

OPERATING
SYSTEM
CONCEPTS

OPERATING
SYSTEM
CONCEPTS
ABRAHAM SILBERSCHATZ

PETER BAER GALVIN

GREG GAGNE

Publisher Laurie Rosatone

Editorial Director Don Fowley

Development Editor Ryann Dannelly

Freelance Developmental Editor Chris Nelson/Factotum

Executive Marketing Manager Glenn Wilson

Senior Content Manage Valerie Zaborski

Senior Production Editor Ken Santor

Media Specialist Ashley Patterson

Editorial Assistant Anna Pham

Cover Designer Tom Nery

Cover art © metha189/Shutterstock

This book was set in Palatino by the author using LaTeX and printed and bound by LSC Kendallville.

The cover was printed by LSC Kendallville.

Copyright © 2018, 2013, 2012, 2008 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written

permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the

Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, (978)750-8400, fax

(978)750-4470. Requests to the Publisher for permission should be addressed to the Permissions

Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030 (201)748-6011, fax (201)748-

6008, E-Mail: PERMREQ@WILEY.COM.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use

in their courses during the next academic year. These copies are licensed and may not be sold or

transferred to a third party. Upon completion of the review period, please return the evaluation copy to

Wiley. Return instructions and a free-of-charge return shipping label are available at

www.wiley.com/go/evalreturn. Outside of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Names: Silberschatz, Abraham, author. | Galvin, Peter B., author. | Gagne,

 Greg, author.

Title: Operating system concepts / Abraham Silberschatz, Yale University,

 Peter Baer Galvin, Pluribus Networks, Greg Gagne, Westminster College.

Description: 10th edition. | Hoboken, NJ : Wiley, [2018] | Includes

 bibliographical references and index. |

Identifiers: LCCN 2017043464 (print) | LCCN 2017045986 (ebook) | ISBN

 9781119320913 (enhanced ePub)

Subjects: LCSH: Operating systems (Computers)

Classification: LCC QA76.76.O63 (ebook) | LCC QA76.76.O63 S55825 2018 (print)

 | DDC 005.4/3--dc23

LC record available at https://lccn.loc.gov/2017043464

The inside back cover will contain printing identification and country of origin if omitted from this page. In

addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is

correct.

Enhanced ePub ISBN 978-1-119-32091-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

mailto:PERMREQ@WILEY.COM
http://www.wiley.com/go/evalreturn
https://lccn.loc.gov/2017043464

To my children, Lemor, Sivan, and Aaron
and my Nicolette

Avi Silberschatz

To my wife, Carla,
and my children, Gwen, Owen, and Maddie

Peter Baer Galvin

To my wife, Pat,
and our sons, Tom and Jay

Greg Gagne

Preface

Operating systems are an essential part of any computer system. Similarly, a
course on operating systems is an essential part of any computer science edu-
cation. This field is undergoing rapid change, as computers are now prevalent
in virtually every arena of day-to-day life—from embedded devices in auto-
mobiles through the most sophisticated planning tools for governments and
multinational firms. Yet the fundamental concepts remain fairly clear, and it is
on these that we base this book.

We wrote this book as a text for an introductory course in operating sys-
tems at the junior or senior undergraduate level or at the first-year graduate
level. We hope that practitioners will also find it useful. It provides a clear
description of the concepts that underlie operating systems. As prerequisites,
we assume that the reader is familiar with basic data structures, computer
organization, and a high-level language, such as C or Java. The hardware topics
required for an understanding of operating systems are covered in Chapter 1.
In that chapter, we also include an overviewof the fundamental data structures
that are prevalent in most operating systems. For code examples, we use pre-
dominantly C, as well as a significant amount of Java, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are largely omitted. The bibliographical
notes at the end of each chapter contain pointers to research papers in which
results were first presented and proved, as well as references to recent material
for further reading. In place of proofs, figures and examples are used to suggest
why we should expect the result in question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in both open-source and commercial operating systems.
Our aim is to present these concepts and algorithms in a general setting that
is not tied to one particular operating system. However, we present a large
number of examples that pertain to the most popular and the most innovative
operating systems, including Linux, Microsoft Windows, Apple macOS (the
original name, OS X, was changed in 2016 to match the naming scheme of other
Apple products), and Solaris. We also include examples of both Android and
iOS, currently the two dominant mobile operating systems.

