sin ( )suppose 	 (1)

The resultant OPN of these waves can be found by the vector diagram of regular polygon (Fig. 2) whose 
sides OP1, OP2, … are of equal lengths (=Ro ) and suffers a successive inclinations d. If C is the center of 
polygon, then

OP OC R OCP1 12 2= × × = ∠ =sin( / ) [since ]d do

OP OC N R OPC NN N= × × = ∠ =2 2sin( / ) [since ]d d

The total resultant R is then

R R
N

A
N

=








 = ⋅o

sin( / )

sin( / )

sin( ) sin( )

sin( )

d
d

a
a

b
b

2

2

And the resultant intensity I that is proportional to R  2 is

	
I I

N
R I= 





⋅






=o o o

sin sin

sin
[ ]

a
a

b
b

2 2

2 	 (2)
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The first factor of Eq. (2) gives the intensity distribution due to diffraction at the individual slit, while the 
second one gives the interference pattern between N diffracted waves from N slits. Principle maxima occur 
when the interference term becomes maximum if

	 sin b b p= = ±0 or n 	 (3)

where n = 0, 1, 2, 3

	 ( )sine d n+ = ±q l 	 (4)

The same condition holds for the reinforcement of the vibrations from C3 and C4, etc. Thus in the direction 
q, a bright image of the slit is obtained. There are several maxima called principle maxima that are satisfying 
the above condition (4).

If grating element ( e d+ ) and n are constant, sin q and therefore q varies directly as l. If the incident 
light emits several fixed wavelengths (in mercury light), after diffraction, the maxima of different wave-
lengths are seen in different directions and thus the incident light is split-up into its spectrum. At q = 0, all 
the rays are in the same phase of vibration, so the central image has the same color as the source. For other 
value of q satisfying Eq. (1), there are spectra of first order (from n = ±1), second order (from n = ±2 ), etc. 
of falling intensities on either side of the central maximum.

If N be the total numbers of lines per inch on the grating, then

( ) .e d N+ = 2 54/ cm

Thus, the expression (4) can be written as

N
N

l q= 2 54.
sin

Minima occurs when sin N b = 0  (but sin b ≠ 0 ) or N mb p= ±  where m has any integral value but not 
0, N, 2N…nN. Otherwise, it will correspond to principal maxima given by (3). Hence for principal maxima

	 N e d N N nN( )sin ( , , , , )+ =q 0 2 … 	 (5)

[which may also be obtained by multiplying both sides of Eq. (4) by N] and for minima

	 N e d N N N N nN( )sin , , ,( ) ,( ) , ,( ) ,( ) , ,( )+ = − + − + −q l l l l l l2 1 1 2 1 2 1 1… … … ll l,( )nN +1 	 (6)

n = 2Cn
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Method

Adjust the level of turntable and focus the telescope and collimator using Schuster’s method. Now see the 
slit through telescope and collimator without using diffraction grating and focus it on cross wire of eyepiece. 
Rotate the telescope 90° toward left direction and place the diffraction grating on the turntable (see Fig. 3).

Source
Collimator

Prism
table

Grating

Telescope

Figure 3

Adjust the grating by rotating the turntable without touching the telescope such that the slit again appears 
at the cross wire of eyepiece through reflection from diffraction grating. When slit is seen clearly, rotate the 
turntable by 45° toward right so that the diffraction grating becomes normal to the incident light and the 
ruled surface faces the telescope. Bring the telescope again on its original positions by rotating it 90° toward 
right. This is the position of normal incidence where slit appears at cross wire through grating.

Now rotate the telescope slowly in either side (say left) from normal position and focus it at particular color. 
It is the first color of first-order spectrum. Take the measurement at this position on both the vernier scales (say 
v1 and v2), turn the telescope to the other side (say right) and focus it for the same color and take readings again 
on both scales. The difference of the same vernier scale (say v1) will give you double of the diffraction angle for 
that particular color. The similar measurement can be obtained for the other colors as well. The second-order 
spectrum can also be viewed by rotating the telescope further beyond the first-order spectrum toward left or 
right and so for other higher orders of spectrum as well provided grating is able to produce it.

Observations

Least count of the spectrometer s= _______ .

Color of 
Line

Reading for 
Spectrum on Left 
Side

Ver. A   Ver. B

Reading for 
Spectrum on 
Right Side

Ver. A    Ver. B

Average Difference of 
the Reading of the Same 
Vernier (2q )

Diff. Ver. A      Diff. Ver. B

Mean 
(2q )

Mean 
(q )

Violet

Green

Yellow
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Calculation

The wavelength of different spectra lines is given by

l q= 2 54.
sin

N
where N is total number of lines per inch on diffraction grating.

For  color, l =  Å.

Conclusion

The wavelength of the violet, green and yellow colors is, respectively,  Å,  Å and  Å.

Possible Errors

	 1.	 Error may arise in setting the normal incidence.
	 2.	 There may be an error in setting the cross wires on the image. 
	 3.	 It may take place in reading the vernier scale.

Viva-Voce

	 1.	 What is diffraction of light?
		  Answer:  When light falls on an obstacle or small aperture whose size is comparable with the wave-

length of light, there is a departure from straight line propagation; the light bends round the corners of 
obstacle or aperture. This bending of light is called diffraction.

	 2.	 What is the difference between interference and diffraction?
		  Answer:  Interference of light takes place due to the superposition of two ways coming from two 

different coherent sources, while diffraction is due to the mutual interference of secondary wavelets 
originating from the various points of the wavefront that are not blocked off by the obstacle.

	 3.	 What is diffraction grating?
		  Answer:  An arrangement consisting of a large number of parallel slits of same width and separated by 

equal opaque spaces is known as diffraction grating. The distance between the centers of two successive 
slits is called grating element. This is denoted by ( a b+ ), where a is the width of transparent part and 
b is the width of opaque part.

	 4.	 What is the difference between prism spectrum and a grating spectrum?
		  Answer:  In grating spectrum red color is deviated most and violet the least, while this order is reversed 

in prism spectrum. Prism spectrum is more intense than the grating spectrum because the light is con-
centrated in one spectrum while in case of grating, the incident light is diffracted into spectra of various 
orders; moreover most of the light is concentrated in direct image where no spectrum is formed.

	 5.	 What is dispersive power of grating?
		  Answer:  The rate of change of angle of diffraction with wavelength is defined as the dispersive power 

of grating. Dispersive power is more for higher orders. It depends on only material of the prism and is 
independent of refracting angle of prism.

	 6.	 Which order of spectra is possible?
		  Answer:  Only first- and second-order spectra are possible. Third-order spectrum is not possible 

because the maximum value of sinq = 1, and according to Eq. (4) nmax .= 2 874 , which is less than 3.
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Date: 

Objective

To determine the specific rotation of cane sugar solution using biquartz polarimeter.

Apparatus 

Biquartz polarimeter, ordinary white light source, measuring flask, beaker, cane sugar and distilled water.

Theory and Formula Used

The plane polarize light on passing through optically active substances/solutions rotates by certain angle. The 
rotation depends on the types of substance and the wavelength of light used. When this rotation produces 
one-decimeter length of solution of unit concentration, we call it specific rotation. The specific rotation 
does not depend on length of solution or concentration of solution, but on temperature and wavelength.

As shown in Fig. 1, S is the source of ordinary white light placed at the focus of convex lens, so that beam 
becomes parallel after passing through lens. Light then passes through the Nicol Prism that acts as polarizer. 
The polarized light passes through the biquartz and travels over the length of the polarimeter tube made of 
glass. The light is analyzed with the help of the analyzer, the second Nicol Prism, which can be rotated about 
a horizontal axis. Its position can be read by a vernier moving over a fixed circular graduated scale. The light 
now is viewed with the help of a telescope. The analyzer and telescope are placed in the same tube.

A biquartz plate consists of two semi-circular plates of right handed and left handed quartz. The thick-
ness of each plate is chosen to be near about 3.75 mm so that the yellow light (l = 5900 Å) be rotated 
through 90°. These plates are cut in such a way that the optic axis lies at right angles to its faces. When the 
plane polarized light is incident normally on the biquartz plate, along N1AN1 (principal section of polar-
izer), component colors are rotated through different angles where it is maximum for violet, least for red 
and 90° for yellow (Fig. 2). In the two halves, the colors rotate symmetrically in opposite direction. The 
planes of vibration of the different colors, that is, red, orange, yellow, blue and violet, are represented, 

Experiment 4

Source Lens Polarizer

Biquartz

Tube

Analyzer

Eyepiece

Figure 1
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respectively, by AR, AO, AY, AB and AV. When the principal section of the analyzer N2 AN2 is parallel to 
N1AN1 [Fig. 2(b)], the wavelength of the yellow color is completely quenched from both the halves. As all 
the other colors would be inclined equally in both the halves, the resultant colors produced in each half 
would be the same. This resultant is greenish-violet called “sensitive tint” [Fig. 2(b)]. If the analyzer slightly 
rotates from this setting in the anti-clockwise direction, the transmitted components of the longer wave-
lengths (predominantly red) increase while those of the shorter wavelengths (predominantly violet and blue) 
decrease. The left half will appear pink and right half will appear blue. The appearance is reversed when the 
analyzer is rotated in the clockwise direction [Figs. 2(a) and (c)].

The specific rotation of the plane of polarization of solution (sugar dissolved in water) can be deter-
mined by the following formula:

S
V

lm
= q

…degree conc. dm/ /

where q is the rotation produced in degrees, l is the length of the tube in decimeter, m is the mass of sugar 
in g dissolved in water and v is the volume of sugar solution.

Method

Fill the polarimeter tube with water minimizing the air gap and place it in proper position. The slit is illu-
minated with white light (with sodium light in case of half shade polarimeter) and focus the eyepiece such 
that the field of view is sharp. The unequal illuminated columns may be seen in the two halves of the field 
of view. Rotate the analyzer until the two half portions or colors change into one homogeneous color. Take 
the measurement on circular and vernier scales. Rotate the analyzer about 180° for same color and take the 
measurements again.

Prepare the sugar solution of known concentration (say 10 g in 100 ml of distilled water). Fill the polar-
imeter tube with sugar solution, repeat the above procedure and note down the measurement in similar way. 
The difference in the observations taken in distilled water and in sugar solution is the angle of rotation (q) 
for that concentration. Repeat the experiment by changing concentration of sugar solution and take at least 
five sets of readings. Plot the graph between concentration and angle of rotation. It will be a straight line.
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Observations

Room temperature	 =  °C
Length of the tube (l  )	 =  dm
Mass of the sugar dissolved (m)	 =  g
Volume of the solution	 =  cm3

Least count of the vernier	 =  

Sl. 
No.

Reading on Analyzer for Equal Illumination in Degree Rotation in Degree

With Distilled water With Sugar Solution q1 q2 q q1 2

2

+

First 
Position A

Second 
Position B

Strength of 
the Solution 

First 
Position C

Second 
Position D

(A-C ) (B -D)

1

2

3

4
5

Calculation

Draw a graph between concentrations and angle of rotation (q). It will be a straight line curve as shown in 
Fig. 3. From the graph, find out the value of q for a particular concentration. Then using following formula 
calculate specific rotation.

S
V

lm
= q

Concentration

Y

X

q

Figure 3

Conclusion

The graph between concentration and angle of rotation suggests that the angle of rotation of plane polarized 
light is proportional to the concentration of solution. The specific rotation of cane sugar solution at °C is  
=  degree per unit concentration per decimeter.
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Possible Errors

	 1.	 Error is possible in measuring the mass of sugar for the preparation of sugar solution.
	 2.	 Error may occur in taking the reading of vernier scale.
	 3.	 The two colors at 180° may not be exactly same as viewed by eyepiece.

