JDHN L. HENNESSY DAVID A. PATTERSON

COMPUTER
ARCHITECTURE

el A Quantitative Approach

<
FIFTH EDITION

In Praise of Computer Architecture: A Quantitative Approach
Fifth Edition

“The 5th edition of Computer Architecture: A Quantitative Approach continues
the legacy, providing students of computer architecture with the most up-to-date
information on current computing platforms, and architectural insights to help
them design future systems. A highlight of the new edition is the significantly
revised chapter on data-level parallelism, which demystifies GPU architectures
with clear explanations using traditional computer architecture terminology.”

—Krste Asanovi¢, University of California, Berkeley

“Computer Architecture: A Quantitative Approach is a classic that, like fine
wine, just keeps getting better. I bought my first copy as I finished up my under-
graduate degree and it remains one of my most frequently referenced texts today.
When the fourth edition came out, there was so much new material that I needed
to get it to stay current in the field. And, as I review the fifth edition, I realize that
Hennessy and Patterson have done it again. The entire text is heavily updated and
Chapter 6 alone makes this new edition required reading for those wanting to
really understand cloud and warehouse scale-computing. Only Hennessy and
Patterson have access to the insiders at Google, Amazon, Microsoft, and other
cloud computing and internet-scale application providers and there is no better
coverage of this important area anywhere in the industry.”

—James Hamilton, Amazon Web Services

“Hennessy and Patterson wrote the first edition of this book when graduate stu-
dents built computers with 50,000 transistors. Today, warehouse-size computers
contain that many servers, each consisting of dozens of independent processors
and billions of transistors. The evolution of computer architecture has been rapid
and relentless, but Computer Architecture: A Quantitative Approach has kept
pace, with each edition accurately explaining and analyzing the important emerg-
ing ideas that make this field so exciting.”

—James Larus, Microsoft Research

“This new edition adds a superb new chapter on data-level parallelism in vector,
SIMD, and GPU architectures. It explains key architecture concepts inside mass-
market GPUs, maps them to traditional terms, and compares them with vector
and SIMD architectures. It’s timely and relevant with the widespread shift to
GPU parallel computing. Computer Architecture: A Quantitative Approach fur-
thers its string of firsts in presenting comprehensive architecture coverage of sig-
nificant new developments!”

—John Nickolls, NVIDIA

“The new edition of this now classic textbook highlights the ascendance of
explicit parallelism (data, thread, request) by devoting a whole chapter to each
type. The chapter on data parallelism is particularly illuminating: the comparison
and contrast between Vector SIMD, instruction level SIMD, and GPU -cuts
through the jargon associated with each architecture and exposes the similarities
and differences between these architectures.”

—Kunle Olukotun, Stanford University

“The fifth edition of Computer Architecture: A Quantitative Approach explores
the various parallel concepts and their respective tradeoffs. As with the previous
editions, this new edition covers the latest technology trends. Two highlighted are
the explosive growth of Personal Mobile Devices (PMD) and Warehouse Scale
Computing (WSC)—where the focus has shifted towards a more sophisticated
balance of performance and energy efficiency as compared with raw perfor-
mance. These trends are fueling our demand for ever more processing capability
which in turn is moving us further down the parallel path.”

—Andrew N. Sloss, Consultant Engineer, ARM
Author of ARM System Developer’s Guide

Computer Architecture
A Quantitative Approach

Fifth Edition

John L. Hennessy is the tenth president of Stanford University, where he has been a member
of the faculty since 1977 in the departments of electrical engineering and computer science.
Hennessy is a Fellow of the IEEE and ACM; a member of the National Academy of Engineering,
the National Academy of Science, and the American Philosophical Society; and a Fellow of
the American Academy of Arts and Sciences. Among his many awards are the 2001 Eckert-
Mauchly Award for his contributions to RISC technology, the 2001 Seymour Cray Computer
Engineering Award, and the 2000 John von Neumann Award, which he shared with David
Patterson. He has also received seven honorary doctorates.

In 1981, he started the MIPS project at Stanford with a handful of graduate students. After
completing the project in 1984, he took a leave from the university to cofound MIPS Computer
Systems (now MIPS Technologies), which developed one of the first commercial RISC
microprocessors. As of 2006, over 2 billion MIPS microprocessors have been shipped in devices
ranging from video games and palmtop computers to laser printers and network switches.
Hennessy subsequently led the DASH (Director Architecture for Shared Memory) project, which
prototyped the first scalable cache coherent multiprocessor; many of the key ideas have been
adopted in modern multiprocessors. In addition to his technical activities and university
responsibilities, he has continued to work with numerous start-ups both as an early-stage
advisor and an investor.

David A. Patterson has been teaching computer architecture at the University of California,
Berkeley, since joining the faculty in 1977, where he holds the Pardee Chair of Computer
Science. His teaching has been honored by the Distinguished Teaching Award from the
University of California, the Karlstrom Award from ACM, and the Mulligan Education Medal and
Undergraduate Teaching Award from IEEE. Patterson received the IEEE Technical Achievement
Award and the ACM Eckert-Mauchly Award for contributions to RISC, and he shared the IEEE
Johnson Information Storage Award for contributions to RAID. He also shared the IEEE John von
Neumann Medal and the C & C Prize with John Hennessy. Like his co-author, Patterson is a
Fellow of the American Academy of Arts and Sciences, the Computer History Museum, ACM,
and IEEE, and he was elected to the National Academy of Engineering, the National Academy
of Sciences, and the Silicon Valley Engineering Hall of Fame. He served on the Information
Technology Advisory Committee to the U.S. President, as chair of the CS division in the Berkeley
EECS department, as chair of the Computing Research Association, and as President of ACM.
This record led to Distinguished Service Awards from ACM and CRA.

At Berkeley, Patterson led the design and implementation of RISC |, likely the first VLSI reduced
instruction set computer, and the foundation of the commercial SPARC architecture. He was a
leader of the Redundant Arrays of Inexpensive Disks (RAID) project, which led to dependable
storage systems from many companies. He was also involved in the Network of Workstations
(NOW) project, which led to cluster technology used by Internet companies and later to cloud
computing. These projects earned three dissertation awards from ACM. His current research
projects are Algorithm-Machine-People Laboratory and the Parallel Computing Laboratory,
where he is director. The goal of the AMP Lab is develop scalable machine learning algorithms,
warehouse-scale-computer-friendly programming models, and crowd-sourcing tools to gain
valueable insights quickly from big data in the cloud. The goal of the Par Lab is to develop tech-
nologies to deliver scalable, portable, efficient, and productive software for parallel personal
mobile devices.

Computer Architecture
A Quantitative Approach

Fifth Edition

John L. Hennessy

Stanford University

David A. Patterson

University of California, Berkeley

With Contributions by

Krste Asanovic¢

University of California, Berkeley
Jason D. Bakos

University of South Carolina

Robert P. Colwell

R&E Colwell & Assoc. Inc.

Thomas M. Conte

North Carolina State University

José Duato

Universitat Politécnica de Valéncia and Simula
Diana Franklin

University of California, Santa Barbara
David Goldberg

The Scripps Research Institute

Norman P. Jouppi

HP Labs

Sheng Li

HP Labs

Naveen Muralimanohar

HP Labs

Gregory D. Peterson
University of Tennessee
Timothy M. Pinkston
University of Southern California
Parthasarathy Ranganathan
HP Labs

David A. Wood

University of Wisconsin-Madison
Amr Zaky

University of Santa Clara

Amsterdam ¢ Boston ¢ Heidelberg ¢ London IVI(

= New York Oxford * Paris * San Diego A e
ELSEVIER San Francisco ¢ Singapore ¢ Sydney ¢ Tokyo

Acquiring Editor: Todd Green
Development Editor: Nate McFadden
Project Manager: Paul Gottehrer
Designer: Joanne Blank

Morgan Kaufimann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

© 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further informa-
tion about the Publisher’s permissions policies and our arrangements with organizations such as the
Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become
necessary. Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information or methods described herein. In using such information or
methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability, neg-
ligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-383872-8

For information on all MK publications

visit our website at www.mkp.com

Printed in the United States of America
1112131415 10987654321

Typeset by: diacriTech, Chennai, India

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID q,ph0 Foundation

http://www.elsevier.com/permissions
http://www.mkp.com

To Andrea, Linda, and our four sons

This page intentionally left blank

Foreword

by Luiz André Barroso, Google Inc.

The first edition of Hennessy and Patterson’s Computer Architecture: A Quanti-
tative Approach was released during my first year in graduate school. I belong,
therefore, to that first wave of professionals who learned about our discipline
using this book as a compass. Perspective being a fundamental ingredient to a
useful Foreword, I find myself at a disadvantage given how much of my own
views have been colored by the previous four editions of this book. Another
obstacle to clear perspective is that the student-grade reverence for these two
superstars of Computer Science has not yet left me, despite (or perhaps because
of) having had the chance to get to know them in the years since. These disadvan-
tages are mitigated by my having practiced this trade continuously since this
book’s first edition, which has given me a chance to enjoy its evolution and
enduring relevance.

The last edition arrived just two years after the rampant industrial race for
higher CPU clock frequency had come to its official end, with Intel cancelling its
4 GHz single-core developments and embracing multicore CPUs. Two years was
plenty of time for John and Dave to present this story not as a random product
line update, but as a defining computing technology inflection point of the last
decade. That fourth edition had a reduced emphasis on instruction-level parallel-
ism (ILP) in favor of added material on thread-level parallelism, something the
current edition takes even further by devoting two chapters to thread- and data-
level parallelism while limiting ILP discussion to a single chapter. Readers who
are being introduced to new graphics processing engines will benefit especially
from the new Chapter 4 which focuses on data parallelism, explaining the
different but slowly converging solutions offered by multimedia extensions in
general-purpose processors and increasingly programmable graphics processing
units. Of notable practical relevance: If you have ever struggled with CUDA
terminology check out Figure 4.24 (teaser: “Shared Memory” is really local,
while “Global Memory” is closer to what you’d consider shared memory).

Even though we are still in the middle of that multicore technology shift, this
edition embraces what appears to be the next major one: cloud computing. In this
case, the ubiquity of Internet connectivity and the evolution of compelling Web
services are bringing to the spotlight very small devices (smart phones, tablets)

X

Foreword

and very large ones (warehouse-scale computing systems). The ARM Cortex A8,
a popular CPU for smart phones, appears in Chapter 3’s “Putting It All Together”
section, and a whole new Chapter 6 is devoted to request- and data-level parallel-
ism in the context of warehouse-scale computing systems. In this new chapter,
John and Dave present these new massive clusters as a distinctively new class of
computers—an open invitation for computer architects to help shape this emerg-
ing field. Readers will appreciate how this area has evolved in the last decade by
comparing the Google cluster architecture described in the third edition with the
more modern incarnation presented in this version’s Chapter 6.

Return customers of this book will appreciate once again the work of two outstanding
computer scientists who over their careers have perfected the art of combining an
academic’s principled treatment of ideas with a deep understanding of leading-edge
industrial products and technologies. The authors’ success in industrial interactions
won’t be a surprise to those who have witnessed how Dave conducts his biannual proj-
ect retreats, forums meticulously crafted to extract the most out of academic—industrial
collaborations. Those who recall John’s entrepreneurial success with MIPS or bump into
him in a Google hallway (as I occasionally do) won’t be surprised by it either.

Perhaps most importantly, return and new readers alike will get their money’s
worth. What has made this book an enduring classic is that each edition is not an
update but an extensive revision that presents the most current information and
unparalleled insight into this fascinating and quickly changing field. For me, after
over twenty years in this profession, it is also another opportunity to experience
that student-grade admiration for two remarkable teachers.

Contents

Chapter 1

Chapter 2

Foreword ix
Preface XV
Acknowledgments XXiii

Fundamentals of Quantitative Design and Analysis

1.1 Introduction 2
1.2 Classes of Computers 5
1.3 Defining Computer Architecture 11
1.4 Trends in Technology 17
1.5 Trends in Power and Energy in Integrated Circuits 21
1.6 Trendsin Cost 27
1.7 Dependability 33
1.8 Measuring, Reporting, and Summarizing Performance 36
1.9 Quantitative Principles of Computer Design 44
1.10 Putting It All Together: Performance, Price, and Power 52
1.11 Fallacies and Pitfalls 55
1.12 Concluding Remarks 59
1.13 Historical Perspectives and References 61

Case Studies and Exercises by Diana Franklin 61

Memory Hierarchy Design

2.1 Introduction 72
2.2 Ten Advanced Optimizations of Cache Performance 78
2.3 Memory Technology and Optimizations 96
2.4 Protection: Virtual Memory and Virtual Machines 105
2.5 Crosscutting Issues: The Design of Memory Hierarchies 112
2.6 Putting It All Together: Memory Hierachies in the

ARM Cortex-A8 and Intel Core i7 113
2.7 Fallacies and Pitfalls 125

Xi

xii

Contents

Chapter 3

Chapter4

Chapter 5

2.8
2.9

Concluding Remarks: Looking Ahead
Historical Perspective and References
Case Studies and Exercises by Norman P. Jouppi,
Naveen Muralimanohar, and Sheng Li

Instruction-Level Parallelism and Its Exploitation

3.1
3.2
33
34
35
3.6
37
3.8

3.9

Instruction-Level Parallelism: Concepts and Challenges

Basic Compiler Techniques for Exposing ILP

Reducing Branch Costs with Advanced Branch Prediction
Overcoming Data Hazards with Dynamic Scheduling
Dynamic Scheduling: Examples and the Algorithm
Hardware-Based Speculation

Exploiting ILP Using Multiple Issue and Static Scheduling
Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

Advanced Techniques for Instruction Delivery and Speculation

3.10 Studies of the Limitations of ILP
3.11 Cross-Cutting Issues: ILP Approaches and the Memory System
3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8
3.14 Fallacies and Pitfalls

3.15 Concluding Remarks: What's Ahead?

3.16 Historical Perspective and References

Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell

Introduction

Vector Architecture

SIMD Instruction Set Extensions for Multimedia
Graphics Processing Units

Detecting and Enhancing Loop-Level Parallelism
Crosscutting Issues

Putting It All Together: Mobile versus Server GPUs
and Tesla versus Core i7

Fallacies and Pitfalls

Concluding Remarks

4,10 Historical Perspective and References

Case Study and Exercises by Jason D. Bakos

Thread-Level Parallelism

5.1
52
53

Introduction
Centralized Shared-Memory Architectures
Performance of Symmetric Shared-Memory Multiprocessors

129
131

131

148
156
162
167
176
183
192

197
202
213
221

223
233
241
245
247
247

262
264
282
288
315
322

323
330
332
334
334

344
351
366

Chapter6

Appendix A

Appendix B

54
55
5.6
5.7
5.8
5.9
5.10
5.11

Contents

Distributed Shared-Memory and Directory-Based Coherence
Synchronization: The Basics

Models of Memory Consistency: An Introduction

Crosscutting Issues

Putting It All Together: Multicore Processors and Their Performance
Fallacies and Pitfalls

Concluding Remarks

Historical Perspectives and References

Case Studies and Exercises by Amr Zaky and David A. Wood

Warehouse-Scale Computers to Exploit Request-Level and
Data-Level Parallelism

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Introduction

Programming Models and Workloads for Warehouse-Scale Computers
Computer Architecture of Warehouse-Scale Computers

Physical Infrastructure and Costs of Warehouse-Scale Computers
Cloud Computing: The Return of Utility Computing

Crosscutting Issues

Putting It All Together: A Google Warehouse-Scale Computer
Fallacies and Pitfalls

Concluding Remarks

Historical Perspectives and References

Case Studies and Exercises by Parthasarathy Ranganathan

Instruction Set Principles

Al
A2
A3
A4
A5
A6
A7
A8
A9
A.10
A1
A2

Introduction

Classifying Instruction Set Architectures
Memory Addressing

Type and Size of Operands

Operations in the Instruction Set
Instructions for Control Flow

Encoding an Instruction Set

Crosscutting Issues: The Role of Compilers
Putting It All Together: The MIPS Architecture
Fallacies and Pitfalls

Concluding Remarks

Historical Perspective and References
Exercises by Gregory D. Peterson

Review of Memory Hierarchy

B.1
B.2
B.3

Introduction
Cache Performance
Six Basic Cache Optimizations

coe

378
386
392
395
400
405
409
412
412

432
436
441
446
455
461
464
471
475
476
476

A-2

A-3

A-7
A-13
A-14
A-16
A-21
A-24
A-32
A-39
A-45
A-47
A-47

B-2
B-16
B-22

Xiv

Contents

Appendix C

Appendix D
Appendix E

Appendix F

Appendix G

Appendix H
Appendix |
Appendix J

Appendix K
Appendix L

B.4 Virtual Memory

B.5 Protection and Examples of Virtual Memory

B.6 Fallacies and Pitfalls

B.7 Concluding Remarks

B.8 Historical Perspective and References
Exercises by Amr Zaky

Pipelining: Basic and Intermediate Concepts

C.1 Introduction
C.2 The Major Hurdle of Pipelining—Pipeline Hazards
C3 How s Pipelining Implemented?
C4 What Makes Pipelining Hard to Implement?
C5 Extending the MIPS Pipeline to Handle Multicycle Operations
C.6 Putting It All Together: The MIPS R4000 Pipeline
C.7 Crosscutting Issues
C.8 Fallacies and Pitfalls
C9 Concluding Remarks
C.10 Historical Perspective and References
Updated Exercises by Diana Franklin

Online Appendices
Storage Systems

Embedded Systems
By Thomas M. Conte

Interconnection Networks
Revised by Timothy M. Pinkston and José Duato

Vector Processors in More Depth
Revised by Krste Asanovic

Hardware and Software for VLIW and EPIC

Large-Scale Multiprocessors and Scientific Applications
Computer Arithmetic

by David Goldberg

Survey of Instruction Set Architectures

Historical Perspectives and References

References

Index

B-40
B-49
B-57
B-59
B-59
B-60

C-2
C-1
C-30
C-43
C-51
C-61
C-70
C-80
C-81
C-81
C-82

R-1
1-1

Preface

Why We Wrote This Book

Through five editions of this book, our goal has been to describe the basic princi-
ples underlying what will be tomorrow’s technological developments. Our excite-
ment about the opportunities in computer architecture has not abated, and we
echo what we said about the field in the first edition: “It is not a dreary science of
paper machines that will never work. No! It’s a discipline of keen intellectual
interest, requiring the balance of marketplace forces to cost-performance-power,
leading to glorious failures and some notable successes.”

Our primary objective in writing our first book was to change the way people
learn and think about computer architecture. We feel this goal is still valid and
important. The field is changing daily and must be studied with real examples
and measurements on real computers, rather than simply as a collection of defini-
tions and designs that will never need to be realized. We offer an enthusiastic
welcome to anyone who came along with us in the past, as well as to those who
are joining us now. Either way, we can promise the same quantitative approach
to, and analysis of, real systems.

As with earlier versions, we have strived to produce a new edition that will
continue to be as relevant for professional engineers and architects as it is for
those involved in advanced computer architecture and design courses. Like the
first edition, this edition has a sharp focus on new platforms—personal mobile
devices and warehouse-scale computers—and new architectures—multicore and
GPUs. As much as its predecessors, this edition aims to demystify computer
architecture through an emphasis on cost-performance-energy trade-offs and
good engineering design. We believe that the field has continued to mature and
move toward the rigorous quantitative foundation of long-established scientific
and engineering disciplines.

XV

XVi

Preface

This Edition

We said the fourth edition of Computer Architecture: A Quantitative Approach
may have been the most significant since the first edition due to the switch to
multicore chips. The feedback we received this time was that the book had lost
the sharp focus of the first edition, covering everthing equally but without empha-
sis and context. We’re pretty sure that won’t be said about the fifth edition.

We believe most of the excitement is at the extremes in size of computing,
with personal mobile devices (PMDs) such as cell phones and tablets as the cli-
ents and warehouse-scale computers offering cloud computing as the server.
(Observant readers may seen the hint for cloud computing on the cover.) We are
struck by the common theme of these two extremes in cost, performance, and
energy efficiency despite their difference in size. As a result, the running context
through each chapter is computing for PMDs and for warehouse scale computers,
and Chapter 6 is a brand-new chapter on the latter topic.

The other theme is parallelism in all its forms. We first idetify the two types of
application-level parallelism in Chapter 1: data-level parallelism (DLP), which
arises because there are many data items that can be operated on at the same time,
and task-level parallelism (TLP), which arises because tasks of work are created
that can operate independently and largely in parallel. We then explain the four
architectural styles that exploit DLP and TLP: instruction-level parallelism (ILP)
in Chapter 3; vector architectures and graphic processor units (GPUs) in Chapter
4, which is a brand-new chapter for this edition; thread-level parallelism in
Chapter 5; and request-level parallelism (RLP) via warehouse-scale computers in
Chapter 6, which is also a brand-new chapter for this edition. We moved memory
hierarchy earlier in the book to Chapter 2, and we moved the storage systems
chapter to Appendix D. We are particularly proud about Chapter 4, which con-
tains the most detailed and clearest explanation of GPUs yet, and Chapter 6,
which is the first publication of the most recent details of a Google Warehouse-
scale computer.

As before, the first three appendices in the book give basics on the MIPS
instruction set, memory hierachy, and pipelining for readers who have not read a
book like Computer Organization and Design. To keep costs down but still sup-
ply supplemental material that are of interest to some readers, available online at
http://booksite.mkp.com/9780123838728/ are nine more appendices. There are
more pages in these appendices than there are in this book!

This edition continues the tradition of using real-world examples to demon-
strate the ideas, and the “Putting It All Together” sections are brand new. The
“Putting It All Together” sections of this edition include the pipeline organiza-
tions and memory hierarchies of the ARM Cortex A8 processor, the Intel core i7
processor, the NVIDIA GTX-280 and GTX-480 GPUs, and one of the Google
warehouse-scale computers.

http://booksite.mkp.com/9780123838728/

Preface xvii

Topic Selection and Organization

As before, we have taken a conservative approach to topic selection, for there are
many more interesting ideas in the field than can reasonably be covered in a treat-
ment of basic principles. We have steered away from a comprehensive survey of
every architecture a reader might encounter. Instead, our presentation focuses on
core concepts likely to be found in any new machine. The key criterion remains
that of selecting ideas that have been examined and utilized successfully enough
to permit their discussion in quantitative terms.

Our intent has always been to focus on material that is not available in equiva-
lent form from other sources, so we continue to emphasize advanced content
wherever possible. Indeed, there are several systems here whose descriptions
cannot be found in the literature. (Readers interested strictly in a more basic
introduction to computer architecture should read Computer Organization and
Design: The Hardware/Software Interface.)

An Overview of the Content

Chapter 1 has been beefed up in this edition. It includes formulas for energy,
static power, dynamic power, integrated circuit costs, reliability, and availability.
(These formulas are also found on the front inside cover.) Our hope is that these
topics can be used through the rest of the book. In addition to the classic quantita-
tive principles of computer design and performance measurement, the PIAT sec-
tion has been upgraded to use the new SPECPower benchmark.

Our view is that the instruction set architecture is playing less of a role today
than in 1990, so we moved this material to Appendix A. It still uses the MIPS64
architecture. (For quick review, a summary of the MIPS ISA can be found on the
back inside cover.) For fans of ISAs, Appendix K covers 10 RISC architectures,
the 80x86, the DEC VAX, and the IBM 360/370.

We then move onto memory hierarchy in Chapter 2, since it is easy to apply
the cost-performance-energy principles to this material and memory is a critical
resource for the rest of the chapters. As in the past edition, Appendix B contains
an introductory review of cache principles, which is available in case you need it.
Chapter 2 discusses 10 advanced optimizations of caches. The chapter includes
virtual machines, which offers advantages in protection, software management,
and hardware management and play an important role in cloud computing. In
addition to covering SRAM and DRAM technologies, the chapter includes new
material on Flash memory. The PIAT examples are the ARM Cortex A8, which is
used in PMDs, and the Intel Core i7, which is used in servers.

Chapter 3 covers the exploitation of instruction-level parallelism in high-
performance processors, including superscalar execution, branch prediction,
speculation, dynamic scheduling, and multithreading. As mentioned earlier,
Appendix C is a review of pipelining in case you need it. Chapter 3 also sur-
veys the limits of ILP. Like Chapter 2, the PIAT examples are again the ARM
Cortex A8 and the Intel Core i7. While the third edition contained a great deal

xviii

Preface

on Itanium and VLIW, this material is now in Appendix H, indicating our view
that this architecture did not live up to the earlier claims.

The increasing importance of multimedia applications such as games and video
processing has also increased the importance of achitectures that can exploit data-
level parallelism. In particular, there is a rising interest in computing using graphi-
cal processing units (GPUs), yet few architects understand how GPUs really work.
We decided to write a new chapter in large part to unveil this new style of com-
puter architecture. Chapter 4 starts with an introduction to vector architectures,
which acts as a foundation on which to build explanations of multimedia SIMD
instrution set extensions and GPUs. (Appendix G goes into even more depth on
vector architectures.) The section on GPUs was the most difficult to write in this
book, in that it took many iterations to get an accurate description that was also
easy to understand. A significant challenge was the terminology. We decided to go
with our own terms and then provide a translation between our terms and the offi-
cial NVIDIA terms. (A copy of that table can be found in the back inside cover
pages.) This chapter introduces the Roofline performance model and then uses it
to compare the Intel Core 17 and the NVIDIA GTX 280 and GTX 480 GPUs. The
chapter also describes the Tegra 2 GPU for PMDs.

Chapter 5 describes multicore processors. It explores symmetric and
distributed-memory architectures, examining both organizational principles and
performance. Topics in synchronization and memory consistency models are
next. The example is the Intel Core i7. Readers interested in interconnection net-
works on a chip should read Appendix F, and those interested in larger scale mul-
tiprocessors and scientific applications should read Appendix 1.

As mentioned earlier, Chapter 6 describes the newest topic in computer archi-
tecture, warehouse-scale computers (WSCs). Based on help from engineers at
Amazon Web Services and Google, this chapter integrates details on design, cost,
and performance of WSCs that few architects are aware of. It starts with the pop-
ular MapReduce programming model before describing the architecture and
physical implemention of WSCs, including cost. The costs allow us to explain
the emergence of cloud computing, whereby it can be cheaper to compute using
WSCs in the cloud than in your local datacenter. The PIAT example is a descrip-
tion of a Google WSC that includes information published for the first time in
this book.

This brings us to Appendices A through L. Appendix A covers principles of
ISAs, including MIPS64, and Appendix K describes 64-bit versions of Alpha,
MIPS, PowerPC, and SPARC and their multimedia extensions. It also includes
some classic architectures (80x86, VAX, and IBM 360/370) and popular embedded
instruction sets (ARM, Thumb, SuperH, MIPS16, and Mitsubishi M32R). Appen-
dix H is related, in that it covers architectures and compilers for VLIW ISAs.

As mentioned earlier, Appendices B and C are tutorials on basic caching and
pipelining concepts. Readers relatively new to caching should read Appendix B
before Chapter 2 and those new to pipelining should read Appendix C before
Chapter 3.

Preface Xix

Appendix D, “Storage Systems,” has an expanded discussion of reliability and
availability, a tutorial on RAID with a description of RAID 6 schemes, and rarely
found failure statistics of real systems. It continues to provide an introduction to
queuing theory and I/O performance benchmarks. We evaluate the cost, perfor-
mance, and reliability of a real cluster: the Internet Archive. The “Putting It All
Together” example is the NetApp FAS6000 filer.

Appendix E, by Thomas M. Conte, consolidates the embedded material in one
place.

Appendix F, on interconnection networks, has been revised by Timothy M.
Pinkston and José Duato. Appendix G, written originally by Krste Asanovic, includes
a description of vector processors. We think these two appendices are some of the
best material we know of on each topic.

Appendix H describes VLIW and EPIC, the architecture of Itanium.

Appendix I describes parallel processing applications and coherence protocols
for larger-scale, shared-memory multiprocessing. Appendix J, by David Gold-
berg, describes computer arithmetic.

Appendix L collects the “Historical Perspective and References” from each
chapter into a single appendix. It attempts to give proper credit for the ideas in
each chapter and a sense of the history surrounding the inventions. We like to
think of this as presenting the human drama of computer design. It also supplies
references that the student of architecture may want to pursue. If you have time,
we recommend reading some of the classic papers in the field that are mentioned
in these sections. It is both enjoyable and educational to hear the ideas directly
from the creators. “Historical Perspective” was one of the most popular sections
of prior editions.

Navigating the Text

There is no single best order in which to approach these chapters and appendices,
except that all readers should start with Chapter 1. If you don’t want to read
everything, here are some suggested sequences:

m Memory Hierarchy: Appendix B, Chapter 2, and Appendix D.

m [Instruction-Level Parallelism: Appendix C, Chapter 3, and Appendix H

m Data-Level Parallelism: Chapters 4 and 6, Appendix G

m Thread-Level Parallelism: Chapter 5, Appendices F and I

m Request-Level Parallelism: Chapter 6

m ISA: Appendices A and K

Appendix E can be read at any time, but it might work best if read after the ISA
and cache sequences. Appendix J can be read whenever arithmetic moves you.

You should read the corresponding portion of Appendix L after you complete
each chapter.

XX

Preface

Chapter Structure

The material we have selected has been stretched upon a consistent framework
that is followed in each chapter. We start by explaining the ideas of a chapter.
These ideas are followed by a “Crosscutting Issues” section, a feature that shows
how the ideas covered in one chapter interact with those given in other chapters.
This is followed by a “Putting It All Together” section that ties these ideas
together by showing how they are used in a real machine.

Next in the sequence is “Fallacies and Pitfalls,” which lets readers learn from
the mistakes of others. We show examples of common misunderstandings and
architectural traps that are difficult to avoid even when you know they are lying
in wait for you. The “Fallacies and Pitfalls” sections is one of the most popular
sections of the book. Each chapter ends with a “Concluding Remarks” section.

Case Studies with Exercises

Each chapter ends with case studies and accompanying exercises. Authored by
experts in industry and academia, the case studies explore key chapter concepts
and verify understanding through increasingly challenging exercises. Instructors
should find the case studies sufficiently detailed and robust to allow them to cre-
ate their own additional exercises.

Brackets for each exercise (<chapter.section>) indicate the text sections of pri-
mary relevance to completing the exercise. We hope this helps readers to avoid
exercises for which they haven’t read the corresponding section, in addition to
providing the source for review. Exercises are rated, to give the reader a sense of
the amount of time required to complete an exercise:

[10] Less than 5 minutes (to read and understand)

[15] 5-15 minutes for a full answer

[20] 15-20 minutes for a full answer

[25] 1 hour for a full written answer

[30] Short programming project: less than 1 full day of programming
[40] Significant programming project: 2 weeks of elapsed time
[Discussion] Topic for discussion with others

Solutions to the case studies and exercises are available for instructors who
register at textbooks.elsevier.com.

Supplemental Materials

A variety of resources are available online at http://booksite.mkp.com/9780123838728),
including the following:

http://booksite.mkp.com/9780123838728/

Preface XXi

m Reference appendices—some guest authored by subject experts—covering a
range of advanced topics

m Historical Perspectives material that explores the development of the key
ideas presented in each of the chapters in the text

m Instructor slides in PowerPoint
m Figures from the book in PDF, EPS, and PPT formats
m Links to related material on the Web

m List of errata

New materials and links to other resources available on the Web will be
added on a regular basis.

Helping Improve This Book

Finally, it is possible to make money while reading this book. (Talk about cost-
performance!) If you read the Acknowledgments that follow, you will see that we
went to great lengths to correct mistakes. Since a book goes through many print-
ings, we have the opportunity to make even more corrections. If you uncover any
remaining resilient bugs, please contact the publisher by electronic mail
(caSbugs@mkp.com).

We welcome general comments to the text and invite you to send them to a
separate email address at ca5comments @mkp.com.

Concluding Remarks

Once again this book is a true co-authorship, with each of us writing half the
chapters and an equal share of the appendices. We can’t imagine how long it
would have taken without someone else doing half the work, offering inspiration
when the task seemed hopeless, providing the key insight to explain a difficult
concept, supplying reviews over the weekend of chapters, and commiserating
when the weight of our other obligations made it hard to pick up the pen. (These
obligations have escalated exponentially with the number of editions, as the biog-
raphies attest.) Thus, once again we share equally the blame for what you are
about to read.

John Hennessy = David Patterson

mailto:ca5bugs@mkp.com
mailto:ca5comments@mkp.com

This page intentionally left blank

Acknowledgments

Although this is only the fifth edition of this book, we have actually created ten
different versions of the text: three versions of the first edition (alpha, beta, and
final) and two versions of the second, third, and fourth editions (beta and final).
Along the way, we have received help from hundreds of reviewers and users.
Each of these people has helped make this book better. Thus, we have chosen to
list all of the people who have made contributions to some version of this book.

Contributors to the Fifth Edition

Like prior editions, this is a community effort that involves scores of volunteers.
Without their help, this edition would not be nearly as polished.

Reviewers

Jason D. Bakos, University of South Carolina; Diana Franklin, The University of
California, Santa Barbara; Norman P. Jouppi, HP Labs; Gregory Peterson, Uni-
versity of Tennessee; Parthasarathy Ranganathan, HP Labs; Mark Smotherman,
Clemson University; Gurindar Sohi, University of Wisconsin—-Madison; Mateo
Valero, Universidad Politécnica de Cataluia; Sotirios G. Ziavras, New Jersey
Institute of Technology

Members of the University of California—Berkeley Par Lab and RAD Lab who
gave frequent reviews of Chapter 1, 4, and 6 and shaped the explanation of
GPUs and WSCs: Krste Asanovié¢, Michael Armbrust, Scott Beamer, Sarah Bird,
Bryan Catanzaro, Jike Chong, Henry Cook, Derrick Coetzee, Randy Katz, Yun-
sup Lee, Leo Meyervich, Mark Murphy, Zhangxi Tan, Vasily Volkov, and Andrew
Waterman

Advisory Panel

Luiz André Barroso, Google Inc.; Robert P. Colwell, R&E Colwell & Assoc.
Inc.; Krisztian Flautner, VP of R&D at ARM Ltd.; Mary Jane Irwin, Penn State;

xxiii

XXiv

Acknowledgments

David Kirk, NVIDIA; Grant Martin, Chief Scientist, Tensilica; Gurindar Sohi,
University of Wisconsin—-Madison; Mateo Valero, Universidad Politécnica de
Cataluna

Appendices

Krste Asanovi¢, University of California, Berkeley (Appendix G); Thomas M.
Conte, North Carolina State University (Appendix E); José Duato, Universitat
Politecnica de Valencia and Simula (Appendix F); David Goldberg, Xerox PARC
(Appendix J); Timothy M. Pinkston, University of Southern California (Appendix F)

José Flich of the Universidad Politécnica de Valencia provided significant contri-
butions to the updating of Appendix F.

Case Studies with Exercises

Jason D. Bakos, University of South Carolina (Chapters 3 and 4); Diana Franklin,
University of California, Santa Barbara (Chapter 1 and Appendix C); Norman P.
Jouppi, HP Labs (Chapter 2); Naveen Muralimanohar, HP Labs (Chapter 2);
Gregory Peterson, University of Tennessee (Appendix A); Parthasarathy Ranga-
nathan, HP Labs (Chapter 6); Amr Zaky, University of Santa Clara (Chapter 5 and
Appendix B)

Jichuan Chang, Kevin Lim, and Justin Meza assisted in the development and test-
ing of the case studies and exercises for Chapter 6.

Additional Material

John Nickolls, Steve Keckler, and Michael Toksvig of NVIDIA (Chapter 4
NVIDIA GPUgs); Victor Lee, Intel (Chapter 4 comparison of Core i7 and GPU);
John Shalf, LBNL (Chapter 4 recent vector architectures); Sam Williams, LBNL
(Roofline model for computers in Chapter 4); Steve Blackburn of Australian
National University and Kathryn McKinley of University of Texas at Austin
(Intel performance and power measurements in Chapter 5); Luiz Barroso, Urs
Holzle, Jimmy Clidaris, Bob Felderman, and Chris Johnson of Google (the
Google WSC in Chapter 6); James Hamilton of Amazon Web Services (power
distribution and cost model in Chapter 6)

Jason D. Bakos of the University of South Carolina developed the new
lecture slides for this edition.

Finally, a special thanks once again to Mark Smotherman of Clemson Univer-
sity, who gave a final technical reading of our manuscript. Mark found numerous
bugs and ambiguities, and the book is much cleaner as a result.

This book could not have been published without a publisher, of course. We
wish to thank all the Morgan Kaufmann/Elsevier staff for their efforts and support.
For this fifth edition, we particularly want to thank our editors Nate McFadden

Acknowledgments XXV

and Todd Green, who coordinated surveys, the advisory panel, development of the
case studies and exercises, focus groups, manuscript reviews, and the updating of
the appendices.

We must also thank our university staff, Margaret Rowland and Roxana
Infante, for countless express mailings, as well as for holding down the fort at
Stanford and Berkeley while we worked on the book.

Our final thanks go to our wives for their suffering through increasingly early
mornings of reading, thinking, and writing.

Contributors to Previous Editions

Reviewers

George Adams, Purdue University; Sarita Adve, University of Illinois at Urbana—
Champaign; Jim Archibald, Brigham Young University; Krste Asanovi¢, Massa-
chusetts Institute of Technology; Jean-Loup Baer, University of Washington; Paul
Barr, Northeastern University; Rajendra V. Boppana, University of Texas, San
Antonio; Mark Brehob, University of Michigan; Doug Burger, University of Texas,
Austin; John Burger, SGI; Michael Butler; Thomas Casavant; Rohit Chandra; Peter
Chen, University of Michigan; the classes at SUNY Stony Brook, Carnegie Mel-
lon, Stanford, Clemson, and Wisconsin; Tim Coe, Vitesse Semiconductor; Robert
P. Colwell; David Cummings; Bill Dally; David Douglas; José Duato, Universitat
Politecnica de Valencia and Simula; Anthony Duben, Southeast Missouri State
University; Susan Eggers, University of Washington; Joel Emer; Barry Fagin, Dart-
mouth; Joel Ferguson, University of California, Santa Cruz; Carl Feynman; David
Filo; Josh Fisher, Hewlett-Packard Laboratories; Rob Fowler, DIKU; Mark Frank-
lin, Washington University (St. Louis); Kourosh Gharachorloo; Nikolas Gloy, Har-
vard University; David Goldberg, Xerox Palo Alto Research Center; Antonio
Gonzilez, Intel and Universitat Politecnica de Catalunya; James Goodman, Univer-
sity of Wisconsin—Madison; Sudhanva Gurumurthi, University of Virginia; David
Harris, Harvey Mudd College; John Heinlein; Mark Heinrich, Stanford; Daniel
Helman, University of California, Santa Cruz; Mark D. Hill, University of Wiscon-
sin—Madison; Martin Hopkins, IBM; Jerry Huck, Hewlett-Packard Laboratories;
Wen-mei Hwu, University of Illinois at Urbana—Champaign; Mary Jane Irwin,
Pennsylvania State University; Truman Joe; Norm Jouppi; David Kaeli, Northeast-
ern University; Roger Kieckhafer, University of Nebraska; Lev G. Kirischian,
Ryerson University; Earl Killian; Allan Knies, Purdue University; Don Knuth; Jeff
Kuskin, Stanford; James R. Larus, Microsoft Research; Corinna Lee, University of
Toronto; Hank Levy; Kai Li, Princeton University; Lori Liebrock, University of
Alaska, Fairbanks; Mikko Lipasti, University of Wisconsin—-Madison; Gyula A.
Mago, University of North Carolina, Chapel Hill; Bryan Martin; Norman Matloff;
David Meyer; William Michalson, Worcester Polytechnic Institute; James Mooneys;
Trevor Mudge, University of Michigan; Ramadass Nagarajan, University of Texas
at Austin; David Nagle, Carnegie Mellon University; Todd Narter; Victor Nelson;
Vojin Oklobdzija, University of California, Berkeley; Kunle Olukotun, Stanford
University; Bob Owens, Pennsylvania State University; Greg Papadapoulous, Sun

XXVi

Acknowledgments

Microsystems; Joseph Pfeiffer; Keshav Pingali, Cornell University; Timothy M.
Pinkston, University of Southern California; Bruno Preiss, University of Waterloo;
Steven Przybylski; Jim Quinlan; Andras Radics; Kishore Ramachandran, Georgia
Institute of Technology; Joseph Rameh, University of Texas, Austin; Anthony
Reeves, Cornell University; Richard Reid, Michigan State University; Steve Rein-
hardt, University of Michigan; David Rennels, University of California, Los Ange-
les; Arnold L. Rosenberg, University of Massachusetts, Amherst; Kaushik Roy,
Purdue University; Emilio Salgueiro, Unysis; Karthikeyan Sankaralingam, Univer-
sity of Texas at Austin; Peter Schnorf; Margo Seltzer; Behrooz Shirazi, Southern
Methodist University; Daniel Siewiorek, Carnegie Mellon University; J. P. Singh,
Princeton; Ashok Singhal; Jim Smith, University of Wisconsin—-Madison; Mike
Smith, Harvard University; Mark Smotherman, Clemson University; Gurindar
Sohi, University of Wisconsin—-Madison; Arun Somani, University of Washington;
Gene Tagliarin, Clemson University; Shyamkumar Thoziyoor, University of Notre
Dame; Evan Tick, University of Oregon; Akhilesh Tyagi, University of North Car-
olina, Chapel Hill; Dan Upton, University of Virginia; Mateo Valero, Universidad
Politécnica de Catalufia, Barcelona; Anujan Varma, University of California, Santa
Cruz; Thorsten von Eicken, Cornell University; Hank Walker, Texas A&M; Roy
Want, Xerox Palo Alto Research Center; David Weaver, Sun Microsystems;
Shlomo Weiss, Tel Aviv University; David Wells; Mike Westall, Clemson Univer-
sity; Maurice Wilkes; Eric Williams; Thomas Willis, Purdue University; Malcolm
Wing; Larry Wittie, SUNY Stony Brook; Ellen Witte Zegura, Georgia Institute of
Technology; Sotirios G. Ziavras, New Jersey Institute of Technology

Appendices

The vector appendix was revised by Krste Asanovi¢ of the Massachusetts Insti-
tute of Technology. The floating-point appendix was written originally by David
Goldberg of Xerox PARC.

Exercises

George Adams, Purdue University; Todd M. Bezenek, University of Wisconsin—
Madison (in remembrance of his grandmother Ethel Eshom); Susan Eggers; Anoop
Gupta; David Hayes; Mark Hill; Allan Knies; Ethan L. Miller, University of Cali-
fornia, Santa Cruz; Parthasarathy Ranganathan, Compaq Western Research Labo-
ratory; Brandon Schwartz, University of Wisconsin—-Madison; Michael Scott; Dan
Siewiorek; Mike Smith; Mark Smotherman; Evan Tick; Thomas Willis

Case Studies with Exercises

Andrea C. Arpaci-Dusseau, University of Wisconsin—-Madison; Remzi H. Arpaci-
Dusseau, University of Wisconsin—-Madison; Robert P. Colwell, R&E Colwell &
Assoc., Inc.; Diana Franklin, California Polytechnic State University, San Luis
Obispo; Wen-mei W. Hwu, University of Illinois at Urbana—Champaign; Norman
P. Jouppi, HP Labs; John W. Sias, University of Illinois at Urbana—Champaign;
David A. Wood, University of Wisconsin—Madison

Acknowledgments XXvii

Special Thanks

Duane Adams, Defense Advanced Research Projects Agency; Tom Adams; Sarita
Adve, University of Illinois at Urbana—Champaign; Anant Agarwal; Dave Albonesi,
University of Rochester; Mitch Alsup; Howard Alt; Dave Anderson; Peter Ashenden;
David Bailey; Bill Bandy, Defense Advanced Research Projects Agency; Luiz
Barroso, Compaq’s Western Research Lab; Andy Bechtolsheim; C. Gordon Bell;
Fred Berkowitz; John Best, IBM; Dileep Bhandarkar; Jeff Bier, BDTI; Mark Birman;
David Black; David Boggs; Jim Brady; Forrest Brewer; Aaron Brown, University of
California, Berkeley; E. Bugnion, Compaq’s Western Research Lab; Alper Buyuk-
tosunoglu, University of Rochester; Mark Callaghan; Jason F. Cantin; Paul Carrick;
Chen-Chung Chang; Lei Chen, University of Rochester; Pete Chen; Nhan Chu;
Doug Clark, Princeton University; Bob Cmelik; John Crawford; Zarka Cvetanovic;
Mike Dahlin, University of Texas, Austin; Merrick Darley; the staff of the DEC
Western Research Laboratory; John DeRosa; Lloyd Dickman; J. Ding; Susan Egg-
ers, University of Washington; Wael El-Essawy, University of Rochester; Patty
Enriquez, Mills; Milos Ercegovac; Robert Garner; K. Gharachorloo, Compaq’s
Western Research Lab; Garth Gibson; Ronald Greenberg; Ben Hao; John Henning,
Compaq; Mark Hill, University of Wisconsin—-Madison; Danny Hillis; David
Hodges; Urs Holzle, Google; David Hough; Ed Hudson; Chris Hughes, University
of Illinois at Urbana—Champaign; Mark Johnson; Lewis Jordan; Norm Jouppi; Wil-
liam Kahan; Randy Katz; Ed Kelly; Richard Kessler; Les Kohn; John Kowaleski,
Compaq Computer Corp; Dan Lambright; Gary Lauterbach, Sun Microsystems;
Corinna Lee; Ruby Lee; Don Lewine; Chao-Huang Lin; Paul Losleben, Defense
Advanced Research Projects Agency; Yung-Hsiang Lu; Bob Lucas, Defense
Advanced Research Projects Agency; Ken Lutz; Alan Mainwaring, Intel Berkeley
Research Labs; Al Marston; Rich Martin, Rutgers; John Mashey; Luke McDowell;
Sebastian Mirolo, Trimedia Corporation; Ravi Murthy; Biswadeep Nag; Lisa
Noordergraaf, Sun Microsystems; Bob Parker, Defense Advanced Research Proj-
ects Agency; Vern Paxson, Center for Internet Research; Lawrence Prince; Steven
Przybylski; Mark Pullen, Defense Advanced Research Projects Agency; Chris
Rowen; Margaret Rowland; Greg Semeraro, University of Rochester; Bill Shan-
non; Behrooz Shirazi; Robert Shomler; Jim Slager; Mark Smotherman, Clemson
University; the SMT research group at the University of Washington; Steve
Squires, Defense Advanced Research Projects Agency; Ajay Sreekanth; Darren
Staples; Charles Stapper; Jorge Stolfi; Peter Stoll; the students at Stanford and
Berkeley who endured our first attempts at creating this book; Bob Supnik; Steve
Swanson; Paul Taysom; Shreekant Thakkar; Alexander Thomasian, New Jersey
Institute of Technology; John Toole, Defense Advanced Research Projects Agencys;
Kees A. Vissers, Trimedia Corporation; Willa Walker; David Weaver; Ric Wheeler,
EMC; Maurice Wilkes; Richard Zimmerman.

John Hennessy = David Patterson

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

Introduction

Classes of Computers

Defining Computer Architecture

Trends in Technology

Trends in Power and Energy in Integrated Circuits
Trends in Cost

Dependability

Measuring, Reporting, and Summarizing Performance
Quantitative Principles of Computer Design

Putting It All Together: Performance, Price, and Power
Fallacies and Pitfalls

Concluding Remarks

Historical Perspectives and References

Case Studies and Exercises by Diana Franklin

Fundamentals of Quantitative
Design and Analysis

I think it's fair to say that personal computers have become the most
empowering tool we've ever created. They're tools of communication,
they're tools of creativity, and they can be shaped by their user.

Bill Gates, February 24, 2004

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00002-1
© 2012 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383872-8.00002-1

2

Chapter One Fundamentals of Quantitative Design and Analysis

1.1

Introduction

Computer technology has made incredible progress in the roughly 65 years since
the first general-purpose electronic computer was created. Today, less than $500
will purchase a mobile computer that has more performance, more main memory,
and more disk storage than a computer bought in 1985 for $1 million. This rapid
improvement has come both from advances in the technology used to build com-
puters and from innovations in computer design.

Although technological improvements have been fairly steady, progress aris-
ing from better computer architectures has been much less consistent. During the
first 25 years of electronic computers, both forces made a major contribution,
delivering performance improvement of about 25% per year. The late 1970s saw
the emergence of the microprocessor. The ability of the microprocessor to ride
the improvements in integrated circuit technology led to a higher rate of perfor-
mance improvement—roughly 35% growth per year.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to succeed commercially with a new
architecture. First, the virtual elimination of assembly language programming
reduced the need for object-code compatibility. Second, the creation of standard-
ized, vendor-independent operating systems, such as UNIX and its clone, Linux,
lowered the cost and risk of bringing out a new architecture.

These changes made it possible to develop successfully a new set of architec-
tures with simpler instructions, called RISC (Reduced Instruction Set Computer)
architectures, in the early 1980s. The RISC-based machines focused the attention
of designers on two critical performance techniques, the exploitation of instruction-
level parallelism (initially through pipelining and later through multiple instruction
issue) and the use of caches (initially in simple forms and later using more sophisti-
cated organizations and optimizations).

The RISC-based computers raised the performance bar, forcing prior archi-
tectures to keep up or disappear. The Digital Equipment Vax could not, and so it
was replaced by a RISC architecture. Intel rose to the challenge, primarily by
translating 80x86 instructions into RISC-like instructions internally, allowing it
to adopt many of the innovations first pioneered in the RISC designs. As transis-
tor counts soared in the late 1990s, the hardware overhead of translating the more
complex x86 architecture became negligible. In low-end applications, such as
cell phones, the cost in power and silicon area of the x86-translation overhead
helped lead to a RISC architecture, ARM, becoming dominant.

Figure 1.1 shows that the combination of architectural and organizational
enhancements led to 17 years of sustained growth in performance at an annual
rate of over 50%—a rate that is unprecedented in the computer industry.

The effect of this dramatic growth rate in the 20th century has been fourfold.
First, it has significantly enhanced the capability available to computer users. For
many applications, the highest-performance microprocessors of today outper-
form the supercomputer of less than 10 years ago.

1.1 Introduction 3

100,000

Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

Intel Core 2 Extreme 2 cores, 2.9 GHz

“714,387.
e AMD Athlon 64, 2.8 GHz - o/ 387 ...
10,000 AMD Athlon, 2.6 GHz s~/ 11:865
Intel Xeon EE 3.2 GHz

Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)
IBM Power4, 1.3 GHz @7*

Intel VC820 motherboard, 1.0 GHz Pentium IIl processor 4l

Professional Workstation XP1000, 667 MHz 21264A

000 oo Diilal AlphaServer 8400 6575, 575 MHz 21264, g - L

100 4o BM POWERStation 100, 150 MHz).,f.'.'.’ ...

Performance (vs. VAX-11/780)

IBM RS6000/540, 30 MHz,
MIPS M2000, 25 MHz

1 o PP ".,.'...'. ..

VAX 8700, 22 MHz

52%l/year

AX-11/780, 5 MHz e

____.—-"éS%/yea 1.5, VAX-11/785
1 + T T T T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Figure 1.1 Growth in processor performance since the late 1970s. This chart plots performance relative to the VAX
11/780 as measured by the SPEC benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance
growth was largely technology driven and averaged about 25% per year. The increase in growth to about 52% since
then is attributable to more advanced architectural and organizational ideas. By 2003, this growth led to a difference
in performance of about a factor of 25 versus if we had continued at the 25% rate. Performance for floating-point-ori-
ented calculations has increased even faster. Since 2003, the limits of power and available instruction-level parallel-
ism have slowed uniprocessor performance, to no more than 22% per year, or about 5 times slower than had we
continued at 52% per year. (The fastest SPEC performance since 2007 has had automatic parallelization turned on
with increasing number of cores per chip each year, so uniprocessor speed is harder to gauge. These results are lim-
ited to single-socket systems to reduce the impact of automatic parallelization.) Figure 1.11 on page 24 shows the
improvement in clock rates for these same three eras. Since SPEC has changed over the years, performance of newer
machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC89, SPEC92, SPEC95, SPEC2000, and SPEC2006).

Second, this dramatic improvement in cost-performance leads to new classes
of computers. Personal computers and workstations emerged in the 1980s with
the availability of the microprocessor. The last decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly
using the Internet to access warehouses containing tens of thousands of servers,
which are being designed as if they were a single gigantic computer.

Third, continuing improvement of semiconductor manufacturing as pre-
dicted by Moore’s law has led to the dominance of microprocessor-based com-
puters across the entire range of computer design. Minicomputers, which were

4

Chapter One Fundamentals of Quantitative Design and Analysis

traditionally made from off-the-shelf logic or from gate arrays, were replaced by
servers made using microprocessors. Even mainframe computers and high-
performance supercomputers are all collections of microprocessors.

The hardware innovations above led to a renaissance in computer design,
which emphasized both architectural innovation and efficient use of technology
improvements. This rate of growth has compounded so that by 2003, high-
performance microprocessors were 7.5 times faster than what would have been
obtained by relying solely on technology, including improved circuit design; that
is, 52% per year versus 35% per year.

This hardware renaissance led to the fourth impact, which is on software
development. This 25,000-fold performance improvement since 1978 (see
Figure 1.1) allowed programmers today to trade performance for productivity. In
place of performance-oriented languages like C and C++, much more program-
ming today is done in managed programming languages like Java and C#. More-
over, scripting languages like Python and Ruby, which are even more productive,
are gaining in popularity along with programming frameworks like Ruby on
Rails. To maintain productivity and try to close the performance gap, interpreters
with just-in-time compilers and trace-based compiling are replacing the tradi-
tional compiler and linker of the past. Software deployment is changing as well,
with Software as a Service (SaaS) used over the Internet replacing shrink-
wrapped software that must be installed and run on a local computer.

The nature of applications also changes. Speech, sound, images, and video
are becoming increasingly important, along with predictable response time that is
so critical to the user experience. An inspiring example is Google Goggles. This
application lets you hold up your cell phone to point its camera at an object, and
the image is sent wirelessly over the Internet to a warehouse-scale computer that
recognizes the object and tells you interesting information about it. It might
translate text on the object to another language; read the bar code on a book cover
to tell you if a book is available online and its price; or, if you pan the phone cam-
era, tell you what businesses are nearby along with their websites, phone num-
bers, and directions.

Alas, Figure 1.1 also shows that this 17-year hardware renaissance is over.
Since 2003, single-processor performance improvement has dropped to less than
22% per year due to the twin hurdles of maximum power dissipation of air-
cooled chips and the lack of more instruction-level parallelism to exploit effi-
ciently. Indeed, in 2004 Intel canceled its high-performance uniprocessor projects
and joined others in declaring that the road to higher performance would be via
multiple processors per chip rather than via faster uniprocessors.

This milestone signals a historic switch from relying solely on instruction-
level parallelism (ILP), the primary focus of the first three editions of this book,
to data-level parallelism (DLP) and thread-level parallelism (TLP), which were
featured in the fourth edition and expanded in this edition. This edition also adds
warehouse-scale computers and request-level parallelism (RLP). Whereas
the compiler and hardware conspire to exploit ILP implicitly without the pro-
grammer’s attention, DLP, TLP, and RLP are explicitly parallel, requiring the

1.2 Classes of Computers 5

restructuring of the application so that it can exploit explicit parallelism. In some
instances, this is easy; in many, it is a major new burden for programmers.

This text is about the architectural ideas and accompanying compiler
improvements that made the incredible growth rate possible in the last century,
the reasons for the dramatic change, and the challenges and initial promising
approaches to architectural ideas, compilers, and interpreters for the 21st century.
At the core is a quantitative approach to computer design and analysis that uses
empirical observations of programs, experimentation, and simulation as its tools.
It is this style and approach to computer design that is reflected in this text. The
purpose of this chapter is to lay the quantitative foundation on which the follow-
ing chapters and appendices are based.

This book was written not only to explain this design style but also to stimu-
late you to contribute to this progress. We believe this approach will work for
explicitly parallel computers of the future just as it worked for the implicitly par-
allel computers of the past.

1.2 Classes of Computers

These changes have set the stage for a dramatic change in how we view comput-
ing, computing applications, and the computer markets in this new century. Not
since the creation of the personal computer have we seen such dramatic changes
in the way computers appear and in how they are used. These changes in com-
puter use have led to five different computing markets, each characterized by dif-
ferent applications, requirements, and computing technologies. Figure 1.2
summarizes these mainstream classes of computing environments and their
important characteristics.

Personal Clusters/warehouse-
Feature mobile device Desktop Server I Embedded
(PMD) scale computer

Price of $100-$1000 $300-$2500 $5000-$10,000,000 $100,000-$200,000,000 $10-$100,000
system

Price of $10-$100 $50-$500 $200-$2000 $50-$250 $0.01-$100
micro-
processor
Critical Cost, energy, Price- Throughput, Price-performance, Price, energy,
system media performance, availability, throughput, energy application-specific
design performance, energy, scalability, energy ~ proportionality performance
issues responsiveness graphics
performance

Figure 1.2 A summary of the five mainstream computing classes and their system characteristics. Sales in 2010
included about 1.8 billion PMDs (90% cell phones), 350 million desktop PCs, and 20 million servers. The total number
of embedded processors sold was nearly 19 billion. In total, 6.1 billion ARM-technology based chips were shipped in
2010. Note the wide range in system price for servers and embedded systems, which go from USB keys to network
routers. For servers, this range arises from the need for very large-scale multiprocessor systems for high-end
transaction processing.

6

Chapter One Fundamentals of Quantitative Design and Analysis

Personal Mobile Device (PMD)

Personal mobile device (PMD) is the term we apply to a collection of wireless
devices with multimedia user interfaces such as cell phones, tablet computers,
and so on. Cost is a prime concern given the consumer price for the whole prod-
uct is a few hundred dollars. Although the emphasis on energy efficiency is fre-
quently driven by the use of batteries, the need to use less expensive packaging—
plastic versus ceramic—and the absence of a fan for cooling also limit total
power consumption. We examine the issue of energy and power in more detail in
Section 1.5. Applications on PMDs are often Web-based and media-oriented, like
the Google Goggles example above. Energy and size requirements lead to use of
Flash memory for storage (Chapter 2) instead of magnetic disks.

Responsiveness and predictability are key characteristics for media applica-
tions. A real-time performance requirement means a segment of the application
has an absolute maximum execution time. For example, in playing a video on a
PMD, the time to process each video frame is limited, since the processor must
accept and process the next frame shortly. In some applications, a more nuanced
requirement exists: the average time for a particular task is constrained as well
as the number of instances when some maximum time is exceeded. Such
approaches—sometimes called soft real-time—arise when it is possible to occa-
sionally miss the time constraint on an event, as long as not too many are missed.
Real-time performance tends to be highly application dependent.

Other key characteristics in many PMD applications are the need to minimize
memory and the need to use energy efficiently. Energy efficiency is driven by
both battery power and heat dissipation. The memory can be a substantial portion
of the system cost, and it is important to optimize memory size in such cases. The
importance of memory size translates to an emphasis on code size, since data size
is dictated by the application.

Desktop Computing

The first, and probably still the largest market in dollar terms, is desktop comput-
ing. Desktop computing spans from low-end netbooks that sell for under $300 to
high-end, heavily configured workstations that may sell for $2500. Since 2008,
more than half of the desktop computers made each year have been battery oper-
ated laptop computers.

Throughout this range in price and capability, the desktop market tends to be
driven to optimize price-performance. This combination of performance (mea-
sured primarily in terms of compute performance and graphics performance) and
price of a system is what matters most to customers in this market, and hence to
computer designers. As a result, the newest, highest-performance microproces-
sors and cost-reduced microprocessors often appear first in desktop systems (see
Section 1.6 for a discussion of the issues affecting the cost of computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of Web-centric, inter-
active applications poses new challenges in performance evaluation.

1.2 Classes of Computers 7

Servers

As the shift to desktop computing occurred in the 1980s, the role of servers grew
to provide larger-scale and more reliable file and computing services. Such serv-
ers have become the backbone of large-scale enterprise computing, replacing the
traditional mainframe.

For servers, different characteristics are important. First, availability is criti-
cal. (We discuss availability in Section 1.7.) Consider the servers running ATM
machines for banks or airline reservation systems. Failure of such server systems
is far more catastrophic than failure of a single desktop, since these servers must
operate seven days a week, 24 hours a day. Figure 1.3 estimates revenue costs of
downtime for server applications.

A second key feature of server systems is scalability. Server systems often
grow in response to an increasing demand for the services they support or an
increase in functional requirements. Thus, the ability to scale up the computing
capacity, the memory, the storage, and the I/O bandwidth of a server is crucial.

Finally, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or Web pages served
per second—is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
We return to the issue of assessing performance for different types of computing
environments in Section 1.8.

Annual losses with downtime of

Application Cost of downtime 1% 0.5% 0.1%
per hour (87.6 hrs/yr) (43.8 hrs/yr) (8.8 hrs/yr)

Brokerage operations $6,450,000 $565,000,000 $283,000,000 $56,500,000
Credit card authorization $2.600,000 $228,000,000 $114,000,000 $22,800,000
Package shipping services $150,000 $13,000,000 $6,600,000 $1,300,000
Home shopping channel $113,000 $9,900,000 $4,900,000 $1,000,000
Catalog sales center $90,000 $7,900,000 $3,900,000 $800,000
Airline reservation center $89,000 $7,900,000 $3,900,000 $800,000
Cellular service activation $41,000 $3,600,000 $1,800,000 $400,000
Online network fees $25,000 $2,200,000 $1,100,000 $200,000
ATM service fees $14,000 $1,200,000 $600,000 $100,000

Figure 1.3 Costs rounded to nearest $100,000 of an unavailable system are shown by analyzing the cost of
downtime (in terms of immediately lost revenue), assuming three different levels of availability and that down-
time is distributed uniformly. These data are from Kembel [2000] and were collected and analyzed by Contingency

Planning Research.

8

Chapter One Fundamentals of Quantitative Design and Analysis

Clusters/Warehouse-Scale Computers

The growth of Software as a Service (SaaS) for applications like search, social
networking, video sharing, multiplayer games, online shopping, and so on has led
to the growth of a class of computers called clusters. Clusters are collections of
desktop computers or servers connected by local area networks to act as a single
larger computer. Each node runs its own operating system, and nodes communi-
cate using a networking protocol. The largest of the clusters are called
warehouse-scale computers (WSCs), in that they are designed so that tens of
thousands of servers can act as one. Chapter 6 describes this class of the
extremely large computers.

Price-performance and power are critical to WSCs since they are so large. As
Chapter 6 explains, 80% of the cost of a $90M warehouse is associated with
power and cooling of the computers inside. The computers themselves and net-
working gear cost another $70M and they must be replaced every few years.
When you are buying that much computing, you need to buy wisely, as a 10%
improvement in price-performance means a savings of $7M (10% of $70M).

WSCs are related to servers, in that availability is critical. For example, Ama-
zon.com had $13 billion in sales in the fourth quarter of 2010. As there are about
2200 hours in a quarter, the average revenue per hour was almost $6M. During a
peak hour for Christmas shopping, the potential loss would be many times higher.
As Chapter 6 explains, the difference from servers is that WSCs use redundant
inexpensive components as the building blocks, relying on a software layer to
catch and isolate the many failures that will happen with computing at this scale.
Note that scalability for a WSC is handled by the local area network connecting
the computers and not by integrated computer hardware, as in the case of servers.

Supercomputers are related to WSCs in that they are equally expensive, cost-
ing hundreds of millions of dollars, but supercomputers differ by emphasizing
floating-point performance and by running large, communication-intensive batch
programs that can run for weeks at a time. This tight coupling leads to use of
much faster internal networks. In contrast, WSCs emphasize interactive applica-
tions, large-scale storage, dependability, and high Internet bandwidth.

Embedded Computers

Embedded computers are found in everyday machines; microwaves, washing
machines, most printers, most networking switches, and all cars contain simple
embedded microprocessors.

The processors in a PMD are often considered embedded computers, but we
are keeping them as a separate category because PMDs are platforms that can run
externally developed software and they share many of the characteristics of desk-
top computers. Other embedded devices are more limited in hardware and soft-
ware sophistication. We use the ability to run third-party software as the dividing
line between non-embedded and embedded computers.

Embedded computers have the widest spread of processing power and cost.
They include 8-bit and 16-bit processors that may cost less than a dime, 32-bit

1.2 Classes of Computers 9

microprocessors that execute 100 million instructions per second and cost under
$5, and high-end processors for network switches that cost $100 and can execute
billions of instructions per second. Although the range of computing power in the
embedded computing market is very large, price is a key factor in the design of
computers for this space. Performance requirements do exist, of course, but the
primary goal is often meeting the performance need at a minimum price, rather
than achieving higher performance at a higher price.

Most of this book applies to the design, use, and performance of embedded
processors, whether they are off-the-shelf microprocessors or microprocessor
cores that will be assembled with other special-purpose hardware. Indeed, the
third edition of this book included examples from embedded computing to illus-
trate the ideas in every chapter.

Alas, most readers found these examples unsatisfactory, as the data that drive
the quantitative design and evaluation of other classes of computers have not yet
been extended well to embedded computing (see the challenges with EEMBC,
for example, in Section 1.8). Hence, we are left for now with qualitative descrip-
tions, which do not fit well with the rest of the book. As a result, in this and the
prior edition we consolidated the embedded material into Appendix E. We
believe a separate appendix improves the flow of ideas in the text while allowing
readers to see how the differing requirements affect embedded computing.

Classes of Parallelism and Parallel Architectures

Parallelism at multiple levels is now the driving force of computer design across
all four classes of computers, with energy and cost being the primary constraints.
There are basically two kinds of parallelism in applications:

1. Data-Level Parallelism (DLP) arises because there are many data items that
can be operated on at the same time.

2. Task-Level Parallelism (TLP) arises because tasks of work are created that
can operate independently and largely in parallel.

Computer hardware in turn can exploit these two kinds of application parallelism
in four major ways:

1. Instruction-Level Parallelism exploits data-level parallelism at modest levels
with compiler help using ideas like pipelining and at medium levels using
ideas like speculative execution.

2. Vector Architectures and Graphic Processor Units (GPUs) exploit data-level
parallelism by applying a single instruction to a collection of data in parallel.

3. Thread-Level Parallelism exploits either data-level parallelism or task-level
parallelism in a tightly coupled hardware model that allows for interaction
among parallel threads.

4. Request-Level Parallelism exploits parallelism among largely decoupled
tasks specified by the programmer or the operating system.

10

Chapter One Fundamentals of Quantitative Design and Analysis

These four ways for hardware to support the data-level parallelism and

task-level parallelism go back 50 years. When Michael Flynn [1966] studied
the parallel computing efforts in the 1960s, he found a simple classification
whose abbreviations we still use today. He looked at the parallelism in the
instruction and data streams called for by the instructions at the most con-
strained component of the multiprocessor, and placed all computers into one of
four categories:

1.

3.

4.

Single instruction stream, single data stream (SISD)—This category is the
uniprocessor. The programmer thinks of it as the standard sequential com-
puter, but it can exploit instruction-level parallelism. Chapter 3 covers SISD
architectures that use ILP techniques such as superscalar and speculative exe-
cution.

Single instruction stream, multiple data streams (SIMD)—The same
instruction is executed by multiple processors using different data streams.
SIMD computers exploit data-level parallelism by applying the same
operations to multiple items of data in parallel. Each processor has its own
data memory (hence the MD of SIMD), but there is a single instruction
memory and control processor, which fetches and dispatches instructions.
Chapter 4 covers DLP and three different architectures that exploit it:
vector architectures, multimedia extensions to standard instruction sets,
and GPUs.

Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date, but it rounds out this simple
classification.

Multiple instruction streams, multiple data streams (MIMD)—Each proces-
sor fetches its own instructions and operates on its own data, and it targets
task-level parallelism. In general, MIMD is more flexible than SIMD and
thus more generally applicable, but it is inherently more expensive than
SIMD. For example, MIMD computers can also exploit data-level parallel-
ism, although the overhead is likely to be higher than would be seen in an
SIMD computer. This overhead means that grain size must be sufficiently
large to exploit the parallelism efficiently. Chapter 5 covers tightly coupled
MIMD architectures, which exploit thread-level parallelism since multiple
cooperating threads operate in parallel. Chapter 6 covers loosely coupled
MIMD architectures—specifically, clusters and warehouse-scale comput-
ers—that exploit request-level parallelism, where many independent tasks
can proceed in parallel naturally with little need for communication or
synchronization.

This taxonomy is a coarse model, as many parallel processors are hybrids of the
SISD, SIMD, and MIMD classes. Nonetheless, it is useful to put a framework on
the design space for the computers we will see in this book.

1.3

1.3 Defining Computer Architecture 11

Defining Computer Architecture

The task the computer designer faces is a complex one: Determine what
attributes are important for a new computer, then design a computer to maximize
performance and energy efficiency while staying within cost, power, and avail-
ability constraints. This task has many aspects, including instruction set design,
functional organization, logic design, and implementation. The implementation
may encompass integrated circuit design, packaging, power, and cooling. Opti-
mizing the design requires familiarity with a very wide range of technologies,
from compilers and operating systems to logic design and packaging.

Several years ago, the term computer architecture often referred only to
instruction set design. Other aspects of computer design were called implementa-
tion, often insinuating that implementation is uninteresting or less challenging.

We believe this view is incorrect. The architect’s or designer’s job is much
more than instruction set design, and the technical hurdles in the other aspects of
the project are likely more challenging than those encountered in instruction set
design. We’ll quickly review instruction set architecture before describing the
larger challenges for the computer architect.

Instruction Set Architecture: The Myopic View of Computer
Architecture

We use the term instruction set architecture (ISA) to refer to the actual programmer-
visible instruction set in this book. The ISA serves as the boundary between the
software and hardware. This quick review of ISA will use examples from 80x86,
ARM, and MIPS to illustrate the seven dimensions of an ISA. Appendices A and
K give more details on the three ISAs.

1. Class of ISA—Nearly all ISAs today are classified as general-purpose register
architectures, where the operands are either registers or memory locations.
The 80x86 has 16 general-purpose registers and 16 that can hold floating-
point data, while MIPS has 32 general-purpose and 32 floating-point registers
(see Figure 1.4). The two popular versions of this class are register-memory
ISAs, such as the 80x86, which can access memory as part of many instruc-
tions, and load-store ISAs, such as ARM and MIPS, which can access mem-
ory only with load or store instructions. All recent ISAs are load-store.

2. Memory addressing—Virtually all desktop and server computers, including
the 80x86, ARM, and MIPS, use byte addressing to access memory operands.
Some architectures, like ARM and MIPS, require that objects must be
aligned. An access to an object of size s bytes at byte address A is aligned if
A mod s =0. (See Figure A.5 on page A-8.) The 80x86 does not require
alignment, but accesses are generally faster if operands are aligned.

3. Addressing modes—In addition to specifying registers and constant operands,
addressing modes specify the address of a memory object. MIPS addressing

12 Chapter One Fundamentals of Quantitative Design and Analysis

Name Number Use Preserved across a call?
$zero 0 The constant value 0 N.A.
$at 1 Assembler temporary No
$v0-$v1 2-3 Values for function results and No
expression evaluation

$a0-$a3 4-7 Arguments No
$t0-$t7 8-15 Temporaries No
$s0-$s7 16-23 Saved temporaries Yes
$t8-$t9 24-25 Temporaries No
$k0-$k1 26-27 Reserved for OS kernel No
$gp 28 Global pointer Yes
$sp 29 Stack pointer Yes
$fp 30 Frame pointer Yes
$ra 31 Return address Yes

Figure 1.4 MIPS registers and usage conventions. In addition to the 32 general-
purpose registers (R0-R31), MIPS has 32 floating-point registers (FO-F31) that can hold
either a 32-bit single-precision number or a 64-bit double-precision number.

modes are Register, Immediate (for constants), and Displacement, where a
constant offset is added to a register to form the memory address. The 80x86
supports those three plus three variations of displacement: no register (abso-
lute), two registers (based indexed with displacement), and two registers
where one register is multiplied by the size of the operand in bytes (based
with scaled index and displacement). It has more like the last three, minus the
displacement field, plus register indirect, indexed, and based with scaled
index. ARM has the three MIPS addressing modes plus PC-relative address-
ing, the sum of two registers, and the sum of two registers where one register
is multiplied by the size of the operand in bytes. It also has autoincrement and
autodecrement addressing, where the calculated address replaces the contents
of one of the registers used in forming the address.

Types and sizes of operands—Like most ISAs, 80x86, ARM, and MIPS
support operand sizes of 8-bit (ASCII character), 16-bit (Unicode character
or half word), 32-bit (integer or word), 64-bit (double word or long inte-
ger), and IEEE 754 floating point in 32-bit (single precision) and 64-bit
(double precision). The 80x86 also supports 80-bit floating point (extended
double precision).

Operations—The general categories of operations are data transfer, arithme-
tic logical, control (discussed next), and floating point. MIPS is a simple and
easy-to-pipeline instruction set architecture, and it is representative of the RISC
architectures being used in 2011. Figure 1.5 summarizes the MIPS ISA. The
80x86 has a much richer and larger set of operations (see Appendix K).

1.3 Defining Computer Architecture 13

Instruction type/opcode

Instruction meaning

Data transfers

Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB, LBU, SB Load byte, load byte unsigned, store byte (to/from integer registers)

LH, LHU, SH Load half word, load half word unsigned, store half word (to/from integer registers)
LW, LWU, SW Load word, load word unsigned, store word (to/from integer registers)

LD, SD Load double word, store double word (to/from integer registers)

L.S,L.D,S.S,S.D Load SP float, load DP float, store SP float, store DP float

MFCO, MTCO Copy from/to GPR to/from a special register

MOV.S, MOV.D Copy one SP or DP FP register to another FP register

MFC1, MTC1 Copy 32 bits to/from FP registers from/to integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow
DADD, DADDI, DADDU, DADDIU Add, add immediate (all immediates are 16 bits); signed and unsigned

DSUB, DSUBU Subtract, signed and unsigned

DMUL, DMULU, DDIV, Multiply and divide, signed and unsigned; multiply-add; all operations take and yield
DDIVU, MADD 64-bit values

AND, ANDI And, and immediate

OR, ORI, XOR, XORI Or, or immediate, exclusive or, exclusive or immediate

LUI Load upper immediate; loads bits 32 to 47 of register with immediate, then sign-extends

DSLL, DSRL, DSRA, DSLLYV,
DSRLV, DSRAV

SLT, SLTI, SLTU, SLTIU

Shifts: both immediate (DS__) and variable form (DS__V); shifts are shift left logical,
right logical, right arithmetic

Set less than, set less than immediate, signed and unsigned

Control
BEQZ, BNEZ
BEQ, BNE
BC1T, BC1F
MOVN, MOVZ
J,JR

JAL, JALR
TRAP

ERET

Conditional branches and jumps; PC-relative or through register

Branch GPRs equal/not equal to zero; 16-bit offset from PC + 4

Branch GPR equal/not equal; 16-bit offset from PC + 4

Test comparison bit in the FP status register and branch; 16-bit offset from PC + 4
Copy GPR to another GPR if third GPR is negative, zero

Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

Jump and link: save PC + 4 in R31, target is PC-relative (JAL) or a register (JALR)
Transfer to operating system at a vectored address

Return to user code from an exception; restore user mode

Floating point

ADD.D, ADD.S, ADD.PS
SUB.D, SUB.S, SUB.PS
MUL.D, MUL.S, MUL.PS
MADD.D, MADD. S, MADD. PS
DIV.D, DIV.S,DIV.PS
CvT. .

C. .D,C. .S

FP operations on DP and SP formats

Add DP, SP numbers, and pairs of SP numbers

Subtract DP, SP numbers, and pairs of SP numbers
Multiply DP, SP floating point, and pairs of SP numbers
Multiply-add DP, SP numbers, and pairs of SP numbers
Divide DP, SP floating point, and pairs of SP numbers

Convert instructions: CVT.x.y converts from type x to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE; sets bit in FP status register

Figure 1.5 Subset of the instructions in MIPS64. SP = single precision; DP = double precision. Appendix A gives
much more detail on MIPS64. For data, the most significant bit number is O; least is 63.

14

Chapter One Fundamentals of Quantitative Design and Analysis

6. Control flow instructions—Virtually all ISAs, including these three, support

conditional branches, unconditional jumps, procedure calls, and returns. All
three use PC-relative addressing, where the branch address is specified by an
address field that is added to the PC. There are some small differences. MIPS
conditional branches (BE, BNE, etc.) test the contents of registers, while the
80x86 and ARM branches test condition code bits set as side effects of arith-
metic/logic operations. The ARM and MIPS procedure call places the return
address in a register, while the 80x86 call (CALLF) places the return address
on a stack in memory.

Encoding an ISA—There are two basic choices on encoding: fixed length and
variable length. All ARM and MIPS instructions are 32 bits long, which sim-
plifies instruction decoding. Figure 1.6 shows the MIPS instruction formats.
The 80x86 encoding is variable length, ranging from 1 to 18 bytes. Variable-
length instructions can take less space than fixed-length instructions, so a
program compiled for the 80x86 is usually smaller than the same program
compiled for MIPS. Note that choices mentioned above will affect how the
instructions are encoded into a binary representation. For example, the num-
ber of registers and the number of addressing modes both have a significant
impact on the size of instructions, as the register field and addressing mode
field can appear many times in a single instruction. (Note that ARM and
MIPS later offered extensions to offer 16-bit length instructions so as to
reduce program size, called Thumb or Thumb-2 and MIPS16, respectively.)

Basic instruction formats

R | opcode | rs | rt | rd shamt | funct ‘
31 26 25 21 20 16 15 1110 65 0
| | opcode | rs | rt | immediate ‘
31 26 25 21 20 16 15
J | opcode | address ‘
31 26 25
Floating-point instruction formats
FR | opcode | fmt | ft | fs fd funct ‘
31 26 25 21 20 16 15 1110 65 0
Fl | opcode | fmt | ft | immediate ‘
31 26 25 21 20 16 15

Figure 1.6 MIPS64 instruction set architecture formats. All instructions are 32 bits
long. The R format is for integer register-to-register operations, such as DADDU, DSUBU,
and so on. The | format is for data transfers, branches, and immediate instructions, such
as LD, SD, BEQZ, and DADDIs. The J format is for jumps, the FR format for floating-point
operations, and the Fl format for floating-point branches.

1.3 Defining Computer Architecture 15

The other challenges facing the computer architect beyond ISA design are
particularly acute at the present, when the differences among instruction sets are
small and when there are distinct application areas. Therefore, starting with the
last edition, the bulk of instruction set material beyond this quick review is found
in the appendices (see Appendices A and K).

We use a subset of MIPS64 as the example ISA in this book because it is both
the dominant ISA for networking and it is an elegant example of the RISC architec-
tures mentioned earlier, of which ARM (Advanced RISC Machine) is the most
popular example. ARM processors were in 6.1 billion chips shipped in 2010, or
roughly 20 times as many chips that shipped with 80x86 processors.

Genuine Computer Architecture: Designing the Organization
and Hardware to Meet Goals and Functional Requirements

The implementation of a computer has two components: organization and
hardware. The term organization includes the high-level aspects of a computer’s
design, such as the memory system, the memory interconnect, and the design of
the internal processor or CPU (central processing unit—where arithmetic, logic,
branching, and data transfer are implemented). The term microarchitecture is
also used instead of organization. For example, two processors with the same
instruction set architectures but different organizations are the AMD Opteron and
the Intel Core i7. Both processors implement the x86 instruction set, but they
have very different pipeline and cache organizations.

The switch to multiple processors per microprocessor led to the term core to
also be used for processor. Instead of saying multiprocessor microprocessor, the
term multicore has caught on. Given that virtually all chips have multiple proces-
sors, the term central processing unit, or CPU, is fading in popularity.

Hardware refers to the specifics of a computer, including the detailed logic
design and the packaging technology of the computer. Often a line of computers
contains computers with identical instruction set architectures and nearly identical
organizations, but they differ in the detailed hardware implementation. For exam-
ple, the Intel Core i7 (see Chapter 3) and the Intel Xeon 7560 (see Chapter 5) are
nearly identical but offer different clock rates and different memory systems,
making the Xeon 7560 more effective for server computers.

In this book, the word architecture covers all three aspects of computer
design—instruction set architecture, organization or microarchitecture, and
hardware.

Computer architects must design a computer to meet functional requirements
as well as price, power, performance, and availability goals. Figure 1.7 summa-
rizes requirements to consider in designing a new computer. Often, architects
also must determine what the functional requirements are, which can be a major
task. The requirements may be specific features inspired by the market. Applica-
tion software often drives the choice of certain functional requirements by deter-
mining how the computer will be used. If a large body of software exists for a
certain instruction set architecture, the architect may decide that a new computer

16 Chapter One Fundamentals of Quantitative Design and Analysis

Functional requirements Typical features required or supported

Application area Target of computer

Personal mobile device Real-time performance for a range of tasks, including interactive performance for
graphics, video, and audio; energy efficiency (Ch. 2, 3, 4, 5; App. A)

General-purpose desktop Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Ch. 2, 3, 4, 5; App. A)

Servers Support for databases and transaction processing; enhancements for reliability and
availability; support for scalability (Ch. 2, 5; App. A, D, F)

Clusters/warehouse-scale Throughput performance for many independent tasks; error correction for

computers memory; energy proportionality (Ch 2, 6; App. F)

Embedded computing Often requires special support for graphics or video (or other application-specific

extension); power limitations and power control may be required; real-time
constraints (Ch. 2, 3, 5; App. A, E)

Level of software compatibility Determines amount of existing software for computer

At programming language Most flexible for designer; need new compiler (Ch. 3, 5; App. A)

Object code or binary Instruction set architecture is completely defined—Ilittle flexibility—but no
compatible investment needed in software or porting programs (App. A)

Operating system requirements Necessary features to support chosen OS (Ch. 2; App. B)

Size of address space Very important feature (Ch. 2); may limit applications

Memory management Required for modern OS; may be paged or segmented (Ch. 2)

Protection Different OS and application needs: page vs. segment; virtual machines (Ch. 2)

Standards Certain standards may be required by marketplace

Floating point Format and arithmetic: IEEE 754 standard (App. J), special arithmetic for graphics
or signal processing

1/0 interfaces For /O devices: Serial ATA, Serial Attached SCSI, PCI Express (App. D, F)

Operating systems UNIX, Windows, Linux, CISCO IOS

Networks Support required for different networks: Ethernet, Infiniband (App. F)

Programming languages Languages (ANSI C, C++, Java, Fortran) affect instruction set (App. A)

Figure 1.7 Summary of some of the most important functional requirements an architect faces. The left-hand
column describes the class of requirement, while the right-hand column gives specific examples. The right-hand
column also contains references to chapters and appendices that deal with the specific issues.

should implement an existing instruction set. The presence of a large market for a
particular class of applications might encourage the designers to incorporate
requirements that would make the computer competitive in that market. Later
chapters examine many of these requirements and features in depth.

Architects must also be aware of important trends in both the technology and
the use of computers, as such trends affect not only the future cost but also the
longevity of an architecture.

1.4

1.4 Trends in Technology 17

Trends in Technology

If an instruction set architecture is to be successful, it must be designed to survive
rapid changes in computer technology. After all, a successful new instruction set
architecture may last decades—for example, the core of the IBM mainframe has
been in use for nearly 50 years. An architect must plan for technology changes
that can increase the lifetime of a successful computer.

To plan for the evolution of a computer, the designer must be aware of rapid
changes in implementation technology. Five implementation technologies, which
change at a dramatic pace, are critical to modern implementations:

m [Integrated circuit logic technology—Transistor density increases by about
35% per year, quadrupling somewhat over four years. Increases in die size
are less predictable and slower, ranging from 10% to 20% per year. The com-
bined effect is a growth rate in transistor count on a chip of about 40% to 55%
per year, or doubling every 18 to 24 months. This trend is popularly known as
Moore’s law. Device speed scales more slowly, as we discuss below.

m Semiconductor DRAM (dynamic random-access memory)—Now that most
DRAM chips are primarily shipped in DIMM modules, it is harder to track
chip capacity, as DRAM manufacturers typically offer several capacity prod-
ucts at the same time to match DIMM capacity. Capacity per DRAM chip has
increased by about 25% to 40% per year recently, doubling roughly every
two to three years. This technology is the foundation of main memory, and
we discuss it in Chapter 2. Note that the rate of improvement has continued to
slow over the editions of this book, as Figure 1.8 shows. There is even con-
cern as whether the growth rate will stop in the middle of this decade due to
the increasing difficulty of efficiently manufacturing even smaller DRAM
cells [Kim 2005]. Chapter 2 mentions several other technologies that may
replace DRAM if it hits a capacity wall.

DRAM growth Characterization of impact

CA:AQA Edition Year rate on DRAM capacity
1 1990 60%/year Quadrupling every 3 years
2 1996 60%/year Quadrupling every 3 years
3 2003 40%—-60%/year Quadrupling every 3 to 4 years
4 2007 40%/year Doubling every 2 years
5 2011 25%—-40%/year Doubling every 2 to 3 years

Figure 1.8 Change in rate of improvement in DRAM capacity over time. The first two
editions even called this rate the DRAM Growth Rule of Thumb, since it had been so
dependable since 1977 with the 16-kilobit DRAM through 1996 with the 64-megabit
DRAM. Today, some question whether DRAM capacity can improve at all in 5 to 7
years, due to difficulties in manufacturing an increasingly three-dimensional DRAM
cell [Kim 2005].

18

Chapter One Fundamentals of Quantitative Design and Analysis

m Semiconductor Flash (electrically erasable programmable read-only mem-
ory)—This nonvolatile semiconductor memory is the standard storage device
in PMDs, and its rapidly increasing popularity has fueled its rapid growth rate
in capacity. Capacity per Flash chip has increased by about 50% to 60% per
year recently, doubling roughly every two years. In 2011, Flash memory is 15
to 20 times cheaper per bit than DRAM. Chapter 2 describes Flash memory.

m Magnetic disk technology—Prior to 1990, density increased by about 30%
per year, doubling in three years. It rose to 60% per year thereafter, and
increased to 100% per year in 1996. Since 2004, it has dropped back to
about 40% per year, or doubled every three years. Disks are 15 to 25 times
cheaper per bit than Flash. Given the slowed growth rate of DRAM, disks
are now 300 to 500 times cheaper per bit than DRAM. This technology is
central to server and warehouse scale storage, and we discuss the trends in
detail in Appendix D.

m Network technology—Network performance depends both on the perfor-
mance of switches and on the performance of the transmission system. We
discuss the trends in networking in Appendix F.

These rapidly changing technologies shape the design of a computer that,
with speed and technology enhancements, may have a lifetime of three to five
years. Key technologies such as DRAM, Flash, and disk change sufficiently that
the designer must plan for these changes. Indeed, designers often design for the
next technology, knowing that when a product begins shipping in volume that the
next technology may be the most cost-effective or may have performance advan-
tages. Traditionally, cost has decreased at about the rate at which density
increases.

Although technology improves continuously, the impact of these improve-
ments can be in discrete leaps, as a threshold that allows a new capability is
reached. For example, when MOS technology reached a point in the early 1980s
where between 25,000 and 50,000 transistors could fit on a single chip, it became
possible to build a single-chip, 32-bit microprocessor. By the late 1980s, first-level
caches could go on a chip. By eliminating chip crossings within the processor and
between the processor and the cache, a dramatic improvement in cost-performance
and energy-performance was possible. This design was simply infeasible until the
technology reached a certain point. With multicore microprocessors and increasing
numbers of cores each generation, even server computers are increasingly headed
toward a single chip for all processors. Such technology thresholds are not rare and
have a significant impact on a wide variety of design decisions.

Performance Trends: Bandwidth over Latency

As we shall see in Section 1.8, bandwidth or throughput is the total amount of
work done in a given time, such as megabytes per second for a disk transfer. In
contrast, latency or response time is the time between the start and the completion
of an event, such as milliseconds for a disk access. Figure 1.9 plots the relative

1.4 Trends in Technology 19

100,000
Microprocessor
10,000 L NI Ly I T arrr.
<
(0]
IS
(]
>
o
Q. B 0c0000009000000009000000009000060000000)/FbE0a000E00000009570Y @OAC0GE0aE00EIEAI0EI0G00AA00300GEAAE03C0
g 1000
<
kel
=
©
2 .
g OO oo o LIRS o
)
=
©
(0]
o
104 I e \ e ——
(Latency improvement
= bandwidth improvement)
1

1 10 100
Relative latency improvement

Figure 1.9 Log-log plot of bandwidth and latency milestones from Figure 1.10 rela-
tive to the first milestone. Note that latency improved 6X to 80X while bandwidth
improved about 300X to 25,000X. Updated from Patterson [2004].

improvement in bandwidth and latency for technology milestones for micropro-
cessors, memory, networks, and disks. Figure 1.10 describes the examples and
milestones in more detail.

Performance is the primary differentiator for microprocessors and networks,
so they have seen the greatest gains: 10,000-25,000X in bandwidth and 30-80X
in latency. Capacity is generally more important than performance for memory
and disks, so capacity has improved most, yet bandwidth advances of 300—
1200X are still much greater than gains in latency of 6-8X.

Clearly, bandwidth has outpaced latency across these technologies and will
likely continue to do so. A simple rule of thumb is that bandwidth grows by at
least the square of the improvement in latency. Computer designers should plan
accordingly.

Scaling of Transistor Performance and Wires

Integrated circuit processes are characterized by the feature size, which is the
minimum size of a transistor or a wire in either the x or y dimension. Feature
sizes have decreased from 10 microns in 1971 to 0.032 microns in 2011; in fact,
we have switched units, so production in 2011 is referred to as “32 nanometers,”
and 22 nanometer chips are under way. Since the transistor count per square

20 Chapter One Fundamentals of Quantitative Design and Analysis

Microprocessor 16-bit 32-bit 5-stage 2-way Out-of-order Out-of-order Multicore
address/ address/ pipeline, superscalar, 3-way superpipelined, OOO 4-way
bus, bus, on-chipl & D 64-bit bus superscalar on-chip L2 on chip L3
microcoded microcoded caches, FPU cache cache, Turbo

Product Intel 80286 Intel 80386 Intel 80486 Intel Pentium Intel Pentium Pro Intel Pentium 4 Intel Core i7
Year 1982 1985 1989 1993 1997 2001 2010
Die size (mm?) 47 43 81 90 308 217 240
Transistors 134,000 275,000 1,200,000 3,100,000 5,500,000 42,000,000 1,170,000,000
Processors/chip 1 1 1 1 1 1 4
Pins 68 132 168 273 387 423 1366
Latency (clocks) 6 5 5 5 10 22 14
Bus width (bits) 16 32 32 64 64 64 196
Clock rate (MHz) 12.5 16 25 66 200 1500 3333
Bandwidth (MIPS) 2 6 25 132 600 4500 50,000
Latency (ns) 320 313 200 76 50 15 4
Memory module DRAM Page mode Fast page Fast page Synchronous Double data DDR3

DRAM mode DRAM mode DRAM DRAM rate SDRAM SDRAM
Module width (bits) 16 16 32 64 64 64 64
Year 1980 1983 1986 1993 1997 2000 2010
Mbits/DRAM chip 0.06 0.25 1 16 64 256 2048
Die size (mm?) 35 45 70 130 170 204 50
Pins/DRAM chip 16 16 18 20 54 66 134
Bandwidth (MBytes/s) 13 40 160 267 640 1600 16,000
Latency (ns) 225 170 125 75 62 52 37
Local area network Ethernet Fast Gigabit 10 Gigabit 100 Gigabit

Ethernet Ethernet Ethernet Ethernet
IEEE standard 802.3 803.3u 802.3ab 802.3ac 802.3ba
Year 1978 1995 1999 2003 2010
Bandwidth (Mbits/sec) 10 100 1000 10,000 100,000
Latency (usec) 3000 500 340 190 100
Hard disk 3600 RPM 5400 RPM 7200 RPM 10,000 RPM 15,000 RPM 15,000 RPM
Product CDC Wrenl ~ Seagate Seagate Seagate Seagate Seagate

94145-36 ST41600 ST15150 ST39102 ST373453 ST3600057

Year 1983 1990 1994 1998 2003 2010
Capacity (GB) 0.03 1.4 4.3 9.1 734 600
Disk form factor 5.25 inch 5.25 inch 3.5 inch 3.5inch 3.5 inch 3.5 inch
Media diameter 5.25 inch 5.25 inch 3.5 inch 3.0 inch 2.5 inch 2.5 inch
Interface ST-412 SCSI SCSI SCSI SCSI SAS
Bandwidth (MBytes/s) 0.6 4 9 24 86 204
Latency (ms) 48.3 17.1 12.7 8.8 5.7 3.6

Figure 1.10 Performance milestones over 25 to 40 years for microprocessors, memory, networks, and disks. The
microprocessor milestones are several generations of IA-32 processors, going from a 16-bit bus, microcoded
80286 to a 64-bit bus, multicore, out-of-order execution, superpipelined Core i7. Memory module milestones go
from 16-bit-wide, plain DRAM to 64-bit-wide double data rate version 3 synchronous DRAM. Ethernet advanced from
10 Mbits/sec to 100 Gbits/sec. Disk milestones are based on rotation speed, improving from 3600 RPM to 15,000
RPM. Each case is best-case bandwidth, and latency is the time for a simple operation assuming no contention.

Updated from Patterson [2004].

1.5

1.5 Trends in Power and Energy in Integrated Circuits 21

millimeter of silicon is determined by the surface area of a transistor, the density
of transistors increases quadratically with a linear decrease in feature size.

The increase in transistor performance, however, is more complex. As feature
sizes shrink, devices shrink quadratically in the horizontal dimension and also
shrink in the vertical dimension. The shrink in the vertical dimension requires a
reduction in operating voltage to maintain correct operation and reliability of the
transistors. This combination of scaling factors leads to a complex interrelation-
ship between transistor performance and process feature size. To a first approxi-
mation, transistor performance improves linearly with decreasing feature size.

The fact that transistor count improves quadratically with a linear improve-
ment in transistor performance is both the challenge and the opportunity for
which computer architects were created! In the early days of microprocessors,
the higher rate of improvement in density was used to move quickly from 4-bit,
to 8-bit, to 16-bit, to 32-bit, to 64-bit microprocessors. More recently, density
improvements have supported the introduction of multiple processors per chip,
wider SIMD units, and many of the innovations in speculative execution and
caches found in Chapters 2, 3, 4, and 5.

Although transistors generally improve in performance with decreased fea-
ture size, wires in an integrated circuit do not. In particular, the signal delay for a
wire increases in proportion to the product of its resistance and capacitance. Of
course, as feature size shrinks, wires get shorter, but the resistance and capaci-
tance per unit length get worse. This relationship is complex, since both resis-
tance and capacitance depend on detailed aspects of the process, the geometry of
a wire, the loading on a wire, and even the adjacency to other structures. There
are occasional process enhancements, such as the introduction of copper, which
provide one-time improvements in wire delay.

In general, however, wire delay scales poorly compared to transistor perfor-
mance, creating additional challenges for the designer. In the past few years, in
addition to the power dissipation limit, wire delay has become a major design
limitation for large integrated circuits and is often more critical than transistor
switching delay. Larger and larger fractions of the clock cycle have been con-
sumed by the propagation delay of signals on wires, but power now plays an even
greater role than wire delay.

Trends in Power and Energy in Integrated Circuits

Today, power is the biggest challenge facing the computer designer for nearly
every class of computer. First, power must be brought in and distributed around
the chip, and modern microprocessors use hundreds of pins and multiple inter-
connect layers just for power and ground. Second, power is dissipated as heat and
must be removed.

Power and Energy: A Systems Perspective

How should a system architect or a user think about performance, power, and
energy? From the viewpoint of a system designer, there are three primary concerns.

22

Chapter One Fundamentals of Quantitative Design and Analysis

First, what is the maximum power a processor ever requires? Meeting this
demand can be important to ensuring correct operation. For example, if a proces-
sor attempts to draw more power than a power supply system can provide (by
drawing more current than the system can supply), the result is typically a volt-
age drop, which can cause the device to malfunction. Modern processors can
vary widely in power consumption with high peak currents; hence, they provide
voltage indexing methods that allow the processor to slow down and regulate
voltage within a wider margin. Obviously, doing so decreases performance.

Second, what is the sustained power consumption? This metric is widely
called the thermal design power (TDP), since it determines the cooling require-
ment. TDP is neither peak power, which is often 1.5 times higher, nor is it the
actual average power that will be consumed during a given computation, which is
likely to be lower still. A typical power supply for a system is usually sized to
exceed the TDP, and a cooling system is usually designed to match or exceed
TDP. Failure to provide adequate cooling will allow the junction temperature in
the processor to exceed its maximum value, resulting in device failure and possi-
bly permanent damage. Modern processors provide two features to assist in man-
aging heat, since the maximum power (and hence heat and temperature rise) can
exceed the long-term average specified by the TDP. First, as the thermal temper-
ature approaches the junction temperature limit, circuitry reduces the clock rate,
thereby reducing power. Should this technique not be successful, a second ther-
mal overload trip is activated to power down the chip.

The third factor that designers and users need to consider is energy and
energy efficiency. Recall that power is simply energy per unit time: 1 watt =
1 joule per second. Which metric is the right one for comparing processors:
energy or power? In general, energy is always a better metric because it is tied to
a specific task and the time required for that task. In particular, the energy to exe-
cute a workload is equal to the average power times the execution time for the
workload.

Thus, if we want to know which of two processors is more efficient for a given
task, we should compare energy consumption (not power) for executing the task.
For example, processor A may have a 20% higher average power consumption
than processor B, but if A executes the task in only 70% of the time needed by B,
its energy consumption will be 1.2 x 0.7 = 0.84, which is clearly better.

One might argue that in a large server or cloud, it is sufficient to consider
average power, since the workload is often assumed to be infinite, but this is mis-
leading. If our cloud were populated with processor Bs rather than As, then the
cloud would do less work for the same amount of energy expended. Using energy
to compare the alternatives avoids this pitfall. Whenever we have a fixed work-
load, whether for a warehouse-size cloud or a smartphone, comparing energy will
be the right way to compare processor alternatives, as the electricity bill for the
cloud and the battery lifetime for the smartphone are both determined by the
energy consumed.

When is power consumption a useful measure? The primary legitimate use is
as a constraint: for example, a chip might be limited to 100 watts. It can be used

1.5 Trends in Power and Energy in Integrated Circuits 23

as a metric if the workload is fixed, but then it’s just a variation of the true metric
of energy per task.

Energy and Power within a Microprocessor

For CMOS chips, the traditional primary energy consumption has been in switch-
ing transistors, also called dynamic energy. The energy required per transistor is
proportional to the product of the capacitive load driven by the transistor and the
square of the voltage:

Energydyn,‘Lmic o< Capacitive load x Voltage2

This equation is the energy of pulse of the logic transition of 0—1—0 or | -0—1.
The energy of a single transition (0—1 or 1—-0) is then:

Energy 4. namic & 1/2 x Capacitive load x Voltage2

The power required per transistor is just the product of the energy of a transition
multiplied by the frequency of transitions:

Powerdymmrlic o< 1/2 x Capacitive load X Voltage2 X Frequency switched

For a fixed task, slowing clock rate reduces power, but not energy.

Clearly, dynamic power and energy are greatly reduced by lowering the
voltage, so voltages have dropped from 5V to just under 1V in 20 years. The
capacitive load is a function of the number of transistors connected to an output
and the technology, which determines the capacitance of the wires and the tran-
sistors.

Example

Answer

Some microprocessors today are designed to have adjustable voltage, so a 15%
reduction in voltage may result in a 15% reduction in frequency. What would be
the impact on dynamic energy and on dynamic power?

Since the capacitance is unchanged, the answer for energy is the ratio of the volt-
ages since the capacitance is unchanged:

Energy,., (Voltage x 0.85)° _ 085 = 072
Ener - 2 e o
&Yold Voltage

thereby reducing energy to about 72% of the original. For power, we add the ratio
of the frequencies

Power,, - 072 % (Frequency switched X 0.85) _ 061

Power Frequency switched

shrinking power to about 61% of the original.

24 Chapter One Fundamentals of Quantitative Design and Analysis

As we move from one process to the next, the increase in the number of
transistors switching and the frequency with which they switch dominate the
decrease in load capacitance and voltage, leading to an overall growth in power
consumption and energy. The first microprocessors consumed less than a watt
and the first 32-bit microprocessors (like the Intel 80386) used about 2 watts,
while a 3.3 GHz Intel Core i7 consumes 130 watts. Given that this heat must be
dissipated from a chip that is about 1.5 cm on a side, we have reached the limit
of what can be cooled by air.