The organization of the text reflects our many years of teaching courses
on operating systems. Consideration was also given to the feedback provided

vii

viii Preface

by the reviewers of the text, along with the many comments and suggestions
we received from readers of our previous editions and from our current and
former students. This Tenth Edition also reflects most of the curriculum guide-
lines in the operating-systems area in Computer Science Curricula 2013, the most
recent curriculum guidelines for undergraduate degree programs in computer
science published by the IEEE Computing Society and the Association for Com-
puting Machinery (ACM).

What’s New in This Edition

For the Tenth Edition, we focused on revisions and enhancements aimed at
lowering costs to the students, better engaging them in the learning process,
and providing increased support for instructors.

According to the publishing industry’s most trusted market research firm,
Outsell, 2015 represented a turning point in text usage: for the first time,
student preference for digital learning materials was higher than for print, and
the increase in preference for digital has been accelerating since.

While print remains important formany students as a pedagogical tool, the
Tenth Edition is being delivered in forms that emphasize support for learning
from digital materials. All formswe are providing dramatically reduce the cost
to students compared to the Ninth Edition. These forms are:

• Stand-alone e-text now with significan enhancements. The e-text format
for the Tenth Edition adds exercises with solutions at the ends of main
sections, hide/reveal definitions for key terms, and a number of animated
figures. It also includes additional “Practice Exercises” with solutions for
each chapter, extra exercises, programming problems and projects, “Fur-
ther Reading” sections, a complete glossary, and four appendices for legacy
operating systems.

• E-text with print companion bundle. For a nominal additional cost, the
e-text also is available with an abridged print companion that includes
a loose-leaf copy of the main chapter text, end-of-chapter “Practice Exer-
cises” (solutions available online), and “Further Reading” sections. Instruc-
tors may also order bound print companions for the bundled package by
contacting their Wiley account representative.

Although we highly encourage all instructors and students to take advantage
of the cost, content, and learning advantages of the e-text edition, it is possible
for instructors to work with their Wiley Account Manager to create a custom
print edition.

To explore these options further or to discuss other options, contact your
Wiley account manager (http://www.wiley.com/go/whosmyrep) or visit the
product information page for this text on wiley.com

Book Material

The book consists of 21 chapters and 4 appendices. Each chapter and appendix
contains the text, as well as the following enhancements:

http://www.wiley.com/go/whosmyrep

Preface ix

• A set of practice exercises, including solutions

• A set of regular exercises

• A set of programming problems

• A set of programming projects

• A Further Reading section

• Pop-up definitions of important (blue) terms

• A glossary of important terms

• Animations that describe specific key concepts

A hard copy of the text is available in book stores and online. That version has
the same text chapters as the electronic version. It does not, however, include
the appendices, the regular exercises, the solutions to the practice exercises,
the programming problems, the programming projects, and some of the other
enhancements found in this ePub electronic book.

Content of This Book

The text is organized in ten major parts:

• Overview. Chapters 1 and 2 explain what operating systems are, what
they do, and how they are designed and constructed. These chapters dis-
cuss what the common features of an operating system are and what an
operating system does for the user. We include coverage of both tradi-
tional PC and server operating systems and operating systems for mobile
devices. The presentation is motivational and explanatory in nature. We
have avoided a discussion of how things are done internally in these chap-
ters. Therefore, they are suitable for individual readers or for students in
lower-level classes whowant to learnwhat an operating system is without
getting into the details of the internal algorithms.