Viva-Voce

	 1.	 What is polarimeter?
		  Answer:  It is an instrument (polarizer, analyzer and glass tube having large diameter at middle ensures 

that there is no bubble in the path of optical ray) that is used to measure the angle of rotation through 
which the plane of polarization is rotated by an optically active substance. Laurent’s half shade and 
biquartz are the types of polarimeter.

	 2.	 What is polarized light?
		  Answer:  The light, which has acquired the property of one-sidedness, is called a polarized light.
	 3.	 How does polarized light differ from ordinary light?
		  Answer:  The ordinary light is symmetrical about the direction of propagation while in case of polar-

ized light, there is lack of symmetry about the direction of propagation.
	 4.	 What is the difference between plane of vibration and plane of polarization?
		  Answer:  The plane containing the direction of vibration as well as the direction of propagation of light 

is called the plane of vibration. On the other hand, the plane passing through the direction of propaga-
tion and containing no vibration is called plane of polarization.

	 5.	 What is double refraction?
		  Answer:  When ordinary light is incident on a calcite or quartz crystal, it splits into two refracted rays 

(O-ray and E-ray with vibrations in two mutually perpendicular planes) and this phenomenon is 
known as double refraction.

	 6.	 What is Nicol prism?
		  Answer:  It is an optical device invented by William Nicol, to produce and analyze the plane polarized 

light. Its principle is based on the phenomenon of double refraction. Nicol prism eliminates ordinary-
ray by the phenomenon of total internal reflection and allows transmitting extra ordinary-ray.

	 7.	 What is specific rotation?
		  Answer: For a given wavelength of light and at a certain temperature, specific rotation is defined as the 

rotation produced by one dm length of the solution containing 1 g of optically active substance per 
cubic centimeter of solution. It is represented in degree (dm)−1(g/cm3)−1.
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Date: 

Objective 

To determine the focal length of the combination of two lenses separated by a distance, and to verify the 
formula for the focal length of combination of lenses.

Apparatus 

Nodal slide assembly bench, source of light, metallic screen cross slit, a plane mirror and two convex lenses.

Theory and Formula Used 

The purpose of this experiment is to determine the focal length of the combination of lenses. In the experi-
ment setup the nodal slide assembly consists of an optical bench provided with four uprights as shown in 
Fig. 1. The one upright carries a bulb placed in a metallic cover having a circular aperture, which illuminates 
a cross slit in the adjacent upright. The third upright carries a nodal slide. Nodal slide is essentially a hori-
zontal metal support capable of rotation around a vertical axis, and lens or lenses can be mounted upon the 
support. The metallic support can be fixed or it can be moved back and forth by means of a screw so that 
the relative positions of the two lenses can vary with respect to this upright. The support can be rotated in 
a horizontal plane. The fourth upright carries a plane mirror that can be rotated around a horizontal axis 
perpendicular to the bed of the bench.

Experiment 5

Light 
source

NS

Screen
with cross

slit Nodal slide
Plane
mirror

Figure 1
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If parallel beam of light is incident on a converging lens system thus forming an image on screen in 
its second focal plane, the image does not shift laterally when the system rotated around a vertical axis 
passing through its second nodal points. The principle is based on the property of nodal points, that is, 
when a ray of light passes through the other and is always parallel to the incident ray. If the system is now 
rotated slightly around a vertical axis, the image will not be shifted from its position as shown in Fig. 2. The 
distance of the screen from the axis of rotation gives the principal focal length of the lens system.

Screen

F2

PN1 N2

F2
N1 N2

 Figure 2

The focal length of the combination of lenses is

	

1 1 1

1 2 1 2F f f

d

f f
= + - 	 (1)

where f1 is the focal length of first single lens, f2 the focal length of another lens, F is the focal length of 
combination of lenses and d is the distance between two lenses.

Method

Adjust the lamp, cross slit, lenses and mirror in such a way that their axis lies along the same horizontal 
line. Lenses should be kept at a known separation (d). The nodal slide is adjusted so that both lenses are at 
equidistance from the center of stand so that the distance of lenses can be easily measured on bench scale. 
Now the lens system as a whole is moved toward or away from the slit until a clear and proper image of 
the cross slit is formed on the same screen of slit. In this position the distance between slit and center point 
of combination lens is the focal length (F) of the combination of lenses. The exact position can be judged 
by rotating the nodal carriage about 5° from its position, the image of cross slit should not move. Now 
rotate the nodal carriage by 180° and repeat the above procedure. The procedure is also repeated above by 
changing the distance between lenses. In a similar way one can also find the focal length of single lens (i.e., 
f1 and f2).
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Observations

Table for focal length of a lens:

Sl. No. Light 
Incident on 

Distance 
Between 
Lenses (d  ) cm

Position of 
Cross Slit 
(a) cm

Position of 
Nodal Stand 
(b) cm

Focal Length 
of the Lens 
(a - b) cm

Average 
Focal 
Length cm

First One face

Other face

Second One face

Other face

Combined One face

Other face

One face

Other face

One face

Other face

Calculation

Equation (1) can be used to estimate the focal length F.

Conclusion

To compare calculated and observed focal lengths we tabulate as follows:

Sl. No. Separation (cm) Observed (F  ) cm Calculated (F ) cm

1

2

3

The above table clearly shows that the calculated value of the focal length of combination is approximately 

same as the experimental. Hence, the formula 
1 1 1

1 2 1 2F f f

d

f f
= + -  is verified.
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Possible Errors

	 1.	 Error is possible in focusing the image of cross slit.
	 2.	 Error may occur in reading the positions of the mark on the lens holder.

Viva-Voce

	 1.	 What is nodal slide?
		  Answer:  It is a device to determine the nodal points of a lens system. It holds the lenses and can be 

rotated about a vertical axis.
	 2.	 What are nodal points?
		  Answer:  Nodal points are a pair of conjugate points having unit positive angular magnification.
	 3.	 What are cardinal points?
		  Answer:  Three pairs of an optical system called focal points (a pair of points lying on the principal axis 

and conjugate to points at infinity), principal points (a pair of conjugate points on the principal axis of 
the coaxial optical system having positive linear magnification) and nodal points of a coaxial system are 
called cardinal points.

	 4.	 What is principle?
		  Answer:  If a parallel beam of light is incident on a converging lens system thus forming an image on 

a screen in its second focal plane, the image does not shift laterally when the system rotated around a 
vertical axis passing through its second nodal points. Thus, the principle is based on the property of 
nodal points.

	 5.	 What is desired image?
		  Answer:  If by rotation of plane mirror the image moves on the screen then it is the desired image 

otherwise not. The position of the desired image will not be affected in any way by alternating the 
position of plane mirror.

	 6.	 What is the rotation of lens combination by 180°?
		  Answer:  Need to rotate the combination, because the two nodal points are not symmetrical with 

respect to two lenses. It is not necessary if the focal length is same for the two lenses.
	 7.	 What is the importance of cardinal points?
		  Answer:  If the cardinal points of a coaxial system of lenses are known, the image formation becomes 

very easy. In this case, the refraction at each surface of the lens is not considered.
	 8.	 What is the reduction of cardinal points?
		  Answer:  Since, the medium on either side of the optical system and between the lenses is same (or air), 

the nodal points coincide with the principal points. Therefore, the six cardinal points reduce to 
four.

	 9.	 What is the function of plane mirror?
		  Answer:  Plane mirror reflects the parallel rays of light in the same path falling on it.
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Date: 

Objective 

To determine resistance per unit length and specific resistance of the given resistance using Carey Foster’s 
bridge.

Apparatus 

Carey Foster’s bridge, Leclanché cell, resistance box, rheostat, potentiometer, jockey, connecting wire, the 
unknown resistance and a galvanometer.

Theory and Formula Used 

Carey Foster’s bridge is a modified arrangement of Wheatstone’s bridge. This bridge is more sensitive due to 
two reasons: (a) The effective length of the wire is increased without actually using a wire of more than 1 m 
length and (b) effects due to end corrections are eliminated.

The resistance per unit length (K   ) of the bridge wire is given by the formula

	 X Y K l l− = −( )2 1 	 (1)

where X (known) and Y (unknown) are two resistances in the outer gaps of the Carey Foster’s bridge and 
l1 and l2 denote the length of the balance point on the bridge wire before and after interchanging the resis-
tances X and Y. If Y = 0  (i.e., copper strip) and X R=  (known resistance), then we have

	
K

R
l l

=
−2 1

	 (2)

Using Eq. (2), the resistance per unit length (K ) can be calculated and knowing the value of K, the unknown 
resistance Y can be calculated.

Method

The connections are made as shown in Fig. 1 such that potentiometer acts as two equal resistance P and Q. 
Now connect the copper strip in the right gap of the bridge (as resistance Y ) and a known resistance X (=R) 
in the left gap. The null point is determined and its distance ¢l1  from the left end of the bridge is measured. 
Interchange the positions of R and copper strip and note down the distance ¢l2  of the new null point from 

Experiment 6

Experiment 6.indd   299 4/14/2015   8:45:23 AM



300   •� EXPERIMENT 6

the same left end. Take at least three readings for different values of known resistance R. Now the given wire, 
whose resistance is to be determined (say Y ), is placed in the left gap in place of copper strip and known 
resistance in right gap (X  ) find the null point and measure the distance l1 and similarly l2 when Y and X are 
interchanged. This part should also be repeated for different values of X.

Observations

For determination of K (resistance per unit length of the bridge wire)

Sl. No. R (in W) Distance of the Null Point l ′ ′l l2 1- (in cm) K
R

l l
=

-′ ′2 1
When R in Left Gap 

′l1  (in cm)
When R in Right Gap 

′l2  (in cm)

1

2
3

Average K = ________ Ω/cm

For determination of Y

Sl. No. X (in W) Distance of Null Point l l2 1- (in cm) Y

When Y in Left Gap l1 
(in cm)

When Y in Right Gap l2 
(in cm)

1

2

3

Average Y = ________ Ω
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Calculation

Calculate K using Eq. (2) and thereafter Y through Eq. (1).

Conclusion

The resistance of unknown wire is =  W

Possible Errors

	 1.	 All connections must be tight to avoid any additional resistance.
	 2.	 The cell circuit should be closed only when readings are being taken.
	 3.	 In checking the null point, the cell circuit must be completed before the galvanometer circuit.

Viva-Voce

	 1.	 What is resistance?
		  Answer:  The ratio of the potential difference between the two ends of a conductor to the current flow-

ing in it is called the resistance of the conductor. Resistance of a conductor is directly proportional to 
its length (l  ), inversely proportional to the area of cross section (A). It also depends upon the nature of 
material and temperature of the conductor. The resistance of bridge wire increases with the increase in 
temperature. The minimum difference in resistance that we can measure is equal to the resistance 
offered by one millimeter length of the bridge wire and maximum difference in resistance is equal to 
the resistance of the total length of the bridge wire.

	 2.	 What is specific resistance?
		  Answer:  Specific resistance of a substance is the resistance of a piece of that substance having unit 

length and unit area of cross section. Specific resistance is independent of length or radius of the wire 
and it is different for different materials.

	 3.	 What are materials of wire?
		  Answer:  Due to high resistivity and low temperature coefficient, constantan (Cu 60% and Ni 40%) 

or manganin (Cu 60%, Mn 12% and Ni 4%) alloys are used for making the resistance wire.
	 4.	 What is the principle of Carey Foster bridge?
		  Answer:  It is based on the principle of Wheatstone bridge. It is the most sensitive bridge because all 

the four resistances are equal or at least of the same order.
	 5.	 What is resistance box?
		  Answer:  It has a number of resistance coils of various resistances, connected in series.
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Date: 

Objective 

To determine electrochemical equivalent (ECE) of copper.

Apparatus 

Helmholtz galvanometer, copper-voltmeter, copper plate, power supply, stopwatch, four-way key and 
rheostat.