Given the equation above, you would expect clock frequency growth to
slow down if we can’t reduce voltage or increase power per chip. Figure 1.11
shows that this has indeed been the case since 2003, even for the microproces-
sors in Figure 1.1 that were the highest performers each year. Note that this
period of flat clock rates corresponds to the period of slow performance
improvement range in Figure 1.1.

10,000
Intel Pentium4 Xeon Intel Nehalem Xeon
Intel Pentium 1l
1000 MHz in 2000
OO0 et e S
Digital Alpha 21164A :
500 MHz in 1996
N n 1%/year
I Digital Alpha 21064
= 150 MHz in 1992 /-
9] P
B 400 e . g R
S MIPS M2000 |
8 25 MHz in 1989 .~
40%/year
10 o/l SUN-ASPARC
Rt 16.7 MHz in 1986
Digital VAX-11/780
5 MHz in 1978
15%l/year
1 T T T T T T T T T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Figure 1.11 Growth in clock rate of microprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved
less than 15% per year while performance improved by 25% per year. During the “renaissance period” of 52% perfor-
mance improvement per year between 1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock

rate has been nearly flat, growing at less than 1% per year, while single processor performance improved at less than
22% per year.

1.5 Trends in Power and Energy in Integrated Circuits 25

Distributing the power, removing the heat, and preventing hot spots have

become increasingly difficult challenges. Power is now the major constraint to
using transistors; in the past, it was raw silicon area. Hence, modern micropro-
cessors offer many techniques to try to improve energy efficiency despite flat
clock rates and constant supply voltages:

1.

3.

Do nothing well. Most microprocessors today turn off the clock of inactive
modules to save energy and dynamic power. For example, if no floating-point
instructions are executing, the clock of the floating-point unit is disabled. If
some cores are idle, their clocks are stopped.

Dynamic Voltage-Frequency Scaling (DVFS). The second technique comes
directly from the formulas above. Personal mobile devices, laptops, and even
servers have periods of low activity where there is no need to operate at the
highest clock frequency and voltages. Modern microprocessors typically
offer a few clock frequencies and voltages in which to operate that use lower
power and energy. Figure 1.12 plots the potential power savings via DVFS
for a server as the workload shrinks for three different clock rates: 2.4 GHz,
1.8 GHz, and 1 GHz. The overall server power savings is about 10% to 15%
for each of the two steps.

Design for typical case. Given that PMDs and laptops are often idle, mem-
ory and storage offer low power modes to save energy. For example,
DRAMs have a series of increasingly lower power modes to extend battery
life in PMDs and laptops, and there have been proposals for disks that have a
mode that spins at lower rates when idle to save power. Alas, you cannot
access DRAMs or disks in these modes, so you must return to fully active
mode to read or write, no matter how low the access rate. As mentioned

100
2.4 GHz

1.8 GHz

80

1 GHz

60

40

Power (% of peak)

20

0 DVS savings (%)
lde 7 14 21 29 36 43 50 57 64 71 79 86 93 100
Compute load (%)

Figure 1.12 Energy savings for a server using an AMD Opteron microprocessor,
8 GB of DRAM, and one ATA disk. At 1.8 GHz, the server can only handle up to two-
thirds of the workload without causing service level violations, and, at 1.0 GHz, it can
only safely handle one-third of the workload. (Figure 5.11 in Barroso and Hélzle [2009].)

26

Chapter One Fundamentals of Quantitative Design and Analysis

above, microprocessors for PCs have been designed instead for a more
typical case of heavy use at high operating temperatures, relying on on-chip
temperature sensors to detect when activity should be reduced automati-
cally to avoid overheating. This “emergency slowdown” allows manufac-
turers to design for a more typical case and then rely on this safety
mechanism if someone really does run programs that consume much more
power than is typical.

4. Overclocking. Intel started offering Turbo mode in 2008, where the chip
decides that it is safe to run at a higher clock rate for a short time possibly on
just a few cores until temperature starts to rise. For example, the 3.3 GHz
Core i7 can run in short bursts for 3.6 GHz. Indeed, the highest-performing
microprocessors each year since 2008 in Figure 1.1 have all offered tempo-
rary overclocking of about 10% over the nominal clock rate. For single
threaded code, these microprocessors can turn off all cores but one and run it
at an even higher clock rate. Note that while the operating system can turn off
Turbo mode there is no notification once it is enabled, so the programmers
may be surprised to see their programs vary in performance due to room
temperature!

Although dynamic power is traditionally thought of as the primary source of
power dissipation in CMOS, static power is becoming an important issue because
leakage current flows even when a transistor is off:

Power o< Current x Voltage

static static

That is, static power is proportional to number of devices.

Thus, increasing the number of transistors increases power even if they are
idle, and leakage current increases in processors with smaller transistor sizes.
As a result, very low power systems are even turning off the power supply
(power gating) to inactive modules to control loss due to leakage. In 2011, the
goal for leakage is 25% of the total power consumption, with leakage in high-
performance designs sometimes far exceeding that goal. Leakage can be as high
as 50% for such chips, in part because of the large SRAM caches that need power
to maintain the storage values. (The S in SRAM is for static.) The only hope to
stop leakage is to turn off power to subsets of the chips.

Finally, because the processor is just a portion of the whole energy cost of a
system, it can make sense to use a faster, less energy-efficient processor to
allow the rest of the system to go into a sleep mode. This strategy is known as
race-to-halt.

The importance of power and energy has increased the scrutiny on the effi-
ciency of an innovation, so the primary evaluation now is tasks per joule or per-
formance per watt as opposed to performance per mm? of silicon. This new
metric affects approaches to parallelism, as we shall see in Chapters 4 and 5.

1.6

1.6 Trends in Cost 27

Trends in Cost

Although costs tend to be less important in some computer designs—specifically
supercomputers—cost-sensitive designs are of growing significance. Indeed, in
the past 30 years, the use of technology improvements to lower cost, as well as
increase performance, has been a major theme in the computer industry.

Textbooks often ignore the cost half of cost-performance because costs
change, thereby dating books, and because the issues are subtle and differ across
industry segments. Yet, an understanding of cost and its factors is essential for
computer architects to make intelligent decisions about whether or not a new
feature should be included in designs where cost is an issue. (Imagine architects
designing skyscrapers without any information on costs of steel beams and
concrete!)

This section discusses the major factors that influence the cost of a computer
and how these factors are changing over time.

The Impact of Time, Volume, and Commoditization

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs
decrease over time. The learning curve itself is best measured by change in
vield—the percentage of manufactured devices that survives the testing proce-
dure. Whether it is a chip, a board, or a system, designs that have twice the yield
will have half the cost.

Understanding how the learning curve improves yield is critical to projecting
costs over a product’s life. One example is that the price per megabyte of DRAM
has dropped over the long term. Since DRAMs tend to be priced in close relation-
ship to cost—with the exception of periods when there is a shortage or an
oversupply—rprice and cost of DRAM track closely.

Microprocessor prices also drop over time, but, because they are less stan-
dardized than DRAMSs, the relationship between price and cost is more complex.
In a period of significant competition, price tends to track cost closely, although
microprocessor vendors probably rarely sell at a loss.

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get down the learn-
ing curve, which is partly proportional to the number of systems (or chips) manu-
factured. Second, volume decreases cost, since it increases purchasing and
manufacturing efficiency. As a rule of thumb, some designers have estimated that
cost decreases about 10% for each doubling of volume. Moreover, volume
decreases the amount of development cost that must be amortized by each com-
puter, thus allowing cost and selling price to be closer.

Commodities are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, Flash memory, disks,

28

Cost of integrated circuit =

Chapter One Fundamentals of Quantitative Design and Analysis

monitors, and keyboards. In the past 25 years, much of the personal computer
industry has become a commodity business focused on building desktop and lap-
top computers running Microsoft Windows.

Because many vendors ship virtually identical products, the market is highly
competitive. Of course, this competition decreases the gap between cost and sell-
ing price, but it also decreases cost. Reductions occur because a commodity mar-
ket has both volume and a clear product definition, which allows multiple
suppliers to compete in building components for the commodity product. As a
result, the overall product cost is lower because of the competition among the
suppliers of the components and the volume efficiencies the suppliers can
achieve. This rivalry has led to the low end of the computer business being able
to achieve better price-performance than other sectors and yielded greater growth
at the low end, although with very limited profits (as is typical in any commodity
business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts—disks, Flash memory, DRAMSs, and so on—are becoming a significant
portion of any system’s cost, integrated circuit costs are becoming a greater por-
tion of the cost that varies between computers, especially in the high-volume,
cost-sensitive portion of the market. Indeed, with personal mobile devices’
increasing reliance of whole systems on a chip (SOC), the cost of the integrated
circuits is much of the cost of the PMD. Thus, computer designers must under-
stand the costs of chips to understand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the
basic process of silicon manufacture is unchanged: A wafer is still tested and
chopped into dies that are packaged (see Figures 1.13, 1.14, and 1.15). Thus, the
cost of a packaged integrated circuit is

Cost of die + Cost of testing die + Cost of packaging and final test

Final test yield

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end.

Learning how to predict the number of good chips per wafer requires first
learning how many dies fit on a wafer and then learning how to predict the per-
centage of those that will work. From there it is simple to predict cost:

Cost of wafer
Dies per wafer x Die yield

Cost of die =

The most interesting feature of this first term of the chip cost equation is its sensi-
tivity to die size, shown below.

1.6 Trends in Cost

29

Figure 1.13 Photograph of an Intel Core i7 microprocessor die, which is evaluated in
Chapters 2 through 5. The dimensions are 18.9 mm by 13.6 mm (257 mm?) in a 45 nm
process. (Courtesy Intel.)

Out-of-
order
scheduling
&
instruction
commit

Execution
units

Instruction
decode,
register
renaming,
&
microcode

M M
i i
i Core Core Core Core 2
M Q
1/0 1/0
e u
m e
ou
re
y
Q Shared L3 h S~ \\‘\\ Q
'ID cache T \'|2~

Memory L1
ordering & | data
execution cache

L1 inst
cache
& inst

S~ fetch

Branch
pre-
diction

Virtual
memory/

L2 cache

interrupt
servicing

Figure 1.14 Floorplan of Core i7 die in Figure 1.13 on left with close-up of floorplan of second core on right.

30

Chapter One Fundamentals of Quantitative Design and Analysis

Figure 1.15 This 300 mm wafer contains 280 full Sandy Bridge dies, each 20.7 by
10.5 mm in a 32 nm process. (Sandy Bridge is Intel’s successor to Nehalem used in the
Core i7.) At 216 mm?, the formula for dies per wafer estimates 282. (Courtesy Intel.)

The number of dies per wafer is approximately the area of the wafer divided
by the area of the die. It can be more accurately estimated by

7 X (Wafer diameter/Z)2 _ m X Wafer diameter

Die area /2 X Die area

The first term is the ratio of wafer area (172) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periph-
ery of round wafers. Dividing the circumference (7d) by the diagonal of a square
die is approximately the number of dies along the edge.

Dies per wafer =

1.6 Trends in Cost 31

Example

Answer

Find the number of dies per 300 mm (30 cm) wafer for a die that is 1.5 cm on a
side and for a die that is 1.0 cm on a side.

When die area is 2.25 cm?:

nx(30/2° mx30 _ 7069 942 _
2.25 5 %205 225 212

Since the area of the larger die is 2.25 times bigger, there are roughly 2.25 as
many smaller dies per wafer:

Dies per wafer = 270

T X (30/2)2 ntx30 _ 7069 94.2

_ - _202 64
1.00 2% 1.00 1.00 141 640

Dies per wafer =

However, this formula only gives the maximum number of dies per wafer.
The critical question is: What is the fraction of good dies on a wafer, or the die
vield? A simple model of integrated circuit yield, which assumes that defects are
randomly distributed over the wafer and that yield is inversely proportional to the
complexity of the fabrication process, leads to the following:

Die yield = Wafer yield x 1/(1 + Defects per unit area X Die area)N

This Bose—Einstein formula is an empirical model developed by looking at the
yield of many manufacturing lines [Sydow 2006]. Wafer yield accounts for
wafers that are completely bad and so need not be tested. For simplicity, we’ll
just assume the wafer yield is 100%. Defects per unit area is a measure of the ran-
dom manufacturing defects that occur. In 2010, the value was typically 0.1 to 0.3
defects per square inch, or 0.016 to 0.057 defects per square centimeter, for a
40 nm process, as it depends on the maturity of the process (recall the learning
curve, mentioned earlier). Finally, NV is a parameter called the process-complexity
factor, a measure of manufacturing difficulty. For 40 nm processes in 2010, N
ranged from 11.5 to 15.5.

Example

Answer

Find the die yield for dies that are 1.5 cm on a side and 1.0 cm on a side, assum-
ing a defect density of 0.031 per cm?and N is 13.5.

The total die areas are 2.25 cm? and 1.00 cm?. For the larger die, the yield is
Die yield = 1/(1 +0.031 x2.25)"*7 = 0.40
For the smaller die, the yield is
Die yield = 1/(1 +0.031 x 1.00)">° = 0.66

That is, less than half of all the large dies are good but two-thirds of the small
dies are good.

32

Chapter One Fundamentals of Quantitative Design and Analysis

The bottom line is the number of good dies per wafer, which comes from
multiplying dies per wafer by die yield to incorporate the effects of defects. The
examples above predict about 109 good 2.25 cm? dies from the 300 mm wafer
and 424 good 1.00 cm? dies. Many microprocessors fall between these two sizes.
Low-end embedded 32-bit processors are sometimes as small as 0.10 cm?, and
processors used for embedded control (in printers, microwaves, and so on) are
often less than 0.04 cm?.

Given the tremendous price pressures on commodity products such as
DRAM and SRAM, designers have included redundancy as a way to raise yield.
For a number of years, DRAMs have regularly included some redundant memory
cells, so that a certain number of flaws can be accommodated. Designers have
used similar techniques in both standard SRAMs and in large SRAM arrays used
for caches within microprocessors. Obviously, the presence of redundant entries
can be used to boost the yield significantly.

Processing of a 300 mm (12-inch) diameter wafer in a leading-edge technol-
ogy cost between $5000 and $6000 in 2010. Assuming a processed wafer cost of
$5500, the cost of the 1.00 cm? die would be around $13, but the cost per die of
the 2.25 cm? die would be about $51, or almost four times the cost for a die that
is a little over twice as large.

What should a computer designer remember about chip costs? The manufac-
turing process dictates the wafer cost, wafer yield, and defects per unit area, so
the sole control of the designer is die area. In practice, because the number of
defects per unit area is small, the number of good dies per wafer, and hence the
cost per die, grows roughly as the square of the die area. The computer designer
affects die size, and hence cost, both by what functions are included on or
excluded from the die and by the number of 1/O pins.

Before we have a part that is ready for use in a computer, the die must be
tested (to separate the good dies from the bad), packaged, and tested again after
packaging. These steps all add significant costs.

The above analysis has focused on the variable costs of producing a func-
tional die, which is appropriate for high-volume integrated circuits. There is,
however, one very important part of the fixed costs that can significantly affect
the cost of an integrated circuit for low volumes (less than 1 million parts),
namely, the cost of a mask set. Each step in the integrated circuit process requires
a separate mask. Thus, for modern high-density fabrication processes with four to
six metal layers, mask costs exceed $1M. Obviously, this large fixed cost affects
the cost of prototyping and debugging runs and, for small-volume production,
can be a significant part of the production cost. Since mask costs are likely to
continue to increase, designers may incorporate reconfigurable logic to enhance
the flexibility of a part or choose to use gate arrays (which have fewer custom
mask levels) and thus reduce the cost implications of masks.

Cost versus Price

With the commoditization of computers, the margin between the cost to manu-
facture a product and the price the product sells for has been shrinking. Those

1.7

1.7 Dependability 33

margins pay for a company’s research and development (R&D), marketing, sales,
manufacturing equipment maintenance, building rental, cost of financing, pretax
profits, and taxes. Many engineers are surprised to find that most companies
spend only 4% (in the commodity PC business) to 12% (in the high-end server
business) of their income on R&D, which includes all engineering.

Cost of Manufacturing versus Cost of Operation

For the first four editions of this book, cost meant the cost to build a computer
and price meant price to purchase a computer. With the advent of warehouse-
scale computers, which contain tens of thousands of servers, the cost to operate
the computers is significant in addition to the cost of purchase.

As Chapter 6 shows, the amortized purchase price of servers and networks is
just over 60% of the monthly cost to operate a warehouse-scale computer, assum-
ing a short lifetime of the IT equipment of 3 to 4 years. About 30% of the
monthly operational costs are for power use and the amortized infrastructure to
distribute power and to cool the IT equipment, despite this infrastructure being
amortized over 10 years. Thus, to lower operational costs in a warehouse-scale
computer, computer architects need to use energy efficiently.

Dependability

Historically, integrated circuits were one of the most reliable components of a
computer. Although their pins may be vulnerable, and faults may occur over
communication channels, the error rate inside the chip was very low. That con-
ventional wisdom is changing as we head to feature sizes of 32 nm and smaller,
as both transient faults and permanent faults will become more commonplace, so
architects must design systems to cope with these challenges. This section gives a
quick overview of the issues in dependability, leaving the official definition of
the terms and approaches to Section D.3 in Appendix D.

Computers are designed and constructed at different layers of abstraction. We
can descend recursively down through a computer seeing components enlarge
themselves to full subsystems until we run into individual transistors. Although
some faults are widespread, like the loss of power, many can be limited to a sin-
gle component in a module. Thus, utter failure of a module at one level may be
considered merely a component error in a higher-level module. This distinction is
helpful in trying to find ways to build dependable computers.

One difficult question is deciding when a system is operating properly. This
philosophical point became concrete with the popularity of Internet services.
Infrastructure providers started offering service level agreements (SLAs) or
service level objectives (SLOs) to guarantee that their networking or power ser-
vice would be dependable. For example, they would pay the customer a penalty
if they did not meet an agreement more than some hours per month. Thus, an
SLA could be used to decide whether the system was up or down.

34

Chapter One Fundamentals of Quantitative Design and Analysis

1.
2.

Systems alternate between two states of service with respect to an SLA:

Service accomplishment, where the service is delivered as specified

Service interruption, where the delivered service is different from the SLA

Transitions between these two states are caused by failures (from state 1 to
state 2) or restorations (2 to 1). Quantifying these transitions leads to the two
main measures of dependability:

Module reliability is a measure of the continuous service accomplishment (or,
equivalently, of the time to failure) from a reference initial instant. Hence, the
mean time to failure (MTTF) is a reliability measure. The reciprocal of
MTTF is a rate of failures, generally reported as failures per billion hours of
operation, or FIT (for failures in time). Thus, an MTTF of 1,000,000 hours
equals 10%/10° or 1000 FIT. Service interruption is measured as mean time to
repair (MTTR). Mean time between failures (MTBF) is simply the sum of
MTTF + MTTR. Although MTBF is widely used, MTTF is often the more
appropriate term. If a collection of modules has exponentially distributed
lifetimes—meaning that the age of a module is not important in probability of
failure—the overall failure rate of the collection is the sum of the failure rates
of the modules.

Module availability is a measure of the service accomplishment with respect
to the alternation between the two states of accomplishment and interruption.
For nonredundant systems with repair, module availability is

MTTF

Module aVallablllty = m

Note that reliability and availability are now quantifiable metrics, rather than
synonyms for dependability. From these definitions, we can estimate reliability
of a system quantitatively if we make some assumptions about the reliability of
components and that failures are independent.

Example

Assume a disk subsystem with the following components and MTTF:

10 disks, each rated at 1,000,000-hour MTTF
1 ATA controller, 500,000-hour MTTF

1 power supply, 200,000-hour MTTF

1 fan, 200,000-hour MTTF

1 ATA cable, 1,000,000-hour MTTF

Using the simplifying assumptions that the lifetimes are exponentially distributed
and that failures are independent, compute the MTTF of the system as a whole.

Answer

1.7 Dependability 35

The sum of the failure rates is

. 1 1 1 1 1
Fail =1 + + + +
ailure rate,em = 10X 1566566 * 500,000 T 200,000 T 200,000 T 1,000,000

10+2+5+5+1 _ 23 _ 23,000
1,000,000 hours ~ 1,000,000 ~ 1,000,000,000 hours

or 23,000 FIT. The MTTF for the system is just the inverse of the failure rate:

1 _ 1,000,000,000 hours

system ™ Failure rategem 23,000

MTTF = 43,500 hours

or just under 5 years.

The primary way to cope with failure is redundancy, either in time (repeat the
operation to see if it still is erroneous) or in resources (have other components to
take over from the one that failed). Once the component is replaced and the sys-
tem fully repaired, the dependability of the system is assumed to be as good as
new. Let’s quantify the benefits of redundancy with an example.

Example

Answer

MTTF - power supply power supply

Disk subsystems often have redundant power supplies to improve dependability.
Using the components and MTTFs from above, calculate the reliability of
redundant power supplies. Assume one power supply is sufficient to run the disk
subsystem and that we are adding one redundant power supply.

We need a formula to show what to expect when we can tolerate a failure and still
provide service. To simplify the calculations, we assume that the lifetimes of the
components are exponentially distributed and that there is no dependency
between the component failures. MTTF for our redundant power supplies is the
mean time until one power supply fails divided by the chance that the other will
fail before the first one is replaced. Thus, if the chance of a second failure before
repair is small, then the MTTF of the pair is large.

Since we have two power supplies and independent failures, the mean time
until one disk fails is MTTF o er suppty/2- A good approximation of the probability
of a second failure is MTTR over the mean time until the other power supply fails.
Hence, a reasonable approximation for a redundant pair of power supplies is

2 2
MTTE /2 MTTF /2 MTTF e cupply

T 2xXMTTR

power supply pair — MTTR
MTTF

MTTR

power supply power supply power supply

power supply

Using the MTTF numbers above, if we assume it takes on average 24 hours for a
human operator to notice that a power supply has failed and replace it, the reli-
ability of the fault tolerant pair of power supplies is

2
MTTFpower supply _ 200,0002

power supply pair — 3 < MTTR = = 330,000,000

MTTF
2x24

power supply
making the pair about 4150 times more reliable than a single power supply.

36

Chapter One Fundamentals of Quantitative Design and Analysis

1.8

Having quantified the cost, power, and dependability of computer technology, we
are ready to quantify performance.

Measuring, Reporting, and Summarizing Performance

When we say one computer is faster than another is, what do we mean? The
user of a desktop computer may say a computer is faster when a program runs
in less time, while an Amazon.com administrator may say a computer is faster
when it completes more transactions per hour. The computer user is interested
in reducing response time—the time between the start and the completion of an
event—also referred to as execution time. The operator of a warehouse-scale
computer may be interested in increasing throughput—the total amount of
work done in a given time.

In comparing design alternatives, we often want to relate the performance of
two different computers, say, X and Y. The phrase “X is faster than Y is used
here to mean that the response time or execution time is lower on X than on Y for
the given task. In particular, “X is n times faster than Y will mean:

Execution timey,

- - n
Execution timey

Since execution time is the reciprocal of performance, the following relationship
holds:

1
Execution timeY PerformanceY PerformanceX

n= - - = =
Execution timey 1 PerformanceY
Performancey

The phrase “the throughput of X is 1.3 times higher than Y™ signifies here that
the number of tasks completed per unit time on computer X is 1.3 times the num-
ber completed on Y.

Unfortunately, time is not always the metric quoted in comparing the perfor-
mance of computers. Our position is that the only consistent and reliable measure
of performance is the execution time of real programs, and that all proposed
alternatives to time as the metric or to real programs as the items measured have
eventually led to misleading claims or even mistakes in computer design.

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is called wall-clock time,
response time, or elapsed time, which is the latency to complete a task, including
disk accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming, the processor works on another pro-
gram while waiting for I/O and may not necessarily minimize the elapsed time of
one program. Hence, we need a term to consider this activity. CPU time recog-
nizes this distinction and means the time the processor is computing, not includ-
ing the time waiting for I/O or running other programs. (Clearly, the response
time seen by the user is the elapsed time of the program, not the CPU time.)

1.8 Measuring, Reporting, and Summarizing Performance 37

Computer users who routinely run the same programs would be the perfect
candidates to evaluate a new computer. To evaluate a new system the users would
simply compare the execution time of their workloads—the mixture of programs
and operating system commands that users run on a computer. Few are in this
happy situation, however. Most must rely on other methods to evaluate comput-
ers, and often other evaluators, hoping that these methods will predict per-
formance for their usage of the new computer.

Benchmarks

The best choice of benchmarks to measure performance is real applications, such
as Google Goggles from Section 1.1. Attempts at running programs that are
much simpler than a real application have led to performance pitfalls. Examples
include:

m Kernels, which are small, key pieces of real applications

m Toy programs, which are 100-line programs from beginning programming
assignments, such as quicksort

m Synthetic benchmarks, which are fake programs invented to try to match the
profile and behavior of real applications, such as Dhrystone

All three are discredited today, usually because the compiler writer and architect
can conspire to make the computer appear faster on these stand-in programs than
on real applications. Depressingly for your authors—who dropped the fallacy
about using synthetic programs to characterize performance in the fourth edition
of this book since we thought computer architects agreed it was disreputable—
the synthetic program Dhrystone is still the most widely quoted benchmark for
embedded processors!

Another issue is the conditions under which the benchmarks are run. One
way to improve the performance of a benchmark has been with benchmark-
specific flags; these flags often caused transformations that would be illegal on
many programs or would slow down performance on others. To restrict this pro-
cess and increase the significance of the results, benchmark developers often
require the vendor to use one compiler and one set of flags for all the programs in
the same language (C++ or C). In addition to the question of compiler flags,
another question is whether source code modifications are allowed. There are
three different approaches to addressing this question:

1. No source code modifications are allowed.

2. Source code modifications are allowed but are essentially impossible. For
example, database benchmarks rely on standard database programs that are
tens of millions of lines of code. The database companies are highly unlikely
to make changes to enhance the performance for one particular computer.

3. Source modifications are allowed, as long as the modified version produces
the same output.

38

Chapter One Fundamentals of Quantitative Design and Analysis

The key issue that benchmark designers face in deciding to allow modification of
the source is whether such modifications will reflect real practice and provide
useful insight to users, or whether such modifications simply reduce the accuracy
of the benchmarks as predictors of real performance.

To overcome the danger of placing too many eggs in one basket, collections
of benchmark applications, called benchmark suites, are a popular measure of
performance of processors with a variety of applications. Of course, such suites
are only as good as the constituent individual benchmarks. Nonetheless, a key
advantage of such suites is that the weakness of any one benchmark is lessened
by the presence of the other benchmarks. The goal of a benchmark suite is that it
will characterize the relative performance of two computers, particularly for pro-
grams not in the suite that customers are likely to run.

A cautionary example is the Electronic Design News Embedded Micropro-
cessor Benchmark Consortium (or EEMBC, pronounced ‘“embassy”) bench-
marks. It is a set of 41 kernels used to predict performance of different embedded
applications: automotive/industrial, consumer, networking, office automation,
and telecommunications. EEMBC reports unmodified performance and “full
fury” performance, where almost anything goes. Because these benchmarks use
kernels, and because of the reporting options, EEMBC does not have the reputa-
tion of being a good predictor of relative performance of different embedded
computers in the field. This lack of success is why Dhrystone, which EEMBC
was trying to replace, is still used.

One of the most successful attempts to create standardized benchmark appli-
cation suites has been the SPEC (Standard Performance Evaluation Corporation),
which had its roots in efforts in the late 1980s to deliver better benchmarks for
workstations. Just as the computer industry has evolved over time, so has the
need for different benchmark suites, and there are now SPEC benchmarks to
cover many application classes. All the SPEC benchmark suites and their
reported results are found at www.spec.org.

Although we focus our discussion on the SPEC benchmarks in many of the
following sections, many benchmarks have also been developed for PCs running
the Windows operating system.

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: processor-intensive bench-
marks and graphics-intensive benchmarks, although many graphics benchmarks
include intensive processor activity. SPEC originally created a benchmark set
focusing on processor performance (initially called SPEC89), which has evolved
into its fifth generation: SPEC CPU2006, which follows SPEC2000, SPEC95
SPEC92, and SPEC89. SPEC CPU2006 consists of a set of 12 integer bench-
marks (CINT2006) and 17 floating-point benchmarks (CFP2006). Figure 1.16
describes the current SPEC benchmarks and their ancestry.

SPEC benchmarks are real programs modified to be portable and to minimize
the effect of I/O on performance. The integer benchmarks vary from part of a C

http://www.spec.org

1.8 Measuring, Reporting, and Summarizing Performance 39

Benchmark name by SPEC generation

SPEC2006 benchmark description SPEC2006 SPEC2000 SPEC95 SPEC92 SPEC89
GNU C compiler gcc
Interpreted string processing perl espresso
Combinatorial optimization mcf li
Block-sorting compression bzip2 compress eqgntott
Go game (Al) go vortex go sC
Video compression h264avc gzip ijpeg
Games/path finding astar eon m88ksim
Search gene sequence hmmer twolf
Quantum computer simulation libquantum vortex
Discrete event simulation library omnetpp vpr
Chess game (Al) sjeng crafty
XML parsing xalancbmk parser
CFD/blast waves bwaves fpppp
Numerical relativity cactusADM tomcatv
Finite element code calculix doduc
Differential equation solver framework dealll nasa7
Quantum chemistry gamess spice
EM solver (freg/time domain) GemsFDTD swim matrix300
Scalable molecular dynamics (~NAMD) gromacs apsi hydro2d
Lattice Boltzman method (fluid/air flow) Ibm mgrid su2cor
Large eddie simulation/turbulent CFD LESlie3d wupwise applu waveb
Lattice quantum chromodynamics milc apply turb3d
Molecular dynamics namd galgel
Image ray tracing povray mesa
Spare linear algebra soplex art
Speech recognition sphinx3 equake
Quantum chemistry/object oriented tonto facerec
Weather research and forecasting wrf ammp
Magneto hydrodynamics (astrophysics) zeusmp lucas

fma3d

sixtrack

Figure 1.16 SPEC2006 programs and the evolution of the SPEC benchmarks over time, with integer programs
above the line and floating-point programs below the line. Of the 12 SPEC2006 integer programs, 9 are written in
C, and the rest in C++. For the floating-point programs, the split is 6 in Fortran, 4 in C++, 3 in C, and 4 in mixed C and
Fortran. The figure shows all 70 of the programs in the 1989, 1992, 1995, 2000, and 2006 releases. The benchmark
descriptions on the left are for SPEC2006 only and do not apply to earlier versions. Programs in the same row from
different generations of SPEC are generally not related; for example, fpppp is not a CFD code like bwaves. Gce is the
senior citizen of the group. Only 3 integer programs and 3 floating-point programs survived three or more
generations. Note that all the floating-point programs are new for SPEC2006. Although a few are carried over from
generation to generation, the version of the program changes and either the input or the size of the benchmark is
often changed to increase its running time and to avoid perturbation in measurement or domination of the execu-
tion time by some factor other than CPU time.

40

Chapter One Fundamentals of Quantitative Design and Analysis

compiler to a chess program to a quantum computer simulation. The floating-
point benchmarks include structured grid codes for finite element modeling, par-
ticle method codes for molecular dynamics, and sparse linear algebra codes for
fluid dynamics. The SPEC CPU suite is useful for processor benchmarking for
both desktop systems and single-processor servers. We will see data on many of
these programs throughout this text. However, note that these programs share lit-
tle with programming languages and environments and the Google Goggles
application that Section 1.1 describes. Seven use C++, eight use C, and nine use
Fortran! They are even statically linked, and the applications themselves are dull.
It’s not clear that SPECINT2006 and SPECFP2006 capture what is exciting
about computing in the 21st century.

In Section 1.11, we describe pitfalls that have occurred in developing the
SPEC benchmark suite, as well as the challenges in maintaining a useful and pre-
dictive benchmark suite.

SPEC CPU2006 is aimed at processor performance, but SPEC offers many
other benchmarks.

Server Benchmarks

Just as servers have multiple functions, so are there multiple types of bench-
marks. The simplest benchmark is perhaps a processor throughput-oriented
benchmark. SPEC CPU2000 uses the SPEC CPU benchmarks to construct a sim-
ple throughput benchmark where the processing rate of a multiprocessor can be
measured by running multiple copies (usually as many as there are processors) of
each SPEC CPU benchmark and converting the CPU time into a rate. This leads
to a measurement called the SPECrate, and it is a measure of request-level paral-
lelism from Section 1.2. To measure thread-level parallelism, SPEC offers what
they call high-performance computing benchmarks around OpenMP and MPI.

Other than SPECrate, most server applications and benchmarks have signifi-
cant I/O activity arising from either disk or network traffic, including bench-
marks for file server systems, for Web servers, and for database and transaction-
processing systems. SPEC offers both a file server benchmark (SPECSFS) and a
Web server benchmark (SPECWeb). SPECSFS is a benchmark for measuring
NFS (Network File System) performance using a script of file server requests; it
tests the performance of the I/0 system (both disk and network 1/0) as well as the
processor. SPECSFS is a throughput-oriented benchmark but with important
response time requirements. (Appendix D discusses some file and I/O system
benchmarks in detail.) SPECWeb is a Web server benchmark that simulates mul-
tiple clients requesting both static and dynamic pages from a server, as well as
clients posting data to the server. SPECjbb measures server performance for Web
applications written in Java. The most recent SPEC benchmark is
SPECvirt_Sc2010, which evaluates end-to-end performance of virtualized data-
center servers, including hardware, the virtual machine layer, and the virtualized
guest operating system. Another recent SPEC benchmark measures power, which
we examine in Section 1.10.

1.8 Measuring, Reporting, and Summarizing Performance 41

Transaction-processing (TP) benchmarks measure the ability of a system to
handle transactions that consist of database accesses and updates. Airline reser-
vation systems and bank ATM systems are typical simple examples of TP; more
sophisticated TP systems involve complex databases and decision-making. In the
mid-1980s, a group of concerned engineers formed the vendor-independent
Transaction Processing Council (TPC) to try to create realistic and fair bench-
marks for TP. The TPC benchmarks are described at www.tpc.org.

The first TPC benchmark, TPC-A, was published in 1985 and has since been
replaced and enhanced by several different benchmarks. TPC-C, initially created
in 1992, simulates a complex query environment. TPC-H models ad hoc decision
support—the queries are unrelated and knowledge of past queries cannot be used
to optimize future queries. TPC-E is a new On-Line Transaction Processing
(OLTP) workload that simulates a brokerage firm’s customer accounts. The most
recent effort is TPC Energy, which adds energy metrics to all the existing TPC
benchmarks.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response time requirement, so that throughput perfor-
mance is measured only when the response time limit is met. To model real-
world systems, higher transaction rates are also associated with larger systems, in
terms of both users and the database to which the transactions are applied.
Finally, the system cost for a benchmark system must also be included, allowing
accurate comparisons of cost-performance. TPC modified its pricing policy so
that there is a single specification for all the TPC benchmarks and to allow verifi-
cation of the prices that TPC publishes.

Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—list everything another experimenter would need to duplicate the
results. A SPEC benchmark report requires an extensive description of the com-
puter and the compiler flags, as well as the publication of both the baseline and
optimized results. In addition to hardware, software, and baseline tuning parame-
ter descriptions, a SPEC report contains the actual performance times, shown
both in tabular form and as a graph. A TPC benchmark report is even more com-
plete, since it must include results of a benchmarking audit and cost information.
These reports are excellent sources for finding the real costs of computing sys-
tems, since manufacturers compete on high performance and cost-performance.

Summarizing Performance Results

In practical computer design, you must evaluate myriad design choices for their
relative quantitative benefits across a suite of benchmarks believed to be rele-
vant. Likewise, consumers trying to choose a computer will rely on performance
measurements from benchmarks, which hopefully are similar to the user’s appli-
cations. In both cases, it is useful to have measurements for a suite of bench-

http://www.tpc.org

42

Chapter One Fundamentals of Quantitative Design and Analysis

marks so that the performance of important applications is similar to that of one
or more benchmarks in the suite and that variability in performance can be under-
stood. In the ideal case, the suite resembles a statistically valid sample of the
application space, but such a sample requires more benchmarks than are typically
found in most suites and requires a randomized sampling, which essentially no
benchmark suite uses.

Once we have chosen to measure performance with a benchmark suite, we
would like to be able to summarize the performance results of the suite in a single
number. A straightforward approach to computing a summary result would be to
compare the arithmetic means of the execution times of the programs in the suite.
Alas, some SPEC programs take four times longer than others do, so those pro-
grams would be much more important if the arithmetic mean were the single
number used to summarize performance. An alternative would be to add a
weighting factor to each benchmark and use the weighted arithmetic mean as the
single number to summarize performance. The problem would then be how to
pick weights; since SPEC is a consortium of competing companies, each com-
pany might have their own favorite set of weights, which would make it hard to
reach consensus. One approach is to use weights that make all programs execute
an equal time on some reference computer, but this biases the results to the per-
formance characteristics of the reference computer.

Rather than pick weights, we could normalize execution times to a reference
computer by dividing the time on the reference computer by the time on the com-
puter being rated, yielding a ratio proportional to performance. SPEC uses this
approach, calling the ratio the SPECRatio. It has a particularly useful property
that it matches the way we compare computer performance throughout this
text—namely, comparing performance ratios. For example, suppose that the
SPECRatio of computer A on a benchmark was 1.25 times higher than computer
B; then we would know:

Execution time g, .1 ce

SPECRatio , Execution time , Execution timey Performance ,

- SPECRatiog ~ Execution time

reference EXecution time, Performancey

Execution timeg

Notice that the execution times on the reference computer drop out and the
choice of the reference computer is irrelevant when the comparisons are made as
a ratio, which is the approach we consistently use. Figure 1.17 gives an example.
Because a SPECRatio is a ratio rather than an absolute execution time, the
mean must be computed using the geometric mean. (Since SPECRatios have no
units, comparing SPECRatios arithmetically is meaningless.) The formula is

n

n
Geometric mean = H sample;
i=1

1.8 Measuring, Reporting, and Summarizing Performance 43

Utlitrrnae5 Opteron Itanium 2 Opteron/Itanium Itanium/Opteron
Benchmarks (sec) time (sec) SPECRatio time (sec) SPECRatio times (sec) SPECRatios
wupwise 1600 51.5 31.06 56.1 28.53 0.92 0.92
swim 3100 125.0 24.73 70.7 43.85 1.77 1.77
mgrid 1800 98.0 18.37 65.8 27.36 1.49 1.49
applu 2100 94.0 22.34 50.9 41.25 1.85 1.85
mesa 1400 64.6 21.69 108.0 12.99 0.60 0.60
galgel 2900 86.4 33.57 40.0 72.47 2.16 2.16
art 2600 92.4 28.13 21.0 123.67 4.40 4.40
equake 1300 72.6 17.92 36.3 35.78 2.00 2.00
facerec 1900 73.6 25.80 86.9 21.86 0.85 0.85
ammp 2200 136.0 16.14 132.0 16.63 1.03 1.03
lucas 2000 88.8 22.52 107.0 18.76 0.83 0.83
fma3d 2100 120.0 17.48 131.0 16.09 0.92 0.92
sixtrack 1100 123.0 8.95 68.8 15.99 1.79 1.79
apsi 2600 150.0 17.36 231.0 11.27 0.65 0.65
Geometric mean 20.86 27.12 1.30 1.30

Figure 1.17 SPECfp2000 execution times (in seconds) for the Sun Ultra 5—the reference computer of SPEC2000—
and execution times and SPECRatios for the AMD Opteron and Intel Itanium 2. (SPEC2000 multiplies the ratio of exe-
cution times by 100 to remove the decimal point from the result, so 20.86 is reported as 2086.) The final two columns
show the ratios of execution times and SPECRatios. This figure demonstrates the irrelevance of the reference computer
in relative performance. The ratio of the execution times is identical to the ratio of the SPECRatios, and the ratio of the
geometric means (27.12/20.86 = 1.30) is identical to the geometric mean of the ratios (1.30).

In the case of SPEC, sample; is the SPECRatio for program i. Using the geomet-
ric mean ensures two important properties:

1. The geometric mean of the ratios is the same as the ratio of the geometric
means.

2. The ratio of the geometric means is equal to the geometric mean of the per-
formance ratios, which implies that the choice of the reference computer is
irrelevant.

Hence, the motivations to use the geometric mean are substantial, especially
when we use performance ratios to make comparisons.

Example

Answer

Show that the ratio of the geometric means is equal to the geometric mean of the
performance ratios, and that the reference computer of SPECRatio matters not.

Assume two computers A and B and a set of SPECRatios for each.

a4

Chapter One Fundamentals of Quantitative Design and Analysis

1.9

n
; H SPECRatio A,
Geometric mean A i1 n SPECRatio A,;

Geometric meang B n H SPECRatio B;
. i=1
) H SPECRatio B;
i=1

Execution time

reference;
n Execution time 5 n_Execution timep n_Performance ,
= 11 v = —" = ;
nlil Execution time,oopee, 'y o | Executiontime, 7 L Performance

Execution timeg
i

That is, the ratio of the geometric means of the SPECRatios of A and B is the
geometric mean of the performance ratios of A to B of all the benchmarks in the
suite. Figure 1.17 demonstrates this validity using examples from SPEC.

Quantitative Principles of Computer Design

Now that we have seen how to define, measure, and summarize performance,
cost, dependability, energy, and power, we can explore guidelines and principles
that are useful in the design and analysis of computers. This section introduces
important observations about design, as well as two equations to evaluate
alternatives.

Take Advantage of Parallelism

Taking advantage of parallelism is one of the most important methods for
improving performance. Every chapter in this book has an example of how
performance is enhanced through the exploitation of parallelism. We give three
brief examples here, which are expounded on in later chapters.

Our first example is the use of parallelism at the system level. To improve the
throughput performance on a typical server benchmark, such as SPECWeb or
TPC-C, multiple processors and multiple disks can be used. The workload of han-
dling requests can then be spread among the processors and disks, resulting in
improved throughput. Being able to expand memory and the number of processors
and disks is called scalability, and it is a valuable asset for servers. Spreading of
data across many disks for parallel reads and writes enables data-level parallelism.
SPECWeb also relies on request-level parallelism to use many processors while
TPC-C uses thread-level parallelism for faster processing of database queries.

At the level of an individual processor, taking advantage of parallelism
among instructions is critical to achieving high performance. One of the simplest
ways to do this is through pipelining. (It is explained in more detail in
Appendix C and is a major focus of Chapter 3.) The basic idea behind pipelining

1.9 Quantitative Principles of Computer Design 45

is to overlap instruction execution to reduce the total time to complete an instruc-
tion sequence. A key insight that allows pipelining to work is that not every
instruction depends on its immediate predecessor, so executing the instructions
completely or partially in parallel may be possible. Pipelining is the best-known
example of instruction-level parallelism.

Parallelism can also be exploited at the level of detailed digital design. For
example, set-associative caches use multiple banks of memory that are typically
searched in parallel to find a desired item. Modern ALUs (arithmetic-logical
units) use carry-lookahead, which uses parallelism to speed the process of com-
puting sums from linear to logarithmic in the number of bits per operand. These
are more examples of data-level parallelism.

Principle of Locality

Important fundamental observations have come from properties of programs.
The most important program property that we regularly exploit is the principle of
locality: Programs tend to reuse data and instructions they have used recently. A
widely held rule of thumb is that a program spends 90% of its execution time in
only 10% of the code. An implication of locality is that we can predict with rea-
sonable accuracy what instructions and data a program will use in the near future
based on its accesses in the recent past. The principle of locality also applies to
data accesses, though not as strongly as to code accesses.

Two different types of locality have been observed. Temporal locality states
that recently accessed items are likely to be accessed in the near future. Spatial
locality says that items whose addresses are near one another tend to be refer-
enced close together in time. We will see these principles applied in Chapter 2.

Focus on the Common Case

Perhaps the most important and pervasive principle of computer design is to
focus on the common case: In making a design trade-off, favor the frequent
case over the infrequent case. This principle applies when determining how to
spend resources, since the impact of the improvement is higher if the occur-
rence is frequent.

Focusing on the common case works for power as well as for resource alloca-
tion and performance. The instruction fetch and decode unit of a processor may
be used much more frequently than a multiplier, so optimize it first. It works on
dependability as well. If a database server has 50 disks for every processor, stor-
age dependability will dominate system dependability.

In addition, the frequent case is often simpler and can be done faster than the
infrequent case. For example, when adding two numbers in the processor, we can
expect overflow to be a rare circumstance and can therefore improve perfor-
mance by optimizing the more common case of no overflow. This emphasis may
slow down the case when overflow occurs, but if that is rare then overall perfor-
mance will be improved by optimizing for the normal case.

46

Chapter One Fundamentals of Quantitative Design and Analysis

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’s law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl’s law. Amdahl’s law states that the perfor-
mance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

Amdahl’s law defines the speedup that can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a com-
puter that will improve performance when it is used. Speedup is the ratio:

Performance for entire task using the enhancement when possible

Speedup = - . -
Performance for entire task without using the enhancement
Alternatively,
Execution time for entire task without using the enhancement
Speedup =

Execution time for entire task using the enhancement when possible

Speedup tells us how much faster a task will run using the computer with the
enhancement as opposed to the original computer.

Amdahl’s law gives us a quick way to find the speedup from some enhance-
ment, which depends on two factors:

1. The fraction of the computation time in the original computer that can be
converted to take advantage of the enhancement—For example, if 20
seconds of the execution time of a program that takes 60 seconds in total
can use an enhancement, the fraction is 20/60. This value, which we will call
Fractiongppanced, 18 always less than or equal to 1.

2. The improvement gained by the enhanced execution mode, that is, how much
faster the task would run if the enhanced mode were used for the entire
program—This value is the time of the original mode over the time of the
enhanced mode. If the enhanced mode takes, say, 2 seconds for a portion of
the program, while it is 5 seconds in the original mode, the improvement is
5/2. We will call this value, which is always greater than 1, Speedupenhanced-

The execution time using the original computer with the enhanced mode will be
the time spent using the unenhanced portion of the computer plus the time spent
using the enhancement:

. . Fracuonenhanced
Execution time e
PECAUP e nhanced

new — Execution timeuld X [(1 - Fracnonenhanced) +

1.9 Quantitative Principles of Computer Design 47

The overall speedup is the ratio of the execution times:

Execution time 1

Speedu = — = -
PeeCtiPoverall = Eyecution time Fraction

(1 — Fraction

enhanced

+ I —————
enhanced Speedup enhanced

Example

Answer

Suppose that we want to enhance the processor used for Web serving. The new
processor is 10 times faster on computation in the Web serving application than
the original processor. Assuming that the original processor is busy with compu-
tation 40% of the time and is waiting for I/O 60% of the time, what is the overall
speedup gained by incorporating the enhancement?

10; Speedup,yeran -1 0_164 = 1.56

0.
0.6 + 1

Fractiongpnceq = 0.4; Speedupgpanced =

i

Amdahl’s law expresses the law of diminishing returns: The incremental
improvement in speedup gained by an improvement of just a portion of the com-
putation diminishes as improvements are added. An important corollary of
Amdahl’s law is that if an enhancement is only usable for a fraction of a task then
we can’t speed up the task by more than the reciprocal of 1 minus that fraction.

A common mistake in applying Amdahl’s law is to confuse “fraction of time
converted to use an enhancement” and “fraction of time after enhancement is in
use.” If, instead of measuring the time that we could use the enhancement in a
computation, we measure the time after the enhancement is in use, the results
will be incorrect!

Amdahl’s law can serve as a guide to how much an enhancement will
improve performance and how to distribute resources to improve cost-
performance. The goal, clearly, is to spend resources proportional to where time
is spent. Amdahl’s law is particularly useful for comparing the overall system
performance of two alternatives, but it can also be applied to compare two pro-
cessor design alternatives, as the following example shows.

Example

A common transformation required in graphics processors is square root. Imple-
mentations of floating-point (FP) square root vary significantly in performance,
especially among processors designed for graphics. Suppose FP square root
(FPSQR) is responsible for 20% of the execution time of a critical graphics
benchmark. One proposal is to enhance the FPSQR hardware and speed up this
operation by a factor of 10. The other alternative is just to try to make all FP
instructions in the graphics processor run faster by a factor of 1.6; FP instructions
are responsible for half of the execution time for the application. The design team
believes that they can make all FP instructions run 1.6 times faster with the same
effort as required for the fast square root. Compare these two design alternatives.

48 Chapter One Fundamentals of Quantitative Design and Analysis

Answer

We can compare these two alternatives by comparing the speedups:

1 1
SpeeduprSQR = —02 = m =1.22
(1-02)+ 35
1 1

Speedupgp = = =1.23
(1-05)+ 0.5 0.8125

16

Improving the performance of the FP operations overall is slightly better because
of the higher frequency.

Amdahl’s law is applicable beyond performance. Let’s redo the reliability
example from page 35 after improving the reliability of the power supply via
redundancy from 200,000-hour to 830,000,000-hour MTTF, or 4150X better.

Example

Answer

The calculation of the failure rates of the disk subsystem was

. | 1 1 1 1
Fail t =10 + + + +
AUTe T8y stem % 1,000,000 500,000 200,000 200,000 1,000,000

10+2+5+5+1 _ 23
1,000,000 hours ~ 1,000,000 hours

Therefore, the fraction of the failure rate that could be improved is 5 per million
hours out of 23 for the whole system, or 0.22.

The reliability improvement would be

1 1
Improvement,,yer supply pair = 03 S 078" 1.28
(1-0.22) + 1150

Despite an impressive 4150X improvement in reliability of one module, from the
system’s perspective, the change has a measurable but small benefit.

In the examples above, we needed the fraction consumed by the new and
improved version; often it is difficult to measure these times directly. In the next
section, we will see another way of doing such comparisons based on the use of
an equation that decomposes the CPU execution time into three separate compo-
nents. If we know how an alternative affects these three components, we can
determine its overall performance. Furthermore, it is often possible to build sim-
ulators that measure these components before the hardware is actually designed.

The Processor Performance Equation

Essentially all computers are constructed using a clock running at a constant rate.
These discrete time events are called ticks, clock ticks, clock periods, clocks,

1.9 Quantitative Principles of Computer Design 49

cycles, or clock cycles. Computer designers refer to the time of a clock period by
its duration (e.g., 1 ns) or by its rate (e.g., | GHz). CPU time for a program can
then be expressed two ways:

CPU time = CPU clock cycles for a program x Clock cycle time
or

CPU clock cycles for a program

CPU time =
me Clock rate

In addition to the number of clock cycles needed to execute a program, we
can also count the number of instructions executed—the instruction path length
or instruction count (IC). If we know the number of clock cycles and the instruc-
tion count, we can calculate the average number of clock cycles per instruction
(CPI). Because it is easier to work with, and because we will deal with simple
processors in this chapter, we use CPI. Designers sometimes also use instructions
per clock (IPC), which is the inverse of CPI.

CPI is computed as

CPU clock cycles for a program

CPI = -
Instruction count

This processor figure of merit provides insight into different styles of instruction
sets and implementations, and we will use it extensively in the next four chapters.

By transposing the instruction count in the above formula, clock cycles can
be defined as IC x CPI. This allows us to use CPI in the execution time formula:

CPU time = Instruction count X Cycles per instruction X Clock cycle time

Expanding the first formula into the units of measurement shows how the pieces
fit together:

Instructions _ Clock cycles Seconds _ Seconds

- = =CPU ti
Program Instruction Clock cycle Program fme

As this formula demonstrates, processor performance is dependent upon three
characteristics: clock cycle (or rate), clock cycles per instruction, and instruction
count. Furthermore, CPU time is equally dependent on these three characteris-
tics; for example, a 10% improvement in any one of them leads to a 10%
improvement in CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation
from others because the basic technologies involved in changing each character-
istic are interdependent:

m Clock cycle time—Hardware technology and organization
m CP[—Organization and instruction set architecture

m [Instruction count—Instruction set architecture and compiler technology

50 Chapter One Fundamentals of Quantitative Design and Analysis

Luckily, many potential performance improvement techniques primarily improve
one component of processor performance with small or predictable impacts on
the other two.

Sometimes it is useful in designing the processor to calculate the number of
total processor clock cycles as

n
CPU clock cycles = Z IC; x CPI,

i=1

where IC; represents the number of times instruction i is executed in a program
and CPJ; represents the average number of clocks per instruction for instruction i.
This form can be used to express CPU time as

n
CPU time = Z IC; x CPI, | x Clock cycle time

i=1

and overall CPI as

n
Z IC, x CPI,
i=1 " IC,
= = Z ——— xCPL
Instruction count Instruction count !

i=1

CPI

The latter form of the CPI calculation uses each individual CPI; and the fraction
of occurrences of that instruction in a program (i.e., IC; + Instruction count). CPI;
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other mem-
ory system inefficiencies.

Consider our performance example on page 47, here modified to use mea-
surements of the frequency of the instructions and of the instruction CPI values,
which, in practice, are obtained by simulation or by hardware instrumentation.

Example

Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR = 2%
CPI of FPSQR =20
Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or

to decrease the average CPI of all FP operations to 2.5. Compare these two
design alternatives using the processor performance equation.

Answer

1.9 Quantitative Principles of Computer Design 51

First, observe that only the CPI changes; the clock rate and instruction count
remain identical. We start by finding the original CPI with neither enhancement:

n IC.
CPI_ .. == CPI.x(i. - ‘)
original Z ! ""\Instruction coun
i=1

(4%x25%)+(1.33x75%) = 2.0

We can compute the CPI for the enhanced FPSQR by subtracting the cycles
saved from the original CPI:

CPlyith new FPSQR = CPloriginal — 2% X (CPIo1d FpsQr — CPlof new FPSQR only)
20-2%x%(20-2) = 1.64

We can compute the CPI for the enhancement of all FP instructions the same way
or by summing the FP and non-FP CPIs. Using the latter gives us:

CPL, pp = (75% x 1.33) +(25% x 2.5) = 1.625

Since the CPI of the overall FP enhancement is slightly lower, its performance
will be marginally better. Specifically, the speedup for the overall FP enhance-
ment is

CPU time IC x Clock cycle x CPI

Speedu _ original _ original
PeCCPrew FP = GpU Gime, 1 IC X Clock cycle X CPL__ 1o
CPI i1,
_ original — 2.00 = 123
CPI_, p 1625

Happily, we obtained this same speedup using Amdahl’s law on page 46.

It is often possible to measure the constituent parts of the processor perfor-
mance equation. This is a key advantage of using the processor performance
equation versus Amdahl’s law in the previous example. In particular, it may be
difficult to measure things such as the fraction of execution time for which a set
of instructions is responsible. In practice, this would probably be computed by
summing the product of the instruction count and the CPI for each of the instruc-
tions in the set. Since the starting point is often individual instruction count and
CPI measurements, the processor performance equation is incredibly useful.

To use the processor performance equation as a design tool, we need to be
able to measure the various factors. For an existing processor, it is easy to obtain
the execution time by measurement, and we know the default clock speed. The
challenge lies in discovering the instruction count or the CPI. Most new proces-
sors include counters for both instructions executed and for clock cycles. By
periodically monitoring these counters, it is also possible to attach execution time
and instruction count to segments of the code, which can be helpful to
programmers trying to understand and tune the performance of an application.
Often, a designer or programmer will want to understand performance at a more

52

Chapter One Fundamentals of Quantitative Design and Analysis

1.10

fine-grained level than what is available from the hardware counters. For exam-
ple, they may want to know why the CPI is what it is. In such cases, simulation
techniques used are like those for processors that are being designed.

Techniques that help with energy efficiency, such as dynamic voltage fre-
quency scaling and overclocking (see Section 1.5), make this equation harder to
use, since the clock speed may vary while we measure the program. A simple
approach is to turn off those features to make the results reproducible. Fortu-
nately, as performance and energy efficiency are often highly correlated—taking
less time to run a program generally saves energy—it’s probably safe to consider
performance without worrying about the impact of DVFES or overclocking on the
results.

Putting It All Together: Performance, Price,
and Power

In the “Putting It All Together” sections that appear near the end of every chapter,
we provide real examples that use the principles in that chapter. In this section,
we look at measures of performance and power-performance in small servers
using the SPECpower benchmark.

Figure 1.18 shows the three multiprocessor servers we are evaluating along
with their price. To keep the price comparison fair, all are Dell PowerEdge serv-
ers. The first is the PowerEdge R710, which is based on the Intel Xeon X5670
microprocessor with a clock rate of 2.93 GHz. Unlike the Intel Core i7 in Chap-
ters 2 through 5, which has 4 cores and an 8 MB L3 cache, this Intel chip has
6 cores and a 12 MB L3 cache, although the cores themselves are identical. We
selected a two-socket system with 12 GB of ECC-protected 1333 MHz DDR3
DRAM. The next server is the PowerEdge R815, which is based on the AMD
Opteron 6174 microprocessor. A chip has 6 cores and a 6 MB L3 cache, and it
runs at 2.20 GHz, but AMD puts two of these chips into a single socket. Thus, a
socket has 12 cores and two 6 MB L3 caches. Our second server has two sockets
with 24 cores and 16 GB of ECC-protected 1333 MHz DDR3 DRAM, and our
third server (also a PowerEdge R815) has four sockets with 48 cores and 32 GB
of DRAM. All are running the IBM J9 JVM and the Microsoft Windows 2008
Server Enterprise x64 Edition operating system.

Note that due to the forces of benchmarking (see Section 1.11), these are
unusually configured servers. The systems in Figure 1.18 have little memory rel-
ative to the amount of computation, and just a tiny 50 GB solid-state disk. It is
inexpensive to add cores if you don’t need to add commensurate increases in
memory and storage!

Rather than run statically linked C programs of SPEC CPU, SPECpower uses
a more modern software stack written in Java. It is based on SPECjbb, and it rep-
resents the server side of business applications, with performance measured as
the number transactions per second, called ssj_ops for server side Java opera-
tions per second. It exercises not only the processor of the server, as does SPEC

1.10 Putting It All Together: Performance, Price, and Power 53

System 1 System 2 System 3
Component Cost (% Cost) Cost (% Cost) Cost (% Cost)
Base server PowerEdge R710 $653 (7%) PowerEdge R815 $1437 (15%) PowerEdge R815 $1437 (11%)
Power supply 570 W 1100 W 1100 W
Processor Xeon X5670 $3738 (40%) Opteron 6174 $2679 (29%) Opteron 6174 $5358 (42%)
Clock rate 2.93 GHz 2.20 GHz 2.20 GHz
Total cores 12 24 48
Sockets 2 2 4
Cores/socket 6 12 12
DRAM 12 GB $484 (5%) 16 GB $693 (7%) 32 GB $1386 (11%)
Ethernet Inter. Dual 1-Gbit $199 (2%) Dual 1-Gbit $199 (2%) Dual 1-Gbit $199 2%)
Disk 50 GB SSD $1279 (14%) 50 GB SSD $1279 (14%) 50 GB SSD $1279 (10%)
Windows OS $2999 (32%) $2999 (33%) $2999 (24%)
Total $9352 (100%) $9286 (100%) $12,658 (100%)
Max ssj_ops 910,978 926,676 1,840,450
Max ssj_ops/$ 97 100 145

Figure 1.18 Three Dell PowerEdge servers being measured and their prices as of August 2010. We calculated the
cost of the processors by subtracting the cost of a second processor. Similarly, we calculated the overall cost of
memory by seeing what the cost of extra memory was. Hence, the base cost of the server is adjusted by removing
the estimated cost of the default processor and memory. Chapter 5 describes how these multi-socket systems are
connected together.

CPU, but also the caches, memory system, and even the multiprocessor intercon-
nection system. In addition, it exercises the Java Virtual Machine (JVM), includ-
ing the JIT runtime compiler and garbage collector, as well as portions of the
underlying operating system.

As the last two rows of Figure 1.18 show, the performance and price-perfor-
mance winner is the PowerEdge R815 with four sockets and 48 cores. It hits
1.8M ssj_ops, and the ssj_ops per dollar is highest at 145. Amazingly, the com-
puter with the largest number of cores is the most cost effective. In second place
is the two-socket R815 with 24 cores, and the R710 with 12 cores is in last place.

While most benchmarks (and most computer architects) care only about per-
formance of systems at peak load, computers rarely run at peak load. Indeed, Fig-
ure 6.2 in Chapter 6 shows the results of measuring the utilization of tens of
thousands of servers over 6 months at Google, and less than 1% operate at an
average utilization of 100%. The majority have an average utilization of between
10% and 50%. Thus, the SPECpower benchmark captures power as the target
workload varies from its peak in 10% intervals all the way to 0%, which is called
Active Idle.

Figure 1.19 plots the ssj_ops (SSJ operations/second) per watt and the aver-
age power as the target load varies from 100% to 0%. The Intel R710 always has
the lowest power and the best ssj_ops per watt across each target workload level.

54 Chapter One Fundamentals of Quantitative Design and Analysis

4500 550
M 710 Intel 12 core
~ - 500
4000 - ~¢— 815 AMD 48 core W M 815 AMD 24 core
~ = 815 AMD 48 core
- 450
3500 A 815 AMD 24 core W
- 400
3000 -
- 350
. I 710 Intel 12 core W
g 2500 - - 300 ,
‘@ 2000 ~. - 250
(%] - -
- 200
1500 - \
. - 150
1000 -
- 100
500 - - 50
0 - -0

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Active Idle
Target workload

Figure 1.19 Power-performance of the three servers in Figure 1.18. Ssj_ops/watt values are on the left axis, with
the three columns associated with it, and watts are on the right axis, with the three lines associated with it. The hori-
zontal axis shows the target workload, as it varies from 100% to Active Idle. The Intel-based R715 has the best
ssj_ops/watt at each workload level, and it also consumes the lowest power at each level.

One reason is the much larger power supply for the R815, at 1100 watts versus
570 in the R715. As Chapter 6 shows, power supply efficiency is very important
in the overall power efficiency of a computer. Since watts = joules/second, this
metric is proportional to SSJ operations per joule:

ssj_operations/sec _ ssj_operations/sec _ ssj_operations
Watt Joule/sec Joule

To calculate a single number to use to compare the power efficiency of sys-
tems, SPECpower uses:

Z ssj_ops

Z power

The overall ssj_ops/watt of the three servers is 3034 for the Intel R710, 2357 for
the AMD dual-socket R815, and 2696 for the AMD quad-socket R815. Hence,

Overall ssj_ops/watt =

Fallacy

Pitfall

1.11 Fallacies and Pitfalls 55

the Intel R710 has the best power-performance. Dividing by the price of the
servers, the ssj_ops/watt/$1000 is 324 for the Intel R710, 254 for the dual-
socket AMD RS815, and 213 for the quad-socket MD R815. Thus, adding
power reverses the results of the price-performance competition, and the
price-power-performance trophy goes to Intel R710; the 48-core R815 comes
in last place.

Fallacies and Pitfalls

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We
call such misbeliefs fallacies. When discussing a fallacy, we try to give a coun-
terexample. We also discuss pitfalls—easily made mistakes. Often pitfalls are
generalizations of principles that are true in a limited context. The purpose of
these sections is to help you avoid making these errors in computers that you
design.

Multiprocessors are a silver bullet.

The switch to multiple processors per chip around 2005 did not come from some
breakthrough that dramatically simplified parallel programming or made it easy to
build multicore computers. The change occurred because there was no other option
due to the ILP walls and power walls. Multiple processors per chip do not guaran-
tee lower power; it’s certainly possible to design a multicore chip that uses more
power. The potential is just that it’s possible to continue to improve performance
by replacing a high-clock-rate, inefficient core with several lower-clock-rate, effi-
cient cores. As technology improves to shrink transistors, this can shrink both
capacitance and the supply voltage a bit so that we can get a modest increase in the
number of cores per generation. For example, for the last few years Intel has been
adding two cores per generation.

As we shall see in Chapters 4 and 5, performance is now a programmer’s bur-
den. The La-Z-Boy programmer era of relying on hardware designers to make
their programs go faster without lifting a finger is officially over. If programmers
want their programs to go faster with each generation, they must make their pro-
grams more parallel.

The popular version of Moore’s law—increasing performance with each gen-
eration of technology—is now up to programmers.

Falling prey to Amdahl’s heartbreaking law.

Virtually every practicing computer architect knows Amdahl’s law. Despite this,
we almost all occasionally expend tremendous effort optimizing some feature
before we measure its usage. Only when the overall speedup is disappointing do
we recall that we should have measured first before we spent so much effort
enhancing it!

56

Chapter One Fundamentals of Quantitative Design and Analysis

Pitfall

Fallacy

Fallacy

Fallacy

Asingle point of failure.

The calculations of reliability improvement using Amdahl’s law on page 48 show
that dependability is no stronger than the weakest link in a chain. No matter how
much more dependable we make the power supplies, as we did in our example,
the single fan will limit the reliability of the disk subsystem. This Amdahl’s law
observation led to a rule of thumb for fault-tolerant systems to make sure that
every component was redundant so that no single component failure could bring
down the whole system. Chapter 6 shows how a software layer avoids single
points of failure inside warehouse-scale computers.

Hardware enhancements that increase performance improve energy efficiency or
are at worst energy neutral.

Esmaeilzadeh et al. [2011] measured SPEC2006 on just one core of a 2.67 GHz
Intel Core i7 using Turbo mode (Section 1.5). Performance increased by a factor
of 1.07 when the clock rate increased to 2.94 GHz (or a factor of 1.10), but the i7
used a factor of 1.37 more joules and a factor of 1.47 more watt-hours!

Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance, and some change over time. A big factor influencing the usefulness of a
benchmark is its ability to resist “benchmark engineering” or “benchmarketing.”
Once a benchmark becomes standardized and popular, there is tremendous pres-
sure to improve performance by targeted optimizations or by aggressive interpre-
tation of the rules for running the benchmark. Small kernels or programs that
spend their time in a small amount of code are particularly vulnerable.

For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different
300 x 300 matrix multiplications. In this kernel, 99% of the execution time was
in a single line (see SPEC [1989]). When an IBM compiler optimized this inner
loop (using an idea called blocking, discussed in Chapters 2 and 4), performance
improved by a factor of 9 over a prior version of the compiler! This benchmark
tested compiler tuning and was not, of course, a good indication of overall per-
formance, nor of the typical value of this particular optimization.

Over a long period, these changes may make even a well-chosen bench-
mark obsolete; Gec is the lone survivor from SPEC89. Figure 1.16 on page 39
lists the status of all 70 benchmarks from the various SPEC releases. Amaz-
ingly, almost 70% of all programs from SPEC2000 or earlier were dropped
from the next release.

The rated mean time to failure of disks is 1,200,000 hours or almost 140 years, so
disks practically never fail.

The current marketing practices of disk manufacturers can mislead users. How is
such an MTTF calculated? Early in the process, manufacturers will put thousands

Fallacy

Pitfall

1.11 Fallacies and Pitfalls 57

of disks in a room, run them for a few months, and count the number that fail.
They compute MTTF as the total number of hours that the disks worked cumula-
tively divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be 5 years or 43,800 hours. For this large MTTF to make
some sense, disk manufacturers argue that the model corresponds to a user who
buys a disk and then keeps replacing the disk every 5 years—the planned lifetime
of the disk. The claim is that if many customers (and their great-grandchildren)
did this for the next century, on average they would replace a disk 27 times
before a failure, or about 140 years.

A more useful measure would be percentage of disks that fail. Assume 1000
disks with a 1,000,000-hour MTTF and that the disks are used 24 hours a day. If
you replaced failed disks with a new one having the same reliability characteris-
tics, the number that would fail in a year (8760 hours) is

Number of disks X Time period _ 1000 disks % 8760 hours/drive _

Failed disks = MTTF B 1,000,000 hours/failure

Stated alternatively, 0.9% would fail per year, or 4.4% over a 5-year lifetime.

Moreover, those high numbers are quoted assuming limited ranges of temper-
ature and vibration; if they are exceeded, then all bets are off. A survey of disk
drives in real environments [Gray and van Ingen 2005] found that 3% to 7% of
drives failed per year, for an MTTF of about 125,000 to 300,000 hours. An even
larger study found annual disk failure rates of 2% to 10% [Pinheiro, Weber, and
Barroso 2007]. Hence, the real-world MTTF is about 2 to 10 times worse than
the manufacturer’s MTTFE.

Peak performance tracks observed performance.

The only universally true definition of peak performance is “the performance
level a computer is guaranteed not to exceed.” Figure 1.20 shows the percentage
of peak performance for four programs on four multiprocessors. It varies from
5% to 58%. Since the gap is so large and can vary significantly by benchmark,
peak performance is not generally useful in predicting observed performance.

Fault detection can lower availability.

This apparently ironic pitfall is because computer hardware has a fair amount of
state that may not always be critical to proper operation. For example, it is not
fatal if an error occurs in a branch predictor, as only performance may suffer.

In processors that try to aggressively exploit instruction-level parallelism, not
all the operations are needed for correct execution of the program. Mukherjee
et al. [2003] found that less than 30% of the operations were potentially on the
critical path for the SPEC2000 benchmarks running on an Itanium 2.

The same observation is true about programs. If a register is “dead” in a
program—that is, the program will write it before it is read again—then errors do

58 Chapter One Fundamentals of Quantitative Design and Analysis

70% ~

60% -

50% -

40% -

30% A

20% A

Percentage of peak performance

10% A

0% -

M Powers
|:| Itanium 2
[NEC Earth Simulator

] Cray x1

58%

Paratec LBMHD Cactus GTC
plasma physics materials science astrophysics magnetic fusion

Figure 1.20 Percentage of peak performance for four programs on four multiprocessors scaled to 64 processors.
The Earth Simulator and X1 are vector processors (see Chapter 4 and Appendix G). Not only did they deliver a higher
fraction of peak performance, but they also had the highest peak performance and the lowest clock rates. Except for
the Paratec program, the Power 4 and Itanium 2 systems delivered between 5% and 10% of their peak. From Oliker

et al. [2004].

not matter. If you were to crash the program upon detection of a transient fault in
a dead register, it would lower availability unnecessarily.

Sun Microsystems lived this pitfall in 2000 with an L2 cache that included
parity, but not error correction, in its Sun E3000 to Sun E10000 systems. The
SRAMs they used to build the caches had intermittent faults, which parity
detected. If the data in the cache were not modified, the processor simply reread
the data from the cache. Since the designers did not protect the cache with ECC
(error-correcting code), the operating system had no choice but to report an error
to dirty data and crash the program. Field engineers found no problems on
inspection in more than 90% of the cases.

To reduce the frequency of such errors, Sun modified the Solaris operating
system to “scrub” the cache by having a process that proactively writes dirty data
to memory. Since the processor chips did not have enough pins to add ECC, the
only hardware option for dirty data was to duplicate the external cache, using the
copy without the parity error to correct the error.

The pitfall is in detecting faults without providing a mechanism to correct
them. These engineers are unlikely to design another computer without ECC on
external caches.

1.12

1.12 Concluding Remarks 59

Concluding Remarks

This chapter has introduced a number of concepts and provided a quantitative
framework that we will expand upon throughout the book. Starting with this edi-
tion, energy efficiency is the new companion to performance.

In Chapter 2, we start with the all-important area of memory system design.
We will examine a wide range of techniques that conspire to make memory look
infinitely large while still being as fast as possible. (Appendix B provides intro-
ductory material on caches for readers without much experience and background
in them.) As in later chapters, we will see that hardware—software cooperation
has become a key to high-performance memory systems, just as it has to high-
performance pipelines. This chapter also covers virtual machines, an increasingly
important technique for protection.

In Chapter 3, we look at instruction-level parallelism (ILP), of which pipelin-
ing is the simplest and most common form. Exploiting ILP is one of the most
important techniques for building high-speed uniprocessors. Chapter 3 begins
with an extensive discussion of basic concepts that will prepare you for the wide
range of ideas examined in both chapters. Chapter 3 uses examples that span
about 40 years, drawing from one of the first supercomputers (IBM 360/91) to
the fastest processors in the market in 2011. It emphasizes what is called the
dynamic or run time approach to exploiting ILP. It also talks about the limits to
ILP ideas and introduces multithreading, which is further developed in both
Chapters 4 and 5. Appendix C provides introductory material on pipelining for
readers without much experience and background in pipelining. (We expect it to
be a review for many readers, including those of our introductory text, Computer
Organization and Design: The Hardware/Software Interface.)

Chapter 4 is new to this edition, and it explains three ways to exploit data-
level parallelism. The classic and oldest approach is vector architecture, and we
start there to lay down the principles of SIMD design. (Appendix G goes into
greater depth on vector architectures.) We next explain the SIMD instruction set
extensions found in most desktop microprocessors today. The third piece is an in-
depth explanation of how modern graphics processing units (GPUs) work. Most
GPU descriptions are written from the programmer’s perspective, which usually
hides how the computer really works. This section explains GPUs from an
insider’s perspective, including a mapping between GPU jargon and more tradi-
tional architecture terms.

Chapter 5 focuses on the issue of achieving higher performance using multi-
ple processors, or multiprocessors. Instead of using parallelism to overlap indi-
vidual instructions, multiprocessing uses parallelism to allow multiple instruction
streams to be executed simultaneously on different processors. Our focus is on
the dominant form of multiprocessors, shared-memory multiprocessors, though
we introduce other types as well and discuss the broad issues that arise in any
multiprocessor. Here again, we explore a variety of techniques, focusing on the
important ideas first introduced in the 1980s and 1990s.

60

Chapter One Fundamentals of Quantitative Design and Analysis

Chapter 6 is also new to this edition. We introduce clusters and then go into
depth on warehouse-scale computers (WSCs), which computer architects help
design. The designers of WSCs are the professional descendents of the pioneers
of supercomputers such as Seymour Cray in that they are designing extreme
computers. They contain tens of thousands of servers, and the equipment and
building that holds them cost nearly $200 M. The concerns of price-performance
and energy efficiency of the earlier chapters applies to WSCs, as does the quanti-
tative approach to making decisions.

This book comes with an abundance of material online (see Preface for more
details), both to reduce cost and to introduce readers to a variety of advanced top-
ics. Figure 1.21 shows them all. Appendices A, B, and C, which appear in the
book, will be review for many readers.

In Appendix D, we move away from a processor-centric view and discuss
issues in storage systems. We apply a similar quantitative approach, but one
based on observations of system behavior and using an end-to-end approach to
performance analysis. It addresses the important issue of how to efficiently store
and retrieve data using primarily lower-cost magnetic storage technologies. Our
focus is on examining the performance of disk storage systems for typical 1/O-
intensive workloads, like the OLTP benchmarks we saw in this chapter. We
extensively explore advanced topics in RAID-based systems, which use redun-
dant disks to achieve both high performance and high availability. Finally, the
chapter introduces queuing theory, which gives a basis for trading off utilization
and latency.

Appendix E applies an embedded computing perspective to the ideas of each
of the chapters and early appendices.

Appendix F explores the topic of system interconnect broadly, including wide
area and system area networks that allow computers to communicate.

Appendix Title

Instruction Set Principles

Review of Memory Hierarchies

Pipelining: Basic and Intermediate Concepts

Storage Systems
Embedded Systems

Interconnection Networks

Vector Processors in More Depth
Hardware and Software for VLIW and EPIC

Large-Scale Multiprocessors and Scientific Applications

Computer Arithmetic

Survey of Instruction Set Architectures

TR IE| QI |E|O|O|wE]| >

Historical Perspectives and References

Figure 1.21 List of appendices.

1.13

Case Studies and Exercises by Diana Franklin 61

Appendix H reviews VLIW hardware and software, which, in contrast, are
less popular than when EPIC appeared on the scene just before the last edition.

Appendix I describes large-scale multiprocessors for use in high-performance
computing.

Appendix J is the only appendix that remains from the first edition, and it
covers computer arithmetic.

Appendix K provides a survey of instruction architectures, including the
80x86, the IBM 360, the VAX, and many RISC architectures, including ARM,
MIPS, Power, and SPARC.

We describe Appendix L below.

Historical Perspectives and References

Appendix L (available online) includes historical perspectives on the key ideas
presented in each of the chapters in this text. These historical perspective sections
allow us to trace the development of an idea through a series of machines or
describe significant projects. If you’re interested in examining the initial devel-
opment of an idea or machine or interested in further reading, references are pro-
vided at the end of each history. For this chapter, see Section L.2, The Early
Development of Computers, for a discussion on the early development of digital
computers and performance measurement methodologies.

As you read the historical material, you’ll soon come to realize that one of the
important benefits of the youth of computing, compared to many other engineer-
ing fields, is that many of the pioneers are still alive—we can learn the history by
simply asking them!

Case Studies and Exercises by Diana Franklin

Case Study 1: Chip Fabrication Cost

Concepts illustrated by this case study

m Fabrication Cost
m Fabrication Yield

m Defect Tolerance through Redundancy

There are many factors involved in the price of a computer chip. New, smaller
technology gives a boost in performance and a drop in required chip area. In the
smaller technology, one can either keep the small area or place more hardware on
the chip in order to get more functionality. In this case study, we explore how dif-
ferent design decisions involving fabrication technology, area, and redundancy
affect the cost of chips.

62

Chapter One Fundamentals of Quantitative Design and Analysis

1.1

1.2

1.3

Diesize Estimated defect Manufacturing Transistors

Chip (mm?) rate (per cm?) size (nm) (millions)
IBM Power5 389 .30 130 276
Sun Niagara 380 75 90 279
AMD Opteron 199 5 90 233

Figure 1.22 Manufacturing cost factors for several modern processors.

[10/10] <1.6> Figure 1.22 gives the relevant chip statistics that influence the cost
of several current chips. In the next few exercises, you will be exploring the
effect of different possible design decisions for the IBM Power5.

a. [10] <1.6> What is the yield for the IBM Power5?

b. [10] <1.6> Why does the IBM Power5 have a lower defect rate than the Niag-
ara and Opteron?

[20/20/20/20] <1.6> It costs $1 billion to build a new fabrication facility. You
will be selling a range of chips from that factory, and you need to decide how
much capacity to dedicate to each chip. Your Woods chip will be 150 mm? and
will make a profit of $20 per defect-free chip. Your Markon chip will be 250
mm? and will make a profit of $25 per defect-free chip. Your fabrication facility
will be identical to that for the Power5. Each wafer has a 300 mm diameter.

[20] <1.6> How much profit do you make on each wafer of Woods chip?
[20] <1.6> How much profit do you make on each wafer of Markon chip?

a.
b.
c. [20] <1.6> Which chip should you produce in this facility?

d. [20] <1.6> What is the profit on each new Power5 chip? If your demand is
50,000 Woods chips per month and 25,000 Markon chips per month, and
your facility can fabricate 150 wafers a month, how many wafers should you

make of each chip?

[20/20] <1.6> Your colleague at AMD suggests that, since the yield is so poor,
you might make chips more cheaply if you placed an extra core on the die and
only threw out chips on which both processors had failed. We will solve this
exercise by viewing the yield as a probability of no defects occurring in a certain
area given the defect rate. Calculate probabilities based on each Opteron core
separately (this may not be entirely accurate, since the yield equation is based on
empirical evidence rather than a mathematical calculation relating the probabili-
ties of finding errors in different portions of the chip).

a. [20] <1.6> What is the probability that a defect will occur on no more than
one of the two processor cores?

b. [20] <1.6> If the old chip cost $20 dollars per chip, what will the cost be of
the new chip, taking into account the new area and yield?

14

1.5

Case Studies and Exercises by Diana Franklin 63

Case Study 2: Power Consumption in Computer Systems

Concepts illustrated by this case study

m Amdahl’s Law
m Redundancy
m MTTF

m Power Consumption

Power consumption in modern systems is dependent on a variety of factors,
including the chip clock frequency, efficiency, disk drive speed, disk drive utili-
zation, and DRAM. The following exercises explore the impact on power that
different design decisions and use scenarios have.

[20/10/20] <1.5> Figure 1.23 presents the power consumption of several com-
puter system components. In this exercise, we will explore how the hard drive
affects power consumption for the system.

a. [20] <1.5> Assuming the maximum load for each component, and a power
supply efficiency of 80%, what wattage must the server’s power supply
deliver to a system with an Intel Pentium 4 chip, 2 GB 240-pin Kingston
DRAM, and one 7200 rpm hard drive?

b. [10] <1.5> How much power will the 7200 rpm disk drive consume if it is
idle roughly 60% of the time?

c. [20] <1.5> Given that the time to read data off a 7200 rpm disk drive will be
roughly 75% of a 5400 rpm disk, at what idle time of the 7200 rpm disk will
the power consumption be equal, on average, for the two disks?

[10/10/20] <1.5> One critical factor in powering a server farm is cooling. If heat
is not removed from the computer efficiently, the fans will blow hot air back onto
the computer, not cold air. We will look at how different design decisions affect
the necessary cooling, and thus the price, of a system. Use Figure 1.23 for your
power calculations.

Component

type Product Performance Power

Processor Sun Niagara 8-core 1.2 GHz 72-79 W peak
Intel Pentium 4 2 GHz 48.9-66 W

DRAM Kingston X64C3AD2 | GB 184-pin 3TW
Kingston D2N3 1 GB 240-pin 23 W

Hard drive DiamondMax 16 5400 rpm 7.0 W read/seek, 2.9 W idle
DiamondMax 9 7200 rpm 7.9 W read/seek, 4.0 W idle

Figure 1.23 Power consumption of several computer components.

64

Chapter One Fundamentals of Quantitative Design and Analysis

1.6

1.7

a.

[10] <1.5> A cooling door for a rack costs $4000 and dissipates 14 KW (into
the room; additional cost is required to get it out of the room). How many
servers with an Intel Pentium 4 processor, 1 GB 240-pin DRAM, and a single
7200 rpm hard drive can you cool with one cooling door?

[10] <1.5> You are considering providing fault tolerance for your hard drive.
RAID 1 doubles the number of disks (see Chapter 6). Now how many sys-
tems can you place on a single rack with a single cooler?

[20] <1.5> Typical server farms can dissipate a maximum of 200 W per
square foot. Given that a server rack requires 11 square feet (including front
and back clearance), how many servers from part (a) can be placed on a sin-
gle rack, and how many cooling doors are required?

[Discussion] <1.8> Figure 1.24 gives a comparison of power and performance
for several benchmarks comparing two servers: Sun Fire T2000 (which uses
Niagara) and IBM x346 (using Intel Xeon processors). This information was
reported on a Sun Web site. There are two pieces of information reported: power
and speed on two benchmarks. For the results shown, the Sun Fire T2000 is
clearly superior. What other factors might be important and thus cause someone
to choose the IBM x346 if it were superior in those areas?

[20/20/20/20] <1.6, 1.9> Your company’s internal studies show that a single-core
system is sufficient for the demand on your processing power; however, you are
exploring whether you could save power by using two cores.

a.

[20] <1.9> Assume your application is 80% parallelizable. By how much
could you decrease the frequency and get the same performance?

[20] <1.6> Assume that the voltage may be decreased linearly with the fre-
quency. Using the equation in Section 1.5, how much dynamic power would
the dual-core system require as compared to the single-core system?

[20] <1.6, 1.9> Now assume the voltage may not decrease below 25% of the
original voltage. This voltage is referred to as the voltage floor, and any volt-
age lower than that will lose the state. What percent of parallelization gives
you a voltage at the voltage floor?

[20] <1.6, 1.9> Using the equation in Section 1.5, how much dynamic power
would the dual-core system require as compared to the single-core system
when taking into account the voltage floor?

Sun Fire T2000 IBM x346
Power (watts) 298 438
SPEC;jbb (operations/sec) 63,378 39,985
Power (watts) 330 438
SPECWeb (composite) 14,001 4348

Figure 1.24 Sun power/performance comparison as selectively reported by Sun.

1.8

1.9

1.10

Case Studies and Exercises by Diana Franklin 65

Exercises

[10/15/15/10/10] <1.4, 1.5> One challenge for architects is that the design cre-
ated today will require several years of implementation, verification, and testing
before appearing on the market. This means that the architect must project what
the technology will be like several years in advance. Sometimes, this is difficult
to do.

a. [10] <1.4> According to the trend in device scaling observed by Moore’s law,
the number of transistors on a chip in 2015 should be how many times the
number in 20057

b. [15] <1.5> The increase in clock rates once mirrored this trend. Had clock
rates continued to climb at the same rate as in the 1990s, approximately how
fast would clock rates be in 2015?

c. [15] <1.5> At the current rate of increase, what are the clock rates now pro-
jected to be in 2015?

d. [10] <1.4> What has limited the rate of growth of the clock rate, and what are
architects doing with the extra transistors now to increase performance?

e. [10] <1.4> The rate of growth for DRAM capacity has also slowed down. For
20 years, DRAM capacity improved by 60% each year. That rate dropped to
40% each year and now improvement is 25 to 40% per year. If this trend con-
tinues, what will be the approximate rate of growth for DRAM capacity by
20207

[10/10] <1.5> You are designing a system for a real-time application in which
specific deadlines must be met. Finishing the computation faster gains nothing.
You find that your system can execute the necessary code, in the worst case,
twice as fast as necessary.

a. [10] <1.5> How much energy do you save if you execute at the current speed
and turn off the system when the computation is complete?

b. [10] <1.5> How much energy do you save if you set the voltage and fre-
quency to be half as much?

[10/10/20/20] <1.5> Server farms such as Google and Yahoo! provide enough
compute capacity for the highest request rate of the day. Imagine that most of the
time these servers operate at only 60% capacity. Assume further that the power
does not scale linearly with the load; that is, when the servers are operating at
60% capacity, they consume 90% of maximum power. The servers could be
turned off, but they would take too long to restart in response to more load.
A new system has been proposed that allows for a quick restart but requires 20%
of the maximum power while in this “barely alive” state.

a. [10] <1.5> How much power savings would be achieved by turning off 60%
of the servers?

b. [10] <1.5> How much power savings would be achieved by placing 60% of
the servers in the “barely alive” state?

66

Chapter One Fundamentals of Quantitative Design and Analysis

c. [20] <1.5> How much power savings would be achieved by reducing the
voltage by 20% and frequency by 40%?

d. [20] <1.5> How much power savings would be achieved by placing 30% of
the servers in the “barely alive” state and 30% off?

[10/10/20] <1.7> Availability is the most important consideration for designing
servers, followed closely by scalability and throughput.

a. [10] <1.7> We have a single processor with a failures in time (FIT) of 100.
What is the mean time to failure (MTTF) for this system?

b. [10] <1.7>If it takes 1 day to get the system running again, what is the avail-
ability of the system?

c. [20] <1.7> Imagine that the government, to cut costs, is going to build a
supercomputer out of inexpensive computers rather than expensive, reliable
computers. What is the MTTF for a system with 1000 processors? Assume
that if one fails, they all fail.

[20/20/20] <1.1, 1.2, 1.7> In a server farm such as that used by Amazon or eBay,
a single failure does not cause the entire system to crash. Instead, it will reduce
the number of requests that can be satisfied at any one time.

a. [20] <1.7> If a company has 10,000 computers, each with a MTTF of 35
days, and it experiences catastrophic failure only if 1/3 of the computers fail,
what is the MTTF for the system?

b. [20] <1.1, 1.7>If it costs an extra $1000, per computer, to double the MTTF,
would this be a good business decision? Show your work.

c. [20] <1.2> Figure 1.3 shows, on average, the cost of downtimes, assuming
that the cost is equal at all times of the year. For retailers, however, the Christ-
mas season is the most profitable (and therefore the most costly time to lose
sales). If a catalog sales center has twice as much traffic in the fourth quarter
as every other quarter, what is the average cost of downtime per hour during
the fourth quarter and the rest of the year?

[10/20/20] <1.9> Your company is trying to choose between purchasing the
Opteron or Itanium 2. You have analyzed your company’s applications, and 60%
of the time it will be running applications similar to wupwise, 20% of the time
applications similar to ammp, and 20% of the time applications similar to apsi.

a. [10] If you were choosing just based on overall SPEC performance, which
would you choose and why?

b. [20] What is the weighted average of execution time ratios for this mix of
applications for the Opteron and Itanium 2?

c. [20] What is the speedup of the Opteron over the Itanium 27?

[20/10/10/10/15] <1.9> In this exercise, assume that we are considering enhanc-
ing a machine by adding vector hardware to it. When a computation is run in vec-
tor mode on the vector hardware, it is 10 times faster than the normal mode of
execution. We call the percentage of time that could be spent using vector mode

Case Studies and Exercises by Diana Franklin 67

the percentage of vectorization. Vectors are discussed in Chapter 4, but you don’t
need to know anything about how they work to answer this question!

a. [20] <1.9> Draw a graph that plots the speedup as a percentage of the compu-
tation performed in vector mode. Label the y-axis “Net speedup” and label
the x-axis “Percent vectorization.”

b. [10] <1.9> What percentage of vectorization is needed to achieve a speedup
of 27

c. [10] <1.9> What percentage of the computation run time is spent in vector
mode if a speedup of 2 is achieved?

d. [10] <1.9> What percentage of vectorization is needed to achieve one-half
the maximum speedup attainable from using vector mode?

e. [15]<1.9> Suppose you have measured the percentage of vectorization of the
program to be 70%. The hardware design group estimates it can speed up the
vector hardware even more with significant additional investment. You won-
der whether the compiler crew could increase the percentage of vectorization,
instead. What percentage of vectorization would the compiler team need to
achieve in order to equal an addition 2x speedup in the vector unit (beyond
the initial 10x)?

[15/10] <1.9> Assume that we make an enhancement to a computer that
improves some mode of execution by a factor of 10. Enhanced mode is used 50%
of the time, measured as a percentage of the execution time when the enhanced
mode is in use. Recall that Amdahl’s law depends on the fraction of the original,
unenhanced execution time that could make use of enhanced mode. Thus, we
cannot directly use this 50% measurement to compute speedup with Amdahl’s
law.

a. [15] <1.9> What is the speedup we have obtained from fast mode?

b. [10] <1.9> What percentage of the original execution time has been con-
verted to fast mode?

[20/20/15] <1.9> When making changes to optimize part of a processor, it is
often the case that speeding up one type of instruction comes at the cost of slow-
ing down something else. For example, if we put in a complicated fast floating-
point unit, that takes space, and something might have to be moved farther away
from the middle to accommodate it, adding an extra cycle in delay to reach that
unit. The basic Amdahl’s law equation does not take into account this trade-off.

a. [20] <1.9> If the new fast floating-point unit speeds up floating-point opera-
tions by, on average, 2%, and floating-point operations take 20% of the origi-
nal program’s execution time, what is the overall speedup (ignoring the
penalty to any other instructions)?

b. [20] <1.9> Now assume that speeding up the floating-point unit slowed down
data cache accesses, resulting in a 1.5x slowdown (or 2/3 speedup). Data
cache accesses consume 10% of the execution time. What is the overall
speedup now?

68 Chapter One Fundamentals of Quantitative Design and Analysis

c. [15] <1.9> After implementing the new floating-point operations, what
percentage of execution time is spent on floating-point operations? What per-
centage is spent on data cache accesses?

[10/10/20/20] <1.10> Your company has just bought a new Intel Core i5 dual-
core processor, and you have been tasked with optimizing your software for this
processor. You will run two applications on this dual core, but the resource
requirements are not equal. The first application requires 80% of the resources,
and the other only 20% of the resources. Assume that when you parallelize a por-
tion of the program, the speedup for that portion is 2.

a. [10] <1.10> Given that 40% of the first application is parallelizable, how
much speedup would you achieve with that application if run in isolation?

b. [10] <1.10> Given that 99% of the second application is parallelizable, how
much speedup would this application observe if run in isolation?

c. [20] <1.10> Given that 40% of the first application is parallelizable, how
much overall system speedup would you observe if you parallelized it?

d. [20] <1.10> Given that 99% of the second application is parallelizable, how
much overall system speedup would you observe if you parallelized it?

[10/20/20/20/25] <1.10> When parallelizing an application, the ideal speedup is
speeding up by the number of processors. This is limited by two things: percent-
age of the application that can be parallelized and the cost of communication.
Amdahl’s law takes into account the former but not the latter.

a. [10] <1.10> What is the speedup with N processors if 80% of the application
is parallelizable, ignoring the cost of communication?

b. [20] <1.10> What is the speedup with 8 processors if, for every processor
added, the communication overhead is 0.5% of the original execution time.

c. [20] <1.10> What is the speedup with 8 processors if, for every time the num-
ber of processors is doubled, the communication overhead is increased by
0.5% of the original execution time?

d. [20] <1.10> What is the speedup with N processors if, for every time the
number of processors is doubled, the communication overhead is increased
by 0.5% of the original execution time?

e. [25] <1.10> Write the general equation that solves this question: What is the
number of processors with the highest speedup in an application in which P%
of the original execution time is parallelizable, and, for every time the num-
ber of processors is doubled, the communication is increased by 0.5% of the
original execution time?

This page intentionally left blank

2.1
2.2
23
24
25
2.6

2.7
2.8
2.9

Introduction

Ten Advanced Optimizations of Cache Performance
Memory Technology and Optimizations

Protection: Virtual Memory and Virtual Machines
Crosscutting Issues: The Design of Memory Hierarchies

Putting It All Together: Memory Hierachies in the
ARM Cortex-A8 and Intel Core i7

Fallacies and Pitfalls
Concluding Remarks: Looking Ahead
Historical Perspective and References

Case Studies and Exercises by Norman P. Jouppi,
Naveen Muralimanohar, and Sheng Li

72
78
96
105
112

113
125
129
131

131

Memory Hierarchy
Design

Ideally one would desire an indefinitely large memory capacity such
that any particular ... word would be immediately available. ... We

are ... forced to recognize the possibility of constructing a hierarchy of
memories, each of which has greater capacity than the preceding but
which is less quickly accessible.

A. W. Burks, H. H. Goldstine,
and J. von Neumann
Preliminary Discussion of the
Logical Design of an Electronic
Computing Instrument (1946)

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00003-3
© 2012 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383872-8.00003-3

© Hennessy, John L.; Patterson, David A., Oct 07, 2011, Computer Architecture : A Quantitative Approach

Morgan Kaufmann, Burlington, ISBN: 9780123838735

72 Chapter Two Memory Hierarchy Design

2.1 Introduction

Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. An economical solution to that desire is a memory hier-
archy, which takes advantage of locality and trade-offs in the cost-performance
of memory technologies. The principle of locality, presented in the first chapter,
says that most programs do not access all code or data uniformly. Locality occurs
in time (temporal locality) and in space (spatial locality). This principle, plus the
guideline that for a given implementation technology and power budget smaller
hardware can be made faster, led to hierarchies based on memories of different
speeds and sizes. Figure 2.1 shows a multilevel memory hierarchy, including typ-
ical sizes and speeds of access.

Since fast memory is expensive, a memory hierarchy is organized into several
levels—each smaller, faster, and more expensive per byte than the next lower level,
which is farther from the processor. The goal is to provide a memory system with
cost per byte almost as low as the cheapest level of memory and speed almost as
fast as the fastest level. In most cases (but not all), the data contained in a lower
level are a superset of the next higher level. This property, called the inclusion
property, is always required for the lowest level of the hierarchy, which consists of
main memory in the case of caches and disk memory in the case of virtual memory.

Memory
bus /O bus(Disk storage

Disk
memo
Register Level 1 Level 2 Level 3 Memory ,eferen:;ye
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4 MB 4-16 GB 4-16 TB
Speed: 300 ps 1ns 3-10ns 10-20 ns 50-100 ns 5-10 ms

(a) Memory hierarchy for server

Memory
bus
Memory Storage

CPU

Flash
Register Level 1 Level 2 Memory n}emory
reference Cache Cache reference relerence
reference reference
Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25-50 us

(b) Memory hierarchy for a personal mobile device

Figure 2.1 The levels in a typical memory hierarchy in a server computer shown on
top (a) and in a personal mobile device (PMD) on the bottom (b). As we move farther
away from the processor, the memory in the level below becomes slower and larger.
Note that the time units change by a factor of 10°—from picoseconds to millisec-
onds—and that the size units change by a factor of 10'>—from bytes to terabytes. The
PMD has a slower clock rate and smaller caches and main memory. A key difference is
that servers and desktops use disk storage as the lowest level in the hierarchy while
PMDs use Flash, which is built from EEPROM technology.

2.1 Introduction 73

The importance of the memory hierarchy has increased with advances in per-
formance of processors. Figure 2.2 plots single processor performance projec-
tions against the historical performance improvement in time to access main
memory. The processor line shows the increase in memory requests per second
on average (i.e., the inverse of the latency between memory references), while
the memory line shows the increase in DRAM accesses per second (i.e., the
inverse of the DRAM access latency). The situation in a uniprocessor is actually
somewhat worse, since the peak memory access rate is faster than the average
rate, which is what is plotted.

More recently, high-end processors have moved to multiple cores, further
increasing the bandwidth requirements versus single cores. In fact, the aggregate
peak bandwidth essentially grows as the numbers of cores grows. A modern high-
end processor such as the Intel Core i7 can generate two data memory references
per core each clock cycle; with four cores and a 3.2 GHz clock rate, the i7 can
generate a peak of 25.6 billion 64-bit data memory references per second, in addi-
tion to a peak instruction demand of about 12.8 billion 128-bit instruction refer-
ences; this is a total peak bandwidth of 409.6 GB/sec! This incredible bandwidth
is achieved by multiporting and pipelining the caches; by the use of multiple lev-
els of caches, using separate first- and sometimes second-level caches per core;
and by using a separate instruction and data cache at the first level. In contrast, the
peak bandwidth to DRAM main memory is only 6% of this (25 GB/sec).

100,000

10,000 e ——————————————————_ G e s

1000 et g

FOO Areeererreeremr B

Performance

0 T .

1 " T T T T T
1980 1985 1990 1995 2000 2005 2010
Year

Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance,
measured as the difference in the time between processor memory requests (for a
single processor or core) and the latency of a DRAM access, is plotted over time.
Note that the vertical axis must be on a logarithmic scale to record the size of the
processor-DRAM performance gap. The memory baseline is 64 KB DRAM in 1980, with
a 1.07 per year performance improvement in latency (see Figure 2.13 on page 99). The
processor line assumes a 1.25 improvement per year until 1986, a 1.52 improvement
until 2000, a 1.20 improvement between 2000 and 2005, and no change in processor
performance (on a per-core basis) between 2005 and 2010; see Figure 1.1 in Chapter 1.

74

Chapter Two Memory Hierarchy Design

Traditionally, designers of memory hierarchies focused on optimizing aver-
age memory access time, which is determined by the cache access time, miss
rate, and miss penalty. More recently, however, power has become a major
consideration. In high-end microprocessors, there may be 10 MB or more of
on-chip cache, and a large second- or third-level cache will consume significant
power both as leakage when not operating (called static power) and as active
power, as when performing a read or write (called dynamic power), as described
in Section 2.3. The problem is even more acute in processors in PMDs where the
CPU is less aggressive and the power budget may be 20 to 50 times smaller. In
such cases, the caches can account for 25% to 50% of the total power consump-
tion. Thus, more designs must consider both performance and power trade-offs,
and we will examine both in this chapter.

Basics of Memory Hierarchies: A Quick Review

The increasing size and thus importance of this gap led to the migration of the
basics of memory hierarchy into undergraduate courses in computer architecture,
and even to courses in operating systems and compilers. Thus, we’ll start with a
quick review of caches and their operation. The bulk of the chapter, however,
describes more advanced innovations that attack the processor—memory perfor-
mance gap.

When a word is not found in the cache, the word must be fetched from a
lower level in the hierarchy (which may be another cache or the main memory)
and placed in the cache before continuing. Multiple words, called a block (or
line), are moved for efficiency reasons, and because they are likely to be needed
soon due to spatial locality. Each cache block includes a tag to indicate which
memory address it corresponds to.

A key design decision is where blocks (or lines) can be placed in a cache. The
most popular scheme is set associative, where a set is a group of blocks in the
cache. A block is first mapped onto a set, and then the block can be placed any-
where within that set. Finding a block consists of first mapping the block address
to the set and then searching the set—usually in parallel—to find the block. The
set is chosen by the address of the data:

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set associative.
The end points of set associativity have their own names. A direct-mapped cache
has just one block per set (so a block is always placed in the same location), and
a fully associative cache has just one set (so a block can be placed anywhere).
Caching data that is only read is easy, since the copy in the cache and mem-
ory will be identical. Caching writes is more difficult; for example, how can the
copy in the cache and memory be kept consistent? There are two main strategies.
A write-through cache updates the item in the cache and writes through to update

2.1 Introduction 75

main memory. A write-back cache only updates the copy in the cache. When the
block is about to be replaced, it is copied back to memory. Both write strategies
can use a write buffer to allow the cache to proceed as soon as the data are placed
in the buffer rather than wait the full latency to write the data into memory.