• Process management. Chapters 3 through 5 describe the process concept
and concurrency as the heart of modern operating systems. A process is
the unit of work in a system. Such a system consists of a collection of
concurrently executing processes, some executing operating-system code
and others executing user code. These chapters cover methods for process
scheduling and interprocess communication. Also included is a detailed
discussion of threads, as well as an examination of issues related to multi-
core systems and parallel programming.

• Process synchronization. Chapters 6 through 8 cover methods for process
synchronization and deadlock handling. Because we have increased the
coverage of process synchronization, we have divided the former Chapter
5 (Process Synchronization) into two separate chapters: Chapter 6, Syn-
chronization Tools, and Chapter 7, Synchronization Examples.

• Memory management. Chapters 9 and 10 deal with the management of
main memory during the execution of a process. To improve both the

x Preface

utilization of the CPU and the speed of its response to its users, the com-
puter must keep several processes in memory. There are many different
memory-management schemes, reflecting various approaches to memory
management, and the effectiveness of a particular algorithm depends on
the situation.

• Storage management. Chapters 11 and 12 describe how mass storage and
I/O are handled in a modern computer system. The I/O devices that attach
to a computer vary widely, and the operating system needs to provide a
wide range of functionality to applications to allow them to control all
aspects of these devices. We discuss system I/O in depth, including I/O
system design, interfaces, and internal system structures and functions.
In many ways, I/O devices are the slowest major components of the com-
puter. Because they represent a performance bottleneck, we also examine
performance issues associated with I/O devices.

• File systems. Chapters 13 through 15 discuss how file systems are handled
in amodern computer system. File systems provide themechanism for on-
line storage of and access to both data and programs. We describe the clas-
sic internal algorithms and structures of storage management and provide
a firm practical understanding of the algorithms used—their properties,
advantages, and disadvantages.

• Security and protection. Chapters 16 and 17 discuss the mechanisms nec-
essary for the security and protection of computer systems. The processes
in an operating system must be protected from one another’s activities.
To provide such protection, we must ensure that only processes that have
gained proper authorization from the operating system can operate on
the files, memory, CPU, and other resources of the system. Protection is
a mechanism for controlling the access of programs, processes, or users
to computer-system resources. This mechanism must provide a means
of specifying the controls to be imposed, as well as a means of enforce-
ment. Security protects the integrity of the information stored in the system
(both data and code), as well as the physical resources of the system, from
unauthorized access, malicious destruction or alteration, and accidental
introduction of inconsistency.

• Advanced topics. Chapters 18 and 19 discuss virtual machines and
networks/distributed systems. Chapter 18 provides an overview of
virtual machines and their relationship to contemporary operating
systems. Included is a general description of the hardware and software
techniques that make virtualization possible. Chapter 19 provides an
overview of computer networks and distributed systems, with a focus on
the Internet and TCP/IP.

• Case studies. Chapter 20 and 21 present detailed case studies of two real
operating systems—Linux and Windows 10.

• Appendices. Appendix A discusses several old influential operating sys-
tems that are no longer in use. Appendices B through D cover in great
detaisl three older operating systems— Windows 7, BSD, and Mach.

Preface xi

Programming Environments

The text provides several example programs written in C and Java. These
programs are intended to run in the following programming environments:

• POSIX. POSIX (which stands for Portable Operating System Interface) repre-
sents a set of standards implemented primarily for UNIX-based operat-
ing systems. Although Windows systems can also run certain POSIX pro-
grams, our coverage of POSIX focuses on Linux and UNIX systems. POSIX-
compliant systems must implement the POSIX core standard (POSIX.1);
Linux and macOS are examples of POSIX-compliant systems. POSIX also
defines several extensions to the standards, including real-time extensions
(POSIX.1b) and an extension for a threads library (POSIX.1c, better known
as Pthreads). We provide several programming examples written in C
illustrating the POSIX base API, as well as Pthreads and the extensions for
real-time programming. These example programswere tested on Linux 4.4
and macOS 10.11 systems using the gcc compiler.