Theory and Formula Used 

The electrochemical equivalent of copper (z) can be defined by the following formula:

z
m
it

=

where i is the current in the circuit and equal to k tanq , and m is the mass of copper deposited on cathode 
plate in time t.

In our experiment we have kept q = °45  constant, so i k= , that is, equal to the reduction factor of the 
Helmholtz galvanometer. Hence,

z
m
kt

= = _______ g/C

Method

Make the connections as shown in the circuit diagram (Fig. 1). Set the plane of coils of Helmholtz galva-
nometer in magnetic meridian. Keeping system ON adjust the current in the circuit using variable resistance 
such that the deflection in compass box is 45°, which should be kept constant throughout the observation. 
Now make the circuit OFF. Clean the cathode plate and weigh it. Put the copper cathode again in copper 
voltmeter and make the circuit ON. Let the circuit ON and current flow at least for 20 min in one direction 
and 20 min in reverse direction. The direction of current can be changed in the Helmholtz galvanometer 
with the four ways key. After observing 40 min, time (t) interval, take the copper plate out from copper 
voltmeter, first air dry and then weigh.
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Observations

Mass of the copper plate (a) =  g
Mass of the copper plate + copper deposit (b) =  g
Mass of copper deposited on the copper plate (m) =  g
Copper deposited for the time (t) =  s
Reduction factor of the Helmholtz galvanometer for 50 turns is 0.2

Sl. No. Current in Any Direction Current in Opposite Direction.

Time (min) Deflection Time (min) Deflection

1 0 45° 0 45°

2 5 5

3 10 10

4 15 15

5 20 20

Calculation 

The electro-chemical equivalent of copper can be obtained by the following formula

z
m
kt

= = _______ g/C

Conclusion

The electrochemical equivalent of copper is obtained (z) =  g/C

20

2050

50

70

Helmholtz
galvanometer

Four-way
key

Cell

Rheostat

Copper voltameter

700

0

Figure 1
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Possible Errors

	 1.	 Error keeping deflection constant.
	 2.	 Error measuring the weight of copper plate.

Viva-Voce

	 1.	 What is electrochemical equivalent (ECE)?
		  Answer:  It is the mass of substance liberated by passing of one coulomb of charge. Chemical equiva-

lent is equal to atomic weight/valency, that is, same as equivalent weight. The copper voltmeter con-
tains copper sulfate solution as electrolyte. During preparation of solution, we also add 0.1% HCl/
H2SO4 by volume because this furnishes additional ions in the solution and thus increases its 
conductivity.

	 2.	 What is direction of current?
		  Answer:  We have reversed the direction of the current to reduce the error in the measurement of 

deflection that arises due to the coil of the galvanometer not exactly in the magnetic meridian. The 
direction of the current is changed only in a part of the circuit.

	 3.	 What is reduction factor?
		  Answer:  It is the current required to produce a deflection of 45° in tangent galvanometer. Reduction 

factor decreases with the increase in number of turns in the coil and increases by increasing the radius 
of the coil.

	 4.	 What is electrolysis?
		  Answer:  When an electric current is passed through a liquid (an electrolyte), decomposition of liquid 

takes place, it is termed as electrolysis. Electrolyte is a solution that conducts electricity through it.
	 5.	 What is the effect of two identical coils?
		  Answer:  The two identical coils having same axis and carrying current in the same direction are kept 

apart at distance r, to maintain the uniform magnetic field in-between the coils. This is because the rate 
of decrease of field due to one coil is compensated by the rate of increase of field by the other and 
hence, the compass needle rotates in uniform magnetic field (Fig. 2). Therefore, 6.Helmholtz galva-
nometer always functions better than tangent galvanometer.

F

x

r

Figure 2
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	 6.	 What are types of cells?
		  Answer:  Primary cells such as Lechlanché cell, Daniell cell in which the electromotive force is devel-

oped due to some chemical reactions taking place in their electrolyte. Lechlanché cell does not give 
constant current for a long time. The other types are secondary cells where current is passed to convert 
the electrical energy into chemical energy by electrolysis and after that the chemical energy is converted 
back into the electrical energy. Lead accumulator is an example of secondary cell.
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Date: 

Objective 

To verify Stefan’s law by electric method.

Apparatus 

Stefan’s constant apparatus, connection wires and power supply.

Theory and Formula Used 

Stefan’s law of radiation states that the amount of energy radiated in unit time from the unit surface (E ) of a 
perfectly black body is directly proportional to the fourth power of its absolute temperature (T ). Therefore,

E T= s 4

Where s is Stefan’s constant.
The instrument comprises following built-in parts: (a) Continuously variable, overload and short-circuit 

protected DC regulated power supply of 0 – 12 V, (b) voltmeter and current meter are mounted on the front 
panel to measure the voltage and current and (c) one-bulb holder with bulb (12 V) is also mounted on the 
front panel.

The electric power dissipated from a bulb is taken to be proportional to the nth power of the absolute 
temperature of its filament. The temperature of the filament in turn is directly proportional to the resis-
tance. Hence, by measuring the resistance corresponding to different powers, n can be calculated.

By plotting a graph taking log P along X-axis and log R along Y-axis, the slope of the graph is calculated 
that gives ∝.

	 P VI= 	 (1)

where P is the power dissipated from the bulb, V is the voltage across the bulb, I is the current through the 
bulb and R is the resistance of the filament (R V I= / ).

Method 

Make the connection through patch chords as shown in Fig. 1. Switch on the instrument using ON/OFF 
toggle switch provided on the front panel. Now increase the DC voltage till the bulb begins to glow. For 
various values of current, note down the voltage from voltmeter. Calculate the power by using formula 
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through Eq. (1) and also calculate the filament resistance R V I= / , respectively. Plot a graph by taking log P 
along X-axis and log R along Y-axis, the slope of the graph is calculated that gives the value of ∝.

Observations

Sl. No. Current I (A) Voltage V (V    ) P VI= log P R V I= / log R

  1.

  2.

  3.

  4.

  5.

  6.

  7.

  8.

  9.

10.

11.

12.

13.

14.

15.

ON

Power

OFF

Set volts

+

−

Output
D-12V DC

Bulb

250mA DC12V DC

Figure 1
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Calculation 

From the graph the slope of the curve as value of ∝ is = 

Conclusion 

The graph of log P versus log R comes out to be a straight line. Hence, ( )P CT= a  law is verified. Further, 
the slope of the line ∝= 4 and; therefore, the law is verified as a fourth-power law.

Possible Error

	 1.	 Error may cause in measuring the voltage and current.

Viva-Voce

	 1.	 What is Stefan’s law?
		  Answer:  For a perfectly black body (which absorbs all the incident radiation), the total energy radiated 

per second by a unit area is directly proportional to the fourth power of the absolute temperature T. 
However, if the body is not perfectly black, Stefan’s law is E T T= −( )s 0

4 4 , where E is the net amount 
of radiation emitted per unit area by a body at temperature T and surrounded by another body at  
temp T0. s is called Stefan’s constant. A similar relation can be held for bodies that are not black 
P C T T= −∝ ∝( )0 . For T T? 0 −the relation can be reduced as P CT= a.

	 2.	 What is power-radiated P ?
		  Answer:  In this experiment tungsten bulb is used as the radiating body and in the steady state, the 

electrical power VI should be equal to the radiating power P (neglecting power lost in the leads and 
through the gas in the bulb).

	 3.	 What is Kirchhoff ’s law?
		  Answer:  For the given temperature the ratio of the emissive power to the absorptive power (ratio of 

the radiant energy absorbed by the unit area to the total radiant energy incident on the same unit area 
of the same surface in the same time) corresponding to a particular wavelength is constant for all bodies 
and is equal to the emissive power (the radiant energy emitted per second per unit surface area of the 
body per unit wavelength) of a perfectly black body at the same temperature and wavelength.

	 4.	 What is temperature coefficient?
		  Answer:  The increase in resistance per unit length per unit degree rises in temperature.
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Date: 

Objective 

To study the variation of magnetic field with distance along the axis of a current carrying coil and then to 
estimate the radius of the coil.

Apparatus 

Stewart and Gee type tangent galvanometer, storage battery, commutator, ammeter, rheostat, one-way plug 
key, connection wires and a piece of sand paper.

Theory and Formula Used 

Stewart and Gee type tangent galvanometer is shown in Fig. 1. It consists of a circular coil of many thin 
insulated copper wires. It is fixed with its plane vertical on the horizontal bench AB. A magnetometer com-
pass box is placed inside the coil such that it can slide on the bench AB in such a way that the center of the 
needle always lies on the axis of the coil. The distance of the needle from the center of the coil can be read 
on the graduated scale fixed on the arms of the magnetometer.

The variation of magnetic field along the axis of a current carrying circular coil is given by the formula:

2

10

2

2 2 3 2

p qnir

x r
H

( )
tan/+

=     or  
2

10

2

2 2 3 2

p qnir

x r
H

( )
tan/+

∝
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Compass
box Scale (s)

Coil (C)

K2

K1

Rh

A B
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where i is the current flowing through the circular coil of radius r, n is the number of turns in the coil, H is 
the horizontal component of the Earth’s magnetic field and x is the distance on the axis. At center (x = 0), 
the magnetic field due to current carrying coil is maximum that decreases with increase of x. However, H 
remains same at all points.

Method

Place the magnetometer compass box on the sliding bench so that its magnetic needle is at the center of the 
coil. By rotating the whole apparatus in the horizontal plane, set the coil in the magnetic meridian roughly. In 
this case the coil, needle and its image all lie in the same vertical plane. Rotate the compass box till the pointer 
ends read 0-0 on the circular scale, which is also parallel to the axis of coil. To set the coil exactly in the mag-
netic meridian setup, see the electrical connections as shown in Fig. 1. Send the current in one direction with 
the help of commutator and note down the deflection of the needle. Now reverse the direction of the current 
and again note down the deflection. If the deflections are equal then the coil is in magnetic meridian other-
wise turn the apparatus a little, adjust the pointer ends to read 0-0 till these deflections become equal. Using 
rheostat adjust the current such that the deflection of nearly 70°–75° is produced in the compass needle kept 
at the center of the coil. Read both the ends of the pointer, reverse the direction of the current and again read 
the ends of the pointer. The mean of four readings will give the mean deflection at x = 0.

Now shift the compass needle through 1 cm, each time along the axis of the coil and note down the 
mean deflection for each position. Continue this process till the compass box reaches the end of the bench. 
Repeat the measurements on the other side of the coil exactly in the same manner.

Plot a graph taking x along the X-axis and tan q along the Y–axis (see Fig. 2). Mark the points of inflec-
tion (the points where the curve changes its sign, i.e., from concave to convex) on the curve. The distance 
between the two points of inflection will be the radius of the coil.

Observations 

The radius of the coil (AB) as measured from X − =tan _________q graph cm
The radius of the coil from the measurements of circumference = circumference/2p =  cm.
The percentage error in the experimental result is calculated by the following formula:

Percantage error
Standard Calculated

Standard
= × =∼

100 _________ %

Distance from the center of the circular coil

A

r

B

−x x = 0

ta
n 

q

+x

Figure 2
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Calculation 

Plot the graph between x and tan q and show the radius of coil that is the distance between points of 
inflection.

Conclusion 

The attached graph (see Fig. 2) shows the variation of the magnetic field along the axis of a circular coil 
carrying current.
The radius of the coil as measured from X − =tan ________q graph cm

Possible Errors

	 1.	 The plane of the coil should be carefully set in the magnetic meridian and the center of the compass 
box should always lie on the axis of the coil.

	 2.	 No magnetic substance or current carrying conductors in the neighborhood of the instrument.

Viva-Voce

	 1.	 What is magnetic meridian?
		  Answer:  A vertical plane passing through the axis of a magnetic needle suspended freely through its 

center of gravity and rest under Earth’s field is called magnetic meridian. To reduce the error arises due 
to magnetic meridian, we reverse the direction of the current through commutator. Thus, the mean of 
four readings of deflection will be free from this error.