One measure of the benefits of different cache organizations is miss rate.
Miss rate is simply the fraction of cache accesses that result in a miss—that is,
the number of accesses that miss divided by the number of accesses.

To gain insights into the causes of high miss rates, which can inspire better
cache designs, the three Cs model sorts all misses into three simple categories:

m Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. Compulsory misses are those that occur
even if you had an infinite sized cache.

m Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur
because of blocks being discarded and later retrieved.

m Conflict—If the block placement strategy is not fully associative, conflict
misses (in addition to compulsory and capacity misses) will occur because a
block may be discarded and later retrieved if multiple blocks map to its set
and accesses to the different blocks are intermingled.

Figures B.8 and B.9 on pages B-24 and B-25 show the relative frequency of
cache misses broken down by the three Cs. As we will see in Chapters 3 and 5,
multithreading and multiple cores add complications for caches, both increasing
the potential for capacity misses as well as adding a fourth C, for coherency
misses due to cache flushes to keep multiple caches coherent in a multiprocessor;
we will consider these issues in Chapter 5.

Alas, miss rate can be a misleading measure for several reasons. Hence, some
designers prefer measuring misses per instruction rather than misses per memory
reference (miss rate). These two are related:

Misses _ Miss rate X Memory accesses _ Miss rate X Memory accesses
Instruction Instruction count Instruction

(It is often reported as misses per 1000 instructions to use integers instead of
fractions.)

The problem with both measures is that they don’t factor in the cost of a miss.
A better measure is the average memory access time:

Average memory access time = Hit time + Miss rate X Miss penalty

where hit time is the time to hit in the cache and miss penalty is the time to replace
the block from memory (that is, the cost of a miss). Average memory access time is
still an indirect measure of performance; although it is a better measure than miss
rate, it is not a substitute for execution time. In Chapter 3 we will see that specula-
tive processors may execute other instructions during a miss, thereby reducing the

76

Chapter Two Memory Hierarchy Design

effective miss penalty. The use of multithreading (introduced in Chapter 3) also
allows a processor to tolerate missses without being forced to idle. As we will
examine shortly, to take advantage of such latency tolerating techniques we need
caches that can service requests while handling an outstanding miss.

If this material is new to you, or if this quick review moves too quickly, see
Appendix B. It covers the same introductory material in more depth and includes
examples of caches from real computers and quantitative evaluations of their
effectiveness.

Section B.3 in Appendix B presents six basic cache optimizations, which we
quickly review here. The appendix also gives quantitative examples of the bene-
fits of these optimizations. We also comment briefly on the power implications of
these trade-offs.

1. Larger block size to reduce miss rate—The simplest way to reduce the miss
rate is to take advantage of spatial locality and increase the block size. Larger
blocks reduce compulsory misses, but they also increase the miss penalty.
Because larger blocks lower the number of tags, they can slightly reduce
static power. Larger block sizes can also increase capacity or conflict misses,
especially in smaller caches. Choosing the right block size is a complex
trade-off that depends on the size of cache and the miss penalty.

2. Bigger caches to reduce miss rate—The obvious way to reduce capacity
misses is to increase cache capacity. Drawbacks include potentially longer hit
time of the larger cache memory and higher cost and power. Larger caches
increase both static and dynamic power.

3. Higher associativity to reduce miss rate—OQObviously, increasing associativity
reduces conflict misses. Greater associativity can come at the cost of
increased hit time. As we will see shortly, associativity also increases power
consumption.

4. Multilevel caches to reduce miss penalty—A difficult decision is whether to
make the cache hit time fast, to keep pace with the high clock rate of proces-
sors, or to make the cache large to reduce the gap between the processor
accesses and main memory accesses. Adding another level of cache between
the original cache and memory simplifies the decision (see Figure 2.3). The
first-level cache can be small enough to match a fast clock cycle time, yet the
second-level (or third-level) cache can be large enough to capture many
accesses that would go to main memory. The focus on misses in second-level
caches leads to larger blocks, bigger capacity, and higher associativity. Multi-
level caches are more power efficient than a single aggregate cache. If L1 and
L2 refer, respectively, to first- and second-level caches, we can redefine the
average memory access time:

Hit time; ; + Miss ratep ; X (Hit time; , + Miss rate; , X Miss penalty; 5)
5. Giving priority to read misses over writes to reduce miss penalty—A write

buffer is a good place to implement this optimization. Write buffers create
hazards because they hold the updated value of a location needed on a read

2.1 Introduction 77

900 1 m 1-way m 2-way
m 4-way m 8-way

800 A
700 -
600 -
500 A
400 A

300 A

Access time in microseconds

200 -

100 A

16 KB 32KB 64 KB 128KB 256 KB
Cache size

Figure 2.3 Access times generally increase as cache size and associativity are
increased. These data come from the CACTI model 6.5 by Tarjan, Thoziyoor, and Jouppi
[2005]. The data assume a 40 nm feature size (which is between the technology used in
Intel’s fastest and second fastest versions of the i7 and the same as the technology used
in the fastest ARM embedded processors), a single bank, and 64-byte blocks. The
assumptions about cache layout and the complex trade-offs between interconnect
delays (that depend on the size of a cache block being accessed) and the cost of tag
checks and multiplexing lead to results that are occasionally surprising, such as the
lower access time for a 64 KB with two-way set associativity versus direct mapping. Sim-
ilarly, the results with eight-way set associativity generate unusual behavior as cache
size is increased. Since such observations are highly dependent on technology and
detailed design assumptions, tools such as CACTI serve to reduce the search space
rather than precision analysis of the trade-offs.

miss—that is, a read-after-write hazard through memory. One solution is to
check the contents of the write buffer on a read miss. If there are no conflicts,
and if the memory system is available, sending the read before the writes
reduces the miss penalty. Most processors give reads priority over writes.
This choice has little effect on power consumption.

6. Avoiding address translation during indexing of the cache to reduce hit
time—Caches must cope with the translation of a virtual address from the
processor to a physical address to access memory. (Virtual memory is cov-
ered in Sections 2.4 and B.4.) A common optimization is to use the page
offset—the part that is identical in both virtual and physical addresses—to
index the cache, as described in Appendix B, page B-38. This virtual index/
physical tag method introduces some system complications and/or

78

Chapter Two Memory Hierarchy Design

2.2

limitations on the size and structure of the L1 cache, but the advantages of
removing the translation lookaside buffer (TLB) access from the critical
path outweigh the disadvantages.

Note that each of the six optimizations above has a potential disadvantage
that can lead to increased, rather than decreased, average memory access time.

The rest of this chapter assumes familiarity with the material above and the
details in Appendix B. In the Putting It All Together section, we examine the
memory hierarchy for a microprocessor designed for a high-end server, the Intel
Core i7, as well as one designed for use in a PMD, the Arm Cortex-A8, which is
the basis for the processor used in the Apple iPad and several high-end
smartphones. Within each of these classes, there is a significant diversity in
approach due to the intended use of the computer. While the high-end processor
used in the server has more cores and bigger caches than the Intel processors
designed for desktop uses, the processors have similar architectures. The differ-
ences are driven by performance and the nature of the workload; desktop com-
puters are primarily running one application at a time on top of an operating
system for a single user, whereas server computers may have hundreds of users
running potentially dozens of applications simultaneously. Because of these
workload differences, desktop computers are generally concerned more with
average latency from the memory hierarchy, whereas server computers are also
concerned about memory bandwidth. Even within the class of desktop comput-
ers there is wide diversity from lower end netbooks with scaled-down proces-
sors more similar to those found in high-end PMDs, to high-end desktops whose
processors contain multiple cores and whose organization resembles that of a
low-end server.

In contrast, PMDs not only serve one user but generally also have smaller
operating systems, usually less multitasking (running of several applications
simultaneously), and simpler applications. PMDs also typically use Flash
memory rather than disks, and most consider both performance and energy con-
sumption, which determines battery life.

Ten Advanced Optimizations of Cache Performance

The average memory access time formula above gives us three metrics for cache
optimizations: hit time, miss rate, and miss penalty. Given the recent trends, we add
cache bandwidth and power consumption to this list. We can classify the ten
advanced cache optimizations we examine into five categories based on these
metrics:

1. Reducing the hit time—Small and simple first-level caches and way-
prediction. Both techniques also generally decrease power consumption.

2. Increasing cache bandwidth—Pipelined caches, multibanked caches, and
nonblocking caches. These techniques have varying impacts on power con-
sumption.

2.2 Ten Advanced Optimizations of Cache Performance 79

3. Reducing the miss penalty—Critical word first and merging write buffers.
These optimizations have little impact on power.

4. Reducing the miss rate—Compiler optimizations. Obviously any improve-
ment at compile time improves power consumption.

5. Reducing the miss penalty or miss rate via parallelism—Hardware prefetch-
ing and compiler prefetching. These optimizations generally increase power
consumption, primarily due to prefetched data that are unused.

In general, the hardware complexity increases as we go through these optimiza-
tions. In addition, several of the optimizations require sophisticated compiler
technology. We will conclude with a summary of the implementation complexity
and the performance benefits of the ten techniques presented in Figure 2.11 on
page 96. Since some of these are straightforward, we cover them briefly; others
require more description.

First Optimization: Small and Simple First-Level Caches to
Reduce Hit Time and Power

The pressure of both a fast clock cycle and power limitations encourages limited
size for first-level caches. Similarly, use of lower levels of associativity can
reduce both hit time and power, although such trade-offs are more complex than
those involving size.

The critical timing path in a cache hit is the three-step process of addressing
the tag memory using the index portion of the address, comparing the read tag
value to the address, and setting the multiplexor to choose the correct data item if
the cache is set associative. Direct-mapped caches can overlap the tag check with
the transmission of the data, effectively reducing hit time. Furthermore, lower
levels of associativity will usually reduce power because fewer cache lines must
be accessed.

Although the total amount of on-chip cache has increased dramatically with
new generations of microprocessors, due to the clock rate impact arising from a
larger L1 cache, the size of the L1 caches has recently increased either slightly
or not at all. In many recent processors, designers have opted for more associa-
tivity rather than larger caches. An additional consideration in choosing the
associativity is the possibility of eliminating address aliases; we discuss this
shortly.

One approach to determining the impact on hit time and power consumption
in advance of building a chip is to use CAD tools. CACTI is a program to esti-
mate the access time and energy consumption of alternative cache structures on
CMOS microprocessors within 10% of more detailed CAD tools. For a given
minimum feature size, CACTI estimates the hit time of caches as cache size var-
ies, associativity, number of read/write ports, and more complex parameters.
Figure 2.3 shows the estimated impact on hit time as cache size and associativity
are varied. Depending on cache size, for these parameters the model suggests that
the hit time for direct mapped is slightly faster than two-way set associative and

80

Chapter Two Memory Hierarchy Design

that two-way set associative is 1.2 times faster than four-way and four-way is 1.4
times faster than eight-way. Of course, these estimates depend on technology as
well as the size of the cache.

Example

Answer

Using the data in Figure B.8 in Appendix B and Figure 2.3, determine whether a
32 KB four-way set associative L1 cache has a faster memory access time than a
32 KB two-way set associative L1 cache. Assume the miss penalty to L2 is 15
times the access time for the faster L1 cache. Ignore misses beyond L2. Which
has the faster average memory access time?

Let the access time for the two-way set associative cache be 1. Then, for the two-
way cache:

Average memory access timez_way = Hit time + Miss rate X Miss penalty

1+0.038x15 = 1.38

For the four-way cache, the access time is 1.4 times longer. The elapsed time of
the miss penalty is 15/1.4 = 10.1. Assume 10 for simplicity:

Average memory access timezbw;ly = Hit timez_mly X 1.4 + Miss rate X Miss penalty

1.4 +0.037x10 = 1.77

Clearly, the higher associativity looks like a bad trade-off; however, since cache
access in modern processors is often pipelined, the exact impact on the clock
cycle time is difficult to assess.

Energy consumption is also a consideration in choosing both the cache size
and associativity, as Figure 2.4 shows. The energy cost of higher associativity
ranges from more than a factor of 2 to negligible in caches of 128 KB or 256 KB
when going from direct mapped to two-way set associative.

In recent designs, there are three other factors that have led to the use of
higher associativity in first-level caches. First, many processors take at least two
clock cycles to access the cache and thus the impact of a longer hit time may not
be critical. Second, to keep the TLB out of the critical path (a delay that would be
larger than that associated with increased associativity), almost all L1 caches
should be virtually indexed. This limits the size of the cache to the page size
times the associativity, because then only the bits within the page are used for the
index. There are other solutions to the problem of indexing the cache before
address translation is completed, but increasing the associativity, which also has
other benefits, is the most attractive. Third, with the introduction of multithread-
ing (see Chapter 3), conflict misses can increase, making higher associativity
more attractive.

2.2 Ten Advanced Optimizations of Cache Performance 81

0.5 1

W 1-way H 2-way
@ 4-way M 8-way

0.45

0.4

0.35 -

0.3 4

0.25

0.2 1

0.15 1

Energy per read in nano joules

0.1 1

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Figure 2.4 Energy consumption per read increases as cache size and associativity
are increased. As in the previous figure, CACTI is used for the modeling with the same
technology parameters. The large penalty for eight-way set associative caches is due to
the cost of reading out eight tags and the corresponding data in parallel.

Second Optimization: Way Prediction to Reduce Hit Time

Another approach reduces conflict misses and yet maintains the hit speed of
direct-mapped cache. In way prediction, extra bits are kept in the cache to predict
the way, or block within the set of the next cache access. This prediction means
the multiplexor is set early to select the desired block, and only a single tag
comparison is performed that clock cycle in parallel with reading the cache data.
A miss results in checking the other blocks for matches in the next clock cycle.

Added to each block of a cache are block predictor bits. The bits select which
of the blocks to try on the next cache access. If the predictor is correct, the cache
access latency is the fast hit time. If not, it tries the other block, changes the way
predictor, and has a latency of one extra clock cycle. Simulations suggest that set
prediction accuracy is in excess of 90% for a two-way set associative cache and
80% for a four-way set associative cache, with better accuracy on I-caches than
D-caches. Way prediction yields lower average memory access time for a two-
way set associative cache if it is at least 10% faster, which is quite likely. Way
prediction was first used in the MIPS R10000 in the mid-1990s. It is popular in
processors that use two-way set associativity and is used in the ARM Cortex-A8
with four-way set associative caches. For very fast processors, it may be chal-
lenging to implement the one cycle stall that is critical to keeping the way predic-
tion penalty small.

82

Chapter Two Memory Hierarchy Design

An extended form of way prediction can also be used to reduce power con-
sumption by using the way prediction bits to decide which cache block to actu-
ally access (the way prediction bits are essentially extra address bits); this
approach, which might be called way selection, saves power when the way pre-
diction is correct but adds significant time on a way misprediction, since the
access, not just the tag match and selection, must be repeated. Such an optimiza-
tion is likely to make sense only in low-power processors. Inoue, Ishihara, and
Murakami [1999] estimated that using the way selection approach with a four-
way set associative cache increases the average access time for the I-cache by
1.04 and for the D-cache by 1.13 on the SPEC95 benchmarks, but it yields an
average cache power consumption relative to a normal four-way set associative
cache that is 0.28 for the I-cache and 0.35 for the D-cache. One significant draw-
back for way selection is that it makes it difficult to pipeline the cache access.

Example

Answer

Assume that there are half as many D-cache accesses as I-cache accesses, and
that the I-cache and D-cache are responsible for 25% and 15% of the processor’s
power consumption in a normal four-way set associative implementation. Deter-
mine if way selection improves performance per watt based on the estimates
from the study above.

For the I-cache, the savings in power is 25 x 0.28 = 0.07 of the total power, while
for the D-cache it is 15 x 0.35 = 0.05 for a total savings of 0.12. The way predic-
tion version requires 0.88 of the power requirement of the standard 4-way cache.
The increase in cache access time is the increase in I-cache average access time
plus one-half the increase in D-cache access time, or 1.04 + 0.5 x 0.13 = 1.11
times longer. This result means that way selection has 0.90 of the performance of
a standard four-way cache. Thus, way selection improves performance per joule
very slightly by a ratio of 0.90/0.88 = 1.02. This optimization is best used where
power rather than performance is the key objective.

Third Optimization: Pipelined Cache Access to Increase
Cache Bandwidth

This optimization is simply to pipeline cache access so that the effective latency
of a first-level cache hit can be multiple clock cycles, giving fast clock cycle time
and high bandwidth but slow hits. For example, the pipeline for the instruction
cache access for Intel Pentium processors in the mid-1990s took 1 clock cycle,
for the Pentium Pro through Pentium III in the mid-1990s through 2000 it took 2
clocks, and for the Pentium 4, which became available in 2000, and the current
Intel Core i7 it takes 4 clocks. This change increases the number of pipeline
stages, leading to a greater penalty on mispredicted branches and more clock
cycles between issuing the load and using the data (see Chapter 3), but it does
make it easier to incorporate high degrees of associativity.

2.2 Ten Advanced Optimizations of Cache Performance 83

Fourth Optimization: Nonblocking Caches to
Increase Cache Bandwidth

For pipelined computers that allow out-of-order execution (discussed in
Chapter 3), the processor need not stall on a data cache miss. For example, the
processor could continue fetching instructions from the instruction cache while
waiting for the data cache to return the missing data. A nonblocking cache or
lockup-free cache escalates the potential benefits of such a scheme by allowing
the data cache to continue to supply cache hits during a miss. This “hit under
miss” optimization reduces the effective miss penalty by being helpful during a
miss instead of ignoring the requests of the processor. A subtle and complex
option is that the cache may further lower the effective miss penalty if it can
overlap multiple misses: a “hit under multiple miss” or “miss under miss” opti-
mization. The second option is beneficial only if the memory system can service
multiple misses; most high-performance processors (such as the Intel Core i7)
usually support both, while lower end processors, such as the ARM A8, provide
only limited nonblocking support in L2.

To examine the effectiveness of nonblocking caches in reducing the cache
miss penalty, Farkas and Jouppi [1994] did a study assuming 8 KB caches with a
14-cycle miss penalty; they observed a reduction in the effective miss penalty of
20% for the SPECINT92 benchmarks and 30% for the SPECFP92 benchmarks
when allowing one hit under miss.

Li, Chen, Brockman, and Jouppi [2011] recently updated this study to use a
multilevel cache, more modern assumptions about miss penalties, and the
larger and more demanding SPEC2006 benchmarks. The study was done
assuming a model based on a single core of an Intel i7 (see Section 2.6) running
the SPEC2006 benchmarks. Figure 2.5 shows the reduction in data cache
access latency when allowing 1, 2, and 64 hits under a miss; the caption
describes further details of the memory system. The larger caches and the addi-
tion of an L3 cache since the earlier study have reduced the benefits with the
SPECINT2006 benchmarks showing an average reduction in cache latency of
about 9% and the SPECFP2006 benchmarks about 12.5%.

Example

Answer

Which is more important for floating-point programs: two-way set associativity or
hit under one miss for the primary data caches? What about integer programs?
Assume the following average miss rates for 32 KB data caches: 5.2% for floating-
point programs with a direct-mapped cache, 4.9% for these programs with a two-
way set associative cache, 3.5% for integer programs with a direct-mapped cache,
and 3.2% for integer programs with a two-way set associative cache. Assume the
miss penalty to L2 is 10 cycles, and the L2 misses and penalties are the same.

For floating-point programs, the average memory stall times are
Miss ratepy X Miss penalty = 5.2% x 10 = 0.52

Miss rate,_y,y X Miss penalty = 4.9% x 10 = 0.49

84

Chapter Two Memory Hierarchy Design

-=- Hit-under-1-miss Hit-under-2-misses - Hit-under-64-misses
- 100% . R
[5)
§ 90% -
£ 80%
@
o 70% A
&
o 60% -
S o
S 50% A
© 40%
EEHEEREEEREEEBEEEEEEREEE
N| P ElE|le|2|Z|B|2|2|a|E|S slel3|3|als|= £
o EU)%@CMED EchOau_"" <
< SIS S e o3 R 2
o o o =
2 I 0]
= 3 15
SPECINT SPECFP

Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or
64 hits under a cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right)
benchmarks. The data memory system modeled after the Intel i7 consists of a 32KB L1
cache with a four cycle access latency. The L2 cache (shared with instructions) is 256 KB
with a 10 clock cycle access latency. The L3 is 2 MB and a 36-cycle access latency. All the
caches are eight-way set associative and have a 64-byte block size. Allowing one hit
under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for
the floating point. Allowing a second hit improves these results to 10% and 16%, and
allowing 64 results in little additional improvement.

The cache access latency (including stalls) for two-way associativity is 0.49/0.52
or 94% of direct-mapped cache. The caption of Figure 2.5 says hit under one
miss reduces the average data cache access latency for floating point programs to
87.5% of a blocking cache. Hence, for floating-point programs, the direct
mapped data cache supporting one hit under one miss gives better performance
than a two-way set-associative cache that blocks on a miss.

For integer programs, the calculation is

Miss ratepy X Miss penalty = 3.5% x 10 = 0.35
Miss rate, y,q, X Miss penalty = 3.2% x 10 = 0.32

The data cache access latency of a two-way set associative cache is thus 0.32/0.35
or 91% of direct-mapped cache, while the reduction in access latency when
allowing a hit under one miss is 9%, making the two choices about equal.

The real difficulty with performance evaluation of nonblocking caches is that
a cache miss does not necessarily stall the processor. In this case, it is difficult to
judge the impact of any single miss and hence to calculate the average memory
access time. The effective miss penalty is not the sum of the misses but the non-
overlapped time that the processor is stalled. The benefit of nonblocking caches
is complex, as it depends upon the miss penalty when there are multiple misses,
the memory reference pattern, and how many instructions the processor can
execute with a miss outstanding.

2.2 Ten Advanced Optimizations of Cache Performance 85

In general, out-of-order processors are capable of hiding much of the miss
penalty of an L1 data cache miss that hits in the L2 cache but are not capable of
hiding a significant fraction of a lower level cache miss. Deciding how many out-
standing misses to support depends on a variety of factors:

m The temporal and spatial locality in the miss stream, which determines
whether a miss can initiate a new access to a lower level cache or to memory

m The bandwidth of the responding memory or cache

m To allow more outstanding misses at the lowest level of the cache (where the
miss time is the longest) requires supporting at least that many misses at a
higher level, since the miss must initiate at the highest level cache

m The latency of the memory system

The following simplified example shows the key idea.

Example

Answer

Assume a main memory access time of 36 ns and a memory system capable of a
sustained transfer rate of 16 GB/sec. If the block size is 64 bytes, what is the
maximum number of outstanding misses we need to support assuming that we
can maintain the peak bandwidth given the request stream and that accesses
never conflict. If the probability of a reference colliding with one of the previous
four is 50%, and we assume that the access has to wait until the earlier access
completes, estimate the number of maximum outstanding references. For sim-
plicity, ignore the time between misses.

In the first case, assuming that we can maintain the peak bandwidth, the mem-
ory system can support (16 x 10)°/64 = 250 million references per second. Since
each reference takes 36 ns, we can support 250 X 108 %36 x 10~ =9 refer-
ences. If the probability of a collision is greater than 0, then we need more out-
standing references, since we cannot start work on those references; the
memory system needs more independent references not fewer! To approxi-
mate this, we can simply assume that half the memory references need not be
issued to the memory. This means that we must support twice as many out-
standing references, or 18.

In Li, Chen, Brockman, and Jouppi’s study they found that the reduction in CPI
for the integer programs was about 7% for one hit under miss and about 12.7%
for 64. For the floating point programs, the reductions were 12.7% for one hit
under miss and 17.8% for 64. These reductions track fairly closely the reductions
in the data cache access latency shown in Figure 2.5.

Fifth Optimization: Multibanked Caches to
Increase Cache Bandwidth

Rather than treat the cache as a single monolithic block, we can divide it into
independent banks that can support simultaneous accesses. Banks were originally

86

Chapter Two Memory Hierarchy Design

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

used to improve performance of main memory and are now used inside modern
DRAM chips as well as with caches. The Arm Cortex-A8 supports one to four
banks in its L2 cache; the Intel Core i7 has four banks in L1 (to support up to 2
memory accesses per clock), and the L2 has eight banks.

Clearly, banking works best when the accesses naturally spread themselves
across the banks, so the mapping of addresses to banks affects the behavior of
the memory system. A simple mapping that works well is to spread the addresses
of the block sequentially across the banks, called sequential interleaving. For
example, if there are four banks, bank 0 has all blocks whose address modulo 4
is 0, bank 1 has all blocks whose address modulo 4 is 1, and so on. Figure 2.6
shows this interleaving. Multiple banks also are a way to reduce power con-
sumption both in caches and DRAM.

Sixth Optimization: Critical Word First and
Early Restart to Reduce Miss Penalty

This technique is based on the observation that the processor normally needs just
one word of the block at a time. This strategy is impatience: Don’t wait for the
full block to be loaded before sending the requested word and restarting the
processor. Here are two specific strategies:

m Critical word first—Request the missed word first from memory and send it
to the processor as soon as it arrives; let the processor continue execution
while filling the rest of the words in the block.

m Early restart—Fetch the words in normal order, but as soon as the requested
word of the block arrives send it to the processor and let the processor con-
tinue execution.

Generally, these techniques only benefit designs with large cache blocks,
since the benefit is low unless blocks are large. Note that caches normally con-
tinue to satisfy accesses to other blocks while the rest of the block is being filled.

Alas, given spatial locality, there is a good chance that the next reference is
to the rest of the block. Just as with nonblocking caches, the miss penalty is not
simple to calculate. When there is a second request in critical word first, the
effective miss penalty is the nonoverlapped time from the reference until the

2.2 Ten Advanced Optimizations of Cache Performance 87

second piece arrives. The benefits of critical word first and early restart depend
on the size of the block and the likelihood of another access to the portion of the
block that has not yet been fetched.

Seventh Optimization: Merging Write Buffer to
Reduce Miss Penalty

Write-through caches rely on write buffers, as all stores must be sent to the next
lower level of the hierarchy. Even write-back caches use a simple buffer when a
block is replaced. If the write buffer is empty, the data and the full address are writ-
ten in the buffer, and the write is finished from the processor’s perspective; the pro-
cessor continues working while the write buffer prepares to write the word to
memory. If the buffer contains other modified blocks, the addresses can be checked
to see if the address of the new data matches the address of a valid write buffer
entry. If so, the new data are combined with that entry. Write merging is the name of
this optimization. The Intel Core 17, among many others, uses write merging.

If the buffer is full and there is no address match, the cache (and processor)
must wait until the buffer has an empty entry. This optimization uses the mem-
ory more efficiently since multiword writes are usually faster than writes per-
formed one word at a time. Skadron and Clark [1997] found that even a
merging four-entry write buffer generated stalls that led to a 5% to 10% perfor-
mance loss.

The optimization also reduces stalls due to the write buffer being full.
Figure 2.7 shows a write buffer with and without write merging. Assume we had
four entries in the write buffer, and each entry could hold four 64-bit words.
Without this optimization, four stores to sequential addresses would fill the buf-
fer at one word per entry, even though these four words when merged exactly fit
within a single entry of the write buffer.

Note that input/output device registers are often mapped into the physical
address space. These I/O addresses cannot allow write merging because separate
I/O registers may not act like an array of words in memory. For example, they
may require one address and data word per I/O register rather than use multiword
writes using a single address. These side effects are typically implemented by
marking the pages as requiring nonmerging write through by the caches.

Eighth Optimization: Compiler Optimizations to
Reduce Miss Rate

Thus far, our techniques have required changing the hardware. This next tech-
nique reduces miss rates without any hardware changes.

This magical reduction comes from optimized software—the hardware
designer’s favorite solution! The increasing performance gap between processors
and main memory has inspired compiler writers to scrutinize the memory hierarchy
to see if compile time optimizations can improve performance. Once again, research

88

Chapter Two Memory Hierarchy Design

Write address V \ \ \
100 1 | Mem[100] | O 0 0
108 1 | Mem[108] | O 0 0
116 1 | Mem[116] | O 0 0
124 1 | Mem[124] | o 0 0

Write address V \% \'% \'%

100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] | 1 | Mem[124]

Figure 2.7 To illustrate write merging, the write buffer on top does not use it while
the write buffer on the bottom does. The four writes are merged into a single buffer
entry with write merging; without it, the buffer is full even though three-fourths of each
entry is wasted. The buffer has four entries, and each entry holds four 64-bit words. The
address for each entry is on the left, with a valid bit (V) indicating whether the next
sequential 8 bytes in this entry are occupied. (Without write merging, the words to the
right in the upper part of the figure would only be used for instructions that wrote mul-
tiple words at the same time.)

is split between improvements in instruction misses and improvements in data
misses. The optimizations presented below are found in many modern compilers.

Loop Interchange

Some programs have nested loops that access data in memory in nonsequential
order. Simply exchanging the nesting of the loops can make the code access the
data in the order in which they are stored. Assuming the arrays do not fit in the
cache, this technique reduces misses by improving spatial locality; reordering
maximizes use of data in a cache block before they are discarded. For example, if x
is a two-dimensional array of size [5000,100] allocated so that x[i,j] and
x[i,j+1] are adjacent (an order called row major, since the array is laid out by
rows), then the two pieces of code below show how the accesses can be optimized:

/* Before */
for (j = 0; j < 100; j = j+1)
for (i = 03 i < 50005 i = i+1)
x[1]1[3] = 2 * x[i][3];

2.2 Ten Advanced Optimizations of Cache Performance 89

/* After */
for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)
x[i103] = 2 * x[i][3]s

The original code would skip through memory in strides of 100 words, while the
revised version accesses all the words in one cache block before going to the next
block. This optimization improves cache performance without affecting the num-
ber of instructions executed.

Blocking

This optimization improves temporal locality to reduce misses. We are again
dealing with multiple arrays, with some arrays accessed by rows and some by
columns. Storing the arrays row by row (row major order) or column by col-
umn (column major order) does not solve the problem because both rows and
columns are used in every loop iteration. Such orthogonal accesses mean that
transformations such as loop interchange still leave plenty of room for
improvement.

Instead of operating on entire rows or columns of an array, blocked algo-
rithms operate on submatrices or blocks. The goal is to maximize accesses
to the data loaded into the cache before the data are replaced. The code
example below, which performs matrix multiplication, helps motivate the
optimization:

/* Before */

for (i = 0; 1 < N; i = i+1)
for (3 =05 § <N; J=j+l)
{r =0;
for (k = 0; k < N; k =k + 1)
ro=r + y[il[kl*z[k][i];
x[11[3] = r;

The two inner loops read all N-by-N elements of z, read the same N elements in
a row of y repeatedly, and write one row of N elements of x. Figure 2.8 gives a
snapshot of the accesses to the three arrays. A dark shade indicates a recent
access, a light shade indicates an older access, and white means not yet
accessed.

The number of capacity misses clearly depends on N and the size of the cache.
If it can hold all three N-by-N matrices, then all is well, provided there are no
cache conflicts. If the cache can hold one N-by-N matrix and one row of N, then
at least the ith row of y and the array z may stay in the cache. Less than that and
misses may occur for both x and z. In the worst case, there would be N3 + N2
memory words accessed for N* operations.

920 Chapter Two Memory Hierarchy Design

Figure 2.8 A snapshot of the three arrays x, y, and z when N = 6 and i = 1. The age of accesses to the array ele-
ments is indicated by shade: white means not yet touched, light means older accesses, and dark means newer
accesses. Compared to Figure 2.9, elements of y and z are read repeatedly to calculate new elements of x. The vari-
ables 1, j, and k are shown along the rows or columns used to access the arrays.

To ensure that the elements being accessed can fit in the cache, the original
code is changed to compute on a submatrix of size B by B. Two inner loops now
compute in steps of size B rather than the full length of x and z. B is called the
blocking factor. (Assume X is initialized to zero.)

/* After */
for (3j = 05 jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i =03 i <N; i = i+l)
for (J = 3js J <min(3j+B,N); j = j+1)
{r =0;
for (k = kk; k < min(kk+B,N); k = k + 1)
r=r + y[i][k]*z[k] [J];

x[i]1[3] = x[i1[3] + r;
}s

Figure 2.9 illustrates the accesses to the three arrays using blocking. Looking
only at capacity misses, the total number of memory words accessed is 2N*/B + N,
This total is an improvement by about a factor of B. Hence, blocking exploits a
combination of spatial and temporal locality, since y benefits from spatial locality
and z benefits from temporal locality.

Although we have aimed at reducing cache misses, blocking can also be used
to help register allocation. By taking a small blocking size such that the block can
be held in registers, we can minimize the number of loads and stores in the
program.

As we shall see in Section 4.8 of Chapter 4, cache blocking is absolutely nec-
essary to get good performance from cache-based processors running applica-
tions using matrices as the primary data structure.

2.2 Ten Advanced Optimizations of Cache Performance 91

a b W N

Figure 2.9 The age of accesses to the arrays x, y, and z when B = 3. Note that, in contrast to Figure 2.8, a smaller
number of elements is accessed.

Ninth Optimization: Hardware Prefetching of Instructions
and Data to Reduce Miss Penalty or Miss Rate

Nonblocking caches effectively reduce the miss penalty by overlapping execu-
tion with memory access. Another approach is to prefetch items before the pro-
cessor requests them. Both instructions and data can be prefetched, either
directly into the caches or into an external buffer that can be more quickly
accessed than main memory.

Instruction prefetch is frequently done in hardware outside of the cache.
Typically, the processor fetches two blocks on a miss: the requested block and the
next consecutive block. The requested block is placed in the instruction cache
when it returns, and the prefetched block is placed into the instruction stream
buffer. If the requested block is present in the instruction stream buffer, the
original cache request is canceled, the block is read from the stream buffer, and
the next prefetch request is issued.

A similar approach can be applied to data accesses [Jouppi 1990]. Palacharla
and Kessler [1994] looked at a set of scientific programs and considered multiple
stream buffers that could handle either instructions or data. They found that eight
stream buffers could capture 50% to 70% of all misses from a processor with two
64 KB four-way set associative caches, one for instructions and the other for data.

The Intel Core i7 supports hardware prefetching into both L1 and L2 with the
most common case of prefetching being accessing the next line. Some earlier
Intel processors used more aggressive hardware prefetching, but that resulted in
reduced performance for some applications, causing some sophisticated users to
turn off the capability.

Figure 2.10 shows the overall performance improvement for a subset of
SPEC2000 programs when hardware prefetching is turned on. Note that this fig-
ure includes only 2 of 12 integer programs, while it includes the majority of the
SPEC floating-point programs.

92

Performance improvement

Chapter Two Memory Hierarchy Design

2.20

2.00

1.80 A

1.60

1.40

1.20 1

1.16

1.00 -

1.97
] 1.49
145
: 1.40
] 1.32
1.26 [Ee
i 1i0 1i1 I I
gap m

cf fam3d wupwise galgel facerec swim applu lucas mgrid equake

SPECint2000 SPECfp2000

Figure 2.10 Speedup due to hardware prefetching on Intel Pentium 4 with hardware prefetching turned on for
2 of 12 SPECint2000 benchmarks and 9 of 14 SPECfp2000 benchmarks. Only the programs that benefit the most
from prefetching are shown; prefetching speeds up the missing 15 SPEC benchmarks by less than 15% [Singhal 2004].

Prefetching relies on utilizing memory bandwidth that otherwise would be
unused, but if it interferes with demand misses it can actually lower performance.
Help from compilers can reduce useless prefetching. When prefetching works
well its impact on power is negligible. When prefetched data are not used or use-
ful data are displaced, prefetching will have a very negative impact on power.

Tenth Optimization: Compiler-Controlled Prefetching to
Reduce Miss Penalty or Miss Rate

An alternative to hardware prefetching is for the compiler to insert prefetch
instructions to request data before the processor needs it. There are two flavors of
prefetch:

m Register prefetch will load the value into a register.

m Cache prefetch loads data only into the cache and not the register.

Either of these can be faulting or nonfaulting; that is, the address does or does
not cause an exception for virtual address faults and protection violations. Using
this terminology, a normal load instruction could be considered a “faulting regis-
ter prefetch instruction.” Nonfaulting prefetches simply turn into no-ops if they
would normally result in an exception, which is what we want.

2.2 Ten Advanced Optimizations of Cache Performance 93

The most effective prefetch is “semantically invisible” to a program: It
doesn’t change the contents of registers and memory, and it cannot cause Vvir-
tual memory faults. Most processors today offer nonfaulting cache prefetches.
This section assumes nonfaulting cache prefetch, also called nonbinding
prefetch.

Prefetching makes sense only if the processor can proceed while prefetching
the data; that is, the caches do not stall but continue to supply instructions and
data while waiting for the prefetched data to return. As you would expect, the
data cache for such computers is normally nonblocking.

Like hardware-controlled prefetching, the goal is to overlap execution with
the prefetching of data. Loops are the important targets, as they lend themselves
to prefetch optimizations. If the miss penalty is small, the compiler just unrolls
the loop once or twice, and it schedules the prefetches with the execution. If the
miss penalty is large, it uses software pipelining (see Appendix H) or unrolls
many times to prefetch data for a future iteration.

Issuing prefetch instructions incurs an instruction overhead, however, so
compilers must take care to ensure that such overheads do not exceed the bene-
fits. By concentrating on references that are likely to be cache misses, programs
can avoid unnecessary prefetches while improving average memory access time
significantly.

Example

Answer

For the code below, determine which accesses are likely to cause data cache
misses. Next, insert prefetch instructions to reduce misses. Finally, calculate the
number of prefetch instructions executed and the misses avoided by prefetching.
Let’s assume we have an 8 KB direct-mapped data cache with 16-byte blocks,
and it is a write-back cache that does write allocate. The elements of a and b are 8
bytes long since they are double-precision floating-point arrays. There are 3 rows
and 100 columns for a and 101 rows and 3 columns for b. Let’s also assume they
are not in the cache at the start of the program.

for (i = 0; i <3; 1 = i+1)
for (j = 0; j <1005 j = j+1)
a[i1[4] = b[jI[0] * b[j+1]1[0];

The compiler will first determine which accesses are likely to cause cache
misses; otherwise, we will waste time on issuing prefetch instructions for data
that would be hits. Elements of a are written in the order that they are stored in
memory, so a will benefit from spatial locality: The even values of j will miss
and the odd values will hit. Since a has 3 rows and 100 columns, its accesses will
lead to 3 x (100/2), or 150 misses.

The array b does not benefit from spatial locality since the accesses are not in
the order it is stored. The array b does benefit twice from temporal locality: The
same elements are accessed for each iteration of i, and each iteration of j uses
the same value of b as the last iteration. Ignoring potential conflict misses, the
misses due to b will be for b[j+1][0] accesses when i = 0, and also the first

94

Chapter Two Memory Hierarchy Design

access to b[j] [0] when j = 0. Since j goes from 0 to 99 when i = 0, accesses to
b lead to 100 + 1, or 101 misses.

Thus, this loop will miss the data cache approximately 150 times for a plus
101 times for b, or 251 misses.

To simplify our optimization, we will not worry about prefetching the first
accesses of the loop. These may already be in the cache, or we will pay the miss
penalty of the first few elements of a or b. Nor will we worry about suppressing
the prefetches at the end of the loop that try to prefetch beyond the end of a
(a[i][100] ...a[i][106])and the end of b (b[101][0] ...b[107] [0]). If these
were faulting prefetches, we could not take this luxury. Let’s assume that the miss
penalty is so large we need to start prefetching at least, say, seven iterations in
advance. (Stated alternatively, we assume prefetching has no benefit until the eighth
iteration.) We underline the changes to the code above needed to add prefetching.

for (j =05 § <100; j = j+1) {
prefetch(b[j+7]1[0]);
/* b(j,0) for 7 iterations later */
prefetch(a[0] [j+7]);
/* a(0,j) for 7 iterations later */
a[0][J] = b[j][0] * b[3+1][0]s}s
for (i = 1; i < 3; i = i+l)
for (J =03 j < 100; j = j+1) {
prefetch(al[i][j+7]);
/* a(i,j) for +7 iterations */

alil[3] = b[3I[0] * b[j+1][0];}

This revised code prefetches a[i] [7] through a[i][99] and b[7][0] through
b[100] [0], reducing the number of nonprefetched misses to

m 7 misses for elements b[0] [0], b[1] [0], ..., b[6] [0] in the first loop

m 4 misses ([72]) for elements a[0] [0], a[0][1], ..., a[0][6] in the first
loop (spatial locality reduces misses to 1 per 16-byte cache block)

m 4 misses ([7/2]) for elements a[1] [0], a[1][1], ..., a[1][6] in the second
loop

m 4 misses ([7/2]) for elements a[2] [0], a[2][1], ..., a[2] [6] in the second
loop

or a total of 19 nonprefetched misses. The cost of avoiding 232 cache misses is
executing 400 prefetch instructions, likely a good trade-off.

Example

Calculate the time saved in the example above. Ignore instruction cache misses
and assume there are no conflict or capacity misses in the data cache. Assume
that prefetches can overlap with each other and with cache misses, thereby

Answer

2.2 Ten Advanced Optimizations of Cache Performance 95

transferring at the maximum memory bandwidth. Here are the key loop times
ignoring cache misses: The original loop takes 7 clock cycles per iteration, the
first prefetch loop takes 9 clock cycles per iteration, and the second prefetch loop
takes 8 clock cycles per iteration (including the overhead of the outer for loop).
A miss takes 100 clock cycles.

The original doubly nested loop executes the multiply 3 x 100 or 300 times.
Since the loop takes 7 clock cycles per iteration, the total is 300 x 7 or 2100 clock
cycles plus cache misses. Cache misses add 251 x 100 or 25,100 clock cycles,
giving a total of 27,200 clock cycles. The first prefetch loop iterates 100 times; at
9 clock cycles per iteration the total is 900 clock cycles plus cache misses. Now
add 11 x 100 or 1100 clock cycles for cache misses, giving a total of 2000. The
second loop executes 2 X 100 or 200 times, and at 8 clock cycles per iteration it
takes 1600 clock cycles plus 8 x 100 or 800 clock cycles for cache misses. This
gives a total of 2400 clock cycles. From the prior example, we know that this
code executes 400 prefetch instructions during the 2000 + 2400 or 4400 clock
cycles to execute these two loops. If we assume that the prefetches are com-
pletely overlapped with the rest of the execution, then the prefetch code is
27,200/4400, or 6.2 times faster.

Although array optimizations are easy to understand, modern programs are
more likely to use pointers. Luk and Mowry [1999] have demonstrated that
compiler-based prefetching can sometimes be extended to pointers as well. Of
10 programs with recursive data structures, prefetching all pointers when a
node is visited improved performance by 4% to 31% in half of the programs.
On the other hand, the remaining programs were still within 2% of their origi-
nal performance. The issue is both whether prefetches are to data already in the
cache and whether they occur early enough for the data to arrive by the time it
is needed.

Many processors support instructions for cache prefetch, and high-end pro-
cessors (such as the Intel Core i7) often also do some type of automated prefetch
in hardware.

Cache Optimization Summary

The techniques to improve hit time, bandwidth, miss penalty, and miss rate gen-
erally affect the other components of the average memory access equation as well
as the complexity of the memory hierarchy. Figure 2.11 summarizes these tech-
niques and estimates the impact on complexity, with + meaning that the tech-
nique improves the factor, — meaning it hurts that factor, and blank meaning it has
no impact. Generally, no technique helps more than one category.

96 Chapter Two Memory Hierarchy Design

Hit Band- Miss Miss Power Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple caches ~ + - + 0 Trivial; widely used

Way-predicting caches 1 Used in Pentium 4

Pipelined cache access - 1 Widely used

Nonblocking caches + 3 Widely used

Banked caches + 1 Used in L2 of both i7 and
Cortex-A8

Critical word first + 2 Widely used

and early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to + 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled + + 3 Needs nonblocking cache;

prefetching possible instruction overhead;
in many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, — means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and

3 being a challenge.

2.3

Memory Technology and Optimizations

... the one single development that put computers on their feet was the invention
of areliable form of memory, namely, the core memory. ... Its cost was reasonable,
it was reliable and, because it was reliable, it could in due course be made large.
[p. 209]

Maurice Wilkes
Memoirs of a Computer Pioneer (1985)

Main memory is the next level down in the hierarchy. Main memory satisfies the
demands of caches and serves as the I/O interface, as it is the destination of input
as well as the source for output. Performance measures of main memory empha-
size both latency and bandwidth. Traditionally, main memory latency (which

2.3 Memory Technology and Optimizations 97

affects the cache miss penalty) is the primary concern of the cache, while main
memory bandwidth is the primary concern of multiprocessors and 1/0.

Although caches benefit from low-latency memory, it is generally easier to
improve memory bandwidth with new organizations than it is to reduce latency.
The popularity of multilevel caches and their larger block sizes make main
memory bandwidth important to caches as well. In fact, cache designers increase
block size to take advantage of the high memory bandwidth.

The previous sections describe what can be done with cache organization to
reduce this processor—-DRAM performance gap, but simply making caches larger
or adding more levels of caches cannot eliminate the gap. Innovations in main
memory are needed as well.

In the past, the innovation was how to organize the many DRAM chips that
made up the main memory, such as multiple memory banks. Higher bandwidth is
available using memory banks, by making memory and its bus wider, or by doing
both. Ironically, as capacity per memory chip increases, there are fewer chips in
the same-sized memory system, reducing possibilities for wider memory systems
with the same capacity.

To allow memory systems to keep up with the bandwidth demands of modern
processors, memory innovations started happening inside the DRAM chips them-
selves. This section describes the technology inside the memory chips and those
innovative, internal organizations. Before describing the technologies and
options, let’s go over the performance metrics.

With the introduction of burst transfer memories, now widely used in both
Flash and DRAM, memory latency is quoted using two measures—access time
and cycle time. Access time is the time between when a read is requested and
when the desired word arrives, and cycle time is the minimum time between
unrelated requests to memory.

Virtually all computers since 1975 have used DRAMs for main memory and
SRAMs for cache, with one to three levels integrated onto the processor chip
with the CPU. In PMDs, the memory technology often balances power and
speed, with higher end systems using fast, high-bandwidth memory technology.

SRAM Technology

The first letter of SRAM stands for static. The dynamic nature of the circuits in
DRAM requires data to be written back after being read—hence the difference
between the access time and the cycle time as well as the need to refresh. SRAMs
don’t need to refresh, so the access time is very close to the cycle time. SRAMs
typically use six transistors per bit to prevent the information from being dis-
turbed when read. SRAM needs only minimal power to retain the charge in
standby mode.

In earlier times, most desktop and server systems used SRAM chips for their
primary, secondary, or tertiary caches; today, all three levels of caches are inte-
grated onto the processor chip. Currently, the largest on-chip, third-level caches
are 12 MB, while the memory system for such a processor is likely to have 4 to

98

Chapter Two Memory Hierarchy Design

16 GB of DRAM. The access times for large, third-level, on-chip caches are typ-
ically two to four times that of a second-level cache, which is still three to five
times faster than accessing DRAM memory.

DRAM Technology

As early DRAMs grew in capacity, the cost of a package with all the necessary
address lines was an issue. The solution was to multiplex the address lines,
thereby cutting the number of address pins in half. Figure 2.12 shows the basic
DRAM organization. One-half of the address is sent first during the row access
strobe (RAS). The other half of the address, sent during the column access strobe
(CAS), follows it. These names come from the internal chip organization, since
the memory is organized as a rectangular matrix addressed by rows and columns.

An additional requirement of DRAM derives from the property signified by
its first letter, D, for dynamic. To pack more bits per chip, DRAMs use only a sin-
gle transistor to store a bit. Reading that bit destroys the information, so it must
be restored. This is one reason why the DRAM cycle time was traditionally lon-
ger than the access time; more recently, DRAMs have introduced multiple banks,
which allow the rewrite portion of the cycle to be hidden. In addition, to prevent
loss of information when a bit is not read or written, the bit must be “refreshed”
periodically. Fortunately, all the bits in a row can be refreshed simultaneously
just by reading that row. Hence, every DRAM in the memory system must access
every row within a certain time window, such as 8 ms. Memory controllers
include hardware to refresh the DRAMs periodically.

This requirement means that the memory system is occasionally unavailable
because it is sending a signal telling every chip to refresh. The time for a refresh
is typically a full memory access (RAS and CAS) for each row of the DRAM.
Since the memory matrix in a DRAM is conceptually square, the number of steps

Bank
Column |

Rd/Wr |

A
A4

Act

A

Row

Figure 2.12 Internal organization of a DRAM. Modern DRAM:s are organized in banks,
typically four for DDR3. Each bank consists of a series of rows. Sending a PRE (pre-
charge) command opens or closes a bank. A row address is sent with an Act (activate),
which causes the row to transfer to a buffer. When the row is in the buffer, it can be
transferred by successive column addresses at whatever the width of the DRAM is (typ-
ically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address.
Each command, as well as block transfers, are synchronized with a clock.

2.3 Memory Technology and Optimizations 929

in a refresh is usually the square root of the DRAM capacity. DRAM designers
try to keep time spent refreshing to less than 5% of the total time.

So far we have presented main memory as if it operated like a Swiss train,
consistently delivering the goods exactly according to schedule. Refresh belies
that analogy, since some accesses take much longer than others do. Thus, refresh
is another reason for variability of memory latency and hence cache miss penalty.

Amdahl suggested as a rule of thumb that memory capacity should grow lin-
early with processor speed to keep a balanced system, so that a 1000 MIPS pro-
cessor should have 1000 MB of memory. Processor designers rely on DRAMs to
supply that demand. In the past, they expected a fourfold improvement in capac-
ity every three years, or 55% per year. Unfortunately, the performance of
DRAMs is growing at a much slower rate. Figure 2.13 shows a performance
improvement in row access time, which is related to latency, of about 5% per
year. The CAS or data transfer time, which is related to bandwidth, is growing at
more than twice that rate.

Although we have been talking about individual chips, DRAMs are com-
monly sold on small boards called dual inline memory modules (DIMMs).
DIMMs typically contain 4 to 16 DRAMs, and they are normally organized to be
8 bytes wide (+ ECC) for desktop and server systems.

Row access strobe (RAS)

Slowest Fastest Column access strobe (CAS)/ Cycle
Production year Chipsize DRAMtype DRAM (ns) DRAM (ns) data transfer time (ns) time (ns)
1980 64K bit DRAM 180 150 75 250
1983 256K bit DRAM 150 120 50 220
1986 1M bit DRAM 120 100 25 190
1989 4M bit DRAM 100 80 20 165
1992 16M bit DRAM 80 60 15 120
1996 64M bit SDRAM 70 50 12 110
1998 128M bit SDRAM 70 50 10 100
2000 256M bit DDRI1 65 45 7 90
2002 512M bit DDRI1 60 40 5 80
2004 1G bit DDR2 55 35 5 70
2006 2G bit DDR2 50 30 2.5 60
2010 4G bit DDR3 36 28 1 37
2012 8G bit DDR3 30 24 0.5 31

Figure 2.13 Times of fast and slow DRAMs vary with each generation. (Cycle time is defined on page 97.) Perfor-
mance improvement of row access time is about 5% per year. The improvement by a factor of 2 in column access in
1986 accompanied the switch from NMOS DRAMs to CMOS DRAMs. The introduction of various burst transfer
modes in the mid-1990s and SDRAMs in the late 1990s has significantly complicated the calculation of access time
for blocks of data; we discuss this later in this section when we talk about SDRAM access time and power. The DDR4
designs are due for introduction in mid- to late 2012. We discuss these various forms of DRAMs in the next few pages.

100

Chapter Two Memory Hierarchy Design

In addition to the DIMM packaging and the new interfaces to improve the
data transfer time, discussed in the following subsections, the biggest change to
DRAMs has been a slowing down in capacity growth. DRAMs obeyed Moore’s
law for 20 years, bringing out a new chip with four times the capacity every three
years. Due to the manufacturing challenges of a single-bit DRAM, new chips
only double capacity every two years since 1998. In 2006, the pace slowed fur-
ther, with the four years from 2006 to 2010 seeing only a doubling of capacity.

Improving Memory Performance Inside a DRAM Chip

As Moore’s law continues to supply more transistors and as the processor—
memory gap increases pressure on memory performance, the ideas of the previ-
ous section have made their way inside the DRAM chip. Generally, innovation
has led to greater bandwidth, sometimes at the cost of greater latency. This sub-
section presents techniques that take advantage of the nature of DRAMs.

As mentioned earlier, a DRAM access is divided into row access and column
access. DRAMs must buffer a row of bits inside the DRAM for the column
access, and this row is usually the square root of the DRAM size—for example,
2 Kb for a 4 Mb DRAM. As DRAMs grew, additional structure and several
opportunities for increasing bandwith were added.

First, DRAMs added timing signals that allow repeated accesses to the row buf-
fer without another row access time. Such a buffer comes naturally, as each array
will buffer 1024 to 4096 bits for each access. Initially, separate column addresses
had to be sent for each transfer with a delay after each new set of column addresses.

Originally, DRAMs had an asynchronous interface to the memory controller,
so every transfer involved overhead to synchronize with the controller. The sec-
ond major change was to add a clock signal to the DRAM interface, so that the
repeated transfers would not bear that overhead. Synchronous DRAM (SDRAM)
is the name of this optimization. SDRAMs typically also have a programmable
register to hold the number of bytes requested, and hence can send many bytes
over several cycles per request. Typically, 8 or more 16-bit transfers can occur
without sending any new addresses by placing the DRAM in burst mode; this
mode, which supports critical word first transfers, is the only way that the peak
bandwidths shown in Figure 2.14 can be achieved.

Third, to overcome the problem of getting a wide stream of bits from the
memory without having to make the memory system too large as memory system
density increased, DRAMS were made wider. Initially, they offered a four-bit
transfer mode; in 2010, DDR2 and DDR3 DRAMS had up to 16-bit buses.

The fourth major DRAM innovation to increase bandwidth is to transfer data
on both the rising edge and falling edge of the DRAM clock signal, thereby dou-
bling the peak data rate. This optimization is called double data rate (DDR).

To provide some of the advantages of interleaving, as well to help with power
management, SDRAMs also introduced banks, breaking a single SDRAM into 2
to 8 blocks (in current DDR3 DRAMs) that can operate independently. (We have
already seen banks used in internal caches, and they were often used in large

2.3 Memory Technology and Optimizations 101

Standard Clock rate (MHz) M transfers per second DRAM name MB/sec /DIMM DIMM name
DDR 133 266 DDR266 2128 PC2100
DDR 150 300 DDR300 2400 PC2400
DDR 200 400 DDR400 3200 PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 5336 PC5300
DDR2 400 800 DDR2-800 6400 PC6400
DDR3 533 1066 DDR3-1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664 PC10700
DDR3 800 1600 DDR3-1600 12,800 PC12800
DDR4 1066-1600 2133-3200 DDR4-3200 17,056-25,600 PC25600

Figure 2.14 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2010. Note the numerical relation-
ship between the columns. The third column is twice the second, and the fourth uses the number from the third col-
umn in the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this
number is used in the name of the DIMM. Although not shown in this figure, DDRs also specify latency in clock cycles
as four numbers, which are specified by the DDR standard. For example, DDR3-2000 CL 9 has latencies of 9-9-9-28.
What does this mean? With a 1 ns clock (clock cycle is one-half the transfer rate), this indicates 9 ns for row to col-
umns address (RAS time), 9 ns for column access to data (CAS time), and a minimum read time of 28 ns. Closing the
row takes 9 ns for precharge but happens only when the reads from that row are finished. In burst mode, transfers
occur on every clock on both edges, when the first RAS and CAS times have elapsed. Furthermore, the precharge is
not needed until the entire row is read. DDR4 will be produced in 2012 and is expected to reach clock rates of 1600
MHz in 2014, when DDR5 is expected to take over. The exercises explore these details further.

main memories.) Creating multiple banks inside a DRAM effectively adds
another segment to the address, which now consists of bank number, row
address, and column address. When an address is sent that designates a new
bank, that bank must be opened, incurring an additional delay. The management
of banks and row buffers is completely handled by modern memory control inter-
faces, so that when subsequent access specifies the same row for an open bank,
the access can happen quickly, sending only the column address.

When DDR SDRAMs are packaged as DIMMs, they are confusingly labeled
by the peak DIMM bandwidth. Hence, the DIMM name PC2100 comes from 133
MHz x 2 x 8 bytes, or 2100 MB/sec. Sustaining the confusion, the chips them-
selves are labeled with the number of bits per second rather than their clock rate,
so a 133 MHz DDR chip is called a DDR266. Figure 2.14 shows the relation-
ships among clock rate, transfers per second per chip, chip name, DIMM band-
width, and DIMM name.

DDR is now a sequence of standards. DDR2 lowers power by dropping the
voltage from 2.5 volts to 1.8 volts and offers higher clock rates: 266 MHz,
333 MHz, and 400 MHz. DDR3 drops voltage to 1.5 volts and has a maximum
clock speed of 800 MHz. DDR4, scheduled for production in 2014, drops the
voltage to 1 to 1.2 volts and has a maximum expected clock rate of 1600 MHz.
DDRS5 will follow in about 2014 or 2015. (As we discuss in the next section,
GDDRS is a graphics RAM and is based on DDR3 DRAMs.)

102

Chapter Two Memory Hierarchy Design

Graphics Data RAMs

GDRAMs or GSDRAMs (Graphics or Graphics Synchronous DRAMs) are a
special class of DRAMs based on SDRAM designs but tailored for handling the
higher bandwidth demands of graphics processing units. GDDRS is based on
DDR3 with earlier GDDRs based on DDR2. Since Graphics Processor Units
(GPUs; see Chapter 4) require more bandwidth per DRAM chip than CPUs,
GDDRs have several important differences:

1. GDDRs have wider interfaces: 32-bits versus 4, 8, or 16 in current designs.

2. GDDRs have a higher maximum clock rate on the data pins. To allow a
higher transfer rate without incurring signaling problems, GDRAMS
normally connect directly to the GPU and are attached by soldering them to
the board, unlike DRAMs, which are normally arranged in an expandable
array of DIMMs.

Altogether, these characteristics let GDDRs run at two to five times the band-
width per DRAM versus DDR3 DRAMs, a significant advantage in supporting
GPUs. Because of the lower locality of memory requests in a GPU, burst mode
generally is less useful for a GPU, but keeping open multiple memory banks and
managing their use improves effective bandwidth.

Reducing Power Consumption in SDRAMs

Power consumption in dynamic memory chips consists of both dynamic power
used in a read or write and static or standby power; both depend on the operating
voltage. In the most advanced DDR3 SDRAMs the operating voltage has been
dropped to 1.35 to 1.5 volts, significantly reducing power versus DDR2
SDRAMs. The addition of banks also reduced power, since only the row in a sin-
gle bank is read and precharged.

In addition to these changes, all recent SDRAMs support a power down
mode, which is entered by telling the DRAM to ignore the clock. Power down
mode disables the SDRAM, except for internal automatic refresh (without which
entering power down mode for longer than the refresh time will cause the con-
tents of memory to be lost). Figure 2.15 shows the power consumption for three
situations in a 2 Gb DDR3 SDRAM. The exact delay required to return from low
power mode depends on the SDRAM, but a typical timing from autorefresh low
power mode is 200 clock cycles; additional time may be required for resetting the
mode register before the first command.

Flash Memory

Flash memory is a type of EEPROM (Electronically Erasable Programmable
Read-Only Memory), which is normally read-only but can be erased. The other
key property of Flash memory is that it holds it contents without any power.

2.3 Memory Technology and Optimizations 103

600
500
= i
E 400 B Read, write, terminate
'q:) 300 power
g 200 - W Activate power
o B Background power
100 l
0 T T

Low Typical Fully
power usage active
mode

Figure 2.15 Power consumption for a DDR3 SDRAM operating under three condi-
tions: low power (shutdown) mode, typical system mode (DRAM is active 30% of the
time for reads and 15% for writes), and fully active mode, where the DRAM is contin-
uously reading or writing when not in precharge. Reads and writes assume bursts of 8
transfers. These data are based on a Micron 1.5V 2Gb DDR3-1066.

Flash is used as the backup storage in PMDs in the same manner that a disk
functions in a laptop or server. In addition, because most PMDs have a limited
amount of DRAM, Flash may also act as a level of the memory hierarchy, to a
much larger extent than it might have to do so in the desktop or server with a
main memory that might be 10 to 100 times larger.

Flash uses a very different architecture and has different properties than stan-
dard DRAM. The most important differences are

1. Flash memory must be erased (hence the name Flash for the “flash” erase
process) before it is overwritten, and it is erased in blocks (in high-density
Flash, called NAND Flash, which is what is used in most computer applica-
tions) rather than individual bytes or words. This means when data must be
written to Flash, an entire block must be assembled, either as new data or by
merging the data to be written and the rest of the block’s contents.

2. Flash memory is static (i.e., it keeps its contents even when power is not
applied) and draws significantly less power when not reading or writing
(from less than half in standby mode to zero when completely inactive).

3. Flash memory has a limited number of write cycles for any block, typically at
least 100,000. By ensuring uniform distribution of written blocks throughout
the memory, a system can maximize the lifetime of a Flash memory system.

4. High-density Flash is cheaper than SDRAM but more expensive than disks:
roughly $2/GB for Flash, $20 to $40/GB for SDRAM, and $0.09/GB for
magnetic disks.

5. Flash is much slower than SDRAM but much faster than disk. For example, a
transfer of 256 bytes from a typical high-density Flash memory takes about
6.5 Us (using burst mode transfer similar to but slower than that used in
SDRAM). A comparable transfer from a DDR SDRAM takes about one-
quarter as long, and for a disk about 1000 times longer. For writes, the

104

Chapter Two Memory Hierarchy Design

difference is considerably larger, with the SDRAM being at least 10 and as
much as 100 times faster than Flash depending on the circumstances.

The rapid improvements in high-density Flash in the past decade have made the
technology a viable part of memory hierarchies in mobile devices and as solid-
state replacements for disks. As the rate of increase in DRAM density continues
to drop, Flash could play an increased role in future memory systems, acting as
both a replacement for hard disks and as an intermediate storage between DRAM
and disk.

Enhancing Dependability in Memory Systems

Large caches and main memories significantly increase the possibility of errors
occurring both during the fabrication process and dynamically, primarily from
cosmic rays striking a memory cell. These dynamic errors, which are changes to
a cell’s contents, not a change in the circuitry, are called soft errors. All DRAMs,
Flash memory, and many SRAMs are manufactured with spare rows, so that a
small number of manufacturing defects can be accommodated by programming
the replacement of a defective row by a spare row. In addition to fabrication
errors that must be fixed at configuration time, hard errors, which are permanent
changes in the operation of one of more memory cells, can occur in operation.

Dynamic errors can be detected by parity bits and detected and fixed by the
use of Error Correcting Codes (ECCs). Because instruction caches are read-only,
parity suffices. In larger data caches and in main memory, ECC is used to allow
errors to be both detected and corrected. Parity requires only one bit of overhead
to detect a single error in a sequence of bits. Because a multibit error would be
undetected with parity, the number of bits protected by a parity bit must be lim-
ited. One parity bit per 8 data bits is a typical ratio. ECC can detect two errors
and correct a single error with a cost of 8 bits of overhead per 64 data bits.

In very large systems, the possibility of multiple errors as well as complete
failure of a single memory chip becomes significant. Chipkill was introduced by
IBM to solve this problem, and many very large systems, such as IBM and SUN
servers and the Google Clusters, use this technology. (Intel calls their version
SDDC.) Similar in nature to the RAID approach used for disks, Chipkill distrib-
utes the data and ECC information, so that the complete failure of a single mem-
ory chip can be handled by supporting the reconstruction of the missing data
from the remaining memory chips. Using an analysis by IBM and assuming a
10,000 processor server with 4 GB per processor yields the following rates of
unrecoverable errors in three years of operation:

m Parity only—about 90,000, or one unrecoverable (or undetected) failure every
17 minutes

m ECC only—about 3500, or about one undetected or unrecoverable failure every
7.5 hours

m Chipkill—6, or about one undetected or unrecoverable failure every 2 months

24

2.4 Protection: Virtual Memory and Virtual Machines 105

Another way to look at this is to find the maximum number of servers (each with
4 GB) that can be protected while achieving the same error rate as demonstrated
for Chipkill. For parity, even a server with only one processor will have an unre-
coverable error rate higher than a 10,000-server Chipkill protected system. For
ECC, a 17-server system would have about the same failure rate as a 10,000-
server Chipkill system. Hence, Chipkill is a requirement for the 50,000 to 100,00
servers in warehouse-scale computers (see Section 6.8 of Chapter 6).

Protection: Virtual Memory and Virtual Machines

A virtual machine is taken to be an efficient, isolated duplicate of the real
machine. We explain these notions through the idea of a virtual machine monitor
(VMM). ... a VMM has three essential characteristics. First, the VMM provides an
environment for programs which is essentially identical with the original machine;
second, programs run in this environment show at worst only minor decreases in
speed; and last, the VMM is in complete control of system resources.

Gerald Popek and Robert Goldberg
“Formal requirements for virtualizable third generation architectures,”
Communications of the ACM (July 1974)

Security and privacy are two of the most vexing challenges for information tech-
nology in 2011. Electronic burglaries, often involving lists of credit card num-
bers, are announced regularly, and it’s widely believed that many more go
unreported. Hence, both researchers and practitioners are looking for new ways
to make computing systems more secure. Although protecting information is not
limited to hardware, in our view real security and privacy will likely involve
innovation in computer architecture as well as in systems software.

This section starts with a review of the architecture support for protecting
processes from each other via virtual memory. It then describes the added protec-
tion provided from virtual machines, the architecture requirements of virtual
machines, and the performance of a virtual machine. As we will see in Chapter 6,
virtual machines are a foundational technology for cloud computing.

Protection via Virtual Memory

Page-based virtual memory, including a translation lookaside buffer that caches
page table entries, is the primary mechanism that protects processes from each
other. Sections B.4 and B.5 in Appendix B review virtual memory, including a
detailed description of protection via segmentation and paging in the 80x86. This
subsection acts as a quick review; refer to those sections if it’s too quick.
Multiprogramming, where several programs running concurrently would
share a computer, led to demands for protection and sharing among programs and

Guanglin
高亮

106

Chapter Two Memory Hierarchy Design

to the concept of a process. Metaphorically, a process is a program’s breathing air
and living space—that is, a running program plus any state needed to continue
running it. At any instant, it must be possible to switch from one process to
another. This exchange is called a process switch or context switch.

The operating system and architecture join forces to allow processes to share the
hardware yet not interfere with each other. To do this, the architecture must limit
what a process can access when running a user process yet allow an operating sys-
tem process to access more. At a minimum, the architecture must do the following:

1. Provide at least two modes, indicating whether the running process is a user
process or an operating system process. This latter process is sometimes
called a kernel process or a supervisor process.

2. Provide a portion of the processor state that a user process can use but not
write. This state includes a user/supervisor mode bit, an exception enable/dis-
able bit, and memory protection information. Users are prevented from writ-
ing this state because the operating system cannot control user processes if
users can give themselves supervisor privileges, disable exceptions, or
change memory protection.

3. Provide mechanisms whereby the processor can go from user mode to super-
visor mode and vice versa. The first direction is typically accomplished by a
system call, implemented as a special instruction that transfers control to a
dedicated location in supervisor code space. The PC is saved from the point
of the system call, and the processor is placed in supervisor mode. The return
to user mode is like a subroutine return that restores the previous user/super-
visor mode.

4. Provide mechanisms to limit memory accesses to protect the memory state of
a process without having to swap the process to disk on a context switch.

Appendix A describes several memory protection schemes, but by far the
most popular is adding protection restrictions to each page of virtual memory.
Fixed-sized pages, typically 4 KB or 8 KB long, are mapped from the virtual
address space into physical address space via a page table. The protection restric-
tions are included in each page table entry. The protection restrictions might
determine whether a user process can read this page, whether a user process can
write to this page, and whether code can be executed from this page. In addition,
a process can neither read nor write a page if it is not in the page table. Since only
the OS can update the page table, the paging mechanism provides total access
protection.

Paged virtual memory means that every memory access logically takes at
least twice as long, with one memory access to obtain the physical address and a
second access to get the data. This cost would be far too dear. The solution is to
rely on the principle of locality; if the accesses have locality, then the address
translations for the accesses must also have locality. By keeping these address
translations in a special cache, a memory access rarely requires a second access
to translate the address. This special address translation cache is referred to as a
translation lookaside buffer (TLB).

2.4 Protection: Virtual Memory and Virtual Machines 107

A TLB entry is like a cache entry where the tag holds portions of the virtual
address and the data portion holds a physical page address, protection field, valid
bit, and usually a use bit and a dirty bit. The operating system changes these bits
by changing the value in the page table and then invalidating the corresponding
TLB entry. When the entry is reloaded from the page table, the TLB gets an accu-
rate copy of the bits.

Assuming the computer faithfully obeys the restrictions on pages and maps
virtual addresses to physical addresses, it would seem that we are done. Newspa-
per headlines suggest otherwise.

The reason we’re not done is that we depend on the accuracy of the operating
system as well as the hardware. Today’s operating systems consist of tens of
millions of lines of code. Since bugs are measured in number per thousand lines
of code, there are thousands of bugs in production operating systems. Flaws in
the OS have led to vulnerabilities that are routinely exploited.

This problem and the possibility that not enforcing protection could be much
more costly than in the past have led some to look for a protection model with a
much smaller code base than the full OS, such as Virtual Machines.

Protection via Virtual Machines

An idea related to virtual memory that is almost as old are Virtual Machines
(VMs). They were first developed in the late 1960s, and they have remained an
important part of mainframe computing over the years. Although largely ignored
in the domain of single-user computers in the 1980s and 1990s, they have
recently gained popularity due to

m The increasing importance of isolation and security in modern systems
m The failures in security and reliability of standard operating systems

m The sharing of a single computer among many unrelated users, such as in a
datacenter or cloud

m The dramatic increases in the raw speed of processors, which make the over-
head of VMs more acceptable

The broadest definition of VMs includes basically all emulation methods that
provide a standard software interface, such as the Java VM. We are interested in
VMs that provide a complete system-level environment at the binary instruction
set architecture (ISA) level. Most often, the VM supports the same ISA as the
underlying hardware; however, it is also possible to support a different ISA, and
such approaches are often employed when migrating between ISAs, so as to
allow software from the departing ISA to be used until it can be ported to the new
ISA. Our focus here will be in VMs where the ISA presented by the VM and the
underlying hardware match. Such VMs are called (Operating) System Virtual
Machines. IBM VM/370, VMware ESX Server, and Xen are examples. They
present the illusion that the users of a VM have an entire computer to themselves,

108

Chapter Two Memory Hierarchy Design

including a copy of the operating system. A single computer runs multiple VMs
and can support a number of different operating systems (OSes). On a conven-
tional platform, a single OS “owns” all the hardware resources, but with a VM
multiple OSes all share the hardware resources.

The software that supports VMs is called a virtual machine monitor (VMM)
or hypervisor; the VMM is the heart of virtual machine technology. The underly-
ing hardware platform is called the host, and its resources are shared among the
guest VMs. The VMM determines how to map virtual resources to physical
resources: A physical resource may be time-shared, partitioned, or even emulated
in software. The VMM is much smaller than a traditional OS; the isolation por-
tion of a VMM is perhaps only 10,000 lines of code.

In general, the cost of processor virtualization depends on the workload.
User-level processor-bound programs, such as SPEC CPU2006, have zero
virtualization overhead because the OS is rarely invoked so everything runs at
native speeds. Conversely, I/O-intensive workloads generally are also OS-inten-
sive and execute many system calls (which doing I/O requires) and privileged
instructions that can result in high virtualization overhead. The overhead is
determined by the number of instructions that must be emulated by the VMM
and how slowly they are emulated. Hence, when the guest VMs run the same
ISA as the host, as we assume here, the goal of the architecture and the VMM is
to run almost all instructions directly on the native hardware. On the other hand,
if the I/O-intensive workload is also I/O-bound, the cost of processor virtualiza-
tion can be completely hidden by low processor utilization since it is often wait-
ing for I/0O.

Although our interest here is in VMs for improving protection, VMs provide
two other benefits that are commercially significant:

1. Managing software—VMs provide an abstraction that can run the complete
software stack, even including old operating systems such as DOS. A typical
deployment might be some VMs running legacy OSes, many running the cur-
rent stable OS release, and a few testing the next OS release.

2. Managing hardware—One reason for multiple servers is to have each appli-
cation running with its own compatible version of the operating system on
separate computers, as this separation can improve dependability. VMs allow
these separate software stacks to run independently yet share hardware,
thereby consolidating the number of servers. Another example is that some
VMMs support migration of a running VM to a different computer, either to
balance load or to evacuate from failing hardware.

These two reasons are why cloud-based servers, such as Amazon’s, rely on vir-
tual machines.

Requirements of a Virtual Machine Monitor

What must a VM monitor do? It presents a software interface to guest software, it
must isolate the state of guests from each other, and it must protect itself from
guest software (including guest OSes). The qualitative requirements are

2.4 Protection: Virtual Memory and Virtual Machines 109

m Guest software should behave on a VM exactly as if it were running on the
native hardware, except for performance-related behavior or limitations of
fixed resources shared by multiple VMs.

m Guest software should not be able to change allocation of real system
resources directly.

To “virtualize” the processor, the VMM must control just about everything—
access to privileged state, address translation, I/O, exceptions and interrupts—
even though the guest VM and OS currently running are temporarily using
them.

For example, in the case of a timer interrupt, the VMM would suspend the cur-
rently running guest VM, save its state, handle the interrupt, determine which guest
VM to run next, and then load its state. Guest VMs that rely on a timer interrupt are
provided with a virtual timer and an emulated timer interrupt by the VMM.

To be in charge, the VMM must be at a higher privilege level than the guest
VM, which generally runs in user mode; this also ensures that the execution of
any privileged instruction will be handled by the VMM. The basic requirements
of system virtual machines are almost identical to those for paged virtual mem-
ory listed above:

m At least two processor modes, system and user.

m A privileged subset of instructions that is available only in system mode,
resulting in a trap if executed in user mode. All system resources must be
controllable only via these instructions.

(Lack of) Instruction Set Architecture Support for
Virtual Machines

If VMs are planned for during the design of the ISA, it’s relatively easy to both
reduce the number of instructions that must be executed by a VMM and how
long it takes to emulate them. An architecture that allows the VM to execute
directly on the hardware earns the title virtualizable, and the IBM 370 architec-
ture proudly bears that label.

Alas, since VMs have been considered for desktop and PC-based server
applications only fairly recently, most instruction sets were created without virtu-
alization in mind. These culprits include 80x86 and most RISC architectures.

Because the VMM must ensure that the guest system only interacts with vir-
tual resources, a conventional guest OS runs as a user mode program on top of
the VMM. Then, if a guest OS attempts to access or modify information related
to hardware resources via a privileged instruction—for example, reading or writ-
ing the page table pointer—it will trap to the VMM. The VMM can then effect
the appropriate changes to corresponding real resources.

Hence, if any instruction that tries to read or write such sensitive information
traps when executed in user mode, the VMM can intercept it and support a virtual
version of the sensitive information as the guest OS expects.

110

Chapter Two Memory Hierarchy Design

In the absence of such support, other measures must be taken. A VMM must
take special precautions to locate all problematic instructions and ensure that they
behave correctly when executed by a guest OS, thereby increasing the complex-
ity of the VMM and reducing the performance of running the VM.

Sections 2.5 and 2.7 give concrete examples of problematic instructions in
the 80x86 architecture.

Impact of Virtual Machines on Virtual Memory and 1/0

Another challenge is virtualization of virtual memory, as each guest OS in every
VM manages its own set of page tables. To make this work, the VMM separates
the notions of real and physical memory (which are often treated synonymously)
and makes real memory a separate, intermediate level between virtual memory
and physical memory. (Some use the terms virtual memory, physical memory, and
machine memory to name the same three levels.) The guest OS maps virtual
memory to real memory via its page tables, and the VMM page tables map the
guests’ real memory to physical memory. The virtual memory architecture is
specified either via page tables, as in IBM VM/370 and the 80x86, or via the
TLB structure, as in many RISC architectures.

Rather than pay an extra level of indirection on every memory access, the
VMM maintains a shadow page table that maps directly from the guest virtual
address space to the physical address space of the hardware. By detecting all mod-
ifications to the guest’s page table, the VMM can ensure the shadow page table
entries being used by the hardware for translations correspond to those of the
guest OS environment, with the exception of the correct physical pages substi-
tuted for the real pages in the guest tables. Hence, the VMM must trap any attempt
by the guest OS to change its page table or to access the page table pointer. This is
commonly done by write protecting the guest page tables and trapping any access
to the page table pointer by a guest OS. As noted above, the latter happens natu-
rally if accessing the page table pointer is a privileged operation.

The IBM 370 architecture solved the page table problem in the 1970s with an
additional level of indirection that is managed by the VMM. The guest OS keeps
its page tables as before, so the shadow pages are unnecessary. AMD has pro-
posed a similar scheme for their Pacifica revision to the 80x86.

To virtualize the TLB in many RISC computers, the VMM manages the real
TLB and has a copy of the contents of the TLB of each guest VM. To pull this
off, any instructions that access the TLB must trap. TLBs with Process ID tags
can support a mix of entries from different VMs and the VMM, thereby avoid-
ing flushing of the TLB on a VM switch. Meanwhile, in the background, the
VMM supports a mapping between the VMs’ virtual Process IDs and the real
Process IDs.

The final portion of the architecture to virtualize is I/O. This is by far the most
difficult part of system virtualization because of the increasing number of I/O
devices attached to the computer and the increasing diversity of I/O device types.
Another difficulty is the sharing of a real device among multiple VMs, and yet
another comes from supporting the myriad of device drivers that are required,

2.4 Protection: Virtual Memory and Virtual Machines 111

especially if different guest OSes are supported on the same VM system. The VM
illusion can be maintained by giving each VM generic versions of each type of I/O
device driver, and then leaving it to the VMM to handle real I/O.

The method for mapping a virtual to physical I/O device depends on the type
of device. For example, physical disks are normally partitioned by the VMM to
create virtual disks for guest VMs, and the VMM maintains the mapping of vir-
tual tracks and sectors to the physical ones. Network interfaces are often shared
between VMs in very short time slices, and the job of the VMM is to keep track
of messages for the virtual network addresses to ensure that guest VMs receive
only messages intended for them.

An Example VMM: The Xen Virtual Machine

Early in the development of VMs, a number of inefficiencies became apparent.
For example, a guest OS manages its virtual to real page mapping, but this map-
ping is ignored by the VMM, which performs the actual mapping to physical
pages. In other words, a significant amount of wasted effort is expended just to
keep the guest OS happy. To reduce such inefficiencies, VMM developers
decided that it may be worthwhile to allow the guest OS to be aware that it is run-
ning on a VM. For example, a guest OS could assume a real memory as large as
its virtual memory so that no memory management is required by the guest OS.

Allowing small modifications to the guest OS to simplify virtualization is
referred to as paravirtualization, and the open source Xen VMM is a good exam-
ple. The Xen VMM, which is used in Amazon’s Web services data centers, pro-
vides a guest OS with a virtual machine abstraction that is similar to the physical
hardware, but it drops many of the troublesome pieces. For example, to avoid
flushing the TLB, Xen maps itself into the upper 64 MB of the address space of
each VM. It allows the guest OS to allocate pages, just checking to be sure it does
not violate protection restrictions. To protect the guest OS from the user pro-
grams in the VM, Xen takes advantage of the four protection levels available in
the 80x86. The Xen VMM runs at the highest privilege level (0), the guest OS
runs at the next level (1), and the applications run at the lowest privilege level
(3). Most OSes for the 80x86 keep everything at privilege levels 0 or 3.

For subsetting to work properly, Xen modifies the guest OS to not use prob-
lematic portions of the architecture. For example, the port of Linux to Xen
changes about 3000 lines, or about 1% of the 80x86-specific code. These
changes, however, do not affect the application-binary interfaces of the guest OS.

To simplify the I/O challenge of VMs, Xen assigned privileged virtual
machines to each hardware I/O device. These special VMs are called driver
domains. (Xen calls its VMs “domains.”) Driver domains run the physical device
drivers, although interrupts are still handled by the VMM before being sent to the
appropriate driver domain. Regular VMs, called guest domains, run simple vir-
tual device drivers that must communicate with the physical device drivers in the
driver domains over a channel to access the physical I/O hardware. Data are sent
between guest and driver domains by page remapping.

112

Chapter Two Memory Hierarchy Design

2.5

Crosscutting Issues: The Design of
Memory Hierarchies

This section describes three topics discussed in other chapters that are fundamen-
tal to memory hierarchies.

Protection and Instruction Set Architecture

Protection is a joint effort of architecture and operating systems, but architects
had to modify some awkward details of existing instruction set architectures
when virtual memory became popular. For example, to support virtual memory in
the IBM 370, architects had to change the successful IBM 360 instruction set
architecture that had been announced just 6 years before. Similar adjustments are
being made today to accommodate virtual machines.

For example, the 80x86 instruction POPF loads the flag registers from the
top of the stack in memory. One of the flags is the Interrupt Enable (IE) flag.
Until recent changes to support virtualization, running the POPF instruction in
user mode, rather than trapping it, simply changed all the flags except IE. In
system mode, it does change the IE flag. Since a guest OS runs in user mode
inside a VM, this was a problem, as it would expect to see a changed IE.
Extensions of the 80x86 architecture to support virtualization eliminated this
problem.

Historically, IBM mainframe hardware and VMM took three steps to
improve performance of virtual machines:

1. Reduce the cost of processor virtualization.
2. Reduce interrupt overhead cost due to the virtualization.

3. Reduce interrupt cost by steering interrupts to the proper VM without invok-
ing VMM.

IBM is still the gold standard of virtual machine technology. For example, an
IBM mainframe ran thousands of Linux VMs in 2000, while Xen ran 25 VMs in
2004 [Clark et al. 2004]. Recent versions of Intel and AMD chipsets have added
special instructions to support devices in a VM, to mask interrupts at lower levels
from each VM, and to steer interrupts to the appropriate VM.

Coherency of Cached Data

Data can be found in memory and in the cache. As long as the processor is the
sole component changing or reading the data and the cache stands between the
processor and memory, there is little danger in the processor seeing the old or
stale copy. As we will see, multiple processors and I/O devices raise the opportu-
nity for copies to be inconsistent and to read the wrong copy.

The frequency of the cache coherency problem is different for multipro-
cessors than I/0. Multiple data copies are a rare event for [/O—one to be

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 113

2.6

avoided whenever possible—but a program running on multiple processors
will want to have copies of the same data in several caches. Performance of a
multiprocessor program depends on the performance of the system when
sharing data.

The I/O cache coherency question is this: Where does the I/O occur in the
computer—between the I/O device and the cache or between the /O device and
main memory? If input puts data into the cache and output reads data from the
cache, both I/O and the processor see the same data. The difficulty in this
approach is that it interferes with the processor and can cause the processor to
stall for I/O. Input may also interfere with the cache by displacing some informa-
tion with new data that are unlikely to be accessed soon.

The goal for the I/O system in a computer with a cache is to prevent the
stale data problem while interfering as little as possible. Many systems,
therefore, prefer that I/O occur directly to main memory, with main memory
acting as an I/O buffer. If a write-through cache were used, then memory would
have an up-to-date copy of the information, and there would be no stale data
issue for output. (This benefit is a reason processors used write through.) Alas,
write through is usually found today only in first-level data caches backed by
an L2 cache that uses write back.

Input requires some extra work. The software solution is to guarantee that no
blocks of the input buffer are in the cache. A page containing the buffer can be
marked as noncachable, and the operating system can always input to such a
page. Alternatively, the operating system can flush the buffer addresses from the
cache before the input occurs. A hardware solution is to check the I/O addresses
on input to see if they are in the cache. If there is a match of I/O addresses in the
cache, the cache entries are invalidated to avoid stale data. All of these
approaches can also be used for output with write-back caches.

Processor cache coherency is a critical subject in the age of multicore proces-
sors, and we will examine it in detail in Chapter 5.

Putting It All Together: Memory Hierachies in the

ARM Cortex-A8 and Intel Core i7

This section reveals the ARM Cortex-A8 (hereafter called the Cortex-A8) and
Intel Core i7 (hereafter called i17) memory hierarchies and shows the performance
of their components on a set of single threaded benchmarks. We examine the
Cortex-AS8 first because it has a simpler memory system; we go into more detail
for the 17, tracing out a memory reference in detail. This section presumes that
readers are familiar with the organization of a two-level cache hierarchy using
virtually indexed caches. The basics of such a memory system are explained in
detail in Appendix B, and readers who are uncertain of the organization of such a
system are strongly advised to review the Opteron example in Appendix B. Once
they understand the organization of the Opteron, the brief explanation of the
Cortex-A8 system, which is similar, will be easy to follow.

114

Chapter Two Memory Hierarchy Design

The ARM Cortex-A8

The Cortex-A8 is a configurable core that supports the ARMv7 instruction set
architecture. It is delivered as an IP (Intellectual Property) core. IP cores are the
dominant form of technology delivery in the embedded, PMD, and related mar-
kets; billions of ARM and MIPS processors have been created from these IP
cores. Note that IP cores are different than the cores in the Intel i7 or AMD Ath-
lon multicores. An IP core (which may itself be a multicore) is designed to be
incorporated with other logic (hence it is the core of a chip), including applica-
tion-specific processors (such as an encoder or decoder for video), I/O interfaces,
and memory interfaces, and then fabricated to yield a processor optimized for a
particular application. For example, the Cortex-A8 IP core is used in the Apple
iPad and smartphones by several manufacturers including Motorola and Sam-
sung. Although the processor core is almost identical, the resultant chips have
many differences.

Generally, IP cores come in two flavors. Hard cores are optimized for a par-
ticular semiconductor vendor and are black boxes with external (but still on-chip)
interfaces. Hard cores typically allow parametrization only of logic outside the
core, such as L2 cache sizes, and the IP core cannot be modified. Soft cores are
usually delivered in a form that uses a standard library of logic elements. A soft
core can be compiled for different semiconductor vendors and can also be modi-
fied, although extensive modifications are very difficult due to the complexity of
modern-day IP cores. In general, hard cores provide higher performance and
smaller die area, while soft cores allow retargeting to other vendors and can be
more easily modified.

The Cortex-A8 can issue two instructions per clock at clock rates up to
1GHz. It can support a two-level cache hierarchy with the first level being a pair
of caches (for I & D), each 16 KB or 32 KB organized as four-way set associative
and using way prediction and random replacement. The goal is to have single-
cycle access latency for the caches, allowing the Cortex-A8 to maintain a load-
to-use delay of one cycle, simpler instruction fetch, and a lower penalty for fetch-
ing the correct instruction when a branch miss causes the wrong instruction to be
prefetched. The optional second-level cache when present is eight-way set asso-
ciative and can be configured with 128 KB up to 1 MB; it is organized into one to
four banks to allow several transfers from memory to occur concurrently. An
external bus of 64 to 128 bits handles memory requests. The first-level cache is
virtually indexed and physically tagged, and the second-level cache is physically
indexed and tagged; both levels use a 64-byte block size. For the D-cache of 32
KB and a page size of 4 KB, each physical page could map to two different cache
addresses; such aliases are avoided by hardware detection on a miss as in Section
B.3 of Appendix B.

Memory management is handled by a pair of TLBs (I and D), each of which
are fully associative with 32 entries and a variable page size (4 KB, 16 KB, 64
KB, 1 MB, and 16 MB); replacement in the TLB is done by a round robin algo-
rithm. TLB misses are handled in hardware, which walks a page table structure in

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 115

memory. Figure 2.16 shows how the 32-bit virtual address is used to index the
TLB and the caches, assuming 32 KB primary caches and a 512 KB secondary
cache with 16 KB page size.

Performance of the Cortex-A8 Memory Hierarchy

The memory hierarchy of the Cortex-A8 was simulated with 32 KB primary
caches and a 1 MB eight-way set associative L2 cache using the integer
Minnespec benchmarks (see KleinOsowski and Lilja [2002]). Minnespec is a
set of benchmarks consisting of the SPEC2000 benchmarks but with different
inputs that reduce the running times by several orders of magnitude. Although
the use of smaller inputs does not change the instruction mix, it does affect the

Virtual add ress <32> |

l

| Virtual page number <18> | Page offset <14> |

L TLBtag <19>

| L1 cache index <7> | Block offset <6> |

TLB data <19>

To CPU

H“ L1 cache tag <19> L1 data <64>

[

To CPU

| P hysical address <32> |

l 1 |

| L2 tag compare address <15> | L2 cache index <11> | Block offset <6> |
| To CPU

L2 cache tag <15> L2 data <512>

To L1 cache or CPU

Figure 2.16 The virtual address, physical address, indexes, tags, and data blocks for the ARM Cortex-A8 data
caches and data TLB. Since the instruction and data hierarchies are symmetric, we show only one. The TLB (instruc-
tion or data) is fully associative with 32 entries. The L1 cache is four-way set associative with 64-byte blocks and 32 KB
capacity. The L2 cache is eight-way set associative with 64-byte blocks and 1 MB capacity. This figure doesn’t show
the valid bits and protection bits for the caches and TLB, nor the use of the way prediction bits that would dictate the
predicted bank of the L1 cache.

116

Chapter Two Memory Hierarchy Design

cache behavior. For example, on mcf, the most memory-intensive SPEC2000
integer benchmark, Minnespec has a miss rate for a 32 KB cache that is only 65%
of the miss rate for the full SPEC version. For a 1 MB cache the difference is a
factor of 6! On many other benchmarks the ratios are similar to those on mcf, but
the absolute miss rates are much smaller. For this reason, one cannot compare the
Minniespec benchmarks against the SPEC2000 benchmarks. Instead, the data are
useful for looking at the relative impact of L1 and L2 misses and on overall CPI,
as we do in the next chapter.

The instruction cache miss rates for these benchmarks (and also for the full
SPEC2000 versions on which Minniespec is based) are very small even for just
the L1: close to zero for most and under 1% for all of them. This low rate proba-
bly results from the computationally intensive nature of the SPEC programs
and the four-way set associative cache that eliminates most conflict misses.
Figure 2.17 shows the data cache results, which have significant L1 and L2 miss
rates. The L1 miss penalty for a 1 GHz Cortex-A8 is 11 clock cycles, while the

25%

—@- L1 data miss rate
-~ L2 global data miss rate

200/0 B .5 0coco00cconn0sooam00e5590c00050000090c00d Jod lona00c0000650050006550065050 600690006900 C00B0500530065590600630006993C600G05006300E590065053000

'150/0_ ..

Data miss rate

FOY —rrrrrrermreer e |

5%_ ...

O‘Vo'—. T T
gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2

Figure 2.17 The data miss rate for ARM with a 32 KB L1 and the global data miss rate
for a 1 MB L2 using the integer Minnespec benchmarks are significantly affected by
the applications. Applications with larger memory footprints tend to have higher miss
rates in both L1 and L2. Note that the L2 rate is the global miss rate, that is counting all
references, including those that hit in L1. Mcf is known as a cache buster.

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 117

5
4.5 M L2 data average memory penalty | |
[L1 data average memory penalty
4

w
[

w

N

Miss penalty per data reference
N
(6]

-
;]

O-:_ Ll -RIEN . ,H,[

gzip vpr mcf crafty parser eon perlbmk gap vortex bzip2

Figure 2.18 The average memory access penalty per data memory reference
coming from L1 and L2 is shown for the ARM processor when running Minniespec.
Although the miss rates for L1 are significantly higher, the L2 miss penalty, which is
more than five times higher, means that the L2 misses can contribute significantly.

L2 miss penalty is 60 clock cycles, using DDR SDRAMs for the main memory.
Using these miss penalties, Figure 2.18 shows the average penalty per data
access. In the next chapter, we will examine the impact of the cache misses on
overall CPIL

The Intel Core i7

The 17 supports the x86-64 instruction set architecture, a 64-bit extension of the
80x86 architecture. The 17 is an out-of-order execution processor that includes
four cores. In this chapter, we focus on the memory system design and perfor-
mance from the viewpoint of a single core. The system performance of multipro-
cessor designs, including the i7 multicore, is examined in detail in Chapter 5.
Each core in an i7 can execute up to four 80x86 instructions per clock cycle,
using a multiple issue, dynamically scheduled, 16-stage pipeline, which we
describe in detail in Chapter 3. The i7 can also support up to two simultaneous
threads per processor, using a technique called simultaneous multithreading,

118

Chapter Two Memory Hierarchy Design

described in Chapter 4. In 2010, the fastest 17 had a clock rate of 3.3 GHz, which
yields a peak instruction execution rate of 13.2 billion instructions per second, or
over 50 billion instructions per second for the four-core design.

The 17 can support up to three memory channels, each consisting of a sepa-
rate set of DIMMs, and each of which can transfer in parallel. Using DDR3-1066
(DIMM PC8500), the i7 has a peak memory bandwith of just over 25 GB/sec.

17 uses 48-bit virtual addresses and 36-bit physical addresses, yielding a max-
imum physical memory of 36 GB. Memory management is handled with a two-
level TLB (see Appendix B, Section B.4), summarized in Figure 2.19.

Figure 2.20 summarizes the i7’s three-level cache hierarchy. The first-level
caches are virtually indexed and physically tagged (see Appendix B, Section B.3),
while the L2 and L3 caches are physically indexed. Figure 2.21 is labeled with the

Characteristic Instruction TLB Data DLB Second-level TLB

Size 128 64 512

Associativity 4-way 4-way 4-way

Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU

Access latency 1 cycle 1 cycle 6 cycles

Miss 7 cycles 7 cycles Hundreds of cycles to access
page table

Figure 2.19 Characteristics of the i7’s TLB structure, which has separate first-level
instruction and data TLBs, both backed by a joint second-level TLB. The first-level
TLBs support the standard 4 KB page size, as well as having a limited number of entries
of large 2 to 4 MB pages; only 4 KB pages are supported in the second-level TLB.

Characteristic L1 L2 L3

Size 32 KB I/32 KB D 256 KB 2 MB per core

Associativity 4-way 1/8-way D 8-way 16-way

Access latency 4 cycles, pipelined 10 cycles 35 cycles

Replacement scheme Pseudo-LRU Pseudo- Pseudo-LRU but with an
LRU ordered selection algorihtm

Figure 2.20 Characteristics of the three-level cache hierarchy in the i7. All three
caches use write-back and a block size of 64 bytes. The L1 and L2 caches are separate
for each core, while the L3 cache is shared among the cores on a chip and is a total of 2
MB per core. All three caches are nonblocking and allow multiple outstanding writes.
A merging write buffer is used for the L1 cache, which holds data in the event that the
line is not present in LT when it is written. (That is, an L1 write miss does not cause the
line to be allocated.) L3 is inclusive of L1 and L2; we explore this property in further
detail when we explain multiprocessor caches. Replacement is by a variant on pseudo-
LRU; in the case of L3 the block replaced is always the lowest numbered way whose
access bit is turned off. This is not quite random but is easy to compute.

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7

119

Virtual page Page Instruction Data Data virtual page Page
number <36> offset <12> CPU <128> <64> number <36> offset <12>
PC i
- —— YR
 —
o) ©) |
<4> <1> <31> <24> <4> <1> <31> <24>
Prot V Tag Physical address Prot V Tag Physical address
| D
T — T |
L ® | L |
(128 PTEs in 4 banks) (4) (64 PTEs in 4 banks)
4:1 mux 4:1 mux
<24> <128> <64> <28>
<4> <1> <29> <24>
Lo Prot V Tag Physical address
<7> <7>
T
in 4 banks)
<7> <6> <6> <6>
[Index Block offset [Index Block offset
I V D Data D V D Tag Data
[} <1> <1> <23> <128x4> C <1> <1> <21> <128x4>
A @ A
c et ® ¢ -
H I I H I I
j ®) iy o
——@ ————@
(512 blocks in 4 banks) (512 blocks in 8 banks)
2:1 mux
<30>
V D Tag Data
<21> <9> <1> <1> <21> <512> l
L2
[Tag [Index |
C
A ®]
c voe T T
: — b
(4K blocks in 8 banks)
DIMM
<64>
b
V. D Tag Data 'Xl 'I\EA Memory Interface
3 47> <13> <1> <1> <17> <512> ‘ ' M
[Tag [Index | N O <64> <64>
S @ g
A I | Y DIMM ® DIMM
o] i |_{ 55
H —— oo ' e b
E @; \) 16:1 mux
=0 I_I_I
(128K blocks in 16 banks)

Figure 2.21 The Intel i7 memory hierarchy and the steps in both instruction and data access. We show only reads
for data. Writes are similar, in that they begin with a read (since caches are write back). Misses are handled by simply
placing the data in a write buffer, since the L1 cache is not write allocated.

120

Chapter Two Memory Hierarchy Design

steps of an access to the memory hierarchy. First, the PC is sent to the instruction
cache. The instruction cache index is

olndex _ Cache size _ 32K _ 128 = 27
" Block size X Set associativity ~ 64 x 4 -

or 7 bits. The page frame of the instruction’s address (36 = 48 — 12 bits) is sent to
the instruction TLB (step 1). At the same time the 7-bit index (plus an additional
2 bits from the block offset to select the appropriate 16 bytes, the instruction
fetch amount) from the virtual address is sent to the instruction cache (step 2).
Notice that for the four-way associative instruction cache, 13 bits are needed
for the cache address: 7 bits to index the cache plus 6 bits of block offset for the
64-byte block, but the page size is 4 KB = 22, which means that 1 bit of the
cache index must come from the virtual address. This use of 1 bit of virtual
address means that the corresponding block could actually be in two different
places in the cache, since the corresponding physical address could have either a
0 or 1 in this location. For instructions this does not pose a problem, since even if
an instruction appeared in the cache in two different locations, the two versions
must be the same. If such duplication, or aliasing, of data is allowed, the cache
must be checked when the page map is changed, which is an infrequent event.
Note that a very simple use of page coloring (see Appendix B, Section B.3) can
eliminate the possibility of these aliases. If even-address virtual pages are
mapped to even-address physical pages (and the same for odd pages), then these
aliases can never occur because the low-order bit in the virtual and physical page
number will be identical.

The instruction TLB is accessed to find a match between the address and a
valid Page Table Entry (PTE) (steps 3 and 4). In addition to translating the
address, the TLB checks to see if the PTE demands that this access result in an
exception due to an access violation.

An instruction TLB miss first goes to the L2 TLB, which contains 512 PTEs
of 4 KB page sizes and is four-way set associative. It takes two clock cycles to
load the L1 TLB from the L2 TLB. If the L2 TLB misses, a hardware algorithm
is used to walk the page table and update the TLB entry. In the worst case, the
page is not in memory, and the operating system gets the page from disk. Since
millions of instructions could execute during a page fault, the operating system
will swap in another process if one is waiting to run. Otherwise, if there is no
TLB exception, the instruction cache access continues.

The index field of the address is sent to all four banks of the instruction cache
(step 5). The instruction cache tag is 36 — 7 bits (index) — 6 bits (block offset), or
23 bits. The four tags and valid bits are compared to the physical page frame
from the instruction TLB (step 6). As the 17 expects 16 bytes each instruction
fetch, an additional 2 bits are used from the 6-bit block offset to select the appro-
priate 16 bytes. Hence, 7 + 2 or 9 bits are used to send 16 bytes of instructions to
the processor. The L1 cache is pipelined, and the latency of a hit is 4 clock cycles
(step 7). A miss goes to the second-level cache.

As mentioned earlier, the instruction cache is virtually addressed and
physically tagged. Because the second-level caches are physically addressed, the

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 121

physical page address from the TLB is composed with the page offset to make an
address to access the L2 cache. The L2 index is

Index _ Cache size _ 256K

9
= = =512=2
Block size X Set associativity 64 X 8 >

2

so the 30-bit block address (36-bit physical address — 6-bit block offset) is
divided into a 21-bit tag and a 9-bit index (step 8). Once again, the index and tag
are sent to all eight banks of the unified L2 cache (step 9), which are compared in
parallel. If one matches and is valid (step 10), it returns the block in sequential
order after the initial 10-cycle latency at a rate of 8 bytes per clock cycle.