• Java. Java is a widely used programming language with a rich API and
built-in language support for concurrent and parallel programming. Java
programs run on any operating system supporting a Java virtual machine
(or JVM). We illustrate various operating-system and networking concepts
with Java programs tested using Version 1.8 of the Java Development Kit
(JDK).

• Windows systems. The primary programming environment for Windows
systems is the Windows API, which provides a comprehensive set of func-
tions for managing processes, threads, memory, and peripheral devices.
We supply a modest number of C programs illustrating the use of this API.
Programs were tested on a system running Windows 10.

We have chosen these three programming environments because we
believe that they best represent the two most popular operating-system
models—Linux/UNIX and Windows—along with the widely used Java
environment. Most programming examples are written in C, and we expect
readers to be comfortable with this language. Readers familiar with both the
C and Java languages should easily understand most programs provided in
this text.

In some instances—such as thread creation—we illustrate a specific con-
cept using all three programming environments, allowing the reader to con-
trast the three different libraries as they address the same task. In other situa-
tions, we may use just one of the APIs to demonstrate a concept. For example,
we illustrate shared memory using just the POSIX API; socket programming in
TCP/IP is highlighted using the Java API.

Linux Virtual Machine

To help students gain a better understanding of the Linux system, we pro-
vide a Linux virtual machine running the Ubuntu distribution with this text.
The virtual machine, which is available for download from the text website

xii Preface

(http://www.os-book.com), also provides development environments includ-
ing the gcc and Java compilers. Most of the programming assignments in the
book can be completedusing this virtualmachine, with the exception of assign-
ments that require the Windows API. The virtual machine can be installed and
run on any host operating system that can run the VirtualBox virtualization
software, which currently includes Windows 10 Linux, and macOS.

The Tenth Edition

Aswewrote this TenthEditionofOperating SystemConcepts,wewere guidedby
the sustained growth in four fundamental areas that affect operating systems:

1. Mobile operating systems

2. Multicore systems

3. Virtualization

4. Nonvolatile memory secondary storage

To emphasize these topics, we have integrated relevant coverage throughout
this new edition. For example, we have greatly increased our coverage of the
Android and iOS mobile operating systems, as well as our coverage of the
ARMv8 architecture that dominates mobile devices. We have also increased
our coverage of multicore systems, including increased coverage of APIs that
provide support for concurrency and parallelism.Nonvolatilememory devices
like SSDs are now treated as the equals of hard-disk drives in the chapters that
discuss I/O, mass storage, and file systems.

Several of our readers have expressed support for an increase in Java
coverage, and we have provided additional Java examples throughout this
edition.

Additionally, we have rewrittenmaterial in almost every chapter by bring-
ing older material up to date and removing material that is no longer interest-
ing or relevant.We have reorderedmany chapters and have, in some instances,
moved sections from one chapter to another. We have also greatly revised
the artwork, creating several new figures as well as modifying many existing
figures.

Major Changes

The Tenth Edition update encompasses much more material than previous
updates, in terms of both content and new supporting material. Next, we
provide a brief outline of the major content changes in each chapter:

• Chapter 1: Introduction includes updated coverage of multicore systems,
as well as new coverage of NUMA systems and Hadoop clusters. Old
material has been updated, and new motivation has been added for the
study of operating systems.

• Chapter 2: Operating-System Structures provides a significantly revised
discussion of the design and implementation of operating systems. We
have updated our treatment of Android and iOS and have revised our

http://www.os-book.com
http://www.os-book.com

Preface xiii

coverage of the system boot process with a focus on GRUB for Linux
systems. New coverage of the Windows subsystem for Linux is included
as well. We have added new sections on linkers and loaders, and we now
discuss why applications are often operating-system specific. Finally, we
have added a discussion of the BCC debugging toolset.