	 2.	 What is the direction of the field?
		  Answer:  If the face of the coil we look at, the current is flowing in clockwise direction then that face 

of the coil acts as South Pole. Thus, direction of the field will be away from us.
	 3.	 What is the variation of the field along the axis of the coil?
		  Answer:  It varies as shown in the graph. The points at which the curve changes its direction of curva-

ture are called points of inflection. The distance between them is equal to the radius of the coil. The 
field is uniform only over a small region at the center. We can get wider region of the uniform field by 
the use of Helmholtz galvanometer which consists of two exactly similar coils placed coaxially.

	 4.	 What is the use of two coils?
		  Answer:  Any decrease in the intensity of the magnetic field due to one coil is compensated by a cor-

responding increase in the field due to the other coil, so that the field in the region at the center 
becomes uniform.

	 5.	 What is the direction of current?
		  Answer:  It is true for any direction of current in the two coils, but current should flow in the two coils 

in the same direction.
	 6.	 What is point of inflection?
		  Answer:  The point where curve changes its direction of curvature is known as point of inflection and 

the distance between the two points of inflection is equal to the radius of the circular coil.
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Date: 

Objective 

To determine the coefficient of viscosity of a liquid by rotating cylinder method.

Apparatus 

Rotating cylinder, viscometer (Searle’s apparatus), experimental liquid, stop watch, weight box, vernier cali-
pers and thermometer.

Theory and Formula Used 

The coefficient of viscosity h is given by

h
p

=
−( )mgd r r

r r

T

l
2
2

1
2

2
1
2

2
28

where r1 is the radius of the inner cylinder and r2 is the radius of the outer cylinder, d is the diameter of the 
drum, l is the length of the inner cylinder immersed in liquid and T is the time period of rotation.

The apparatus consists of two coaxial metal cylinders A and B, the space between the two cylinders con-
tains the experimental liquid (Fig. 1). The inner solid cylinder A is fixed to an axle E that is pivoted freely 
at its ends. The axle can be attached to a drum M and to a circular sector R by pressing the screw W. Two 
parallel flexible threads (carry two identical scale pans SS at the other ends) leave opposite sides of the drum 
tangentially and passing over two ball-bearing pulleys PP. The axle may be rotated under a couple provided 
by the weights in the scale pans and the number of the rotation of the inner cylinder is determined by 
observing the transit of an index I over the circular sector. The motion is stopped or released by lowering or 
raising a stop T out of a punch hole near the center of the circular sector. The outer cylinder B can be raised 
or lowered with the help of a screw N, thus varying the length of the inner cylinder immersed in the liquid 
that can be seen through a graduated glass window fixed to the outer cylinder.

Method

First measure the radii of the inner and outer cylinders, respectively, r1 and r2 as well as the diameter of 
the drum d with the help of vernier calipers. Now pour the experimental liquid whose viscosity is to be 
measured, into the outer cylinder. Insert the inner solid cylinder in the liquid and tight its ends with the 
lubricated screws to reduce the friction. The drum is attached to the inner cylinder on which number of 
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turn of the threads carrying the pans with equal weight are wound round it. The whole system is clamped 
by introducing the stop into the punch hole. Now count the number of rotation of cylinder and note down 
the time t for unwinding thread for particular length l of cylinder immersed in the liquid. The length of the 
inner cylinder dipped in the liquid can be changed by raising or lowering the outer cylinder. Take several 
sets of readings for different mass m and number of turns of thread over the drum.

Observations

Room temperature =  °C
Radius of the inner cylinder (r1) =  cm
Radius of the outer cylinder r2 =  cm
Diameter of the drum (d  ) =  cm
Mass of the each scale pan (w) =  g

Determination of time periods T1, T2 and T3.

Mass on 
Each Scale 
Pan (w2  ) g

Total Mass 
m = w1 + w2

Length of the 
Inner Cylinder 
Immersed l (cm)

No. of 
Rotations n

Taken 
Time in 
second t

Time Period 

T
t
n

=

Average 
Time 
Period

0

0 T1 =
0

(Continued  )

SS

B

A

P
R

P

N

M E

W
T

I

Figure 1
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Mass on 
Each Scale 
Pan (w2  ) g

Total Mass 
m = w1 + w2

Length of the 
Inner Cylinder 
Immersed l (cm)

No. of 
Rotations n

Taken 
Time in 
second t

Time Period 

T
t
n

=

Average 
Time 
Period

1

1 T2 =
1

2

2 T3 =
2

Calculation

By substituting the values in the formula, calculate the coefficient of viscosity of liquid separately for each 
value of T (i.e., T1, T2 and T3) as h1, h2 and h3. By taking mean of these values, we obtain average value of 
the coefficient of viscosity of given liquid.

Conclusion

The coefficient of viscosity of the given liquid h is found as =  poise

Possible Errors

	 1.	 The error may be possible in measuring different radii of the apparatus.
	 2.	 It may also occur in measurement of timing when thread just unwound.
	 3.	 It is also impossible to get frictionless ends of the inner cylinder.

Viva-Voce

	 1.	 What is viscosity?
		  Answer:  The property of a liquid by virtue of which it opposes the relative motion between its differ-

ent layers is known as viscosity. In liquids, viscosity arises due to frictional forces between adjacent 
layers of the liquid when they are in motion.

	 2.	 What is coefficient of viscosity?
		  Answer:  The coefficient of viscosity is defined as the viscous force acting per unit area between two 

adjacent layers moving with unit velocity gradient. The SI unit of viscosity is N-s/m2 and CGS unit is 
dyn-s/cm2 (poise).

	 3.	 What is the effect of temperature and pressure on coefficient of viscosity?
		  Answer:  The coefficient of viscosity increases with the rise in pressure and decreases with the rise in 

temperature.

(Continued)
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Date: 

Objective 

To study the polarization of light using He–Ne laser.

Apparatus 

Polarizer, analyzer, photo detector with power meter, mounts, optical bench, beam expander and He–Ne 
laser.

Theory and Formula Used 

Light waves are electromagnetic waves and transverse in nature. Their electric and magnetic field vectors 
are oscillating and perpendicular to each other and also perpendicular to the direction of propagation. If 
oscillations of electric vector are confined to a single plane, then it is called a plane of vibration or linearly 
polarized electromagnetic wave. Ordinary light waves transmitted through polarizer become completely 
plane polarized light. Malus investigated that when completely plane polarized light is incident on the ana-
lyzer, the intensity I of the transmitted light through the analyzer is directly proportional to the square of 
the cosine of angle between the transmission axis of the analyzer and polarizer, that is,

I ∝cos2 q

where q is the angle between the axis of the analyzer and the polarizer. But we know that amplitude of 
transmitted light resolves into parallel and perpendicular components. Parallel component (A0 cos q) passed 
through the analyzer; however, perpendicular (A0 sin q) will be absorbed. Therefore, intensity of transmitted 
light is:

I A I= =( cos ) cos0
2

0
2q q

where I0 is the maximum intensity of polarized light.

Method 

The light coming from He–Ne laser is focused on to a pinhole by lens L1 and the pinhole is placed at the 
focus of lens L2, so that a parallel extended beam falls on the polarizer. Polarizer and analyzer are properly 
placed in this expended beam (see Fig. 1). The energy of emerging light from analyzer is measured through 
power meter and detector. Now analyzer is rotated in steps of 5° from the position of transmission direction 
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and output of power meter is read for all orientations between 0° and 180°. Again rotate the analyzer to get 
the maximum intensity, I0 (If q = 0° or 180°, then I = I0 cos2 0° = I0, i.e., axes of polarizer and analyzer are 
parallel and if q = 90°, then I = I0 cos2 90° = 0, i.e., axes of polarizer and analyzer are perpendicular.)

Observations

Maximum intensity, 	 I0 =  units.

Sl. No. Analyzer Rotation (q ) in Degree Power Meter Reading (I0 ) Unit I0 cos2q

1.

2.

3.

4.

5.

6.

7.

Calculation 

A graph is plotted between the angle of incident q on X-axis versus I on Y-axis. The graph will be cos2q.

Conclusion 

Thus, Malus law, I = I0 cos2q is verified.

He–Ne Laser Beam expander

Polarizer Analyzer

L1

L2

PH: Post holder PH
Power meter

Detector

P

P: Post

Figure 1

Experiment 11.indd   317 4/14/2015   8:49:28 AM



318   •� EXPERIMENT 11

Possible Errors

	 1.	 The polaroids should be adjusted carefully during observation of the intensity of light.
	 2.	 The photodetector should be avoided from stray light effect.

Viva-Voce

	 1.	 What is LASER?
		  Answer:  It stands for Light Amplification by Stimulated Emission of Radiation. It is a device that is 

used to amplify or generate radiation through stimulated emission process. Laser light is highly mono-
chromatic, highly coherent, non-divergent and intense.

	 2.	 What is stimulated emission?
		  Answer:  It is a process in which the electron is triggered to undergo the transition by the presence of 

photons of energy (E2 − E1), the difference of energies between the two transitions level.
	 3.	 What is laser action?
		  Answer:  To produce laser action, one has to create the population inversion using optical pumping.
	 4.	 What is He–Ne laser?
		  Answer:  It is the most widely used laser with continuous power output in the mW range. Due to 

simple operation, it is widely used in laboratories to perform a number of experiments. In this laser, 
active medium is a mixture of He and Ne in the ratio of 10:1 or 7:1. Ne provides the energy levels for 
the laser transitions while He plays an important role in an efficient excitation mechanism for the Ne 
atoms. He–Ne laser emits red line of wavelength 635 nm.

	 5.	 What is angle of polarization or polarizing angle?
		  Answer:  The certain incidence angle (ip) for a particular material, at which reflected ray is completely 

polarized, for example; polarizing angle for glass is 57°.
	 6.	 What is Brewster’s law?
		  Answer:  Brewster found that the value of polarizing angle depends upon the refractive index of the 

refractive medium, that is, mathematically tangent of the polarizing angle ip is equal to the refractive 
index of the material m = tan ip .

	 7.	 What is photodetector?
		  Answer:  It is a device that is used to convert light energy into electrical energy. It is basically of three 

types: photoemissive cell, photovoltaic cell and photoconductive cell. In the experiment, we are using 
photovoltaic cell as it is cheap and do not require any external emf.

For additional knowledge please see viva-voce in Experiment No. 4.
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Date: 

Objective 

To determine the wavelength of He–Ne laser source using single slit diffraction.

Apparatus 

He–Ne laser, single slit, mounts, meterstick, steel rule, and optical bench.

Theory and Formula Used 

Let a parallel beam of He–Ne laser light of wavelength l be incident normally upon a narrow slit AB = a as 
shown in Fig 1 (a). The diffraction pattern obtained on the screen consists of a central bright band, having 
alternate dark and weak bright bands of decreasing intensity on either side of central bright band.

In figure 1 (a), 

tan sinq q= = Y
D

Condition for minimum intensity

a n Y n D
a

sinq l l= ± = ± and   

or

 l = ±
ay

nD

Here ± sign indicates on either side to central maximum.

Method 

Mount the He–Ne laser and screen on the optical bench as shown in Fig. 1 (b). Now tape a piece of white 
paper to the screen and adjust the distance between the source and screen in such a way that a tiny circular 
patch of light is observed in the middle of the screen. After that mount the single slit close to the source, 
having chosen a slit opening of 0.10 mm and obtain the clear diffraction pattern on the screen. Measure the 
distance D from the slit to the screen. Mark the location of each of the maxima on either sides of the central 
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bright fringe on the paper using pencil and accurately record the positions and widths. The same procedure 
is repeated by using another piece of paper on the screen and changes the slit opening or another slit with 
fixed width.