If the L2 cache misses, the L3 cache is accessed. For a four-core i7, which
has an 8 MB L3, the index size is

Index _ Cache size 8M

13
~ Block size X Set associativity ~ 64 x 16 8192=2

2

The 13-bit index (step 11) is sent to all 16 banks of the L3 (step 12). The L3 tag,
which is 36 — (13 + 6) = 17 bits, is compared against the physical address from
the TLB (step 13). If a hit occurs, the block is returned after an initial latency at a
rate of 16 bytes per clock and placed into both L1 and L3. If L3 misses, a mem-
ory access is initiated.

If the instruction is not found in the L3 cache, the on-chip memory controller
must get the block from main memory. The i7 has three 64-bit memory channels
that can act as one 192-bit channel, since there is only one memory controller and
the same address is sent on both channels (step 14). Wide transfers happen when
both channels have identical DIMMs. Each channel supports up to four DDR
DIMMs (step 15). When the data return they are placed into L3 and L1 (step 16)
because L3 is inclusive.

The total latency of the instruction miss that is serviced by main memory is
approximately 35 processor cycles to determine that an L3 miss has occurred,
plus the DRAM latency for the critical instructions. For a single-bank DDR1600
SDRAM and 3.3 GHz CPU, the DRAM latency is about 35 ns or 100 clock
cycles to the first 16 bytes, leading to a total miss penalty of 135 clock cycles.
The memory controller fills the remainder of the 64-byte cache block at a rate of
16 bytes per memory clock cycle, which takes another 15 ns or 45 clock cycles.

Since the second-level cache is a write-back cache, any miss can lead to an
old block being written back to memory. The i7 has a 10-entry merging write
buffer that writes back dirty cache lines when the next level in the cache is
unused for a read. The write buffer is snooped by any miss to see if the cache line
exists in the buffer; if so, the miss is filled from the buffer. A similar buffer is
used between the L1 and L2 caches.

If this initial instruction is a load, the data address is sent to the data cache and
data TLBs, acting very much like an instruction cache access with one key differ-
ence. The first-level data cache is eight-way set associative, meaning that the index
is 6 bits (versus 7 for the instruction cache) and the address used to access the cache
is the same as the page offset. Hence aliases in the data cache are not a worry.

122

Chapter Two Memory Hierarchy Design

Suppose the instruction is a store instead of a load. When the store issues, it
does a data cache lookup just like a load. A miss causes the block to be placed in
a write buffer, since the L1 cache does not allocate the block on a write miss. On
a hit, the store does not update the L1 (or L2) cache until later, after it is known to
be nonspeculative. During this time the store resides in a load-store queue, part of
the out-of-order control mechanism of the processor.

The 17 also supports prefetching for L1 and L2 from the next level in the hier-
archy. In most cases, the prefetched line is simply the next block in the cache. By
prefetching only for L1 and L2, high-cost unnecessary fetches to memory are
avoided.

Performance of the i7 Memory System

We evaluate the performance of the i7 cache structure using 19 of the
SPECCPU2006 benchmarks (12 integer and 7 floating point), which were
described in Chapter 1. The data in this section were collected by Professor Lu
Peng and Ph.D. student Ying Zhang, both of Louisiana State University.

We begin with the L1 cache. The 32 KB, four-way set associative instruction
cache leads to a very low instruction miss rate, especially because the instruction
prefetch in the i7 is quite effective. Of course, how we evaluate the miss rate is a
bit tricky, since the i7 does not generate individual requests for single instruction
units, but instead prefetches 16 bytes of instruction data (between four and five
instructions typically). If, for simplicity, we examine the instruction cache miss
rate as if single instruction references were handled, then the L1 instruction cache
miss rate varies from 0.1% to 1.8%, averaging just over 0.4%. This rate is in
keeping with other studies of instruction cache behavior for the SPECCPU2006
benchmarks, which showed low instruction cache miss rates.

The L1 data cache is more interesting and even trickier to evaluate for three
reasons:

1. Because the L1 data cache is not write allocated, writes can hit but never
really miss, in the sense that a write that does not hit simply places its data in
the write buffer and does not record as a miss.

2. Because speculation may sometimes be wrong (see Chapter 3 for an exten-
sive discussion), there are references to the L1 data cache that do not corre-
spond to loads or stores that eventually complete execution. How should such
misses be treated?

3. Finally, the L1 data cache does automatic prefetching. Should prefetches that
miss be counted, and, if so, how?

To address these issues, while keeping the amount of data reasonable,
Figure 2.22 shows the L1 data cache misses in two ways: relative to the number
of loads that actually complete (often called graduation or retirement) and rela-
tive to all the L1 data cache accesses from any source. As we can see, the miss
rate when measured against only completed loads is 1.6 times higher (an average
of 9.5% versus 5.9%). Figure 2.23 shows the same data in table form.

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 123

50%

—l- L1 D misses/L1 D cache references
45% 4 —4— L1 D misses/graduated loads
40% +
35%
30%
25%
20%
15% A
10% 4
5%
%—""""T""T7T7T 777711
DA O & & 2O D& R OO o
FF TN EC KL TS SIS
PN SN RUA SRS L &K
& AR
< N +

Figure 2.22 The L1 data cache miss rate for 17 SPECCPU2006 benchmarks is shown
in two ways: relative to the actual loads that complete execution successfully and
relative to all the references to L1, which also includes prefetches, speculative loads
that do not complete, and writes, which count as references, but do not generate
misses. These data, like the rest in this section, were collected by Professor Lu Peng and
Ph.D. student Ying Zhang, both of Louisiana State University, based on earlier studies of
the Intel Core Duo and other processors (see Peng et al. [2008]).

L1 data misses/ L1 data misses/
Benchmark graduated loads L1 data cache references
PERLBENCH 2% 1%
BZIP2 5% 3%
GCC 14% 6%
MCF 46% 24%
GOBMK 3% 2%
HMMER 4% 3%
SJIENG 2% 1%
LIBQUANTUM 18% 10%
H264REF 4% 3%
OMNETPP 13% 8%
ASTAR 9% 6%
XALANCBMK 9% 7%
MILC 8% 5%
NAMD 4% 3%
DEALIIL 6% 5%
SOPLEX 13% 9%
POVRAY T% 5%
LBM 7% 4%
SPHINX3 10% 8%

Figure 2.23 The primary data cache misses are shown versus all loads that complete
and all references (which includes speculative and prefetch requests).

124

Chapter Two Memory Hierarchy Design

With L1 data cache miss rates running 5% to 10%, and sometimes higher, the
importance of the L2 and L3 caches should be obvious. Figure 2.24 shows the
miss rates of the L2 and L3 caches versus the number of L1 references (and
Figure 2.25 shows the data in tabular form). Since the cost for a miss to memory
is over 100 cycles and the average data miss rate in L2 is 4%, L3 is obviously
critical. Without L3 and assuming about half the instructions are loads or stores,
L2 cache misses could add two cycles per instruction to the CPI! In comparison,
the average L3 data miss rate of 1% is still significant but four times lower than
the L2 miss rate and six times less than the L1 miss rate. In the next chapter, we
will examine the relationship between the i7 CPI and cache misses, as well as
other pipeline effects.

16%

—e— L2 misses/all D cache references
—m— L3 misses/all D cache references

4% Ao T

120/0 B | o000000000000000000d baot boaocooooeas0a00000000500600600000000a0600606060500006560560603030500095606936aEEEIFT0IEAE0OEIEIF000BABEIDEAEATEA]

FOY o A rrrreerreerr e

8% -

6% -

4% -

2%

Figure 2.24 The L2 and L3 data cache miss rates for 17 SPECCPU2006 benchmarks
are shown relative to all the references to L1, which also includes prefetches,
speculative loads that do not complete, and program-generated loads and stores.
These data, like the rest in this section, were collected by Professor Lu Peng and Ph.D.
student Ying Zhang, both of Louisiana State University.

2.7

Fallacy

2.7 Fallacies and Pitfalls 125

L2 misses/all data cache L3 misses/all data cache

references references
PERLBENCH 1% 0%
BZIP2 2% 0%
GCC 6% 1%
MCF 15% 5%
GOBMK 1% 0%
HMMER 2% 0%
SIENG 0% 0%
LIBQUANTUM 3% 0%
H264REF 1% 0%
OMNETPP 7% 3%
ASTAR 3% 1%
XALANCBMK 4% 1%
MILC 6% 1%
NAMD 0% 0%
DEALII 4% 0%
SOPLEX 9% 1%
POVRAY 0% 0%
LBM 4% 4%
SPHINX3 7% 0%

Figure 2.25 The L2 and L3 miss rates shown in table form versus the number of data
requests.

Fallacies and Pitfalls

As the most naturally quantitative of the computer architecture disciplines, mem-
ory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Yet we
were limited here not by lack of warnings, but by lack of space!

Predicting cache performance of one program from another.

Figure 2.26 shows the instruction miss rates and data miss rates for three pro-
grams from the SPEC2000 benchmark suite as cache size varies. Depending on
the program, the data misses per thousand instructions for a 4096 KB cache are 9,
2, or 90, and the instruction misses per thousand instructions for a 4 KB cache are
55, 19, or 0.0004. Commercial programs such as databases will have significant
miss rates even in large second-level caches, which is generally not the case for
the SPEC programs. Clearly, generalizing cache performance from one program
to another is unwise. As Figure 2.24 reminds us, there is a great deal of variation,

126

Chapter Two Memory Hierarchy Design

Pitfall

Pitfall

Pitfall

—4— D:lucas —#— D:gcc —#%—l:gcc |
——D:gap —¢ l:gap —®— I:lucas

ons
N
o
1

Misses per 1000 instruct

4 16 64 256 1024 4096
Cache size (KB)

Figure 2.26 Instruction and data misses per 1000 instructions as cache size varies
from 4 KB to 4096 KB. Instruction misses for gcc are 30,000 to 40,000 times larger than
lucas, and, conversely, data misses for lucas are 2 to 60 times larger than gcc. The pro-
grams gap, gcc, and lucas are from the SPEC2000 benchmark suite.

and even predictions about the relative miss rates of integer and floating-point-
intensive programs can be wrong as mcf and sphnix3 remind us!

Simulating enough instructions to get accurate performance measures of the
memory hierarchy.

There are really three pitfalls here. One is trying to predict performance of a large
cache using a small trace. Another is that a program’s locality behavior is not
constant over the run of the entire program. The third is that a program’s locality
behavior may vary depending on the input.

Figure 2.27 shows the cumulative average instruction misses per thousand
instructions for five inputs to a single SPEC2000 program. For these inputs, the
average memory rate for the first 1.9 billion instructions is very different from
the average miss rate for the rest of the execution.

Not delivering high memory bandwidth in a cache-based system.

Caches help with average cache memory latency but may not deliver high mem-
ory bandwidth to an application that must go to main memory. The architect must
design a high bandwidth memory behind the cache for such applications. We will
revisit this pitfall in Chapters 4 and 5.

Implementing a virtual machine monitor on an instruction set architecture that
wasn't designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all
instructions reading or writing information related to hardware resource infor-
mation were privileged. This laissez faire attitude causes problems for VMMs

2.7 Fallacies and Pitfalls 127

Instruction misses per 1000 references

0.10203040506070809 1 1112131415161.7181.9
Instructions (billions)

Instruction misses per 1000 references

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Instructions (billions)

Figure 2.27 Instruction misses per 1000 references for five inputs to the perl bench-
mark from SPEC2000. There is little variation in misses and little difference between
the five inputs for the first 1.9 billion instructions. Running to completion shows how
misses vary over the life of the program and how they depend on the input. The top
graph shows the running average misses for the first 1.9 billion instructions, which
starts at about 2.5 and ends at about 4.7 misses per 1000 references for all five inputs.
The bottom graph shows the running average misses to run to completion, which takes
16 to 41 billion instructions depending on the input. After the first 1.9 billion instruc-
tions, the misses per 1000 references vary from 2.4 to 7.9 depending on the input. The
simulations were for the Alpha processor using separate L1 caches for instructions and
data, each two-way 64 KB with LRU, and a unified 1 MB direct-mapped L2 cache.

128

Chapter Two Memory Hierarchy Design

for all of these architectures, including the 80x86, which we use here as an
example.

Figure 2.28 describes the 18 instructions that cause problems for virtualiza-
tion [Robin and Irvine 2000]. The two broad classes are instructions that

m Read control registers in user mode that reveal that the guest operating sys-
tem is running in a virtual machine (such as POPF mentioned earlier)

m Check protection as required by the segmented architecture but assume that
the operating system is running at the highest privilege level.

Virtual memory is also challenging. Because the 80x86 TLBs do not support
process ID tags, as do most RISC architectures, it is more expensive for the
VMM and guest OSes to share the TLB; each address space change typically
requires a TLB flush.

Problem category Problem 80x86 instructions

Access sensitive registers without Store global descriptor table register (SGDT)
trapping when running in user mode Store local descriptor table register (SLDT)
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory Load access rights from segment descriptor (LAR)
mechanisms in user mode, Load segment limit from segment descriptor (LSL)
instructions fail the 80x86 Verify if segment descriptor is readable (VERR)
protection checks Verify if segment descriptor is writable (VERW)

Pop to segment register (POP CS, POP SS, ...)
Push segment register (PUSH CS, PUSH SS, ...)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)

Store segment selector register (STR)

Move to/from segment registers (MOVE)

Figure 2.28 Summary of 18 80x86 instructions that cause problems for virtualiza-
tion [Robin and Irvine 2000]. The first five instructions of the top group allow a pro-
gram in user mode to read a control register, such as a descriptor table register, without
causing a trap. The pop flags instruction modifies a control register with sensitive infor-
mation but fails silently when in user mode. The protection checking of the segmented
architecture of the 80x86 is the downfall of the bottom group, as each of these instruc-
tions checks the privilege level implicitly as part of instruction execution when reading
a control register. The checking assumes that the OS must be at the highest privilege
level, which is not the case for guest VMs. Only the MOVE to segment register tries to
modify control state, and protection checking foils it as well.

2.8

2.8 Concluding Remarks: Looking Ahead 129

Virtualizing I/O is also a challenge for the 80x86, in part because it both sup-
ports memory-mapped I/O and has separate I/O instructions, but more impor-
tantly because there are a very large number and variety of types of devices and
device drivers of PCs for the VMM to handle. Third-party vendors supply their
own drivers, and they may not properly virtualize. One solution for conventional
VM implementations is to load real device drivers directly into the VMM.

To simplify implementations of VMMs on the 80x86, both AMD and Intel
have proposed extensions to the architecture. Intel’s VI-x provides a new execu-
tion mode for running VMs, a architected definition of the VM state, instructions
to swap VMs rapidly, and a large set of parameters to select the circumstances
where a VMM must be invoked. Altogether, VT-x adds 11 new instructions for
the 80x86. AMD’s Secure Virtual Machine (SVM) provides similar functionality.

After turning on the mode that enables VT-x support (via the new VMXON
instruction), VT-x offers four privilege levels for the guest OS that are lower in
priority than the original four (and fix issues like the problem with the POPF
instruction mentioned earlier). VT-x captures all the states of a Virtual Machine
in the Virtual Machine Control State (VMCS), and then provides atomic instruc-
tions to save and restore a VMCS. In addition to critical state, the VMCS
includes configuration information to determine when to invoke the VMM and
then specifically what caused the VMM to be invoked. To reduce the number of
times the VMM must be invoked, this mode adds shadow versions of some sensi-
tive registers and adds masks that check to see whether critical bits of a sensitive
register will be changed before trapping. To reduce the cost of virtualizing virtual
memory, AMD’s SVM adds an additional level of indirection, called nested page
tables. It makes shadow page tables unnecessary.

Concluding Remarks: Looking Ahead

Over the past thirty years there have been several predictions of the eminent [sic]
cessation of the rate of improvement in computer performance. Every such predic-
tion was wrong. They were wrong because they hinged on unstated assumptions
that were overturned by subsequent events. So, for example, the failure to foresee
the move from discrete components to integrated circuits led to a prediction that
the speed of light would limit computer speeds to several orders of magnitude
slower than they are now. Our prediction of the memory wall is probably wrong
too but it suggests that we have to start thinking "out of the box."

Wm. A. Wulf and Sally A. McKee

Hitting the Memory Wall: Implications of the Obvious

Department of Computer Science, University of Virginia (December 1994)

This paper introduced the term memory wall.

The possibility of using a memory hierarchy dates back to the earliest days of
general-purpose digital computers in the late 1940s and early 1950s. Virtual

130

Chapter Two Memory Hierarchy Design

memory was introduced in research computers in the early 1960s and into IBM
mainframes in the 1970s. Caches appeared around the same time. The basic con-
cepts have been expanded and enhanced over time to help close the access time
gap between main memory and processors, but the basic concepts remain.

One trend that could cause a significant change in the design of memory hier-
archies is a continued slowdown in both density and access time of DRAMsS. In
the last decade, both these trends have been observed. While some increases in
DRAM bandwidth have been achieved, decreases in access time have come
much more slowly, partly because to limit power consumption voltage levels
have been going down. One concept being explored to increase bandwidth is to
have multiple overlapped accesses per bank. This provides an alternative to
increasing the number of banks while allowing higher bandwidth. Manufacturing
challenges to the conventional DRAM design that uses a capacitor in each cell,
typically placed in a deep trench, have also led to slowdowns in the rate of
increase in density. As this book was going to press, one manufacturer announced
anew DRAM that does not require the capacitor, perhaps providing the opportu-
nity for continued enhancement of DRAM technology.

Independently of improvements in DRAM, Flash memory is likely to play a
larger role because of potential advantages in power and density. Of course, in
PMDs, Flash has already replaced disk drives and offers advantages such as
“instant on” that many desktop computers do not provide. Flash’s potential
advantage over DRAMs—the absence of a per-bit transistor to control writing—
is also its Achilles heel. Flash must use bulk erase-rewrite cycles that are consid-
erably slower. As a result, several PMDs, such as the Apple iPad, use a relatively
small SDRAM main memory combined with Flash, which acts as both the file
system and the page storage system to handle virtual memory.

In addition, several completely new approaches to memory are being
explored. These include MRAMs, which use magnetic storage of data, and phase
change RAMs (known as PCRAM, PCME, and PRAM), which use a glass that
can be changed between amorphous and crystalline states. Both types of
memories are nonvolatile and offer potentially higher densities than DRAMs.
These are not new ideas; magnetoresistive memory technologies and phase
change memories have been around for decades. Either technology may become
an alternative to current Flash; replacing DRAM is a much tougher task.
Although the improvements in DRAMSs have slowed down, the possibility of a
capacitor-free cell and other potential improvements make it hard to bet against
DRAMEs at least for the next decade.

For some years, a variety of predictions have been made about the coming
memory wall (see quote and paper cited above), which would lead to fundamen-
tal decreases in processor performance. However, the extension of caches to mul-
tiple levels, more sophisticated refill and prefetch schemes, greater compiler and
programmer awareness of the importance of locality, and the use of parallelism to
hide what latency remains have helped keep the memory wall at bay. The intro-
duction of out-of-order pipelines with multiple outstanding misses allowed avail-
able instruction-level parallelism to hide the memory latency remaining in a
cache-based system. The introduction of multithreading and more thread-level

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li 131

2.9

parallelism took this a step further by providing more parallelism and hence more
latency-hiding opportunities. It is likely that the use of instruction- and thread-
level parallelism will be the primary tool to combat whatever memory delays are
encountered in modern multilevel cache systems.

One idea that periodically arises is the use of programmer-controlled scratch-
pad or other high-speed memories, which we will see are used in GPUs. Such
ideas have never made the mainstream for several reasons: First, they break the
memory model by introducing address spaces with different behavior. Second,
unlike compiler-based or programmer-based cache optimizations (such as
prefetching), memory transformations with scratchpads must completely handle
the remapping from main memory address space to the scratchpad address space.
This makes such transformations more difficult and limited in applicability. In
GPUs (see Chapter 4), where local scratchpad memories are heavily used, the
burden for managing them currently falls on the programmer.

Although one should be cautious about predicting the future of computing
technology, history has shown that caching is a powerful and highly extensible
idea that is likely to allow us to continue to build faster computers and ensure that
the memory hierarchy can deliver the instructions and data needed to keep such
systems working well.

Historical Perspective and References

In Section L.3 (available online) we examine the history of caches, virtual mem-
ory, and virtual machines. IBM plays a prominent role in the history of all three.
References for further reading are included.

Case Studies and Exercises by Norman P. Jouppi, Naveen
Muralimanohar, and Sheng Li

Case Study 1: Optimizing Cache Performance via Advanced
Techniques

Concepts illustrated by this case study

m Non-blocking Caches
m Compiler Optimizations for Caches
m Software and Hardware Prefetching

m Calculating Impact of Cache Performance on More Complex Processors

132

Chapter Two Memory Hierarchy Design

2.1

The transpose of a matrix interchanges its rows and columns; this is illustrated
below:

All A12 A13 Al4 A1l A21 A31 A4l
A21 A22 A23 A24 . A12 A22 A32 A42
A31 A32 A33 A34 A13 A23 A33 A43
A4l A42 A43 A44 Al4 A24 A34 A44

Here is a simple C loop to show the transpose:

for (i = 0; i < 3; i++) {
for (j = 0; § < 33 j++) {
output[§1[i] = input[il[il;
}

}

Assume that both the input and output matrices are stored in the row major order
(row major order means that the row index changes fastest). Assume that you are
executing a 256 x 256 double-precision transpose on a processor with a 16 KB
fully associative (don’t worry about cache conflicts) least recently used (LRU)
replacement L1 data cache with 64 byte blocks. Assume that the L1 cache misses
or prefetches require 16 cycles and always hit in the L2 cache, and that the L2
cache can process a request every two processor cycles. Assume that each iteration
of the inner loop above requires four cycles if the data are present in the L1 cache.
Assume that the cache has a write-allocate fetch-on-write policy for write misses.
Unrealistically, assume that writing back dirty cache blocks requires 0 cycles.

[10/15/15/12/20] <2.2> For the simple implementation given above, this execu-
tion order would be nonideal for the input matrix; however, applying a loop inter-
change optimization would create a nonideal order for the output matrix. Because
loop interchange is not sufficient to improve its performance, it must be blocked
instead.

a. [10] <2.2> What should be the minimum size of the cache to take advantage
of blocked execution?

b. [15] <2.2> How do the relative number of misses in the blocked and
unblocked versions compare in the minimum sized cache above?

c. [15] <2.2> Write code to perform a transpose with a block size parameter B
which uses B X B blocks.

d. [12] <2.2> What is the minimum associativity required of the L1 cache for
consistent performance independent of both arrays’ position in memory?

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li 133

2.2

23

e. [20] <2.2> Try out blocked and nonblocked 256 x 256 matrix transpositions
on a computer. How closely do the results match your expectations based on
what you know about the computer’s memory system? Explain any discrep-
ancies if possible.

[10] <2.2> Assume you are designing a hardware prefetcher for the unblocked
matrix transposition code above. The simplest type of hardware prefetcher only
prefetches sequential cache blocks after a miss. More complicated “non-unit
stride” hardware prefetchers can analyze a miss reference stream and detect and
prefetch non-unit strides. In contrast, software prefetching can determine non-
unit strides as easily as it can determine unit strides. Assume prefetches write
directly into the cache and that there is no “pollution” (overwriting data that must
be used before the data that are prefetched). For best performance given a non-
unit stride prefetcher, in the steady state of the inner loop how many prefetches
must be outstanding at a given time?

[15/20] <2.2> With software prefetching it is important to be careful to have the
prefetches occur in time for use but also to minimize the number of outstanding
prefetches to live within the capabilities of the microarchitecture and minimize
cache pollution. This is complicated by the fact that different processors have dif-
ferent capabilities and limitations.

a. [15] <2.2> Create a blocked version of the matrix transpose with software
prefetching.

b. [20] <2.2> Estimate and compare the performance of the blocked and
unblocked transpose codes both with and without software prefetching.

Case Study 2: Putting It All Together: Highly Parallel
Memory Systems

Concept illustrated by this case study
m Crosscutting Issues: The Design of Memory Hierarchies

The program in Figure 2.29 can be used to evaluate the behavior of a memory
system. The key is having accurate timing and then having the program stride
through memory to invoke different levels of the hierarchy. Figure 2.29 shows
the code in C. The first part is a procedure that uses a standard utility to get an
accurate measure of the user CPU time; this procedure may have to be changed
to work on some systems. The second part is a nested loop to read and write
memory at different strides and cache sizes. To get accurate cache timing, this
code is repeated many times. The third part times the nested loop overhead only
so that it can be subtracted from overall measured times to see how long the
accesses were. The results are output in .csv file format to facilitate importing
into spreadsheets. You may need to change CACHE MAX depending on the ques-
tion you are answering and the size of memory on the system you are measuring.
Running the program in single-user mode or at least without other active applica-
tions will give more consistent results. The code in Figure 2.29 was derived from
a program written by Andrea Dusseau at the University of California—Berkeley

134 Chapter Two Memory Hierarchy Design

#include "stdafx.h"

#include <stdio.h>

#include <time.h>

#define ARRAY _MIN (1024) /* 1/4 smallest cache *4
#define ARRAY_MAX (4096*4096) /* 1/4 largest cache */
int x[ARRAY _MAX]; /* array going to stride through */

double get seconds() { /* routine to read time in seconds */
time6d t Ttime;
fime64§&1time)
return (double) Ttime;

int label(int i) {/* generate text labels */
if (i<le3) printf("%1dB,",i);
else if §1<1e6; printfé”%ldK,”,i/1024);
else if (i<le9) printf “%1dM,”,i{1048576);
else printf("%1dG,",1/1073741824
return 0;

H

}

int tmain(int argc, TCHAR* argv[]) {

int register nextstep, i, index, stride;

int csize;

double steps, tsteps;

double loadtime, lastsec, secO, secl, sec; /* timing variables */

/* Initialize output */

printf(" ,");

for (stride=1; stride <= ARRAY MAX/2; stride=stride*2)
label (stride*sizeof(int)); ~

printf("\n");

/* Main loop for each configuration *é

for (csize=ARRAY MIN; csize <= ARRAY MAX; csize=csize*2) {
label(csize*sizeof(int)); /* print cache size this Toop */
for (stride=1; stride <= csize/2; stride=stride*2) {

/* Lay out path of memory references in array *{

for (index=0; index < csize; index=indextstride
x[index] = index + stride; /* pointer to next */

x[index-stride] = 0; /* Toop back to beginning */

{* Wait for timer to roll over */
astsec = get_seconds();
sec0 = get_seconds(); while (secO == lastsec);

/* Walk through path in array for twenty seconds */
/* This gives 5% accuracy with second resolution */
steps = 0.0; /* number of steps taken */
nextstep = 0; /* start at beginning of path */
secO = get seconds(); /* start timer *
* répeat until collect 20 seconds */
(i=stride;i!=0;i=i-1) { /* keep samples same */
nextstep = 0;
do nextstep = x[nextstep]; /* dependency */
while (nextstep != 0);

steps = steps + 1.0; /* count loop iterations */
secl = get seconds(); Z* end timer *
} while ((secI - sec0) < 20.0); /* collect 20 seconds */
sec = secl - sec0;

/* Repeat empty loop to Toop subtract overhead */
tsteps = 0.0; /* used to match no. while iterations */
secO = get seconds(); /* start timer */
{ /* répeat until same no. iterations as above */
(i=stride;i!=0;i=i-1) { /* keep samples same */
index = 0;
do index = index + stride;
\ while (index < csize);
tsteps = tsteps + 1.0;
secl = get seconds(); /* - overhead */
} while (tsteps<steps); /* until = no. iterations */
sec = sec - (secl - sec0);
Toadtime = (sec*1e9)/(steps*csize);
/* write out results in .csv format for Excel */
printf("%4.1f,", (loadtime<0.1) ? 0.1 : loadtime);
}3 /* end of inner for loop */
printf("\n");
}s /* end of outer for loop */
return 0;

Figure 2.29 C program for evaluating memory system.

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li

135

1000

100 A

Read (ns)

< 8K
o 16K
A 32K
-O- 64K
& 128K
- 256K
= 512K
A 1M
-0 2M
£ 4M
- 8M
= 16M
-A- 32M
-8 64M
% 128M
¢ 256M
— 512M

O X

4B 16B 64B 256B 1K 4K 16K 64K 256K 1M 4M 16M 64M 256M

Stride

Figure 2.30 Sample results from program in Figure 2.29.

and was based on a detailed description found in Saavedra-Barrera [1992]. It has
been modified to fix a number of issues with more modern machines and to run
under Microsoft Visual C++. It can be downloaded from www.hpl.hp.com/

research/cacti/aca_ch2_cs2.c.

The program above assumes that program addresses track physical addresses,
which is true on the few machines that use virtually addressed caches, such as the
Alpha 21264. In general, virtual addresses tend to follow physical addresses
shortly after rebooting, so you may need to reboot the machine in order to get
smooth lines in your results. To answer the questions below, assume that the sizes
of all components of the memory hierarchy are powers of 2. Assume that the size
of the page is much larger than the size of a block in a second-level cache (if
there is one), and the size of a second-level cache block is greater than or equal to
the size of a block in a first-level cache. An example of the output of the program

is plotted in Figure 2.30; the key lists the size of the array that is exercised.
24 [12/12/12/10/12] <2.6> Using the sample program results in Figure 2.30:

a. [12] <2.6> What are the overall size and block size of the second-level

cache?

b. [12] <2.6> What is the miss penalty of the second-level cache?

http://www.hpl.hp.com/research/cacti/aca_ch2_cs2.c
http://www.hpl.hp.com/research/cacti/aca_ch2_cs2.c

136

Chapter Two Memory Hierarchy Design

25

26

2.7

2.8

c. [12] <2.6> What is the associativity of the second-level cache?
d. [10] <2.6> What is the size of the main memory?
e. [12] <2.6> What is the paging time if the page size is 4 KB?

[12/15/15/20] <2.6> If necessary, modify the code in Figure 2.29 to measure the
following system characteristics. Plot the experimental results with elapsed time
on the y-axis and the memory stride on the x-axis. Use logarithmic scales for both
axes, and draw a line for each cache size.

[12] <2.6> What is the system page size?

b. [15] <2.6> How many entries are there in the translation lookaside buffer
(TLB)?

C. [15] <2.6> What is the miss penalty for the TLB?
d. [20] <2.6> What is the associativity of the TLB?

[20/20] <2.6> In multiprocessor memory systems, lower levels of the memory
hierarchy may not be able to be saturated by a single processor but should be able
to be saturated by multiple processors working together. Modify the code in
Figure 2.29, and run multiple copies at the same time. Can you determine:

a. [20] <2.6> How many actual processors are in your computer system and
how many system processors are just additional multithreaded contexts?

b. [20] <2.6> How many memory controllers does your system have?

[20] <2.6> Can you think of a way to test some of the characteristics of an
instruction cache using a program? Hint: The compiler may generate a large
number of non obvious instructions from a piece of code. Try to use simple arith-
metic instructions of known length in your instruction set architecture (ISA).

Exercises

[12/12/15] <2.2> The following questions investigate the impact of small and
simple caches using CACTI and assume a 65 nm (0.065 pm) technology.
(CACTTI is available in an online form at http://quid.hpl.hp.com:9081/cacti/.)

a. [12] <2.2> Compare the access times of 64 KB caches with 64 byte blocks
and a single bank. What are the relative access times of two-way and four-
way set associative caches in comparison to a direct mapped organization?

b. [12] <2.2> Compare the access times of four-way set associative caches with
64 byte blocks and a single bank. What are the relative access times of 32 KB
and 64 KB caches in comparison to a 16 KB cache?

c. [15] <2.2> For a 64 KB cache, find the cache associativity between 1 and 8
with the lowest average memory access time given that misses per instruction
for a certain workload suite is 0.00664 for direct mapped, 0.00366 for two-
way set associative, 0.000987 for four-way set associative, and 0.000266 for

http://www.quid.hpl.hp.com:9081/cacti/

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li 137

29

2.10

eight-way set associative cache. Overall, there are 0.3 data references per
instruction. Assume cache misses take 10 ns in all models. To calculate the
hit time in cycles, assume the cycle time output using CACTI, which corre-
sponds to the maximum frequency a cache can operate without any bubbles
in the pipeline.

[12/15/15/10] <2.2> You are investigating the possible benefits of a way-
predicting L1 cache. Assume that a 64 KB four-way set associative single-
banked L1 data cache is the cycle time limiter in a system. As an alternative
cache organization you are considering a way-predicted cache modeled as a
64 KB direct-mapped cache with 80% prediction accuracy. Unless stated other-
wise, assume that a mispredicted way access that hits in the cache takes one more
cycle. Assume the miss rates and the miss penalties in question 2.8 part (c).

a. [12] <2.2> What is the average memory access time of the current cache (in
cycles) versus the way-predicted cache?

b. [15] <2.2> If all other components could operate with the faster way-
predicted cache cycle time (including the main memory), what would be the
impact on performance from using the way-predicted cache?

c. [15] <2.2> Way-predicted caches have usually been used only for instruction
caches that feed an instruction queue or buffer. Imagine that you want to try out
way prediction on a data cache. Assume that you have 80% prediction accuracy
and that subsequent operations (e.g., data cache access of other instructions,
dependent operations) are issued assuming a correct way prediction. Thus, a
way misprediction necessitates a pipe flush and replay trap, which requires
15 cycles. Is the change in average memory access time per load instruction
with data cache way prediction positive or negative, and how much is it?

d. [10] <2.2> As an alternative to way prediction, many large associative L2
caches serialize tag and data access, so that only the required dataset array
needs to be activated. This saves power but increases the access time. Use
CACTT’s detailed Web interface for a 0.065 um process 1 MB four-way set
associative cache with 64 byte blocks, 144 bits read out, 1 bank, only 1 read/
write port, 30 bit tags, and ITRS-HP technology with global wires. What is
the ratio of the access times for serializing tag and data access in comparison
to parallel access?

[10/12] <2.2> You have been asked to investigate the relative performance of a
banked versus pipelined L1 data cache for a new microprocessor. Assume a
64 KB two-way set associative cache with 64 byte blocks. The pipelined cache
would consist of three pipestages, similar in capacity to the Alpha 21264 data
cache. A banked implementation would consist of two 32 KB two-way set asso-
ciative banks. Use CACTI and assume a 65 nm (0.065 pm) technology to answer
the following questions. The cycle time output in the Web version shows at what
frequency a cache can operate without any bubbles in the pipeline.

a. [10] <2.2> What is the cycle time of the cache in comparison to its access time,
and how many pipestages will the cache take up (to two decimal places)?

138

Chapter Two Memory Hierarchy Design

2.11

2.12

213

2.14

b. [12] <2.2> Compare the area and total dynamic read energy per access of the
pipelined design versus the banked design. State which takes up less area and
which requires more power, and explain why that might be.

[12/15] <2.2> Consider the usage of critical word first and early restart on L2
cache misses. Assume a 1 MB L2 cache with 64 byte blocks and a refill path that
is 16 bytes wide. Assume that the L2 can be written with 16 bytes every 4 proces-
sor cycles, the time to receive the first 16 byte block from the memory controller
is 120 cycles, each additional 16 byte block from main memory requires 16
cycles, and data can be bypassed directly into the read port of the L2 cache.
Ignore any cycles to transfer the miss request to the L2 cache and the requested
data to the L1 cache.

a. [12] <2.2> How many cycles would it take to service an L2 cache miss with
and without critical word first and early restart?

b. [15] <2.2> Do you think critical word first and early restart would be more
important for L1 caches or L2 caches, and what factors would contribute to
their relative importance?

[12/12] <2.2> You are designing a write buffer between a write-through L1 cache
and a write-back L2 cache. The L2 cache write data bus is 16 B wide and can per-
form a write to an independent cache address every 4 processor cycles.

a. [12] <2.2> How many bytes wide should each write buffer entry be?

b. [15] <2.2> What speedup could be expected in the steady state by using a
merging write buffer instead of a nonmerging buffer when zeroing memory
by the execution of 64-bit stores if all other instructions could be issued in
parallel with the stores and the blocks are present in the L2 cache?

c. [15] <2.2> What would the effect of possible L1 misses be on the number of
required write buffer entries for systems with blocking and nonblocking
caches?

[10/10/10] <2.3> Consider a desktop system with a processor connected to a
2 GB DRAM with error-correcting code (ECC). Assume that there is only one
memory channel of width 72 bits to 64 bits for data and 8 bits for ECC.

a. [10] <2.3> How many DRAM chips are on the DIMM if 1 GB DRAM chips
are used, and how many data I/Os must each DRAM have if only one DRAM
connects to each DIMM data pin?

b. [10] <2.3> What burst length is required to support 32 B L2 cache blocks?

c. [10] <2.3> Calculate the peak bandwidth for DDR2-667 and DDR2-533
DIMMs for reads from an active page excluding the ECC overhead.

[10/10] <2.3> A sample DDR2 SDRAM timing diagram is shown in Figure 2.31.
tRCD is the time required to activate a row in a bank, and column address strobe
(CAS) latency (CL) is the number of cycles required to read out a column in a row
Assume that the RAM is on a standard DDR2 DIMM with ECC, having 72 data
lines. Also assume burst lengths of 8 which read out 8 bits, or a total of 64 B from

Clock

CMD/
ADD

Data

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li

RD
B0, Cx

‘RCD

: ; : ' T
CAS I?tencyé IIData oult IIDatall oult

Figure 2.31 DDR2 SDRAM timing diagram.

2.15

2.16

2.17

the DIMM. Assume tRCD = CAS (or CL) * clock frequency, and
clock_frequency = transfers_per_second/2. The on-chip latency on a cache
miss through levels 1 and 2 and back, not including the DRAM access, is 20 ns.

a. [10] <2.3> How much time is required from presentation of the activate com-
mand until the last requested bit of data from the DRAM transitions from valid
to invalid for the DDR2-667 1 GB CL = 5 DIMM? Assume that for every
request we automatically prefetch another adjacent cacheline in the same page.

b. [10] <2.3> What is the relative latency when using the DDR2-667 DIMM of
aread requiring a bank activate versus one to an already open page, including
the time required to process the miss inside the processor?

[15] <2.3> Assume that a DDR2-667 2 GB DIMM with CL = 5 is available for
$130 and a DDR2-533 2 GB DIMM with CL = 4 is available for $100. Assume
that two DIMMs are used in a system, and the rest of the system costs $800.
Consider the performance of the system using the DDR2-667 and DDR2-533
DIMMs on a workload with 3.33 L2 misses per 1K instructions, and assume that
80% of all DRAM reads require an activate. What is the cost-performance of the
entire system when using the different DIMMs, assuming only one L2 miss is
outstanding at a time and an in-order core with a CPI of 1.5 not including L2
cache miss memory access time?

[12] <2.3> You are provisioning a server with eight-core 3 GHz CMP, which can
execute a workload with an overall CPI of 2.0 (assuming that L2 cache miss
refills are not delayed). The L2 cache line size is 32 bytes. Assuming the system
uses DDR2-667 DIMMs, how many independent memory channels should be
provided so the system is not limited by memory bandwidth if the bandwidth
required is sometimes twice the average? The workloads incur, on an average,
6.67 L2 misses per 1K instructions.

[12/12] <2.3> A large amount (more than a third) of DRAM power can be due to

page activation (see http.//download.micron.com/pdf/technotes/ddr2/TN4704.pdf

and www.micron.com/systemcalc). Assume you are building a system with 2 GB
of memory using either 8-bank 2 GB x8 DDR2 DRAMs or 8-bank 1 GB x8
DRAMs, both with the same speed grade. Both use a page size of 1 KB, and the

139

http://www.micron.com/systemcalc
http://www.download.micron.com/pdf/technotes/ddr2/TN4704.pdf

140

Chapter Two Memory Hierarchy Design

2.18

2.19

2.20

last level cacheline size is 64 bytes. Assume that DRAMs that are not active are
in precharged standby and dissipate negligible power. Assume that the time to
transition from standby to active is not significant.

a. [12] <2.3> Which type of DRAM would be expected to provide the higher
system performance? Explain why.

b. [12] <2.3> How does a 2 GB DIMM made of 1 GB x8 DDR2 DRAMs com-
pare against a DIMM with similar capacity made of 1 Gb x4 DDR2 DRAMs
in terms of power?

[20/15/12] <2.3> To access data from a typical DRAM, we first have to activate
the appropriate row. Assume that this brings an entire page of size 8 KB to the
row buffer. Then we select a particular column from the row buffer. If subsequent
accesses to DRAM are to the same page, then we can skip the activation step;
otherwise, we have to close the current page and precharge the bitlines for the
next activation. Another popular DRAM policy is to proactively close a page and
precharge bitlines as soon as an access is over. Assume that every read or write to
DRAM is of size 64 bytes and DDR bus latency (Data out in Figure 2.30) for
sending 512 bits is Tddr.

a. [20] <2.3> Assuming DDR2-667, if it takes five cycles to precharge, five
cycles to activate, and four cycles to read a column, for what value of the row
buffer hit rate (r) will you choose one policy over another to get the best
access time? Assume that every access to DRAM is separated by enough time
to finish a random new access.

b. [15] <2.3> If 10% of the total accesses to DRAM happen back to back or
contiguously without any time gap, how will your decision change?

c. [12] <2.3> Calculate the difference in average DRAM energy per access
between the two policies using the row buffer hit rate calculated above.
Assume that precharging requires 2 nJ and activation requires 4 nJ and that
100 pl/bit are required to read or write from the row buffer.

[15] <2.3> Whenever a computer is idle, we can either put it in stand by (where
DRAM is still active) or we can let it hibernate. Assume that, to hibernate, we
have to copy just the contents of DRAM to a nonvolatile medium such as Flash.
If reading or writing a cacheline of size 64 bytes to Flash requires 2.56 pJ and
DRAM requires 0.5 nJ, and if idle power consumption for DRAM is 1.6 W (for
8 GB), how long should a system be idle to benefit from hibernating? Assume a
main memory of size 8 GB.

[10/10/10/10/10] <2.4> Virtual Machines (VMs) have the potential for adding
many beneficial capabilities to computer systems, such as improved total cost of
ownership (TCO) or availability. Could VMs be used to provide the following
capabilities? If so, how could they facilitate this?

a. [10] <2.4> Test applications in production environments using development
machines?

b. [10] <2.4> Quick redeployment of applications in case of disaster or failure?

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li 141

2.21

[10] <2.4> Higher performance in I/O-intensive applications?

d. [10] <2.4> Fault isolation between different applications, resulting in higher
availability for services?

e. [10] <2.4> Performing software maintenance on systems while applications
are running without significant interruption?

[10/10/12/12] <2.4> Virtual machines can lose performance from a number
of events, such as the execution of privileged instructions, TLB misses, traps, and
I/0. These events are usually handled in system code. Thus, one way of estimat-
ing the slowdown when running under a VM is the percentage of application exe-
cution time in system versus user mode. For example, an application spending
10% of its execution in system mode might slow down by 60% when running on
a VM. Figure 2.32 lists the early performance of various system calls under
native execution, pure virtualization, and paravirtualization for LMbench using
Xen on an Itanium system with times measured in microseconds (courtesy of
Matthew Chapman of the University of New South Wales).

a. [10] <2.4> What types of programs would be expected to have smaller slow-
downs when running under VMs?

b. [10] <2.4> If slowdowns were linear as a function of system time, given the
slowdown above, how much slower would a program spending 20% of its
execution in system time be expected to run?

c. [12] <2.4> What is the median slowdown of the system calls in the table
above under pure virtualization and paravirtualization?

d. [12] <2.4> Which functions in the table above have the largest slowdowns?
What do you think the cause of this could be?

Benchmark Native Pure Para

Null call 0.04 0.96 0.50
Null /O 0.27 6.32 291
Stat 1.10 10.69 4.14
Open/close 1.99 20.43 7.71
Install sighandler 0.33 7.34 2.89
Handle signal 1.69 19.26 2.36
Fork 56.00 513.00 164.00
Exec 316.00 2084.00 578.00
Fork + exec sh 1451.00 7790.00 2360.00

Figure 2.32 Early performance of various system calls under native execution, pure
virtualization, and paravirtualization.

142

Chapter Two Memory Hierarchy Design

2.22

2.23

2.24

2.25

[12] <2.4> Popek and Goldberg’s definition of a virtual machine said that it
would be indistinguishable from a real machine except for its performance. In
this question, we will use that definition to find out if we have access to native
execution on a processor or are running on a virtual machine. The Intel VT-x
technology effectively provides a second set of privilege levels for the use of the
virtual machine. What would a virtual machine running on top of another virtual
machine have to do, assuming VT-x technology?

[20/25] <2.4> With the adoption of virtualization support on the x86 architecture,
virtual machines are actively evolving and becoming mainstream. Compare and
contrast the Intel VT-x and AMD’s AMD-V virtualization technologies. (Infor-
mation on AMD-V can be found at http://sites.amd.com/us/business/it-solutions/
virtualization/Pages/resources.aspx.)

a. [20] <2.4> Which one could provide higher performance for memory-inten-
sive applications with large memory footprints?

b. [25] <2.4> Information on AMD’s IOMMU support for virtualized I/O can be
found in http://developer.amd.com/documentation/articles/pages/892006101.aspx.
What do Virtualization Technology and an input/output memory management
unit (IOMMU) do to improve virtualized I/O performance?

[30] <2.2, 2.3> Since instruction-level parallelism can also be effectively
exploited on in-order superscalar processors and very long instruction word
(VLIW) processors with speculation, one important reason for building an out-of-
order (OOO) superscalar processor is the ability to tolerate unpredictable
memory latency caused by cache misses. Hence, you can think about hardware
supporting OOO issue as being part of the memory system! Look at the floorplan
of the Alpha 21264 in Figure 2.33 to find the relative area of the integer and
floating-point issue queues and mappers versus the caches. The queues schedule
instructions for issue, and the mappers rename register specifiers. Hence, these
are necessary additions to support OOO issue. The 21264 only has L1 data and
instruction caches on chip, and they are both 64 KB two-way set associative. Use
an OOO superscalar simulator such as SimpleScalar (www.cs.wisc.edu/~mscalar/
simplescalar.html) on memory-intensive benchmarks to find out how much
performance is lost if the area of the issue queues and mappers is used for addi-
tional L1 data cache area in an in-order superscalar processor, instead of OOO
issue in a model of the 21264. Make sure the other aspects of the machine are as
similar as possible to make the comparison fair. Ignore any increase in access or
cycle time from larger caches and effects of the larger data cache on the floorplan
of the chip. (Note that this comparison will not be totally fair, as the code will not
have been scheduled for the in-order processor by the compiler.)

[20/20/20] <2.6> The Intel performance analyzer VTune can be used to make
many measurements of cache behavior. A free evaluation version of VTune on
both Windows and Linux can be downloaded from http://software.intel.com/en-
us/articles/intel-vtune-amplifier-xe/. The program (aca_ch2 cs2.c) used in
Case Study 2 has been modified so that it can work with VTune out of the box on
Microsoft Visual C++. The program can be downloaded from www.hpl.hp.com/

http://www.cs.wisc.edu/~mscalar/simplescalar.html
http://www.cs.wisc.edu/~mscalar/simplescalar.html
http://www.hpl.hp.com/research/cacti/aca_ch2_cs2_vtune.c
http://www.sites.amd.com/us/business/it-solutions/virtualization/Pages/resources.aspx
http://www.sites.amd.com/us/business/it-solutions/virtualization/Pages/resources.aspx
http://www.developer.amd.com/documentation/articles/pages/892006101.aspx
http://www.software.intel.com/enus/articles/intel-vtune-amplifier-xe/
http://www.software.intel.com/enus/articles/intel-vtune-amplifier-xe/

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li 143

Bus
Integer

mapper

interface
unit

Memory jl

Integer unit
(cluster 1)
Integer unit
(cluster 0)

[

Integer
controller 9

queue

Floating-point units

Data and control buses

Memory controller

=
o
2
(3}
S5
=
=
@
S

Instruction
cache

Figure 2.33 Floorplan of the Alpha 21264 [Kessler 1999].

research/cacti/aca_ch2_cs2_vtune.c. Special VTune functions have been
inserted to exclude initialization and loop overhead during the performance anal-
ysis process. Detailed VTune setup directions are given in the README section
in the program. The program keeps looping for 20 seconds for every configura-
tion. In the following experiment you can find the effects of data size on cache
and overall processor performance. Run the program in VTune on an Intel pro-
cessor with the input dataset sizes of 8§ KB, 128 KB, 4 MB, and 32 MB, and keep
a stride of 64 bytes (stride one cache line on Intel i7 processors). Collect statistics
on overall performance and L1 data cache, L2, and L3 cache performance.

a. [20] <2.6> List the number of misses per 1K instruction of L1 data cache, L2,
and L3 for each dataset size and your processor model and speed. Based on
the results, what can you say about the L1 data cache, L2, and L3 cache sizes
on your processor? Explain your observations.

b. [20] <2.6> List the instructions per clock (IPC) for each dataset size and your
processor model and speed. Based on the results, what can you say about the
L1, L2, and L3 miss penalties on your processor? Explain your observations.

http://www.hpl.hp.com/research/cacti/aca_ch2_cs2_vtune.c

144

Chapter Two Memory Hierarchy Design

C.

[20] <2.6> Run the program in VTune with input dataset size of 8 KB and
128 KB on an Intel OOO processor. List the number of L1 data cache and L2
cache misses per 1K instructions and the CPI for both configurations. What
can you say about the effectiveness of memory latency hiding techniques in
high-performance OOO processors? Hint: You need to find the L1 data cache
miss latency for your processor. For recent Intel i7 processors, it is approxi-
mately 11 cycles.

This page intentionally left blank

3.1
3.2
33
34
3.5
3.6
3.7
3.8

3.9

3.10
3.1
3.12

3.13
3.14
3.15
3.16

Instruction-Level Parallelism: Concepts and Challenges
Basic Compiler Techniques for Exposing ILP

Reducing Branch Costs with Advanced Branch Prediction
Overcoming Data Hazards with Dynamic Scheduling
Dynamic Scheduling: Examples and the Algorithm
Hardware-Based Speculation

Exploiting ILP Using Multiple Issue and Static Scheduling

Exploiting ILP Using Dynamic Scheduling,
Multiple Issue, and Speculation

Advanced Techniques for Instruction Delivery and Speculation
Studies of the Limitations of ILP
Cross-Cutting Issues: ILP Approaches and the Memory System

Multithreading: Exploiting Thread-Level Parallelism to
Improve Uniprocessor Throughput

Putting It All Together: The Intel Core i7 and ARM Cortex-A8
Fallacies and Pitfalls

Concluding Remarks: What's Ahead?

Historical Perspective and References

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell

148
156
162
167
176
183
192

202
213
221

223
233
241
245
247
247

Instruction-Level
Parallelism and Its
Exploitation

"“Who's first?”

“America.”

“Who's second?”

“Sir, there is no second.”

Dialog between two observers
of the sailing race later named
“The America’s Cup” and run
every few years—the
inspiration for John Cocke’s
naming of the IBM research
processor as “America.” This
processor was the precursor to
the RS/6000 series and the first
superscalar microprocessor.

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00004-5
© 2012 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383872-8.00004-5

148

Chapter Three Instruction-Level Parallelism and Its Exploitation

3.1

Instruction-Level Parallelism: Concepts and Challenges

All processors since about 1985 use pipelining to overlap the execution of
instructions and improve performance. This potential overlap among instructions
is called instruction-level parallelism (ILP), since the instructions can be evalu-
ated in parallel. In this chapter and Appendix H, we look at a wide range of tech-
niques for extending the basic pipelining concepts by increasing the amount of
parallelism exploited among instructions.

This chapter is at a considerably more advanced level than the material on basic
pipelining in Appendix C. If you are not thoroughly familiar with the ideas in
Appendix C, you should review that appendix before venturing into this chapter.

We start this chapter by looking at the limitation imposed by data and control
hazards and then turn to the topic of increasing the ability of the compiler and the
processor to exploit parallelism. These sections introduce a large number of con-
cepts, which we build on throughout this chapter and the next. While some of the
more basic material in this chapter could be understood without all of the ideas in
the first two sections, this basic material is important to later sections of this
chapter.

There are two largely separable approaches to exploiting ILP: (1) an approach
that relies on hardware to help discover and exploit the parallelism dynamically,
and (2) an approach that relies on software technology to find parallelism stati-
cally at compile time. Processors using the dynamic, hardware-based approach,
including the Intel Core series, dominate in the desktop and server markets. In the
personal mobile device market, where energy efficiency is often the key objective,
designers exploit lower levels of instruction-level parallelism. Thus, in 2011, most
processors for the PMD market use static approaches, as we will see in the ARM
Cortex-A8; however, future processors (e.g., the new ARM Cortex-A9) are using
dynamic approaches. Aggressive compiler-based approaches have been attempted
numerous times beginning in the 1980s and most recently in the Intel Itanium
series. Despite enormous efforts, such approaches have not been successful out-
side of the narrow range of scientific applications.

In the past few years, many of the techniques developed for one approach
have been exploited within a design relying primarily on the other. This chapter
introduces the basic concepts and both approaches. A discussion of the limita-
tions on ILP approaches is included in this chapter, and it was such limitations
that directly led to the movement to multicore. Understanding the limitations
remains important in balancing the use of ILP and thread-level parallelism.

In this section, we discuss features of both programs and processors that limit
the amount of parallelism that can be exploited among instructions, as well as the
critical mapping between program structure and hardware structure, which is key
to understanding whether a program property will actually limit performance and
under what circumstances.

The value of the CPI (cycles per instruction) for a pipelined processor is the
sum of the base CPI and all contributions from stalls:

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls + Control stalls

3.1 Instruction-Level Parallelism: Concepts and Challenges

149

Technique Reduces Section
Forwarding and bypassing Potential data hazard stalls C.2
Delayed branches and simple branch scheduling Control hazard stalls C2
Basic compiler pipeline scheduling Data hazard stalls C2,32
Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences C.7
Loop unrolling Control hazard stalls 3.2
Branch prediction Control stalls 33
Dynamic scheduling with renaming Stalls from data hazards, output dependences, and 34
antidependences
Hardware speculation Data hazard and control hazard stalls 3.6
Dynamic memory disambiguation Data hazard stalls with memory 3.6
Issuing multiple instructions per cycle Ideal CPI 3.7,3.8
Compiler dependence analysis, software Ideal CPI, data hazard stalls H.2,H.3
pipelining, trace scheduling
Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls H4, H.5

Figure 3.1 The major techniques examined in Appendix C, Chapter 3, and Appendix H are shown together with
the component of the CPl equation that the technique affects.

The ideal pipeline CPI is a measure of the maximum performance attainable by
the implementation. By reducing each of the terms of the right-hand side, we
decrease the overall pipeline CPI or, alternatively, increase the IPC (instructions
per clock). The equation above allows us to characterize various techniques by
what component of the overall CPI a technique reduces. Figure 3.1 shows the
techniques we examine in this chapter and in Appendix H, as well as the topics
covered in the introductory material in Appendix C. In this chapter, we will see
that the techniques we introduce to decrease the ideal pipeline CPI can increase
the importance of dealing with hazards.

What Is Instruction-Level Parallelism?

All the techniques in this chapter exploit parallelism among instructions. The
amount of parallelism available within a basic block—a straight-line code
sequence with no branches in except to the entry and no branches out except at the
exit—is quite small. For typical MIPS programs, the average dynamic branch fre-
quency is often between 15% and 25%, meaning that between three and six instruc-
tions execute between a pair of branches. Since these instructions are likely to
depend upon one another, the amount of overlap we can exploit within a basic
block is likely to be less than the average basic block size. To obtain substantial
performance enhancements, we must exploit ILP across multiple basic blocks.

The simplest and most common way to increase the ILP is to exploit parallel-
ism among iterations of a loop. This type of parallelism is often called loop-level
parallelism. Here is a simple example of a loop that adds two 1000-element
arrays and is completely parallel:

150

Chapter Three Instruction-Level Parallelism and Its Exploitation

for (i=0; i<=999; i=i+1)
x[i] = x[i] + y[ils

Every iteration of the loop can overlap with any other iteration, although within
each loop iteration there is little or no opportunity for overlap.

We will examine a number of techniques for converting such loop-level par-
allelism into instruction-level parallelism. Basically, such techniques work by
unrolling the loop either statically by the compiler (as in the next section) or
dynamically by the hardware (as in Sections 3.5 and 3.6).

An important alternative method for exploiting loop-level parallelism is the
use of SIMD in both vector processors and Graphics Processing Units (GPUs),
both of which are covered in Chapter 4. A SIMD instruction exploits data-level
parallelism by operating on a small to moderate number of data items in parallel
(typically two to eight). A vector instruction exploits data-level parallelism by
operating on many data items in parallel using both parallel execution units and a
deep pipeline. For example, the above code sequence, which in simple form
requires seven instructions per iteration (two loads, an add, a store, two address
updates, and a branch) for a total of 7000 instructions, might execute in one-quar-
ter as many instructions in some SIMD architecture where four data items are
processed per instruction. On some vector processors, this sequence might take
only four instructions: two instructions to load the vectors x and y from memory,
one instruction to add the two vectors, and an instruction to store back the result
vector. Of course, these instructions would be pipelined and have relatively long
latencies, but these latencies may be overlapped.

Data Dependences and Hazards

Determining how one instruction depends on another is critical to determining
how much parallelism exists in a program and how that parallelism can be
exploited. In particular, to exploit instruction-level parallelism we must determine
which instructions can be executed in parallel. If two instructions are parallel, they
can execute simultaneously in a pipeline of arbitrary depth without causing any
stalls, assuming the pipeline has sufficient resources (and hence no structural haz-
ards exist). If two instructions are dependent, they are not parallel and must be exe-
cuted in order, although they may often be partially overlapped. The key in both
cases is to determine whether an instruction is dependent on another instruction.

Data Dependences

There are three different types of dependences: data dependences (also called
true data dependences), name dependences, and control dependences. An instruc-
tion j is data dependent on instruction i if either of the following holds:

m Instruction i produces a result that may be used by instruction j.

m Instruction j is data dependent on instruction k, and instruction k is data
dependent on instruction i.

3.1 Instruction-Level Parallelism: Concepts and Challenges 151

The second condition simply states that one instruction is dependent on another if
there exists a chain of dependences of the first type between the two instructions.
This dependence chain can be as long as the entire program. Note that a depen-
dence within a single instruction (such as ADDD R1,R1,R1) is not considered a
dependence.

For example, consider the following MIPS code sequence that increments a
vector of values in memory (starting at 0 (R1) and with the last element at 8 (R2))
by a scalar in register F2. (For simplicity, throughout this chapter, our examples
ignore the effects of delayed branches.)

Loop: L.D FO,0(R1) ;FO=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer 8 bytes
BNE R1,R2,LO0P j;branch R1!=R2

The data dependences in this code sequence involve both floating-point data:

Loop: L.D FO,0(R1) ;FO=array element
ADD.D h,FO,FZ ;add scalar in F2
S.D F4,0(R1) ;store result

and integer data:

DADDIU R1,R1,#-8 ;decrement pointer
;8 bytes (per DW)
BNE R1,R2,Loop j;branch R1!=R2

In both of the above dependent sequences, as shown by the arrows, each instruc-
tion depends on the previous one. The arrows here and in following examples
show the order that must be preserved for correct execution. The arrow points
from an instruction that must precede the instruction that the arrowhead points to.

If two instructions are data dependent, they must execute in order and cannot
execute simultaneously or be completely overlapped. The dependence implies
that there would be a chain of one or more data hazards between the two
instructions. (See Appendix C for a brief description of data hazards, which we
will define precisely in a few pages.) Executing the instructions simultaneously
will cause a processor with pipeline interlocks (and a pipeline depth longer than
the distance between the instructions in cycles) to detect a hazard and stall,
thereby reducing or eliminating the overlap. In a processor without interlocks that
relies on compiler scheduling, the compiler cannot schedule dependent instruc-
tions in such a way that they completely overlap, since the program will not exe-
cute correctly. The presence of a data dependence in an instruction sequence
reflects a data dependence in the source code from which the instruction sequence
was generated. The effect of the original data dependence must be preserved.

152

Chapter Three Instruction-Level Parallelism and Its Exploitation

Dependences are a property of programs. Whether a given dependence
results in an actual hazard being detected and whether that hazard actually causes
a stall are properties of the pipeline organization. This difference is critical to
understanding how instruction-level parallelism can be exploited.

A data dependence conveys three things: (1) the possibility of a hazard, (2) the
order in which results must be calculated, and (3) an upper bound on how much
parallelism can possibly be exploited. Such limits are explored in Section 3.10 and
in Appendix H in more detail.

Since a data dependence can limit the amount of instruction-level parallelism
we can exploit, a major focus of this chapter is overcoming these limitations.
A dependence can be overcome in two different ways: (1) maintaining the depen-
dence but avoiding a hazard, and (2) eliminating a dependence by transforming
the code. Scheduling the code is the primary method used to avoid a hazard with-
out altering a dependence, and such scheduling can be done both by the compiler
and by the hardware.

A data value may flow between instructions either through registers or
through memory locations. When the data flow occurs in a register, detecting the
dependence is straightforward since the register names are fixed in the instruc-
tions, although it gets more complicated when branches intervene and correct-
ness concerns force a compiler or hardware to be conservative.

Dependences that flow through memory locations are more difficult to detect,
since two addresses may refer to the same location but look different: For exam-
ple, 100(R4) and 20(R6) may be identical memory addresses. In addition, the
effective address of a load or store may change from one execution of the instruc-
tion to another (so that 20(R4) and 20 (R4) may be different), further complicat-
ing the detection of a dependence.

In this chapter, we examine hardware for detecting data dependences that
involve memory locations, but we will see that these techniques also have limita-
tions. The compiler techniques for detecting such dependences are critical in
uncovering loop-level parallelism.

Name Dependences

The second type of dependence is a name dependence. A name dependence
occurs when two instructions use the same register or memory location, called a
name, but there is no flow of data between the instructions associated with that
name. There are two types of name dependences between an instruction i that
precedes instruction j in program order:

1. An antidependence between instruction i and instruction j occurs when
instruction j writes a register or memory location that instruction i reads. The
original ordering must be preserved to ensure that i reads the correct value. In
the example on page 151, there is an antidependence between S.D and
DADDIU on register R1.

2. An output dependence occurs when instruction i and instruction j write the
same register or memory location. The ordering between the instructions

3.1 Instruction-Level Parallelism: Concepts and Challenges 153

must be preserved to ensure that the value finally written corresponds to
instruction j.

Both antidependences and output dependences are name dependences, as
opposed to true data dependences, since there is no value being transmitted
between the instructions. Because a name dependence is not a true dependence,
instructions involved in a name dependence can execute simultaneously or be
reordered, if the name (register number or memory location) used in the instruc-
tions is changed so the instructions do not conflict.

This renaming can be more easily done for register operands, where it is
called register renaming. Register renaming can be done either statically by a
compiler or dynamically by the hardware. Before describing dependences arising
from branches, let’s examine the relationship between dependences and pipeline
data hazards.

Data Hazards

A hazard exists whenever there is a name or data dependence between
instructions, and they are close enough that the overlap during execution would
change the order of access to the operand involved in the dependence. Because of
the dependence, we must preserve what is called program order—that is, the
order that the instructions would execute in if executed sequentially one at a time
as determined by the original source program. The goal of both our software and
hardware techniques is to exploit parallelism by preserving program order only
where it affects the outcome of the program. Detecting and avoiding hazards
ensures that necessary program order is preserved.

Data hazards, which are informally described in Appendix C, may be classi-
fied as one of three types, depending on the order of read and write accesses in
the instructions. By convention, the hazards are named by the ordering in the pro-
gram that must be preserved by the pipeline. Consider two instructions i and j,
with i preceding j in program order. The possible data hazards are

m RAW (read after write)—j tries to read a source before i writes it, so j incor-
rectly gets the old value. This hazard is the most common type and corre-
sponds to a true data dependence. Program order must be preserved to ensure
that j receives the value from i.

m WAW (write after write)—j tries to write an operand before it is written by i.
The writes end up being performed in the wrong order, leaving the value writ-
ten by i rather than the value written by j in the destination. This hazard corre-
sponds to an output dependence. WAW hazards are present only in pipelines
that write in more than one pipe stage or allow an instruction to proceed even
when a previous instruction is stalled.

m WAR (write after read)—j tries to write a destination before it is read by i, so i
incorrectly gets the new value. This hazard arises from an antidependence (or
name dependence). WAR hazards cannot occur in most static issue pipelines—
even deeper pipelines or floating-point pipelines—because all reads are early

154 Chapter Three Instruction-Level Parallelism and Its Exploitation

(in ID in the pipeline in Appendix C) and all writes are late (in WB in the pipe-
line in Appendix C). A WAR hazard occurs either when there are some instruc-
tions that write results early in the instruction pipeline and other instructions
that read a source late in the pipeline, or when instructions are reordered, as we
will see in this chapter.

Note that the RAR (read after read) case is not a hazard.

Control Dependences

The last type of dependence is a control dependence. A control dependence
determines the ordering of an instruction, i, with respect to a branch instruction
so that instruction i is executed in correct program order and only when it should
be. Every instruction, except for those in the first basic block of the program, is
control dependent on some set of branches, and, in general, these control depen-
dences must be preserved to preserve program order. One of the simplest exam-
ples of a control dependence is the dependence of the statements in the “then”
part of an if statement on the branch. For example, in the code segment

if pl {
S1;

bs

if p2 {
S2;

}

S1 is control dependent on pl, and S2 is control dependent on p2 but not on p1.
In general, two constraints are imposed by control dependences:

1. An instruction that is control dependent on a branch cannot be moved before
the branch so that its execution is no longer controlled by the branch. For
example, we cannot take an instruction from the then portion of an if state-
ment and move it before the if statement.

2. An instruction that is not control dependent on a branch cannot be moved
after the branch so that its execution is controlled by the branch. For exam-
ple, we cannot take a statement before the if statement and move it into the
then portion.

When processors preserve strict program order, they ensure that control
dependences are also preserved. We may be willing to execute instructions that
should not have been executed, however, thereby violating the control depen-
dences, if we can do so without affecting the correctness of the program. Thus,
control dependence is not the critical property that must be preserved. Instead,
the two properties critical to program correctness—and normally preserved by
maintaining both data and control dependences—are the exception behavior
and the data flow.

Preserving the exception behavior means that any changes in the ordering of
instruction execution must not change how exceptions are raised in the program.

3.1 [Instruction-Level Parallelism: Concepts and Challenges 155

Often this is relaxed to mean that the reordering of instruction execution must not
cause any new exceptions in the program. A simple example shows how main-
taining the control and data dependences can prevent such situations. Consider
this code sequence:

DADDU R2,R3,R4

BEQZ R2,L1

LW R1,0(R2)
L1:

In this case, it is easy to see that if we do not maintain the data dependence
involving R2, we can change the result of the program. Less obvious is the fact
that if we ignore the control dependence and move the load instruction before the
branch, the load instruction may cause a memory protection exception. Notice
that no data dependence prevents us from interchanging the BEQZ and the LW; it is
only the control dependence. To allow us to reorder these instructions (and still
preserve the data dependence), we would like to just ignore the exception when
the branch is taken. In Section 3.6, we will look at a hardware technique, specula-
tion, which allows us to overcome this exception problem. Appendix H looks at
software techniques for supporting speculation.

The second property preserved by maintenance of data dependences and con-
trol dependences is the data flow. The data flow is the actual flow of data values
among instructions that produce results and those that consume them. Branches
make the data flow dynamic, since they allow the source of data for a given
instruction to come from many points. Put another way, it is insufficient to just
maintain data dependences because an instruction may be data dependent on
more than one predecessor. Program order is what determines which predecessor
will actually deliver a data value to an instruction. Program order is ensured by
maintaining the control dependences.

For example, consider the following code fragment:

DADDU R1,R2,R3

BEQZ R4,L

DSUBU R1,R5,R6
L:

OR R7,R1,R8

In this example, the value of R1 used by the OR instruction depends on whether
the branch is taken or not. Data dependence alone is not sufficient to preserve
correctness. The OR instruction is data dependent on both the DADDU and
DSUBU instructions, but preserving that order alone is insufficient for correct
execution.

Instead, when the instructions execute, the data flow must be preserved: If
the branch is not taken, then the value of R1 computed by the DSUBU should be
used by the OR, and, if the branch is taken, the value of Rl computed by the
DADDU should be used by the OR. By preserving the control dependence of the OR
on the branch, we prevent an illegal change to the data flow. For similar reasons,

156

Chapter Three Instruction-Level Parallelism and Its Exploitation

3.2

the DSUBU instruction cannot be moved above the branch. Speculation, which
helps with the exception problem, will also allow us to lessen the impact of the
control dependence while still maintaining the data flow, as we will see in
Section 3.6.

Sometimes we can determine that violating the control dependence cannot
affect either the exception behavior or the data flow. Consider the following code
sequence:

DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9
skip: OR R7,R8,R9

Suppose we knew that the register destination of the DSUBU instruction (R4) was
unused after the instruction labeled skip. (The property of whether a value will
be used by an upcoming instruction is called liveness.) If R4 were unused, then
changing the value of R4 just before the branch would not affect the data flow
since R4 would be dead (rather than live) in the code region after skip. Thus, if
R4 were dead and the existing DSUBU instruction could not generate an exception
(other than those from which the processor resumes the same process), we could
move the DSUBU instruction before the branch, since the data flow cannot be
affected by this change.

If the branch is taken, the DSUBU instruction will execute and will be use-
less, but it will not affect the program results. This type of code scheduling is
also a form of speculation, often called software speculation, since the com-
piler is betting on the branch outcome; in this case, the bet is that the branch is
usually not taken. More ambitious compiler speculation mechanisms are
discussed in Appendix H. Normally, it will be clear when we say speculation
or speculative whether the mechanism is a hardware or software mechanism;
when it is not clear, it is best to say “hardware speculation” or “software
speculation.”

Control dependence is preserved by implementing control hazard detection
that causes control stalls. Control stalls can be eliminated or reduced by a variety
of hardware and software techniques, which we examine in Section 3.3.

Basic Compiler Techniques for Exposing ILP

This section examines the use of simple compiler technology to enhance a pro-
cessor’s ability to exploit ILP. These techniques are crucial for processors that
use static issue or static scheduling. Armed with this compiler technology, we
will shortly examine the design and performance of processors using static issu-
ing. Appendix H will investigate more sophisticated compiler and associated
hardware schemes designed to enable a processor to exploit more instruction-
level parallelism.

3.2 Basic Compiler Techniques for Exposing ILP 157

Basic Pipeline Scheduling and Loop Unrolling

To keep a pipeline full, parallelism among instructions must be exploited by
finding sequences of unrelated instructions that can be overlapped in the pipe-
line. To avoid a pipeline stall, the execution of a dependent instruction must be
separated from the source instruction by a distance in clock cycles equal to the
pipeline latency of that source instruction. A compiler’s ability to perform this
scheduling depends both on the amount of ILP available in the program and on
the latencies of the functional units in the pipeline. Figure 3.2 shows the FP
unit latencies we assume in this chapter, unless different latencies are explicitly
stated. We assume the standard five-stage integer pipeline, so that branches
have a delay of one clock cycle. We assume that the functional units are fully
pipelined or replicated (as many times as the pipeline depth), so that an opera-
tion of any type can be issued on every clock cycle and there are no structural
hazards.

In this subsection, we look at how the compiler can increase the amount
of available ILP by transforming loops. This example serves both to illustrate
an important technique as well as to motivate the more powerful program
transformations described in Appendix H. We will rely on the following code
segment, which adds a scalar to a vector:

for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

We can see that this loop is parallel by noticing that the body of each iteration is
independent. We formalize this notion in Appendix H and describe how we can
test whether loop iterations are independent at compile time. First, let’s look at
the performance of this loop, showing how we can use the parallelism to improve
its performance for a MIPS pipeline with the latencies shown above.

The first step is to translate the above segment to MIPS assembly language.
In the following code segment, R1 is initially the address of the element in the
array with the highest address, and F2 contains the scalar value s. Register R2 is
precomputed, so that 8(R2) is the address of the last element to operate on.

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Figure 3.2 Latencies of FP operations used in this chapter. The last column is the
number of intervening clock cycles needed to avoid a stall. These numbers are similar
to the average latencies we would see on an FP unit. The latency of a floating-point
load to a store is O, since the result of the load can be bypassed without stalling the
store. We will continue to assume an integer load latency of 1 and an integer ALU oper-
ation latency of 0.

158 Chapter Three Instruction-Level Parallelism and Its Exploitation

The straightforward MIPS code, not scheduled for the pipeline, looks like

this:
Loop: L.D FO,0(R1) ;FO=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result

DADDUI R1,R1,#-8 ;decrement pointer
;8 bytes (per DW)
BNE R1,R2,Loop sbranch R1!=R2

Let’s start by seeing how well this loop will run when it is scheduled on a
simple pipeline for MIPS with the latencies from Figure 3.2.

Example Show how the loop would look on MIPS, both scheduled and unscheduled,
including any stalls or idle clock cycles. Schedule for delays from floating-point
operations, but remember that we are ignoring delayed branches.

Answer Without any scheduling, the loop will execute as follows, taking nine cycles:
Clock cycle issued

Loop: L.D FO,0(R1) 1
stall 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,0(R1) 6
DADDUI R1,R1,#-8 7
stall 8
BNE R1,R2,Loop 9
We can schedule the loop to obtain only two stalls and reduce the time to seven
cycles:
Loop: L.D FO,0(R1)

DADDUI ~ R1,R1,#-8
ADD.D F4,F0,F2

stall

stall

S.D F4,8(R1)
BNE R1,R2,Loop

The stalls after ADD.D are for use by the S.D.

In the previous example, we complete one loop iteration and store back one
array element every seven clock cycles, but the actual work of operating on the
array element takes just three (the load, add, and store) of those seven clock

3.2 Basic Compiler Techniques for Exposing ILP 159

cycles. The remaining four clock cycles consist of loop overhead—the DADDUI
and BNE—and two stalls. To eliminate these four clock cycles we need to get
more operations relative to the number of overhead instructions.

A simple scheme for increasing the number of instructions relative to the
branch and overhead instructions is loop unrolling. Unrolling simply replicates
the loop body multiple times, adjusting the loop termination code.

Loop unrolling can also be used to improve scheduling. Because it eliminates
the branch, it allows instructions from different iterations to be scheduled
together. In this case, we can eliminate the data use stalls by creating additional
independent instructions within the loop body. If we simply replicated the
instructions when we unrolled the loop, the resulting use of the same registers
could prevent us from effectively scheduling the loop. Thus, we will want to use
different registers for each iteration, increasing the required number of registers.

Example

Answer

Show our loop unrolled so that there are four copies of the loop body, assuming
R1 — R2 (that is, the size of the array) is initially a multiple of 32, which means
that the number of loop iterations is a multiple of 4. Eliminate any obviously
redundant computations and do not reuse any of the registers.

Here is the result after merging the DADDUI instructions and dropping the unnec-
essary BNE operations that are duplicated during unrolling. Note that R2 must now
be set so that 32 (R2) is the starting address of the last four elements.

Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1) sdrop DADDUI & BNE
L.D F6,-8(R1)
ADD.D F8,F6,F2
S.D F8,-8(R1) sdrop DADDUI & BNE
L.D F10,-16(R1)
ADD.D F12,F10,F2
S.D F12,-16(R1) ;drop DADDUI & BNE
L.D F14,-24(R1)
ADD.D F16,F14,F2
S.D F16,-24(R1)
DADDUI R1,R1,#-32
BNE R1,R2,Loop

We have eliminated three branches and three decrements of R1. The addresses on
the loads and stores have been compensated to allow the DADDUI instructions on
R1 to be merged. This optimization may seem trivial, but it is not; it requires sym-
bolic substitution and simplification. Symbolic substitution and simplification
will rearrange expressions so as to allow constants to be collapsed, allowing an
expression such as ((i + 1) + 1) to be rewritten as (i + (1 + 1)) and then simplified
to (i + 2). We will see more general forms of these optimizations that eliminate
dependent computations in Appendix H.

160

Chapter Three Instruction-Level Parallelism and Its Exploitation

Without scheduling, every operation in the unrolled loop is followed by a
dependent operation and thus will cause a stall. This loop will run in 27 clock
cycles—each LD has 1 stall, each ADDD 2, the DADDUI 1, plus 14 instruction issue
cycles—or 6.75 clock cycles for each of the four elements, but it can be sched-
uled to improve performance significantly. Loop unrolling is normally done early
in the compilation process, so that redundant computations can be exposed and
eliminated by the optimizer.

In real programs we do not usually know the upper bound on the loop. Sup-
pose it is n, and we would like to unroll the loop to make k copies of the body.
Instead of a single unrolled loop, we generate a pair of consecutive loops. The
first executes (n mod k) times and has a body that is the original loop. The second
is the unrolled body surrounded by an outer loop that iterates (n/k) times. (As we
shall see in Chapter 4, this technique is similar to a technique called strip mining,
used in compilers for vector processors.) For large values of n, most of the execu-
tion time will be spent in the unrolled loop body.

In the previous example, unrolling improves the performance of this loop by
eliminating overhead instructions, although it increases code size substantially.
How will the unrolled loop perform when it is scheduled for the pipeline
described earlier?

Example

Answer

Show the unrolled loop in the previous example after it has been scheduled for
the pipeline with the latencies from Figure 3.2.

Loop: L.D FO,0(R1)
L.D F6,-8(R1)
L.D F10,-16(R1)
L.D F14,-24(R1)
ADD.D F4,FO0,F2
ADD.D F8,F6,F2
ADD.D F12,F10,F2
ADD.D F16,F14,F2
S.D F4,0(R1)
S.D F8,-8(R1)
DADDUI R1,R1,#-32
S.D F12,16(R1)
S.D F16,8(R1)
BNE R1,R2,Loop

The execution time of the unrolled loop has dropped to a total of 14 clock cycles,
or 3.5 clock cycles per element, compared with 9 cycles per element before any
unrolling or scheduling and 7 cycles when scheduled but not unrolled.

The gain from scheduling on the unrolled loop is even larger than on the origi-
nal loop. This increase arises because unrolling the loop exposes more computation

3.2 Basic Compiler Techniques for Exposing ILP 161

that can be scheduled to minimize the stalls; the code above has no stalls. Schedul-
ing the loop in this fashion necessitates realizing that the loads and stores are inde-
pendent and can be interchanged.

Summary of the Loop Unrolling and Scheduling

Throughout this chapter and Appendix H, we will look at a variety of hardware
and software techniques that allow us to take advantage of instruction-level
parallelism to fully utilize the potential of the functional units in a processor.
The key to most of these techniques is to know when and how the ordering
among instructions may be changed. In our example we made many such
changes, which to us, as human beings, were obviously allowable. In practice,
this process must be performed in a methodical fashion either by a compiler or
by hardware. To obtain the final unrolled code we had to make the following
decisions and transformations:

m Determine that unrolling the loop would be useful by finding that the loop
iterations were independent, except for the loop maintenance code.

m Use different registers to avoid unnecessary constraints that would be forced by
using the same registers for different computations (e.g., name dependences).

m Eliminate the extra test and branch instructions and adjust the loop termina-
tion and iteration code.

m Determine that the loads and stores in the unrolled loop can be interchanged
by observing that the loads and stores from different iterations are indepen-
dent. This transformation requires analyzing the memory addresses and find-
ing that they do not refer to the same address.

m Schedule the code, preserving any dependences needed to yield the same
result as the original code.

The key requirement underlying all of these transformations is an understanding
of how one instruction depends on another and how the instructions can be
changed or reordered given the dependences.

Three different effects limit the gains from loop unrolling: (1) a decrease in
the amount of overhead amortized with each unroll, (2) code size limitations,
and (3) compiler limitations. Let’s consider the question of loop overhead first.
When we unrolled the loop four times, it generated sufficient parallelism among
the instructions that the loop could be scheduled with no stall cycles. In fact, in
14 clock cycles, only 2 cycles were loop overhead: the DADDUI, which maintains
the index value, and the BNE, which terminates the loop. If the loop is unrolled
eight times, the overhead is reduced from 1/2 cycle per original iteration to 1/4.

A second limit to unrolling is the growth in code size that results. For larger
loops, the code size growth may be a concern particularly if it causes an increase
in the instruction cache miss rate.

Another factor often more important than code size is the potential shortfall in
registers that is created by aggressive unrolling and scheduling. This secondary

162

Chapter Three Instruction-Level Parallelism and Its Exploitation

3.3

effect that results from instruction scheduling in large code segments is called reg-
ister pressure. It arises because scheduling code to increase ILP causes the number
of live values to increase. After aggressive instruction scheduling, it may not be
possible to allocate all the live values to registers. The transformed code, while
theoretically faster, may lose some or all of its advantage because it generates a
shortage of registers. Without unrolling, aggressive scheduling is sufficiently lim-
ited by branches so that register pressure is rarely a problem. The combination of
unrolling and aggressive scheduling can, however, cause this problem. The prob-
lem becomes especially challenging in multiple-issue processors that require the
exposure of more independent instruction sequences whose execution can be
overlapped. In general, the use of sophisticated high-level transformations, whose
potential improvements are difficult to measure before detailed code generation,
has led to significant increases in the complexity of modern compilers.

Loop unrolling is a simple but useful method for increasing the size of
straight-line code fragments that can be scheduled effectively. This transforma-
tion is useful in a variety of processors, from simple pipelines like those we have
examined so far to the multiple-issue superscalars and VLIWs explored later in
this chapter.

Reducing Branch Costs with Advanced Branch
Prediction

Because of the need to enforce control dependences through branch hazards and
stalls, branches will hurt pipeline performance. Loop unrolling is one way to
reduce the number of branch hazards; we can also reduce the performance losses of
branches by predicting how they will behave. In Appendix C, we examine simple
branch predictors that rely either on compile-time information or on the observed
dynamic behavior of a branch in isolation. As the number of instructions in flight
has increased, the importance of more accurate branch prediction has grown. In this
section, we examine techniques for improving dynamic prediction accuracy.

Correlating Branch Predictors

The 2-bit predictor schemes use only the recent behavior of a single branch to
predict the future behavior of that branch. It may be possible to improve the pre-
diction accuracy if we also look at the recent behavior of other branches rather
than just the branch we are trying to predict. Consider a small code fragment
from the eqntott benchmark, a member of early SPEC benchmark suites that dis-
played particularly bad branch prediction behavior:

if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aa!=bb) {

3.3 Reducing Branch Costs with Advanced Branch Prediction 163

Here is the MIPS code that we would typically generate for this code frag-
ment assuming that aa and bb are assigned to registers R1 and R2:

DADDIU R3,R1,#-2

BNEZ R3,L1 ;branch bl (aa!=2)
DADD R1,R0,RO ;aa=0

L1: DADDIU R3,R2,#-2
BNEZ R3,L2 ;branch b2 (bb!=2)
DADD R2,R0,RO ;bb=0

L2: DSUBU R3,R1,R2 ;R3=aa-bb
BEQZ R3,L3 sbranch b3 (aa==bb)

Let’s label these branches b1, b2, and b3. The key observation is that the behav-
ior of branch b3 is correlated with the behavior of branches bl and b2. Clearly, if
branches bl and b2 are both not taken (i.e., if the conditions both evaluate to true
and aa and bb are both assigned 0), then b3 will be taken, since aa and bb are
clearly equal. A predictor that uses only the behavior of a single branch to predict
the outcome of that branch can never capture this behavior.

Branch predictors that use the behavior of other branches to make a predic-
tion are called correlating predictors or two-level predictors. Existing corre-
lating predictors add information about the behavior of the most recent
branches to decide how to predict a given branch. For example, a (1,2) predic-
tor uses the behavior of the last branch to choose from among a pair of 2-bit
branch predictors in predicting a particular branch. In the general case, an
(m,n) predictor uses the behavior of the last m branches to choose from 2"
branch predictors, each of which is an n-bit predictor for a single branch. The
attraction of this type of correlating branch predictor is that it can yield higher
prediction rates than the 2-bit scheme and requires only a trivial amount of
additional hardware.

The simplicity of the hardware comes from a simple observation: The
global history of the most recent m branches can be recorded in an m-bit shift
register, where each bit records whether the branch was taken or not taken. The
branch-prediction buffer can then be indexed using a concatenation of the low-
order bits from the branch address with the m-bit global history. For example,
in a (2,2) buffer with 64 total entries, the 4 low-order address bits of the branch
(word address) and the 2 global bits representing the behavior of the two most
recently executed branches form a 6-bit index that can be used to index the 64
counters.

How much better do the correlating branch predictors work when compared
with the standard 2-bit scheme? To compare them fairly, we must compare
predictors that use the same number of state bits. The number of bits in an (m,n)
predictor is

2" x n x Number of prediction entries selected by the branch address

A 2-bit predictor with no global history is simply a (0,2) predictor.

164

Chapter Three Instruction-Level Parallelism and Its Exploitation

Example

Answer

How many bits are in the (0,2) branch predictor with 4K entries? How many
entries are in a (2,2) predictor with the same number of bits?

The predictor with 4K entries has

20 % 2 x 4K = 8K bits

How many branch-selected entries are in a (2,2) predictor that has a total of 8K
bits in the prediction buffer? We know that

22 x 2 x Number of prediction entries selected by the branch = 8K

Hence, the number of prediction entries selected by the branch = 1K.

Figure 3.3 compares the misprediction rates of the earlier (0,2) predictor with
4K entries and a (2,2) predictor with 1K entries. As you can see, this correlating
predictor not only outperforms a simple 2-bit predictor with the same total num-
ber of state bits, but it also often outperforms a 2-bit predictor with an unlimited
number of entries.

Tournament Predictors: Adaptively Combining Local and
Global Predictors

The primary motivation for correlating branch predictors came from the observa-
tion that the standard 2-bit predictor using only local information failed on some
important branches and that, by adding global information, the performance
could be improved. Tournament predictors take this insight to the next level, by
using multiple predictors, usually one based on global information and one based
on local information, and combining them with a selector. Tournament predictors
can achieve both better accuracy at medium sizes (§8K-32K bits) and also make
use of very large numbers of prediction bits effectively. Existing tournament pre-
dictors use a 2-bit saturating counter per branch to choose among two different
predictors based on which predictor (local, global, or even some mix) was most
effective in recent predictions. As in a simple 2-bit predictor, the saturating coun-
ter requires two mispredictions before changing the identity of the preferred
predictor.

The advantage of a tournament predictor is its ability to select the right
predictor for a particular branch, which is particularly crucial for the integer
benchmarks. A typical tournament predictor will select the global predictor
almost 40% of the time for the SPEC integer benchmarks and less than 15% of
the time for the SPEC FP benchmarks. In addition to the Alpha processors that
pioneered tournament predictors, recent AMD processors, including both the
Opteron and Phenom, have used tournament-style predictors.

Figure 3.4 looks at the performance of three different predictors (a local 2-bit
predictor, a correlating predictor, and a tournament predictor) for different

3.3 Reducing Branch Costs with Advanced Branch Prediction 165

- 12/0 W 4096 entries:
nASA7 ?O? 2 bits per entry
(]
7 0% @ Unlimited entries:
matrix300 0% 2 bits per entry
i 0% O 1024 entries:
| 1% (2,2)
tomcatv 0%
0,
| 1%

5%

doduc

spice

fpppp

SPEC89 benchmarks

gce

espresso

18%

egntott 18%

10%
10%
5%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

Figure 3.3 Comparison of 2-bit predictors. A noncorrelating predictor for 4096 bits is
first, followed by a noncorrelating 2-bit predictor with unlimited entries and a 2-bit pre-
dictor with 2 bits of global history and a total of 1024 entries. Although these data are
for an older version of SPEC, data for more recent SPEC benchmarks would show similar
differences in accuracy.

numbers of bits using SPEC89 as the benchmark. As we saw earlier, the predic-
tion capability of the local predictor does not improve beyond a certain size. The
correlating predictor shows a significant improvement, and the tournament pre-
dictor generates slightly better performance. For more recent versions of the
SPEC, the results would be similar, but the asymptotic behavior would not be
reached until slightly larger predictor sizes.

The local predictor consists of a two-level predictor. The top level is a local
history table consisting of 1024 10-bit entries; each 10-bit entry corresponds to
the most recent 10 branch outcomes for the entry. That is, if the branch was taken
10 or more times in a row, the entry in the local history table will be all 1s. If the
branch is alternately taken and untaken, the history entry consists of alternating
Os and 1s. This 10-bit history allows patterns of up to 10 branches to be discov-
ered and predicted. The selected entry from the local history table is used to

166 Chapter Three Instruction-Level Parallelism and Its Exploitation

BB e

<
7% _KA """"" N

B o e el el

B o S s

A e e

Correlating predictors
B i e S

Tournament predictors
2 | i

Conditional branch misprediction rate

L R A

O% T T T T T T T T T T T T T T T 1
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 51

Total predictor size

Figure 3.4 The misprediction rate for three different predictors on SPEC89 as the total number of bits is
increased. The predictors are a local 2-bit predictor, a correlating predictor that is optimally structured in its use of
global and local information at each point in the graph, and a tournament predictor. Although these data are for an
older version of SPEC, data for more recent SPEC benchmarks would show similar behavior, perhaps converging to
the asymptotic limit at slightly larger predictor sizes.

index a table of 1K entries consisting of 3-bit saturating counters, which provide
the local prediction. This combination, which uses a total of 29K bits, leads to
high accuracy in branch prediction.

The Intel Core i7 Branch Predictor

Intel has released only limited amounts of information about the Core i7’s branch
predictor, which is based on earlier predictors used in the Core Duo chip. The 17
uses a two-level predictor that has a smaller first-level predictor, designed to
meet the cycle constraints of predicting a branch every clock cycle, and a larger
second-level predictor as a backup. Each predictor combines three different pre-
dictors: (1) the simple two-bit predictor, which was introduced in Appendix C
(and used in the tournament predictor discussed above); (2) a global history pre-
dictor, like those we just saw; and (3) a loop exit predictor. The loop exit predic-
tor uses a counter to predict the exact number of taken branches (which is the
number of loop iterations) for a branch that is detected as a loop branch. For each
branch, the best prediction is chosen from among the three predictors by tracking
the accuracy of each prediction, like a tournament predictor. In addition to this
multilevel main predictor, a separate unit predicts target addresses for indirect
branches, and a stack to predict return addresses is also used.

10% -

9%

8% -

7%

6% -

5%

4%

Misprediction rate

3% -

2% H

1% -

0% A
N Q)(\
Q@

&
o

3.4 Overcoming Data Hazards with Dynamic Scheduling 167

O &S & SO RSE QN g NP
F P oS W R S T & 2 & &
& D &L Q\‘Pg) S ?*\é\o S Qe @O ng(\\
F 0

Figure 3.5 The misprediction rate for 19 of the SPECCPU2006 benchmarks versus the number of successfully
retired branches is slightly higher on average for the integer benchmarks than for the FP (4% versus 3%). More
importantly, it is much higher for a few benchmarks.

34

As in other cases, speculation causes some challenges in evaluating the pre-
dictor, since a mispredicted branch may easily lead to another branch being
fetched and mispredicted. To keep things simple, we look at the number of mis-
predictions as a percentage of the number of successfully completed branches
(those that were not the result of misspeculation). Figure 3.5 shows these data for
19 of the SPECCPU 2006 benchmarks. These benchmarks are considerably
larger than SPEC89 or SPEC2000, with the result being that the misprediction
rates are slightly higher than those in Figure 3.4 even with a more elaborate com-
bination of predictors. Because branch misprediction leads to ineffective specula-
tion, it contributes to the wasted work, as we will see later in this chapter.

Overcoming Data Hazards with Dynamic Scheduling

A simple statically scheduled pipeline fetches an instruction and issues it, unless
there is a data dependence between an instruction already in the pipeline and the
fetched instruction that cannot be hidden with bypassing or forwarding. (For-
warding logic reduces the effective pipeline latency so that the certain depen-
dences do not result in hazards.) If there is a data dependence that cannot be

168

Chapter Three Instruction-Level Parallelism and Its Exploitation

hidden, then the hazard detection hardware stalls the pipeline starting with the
instruction that uses the result. No new instructions are fetched or issued until the
dependence is cleared.

In this section, we explore dynamic scheduling, in which the hardware rear-
ranges the instruction execution to reduce the stalls while maintaining data flow
and exception behavior. Dynamic scheduling offers several advantages. First, it
allows code that was compiled with one pipeline in mind to run efficiently on a
different pipeline, eliminating the need to have multiple binaries and recompile
for a different microarchitecture. In today’s computing environment, where much
of the software is from third parties and distributed in binary form, this advantage
is significant. Second, it enables handling some cases when dependences are
unknown at compile time; for example, they may involve a memory reference or
a data-dependent branch, or they may result from a modern programming envi-
ronment that uses dynamic linking or dispatching. Third, and perhaps most
importantly, it allows the processor to tolerate unpredictable delays, such as
cache misses, by executing other code while waiting for the miss to resolve. In
Section 3.6, we explore hardware speculation, a technique with additional perfor-
mance advantages, which builds on dynamic scheduling. As we will see, the
advantages of dynamic scheduling are gained at a cost of significant increase in
hardware complexity.

Although a dynamically scheduled processor cannot change the data flow, it
tries to avoid stalling when dependences are present. In contrast, static pipeline
scheduling by the compiler (covered in Section 3.2) tries to minimize stalls by
separating dependent instructions so that they will not lead to hazards. Of course,
compiler pipeline scheduling can also be used on code destined to run on a pro-
cessor with a dynamically scheduled pipeline.

Dynamic Scheduling: The Idea

A major limitation of simple pipelining techniques is that they use in-order
instruction issue and execution: Instructions are issued in program order, and if
an instruction is stalled in the pipeline no later instructions can proceed. Thus, if
there is a dependence between two closely spaced instructions in the pipeline,
this will lead to a hazard and a stall will result. If there are multiple functional
units, these units could lie idle. If instruction j depends on a long-running instruc-
tion 7, currently in execution in the pipeline, then all instructions after j must be
stalled until i is finished and j can execute. For example, consider this code:

DIV.D FO,F2,F4
ADD.D F10,F0,F8
SUB.D F12,F8,F14

The SUB.D instruction cannot execute because the dependence of ADD.D on
DIV.D causes the pipeline to stall; yet, SUB.D is not data dependent on anything in
the pipeline. This hazard creates a performance limitation that can be eliminated
by not requiring instructions to execute in program order.

3.4 Overcoming Data Hazards with Dynamic Scheduling 169

In the classic five-stage pipeline, both structural and data hazards could be
checked during instruction decode (ID): When an instruction could execute with-
out hazards, it was issued from ID knowing that all data hazards had been
resolved.

To allow us to begin executing the SUB.D in the above example, we must sep-
arate the issue process into two parts: checking for any structural hazards and
waiting for the absence of a data hazard. Thus, we still use in-order instruction
issue (i.e., instructions issued in program order), but we want an instruction to
begin execution as soon as its data operands are available. Such a pipeline does
out-of-order execution, which implies out-of-order completion.

Out-of-order execution introduces the possibility of WAR and WAW hazards,
which do not exist in the five-stage integer pipeline and its logical extension to an
in-order floating-point pipeline. Consider the following MIPS floating-point
code sequence:

DIV.D FO,F2,F4
ADD.D F6,F0,F8
SUB.D F8,F10,F14
MUL.D F6,F10,F8

There is an antidependence between the ADD.D and the SUB.D, and if the pipeline
executes the SUB.D before the ADD.D (which is waiting for the DIV.D), it will vio-
late the antidependence, yielding a WAR hazard. Likewise, to avoid violating
output dependences, such as the write of F6 by MUL.D, WAW hazards must be
handled. As we will see, both these hazards are avoided by the use of register
renaming.

Out-of-order completion also creates major complications in handling excep-
tions. Dynamic scheduling with out-of-order completion must preserve exception
behavior in the sense that exactly those exceptions that would arise if the pro-
gram were executed in strict program order actually do arise. Dynamically
scheduled processors preserve exception behavior by delaying the notification of
an associated exception until the processor knows that the instruction should be
the next one completed.

Although exception behavior must be preserved, dynamically scheduled pro-
cessors could generate imprecise exceptions. An exception is imprecise if the
processor state when an exception is raised does not look exactly as if the instruc-
tions were executed sequentially in strict program order. Imprecise exceptions
can occur because of two possibilities:

1. The pipeline may have already completed instructions that are later in pro-
gram order than the instruction causing the exception.
2. The pipeline may have not yet completed some instructions that are earlier in

program order than the instruction causing the exception.

Imprecise exceptions make it difficult to restart execution after an exception.
Rather than address these problems in this section, we will discuss a solution that

170

Chapter Three Instruction-Level Parallelism and Its Exploitation

provides precise exceptions in the context of a processor with speculation in Sec-
tion 3.6. For floating-point exceptions, other solutions have been used, as dis-
cussed in Appendix J.

To allow out-of-order execution, we essentially split the ID pipe stage of our
simple five-stage pipeline into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

An instruction fetch stage precedes the issue stage and may fetch either into an
instruction register or into a queue of pending instructions; instructions are then
issued from the register or queue. The execution stage follows the read operands
stage, just as in the five-stage pipeline. Execution may take multiple cycles,
depending on the operation.

We distinguish when an instruction begins execution and when it completes
execution; between the two times, the instruction is in execution. Our pipeline
allows multiple instructions to be in execution at the same time; without this
capability, a major advantage of dynamic scheduling is lost. Having multiple
instructions in execution at once requires multiple functional units, pipelined
functional units, or both. Since these two capabilities—pipelined functional units
and multiple functional units—are essentially equivalent for the purposes of
pipeline control, we will assume the processor has multiple functional units.

In a dynamically scheduled pipeline, all instructions pass through the issue
stage in order (in-order issue); however, they can be stalled or bypass each other
in the second stage (read operands) and thus enter execution out of order. Score-
boarding is a technique for allowing instructions to execute out of order when
there are sufficient resources and no data dependences; it is named after the CDC
6600 scoreboard, which developed this capability. Here, we focus on a more
sophisticated technique, called Tomasulo’s algorithm. The primary difference is
that Tomasulo’s algorithm handles antidependences and output dependences by
effectively renaming the registers dynamically. Additionally, Tomasulo’s algo-
rithm can be extended to handle speculation, a technique to reduce the effect of
control dependences by predicting the outcome of a branch, executing instruc-
tions at the predicted destination address, and taking corrective actions when the
prediction was wrong. While the use of scoreboarding is probably sufficient to
support a simple two-issue superscalar like the ARM A8, a more aggressive
processor, like the four-issue Intel i7, benefits from the use of out-of-order
execution.

Dynamic Scheduling Using Tomasulo’s Approach

The IBM 360/91 floating-point unit used a sophisticated scheme to allow out-of-
order execution. This scheme, invented by Robert Tomasulo, tracks when oper-
ands for instructions are available to minimize RAW hazards and introduces
register renaming in hardware to minimize WAW and WAR hazards. There are

3.4 Overcoming Data Hazards with Dynamic Scheduling 171

many variations on this scheme in modern processors, although the key concepts
of tracking instruction dependences to allow execution as soon as operands are
available and renaming registers to avoid WAR and WAW hazards are common
characteristics.

IBM’s goal was to achieve high floating-point performance from an instruc-
tion set and from compilers designed for the entire 360 computer family, rather
than from specialized compilers for the high-end processors. The 360 architec-
ture had only four double-precision floating-point registers, which limits the
effectiveness of compiler scheduling; this fact was another motivation for the
Tomasulo approach. In addition, the IBM 360/91 had long memory accesses and
long floating-point delays, which Tomasulo’s algorithm was designed to overcome.
At the end of the section, we will see that Tomasulo’s algorithm can also support the
overlapped execution of multiple iterations of a loop.

We explain the algorithm, which focuses on the floating-point unit and load-
store unit, in the context of the MIPS instruction set. The primary difference
between MIPS and the 360 is the presence of register-memory instructions in the
latter architecture. Because Tomasulo’s algorithm uses a load functional unit, no
significant changes are needed to add register-memory addressing modes. The
IBM 360/91 also had pipelined functional units, rather than multiple functional
units, but we describe the algorithm as if there were multiple functional units. It
is a simple conceptual extension to also pipeline those functional units.

As we will see, RAW hazards are avoided by executing an instruction only
when its operands are available, which is exactly what the simpler scoreboarding
approach provides. WAR and WAW hazards, which arise from name depen-
dences, are eliminated by register renaming. Register renaming eliminates these
hazards by renaming all destination registers, including those with a pending read
or write for an earlier instruction, so that the out-of-order write does not affect
any instructions that depend on an earlier value of an operand.