• Chapter 3: Processes simplifies the discussion of scheduling so that it
now includes only CPU scheduling issues. New coverage describes the
memory layout of a C program, the Android process hierarchy, Mach
message passing, and Android RPCs. We have also replaced coverage of
the traditional UNIX/Linux init process with coverage of systemd.

• Chapter 4: Threads and Concurrency (previously Threads) increases the
coverage of support for concurrent and parallel programming at the API
and library level. We have revised the section on Java threads so that it
now includes futures and have updated the coverage of Apple’s Grand
Central Dispatch so that it now includes Swift. New sections discuss fork-
join parallelism using the fork-join framework in Java, as well as Intel
thread building blocks.

• Chapter 5: CPU Scheduling (previously Chapter 6) revises the coverage of
multilevel queue andmulticore processing scheduling.We have integrated
coverage of NUMA-aware scheduling issues throughout, including how
this scheduling affects load balancing. We also discuss related modifica-
tions to the Linux CFS scheduler. New coverage combines discussions of
round-robin and priority scheduling, heterogeneous multiprocessing, and
Windows 10 scheduling.

• Chapter 6: Synchronization Tools (previously part of Chapter 5, Process
Synchronization) focuses on various tools for synchronizing processes.
Significant new coverage discusses architectural issues such as instruction
reordering and delayedwrites to buffers. The chapter also introduces lock-
free algorithms using compare-and-swap (CAS) instructions. No specific
APIs are presented; rather, the chapter provides an introduction to race
conditions and general tools that can be used to prevent data races. Details
include new coverage of memory models, memory barriers, and liveness
issues.

• Chapter 7: Synchronization Examples (previously part of Chapter 5,
Process Synchronization) introduces classical synchronization problems
and discusses specific API support for designing solutions that solve
these problems. The chapter includes new coverage of POSIX named and
unnamed semaphores, as well as condition variables. A new section on
Java synchronization is included as well.

• Chapter 8: Deadlocks (previously Chapter 7) provides minor updates,
including a new section on livelock and a discussion of deadlock as an
example of a liveness hazard. The chapter includes new coverage of the
Linux lockdep and the BCC deadlock detector tools, aswell as coverage
of Java deadlock detection using thread dumps.

• Chapter 9: Main Memory (previously Chapter 8) includes several revi-
sions that bring the chapter up to date with respect to memory manage-

xiv Preface

ment on modern computer systems. We have added new coverage of the
ARMv8 64-bit architecture, updated the coverage of dynamic link libraries,
and changed swapping coverage so that it now focuses on swapping pages
rather than processes. We have also eliminated coverage of segmentation.

• Chapter 10: Virtual Memory (previously Chapter 9) contains several revi-
sions, including updated coverage ofmemory allocation onNUMAsystems
and global allocation using a free-frame list. New coverage includes com-
pressed memory, major/minor page faults, and memory management in
Linux and Windows 10.

• Chapter 11: Mass-Storage Structure (previously Chapter 10) adds cover-
age of nonvolatile memory devices, such as flash and solid-state disks.
Hard-drive scheduling is simplified to show only currently used algo-
rithms. Also included are a new section on cloud storage, updated RAID
coverage, and a new discussion of object storage.

• Chapter 12, I/O (previously Chapter 13) updates the coverage of
technologies and performance numbers, expands the coverage of
synchronous/asynchronous and blocking/nonblocking I/O, and adds a
section on vectored I/O. It also expands coverage of power management
for mobile operating systems.

• Chapter 13: File-System Interface (previously Chapter 11) has been
updated with information about current technologies. In particular, the
coverage of directory structures has been improved, and the coverage of
protection has been updated. The memory-mapped files section has been
expanded, and a Windows API example has been added to the discussion
of shared memory. The ordering of topics is refactored in Chapter 13 and
14.