Observations

Sl. 
No.

Slit 
Width 
a in 
mm

The 
Distance 
of Slit 
from 
Screen  
D in m

Half Distance Between nth Dark Fringe on the Left and 
that on the Right of Central Maxima

Wavelength 
l for Each 
Slit or 
Varying Slit 
Width

Mean l

First 
Dark 
Fringe 
Y1

Second 
Dark 
Fringe 
Y2

Third 
Dark 
Fringe 
Y3

Fourth 
Dark 
Fringe 
Y4

Mean separation

Y
Y Y Y Y

=
+ + +
+ + +

1 2 3 4

1 2 3 4

1. l1 =
2. l2 =
3. l3 =
4. l4 =

Calculation 

The wavelength of the He–Ne laser is l = =ay nD/ __________ nm

Conclusion

Thus, the wavelength of the He–Ne laser is  nm.

A

B
G

a

(a) (b)

θ

D

A

B

M

N

He-Ne laser

Slit
Screen

O

y

Figure 1

Experiment 12.indd   320 4/14/2015   8:50:10 AM



Viva-Voce  � •   321

Possible Errors

	 1.	 Laser beam cannot be looked directly because it is harmful for your vision.
	 2.	 The photodetector should be avoided from stray light effect.
	 3.	 The slit width must be measured accurately.
	 4.	 All the measurements must be taken carefully to avoid error.

Viva-Voce

	 1.	 What is the difference between laser source and filament lamp?
		  Answer:  Laser beam is highly monochromatic, highly coherent, non-divergent and intense. If a laser 

beam is focused by a lens or a mirror, its energy is concentrated on a very small area; but filament lamp 
cannot be concentrated to such a small area.

The additional viva-voce questions are already given in Experiment Nos. 3 and 12 regarding this experiment.
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Date: 

Objective 

To measure the ballistic constant of a moving coil of a ballistic galvanometer.

Apparatus 

Ballistic galvanometer with lamp and scale arrangement, Morse key, one-way key, rheostat, voltmeter, 
capacitor and a power supply.

Theory and Formula Used 

Ballistic galvanometer is designed to measure charge. As shown in Fig. 1 (a), it consists of a rectangular or 
circular coil ABCD of large number of fine insulated copper wire turns wound on a non-conducting frame 
made of bamboo paper and is suspended between the pole pieces of a permanent horseshoe magnet by 
means of phosphor–bronze strip. A soft iron cylinder E is placed within the coil to make the field radial. 
The phosphor–bronze strip is attached to a torsional head on the upper side. The lower end of the coil is 
attached to a spring of a very fine phosphor–bronze wire. A circular mirror M is rigidly attached to the 
phosphor–bronze strip to record the deflection of the coil by lamp and scale arrangement. The charge enters 
from one end, passes through the suspension wire, coil spring and leaves from the second terminal T2. The 
ballistic constant K of the ballistic galvanometer is given by

K
CV=

+



q l

1 1
2

where C is the capacity of the condenser in farad, V is the voltage of the cell used for charging the condenser 
in volt, q1 is the first observed throw of the ballistic galvanometer, the condenser is discharged through the 
galvanometer and l is the logarithmic decrement and is given by

l
q
q

=






0 2303 10
1

11

. log

CV signifies the quantity of charge passing through the coil of the galvanometer.

Experiment 13
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Method 

Make the connection as shown in Fig. 1 (b) using rheostat as a potential divider. Any desired voltage (V ) 
can also be applied through this arrangement to condenser C1 for charging it (voltage should not so high 
that spot of light as reflected from mirror M goes beyond the limit of scale). Adjust lamp and scale arrange-
ment in such a way sharp light spot is received with pointer wire at the middle of the scale after being 
reflected from the mirror attached with the suspension wire of the ballistic galvanometer. The Morse key is 
presented so that the condenser is charged when the capacitor is fully charged (say for about 1/4 min), the 
Morse key is released so that the condenser discharges itself through the ballistic galvanometer. Note down 
the first throw (q1) and eleventh throw (q11) of the spot on scale. The same procedure is repeated using 
another known capacitor but of different capacity (C2).

Observations

Voltage ( V    ) First Throw (cm) Eleventh Throw (cm)

Capacity of 
Capacitor ( m F  )

V1 = C1 = q1 q11

C2 =  ′q1 ′q11

V2 = C1 = q1 q11

C2 =  ′q1 ′q11

(a) (b)

Morse key

B.G

V

Damping key

Condenser

Rh

Battery

+ −

+ −

P

E

Q

S

B

C
K

G

K2

C1

K1

Spring

Torsion head

Phosphor bronze
strip or suspension
fibre

Coil

M

A B

DC

EN S

Figure 1
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Calculations

	 1.	 The ratio of the capacities of the given capacitor is (q q1 1/ ′ ) = 

	 2.	 The ballistic constant of the ballistic galvanometer is given by K
CV=
+q l1 1 2[ ( / )]  

= 

where l is logarithmic decrement given by = 0.2303 log10 (q1/q11)

Conclusion

	 1.	 Thus, the ratio of the given capacitor comes out to be 

	 2.	 The ballistic constant of the ballistic galvanometer is  C/cm

Possible Errors

	 1.	 Error in counting and measuring the first and eleven throws (note that throws are not counted like the 
oscillations).

	 2.	 For comparing the capacities, the voltage must be same for both the capacitance.

Viva-Voce

	 1.	 What is ballistic constant (K)?
		  Answer:  It is a constant for the galvanometer, which is proportional to the restoring couple per unit 

twist of the suspended coil and to the time period of oscillation of coil, and inversely proportional to 
the strength of magnetic field between poles, area of cross section of coil and number of turns on the 
coil. When K is multiplied by the first throw of the galvanometer, it gives the amount of charge passing 
through the coil, that is, q K= q .

	 2.	 What is ballistic galvanometer?
		  Answer:  It is an instrument that is used to measure the electricity or charge, displayed by a varying 

current of short duration.
	 3.	 What is logarithmic decrement?
		  Answer:  Since the amplitudes of oscillation of the coil of the galvanometer do not remain constant but 

decrease in each swing because motion of the coil is damped due to the viscosity of air. Therefore, the 
ratio of the successive amplitudes on either side is called the decrement and the logarithm of this is 
called the logarithmic decrement.

	 4.	 What is a capacitor or condenser?
		  Answer:  The ability of a condenser to store electrical charge is capacity and equal and opposite charges 

of the conductors is known as capacitor or condenser. It is directly proportional to the area of the plate, 
dielectric medium of the two plates and inversely proportional to the distance between two plates. The 
capacity of the condenser increases by inserting dielectric of higher dielectric constant.

	 5.	 What is sensitivity of ballistic galvanometer?
		  Answer:  The throw in millimeter produced on a scale placed 1 m away from the galvanometer mirror 

when a current of 1 mA is passed through the coil. Sensitivity can be increased by increasing the area of 
the coil, magnetic field and the number of turns in the coil.
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Date: 

Objective 

To measure the high resistance by leakage method.

Apparatus 

Ballistic galvanometer with lamp and scale arrangement, a condenser, rheostat, Morse key, a toe key, 
unknown high resistance, stop watch, plug key and a power supply.

Theory and Formula Used 

The high resistance R is determined by the relation

1 2 303
10R

C

t
= 





.
log

a
q

where t is the time period of the leakage of condenser through the resistance, C is capacity of the standard 
condenser, a  is the first throw of spot of light when initially the condenser is discharged and q is the first 
throw of spot of light when the condenser is discharged through galvanometer after a leakage of charge for 
time t through R.

Method 

Adjust the galvanometer, lamp and scale arrangement and make a potential divider to apply desired voltage 
to the condenser for charging, etc. This experiment can be divided into two steps. First, the condenser is 
charged and after self-leakage for time t, discharged through a ballistic galvanometer immediately. Second, 
the condenser is charged and its charge is allowed to the leak through the unknown resistant for t s and the 
remaining charge is passed through the ballistic galvanometer.

To perform this experiment, make the connection as shown in Fig 1. To charge the capacitor connect A 
and C and press the Morse key so that D and F are also connected for a short time (say 15 s), then keeping 
the Morse key pressed, disconnect A and C of key K2 and note time for self-leakage on a stop watch. After 
some measured interval of time, the Morse key is released and the first throw a is recorded. This procedure 
is repeated several times for different leakage time (t).

Experiment 14
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Next after charging the capacitor, it is allowed to leak through unknown high resistance R (by connecting 
B and C of K2) for the same time interval (t). After time t, the Morse key is released and the first throw q is 
recorded for different values of time.

Observations

Capacity of the condenser C =  mF

Sl. No. First Throw of Light Spot Leakage Time (t) in seconds log10 (a /q )

After Self-leakage in 
cm (a )

After Leakage 
Through High 
Resistance in cm (q )

1.

2.

3.

4.

5.

Calculation

The unknown resistance R is determined by the relation

1 2 303
10R

C
t

= 





.
log

a
q

Cell

C ED

F

CB

A

R

Rh

Morse key

K4

R1

K3

K2

K1

9

G

Figure 1
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Conclusion

The value of the high resistance =  W.

Possible Errors

	 1.	 Error may occur if time is the same for leakage in both the cases, that is, for self-leakage and leakage 
through resistance.

	 2.	 Error may occur if the condenser with satisfactory rate of leakage is not selected.
	 3.	 Error may occur due to leakage through the connecting keys.

Viva-Voce

	 1.	 What is leakage method?
		  Answer:  It is used to determine the order of mega ohm. Low resistance cannot be measured by this 

method because capacitor will discharge rapidly, hence time cannot be measured accurately.

The additional viva-voce questions are already given in Experiment No. 14 regarding this experience.
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Date: 

Objective 

To study the Hall effect and to determine Hall coefficient, carrier density and mobility of a given semicon-
ductor material using Hall effect setup.

Apparatus 

A rectangular slab of semiconductor crystal of thickness about 0.3 mm, electromagnet, search coil, ballistic 
galvanometer, millivoltmeter, battery, ammeter, keys and connection wires.

Theory and Formula Used 

If a magnetic field is applied perpendicular to the current carrying conductor, then a voltage is developed 
across the specimen in the direction perpendicular to both the current and magnetic fields. This phenom-
enon is known as Hall effect and the developed voltage is called Hall voltage and the generated electric field 
is called Hall field.

To determine Hall coefficient, a thin metallic strip or specimen of millimeter and several centimeter 
long is placed along X-axis and the magnetic field (HZ) along Z-axis is applied and current (Ix) is passed 
along X-axis in the specimen that is adjusted through rheostat. Thus Hall voltage VH is developed between 
the points a and b referred in Fig. 1, which is measured through millivoltmeter. That will give the Hall 
coefficient RH.

We know that due to potential difference an electric field EH is created that opposes the drift in electrons 
in presence of magnetic force.

R
V

I
d

HH
H

x z

= × m /C3

where VH in volt, Ix in ampere, d in meter and HZ in Wb/m2.
Carrier density 

n
R eH

= - -1
m 3  

where e = 1.6 × 10−19 C.
Hall angle 

f =
V

V

l

b
H

X

x. rad

where lx and b both are in meter.

Experiment 15
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Mobility 

m f=
Hz

rad m /Wb2

Method 

Place the metallic strip in the strong magnetic field produced by the magnet and make other connections 
according to Fig. 1. A suitable current (Ix) is passed along X-axis in the metallic strip, which is adjusted 
through rheostat and measured by ammeter. Measure the Hall voltage VH through millivoltmeter and VX  
by voltmeter. Take different value of Ix through rheostat and note corresponding values of VX  and VH. This 
procedure is repeated several times for different values of Ix. Then plot a graph between VH versus Ix, which 

will be straight line whose slope will be 
V

I
H

x

. Measure magnetic field Hz with ballistic galvanometer or flux 

meter.