To better understand how register renaming eliminates WAR and WAW haz-
ards, consider the following example code sequence that includes potential WAR
and WAW hazards:

DIV.D FO,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

There are two antidependences: between the ADD.D and the SUB.D and between
the S.D and the MUL.D. There is also an output dependence between the ADD.D
and the MUL.D, leading to three possible hazards: WAR hazards on the use of F8
by ADD.D and the use of F6 by the SUB.D, as well as a WAW hazard since the
ADD.D may finish later than the MUL.D. There are also three true data depen-
dences: between the DIV.D and the ADD.D, between the SUB.D and the MUL.D, and
between the ADD.D and the S.D.

172

Chapter Three Instruction-Level Parallelism and Its Exploitation

These three name dependences can all be eliminated by register renaming.
For simplicity, assume the existence of two temporary registers, S and T. Using S
and T, the sequence can be rewritten without any dependences as:

DIV.D FO,F2,F4
ADD.D S,FO0,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

In addition, any subsequent uses of F8 must be replaced by the register T. In this
code segment, the renaming process can be done statically by the compiler. Find-
ing any uses of F8 that are later in the code requires either sophisticated compiler
analysis or hardware support, since there may be intervening branches between
the above code segment and a later use of F8. As we will see, Tomasulo’s algo-
rithm can handle renaming across branches.

In Tomasulo’s scheme, register renaming is provided by reservation stations,
which buffer the operands of instructions waiting to issue. The basic idea is that a
reservation station fetches and buffers an operand as soon as it is available, elim-
inating the need to get the operand from a register. In addition, pending instruc-
tions designate the reservation station that will provide their input. Finally, when
successive writes to a register overlap in execution, only the last one is actually
used to update the register. As instructions are issued, the register specifiers for
pending operands are renamed to the names of the reservation station, which pro-
vides register renaming.

Since there can be more reservation stations than real registers, the technique
can even eliminate hazards arising from name dependences that could not be
eliminated by a compiler. As we explore the components of Tomasulo’s scheme,
we will return to the topic of register renaming and see exactly how the renaming
occurs and how it eliminates WAR and WAW hazards.

The use of reservation stations, rather than a centralized register file, leads to
two other important properties. First, hazard detection and execution control are
distributed: The information held in the reservation stations at each functional
unit determines when an instruction can begin execution at that unit. Second,
results are passed directly to functional units from the reservation stations where
they are buffered, rather than going through the registers. This bypassing is done
with a common result bus that allows all units waiting for an operand to be
loaded simultaneously (on the 360/91 this is called the common data bus, or
CDB). In pipelines with multiple execution units and issuing multiple instruc-
tions per clock, more than one result bus will be needed.

Figure 3.6 shows the basic structure of a Tomasulo-based processor, includ-
ing both the floating-point unit and the load/store unit; none of the execution con-
trol tables is shown. Each reservation station holds an instruction that has been
issued and is awaiting execution at a functional unit and either the operand values
for that instruction, if they have already been computed, or else the names of the
reservation stations that will provide the operand values.

3.4 Overcoming Data Hazards with Dynamic Scheduling 173

From instruction unit

Instruction FP registers I
queue

Load/store

operations __I_

Floating-point Operand
Address unit operations buses

Store buffers

¥ § v loadbuffers

\

Operation bus

/ 4 4 V&

2 Reservation H—|—. 1
1

stations

Y Data v Address L A 4

Memory unit . |_F2dders J

Common data bus (CDB) y

Y Y

Figure 3.6 The basic structure of a MIPS floating-point unit using Tomasulo’s algorithm. Instructions are sent
from the instruction unit into the instruction queue from which they are issued in first-in, first-out (FIFO) order. The res-
ervation stations include the operation and the actual operands, as well as information used for detecting and resolv-
ing hazards. Load buffers have three functions: (1) hold the components of the effective address until it is computed,
(2) track outstanding loads that are waiting on the memory, and (3) hold the results of completed loads that are waiting
for the CDB. Similarly, store buffers have three functions: (1) hold the components of the effective address until it is
computed, (2) hold the destination memory addresses of outstanding stores that are waiting for the data value to
store, and (3) hold the address and value to store until the memory unit is available. All results from either the FP units
or the load unit are put on the CDB, which goes to the FP register file as well as to the reservation stations and store
buffers. The FP adders implement addition and subtraction, and the FP multipliers do multiplication and division.

The load buffers and store buffers hold data or addresses coming from and
going to memory and behave almost exactly like reservation stations, so we dis-
tinguish them only when necessary. The floating-point registers are connected by
a pair of buses to the functional units and by a single bus to the store buffers. All
results from the functional units and from memory are sent on the common data
bus, which goes everywhere except to the load buffer. All reservation stations
have tag fields, employed by the pipeline control.

Before we describe the details of the reservation stations and the algorithm,
let’s look at the steps an instruction goes through. There are only three steps,
although each one can now take an arbitrary number of clock cycles:

174 Chapter Three Instruction-Level Parallelism and Its Exploitation

1. Issue—Get the next instruction from the head of the instruction queue, which
is maintained in FIFO order to ensure the maintenance of correct data flow. If
there is a matching reservation station that is empty, issue the instruction to
the station with the operand values, if they are currently in the registers. If
there is not an empty reservation station, then there is a structural hazard and
the instruction stalls until a station or buffer is freed. If the operands are not in
the registers, keep track of the functional units that will produce the operands.
This step renames registers, eliminating WAR and WAW hazards. (This stage
is sometimes called dispatch in a dynamically scheduled processor.)

2. Execute—If one or more of the operands is not yet available, monitor the
common data bus while waiting for it to be computed. When an operand
becomes available, it is placed into any reservation station awaiting it. When
all the operands are available, the operation can be executed at the corre-
sponding functional unit. By delaying instruction execution until the oper-
ands are available, RAW hazards are avoided. (Some dynamically scheduled
processors call this step “issue,” but we use the name “execute,” which was
used in the first dynamically scheduled processor, the CDC 6600.)

Notice that several instructions could become ready in the same clock
cycle for the same functional unit. Although independent functional units
could begin execution in the same clock cycle for different instructions, if
more than one instruction is ready for a single functional unit, the unit will
have to choose among them. For the floating-point reservation stations, this
choice may be made arbitrarily; loads and stores, however, present an addi-
tional complication.

Loads and stores require a two-step execution process. The first step com-
putes the effective address when the base register is available, and the effective
address is then placed in the load or store buffer. Loads in the load buffer exe-
cute as soon as the memory unit is available. Stores in the store buffer wait for
the value to be stored before being sent to the memory unit. Loads and stores
are maintained in program order through the effective address calculation,
which will help to prevent hazards through memory, as we will see shortly.

To preserve exception behavior, no instruction is allowed to initiate exe-
cution until all branches that precede the instruction in program order have
completed. This restriction guarantees that an instruction that causes an
exception during execution really would have been executed. In a processor
using branch prediction (as all dynamically scheduled processors do), this
means that the processor must know that the branch prediction was correct
before allowing an instruction after the branch to begin execution. If the pro-
cessor records the occurrence of the exception, but does not actually raise it,
an instruction can start execution but not stall until it enters write result.

As we will see, speculation provides a more flexible and more complete
method to handle exceptions, so we will delay making this enhancement and
show how speculation handles this problem later.

3.4 Overcoming Data Hazards with Dynamic Scheduling 175

3. Write result—When the result is available, write it on the CDB and from
there into the registers and into any reservation stations (including store buf-
fers) waiting for this result. Stores are buffered in the store buffer until both
the value to be stored and the store address are available, then the result is
written as soon as the memory unit is free.

The data structures that detect and eliminate hazards are attached to the reser-
vation stations, to the register file, and to the load and store buffers with slightly
different information attached to different objects. These tags are essentially
names for an extended set of virtual registers used for renaming. In our example,
the tag field is a 4-bit quantity that denotes one of the five reservation stations or
one of the five load buffers. As we will see, this produces the equivalent of 10
registers that can be designated as result registers (as opposed to the four double-
precision registers that the 360 architecture contains). In a processor with more
real registers, we would want renaming to provide an even larger set of virtual
registers. The tag field describes which reservation station contains the instruc-
tion that will produce a result needed as a source operand.

Once an instruction has issued and is waiting for a source operand, it refers to
the operand by the reservation station number where the instruction that will
write the register has been assigned. Unused values, such as zero, indicate that
the operand is already available in the registers. Because there are more reserva-
tion stations than actual register numbers, WAW and WAR hazards are elimi-
nated by renaming results using reservation station numbers. Although in
Tomasulo’s scheme the reservation stations are used as the extended virtual
registers, other approaches could use a register set with additional registers or a
structure like the reorder buffer, which we will see in Section 3.6.

In Tomasulo’s scheme, as well as the subsequent methods we look at for
supporting speculation, results are broadcast on a bus (the CDB), which is
monitored by the reservation stations. The combination of the common result
bus and the retrieval of results from the bus by the reservation stations imple-
ments the forwarding and bypassing mechanisms used in a statically scheduled
pipeline. In doing so, however, a dynamically scheduled scheme introduces one
cycle of latency between source and result, since the matching of a result and
its use cannot be done until the Write Result stage. Thus, in a dynamically
scheduled pipeline, the effective latency between a producing instruction and a
consuming instruction is at least one cycle longer than the latency of the func-
tional unit producing the result.

It is important to remember that the tags in the Tomasulo scheme refer to the
buffer or unit that will produce a result; the register names are discarded when an
instruction issues to a reservation station. (This is a key difference between
Tomasulo’s scheme and scoreboarding: In scoreboarding, operands stay in the
registers and are only read after the producing instruction completes and the con-
suming instruction is ready to execute.)

176

Chapter Three Instruction-Level Parallelism and Its Exploitation

Each reservation station has seven fields:

Op—The operation to perform on source operands S1 and S2.

Qj, Qk—The reservation stations that will produce the corresponding source
operand; a value of zero indicates that the source operand is already available
in Vj or VK, or is unnecessary.

Vj, Vk—The value of the source operands. Note that only one of the V
fields or the Q field is valid for each operand. For loads, the Vk field is used
to hold the offset field.

A—Used to hold information for the memory address calculation for a load
or store. Initially, the immediate field of the instruction is stored here; after
the address calculation, the effective address is stored here.

Busy—Indicates that this reservation station and its accompanying functional
unit are occupied.

The register file has a field, Qi:

Qi—The number of the reservation station that contains the operation whose
result should be stored into this register. If the value of Qi is blank (or 0), no
currently active instruction is computing a result destined for this register,
meaning that the value is simply the register contents.

The load and store buffers each have a field, A, which holds the result of the
effective address once the first step of execution has been completed.

In the next section, we will first consider some examples that show how these

mechanisms work and then examine the detailed algorithm.

3.5 Dynamic Scheduling: Examples and the Algorithm
Before we examine Tomasulo’s algorithm in detail, let’s consider a few examples
that will help illustrate how the algorithm works.
Example Show what the information tables look like for the following code sequence
when only the first load has completed and written its result:
1. L.D F6,32(R2)
2. L.D F2,44(R3)
3. MUL.D FO,F2,F4
4. SUB.D F8,F2,F6
5. DIV.D F10,F0,F6
6. ADD.D F6,F8,F2
Answer Figure 3.7 shows the result in three tables. The numbers appended to the names

Add, Mult, and Load stand for the tag for that reservation station—Add]1 is the
tag for the result from the first add unit. In addition, we have included an

3.5 Dynamic Scheduling: Examples and the Algorithm 177

Instruction status

Instruction Issue Execute Write result
L.D F6,32(R2) ~ N N
L.D F2,44(R3) N N
MUL.D FO,F2,F4 N
SUB.D F8,F2,F6 J
DIV.D F10,FO,F6 J
ADD.D F6,F8,F2 J

Reservation stations
Name Busy Op Vj Vk Qj Qk A
Loadl No
Load2 Yes Load 44 + Regs[R3]
Addl Yes SUB Mem[32 + Regs[R2]] Load2
Add2 Yes ADD Addl1 Load2
Add3 No
Multl Yes MUL Regs [F4] Load2
Mult2 Yes DIV Mem[32 + Regs[R2]] Multl

Register status

Field FO F2 F4 F6 F8 F10 F12 ... F30
Qi Multl Load2 Add2 Addl1 Mult2

Figure 3.7 Reservation stations and register tags shown when all of the instructions have issued, but only the
first load instruction has completed and written its result to the CDB. The second load has completed effective
address calculation but is waiting on the memory unit. We use the array Regs|] to refer to the register file and the
array Mem([] to refer to the memory. Remember that an operand is specified by either a Q field or a V field at any
time. Notice that the ADD.D instruction, which has a WAR hazard at the WB stage, has issued and could complete
before the DIV.D initiates.

instruction status table. This table is included only to help you understand the
algorithm; it is not actually a part of the hardware. Instead, the reservation station
keeps the state of each operation that has issued.

Tomasulo’s scheme offers two major advantages over earlier and simpler

schemes: (1) the distribution of the hazard detection logic, and (2) the elimination
of stalls for WAW and WAR hazards.

178

Chapter Three Instruction-Level Parallelism and Its Exploitation

The first advantage arises from the distributed reservation stations and the use
of the CDB. If multiple instructions are waiting on a single result, and each
instruction already has its other operand, then the instructions can be released
simultaneously by the broadcast of the result on the CDB. If a centralized register
file were used, the units would have to read their results from the registers when
register buses are available.

The second advantage, the elimination of WAW and WAR hazards, is accom-
plished by renaming registers using the reservation stations and by the process of
storing operands into the reservation station as soon as they are available.

For example, the code sequence in Figure 3.7 issues both the DIV.D and the
ADD.D, even though there is a WAR hazard involving F6. The hazard is elimi-
nated in one of two ways. First, if the instruction providing the value for the
DIV.D has completed, then Vk will store the result, allowing DIV.D to execute
independent of the ADD.D (this is the case shown). On the other hand, if the L.D
had not completed, then Qk would point to the Load] reservation station, and the
DIV.D instruction would be independent of the ADD.D. Thus, in either case, the
ADD.D can issue and begin executing. Any uses of the result of the DIV.D would
point to the reservation station, allowing the ADD.D to complete and store its
value into the registers without affecting the DIV.D.

We’ll see an example of the elimination of a WAW hazard shortly. But let’s first
look at how our earlier example continues execution. In this example, and the ones
that follow in this chapter, assume the following latencies: load is 1 clock cycle,
add is 2 clock cycles, multiply is 6 clock cycles, and divide is 12 clock cycles.

Example

Answer

Using the same code segment as in the previous example (page 176), show what
the status tables look like when the MUL.D is ready to write its result.

The result is shown in the three tables in Figure 3.8. Notice that ADD.D has com-
pleted since the operands of DIV.D were copied, thereby overcoming the WAR
hazard. Notice that even if the load of F6 was delayed, the add into F6 could be
executed without triggering a WAW hazard.

Tomasulo’s Algorithm: The Details

Figure 3.9 specifies the checks and steps that each instruction must go
through. As mentioned earlier, loads and stores go through a functional unit
for effective address computation before proceeding to independent load or
store buffers. Loads take a second execution step to access memory and then
go to write result to send the value from memory to the register file and/or any
waiting reservation stations. Stores complete their execution in the write result
stage, which writes the result to memory. Notice that all writes occur in write
result, whether the destination is a register or memory. This restriction simpli-
fies Tomasulo’s algorithm and is critical to its extension with speculation in
Section 3.6.

3.5 Dynamic Scheduling: Examples and the Algorithm 179

Instruction status

Instruction Issue Execute Write result

L.D F6,32(R2) ~ ~ N

L.D F2,44(R3) N N N

MUL.D FO,F2,F4 \ \/

SUB.D F8,F2,F6 V V J

DIV.D F10,FO0,F6 v

ADD.D F6,F8,F2 V V V
Reservation stations

Name Busy Op Vj Vk Qj Qk A

Loadl No

Load2 No

Addl No

Add2 No

Add3 No

Multl Yes MUL Mem[44 + Regs[R3]] Regs[F4]

Mult2 Yes DIV Mem[32 + Regs[R2]] Multl

Register status
Field FO F2 F4 F6 F8 Flo F12 ... F30
Qi Multl Mult2

Figure 3.8 Multiply and divide are the only instructions not finished.

Tomasulo’s Algorithm: A Loop-Based Example

To understand the full power of eliminating WAW and WAR hazards through
dynamic renaming of registers, we must look at a loop. Consider the following
simple sequence for multiplying the elements of an array by a scalar in F2:

Loop: L.D FO,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,-8
BNE R1,R2,Loop; branches if R1|R2

If we predict that branches are taken, using reservation stations will allow multi-
ple executions of this loop to proceed at once. This advantage is gained without
changing the code—in effect, the loop is unrolled dynamically by the hardware
using the reservation stations obtained by renaming to act as additional registers.

180 Chapter Three Instruction-Level Parallelism and Its Exploitation

Instruction state Wait until Action or bookkeeping
Issue Station r empty if (RegisterStat[rs].Qi}0)
FP operation {RS[r].Qj « RegisterStat[rs].Qi}

else {RS[r].Vj « Regs[rs]; RS[r].Qj « 0};
if (RegisterStat[rt].Qi}0)

{RS[r].Qk « RegisterStat[rt].Qi
else {RS[r].Vk <« Regs[rt]; RS[r].Qk « 0};
RS[r].Busy <« yes; RegisterStat[rd].Q « r;

Load or store Buffer r empty if (RegisterStat[rs].Qi}0)
{RS[r].Qj « RegisterStat[rs].Qi}
else {RS[r].Vj <« Regs[rs]; RS[r].Qj « 0};
RS[r].A « imm; RS[r].Busy « yes;

Load only RegisterStat[rt].Qi <« r;
Store only if (RegisterStat[rt].Qi}0)
{RS[r].Qk « RegisterStat[rs].Qi}
else {RS[r].Vk < Regs[rt]; RS[r].Qk « 0};

Execute (RS[r].Qj = 0) and Compute result: operands are in Vj and Vk
FP operation (RS[r].Qk = 0)
Load/store RS[r].Qj =0 & rishead of RS[r].A < RS[r].Vj + RS[r].A;
step 1 load-store queue
Load step 2 Load step 1 complete Read from Mem[RS[r] .A]
Write result Execution complete at r & Vx(if (RegisterStat[x].Qi=r) {Regs[x] « result;
FP operation CDB available RegisterStat[x].Qi « 0});
or load Vx(if (RS[x].Qj=r) {RS[x].Vj <« result;RS[x].Qj «
0});
Vx(if (RS[x].Qk=r) {RS[x].Vk <« result;RS[x].Qk «
0});
RS[r].Busy <« no;
Store Execution complete at r & Mem[RS[r].A] <« RS[r].Vk;
RS[r].Qk = 0 RS[r].Busy « no;

Figure 3.9 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the destina-
tion, rs and rt are the source register numbers, imm is the sign-extended immediate field, and r is the reservation
station or buffer that the instruction is assigned to. RS is the reservation station data structure. The value returned by
an FP unit or by the load unitis called result. RegisterStat is the register status data structure (not the register file,
which is Regs[]). When an instruction is issued, the destination register has its Qi field set to the number of the buf-
fer or reservation station to which the instruction is issued. If the operands are available in the registers, they are
stored in the V fields. Otherwise, the Q fields are set to indicate the reservation station that will produce the values
needed as source operands. The instruction waits at the reservation station until both its operands are available,
indicated by zero in the Q fields. The Q fields are set to zero either when this instruction is issued or when an instruc-
tion on which this instruction depends completes and does its write back. When an instruction has finished execu-
tion and the CDB is available, it can do its write back. All the buffers, registers, and reservation stations whose values
of Qj or Qk are the same as the completing reservation station update their values from the CDB and mark the Q
fields to indicate that values have been received. Thus, the CDB can broadcast its result to many destinations in a sin-
gle clock cycle, and if the waiting instructions have their operands they can all begin execution on the next clock
cycle. Loads go through two steps in execute, and stores perform slightly differently during write result, where they
may have to wait for the value to store. Remember that, to preserve exception behavior, instructions should not be
allowed to execute if a branch that is earlier in program order has not yet completed. Because any concept of pro-
gram order is not maintained after the issue stage, this restriction is usually implemented by preventing any instruc-
tion from leaving the issue step, if there is a pending branch already in the pipeline. In Section 3.6, we will see how
speculation support removes this restriction.

3.5 Dynamic Scheduling: Examples and the Algorithm 181

Let’s assume we have issued all the instructions in two successive iterations
of the loop, but none of the floating-point load/stores or operations has com-
pleted. Figure 3.10 shows reservation stations, register status tables, and load and
store buffers at this point. (The integer ALU operation is ignored, and it is
assumed the branch was predicted as taken.) Once the system reaches this state,
two copies of the loop could be sustained with a CPI close to 1.0, provided the
multiplies could complete in four clock cycles. With a latency of six cycles, addi-
tional iterations will need to be processed before the steady state can be reached.
This requires more reservation stations to hold instructions that are in execution.

Instruction status

Instruction From iteration Issue Execute Write result
L.D F0,0(R1) 1 v Y
MUL.D F4,F0,F2 1 \
S.D F4,0(R1) 1 v
L.D F0,0(R1) 2 \ \
MUL.D F4,F0,F2 2 v
S.D F4,0(R1) 2 \

Reservation stations
Name Busy Op Vj Vk Qj Qk A
Loadl Yes Load Regs[R1] + 0
Load2 Yes Load Regs[R1] - 8
Addl1 No
Add2 No
Add3 No
Multl Yes MUL Regs[F2] Loadl
Mult2 Yes MUL Regs[F2] Load2
Storel Yes Store Regs[R1] Multl
Store2 Yes Store Regs[R1] - 8 Mult2

Register status

Field FO F2 F4 F6 F8 F10 F12 F30
Qi Load2 Mult2

Figure 3.10 Two active iterations of the loop with no instruction yet completed. Entries in the multiplier reserva-
tion stations indicate that the outstanding loads are the sources. The store reservation stations indicate that the
multiply destination is the source of the value to store.

182

Chapter Three Instruction-Level Parallelism and Its Exploitation

As we will see later in this chapter, when extended with multiple instruction
issue, Tomasulo’s approach can sustain more than one instruction per clock.

A load and a store can safely be done out of order, provided they access dif-
ferent addresses. If a load and a store access the same address, then either

m The load is before the store in program order and interchanging them results
in a WAR hazard, or

m The store is before the load in program order and interchanging them results
in a RAW hazard.

Similarly, interchanging two stores to the same address results in a WAW hazard.

Hence, to determine if a load can be executed at a given time, the processor
can check whether any uncompleted store that precedes the load in program order
shares the same data memory address as the load. Similarly, a store must wait
until there are no unexecuted loads or stores that are earlier in program order and
share the same data memory address. We consider a method to eliminate this
restriction in Section 3.9.

To detect such hazards, the processor must have computed the data memory
address associated with any earlier memory operation. A simple, but not necessarily
optimal, way to guarantee that the processor has all such addresses is to perform the
effective address calculations in program order. (We really only need to keep the
relative order between stores and other memory references; that is, loads can be
reordered freely.)

Let’s consider the situation of a load first. If we perform effective address cal-
culation in program order, then when a load has completed effective address calcu-
lation, we can check whether there is an address conflict by examining the A field
of all active store buffers. If the load address matches the address of any active
entries in the store buffer, that load instruction is not sent to the load buffer until the
conflicting store completes. (Some implementations bypass the value directly to
the load from a pending store, reducing the delay for this RAW hazard.)

Stores operate similarly, except that the processor must check for conflicts in
both the load buffers and the store buffers, since conflicting stores cannot be reor-
dered with respect to either a load or a store.

A dynamically scheduled pipeline can yield very high performance, provided
branches are predicted accurately—an issue we addressed in the last section. The
major drawback of this approach is the complexity of the Tomasulo scheme,
which requires a large amount of hardware. In particular, each reservation station
must contain an associative buffer, which must run at high speed, as well as com-
plex control logic. The performance can also be limited by the single CDB.
Although additional CDBs can be added, each CDB must interact with each res-
ervation station, and the associative tag-matching hardware would have to be
duplicated at each station for each CDB.

In Tomasulo’s scheme, two different techniques are combined: the renaming of
the architectural registers to a larger set of registers and the buffering of source
operands from the register file. Source operand buffering resolves WAR hazards
that arise when the operand is available in the registers. As we will see later, it is

3.6

3.6 Hardware-Based Speculation 183

also possible to eliminate WAR hazards by the renaming of a register together with
the buffering of a result until no outstanding references to the earlier version of the
register remain. This approach will be used when we discuss hardware speculation.

Tomasulo’s scheme was unused for many years after the 360/91, but was
widely adopted in multiple-issue processors starting in the 1990s for several
reasons:

1. Although Tomasulo’s algorithm was designed before caches, the presence of
caches, with the inherently unpredictable delays, has become one of the
major motivations for dynamic scheduling. Out-of-order execution allows the
processors to continue executing instructions while awaiting the completion
of a cache miss, thus hiding all or part of the cache miss penalty.

2. As processors became more aggressive in their issue capability and designers
are concerned with the performance of difficult-to-schedule code (such as
most nonnumeric code), techniques such as register renaming, dynamic
scheduling, and speculation became more important.

3. TItcan achieve high performance without requiring the compiler to target code
to a specific pipeline structure, a valuable property in the era of shrink-
wrapped mass market software.

Hardware-Based Speculation

As we try to exploit more instruction-level parallelism, maintaining control
dependences becomes an increasing burden. Branch prediction reduces the direct
stalls attributable to branches, but for a processor executing multiple instructions
per clock, just predicting branches accurately may not be sufficient to generate
the desired amount of instruction-level parallelism. A wide issue processor may
need to execute a branch every clock cycle to maintain maximum performance.
Hence, exploiting more parallelism requires that we overcome the limitation of
control dependence.

Overcoming control dependence is done by speculating on the outcome of
branches and executing the program as if our guesses were correct. This mecha-
nism represents a subtle, but important, extension over branch prediction with
dynamic scheduling. In particular, with speculation, we fetch, issue, and execute
instructions, as if our branch predictions were always correct; dynamic schedul-
ing only fetches and issues such instructions. Of course, we need mechanisms to
handle the situation where the speculation is incorrect. Appendix H discusses a
variety of mechanisms for supporting speculation by the compiler. In this sec-
tion, we explore hardware speculation, which extends the ideas of dynamic
scheduling.

Hardware-based speculation combines three key ideas: (1) dynamic branch
prediction to choose which instructions to execute, (2) speculation to allow the
execution of instructions before the control dependences are resolved (with the
ability to undo the effects of an incorrectly speculated sequence), and (3)
dynamic scheduling to deal with the scheduling of different combinations of

184

Chapter Three Instruction-Level Parallelism and Its Exploitation

basic blocks. (In comparison, dynamic scheduling without speculation only par-
tially overlaps basic blocks because it requires that a branch be resolved before
actually executing any instructions in the successor basic block.)

Hardware-based speculation follows the predicted flow of data values to
choose when to execute instructions. This method of executing programs is
essentially a data flow execution: Operations execute as soon as their operands
are available.

To extend Tomasulo’s algorithm to support speculation, we must separate the
bypassing of results among instructions, which is needed to execute an instruc-
tion speculatively, from the actual completion of an instruction. By making this
separation, we can allow an instruction to execute and to bypass its results to
other instructions, without allowing the instruction to perform any updates that
cannot be undone, until we know that the instruction is no longer speculative.

Using the bypassed value is like performing a speculative register read, since
we do not know whether the instruction providing the source register value is
providing the correct result until the instruction is no longer speculative. When
an instruction is no longer speculative, we allow it to update the register file or
memory; we call this additional step in the instruction execution sequence
instruction commit.

The key idea behind implementing speculation is to allow instructions to
execute out of order but to force them to commit in order and to prevent any
irrevocable action (such as updating state or taking an exception) until an instruc-
tion commits. Hence, when we add speculation, we need to separate the process
of completing execution from instruction commit, since instructions may finish
execution considerably before they are ready to commit. Adding this commit
phase to the instruction execution sequence requires an additional set of hardware
buffers that hold the results of instructions that have finished execution but have
not committed. This hardware buffer, which we call the reorder buffer, is also
used to pass results among instructions that may be speculated.

The reorder buffer (ROB) provides additional registers in the same way as the
reservation stations in Tomasulo’s algorithm extend the register set. The ROB
holds the result of an instruction between the time the operation associated with
the instruction completes and the time the instruction commits. Hence, the ROB
is a source of operands for instructions, just as the reservation stations provide
operands in Tomasulo’s algorithm. The key difference is that in Tomasulo’s algo-
rithm, once an instruction writes its result, any subsequently issued instructions
will find the result in the register file. With speculation, the register file is not
updated until the instruction commits (and we know definitively that the instruc-
tion should execute); thus, the ROB supplies operands in the interval between
completion of instruction execution and instruction commit. The ROB is similar
to the store buffer in Tomasulo’s algorithm, and we integrate the function of the
store buffer into the ROB for simplicity.

Each entry in the ROB contains four fields: the instruction type, the destina-
tion field, the value field, and the ready field. The instruction type field indicates
whether the instruction is a branch (and has no destination result), a store (which

3.6 Hardware-Based Speculation 185

has a memory address destination), or a register operation (ALU operation or
load, which has register destinations). The destination field supplies the register
number (for loads and ALU operations) or the memory address (for stores) where
the instruction result should be written. The value field is used to hold the value
of the instruction result until the instruction commits. We will see an example of
ROB entries shortly. Finally, the ready field indicates that the instruction has
completed execution, and the value is ready.

Figure 3.11 shows the hardware structure of the processor including the
ROB. The ROB subsumes the store buffers. Stores still execute in two steps, but
the second step is performed by instruction commit. Although the renaming

Reorder buffer
From instruction unit

) Reg # y Data
Instruction 1
queue
FP registers
Load/store
operations

. . Operand
Address unit Floating-point buses
operations

Load buffers

A

Operation bus

Store 3 5
address 2 Reservation 1
Store > 1 stations
data Address -
Memory unit FP adders

Load

data Common data bus (CDB)

Figure 3.11 The basic structure of a FP unit using Tomasulo’s algorithm and extended to handle speculation.
Comparing this to Figure 3.6 on page 173, which implemented Tomasulo’s algorithm, the major change is the addi-
tion of the ROB and the elimination of the store buffer, whose function is integrated into the ROB. This mechanism
can be extended to multiple issue by making the CDB wider to allow for multiple completions per clock.

186

Chapter Three Instruction-Level Parallelism and Its Exploitation

function of the reservation stations is replaced by the ROB, we still need a place
to buffer operations (and operands) between the time they issue and the time they
begin execution. This function is still provided by the reservation stations. Since
every instruction has a position in the ROB until it commits, we tag a result using
the ROB entry number rather than using the reservation station number. This
tagging requires that the ROB assigned for an instruction must be tracked in the
reservation station. Later in this section, we will explore an alternative imple-
mentation that uses extra registers for renaming and a queue that replaces the
ROB to decide when instructions can commit.
Here are the four steps involved in instruction execution:

1. Issue—Get an instruction from the instruction queue. Issue the instruction if
there is an empty reservation station and an empty slot in the ROB; send the
operands to the reservation station if they are available in either the registers
or the ROB. Update the control entries to indicate the buffers are in use. The
number of the ROB entry allocated for the result is also sent to the reserva-
tion station, so that the number can be used to tag the result when it is placed
on the CDB. If either all reservations are full or the ROB is full, then instruc-
tion issue is stalled until both have available entries.

2. Execute—If one or more of the operands is not yet available, monitor the
CDB while waiting for the register to be computed. This step checks for
RAW hazards. When both operands are available at a reservation station, exe-
cute the operation. Instructions may take multiple clock cycles in this stage,
and loads still require two steps in this stage. Stores need only have the base
register available at this step, since execution for a store at this point is only
effective address calculation.

3. Write result—When the result is available, write it on the CDB (with the ROB
tag sent when the instruction issued) and from the CDB into the ROB, as well
as to any reservation stations waiting for this result. Mark the reservation sta-
tion as available. Special actions are required for store instructions. If the value
to be stored is available, it is written into the Value field of the ROB entry for
the store. If the value to be stored is not available yet, the CDB must be moni-
tored until that value is broadcast, at which time the Value field of the ROB
entry of the store is updated. For simplicity we assume that this occurs during
the write results stage of a store; we discuss relaxing this requirement later.

4. Commit—This is the final stage of completing an instruction, after which only
its result remains. (Some processors call this commit phase “completion” or
“graduation.”) There are three different sequences of actions at commit depend-
ing on whether the committing instruction is a branch with an incorrect predic-
tion, a store, or any other instruction (normal commit). The normal commit case
occurs when an instruction reaches the head of the ROB and its result is present
in the buffer; at this point, the processor updates the register with the result and
removes the instruction from the ROB. Committing a store is similar except
that memory is updated rather than a result register. When a branch with incor-
rect prediction reaches the head of the ROB, it indicates that the speculation

3.6 Hardware-Based Speculation 187

was wrong. The ROB is flushed and execution is restarted at the correct succes-
sor of the branch. If the branch was correctly predicted, the branch is finished.

Once an instruction commits, its entry in the ROB is reclaimed and the regis-
ter or memory destination is updated, eliminating the need for the ROB entry. If
the ROB fills, we simply stop issuing instructions until an entry is made free.
Now, let’s examine how this scheme would work with the same example we used
for Tomasulo’s algorithm.

Example

Answer

Assume the same latencies for the floating-point functional units as in earlier exam-
ples: add is 2 clock cycles, multiply is 6 clock cycles, and divide is 12 clock cycles.
Using the code segment below, the same one we used to generate Figure 3.8, show
what the status tables look like when the MUL.D is ready to go to commit.

L.D F6,32(R2)
L.D F2,44(R3)
MUL.D FO,F2,F4
SUB.D F8,F2,F6
DIV.D F10,F0,F6
ADD.D F6,F8,F2

Figure 3.12 shows the result in the three tables. Notice that although the SUB.D
instruction has completed execution, it does not commit until the MUL.D commits.
The reservation stations and register status field contain the same basic informa-
tion that they did for Tomasulo’s algorithm (see page 176 for a description of
those fields). The differences are that reservation station numbers are replaced
with ROB entry numbers in the Qj and Qk fields, as well as in the register status
fields, and we have added the Dest field to the reservation stations. The Dest field
designates the ROB entry that is the destination for the result produced by this
reservation station entry.

The above example illustrates the key important difference between a proces-
sor with speculation and a processor with dynamic scheduling. Compare the con-
tent of Figure 3.12 with that of Figure 3.8 on page 179, which shows the same
code sequence in operation on a processor with Tomasulo’s algorithm. The key
difference is that, in the example above, no instruction after the earliest uncom-
pleted instruction (MUL.D above) is allowed to complete. In contrast, in Figure 3.8
the SUB.D and ADD. D instructions have also completed.

One implication of this difference is that the processor with the ROB can
dynamically execute code while maintaining a precise interrupt model. For
example, if the MUL.D instruction caused an interrupt, we could simply wait until
it reached the head of the ROB and take the interrupt, flushing any other pending
instructions from the ROB. Because instruction commit happens in order, this
yields a precise exception.

By contrast, in the example using Tomasulo’s algorithm, the SUB.D and
ADD.D instructions could both complete before the MUL.D raised the exception.

188

Chapter Three Instruction-Level Parallelism and Its Exploitation

Reorder buffer

Entry Busy Instruction State Destination Value
1 No L.D F6,32(R2) Commit F6 Mem[32 + Regs[R2]]
2 No L.D F2,44(R3) Commit F2 Mem[44 + Regs[R3]]
3 Yes MUL.D FO,F2,F4 Write result FO #2 x Regs [F4]
4 Yes SUB.D F8,F2,F6 Write result F8 #2 —#1
5 Yes DIV.D F10,F0,F6 Execute F10
6 Yes ADD.D F6,F8,F2 Write result F6 #4 + #2

Reservation stations
Name Busy Op Vj Vk Qj Qk Dest A
Loadl No
Load2 No
Addl No
Add2 No
Add3 No
Multl No MUL.D Mem[44 + Regs[R3]] Regs[F4] #3
Mult2 Yes DIV.D Mem[32 + Regs[R2]] #3 #5

FP register status

Field FO F1 F2 F3 F4 F5 F6 F7 F8 F10
Reorder # 3 6 4 5
Busy Yes No No No No No Yes . Yes Yes

Figure 3.12 At the time the MUL.D is ready to commit, only the two L.D instructions have committed, although
several others have completed execution. The MUL.D is at the head of the ROB, and the two L.D instructions are
there only to ease understanding. The SUB.D and ADD.D instructions will not commit until the MUL.D instruction
commits, although the results of the instructions are available and can be used as sources for other instructions.
The DIV.D is in execution, but has not completed solely due to its longer latency than MUL.D. The Value column
indicates the value being held; the format #X is used to refer to a value field of ROB entry X. Reorder buffers 1 and
2 are actually completed but are shown for informational purposes. We do not show the entries for the load/store
queue, but these entries are kept in order.

The result is that the registers F8 and F6 (destinations of the SUB.D and ADD.D
instructions) could be overwritten, and the interrupt would be imprecise.

Some users and architects have decided that imprecise floating-point excep-
tions are acceptable in high-performance processors, since the program will
likely terminate; see Appendix J for further discussion of this topic. Other types
of exceptions, such as page faults, are much more difficult to accommodate if
they are imprecise, since the program must transparently resume execution after
handling such an exception.

The use of a ROB with in-order instruction commit provides precise excep-
tions, in addition to supporting speculative execution, as the next example shows.

3.6 Hardware-Based Speculation 189

Example Consider the code example used earlier for Tomasulo’s algorithm and shown in
Figure 3.10 in execution:
Loop: L.D FO,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop sbranches if R1]R2
Assume that we have issued all the instructions in the loop twice. Let’s also
assume that the L.D and MUL.D from the first iteration have committed and all
other instructions have completed execution. Normally, the store would wait in
the ROB for both the effective address operand (R1 in this example) and the value
(F4 in this example). Since we are only considering the floating-point pipeline,
assume the effective address for the store is computed by the time the instruction
is issued.
Answer Figure 3.13 shows the result in two tables.
Reorder buffer
Entry Busy Instruction State Destination Value
1 No L.D F0,0(R1) Commit FO Mem[0 +
Regs[R1]]
2 No MUL.D F4,F0,F2 Commit Fa4 #1 X Regs [F2]
3 Yes S.D F4,0(R1) Write result 0 + Regs[R1] #2
4 Yes DADDIU R1,R1,#-8 Write result R1 Regs[R1] - 8
5 Yes BNE R1,R2,Loop ‘Write result
6 Yes L.D FO,0(R1) Write result FO Mem[#4]
7 Yes MUL.D F4,F0,F2 Write result Fa #6 x Regs [F2]
8 Yes S.D F4,0(R1) Write result 0+ #4 #7
9 Yes DADDIU R1,R1,#-8 Write result R1 #4 -8
10 Yes BNE R1,R2,Loop ‘Write result
FP register status
Field FO F1 F2 F3 F4 F5 F6 F7 F8
Reorder # 6 7
Busy Yes No No No Yes No No N
o

Figure 3.13 Only the L.D and MUL.D instructions have committed, although all the others have completed
execution. Hence, no reservation stations are busy and none is shown. The remaining instructions will be committed
as quickly as possible. The first two reorder buffers are empty, but are shown for completeness.

190

Chapter Three Instruction-Level Parallelism and Its Exploitation

Because neither the register values nor any memory values are actually writ-
ten until an instruction commits, the processor can easily undo its speculative
actions when a branch is found to be mispredicted. Suppose that the branch BNE
is not taken the first time in Figure 3.13. The instructions prior to the branch will
simply commit when each reaches the head of the ROB; when the branch reaches
the head of that buffer, the buffer is simply cleared and the processor begins
fetching instructions from the other path.

In practice, processors that speculate try to recover as early as possible
after a branch is mispredicted. This recovery can be done by clearing the ROB
for all entries that appear after the mispredicted branch, allowing those that
are before the branch in the ROB to continue, and restarting the fetch at the
correct branch successor. In speculative processors, performance is more sen-
sitive to the branch prediction, since the impact of a misprediction will be
higher. Thus, all the aspects of handling branches—prediction accuracy,
latency of misprediction detection, and misprediction recovery time—increase
in importance.

Exceptions are handled by not recognizing the exception until it is ready to
commit. If a speculated instruction raises an exception, the exception is recorded
in the ROB. If a branch misprediction arises and the instruction should not have
been executed, the exception is flushed along with the instruction when the ROB
is cleared. If the instruction reaches the head of the ROB, then we know it is no
longer speculative and the exception should really be taken. We can also try to
handle exceptions as soon as they arise and all earlier branches are resolved, but
this is more challenging in the case of exceptions than for branch mispredict and,
because it occurs less frequently, not as critical.

Figure 3.14 shows the steps of execution for an instruction, as well as the
conditions that must be satisfied to proceed to the step and the actions taken. We
show the case where mispredicted branches are not resolved until commit.
Although speculation seems like a simple addition to dynamic scheduling, a
comparison of Figure 3.14 with the comparable figure for Tomasulo’s algorithm
in Figure 3.9 shows that speculation adds significant complications to the con-
trol. In addition, remember that branch mispredictions are somewhat more com-
plex as well.

There is an important difference in how stores are handled in a speculative
processor versus in Tomasulo’s algorithm. In Tomasulo’s algorithm, a store can
update memory when it reaches write result (which ensures that the effective
address has been calculated) and the data value to store is available. In a specula-
tive processor, a store updates memory only when it reaches the head of the
ROB. This difference ensures that memory is not updated until an instruction is
no longer speculative.

Figure 3.14 has one significant simplification for stores, which is unneeded
in practice. Figure 3.14 requires stores to wait in the write result stage for the
register source operand whose value is to be stored; the value is then moved
from the Vk field of the store’s reservation station to the Value field of the
store’s ROB entry. In reality, however, the value to be stored need not arrive

3.6 Hardware-Based Speculation 191

Status Wait until Action or bookkeeping
Issue if (RegisterStat[rs].Busy)/*in-flight instr. writes rs*/
all {h « RegisterStat[rs].Reorder;
instructions if (ROB[h].Ready)/* Instr completed already */
{RS[r].Vj « ROB[h].Value; RS[r].Qj « 03}
i else {RS[r].Qj « h;} /* wait for instruction */
Reservation } else {RS[r].Vj « Regs[rs]; RS[r].Qj « 0;};
station (r) RS[r].Busy <« yes; RS[r].Dest « b;
%n(()iB (b) ROB[b].Instruction « opcode; ROB[b].Dest <« rd;ROB[b].Ready < no;
FP both available if (RegisterStat[rt].Busy) /*in-flight instr writes rt*/
operations {h < RegisterStat[rt].Reorder;
and stores if (ROB[h].Ready)/* Instr completed already *{
{RS[r].Vk < ROB[h].Value; RS[r].Qk « 0;
else {RS[r].Qk « h;} /* wait for instruction */
} else {RS[r].Vk « Regs[rt]; RS[r].Qk « 0;};
FP operations RegisterStat[rd] .Reorder <« b; RegisterStat[rd].Busy « yes;
ROB[b].Dest « rd;
Loads RS[r].A < imm; RegisterStat[rt].Reorder « b;
RegisterStat[rt].Busy <« yes; ROB[b].Dest « rt;
Stores RS[r].A « imm;

Execute (RS[r].Qj == 0) and
FP op (RS[r].Qk == 0)

Compute results—operands are in Vj and Vk

Load step 1 (RS[r].Qj == 0) and
there are no stores
earlier in the queue

RS[r].A « RS[r].Vj + RS[r].A;

Load step 2 Load step 1 done and
all stores earlier in
ROB have different

address

Read from Mem[RS[r] .A]

Store (RS[r].Qj == 0) and
store at queue head

ROB[h] .Address « RS[r].Vj + RS[r].A;

Write result Execution done at r
all but store and CDB available

b <« RS[r].Dest; RS[r].Busy <« no;

Vx(if (RS[x].Qj==b) {RS[x].Vj <« result; RS[x].Qj « 0});
Vx(if (RS[x].Qk==b) {RS[x].Vk <« result; RS[x].Qk < 0});
ROB[b].Value « result; ROB[b].Ready « yes;

Store Execution done at » ROB[h].Value « RS[r].Vk;
and (RS[r].Qk == 0)

Commit Instruction is at the d < ROB[h].Dest; /* register dest, if exists */
head of the ROB if (ROB[h].Instruction==Branch)
(entry h) and {if (branch is mispredicted)

ROB[h] .ready ==

yes

{clear ROB[h], RegisterStat; fetch branch dest;};}

else if (ROB[h].Instruction==Store)
{Mem[ROB[h] .Destination] <« ROB[h].Value;}

else /* put the result in the register destination */

{Regs[d] « ROB[h].Value;};
ROB[h] .Busy <« no; /* free up ROB entry */
/* free up dest register if no one else writing it */
if (RegisterStat[d].Reorder==h) {RegisterStat[d].Busy <« no;};

Figure 3.14 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the destina-
tion, rs and rt are the sources, r is the reservation station allocated, b is the assigned ROB entry, and h is the head entry
of the ROB. RS is the reservation station data structure. The value returned by a reservation station is called the result.
RegisterStat is the register data structure, Regs represents the actual registers, and ROB is the reorder buffer data

structure.

192

Chapter Three Instruction-Level Parallelism and Its Exploitation

3.7

until just before the store commits and can be placed directly into the store’s
ROB entry by the sourcing instruction. This is accomplished by having the hard-
ware track when the source value to be stored is available in the store’s ROB
entry and searching the ROB on every instruction completion to look for depen-
dent stores.

This addition is not complicated, but adding it has two effects: We would
need to add a field to the ROB, and Figure 3.14, which is already in a small font,
would be even longer! Although Figure 3.14 makes this simplification, in our
examples, we will allow the store to pass through the write result stage and sim-
ply wait for the value to be ready when it commits.

Like Tomasulo’s algorithm, we must avoid hazards through memory. WAW
and WAR hazards through memory are eliminated with speculation because the
actual updating of memory occurs in order, when a store is at the head of the
ROB, and, hence, no earlier loads or stores can still be pending. RAW hazards
through memory are maintained by two restrictions:

1. Not allowing a load to initiate the second step of its execution if any active
ROB entry occupied by a store has a Destination field that matches the value
of the A field of the load.

2. Maintaining the program order for the computation of an effective address of
a load with respect to all earlier stores.

Together, these two restrictions ensure that any load that accesses a memory loca-
tion written to by an earlier store cannot perform the memory access until the
store has written the data. Some speculative processors will actually bypass the
value from the store to the load directly, when such a RAW hazard occurs.
Another approach is to predict potential collisions using a form of value predic-
tion; we consider this in Section 3.9.

Although this explanation of speculative execution has focused on floating
point, the techniques easily extend to the integer registers and functional units.
Indeed, speculation may be more useful in integer programs, since such programs
tend to have code where the branch behavior is less predictable. Additionally,
these techniques can be extended to work in a multiple-issue processor by allow-
ing multiple instructions to issue and commit every clock. In fact, speculation is
probably most interesting in such processors, since less ambitious techniques can
probably exploit sufficient ILP within basic blocks when assisted by a compiler.

Exploiting ILP Using Multiple Issue and
Static Scheduling

The techniques of the preceding sections can be used to eliminate data, control
stalls, and achieve an ideal CPI of one. To improve performance further we
would like to decrease the CPI to less than one, but the CPI cannot be reduced
below one if we issue only one instruction every clock cycle.

3.7 Exploiting ILP Using Multiple Issue and Static Scheduling 193

The goal of the multiple-issue processors, discussed in the next few sections,
is to allow multiple instructions to issue in a clock cycle. Multiple-issue proces-
sors come in three major flavors:

1. Statically scheduled superscalar processors
2. VLIW (very long instruction word) processors

3. Dynamically scheduled superscalar processors

The two types of superscalar processors issue varying numbers of instructions
per clock and use in-order execution if they are statically scheduled or out-of-
order execution if they are dynamically scheduled.

VLIW processors, in contrast, issue a fixed number of instructions formatted
either as one large instruction or as a fixed instruction packet with the parallel-
ism among instructions explicitly indicated by the instruction. VLIW processors
are inherently statically scheduled by the compiler. When Intel and HP created
the TA-64 architecture, described in Appendix H, they also introduced the name
EPIC—explicitly parallel instruction computer—for this architectural style.

Although statically scheduled superscalars issue a varying rather than a fixed
number of instructions per clock, they are actually closer in concept to VLIWSs,
since both approaches rely on the compiler to schedule code for the processor.
Because of the diminishing advantages of a statically scheduled superscalar as the
issue width grows, statically scheduled superscalars are used primarily for narrow
issue widths, normally just two instructions. Beyond that width, most designers
choose to implement either a VLIW or a dynamically scheduled superscalar.
Because of the similarities in hardware and required compiler technology, we
focus on VLIWs in this section. The insights of this section are easily extrapolated
to a statically scheduled superscalar.

Figure 3.15 summarizes the basic approaches to multiple issue and their dis-
tinguishing characteristics and shows processors that use each approach.

The Basic VLIW Approach

VLIWs use multiple, independent functional units. Rather than attempting to
issue multiple, independent instructions to the units, a VLIW packages the multi-
ple operations into one very long instruction, or requires that the instructions in
the issue packet satisfy the same constraints. Since there is no fundamental
difference in the two approaches, we will just assume that multiple operations are
placed in one instruction, as in the original VLIW approach.

Since the advantage of a VLIW increases as the maximum issue rate grows,
we focus on a wider issue processor. Indeed, for simple two-issue processors, the
overhead of a superscalar is probably minimal. Many designers would probably
argue that a four-issue processor has manageable overhead, but as we will see
later in this chapter, the growth in overhead is a major factor limiting wider issue
processors.

194 Chapter Three Instruction-Level Parallelism and Its Exploitation

Issue Hazard Distinguishing
Common name structure detection Scheduling characteristic Examples
Superscalar Dynamic Hardware Static In-order execution Mostly in the
(static) embedded space:
MIPS and ARM,
including the ARM
Cortex-A8
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic Hardware Dynamic with Out-of-order execution Intel Core i3, 15, i7;
(speculative) speculation with speculation AMD Phenom; IBM
Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in
software and indicated by compiler signal processing,
(often implicitly) such as the TI C6x
EPIC Primarily Primarily Mostly static ~ All hazards determined Itanium
static software and indicated explicitly

by the compiler

Figure 3.15 The five primary approaches in use for multiple-issue processors and the primary characteristics
that distinguish them. This chapter has focused on the hardware-intensive techniques, which are all some form of
superscalar. Appendix H focuses on compiler-based approaches. The EPIC approach, as embodied in the IA-64 archi-
tecture, extends many of the concepts of the early VLIW approaches, providing a blend of static and dynamic

approaches.

Let’s consider a VLIW processor with instructions that contain five opera-
tions, including one integer operation (which could also be a branch), two
floating-point operations, and two memory references. The instruction would
have a set of fields for each functional unit—perhaps 16 to 24 bits per unit, yield-
ing an instruction length of between 80 and 120 bits. By comparison, the Intel
Itanium 1 and 2 contain six operations per instruction packet (i.e., they allow
concurrent issue of two three-instruction bundles, as Appendix H describes).

To keep the functional units busy, there must be enough parallelism in a code
sequence to fill the available operation slots. This parallelism is uncovered by
unrolling loops and scheduling the code within the single larger loop body. If the
unrolling generates straight-line code, then local scheduling techniques, which
operate on a single basic block, can be used. If finding and exploiting the parallel-
ism require scheduling code across branches, a substantially more complex global
scheduling algorithm must be used. Global scheduling algorithms are not only
more complex in structure, but they also must deal with significantly more compli-
cated trade-offs in optimization, since moving code across branches is expensive.

In Appendix H, we will discuss trace scheduling, one of these global sched-
uling techniques developed specifically for VLIWs; we will also explore special
hardware support that allows some conditional branches to be eliminated,
extending the usefulness of local scheduling and enhancing the performance of
global scheduling.

3.7 Exploiting ILP Using Multiple Issue and Static Scheduling 195

For now, we will rely on loop unrolling to generate long, straight-line code
sequences, so that we can use local scheduling to build up VLIW instructions and
focus on how well these processors operate.

Example

Answer

Suppose we have a VLIW that could issue two memory references, two FP oper-
ations, and one integer operation or branch in every clock cycle. Show an
unrolled version of the loop x[1] = x[i] + s (see page 158 for the MIPS code)
for such a processor. Unroll as many times as necessary to eliminate any stalls.
Ignore delayed branches.

Figure 3.16 shows the code. The loop has been unrolled to make seven copies of
the body, which eliminates all stalls (i.e., completely empty issue cycles), and
runs in 9 cycles. This code yields a running rate of seven results in 9 cycles, or
1.29 cycles per result, nearly twice as fast as the two-issue superscalar of Section
3.2 that used unrolled and scheduled code.

For the original VLIW model, there were both technical and logistical prob-
lems that make the approach less efficient. The technical problems are the
increase in code size and the limitations of lockstep operation. Two different
elements combine to increase code size substantially for a VLIW. First, generat-
ing enough operations in a straight-line code fragment requires ambitiously
unrolling loops (as in earlier examples), thereby increasing code size. Second,
whenever instructions are not full, the unused functional units translate to wasted
bits in the instruction encoding. In Appendix H, we examine software scheduling

Memory
reference 1

Memory FP FP Integer
reference 2 operation 1 operation 2 operation/branch

L.

D

FO,0(R1)

L.D F6,-8(R1)

F10,-16(R1)

L.D F14,-24(R1)

F18,-32(R1)

L.D F22,-40(R1) ADD.D F4,FO0,F2 ADD.D F8,F6,F2

L
L.
L

D
D
D

F26,-48(R1)

ADD.D F12,F10,F2 ADD.D F16,F14,F2

ADD.D F20,F18,F2 ADD.D F24,F22,F2

F4,0(R1)

w

.D F8,-8(R1) ADD.D F28,F26,F2

F12,-16(R1)

w

.D F16,-24(R1) DADDUI R1,R1,#-56

F20,24(R1)

S

.D F24,16(R1)

S
S.
S
S

oO|lo|Oo|O

F28,8(R1)

BNE R1,R2,Loop

Figure 3.16 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes 9
cycles assuming no branch delay; normally the branch delay would also need to be scheduled. The issue rate is 23 oper-
ations in 9 clock cycles, or 2.5 operations per cycle. The efficiency, the percentage of available slots that contained an
operation, is about 60%. To achieve this issue rate requires a larger number of registers than MIPS would normally use in
this loop. The VLIW code sequence above requires at least eight FP registers, while the same code sequence for the base
MIPS processor can use as few as two FP registers or as many as five when unrolled and scheduled.

196

Chapter Three Instruction-Level Parallelism and Its Exploitation

approaches, such as software pipelining, that can achieve the benefits of unroll-
ing without as much code expansion.

To combat this code size increase, clever encodings are sometimes used. For
example, there may be only one large immediate field for use by any functional
unit. Another technique is to compress the instructions in main memory and
expand them when they are read into the cache or are decoded. In Appendix H,
we show other techniques, as well as document the significant code expansion
seen on [A-64.

Early VLIWs operated in lockstep; there was no hazard-detection hardware at
all. This structure dictated that a stall in any functional unit pipeline must cause
the entire processor to stall, since all the functional units must be kept synchro-
nized. Although a compiler may be able to schedule the deterministic functional
units to prevent stalls, predicting which data accesses will encounter a cache stall
and scheduling them are very difficult. Hence, caches needed to be blocking and
to cause all the functional units to stall. As the issue rate and number of memory
references becomes large, this synchronization restriction becomes unacceptable.
In more recent processors, the functional units operate more independently, and
the compiler is used to avoid hazards at issue time, while hardware checks allow
for unsynchronized execution once instructions are issued.

Binary code compatibility has also been a major logistical problem for
VLIWs. In a strict VLIW approach, the code sequence makes use of both the
instruction set definition and the detailed pipeline structure, including both func-
tional units and their latencies. Thus, different numbers of functional units and
unit latencies require different versions of the code. This requirement makes
migrating between successive implementations, or between implementations
with different issue widths, more difficult than it is for a superscalar design. Of
course, obtaining improved performance from a new superscalar design may
require recompilation. Nonetheless, the ability to run old binary files is a practi-
cal advantage for the superscalar approach.

The EPIC approach, of which the IA-64 architecture is the primary example,
provides solutions to many of the problems encountered in early VLIW designs,
including extensions for more aggressive software speculation and methods to
overcome the limitation of hardware dependence while preserving binary com-
patibility.

The major challenge for all multiple-issue processors is to try to exploit large
amounts of ILP. When the parallelism comes from unrolling simple loops in FP
programs, the original loop probably could have been run efficiently on a vector
processor (described in the next chapter). It is not clear that a multiple-issue pro-
cessor is preferred over a vector processor for such applications; the costs are
similar, and the vector processor is typically the same speed or faster. The poten-
tial advantages of a multiple-issue processor versus a vector processor are their
ability to extract some parallelism from less structured code and their ability to
easily cache all forms of data. For these reasons multiple-issue approaches have
become the primary method for taking advantage of instruction-level parallelism,
and vectors have become primarily an extension to these processors.

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation 197

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple

Issue, and Speculation

So far, we have seen how the individual mechanisms of dynamic scheduling,
multiple issue, and speculation work. In this section, we put all three together,
which yields a microarchitecture quite similar to those in modern microproces-
sors. For simplicity, we consider only an issue rate of two instructions per clock,
but the concepts are no different from modern processors that issue three or more
instructions per clock.

Let’s assume we want to extend Tomasulo’s algorithm to support multiple-
issue superscalar pipeline with separate integer, load/store, and floating-point
units (both FP multiply and FP add), each of which can initiate an operation on
every clock. We do not want to issue instructions to the reservation stations out of
order, since this could lead to a violation of the program semantics. To gain the
full advantage of dynamic scheduling we will allow the pipeline to issue any
combination of two instructions in a clock, using the scheduling hardware to
actually assign operations to the integer and floating-point unit. Because the
interaction of the integer and floating-point instructions is crucial, we also extend
Tomasulo’s scheme to deal with both the integer and floating-point functional
units and registers, as well as incorporating speculative execution. As Figure 3.17
shows, the basic organization is similar to that of a processor with speculation
with one issue per clock, except that the issue and completion logic must be
enhanced to allow multiple instructions to be processed per clock.

Issuing multiple instructions per clock in a dynamically scheduled processor
(with or without speculation) is very complex for the simple reason that the mul-
tiple instructions may depend on one another. Because of this the tables must be
updated for the instructions in parallel; otherwise, the tables will be incorrect or
the dependence may be lost.

Two different approaches have been used to issue multiple instructions per
clock in a dynamically scheduled processor, and both rely on the observation that
the key is assigning a reservation station and updating the pipeline control tables.
One approach is to run this step in half a clock cycle, so that two instructions can
be processed in one clock cycle; this approach cannot be easily extended to han-
dle four instructions per clock, unfortunately.

A second alternative is to build the logic necessary to handle two or more
instructions at once, including any possible dependences between the instruc-
tions. Modern superscalar processors that issue four or more instructions per
clock may include both approaches: They both pipeline and widen the issue
logic. A key observation is that we cannot simply pipeline away the problem. By
making instruction issues take multiple clocks because new instructions are issu-
ing every clock cycle, we must be able to assign the reservation station and to
update the pipeline tables, so that a dependent instruction issuing on the next
clock can use the updated information.

This issue step is one of the most fundamental bottlenecks in dynamically
scheduled superscalars. To illustrate the complexity of this process, Figure 3.18

© Hennessy, John L.; Patterson, David A., Oct 07, 2011, Computer Architecture : A Quantitative Approach

Morgan Kaufmann, Burlington, ISBN: 9780123838735

198 Chapter Three Instruction-Level Parallelism and Its Exploitation

Reorder buffer
From instruction unit

Reg #y y Data

Instruction
queue

Load/store
operations

.) Operand
Address unit Floating-point buses
operations

Load buffers

Y

Operation bus

Store

3 2
address 2 Reservation——— Il 1
Store 1 stations
data Address
Memory unit FP adders FP multipliers Integer unit

Load
data

Common data bus (CDB)

Figure 3.17 The basic organization of a multiple issue processor with speculation. In this case, the organization
could allow a FP multiply, FP add, integer, and load/store to all issues simultaneously (assuming one issue per clock
per functional unit). Note that several datapaths must be widened to support multiple issues: the CDB, the operand
buses, and, critically, the instruction issue logic, which is not shown in this figure. The last is a difficult problem, as we
discuss in the text.

shows the issue logic for one case: issuing a load followed by a dependent FP
operation. The logic is based on that in Figure 3.14 on page 191, but represents
only one case. In a modern superscalar, every possible combination of dependent
instructions that is allowed to issue in the same clock cycle must be considered.
Since the number of possibilities climbs as the square of the number of instruc-
tions that can be issued in a clock, the issue step is a likely bottleneck for
attempts to go beyond four instructions per clock.

We can generalize the detail of Figure 3.18 to describe the basic strategy for
updating the issue logic and the reservation tables in a dynamically scheduled
superscalar with up to n issues per clock as follows:

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation 199

Action or bookkeeping

Comments

if (RegisterStat[rsl].Busy)/*in-flight instr. writes rs*/

{h < RegisterStat[rsl].Reorder;

if (ROB[h].Ready)/* Instr completed already */
{RS[r1].Vj « ROB[h].Value; RS[r1].Qj « 03}
else {RS[r1].Qj « h;} /* wait for instruction */
} else {RS[r1].Vj <« Regs[rs]; RS[r1].Qj « 0;};

RS[r1].Busy <« yes; RS[rl].Dest <« bl;

ROB[b1].Instruction <« Load; ROB[bl1].Dest « rdl;

ROB[b1] .Ready <« no;

RS[r].A « imml; RegisterStat[rtl].Reorder <« bl;
RegisterStat[rtl].Busy <« yes; ROB[bl].Dest <« rtl;

Updating the reservation tables for the load
instruction, which has a single source operand.
Because this is the first instruction in this issue
bundle, it looks no different than what would
normally happen for a load.

RS[r2].Qj « bl;} /* wait for load instruction */

Since we know that the first operand of the FP
operation is from the load, this step simply
updates the reservation station to point to the
load. Notice that the dependence must be
analyzed on the fly and the ROB entries must
be allocated during this issue step so that the
reservation tables can be correctly updated.

if (RegisterStat[rt2].Busy) /*in-flight instr writes rt*/

{h < RegisterStat[rt2].Reorder;

if (ROB[h].Ready)/* Instr completed already */
{RS[r2] .Vk < ROB[h].Value; RS[r2].Qk <« 0;}
else {RS[r2].Qk <« h;} /* wait for instruction */
} else {RS[r2].Vk <« Regs[rt2]; RS[r2].Qk <« 0;};

RegisterStat[rd2].Reorder « bh2;
RegisterStat[rd2].Busy <« yes;
ROB[b2] .Dest « rd2;

Since we assumed that the second operand of
the FP instruction was from a prior issue bundle,
this step looks like it would in the single-issue
case. Of course, if this instruction was
dependent on something in the same issue
bundle the tables would need to be updated
using the assigned reservation buffer.

RS[r2].Busy <« yes; RS[r2].Dest <« b2;

ROB[b2] .Instruction < FP operation; ROB[b2].Dest « rd2;

ROB[b2] .Ready <« no;

This section simply updates the tables for the FP
operation, and is independent of the load. Of
course, if further instructions in this issue
bundle depended on the FP operation (as could
happen with a four-issue superscalar), the
updates to the reservation tables for those
instructions would be effected by this instruction.

Figure 3.18 The issue steps for a pair of dependent instructions (called 1 and 2) where instruction 1 is FP load
and instruction 2 is an FP operation whose first operand is the result of the load instruction; r1 and r2 are the
assigned reservation stations for the instructions; and bl and b2 are the assigned reorder buffer entries. For the
issuing instructions, rd1 and rd2 are the destinations; rsl, rs2, and rt2 are the sources (the load only has one
source); rl and r2 are the reservation stations allocated; and b1l and b2 are the assigned ROB entries. RS is the res-
ervation station data structure. RegisterStat is the register data structure, Regs represents the actual registers,
and ROB is the reorder buffer data structure. Notice that we need to have assigned reorder buffer entries for this
logic to operate properly and recall that all these updates happen in a single clock cycle in parallel, not

sequentially!

1. Assign a reservation station and a reorder buffer for every instruction that
might be issued in the next issue bundle. This assignment can be done before
the instruction types are known, by simply preallocating the reorder buffer
entries sequentially to the instructions in the packet using n available reorder
buffer entries and by ensuring that enough reservation stations are available
to issue the whole bundle, independent of what it contains. By limiting the
number of instructions of a given class (say, one FP, one integer, one load,

200

Chapter Three Instruction-Level Parallelism and Its Exploitation

one store), the necessary reservation stations can be preallocated. Should suf-
ficient reservation stations not be available (such as when the next few
instructions in the program are all of one instruction type), the bundle is bro-
ken, and only a subset of the instructions, in the original program order, is
issued. The remainder of the instructions in the bundle can be placed in the
next bundle for potential issue.

2. Analyze all the dependences among the instructions in the issue bundle.

If an instruction in the bundle depends on an earlier instruction in the bundle,
use the assigned reorder buffer number to update the reservation table for the
dependent instruction. Otherwise, use the existing reservation table and reor-
der buffer information to update the reservation table entries for the issuing
instruction.

Of course, what makes the above very complicated is that it is all done in parallel
in a single clock cycle!

At the back-end of the pipeline, we must be able to complete and commit
multiple instructions per clock. These steps are somewhat easier than the issue
problems since multiple instructions that can actually commit in the same clock
cycle must have already dealt with and resolved any dependences. As we will
see, designers have figured out how to handle this complexity: The Intel i7,
which we examine in Section 3.13, uses essentially the scheme we have
described for speculative multiple issue, including a large number of reservation
stations, a reorder buffer, and a load and store buffer that is also used to handle
nonblocking cache misses.

From a performance viewpoint, we can show how the concepts fit together
with an example.

Example

Answer

Consider the execution of the following loop, which increments each element of
an integer array, on a two-issue processor, once without speculation and once
with speculation:

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2,R2,#1 sincrement R2
SD R2,0(R1) ;store result
DADDIU R1,R1,#8 sincrement pointer
BNE R2,R3,LO00P sbranch if not Tast element

Assume that there are separate integer functional units for effective address
calculation, for ALU operations, and for branch condition evaluation. Create a
table for the first three iterations of this loop for both processors. Assume that up
to two instructions of any type can commit per clock.

Figures 3.19 and 3.20 show the performance for a two-issue dynamically sched-
uled processor, without and with speculation. In this case, where a branch can be
a critical performance limiter, speculation helps significantly. The third branch in

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation 201

Memory

Issuesat Executesat access at Write CDB at
Iteration clockcycle clockcycle clock cycle clock cycle
number Instructions number number number number Comment
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU R2,R2,#1 1 5 6 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE R2,R3,L00P 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE
2 DADDIU R2,R2,#1 4 11 12 Wait for LW
2 SD R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE
2 BNE R2,R3,LO0P 6 13 Wait for DADDIU
3 LD R2,0(R1) 7 14 15 16 Wait for BNE
3 DADDIU R2,R2,#1 7 17 18 Wait for LW
3 SD R2,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,#8 8 14 15 Wait for BNE
3 BNE R2,R3,LO0P 9 19 Wait for DADDIU

Figure 3.19 The time of issue, execution, and writing result for a dual-issue version of our pipeline without
speculation. Note that the LD following the BNE cannot start execution earlier because it must wait until the branch
outcome is determined. This type of program, with data-dependent branches that cannot be resolved earlier, shows
the strength of speculation. Separate functional units for address calculation, ALU operations, and branch-condition
evaluation allow multiple instructions to execute in the same cycle. Figure 3.20 shows this example with speculation.

the speculative processor executes in clock cycle 13, while it executes in clock
cycle 19 on the nonspeculative pipeline. Because the completion rate on the non-
speculative pipeline is falling behind the issue rate rapidly, the nonspeculative
pipeline will stall when a few more iterations are issued. The performance of the
nonspeculative processor could be improved by allowing load instructions to
complete effective address calculation before a branch is decided, but unless
speculative memory accesses are allowed, this improvement will gain only 1
clock per iteration.

This example clearly shows how speculation can be advantageous when there
are data-dependent branches, which otherwise would limit performance. This
advantage depends, however, on accurate branch prediction. Incorrect specula-
tion does not improve performance; in fact, it typically harms performance and,
as we shall see, dramatically lowers energy efficiency.

202 Chapter Three Instruction-Level Parallelism and Its Exploitation

Write

Issues Executes Readaccess CDB at Commits
Iteration atclock atclock at clock clock at clock
number Instructions number number number number number Comment
1 LD R2,0(R1) 1 2 3 4 5 First issue
1 DADDIU R2,R2,#1 1 5 6 7 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 8 Commit in order
1 BNE R2,R3,L00P 3 7 8 Wait for DADDIU
2 LD R2,0(R1) 4 5 6 9 No execute delay
2 DADDIU R2,R2,#1 4 8 10 Wait for LW
2 SD R2,0(R1) 5 6 10 Wait for DADDIU
2 DADDIU R1,R1,#8 5 6 7 11 Commit in order
2 BNE R2,R3,L00P 6 10 11 Wait for DADDIU
3 LD R2,0(R1) 7 8 9 10 12 Earliest possible
3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW
3 SD R2,0(R1) 8 9 13 Wait for DADDIU
3 DADDIU R1,R1,#8 8 10 14 Executes earlier
3 BNE R2,R3,L00P 9 13 14 Wait for DADDIU

Figure 3.20 The time of issue, execution, and writing result for a dual-issue version of our pipeline with specula-
tion. Note that the LD following the BNE can start execution early because it is speculative.

3.9

Advanced Techniques for Instruction Delivery and
Speculation

In a high-performance pipeline, especially one with multiple issues, predicting
branches well is not enough; we actually have to be able to deliver a high-
bandwidth instruction stream. In recent multiple-issue processors, this has meant
delivering 4 to 8 instructions every clock cycle. We look at methods for increas-
ing instruction delivery bandwidth first. We then turn to a set of key issues in
implementing advanced speculation techniques, including the use of register
renaming versus reorder buffers, the aggressiveness of speculation, and a tech-
nique called value prediction, which attempts to predict the result of a computa-
tion and which could further enhance ILP.

Increasing Instruction Fetch Bandwidth

A multiple-issue processor will require that the average number of instructions
fetched every clock cycle be at least as large as the average throughput. Of
course, fetching these instructions requires wide enough paths to the instruction
cache, but the most difficult aspect is handling branches. In this section, we look

3.9 Advanced Techniques for Instruction Delivery and Speculation 203

at two methods for dealing with branches and then discuss how modern proces-
sors integrate the instruction prediction and prefetch functions.

Branch-Target Buffers

To reduce the branch penalty for our simple five-stage pipeline, as well as for
deeper pipelines, we must know whether the as-yet-undecoded instruction is a
branch and, if so, what the next program counter (PC) should be. If the
instruction is a branch and we know what the next PC should be, we can have a
branch penalty of zero. A branch-prediction cache that stores the predicted
address for the next instruction after a branch is called a branch-target buffer or
branch-target cache. Figure 3.21 shows a branch-target buffer.

Because a branch-target buffer predicts the next instruction address and will
send it out before decoding the instruction, we must know whether the fetched
instruction is predicted as a taken branch. If the PC of the fetched instruction
matches an address in the prediction buffer, then the corresponding predicted PC
is used as the next PC. The hardware for this branch-target buffer is essentially
identical to the hardware for a cache.

PC of instruction to fetch

Predicted PC

Number of
entries

in branch-
target
buffer

No: instruction is

= not predicted to be Branch
branch; proceed normally predicted
taken or
untaken

Yes: then instruction is branch and predicted
PC should be used as the next PC

Figure 3.21 A branch-target buffer. The PC of the instruction being fetched is matched against a set of instruction
addresses stored in the first column; these represent the addresses of known branches. If the PC matches one of
these entries, then the instruction being fetched is a taken branch, and the second field, predicted PC, contains the
prediction for the next PC after the branch. Fetching begins immediately at that address. The third field, which is
optional, may be used for extra prediction state bits.

204

Chapter Three Instruction-Level Parallelism and Its Exploitation

If a matching entry is found in the branch-target buffer, fetching begins
immediately at the predicted PC. Note that unlike a branch-prediction buffer, the
predictive entry must be matched to this instruction because the predicted PC
will be sent out before it is known whether this instruction is even a branch. If the
processor did not check whether the entry matched this PC, then the wrong PC
would be sent out for instructions that were not branches, resulting in worse
performance. We only need to store the predicted-taken branches in the branch-
target buffer, since an untaken branch should simply fetch the next sequential
instruction, as if it were not a branch.

Figure 3.22 shows the steps when using a branch-target buffer for a simple
five-stage pipeline. From this figure we can see that there will be no branch delay

Send PC to memory and
branch-target buffer

IF
No Entry found in
branch-target
buffer?
Send out
predicted
Is PC
instruction Yes
a taken
branch?
ID
Normal
instruction
execution
Enter Mispredicted branch, Branch correctly
branch instruction kill fetched instruction; predicted;
EX address and next restart fetch at other continue execution

PC into branch- target; delete entry with no stalls
target buffer from target buffer

Figure 3.22 The steps involved in handling an instruction with a branch-target buffer.

3.9 Advanced Techniques for Instruction Delivery and Speculation 205

Instruction in buffer Prediction Actual branch Penalty cycles
Yes Taken Taken 0
Yes Taken Not taken 2
No Taken 2
No Not taken 0

Figure 3.23 Penalties for all possible combinations of whether the branch is in the
buffer and what it actually does, assuming we store only taken branches in the
buffer. There is no branch penalty if everything is correctly predicted and the branch is
found in the target buffer. If the branch is not correctly predicted, the penalty is equal
to one clock cycle to update the buffer with the correct information (during which an
instruction cannot be fetched) and one clock cycle, if needed, to restart fetching the
next correct instruction for the branch. If the branch is not found and taken, a two-cycle
penalty is encountered, during which time the buffer is updated.

if a branch-prediction entry is found in the buffer and the prediction is correct.
Otherwise, there will be a penalty of at least two clock cycles. Dealing with the
mispredictions and misses is a significant challenge, since we typically will have
to halt instruction fetch while we rewrite the buffer entry. Thus, we would like to
make this process fast to minimize the penalty.

To evaluate how well a branch-target buffer works, we first must determine
the penalties in all possible cases. Figure 3.23 contains this information for a sim-
ple five-stage pipeline.

Example Determine the total branch penalty for a branch-target buffer assuming the pen-
alty cycles for individual mispredictions from Figure 3.23. Make the following
assumptions about the prediction accuracy and hit rate:

m Prediction accuracy is 90% (for instructions in the buffer).

m Hit rate in the buffer is 90% (for branches predicted taken).

Answer We compute the penalty by looking at the probability of two events: the branch is
predicted taken but ends up being not taken, and the branch is taken but is not
found in the buffer. Both carry a penalty of two cycles.

Probability (branch in buffer, but actually not taken) = Percent buffer hit rate X Percent incorrect predictions
90% x 10% = 0.09

Probability (branch not in buffer, but actually taken) = 10%

(0.09+0.10) x 2

Branch penalty = 0.38

Branch penalty

This penalty compares with a branch penalty for delayed branches, which we
evaluate in Appendix C, of about 0.5 clock cycles per branch. Remember,
though, that the improvement from dynamic branch prediction will grow as the

206

Chapter Three Instruction-Level Parallelism and Its Exploitation

pipeline length and, hence, the branch delay grows; in addition, better predictors
will yield a larger performance advantage. Modern high-performance processors
have branch misprediction delays on the order of 15 clock cycles; clearly, accu-
rate prediction is critical!

One variation on the branch-target buffer is to store one or more target
instructions instead of, or in addition to, the predicted target address. This varia-
tion has two potential advantages. First, it allows the branch-target buffer access
to take longer than the time between successive instruction fetches, possibly
allowing a larger branch-target buffer. Second, buffering the actual target instruc-
tions allows us to perform an optimization called branch folding. Branch folding
can be used to obtain 0-cycle unconditional branches and sometimes 0-cycle con-
ditional branches.

Consider a branch-target buffer that buffers instructions from the predicted
path and is being accessed with the address of an unconditional branch. The only
function of the unconditional branch is to change the PC. Thus, when the branch-
target buffer signals a hit and indicates that the branch is unconditional, the pipe-
line can simply substitute the instruction from the branch-target buffer in place of
the instruction that is returned from the cache (which is the unconditional
branch). If the processor is issuing multiple instructions per cycle, then the buffer
will need to supply multiple instructions to obtain the maximum benefit. In some
cases, it may be possible to eliminate the cost of a conditional branch.

Return Address Predictors

As we try to increase the opportunity and accuracy of speculation we face the
challenge of predicting indirect jumps, that is, jumps whose destination address
varies at runtime. Although high-level language programs will generate such
jumps for indirect procedure calls, select or case statements, and FORTRAN-
computed gotos, the vast majority of the indirect jumps come from procedure
returns. For example, for the SPEC95 benchmarks, procedure returns account for
more than 15% of the branches and the vast majority of the indirect jumps on
average. For object-oriented languages such as C++ and Java, procedure returns
are even more frequent. Thus, focusing on procedure returns seems appropriate.
Though procedure returns can be predicted with a branch-target buffer, the
accuracy of such a prediction technique can be low if the procedure is called from
multiple sites and the calls from one site are not clustered in time. For example, in
SPEC CPU95, an aggressive branch predictor achieves an accuracy of less than
60% for such return branches. To overcome this problem, some designs use a small
buffer of return addresses operating as a stack. This structure caches the most
recent return addresses: pushing a return address on the stack at a call and popping
one off at a return. If the cache is sufficiently large (i.e., as large as the maximum
call depth), it will predict the returns perfectly. Figure 3.24 shows the performance
of such a return buffer with 0 to 16 elements for a number of the SPEC CPU95
benchmarks. We will use a similar return predictor when we examine the studies of

3.9 Advanced Techniques for Instruction Delivery and Speculation 207

70%

-~ Go
-+ m88ksim
-/ ccl

60%

-O- Compress
-&- Xlisp
-& ljpeg
50% —A- Perl
>
)
c
)
=}
g 40%
=
kel
S
8 30%
S
]
=
20%
10%

0 1 2 4 8 16
Return address buffer entries

Figure 3.24 Prediction accuracy for a return address buffer operated as a stack on a
number of SPEC CPU95 benchmarks. The accuracy is the fraction of return addresses
predicted correctly. A buffer of 0 entries implies that the standard branch prediction is
used. Since call depths are typically not large, with some exceptions, a modest buffer
works well. These data come from Skadron et al. [1999] and use a fix-up mechanism to
prevent corruption of the cached return addresses.

ILP in Section 3.10. Both the Intel Core processors and the AMD Phenom proces-
sors have return address predictors.

Integrated Instruction Fetch Units

To meet the demands of multiple-issue processors, many recent designers have
chosen to implement an integrated instruction fetch unit as a separate autono-
mous unit that feeds instructions to the rest of the pipeline. Essentially, this
amounts to recognizing that characterizing instruction fetch as a simple single
pipe stage given the complexities of multiple issue is no longer valid.

Instead, recent designs have used an integrated instruction fetch unit that inte-
grates several functions:

1. Integrated branch prediction—The branch predictor becomes part of the
instruction fetch unit and is constantly predicting branches, so as to drive the
fetch pipeline.

208

Chapter Three Instruction-Level Parallelism and Its Exploitation

2. Instruction prefetch—To deliver multiple instructions per clock, the instruc-
tion fetch unit will likely need to fetch ahead. The unit autonomously man-
ages the prefetching of instructions (see Chapter 2 for a discussion of
techniques for doing this), integrating it with branch prediction.

3. Instruction memory access and buffering—When fetching multiple instruc-
tions per cycle a variety of complexities are encountered, including the diffi-
culty that fetching multiple instructions may require accessing multiple cache
lines. The instruction fetch unit encapsulates this complexity, using prefetch
to try to hide the cost of crossing cache blocks. The instruction fetch unit also
provides buffering, essentially acting as an on-demand unit to provide
instructions to the issue stage as needed and in the quantity needed.

Virtually all high-end processors now use a separate instruction fetch unit con-
nected to the rest of the pipeline by a buffer containing pending instructions.

Speculation: Implementation Issues and Extensions

In this section we explore four issues that involve the design trade-offs in specu-
lation, starting with the use of register renaming, the approach that is often used
instead of a reorder buffer. We then discuss one important possible extension to
speculation on control flow: an idea called value prediction.

Speculation Support: Register Renaming versus Reorder Buffers

One alternative to the use of a reorder buffer (ROB) is the explicit use of a larger
physical set of registers combined with register renaming. This approach builds
on the concept of renaming used in Tomasulo’s algorithm and extends it. In
Tomasulo’s algorithm, the values of the architecturally visible registers (RO, ...,
R31 and FO, ..., F31) are contained, at any point in execution, in some combina-
tion of the register set and the reservation stations. With the addition of specula-
tion, register values may also temporarily reside in the ROB. In either case, if the
processor does not issue new instructions for a period of time, all existing
instructions will commit, and the register values will appear in the register file,
which directly corresponds to the architecturally visible registers.

In the register-renaming approach, an extended set of physical registers is
used to hold both the architecturally visible registers as well as temporary values.
Thus, the extended registers replace most of the function of the ROB and the res-
ervation stations; only a queue to ensure that instructions complete in order is
needed. During instruction issue, a renaming process maps the names of architec-
tural registers to physical register numbers in the extended register set, allocating
a new unused register for the destination. WAW and WAR hazards are avoided
by renaming of the destination register, and speculation recovery is handled
because a physical register holding an instruction destination does not become
the architectural register until the instruction commits. The renaming map is a
simple data structure that supplies the physical register number of the register

3.9 Advanced Techniques for Instruction Delivery and Speculation 209

that currently corresponds to the specified architectural register, a function per-
formed by the register status table in Tomasulo’s algorithm. When an instruction
commits, the renaming table is permanently updated to indicate that a physical
register corresponds to the actual architectural register, thus effectively finalizing
the update to the processor state. Although an ROB is not necessary with register
renaming, the hardware must still track instructions in a queue-like structure and
update the renaming table in strict order.

An advantage of the renaming approach versus the ROB approach is that
instruction commit is slightly simplified, since it requires only two simple
actions: (1) record that the mapping between an architectural register number and
physical register number is no longer speculative, and (2) free up any physical
registers being used to hold the “older” value of the architectural register. In a
design with reservation stations, a station is freed up when the instruction using it
completes execution, and a ROB entry is freed up when the corresponding
instruction commits.

With register renaming, deallocating registers is more complex, since before
we free up a physical register, we must know that it no longer corresponds to an
architectural register and that no further uses of the physical register are outstand-
ing. A physical register corresponds to an architectural register until the architec-
tural register is rewritten, causing the renaming table to point elsewhere. That is,
if no renaming entry points to a particular physical register, then it no longer cor-
responds to an architectural register. There may, however, still be uses of the
physical register outstanding. The processor can determine whether this is the
case by examining the source register specifiers of all instructions in the func-
tional unit queues. If a given physical register does not appear as a source and it
is not designated as an architectural register, it may be reclaimed and reallocated.

Alternatively, the processor can simply wait until another instruction that
writes the same architectural register commits. At that point, there can be no fur-
ther uses of the older value outstanding. Although this method may tie up a phys-
ical register slightly longer than necessary, it is easy to implement and is used in
most recent superscalars.

One question you may be asking is how do we ever know which registers are
the architectural registers if they are constantly changing? Most of the time when
the program is executing, it does not matter. There are clearly cases, however,
where another process, such as the operating system, must be able to know
exactly where the contents of a certain architectural register reside. To under-
stand how this capability is provided, assume the processor does not issue
instructions for some period of time. Eventually all instructions in the pipeline
will commit, and the mapping between the architecturally visible registers and
physical registers will become stable. At that point, a subset of the physical regis-
ters contains the architecturally visible registers, and the value of any physical
register not associated with an architectural register is unneeded. It is then easy to
move the architectural registers to a fixed subset of physical registers so that the
values can be communicated to another process.

210 Chapter Three Instruction-Level Parallelism and Its Exploitation

Both register renaming and reorder buffers continue to be used in high-end
processors, which now feature the ability to have as many as 40 or 50 instructions
(including loads and stores waiting on the cache) in flight. Whether renaming or
a reorder buffer is used, the key complexity bottleneck for a dynamically sched-
ule superscalar remains issuing bundles of instructions with dependences within
the bundle. In particular, dependent instructions in an issue bundle must be issued
with the assigned virtual registers of the instructions on which they depend.
A strategy for instruction issue with register renaming similar to that used for
multiple issue with reorder buffers (see page 198) can be deployed, as follows:

1. The issue logic pre-reserves enough physical registers for the entire issue
bundle (say, four registers for a four-instruction bundle with at most one reg-
ister result per instruction).

2. The issue logic determines what dependences exist within the bundle. If a
dependence does not exist within the bundle, the register renaming structure
is used to determine the physical register that holds, or will hold, the result on
which instruction depends. When no dependence exists within the bundle the
result is from an earlier issue bundle, and the register renaming table will
have the correct register number.

3. If an instruction depends on an instruction that is earlier in the bundle, then
the pre-reserved physical register in which the result will be placed is used to
update the information for the issuing instruction.

Note that just as in the reorder buffer case, the issue logic must both determine
dependences within the bundle and update the renaming tables in a single clock,
and, as before, the complexity of doing this for a larger number of instructions
per clock becomes a chief limitation in the issue width.

How Much to Speculate

One of the significant advantages of speculation is its ability to uncover events
that would otherwise stall the pipeline early, such as cache misses. This potential
advantage, however, comes with a significant potential disadvantage. Specula-
tion is not free. It takes time and energy, and the recovery of incorrect speculation
further reduces performance. In addition, to support the higher instruction execu-
tion rate needed to benefit from speculation, the processor must have additional
resources, which take silicon area and power. Finally, if speculation causes an
exceptional event to occur, such as a cache or translation lookaside buffer (TLB)
miss, the potential for significant performance loss increases, if that event would
not have occurred without speculation.

To maintain most of the advantage, while minimizing the disadvantages,
most pipelines with speculation will allow only low-cost exceptional events
(such as a first-level cache miss) to be handled in speculative mode. If an
expensive exceptional event occurs, such as a second-level cache miss or a TLB
miss, the processor will wait until the instruction causing the event is no longer

3.9 Advanced Techniques for Instruction Delivery and Speculation 211

speculative before handling the event. Although this may slightly degrade the
performance of some programs, it avoids significant performance losses in
others, especially those that suffer from a high frequency of such events coupled
with less-than-excellent branch prediction.

In the 1990s, the potential downsides of speculation were less obvious. As
processors have evolved, the real costs of speculation have become more appar-
ent, and the limitations of wider issue and speculation have been obvious. We
return to this issue shortly.

Speculating through Multiple Branches

In the examples we have considered in this chapter, it has been possible to
resolve a branch before having to speculate on another. Three different situations
can benefit from speculating on multiple branches simultaneously: (1) a very
high branch frequency, (2) significant clustering of branches, and (3) long delays
in functional units. In the first two cases, achieving high performance may mean
that multiple branches are speculated, and it may even mean handling more than
one branch per clock. Database programs, and other less structured integer
computations, often exhibit these properties, making speculation on multiple
branches important. Likewise, long delays in functional units can raise the impor-
tance of speculating on multiple branches as a way to avoid stalls from the longer
pipeline delays.

Speculating on multiple branches slightly complicates the process of specula-
tion recovery but is straightforward otherwise. As of 2011, no processor has yet
combined full speculation with resolving multiple branches per cycle, and it is
unlikely that the costs of doing so would be justified in terms of performance ver-
sus complexity and power.

Speculation and the Challenge of Energy Efficiency

What is the impact of speculation on energy efficiency? At first glance, one
might argue that using speculation always decreases energy efficiency, since
whenever speculation is wrong it consumes excess energy in two ways:

1. The instructions that were speculated and whose results were not needed gen-
erated excess work for the processor, wasting energy.

2. Undoing the speculation and restoring the state of the processor to continue
execution at the appropriate address consumes additional energy that would
not be needed without speculation.

Certainly, speculation will raise the power consumption and, if we could control
speculation, it would be possible to measure the cost (or at least the dynamic
power cost). But, if speculation lowers the execution time by more than it
increases the average power consumption, then the total energy consumed may
be less.

212 Chapter Three Instruction-Level Parallelism and Its Exploitation

45% A

40% -
35% -
30% -
c
k)
T 25% -
3
(8]
(0]
2 20%
0
=
15% -
10% -
5% -
O% I T \ T 0 T \ T T . T b 0
) S <@ & ; \ >
v /\"f\Q o8 AF c}'z’Sx Q@% S & £ &
2o N N NJ \cb‘b‘ O AN AV £ > \’\ :
&
N

Figure 3.25 The fraction of instructions that are executed as a result of misspeculation is typically much higher
for integer programs (the first five) versus FP programs (the last five).

Thus, to understand the impact of speculation on energy efficiency, we need
to look at how often speculation is leading to unnecessary work. If a significant
number of unneeded instructions is executed, it is unlikely that speculation will
improve running time by a comparable amount! Figure 3.25 shows the fraction of
instructions that are executed from misspeculation. As we can see, this fraction is
small in scientific code and significant (about 30% on average) in integer code.
Thus, it is unlikely that speculation is energy efficient for integer applications.
Designers could avoid speculation, try to reduce the misspeculation, or think
about new approaches, such as only speculating on branches that are known to be
highly predictable.

Value Prediction

One technique for increasing the amount of ILP available in a program is value
prediction. Value prediction attempts to predict the value that will be produced by
an instruction. Obviously, since most instructions produce a different value every
time they are executed (or at least a different value from a set of values), value
prediction can have only limited success. There are, however, certain instructions
for which it is easier to predict the resulting value—for example, loads that load
from a constant pool or that load a value that changes infrequently. In addition,

3.10

3.10 Studies of the Limitations of ILP 213

when an instruction produces a value chosen from a small set of potential values,
it may be possible to predict the resulting value by correlating it with other pro-
gram behavior.

Value prediction is useful if it significantly increases the amount of available
ILP. This possibility is most likely when a value is used as the source of a chain
of dependent computations, such as a load. Because value prediction is used to
enhance speculations and incorrect speculation has detrimental performance
impact, the accuracy of the prediction is critical.

Although many researchers have focused on value prediction in the past ten
years, the results have never been sufficiently attractive to justify their incorpora-
tion in real processors. Instead, a simpler and older idea, related to value predic-
tion, has been used: address aliasing prediction. Address aliasing prediction is a
simple technique that predicts whether two stores or a load and a store refer to the
same memory address. If two such references do not refer to the same address,
then they may be safely interchanged. Otherwise, we must wait until the memory
addresses accessed by the instructions are known. Because we need not actually
predict the address values, only whether such values conflict, the prediction is
both more stable and simpler. This limited form of address value speculation has
been used in several processors already and may become universal in the future.

Studies of the Limitations of ILP

Exploiting ILP to increase performance began with the first pipelined processors
in the 1960s. In the 1980s and 1990s, these techniques were key to achieving
rapid performance improvements. The question of how much ILP exists was
critical to our long-term ability to enhance performance at a rate that exceeds the
increase in speed of the base integrated circuit technology. On a shorter scale, the
critical question of what is needed to exploit more ILP is crucial to both com-
puter designers and compiler writers. The data in this section also provide us with
a way to examine the value of ideas that we have introduced in this chapter,
including memory disambiguation, register renaming, and speculation.

In this section we review a portion of one of the studies done of these ques-
tions (based on Wall’s 1993 study). All of these studies of available parallelism
operate by making a set of assumptions and seeing how much parallelism is
available under those assumptions. The data we examine here are from a study
that makes the fewest assumptions; in fact, the ultimate hardware model is proba-
bly unrealizable. Nonetheless, all such studies assume a certain level of compiler
technology, and some of these assumptions could affect the results, despite the
use of incredibly ambitious hardware.

As we will see, for hardware models that have reasonable cost, it is unlikely
that the costs of very aggressive speculation can be justified: the inefficiencies in
power and use of silicon are simply too high. While many in the research com-
munity and the major processor manufacturers were betting in favor of much
greater exploitable ILP and were initially reluctant to accept this possibility, by
2005 they were forced to change their minds.

214 Chapter Three Instruction-Level Parallelism and Its Exploitation

The Hardware Model

To see what the limits of ILP might be, we first need to define an ideal processor.
An ideal processor is one where all constraints on ILP are removed. The only
limits on ILP in such a processor are those imposed by the actual data flows
through either registers or memory.

The assumptions made for an ideal or perfect processor are as follows:

1. Infinite register renaming—There are an infinite number of virtual registers
available, and hence all WAW and WAR hazards are avoided and an
unbounded number of instructions can begin execution simultaneously.

2. Perfect branch prediction—Branch prediction is perfect. All conditional
branches are predicted exactly.

3. Perfect jump prediction—All jumps (including jump register used for return
and computed jumps) are perfectly predicted. When combined with perfect
branch prediction, this is equivalent to having a processor with perfect specu-
lation and an unbounded buffer of instructions available for execution.

4. Perfect memory address alias analysis—All memory addresses are known
exactly, and a load can be moved before a store provided that the addresses
are not identical. Note that this implements perfect address alias analysis.

5. Perfect caches—All memory accesses take one clock cycle. In practice,
superscalar processors will typically consume large amounts of ILP hiding
cache misses, making these results highly optimistic.

Assumptions 2 and 3 eliminate all control dependences. Likewise, assump-
tions 1 and 4 eliminate all but the true data dependences. Together, these four
assumptions mean that any instruction in the program’s execution can be sched-
uled on the cycle immediately following the execution of the predecessor on
which it depends. It is even possible, under these assumptions, for the last
dynamically executed instruction in the program to be scheduled on the very first
cycle! Thus, this set of assumptions subsumes both control and address specula-
tion and implements them as if they were perfect.

Initially, we examine a processor that can issue an unlimited number of
instructions at once, looking arbitrarily far ahead in the computation. For all the
processor models we examine, there are no restrictions on what types of instruc-
tions can execute in a cycle. For the unlimited-issue case, this means there may
be an unlimited number of loads or stores issuing in one clock cycle. In addition,
all functional unit latencies are assumed to be one cycle, so that any sequence of
dependent instructions can issue on successive cycles. Latencies longer than one
cycle would decrease the number of issues per cycle, although not the number of
instructions under execution at any point. (The instructions in execution at any
point are often referred to as in flight.)

Of course, this ideal processor is probably unrealizable. For example, the IBM
Power7 (see Wendell et. al. [2010]) is the most advanced superscalar processor

3.10 Studies of the Limitations of ILP 215

announced to date. The Power7 issues up to six instructions per clock and initiates
execution on up to 8 of 12 execution units (only two of which are load/store units),
supports a large set of renaming registers (allowing hundreds of instructions to be
in flight), uses a large aggressive branch predictor, and employs dynamic memory
disambiguation. The Power7 continued the move toward using more thread-level
parallelism by increasing the width of simultaneous multithreading (SMT) sup-
port (to four threads per core) and the number of cores per chip to eight. After
looking at the parallelism available for the perfect processor, we will examine
what might be achievable in any processor likely to be designed in the near future.

To measure the available parallelism, a set of programs was compiled and
optimized with the standard MIPS optimizing compilers. The programs were
instrumented and executed to produce a trace of the instruction and data refer-
ences. Every instruction in the trace is then scheduled as early as possible, lim-
ited only by the data dependences. Since a trace is used, perfect branch prediction
and perfect alias analysis are easy to do. With these mechanisms, instructions
may be scheduled much earlier than they would otherwise, moving across large
numbers of instructions on which they are not data dependent, including
branches, since branches are perfectly predicted.

Figure 3.26 shows the average amount of parallelism available for six of the
SPEC92 benchmarks. Throughout this section the parallelism is measured by the
average instruction issue rate. Remember that all instructions have a one-cycle
latency; a longer latency would reduce the average number of instructions per
clock. Three of these benchmarks (fpppp, doduc, and tomcatv) are floating-point
intensive, and the other three are integer programs. Two of the floating-point
benchmarks (fpppp and tomcatv) have extensive parallelism, which could be
exploited by a vector computer or by a multiprocessor (the structure in fpppp is
quite messy, however, since some hand transformations have been done on the
code). The doduc program has extensive parallelism, but the parallelism does not
occur in simple parallel loops as it does in fpppp and tomcatv. The program li is a
LISP interpreter that has many short dependences.

gce 55

espresso 63

li 18
fpppp 75
doduc 119

tomcatv 150

SPEC benchmarks

0O 20 40 60 80 100 120 140 160
Instruction issues per cycle

Figure 3.26 ILP available in a perfect processor for six of the SPEC92 benchmarks.
The first three programs are integer programs, and the last three are floating-point
programs. The floating-point programs are loop intensive and have large amounts of
loop-level parallelism.

216 Chapter Three Instruction-Level Parallelism and Its Exploitation

Limitations on ILP for Realizable Processors

In this section we look at the performance of processors with ambitious levels of
hardware support equal to or better than what is available in 2011 or, given the
events and lessons of the last decade, likely to be available in the near future. In
particular, we assume the following fixed attributes:

1. Up to 64 instruction issues per clock with no issue restrictions, or more than
10 times the total issue width of the widest processor in 2011. As we dis-
cuss later, the practical implications of very wide issue widths on clock
rate, logic complexity, and power may be the most important limitations on
exploiting ILP.

2. A tournament predictor with 1K entries and a 16-entry return predictor. This
predictor is comparable to the best predictors in 2011; the predictor is not a
primary bottleneck.

3. Perfect disambiguation of memory references done dynamically—this is
ambitious but perhaps attainable for small window sizes (and hence small issue
rates and load/store buffers) or through address aliasing prediction.

4. Register renaming with 64 additional integer and 64 additional FP registers,
which is slightly less than the most aggressive processor in 2011. The Intel
Core 17 has 128 entries in its reorder buffer, although they are not split
between integer and FP, while the IBM Power7 has almost 200. Note that we
assume a pipeline latency of one cycle, which significantly reduces the need
for reorder buffer entries. Both the Power7 and the i7 have latencies of 10
cycles or greater.

Figure 3.27 shows the result for this configuration as we vary the window
size. This configuration is more complex and expensive than any existing imple-
mentations, especially in terms of the number of instruction issues, which is more
than 10 times larger than the largest number of issues available on any processor
in 2011. Nonetheless, it gives a useful bound on what future implementations
might yield. The data in these figures are likely to be very optimistic for another
reason. There are no issue restrictions among the 64 instructions: They may all be
memory references. No one would even contemplate this capability in a proces-
sor in the near future. Unfortunately, it is quite difficult to bound the performance
of a processor with reasonable issue restrictions; not only is the space of possibil-
ities quite large, but the existence of issue restrictions requires that the parallel-
ism be evaluated with an accurate instruction scheduler, making the cost of
studying processors with large numbers of issues very expensive.

In addition, remember that in interpreting these results cache misses and non-
unit latencies have not been taken into account, and both these effects will have
significant impact!

3.10 Studies of the Limitations of ILP 217

10 Window size
10 M Infinite

10 [256

9 W 128

[64
M 32

gce

espresso

Benchmarks

foppp

doduc

56

tomcatv

0 10 20 30 40 50 60
Instruction issues per cycle

Figure 3.27 The amount of parallelism available versus the window size for a variety
of integer and floating-point programs with up to 64 arbitrary instruction issues per
clock. Although there are fewer renaming registers than the window size, the fact that
all operations have one-cycle latency and the number of renaming registers equals the
issue width allows the processor to exploit parallelism within the entire window. In a
real implementation, the window size and the number of renaming registers must be
balanced to prevent one of these factors from overly constraining the issue rate.

The most startling observation from Figure 3.27 is that, with the realistic pro-
cessor constraints listed above, the effect of the window size for the integer pro-
grams is not as severe as for FP programs. This result points to the key difference
between these two types of programs. The availability of loop-level parallelism
in two of the FP programs means that the amount of ILP that can be exploited is
higher, but for integer programs other factors—such as branch prediction,
register renaming, and less parallelism, to start with—are all important limita-
tions. This observation is critical because of the increased emphasis on integer

218

Chapter Three Instruction-Level Parallelism and Its Exploitation

performance since the explosion of the World Wide Web and cloud computing
starting in the mid-1990s. Indeed, most of the market growth in the last decade—
transaction processing, Web servers, and the like—depended on integer perfor-
mance, rather than floating point. As we will see in the next section, for a realistic
processor in 2011, the actual performance levels are much lower than those
shown in Figure 3.27.