• Chapter 14: File-System Implementation (previously Chapter 12) has
been updated with coverage of current technologies. The chapter now
includes discussions of TRIM and the Apple File System. In addition, the
discussion of performance has been updated, and the coverage of journal-
ing has been expanded.

• Chapter 15: File System Internals is new and contains updated informa-
tion from previous Chapters 11 and 12.

• Chapter 16: Security (previously Chapter 15) now precedes the protec-
tion chapter. It includes revised and updated terms for current security
threats and solutions, including ransomware and remote access tools. The
principle of least privilege is emphasized. Coverage of code-injection vul-
nerabilities and attacks has been revised and now includes code samples.
Discussion of encryption technologies has been updated to focus on the
technologies currently used. Coverage of authentication (by passwords
and other methods) has been updated and expanded with helpful hints.
Additions include a discussion of address-space layout randomization and
a new summary of security defenses. The Windows 7 example has been
updated to Windows 10.

• Chapter 17: Protection (previously Chapter 14) contains major changes.
The discussion of protection rings and layers has been updated and now

Preface xv

refers to the Bell–LaPadula model and explores the ARM model of Trust-
Zones and Secure Monitor Calls. Coverage of the need-to-know principle
has been expanded, as has coverage of mandatory access control. Subsec-
tions on Linux capabilities, Darwin entitlements, security integrity protec-
tion, system-call filtering, sandboxing, and code signing have been added.
Coverage of run-time-based enforcement in Java has also been added,
including the stack inspection technique.

• Chapter 18: Virtual Machines (previously Chapter 16) includes added
details about hardware assistance technologies. Also expanded is the
topic of application containment, now including containers, zones, docker,
and Kubernetes. A new section discusses ongoing virtualization research,
including unikernels, library operating systems, partitioning hypervisors,
and separation hypervisors.

• Chapter 19, Networks and Distributed Systems (previously Chapter 17)
has been substantially updated and now combines coverage of computer
networks and distributed systems. The material has been revised to bring
it up to date with respect to contemporary computer networks and dis-
tributed systems. The TCP/IP model receives added emphasis, and a dis-
cussion of cloud storage has been added. The section on network topolo-
gies has been removed. Coverage of name resolution has been expanded
and a Java example added. The chapter also includes new coverage of dis-
tributed file systems, including MapReduce on top of Google file system,
Hadoop, GPFS, and Lustre.

• Chapter 20: The Linux System (previously Chapter 18) has been updated
to cover the Linux 4.i kernel.

• Chapter 21: The Windows 10 System is a new chapter that covers the
internals of Windows 10.

• Appendix A: Influentia Operating Systems has been updated to include
material from chapters that are no longer covered in the text.

Supporting Website

When you visit the website supporting this text at http://www.os-book.com,
you can download the following resources:

• Linux virtual machine

• C and Java source code

• The complete set of figures and illustrations

• FreeBSD, Mach, and Windows 7 case studies

• Errata

• Bibliography

Notes to Instructors

On thewebsite for this text, we provide several sample syllabi that suggest var-
ious approaches for using the text in both introductory and advanced courses.

http://www.os-book.com

xvi Preface

As a general rule, we encourage instructors to progress sequentially through
the chapters, as this strategy provides the most thorough study of operat-
ing systems. However, by using the sample syllabi, an instructor can select a
different ordering of chapters (or subsections of chapters).

In this edition, we have added many new written exercises and pro-
gramming problems and projects. Most of the new programming assignments
involve processes, threads, process scheduling, process synchronization, and
memory management. Some involve adding kernel modules to the Linux sys-
tem, which requires using either the Linux virtual machine that accompanies
this text or another suitable Linux distribution.

Solutions to written exercises and programming assignments are avail-
able to instructors who have adopted this text for their operating-system
class. To obtain these restricted supplements, contact your local John Wiley &
Sons sales representative. You can find your Wiley representative by going to
http://www.wiley.com/college and clicking “Who’s my rep?”