Observations

Magnetic field Hz =  Wb/m2

Width of the metallic strip along Z-axis d =  m
Width of the metallic strip along Y-axis b =  m
Length of the metallic strip along X-axis lx =  m

Measurement for Hall voltage:

Sl. No. Current Ix in Ampere Applied Voltage VX in Volt Hall Voltage VH in Volt

  1.

  2.

(Continued  )

N Pole

a

b

B Rh

VH

c

d

S Pole

Magnetic field along Z-axis

Figure 1
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Sl. No. Current Ix in Ampere Applied Voltage VX in Volt Hall Voltage VH in Volt

  3.

  4.

  5.

  6.

  7.

  8.

  9.

10.

Calculations

Plot the graph between VH on Y-axis and Ix on X-axis that comes out to be a straight line. The slope of the 

curve gives 
V

I
H

x

. Hall coefficient will be

R
V

I

d

HH
H

x z

= ⋅ = _______ m /C3

Number of charge carriers per unit volume 

n
R eH

= − = −1 3_______ m

Hall angle 

f = ⋅ =
V

V

l

b
H

X

x  rad _______

Mobility 

m f=
HZ

_______ rad m /Wb  2

Conclusion

Hall coefficient RH = _________ m /C3

Number of charge carriers per unit volume n = _________ m3

Hall angle f = _________ rad 

Mobility m = _________ rad m /Wb2

(Continued)
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Possible Errors

	 1.	 All the measurements should be taken carefully.
	 2.	 Magnetic field should be constant for one set of observation.
	 3.	 Current should not be large.

Viva-Voce

	 1.	 What is Hall potential?
		  Answer:  In the presence of external magnetic field, a force F = evdB acts on electrons to push them 

toward +Y-axis according to Fleming’s left-hand rule. So normal to Y-axis of the specimen will become 
negative and the other side will become positive, thus a potential difference is created, which is Hall 
potential. It depends upon the nature of charge carriers that decides whether the specimen semiconduc-
tor is of n-type or p-type.

	 2.	 Why Hall potential is developed?
		  Answer:  Due to polarization of charges, an electric field EH is created that causes Hall potential.
	 3.	 What are Hall coefficients?
		  Answer:  Numerically defined as Hall electric field produced by unit current density and unit magnetic 

field. Hall coefficient increases with the decrease in number of charge carriers per unit volume.
	 4.	 What is mobility?
		  Answer:  It is the drift velocity of the charge carriers acquired per unit electric field. Mobility of charge 

carrier increases with the increase of electric conductivity of specimen. Conductivity of the semicon-
ductor is directly proportional to the concentration of charge carriers. The concentration of charge 
carrier depends on temperature.

	 5.	 What is the importance of Hall effect?
		  Answer:  The sign (positive for holes and negative for electrons) of charge carriers is determined. The 

number of charge carriers per unit volumes is calculated easily as well as mobility of charge carriers is 
also measured. It can also be used to determine whether the given material is metal, insulator or 
semiconductor.

	 6.	 What are the applications of Hall effect?
		  Answer:  Determination of the type of semiconductor, carrier concentration and measurement of 

magnetic flux density.
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Date: 

Objective 

To determine the energy band gap of a given semiconductor material.

Apparatus 

Power supply (DC 3 V fixed), microammeter, electrically heated oven, thermometer and semiconductor 
diode.

Theory and Formula Used 

In a semiconductor, there is an energy gap between valence band and conduction band and, therefore, for 
the conduction of electricity a certain amount of energy is to be given to the electrons so that it goes from 
the valence band to the conduction band. So the energy required is the measure of the energy band gap 
between the two bands. When a p–n junction is reverse biased, the conduction of electricity is due to the 
minority charge carriers whose concentration is dependent on the energy gap DE. The reverse current Is is 
the function of the temperature of the junction diode. Its relation may be expressed as

log .I E
Ts = const −







5 036
103

∆

where T is in Kelvin and DE is in eV. A graph is plotted between log Is and 103 /T  that comes out to be a 
straight line. The slope of this line would be 5.036 DE, which gives the value of band gap

Eg =
Slope

eV
5 036.

Method 

Connect each component of the apparatus according to the circuit diagram as shown in Fig. 1. Put the 
diode in place on the board for heating and the thermometer inserted to measure the temperature. Start 
heating by connecting ovens lead to mains up to 65°C temperature. As soon as the temperature reaches 
about 65°C, switch off the oven. Temperature further rises and becomes stable at about 70°C. When the 
temperature of the oven begins to fall, take observations of current Is and temperature T in the steps of 5 µA 
till the temperature falls from its stable value to room temperature.

Experiment 16
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Observations

Sl. 
No.

Reverse Saturation Current Is (m A) log Is Temperature of the 
Oven T (°C )

Temperature 
T (K   )

10 3/T

  1.

  2.

  3.

  4.

  5.

  6.

  7.

  8.

  9.

10.

Calculation 

Plot a graph between log Is along Y-axis and 103/T along X-axis and find slope AB/BC. Hence

Eg = =
Slope

eV
5 036.

________

Oven to heat the diode

Thermometer

Hole

Diode

3 Volt

0–50 µA
P

N

Mains

Switch

+

+

−

− Groove to place
the diode for

heating

Figure 1
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Conclusion 

The energy band gap of the semiconductor material (Ge) =  eV.

Possible Errors

	 1.	 Thermometer should be properly inserted to take the accurate measurement of temperature.
	 2.	 Diode should be placed in proper way so that it is in good contact of the heat of the oven.
	 3.	 Maximum temperature should not exceed 80°C.

Viva-Voce

	 1.	 What is energy gap?
		  Answer:  It is the gap between valence band and conduction band in semiconductor. For Ge, it is  

0.7 eV.
	 2.	 What are valence band and conduction band?
		  Answer:  The electrons in the outermost orbit of an atom form valence band by a series of close energy 

levels. Valence band may be partially or completely filled. The higher permitted band is the conduction 
band and the electron bands occupying this band are called conduction electrons.

	 3.	 How semiconductor behaves as an insulator at 0°K?
		  Answer:  At 0°K, electron in the valence band does not have sufficient energy to cross the energy gap 

to reach conduction band and thus it behaves as an insulator.
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Date: 

Objective 

To calibrate the given ammeter and voltmeter by potentiometer.

Apparatus 

A potentiometer, storage battery, rheostat, main battery, a standard cell, galvanometer, shunt, high resis-
tance, standard 1-Ω resistance, given ammeter and voltmeter, a two-way key, three single-way keys and 
connection wires.

Theory and Formula Used 

For calibration of voltmeter, we connect the voltmeter in parallel with the standard 1-Ω resistance. In this 
case, the errors in the voltmeter readings are obtained by following relations:

′ −






−V V
El

l
V= 2

1

where V is the potential difference between two points read by voltmeter, V ′ is the potential difference 
between the same two points read by potentiometer, E is the emf of the standard cell, l1  is the length of the 
potentiometer wire corresponding to the emf of standard cell and l2  is the length of the potentiometer wire 
corresponding to the potential difference (V ′) measured by potentiometer.

Method 

First, complete the circuit with storage battery, a plug key, and a standard 1-Ω resistance all in series and the 
given voltmeter across the standard resistance according to Fig. 1. To test the correctness of the circuit, place 
the jockey near the point A and after that at other point B of the potentiometer wire. If the deflection is in 
opposite direction, the connections are correct. For the standardization of the potentiometer wire, close K1 
and K2(i), place the jockey on the last end B of the tenth wire, and observe the deflection in galvanometer, 
which is reduced to zero through rheostat in the main circuit. Note down the total balancing length l1, 
that is, 1000 cm for 10 wires and emf of standard cell and calculate potential gradient using k E l= / 1. For 
the calibration of voltmeter, open K2(i) and close K2(ii) and K3, adjust the variable point P of the potential 

Experiment 17
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divider so that 0.1-V deflection is observed in voltmeter. Adjust the jockey on the potentiometer wire to 
find out the null point (there is no deflection in the galvanometer) and note down the total balancing length 
l2 (the distance of the potentiometer wire between jockey and zero end A). Similarly by changing the position of 
the variable point P take several observations in regular steps of above procedure till the entire range of the 
voltmeter is covered (i.e., 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8  V) and note down the corresponding l2 
in Table B.

Observations

Table for the calibration of potentiometer wire:

Length of the Potentiometer Wire Corresponding to 
emf of Standard cell, l1 in cm

1000 Emf of standard cell E = 1.080 V for Daniell 
cell Potential gradient k E l= =/ ______1 V/cm

SC

Jockey

I II

B2

K3

Rh

K1

K2

A

P

B1

−+

−+

B

G

V

Figure 1
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Table for the calibration of voltmeter:

Sl. 
No.

Voltmeter 
Readings in 
volt V

Balancing Length of the Potentiometer Wire l2 in cm ¢V
El
l

= 2

1

(V ′−V  ) 
in Volt

No. of Complete 
Wires n

Length on 
Sliding Wire l*

Total  
l2 = (n ¥ 100 ) + l

  1. 0.1

  2. 0.2

  3. 0.3

  4. 0.4

  5. 0.5

  6. 0.6

  7. 0.7

  8. 0.8

  9. 0.9

10. 1.0

*Length of even number of wires is recorded after subtracting it from 100.

Calculations 

Calculate potential gradient k E l= =/ ______1 V/cm and after that ′ =V El l2 1/  for 0.1 to 1.0 V.

Plot a graph between the error V ′−V and the voltmeter reading which will be zig-zag in shape.

Conclusion 

Thus, the graph obtained by plotting the error versus voltmeter reading is the calibration curve of the given 
voltmeter.

Possible Errors

	 1.	 Connections should be made carefully.
	 2.	 Storage battery should be fully charged.
	 3.	 The emf of the cell used in the primary circuit should be greater than that of the emf of standard cell.
	 4.	 The voltmeter should be calibrated over its entire range.
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Viva-Voce

	 1.	 What is potentiometer?
		  Answer:  It is used for measuring potential difference. A 10- or 12-wire potentiometer consists of 

uniform resistance wire of material (constantan or manganin) that has high specific resistance and low 
temperature coefficient through which a steady current is maintained by a constant source of emf. The 
wire should be of uniform thickness so that its resistance per unit length is uniform throughout the 
length of the wire. Potentiometer is capable of measuring even the smallest potential difference (through 
increase the length of potentiometer wire or reduced the current in main circuit using rheostat), so it is called 
sensitive.

	 2.	 What is zero deflection?
		  Answer:  It means the reading in galvanometer is zero, that is, emf to be measured has been balanced 

by the potential difference across that length of the wire.
	 3.	 What is potential gradient?
		  Answer:  The fall of potential per unit length of the potentiometer wire is called potential gradient.  

It can be changed by changing the emf of the cell or the resistance used with potentiometer wire. It is 
constant for calibration of ammeter and voltmeter and measurement of thermo-emf.

	 4.	 What is calibration of voltmeter?
		  Answer:  Calibration of voltmeter means checking up the accuracy of its reading. It is necessary to 

calibrate a voltmeter because mechanical defect and constant use of voltmeter make it erratic. Voltmeter 
cannot measure emf accurately because some current, howsoever small, will be drawn from the cell. 
Therefore, we use potentiometer because no current draws at null point and it can be made more sensi-
tive that is why we calibrate voltmeter with the help potentiometer.

	 5.	 What is calibration curve?
		  Answer:  It is not a smooth curve, but a point-to-point curve that indicates the correction to be applied 

to any of the observed voltmeter readings.
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Date: 

Objective 

To calibrate the given ammeter by potentiometer.