Given the difficulty of increasing the instruction rates with realistic hardware
designs, designers face a challenge in deciding how best to use the limited
resources available on an integrated circuit. One of the most interesting trade-offs
is between simpler processors with larger caches and higher clock rates versus
more emphasis on instruction-level parallelism with a slower clock and smaller
caches. The following example illustrates the challenges, and in the next chapter
we will see an alternative approach to exploiting fine-grained parallelism in the
form of GPUs.

Example

Answer

Consider the following three hypothetical, but not atypical, processors, which we
run with the SPEC gcc benchmark:

1. A simple MIPS two-issue static pipe running at a clock rate of 4 GHz and
achieving a pipeline CPI of 0.8. This processor has a cache system that yields
0.005 misses per instruction.

2. A deeply pipelined version of a two-issue MIPS processor with slightly
smaller caches and a 5 GHz clock rate. The pipeline CPI of the processor is
1.0, and the smaller caches yield 0.0055 misses per instruction on average.

3. A speculative superscalar with a 64-entry window. It achieves one-half of the
ideal issue rate measured for this window size. (Use the data in Figure 3.27.)
This processor has the smallest caches, which lead to 0.01 misses per instruc-
tion, but it hides 25% of the miss penalty on every miss by dynamic schedul-
ing. This processor has a 2.5 GHz clock.

Assume that the main memory time (which sets the miss penalty) is 50 ns. Deter-
mine the relative performance of these three processors.

First, we use the miss penalty and miss rate information to compute the contribu-
tion to CPI from cache misses for each configuration. We do this with the follow-
ing formula:

Cache CPI = Misses per instruction X Miss penalty

We need to compute the miss penalties for each system:

Memory access time
Clock cycle

Miss penalty =

3.10 Studies of the Limitations of ILP 219

The clock cycle times for the processors are 250 ps, 200 ps, and 400 ps, respec-
tively. Hence, the miss penalties are

Miss penalty | = 255%1;55 = 200 cycles
Miss penalty, = ;0%1;55 = 250 cycles
Miss penalty; = %Sp(s)ns = 94 cycles

Applying this for each cache:

Cache CPI; = 0.005 x 200 = 1.0
Cache CPI, = 0.0055 x 250 = 1.4
Cache CPI; =0.01 x 94 = 0.94

We know the pipeline CPI contribution for everything but processor 3; its pipe-
line CPI is given by:
1 1 1

Pipeline CPI, = = = ——=022
'peiine 37 Issuerate 9x0.5 45

Now we can find the CPI for each processor by adding the pipeline and cache
CPI contributions:

CPI,=08+1.0=18
CPL,=10+14=24
CPL, =022 +0.94 =1.16

Since this is the same architecture, we can compare instruction execution rates in
millions of instructions per second (MIPS) to determine relative performance:

. . CR

Instruct t te = —

nstruction execution rate TPl
Instruction execution rate; = 40*2/&12 = 2222 MIPS
Instruction execution rate, = SO*Z/IHZ = 2083 MIPS
Instruction execution rate; = %:\G/IHZ = 2155 MIPS

In this example, the simple two-issue static superscalar looks best. In practice,
performance depends on both the CPI and clock rate assumptions.

Beyond the Limits of This Study

Like any limit study, the study we have examined in this section has its own
limitations. We divide these into two classes: limitations that arise even for the

220 Chapter Three Instruction-Level Parallelism and Its Exploitation

perfect speculative processor, and limitations that arise for one or more realistic
models. Of course, all the limitations in the first class apply to the second. The
most important limitations that apply even to the perfect model are

1. WAW and WAR hazards through memory—The study eliminated WAW and
WAR hazards through register renaming, but not in memory usage. Although
at first glance it might appear that such circumstances are rare (especially
WAW hazards), they arise due to the allocation of stack frames. A called pro-
cedure reuses the memory locations of a previous procedure on the stack, and
this can lead to WAW and WAR hazards that are unnecessarily limiting. Aus-
tin and Sohi [1992] examined this issue.

2. Unnecessary dependences—With infinite numbers of registers, all but true
register data dependences are removed. There are, however, dependences
arising from either recurrences or code generation conventions that introduce
unnecessary true data dependences. One example of these is the dependence
on the control variable in a simple for loop. Since the control variable is
incremented on every loop iteration, the loop contains at least one depen-
dence. As we show in Appendix H, loop unrolling and aggressive algebraic
optimization can remove such dependent computation. Wall’s study includes
a limited amount of such optimizations, but applying them more aggressively
could lead to increased amounts of ILP. In addition, certain code generation
conventions introduce unneeded dependences, in particular the use of return
address registers and a register for the stack pointer (which is incremented
and decremented in the call/return sequence). Wall removes the effect of the
return address register, but the use of a stack pointer in the linkage conven-
tion can cause “unnecessary”’ dependences. Postiff et al. [1999] explored the
advantages of removing this constraint.

3. Overcoming the data flow limit—If value prediction worked with high accu-
racy, it could overcome the data flow limit. As of yet, none of the more than
100 papers on the subject has achieved a significant enhancement in ILP
when using a realistic prediction scheme. Obviously, perfect data value pre-
diction would lead to effectively infinite parallelism, since every value of
every instruction could be predicted a priori.

For a less-than-perfect processor, several ideas have been proposed that could
expose more ILP. One example is to speculate along multiple paths. This idea was
discussed by Lam and Wilson [1992] and explored in the study covered in this
section. By speculating on multiple paths, the cost of incorrect recovery is reduced
and more parallelism can be uncovered. It only makes sense to evaluate this
scheme for a limited number of branches because the hardware resources required
grow exponentially. Wall [1993] provided data for speculating in both directions
on up to eight branches. Given the costs of pursuing both paths, knowing that one
will be thrown away (and the growing amount of useless computation as such a
process is followed through multiple branches), every commercial design has
instead devoted additional hardware to better speculation on the correct path.

3.11

3.11 Cross-Cutting Issues: ILP Approaches and the Memory System 221

It is critical to understand that none of the limits in this section is fundamental
in the sense that overcoming them requires a change in the laws of physics!
Instead, they are practical limitations that imply the existence of some formidable
barriers to exploiting additional ILP. These limitations—whether they be window
size, alias detection, or branch prediction—represent challenges for designers
and researchers to overcome.

Attempts to break through these limits in the first five years of this century
met with frustration. Some techniques produced small improvements, but often at
significant increases in complexity, increases in the clock cycle, and dispropor-
tionate increases in power. In summary, designers discovered that trying to
extract more ILP was simply too inefficient. We will return to this discussion in
our concluding remarks.

Cross-Cutting Issues: ILP Approaches and the
Memory System

Hardware versus Software Speculation

The hardware-intensive approaches to speculation in this chapter and the soft-
ware approaches of Appendix H provide alternative approaches to exploiting
ILP. Some of the trade-offs, and the limitations, for these approaches are listed
below:

m To speculate extensively, we must be able to disambiguate memory refer-
ences. This capability is difficult to do at compile time for integer programs
that contain pointers. In a hardware-based scheme, dynamic runtime disam-
biguation of memory addresses is done using the techniques we saw earlier
for Tomasulo’s algorithm. This disambiguation allows us to move loads
past stores at runtime. Support for speculative memory references can help
overcome the conservatism of the compiler, but unless such approaches are
used carefully, the overhead of the recovery mechanisms may swamp the
advantages.

m Hardware-based speculation works better when control flow is unpredictable
and when hardware-based branch prediction is superior to software-based
branch prediction done at compile time. These properties hold for many inte-
ger programs. For example, a good static predictor has a misprediction rate of
about 16% for four major integer SPEC92 programs, and a hardware predic-
tor has a misprediction rate of under 10%. Because speculated instructions
may slow down the computation when the prediction is incorrect, this differ-
ence is significant. One result of this difference is that even statically sched-
uled processors normally include dynamic branch predictors.

m Hardware-based speculation maintains a completely precise exception model
even for speculated instructions. Recent software-based approaches have
added special support to allow this as well.

222 Chapter Three Instruction-Level Parallelism and Its Exploitation

m Hardware-based speculation does not require compensation or bookkeeping
code, which is needed by ambitious software speculation mechanisms.

m Compiler-based approaches may benefit from the ability to see further in the
code sequence, resulting in better code scheduling than a purely hardware-
driven approach.

m Hardware-based speculation with dynamic scheduling does not require dif-
ferent code sequences to achieve good performance for different implementa-
tions of an architecture. Although this advantage is the hardest to quantify, it
may be the most important in the long run. Interestingly, this was one of the
motivations for the IBM 360/91. On the other hand, more recent explicitly
parallel architectures, such as IA-64, have added flexibility that reduces the
hardware dependence inherent in a code sequence.

The major disadvantage of supporting speculation in hardware is the com-
plexity and additional hardware resources required. This hardware cost must be
evaluated against both the complexity of a compiler for a software-based
approach and the amount and usefulness of the simplifications in a processor that
relies on such a compiler.

Some designers have tried to combine the dynamic and compiler-based
approaches to achieve the best of each. Such a combination can generate interest-
ing and obscure interactions. For example, if conditional moves are combined
with register renaming, a subtle side effect appears. A conditional move that is
annulled must still copy a value to the destination register, since it was renamed
earlier in the instruction pipeline. These subtle interactions complicate the design
and verification process and can also reduce performance.

The Intel Itanium processor was the most ambitious computer ever designed
based on the software support for ILP and speculation. It did not deliver on the
hopes of the designers, especially for general-purpose, nonscientific code. As
designers’ ambitions for exploiting ILP were reduced in light of the difficulties
discussed in Section 3.10, most architectures settled on hardware-based mecha-
nisms with issue rates of three to four instructions per clock.

Speculative Execution and the Memory System

Inherent in processors that support speculative execution or conditional instruc-
tions is the possibility of generating invalid addresses that would not occur with-
out speculative execution. Not only would this be incorrect behavior if protection
exceptions were taken, but the benefits of speculative execution would be
swamped by false exception overhead. Hence, the memory system must identify
speculatively executed instructions and conditionally executed instructions and
suppress the corresponding exception.

By similar reasoning, we cannot allow such instructions to cause the cache to
stall on a miss because again unnecessary stalls could overwhelm the benefits of
speculation. Hence, these processors must be matched with nonblocking caches.

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput 223

3.12

In reality, the penalty of an L2 miss is so large that compilers normally only
speculate on L1 misses. Figure 2.5 on page 84 shows that for some well-behaved
scientific programs the compiler can sustain multiple outstanding L2 misses to
cut the L2 miss penalty effectively. Once again, for this to work the memory sys-
tem behind the cache must match the goals of the compiler in number of simulta-
neous memory accesses.

Multithreading: Exploiting Thread-Level
Parallelism to Improve Uniprocessor Throughput

The topic we cover in this section, multithreading, is truly a cross-cutting topic,
since it has relevance to pipelining and superscalars, to graphics processing units
(Chapter 4), and to multiprocessors (Chapter 5). We introduce the topic here and
explore the use of multithreading to increase uniprocessor throughput by using
multiple threads to hide pipeline and memory latencies. In the next chapter, we
will see how multithreading provides the same advantages in GPUs, and finally,
Chapter 5 will explore the combination of multithreading and multiprocessing.
These topics are closely interwoven, since multithreading is a primary technique
for exposing more parallelism to the hardware. In a strict sense, multithreading
uses thread-level parallelism, and thus is properly the subject of Chapter 5, but its
role in both improving pipeline utilization and in GPUs motivates us to introduce
the concept here.

Although increasing performance by using ILP has the great advantage that it
is reasonably transparent to the programmer, as we have seen ILP can be quite
limited or difficult to exploit in some applications. In particular, with reasonable
instruction issue rates, cache misses that go to memory or off-chip caches are
unlikely to be hidden by available ILP. Of course, when the processor is stalled
waiting on a cache miss, the utilization of the functional units drops dramatically.

Since attempts to cover long memory stalls with more ILP have limited effec-
tiveness, it is natural to ask whether other forms of parallelism in an application
could be used to hide memory delays. For example, an online transaction-pro-
cessing system has natural parallelism among the multiple queries and updates
that are presented by requests. Of course, many scientific applications contain
natural parallelism since they often model the three-dimensional, parallel struc-
ture of nature, and that structure can be exploited by using separate threads. Even
desktop applications that use modern Windows-based operating systems often
have multiple active applications running, providing a source of parallelism.

Multithreading allows multiple threads to share the functional units of a single
processor in an overlapping fashion. In contrast, a more general method to
exploit thread-level parallelism (TLP) is with a multiprocessor that has multiple
independent threads operating at once and in parallel. Multithreading, however,
does not duplicate the entire processor as a multiprocessor does. Instead, multi-
threading shares most of the processor core among a set of threads, duplicating
only private state, such as the registers and program counter. As we will see in

224

Chapter Three Instruction-Level Parallelism and Its Exploitation

Chapter 5, many recent processors incorporate both multiple processor cores on a
single chip and provide multithreading within each core.

Duplicating the per-thread state of a processor core means creating a separate
register file, a separate PC, and a separate page table for each thread. The mem-
ory itself can be shared through the virtual memory mechanisms, which already
support multiprogramming. In addition, the hardware must support the ability to
change to a different thread relatively quickly; in particular, a thread switch
should be much more efficient than a process switch, which typically requires
hundreds to thousands of processor cycles. Of course, for multithreading hard-
ware to achieve performance improvements, a program must contain multiple
threads (we sometimes say that the application is multithreaded) that could exe-
cute in concurrent fashion. These threads are identified either by a compiler (typ-
ically from a language with parallelism constructs) or by the programmer.

There are three main hardware approaches to multithreading. Fine-grained
multithreading switches between threads on each clock, causing the execution of
instructions from multiple threads to be interleaved. This interleaving is often
done in a round-robin fashion, skipping any threads that are stalled at that time.
One key advantage of fine-grained multithreading is that it can hide the through-
put losses that arise from both short and long stalls, since instructions from other
threads can be executed when one thread stalls, even if the stall is only for a few
cycles. The primary disadvantage of fine-grained multithreading is that it slows
down the execution of an individual thread, since a thread that is ready to execute
without stalls will be delayed by instructions from other threads. It trades an
uncrease in multithreaded throughput for a loss in the performance (as measured
by latency) of a single thread. The Sun Niagara processor, which we examine
shortly, uses simple fine-grained multithreading, as do the Nvidia GPUs, which
we look at in the next chapter.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly
stalls, such as level two or three cache misses. This change relieves the need to
have thread-switching be essentially free and is much less likely to slow down
the execution of any one thread, since instructions from other threads will only
be issued when a thread encounters a costly stall.

Coarse-grained multithreading suffers, however, from a major drawback: It is
limited in its ability to overcome throughput losses, especially from shorter
stalls. This limitation arises from the pipeline start-up costs of coarse-grained
multithreading. Because a CPU with coarse-grained multithreading issues in-
structions from a single thread, when a stall occurs the pipeline will see a bubble
before the new thread begins executing. Because of this start-up overhead,
coarse-grained multithreading is much more useful for reducing the penalty of
very high-cost stalls, where pipeline refill is negligible compared to the stall
time. Several research projects have explored coarse grained multithreading, but
no major current processors use this technique.

The most common implementation of multithreading is called Simultaneous
multithreading (SMT). Simultaneous multithreading is a variation on fine-
grained multithreading that arises naturally when fine-grained multithreading is
implemented on top of a multiple-issue, dynamically scheduled processor. As

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput 225

with other forms of multithreading, SMT uses thread-level parallelism to hide
long-latency events in a processor, thereby increasing the usage of the functional
units. The key insight in SMT is that register renaming and dynamic scheduling
allow multiple instructions from independent threads to be executed without
regard to the dependences among them; the resolution of the dependences can be
handled by the dynamic scheduling capability.

Figure 3.28 conceptually illustrates the differences in a processor’s ability to
exploit the resources of a superscalar for the following processor configurations:

m A superscalar with no multithreading support
m A superscalar with coarse-grained multithreading
m A superscalar with fine-grained multithreading
m A superscalar with simultaneous multithreading
In the superscalar without multithreading support, the use of issue slots is

limited by a lack of ILP, including ILP to hide memory latency. Because of the
length of L2 and L3 cache misses, much of the processor can be left idle.

Execution slots ——»

Superscalar Coarse MT Fine MT SMT

<+— Time

Figure 3.28 How four different approaches use the functional unit execution slots of a superscalar processor.
The horizontal dimension represents the instruction execution capability in each clock cycle. The vertical dimension
represents a sequence of clock cycles. An empty (white) box indicates that the corresponding execution slot is
unused in that clock cycle. The shades of gray and black correspond to four different threads in the multithreading
processors. Black is also used to indicate the occupied issue slots in the case of the superscalar without multithread-
ing support. The Sun T1 and T2 (aka Niagara) processors are fine-grained multithreaded processors, while the Intel
Core i7 and IBM Power7 processors use SMT. The T2 has eight threads, the Power7 has four, and the Intel i7 has two.
In all existing SMTs, instructions issue from only one thread at a time. The difference in SMT is that the subsequent
decision to execute an instruction is decoupled and could execute the operations coming from several different
instructions in the same clock cycle.

226

Chapter Three Instruction-Level Parallelism and Its Exploitation

In the coarse-grained multithreaded superscalar, the long stalls are partially
hidden by switching to another thread that uses the resources of the processor.
This switching reduces the number of completely idle clock cycles. In a coarse-
grained multithreaded processor, however, thread switching only occurs when
there is a stall. Because the new thread has a start-up period, there are likely to be
some fully idle cycles remaining.

In the fine-grained case, the interleaving of threads can eliminate fully empty
slots. In addition, because the issuing thread is changed on every clock cycle,
longer latency operations can be hidden. Because instruction issue and execution
are connected, a thread can only issue as many instructions as are ready. With a
narrow issue width this is not a problem (a cycle is either occupied or not), which
is why fine-grained multithreading works perfectly for a single issue processor,
and SMT would make no sense. Indeed, in the Sun T2, there are two issues per
clock, but they are from different threads. This eliminates the need to implement
the complex dynamic scheduling approach and relies instead on hiding latency
with more threads.

If one implements fine-grained threading on top of a multiple-issue dynami-
cally schedule processor, the result is SMT. In all existing SMT implementations,
all issues come from one thread, although instructions from different threads can
initiate execution in the same cycle, using the dynamic scheduling hardware to
determine what instructions are ready. Although Figure 3.28 greatly simplifies
the real operation of these processors, it does illustrate the potential performance
advantages of multithreading in general and SMT in wider issue, dynamically
scheduled processors.

Simultaneous multithreading uses the insight that a dynamically scheduled
processor already has many of the hardware mechanisms needed to support the
mechanism, including a large virtual register set. Multithreading can be built on
top of an out-of-order processor by adding a per-thread renaming table, keeping
separate PCs, and providing the capability for instructions from multiple threads
to commit.

Effectiveness of Fine-Grained Multithreading on the Sun T1

In this section, we use the Sun T1 processor to examine the ability of multi-
threading to hide latency. The T1 is a fine-grained multithreaded multicore
microprocessor introduced by Sun in 2005. What makes T1 especially interesting
is that it is almost totally focused on exploiting thread-level parallelism (TLP)
rather than instruction-level parallelism (ILP). The T1 abandoned the intense
focus on ILP (just shortly after the most aggressive ILP processors ever were
introduced), returned to a simple pipeline strategy, and focused on exploiting
TLP, using both multiple cores and multithreading to produce throughput.

Each T1 processor contains eight processor cores, each supporting four threads.
Each processor core consists of a simple six-stage, single-issue pipeline (a standard
five-stage RISC pipeline like that of Appendix C, with one stage added for thread
switching). T1 uses fine-grained multithreading (but not SMT), switching to a new
thread on each clock cycle, and threads that are idle because they are waiting due to

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput 227

Characteristic SunT1

Multiprocessor and Eight cores per chip; four threads per core. Fine-grained thread

multithreading scheduling. One shared floating-point unit for eight cores.

support Supports only on-chip multiprocessing.

Pipeline structure Simple, in-order, six-deep pipeline with three-cycle delays for
loads and branches.

L1 caches 16 KB instructions; 8 KB data. 64-byte block size. Miss to L2 is

23 cycles, assuming no contention.

L2 caches Four separate L2 caches, each 750 KB and associated with a
memory bank. 64-byte block size. Miss to main memory is 110
clock cycles assuming no contention.

Initial implementation 90 nm process; maximum clock rate of 1.2 GHz; power 79 W;
300 M transistors; 379 mm? die.

Figure 3.29 A summary of the T1 processor.

a pipeline delay or cache miss are bypassed in the scheduling. The processor is idle
only when all four threads are idle or stalled. Both loads and branches incur a three-
cycle delay that can only be hidden by other threads. A single set of floating-point
functional units is shared by all eight cores, as floating-point performance was not a
focus for T1. Figure 3.29 summarizes the T1 processor.

T1 Multithreading Unicore Performance

The T1 makes TLP its focus, both through the multithreading on an individual
core and through the use of many simple cores on a single die. In this section, we
will look at the effectiveness of the T1 in increasing the performance of a single
core through fine-grained multithreading. In Chapter 5, we will return to examine
the effectiveness of combining multithreading with multiple cores.

To examine the performance of the T1, we use three server-oriented bench-
marks: TPC-C, SPECJBB (the SPEC Java Business Benchmark), and SPECWeb99.
Since multiple threads increase the memory demands from a single processor, they
could overload the memory system, leading to reductions in the potential gain from
multithreading. Figure 3.30 shows the relative increase in the miss rate and the
observed miss latency when executing with one thread per core versus executing
four threads per core for TPC-C. Both the miss rates and the miss latencies increase,
due to increased contention in the memory system. The relatively small increase in
miss latency indicates that the memory system still has unused capacity.

By looking at the behavior of an average thread, we can understand the interac-
tion among the threads and their ability to keep a core busy. Figure 3.31 shows the
percentage of cycles for which a thread is executing, ready but not executing, and
not ready. Remember that not ready does not imply that the core with that thread is
stalled; it is only when all four threads are not ready that the core will stall.

Threads can be not ready due to cache misses, pipeline delays (arising from
long latency instructions such as branches, loads, floating point, or integer
multiply/divide), and a variety of smaller effects. Figure 3.32 shows the relative

228 Chapter Three Instruction-Level Parallelism and Its Exploitation

1.7 4
1.6 1
1.5+
1.4 4
1.3

1TJI‘|IL

L1 I miss L1 D miss L2 miss L1Imiss L1 D miss L2 miss
rate rate rate latency latency latency

—_
—_
1

Relative increase in miss rate or latency

Figure 3.30 The relative change in the miss rates and miss latencies when executing
with one thread per core versus four threads per core on the TPC-C benchmark. The
latencies are the actual time to return the requested data after a miss. In the four-thread
case, the execution of other threads could potentially hide much of this latency.

100% -
90% -
80% -
70%
60%
E Not ready
50% - [Ready, not chosen
M Executing
40%
30% -
20% -
10% -
0% T T

TPC-C-like SPECJBB00 SPECWeb99

Percentage of cycles

Figure 3.31 Breakdown of the status on an average thread. “Executing” indicates the
thread issues an instruction in that cycle. “Ready but not chosen” means it could issue
but another thread has been chosen, and “not ready” indicates that the thread is await-
ing the completion of an event (a pipeline delay or cache miss, for example).

frequency of these various causes. Cache effects are responsible for the thread
not being ready from 50% to 75% of the time, with L1 instruction misses, L1
data misses, and L2 misses contributing roughly equally. Potential delays from
the pipeline (called “pipeline delay”) are most severe in SPECJBB and may arise
from its higher branch frequency.

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput 229

100% -
goo/o 7 .
80% -

70%

60% - [Other
O Pipeline delay
50% M L2 miss

O L1 D miss
40% - M L1 miss

30% A

Percentage of cycles

20%

1 OO/O - .
0% T T 1

TPC-C-like SPECJBB SPECWeb99

Figure 3.32 The breakdown of causes for a thread being not ready. The contribution
to the “other” category varies. In TPC-C, store buffer full is the largest contributor; in
SPEC-JBB, atomic instructions are the largest contributor; and in SPECWeb99, both fac-
tors contribute.

Benchmark Per-thread CPI Per-core CPI
TPC-C 7.2 1.80
SPECJBB 5.6 1.40
SPECWeb99 6.6 1.65

Figure 3.33 The per-thread CPI, the per-core CPI, the effective eight-core CPI, and
the effective IPC (inverse of CPI) for the eight-core T1 processor.

Figure 3.33 shows the per-thread and per-core CPI. Because T1 is a fine-
grained multithreaded processor with four threads per core, with sufficient paral-
lelism the ideal effective CPI per thread would be four, since that would mean
that each thread was consuming one cycle out of every four. The ideal CPI per
core would be one. In 2005, the IPC for these benchmarks running on aggressive
ILP cores would have been similar to that seen on a T1 core. The T1 core, how-
ever, was very modest in size compared to the aggressive ILP cores of 2005,
which is why the T1 had eight cores compared to the two to four offered on other
processors of the same vintage. As a result, in 2005 when it was introduced, the
Sun T1 processor had the best performance on integer applications with exten-
sive TLP and demanding memory performance, such as SPECJBB and transac-
tion processing workloads.

230

Chapter Three Instruction-Level Parallelism and Its Exploitation

Effectiveness of Simultaneous Multithreading
on Superscalar Processors

A key question is, How much performance can be gained by implementing
SMT? When this question was explored in 2000-2001, researchers assumed that
dynamic superscalars would get much wider in the next five years, supporting six
to eight issues per clock with speculative dynamic scheduling, many simultane-
ous loads and stores, large primary caches, and four to eight contexts with simul-
taneous issue and retirement from multiple contexts. No processor has gotten
close to this level.

As a result, simulation research results that showed gains for multipro-
grammed workloads of two or more times are unrealistic. In practice, the existing
implementations of SMT offer only two to four contexts with fetching and issue
from only one, and up to four issues per clock. The result is that the gain from
SMT is also more modest.

For example, in the Pentium 4 Extreme, as implemented in HP-Compaq
servers, the use of SMT yields a performance improvement of 1.01 when running
the SPECintRate benchmark and about 1.07 when running the SPECfpRate
benchmark. Tuck and Tullsen [2003] reported that, on the SPLASH parallel
benchmarks, they found single-core multithreaded speedups ranging from 1.02 to
1.67, with an average speedup of about 1.22.

With the availability of recent extensive and insightful measurements done by
Esmaeilzadeh et al. [2011], we can look at the performance and energy benefits
of using SMT in a single i7 core using a set of multithreaded applications. The
benchmarks we use consist of a collection of parallel scientific applications and a
set of multithreaded Java programs from the DaCapo and SPEC Java suite, as
summarized in Figure 3.34. The Intel i7 supports SMT with two threads.
Figure 3.35 shows the performance ratio and the energy efficiency ratio of the
these benchmarks run on one core of the i7 with SMT turned off and on. (We plot
the energy efficiency ratio, which is the inverse of energy consumption, so that,
like speedup, a higher ratio is better.)

The harmonic mean of the speedup for the Java benchmarks is 1.28, despite the
two benchmarks that see small gains. These two benchmarks, pjbb2005 and trade-
beans, while multithreaded, have limited parallelism. They are included because
they are typical of a multithreaded benchmark that might be run on an SMT pro-
cessor with the hope of extracting some performance, which they find in limited
amounts. The PARSEC benchmarks obtain somewhat better speedups than the
full set of Java benchmarks (harmonic mean of 1.31). If tradebeans and pjbb2005
were omitted, the Java workload would actually have significantly better speedup
(1.39) than the PARSEC benchmarks. (See the discussion of the implication of us-
ing harmonic mean to summarize the results in the caption of Figure 3.36.)

Energy consumption is determined by the combination of speedup and increase
in power consumption. For the Java benchmarks, on average, SMT delivers the
same energy efficiency as non-SMT (average of 1.0), but it is brought down by the
two poor performing benchmarks; without tradebeans and pjbb2005, the average

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput 231

blackscholes

Prices a portfolio of options with the Black-Scholes PDE

bodytrack Tracks a markerless human body

canneal Minimizes routing cost of a chip with cache-aware simulated annealing
facesim Simulates motions of a human face for visualization purposes

ferret Search engine that finds a set of images similar to a query image
fluidanimate Simulates physics of fluid motion for animation with SPH algorithm
raytrace Uses physical simulation for visualization

streamcluster Computes an approximation for the optimal clustering of data points
swaptions Prices a portfolio of swap options with the Heath—Jarrow-Morton framework
vips Applies a series of transformations to an image

x264 MPG-4 AVC/H.264 video encoder

eclipse Integrated development environment

lusearch Text search tool

sunflow Photo-realistic rendering system

tomcat Tomcat servlet container

tradebeans Tradebeans Daytrader benchmark

xalan An XSLT processor for transforming XML documents

pjbb2005 Version of SPEC JBB2005 (but fixed in problem size rather than time)

Figure 3.34 The parallel benchmarks used here to examine multithreading, as well as in Chapter 5 to examine
multiprocessing with an i7. The top half of the chart consists of PARSEC benchmarks collected by Biena et al. [2008].
The PARSEC benchmarks are meant to be indicative of compute-intensive, parallel applications that would be appro-
priate for multicore processors. The lower half consists of multithreaded Java benchmarks from the DaCapo collec-
tion (see Blackburn et al. [2006]) and pjbb2005 from SPEC. All of these benchmarks contain some parallelism; other
Java benchmarks in the DaCapo and SPEC Java workloads use multiple threads but have little or no true parallelism
and, hence, are not used here. See Esmaeilzadeh et al. [2011] for additional information on the characteristics of
these benchmarks, relative to the measurements here and in Chapter 5.

energy efficiency for the Java benchmarks is 1.06, which is almost as good as
the PARSEC benchmarks. In the PARSEC benchmarks, SMT reduces energy by
1 — (1/1.08) = 7%. Such energy-reducing performance enhancements are very dif-
ficult to find. Of course, the static power associated with SMT is paid in both
cases, thus the results probably slightly overstate the energy gains.

These results clearly show that SMT in an aggressive speculative processor
with extensive support for SMT can improve performance in an energy efficient
fashion, which the more aggressive ILP approaches have failed to do. In 2011,
the balance between offering multiple simpler cores and fewer more sophisticat-
ed cores has shifted in favor of more cores, with each core typically being a
three- to four-issue superscalar with SMT supporting two to four threads. Indeed,
Esmaeilzadeh et al. [2011] show that the energy improvements from SMT are
even larger on the Intel i5 (a processor similar to the 17, but with smaller caches
and a lower clock rate) and the Intel Atom (an 80x86 processor designed for the
netbook market and described in Section 3.14).

232

Chapter Three Instruction-Level Parallelism and Its Exploitation

2.00

1.75 A

1.50 A

1.25 A

i7 SMT performance and energy efficiency ratio

I Speedup —— Energy efficiency

0'75 T T T T T T T T T T T T T T T T T 1
N >SS L& 2 ¥ 2 & & 2 & & o .o N>
o 6‘5‘0 0&\0 o@o +,§?> oéb(\ 0(190 c’§‘°\® 4\@0 fo‘\& & S & \,\\@0 & 6‘\0(\ & ©
CF N L X S T & F @ FE
A3 Q)\rzy Q\\) %(\%

Figure 3.35 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the Java
benchmarks and 1.31 for the PARSEC benchmarks (using an unweighted harmonic mean, which implies a work-
load where the total time spent executing each benchmark in the single-threaded base set was the same). The
energy efficiency averages 0.99 and 1.07, respectively (using the harmonic mean). Recall that anything above 1.0 for
energy efficiency indicates that the feature reduces execution time by more than it increases average power. Two of
the Java benchmarks experience little speedup and have significant negative energy efficiency because of this.
Turbo Boost is off in all cases. These data were collected and analyzed by Esmaeilzadeh et al. [2011] using the Oracle
(Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc v4.4.1 native compiler.

FO F1 F2 DO D1 D2 D3 D4
Branch mispredict

EO E1 E2 E3 E4 E5

penalty=13 cycles Instruction execute and load/store
|
rrm—— > BP
nstruction 8 ALU/MUL pipe 0
fetch % N update
1IN | g
AGU RﬁM 12f::|:ry Instruction decode = BIP
1i8 [queue || & B ALU pipe 1
— > (s update
GHB = BP
g = .
S ® LS pipeOor1i update

Figure 3.36 The basic structure of the A8 pipeline is 13 stages. Three cycles are used
for instruction fetch and four for instruction decode, in addition to a five-cycle integer
pipeline. This yields a 13-cycle branch misprediction penalty. The instruction fetch unit

tries to keep the 12-entry instruction queue filled.

3.13

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 233

Putting It All Together: The Intel Core i7 and ARM
Cortex-A8

In this section we explore the design of two multiple issue processors: the ARM
Cortex-A8 core, which is used as the basis for the Apple A9 processor in the
iPad, as well as the processor in the Motorola Droid and the iPhones 3GS and 4,
and the Intel Core i7, a high-end, dynamically scheduled, speculative processor,
intended for high-end desktops and server applications. We begin with the sim-
pler processor.

The ARM Cortex-A8

The A8 is a dual-issue, statically scheduled superscalar with dynamic issue
detection, which allows the processor to issue one or two instructions per clock.
Figure 3.36 shows the basic pipeline structure of the 13-stage pipeline.

The A8 uses a dynamic branch predictor with a 512-entry two-way set asso-
ciative branch target buffer and a 4K-entry global history buffer, which is
indexed by the branch history and the current PC. In the event that the branch tar-
get buffer misses, a prediction is obtained from the global history buffer, which
can then be used to compute the branch address. In addition, an eight-entry return
stack is kept to track return addresses. An incorrect prediction results in a 13-
cycle penalty as the pipeline is flushed.

Figure 3.37 shows the instruction decode pipeline. Up to two instructions per
clock can be issued using an in-order issue mechanism. A simple scoreboard
structure is used to track when an instruction can issue. A pair of dependent
instructions can be processed through the issue logic, but, of course, they will be
serialized at the scoreboard, unless they can be issued so that the forwarding
paths can resolve the dependence.

Figure 3.38 shows the execution pipeline for the A8 processor. Either instruc-
tion 1 or instruction 2 can go to the load/store pipeline. Fully bypassing is sup-
ported among the pipelines. The ARM Cortex-A8 pipeline uses a simple two-
issue statically scheduled superscalar to allow reasonably high clock rate with
lower power. In contrast, the i7 uses a reasonably aggressive, four-issue dynami-
cally scheduled speculative pipeline structure.

Performance of the A8 Pipeline

The A8 has an ideal CPI of 0.5 due to its dual-issue structure. Pipeline stalls can
arise from three sources:

1. Functional hazards, which occur because two adjacent instructions selected
for issue simultaneously use the same functional pipeline. Since the A8 is
statically scheduled, it is the compiler’s task to try to avoid such conflicts.
When they cannot be avoided, the A8 can issue at most one instruction in that
cycle.

234 Chapter Three Instruction-Level Parallelism and Its Exploitation

DO D1 D2 D3 D4
Instruction decode
_’
Early » Dec/seq > b > —»
Dec g
Dec queue Score+board RegFile
read/write . . ID remap
issue logic
Early
Dec > Dec » > P —>

Figure 3.37 The five-stage instruction decode of the A8. In the first stage, a PC pro-
duced by the fetch unit (either from the branch target buffer or the PC incrementer) is
used to retrieve an 8-byte block from the cache. Up to two instructions are decoded
and placed into the decode queue; if neither instruction is a branch, the PC is incre-
mented for the next fetch. Once in the decode queue, the scoreboard logic decides
when the instructions can issue. In the issue, the register operands are read; recall that
in a simple scoreboard, the operands always come from the registers. The register oper-
ands and opcode are sent to the instruction execution portion of the pipeline.

EO E1 E2 E3 E4 E5
Instruction execute
Integer register write back

v ALU BP
| Shft » + B Sat - WB
flags update ALU
> multiply
S bf| MUL L] MUL L MUL L) ace [we | PPeO
INST O 5] 1 2 3
—_— Q
=
8
3 ALU BP
INST 1 Q i
& (| Shft ﬂ+ | Sat update WB ALU pipe 1
3 ags
:_F":
NINITRN LS pipeline » wp | Load/store
pipe O or 1

Figure 3.38 The five-stage instruction decode of the A8. Multiply operations are
always performed in ALU pipeline 0.

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 235

2. Data hazards, which are detected early in the pipeline and may stall either
both instructions (if the first cannot issue, the second is always stalled) or the
second of a pair. The compiler is responsible for preventing such stalls when
possible.

3. Control hazards, which arise only when branches are mispredicted.

In addition to pipeline stalls, L1 and L2 misses both cause stalls.

Figure 3.39 shows an estimate of the factors that contribute to the actual CPI
for the Minnespec benchmarks, which we saw in Chapter 2. As we can see, pipe-
line delays rather than memory stalls are the major contributor to the CPI. This
result is partially due to the effect that Minnespec has a smaller cache footprint
than full SPEC or other large programs.

6 -
M L2 stalls/instruction
@ L1 stalls/instruction
B Pipeline stalls/instruction
5] W Ideal CPI
4 -
c
kel
©
=
@
£
= 34
@
Q.
(%]
]
©
>
(6]
2 -
O I T T T
gzip vpr crafty parser eon perlbmk gap vortex bzip2

Figure 3.39 The estimated composition of the CPI on the ARM A8 shows that pipeline stalls are the primary
addition to the base CPI. eon deserves some special mention, as it does integer-based graphics calculations (ray
tracing) and has very few cache misses. It is computationally intensive with heavy use of multiples, and the single
multiply pipeline becomes a major bottleneck. This estimate is obtained by using the L1 and L2 miss rates and penal-
ties to compute the L1 and L2 generated stalls per instruction. These are subtracted from the CPl measured by a
detailed simulator to obtain the pipeline stalls. Pipeline stalls include all three hazards plus minor effects such as way
misprediction.

236

Chapter Three Instruction-Level Parallelism and Its Exploitation

2.251

-
- ~

a o N
1 1 1

A9 performance/A8 performance
N
6]

0.75

vpr gce mcf crafty parser eon perlomk gap vortex bzip2 twolf

Figure 3.40 The performance ratio for the A9 compared to the A8, both using a 1 GHz clock and the same size
caches for L1 and L2, shows that the A9 is about 1.28 times faster. Both runs use a 32 KB primary cache and a 1 MB
secondary cache, which is 8-way set associative for the A8 and 16-way for the A9. The block sizes in the caches are 64
bytes for the A8 and 32 bytes for the A9. As mentioned in the caption of Figure 3.39, eon makes intensive use of inte-
ger multiply, and the combination of dynamic scheduling and a faster multiply pipeline significantly improves per-
formance on the A9. twolf experiences a small slowdown, likely due to the fact that its cache behavior is worse with
the smaller L1 block size of the A9.

The insight that the pipeline stalls created significant performance losses
probably played a key role in the decision to make the ARM Cortex-A9 a dynam-
ically scheduled superscalar. The A9, like the A8, issues up to two instructions
per clock, but it uses dynamic scheduling and speculation. Up to four pending
instructions (two ALUs, one load/store or FP/multimedia, and one branch) can
begin execution in a clock cycle. The A9 uses a more powerful branch predictor,
instruction cache prefetch, and a nonblocking L1 data cache. Figure 3.40 shows
that the A9 outperforms the A8 by a factor of 1.28 on average, assuming the
same clock rate and virtually identical cache configurations.

The Intel Core i7

The 17 uses an aggressive out-of-order speculative microarchitecture with reason-
ably deep pipelines with the goal of achieving high instruction throughput by
combining multiple issue and high clock rates. Figure 3.41 shows the overall
structure of the i7 pipeline. We will examine the pipeline by starting with

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 237

Store
& load

Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system
components. The total pipeline depth is 14 stages, with branch mispredictions costing
17 cycles. There are 48 load and 32 store buffers. The six independent functional units
can each begin execution of a ready micro-op in the same cycle.

instruction fetch and continuing on to instruction commit, following steps labeled
on the figure.

1. Instruction fetch—The processor uses a multilevel branch target buffer to
achieve a balance between speed and prediction accuracy. There is also a
return address stack to speed up function return. Mispredictions cause a pen-
alty of about 15 cycles. Using the predicted address, the instruction fetch unit
fetches 16 bytes from the instruction cache.

2. The 16 bytes are placed in the predecode instruction buffer—In this step, a
process called macro-op fusion is executed. Macro-op fusion takes instruc-
tion combinations such as compare followed by a branch and fuses them into
a single operation. The predecode stage also breaks the 16 bytes into individ-
ual x86 instructions. This predecode is nontrivial since the length of an x86

238 Chapter Three Instruction-Level Parallelism and Its Exploitation

instruction can be from 1 to 17 bytes and the predecoder must look through a
number of bytes before it knows the instruction length. Individual x86
instructions (including some fused instructions) are placed into the 18-entry
instruction queue.

3. Micro-op decode—Individual x86 instructions are translated into micro-ops.
Micro-ops are simple MIPS-like instructions that can be executed directly by
the pipeline; this approach of translating the x86 instruction set into simple
operations that are more easily pipelined was introduced in the Pentium Pro
in 1997 and has been used since. Three of the decoders handle x86 instruc-
tions that translate directly into one micro-op. For x86 instructions that have
more complex semantics, there is a microcode engine that is used to produce
the micro-op sequence; it can produce up to four micro-ops every cycle and
continues until the necessary micro-op sequence has been generated. The
micro-ops are placed according to the order of the x86 instructions in the 28-
entry micro-op buffer.

4. The micro-op buffer preforms loop stream detection and microfusion—If
there is a small sequence of instructions (less than 28 instructions or 256
bytes in length) that comprises a loop, the loop stream detector will find the
loop and directly issue the micro-ops from the buffer, eliminating the need for
the instruction fetch and instruction decode stages to be activated. Microfu-
sion combines instruction pairs such as load/ALU operation and ALU opera-
tion/store and issues them to a single reservation station (where they can still
issue independently), thus increasing the usage of the buffer. In a study of the
Intel Core architecture, which also incorporated microfusion and macrofu-
sion, Bird et al. [2007] discovered that microfusion had little impact on per-
formance, while macrofusion appears to have a modest positive impact on
integer performance and little impact on floating-point performance.

5. Perform the basic instruction issue—Looking up the register location in the
register tables, renaming the registers, allocating a reorder buffer entry, and
fetching any results from the registers or reorder buffer before sending the
micro-ops to the reservation stations.

6. The i7 uses a 36-entry centralized reservation station shared by six functional
units. Up to six micro-ops may be dispatched to the functional units every
clock cycle.

7. Micro-ops are executed by the individual function units and then results are
sent back to any waiting reservation station as well as to the register retire-
ment unit, where they will update the register state, once it is known that the
instruction is no longer speculative. The entry corresponding to the instruc-
tion in the reorder buffer is marked as complete.

8. When one or more instructions at the head of the reorder buffer have been
marked as complete, the pending writes in the register retirement unit are
executed, and the instructions are removed from the reorder buffer.

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 239

Performance of the i7

In earlier sections, we examined the performance of the i7’s branch predictor and
also the performance of SMT. In this section, we look at single-thread pipeline
performance. Because of the presence of aggressive speculation as well as non-
blocking caches, it is difficult to attribute the gap between idealized performance
and actual performance accurately. As we will see, relatively few stalls occur
because instructions cannot issue. For example, only about 3% of the loads are
delayed because no reservation station is available. Most losses come either from
branch mispredicts or cache misses. The cost of a branch mispredict is 15 cycles,
while the cost of an L1 miss is about 10 cycles; L2 misses are slightly more than
three times as costly as an L1 miss, and L3 misses cost about 13 times what an L1
miss costs (130-135 cycles)! Although the processor will attempt to find alterna-
tive instructions to execute for L3 misses and some L2 misses, it is likely that
some of the buffers will fill before the miss completes, causing the processor to
stop issuing instructions.

To examine the cost of mispredicts and incorrect speculation, Figure 3.42
shows the fraction of the work (measured by the numbers of micro-ops
dispatched into the pipeline) that do not retire (i.e., their results are annulled),

40% -
35% A
30% A
25% A
20% A

15% -

Work wasted/total work

10% -

5% -

0% -

®<\ QQ)QQI 000 @0 ((\((\ «%\Q(\Q \\')(Q bs@ (\\QQ v:{bg ((\ @ é ’§b ,>\ Q\®+ 4{0—* \/&‘(\\Q‘\(‘b
N ®° N Q° R

Q & S & Q N O& __fb‘b 2

Figure 3.42 The amount of “wasted work” is plotted by taking the ratio of dispatched micro-ops that do not
graduate to all dispatched micro-ops. For example, the ratio is 25% for sjeng, meaning that 25% of the dispatched
and executed micro-ops are thrown away. The data in this section were collected by Professor Lu Peng and Ph.D. stu-
dent Ying Zhang, both of Louisiana State University.

240 Chapter Three Instruction-Level Parallelism and Its Exploitation

relative to all micro-op dispatches. For sjeng, for example, 25% of the work is
wasted, since 25% of the dispatched micro-ops are never retired.

Notice that the wasted work in some cases closely matches the branch mis-
prediction rates shown in Figure 3.5 on page 167, but in several instances, such
as mcf, the wasted work seems relatively larger than the misprediction rate. In
such cases, a likely explanation arises from the memory behavior. With the very
high data cache miss rates, mcf will dispatch many instructions during an incor-
rect speculation as long as sufficient reservation stations are available for the
stalled memory references. When the branch misprediction is detected, the
micro-ops corresponding to these instructions will be flushed, but there will be
congestion around the caches, as speculated memory references try to complete.
There is no simple way for the processor to halt such cache requests once they
are initiated.

Figure 3.43 shows the overall CPI for the 19 SPECCPU2006 benchmarks.
The integer benchmarks have a CPI of 1.06 with very large variance (0.67 stan-
dard deviation). MCF and OMNETPP are the major outliers, both having a CPI
over 2.0 while most other benchmarks are close to, or less than, 1.0 (gcc, the next
highest, is 1.23). This variance derives from differences in the accuracy of branch

3.
2.5+
5
& 15-
1
0.5 A
0 . e N 5 o
Q®‘$0®o§@/bQ% o F éoéi @@0 i:; &\i\(ﬁ)&z&(\é&‘? :;f; c‘,oé& @1&‘ OQ’&%oQ\Q:.o“\& &:QK,\\(\@

Figure 3.43 The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI for 0.83 for both the FP and
integer benchmarks, although the behavior is quite different. In the integer case, the CPI values range from 0.44 to
2.66 with a standard deviation of 0.77, while the variation in the FP case is from 0.62 to 1.38 with a standard deviation
of 0.25. The data in this section were collected by Professor Lu Peng and Ph.D. student Ying Zhang, both of Louisiana
State University.

3.14

Fallacy

3.14 Fallacies and Pitfalls 241

prediction and in cache miss rates. For the integer benchmarks, the L2 miss rate
is the best predictor of CPI, and the L3 miss rate (which is very small) has almost
no effect.

The FP benchmarks achieve higher performance with a lower average CPI
(0.89) and a lower standard deviation (0.25). For the FP benchmarks, L1 and L2
are equally important in determining the CPI, while L3 plays a smaller but signif-
icant role. While the dynamic scheduling and nonblocking capabilities of the 17
can hide some miss latency, cache memory behavior is still a major contributor.
This reinforces the role of multithreading as another way to hide memory latency.

Fallacies and Pitfalls

Our few fallacies focus on the difficulty of predicting performance and energy
efficiency and extrapolating from single measures such as clock rate or CPI. We
also show that different architectural approaches can have radically different
behaviors for different benchmarks.

It is easy to predict the performance and energy efficiency of two different versions
of the same instruction set architecture, if we hold the technology constant.

Intel manufactures a processor for the low-end Netbook and PMD space that is
quite similar in its microarchitecture of the ARM A8, called the Atom 230. Inter-
estingly, the Atom 230 and the Core i7 920 have both been fabricated in the same
45 nm Intel technology. Figure 3.44 summarizes the Intel Core i7, the ARM
Cortex-AS8, and Intel Atom 230. These similarities provide a rare opportunity to
directly compare two radically different microarchitectures for the same instruc-
tion set while holding constant the underlying fabrication technology. Before we
do the comparison, we need to say a little more about the Atom 230.

The Atom processors implement the x86 architecture using the standard tech-
nique of translating x86 instructions into RISC-like instructions (as every x86
implementation since the mid-1990s has done). Atom uses a slightly more pow-
erful microoperation, which allows an arithmetic operation to be paired with a
load or a store. This means that on average for a typical instruction mix only 4%
of the instructions require more than one microoperation. The microoperations
are then executed in a 16-deep pipeline capable of issuing two instructions per
clock, in order, as in the ARM AS. There are dual-integer ALUs, separate pipe-
lines for FP add and other FP operations, and two memory operation pipelines,
supporting more general dual execution than the ARM A8 but still limited by the
in-order issue capability. The Atom 230 has a 32 KB instruction cache and a
24 KB data cache, both backed by a shared 512 KB L2 on the same die. (The
Atom 230 also supports multithreading with two threads, but we will consider
only one single threaded comparisons.) Figure 3.46 summarizes the i7, A8, and
Atom processors and their key characteristics.

We might expect that these two processors, implemented in the same technol-
ogy and with the same instruction set, would exhibit predictable behavior, in

242 Chapter Three Instruction-Level Parallelism and Its Exploitation

Intel i7 920 ARM A8 Intel Atom 230
Four cores, One core, One core,
Area Specific characteristic ~ each with FP no FP with FP
Physical chip Clock rate 2.66 GHz 1 GHz 1.66 GHz
properties
Thermal design power 130 W 2W 4W
Package 1366-pin BGA 522-pin BGA 437-pin BGA
Memory system Two-level Two-level
All four-way set All four-way set
associative One-level associative
128 /64 D fully associative 16 1/16 D
TLB 51212 321/32D 6412
Three-level
32 KB/32 KB Two-level Two-level
256 KB 16/16 or 32/32 KB~ 32/24 KB
Caches 2-8§ MB 128 KB-1MB 512KB
Peak memory BW 17 GB/sec 12 GB/sec 8 GB/sec
Pipeline structure Peak issue rate 4 ops/clock with fusion 2 ops/clock 2 ops/clock
Pipeline Speculating In-order In-order
scheduling out of order dynamic issue dynamic issue
Two-level
512-entry BTB
4K global history
8-entry return
Branch prediction Two-level stack Two-level

Figure 3.44 An overview of the four-core Intel i7 920, an example of a typical Arm A8 processor chip (with a 256
MB L2, 32K L1s, and no floating point), and the Intel ARM 230 clearly showing the difference in design philoso-
phy between a processor intended for the PMD (in the case of ARM) or netbook space (in the case of Atom) and a
processor for use in servers and high-end desktops. Remember, the i7 includes four cores, each of which is several
times higher in performance than the one-core A8 or Atom. All these processors are implemented in a comparable
45 nm technology.

terms of relative performance and energy consumption, meaning that power and
performance would scale close to linearly. We examine this hypothesis using
three sets of benchmarks. The first sets is a group of Java, single-threaded
benchmarks that come from the DaCapo benchmarks, and the SPEC JVM98
benchmarks (see Esmacilzadeh et al. [2011] for a discussion of the benchmarks
and measurements). The second and third sets of benchmarks are from SPEC
CPU2006 and consist of the integer and FP benchmarks, respectively.

As we can see in Figure 3.45, the i7 significantly outperforms the Atom. All
benchmarks are at least four times faster on the i7, two SPECFP benchmarks are
over ten times faster, and one SPECINT benchmark runs over eight times faster!

3.14 Fallacies and Pitfalls 243

114
o
T 10 B Speedup —— Energy efficiency
3
5 97
c
)
B 87
C
©
o 74
g 7
C
5]
E 67
<)
s
8 51
3
N 41
§
L2 3]
<
2
S 27
o
I
o 1
!: |
0_
XE“([)(D_QOQ-Z N OB X = O W kX w O a o UUEX%EQQ [y}
§Eefffs8ss ESLCREgfSs8g: LEfE38Egigs8¢25¢8
:“’E"_[c»m:'_I & N 75 9 __,qu,m_o E_wE<_m®Q>oDo-—.._
= a S5y 8299 g€ @gQ cl8%¢ o« 3 B P 990 gL =0 £
3 £ N o® 2 -22d 0° ¢ £ o £ S8 2SS 0B g~ 2o =
= s N2y oYY osgnboS ok S 2YNSG2-IIgwsge~ea
8RR EN B9TULESEIIVE ¢ gofnvIEBIET
!]] A a5 pe oy Q8% ¥ <95 2
& o < 8 ® < >
| J = <Q 2

Figure 3.45 The relative performance and energy efficiency for a set of single-threaded benchmarks shows
the i7 920 is 4 to over 10 times faster than the Atom 230 but that it is about 2 times less power efficient on
average! Performance is shown in the columns as i7 relative to Atom, which is execution time (i7)/execution time
(Atom). Energy is shown with the line as Energy (Atom)/Energy (i7). The i7 never beats the Atom in energy effi-
ciency, although it is essentially as good on four benchmarks, three of which are floating point. The data shown
here were collected by Esmaeilzadeh et al. [2011]. The SPEC benchmarks were compiled with optimization on
using the standard Intel compiler, while the Java benchmarks use the Sun (Oracle) Hotspot Java VM. Only one core
is active on the i7, and the rest are in deep power saving mode. Turbo Boost is used on the i7, which increases its
performance advantage but slightly decreases its relative energy efficiency.

Since the ratio of clock rates of these two processors is 1.6, most of the advantage
comes from a much lower CPI for the 17: a factor of 2.8 for the Java benchmarks,
a factor of 3.1 for the SPECINT benchmarks, and a factor of 4.3 for the SPECFP
benchmarks.

But, the average power consumption for the i7 is just under 43 W, while the
average power consumption of the Atom is 4.2 W, or about one-tenth of the
power! Combining the performance and power leads to a energy efficiency
advantage for the Atom that is typically more than 1.5 times better and often 2
times better! This comparison of two processors using the same underlying tech-
nology makes it clear that the performance advantages of an aggressive supersca-
lar with dynamic scheduling and speculation come with a significant
disadvantage in energy efficiency.

244

Chapter Three Instruction-Level Parallelism and Its Exploitation

Fallacy

Fallacy

Processors with lower CPIs will always be faster.
Processors with faster clock rates will always be faster.

The key is that it is the product of CPI and clock rate that determines perfor-
mance. A high clock rate obtained by deeply pipelining the CPU must maintain a
low CPI to get the full benefit of the faster clock. Similarly, a simple processor
with a high clock rate but a low CPI may be slower.

As we saw in the previous fallacy, performance and energy efficiency can
diverge significantly among processors designed for different environments even
when they have the same ISA. In fact, large differences in performance can show
up even within a family of processors from the same company all designed for
high-end applications. Figure 3.46 shows the integer and FP performance of two
different implementations of the x86 architecture from Intel, as well as a version
of the Itanium architecture, also by Intel.

The Pentium 4 was the most aggressively pipelined processor ever built by
Intel. It used a pipeline with over 20 stages, had seven functional units, and
cached micro-ops rather than x86 instructions. Its relatively inferior performance
given the aggressive implementation, was a clear indication that the attempt to
exploit more ILP (there could easily be 50 instructions in flight) had failed. The
Pentium’s power consumption was similar to the i7, although its transistor count
was lower, as its primary caches were half as large as the i7, and it included only
a 2 MB secondary cache with no tertiary cache.

The Intel Itanium is a VLIW-style architecture, which despite the potential
decrease in complexity compared to dynamically scheduled superscalars, never
attained competitive clock rates with the mainline x86 processors (although it
appears to achieve an overall CPI similar to that of the i7). In examining these
results, the reader should be aware that they use different implementation tech-
nologies, giving the 17 an advantage in terms of transistor speed and hence clock
rate for an equivalently pipelined processor. Nonetheless, the wide variation in
performance—more than three times between the Pentium and i7—is astonish-
ing. The next pitfall explains where a significant amount of this advantage
comes from.

SPECCInt2006 ~ SPECCFP2006

Processor Clock rate base baseline
Intel Pentium 4 670 3.8 GHz 11.5 12.2
Intel Itanium -2 1.66 GHz 14.5 17.3
Intel i7 3.3GHz 355 384

Figure 3.46 Three different Intel processors vary widely. Although the Itanium
processor has two cores and the i7 four, only one core is used in the benchmarks.

Pitfall

3.15

3.15 Concluding Remarks: What’s Ahead? 245

Sometimes bigger and dumber is better.

Much of the attention in the early 2000s went to building aggressive processors
to exploit ILP, including the Pentium 4 architecture, which used the deepest pipe-
line ever seen in a microprocessor, and the Intel Itanium, which had the highest
peak issue rate per clock ever seen. What quickly became clear was that the main
limitation in exploiting ILP often turned out to be the memory system. Although
speculative out-of-order pipelines were fairly good at hiding a significant fraction
of the 10- to 15-cycle miss penalties for a first-level miss, they could do very lit-
tle to hide the penalties for a second-level miss that, when going to main memory,
were likely to be 50 to100 clock cycles.

The result was that these designs never came close to achieving the peak
instruction throughput despite the large transistor counts and extremely sophisti-
cated and clever techniques. The next section discusses this dilemma and the
turning away from more aggressive ILP schemes to multicore, but there was
another change that exemplifies this pitfall. Instead of trying to hide even more
memory latency with ILP, designers simply used the transistors to build much
larger caches. Both the Itanium 2 and the i7 use three-level caches compared to
the two-level cache of the Pentium 4, and the third-level caches are 9 MB and 8
MB compared to the 2 MB second-level cache of the Pentium 4. Needless to say,
building larger caches is a lot easier than designing the 20+ -stage Pentium 4
pipeline and, from the data in Figure 3.46, seems to be more effective.

Concluding Remarks: What’s Ahead?

As 2000 began, the focus on exploiting instruction-level parallelism was at its
peak. Intel was about to introduce Itanium, a high-issue-rate statically scheduled
processor that relied on a VLIW-like approach with intensive compiler support.
MIPS, Alpha, and IBM processors with dynamically scheduled speculative exe-
cution were in their second generation and had gotten wider and faster. The Pen-
tium 4, which used speculative scheduling, had also been announced that year
with seven functional units and a pipeline more than 20 stages deep. But there
were storm clouds on the horizon.

Research such as that covered in Section 3.10 was showing that pushing ILP
much further would be extremely difficult, and, while peak instruction through-
put rates had risen from the first speculative processors some 3 to 5 years earlier,
sustained instruction execution rates were growing much more slowly.

The next five years were telling. The Itanium turned out to be a good FP pro-
cessor but only a mediocre integer processor. Intel still produces the line, but
there are not many users, the clock rate lags the mainline Intel processors, and
Microsoft no longer supports the instruction set. The Intel Pentium 4, while
achieving good performance, turned out to be inefficient in terms of perfor-
mance/watt (i.e., energy use), and the complexity of the processor made it
unlikely that further advances would be possible by increasing the issue rate. The

246

Chapter Three Instruction-Level Parallelism and Its Exploitation

end of a 20-year road of achieving new performance levels in microprocessors by
exploiting ILP had come. The Pentium 4 was widely acknowledged to have gone
beyond the point of diminishing returns, and the aggressive and sophisticated
Netburst microarchitecture was abandoned.

By 2005, Intel and all the other major processor manufacturers had revamped
their approach to focus on multicore. Higher performance would be achieved
through thread-level parallelism rather than instruction-level parallelism, and the
responsibility for using the processor efficiently would largely shift from the
hardware to the software and the programmer. This change was the most signifi-
cant change in processor architecture since the early days of pipelining and
instruction-level parallelism some 25+ years earlier.

During the same period, designers began to explore the use of more data-level
parallelism as another approach to obtaining performance. SIMD extensions
enabled desktop and server microprocessors to achieve moderate performance
increases for graphics and similar functions. More importantly, graphics process-
ing units (GPUs) pursued aggressive use of SIMD, achieving significant perfor-
mance advantages for applications with extensive data-level parallelism. For
scientific applications, such approaches represent a viable alternative to the more
general, but less efficient, thread-level parallelism exploited in multicores. The
next chapter explores these developments in the use of data-level parallelism.

Many researchers predicted a major retrenchment in the use of ILP, predict-
ing that two issue superscalar processors and larger numbers of cores would be
the future. The advantages, however, of slightly higher issue rates and the ability
of speculative dynamic scheduling to deal with unpredictable events, such as
level-one cache misses, led to moderate ILP being the primary building block in
multicore designs. The addition of SMT and its effectiveness (both for perfor-
mance and energy efficiency) further cemented the position of the moderate
issue, out-of-order, speculative approaches. Indeed, even in the embedded mar-
ket, the newest processors (e.g., the ARM Cortex-A9) have introduced dynamic
scheduling, speculation, and wider issues rates.

It is highly unlikely that future processors will try to increase the width of
issue significantly. It is simply too inefficient both from the viewpoint of silicon
utilization and power efficiency. Consider the data in Figure 3.47 that show the
most recent four processors in the IBM Power series. Over the past decade, there
has been a modest improvement in the ILP support in the Power processors, but
the dominant portion of the increase in transistor count (a factor of almost 7 from
the Power 4 to the Power7) went to increasing the caches and the number of
cores per die. Even the expansion in SMT support seems to be more a focus than
an increase in the ILP throughput: The ILP structure from Power4 to Power7
went from 5 issues to 6, from 8 functional units to 12 (but not increasing from the
original 2 load/store units), while the SMT support went from nonexistent to 4
threads/processor. It seems clear that even for the most advanced ILP processor
in 2011 (the Power7), the focus has moved beyond instruction-level parallelism.
The next two chapters focus on approaches that exploit data-level and thread-
level parallelism.

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 247

Power4 Power5 Power6 Power7

Introduced 2001 2004 2007 2010
Initial clock rate (GHz) 1.3 1.9 4.7 3.6
Transistor count (M) 174 276 790 1200
Issues per clock 5 5 7 6
Functional units 8 8 9 12
Cores/chip 2 2 2 8
SMT threads 0 2 2 4
Total on-chip cache (MB) 1.5 2 4.1 32.3

Figure 3.47 Characteristics of four IBM Power processors. All except the Power6 were dynamically scheduled,
which is static, and in-order, and all the processors support two load/store pipelines. The Power6 has the same func-
tional units as the Power5 except for a decimal unit. Power7 uses DRAM for the L3 cache.

3.16 Historical Perspective and References

Section L.5 (available online) features a discussion on the development of pipe-
lining and instruction-level parallelism. We provide numerous references for fur-
ther reading and exploration of these topics. Section L.5 covers both Chapter 3
and Appendix H.

Case Studies and Exercises by Jason D. Bakos and
Robert P. Colwell

Case Study: Exploring the Impact of Microarchitectural
Techniques

Concepts illustrated by this case study

m Basic Instruction Scheduling, Reordering, Dispatch

m Multiple Issue and Hazards

m Register Renaming

m Out-of-Order and Speculative Execution

m Where to Spend Out-of-Order Resources

You are tasked with designing a new processor microarchitecture, and you are
trying to figure out how best to allocate your hardware resources. Which of the
hardware and software techniques you learned in Chapter 3 should you apply?
You have a list of latencies for the functional units and for memory, as well as

some representative code. Your boss has been somewhat vague about the
performance requirements of your new design, but you know from experience

248

Chapter Three Instruction-Level Parallelism and Its Exploitation

3.1

3.2

33

that, all else being equal, faster is usually better. Start with the basics. Figure 3.48
provides a sequence of instructions and list of latencies.

[10] <1.8, 3.1, 3.2> What would be the baseline performance (in cycles, per
loop iteration) of the code sequence in Figure 3.48 if no new instruction’s
execution could be initiated until the previous instruction’s execution had
completed? Ignore front-end fetch and decode. Assume for now that execution
does not stall for lack of the next instruction, but only one instruction/cycle
can be issued. Assume the branch is taken, and that there is a one-cycle branch
delay slot.

[10] <1.8, 3.1, 3.2> Think about what latency numbers really mean—they indi-
cate the number of cycles a given function requires to produce its output, nothing
more. If the overall pipeline stalls for the latency cycles of each functional unit,
then you are at least guaranteed that any pair of back-to-back instructions (a “pro-
ducer” followed by a “consumer”) will execute correctly. But not all instruction
pairs have a producer/consumer relationship. Sometimes two adjacent instruc-
tions have nothing to do with each other. How many cycles would the loop body
in the code sequence in Figure 3.48 require if the pipeline detected true data
dependences and only stalled on those, rather than blindly stalling everything just
because one functional unit is busy? Show the code with <stal1> inserted where
necessary to accommodate stated latencies. (Hint: An instruction with latency +2
requires two <stall> cycles to be inserted into the code sequence. Think of it
this way: A one-cycle instruction has latency 1 + 0, meaning zero extra wait
states. So, latency 1 + 1 implies one stall cycle; latency 1 + N has N extra stall
cycles.

[15] <3.6, 3.7> Consider a multiple-issue design. Suppose you have two execu-
tion pipelines, each capable of beginning execution of one instruction per cycle,
and enough fetch/decode bandwidth in the front end so that it will not stall your

Latencies beyond single cycle

Loop: LD F2,0(RX) Memory LD +4
10: DIVD F8,F2,F0 Memory SD +1
I1: MULTD F2,F6,F2 Integer ADD, SUB +0
12: LD F4,0(Ry) Branches +1
I3: ADDD F4,FO,F4 ADDD +1
14: ADDD F10,F8,F2 MULTD +5
I15: ADDI Rx,Rx,#8 DIVD +12
16: ADDI Ry,Ry,#8

17: SD F4,0(Ry)

18: SuB R20,R4,Rx

19: BNZ R20,Loop

Figure 3.48 Code and latencies for Exercises 3.1 through 3.6.

34

35

3.6

3.7

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 249

execution. Assume results can be immediately forwarded from one execution
unit to another, or to itself. Further assume that the only reason an execution
pipeline would stall is to observe a true data dependency. Now how many cycles
does the loop require?

[10] <3.6, 3.7> In the multiple-issue design of Exercise 3.3, you may have recog-
nized some subtle issues. Even though the two pipelines have the exact same
instruction repertoire, they are neither identical nor interchangeable, because
there is an implicit ordering between them that must reflect the ordering of the
instructions in the original program. If instruction N + 1 begins execution in Exe-
cution Pipe 1 at the same time that instruction N begins in Pipe 0, and N + 1 hap-
pens to require a shorter execution latency than N, then N + 1 will complete
before N (even though program ordering would have implied otherwise). Recite
at least two reasons why that could be hazardous and will require special consid-
erations in the microarchitecture. Give an example of two instructions from the
code in Figure 3.48 that demonstrate this hazard.

[20] <3.7> Reorder the instructions to improve performance of the code in Figure
3.48. Assume the two-pipe machine in Exercise 3.3 and that the out-of-order
completion issues of Exercise 3.4 have been dealt with successfully. Just worry
about observing true data dependences and functional unit latencies for now.
How many cycles does your reordered code take?

[10/10/10] <3.1, 3.2> Every cycle that does not initiate a new operation in a pipe
is a lost opportunity, in the sense that your hardware is not living up to its poten-
tial.

a. [10] <3.1, 3.2> In your reordered code from Exercise 3.5, what fraction of all
cycles, counting both pipes, were wasted (did not initiate a new op)?

b. [10]<3.1, 3.2> Loop unrolling is one standard compiler technique for finding
more parallelism in code, in order to minimize the lost opportunities for per-
formance. Hand-unroll two iterations of the loop in your reordered code from
Exercise 3.5.

c. [10] <3.1, 3.2> What speedup did you obtain? (For this exercise, just color
the N + 1 iteration’s instructions green to distinguish them from the Nth itera-
tion’s instructions; if you were actually unrolling the loop, you would have to
reassign registers to prevent collisions between the iterations.)

[15] <2.1> Computers spend most of their time in loops, so multiple loop itera-
tions are great places to speculatively find more work to keep CPU resources
busy. Nothing is ever easy, though; the compiler emitted only one copy of that
loop’s code, so even though multiple iterations are handling distinct data, they
will appear to use the same registers. To keep multiple iterations’ register usages
from colliding, we rename their registers. Figure 3.49 shows example code that
we would like our hardware to rename. A compiler could have simply unrolled
the loop and used different registers to avoid conflicts, but if we expect our hard-
ware to unroll the loop, it must also do the register renaming. How? Assume your
hardware has a pool of temporary registers (call them T registers, and assume that

250

Chapter Three Instruction-Level Parallelism and Its Exploitation

3.8

Loop: LD F4,0(Rx)
10: MULTD F2,FO0,F2
I1: DIVD F8,F4,F2
I2: LD F4,0(Ry)
I3: ADDD F6,F0,F4
I4: SUBD F8,F8,F6
15: SD F8,0(Ry)

Figure 3.49 Sample code for register renaming practice.

1I0: LD T9,0(Rx)
I1: MULTD T10,F0,T9

Figure 3.50 Hint: Expected output of register renaming.

there are 64 of them, TO through T63) that it can substitute for those registers des-
ignated by the compiler. This rename hardware is indexed by the src (source)
register designation, and the value in the table is the T register of the last destina-
tion that targeted that register. (Think of these table values as producers, and the
src registers are the consumers; it doesn’t much matter where the producer puts
its result as long as its consumers can find it.) Consider the code sequence in Fig-
ure 3.49. Every time you see a destination register in the code, substitute the next
available T, beginning with T9. Then update all the src registers accordingly, so
that true data dependences are maintained. Show the resulting code. (Hint: See
Figure 3.50.)

[20] <3.4> Exercise 3.7 explored simple register renaming: when the hardware
register renamer sees a source register, it substitutes the destination T register of
the last instruction to have targeted that source register. When the rename table
sees a destination register, it substitutes the next available T for it, but superscalar
designs need to handle multiple instructions per clock cycle at every stage in the
machine, including the register renaming. A simple scalar processor would there-
fore look up both src register mappings for each instruction and allocate a new
dest mapping per clock cycle. Superscalar processors must be able to do that as
well, but they must also ensure that any dest-to-src relationships between the
two concurrent instructions are handled correctly. Consider the sample code
sequence in Figure 3.51. Assume that we would like to simultaneously rename
the first two instructions. Further assume that the next two available T registers to
be used are known at the beginning of the clock cycle in which these two instruc-
tions are being renamed. Conceptually, what we want is for the first instruction to
do its rename table lookups and then update the table per its destination’s
T register. Then the second instruction would do exactly the same thing, and any

3.9

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 251

10: SUBD F1,F2,F3
I1: ADDD F4,F1,F2
12: MULTD F6,F4,F1
I3: DIWD FO,F2,F6

Figure 3.51 Sample code for superscalar register renaming.

Next available T register Rename table
21
~/ This 9 appears ™. 21{-.. 19
in the_rename 3 38 ==
table in next 477 29
clock cycle A
5
’ dst=F{ ==t | | 9™ dst=T9
srel=F2—— | e src1=T19
src2=F3 62 L~ src2=T38
(As perinstr 1) v N \
11 dst=12 src? t dst=T10
src1=T9

I dst=F4 J T
—— sre1=F1 I (Similar mux —— src2=T19

Src2=F2 for src2)

Figure 3.52 Rename table and on-the-fly register substitution logic for superscalar
machines. (Note that src is source, and dest is destination.)

interinstruction dependency would thereby be handled correctly. But there’s not
enough time to write that T register designation into the renaming table and then
look it up again for the second instruction, all in the same clock cycle. That regis-
ter substitution must instead be done live (in parallel with the register rename
table update). Figure 3.52 shows a circuit diagram, using multiplexers and com-
parators, that will accomplish the necessary on-the-fly register renaming. Your
task is to show the cycle-by-cycle state of the rename table for every instruction
of the code shown in Figure 3.51. Assume the table starts out with every entry
equal to its index (TO = 0; T1 = 1, ...).

[5] <3.4> If you ever get confused about what a register renamer has to do, go
back to the assembly code you’re executing, and ask yourself what has to happen

252

Chapter Three Instruction-Level Parallelism and Its Exploitation

3.10

3.11

for the right result to be obtained. For example, consider a three-way superscalar
machine renaming these three instructions concurrently:

ADDI R1, R1, R1
ADDI R1, RI1, R1
ADDI R1, RI1, Rl

If the value of R1 starts out as 5, what should its value be when this sequence has
executed?

[20] <3.4, 3.9> Very long instruction word (VLIW) designers have a few basic
choices to make regarding architectural rules for register use. Suppose a VLIW is
designed with self-draining execution pipelines: once an operation is initiated, its
results will appear in the destination register at most L cycles later (where L is the
latency of the operation). There are never enough registers, so there is a tempta-
tion to wring maximum use out of the registers that exist. Consider Figure 3.53.
If loads have a 1 + 2 cycle latency, unroll this loop once, and show how a VLIW
capable of two loads and two adds per cycle can use the minimum number of reg-
isters, in the absence of any pipeline interruptions or stalls. Give an example of
an event that, in the presence of self-draining pipelines, could disrupt this pipe-
lining and yield wrong results.

[10/10/10] <3.3> Assume a five-stage single-pipeline microarchitecture (fetch,
decode, execute, memory, write-back) and the code in Figure 3.54. All ops are
one cycle except LW and SW, which are 1 + 2 cycles, and branches, which are 1 + 1
cycles. There is no forwarding. Show the phases of each instruction per clock
cycle for one iteration of the loop.

a. [10] <3.3> How many clock cycles per loop iteration are lost to branch
overhead?

b. [10] <3.3> Assume a static branch predictor, capable of recognizing a back-
wards branch in the Decode stage. Now how many clock cycles are wasted
on branch overhead?

c. [10] <3.3> Assume a dynamic branch predictor. How many cycles are lost on
a correct prediction?

Loop: LW R4,0(R0O) ; ADDI R11,R3,#1
LW R5,8(R1) ; ADDI R20,R0, #1
<stall>
ADDI R10,R4,#1;

SW R7,0(R6) ; SW R9,8(R8)
ADDI R2,R2,#8

SUB R4,R3,R2

BNZ R4, Loop

Figure 3.53 Sample VLIW code with two adds, two loads, and two stalls.

3.12

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 253

Loop: LW R3,0(R0)
LW R1,0(R3)
ADDI R1,R1,#1
suB R4,R3,R2
SW R1,0(R3)
BNZ R4, Loop

Figure 3.54 Code loop for Exercise 3.11.

ALU 0

Instructions
from decoder

T . ALU 1

Reservation
station
2 ———
LD/ST Mem

Figure 3.55 An out-of-order microarchitecure.

[15/20/20/10/20] <3.4, 3.7, 3.14> Let’s consider what dynamic scheduling might
achieve here. Assume a microarchitecture as shown in Figure 3.55. Assume that
the arithmetic-logical units (ALUs) can do all arithmetic ops (MULTD, DIVD, ADDD,
ADDI, SUB) and branches, and that the Reservation Station (RS) can dispatch at
most one operation to each functional unit per cycle (one op to each ALU plus
one memory op to the LD/ST).

a. [15] <3.4> Suppose all of the instructions from the sequence in Figure 3.48
are present in the RS, with no renaming having been done. Highlight any
instructions in the code where register renaming would improve perfor-
mance. (Hint: Look for read-after-write and write-after-write hazards.
Assume the same functional unit latencies as in Figure 3.48.)

b. [20] <3.4> Suppose the register-renamed version of the code from part (a) is
resident in the RS in clock cycle N, with latencies as given in Figure 3.48.
Show how the RS should dispatch these instructions out of order, clock by
clock, to obtain optimal performance on this code. (Assume the same RS
restrictions as in part (a). Also assume that results must be written into the RS

254 Chapter Three Instruction-Level Parallelism and Its Exploitation

before they’re available for use—no bypassing.) How many clock cycles
does the code sequence take?

c. [20] <3.4> Part (b) lets the RS try to optimally schedule these instructions.
But in reality, the whole instruction sequence of interest is not usually present
in the RS. Instead, various events clear the RS, and as a new code sequence
streams in from the decoder, the RS must choose to dispatch what it has.
Suppose that the RS is empty. In cycle O, the first two register-renamed
instructions of this sequence appear in the RS. Assume it takes one clock
cycle to dispatch any op, and assume functional unit latencies are as they
were for Exercise 3.2. Further assume that the front end (decoder/register-
renamer) will continue to supply two new instructions per clock cycle. Show
the cycle-by-cycle order of dispatch of the RS. How many clock cycles does
this code sequence require now?

d. [10] <3.14> If you wanted to improve the results of part (c), which would
have helped most: (1) Another ALU? (2) Another LD/ST unit? (3) Full
bypassing of ALU results to subsequent operations? or (4) Cutting the longest
latency in half? What’s the speedup?

e. [20] <3.7> Now let’s consider speculation, the act of fetching, decoding, and
executing beyond one or more conditional branches. Our motivation to do
this is twofold: The dispatch schedule we came up with in part (c) had lots of
nops, and we know computers spend most of their time executing loops
(which implies the branch back to the top of the loop is pretty predictable).
Loops tell us where to find more work to do; our sparse dispatch schedule
suggests we have opportunities to do some of that work earlier than before. In
part (d) you found the critical path through the loop. Imagine folding a sec-
ond copy of that path onto the schedule you got in part (b). How many more
clock cycles would be required to do two loops’ worth of work (assuming all
instructions are resident in the RS)? (Assume all functional units are fully
pipelined.)

Exercises

3.13 [25] <3.13> In this exercise, you will explore performance trade-offs between
three processors that each employ different types of multithreading. Each of
these processors is superscalar, uses in-order pipelines, requires a fixed three-
cycle stall following all loads and branches, and has identical L1 caches. Instruc-
tions from the same thread issued in the same cycle are read in program order and
must not contain any data or control dependences.

m Processor A is a superscalar SMT architecture, capable of issuing up to two
instructions per cycle from two threads.

m Processor B is a fine MT architecture, capable of issuing up to four instruc-
tions per cycle from a single thread and switches threads on any pipeline stall.

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 255

m Processor C is a coarse MT architecture, capable of issuing up to eight
instructions per cycle from a single thread and switches threads on an L1
cache miss.

Our application is a list searcher, which scans a region of memory for a specific
value stored in R9 between the address range specified in R16 and R17. It is paral-
lelized by evenly dividing the search space into four equal-sized contiguous
blocks and assigning one search thread to each block (yielding four threads).
Most of each thread’s runtime is spent in the following unrolled loop body:

Toop: LD R1,0(R16)
LD R2,8(R16)
LD R3,16(R16)
LD R4,24(R16)
LD R5,32(R16)
LD R6,40(R16)
LD R7,48(R16)
LD R8,56(R16)
BEQAL R9,R1,match0
BEQAL R9,R2,matchl
BEQAL R9,R3,match?2
BEQAL R9,R4,match3
BEQAL R9,R5,match4
BEQAL R9,R6,matchb
BEQAL R9,R7,match6
BEQAL R9,R8,match7
DADDIU R16,R16,#64
BLT R16,R17,100p
Assume the following:
m A barrier is used to ensure that all threads begin simultaneously.
m The first L1 cache miss occurs after two iterations of the loop.
m None of the BEQAL branches is taken.
m The BLT is always taken.
m All three processors schedule threads in a round-robin fashion.

Determine how many cycles are required for each processor to complete the first
two iterations of the loop.

[25/25/25] <3.2, 3.7> In this exercise, we look at how software techniques
can extract instruction-level parallelism (ILP) in a common vector loop. The

256

Chapter Three Instruction-Level Parallelism and Its Exploitation

following loop is the so-called DAXPY loop (double-precision aX plus Y) and
is the central operation in Gaussian elimination. The following code imple-
ments the DAXPY operation, Y = aX + ¥, for a vector length 100. Initially, R1 is
set to the base address of array X and R2 is set to the base address of Y:

DADDIU R4,R1,#800 ; R1 = upper bound for X

foo: L.D F2,0(R1) ;s (F2) = X(i)
MUL.D F4,F2,FO ; (F4) = a*X(i)
L.D F6,0(R2) ; (F6) = Y(i)
ADD.D F6,F4,F6 s (F6) = a*X(i) + Y(i)

S.D F6,0(R2) 5 Y(i) = a*X(i) + Y(i)
DADDIU R1,R1,#8 ; increment X index
DADDIU R2,R2,#8 ; increment Y index
DSLTU R3,R1,R4 ; test: continue Toop?
BNEZ R3, foo ; loop if needed

Assume the functional unit latencies as shown in the table below. Assume a one-
cycle delayed branch that resolves in the ID stage. Assume that results are fully
bypassed.

Instruction producing

result Instruction using result Latency in clock cycles

FP multiply FP ALU op 6

FP add FP ALU op 4

FP multiply FP store 5

FP add FP store 4

Integer operations and all ~ Any 2

loads

a. [25] <3.2> Assume a single-issue pipeline. Show how the loop would look

both unscheduled by the compiler and after compiler scheduling for both
floating-point operation and branch delays, including any stalls or idle clock
cycles. What is the execution time (in cycles) per element of the result vector,
Y, unscheduled and scheduled? How much faster must the clock be for pro-
cessor hardware alone to match the performance improvement achieved by
the scheduling compiler? (Neglect any possible effects of increased clock
speed on memory system performance.)

[25] <3.2> Assume a single-issue pipeline. Unroll the loop as many times as
necessary to schedule it without any stalls, collapsing the loop overhead
instructions. How many times must the loop be unrolled? Show the instruc-
tion schedule. What is the execution time per element of the result?

3.15

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 257

[25] <3.7> Assume a VLIW processor with instructions that contain five
operations, as shown in Figure 3.16. We will compare two degrees of loop
unrolling. First, unroll the loop 6 times to extract ILP and schedule it without
any stalls (i.e., completely empty issue cycles), collapsing the loop overhead
instructions, and then repeat the process but unroll the loop 10 times. Ignore
the branch delay slot. Show the two schedules. What is the execution time per
element of the result vector for each schedule? What percent of the operation
slots are used in each schedule? How much does the size of the code differ
between the two schedules? What is the total register demand for the two
schedules?

[20/20] <3.4, 3.5, 3.7, 3.8> In this exercise, we will look at how variations on
Tomasulo’s algorithm perform when running the loop from Exercise 3.14. The
functional units (FUs) are described in the table below.

Number of reservation

FU Type Cycles in EX Number of FUs stations
Integer 1 1 5
FP adder 10 1 3
FP multiplier 15 1 2

Assume the following:

Functional units are not pipelined.

There is no forwarding between functional units; results are communicated
by the common data bus (CDB).

The execution stage (EX) does both the effective address calculation and the
memory access for loads and stores. Thus, the pipeline is IF/ID/IS/EX/WB.

Loads require one clock cycle.
The issue (IS) and write-back (WB) result stages each require one clock cycle.
There are five load buffer slots and five store buffer slots.

Assume that the Branch on Not Equal to Zero (BNEZ) instruction requires
one clock cycle.

[20] <3.4-3.5> For this problem use the single-issue Tomasulo MIPS pipe-
line of Figure 3.6 with the pipeline latencies from the table above. Show the
number of stall cycles for each instruction and what clock cycle each instruc-
tion begins execution (i.e., enters its first EX cycle) for three iterations of the
loop. How many cycles does each loop iteration take? Report your answer in
the form of a table with the following column headers:

m [teration (loop iteration number)
m Instruction
m Issues (cycle when instruction issues)

m Executes (cycle when instruction executes)

258

Chapter Three Instruction-Level Parallelism and Its Exploitation

3.16

3.17

m Memory access (cycle when memory is accessed)
m Write CDB (cycle when result is written to the CDB)
m Comment (description of any event on which the instruction is waiting)

Show three iterations of the loop in your table. You may ignore the first
instruction.

b. [20] <3.7, 3.8> Repeat part (a) but this time assume a two-issue Tomasulo
algorithm and a fully pipelined floating-point unit (FPU).

[10] <3.4> Tomasulo’s algorithm has a disadvantage: Only one result can com-
pute per clock per CDB. Use the hardware configuration and latencies from the
previous question and find a code sequence of no more than 10 instructions
where Tomasulo’s algorithm must stall due to CDB contention. Indicate where
this occurs in your sequence.

[20] <3.3> An (m,n) correlating branch predictor uses the behavior of the most
recent m executed branches to choose from 2 predictors, each of which is an n-
bit predictor. A two-level local predictor works in a similar fashion, but only
keeps track of the past behavior of each individual branch to predict future
behavior.

There is a design trade-off involved with such predictors: Correlating predictors
require little memory for history which allows them to maintain 2-bit predictors
for a large number of individual branches (reducing the probability of branch
instructions reusing the same predictor), while local predictors require substan-
tially more memory to keep history and are thus limited to tracking a relatively
small number of branch instructions. For this exercise, consider a (1,2) correlat-
ing predictor that can track four branches (requiring 16 bits) versus a (1,2) local
predictor that can track two branches using the same amount of memory. For the
following branch outcomes, provide each prediction, the table entry used to make
the prediction, any updates to the table as a result of the prediction, and the final
misprediction rate of each predictor. Assume that all branches up to this point
have been taken. Initialize each predictor to the following:

Correlating predictor

Entry Branch Last outcome Prediction

0 0 T T with one misprediction

1 0 NT NT

2 1 T NT

3 1 NT T

4 2 T T

5 2 NT T

6 3 T NT with one misprediction
7 3 NT NT

3.18

3.19

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 259

Local predictor

Entry Branch Last2 outcomes (right is most recent) Prediction

0 0 T,T T with one misprediction
1 0 TNT NT

2 0 NT, T NT

3 0 NT T

4 1 T,T T

5 1 TNT T with one misprediction
6 1 NT, T NT

7 1 NT,NT NT

Branch PC (word address) Outcome

454 T

543 NT

777 NT

543 NT

777 NT

454 T

777 NT

454 T

543 T

[10] <3.9> Suppose we have a deeply pipelined processor, for which we imple-
ment a branch-target buffer for the conditional branches only. Assume that the
misprediction penalty is always four cycles and the buffer miss penalty is always
three cycles. Assume a 90% hit rate, 90% accuracy, and 15% branch frequency.
How much faster is the processor with the branch-target buffer versus a processor
that has a fixed two-cycle branch penalty? Assume a base clock cycle per instruc-
tion (CPI) without branch stalls of one.

[10/5] <3.9> Consider a branch-target buffer that has penalties of zero, two, and
two clock cycles for correct conditional branch prediction, incorrect prediction,
and a buffer miss, respectively. Consider a branch-target buffer design that distin-
guishes conditional and unconditional branches, storing the target address for a
conditional branch and the target instruction for an unconditional branch.

a. [10] <3.9> What is the penalty in clock cycles when an unconditional branch
is found in the buffer?

b. [10] <3.9> Determine the improvement from branch folding for uncondi-
tional branches. Assume a 90% hit rate, an unconditional branch frequency of
5%, and a two-cycle penalty for a buffer miss. How much improvement is
gained by this enhancement? How high must the hit rate be for this enhance-
ment to provide a performance gain?

4.1
4.2
4.3
44
4.5
4.6
4.7

4.8
4.9
4.10

Introduction

Vector Architecture

SIMD Instruction Set Extensions for Multimedia
Graphics Processing Units

Detecting and Enhancing Loop-Level Parallelism
Crosscutting Issues

Putting It All Together: Mobile versus Server GPUs
and Tesla versus Core i7

Fallacies and Pitfalls

Concluding Remarks

Historical Perspective and References

Case Study and Exercises by Jason D. Bakos

262
264
282
288
315
322

323
330
332
334
334

Data-Level Parallelism in
Vector, SIMD, and GPU
Architectures

We call these algorithms data parallel algorithms because their parallelism
comes from simultaneous operations across large sets of data, rather than
from multiple threads of control.

W. Daniel Hillis and Guy L. Steele
“Data Parallel Algorithms,” Comm. ACM (1986)

If you were plowing a field, which would you rather use: two strong
oxen or 1024 chickens?
Seymour Cray, Father of the Supercomputer

(arguing for two powerful vector processors
versus many simple processors)

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00005-7
© 2012 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383872-8.00005-7

262

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.1

Introduction

A question for the single instruction, multiple data (SIMD) architecture, which
Chapter 1 introduced, has always been just how wide a set of applications has
significant data-level parallelism (DLP). Fifty years later, the answer is not only
the matrix-oriented computations of scientific computing, but also the media-
oriented image and sound processing. Moreover, since a single instruction can
launch many data operations, SIMD is potentially more energy efficient than
multiple instruction multiple data (MIMD), which needs to fetch and execute
one instruction per data operation. These two answers make SIMD attractive for
Personal Mobile Devices. Finally, perhaps the biggest advantage of SIMD ver-
sus MIMD is that the programmer continues to think sequentially yet achieves
parallel speedup by having parallel data operations.

This chapter covers three variations of SIMD: vector architectures, multime-
dia SIMD instruction set extensions, and graphics processing units (GPUs).!

The first variation, which predates the other two by more than 30 years,
means essentially pipelined execution of many data operations. These vector
architectures are easier to understand and to compile to than other SIMD varia-
tions, but they were considered too expensive for microprocessors until recently.
Part of that expense was in transistors and part was in the cost of sufficient
DRAM bandwidth, given the widespread reliance on caches to meet memory
performance demands on conventional microprocessors.

The second SIMD variation borrows the SIMD name to mean basically simul-
taneous parallel data operations and is found in most instruction set architectures
today that support multimedia applications. For x86 architectures, the SIMD
instruction extensions started with the MMX (Multimedia Extensions) in 1996,
which were followed by several SSE (Streaming SIMD Extensions) versions in
the next decade, and they continue to this day with AVX (Advanced Vector
Extensions). To get the highest computation rate from an x86 computer, you often
need to use these SIMD instructions, especially for floating-point programs.

The third variation on SIMD comes from the GPU community, offering
higher potential performance than is found in traditional multicore computers
today. While GPUs share features with vector architectures, they have their own
distinguishing characteristics, in part due to the ecosystem in which they evolved.
This environment has a system processor and system memory in addition to the
GPU and its graphics memory. In fact, to recognize those distinctions, the GPU
community refers to this type of architecture as heterogeneous.

! This chapter is based on material in Appendix F, “Vector Processors,” by Krste Asanovic, and Appendix G, “Hardware
and Software for VLIW and EPIC” from the 4th edition of this book; on material in Appendix A, “Graphics and Com-
puting GPUs,” by John Nickolls and David Kirk, from the 4th edition of Computer Organization and Design; and to a
lesser extent on material in “Embracing and Extending 20th-Century Instruction Set Architectures,” by Joe Gebis and
David Patterson, IEEE Computer, April 2007.

4.1 Introduction 263

1000

MIMD*SIMD (32b)
—¢ MIMD*SIMD (64b)
SIMD (32b)
—o SIMD (64b)
-= MIMD
100k

Potential parallel speedup

1 1 1 1 1

2003 2007 2011 2015 2019 2023

Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and
SIMD over time for x86 computers. This figure assumes that two cores per chip for
MIMD will be added every two years and the number of operations for SIMD will double
every four years.

For problems with lots of data parallelism, all three SIMD variations share
the advantage of being easier for the programmer than classic parallel MIMD
programming. To put into perspective the importance of SIMD versus MIMD,
Figure 4.1 plots the number of cores for MIMD versus the number of 32-bit and
64-bit operations per clock cycle in SIMD mode for x86 computers over time.

For x86 computers, we expect to see two additional cores per chip every two
years and the SIMD width to double every four years. Given these assumptions,
over the next decade the potential speedup from SIMD parallelism is twice that of
MIMD parallelism. Hence, it’s as least as important to understand SIMD parallel-
ism as MIMD parallelism, although the latter has received much more fanfare
recently. For applications with both data-level parallelism and thread-level parallel-
ism, the potential speedup in 2020 will be an order of magnitude higher than today.

The goal of this chapter is for architects to understand why vector is more
general than multimedia SIMD, as well as the similarities and differences
between vector and GPU architectures. Since vector architectures are supersets
of the multimedia SIMD instructions, including a better model for compilation,
and since GPUs share several similarities with vector architectures, we start with

264

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.2

vector architectures to set the foundation for the following two sections. The next
section introduces vector architectures, while Appendix G goes much deeper into
the subject.

Vector Architecture

The most efficient way to execute a vectorizable application is a vector
processor.

Jim Smith

International Symposium on Computer Architecture (1994)

Vector architectures grab sets of data elements scattered about memory, place
them into large, sequential register files, operate on data in those register files,
and then disperse the results back into memory. A single instruction operates on
vectors of data, which results in dozens of register—register operations on inde-
pendent data elements.

These large register files act as compiler-controlled buffers, both to hide
memory latency and to leverage memory bandwidth. Since vector loads and
stores are deeply pipelined, the program pays the long memory latency only once
per vector load or store versus once per element, thus amortizing the latency
over, say, 64 elements. Indeed, vector programs strive to keep memory busy.

VMIPS

We begin with a vector processor consisting of the primary components that
Figure 4.2 shows. This processor, which is loosely based on the Cray-1, is the
foundation for discussion throughout this section. We will call this instruction
set architecture VMIPS; its scalar portion is MIPS, and its vector portion is the
logical vector extension of MIPS. The rest of this subsection examines how the
basic architecture of VMIPS relates to other processors.

The primary components of the instruction set architecture of VMIPS are the
following:

m Vector registers—Each vector register is a fixed-length bank holding a single
vector. VMIPS has eight vector registers, and each vector register holds 64 ele-
ments, each 64 bits wide. The vector register file needs to provide enough ports
to feed all the vector functional units. These ports will allow a high degree of
overlap among vector operations to different vector registers. The read and
write ports, which total at least 16 read ports and 8 write ports, are connected to
the functional unit inputs or outputs by a pair of crossbar switches.

m Vector functional units—Each unit is fully pipelined, and it can start a new
operation on every clock cycle. A control unit is needed to detect hazards,
both structural hazards for functional units and data hazards on register
accesses. Figure 4.2 shows that VMIPS has five functional units. For sim-
plicity, we focus exclusively on the floating-point functional units.

4.2 Vector Architecture 265

Vector FP add/subtract
load/store
FP multiply .—>
FP divide .—>
I N
Vector > |
registers — itegey
>
Logical .—>
Scalar
registers

Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a
scalar architecture just like MIPS. There are also eight 64-element vector registers, and
all the functional units are vector functional units. This chapter defines special vector
instructions for both arithmetic and memory accesses. The figure shows vector units for
logical and integer operations so that VMIPS looks like a standard vector processor that
usually includes these units; however, we will not be discussing these units. The vector
and scalar registers have a significant number of read and write ports to allow multiple
simultaneous vector operations. A set of crossbar switches (thick gray lines) connects
these ports to the inputs and outputs of the vector functional units.

m Vector load/store unit—The vector memory unit loads or stores a vector to or
from memory. The VMIPS vector loads and stores are fully pipelined, so that
words can be moved between the vector registers and memory with a band-
width of one word per clock cycle, after an initial latency. This unit would
also normally handle scalar loads and stores.

m A set of scalar registers—Scalar registers can also provide data as input to
the vector functional units, as well as compute addresses to pass to the vector
load/store unit. These are the normal 32 general-purpose registers and 32
floating-point registers of MIPS. One input of the vector functional units
latches scalar values as they are read out of the scalar register file.

266

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Instruction Operands Function

ADDVV.D V1,v2,V3 Add elements of V2 and V3, then put each result in V1.

ADDVS.D V1,V2,F0 Add FO to each element of V2, then put each result in V1.

SUBVV.D V1,v2,V3 Subtract elements of V3 from V2, then put each result in V1.

SUBVS.D V1,v2,FO0 Subtract FO from elements of V2, then put each result in V1.

SUBSV.D V1,F0,V2 Subtract elements of V2 from FO, then put each result in V1.

MULVV.D V1,v2,V3 Multiply elements of V2 and V3, then put each result in V1.

MULVS.D V1,v2,FO0 Multiply each element of V2 by FO, then put each result in V1.

DIVVV.D vVi,v2,V3 Divide elements of V2 by V3, then put each result in V1.

DIVVS.D V1,V2,F0 Divide elements of V2 by FO, then put each result in V1.

DIVSV.D V1,F0,V2 Divide FO by elements of V2, then put each result in V1.

LV V1,R1 Load vector register V1 from memory starting at address R1.

SV R1,V1 Store vector register V1 into memory starting at address R1.

LVWS V1, (R1,R2) Load V1 from address at R1 with stride in R2 (i.e., R1 + i x R2).

SVWS (R1,R2),V1 Store V1 to address at R1 with stride in R2 (i.e., R1 + i x R2).

LVI V1, (R1+V2) Load V1 with vector whose elements are at R1 + V2(i) (i.e., V2 is an index).

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1 + V2 (1) (i.e., V2 is an index).

CVI VI1,R1 Create an index vector by storing the values 0, 1 xR1, 2xR1,...,63 xRl into V1.

S--VV.D V1,V2 Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put a

S--VS.D V1,FO 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction S--VS.D performs the same compare but using a
scalar value as one operand.

POP R1,VM Count the 1s in vector-mask register VM and store count in R1.

CVM Set the vector-mask register to all 1s.

MTC1 VLR,R1 Move contents of R1 to vector-length register VL.

MFC1 R1,VLR Move the contents of vector-length register VL to R1.

MVTM VM, FO Move contents of FO to vector-mask register VM.

MVEM FO,VM Move contents of vector-mask register VM to FO.

Figure 4.3 The VMIPS vector instructions, showing only the double-precision floating-point operations. In
addition to the vector registers, there are two special registers, VLR and VM, discussed below. These special registers
are assumed to live in the MIPS coprocessor 1 space along with the FPU registers. The operations with stride and
uses of the index creation and indexed load/store operations are explained later.

Figure 4.3 lists the VMIPS vector instructions. In VMIPS, vector operations
use the same names as scalar MIPS instructions, but with the letters “VV”
appended. Thus, ADDVV.D is an addition of two double-precision vectors. The
vector instructions take as their input either a pair of vector registers (ADDVV.D)
or a vector register and a scalar register, designated by appending “VS”
(ADDVS.D). In the latter case, all operations use the same value in the scalar regis-
ter as one input: The operation ADDVS.D will add the contents of a scalar register
to each element in a vector register. The vector functional unit gets a copy of the
scalar value at issue time. Most vector operations have a vector destination regis-
ter, although a few (such as population count) produce a scalar value, which is
stored to a scalar register.

4.2 Vector Architecture 267

The names LV and SV denote vector load and vector store, and they load or
store an entire vector of double-precision data. One operand is the vector reg-
ister to be loaded or stored; the other operand, which is a MIPS general-purpose
register, is the starting address of the vector in memory. As we shall see, in addi-
tion to the vector registers, we need two additional special-purpose registers: the
vector-length and vector-mask registers. The former is used when the natural
vector length is not 64 and the latter is used when loops involve IF statements.

The power wall leads architects to value architectures that can deliver high
performance without the energy and design complexity costs of highly out-
of-order superscalar processors. Vector instructions are a natural match to this
trend, since architects can use them to increase performance of simple in-order
scalar processors without greatly increasing energy demands and design com-
plexity. In practice, developers can express many of the programs that ran well
on complex out-of-order designs more efficiently as data-level parallelism in the
form of vector instructions, as Kozyrakis and Patterson [2002] showed.

With a vector instruction, the system can perform the operations on the vector
data elements in many ways, including operating on many elements simultane-
ously. This flexibility lets vector designs use slow but wide execution units to
achieve high performance at low power. Further, the independence of elements
within a vector instruction set allows scaling of functional units without perform-
ing additional costly dependency checks, as superscalar processors require.

Vectors naturally accommodate varying data sizes. Hence, one view of a
vector register size is 64 64-bit data elements, but 128 32-bit elements, 256 16-bit
elements, and even 512 8-bit elements are equally valid views. Such hardware
multiplicity is why a vector architecture can be useful for multimedia applica-
tions as well as scientific applications.

How Vector Processors Work: An Example

We can best understand a vector processor by looking at a vector loop for VMIPS.
Let’s take a typical vector problem, which we use throughout this section:

Y=ax X+Y

X and Y are vectors, initially resident in memory, and a is a scalar. This problem
is the so-called SAXPY or DAXPY loop that forms the inner loop of the Linpack
benchmark. (SAXPY stands for single-precision a X X plus Y; DAXPY for dou-
ble precision a X X plus Y.) Linpack is a collection of linear algebra routines, and
the Linpack benchmark consists of routines for performing Gaussian elimination.

For now, let us assume that the number of elements, or length, of a vector
register (64) matches the length of the vector operation we are interested in. (This
restriction will be lifted shortly.)

Example

Answer

Show the code for MIPS and VMIPS for the DAXPY loop. Assume that the start-
ing addresses of X and Y are in Rx and Ry, respectively.

Here is the MIPS code.