Notes to Students

We encourage you to take advantage of the practice exercises that appear at the
end of each chapter. We also encourage you to read through the study guide,
which was prepared by one of our students. Finally, for students who are unfa-
miliar with UNIX and Linux systems, we recommend that you download and
install the Linux virtual machine that we include on the supporting website.
Not onlywill this provide youwith a new computing experience, but the open-
source nature of Linux will allow you to easily examine the inner details of this
popular operating system. We wish you the very best of luck in your study of
operating systems!

Contacting Us

We have endeavored to eliminate typos, bugs, and the like from the text. But,
as in new releases of software, bugs almost surely remain. An up-to-date errata
list is accessible from the book’s website. We would be grateful if you would
notify us of any errors or omissions in the book that are not on the current list
of errata.

We would be glad to receive suggestions on improvements to the book.
We also welcome any contributions to the book website that could be of use
to other readers, such as programming exercises, project suggestions, on-line
labs and tutorials, and teaching tips. E-mail should be addressed to os-book-
authors@cs.yale.edu.

Acknowledgments

Many people have helped us with this Tenth Edition, as well as with the
previous nine editions from which it is derived.

http://www.wiley.com/college
mailto:os-book-authors@cs.yale.edu
mailto:os-book-authors@cs.yale.edu
mailto:os-book-authors@cs.yale.edu

Preface xvii

Tenth Edition

• Rick Farrow provided expert advice as a technical editor.

• Jonathan Levin helped out with coverage of mobile systems, protection,
and security.

• Alex Ionescu updated the previousWindows 7 chapter to provide Chapter
21: Windows 10.

• Sarah Diesburg revised Chapter 19: Networks and Distributed Systems.

• Brendan Gregg provided guidance on the BCC toolset.

• Richard Stallman (RMS) supplied feedback on the description of free and
open-source software.

• Robert Love provided updates to Chapter 20: The Linux System.

• Michael Shapiro helped with storage and I/O technology details.

• Richard West provided insight on areas of virtualization research.

• Clay Breshears helped with coverage of Intel thread-building blocks.

• GerryHowser gave feedback onmotivating the study of operating systems
and also tried out new material in his class.

• Judi Paige helped with generating figures and presentation of slides.

• Jay Gagne and Audra Rissmeyer prepared new artwork for this edition.

• Owen Galvin provided technical editing for Chapter 11 and Chapter 12.

• Mark Wogahn has made sure that the software to produce this book (LATEX
and fonts) works properly.

• Ranjan Kumar Meher rewrote some of the LATEX software used in the pro-
duction of this new text.

Previous Editions

• First three editions. This book is derived from the previous editions, the
first three of which were coauthored by James Peterson.

• General contributions. Others who helped us with previous editions
include Hamid Arabnia, Rida Bazzi, Randy Bentson, David Black, Joseph
Boykin, Jeff Brumfield, Gael Buckley, Roy Campbell, P. C. Capon, John
Carpenter, Gil Carrick, Thomas Casavant, Bart Childs, Ajoy Kumar Datta,
Joe Deck, Sudarshan K. Dhall, Thomas Doeppner, Caleb Drake, M. Rasit
Eskicioğlu, Hans Flack, Robert Fowler, G. Scott Graham, Richard Guy,
MaxHailperin, Rebecca Hartman,WayneHathaway, Christopher Haynes,
Don Heller, Bruce Hillyer, Mark Holliday, Dean Hougen, Michael Huang,
Ahmed Kamel, Morty Kewstel, Richard Kieburtz, Carol Kroll, Morty
Kwestel, Thomas LeBlanc, John Leggett, Jerrold Leichter, Ted Leung, Gary
Lippman, Carolyn Miller, Michael Molloy, Euripides Montagne, Yoichi
Muraoka, Jim M. Ng, Banu Özden, Ed Posnak, Boris Putanec, Charles

xviii Preface

Qualline, John Quarterman, Mike Reiter, Gustavo Rodriguez-Rivera,
Carolyn J. C. Schauble, Thomas P. Skinner, Yannis Smaragdakis, Jesse
St. Laurent, John Stankovic, Adam Stauffer, Steven Stepanek, John
Sterling, Hal Stern, Louis Stevens, Pete Thomas, David Umbaugh, Steve
Vinoski, Tommy Wagner, Larry L. Wear, John Werth, James M. Westall, J.
S. Weston, and Yang Xiang