Apparatus 

A potentiometer, storage battery, rheostat, main battery, a standard cell, galvanometer, shunt, high resis-
tance, standard 1-Ω resistance, given ammeter and voltmeter, a two-way key, three single-way keys and 
connection wires.

Theory and Formula Used 

For calibration of ammeter, we connect the ammeter in series with the standard 1-Ω resistance. In this case, 
the errors in the ammeter readings are obtained by following relation:

¢ - =
æ

è
ç

ö

ø
÷ -I I

El

l
I2

1

where I ′ = V ′ is the current equal to voltage read by potentiometer, I is the current read by ammeter, E is 
the emf of the standard cell, l1  is the length of the potentiometer wire corresponding to emf of standard 
cell and l2  is the length of the potentiometer wire corresponding to the potential difference (I ′) measured 
by potentiometer.

Method 

First, complete the circuit with storage battery, a plug key, a standard 1-Ω resistance and the given amme-
ter all in series according to Fig. 1. To test the correctness of the circuit, place the jockey near the point 
A and after that at other point B of the potentiometer wire. If the deflection is in opposite direction, the 
connections are correct. For the standardization of the potentiometer wire, close K1 and K2(i), place the 
jockey on the last end B of the tenth wire, and observe the deflection in galvanometer, which is reduced to 
zero through rheostat in the main circuit. Note down the total balancing length l1, that is, 1000 cm for 10 
wires and emf of standard cell and calculate potential gradient using k E l= / 1. For the calibration of volt-
meter, open K2(i) and close K2(ii) and K3, adjust the variable point P of the potential divider so that 0.1-A 

Experiment 18
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deflection is observed in ammeter. Adjust the jockey on the potentiometer wire to find out the null point 
(there is no deflection in the galvanometer) and note down the total balancing length l2 (the distance of the 
potentiometer wire between jockey and zero end A). Similarly by changing the position of the variable point P 
take several observation in regular steps of above procedure till the entire range of the ammeter is covered 
(i.e., 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8  A) and note down the corresponding l2 in Table B.

Observations

Table for the calibration of potentiometer wire:

Length of the Potentiometer Wire Corresponding to 
emf of Standard Cell, l1 in cm

1000 Emf of standard cell E = 1.080 V for Daniell cell 
Potential gradient k E l= =/ _______1 V/cm

SC

Jockey

1 Ω

I II

A

B2

K3

Rh

K1

K2

A

R

B1

+ −

B

G

Figure 1
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Table for the calibration of voltmeter:

Sl. 
No.

Ammeter 
Readings in 
Ampere I

Balancing Length of the Potentiometer Wire l2 in cm ¢I
El
l

= 2

1

(I ′− I ) in 
Ampere

No. of Complete 
Wires n

Length on Sliding 
Wire l*

Total  
l2 = (n ¥ 100 ) + l

  1. 0.1

  2. 0.2

  3. 0.3

  4. 0.4

  5. 0.5

  6. 0.6

  7. 0.7

  8. 0.8

  9. 1.9

10. 1.0

*Length of even number of wires is recorded after subtracting it from 100.

Calculations 

Calculate potential gradient k E l= =/ _______1 V/cm  and after that ¢ =I El l2 1/  for 0.1–1.0 A.
Plot a graph between the errors (I ′− I  ) and the ammeter reading which will be zig-zag in shape.

Conclusion 

Thus, the graph obtained by plotting the error versus voltmeter reading is the calibration curve of the given 
ammeter.

Possible Errors

	 1.	 Connections should be made carefully.
	 2.	 Storage battery should be fully charged.
	 3.	 The emf of the cell used in the primary circuit should be greater than that of the emf of standard cell.
	 4.	 The voltmeter should be calibrated over its entire range.
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Viva-Voce

	 1.	 What is standard cell?
		  Answer:  Here we are using Daniell cell having emf 1.08 V, but cadmium cell (emf 1.0186 V) is always 

better than Daniell cell because its emf does not vary appreciably with the temperature and is able to 
maintain a steady current.
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Date: 

Objective 

To measure attenuation in an optical fiber.

Apparatus 

He–Ne laser, 20X microscope objective, fiber chuk, optical fiber, photodetector and digital multimeter.

Theory and Formula Used 

Attenuation or losses in the fiber are due to absorption, scattering bending and microbending. Therefore, 
loss in dB/km is given by

Loss dB/km=
10 0

z

P

Pz

log

where P0 and Pz are the power at the input and output end of the fiber, respectively, and z is the length 
between input and output ends of the fiber whose attenuation is to be calculated.

Method

First, complete the circuit according to Fig. 1. After that measure the length z of the fiber and mount both ends 
of the fiber on fiber chuck. Focus the light from the laser into fiber input end using 20X microscope objective.  

Experiment 19

Optical fiber Output end of
optical fiber

Input end
of optical fiber

20X microscope
objectiveLaser

To digital
multimeter

Photo-
detector

Chuck

Figure 1
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Set the multimeter in DC voltage mode and connect it to photodetector. Then place the photodetector at 
the input end of the fiber in such a way that light from the microscope objective falls on it. Note the mul-
timeter reading, that is, V1. Now place the photodetector at output end of the fiber in such a way that light 
from microscope objective falls on it. Again, note the multimeter reading, that is, V2.

Observations 

Length of optical fiber, z =  km

Sl. No. Measurement of V1 at Input End Measurement of V2 at Output End Loss

Calculation

Since, P Vµ 2  , P V0 1
2µ  and P Vz µ 2

2,

Loss =
10 0

z

P

Pz

log

or

Loss dB/km= =20 1

2z

V

V
log ________

Conclusion 

Thus, the attenuation or losses in optical fiber is…dB/km.

Possible Errors

	 1.	 Connections should be made carefully.
	 2.	 Eyes should be protected from the laser beam.
	 3.	 Take reading carefully.
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	 1.	 What do you understand by fibre optics?
		  Answer:  Fibre optics is made of glass or plastic pipes as thin as human hair, through which light can 

be propagated. It consists of essentially three regions. The innermost region is known as core. It is made 
of glass or plastic. The middle region which covers the core with another layer of glass or plastic is called 
the cladding. The outermost region is called Jacket. It is also made of plastic or polymers.

	 2.	 What is the principle of fibre optics?
		  Answer:  Fibre optics based on the principle of total internal reflection (TIR) so that optical signal can 

travel long distances with negligible loss.
	 3.	 Give the necessary conditions for total internal reflection.
		  Answer:  The necessary conditions for total internal reflection are

1.  Light wave should be propagated from denser medium to rarer.
2.  The angle of incident should be greater than that of the angle of incidence.

	 4.	 What is acceptance angle and numerical aperture?
		  Answer:  The maximum angle at which light entering the core is transmitted through the fibre and 

propagated without refracted is known as acceptance angle. The sin of acceptance angle is known as 
numerical aperture.

	 5.	 How is light transmitted through fibre optics?
		  Answer:  When the light signal is incident on the core and makes an angle of incidence greater than 

that of the critical angle of the core-cladding surface, multiple total internal reflection phenomena 
occurs. In this way, light signals can be propagated or transmitted through the fibre.

	 6.	 What do you understand by modes of propagation?
		  Answer:  When light ray travel along different ray paths in fibre is known as modes of propagation.
	 7.	 What is attenuation?
		  Answer: Attenuation or losses in the fiber are due to absorption, scattering bending and microbending 

of light signal.
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Time: 2 Hours� Total Marks: 50

Note:  There are three Sections A, B and C in this paper. Questions are to be done from all 
three Sections.

SECTION−A 

	 1.	 Attempt all parts. Give answer of each part in short:� (2 ¥ 5 = 10)

		  (a)  What do you understand by time dilation?

		  Answer: A moving clock appears to go slow by a factor of 1
2

2
-

v
c

. This is time dilation.

		  (b)  What are mass less particles?

		  Answer: A particle which has zero mass is known as mass less particle.

E pc= +( ) ( )m c0
2 2 2

		  Velocity of mass less particle is same as velocity of light (v = c).

		  (c) � In Newton’s ring experiment fringe width decreases with the increase of order of fringe. Explain why?

		  Answer: b l
mq

=
2

 shows that when the wedge angle q  gradually increases, the fringe width b 

decreases.

		  (d)	How the unpolarized light and circularly polarized light distinguish?

		  Answer: For detection of circularly polarized light, it is made to fall on rotating Nicol. If the intensity 
of emergent light remains uniform, then emerging light is either circularly polarized or unpolarized. 

		  To differentiate between the two, the beam is allowed to be incident on a quarter wave plate and then 
on a rotating Nicol. If the variation in intensity is observed from zero to maximum, the emerging light 
is circularly polarized, on the other hand, if no variation in intensity is observed, the light is unpolarized. 

		  (e)	 What do you mean by population inversion?

		  Answer: If the number of atoms are more in excited state in comparison to ground state, then this 
condition is known as population inversion.
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SECTION−B

	 2.	 Attempt any three parts. All parts carry equal marks: � (5 ¥ 3 = 15)

		  (a) � Calculate the length of one meter rod moving parallel to its length when its mass is 1.5 times of its 
rest mass.

		  Answer: We have

m
m

v
c

m
m

v
c

v

c
=

-

=

-

- =o
o

o

1

1 5

1

1 2 3
2

2

2

2

2

2
, . , /

		  So

l l= - = =o m1 1
2

3
0 67

2

2

v

c
´ .

		  (b) � The speed of electron is measured to 5.0 × 103 m/s to an accuracy of 0.003%. Find the uncertainty 
in determining the position of the electron (mass of electron is 9.1 × 10−31 kg and Planck’s constant 
is 6.62 × 10−34 J-sec.)

		  Answer: We have Δv = 0.003 × 5 × 103/100 = 0.15 m/s, h = 6.625 × 10−34, Δp × Δ x = h, Now

D
D

= -x
h
m v

= ´
2

7 72 10 4

p
. m

		  (c) � Newton’s rings are observed in reflected light of wavelength 6000 Å. The diameter of 10th dark ring 
is 0.5 cm. Find the radius of curvature of the lens and thickness of air film.

		  Answer: We have D nn = = =0 5 6000 10. cm, ,l ÅD nn = = =0 5 6000 10. cm, ,l . Now

D n R R
D

nn
n4

4
104 16

2

l
l

, cm= = .

2 cmt
D

R
n= ´
2

4

8
3 10= -

		  (d) � A diffraction grating used at normal incidence gives a yellow line (l = 6000 Å) in a certain spectral 
order superimposed on a blue line (l = 4800 Å) of next higher order. If the angle of diffraction is 
60°, calculate grating element.

l l q1 1
16000 4800

3

4
= = = æ

è
ç

ö
ø
÷

-Å, Å, sin  

		  Answer:
(a + b)sinq = nl1

(a + b)sinq = (n + 1)l2

		  So

n =
-
l

l l
2

1 2

a b+ =
-

= -l l
l l q

1 2

1 2

43 2 10
(

cm
)sin

. ´

		  (e)	� The refractive indices of quartz for polarized light me and mo are 1.5508 and 1.5418, respectively. 
Calculate phase retardation for l = 5000 Å when the plate thickness is 0.032 mm.
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		  Answer: We have me = 1.5508, mo = 1.5418, t = 0.032 mm and l = 5000 Å.

		  Phase retardation = = -
2 2p
l

p
l

m m´ ´ ´path difference ( o e ) t = 3.617 rad

SECTION−C

Note: Attempt all questions in this section. All questions carry equal marks.

	 3.	 Attempt any one part of the following: � (5 ¥ 1 = 5)

		  (a) � State Einstein’s postulates of special theory of relativity. Explain why Galilean relativity failed to 
explain actual result of Michelson−Morley Experiment.

		  Answer: Einstein’s postulates: 
		  1.  Laws of physics are same for all inertial frames of reference.
		  2.  The speed of light is same for all inertial frames of reference.
		  According to Galilean transformation equation, length of the object remains unchanged in moving 

frame and velocity of light becomes c − v or c + v in the moving frame. This was the main reason for 
failure of relativity theory.