268 Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

L.D FO,a ;1oad scalar a

DADDIU R4,Rx,#512 ;last address to load
Loop: L.D F2,0(Rx) ;Toad X[1]

MUL.D F2,F2,F0 sa x X[1]

L.D F4,0(Ry) ;Toad Y[1]

ADD.D F4,F4,F2 sa x X[i] + Y[i]

S.D F4,9(Ry) ;store into Y[i]

DADDIU Rx,Rx,#8 sincrement index to X

DADDIU Ry,Ry,#8 sincrement index to Y

DSUBU R20,R4,Rx scompute bound

BNEZ R20,Loop scheck if done

Here is the VMIPS code for DAXPY.

L.D FO,a ;load scalar a

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y

ADDVV.D va,vz2,v3 ;add

SV V4 ,Ry ;store the result

The most dramatic difference is that the vector processor greatly reduces the
dynamic instruction bandwidth, executing only 6 instructions versus almost
600 for MIPS. This reduction occurs because the vector operations work on 64
elements and the overhead instructions that constitute nearly half the loop on
MIPS are not present in the VMIPS code. When the compiler produces vector
instructions for such a sequence and the resulting code spends much of its time
running in vector mode, the code is said to be vectorized or vectorizable. Loops
can be vectorized when they do not have dependences between iterations of a
loop, which are called loop-carried dependences (see Section 4.5).

Another important difference between MIPS and VMIPS is the frequency of
pipeline interlocks. In the straightforward MIPS code, every ADD.D must wait for
aMUL.D, and every S.D must wait for the ADD.D. On the vector processor, each
vector instruction will only stall for the first element in each vector, and then sub-
sequent elements will flow smoothly down the pipeline. Thus, pipeline stalls are
required only once per vector instruction, rather than once per vector element.
Vector architects call forwarding of element-dependent operations chaining, in
that the dependent operations are ‘“chained” together. In this example, the
pipeline stall frequency on MIPS will be about 64x higher than it is on VMIPS.
Software pipelining or loop unrolling (Appendix H) can reduce the pipeline stalls
on MIPS; however, the large difference in instruction bandwidth cannot be
reduced substantially.

Vector Execution Time

The execution time of a sequence of vector operations primarily depends on three
factors: (1) the length of the operand vectors, (2) structural hazards among the

4.2 Vector Architecture 269

operations, and (3) the data dependences. Given the vector length and the initia-
tion rate, which is the rate at which a vector unit consumes new operands and
produces new results, we can compute the time for a single vector instruction. All
modern vector computers have vector functional units with multiple parallel
pipelines (or lanes) that can produce two or more results per clock cycle, but they
may also have some functional units that are not fully pipelined. For simplicity,
our VMIPS implementation has one lane with an initiation rate of one element
per clock cycle for individual operations. Thus, the execution time in clock
cycles for a single vector instruction is approximately the vector length.

To simplify the discussion of vector execution and vector performance, we
use the notion of a convoy, which is the set of vector instructions that could
potentially execute together. As we shall soon see, you can estimate performance
of a section of code by counting the number of convoys. The instructions in a
convoy must not contain any structural hazards; if such hazards were present, the
instructions would need to be serialized and initiated in different convoys. To
keep the analysis simple, we assume that a convoy of instructions must complete
execution before any other instructions (scalar or vector) can begin execution.

It might seem that in addition to vector instruction sequences with structural
hazards, sequences with read-after-write dependency hazards should also be in
separate convoys, but chaining allows them to be in the same convoy.

Chaining allows a vector operation to start as soon as the individual elements
of its vector source operand become available: The results from the first func-
tional unit in the chain are “forwarded” to the second functional unit. In practice,
we often implement chaining by allowing the processor to read and write a par-
ticular vector register at the same time, albeit to different elements. Early imple-
mentations of chaining worked just like forwarding in scalar pipelining, but this
restricted the timing of the source and destination instructions in the chain.
Recent implementations use flexible chaining, which allows a vector instruction
to chain to essentially any other active vector instruction, assuming that we don’t
generate a structural hazard. All modern vector architectures support flexible
chaining, which we assume in this chapter.

To turn convoys into execution time we need a timing metric to estimate the
time for a convoy. It is called a chime, which is simply the unit of time taken to
execute one convoy. Thus, a vector sequence that consists of m convoys executes
in m chimes; for a vector length of n, for VMIPS this is approximately m X n
clock cycles. The chime approximation ignores some processor-specific over-
heads, many of which are dependent on vector length. Hence, measuring time in
chimes is a better approximation for long vectors than for short ones. We will use
the chime measurement, rather than clock cycles per result, to indicate explicitly
that we are ignoring certain overheads.

If we know the number of convoys in a vector sequence, we know the execu-
tion time in chimes. One source of overhead ignored in measuring chimes is any
limitation on initiating multiple vector instructions in a single clock cycle. If only
one vector instruction can be initiated in a clock cycle (the reality in most vector
processors), the chime count will underestimate the actual execution time of a

270

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

convoy. Because the length of vectors is typically much greater than the number
of instructions in the convoy, we will simply assume that the convoy executes in
one chime.

Example

Answer

Show how the following code sequence lays out in convoys, assuming a single
copy of each vector functional unit:

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y

ADDVV.D va,vz2,v3 ;add two vectors

N V4 ,Ry ;store the sum

How many chimes will this vector sequence take? How many cycles per FLOP
(floating-point operation) are needed, ignoring vector instruction issue overhead?

The first convoy starts with the first LV instruction. The MULVS.D is dependent on
the first LV, but chaining allows it to be in the same convoy.

The second LV instruction must be in a separate convoy since there is a struc-
tural hazard on the load/store unit for the prior LV instruction. The ADDVV.D is
dependent on the second LV, but it can again be in the same convoy via chaining.
Finally, the SV has a structural hazard on the LV in the second convoy, so it must
go in the third convoy. This analysis leads to the following layout of vector
instructions into convoys:

1. LV MULVS.D
2. LV ADDVV.D
3. SV

The sequence requires three convoys. Since the sequence takes three chimes and
there are two floating-point operations per result, the number of cycles per FLOP
is 1.5 (ignoring any vector instruction issue overhead). Note that, although we
allow the LV and MULVS.D both to execute in the first convoy, most vector
machines will take two clock cycles to initiate the instructions.

This example shows that the chime approximation is reasonably accurate for
long vectors. For example, for 64-element vectors, the time in chimes is 3, so the
sequence would take about 64 x 3 or 192 clock cycles. The overhead of issuing
convoys in two separate clock cycles would be small.

Another source of overhead is far more significant than the issue limitation.
The most important source of overhead ignored by the chime model is vector
start-up time. The start-up time is principally determined by the pipelining
latency of the vector functional unit. For VMIPS, we will use the same pipeline
depths as the Cray-1, although latencies in more modern processors have tended
to increase, especially for vector loads. All functional units are fully pipelined.

4.2 Vector Architecture 271

The pipeline depths are 6 clock cycles for floating-point add, 7 for floating-point
multiply, 20 for floating-point divide, and 12 for vector load.

Given these vector basics, the next several subsections will give optimiza-
tions that either improve the performance or increase the types of programs that
can run well on vector architectures. In particular, they will answer the questions:

m How can a vector processor execute a single vector faster than one element
per clock cycle? Multiple elements per clock cycle improve performance.

m How does a vector processor handle programs where the vector lengths are
not the same as the length of the vector register (64 for VMIPS)? Since most
application vectors don’t match the architecture vector length, we need an
efficient solution to this common case.

m What happens when there is an IF statement inside the code to be vectorized?
More code can vectorize if we can efficiently handle conditional statements.

m What does a vector processor need from the memory system? Without suffi-
cient memory bandwidth, vector execution can be futile.

m How does a vector processor handle multiple dimensional matrices? This
popular data structure must vectorize for vector architectures to do well.

m How does a vector processor handle sparse matrices? This popular data struc-
ture must vectorize also.

m How do you program a vector computer? Architectural innovations that are a
mismatch to compiler technology may not get widespread use.

The rest of this section introduces each of these optimizations of the vector archi-
tecture, and Appendix G goes into greater depth.

Multiple Lanes: Beyond One Element per Clock Cycle

A critical advantage of a vector instruction set is that it allows software to pass a
large amount of parallel work to hardware using only a single short instruction.
A single vector instruction can include scores of independent operations yet be
encoded in the same number of bits as a conventional scalar instruction. The par-
allel semantics of a vector instruction allow an implementation to execute these
elemental operations using a deeply pipelined functional unit, as in the VMIPS
implementation we’ve studied so far; an array of parallel functional units; or a
combination of parallel and pipelined functional units. Figure 4.4 illustrates how
to improve vector performance by using parallel pipelines to execute a vector add
instruction.

The VMIPS instruction set has the property that all vector arithmetic instruc-
tions only allow element N of one vector register to take part in operations with
element N from other vector registers. This dramatically simplifies the construc-
tion of a highly parallel vector unit, which can be structured as multiple parallel
lanes. As with a traffic highway, we can increase the peak throughput of a vector
unit by adding more lanes. Figure 4.5 shows the structure of a four-lane vector

272 Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

A[91| |B[9]
A[81| [BI8]
aA[710 |BI7]
A[6]| |BI6]
A[51| |BIS]
A[4]| |BI4]
A[31| |BI3]
A[21| [B21]
aA[1]|l [BL1]

C[o]

(@)

aArs1| [Br81| [A[91] |[B[9]

A[4] B[4]| |A[5] B[5]| |A[6] B[6]| [A[7] B[7]

I 1
; lctor Cr1] cr2] cr31|
\ 4
o m mm mm pm mm Em e Em mm e Em Em Em Em Em Em Em Em -
Elemeht group

Figure 4.4 Using multiple functional units to improve the performance of a single vector add instruction,
C=A +B. The vector processor (a) on the left has a single add pipeline and can complete one addition per cycle. The
vector processor (b) on the right has four add pipelines and can complete four additions per cycle. The elements
within a single vector add instruction are interleaved across the four pipelines. The set of elements that move
through the pipelines together is termed an element group. (Reproduced with permission from Asanovic [1998].)

unit. Thus, going to four lanes from one lane reduces the number of clocks for a
chime from 64 to 16. For multiple lanes to be advantageous, both the applications
and the architecture must support long vectors; otherwise, they will execute so
quickly that you’ll run out of instruction bandwidth, requiring ILP techniques
(see Chapter 3) to supply enough vector instructions.

Each lane contains one portion of the vector register file and one execution
pipeline from each vector functional unit. Each vector functional unit executes
vector instructions at the rate of one element group per cycle using multiple pipe-
lines, one per lane. The first lane holds the first element (element 0) for all vector
registers, and so the first element in any vector instruction will have its source

4.2 Vector Architecture

273

Lane 0 Lane 1 Lane 2 Lane 3
4 N\
FP add FP add FP add FP add
pipe O pipe 1 pipe 2 pipe 3
Vector Vector Vector Vector
registers: registers: registers: registers:
elements elements elements elements
0,4,8,... 1,59, ... 2,6,10,... 3,7,11,...
FP mul. FP mul. FP mul. FP mul.
pipe 0 pipe 1 pipe 2 pipe 3
A N N AN J
Vector load-store unit

Figure 4.5 Structure of a vector unit containing four lanes. The vector register stor-
age is divided across the lanes, with each lane holding every fourth element of each
vector register. The figure shows three vector functional units: an FP add, an FP multi-
ply, and a load-store unit. Each of the vector arithmetic units contains four execution
pipelines, one per lane, which act in concert to complete a single vector instruction.
Note how each section of the vector register file only needs to provide enough ports
for pipelines local to its lane. This figure does not show the path to provide the scalar
operand for vector-scalar instructions, but the scalar processor (or control processor)
broadcasts a scalar value to all lanes.

and destination operands located in the first lane. This allocation allows the arith-
metic pipeline local to the lane to complete the operation without communicating
with other lanes. Accessing main memory also requires only intralane wiring.
Avoiding interlane communication reduces the wiring cost and register file ports
required to build a highly parallel execution unit, and helps explain why vector
computers can complete up to 64 operations per clock cycle (2 arithmetic units
and 2 load/store units across 16 lanes).

Adding multiple lanes is a popular technique to improve vector performance
as it requires little increase in control complexity and does not require changes to
existing machine code. It also allows designers to trade off die area, clock rate,
voltage, and energy without sacrificing peak performance. If the clock rate of a
vector processor is halved, doubling the number of lanes will retain the same
potential performance.

274

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Vector-Length Registers: Handling Loops Not Equal to 64

A vector register processor has a natural vector length determined by the number
of elements in each vector register. This length, which is 64 for VMIPS, is
unlikely to match the real vector length in a program. Moreover, in a real program
the length of a particular vector operation is often unknown at compile time. In
fact, a single piece of code may require different vector lengths. For example, con-
sider this code:

for (i=0; i <n; i=i+1)
Y[l = a = X[i] + Y[il;

The size of all the vector operations depends on n, which may not even be known
until run time! The value of n might also be a parameter to a procedure contain-
ing the above loop and therefore subject to change during execution.

The solution to these problems is to create a vector-length register (VLR).
The VLR controls the length of any vector operation, including a vector load or
store. The value in the VLR, however, cannot be greater than the length of the
vector registers. This solves our problem as long as the real length is less than or
equal to the maximum vector length (MVL). The MVL determines the number of
data elements in a vector of an architecture. This parameter means the length of
vector registers can grow in later computer generations without changing the
instruction set; as we shall see in the next section, multimedia SIMD extensions
have no equivalent of MVL, so they change the instruction set every time they
increase their vector length.

What if the value of n is not known at compile time and thus may be greater
than the MVL? To tackle the second problem where the vector is longer than the
maximum length, a technique called strip mining is used. Strip mining is the gen-
eration of code such that each vector operation is done for a size less than or
equal to the MVL. We create one loop that handles any number of iterations that
is a multiple of the MVL and another loop that handles any remaining iterations
and must be less than the MVL. In practice, compilers usually create a single
strip-mined loop that is parameterized to handle both portions by changing the
length. We show the strip-mined version of the DAXPY loop in C:

Tow = 03
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/
for (i = Tow; i < (low+VL); i=i+1) /*runs for length VL*/
Y[i] = a = X[i] + Y[i] ; /*main operation*/
Tow = Tow + VL; /*start of next vector*/
VL = MVL; /*reset the length to maximum vector length*/
}

The term n/MVL represents truncating integer division. The effect of this loop is
to block the vector into segments that are then processed by the inner loop. The

4.2 Vector Architecture 275

Value of j 0 1 2 3 . . n/MVL

Range of i 0 m (m+MVL) (m+2xMVL) (n-MVL)

(m-1) (m-1) (m=1) (m-1) (n-1)
FMVL +2xMVL +3xMVL

Figure 4.6 A vector of arbitrary length processed with strip mining. All blocks but
the first are of length MVL, utilizing the full power of the vector processor. In this figure,
we use the variable m for the expression (n % MVL). (The C operator % is modul0.)

length of the first segment is (n % MVL), and all subsequent segments are of
length MVL. Figure 4.6 shows how to split the long vector into segments.

The inner loop of the preceding code is vectorizable with length VL, which is
equal to either (n % MVL) or MVL. The VLR register must be set twice in the
code, once at each place where the variable VL in the code is assigned.

Vector Mask Registers: Handling IF Statements in Vector Loops

From Amdahl’s law, we know that the speedup on programs with low to moder-
ate levels of vectorization will be very limited. The presence of conditionals (IF
statements) inside loops and the use of sparse matrices are two main reasons for
lower levels of vectorization. Programs that contain IF statements in loops cannot
be run in vector mode using the techniques we have discussed so far because the
IF statements introduce control dependences into a loop. Likewise, we cannot
implement sparse matrices efficiently using any of the capabilities we have seen
so far. We discuss strategies for dealing with conditional execution here, leaving
the discussion of sparse matrices for later.
Consider the following loop written in C:

for (i = 0; i < 64; i=i+1)
if (X[i] = 0)
X[l = x[il - Y[il;
This loop cannot normally be vectorized because of the conditional execution of
the body; however, if the inner loop could be run for the iterations for which
X[i] # 0, then the subtraction could be vectorized.

The common extension for this capability is vector-mask control. Mask regis-
ters essentially provide conditional execution of each element operation in a vec-
tor instruction. The vector-mask control uses a Boolean vector to control the
execution of a vector instruction, just as conditionally executed instructions use a
Boolean condition to determine whether to execute a scalar instruction. When the
vector-mask register is enabled, any vector instructions executed operate only on

276

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

the vector elements whose corresponding entries in the vector-mask register are
one. The entries in the destination vector register that correspond to a zero in the
mask register are unaffected by the vector operation. Clearing the vector-mask
register sets it to all ones, making subsequent vector instructions operate on all
vector elements. We can now use the following code for the previous loop,
assuming that the starting addresses of X and Y are in Rx and Ry, respectively:

LV V1,Rx ;1oad vector X into V1

LV V2,Ry ;load vector Y

L.D FO,#0 ;1oad FP zero into FO
SNEVS.D V1,FO ;sets VM(i) to 1 if V1(i):=FO
SUBVV.D Vi,v1,v2 ssubtract under vector mask
SV V1,Rx ;store the result in X

Compiler writers call the transformation to change an IF statement to a straight-
line code sequence using conditional execution if conversion.

Using a vector-mask register does have overhead, however. With scalar archi-
tectures, conditionally executed instructions still require execution time when the
condition is not satisfied. Nonetheless, the elimination of a branch and the associ-
ated control dependences can make a conditional instruction faster even if it some-
times does useless work. Similarly, vector instructions executed with a vector mask
still take the same execution time, even for the elements where the mask is zero.
Likewise, even with a significant number of zeros in the mask, using vector-mask
control may still be significantly faster than using scalar mode.

As we shall see in Section 4.4, one difference between vector processors and
GPUs is the way they handle conditional statements. Vector processors make the
mask registers part of the architectural state and rely on compilers to manipulate
mask registers explicitly. In contrast, GPUs get the same effect using hardware to
manipulate internal mask registers that are invisible to GPU software. In both
cases, the hardware spends the time to execute a vector element whether the
mask is zero or one, so the GFLOPS rate drops when masks are used.

Memory Banks: Supplying Bandwidth for
Vector Load/Store Units

The behavior of the load/store vector unit is significantly more complicated than
that of the arithmetic functional units. The start-up time for a load is the time to
get the first word from memory into a register. If the rest of the vector can be sup-
plied without stalling, then the vector initiation rate is equal to the rate at which
new words are fetched or stored. Unlike simpler functional units, the initiation
rate may not necessarily be one clock cycle because memory bank stalls can
reduce effective throughput.

Typically, penalties for start-ups on load/store units are higher than those for
arithmetic units—over 100 clock cycles on many processors. For VMIPS we
assume a start-up time of 12 clock cycles, the same as the Cray-1. (More recent
vector computers use caches to bring down latency of vector loads and stores.)

4.2 Vector Architecture 277

To maintain an initiation rate of one word fetched or stored per clock, the
memory system must be capable of producing or accepting this much data.
Spreading accesses across multiple independent memory banks usually
delivers the desired rate. As we will soon see, having significant numbers of
banks is useful for dealing with vector loads or stores that access rows or
columns of data.

Most vector processors use memory banks, which allow multiple indepen-
dent accesses rather than simple memory interleaving for three reasons:

1. Many vector computers support multiple loads or stores per clock, and the
memory bank cycle time is usually several times larger than the processor
cycle time. To support simultaneous accesses from multiple loads or stores,
the memory system needs multiple banks and to be able to control the
addresses to the banks independently.

2. Most vector processors support the ability to load or store data words that are
not sequential. In such cases, independent bank addressing, rather than inter-
leaving, is required.

3. Most vector computers support multiple processors sharing the same memory
system, so each processor will be generating its own independent stream of
addresses.

In combination, these features lead to a large number of independent memory
banks, as the following example shows.

Example

Answer

The largest configuration of a Cray T90 (Cray T932) has 32 processors, each
capable of generating 4 loads and 2 stores per clock cycle. The processor clock
cycle is 2.167 ns, while the cycle time of the SRAMs used in the memory system
is 15 ns. Calculate the minimum number of memory banks required to allow all
processors to run at full memory bandwidth.

The maximum number of memory references each cycle is 192: 32 processors
times 6 references per processor. Each SRAM bank is busy for 15/2.167 = 6.92
clock cycles, which we round up to 7 processor clock cycles. Therefore, we
require a minimum of 192 x 7 = 1344 memory banks!

The Cray T932 actually has 1024 memory banks, so the early models could not
sustain full bandwidth to all processors simultaneously. A subsequent memory
upgrade replaced the 15 ns asynchronous SRAMs with pipelined synchronous
SRAMs that more than halved the memory cycle time, thereby providing suffi-
cient bandwidth.

Taking a higher level perspective, vector load/store units play a similar role
to prefetch units in scalar processors in that both try to deliver data bandwidth by
supplying processors with streams of data.

278 Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Stride: Handling Multidimensional Arrays in Vector
Architectures

The position in memory of adjacent elements in a vector may not be sequential.
Consider this straightforward code for matrix multiply in C:

for (i = 0; 1 < 100; i=i+1)
for (§ = 0; j <1005 j=j+1) {
A[i1[3] = 0.0;
for (k = 0; k < 1005 k=k+1)
} A[iT03] = A[iT[3] + BLiJ[k] = D[k][d];

We could vectorize the multiplication of each row of B with each column of D
and strip-mine the inner loop with k as the index variable.

To do so, we must consider how to address adjacent elements in B and adja-
cent elements in D. When an array is allocated memory, it is linearized and must
be laid out in either row-major (as in C) or column-major (as in Fortran) order.
This linearization means that either the elements in the row or the elements in the
column are not adjacent in memory. For example, the C code above allocates in
row-major order, so the elements of D that are accessed by iterations in the inner
loop are separated by the row size times 8 (the number of bytes per entry) for a
total of 800 bytes. In Chapter 2, we saw that blocking could improve locality in
cache-based systems. For vector processors without caches, we need another
technique to fetch elements of a vector that are not adjacent in memory.

This distance separating elements to be gathered into a single register is called
the stride. In this example, matrix D has a stride of 100 double words (800 bytes),
and matrix B would have a stride of 1 double word (8 bytes). For column-major
order, which is used by Fortran, the strides would be reversed. Matrix D would
have a stride of 1, or 1 double word (8 bytes), separating successive elements,
while matrix B would have a stride of 100, or 100 double words (800 bytes). Thus,
without reordering the loops, the compiler can’t hide the long distances between
successive elements for both B and D.

Once a vector is loaded into a vector register, it acts as if it had logically
adjacent elements. Thus, a vector processor can handle strides greater than one,
called non-unit strides, using only vector load and vector store operations with
stride capability. This ability to access nonsequential memory locations and to
reshape them into a dense structure is one of the major advantages of a vector
processor. Caches inherently deal with unit stride data; increasing block size
can help reduce miss rates for large scientific datasets with unit stride, but
increasing block size can even have a negative effect for data that are accessed
with non-unit strides. While blocking techniques can solve some of these prob-
lems (see Chapter 2), the ability to access data efficiently that is not contiguous
remains an advantage for vector processors on certain problems, as we shall see
in Section 4.7.

On VMIPS, where the addressable unit is a byte, the stride for our example
would be 800. The value must be computed dynamically, since the size of the

4.2 Vector Architecture 279

matrix may not be known at compile time or—just like vector length—may change
for different executions of the same statement. The vector stride, like the vector
starting address, can be put in a general-purpose register. Then the VMIPS instruc-
tion LVWS (load vector with stride) fetches the vector into a vector register. Like-
wise, when storing a non-unit stride vector, use the instruction SVWS (store vector
with stride).

Supporting strides greater than one complicates the memory system. Once we
introduce non-unit strides, it becomes possible to request accesses from the same
bank frequently. When multiple accesses contend for a bank, a memory bank
conflict occurs, thereby stalling one access. A bank conflict and, hence, a stall
will occur if

Number of banks

< Bank busy ti
Least common multiple (Stride, Number of banks) anik busy time

Example

Answer

Suppose we have 8 memory banks with a bank busy time of 6 clocks and a total
memory latency of 12 cycles. How long will it take to complete a 64-element
vector load with a stride of 1? With a stride of 327

Since the number of banks is larger than the bank busy time, for a stride of 1 the
load will take 12 + 64 = 76 clock cycles, or 1.2 clock cycles per element. The
worst possible stride is a value that is a multiple of the number of memory banks,
as in this case with a stride of 32 and 8 memory banks. Every access to memory
(after the first one) will collide with the previous access and will have to wait for
the 6-clock-cycle bank busy time. The total time will be 12 + 1 + 6 * 63 = 391
clock cycles, or 6.1 clock cycles per element.

Gather-Scatter: Handling Sparse Matrices in Vector
Architectures

As mentioned above, sparse matrices are commonplace so it is important to have
techniques to allow programs with sparse matrices to execute in vector mode. In
a sparse matrix, the elements of a vector are usually stored in some compacted
form and then accessed indirectly. Assuming a simplified sparse structure, we
might see code that looks like this:

for (i = 0; i <n; i=i+l)
ALK[i]] = ALK[i]1] + C[M[i1];

This code implements a sparse vector sum on the arrays A and C, using index vec-
tors K and M to designate the nonzero elements of A and C. (A and C must have the
same number of nonzero elements—n of them—so K and M are the same size.)
The primary mechanism for supporting sparse matrices is gather-scatter
operations using index vectors. The goal of such operations is to support moving
between a compressed representation (i.e., zeros are not included) and normal
representation (i.e., the zeros are included) of a sparse matrix. A gather operation

280

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

takes an index vector and fetches the vector whose elements are at the addresses
given by adding a base address to the offsets given in the index vector. The result
is a dense vector in a vector register. After these elements are operated on in
dense form, the sparse vector can be stored in expanded form by a scatter store,
using the same index vector. Hardware support for such operations is called
gather-scatter and it appears on nearly all modern vector processors. The VMIPS
instructions are LVI (load vector indexed or gather) and SVI (store vector indexed
or scatter). For example, if Ra, Rc, Rk, and Rm contain the starting addresses of the
vectors in the previous sequence, we can code the inner loop with vector instruc-
tions such as:

LV Vk, Rk sload K

LVI Va, (Ra+Vk) ;Toad A[K[]]
LV Vm, Rm ;load M

LVI Vc, (Rc+Vm) ;Toad C[M[]1]
ADDVV.D Va, Va, Vc ;add them
SVI (Ra+Vk), Va ;store A[K[]]

This technique allows code with sparse matrices to run in vector mode. A
simple vectorizing compiler could not automatically vectorize the source code
above because the compiler would not know that the elements of K are distinct
values, and thus that no dependences exist. Instead, a programmer directive
would tell the compiler that it was safe to run the loop in vector mode.

Although indexed loads and stores (gather and scatter) can be pipelined, they
typically run much more slowly than non-indexed loads or stores, since the mem-
ory banks are not known at the start of the instruction. Each element has an indi-
vidual address, so they can’t be handled in groups, and there can be conflicts at
many places throughout the memory system. Thus, each individual access incurs
significant latency. However, as Section 4.7 shows, a memory system can deliver
better performance by designing for this case and by using more hardware
resources versus when architects have a laissez faire attitude toward such
accesses.

As we shall see in Section 4.4, all loads are gathers and all stores are scatters
in GPUs. To avoid running slowly in the frequent case of unit strides, it is up to
the GPU programmer to ensure that all the addresses in a gather or scatter are to
adjacent locations. In addition, the GPU hardware must recognize the sequence
of these addresses during execution to turn the gathers and scatters into the more
efficient unit stride accesses to memory.

Programming Vector Architectures

An advantage of vector architectures is that compilers can tell programmers at
compile time whether a section of code will vectorize or not, often giving hints as
to why it did not vectorize the code. This straightforward execution model allows

4.2 Vector Architecture 281

experts in other domains to learn how to improve performance by revising their
code or by giving hints to the compiler when it’s OK to assume independence
between operations, such as for gather-scatter data transfers. It is this dialog
between the compiler and the programmer, with each side giving hints to the
other on how to improve performance, that simplifies programming of vector
computers.

Today, the main factor that affects the success with which a program runs in
vector mode is the structure of the program itself: Do the loops have true data
dependences (see Section 4.5), or can they be restructured so as not to have such
dependences? This factor is influenced by the algorithms chosen and, to some
extent, by how they are coded.

As an indication of the level of vectorization achievable in scientific pro-
grams, let’s look at the vectorization levels observed for the Perfect Club bench-
marks. Figure 4.7 shows the percentage of operations executed in vector mode for
two versions of the code running on the Cray Y-MP. The first version is that
obtained with just compiler optimization on the original code, while the second
version uses extensive hints from a team of Cray Research programmers. Several
studies of the performance of applications on vector processors show a wide vari-
ation in the level of compiler vectorization.

Operations executed Operations executed

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized with programmer aid hint optimization
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 94.5% 1.00
FLO52 91.5% 88.7% N/A
ARC3D 91.1% 92.0% 1.01
SPEC77 90.3% 90.4% 1.07
MDG 87.7% 94.2% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 91.2% 3.92
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06
QCD 4.2% 75.1% 2.15

Figure 4.7 Level of vectorization among the Perfect Club benchmarks when
executed on the Cray Y-MP [Vajapeyam 1991]. The first column shows the vectoriza-
tion level obtained with the compiler without hints, while the second column shows
the results after the codes have been improved with hints from a team of Cray Research
programmers.

282

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.3

The hint-rich versions show significant gains in vectorization level for codes
the compiler could not vectorize well by itself, with all codes now above 50%
vectorization. The median vectorization improved from about 70% to about 90%.

SIMD Instruction Set Extensions for Multimedia

SIMD Multimedia Extensions started with the simple observation that many
media applications operate on narrower data types than the 32-bit processors
were optimized for. Many graphics systems used 8 bits to represent each of the
three primary colors plus 8 bits for transparency. Depending on the application,
audio samples are usually represented with 8 or 16 bits. By partitioning the carry
chains within, say, a 256-bit adder, a processor could perform simultaneous
operations on short vectors of thirty-two 8-bit operands, sixteen 16-bit operands,
eight 32-bit operands, or four 64-bit operands. The additional cost of such parti-
tioned adders was small. Figure 4.8 summarizes typical multimedia SIMD
instructions. Like vector instructions, a SIMD instruction specifies the same
operation on vectors of data. Unlike vector machines with large register files
such as the VMIPS vector register, which can hold as many as sixty-four 64-bit
elements in each of 8 vector registers, SIMD instructions tend to specify fewer
operands and hence use much smaller register files.

In contrast to vector architectures, which offer an elegant instruction set that
is intended to be the target of a vectorizing compiler, SIMD extensions have
three major omissions:

m Multimedia SIMD extensions fix the number of data operands in the
opcode, which has led to the addition of hundreds of instructions in the
MMX, SSE, and AVX extensions of the x86 architecture. Vector architec-
tures have a vector length register that specifies the number of operands for
the current operation. These variable-length vector registers easily accom-
modate programs that naturally have shorter vectors than the maximum size
the architecture supports. Moreover, vector architectures have an implicit
maximum vector length in the architecture, which combined with the vector
length register avoids the use of many opcodes.

Instruction category Operands

Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit

Figure 4.8 Summary of typical SIMD multimedia support for 256-bit-wide opera-
tions. Note that the IEEE 754-2008 floating-point standard added half-precision (16-bit)
and quad-precision (128-bit) floating-point operations.

4.3 SIMD Instruction Set Extensions for Multimedia 283

m Multimedia SIMD does not offer the more sophisticated addressing modes of
vector architectures, namely strided accesses and gather-scatter accesses.
These features increase the number of programs that a vector compiler can
successfully vectorize (see Section 4.7).

m Multimedia SIMD usually does not offer the mask registers to support condi-
tional execution of elements as in vector architectures.

These omissions make it harder for the compiler to generate SIMD code and
increase the difficulty of programming in SIMD assembly language.

For the x86 architecture, the MMX instructions added in 1996 repurposed
the 64-bit floating-point registers, so the basic instructions could perform eight
8-bit operations or four 16-bit operations simultaneously. These were joined by
parallel MAX and MIN operations, a wide variety of masking and conditional
instructions, operations typically found in digital signal processors, and ad hoc
instructions that were believed to be useful in important media libraries. Note
that MMX reused the floating-point data transfer instructions to access
memory.

The Streaming SIMD Extensions (SSE) successor in 1999 added separate
registers that were 128 bits wide, so now instructions could simultaneously per-
form sixteen 8-bit operations, eight 16-bit operations, or four 32-bit operations. It
also performed parallel single-precision floating-point arithmetic. Since SSE had
separate registers, it needed separate data transfer instructions. Intel soon added
double-precision SIMD floating-point data types via SSE2 in 2001, SSE3 in
2004, and SSE4 in 2007. Instructions with four single-precision floating-point
operations or two parallel double-precision operations increased the peak float-
ing-point performance of the x86 computers, as long as programmers place the
operands side by side. With each generation, they also added ad hoc instructions
whose aim is to accelerate specific multimedia functions perceived to be
important.

The Advanced Vector Extensions (AVX), added in 2010, doubles the width
of the registers again to 256 bits and thereby offers instructions that double the
number of operations on all narrower data types. Figure 4.9 shows AVX instruc-
tions useful for double-precision floating-point computations. AVX includes
preparations to extend the width to 512 bits and 1024 bits in future generations of
the architecture.

In general, the goal of these extensions has been to accelerate carefully writ-
ten libraries rather than for the compiler to generate them (see Appendix H), but
recent x86 compilers are trying to generate such code, particularly for floating-
point-intensive applications.

Given these weaknesses, why are Multimedia SIMD Extensions so popu-
lar? First, they cost little to add to the standard arithmetic unit and they were
easy to implement. Second, they require little extra state compared to vector
architectures, which is always a concern for context switch times. Third, you
need a lot of memory bandwidth to support a vector architecture, which many
computers don’t have. Fourth, SIMD does not have to deal with problems in

284

Chapter Four

Data-Level Parallelism in Vector, SIMD, and GPU Architectures

AVX Instruction

Description

VADDPD Add four packed double-precision operands

VSUBPD Subtract four packed double-precision operands

VMULPD Multiply four packed double-precision operands

VDIVPD Divide four packed double-precision operands

VFMADDPD Multiply and add four packed double-precision operands

VFMSUBPD Multiply and subtract four packed double-precision operands

VCMPxx Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE, ...
VMOVAPD Move aligned four packed double-precision operands

VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register

Figure 4.9 AVX instructions for x86 architecture useful in double-precision floating-point programs. Packed-
double for 256-bit AVX means four 64-bit operands executed in SIMD mode. As the width increases with AVX, it is
increasingly important to add data permutation instructions that allow combinations of narrow operands from dif-
ferent parts of the wide registers. AVX includes instructions that shuffle 32-bit, 64-bit, or 128-bit operands within a
256-bit register. For example, BROADCAST replicates a 64-bit operand 4 times in an AVX register. AVX also includes a
large variety of fused multiply-add/subtract instructions; we show just two here.

virtual memory when a single instruction that can generate 64 memory
accesses can get a page fault in the middle of the vector. SIMD extensions use
separate data transfers per SIMD group of operands that are aligned in mem-
ory, and so they cannot cross page boundaries. Another advantage of short,
fixed-length “vectors” of SIMD is that it is easy to introduce instructions that
can help with new media standards, such as instructions that perform permuta-
tions or instructions that consume either fewer or more operands than vectors
can produce. Finally, there was concern about how well vector architectures
can work with caches. More recent vector architectures have addressed all of
these problems, but the legacy of past flaws shaped the skeptical attitude
toward vectors among architects.

Example

To give an idea of what multimedia instructions look like, assume we added
256-bit SIMD multimedia instructions to MIPS. We concentrate on floating-
point in this example. We add the suffix “4D” on instructions that operate on
four double-precision operands at once. Like vector architectures, you can
think of a SIMD processor as having lanes, four in this case. MIPS SIMD will
reuse the floating-point registers as operands for 4D instructions, just as double-
precision reused single-precision registers in the original MIPS. This example
shows MIPS SIMD code for the DAXPY loop. Assume that the starting addresses
of X and Y are in Rx and Ry, respectively. Underline the changes to the MIPS
code for SIMD.

4.3 SIMD Instruction Set Extensions for Multimedia 285

Answer Here is the MIPS code:

L.D FO,a ;1oad scalar a
MOV F1, F ;copy a into F1 for SIMD MUL
Mov F2, FQ ;copy a into F2 for SIMD MUL
Mov F3, FQ ;copy a into F3 for SIMD MUL
DADDIU R4,Rx,#512 ;last address to load

Loop: L.4D F4,0(Rx) sload X[i]. X[i+1], X[i+2], X[i+
MUL.4D F4.F4,F0 saxX[i],axX[1+1] .axX[i+2] ,axX[i+3
L.4D E8,0(Ry) sload Y[i], Y[i+1], Y[i+2], Y[i+3]
ADD.4D F8.F8,.F4 saxX[i]+Y[i]. ..., axX[i+3]+Y[i+3]

S.4D F8,0(Rx) ;store into Y[i], Y[i+1], Y[i+2], Y[i+
DADDIU Rx,Rx,#32 sincrement index to X

DADDIU Ry,Ry,#32 sincrement index to Y

DSUBU R20,R4,Rx scompute bound

BNEZ R20,Loop ;check if done

The changes were replacing every MIPS double-precision instruction with its 4D
equivalent, increasing the increment from 8 to 32, and changing the registers
from F2 and F4 to F4 and F8 to get enough space in the register file for four
sequential double-precision operands. So that each SIMD lane would have its
own copy of the scalar a, we copied the value of F0 into registers F1, F2, and F3.
(Real SIMD instruction extensions have an instruction to broadcast a value to all
other registers in a group.) Thus, the multiply does F4*F0, F5*F1, F6*F2, and
F7*F3. While not as dramatic as the 100x reduction of dynamic instruction band-
width of VMIPS, SIMD MIPS does get a 4x reduction: 149 versus 578 instruc-
tions executed for MIPS.

Programming Multimedia SIMD Architectures

Given the ad hoc nature of the SIMD multimedia extensions, the easiest way
to use these instructions has been through libraries or by writing in assembly
language.

Recent extensions have become more regular, giving the compiler a more
reasonable target. By borrowing techniques from vectorizing compilers, compil-
ers are starting to produce SIMD instructions automatically. For example,
advanced compilers today can generate SIMD floating-point instructions to
deliver much higher performance for scientific codes. However, programmers
must be sure to align all the data in memory to the width of the SIMD unit on
which the code is run to prevent the compiler from generating scalar instructions
for otherwise vectorizable code.

The Roofline Visual Performance Model

One visual, intuitive way to compare potential floating-point performance of
variations of SIMD architectures is the Roofline model [Williams et al. 2009].

286

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

O
A1) O(log(N)) o
N
e ™
Arithmetic Intensity
[] [] [] []
Spectral
2‘;?;?(9 ‘ methods Dense N-body
(FFTs) matrix (Particle
(SpMV) (BLAS3) methods)
Structured | Structured
grids grids

(Stencils, (Lattice
PDEs) methods)

Figure 4.10 Arithmetic intensity, specified as the number of floating-point opera-
tions to run the program divided by the number of bytes accessed in main memory
[Williams et al. 2009]. Some kernels have an arithmetic intensity that scales with prob-
lem size, such as dense matrix, but there are many kernels with arithmetic intensities
independent of problem size.

It ties together floating-point performance, memory performance, and arithme-
tic intensity in a two-dimensional graph. Arithmetic intensity is the ratio of
floating-point operations per byte of memory accessed. It can be calculated by
taking the total number of floating-point operations for a program divided by
the total number of data bytes transferred to main memory during program exe-
cution. Figure 4.10 shows the relative arithmetic intensity of several example
kernels.

Peak floating-point performance can be found using the hardware specifica-
tions. Many of the kernels in this case study do not fit in on-chip caches, so peak
memory performance is defined by the memory system behind the caches. Note
that we need the peak memory bandwidth that is available to the processors, not
just at the DRAM pins as in Figure 4.27 on page 325. One way to find the (deliv-
ered) peak memory performance is to run the Stream benchmark.

Figure 4.11 shows the Roofline model for the NEC SX-9 vector processor on
the left and the Intel Core 17 920 multicore computer on the right. The vertical
Y-axis is achievable floating-point performance from 2 to 256 GFLOP/sec. The
horizontal X-axis is arithmetic intensity, varying from 1/8th FLOP/DRAM byte
accessed to 16 FLOP/ DRAM byte accessed in both graphs. Note that the graph
is a log—log scale, and that Rooflines are done just once for a computer.

For a given kernel, we can find a point on the X-axis based on its arithmetic
intensity. If we drew a vertical line through that point, the performance of the
kernel on that computer must lie somewhere along that line. We can plot a hori-
zontal line showing peak floating-point performance of the computer. Obviously,
the actual floating-point performance can be no higher than the horizontal line,
since that is a hardware limit.

How could we plot the peak memory performance? Since the X-axis is FLOP/
byte and the Y-axis is FLOP/sec, bytes/sec is just a diagonal line at a 45-degree
angle in this figure. Hence, we can plot a third line that gives the maximum
floating-point performance that the memory system of that computer can support

4.3 SIMD Instruction Set Extensions for Multimedia 287

Intel Core i7 920
o5t NEC SX-9 CPU - osg A | (Nehalem) s
. T 1 .
» 128 102.4 GFLOP/sec «n 128
S o 3
A L 64 42.66 GFLOP/sec
10} N 10}
- 32 9 - 32
S S ©
(2] (2]
5 o 16 2
§ 16 § Q)P‘QQ?@
E E
g ¢ g ¢
2 > 2 >
1/8 1/4 12 1 2 4 8 16 1/8 1/4 12 1 2 4 8 16
Arithmetic intensity Arithmetic intensity

Figure 4.11 Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920 multicore
computer with SIMD Extensions on the right [Williams et al. 2009]. This Roofline is for unit-stride memory accesses
and double-precision floating-point performance. NEC SX-9 is a vector supercomputer announced in 2008 that costs
millions of dollars. It has a peak DP FP performance of 102.4 GFLOP/sec and a peak memory bandwidth of 162
GBytes/sec from the Stream benchmark. The Core i7 920 has a peak DP FP performance of 42.66 GFLOP/sec and a
peak memory bandwidth of 16.4 GBytes/sec. The dashed vertical lines at an arithmetic intensity of 4 FLOP/byte show
that both processors operate at peak performance. In this case, the SX-9 at 102.4 FLOP/sec is 2.4x faster than the Core
i7 at 42.66 GFLOP/sec. At an arithmetic intensity of 0.25 FLOP/byte, the SX-9 is 10x faster at 40.5 GFLOP/sec versus 4.1
GFLOP/sec for the Core i7.

for a given arithmetic intensity. We can express the limits as a formula to plot
these lines in the graphs in Figure 4.11:

Attainable GFLOPs/sec = Min(Peak Memory BW X Arithmetic Intensity, Peak Floating-Point Perf.)

The horizontal and diagonal lines give this simple model its name and indi-
cate its value. The “Roofline” sets an upper bound on performance of a kernel
depending on its arithmetic intensity. If we think of arithmetic intensity as a pole
that hits the roof, either it hits the flat part of the roof, which means performance
is computationally limited, or it hits the slanted part of the roof, which means
performance is ultimately limited by memory bandwidth. In Figure 4.11, the ver-
tical dashed line on the right (arithmetic intensity of 4) is an example of the for-
mer and the vertical dashed line on the left (arithmetic intensity of 1/4) is an
example of the latter. Given a Roofline model of a computer, you can apply it
repeatedly, since it doesn’t vary by kernel.

Note that the “ridge point,” where the diagonal and horizontal roofs meet,
offers an interesting insight into the computer. If it is far to the right, then only
kernels with very high arithmetic intensity can achieve the maximum perfor-
mance of that computer. If it is far to the left, then almost any kernel can poten-
tially hit the maximum performance. As we shall see, this vector processor has
both much higher memory bandwidth and a ridge point far to the left when com-
pared to other SIMD processors.

Figure 4.11 shows that the peak computational performance of the SX-9 is
2.4x faster than Core 17, but the memory performance is 10x faster. For programs

288

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.4

with an arithmetic intensity of 0.25, the SX-9 is 10x faster (40.5 versus 4.1
GFLOP/sec). The higher memory bandwidth moves the ridge point from 2.6 in
the Core 17 to 0.6 on the SX-9, which means many more programs can reach
peak computational performance on the vector processor.

Graphics Processing Units

For a few hundred dollars, anyone can buy a GPU with hundreds of parallel float-
ing-point units, which makes high-performance computing more accessible. The
interest in GPU computing blossomed when this potential was combined with a
programming language that made GPUs easier to program. Hence, many pro-
grammers of scientific and multimedia applications today are pondering whether
to use GPUs or CPUs.

GPUs and CPUs do not go back in computer architecture genealogy to a
common ancestor; there is no Missing Link that explains both. As Section 4.10
describes, the primary ancestors of GPUs are graphics accelerators, as doing
graphics well is the reason why GPUs exist. While GPUs are moving toward
mainstream computing, they can’t abandon their responsibility to continue to
excel at graphics. Thus, the design of GPUs may make more sense when archi-
tects ask, given the hardware invested to do graphics well, how can we supple-
ment it to improve the performance of a wider range of applications?

Note that this section concentrates on using GPUs for computing. To see how
GPU computing combines with the traditional role of graphics acceleration, see
“Graphics and Computing GPUs,” by John Nickolls and David Kirk (Appendix A
in the 4th edition of Computer Organization and Design by the same authors as
this book).

Since the terminology and some hardware features are quite different from
vector and SIMD architectures, we believe it will be easier if we start with the
simplified programming model for GPUs before we describe the architecture.

Programming the GPU

CUDA is an elegant solution to the problem of representing parallelism in
algorithms, not all algorithms, but enough to matter. It seems to resonate in
some way with the way we think and code, allowing an easier, more natural
expression of parallelism beyond the task level.

Vincent Natol
“Kudos for CUDA,” HPC Wire (2010)

The challenge for the GPU programmer is not simply getting good performance
on the GPU, but also in coordinating the scheduling of computation on the sys-
tem processor and the GPU and the transfer of data between system memory and
GPU memory. Moreover, as we see shall see later in this section, GPUs have vir-
tually every type of parallelism that can be captured by the programming envi-
ronment: multithreading, MIMD, SIMD, and even instruction-level.

4.4 Graphics Processing Units 289

NVIDIA decided to develop a C-like language and programming environ-
ment that would improve the productivity of GPU programmers by attacking
both the challenges of heterogeneous computing and of multifaceted parallelism.
The name of their system is CUDA, for Compute Unified Device Architecture.
CUDA produces C/C++ for the system processor (host) and a C and C++ dialect
for the GPU (device, hence the D in CUDA). A similar programming language is
OpenCL, which several companies are developing to offer a vendor-independent
language for multiple platforms.

NVIDIA decided that the unifying theme of all these forms of parallelism is
the CUDA Thread. Using this lowest level of parallelism as the programming
primitive, the compiler and the hardware can gang thousands of CUDA Threads
together to utilize the various styles of parallelism within a GPU: multithreading,
MIMD, SIMD, and instruction-level parallelism. Hence, NVIDIA classifies the
CUDA programming model as Single Instruction, Multiple Thread (SIMT). For
reasons we shall soon see, these threads are blocked together and executed in
groups of 32 threads, called a Thread Block. We call the hardware that executes a
whole block of threads a multithreaded SIMD Processor.

We need just a few details before we can give an example of a CUDA program:

m To distinguish between functions for the GPU (device) and functions for the
system processor (host), CUDA uses __device or global for the for-
mer and __host__for the latter.

m CUDA variables declared as in the__device or_global functions are
allocated to the GPU Memory (see below), which is accessible by all multi-
threaded SIMD processors.

m The extended function call syntax for the function name that runs on the GPU is
name<<<dimGrid, dimBlock>>>(... parameter list ...)

where dimGrid and dimB1ock specify the dimensions of the code (in blocks)
and the dimensions of a block (in threads).

m In addition to the identifier for blocks (blockIdx) and the identifier for
threads per block (threadIdx), CUDA provides a keyword for the number of
threads per block (b1ockDim), which comes from the dimB1ock parameter in
the bullet above.

Before seeing the CUDA code, let’s start with conventional C code for the
DAXPY loop from Section 4.2:

// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C
void daxpy(int n, double a, double *x, double *y)
{
for (int i = 0; i < n; ++i)
y[il = a*x[i] + y[il;

290

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Below is the CUDA version. We launch n threads, one per vector element, with
256 CUDA Threads per thread block in a multithreaded SIMD Processor. The
GPU function starts by calculating the corresponding element index i based on
the block ID, the number of threads per block, and the thread ID. As long as this
index is within the array (i < n), it performs the multiply and add.

// Invoke DAXPY with 256 threads per Thread Block
__host
int nblocks = (n+ 255) / 256;
daxpy<<<nblocks, 256>>>(n, 2.0, x, y);
// DAXPY in CUDA
__device
void daxpy(int n, double a, double *x, double *y)
{
int i = blockIdx.x*bTockDim.x + threadIdx.x;
if (i <n) y[i] = a*x[i] + y[i];
}

Comparing the C and CUDA codes, we see a common pattern to parallelizing
data-parallel CUDA code. The C version has a loop where each iteration is inde-
pendent of the others, allowing the loop to be transformed straightforwardly into
a parallel code where each loop iteration becomes an independent thread. (As
mentioned above and described in detail in Section 4.5, vectorizing compilers
also rely on a lack of dependences between iterations of a loop, which are called
loop carried dependences.) The programmer determines the parallelism in
CUDA explicitly by specifying the grid dimensions and the number of threads
per SIMD Processor. By assigning a single thread to each element, there is no
need to synchronize among threads when writing results to memory.

The GPU hardware handles parallel execution and thread management; it is
not done by applications or by the operating system. To simplify scheduling by
the hardware, CUDA requires that thread blocks be able to execute independently
and in any order. Different thread blocks cannot communicate directly, although
they can coordinate using atomic memory operations in Global Memory.

As we shall soon see, many GPU hardware concepts are not obvious in
CUDA. That is a good thing from a programmer productivity perspective, but
most programmers are using GPUs instead of CPUs to get performance.
Performance programmers must keep the GPU hardware in mind when writing in
CUDA. For reasons explained shortly, they know that they need to keep groups
of 32 threads together in control flow to get the best performance from multi-
threaded SIMD Processors, and create many more threads per multithreaded
SIMD Processor to hide latency to DRAM. They also need to keep the data
addresses localized in one or a few blocks of memory to get the expected mem-
ory performance.

Like many parallel systems, a compromise between productivity and perfor-
mance is for CUDA to include intrinsics to give programmers explicit control of
the hardware. The struggle between productivity on one hand versus allowing the
programmer to be able to express anything that the hardware can do on the other

4.4 Graphics Processing Units 291

happens often in parallel computing. It will be interesting to see how the lan-
guage evolves in this classic productivity—performance battle as well as to see if
CUDA becomes popular for other GPUs or even other architectural styles.

NVIDIA GPU Computational Structures

The uncommon heritage mentioned above helps explain why GPUs have their
own architectural style and their own terminology independent from CPUs. One
obstacle to understanding GPUs has been the jargon, with some terms even hav-
ing misleading names. This obstacle has been surprisingly difficult to overcome,
as the many rewrites of this chapter can attest. To try to bridge the twin goals of
making the architecture of GPUs understandable and learning the many GPU
terms with non traditional definitions, our final solution is to use the CUDA ter-
minology for software but initially use more descriptive terms for the hardware,
sometimes borrowing terms used by OpenCL. Once we explain the GPU archi-
tecture in our terms, we’ll map them into the official jargon of NVIDIA GPUs.

From left to right, Figure 4.12 lists the more descriptive term used in this sec-
tion, the closest term from mainstream computing, the official NVIDIA GPU
term in case you are interested, and then a short description of the term. The rest
of this section explains the microarchitetural features of GPUs using these
descriptive terms from the left of the figure.

We use NVIDIA systems as our example as they are representative of GPU
architectures. Specifically, we follow the terminology of the CUDA parallel
programming language above and use the Fermi architecture as the example
(see Section 4.7).

Like vector architectures, GPUs work well only with data-level parallel prob-
lems. Both styles have gather-scatter data transfers and mask registers, and GPU
processors have even more registers than do vector processors. Since they do not
have a close-by scalar processor, GPUs sometimes implement a feature at runtime
in hardware that vector computers implement at compiler time in software. Unlike
most vector architectures, GPUs also rely on multithreading within a single multi-
threaded SIMD processor to hide memory latency (see Chapters 2 and 3). How-
ever, efficient code for both vector architectures and GPUs requires programmers
to think in groups of SIMD operations.

A Grid is the code that runs on a GPU that consists of a set of Thread Blocks.
Figure 4.12 draws the analogy between a grid and a vectorized loop and between
a Thread Block and the body of that loop (after it has been strip-mined, so that it
is a full computation loop). To give a concrete example, let’s suppose we want to
multiply two vectors together, each 8192 elements long. We’ll return to this
example throughout this section. Figure 4.13 shows the relationship between this
example and these first two GPU terms. The GPU code that works on the whole
8192 element multiply is called a Grid (or vectorized loop). To break it down
into more manageable sizes, a Grid is composed of Thread Blocks (or body of a
vectorized loop), each with up to 512 elements. Note that a SIMD instruction
executes 32 elements at a time. With 8192 elements in the vectors, this example
thus has 16 Thread Blocks since 16 = 8192 + 512. The Grid and Thread Block

292

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

More descrip-

Closest old term

Official CUDA/

Type tive name outside of GPUs NVIDIA GPU term Book definition

Vectorizable Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
" Loop up of one or more Thread Blocks (bodies of
S vectorized loop) that can execute in parallel.
E Body of Body of a Thread Block A vectorized loop executed on a multithreaded
2 Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
2 Vectorized Loop of SIMD instructions. They can communicate via
£ Local Memory.
©
o Sequence of One iteration of CUDA Thread A vertical cut of a thread of SIMD instructions
g SIMD Lane a Scalar Loop corresponding to one element executed by one

Operations SIMD Lane. Result is stored depending on mask

and predicate register.
k9] A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD
v
S SIMD Instructions instructions that are executed on a multithreaded
g Instructions SIMD Processor. Results stored depending on a
£ per-element mask.
'::'-é SIMD Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD
= Instruction Lanes.

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor ~ Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors.

o

® Thread Block Scalar Processor Giga Thread Assigns multiple Thread Blocks (bodies of

% Scheduler Engine vectorized loop) to multithreaded SIMD

Eu Processors.

2 SIMD Thread Thread scheduler ~ Warp Scheduler Hardware unit that schedules and issues threads
@ Scheduler in a Multithreaded of SIMD instructions when they are ready to

g CPU execute; includes a scoreboard to track SIMD
E Thread execution.

SIMD Lane Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

o SIMD Processors in a GPU.

©

3 Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD

o

5 Memory Local Storage (OS) Lane.

K=

> Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD

g Processor, unavailable to other SIMD Processors.

% SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across
Registers Registers Registers a full thread block (body of vectorized loop).

Figure 4.12 Quick guide to GPU terms used in this chapter. We use the first column for hardware terms. Four
groups cluster these 11 terms. From top to bottom: Program Abstractions, Machine Objects, Processing Hardware,
and Memory Hardware. Figure 4.21 on page 309 associates vector terms with the closest terms here, and Figure 4.24
on page 313 and Figure 4.25 on page 314 reveal the official CUDA/NVIDIA and AMD terms and definitions along with
the terms used by OpenCL.

4.4 Graphics Processing Units 293

AL 0]-= 0]1*C[o]
ssmp | AL 1 1= 1 J*cl 1 1]
Thread0 | = |
Al 31] - 31] *C[31]
Al 32] - 32]1*C[32]
ssmp | AL 33 1= 33 1*c[33]
T L
Block AL 63 1=8B[63 1*C[63 1
0 Al 64 1=B[64 1 *C[64 1
A[4;9] _ B [479] ;c[479]
Al 480] =B 480] * C[480]
SIMD . *
SIMD ['A[4817 =B 481] * C[481]
A[5111 =81 511] * C[511]
A[512]=8[512] *C[512]
Grid
Al 767971 =B [7679 1 * C[7679]
A[76807 =B [7680 1 * C[7680]
SIMD | A[76811 =B [7681] * C[7681]
Thread0 | =
A[7711] =B [7711] * C[7711]
Al 77121 =B [7712] * C[7712]
SIMD | AL 77131 =B [7713] * C[7713]
T L
Block Al 77431 =B [7743 1 * C[7743]
15 A[7744] =B [7744] * C[7744]
AL 81597 - B [8159] * C[8159]
Al 81607 =B [8160] * C[8160]
SIMD . x
SIMD AL 8161] - B [8161] * C[8161]
A[8191] =B [8191] * C[8191]

Figure 4.13 The mapping of a Grid (vectorizable loop), Thread Blocks (SIMD basic blocks), and threads of SIMD
instructions to a vector-vector multiply, with each vector being 8192 elements long. Each thread of SIMD instruc-
tions calculates 32 elements per instruction, and in this example each Thread Block contains 16 threads of SIMD
instructions and the Grid contains 16 Thread Blocks. The hardware Thread Block Scheduler assigns Thread Blocks to
multithreaded SIMD Processors and the hardware Thread Scheduler picks which thread of SIMD instructions to run
each clock cycle within a SIMD Processor. Only SIMD Threads in the same Thread Block can communicate via Local
Memory. (The maximum number of SIMD Threads that can execute simultaneously per Thread Block is 16 for Tesla-
generation GPUs and 32 for the later Fermi-generation GPUs.)

294

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Warp scheduler Scoreboard
) Warp No. | Address | SIMD instructions | Operands?
Instruction 1 42 Id.global.f64 Ready
cache 1 43 mul.f64 No
3 95 shl.s32 Ready
3 96 add.s32 No
8 11 Id.global.f64 Ready
8 12 Id.global.f64 Ready
I I
v
| Instruction register |
] [
I S s 2tk D R REEE REEE R TR e S S S
SIMD Lanes
(Thread
Processors)
Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters
1Kx32 |1Kx32 [1Kx32 [1Kx32 [1Kx 32 | 1Kx 32 [1Kx32 [1Kx32 [1Kx32 | 1Kx32 [1Kx 32 [1Kx 32 [1Kx32 | 1Kx32 | 1Kx32 [1Kx 32
Load | Load | Load Load | Load | Load | Load | Load Load Load Load | Load | Load | Load | Load Load
store store store store store store store store store store store store store store store store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit
2 A 2 S A
| Address coalescing unit | | Interconnection network |
4
vy
To Global
Local Memory
64 KB Memory

Figure 4.14 Simplified block diagram of a Multithreaded SIMD Processor. It has 16 SIMD lanes. The SIMD Thread
Scheduler has, say, 48 independent threads of SIMD instructions that it schedules with a table of 48 PCs.

are programming abstractions implemented in GPU hardware that help program-
mers organize their CUDA code. (The Thread Block is analogous to a strip-
minded vector loop with a vector length of 32.)

A Thread Block is assigned to a processor that executes that code, which we
call a multithreaded SIMD Processor, by the Thread Block Scheduler. The
Thread Block Scheduler has some similarities to a control processor in a vector
architecture. It determines the number of thread blocks needed for the loop and
keeps allocating them to different multithreaded SIMD Processors until the loop
is completed. In this example, it would send 16 Thread Blocks to multithreaded
SIMD Processors to compute all 8192 elements of this loop.

Figure 4.14 shows a simplified block diagram of a multithreaded SIMD Proces-
sor. It is similar to a Vector Processor, but it has many parallel functional units

4.4 Graphics Processing Units 295

L2 Cache

GigaThread

Figure 4.15 Floor plan of the Fermi GTX 480 GPU. This diagram shows 16 multi-
threaded SIMD Processors. The Thread Block Scheduler is highlighted on the left. The
GTX 480 has 6 GDDR5 ports, each 64 bits wide, supporting up to 6 GB of capacity. The
Host Interface is PCl Express 2.0 x 16. Giga Thread is the name of the scheduler that
distributes thread blocks to Multiprocessors, each of which has its own SIMD Thread
Scheduler.

instead of a few that are deeply pipelined, as does a Vector Processor. In the pro-
gramming example in Figure 4.13, each multithreaded SIMD Processor is assigned
512 elements of the vectors to work on. SIMD Processors are full processors with
separate PCs and are programmed using threads (see Chapter 3).

The GPU hardware then contains a collection of multithreaded SIMD Proces-
sors that execute a Grid of Thread Blocks (bodies of vectorized loop); that is, a
GPU is a multiprocessor composed of multithreaded SIMD Processors.

The first four implementations of the Fermi architecture have 7, 11, 14, or 15
multithreaded SIMD Processors; future versions may have just 2 or 4. To provide
transparent scalability across models of GPUs with differing number of multi-
threaded SIMD Processors, the Thread Block Scheduler assigns Thread Blocks
(bodies of a vectorized loop) to multithreaded SIMD Processors. Figure 4.15
shows the floor plan of the GTX 480 implementation of the Fermi architecture.

Dropping down one more level of detail, the machine object that the hard-
ware creates, manages, schedules, and executes is a thread of SIMD instructions.
It is a traditional thread that contains exclusively SIMD instructions. These

296

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

threads of SIMD instructions have their own PCs and they run on a multithreaded
SIMD Processor. The SIMD Thread Scheduler includes a scoreboard that lets it
know which threads of SIMD instructions are ready to run, and then it sends
them off to a dispatch unit to be run on the multithreaded SIMD Processor. It is
identical to a hardware thread scheduler in a traditional multithreaded processor
(see Chapter 3), just that it is scheduling threads of SIMD instructions. Thus,
GPU hardware has two levels of hardware schedulers: (1) the Thread Block
Scheduler that assigns Thread Blocks (bodies of vectorized loops) to multi-
threaded SIMD Processors, which ensures that thread blocks are assigned to the
processors whose local memories have the corresponding data, and (2) the SIMD
Thread Scheduler within a SIMD Processor, which schedules when threads of
SIMD instructions should run.

The SIMD instructions of these threads are 32 wide, so each thread of SIMD
instructions in this example would compute 32 of the elements of the computa-
tion. In this example, Thread Blocks would contain 512/32 = 16 SIMD threads
(see Figure 4.13).

Since the thread consists of SIMD instructions, the SIMD Processor must
have parallel functional units to perform the operation. We call them SIMD
Lanes, and they are quite similar to the Vector Lanes in Section 4.2.

The number of lanes per SIMD processor varies across GPU generations. With
Fermi, each 32-wide thread of SIMD instructions is mapped to 16 physical SIMD
Lanes, so each SIMD instruction in a thread of SIMD instructions takes two clock
cycles to complete. Each thread of SIMD instructions is executed in lock step and
only scheduled at the beginning. Staying with the analogy of a SIMD Processor as
a vector processor, you could say that it has 16 lanes, the vector length would be
32, and the chime is 2 clock cycles. (This wide but shallow nature is why we use
the term SIMD Processor instead of vector processor as it is more descriptive.)

Since by definition the threads of SIMD instructions are independent, the
SIMD Thread Scheduler can pick whatever thread of SIMD instructions is ready,
and need not stick with the next SIMD instruction in the sequence within a
thread. The SIMD Thread Scheduler includes a scoreboard (see Chapter 3) to
keep track of up to 48 threads of SIMD instructions to see which SIMD instruc-
tion is ready to go. This scoreboard is needed because memory access instruc-
tions can take an unpredictable number of clock cycles due to memory bank
conflicts, for example. Figure 4.16 shows the SIMD Thread Scheduler picking
threads of SIMD instructions in a different order over time. The assumption of
GPU architects is that GPU applications have so many threads of SIMD instruc-
tions that multithreading can both hide the latency to DRAM and increase utiliza-
tion of multithreaded SIMD Processors. However, to hedge their bets, the recent
NVIDIA Fermi GPU includes an L2 cache (see Section 4.7).

Continuing our vector multiply example, each multithreaded SIMD Processor
must load 32 elements of two vectors from memory into registers, perform the
multiply by reading and writing registers, and store the product back from regis-
ters into memory. To hold these memory elements, a SIMD Processor has an
impressive 32,768 32-bit registers. Just like a vector processor, these registers are
divided logically across the vector lanes or, in this case, SIMD Lanes. Each SIMD
Thread is limited to no more than 64 registers, so you might think of a SIMD

4.4 Graphics Processing Units 297

Photo: Judy Schoonmake.r

SIMD thread scheduler

Time
| Y O v |

| SIMD thread 8 instruction 11 |
|IBEEEEEEEEREEEERE

| N N N I N Y N I |
| SIMD thread 3 instruction 95 |
IREEEREEEEEEEERE]

| N N Y N N A v |
| SIMD thread 8 instruction 12 |
|IBEEEEEEEEEEEER A

| N N N I N Y N I |
| SIMD thread 3 instruction 96 |
IBEEREEEEEEEEEEEE]

(5D rad et

Figure 4.16 Scheduling of threads of SIMD instructions. The scheduler selects a
ready thread of SIMD instructions and issues an instruction synchronously to all the
SIMD Lanes executing the SIMD thread. Because threads of SIMD instructions are inde-
pendent, the scheduler may select a different SIMD thread each time.

Thread as having up to 64 vector registers, with each vector register having 32 ele-
ments and each element being 32 bits wide. (Since double-precision floating-point
operands use two adjacent 32-bit registers, an alternative view is that each SIMD
Thread has 32 vector registers of 32 elements, each of which is 64 bits wide.)
Since Fermi has 16 physical SIMD Lanes, each contains 2048 registers.
(Rather than trying to design hardware registers with many read ports and write
ports per bit, GPUs will use simpler memory structures but divide them into
banks to get sufficient bandwidth, just as vector processors do.) Each CUDA
Thread gets one element of each of the vector registers. To handle the 32 ele-
ments of each thread of SIMD instructions with 16 SIMD Lanes, the CUDA
Threads of a Thread block collectively can use up to half of the 2048 registers.
To be able to execute many threads of SIMD instructions, each is dynami-
cally allocated a set of the physical registers on each SIMD Processor when
threads of SIMD instructions are created and freed when the SIMD Thread exits.
Note that a CUDA thread is just a vertical cut of a thread of SIMD instruc-
tions, corresponding to one element executed by one SIMD Lane. Beware that
CUDA Threads are very different from POSIX threads; you can’t make arbitrary
system calls from a CUDA Thread.
We’re now ready to see what GPU instructions look like.

298

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

NVIDA GPU Instruction Set Architecture

Unlike most system processors, the instruction set target of the NVIDIA compil-
ers is an abstraction of the hardware instruction set. PTX (Parallel Thread Execu-
tion) provides a stable instruction set for compilers as well as compatibility
across generations of GPUs. The hardware instruction set is hidden from the pro-
grammer. PTX instructions describe the operations on a single CUDA thread,
and usually map one-to-one with hardware instructions, but one PTX can expand
to many machine instructions, and vice versa. PTX uses virtual registers, so the
compiler figures out how many physical vector registers a SIMD thread needs,
and then an optimizer divides the available register storage between the SIMD
threads. This optimizer also eliminates dead code, folds instructions together, and
calculates places where branches might diverge and places where diverged paths
could converge.

While there is some similarity between the x86 microarchitectures and PTX,
in that both translate to an internal form (microinstructions for x86), the differ-
ence is that this translation happens in hardware at runtime during execution on
the x86 versus in software and load time on a GPU.

The format of a PTX instruction is

opcode.type d, a, b, c;

where d is the destination operand; a, b, and c are source operands; and the oper-
ation type is one of the following:

Type .type Specifier
Untyped bits 8, 16, 32, and 64 bits .b8, .bl6, .b32, .bb64
Unsigned integer 8, 16, 32, and 64 bits .u8, .ul6, .u32, .ubd
Signed integer 8, 16, 32, and 64 bits .s8, .sl6, .s32, .sb64
Floating Point 16, 32, and 64 bits .fl6, .f32, .f64

Source operands are 32-bit or 64-bit registers or a constant value. Destinations
are registers, except for store instructions.

Figure 4.17 shows the basic PTX instruction set. All instructions can be
predicated by 1-bit predicate registers, which can be set by a set predicate
instruction (setp). The control flow instructions are functions call and
return, thread exit, branch, and barrier synchronization for threads within a
thread block (bar.sync). Placing a predicate in front of a branch instruction
gives us conditional branches. The compiler or PTX programmer declares vir-
tual registers as 32-bit or 64-bit typed or untyped values. For example, RO,
R1, ... are for 32-bit values and RDO, RD1, ... are for 64-bit registers. Recall
that the assignment of virtual registers to physical registers occurs at load time
with PTX.

4.4 Graphics Processing Units

299

Group Instruction Example Meaning Comments
arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64
add.type add.f32 d, a, b d=a+ b;
sub.type sub.f32 d, a, b d=a-b;
mul.type mul.f32 d, a, b d=a* b;
mad. type mad.f32 d, a, b, ¢ d=a*b+c; multiply-add
div.type div.f32 d, a, b d=a/b; multiple microinstructions
rem.type rem.u32 d, a, b d=a%b; integer remainder
Arithmetic abs.type abs.f32 d, a d = |a|;
neg.type neg.f32 d, a d=0 - a;
min.type min.f32 d, a, b d=(a<b)? a:b; floating selects non-NaN
max.type max.f32 d, a, b d=(a>b)? a:b; floating selects non-NaN
setp.cmp.type setp.1t.f32 p, a, b p=(a<b); compare and set predicate
numeric .cmp = eq, ne, 1t, le, gt, ge; unordered cmp = equ, neu, Ttu, Teu, gtu, geu, num, nan
mov.type mov.b32 d, a d = a; move
selp.type selp.f32 d, a, b, p d = p? a: b; select with predicate
cvt.dtype.atype cvt.f32.s32 d, a d = convert(a); convert atype to dtype
special .type = .f32 (some .f64)
rcp.type rcp.f32 d, a d=1/a; reciprocal
sqrt.type sqrt.f32 d, a d = sqrt(a); square root
Special rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root
Function sin.type sin.f32 d, a d = sin(a); sine
cos.type cos.f32 d, a d = cos(a); cosine
1g2.type 192.f32 d, a d = Tog(a)/Tog(2) binary logarithm
ex2.type ex2.f32 d, a d =2 ** a; binary exponential
logic.type = .pred,.b32, .b64
and.type and.b32 d, a, b d=a & b;
or.type or.b32 d, a, b d=a]| b
Logical xor.type xor.b32 d, a, b d=a" by
not.type not.b32 d, a, b d = ~a; one’s complement
cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not
shl.type sh1.b32 d, a, b d = a << b; shift left
shr.type shr.s32 d, a, b d =a > by shift right
memory.space = .global, .shared, .local, .const; .type = .b8, .u8, .s8, .bl6, .b32, .b64
1d.space.type 1d.global.bh32 d, [a+off] d = *(a+off); load from memory space
Memory st.space.type st.shared.b32 [d+off], a *(d+off) = a; store to memory space
Access tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup
atom.global.add.u32 d,[a], b atomic { d = *a; *a atomic read-modify-write
atom.spc.op.type atom.global.cas.b32 d,[a], b, cop(*a, b); } operation
atom.op = and, or, xor, add, min, max, exch, cas; .spc = .global; .type .b32
branch @p bra target if (p) goto target; conditional branch
Control call call (ret), func, (params) ret = func(params); call function
Flow ret ret return; return from function call
bar.sync bar.sync d wait for threads barrier synchronization
exit exit exit; terminate thread execution

Figure 4.17 Basic PTX GPU thread instructions.

300 Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

The following sequence of PTX instructions is for one iteration of our
DAXPY loop on page 289:

sh1.u32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 2°%)
add.u32 R8, R8, threadIdx ; R8 = i = my CUDA Thread ID

sh1.u32 R8, R8, 3 ; byte offset

1d.global.f64 RDO, [X+R8] ; RDO = X[i]

1d.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 RDO, RDO, RD4 ; Product in RDO = RDO * RD4 (scalar a)
add.f64 RDO, RDO, RD2 5 Sum in RDO = RDO + RD2 (Y[i])
st.global.f64 [Y+R8], RDO ; Y[i] = sum (X[i]*a + Y[i])

As demonstrated above, the CUDA programming model assigns one CUDA
Thread to each loop iteration and offers a unique identifier number to each thread
block (bTockIdx) and one to each CUDA Thread within a block (threadIdx).
Thus, it creates 8192 CUDA Threads and uses the unique number to address each
element in the array, so there is no incrementing or branching code. The first three
PTX instructions calculate that unique element byte offset in R8, which is added
to the base of the arrays. The following PTX instructions load two double-preci-
sion floating-point operands, multiply and add them, and store the sum. (We’ll
describe the PTX code corresponding to the CUDA code "if (i < n)" below.)
Note that unlike vector architectures, GPUs don’t have separate instructions
for sequential data transfers, strided data transfers, and gather-scatter data trans-
fers. All data transfers are gather-scatter! To regain the efficiency of sequential
(unit-stride) data transfers, GPUs include special Address Coalescing hardware
to recognize when the SIMD Lanes within a thread of SIMD instructions are col-
lectively issuing sequential addresses. That runtime hardware then notifies the
Memory Interface Unit to request a block transfer of 32 sequential words. To get
this important performance improvement, the GPU programmer must ensure that
adjacent CUDA Threads access nearby addresses at the same time that can be
coalesced into one or a few memory or cache blocks, which our example does.

Conditional Branching in GPUs

Just like the case with unit-stride data transfers, there are strong similarities
between how vector architectures and GPUs handle IF statements, with the for-
mer implementing the mechanism largely in software with limited hardware sup-
port and the latter making use of even more hardware. As we shall see, in
addition to explicit predicate registers, GPU branch hardware uses internal
masks, a branch synchronization stack, and instruction markers to manage when
a branch diverges into multiple execution paths and when the paths converge.

At the PTX assembler level, control flow of one CUDA thread is described by
the PTX instructions branch, call, return, and exit, plus individual per-thread-lane
predication of each instruction, specified by the programmer with per-thread-lane
1-bit predicate registers. The PTX assembler analyzes the PTX branch graph and
optimizes it to the fastest GPU hardware instruction sequence.

4.4 Graphics Processing Units 301

At the GPU hardware instruction level, control flow includes branch, jump,
jump indexed, call, call indexed, return, exit, and special instructions that manage
the branch synchronization stack. GPU hardware provides each SIMD thread
with its own stack; a stack entry contains an identifier token, a target instruction
address, and a target thread-active mask. There are GPU special instructions that
push stack entries for a SIMD thread and special instructions and instruction
markers that pop a stack entry or unwind the stack to a specified entry and branch
to the target instruction address with the target thread-active mask. GPU hard-
ware instructions also have individual per-lane predication (enable/disable),
specified with a 1-bit predicate register for each lane.

The PTX assembler typically optimizes a simple outer-level IF/THEN/ELSE
statement coded with PTX branch instructions to just predicated GPU instruc-
tions, without any GPU branch instructions. A more complex control flow typi-
cally results in a mixture of predication and GPU branch instructions with special
instructions and markers that use the branch synchronization stack to push a stack
entry when some lanes branch to the target address, while others fall through.
NVIDIA says a branch diverges when this happens. This mixture is also used
when a SIMD Lane executes a synchronization marker or converges, which pops
a stack entry and branches to the stack-entry address with the stack-entry thread-
active mask.

The PTX assembler identifies loop branches and generates GPU branch
instructions that branch to the top of the loop, along with special stack instruc-
tions to handle individual lanes breaking out of the loop and converging the
SIMD Lanes when all lanes have completed the loop. GPU indexed jump and
indexed call instructions push entries on the stack so that when all lanes complete
the switch statement or function call the SIMD thread converges.

A GPU set predicate instruction (setp in the figure above) evaluates the con-
ditional part of the IF statement. The PTX branch instruction then depends on
that predicate. If the PTX assembler generates predicated instructions with no
GPU branch instructions, it uses a per-lane predicate register to enable or disable
each SIMD Lane for each instruction. The SIMD instructions in the threads
inside the THEN part of the IF statement broadcast operations to all the SIMD
Lanes. Those lanes with the predicate set to one perform the operation and store
the result, and the other SIMD Lanes don’t perform an operation or store a result.
For the ELSE statement, the instructions use the complement of the predicate
(relative to the THEN statement), so the SIMD Lanes that were idle now perform
the operation and store the result while their formerly active siblings don’t. At the
end of the ELSE statement, the instructions are unpredicated so the original com-
putation can proceed. Thus, for equal length paths, an IF-THEN-ELSE operates
at 50% efficiency.

IF statements can be nested, hence the use of a stack, and the PTX assembler
typically generates a mix of predicated instructions and GPU branch and special
synchronization instructions for complex control flow. Note that deep nesting can
mean that most SIMD Lanes are idle during execution of nested conditional state-
ments. Thus, doubly nested IF statements with equal-length paths run at 25% effi-
ciency, triply nested at 12.5% efficiency, and so on. The analogous case would be
a vector processor operating where only a few of the mask bits are ones.

302

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Dropping down a level of detail, the PTX assembler sets a “branch synchro-
nization” marker on appropriate conditional branch instructions that pushes the
current active mask on a stack inside each SIMD thread. If the conditional branch
diverges the (some lanes take the branch, some fall through), it pushes a stack
entry and sets the current internal active mask based on the condition. A branch
synchronization marker pops the diverged branch entry and flips the mask bits
before the ELSE portion. At the end of the IF statement, the PTX assembler adds
another branch synchronization marker that pops the prior active mask off the
stack into the current active mask.

If all the mask bits are set to one, then the branch instruction at the end of the
THEN skips over the instructions in the ELSE part. There is a similar optimiza-
tion for the THEN part in case all the mask bits are zero, as the conditional
branch jumps over the THEN instructions. Parallel IF statements and PTX
branches often use branch conditions that are unanimous (all lanes agree to fol-
low the same path), such that the SIMD thread does not diverge into different
individual lane control flow. The PTX assembler optimizes such branches to skip
over blocks of instructions that are not executed by any lane of a SIMD thread.
This optimization is useful in error condition checking, for example, where the
test must be made but is rarely taken.

The code for a conditional statement similar to the one in Section 4.2 is

if (X[i] != 0)
X[i] = X[i] - Y[il;
else X[i] = Z[i];

This IF statement could compile to the following PTX instructions (assuming
that R8 already has the scaled thread ID), with *Push, *Comp, *Pop indicating the
branch synchronization markers inserted by the PTX assembler that push the old
mask, complement the current mask, and pop to restore the old mask:

1d.global.f64 RDO, [X+R8] ; RDO = X[i]

setp.neq.s32 P1, RDO, #0 ; Pl is predicate register 1

@!P1, bra ELSE1l, *Push ; Push old mask, set new mask bits
; if P1 false, go to ELSE1

1d.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

sub.f64 RDO, RDO, RD2 ; Difference in RDO

st.global.f64 [X+R8], RDO ; X[i] = RDO

OP1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1
ELSE1: 1d.global.f64 RDO, [Z+R8] ; RDO = Z[i]
st.global.f64 [X+R8], RDO ; X[i] = RDO

ENDIF1: <next instruction>, *Pop ; pop to restore old mask

Once again, normally all instructions in the IF-THEN-ELSE statement are exe-
cuted by a SIMD Processor. It’s just that only some of the SIMD Lanes are
enabled for the THEN instructions and some lanes for the ELSE instructions. As
mentioned above, in the surprisingly common case that the individual lanes agree
on the predicated branch—such as branching on a parameter value that is the

4.4 Graphics Processing Units 303

same for all lanes so that all active mask bits are zeros or all are ones—the branch
skips the THEN instructions or the ELSE instructions.

This flexibility makes it appear that an element has its own program counter;
however, in the slowest case only one SIMD Lane could store its result every two
clock cycles, with the rest idle. The analogous slowest case for vector architec-
tures is operating with only one mask bit set to one. This flexibility can lead
naive GPU programmers to poor performance, but it can be helpful in the early
stages of program development. Keep in mind, however, that the only choice for
a SIMD Lane in a clock cycle is to perform the operation specified in the PTX
instruction or be idle; two SIMD Lanes cannot simultaneously execute different
instructions.

This flexibility also helps explain the name CUDA Thread given to each
element in a thread of SIMD instructions, since it gives the illusion of acting inde-
pendently. A naive programmer may think that this thread abstraction means GPUs
handle conditional branches more gracefully. Some threads go one way, the rest go
another, which seems true as long as you’re not in a hurry. Each CUDA Thread is
executing the same instruction as every other thread in the thread block or it is idle.
This synchronization makes it easier to handle loops with conditional branches
since the mask capability can turn off SIMD Lanes and it detects the end of the
loop automatically.

The resulting performance sometimes belies that simple abstraction. Writing
programs that operate SIMD Lanes in this highly independent MIMD mode is
like writing programs that use lots of virtual address space on a computer with a
smaller physical memory. Both are correct, but they may run so slowly that the
programmer could be displeased with the result.

Vector compilers could do the same tricks with mask registers as GPUs
do in hardware, but it would involve scalar instructions to save, complement,
and restore mask registers. Conditional execution is a case where GPUs do in
runtime hardware what vector architectures do at compile time. One optimi-
zation available at runtime for GPUs but not at compile time for vector
architectures is to skip the THEN or ELSE parts when mask bits are all zeros
or all ones.

Thus, the efficiency with which GPUs execute conditional statements comes
down to how frequently the branches would diverge. For example, one calcula-
tion of eigenvalues has deep conditional nesting, but measurements of the code
show that around 82% of clock cycle issues have between 29 and 32 out of the 32
mask bits set to one, so GPUs execute this code more efficiently than one might
expect.

Note that the same mechanism handles the strip-mining of vector loops—
when the number of elements doesn’t perfectly match the hardware. The example
at the beginning of this section shows that an IF statement checks to see if this
SIMD Lane element number (stored in R8 in the example above) is less than the
limit (i < n), and it sets masks appropriately.

304

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

NVIDIA GPU Memory Structures

Figure 4.18 shows the memory structures of an NVIDIA GPU. Each SIMD Lane
in a multithreaded SIMD Processor is given a private section of off-chip DRAM,
which we call the Private Memory. It is used for the stack frame, for spilling
registers, and for private variables that don’t fit in the registers. SIMD Lanes do
not share Private Memories. Recent GPUs cache this Private Memory in the L1
and L2 caches to aid register spilling and to speed up function calls.

We call the on-chip memory that is local to each multithreaded SIMD Proces-
sor Local Memory. It is shared by the SIMD Lanes within a multithreaded SIMD
Processor, but this memory is not shared between multithreaded SIMD Proces-
sors. The multithreaded SIMD Processor dynamically allocates portions of the
Local Memory to a thread block when it creates the thread block, and frees the
memory when all the threads of the thread block exit. That portion of Local
Memory is private to that thread block.

Finally, we call the off-chip DRAM shared by the whole GPU and all thread
blocks GPU Memory. Our vector multiply example only used GPU Memory.

CUDA Thread

<—>| Per-CUDA Thread Private Memory

Thread block

Per-Block
Local Memory
Grid 0 Sequence
<<y < ===
— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1
< ﬁ KL 0 |KR\
””” 55 || oo S !

Figure 4.18 GPU Memory structures. GPU Memory is shared by all Grids (vectorized
loops), Local Memory is shared by all threads of SIMD instructions within a thread block
(body of a vectorized loop), and Private Memory is private to a single CUDA Thread.

4.4 Graphics Processing Units 305

The system processor, called the host, can read or write GPU Memory. Local
Memory is unavailable to the host, as it is private to each multithreaded SIMD
processor. Private Memories are unavailable to the host as well.

Rather than rely on large caches to contain the whole working sets of an
application, GPUs traditionally use smaller streaming caches and rely on
extensive multithreading of threads of SIMD instructions to hide the long latency
to DRAM, since their working sets can be hundreds of megabytes. Given the use
of multithreading to hide DRAM latency, the chip area used for caches in system
processors is spent instead on computing resources and on the large number of
registers to hold the state of many threads of SIMD instructions. In contrast, as
mentioned above, vector loads and stores amortize the latency across many ele-
ments, since they only pay the latency once and then pipeline the rest of the
accesses.

While hiding memory latency is the underlying philosophy, note that the lat-
est GPUs and vector processors have added caches. For example, the recent
Fermi architecture has added caches, but they are thought of as either bandwidth
filters to reduce demands on GPU Memory or as accelerators for the few vari-
ables whose latency cannot be hidden by multithreading. Thus, local memory for
stack frames, function calls, and register spilling is a good match to caches, since
latency matters when calling a function. Caches also save energy, since on-chip
cache accesses take much less energy than accesses to multiple, external DRAM
chips.

To improve memory bandwidth and reduce overhead, as mentioned above,
PTX data transfer instructions coalesce individual parallel thread requests from
the same SIMD thread together into a single memory block request when the
addresses fall in the same block. These restrictions are placed on the GPU pro-
gram, somewhat analogous to the guidelines for system processor programs to
engage hardware prefetching (see Chapter 2). The GPU memory controller will
also hold requests and send ones to the same open page together to improve
memory bandwidth (see Section 4.6). Chapter 2 describes DRAM in sufficient
detail to understand the potential benefits of grouping related addresses.

Innovations in the Fermi GPU Architecture

The multithreaded SIMD Processor of Fermi is more complicated than the sim-
plified version in Figure 4.14. To increase hardware utilization, each SIMD Pro-
cessor has two SIMD Thread Schedulers and two instruction dispatch units. The
dual SIMD Thread Scheduler selects two threads of SIMD instructions and issues
one instruction from each to two sets of 16 SIMD Lanes, 16 load/store units, or 4
special function units. Thus, two threads of SIMD instructions are scheduled
every two clock cycles to any of these collections. Since the threads are indepen-
dent, there is no need to check for data dependences in the instruction stream.
This innovation would be analogous to a multithreaded vector processor that can
issue vector instructions from two independent threads.

Figure 4.19 shows the Dual Scheduler issuing instructions and Figure 4.20
shows the block diagram of the multithreaded SIMD Processor of a Fermi GPU.

306 Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

SIMD thread scheduler SIMD thread scheduler

I A

SIMD thread 8 instruction 11

PV

SIMD thread 9 instruction 11

SIMD thread 2 instruction 42 SIMD thread 3 instruction 33

SIMD thread 14 instruction 95

R 5D throec 14 structon 95
£ .
[n

SIMD thread 15 instruction 95

SIMD thread 8 instruction 12 SIMD thread 9 instruction 12

SIMD thread 3 instruction 34

SIMD thread 14 instruction 96

SIMD thread 2 instruction 43 SIMD thread 15 instruction 96

Figure 4.19 Block Diagram of Fermi’s Dual SIMD Thread Scheduler. Compare this
design to the single SIMD Thread Design in Figure 4.16.

Fermi introduces several innovations to bring GPUs much closer to mainstream

system processors than Tesla and previous generations of GPU architectures:

Fast Double-Precision Floating-Point Arithmetic—Fermi matches the rela-
tive double-precision speed of conventional processors of roughly half the
speed of single precision versus a tenth the speed of single precision in the
prior Tesla generation. That is, there is no order of magnitude temptation to
use single precision when the accuracy calls for double precision. The peak
double-precision performance grew from 78 GFLOP/sec in the predecessor
GPU to 515 GFLOP/sec when using multiply-add instructions.

Caches for GPU Memory—While the GPU philosophy is to have enough
threads to hide DRAM latency, there are variables that are needed across
threads, such as local variables mentioned above. Fermi includes both an L1
Data Cache and L1 Instruction Cache for each multithreaded SIMD Processor
and a single 768 KB L2 cache shared by all multithreaded SIMD Processors in
the GPU. As mentioned above, in addition to reducing bandwidth pressure on
GPU Memory, caches can save energy by staying on-chip rather than going
off-chip to DRAM. The L1 cache actually cohabits the same SRAM as Local
Memory. Fermi has a mode bit that offers the choice of using 64 KB of SRAM
as a 16 KB L1 cache with 48 KB of Local Memory or as a 48 KB L1 cache
with 16 KB of Local Memory. Note that the GTX 480 has an inverted memory
hierarchy: The size of the aggregate register file is 2 MB, the size of all the L1
data caches is between 0.25 and 0.75 MB (depending on whether they are 16
KB or 48 KB), and the size of the L2 cache is 0.75 MB. It will be interesting to
see the impact of this inverted ratio on GPU applications.

64-Bit Addressing and a Unified Address Space for All GPU Memories—This
innovation makes it much easier to provide the pointers needed for C and C++.

4.4 Graphics Processing Units 307

Fermi streaming multiprocessor (SM)

Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Fermi GPU.
Each SIMD Lane has a pipelined floating-point unit, a pipelined integer unit, some logic
for dispatching instructions and operands to these units, and a queue for holding
results. The four Special Function units (SFUs) calculate functions such as square roots,
reciprocals, sines, and cosines.

m Error Correcting Codes to detect and correct errors in memory and registers
(see Chapter 2)—To make long-running applications dependable on thou-
sands of servers, ECC is the norm in the datacenter (see Chapter 6).

m Faster Context Switching—Given the large state of a multithreaded SIMD
Processor, Fermi has hardware support to switch contexts much more
quickly. Fermi can switch in less than 25 microseconds, about 10x faster than
its predecessor can.

308

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

m Faster Atomic Instructions—First included in the Tesla architecture, Fermi
improves performance of Atomic instructions by 5 to 20x, to a few microsec-
onds. A special hardware unit associated with the L2 cache, not inside the
multithreaded SIMD Processors, handles atomic instructions.

Similarities and Differences between Vector
Architectures and GPUs

As we have seen, there really are many similarities between vector architectures
and GPUs. Along with the quirky jargon of GPUs, these similarities have con-
tributed to the confusion in architecture circles about how novel GPUs really are.
Now that you’ve seen what is under the covers of vector computers and GPUs,
you can appreciate both the similarities and the differences. Since both architec-
tures are designed to execute data-level parallel programs, but take different
paths, this comparison is in depth to try to gain better understanding of what is
needed for DLP hardware. Figure 4.21 shows the vector term first and then the
closest equivalent in a GPU.

A SIMD Processor is like a vector processor. The multiple SIMD Processors
in GPUs act as independent MIMD cores, just as many vector computers have
multiple vector processors. This view would consider the NVIDIA GTX 480 as a
15-core machine with hardware support for multithreading, where each core has
16 lanes. The biggest difference is multithreading, which is fundamental to GPUs
and missing from most vector processors.

Looking at the registers in the two architectures, the VMIPS register file
holds entire vectors—that is, a contiguous block of 64 doubles. In contrast, a sin-
gle vector in a GPU would be distributed across the registers of all SIMD Lanes.
A VMIPS processor has 8 vector registers with 64 elements, or 512 elements
total. A GPU thread of SIMD instructions has up to 64 registers with 32 elements
each, or 2048 elements. These extra GPU registers support multithreading.

Figure 4.22 is a block diagram of the execution units of a vector processor on
the left and a multithreaded SIMD Processor of a GPU on the right. For peda-
gogic purposes, we assume the vector processor has four lanes and the multi-
threaded SIMD Processor also has four SIMD Lanes. This figure shows that the
four SIMD Lanes act in concert much like a four-lane vector unit, and that a
SIMD Processor acts much like a vector processor.

In reality, there are many more lanes in GPUs, so GPU “chimes” are shorter.
While a vector processor might have 2 to 8 lanes and a vector length of, say,
32—making a chime 4 to 16 clock cycles—a multithreaded SIMD Processor
might have 8 or 16 lanes. A SIMD thread is 32 elements wide, so a GPU chime
would just be 2 or 4 clock cycles. This difference is why we use “SIMD Proces-
sor” as the more descriptive term because it is closer to a SIMD design than it is
to a traditional vector processor design.

The closest GPU term to a vectorized loop is Grid, and a PTX instruction is
the closest to a vector instruction since a SIMD Thread broadcasts a PTX instruc-
tion to all SIMD Lanes.

4.4 Graphics Processing Units 309

<
e
m

Vector term

Closest CUDA/NVIDIA
GPU term

Comment

Program
abstractions

Vectorized Loop

Grid

Concepts are similar, with the GPU using the less
descriptive term.

Chime

Since a vector instruction (PTX Instruction) takes
just two cycles on Fermi and four cycles on Tesla
to complete, a chime is short in GPUs.

Machine objects

Vector Instruction

PTX Instruction

A PTX instruction of a SIMD thread is broadcast
to all SIMD Lanes, so it is similar to a vector
instruction.

Gather/Scatter

Global load/store
(1d.global/st.global)

All GPU loads and stores are gather and scatter, in
that each SIMD Lane sends a unique address. It’s
up to the GPU Coalescing Unit to get unit-stride
performance when addresses from the SIMD
Lanes allow it.

Mask Registers

Predicate Registers and
Internal Mask Registers

Vector mask registers are explicitly part of the
architectural state, while GPU mask registers are
internal to the hardware. The GPU conditional
hardware adds a new feature beyond predicate
registers to manage masks dynamically.

Processing and memory hardware

Vector Processor

Multithreaded SIMD
Processor

These are similar, but SIMD Processors tend to
have many lanes, taking a few clock cycles per
lane to complete a vector, while vector
architectures have few lanes and take many
cycles to complete a vector. They are also
multithreaded where vectors usually are not.

Control Processor

Thread Block Scheduler

The closest is the Thread Block Scheduler that
assigns Thread Blocks to a multithreaded SIMD
Processor. But GPUs have no scalar-vector
operations and no unit-stride or strided data
transfer instructions, which Control Processors
often provide.

Scalar Processor

System Processor

Because of the lack of shared memory and the
high latency to communicate over a PCI bus
(1000s of clock cycles), the system processor in a
GPU rarely takes on the same tasks that a scalar
processor does in a vector architecture.

Vector Lane

SIMD Lane

Both are essentially functional units with
registers.

Vector Registers

SIMD Lane Registers

The equivalent of a vector register is the same
register in all 32 SIMD Lanes of a multithreaded
SIMD Processor running a thread of SIMD
instructions. The number of registers per SIMD
thread is flexible, but the maximum is 64, so the
maximum number of vector registers is 64.

Main Memory

GPU Memory

Memory for GPU versus System memory in
vector case.

Figure 4.21 GPU equivalent to vector terms.

310 Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

——

Instruction

cache

[—]

[PC_] [SIMD Thread Scheduler|

L

m Instruction
cache Dispatch unit
v PC
Instruction register Instruction register

' [Maskl
Convrol | el gl Al
processer
[1w [T+ [Tw

Vector registers

0 1 2 3
4 5 6 7 1 1 1 1
12
. . . . o
3 . 3 . k2] 3 . 3 .
(@]
. g
o
60 61 62 63 1023 1023 1023 1023
vi vi v4 vt vi vi vt vi
Vector load/store unit SIMD Load/store unit
‘ 2 S 2 S 2 S 7.
Address coalescing unit
vE
Memorl)jr::terface Memory interface unit
vt vi

Figure 4.22 A vector processor with four lanes on the left and a multithreaded SIMD Processor of a GPU with four
SIMD Lanes on the right. (GPUs typically have 8 to 16 SIMD Lanes.) The control processor supplies scalar operands for
scalar-vector operations, increments addressing for unit and non-unit stride accesses to memory, and performs other
accounting-type operations. Peak memory performance only occurs in a GPU when the Address Coalescing unit can
discover localized addressing. Similarly, peak computational performance occurs when all internal mask bits are set
identically. Note that the SIMD Processor has one PC per SIMD thread to help with multithreading.

With respect to memory access instructions in the two architectures, all GPU
loads are gather instructions and all GPU stores are scatter instructions. If data
addresses of CUDA Threads refer to nearby addresses that fall in the same cache/
memory block at the same time, the Address Coalescing Unit of the GPU will
ensure high memory bandwidth. The explicit unit-stride load and store instructions
of vector architectures versus the implicit unit stride of GPU programming is why
writing efficient GPU code requires that programmers think in terms of SIMD oper-
ations, even though the CUDA programming model looks like MIMD. As CUDA
Threads can generate their own addresses, strided as well as gather-scatter, address-
ing vectors are found in both vector architectures and GPUs.

As we mentioned several times, the two architectures take very different
approaches to hiding memory latency. Vector architectures amortize it across all
the elements of the vector by having a deeply pipelined access so you pay the

4.4 Graphics Processing Units 311

latency only once per vector load or store. Hence, vector loads and stores are like
a block transfer between memory and the vector registers. In contrast, GPUs hide
memory latency using multithreading. (Some researchers are investigating add-
ing multithreading to vector architectures to try to capture the best of both
worlds.)

With respect to conditional branch instructions, both architectures implement
them using mask registers. Both conditional branch paths occupy time and/or
space even when they do not store a result. The difference is that the vector com-
piler manages mask registers explicitly in software while the GPU hardware and
assembler manages them implicitly using branch synchronization markers and an
internal stack to save, complement, and restore masks.

As mentioned above, the conditional branch mechanism of GPUs gracefully
handles the strip-mining problem of vector architectures. When the vector length
is unknown at compile time, the program must calculate the modulo of the appli-
cation vector length and the maximum vector length and store it in the vector
length register. The strip-minded loop then resets the vector length register to the
maximum vector length for the rest of the loop. This case is simpler with GPUs
since they just iterate the loop until all the SIMD Lanes reach the loop bound. On
the last iteration, some SIMD Lanes will be masked off and then restored after
the loop completes.

The control processor of a vector computer plays an important role in the
execution of vector instructions. It broadcasts operations to all the vector lanes
and broadcasts a scalar register value for vector-scalar operations. It also does
implicit calculations that are explicit in GPUs, such as automatically incre-
menting memory addresses for unit-stride and non-unit-stride loads and stores.
The control processor is missing in the GPU. The closest analogy is the Thread
Block Scheduler, which assigns Thread Blocks (bodies of vector loop) to multi-
threaded SIMD Processors. The runtime hardware mechanisms in a GPU that
both generate addresses and then discover if they are adjacent, which is com-
monplace in many DLP applications, are likely less power efficient than using
a control processor.

The scalar processor in a vector computer executes the scalar instructions of a
vector program; that is, it performs operations that would be too slow to do in the
vector unit. Although the system processor that is associated with a GPU is the
closest analogy to a scalar processor in a vector architecture, the separate address
spaces plus transferring over a PCle bus means thousands of clock cycles of
overhead to use them together. The scalar processor can be slower than a vector
processor for floating-point computations in a vector computer, but not by the
same ratio as the system processor versus a multithreaded SIMD Processor
(given the overhead).

Hence, each “vector unit” in a GPU must do computations that you would
expect to do on a scalar processor in a vector computer. That is, rather than calcu-
late on the system processor and communicate the results, it can be faster to dis-
able all but one SIMD Lane using the predicate registers and built-in masks and
do the scalar work with one SIMD Lane. The relatively simple scalar processor
in a vector computer is likely to be faster and more power efficient than the GPU

312

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

solution. If system processors and GPUs become more closely tied together in
the future, it will be interesting to see if system processors can play the same role
as scalar processors do for vector and Multimedia SIMD architectures.

Similarities and Differences between Multimedia SIMD
Computers and GPUs

At a high level, multicore computers with Multimedia SIMD instruction exten-
sions do share similarities with GPUs. Figure 4.23 summarizes the similarities
and differences.

Both are multiprocessors whose processors use multiple SIMD lanes,
although GPUs have more processors and many more lanes. Both use hardware
multithreading to improve processor utilization, although GPUs have hardware
support for many more threads. Recent innovations in GPUs mean that now both
have similar performance ratios between single-precision and double-precision
floating-point arithmetic. Both use caches, although GPUs use smaller streaming
caches and multicore computers use large multilevel caches that try to contain
whole working sets completely. Both use a 64-bit address space, although the
physical main memory is much smaller in GPUs. While GPUs support memory
protection at the page level, they do not support demand paging.

In addition to the large numerical differences in processors, SIMD lanes,
hardware thread support, and cache sizes, there are many architectural differ-
ences. The scalar processor and Multimedia SIMD instructions are tightly inte-
grated in traditional computers; they are separated by an I/O bus in GPUs, and
they even have separate main memories. The multiple SIMD processors in a
GPU use a single address space, but the caches are not coherent as they are in tra-
ditional multicore computers. Unlike GPUs, multimedia SIMD instructions do
not support gather-scatter memory accesses, which Section 4.7 shows is a signif-
icant omission.

Feature Multicore with SIMD GPU
SIMD processors 4to8 8to 16
SIMD lanes/processor 2t04 8to 16
Multithreading hardware support for SIMD threads 2to4 16 to 32
Typical ratio of single-precision to double-precision performance 2:1 2:1
Largest cache size 8§ MB 0.75 MB
Size of memory address 64-bit 64-bit
Size of main memory 8 GB to 256 GB 4to 6 GB
Memory protection at level of page Yes Yes
Demand paging Yes No
Integrated scalar processor/SIMD processor Yes No
Cache coherent Yes No

Figure 4.23 Similarities and differences between multicore with Multimedia SIMD extensions and recent GPUs.