		  For more information see Chapter 1, Secs. 1.7 and 1.8.1

		  (b) � Show that the relativistic invariance of the law of conservation of momentum leads to the concept 
of variation of mass with velocity and equivalence of mass and energy.

		  Answer: Proof of variation of mass with velocity. For more information see Chapter 1, Sec. 1.14.

	 4.	 Attempt any one part of the following:� (5 ¥ 1 = 5)

		  (a) � Deduce relation between phase and group velocity in a medium where velocity is frequency depen-
dent. What happens if the phase velocity is independent of frequency?

		  Answer: Phase velocity(v
kp ) =
w

, w = vpk

Group velocity (
( )

v
d
dk

d v k

dk
v

dv

dg
p

p
p) = = = -

w l
l

		  If phase velocity is frequency independent then

dv

d
p

l
= 0, vg = vp

		  For more information see Chapter 2, Sec. 2.9.3.

		  (b) � A particle of mass m is confined to a one-dimensional box of length L. Derive an expression for 
wave function and energy.

		  Answer:				    y p
= æ

è
ç

ö
ø
÷

2

L L
Lsin

n
 

E
h

mLn = n2 2 2

28

p
  

		  For more information see Chapter 2, Sec. 2.17.2.

Paper NAS101.indd   353 4/14/2015   8:57:32 AM



354   •� ENGINEERING PHYSICS−I

	 5.	 Attempt any one part of the following:� (5 ¥ 1 = 5)

		  (a)  Discuss the interference in thin film in reflected light. What happens when film is excess thin?

		  Answer: We have

		  Path difference = 2mt cos r

		  Effective path difference = 2mt cos r − l/2

		  For constructive interference

2mt cos r = (2n + 1) l/2

		  For destructive interference

2mt cos r = n  l 

		  If film is thin then destructive interference will take place. For more information see Chapter 3,  
Sec. 3.8.1.

		  (c) � Explain the diffraction pattern obtained with diffraction at single slit. By what fraction the inten-
sity of second maximum reduced from principle maximum?

		  Answer: Single slit diffraction intensity of secondary maximum is 4/9p2 of principal maximum. This 
is nearly 4.5%. For more information see Chapter 4, Sec. 4.4.

	 6.	 Attempt any one part of the following:� (5 ¥ 1 = 5)

		  (a) � What is diffraction grating? Show that its dispersive power can be expressed as 
1

e d+



 −

n

2
2l

, 

where all the terms have their usual meanings.

		  Answer: An arrangement consisting of large number of parallel slits of equal width and separated from 
each other by equal opaque spaces is called a ‘diffraction grating’.

		  Dispersive power derivation 
d

d

n

b

n

a b n

q
l q l

= =
-(a ( + +)cos )2 2 2

 

		  For more information see Chapter 4, Secs. 4.7 and 4.8.

		  (b)  What do you mean double refraction? Explain the working principle of Nicol prism.

		  Answer: Double refraction is splitting of ray of light into two rays – ordinary and extra ordinary.

		  For construction and working of Nicol prism see Chapter 5, Secs. 5.3 and 5.5.

	 7.	 Attempt any one part of the following:� (5 ¥ 1 = 5)

		  (a) � Show that two level pumping scheme has no practical significance for lasing. Explain the principle 
of three level lasers.

		  Answer: See Chapter 6, Sec. 6.8.

		  (b) � Discuss different types of optical fiber. Why graded index fibre is better than multimode step 
index fibre?

		  For types of optical fiber see Chapter 7, Sec 7.5.
		  Difference: In graded index fibre multipath time dispersion is zero.
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Note: Attempt questions from all sections. Take standard data as and when required.

SECTION−A 

	 1.	 Attempt all parts. Give answer of each part in short:� (2 ë 5 = 10)

		  (a)  What is primitive cell?

		  Answer: The smallest volume that contains the full pattern is called a unit cell. If a unit cell contains 
lattice points only at its corners, then it is called a primitive unit cell or simple unit cell.

		  (b)  What are the important facts of Laue experiment for X-ray diffraction?

		  Answer: The important points are

		  (a)  The X-rays are electromagnetic radiations of very short wavelength.

		  (b)  The atoms in a crystal are arranged in a regular three-dimensional array.

		  (c)  What is dielectric loss?

		  Answer: The amount of energy dissipated in the form of heat by a dielectric medium under the action 
of external electric field is known as dielectric loss.

		  (d)  What do you understand by Poynting vector?

		  Answer: Poynting Vector is defined as the energy transported by wave per unit area per unit time. It is 
denoted by a vector P and can be expressed by the cross product of electric and magnetic fields.

		  (e)  What is Fermi level?

		  Answer: The highest energy that an electron can have in a conductor at absolute zero temperature.

SECTION−B

	 2.	 Attempt any three parts of the following: � (5 ë 3 = 15)

		  (a) � Determine the inter-planer spacing of a lattice plane in a simple cubic lattice with edge 2 Å which 
cuts the axes in intercepts ratio 3:4:5.
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		  Answer: We have

h : k : l = 
1 1 1 1

3

1

4

1

5
20 15 12

p q r
: : : : : := =  a = 2 Å

d
a

h k l
hkl =

+ +
=

( ) + ( ) + ( )
=

2 2 2 2 2 2

2

20 15 12
0 07212.  Å

		  (b) � A magnetic material has a magnetization of 3000 A/m and flux density 0.005 weber/m2. Determine 
the magnetizing force and the relative permeability of material.

		  Answer: We have I = 3000 A/m, B = 0.005 Wb/m2. Now

B = m0 (H + I)

		  So

H
B

I= − =
×

− =−m p0
7

0 005

4 10
3000 980 89

.
.

	
m

m m
m p

= = = ×

= ×
×

=

−

−

−

B

H

0 005

980 89
0 51 10

0 51 10

4 10
4 06

5

0

5

7

.

.
.

.
.=

		  (c)	� If a NaCl crystal is subjected to an electric field of 1500 V/m and the resulting polarization is  
4.3 × 10−8 C/m2, calculate the relative permittivity.

		  Answer: We have E = 1500 V/m, P = 4.3 × 10−8 C/m2. Now

P = e0 (er − 1)

er = 1 + 
P
Ee0

8

121
4 3 10

8 85 10
1 3 24 4 24= + ×

×
= + =

−

−

.

.
. .

		  (d) � A lamp radiates 500 watt power uniformly in all directions. Calculate the electric and magnetic 
field intensities at 1 m distance from the lamp.

		  Answer: We have P = 500 Watt, r = 1 m. Now

S
P
r

= =
4

39 802p
.

EH = 39.80, 
E
H

= =
m
e

0

0

376 7.

⇒ E = 122.44 V/m, H = 0.3250 A/m

		  (e)	� In a sample of intrinsic germanium at room temperature, the mobility of electrons and holes is 
0.40 m2/V-sec and 0.23 m2/V-sec, respectively. If the electron and hole densities are each equal to 
1.5 × 1023 m−3. Find out the electrical conductivity and resistivity of germanium.

		  Answer: We have n p= = × −1.5 10 m23 3. The conductivity of intrinsic semiconductor is given by

s m m= +( ) = × × +( ) × × = ×− −e nn p i 1 6 10 0 40 0 23 1 512 1019 4 1. . . .1.5 10 m23 Ω
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		  Resistivity of intrinsic semiconductor is given by

r
s

= =
×

= × − −1 1

1 512 10
0 66 104

4 1

.
. Ω m

SECTION−C

Note: Attempt all questions in this section. All questions carry equal marks. � (5 ë 5 = 25)

	 3.	 Attempt any one part of the following:� (1 ë 5 = 5)

		  (a)  What is crystal structure? Explain its type.

		  Answer:  Lattice and basis together forms crystal structure. There are seven types of crystal structures.

Lattice 
System

Possible Axial 
Distances

Axial Angles Examples

Cubic Simple, bcc, fcc a = b = c a = b = g  = 90° NaCl, Zinc Blende, Cu
Tetragonal Simple, bcc, a = b ≠ c a = b = g  = 90° White tin, SnO2, TiO2, CaSO4

Orthorhombic Simple, bcc,  
fcc, base

a ≠ b ≠ c a = b = g  = 90° Rhombic sulphur, KNO3, BaSO4

Hexagonal Simple, a = b ≠ c a = b = 90°,  
g  = 120°

Graphite, ZnO, CdS

Rhombohedral Simple, a = b = c a = b = g  ≠ 90° Calcite (CaCO3), Cinnabar (HgS)
Monoclinic Simple, bcc a ≠ b ≠ c a = g  = 90°,  

b ≠ 90°
Monoclinic sulphur, 
Na2SO4.10H2O

Triclinic Simple, a ≠ b ≠ c a ≠ b ≠ g  ≠ 90° K2Cr2O7, CuSO4.5H2O, H3BO3

See Chapter 8, Sec. 8.7.

		  (b)  What are miller indices? How they are obtained?

		  Answer: Miller indices are the number by which orientation of plane related to the crystal axis can be 
represented w.r.t. origin.

		  Process
		   (i)  Find out intercept of the plane on crystal axis (pa, qb, rc).

		  (ii)  Take reciprocal of intercept (1/p, 1/q, 1/r).

		  Simplest ratio are Miller indices (h k l ). For more information see Chapter 8, Sec. 8.12.

	 4.	 Attempt any one part of the following:� (1 ë 5 = 5)

		  (a) � What is Bragg's law? Describe Bragg's spectrometer and explain how it is used to study the crystal 
structure.

		  Answer: Bragg law, Proof of 2d sinq = nl. See Chapter 8, Sec. 8.14.2.

		  (b)  Explain briefly the different types of polarization in dielectrics.

		  Answer: Types of polarization: (a) electronic, (b) ionic, (c) orientation, and (d) space charge.

		  See Chapter 9, Secs. 9.4 and 9.5.
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	 5.	 Attempt any one part of the following:� (1 ë 5 = 5)

		  (a)  Discuss Lorentz field equation for a non-polar isotropic dielectric.

		  Answer: The total field at the atomic site is called the internal field.

′ = +E E
Pg

e0

, for cubic structure g  = 1/3 

		  See Chapter 9, Sec. 9.10.

		  (b)  What do you mean by hysteresis loss? Show that it is equal to the area of the hysteresis curve.

		  Answer: Hysteresis loss is loss of residual magnetizing energy in the form of heat.

		  Derivation W  = HdB
B

B

1

2

∫  (See Chapter 10, Sec. 10.7)

	 6.	 Attempt any one part of the following:� (1 ë 5 = 5)

		  (a) � Explain the concept of displacement current and show how it led to the modification of Ampere’s 
law.

		  Answer: The changing electric field is equivalent to a current which produces magnetic field. This 
equivalent current is known as displacement current.

		  For Modified Ampere’s law, see Chapter 11, Sec. 11.4.

		  (b) � What is skin depth? Show that for poor conductors, skin depth is independent of frequency of 
wave.

		  Answer: Distance in which strength of electric field associated with EMW reduces to 1/e times of ini-
tial value is called skin depth. Skin depth, for poor conductors it independent of frequency.

d
s m

= ∈2

		  For derivation to show independence of frequency, see Ch. 11, Section 11.14.

	 7.	 Attempt any one part of the following:� (1 ë 5 = 5)

		  (a)  Differentiate between intrinsic and extrinsic semiconductor on the basis of Fermi level.

		  Answer: See Chapter 12, Sec 12.10.

		  (b)  What are superconductors? Explain the effect of magnetic field on superconductor.

		  Answer: See Chapter 13, Secs. 13.1 and 13.5.

H H
T
Tc c

c

= 0 1
2

( ) 



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









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