4.4 Graphics Processing Units

Summary

313

Now that the veil has been lifted, we can see that GPUs are really just multi-
threaded SIMD processors, although they have more processors, more lanes per
processor, and more multithreading hardware than do traditional multicore com-
puters. For example, the Fermi GTX 480 has 15 SIMD processors with 16 lanes
per processor and hardware support for 32 SIMD threads. Fermi even embraces
instruction-level parallelism by issuing instructions from two SIMD threads to
two sets of SIMD lanes. They also have less cache memory—Fermi’s L2 cache is
0.75 megabyte—and it is not coherent with the distant scalar processor.

More Official
descriptive CUDA/
nameusedin NVIDIA Book definition and Official CUDA/NVIDIA

Type this book term AMD and OpenCL terms definition
Vectorizable Grid A vectorizable loop, executed on the A grid is an array of thread
loop GPU, made up of one or more “Thread blocks that can execute

Blocks” (or bodies of vectorized loop) concurrently, sequentially, or a
that can execute in parallel. OpenCL mixture.

name is “index range.” AMD name is

“NDRange”.

" Body of Thread A vectorized loop executed on a A thread block is an array of

5 Vectorized Block multithreaded SIMD Processor, made up ~ CUDA Threads that execute

o loop of one or more threads of SIMD concurrently together and can

g instructions. These SIMD Threads can cooperate and communicate via

4 communicate via Local Memory. AMD Shared Memory and barrier

© and OpenCL name is “work group”. synchronization. A Thread

E Block has a Thread Block ID

’gn within its Grid.

e Sequence of CUDA A vertical cut of a thread of SIMD A CUDA Thread is a lightweight
SIMD Lane Thread instructions corresponding to one element thread that executes a sequential
operations executed by one SIMD Lane. Result is program and can cooperate with

stored depending on mask. AMD and other CUDA Threads executing
OpenCL call a CUDA Thread a “work in the same Thread Block. A
item.” CUDA Thread has a thread ID
within its Thread Block.
A Thread of Warp A traditional thread, but it contains just A warpis a set of parallel CUDA

5 SIMD SIMD instructions that are executed ona Threads (e.g., 32) that execute

RT3 instructions multithreaded SIMD Processor. Results the same instruction togetherin a

8 are stored depending on a per-element multithreaded SIMT/SIMD

g mask. AMD name is “wavefront.” Processor.

S SIMD PTX A single SIMD instruction executed A PTX instruction specifies an

g instruction instruction across the SIMD Lanes. AMD name is instruction executed by a CUDA

“AMDIL” or “FSAIL” instruction.

Thread.

Figure 4.24 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. OpenCL

names are given in the book definition.

314

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

More Official
descriptive CUDA/
nameusedin NVIDIA Book definition and Official CUDA/NVIDIA
Type this book term AMD and OpenCL terms definition
Multithreaded ~ Streaming Multithreaded SIMD Processor thatexecutes A streaming multiprocessor
SIMD multi- thread of SIMD instructions, independent of ~ (SM) is a multithreaded SIMT/
processor processor Other SIMD Processors. Both AMD and SIMD Processor that executes
OpenCL call it a “compute unit.” However, = warps of CUDA Threads. A
the CUDA Programmer writes program for ~ SIMT program specifies the
one lane rather than for a “vector” of execution of one CUDA
multiple SIMD Lanes. Thread, rather than a vector of
multiple SIMD Lanes.
g Thread Giga Assigns multiple bodies of vectorized loop Distributes and schedules
= block thread to multithreaded SIMD Processors. AMD thread blocks of a grid to
s scheduler engine name is “Ultra-Threaded Dispatch Engine”. streaming multiprocessors as
2 resources become available.
S SIMD Warp Hardware unit that schedules and issues A warp scheduler in a
ﬁ Thread scheduler threads of SIMD instructions when they are streaming multiprocessor
Y scheduler ready to execute; includes a scoreboard to schedules warps for execution
& track SIMD Thread execution. AMD nameis ~ when their next instruction is
“Work Group Scheduler”. ready to execute.
SIMD Thread Hardware SIMD Lane that executes the A thread processor is a
Lane processor operations in a thread of SIMD instructions datapath and register file
on a single element. Results are stored portion of a streaming
depending on mask. OpenCL calls it a multiprocessor that executes
“processing element.” AMD name is also operations for one or more
“SIMD Lane”. lanes of a warp.
GPU Global DRAM memory accessible by all Global memory is accessible
Memory Memory multithreaded SIMD Processors in a GPU. by all CUDA Threads in any
OpenCL calls it “Global Memory.” thread block in any grid;
implemented as a region of
DRAM, and may be cached.
Private Local Portion of DRAM memory private to each Private “thread-local” memory
Memory Memory SIMD Lane. Both AMD and OpenCL callit ~ for a CUDA Thread;
g “Private Memory.” implemented as a cached
2 region of DRAM.
,'i-, Local Shared Fast local SRAM for one multithreaded Fast SRAM memory shared by
-‘; Memory Memory SIMD Processor, unavailable to other SIMD the CUDA Threads composing
5 Processors. OpenCL calls it “Local a thread block, and private to
€ Memory.” AMD calls it “Group Memory”. that thread block. Used for
(7 communication among CUDA
= Threads in a thread block at
barrier synchronization points.
SIMD Lane Registers Registers in a single SIMD Lane allocated Private registers for a CUDA
registers across body of vectorized loop. AMD also Thread; implemented as

calls them “Registers”.

multithreaded register file for
certain lanes of several warps
for each thread processor.

Figure 4.25 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. Note that our
descriptive terms “Local Memory” and “Private Memory” use the OpenCL terminology. NVIDIA uses SIMT, single-
instruction multiple-thread, rather than SIMD, to describe a streaming multiprocessor. SIMT is preferred over SIMD
because the per-thread branching and control flow are unlike any SIMD machine.

4.5

4.5 Detecting and Enhancing Loop-Level Parallelism 315

The CUDA programming model wraps up all these forms of parallelism
around a single abstraction, the CUDA Thread. Thus, the CUDA programmer
can think of programming thousands of threads, although they are really execut-
ing each block of 32 threads on the many lanes of the many SIMD Processors.
The CUDA programmer who wants good performance keeps in mind that these
threads are blocked and executed 32 at a time and that addresses need to be to
adjacent addresses to get good performance from the memory system.

Although we’ve used CUDA and the NVIDIA GPU in this section, rest
assured that the same ideas are found in the OpenCL programming language and
in GPUs from other companies.

Now that you understand better how GPUs work, we reveal the real jargon.
Figures 4.24 and 4.25 match the descriptive terms and definitions of this section
with the official CUDA/NVIDIA and AMD terms and definitions. We also include
the OpenCL terms. We believe the GPU learning curve is steep in part because of
using terms such as “Streaming Multiprocessor” for the SIMD Processor, “Thread
Processor” for the SIMD Lane, and “Shared Memory” for Local Memory—
especially since Local Memory is not shared between SIMD Processors! We hope
that this two-step approach gets you up that curve quicker, even if it’s a bit indirect.

Detecting and Enhancing Loop-Level Parallelism

Loops in programs are the fountainhead of many of the types of parallelism we
discussed above and in Chapter 5. In this section, we discuss compiler technol-
ogy for discovering the amount of parallelism that we can exploit in a program as
well as hardware support for these compiler techniques. We define precisely
when a loop is parallel (or vectorizable), how dependence can prevent a loop
from being parallel, and techniques for eliminating some types of dependences.
Finding and manipulating loop-level parallelism is critical to exploiting both
DLP and TLP, as well as the more aggressive static ILP approaches (e.g., VLIW)
that we examine in Appendix H.

Loop-level parallelism is normally analyzed at the source level or close to it,
while most analysis of ILP is done once instructions have been generated by the
compiler. Loop-level analysis involves determining what dependences exist
among the operands in a loop across the iterations of that loop. For now, we will
consider only data dependences, which arise when an operand is written at some
point and read at a later point. Name dependences also exist and may be removed
by the renaming techniques discussed in Chapter 3.

The analysis of loop-level parallelism focuses on determining whether data
accesses in later iterations are dependent on data values produced in earlier itera-
tions; such dependence is called a loop-carried dependence. Most of the exam-
ples we considered in Chapters 2 and 3 had no loop-carried dependences and,
thus, are loop-level parallel. To see that a loop is parallel, let us first look at the
source representation:

for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

316

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

In this loop, the two uses of x[1] are dependent, but this dependence is within a
single iteration and is not loop carried. There is a loop-carried dependence
between successive uses of i in different iterations, but this dependence involves
an induction variable that can be easily recognized and eliminated. We saw
examples of how to eliminate dependences involving induction variables during
loop unrolling in Section 2.2 of Chapter 2, and we will look at additional exam-
ples later in this section.

Because finding loop-level parallelism involves recognizing structures such
as loops, array references, and induction variable computations, the compiler can
do this analysis more easily at or near the source level, as opposed to the
machine-code level. Let’s look at a more complex example.

Example

Answer

Consider a loop like this one:

for (i=0; i<100; i=i+1) {
A[i+1] = A[i] + C[il; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */
1

Assume that A, B, and C are distinct, nonoverlapping arrays. (In practice, the
arrays may sometimes be the same or may overlap. Because the arrays may be
passed as parameters to a procedure that includes this loop, determining whether
arrays overlap or are identical often requires sophisticated, interprocedural analy-
sis of the program.) What are the data dependences among the statements S1 and
S2 in the loop?

There are two different dependences:

1. S1 uses a value computed by S1 in an earlier iteration, since iteration i com-
putes A[i+1], which is read in iteration i+1. The same is true of S2 for B[]
and B[i+1].

2. S2 uses the value A[i+1] computed by S1 in the same iteration.

These two dependences are different and have different effects. To see how
they differ, let’s assume that only one of these dependences exists at a time.
Because the dependence of statement S1 is on an earlier iteration of S1, this
dependence is loop carried. This dependence forces successive iterations of this
loop to execute in series.

The second dependence (S2 depending on S1) is within an iteration and is not
loop carried. Thus, if this were the only dependence, multiple iterations of the
loop could execute in parallel, as long as each pair of statements in an iteration
were kept in order. We saw this type of dependence in an example in Section 2.2,
where unrolling was able to expose the parallelism. These intra-loop depen-
dences are common; for example, a sequence of vector instructions that uses
chaining exhibits exactly this sort of dependence.

It is also possible to have a loop-carried dependence that does not prevent
parallelism, as the next example shows.

4.5 Detecting and Enhancing Loop-Level Parallelism 317

Example

Answer

Consider a loop like this one:

for (i=0; i<100; i=i+1) {
A[i] = A[i] + B[i]s /* S1 %/
B[i+1] = C[i] + D[il; /* S2 */
}

What are the dependences between S1 and S2? Is this loop parallel? If not, show
how to make it parallel.

Statement S1 uses the value assigned in the previous iteration by statement S2, so
there is a loop-carried dependence between S2 and S1. Despite this loop-carried
dependence, this loop can be made parallel. Unlike the earlier loop, this depen-
dence is not circular; neither statement depends on itself, and although S1
depends on S2, S2 does not depend on S1. A loop is parallel if it can be written
without a cycle in the dependences, since the absence of a cycle means that the
dependences give a partial ordering on the statements.

Although there are no circular dependences in the above loop, it must be
transformed to conform to the partial ordering and expose the parallelism. Two
observations are critical to this transformation:

1. There is no dependence from S1 to S2. If there were, then there would be a
cycle in the dependences and the loop would not be parallel. Since this other
dependence is absent, interchanging the two statements will not affect the
execution of S2.

2. On the first iteration of the loop, statement S2 depends on the value of B[0]
computed prior to initiating the loop.

These two observations allow us to replace the loop above with the following
code sequence:

A[0] = A[0] + B[O];

for (i=0; 1<99; i=1+1) {
B[i+1] = C[i] + D[i];
A[i+1] A[i+1] + B[i+1];

}
B[100] = C[99] + D[99];

The dependence between the two statements is no longer loop carried, so that
iterations of the loop may be overlapped, provided the statements in each itera-
tion are kept in order.

Our analysis needs to begin by finding all loop-carried dependences. This
dependence information is inexact, in the sense that it tells us that such depen-
dence may exist. Consider the following example:

for (i=0;i<100;7=1+1) {

A[i] = B[i] + C[i]
D[i] = A[i] * E[i]

318

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

The second reference to A in this example need not be translated to a load instruc-
tion, since we know that the value is computed and stored by the previous state-
ment; hence, the second reference to A can simply be a reference to the register
into which A was computed. Performing this optimization requires knowing that
the two references are always to the same memory address and that there is no
intervening access to the same location. Normally, data dependence analysis only
tells that one reference may depend on another; a more complex analysis is
required to determine that two references must be to the exact same address. In
the example above, a simple version of this analysis suffices, since the two refer-
ences are in the same basic block.

Often loop-carried dependences are in the form of a recurrence. A recurrence
occurs when a variable is defined based on the value of that variable in an earlier
iteration, often the one immediately preceding, as in the following code
fragment:

for (i=1;i<1003i=i+1) {
Y[i] = Y[i-1] + Y[i];
}

Detecting a recurrence can be important for two reasons: Some architec-
tures (especially vector computers) have special support for executing recur-
rences, and, in an ILP context, it may still be possible to exploit a fair amount of
parallelism.

Finding Dependences

Clearly, finding the dependences in a program is important both to determine
which loops might contain parallelism and to eliminate name dependences. The
complexity of dependence analysis arises also because of the presence of arrays
and pointers in languages such as C or C++, or pass-by-reference parameter
passing in Fortran. Since scalar variable references explicitly refer to a name,
they can usually be analyzed quite easily with aliasing because of pointers and
reference parameters causing some complications and uncertainty in the
analysis.

How does the compiler detect dependences in general? Nearly all dependence
analysis algorithms work on the assumption that array indices are affine. In sim-
plest terms, a one-dimensional array index is affine if it can be written in the form
a X i + b, where a and b are constants and i is the loop index variable. The index
of a multidimensional array is affine if the index in each dimension is affine.
Sparse array accesses, which typically have the form x[y[i]], are one of the
major examples of non-affine accesses.

Determining whether there is a dependence between two references to the
same array in a loop is thus equivalent to determining whether two affine func-
tions can have the same value for different indices between the bounds of the
loop. For example, suppose we have stored to an array element with index value
a X i+ b and loaded from the same array with index value ¢ X i + d, where i is the

4.5 Detecting and Enhancing Loop-Level Parallelism 319

for-loop index variable that runs from m to n. A dependence exists if two condi-
tions hold:

1. There are two iteration indices, j and k, that are both within the limits of the
for loop. Thatis, m<j<n, m<k<n.

2. The loop stores into an array element indexed by a X j + b and later fetches
from that same array element when it is indexed by ¢ X k + d. That is,
axXj+b=cxk+d

In general, we cannot determine whether dependence exists at compile time.
For example, the values of a, b, ¢, and d may not be known (they could be values
in other arrays), making it impossible to tell if a dependence exists. In other
cases, the dependence testing may be very expensive but decidable at compile
time; for example, the accesses may depend on the iteration indices of multiple
nested loops. Many programs, however, contain primarily simple indices where
a, b, ¢, and d are all constants. For these cases, it is possible to devise reasonable
compile time tests for dependence.

As an example, a simple and sufficient test for the absence of a dependence is
the greatest common divisor (GCD) test. It is based on the observation that if a
loop-carried dependence exists, then GCD (c,a) must divide (d —b). (Recall that
an integer, x, divides another integer, y, if we get an integer quotient when we do
the division y/x and there is no remainder.)

Example

Answer

Use the GCD test to determine whether dependences exist in the following loop:

for (i=0; 1<100; i=i+1) {
X[2#i+3] = X[2*i] * 5.0;
}

Given the values a =2, b =3, ¢ =2, and d = 0, then GCD(a,c) =2, and d — b = -3.
Since 2 does not divide —3, no dependence is possible.

The GCD test is sufficient to guarantee that no dependence exists; however,
there are cases where the GCD test succeeds but no dependence exists. This can
arise, for example, because the GCD test does not consider the loop bounds.

In general, determining whether a dependence actually exists is NP-complete.
In practice, however, many common cases can be analyzed precisely at low cost.
Recently, approaches using a hierarchy of exact tests increasing in generality and
cost have been shown to be both accurate and efficient. (A test is exact if it
precisely determines whether a dependence exists. Although the general case is
NP-complete, there exist exact tests for restricted situations that are much cheaper.)

In addition to detecting the presence of a dependence, a compiler wants to
classify the type of dependence. This classification allows a compiler to recog-
nize name dependences and eliminate them at compile time by renaming and

copying.

320

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Example

Answer

The following loop has multiple types of dependences. Find all the true depen-
dences, output dependences, and antidependences, and eliminate the output
dependences and antidependences by renaming.

for (i=0; 1<100; i=i+1) {
Y[l = X[i] / c; /* S1 %/

X[i] = X[i] + ¢c; /* S2 */
z[i] = Y[i] + ¢; /* S3 */
Y[i] = ¢ - Y[il; /* sS4 */

}

The following dependences exist among the four statements:

1. There are true dependences from S1 to S3 and from S1 to S4 because of Y[i].
These are not loop carried, so they do not prevent the loop from being consid-
ered parallel. These dependences will force S3 and S4 to wait for S1 to com-
plete.

2. There is an antidependence from S1 to S2, based on X[1].
3. There is an antidependence from S3 to S4 for Y[i].

4. There is an output dependence from S1 to S4, based on Y[1i].
The following version of the loop eliminates these false (or pseudo) dependences.

for (i=0; i<100; i=i+1 {
T[i] = X[i] / c¢; /* Y renamed to T to remove output dependence */
X1[i] = X[i] + c;/* X renamed to X1 to remove antidependence */
Z[i] = T[i] + c;/* Y renamed to T to remove antidependence */
Y[i] = ¢ - T[i];

}

After the loop, the variable X has been renamed X1. In code that follows the loop,
the compiler can simply replace the name X by X1. In this case, renaming does
not require an actual copy operation, as it can be done by substituting names or
by register allocation. In other cases, however, renaming will require copying.

Dependence analysis is a critical technology for exploiting parallelism, as well
as for the transformation-like blocking that Chapter 2 covers. For detecting loop-
level parallelism, dependence analysis is the basic tool. Effectively compiling pro-
grams for vector computers, SIMD computers, or multiprocessors depends criti-
cally on this analysis. The major drawback of dependence analysis is that it applies
only under a limited set of circumstances, namely, among references within a sin-
gle loop nest and using affine index functions. Thus, there are many situations
where array-oriented dependence analysis cannot tell us what we want to know; for
example, analyzing accesses done with pointers, rather than with array indices can
be much harder. (This is one reason why Fortran is still preferred over C and C++
for many scientific applications designed for parallel computers.) Similarly,

4.5 Detecting and Enhancing Loop-Level Parallelism 321

analyzing references across procedure calls is extremely difficult. Thus, while anal-
ysis of code written in sequential languages remains important, we also need
approaches such as OpenMP and CUDA that write explicitly parallel loops.

Eliminating Dependent Computations

As mentioned above, one of the most important forms of dependent computa-
tions is a recurrence. A dot product is a perfect example of a recurrence:

for (i=9999; i>=0; i=i-1)
sum = sum + x[i] * y[i];

This loop is not parallel because it has a loop-carried dependence on the variable
sum. We can, however, transform it to a set of loops, one of which is completely
parallel and the other that can be partly parallel. The first loop will execute the
completely parallel portion of this loop. It looks like:

for (i=9999; i>=0; i=i-1)
sum[i] = x[1] * y[i];
Notice that sum has been expanded from a scalar into a vector quantity (a trans-
formation called scalar expansion) and that this transformation makes this new

loop completely parallel. When we are done, however, we need to do the reduce
step, which sums up the elements of the vector. It looks like:

for (i=9999; i>=0; i=i-1)
finalsum = finalsum + sum[i];

Although this loop is not parallel, it has a very specific structure called a reduc-
tion. Reductions are common in linear algebra and, as we shall see in Chapter 6,
they are also a key part of the primary parallelism primitive MapReduce used in
warehouse-scale computers. In general, any function can be used as a reduction
operator, and common cases include operators such as max and min.

Reductions are sometimes handled by special hardware in a vector and SIMD
architecture that allows the reduce step to be done much faster than it could be
done in scalar mode. These work by implementing a technique similar to what
can be done in a multiprocessor environment. While the general transformation
works with any number of processors, suppose for simplicity we have 10 proces-
sors. In the first step of reducing the sum, each processor executes the following
(with p as the processor number ranging from 0 to 9):

for (i=999; i>=0; i=1-1)
finalsum[p] = finalsum[p] + sum[i+1000*p];
This loop, which sums up 1000 elements on each of the ten processors, is com-

pletely parallel. A simple scalar loop can then complete the summation of the last
ten sums. Similar approaches are used in vector and SIMD processors.

322

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.6

It is important to observe that the above transformation relies on associativity
of addition. Although arithmetic with unlimited range and precision is associa-
tive, computer arithmetic is not associative, for either integer arithmetic, because
of limited range, or floating-point arithmetic, because of both range and preci-
sion. Thus, using these restructuring techniques can sometimes lead to erroneous
behavior, although such occurrences are rare. For this reason, most compilers
require that optimizations that rely on associativity be explicitly enabled.

Crosscutting Issues

Energy and DLP: Slow and Wide versus Fast and Narrow

A fundamental energy advantage of data-level parallel architectures comes from
the energy equation in Chapter 1. Since we assume ample data-level parallelism,
the performance is the same if we halve the clock rate and double the execution
resources: twice the number of lanes for a vector computer, wider registers and
ALUs for multimedia SIMD, and more SIMD lanes for GPUs. If we can lower
the voltage while dropping the clock rate, we can actually reduce energy as well
as the power for the computation while maintaining the same peak performance.
Hence, DLP processors tend to have lower clock rates than system processors,
which rely on high clock rates for performance (see Section 4.7).

Compared to out-of-order processors, DLP processors can have simpler con-
trol logic to launch a large number of operations per clock cycle; for example, the
control is identical for all lanes in vector processors, and there is no logic to
decide on multiple instruction issue or speculative execution logic. Vector archi-
tectures can also make it easier to turn off unused portions of the chip. Each vec-
tor instruction explicitly describes all the resources it needs for a number of
cycles when the instruction issues.

Banked Memory and Graphics Memory

Section 4.2 noted the importance of substantial memory bandwidth for vector
architectures to support unit stride, non-unit stride, and gather-scatter accesses.
To achieve their high performance, GPUs also require substantial memory
bandwidth. Special DRAM chips designed just for GPUs, called GDRAM for
graphics DRAM, help deliver this bandwidth. GDRAM chips have higher band-
width often at lower capacity than conventional DRAM chips. To deliver this
bandwidth, GDRAM chips are often soldered directly onto the same board as the
GPU rather than being placed into DIMM modules that are inserted into slots on
a board, as is the case for system memory. DIMM modules allow for much
greater capacity and for the system to be upgraded, unlike GDRAM. This limited
capacity—about 4 GB in 2011—is in conflict with the goal of running bigger
problems, which is a natural use of the increased computational power of GPUs.

4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7 323

To deliver the best possible performance, GPUs try to take into account all
the features of GDRAMs. They are typically arranged internally as 4 to 8 banks,
with a power of 2 number of rows (typically 16,384) and a power of 2 number of
bits per row (typically 8192). Chapter 2 describes the details of DRAM behavior
that GPUs try to match.

Given all the potential demands on the GDRAMs from both the computation
tasks and the graphics acceleration tasks, the memory system could see a large
number of uncorrelated requests. Alas, this diversity hurts memory performance.
To cope, the GPU’s memory controller maintains separate queues of traffic
bound for different GDRAM banks, waiting until there is enough traffic to jus-
tify opening a row and transferring all requested data at once. This delay
improves bandwidth but stretches latency, and the controller must ensure that no
processing units starve while waiting for data, for otherwise neighboring proces-
sors could become idle. Section 4.7 shows that gather-scatter techniques and
memory-bank-aware access techniques can deliver substantial increases in per-
formance versus conventional cache-based architectures.

Strided Accesses and TLB Misses

One problem with strided accesses is how they interact with the translation
lookaside buffer (TLB) for virtual memory in vector architectures or GPUs.
(GPUs use TLBs for memory mapping.) Depending on how the TLB is orga-
nized and the size of the array being accessed in memory, it is even possible to
get one TLB miss for every access to an element in the array!

4.7 Putting It All Together: Mobile versus Server GPUs

and Tesla versus Core i7

Given the popularity of graphics applications, GPUs are now found in both
mobile clients as well as traditional servers or heavy-duty desktop computers.
Figure 4.26 lists the key characteristics of the NVIDIA Tegra 2 for mobile cli-
ents, which is used in the LG Optimus 2X and runs Android OS, and the Fermi
GPU for servers. GPU server engineers hope to be able to do live animation
within five years after a movie is released. GPU mobile engineers in turn want
within five more years that a mobile client can do what a server or game console
does today. More concretely, the overarching goal is for the graphics quality of a
movie such as Avatar to be achieved in real time on a server GPU in 2015 and on
your mobile GPU in 2020.

The NVIDIA Tegra 2 for mobile devices provides both the system processor
and the GPU in a single chip using a single physical memory. The system proces-
sor is a dual-core ARM Cortex-A9, with each core using out-of-order execution
and dual instruction issue. Each core includes the optional floating-point unit.

The GPU has hardware acceleration for programmable pixel shading, pro-
grammable vertex and lighting, and 3D graphics, but it does not include the GPU
computing features needed to run CUDA or OpenCL programs.

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

NVIDIA Tegra 2

NVIDIA Fermi GTX 480

Market

Mobile client

Desktop, server

System processor Dual-Core ARM Cortex-A9 Not applicable

System interface Not applicable PCI Express 2.0 x 16

System interface 6 GBytes/sec (each

bandwidth Not applicable direction), 12 GBytes/sec
(total)

Clock rate Upto 1 GHz 1.4 GHz

SIMD multiprocessors Unavailable 15

SIMD lanes/SIMD Unavailable 32

multiprocessor

Memory interface

32-bit LP-DDR2/DDR2

384-bit GDDRS5

Memory bandwidth 2.7 GBytes/sec 177 GBytes/sec
Memory capacity 1 GByte 1.5 GBytes
Transistors 242 M 3030 M
Process 40 nm TSMC process G 40 nm TSMC process G
Die area 57 mm? 520 mm?

Power 1.5 watts 167 watts

Figure 4.26 Key features of the GPUs for mobile clients and servers. The Tegra 2 is
the reference platform for Android OS and is found in the LG Optimus 2X cell phone.

The die size is 57 mm? (7.5 x 7.5 mm) in a 40 nm TSMC process, and it con-
tains 242 million transistors. It uses 1.5 watts.

The NVIDIA GTX 480 in Figure 4.26 is the first implementation of the Fermi
architecture. The clock rate is 1.4 GHz, and it includes 15 SIMD processors. The
chip itself has 16, but to improve yield only 15 of the 16 need work for this prod-
uct. The path to GDDRS5 memory is 384 (6 x 64) bits wide, and it interfaces that
clock at 1.84 GHz, offering a peak memory bandwidth of 177 GBytes/sec by
transferring on both clock edges of double data rate memory. It connects to the
host system processor and memory via a PCI Express 2.0 x 16 link, which has a
peak bidirectional rate of 12 GBytes/sec.

All physical characteristics of the GTX 480 die are impressively large: It con-
tains 3.0 billion transistors, the die size is 520 mm’ (22.8 X 22.8 mm) in a 40 nm
TSMC process, and the typical power is 167 watts. The whole module is 250
watts, which includes the GPU, GDRAMs, fans, power regulators, and so on.

Comparison of a GPU and a MIMD with Multimedia SIMD

A group of Intel researchers published a paper [Lee et al. 2010] comparing a
quad-core Intel i7 (see Chapter 3) with multimedia SIMD extensions to the pre-
vious generation GPU, the Tesla GTX 280. Figure 4.27 lists the characteristics

4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7 325

Corei7- Ratio Ratio
960 GTX 280 GTX 480 280/i7 480/i7

Number of processing elements (cores or SMs) 4 30 15 7.5 3.8
Clock frequency (GHz) 32 1.3 1.4 0.41 0.44
Die size 263 576 520 2.2 2.0
Technology Intel 45 nm TSMC 65 nm TSMC 40 nm 1.6 1.0
Power (chip, not module) 130 130 167 1.0 1.3
Transistors 700 M 1400 M 3030 M 2.0 4.4
Memory bandwidth (GBytes/sec) 32 141 177 4.4 5.5
Single-precision SIMD width 8 32 2.0 8.0
Double-precision SIMD width 2 1 16 0.5 8.0
Peak single-precision scalar FLOPS (GFLOP/Sec) 26 117 63 4.6 2.5
Peak single-precision SIMD FLOPS (GFLOP/Sec) 102 3110933 5150r1344 3.0-9.1 6.6-13.1
(SP 1 add or multiply) N.A. (311) (515) (3.0) (6.6)
(SP 1 instruction fused multiply-adds) N.A. (622) (1344) (6.1) (13.1)
(Rare SP dual issue fused multiply-add and multiply) N.A. (933) N.A. 9.1 -
Peak double-precision SIMD FLOPS (GFLOP/sec) 51 78 515 1.5 10.1

Figure 4.27 Intel Core i7-960, NVIDIA GTX 280, and GTX 480 specifications. The rightmost columns show the
ratios of GTX 280 and GTX 480 to Core i7. For single-precision SIMD FLOPS on the GTX 280, the higher speed (933)
comes from a very rare case of dual issuing of fused multiply-add and multiply. More reasonable is 622 for single
fused multiply-adds. Although the case study is between the 280 and i7, we include the 480 to show its relationship
to the 280 since it is described in this chapter. Note that these memory bandwidths are higher than in Figure 4.28
because these are DRAM pin bandwidths and those in Figure 4.28 are at the processors as measured by a benchmark
program. (From Table 2 in Lee et al. [2010].)

of the two systems. Both products were purchased in Fall 2009. The Core 17 is
in Intel’s 45-nanometer semiconductor technology while the GPU is in TSMC’s
65-nanometer technology. Although it might have been more fair to have a com-
parison by a neutral party or by both interested parties, the purpose of this sec-
tion is not to determine how much faster one product is than another, but to try
to understand the relative value of features of these two contrasting architecture
styles.

The rooflines of the Core 17 920 and GTX 280 in Figure 4.28 illustrate the
differences in the computers. The 920 has a slower clock rate than the 960
(2.66 GHz versus 3.2 GHz), but the rest of the system is the same. Not only
does the GTX 280 have much higher memory bandwidth and double-precision
floating-point performance, but also its double-precision ridge point is consid-
erably to the left. As mentioned above, it is much easier to hit peak computa-
tional performance the further the ridge point of the roofline is to the left. The
double-precision ridge point is 0.6 for the GTX 280 versus 2.6 for the Core i7.
For single-precision performance, the ridge point moves far to the right, as it’s
much harder to hit the roof of single-precision performance because it is so

326 Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

128 A Core i7 920 128 A NVIDIA GTX280
(Nehalem)
64 i 64
3 Peak=42.66 GFLOP/s 8
(2] (2]
o 32 o 32
2 2
& 0@\ & 78 GF/sec
Z 16 & u 16 S
S o S &
@ <& 7] R
3 8 & 3 8 q\
& < N ’
% 4 % 4 |— e,’?f@
> > %\3
o [e]
o a
2 2
1 > 1 >
1/8 1/4 1/2 1 2 4 8 16 1/8 1/4 1/2 1 2 4 8 16
Arithmetic intensity Arithmetic intensity
1024 A ((3’3:1 ;7Ie9nf;’ 1024 A NVIDIA GTX280 :
624 GF/sec
512 512
(8] (6]
3 3
g 256 g 256
| = O
5 128 & 128 %
c 85.33 GF/sec = NSy
.g ' .g K5 78 GF/sec
g 64 \&° 42 66 GF/sec g 64 Ny
S Q a @
. & . e
v
S 32 & 5 32
£ 7 £
%) @,06‘ %)
16 ® 16
8 > 8 >
1/8 1/4 1/2 1 2 4 8 16 1/8 1/4 1/2 1 2 4 8 16
Arithmetic intensity Arithmetic intensity

Figure 4.28 Roofline model [Williams et al. 2009]. These rooflines show double-precision floating-point perfor-
mance in the top row and single-precision performance in the bottom row. (The DP FP performance ceiling is also in
the bottom row to give perspective.) The Core i7 920 on the left has a peak DP FP performance of 42.66 GFLOP/sec, a
SP FP peak of 85.33 GFLOP/sec, and a peak memory bandwidth of 16.4 GBytes/sec. The NVIDIA GTX 280 has a DP FP
peak of 78 GFLOP/sec, SP FP peak of 624 GFLOP/sec, and 127 GBytes/sec of memory bandwidth. The dashed vertical
line on the left represents an arithmetic intensity of 0.5 FLOP/byte. It is limited by memory bandwidth to no more
than 8 DP GFLOP/sec or 8 SP GFLOP/sec on the Core i7. The dashed vertical line to the right has an arithmetic inten-
sity of 4 FLOP/byte. It is limited only computationally to 42.66 DP GFLOP/sec and 64 SP GFLOP/sec on the Core i7 and
78 DP GFLOP/sec and 512 DP GFLOP/sec on the GTX 280. To hit the highest computation rate on the Core i7 you
need to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX 280, you need
to use fused multiply-add instructions on all multithreaded SIMD processors. Guz et al. [2009] have an interesting
analytic model for these two architectures.

4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7 327

much higher. Note that the arithmetic intensity of the kernel is based on the
bytes that go to main memory, not the bytes that go to cache memory. Thus,
caching can change the arithmetic intensity of a kernel on a particular com-
puter, presuming that most references really go to the cache. The Rooflines help
explain the relative performance in this case study. Note also that this band-
width is for unit-stride accesses in both architectures. Real gather-scatter
addresses that are not coalesced are slower on the GTX 280 and on the Core i7,
as we shall see.

The researchers said that they selected the benchmark programs by analyzing
the computational and memory characteristics of four recently proposed bench-
mark suites and then “formulated the set of throughput computing kernels that
capture these characteristics.” Figure 4.29 describes these 14 kernels, and Figure
4.30 shows the performance results, with larger numbers meaning faster.

Kernel Application SIMD TLP Characteristics
SGEMM (SGEMM) Linear algebra Regular Across 2D tiles Compute bound after tiling
Monte Carlo (MC) Computational Regular Across paths Compute bound
finance
Convolution (Conv) Image analysis Regular Across pixels Compute bound; BW bound for

small filters

FFT (FFT) Signal processing Regular Across smaller Compute bound or BW bound
FFTs depending on size

SAXPY (SAXPY) Dot product Regular Across vector BW bound for large vectors

LBM (LBM) Time migration Regular Across cells BW bound

Constraint solver (Solv)

Rigid body physics Gather/Scatter Across constraints Synchronization bound

SpMV (SpMYV) Sparse solver Gather Across non-zero ~ BW bound for typical large
matrices

GJK (GJK) Collision detection ~Gather/Scatter Across objects Compute bound

Sort (Sort) Database Gather/Scatter Across elements ~ Compute bound

Ray casting (RC) Volume rendering Gather Across rays 4-8 MB first level working set;
over 500 MB last level working
set

Search (Search) Database Gather/Scatter Across queries Compute bound for small tree,
BW bound at bottom of tree for
large tree

Histogram (Hist) Image analysis Requires conflict Across pixels Reduction/synchronization

detection bound

Figure 4.29 Throughput computing kernel characteristics (from Table 1 in Lee et al. [2010].) The name in paren-
theses identifies the benchmark name in this section. The authors suggest that code for both machines had equal

optimization effort.

328

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

GTX 280/
Kernel Units Core i7-960 GTX 280 i7-960
SGEMM GFLOP/sec 94 364 39
MC Billion paths/sec 0.8 1.4 1.8
Conv Million pixels/sec 1250 3500 2.8
FFT GFLOP/sec 71.4 213 3.0
SAXPY GBytes/sec 16.8 88.8 53
LBM Million lookups/sec 85 426 5.0
Solv Frames/sec 103 52 0.5
SpMV GFLOP/sec 4.9 9.1 1.9
GJK Frames/sec 67 1020 15.2
Sort Million elements/sec 250 198 0.8
RC Frames/sec 5 8.1 1.6
Search Million queries/sec 50 90 1.8
Hist Million pixels/sec 1517 2583 1.7
Bilat Million pixels/sec 83 475 5.7

Figure 4.30 Raw and relative performance measured for the two platforms. In this
study, SAXPY is just used as a measure of memory bandwidth, so the right unit is
GBytes/sec and not GFLOP/sec. (Based on Table 3 in [Lee et al. 2010].)

Given that the raw performance specifications of the GTX 280 vary from

2.5% slower (clock rate) to 7.5x faster (cores per chip) while the performance
varies from 2.0x slower (Solv) to 15.2x faster (GJK), the Intel researchers
explored the reasons for the differences:

Memory bandwidth. The GPU has 4.4x the memory bandwidth, which helps
explain why LBM and SAXPY run 5.0 and 5.3x faster; their working sets are
hundreds of megabytes and hence don’t fit into the Core 17 cache. (To access
memory intensively, they did not use cache blocking on SAXPY.) Hence, the
slope of the rooflines explains their performance. SpMV also has a large
working set, but it only runs 1.9% because the double-precision floating point
of the GTX 280 is only 1.5x faster than the Core i7. (Recall that the Fermi
GTX 480 double-precision is 4x faster than the Tesla GTX 280.)

Compute bandwidth. Five of the remaining kernels are compute bound:
SGEMM, Conv, FFT, MC, and Bilat. The GTX is faster by 3.9, 2.8, 3.0, 1.8,
and 5.7, respectively. The first three of these use single-precision floating-
point arithmetic, and GTX 280 single precision is 3 to 6Xx faster. (The
9x faster than the Core i7 as shown in Figure 4.27 occurs only in the very
special case when the GTX 280 can issue a fused multiply-add and a multiply
per clock cycle.) MC uses double precision, which explains why it’s only
1.8x faster since DP performance is only 1.5x faster. Bilat uses transcenden-
tal functions, which the GTX 280 supports directly (see Figure 4.17). The

4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7 329

Core i7 spends two-thirds of its time calculating transcendental functions, so
the GTX 280 is 5.7x faster. This observation helps point out the value of
hardware support for operations that occur in your workload: double-preci-
sion floating point and perhaps even transcendentals.

m Cache benefits. Ray casting (RC) is only 1.6x faster on the GTX because
cache blocking with the Core 17 caches prevents it from becoming memory
bandwidth bound, as it is on GPUs. Cache blocking can help Search, too. If
the index trees are small so that they fit in the cache, the Core i7 is twice as
fast. Larger index trees make them memory bandwidth bound. Overall, the
GTX 280 runs search 1.8x faster. Cache blocking also helps Sort. While most
programmers wouldn’t run Sort on a SIMD processor, it can be written with a
1-bit Sort primitive called split. However, the split algorithm executes many
more instructions than a scalar sort does. As a result, the GTX 280 runs only
0.8x as fast as the Core i7. Note that caches also help other kernels on the
Core i7, since cache blocking allows SGEMM, FFT, and SpMV to become
compute bound. This observation re-emphasizes the importance of cache
blocking optimizations in Chapter 2. (It would be interesting to see how
caches of the Fermi GTX 480 will affect the six kernels mentioned in this
paragraph.)

m Gather-Scatter. The multimedia SIMD extensions are of little help if the data
are scattered throughout main memory; optimal performance comes only
when data are aligned on 16-byte boundaries. Thus, GJK gets little benefit
from SIMD on the Core i7. As mentioned above, GPUs offer gather-scatter
addressing that is found in a vector architecture but omitted from SIMD
extensions. The address coalescing unit helps as well by combining accesses
to the same DRAM line, thereby reducing the number of gathers and scatters.
The memory controller also batches accesses to the same DRAM page
together. This combination means the GTX 280 runs GJK a startling 15.2x
faster than the Core i7, which is larger than any single physical parameter in
Figure 4.27. This observation reinforces the importance of gather-scatter to
vector and GPU architectures that is missing from SIMD extensions.

m Synchronization. The performance synchronization of is limited by atomic
updates, which are responsible for 28% of the total runtime on the Core i7
despite its having a hardware fetch-and-increment instruction. Thus, Hist is
only 1.7x faster on the GTX 280. As mentioned above, the atomic updates of
the Fermi GTX 480 are 5 to 20x faster than those of the Tesla GTX 280, so
once again it would be interesting to run Hist on the newer GPU. Solv solves
a batch of independent constraints in a small amount of computation followed
by barrier synchronization. The Core i7 benefits from the atomic instructions
and a memory consistency model that ensures the right results even if not all
previous accesses to memory hierarchy have completed. Without the memory
consistency model, the GTX 280 version launches some batches from the
system processor, which leads to the GTX 280 running 0.5% as fast as the
Core i7. This observation points out how synchronization performance can be
important for some data parallel problems.

330

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.8

Fallacy

It is striking how often weaknesses in the Tesla GTX 280 that were uncov-
ered by kernels selected by Intel researchers were already being addressed in the
successor architecture to Tesla: Fermi has faster double-precision floating-point
performance, atomic operations, and caches. (In a related study, IBM researchers
made the same observation [Bordawekar 2010].) It was also interesting that the
gather-scatter support of vector architectures that predate the SIMD instructions
by decades was so important to the effective usefulness of these SIMD exten-
sions, which some had predicted before the comparison [Gebis and Patterson
2007] The Intel researchers noted that 6 of the 14 kernels would exploit SIMD
better with more efficient gather-scatter support on the Core i7. This study cer-
tainly establishes the importance of cache blocking as well. It will be interesting
to see if future generations of the multicore and GPU hardware, compilers, and
libraries respond with features that improve performance on such kernels.

We hope that there will be more such multicore-GPU comparisons. Note
that an important feature missing from this comparison was describing the level
of effort to get the results for the two systems. Ideally, future comparisons
would release the code used on both systems so that others could recreate the
same experiments on different hardware platforms and possibly improve on the
results.

Fallacies and Pitfalls

While data-level parallelism is the easiest form of parallelism after ILP from the
programmer’s perspective, and plausibly the easiest from the architect’s perspec-
tive, it still has many fallacies and pitfalls.

GPUs suffer from being coprocessors.

While the split between main memory and GPU memory has disadvantages,
there are advantages to being at a distance from the CPU.

For example, PTX exists in part because of the I/O device nature of GPUs.
This level of indirection between the compiler and the hardware gives GPU
architects much more flexibility than system processor architects. It’s often hard
to know in advance whether an architecture innovation will be well supported by
compilers and libraries and be important to applications. Sometimes a new mech-
anism will even prove useful for one or two generations and then fade in impor-
tance as the IT world changes. PTX allows GPU architects to try innovations
speculatively and drop them in subsequent generations if they disappoint or fade
in importance, which encourages experimentation. The justification for inclusion
is understandably much higher for system processors—and hence much less
experimentation can occur—as distributing binary machine code normally
implies that new features must be supported by all future generations of that
architecture.

A demonstration of the value of PTX is that the Fermi architecture radically
changed the hardware instruction set—from being memory-oriented like x86 to

Pitfall

Pitfall

4.8 Fallacies and Pitfalls 331

being register-oriented like MIPS as well as doubling the address size to 64
bits—without disrupting the NVIDIA software stack.

Concentrating on peak performance in vector architectures and ignoring start-up
overhead.

Early memory-memory vector processors such as the TI ASC and the CDC
STAR-100 had long start-up times. For some vector problems, vectors had to be
longer than 100 for the vector code to be faster than the scalar code! On the
CYBER 205—derived from the STAR-100—the start-up overhead for DAXPY
is 158 clock cycles, which substantially increases the break-even point. If the
clock rates of the Cray-1 and the CYBER 205 were identical, the Cray-1 would
be faster until the vector length is greater than 64. Because the Cray-1 clock
was also faster (even though the 205 was newer), the crossover point was a
vector length over 100.

Increasing vector performance, without comparable increases in scalar per-
formance.

This imbalance was a problem on many early vector processors, and a place
where Seymour Cray (the architect of the Cray computers) rewrote the rules.
Many of the early vector processors had comparatively slow scalar units (as well
as large start-up overheads). Even today, a processor with lower vector perfor-
mance but better scalar performance can outperform a processor with higher peak
vector performance. Good scalar performance keeps down overhead costs (strip
mining, for example) and reduces the impact of Amdahl’s law.

A good example of this comes from comparing a fast scalar processor and a
vector processor with lower scalar performance. The Livermore Fortran kernels
are a collection of 24 scientific kernels with varying degrees of vectorization.
Figure 4.31 shows the performance of two different processors on this bench-
mark. Despite the vector processor’s higher peak performance, its low scalar

Minimum rate Maximum rate Harmonic mean
for any loop for any loop of all 24 loops
Processor (MFLOPS) (MFLOPS) (MFLOPS)
MIPS M/120-5 0.80 3.89 1.85
Stardent-1500 0.41 10.08 1.72

Figure 4.31 Performance measurements for the Livermore Fortran kernels on two
different processors. Both the MIPS M/120-5 and the Stardent-1500 (formerly the
Ardent Titan-1) use a 16.7 MHz MIPS R2000 chip for the main CPU. The Stardent-1500
uses its vector unit for scalar FP and has about half the scalar performance (as mea-
sured by the minimum rate) of the MIPS M/120-5, which uses the MIPS R2010 FP chip.
The vector processor is more than a factor of 2.5x faster for a highly vectorizable loop
(maximum rate). However, the lower scalar performance of the Stardent-1500 negates
the higher vector performance when total performance is measured by the harmonic
mean on all 24 loops.

332

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Fallacy

Fallacy

4.9

performance makes it slower than a fast scalar processor as measured by the har-
monic mean.

The flip of this danger today is increasing vector performance—say, by
increasing the number of lanes—without increasing scalar performance. Such
myopia is another path to an unbalanced computer.

The next fallacy is closely related.

You can get good vector performance without providing memory bandwidth.

As we saw with the DAXPY loop and the Roofline model, memory bandwidth is
quite important to all SIMD architectures. DAXPY requires 1.5 memory references
per floating-point operation, and this ratio is typical of many scientific codes. Even
if the floating-point operations took no time, a Cray-1 could not increase the perfor-
mance of the vector sequence used, since it is memory limited. The Cray-1 perfor-
mance on Linpack jumped when the compiler used blocking to change the
computation so that values could be kept in the vector registers. This approach low-
ered the number of memory references per FLOP and improved the performance
by nearly a factor of two! Thus, the memory bandwidth on the Cray-1 became suf-
ficient for a loop that formerly required more bandwidth.

On GPUs, just add more threads if you don’t have enough memory performance.

GPUs use many CUDA threads to hide the latency to main memory. If memory
accesses are scattered or not correlated among CUDA threads, the memory sys-
tem will get progressively slower in responding to each individual request. Even-
tually, even many threads will not cover the latency. For the “more CUDA
threads” strategy to work, not only do you need lots of CUDA Threads, but the
CUDA threads themselves also must be well behaved in terms of locality of
memory accesses.

Concluding Remarks

Data-level parallelism is increasing in importance for personal mobile devices,
given the popularity of applications showing the importance of audio, video, and
games on these devices. When combined with an easier to program model than
task-level parallelism and potentially better energy efficiency, it’s easy to predict
a renaissance for data-level parallelism in this next decade. Indeed, we can
already see this emphasis in products, as both GPUs and traditional processors
have been increasing the number of SIMD lanes at least as fast as they have been
adding processors (see Figure 4.1 on page 263).

Hence, we are seeing system processors take on more of the characteristics of
GPUs, and vice versa. One of the biggest differences in performance between
conventional processors and GPUs has been for gather-scatter addressing. Tradi-
tional vector architectures show how to add such addressing to SIMD instruc-
tions, and we expect to see more ideas added from the well-proven vector
architectures to SIMD extensions over time.

4.9 Concluding Remarks 333

As we said at the opening of Section 4.4, the GPU question is not simply
which architecture is best, but, given the hardware investment to do graphics well,
how can it be enhanced to support computation that is more general? Although
vector architectures have many advantages on paper, it remains to be proven
whether vector architectures can be as good a foundation for graphics as GPUs.

GPU SIMD processors and compilers are still of relatively simple design.
Techniques that are more aggressive will likely be introduced over time to
increase GPU utilization, especially since GPU computing applications are just
starting to be developed. By studying these new programs, GPU designers will
surely discover and implement new machine optimizations. One question is
whether the scalar processor (or control processor), which serves to save hard-
ware and energy in vector processors, will appear within GPUs.

The Fermi architecture has already included many features found in conven-
tional processors to make GPUs more mainstream, but there are still others neces-
sary to close the gap. Here are a few we expect to be addressed in the near future.

m Virtualizable GPUs. Virtualization has proved important for servers and is
the foundation of cloud computing (see Chapter 6). For GPUs to be included
in the cloud, they will need to be just as virtualizable as the processors and
memory that they are attached to.

m Relatively small size of GPU memory. A commonsense use of faster compu-
tation is to solve bigger problems, and bigger problems often have a larger
memory footprint. This GPU inconsistency between speed and size can be
addressed with more memory capacity. The challenge is to maintain high
bandwidth while increasing capacity.

m Direct I/0O to GPU memory. Real programs do I/O to storage devices as well as
to frame buffers, and large programs can require a lot of I/O as well as a size-
able memory. Today’s GPU systems must transfer between I/O devices and
system memory and then between system memory and GPU memory. This
extra hop significantly lowers I/O performance in some programs, making
GPUs less attractive. Amdahl’s law warns us what happens when you neglect
one piece of the task while accelerating others. We expect that future GPUs
will make all I/O first-class citizens, just as it does for frame buffer I/O today.

m Unified physical memories. An alternative solution to the prior two bullets is
to have a single physical memory for the system and GPU, just as some inex-
pensive GPUs do for PMDs and laptops. The AMD Fusion architecture,
announced just as this edition was being finished, is an initial merger between
traditional GPUs and traditional CPUs. NVIDIA also announced Project
Denver, which combines an ARM scalar processor with NVIDIA GPUs in a
single address space. When these systems are shipped, it will be interesting to
learn just how tightly integrated they are and the impact of integration on per-
formance and energy of both data parallel and graphics applications.

Having covered the many versions of SIMD, the next chapter dives into the
realm of MIMD.

334

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.10

Historical Perspective and References

Section L.6 (available online) features a discussion on the Illiac IV (a representative
of the early SIMD architectures) and the Cray-1 (a representative of vector architec-
tures). We also look at multimedia SIMD extensions and the history of GPUs.

Case Study and Exercises by Jason D. Bakos

Case Study: Implementing a Vector Kernel on a Vector
Processor and GPU

Concepts illustrated by this case study

m Programming Vector Processors
m Programming GPUs

m Performance Estimation

MrBayes is a popular and well-known computational biology application for inferring
the evolutionary histories among a set of input species based on their multiply-aligned
DNA sequence data of length n. MrBayes works by performing a heuristic search
over the space of all binary tree topologies for which the inputs are the leaves. In order
to evaluate a particular tree, the application must compute an n X 4 conditional likeli-
hood table (named cIP) for each interior node. The table is a function of the condi-
tional likelihood tables of the node’s two descendent nodes (c1L and cl1R, single
precision floating point) and their associated n X 4 X 4 transition probability tables
(tiPL and tiPR, single precision floating point). One of this application’s kernels is
the computation of this conditional likelihood table and is shown below:

for (k=0; k<seq_length; k++) {

c1P[h++] = (tiPL[AA]*c1L[A] + tiPL[AC]*cIL[C] + tiPL[AG]*cTL[G] + tiPL[AT]*c1L[T])
*(tiPR[AA]*c1R[A] + tiPR[AC]*cIR[C] + tiPR[AG]*cIR[G] + tiPR[AT]*cIR[T]);

c1P[h++] = (tiPL[CA]*c1L[A] + tiPL[CC]*cIL[C] + tiPL[CG]*cTL[G] + tiPL[CT]*c1L[T])
*(tiPR[CA]*c1R[A] + tiPR[CC]*cIR[C] + tiPR[CG]*cIR[G] + tiPR[CT]*cIR[T]);

c1P[h++] = (tiPL[GA]*c1L[A] + tiPL[GC]*cTL[C] + tiPL[GG]*cTL[G] + tiPL[GT]*c1L[T])
*(tiPR[GA]*c1R[A] + tiPR[GC]*cIR[C] + tiPR[GG]*CcIR[G] + tiPR[GT]*cIR[T]);

cIP[h++] = (tiPL[TA]*c1L[A] + tiPL[TC]*c1L[C] + tiPL[TG]*cTL[G] + tiPL[TT]*c1L[T])
*(tiPR[TA]*c1R[A] + tiPR[TC]*cIR[C] + tiPR[TG]*cIR[G] + tiPR[TT]*cIR[T]);

clL += 4;
cIR += 4;
tiPL += 16;
tiPR += 16;

4.1

4.2

43

44

Case Study and Exercises by Jason D. Bakos 335

Constants Values
AA,AC,AG,AT 0,1,2,3
CA,CC,CG,CT 4,5,6,7
GA,GC,GG,GT 8,9,10,11
TA,TC,TG,TT 12,13,14,15
A,C,G,T 0,1,2,3

Figure 4.32 Constants and values for the case study.

[25] <4.2, 4.3> Assume the constants shown in Figure 4.32. Show the code for
MIPS and VMIPS. Assume we cannot use scatter-gather loads or stores. Assume the
starting addresses of tiPL, tiPR, c1L, cIR, and c1P are in RtiPL, RtiPR, RclL,
Rc1R, and Rc1P, respectively. Assume the VMIPS register length is user programma-
ble and can be assigned by setting the special register VL (e.g., li VL 4). To facilitate
vector addition reductions, assume that we add the following instructions to VMIPS:

SUMR.S Fd, Vs Vector Summation Reduction Single Precision:

This instruction performs a summation reduction on a vector register Vs, writing
to the sum into scalar register Fd.

[5] <4.2, 4.3> Assuming seq_Tlength == 500, what is the dynamic instruction
count for both implementations?

[25] <4.2, 4.3> Assume that the vector reduction instruction is executed on the
vector functional unit, similar to a vector add instruction. Show how the code
sequence lays out in convoys assuming a single instance of each vector func-
tional unit. How many chimes will the code require? How many cycles per FLOP
are needed, ignoring vector instruction issue overhead?

[15] <4.2, 4.3> Now assume that we can use scatter-gather loads and stores (LVI
and SVI). Assume that tiPL, tiPR, c1L, c1R, and c1P are arranged consecutively
in memory. For example, if seq_Tength==500, the tiPR array would begin 500 *
4 bytes after the tiPL array. How does this affect the way you can write the
VMIPS code for this kernel? Assume that you can initialize vector registers with
integers using the following technique which would, for example, initialize vec-
tor register V1 with values (0,0,2000,2000):

LI R2,0

SW R2,vec

SW R2,vec+4
LI R2,2000
SW R2,vec+8
SW R2,vec+12
LV V1,vec

336

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.5

4.6

4.7

4.8

Assume the maximum vector length is 64. Is there any way performance can be
improved using gather-scatter loads? If so, by how much?

[25] <4.4> Now assume we want to implement the MrBayes kernel on a GPU
using a single thread block. Rewrite the C code of the kernel using CUDA.
Assume that pointers to the conditional likelihood and transition probability
tables are specified as parameters to the kernel. Invoke one thread for each itera-
tion of the loop. Load any reused values into shared memory before performing
operations on it.

[15] <4.4> With CUDA we can use coarse-grain parallelism at the block level to
compute the conditional likelihoods of multiple nodes in parallel. Assume that we
want to compute the conditional likelihoods from the bottom of the tree up.
Assume that the conditional likelihood and transition probability arrays are orga-
nized in memory as described in question 4 and the group of tables for each of the
12 leaf nodes is also stored in consecutive memory locations in the order of node
number. Assume that we want to compute the conditional likelihood for nodes 12
to 17, as shown in Figure 4.33. Change the method by which you compute the
array indices in your answer from Exercise 4.5 to include the block number.

[15] <4.4> Convert your code from Exercise 4.6 into PTX code. How many
instructions are needed for the kernel?

[10] <4.4> How well do you expect this code to perform on a GPU? Explain your
answer.

Figure 4.33 Sample tree.

4.9

4.10

Case Study and Exercises by Jason D. Bakos 337

Exercises

[10/20/20/15/15] <4.2> Consider the following code, which multiplies two vec-
tors that contain single-precision complex values:

for (i=03;1<300;i++) {
c_ re[i] = a_ re[i] * b _re[i] — a_im[i] * b_im[i];
c_im[i] = a_re[i] * b_im[i] + a_im[i] * b_re[i];
}

Assume that the processor runs at 700 MHz and has a maximum vector length of
64. The load/store unit has a start-up overhead of 15 cycles; the multiply unit, 8
cycles; and the add/subtract unit, 5 cycles.

a. [10] <4.2> What is the arithmetic intensity of this kernel? Justify your
answer.

b. [20] <4.2> Convert this loop into VMIPS assembly code using strip mining.

c. [20] <4.2> Assuming chaining and a single memory pipeline, how many
chimes are required? How many clock cycles are required per complex result
value, including start-up overhead?

d. [15] <4.2> If the vector sequence is chained, how many clock cycles are
required per complex result value, including overhead?

e. [15] <4.2> Now assume that the processor has three memory pipelines and
chaining. If there are no bank conflicts in the loop’s accesses, how many
clock cycles are required per result?

[30] <4.4> In this problem, we will compare the performance of a vector proces-
sor with a hybrid system that contains a scalar processor and a GPU-based copro-
cessor. In the hybrid system, the host processor has superior scalar performance
to the GPU, so in this case all scalar code is executed on the host processor while
all vector code is executed on the GPU. We will refer to the first system as the
vector computer and the second system as the hybrid computer. Assume that your
target application contains a vector kernel with an arithmetic intensity of 0.5
FLOPs per DRAM byte accessed; however, the application also has a scalar com-
ponent which that must be performed before and after the kernel in order to pre-
pare the input vectors and output vectors, respectively. For a sample dataset, the
scalar portion of the code requires 400 ms of execution time on both the vector
processor and the host processor in the hybrid system. The kernel reads input
vectors consisting of 200 MB of data and has output data consisting of 100 MB
of data. The vector processor has a peak memory bandwidth of 30 GB/sec and
the GPU has a peak memory bandwidth of 150 GB/sec. The hybrid system has an
additional overhead that requires all input vectors to be transferred between the
host memory and GPU local memory before and after the kernel is invoked. The
hybrid system has a direct memory access (DMA) bandwidth of 10 GB/sec and
an average latency of 10 ms. Assume that both the vector processor and GPU are

338

Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.11

performance bound by memory bandwidth. Compute the execution time required
by both computers for this application.

[15/25/25] <4.4, 4.5> Section 4.5 discussed the reduction operation that reduces
a vector down to a scalar by repeated application of an operation. A reduction is a
special type of a loop recurrence. An example is shown below:

dot=0.0;

for (i=0;i<64;i++) dot = dot + a[i] * b[i];
A vectorizing compiler might apply a transformation called scalar expansion,
which expands dot into a vector and splits the loop such that the multiply can be
performed with a vector operation, leaving the reduction as a separate scalar
operation:

for (i=0;i<64;i++) dot[i] = a[i] * b[i];

for (i=1;i<64;i++) dot[0] = dot[0] + dot[i];
As mentioned in Section 4.5, if we allow the floating-point addition to be asso-
ciative, there are several techniques available for parallelizing the reduction.

a. [15] <4.4, 4.5> One technique is called recurrence doubling, which adds
sequences of progressively shorter vectors (i.e., two 32-element vectors, then
two 16-element vectors, and so on). Show how the C code would look for
executing the second loop in this way.

b. [25] <4.4, 4.5> In some vector processors, the individual elements within the
vector registers are addressable. In this case, the operands to a vector opera-
tion may be two different parts of the same vector register. This allows
another solution for the reduction called partial sums. The idea is to reduce
the vector to m sums where m is the total latency through the vector func-
tional unit, including the operand read and write times. Assume that the
VMIPS vector registers are addressable (e.g., you can initiate a vector opera-
tion with the operand V1(16), indicating that the input operand begins with
element 16). Also, assume that the total latency for adds, including the oper-
and read and result write, is eight cycles. Write a VMIPS code sequence that
reduces the contents of V1 to eight partial sums.

c. [25] <4.4,4.5> When performing a reduction on a GPU, one thread is associ-
ated with each element in the input vector. The first step is for each thread to
write its corresponding value into shared memory. Next, each thread enters a
loop that adds each pair of input values. This reduces the number of elements
by half after each iteration, meaning that the number of active threads also
reduces by half after each iteration. In order to maximize the performance of
the reduction, the number of fully populated warps should be maximized
throughout the course of the loop. In other words, the active threads should
be contiguous. Also, each thread should index the shared array in such a way
as to avoid bank conflicts in the shared memory. The following loop violates

4.12

4.13

Case Study and Exercises by Jason D. Bakos 339

only the first of these guidelines and also uses the modulo operator which is
very expensive for GPUs:

unsigned int tid = threadIdx.x;

for(unsigned int s=1; s < blockDim.x; s *= 2) {
if ((tid % (2*s)) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

Rewrite the loop to meet these guidelines and eliminate the use of the modulo
operator. Assume that there are 32 threads per warp and a bank conflict occurs
whenever two or more threads from the same warp reference an index whose
modulo by 32 are equal.

[10/10/10/10] <4.3> The following kernel performs a portion of the finite-
difference time-domain (FDTD) method for computing Maxwell’s equations
in a three-dimensional space, part of one of the SPEC06fp benchmarks:

for (int x=0; x<NX-1; x++) {

for (int y=0; y<NY-1; y++) {

for (int z=0; z<NZ-1; z++) {

int index = x*NY*NZ + y*NZ + z;

if (y>0 && x >0) {

material = IDx[index];

dHl = (Hz[index] — Hz[index-incrementY])/dy[y];

dH2 = (Hy[index] — Hy[index-incrementZ])/dz[z];

Ex[index] = Ca[material]*Ex[index]+Cb[material]*(dH2-dH1);
P

Assume that dH1, dH2, Hy, Hz, dy, dz, Ca, Cb, and Ex are all single-precision
floating-point arrays. Assume IDx is an array of unsigned int.

[10] <4.3> What is the arithmetic intensity of this kernel?
b. [10] <4.3> Is this kernel amenable to vector or SIMD execution? Why or why
not?

c. [10] <4.3> Assume this kernel is to be executed on a processor that has 30
GB/sec of memory bandwidth. Will this kernel be memory bound or compute
bound?

d. [10] <4.3> Develop a roofline model for this processor, assuming it has a
peak computational throughput of 85 GFLOP/sec.

[10/15] <4.4> Assume a GPU architecture that contains 10 SIMD processors.
Each SIMD instruction has a width of 32 and each SIMD processor contains 8
lanes for single-precision arithmetic and load/store instructions, meaning that

340 Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

414

each non-diverged SIMD instruction can produce 32 results every 4 cycles.
Assume a kernel that has divergent branches that causes on average 80% of
threads to be active. Assume that 70% of all SIMD instructions executed are sin-
gle-precision arithmetic and 20% are load/store. Since not all memory latencies
are covered, assume an average SIMD instruction issue rate of 0.85. Assume that
the GPU has a clock speed of 1.5 GHz.

a. [10] <4.4> Compute the throughput, in GFLOP/sec, for this kernel on this
GPU.

b. [15] <4.4> Assume that you have the following choices:

(1) Increasing the number of single-precision lanes to 16
(2) Increasing the number of SIMD processors to 15 (assume this change
doesn't affect any other performance metrics and that the code scales to
the additional processors)
(3) Adding a cache that will effectively reduce memory latency by 40%,
which will increase instruction issue rate to 0.95
What is speedup in throughput for each of these improvements?

[10/15/15] <4.5> In this exercise, we will examine several loops and analyze
their potential for parallelization.

a. [10] <4.5> Does the following loop have a loop-carried dependency?
for (i=0;i<100;i++) {
A[i] = B[2*i+4];
B[4*i+5] = A[i];
}

b. [15] <4.5> In the following loop, find all the true dependences, output depen-
dences, and antidependences. Eliminate the output dependences and antide-
pendences by renaming.

for (i=0;i<100;i++) {

ALi] = A[i] * B[il; /* S1 */
B[i] = A[i] + c; /* 52 */
A[i] = C[i] * c; /* S3 %/
C[i] = D[] * A[il; /* sS4 */

c. [15] <4.5> Consider the following loop:
for (i=0;1 < 100;i++) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[il; /* S2 */
}

Are there dependences between S1 and S2? Is this loop parallel? If not, show how
to make it parallel.

4.15

4.16

417

Case Study and Exercises by Jason D. Bakos 341

[10] <4.4> List and describe at least four factors that influence the performance
of GPU kernels. In other words, which runtime behaviors that are caused by the
kernel code cause a reduction in resource utilization during kernel execution?

[10] <4.4> Assume a hypothetical GPU with the following characteristics:

m Clockrate 1.5 GHz

m Contains 16 SIMD processors, each containing 16 single-precision floating-
point units

m Has 100 GB/sec off-chip memory bandwidth

Without considering memory bandwidth, what is the peak single-precision
floating-point throughput for this GPU in GLFOP/sec, assuming that all mem-
ory latencies can be hidden? Is this throughput sustainable given the memory
bandwidth limitation?

[60] <4.4> For this programming exercise, you will write and characterize the
behavior of a CUDA kernel that contains a high amount of data-level parallelism
but also contains conditional execution behavior. Use the NVIDIA CUDA Tool-
kit along with GPU-SIM from the University of British Columbia (http://
www.ece.ubc.ca/~aamodt/gpgpu-sim/) or the CUDA Profiler to write and com-
pile a CUDA kernel that performs 100 iterations of Conway’s Game of Life for a
256 x 256 game board and returns the final state of the game board to the host.
Assume that the board is initialized by the host. Associate one thread with each
cell. Make sure you add a barrier after each game iteration. Use the following
game rules:

m Any live cell with fewer than two live neighbors dies.
m Any live cell with two or three live neighbors lives on to the next generation.
m Any live cell with more than three live neighbors dies.

m Any dead cell with exactly three live neighbors becomes a live cell.
After finishing the kernel answer the following questions:

a. [60] <4.4> Compile your code using the —ptx option and inspect the PTX rep-
resentation of your kernel. How many PTX instructions make up the PTX
implementation of your kernel? Did the conditional sections of your kernel
include branch instructions or only predicated non-branch instructions?

b. [60] <4.4> After executing your code in the simulator, what is the dynamic
instruction count? What is the achieved instructions per cycle (IPC) or
instruction issue rate? What is the dynamic instruction breakdown in terms of
control instructions, arithmetic-logical unit (ALU) instructions, and memory
instructions? Are there any shared memory bank conflicts? What is the effec-
tive off-chip memory bandwidth?

c. [60] <4.4> Implement an improved version of your kernel where off-chip
memory references are coalesced and observe the differences in runtime
performance.

http://www.ece.ubc.ca/~aamodt/gpgpu-sim/
http://www.ece.ubc.ca/~aamodt/gpgpu-sim/

5.1
52
53
54
55
5.6
5.7
5.8
5.9
5.10
5.11

Introduction

Centralized Shared-Memory Architectures

Performance of Symmetric Shared-Memory Multiprocessors
Distributed Shared-Memory and Directory-Based Coherence
Synchronization: The Basics

Models of Memory Consistency: An Introduction
Crosscutting Issues

Putting It All Together: Multicore Processors and Their Performance
Fallacies and Pitfalls

Concluding Remarks

Historical Perspectives and References

Case Studies and Exercises by Amr Zaky and David A. Wood

344
351
366
378
386
392
395
400
405
409
412
412

Thread-Level Parallelism

The turning away from the conventional organization came in the
middle 1960s, when the law of diminishing returns began to take
effect in the effort to increase the operational speed of a computer. . ..
Electronic circuits are ultimately limited in their speed of operation by
the speed of light ... and many of the circuits were already operating
in the nanosecond range.

W. Jack Bouknight et al.
The llliac IV System (1972)

We are dedicating all of our future product development to multicore de-
signs. We believe this is a key inflection point for the industry.

Intel President Paul Otellini,
describing Intel’s future direction at the
Intel Developer Forum in 2005

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00006-9
© 2012 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383872-8.00006-9

344

Chapter Five Thread-Level Parallelism

5.1

Introduction

As the quotations that open this chapter show, the view that advances in uni-
processor architecture were nearing an end has been held by some researchers for
many years. Clearly, these views were premature; in fact, during the period of
1986-2003, uniprocessor performance growth, driven by the microprocessor,
was at its highest rate since the first transistorized computers in the late 1950s
and early 1960s.

Nonetheless, the importance of multiprocessors was growing throughout the
1990s as designers sought a way to build servers and supercomputers that
achieved higher performance than a single microprocessor, while exploiting the
tremendous cost-performance advantages of commodity microprocessors. As we
discussed in Chapters 1 and 3, the slowdown in uniprocessor performance arising
from diminishing returns in exploiting instruction-level parallelism (ILP) com-
bined with growing concern over power, is leading to a new era in computer
architecture—an era where multiprocessors play a major role from the low end to
the high end. The second quotation captures this clear inflection point.

This increased importance of multiprocessing reflects several major factors:

m The dramatically lower efficiencies in silicon and energy use that were
encountered between 2000 and 2005 as designers attempted to find and
exploit more ILP, which turned out to be inefficient, since power and sili-
con costs grew faster than performance. Other than ILP, the only scalable
and general-purpose way we know how to increase performance faster
than the basic technology allows (from a switching perspective) is through
multiprocessing.

m A growing interest in high-end servers as cloud computing and software-as-
a-service become more important.

m A growth in data-intensive applications driven by the availability of massive
amounts of data on the Internet.

m The insight that increasing performance on the desktop is less important (out-
side of graphics, at least), either because current performance is acceptable or
because highly compute- and data-intensive applications are being done in
the cloud.

m An improved understanding of how to use multiprocessors effectively, espe-
cially in server environments where there is significant natural parallelism,
arising from large datasets, natural parallelism (which occurs in scientific
codes), or parallelism among large numbers of independent requests (request-
level parallelism).

m The advantages of leveraging a design investment by replication rather than
unique design; all multiprocessor designs provide such leverage.

In this chapter, we focus on exploiting thread-level parallelism (TLP). TLP
implies the existence of multiple program counters and hence is exploited primarily

5.1 Introduction 345

through MIMDs. Although MIMDs have been around for decades, the movement
of thread-level parallelism to the forefront across the range of computing from
embedded applications to high-end severs is relatively recent. Likewise, the exten-
sive use of thread-level parallelism for general-purpose applications, versus scien-
tific applications, is relatively new.

Our focus in this chapter is on multiprocessors, which we define as comput-
ers consisting of tightly coupled processors whose coordination and usage are
typically controlled by a single operating system and that share memory through
a shared address space. Such systems exploit thread-level parallelism through
two different software models. The first is the execution of a tightly coupled set
of threads collaborating on a single task, which is typically called parallel pro-
cessing. The second is the execution of multiple, relatively independent pro-
cesses that may originate from one or more users, which is a form of request-
level parallelism, although at a much smaller scale than what we explore in the
next chapter. Request-level parallelism may be exploited by a single application
running on multiple processors, such as a database responding to queries, or mul-
tiple applications running independently, often called multiprogramming.

The multiprocessors we examine in this chapter typically range in size from a
dual processor to dozens of processors and communicate and coordinate through
the sharing of memory. Although sharing through memory implies a shared
address space, it does not necessarily mean there is a single physical memory.
Such multiprocessors include both single-chip systems with multiple cores,
known as multicore, and computers consisting of multiple chips, each of which
may be a multicore design.

In addition to true multiprocessors, we will return to the topic of multithread-
ing, a technique that supports multiple threads executing in an interleaved fash-
ion on a single multiple issue processor. Many multicore processors also include
support for multithreading.

In the next chapter, we consider ultrascale computers built from very large
numbers of processors, connected with networking technology and often called
clusters; these large-scale systems are typically used for cloud computing with a
model that assumes either massive numbers of independent requests or highly
parallel, intensive compute tasks. When these clusters grow to tens of thousands
of servers and beyond, we call them warehouse-scale computers.

In addition to the multiprocessors we study here and the warehouse-scaled
systems of the next chapter, there are a range of special large-scale multiprocessor
systems, sometimes called multicomputers, which are less tightly coupled than the
multiprocessors examined in this chapter but more tightly coupled than the ware-
house-scale systems of the next. The primary use for such multicomputers is in
high-end scientific computation. Many other books, such as Culler, Singh, and
Gupta [1999], cover such systems in detail. Because of the large and changing
nature of the field of multiprocessing (the just-mentioned Culler et al. reference is
over 1000 pages and discusses only multiprocessing!), we have chosen to focus
our attention on what we believe is the most important and general-purpose por-
tions of the computing space. Appendix I discusses some of the issues that arise in
building such computers in the context of large-scale scientific applications.

346

Chapter Five Thread-Level Parallelism

Thus, our focus will be on multiprocessors with a small to moderate number
of processors (2 to 32). Such designs vastly dominate in terms of both units and
dollars. We will pay only slight attention to the larger-scale multiprocessor
design space (33 or more processors), primarily in Appendix I, which covers
more aspects of the design of such processors, as well as the behavior perfor-
mance for parallel scientific workloads, a primary class of applications for large-
scale multiprocessors. In large-scale multiprocessors, the interconnection
networks are a critical part of the design; Appendix F focuses on that topic.

Multiprocessor Architecture: Issues and Approach

To take advantage of an MIMD multiprocessor with n processors, we must usu-
ally have at least n threads or processes to execute. The independent threads
within a single process are typically identified by the programmer or created by
the operating system (from multiple independent requests). At the other extreme,
a thread may consist of a few tens of iterations of a loop, generated by a parallel
compiler exploiting data parallelism in the loop. Although the amount of compu-
tation assigned to a thread, called the grain size, is important in considering how
to exploit thread-level parallelism efficiently, the important qualitative distinction
from instruction-level parallelism is that thread-level parallelism is identified at a
high level by the software system or programmer and that the threads consist of
hundreds to millions of instructions that may be executed in parallel.

Threads can also be used to exploit data-level parallelism, although the over-
head is likely to be higher than would be seen with an SIMD processor or with a
GPU (see Chapter 4). This overhead means that grain size must be sufficiently
large to exploit the parallelism efficiently. For example, although a vector proces-
sor or GPU may be able to efficiently parallelize operations on short vectors, the
resulting grain size when the parallelism is split among many threads may be so
small that the overhead makes the exploitation of the parallelism prohibitively
expensive in an MIMD.

Existing shared-memory multiprocessors fall into two classes, depending on
the number of processors involved, which in turn dictates a memory organization
and interconnect strategy. We refer to the multiprocessors by their memory orga-
nization because what constitutes a small or large number of processors is likely
to change over time.

The first group, which we call symmetric (shared-memory) multiprocessors
(SMPs), or centralized shared-memory multiprocessors, features small numbers
of cores, typically eight or fewer. For multiprocessors with such small processor
counts, it is possible for the processors to share a single centralized memory that
all processors have equal access to, hence the term symmetric. In multicore chips,
the memory is effectively shared in a centralized fashion among the cores, and all
existing multicores are SMPs. When more than one multicore is connected, there
are separate memories for each multicore, so the memory is distributed rather
than centralized.

SMP architectures are also sometimes called uniform memory access (UMA)
multiprocessors, arising from the fact that all processors have a uniform latency

5.1 Introduction 347

from memory, even if the memory is organized into multiple banks. Figure 5.1
shows what these multiprocessors look like. The architecture of SMPs is the
topic of Section 5.2, and we explain the approach in the context of a multicore.
The alternative design approach consists of multiprocessors with physically
distributed memory, called distributed shared memory (DSM). Figure 5.2 shows
what these multiprocessors look like. To support larger processor counts, mem-
ory must be distributed among the processors rather than centralized; otherwise,
the memory system would not be able to support the bandwidth demands of a
larger number of processors without incurring excessively long access latency.
With the rapid increase in processor performance and the associated increase in a
processor’s memory bandwidth requirements, the size of a multiprocessor for
which distributed memory is preferred continues to shrink. The introduction of
multicore processors has meant that even two-chip multiprocessors use distrib-
uted memory. The larger number of processors also raises the need for a high-
bandwidth interconnect, of which we will see examples in Appendix F. Both

Processor Processor Processor Processor

One or
more levels
of cache

One or One or One or
more levels more levels more levels
of cache of cache of cache

Private
caches

Shared cache

Main memory I/O system

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on
a multicore chip. Multiple processor-cache subsystems share the same physical mem-
ory, typically with one level of shared cache, and one or more levels of private per-core
cache. The key architectural property is the uniform access time to all of the memory
from all of the processors. In a multichip version the shared cache would be omitted
and the bus or interconnection network connecting the processors to memory would
run between chips as opposed to within a single chip.

348

Chapter Five Thread-Level Parallelism

Memory I»

I/0 Memory I— I/0 Memory I— I/0 Memory I— I/0

Interconnection network

Figure 5.2 The basic architecture of a distributed-memory multiprocessor in 2011 typically consists of a multi-
core multiprocessor chip with memory and possibly I/0 attached and an interface to an interconnection net-
work that connects all the nodes. Each processor core shares the entire memory, although the access time to the
lock memory attached to the core’s chip will be much faster than the access time to remote memories.

directed networks (i.e., switches) and indirect networks (typically multidimen-
sional meshes) are used.

Distributing the memory among the nodes both increases the bandwidth
and reduces the latency to local memory. A DSM multiprocessor is also called
a NUMA (nonuniform memory access), since the access time depends on the
location of a data word in memory. The key disadvantages for a DSM are that
communicating data among processors becomes somewhat more complex, and
a DSM requires more effort in the software to take advantage of the increased
memory bandwidth afforded by distributed memories. Because all multicore-
based multiprocessors with more than one processor chip (or socket) use
distributed memory, we will explain the operation of distributed memory multi-
processors from this viewpoint.

In both SMP and DSM architectures, communication among threads occurs
through a shared address space, meaning that a memory reference can be made
by any processor to any memory location, assuming it has the correct access
rights. The term shared memory associated with both SMP and DSM refers to the
fact that the address space is shared.

In contrast, the clusters and warehouse-scale computers of the next chapter
look like individual computers connected by a network, and the memory of one
processor cannot be accessed by another processor without the assistance of soft-
ware protocols running on both processors. In such designs, message-passing
protocols are used to communicate data among processors.

5.1 Introduction 349

Challenges of Parallel Processing

The application of multiprocessors ranges from running independent tasks with
essentially no communication to running parallel programs where threads must
communicate to complete the task. Two important hurdles, both explainable with
Amdahl’s law, make parallel processing challenging. The degree to which these
hurdles are difficult or easy is determined both by the application and by the
architecture.

The first hurdle has to do with the limited parallelism available in programs,
and the second arises from the relatively high cost of communications. Limita-
tions in available parallelism make it difficult to achieve good speedups in any
parallel processor, as our first example shows.

Example

Answer

Suppose you want to achieve a speedup of 80 with 100 processors. What fraction
of the original computation can be sequential?

Recall from Chapter 1 that Amdahl’s law is
1

Speedup = -
P P Fractlonenh:mced

————————— + (1 — Fraction
Speedupenhanced

enhanced)

For simplicity in this example, assume that the program operates in only two
modes: parallel with all processors fully used, which is the enhanced mode, or
serial with only one processor in use. With this simplification, the speedup in
enhanced mode is simply the number of processors, while the fraction of
enhanced mode is the time spent in parallel mode. Substituting into the previous
equation:

1

~ Fraction -
parallel +(1-

100 Fraction

parallel)

Simplifying this equation yields:

0.8 x Fraction,, e + 80 X (1 — Fraction ;) = 1
80 —-79.2 % Fractionparallel =1

. 80 -1

Fractlonparallel = ETRR

FractionpaIallel = 0.9975

Thus, to achieve a speedup of 80 with 100 processors, only 0.25% of the original
computation can be sequential. Of course, to achieve linear speedup (speedup of
n with n processors), the entire program must usually be parallel with no serial
portions. In practice, programs do not just operate in fully parallel or sequential
mode, but often use less than the full complement of the processors when running
in parallel mode.

350

Chapter Five Thread-Level Parallelism

The second major challenge in parallel processing involves the large latency
of remote access in a parallel processor. In existing shared-memory multiproces-
sors, communication of data between separate cores may cost 35 to 50 clock
cycles and among cores on separate chips anywhere from 100 clock cycles to as
much as 500 or more clock cycles (for large-scale multiprocessors), depending
on the communication mechanism, the type of interconnection network, and the
scale of the multiprocessor. The effect of long communication delays is clearly
substantial. Let’s consider a simple example.

Example

Answer

Suppose we have an application running on a 32-processor multiprocessor, which
has a 200 ns time to handle reference to a remote memory. For this application,
assume that all the references except those involving communication hit in the
local memory hierarchy, which is slightly optimistic. Processors are stalled on a
remote request, and the processor clock rate is 3.3 GHz. If the base CPI (assum-
ing that all references hit in the cache) is 0.5, how much faster is the multiproces-
sor if there is no communication versus if 0.2% of the instructions involve a
remote communication reference?

It is simpler to first calculate the clock cycles per instruction. The effective CPI
for the multiprocessor with 0.2% remote references is

CPI = Base CPI + Remote request rate X Remote request cost

0.5 + 0.2% x Remote request cost
The remote request cost is

Remote access cost _ 200 ns
Cycle time ~ 03ns

= 666 cycles

Hence, we can compute the CPI:

CPI=05+12=1.7

The multiprocessor with all local references is 1.7/0.5 = 3.4 times faster. In
practice, the performance analysis is much more complex, since some fraction
of the noncommunication references will miss in the local hierarchy and the
remote access time does not have a single constant value. For example, the cost
of a remote reference could be quite a bit worse, since contention caused by
many references trying to use the global interconnect can lead to increased
delays.

These problems—insufficient parallelism and long-latency remote communi-
cation—are the two biggest performance challenges in using multiprocessors.
The problem of inadequate application parallelism must be attacked primarily in
software with new algorithms that offer better parallel performance, as well as by
software systems that maximize the amount of time spent executing with the full

5.2

5.2 Centralized Shared-Memory Architectures 351

complement of processors. Reducing the impact of long remote latency can be
attacked both by the architecture and by the programmer. For example, we can
reduce the frequency of remote accesses with either hardware mechanisms, such
as caching shared data, or software mechanisms, such as restructuring the data to
make more accesses local. We can try to tolerate the latency by using multi-
threading (discussed later in this chapter) or by using prefetching (a topic we
cover extensively in Chapter 2).

Much of this chapter focuses on techniques for reducing the impact of long
remote communication latency. For example, Sections 5.2 through 5.4 discuss
how caching can be used to reduce remote access frequency, while maintaining
a coherent view of memory. Section 5.5 discusses synchronization, which,
because it inherently involves interprocessor communication and also can limit
parallelism, is a major potential bottleneck. Section 5.6 covers latency-hiding
techniques and memory consistency models for shared memory. In Appendix I,
we focus primarily on larger-scale multiprocessors that are used predominantly
for scientific work. In that appendix, we examine the nature of such applica-
tions and the challenges of achieving speedup with dozens to hundreds of
processors.

Centralized Shared-Memory Architectures

The observation that the use of large, multilevel caches can substantially reduce
the memory bandwidth demands of a processor is the key insight that motivates
centralized memory multiprocessors. Originally, these processors were all single-
core and often took an entire board, and memory was located on a shared bus.
With more recent, higher-performance processors, the memory demands have
outstripped the capability of reasonable buses, and recent microprocessors
directly connect memory to a single chip, which is sometimes called a backside
or memory bus to distinguish it from the bus used to connect to I/O. Accessing a
chip’s local memory whether for an I/O operation or for an access from another
chip requires going through the chip that “owns” that memory. Thus, access to
memory is asymmetric: faster to the local memory and slower to the remote
memory. In a multicore that memory is shared among all the cores on a single
chip, but the asymmetric access to the memory of one multicore from the mem-
ory of another remains.

Symmetric shared-memory machines usually support the caching of both
shared and private data. Private data are used by a single processor, while shared
data are used by multiple processors, essentially providing communication among
the processors through reads and writes of the shared data. When a private item is
cached, its location is migrated to the cache, reducing the average access time as
well as the memory bandwidth required. Since no other processor uses the data,
the program behavior is identical to that in a uniprocessor. When shared data are
cached, the shared value may be replicated in multiple caches. In addition to the
reduction in access latency and required memory bandwidth, this replication also

352

Chapter Five Thread-Level Parallelism

provides a reduction in contention that may exist for shared data items that are
being read by multiple processors simultaneously. Caching of shared data, how-
ever, introduces a new problem: cache coherence.

What Is Multiprocessor Cache Coherence?

Unfortunately, caching shared data introduces a new problem because the view
of memory held by two different processors is through their individual caches,
which, without any additional precautions, could end up seeing two different val-
ues. Figure 5.3 illustrates the problem and shows how two different processors
can have two different values for the same location. This difficulty is generally
referred to as the cache coherence problem. Notice that the coherence problem
exists because we have both a global state, defined primarily by the main mem-
ory, and a local state, defined by the individual caches, which are private to each
processor core. Thus, in a multicore where some level of caching may be shared
(for example, an L3), while some levels are private (for example, L1 and L2), the
coherence problem still exists and must be solved.

Informally, we could say that a memory system is coherent if any read of a
data item returns the most recently written value of that data item. This defini-
tion, although intuitively appealing, is vague and simplistic; the reality is much
more complex. This simple definition contains two different aspects of memory
system behavior, both of which are critical to writing correct shared-memory pro-
grams. The first aspect, called coherence, defines what values can be returned by
a read. The second aspect, called consistency, determines when a written value
will be returned by a read. Let’s look at coherence first.

A memory system is coherent if

1. A read by processor P to location X that follows a write by P to X, with no
writes of X by another processor occurring between the write and the read by
P, always returns the value written by P.

Memory
Cache contents Cache contents contents for
Time Event for processor A for processorB location X
0 1
1 Processor A reads X 1 1
2 Processor B reads X 1 1 1
3 Processor A stores 0 0 1 0
into X

Figure 5.3 The cache coherence problem for a single memory location (X), read and
written by two processors (A and B). We initially assume that neither cache contains
the variable and that X has the value 1. We also assume a write-through cache; a write-
back cache adds some additional but similar complications. After the value of X has
been written by A, A's cache and the memory both contain the new value, but B's cache
does not, and if B reads the value of X it will receive 1!

5.2 Centralized Shared-Memory Architectures 353

2. A read by a processor to location X that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated
in time and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized; that is, two writes to the same loca-
tion by any two processors are seen in the same order by all processors. For
example, if the values 1 and then 2 are written to a location, processors can
never read the value of the location as 2 and then later read it as 1.

The first property simply preserves program order—we expect this property
to be true even in uniprocessors. The second property defines the notion of
what it means to have a coherent view of memory: If a processor could
continuously read an old data value, we would clearly say that memory was
incoherent.

The need for write serialization is more subtle, but equally important. Sup-
pose we did not serialize writes, and processor P1 writes location X followed by
P2 writing location X. Serializing the writes ensures that every processor will see
the write done by P2 at some point. If we did not serialize the writes, it might be
the case that some processors could see the write of P2 first and then see the write
of P1, maintaining the value written by P1 indefinitely. The simplest way to
avoid such difficulties is to ensure that all writes to the same location are seen in
the same order; this property is called write serialization.

Although the three properties just described are sufficient to ensure coher-
ence, the question of when a written value will be seen is also important. To see
why, observe that we cannot require that a read of X instantaneously see the
value written for X by some other processor. If, for example, a write of X on one
processor precedes a read of X on another processor by a very small time, it may
be impossible to ensure that the read returns the value of the data written, since
the written data may not even have left the processor at that point. The issue of
exactly when a written value must be seen by a reader is defined by a memory
consistency model—a topic discussed in Section 5.6.

Coherence and consistency are complementary: Coherence defines the
behavior of reads and writes to the same memory location, while consistency
defines the behavior of reads and writes with respect to accesses to other mem-
ory locations. For now, make the following two assumptions. First, a write does
not complete (and allow the next write to occur) until all processors have seen
the effect of that write. Second, the processor does not change the order of any
write with respect to any other memory access. These two conditions mean
that, if a processor writes location A followed by location B, any processor that
sees the new value of B must also see the new value of A. These restrictions
allow the processor to reorder reads, but forces the processor to finish a write in
program order. We will rely on this assumption until we reach Section 5.6,
where we will see exactly the implications of this definition, as well as the
alternatives.

354

Chapter Five Thread-Level Parallelism

Basic Schemes for Enforcing Coherence

The coherence problem for multiprocessors and I/O, although similar in origin, has
different characteristics that affect the appropriate solution. Unlike I/O, where mul-
tiple data copies are a rare event—one to be avoided whenever possible—a pro-
gram running on multiple processors will normally have copies of the same data in
several caches. In a coherent multiprocessor, the caches provide both migration and
replication of shared data items.

Coherent caches provide migration, since a data item can be moved to a local
cache and used there in a transparent fashion. This migration reduces both the
latency to access a shared data item that is allocated remotely and the bandwidth
demand on the shared memory.

Coherent caches also provide replication for shared data that are being
simultaneously read, since the caches make a copy of the data item in the local
cache. Replication reduces both latency of access and contention for a read
shared data item. Supporting this migration and replication is critical to perfor-
mance in accessing shared data. Thus, rather than trying to solve the problem by
avoiding it in software, multiprocessors adopt a hardware solution by introducing
a protocol to maintain coherent caches.

The protocols to maintain coherence for multiple processors are called cache
coherence protocols. Key to implementing a cache coherence protocol is tracking
the state of any sharing of a data block. There are two classes of protocols in use,
each of which uses different techniques to track the sharing status:

m Directory based—The sharing status of a particular block of physical mem-
ory is kept in one location, called the directory. There are two very different
types of directory-based cache coherence. In an SMP, we can use one central-
ized directory, associated with the memory or some other single serialization
point, such as the outermost cache in a multicore. In a DSM, it makes no
sense to have a single directory, since that would create a single point of con-
tention and make it difficult to scale to many multicore chips given the mem-
ory demands of multicores with eight or more cores. Distributed directories
are more complex than a single directory, and such designs are the subject of
Section 5.4.

m Snooping—Rather than keeping the state of sharing in a single directory,
every cache that has a copy of the data from a block of physical memory
could track the sharing status of the block. In an SMP, the caches are typically
all accessible via some broadcast medium (e.g., a bus connects the per-core
caches to the shared cache or memory), and all cache controllers monitor or
snoop on the medium to determine whether or not they have a copy of a block
that is requested on a bus or switch access. Snooping can also be used as the
coherence protocol for a multichip multiprocessor, and some designs support
a snooping protocol on top of a directory protocol within each multicore!

Snooping protocols became popular with multiprocessors using microproces-
sors (single-core) and caches attached to a single shared memory by a bus.

5.2 Centralized Shared-Memory Architectures 355

The bus provided a convenient broadcast medium to implement the snooping
protocols. Multicore architectures changed the picture significantly, since all
multicores share some level of cache on the chip. Thus, some designs switched to
using directory protocols, since the overhead was small. To allow the reader to
become familiar with both types of protocols, we focus on a snooping protocol
here and discuss a directory protocol when we come to DSM architectures.

Snooping Coherence Protocols

There are two ways to maintain the coherence requirement described in the prior
subsection. One method is to ensure that a processor has exclusive access to a
data item before it writes that item. This style of protocol is called a write invali-
date protocol because it invalidates other copies on a write. It is by far the most
common protocol. Exclusive access ensures that no other readable or writable
copies of an item exist when the write occurs: All other cached copies of the item
are invalidated.

Figure 5.4 shows an example of an invalidation protocol with write-back
caches in action. To see how this protocol ensures coherence, consider a write
followed by a read by another processor: Since the write requires exclusive
access, any copy held by the reading processor must be invalidated (hence, the
protocol name). Thus, when the read occurs, it misses in the cache and is forced
to fetch a new copy of the data. For a write, we require that the writing processor
have exclusive access, preventing any other processor from being able to write

Contents of Contents of Contents of

Processor activity Bus activity processor A's cache processor B’s cache memory location X
0

Processor A reads X Cache miss for X 0 0

Processor B reads X~ Cache miss for X 0 0 0

Processor A writesa 1 Invalidation for X 0

to X

Processor B reads X Cache miss for X 1 1 1

Figure 5.4 An example of an invalidation protocol working on a snooping bus for a single cache block (X) with
write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0. The proces-
sor and memory contents show the value after the processor and bus activity have both completed. A blank indi-
cates no activity or no copy cached. When the second miss by B occurs, processor A responds with the value
canceling the response from memory. In addition, both the contents of B's cache and the memory contents of X are
updated. This update of memory, which occurs when a block becomes shared, simplifies the protocol, but it is possi-
ble to track the ownership and force the write-back only if the block is replaced. This requires the introduction of an
additional state called “owner,” which indicates that a block may be shared, but the owning processor is responsible
for updating any other processors and memory when it changes the block or replaces it. If a multicore uses a shared
cache (e.g., L3), then all memory is seen through the shared cache; L3 acts like the memory in this example, and
coherency must be handled for the private L1 and L2 for each core. It is this observation that led some designers to
opt for a directory protocol within the multicore. To make this work the L3 cache must be inclusive (see page 397).

356

Chapter Five Thread-Level Parallelism

simultaneously. If two processors do attempt to write the same data simultane-
ously, one of them wins the race (we’ll see how we decide who wins shortly),
causing the other processor’s copy to be invalidated. For the other processor to
complete its write, it must obtain a new copy of the data, which must now contain
the updated value. Therefore, this protocol enforces write serialization.

The alternative to an invalidate protocol is to update all the cached copies of a
data item when that item is written. This type of protocol is called a write update
or write broadcast protocol. Because a write update protocol must broadcast all
writes to shared cache lines, it consumes considerably more bandwidth. For this
reason, recent multiprocessors have opted to implement a write invalidate proto-
col, and we will focus only on invalidate protocols for the rest of the chapter.

Basic Implementation Techniques

The key to implementing an invalidate protocol in a multicore is the use of the bus,
or another broadcast medium, to perform invalidates. In older multiple-chip multi-
processors, the bus used for coherence is the shared-memory access bus. In a multi-
core, the bus can be the connection between the private caches (L1 and L2 in the
Intel Core 17) and the shared outer cache (L3 in the i7). To perform an invalidate,
the processor simply acquires bus access and broadcasts the address to be invali-
dated on the bus. All processors continuously snoop on the bus, watching the
addresses. The processors check whether the address on the bus is in their cache. If
so, the corresponding data in the cache are invalidated.

When a write to a block that is shared occurs, the writing processor must
acquire bus access to broadcast its invalidation. If two processors attempt to write
shared blocks at the same time, their attempts to broadcast an invalidate opera-
tion will be serialized when they arbitrate for the bus. The first processor to
obtain bus access will cause any other copies of the block it is writing to be inval-
idated. If the processors were attempting to write the same block, the serialization
enforced by the bus also serializes their writes. One implication of this scheme is
that a write to a shared data item cannot actually complete until it obtains bus
access. All coherence schemes require some method of serializing accesses to the
same cache block, either by serializing access to the communication medium or
another shared structure.

In addition to invalidating outstanding copies of a cache block that is being
written into, we also need to locate a data item when a cache miss occurs. In a
write-through cache, it is easy to find the recent value of a data item, since all
written data are always sent to the memory, from which the most recent value of
a data item can always be fetched. (Write buffers can lead to some additional
complexities and must effectively be treated as additional cache entries.)

For a write-back cache, the problem of finding the most recent data value is
harder, since the most recent value of a data item can be in a private cache rather
than in the shared cache or memory. Happily, write-back caches can use the same
snooping scheme both for cache misses and for writes: Each processor snoops
every address placed on the shared bus. If a processor finds that it has a dirty

5.2 Centralized Shared-Memory Architectures 357

copy of the requested cache block, it provides that cache block in response to the
read request and causes the memory (or L.3) access to be aborted. The additional
complexity comes from having to retrieve the cache block from another proces-
sor’s private cache (L1 or L2), which can often take longer than retrieving it from
L3. Since write-back caches generate lower requirements for memory bandwidth,
they can support larger numbers of faster processors. As a result, all multicore
processors use write-back at the outermost levels of the cache, and we will exam-
ine the implementation of coherence with write-back caches.

The normal cache tags can be used to implement the process of snooping, and
the valid bit for each block makes invalidation easy to implement. Read misses,
whether generated by an invalidation or by some other event, are also straightfor-
ward since they simply rely on the snooping capability. For writes we would like
to know whether any other copies of the block are cached because, if there are no
other cached copies, then the write need not be placed on the bus in a write-back
cache. Not sending the write reduces both the time to write and the required
bandwidth.

To track whether or not a cache block is shared, we can add an extra state bit
associated with each cache block, just as we have a valid bit and a dirty bit. By
adding a bit indicating whether the block is shared, we can decide whether a
write must generate an invalidate. When a write to a block in the shared state
occurs, the cache generates an invalidation on the bus and marks the block as
exclusive. No further invalidations will be sent by that core for that block. The
core with the sole copy of a cache block is normally called the owner of the cache
block.

When an invalidation is sent, the state of the owner’s cache block is changed
from shared to unshared (or exclusive). If another processor later requests this
cache block, the state must be made shared again. Since our snooping cache also
sees any misses, it knows when the exclusive cache block has been requested by
another processor and the state should be made shared.

Every bus transaction must check the cache-address tags, which could poten-
tially interfere with processor cache accesses. One way to reduce this interference is
to duplicate the tags and have snoop accesses directed to the duplicate tags. Another
approach is to use a directory at the shared L3 cache; the directory indicates whether
a given block is shared and possibly which cores have copies. With the directory
information, invalidates can be directed only to those caches with copies of the
cache block. This requires that L3 must always have a copy of any data item in L1 or
L2, a property called inclusion, which we will return to in Section 5.7.

An Example Protocol

A snooping coherence protocol is usually implemented by incorporating a finite-
state controller in each core. This controller responds to requests from the
processor in the core and from the bus (or other broadcast medium), changing the
state of the selected cache block, as well as using the bus to access data or to inval-
idate it. Logically, you can think of a separate controller being associated with

358

Chapter Five Thread-Level Parallelism

each block; that is, snooping operations or cache requests for different blocks can
proceed independently. In actual implementations, a single controller allows mul-
tiple operations to distinct blocks to proceed in interleaved fashion (that is, one
operation may be initiated before another is completed, even though only one
cache access or one bus access is allowed at a time). Also, remember that,
although we refer to a bus in the following description, any interconnection net-
work that supports a broadcast to all the coherence controllers and their associated
private caches can be used to implement snooping.

The simple protocol we consider has three states: invalid, shared, and mod-
ified. The shared state indicates that the block in the private cache is potentially
shared, while the modified state indicates that the block has been updated in the
private cache; note that the modified state implies that the block is exclusive.
Figure 5.5 shows the requests generated by a core (in the top half of the table)

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit ~ Processor Shared or Normal hit ~ Read data in local cache.

modified

Read miss Processor Invalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Write hit ~ Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data
but only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block; invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

Figure 5.5 The cache coherence mechanism receives requests from both the core’s processor and the shared
bus and responds to these based on the type of request, whether it hits or misses in the local cache, and the state
of the local cache block specified in the request. The fourth column describes the type of cache action as normal
hit or miss (the same as a uniprocessor cache would see), replacement (a uniprocessor cache replacement miss), or
coherence (required to maintain cache coherence); a normal or replacement action may cause a coherence action
depending on the state of the block in other caches. For read, misses, write misses, or invalidates snooped from the
bus, an action is required only if the read or write addresses match a block in the local cache and the block is valid.

5.2 Centralized Shared-Memory Architectures 359

as well as those coming from the bus (in the bottom half of the table). This pro-
tocol is for a write-back cache but is easily changed to work for a write-through
cache by reinterpreting the modified state as an exclusive state and updating
the cache on writes in the normal fashion for a write-through cache. The most
common extension of this basic protocol is the addition of an exclusive state,
which describes a block that is unmodified but held in only one private cache.
We describe this and other extensions on page 362.

When an invalidate or a write miss is placed on the bus, any cores whose pri-
vate