• Specifi Contributions

◦ Robert Love updated both Chapter 20 and the Linux coverage through-
out the text, as well as answering many of our Android-related ques-
tions.

◦ Appendix B was written by Dave Probert and was derived from Chap-
ter 22 of the Eighth Edition of Operating System Concepts.

◦ Jonathan Katz contributed to Chapter 16. Richard West provided input
into Chapter 18. Salahuddin Khan updated Section 16.7 to provide new
coverage of Windows 7 security.

◦ Parts of Chapter 19were derived from a paper by Levy and Silberschatz
[1990].

◦ Chapter 20 was derived from an unpublished manuscript by Stephen
Tweedie.

◦ Cliff Martin helpedwith updating the UNIX appendix to cover FreeBSD.

◦ Some of the exercises and accompanying solutions were supplied by
Arvind Krishnamurthy.

◦ AndrewDeNicola prepared the student study guide that is available on
our website. Some of the slides were prepared by Marilyn Turnamian.

◦ Mike Shapiro, Bryan Cantrill, and JimMauro answered several Solaris-
related questions, and Bryan Cantrill from Sun Microsystems helped
with the ZFS coverage. Josh Dees and Rob Reynolds contributed cover-
age of Microsoft’s NET.

◦ Owen Galvin helped copy-edit Chapter 18 edition.

Book Production

The Executive Editor was Don Fowley. The Senior Production Editor was Ken
Santor. The Freelance Developmental Editor was Chris Nelson. The Assistant
Developmental Editorwas RyannDannelly. The cover designerwas TomNery.
The copyeditor was Beverly Peavler. The freelance proofreader was Katrina
Avery. The freelance indexer was WordCo, Inc. The Aptara LaTex team con-
sisted of Neeraj Saxena and Lav kush.

Personal Notes

Avi would like to acknowledge Valerie for her love, patience, and support
during the revision of this book.

Preface xix

Peter would like to thank his wife Carla and his children, Gwen, Owen,
and Maddie.

Greg would like to acknowledge the continued support of his family: his
wife Pat and sons Thomas and Jay.

Abraham Silberschatz, New Haven, CT
Peter Baer Galvin, Boston, MA
Greg Gagne, Salt Lake City, UT

Contents

PART ONE OVERVIEW

Chapter 1 Introduction
1.1 What Operating Systems Do 4
1.2 Computer-System Organization 7
1.3 Computer-System Architecture 15
1.4 Operating-System Operations 21
1.5 Resource Management 27
1.6 Security and Protection 33
1.7 Virtualization 34

1.8 Distributed Systems 35
1.9 Kernel Data Structures 36

1.10 Computing Environments 40
1.11 Free and Open-Source Operating

Systems 46
Practice Exercises 53
Further Reading 54

Chapter 2 Operating-System Structures
2.1 Operating-System Services 55
2.2 User and Operating-System

Interface 58
2.3 System Calls 62
2.4 System Services 74
2.5 Linkers and Loaders 75
2.6 Why Applications Are

Operating-System Specific 77

2.7 Operating-System Design and
Implementation 79

2.8 Operating-System Structure 81
2.9 Building and Booting an Operating

System 92
2.10 Operating-System Debugging 95
2.11 Summary 100

Practice Exercises 101
Further Reading 101

PART TWO PROCESS MANAGEMENT

Chapter 3 Processes
3.1 Process Concept 106
3.2 Process Scheduling 110
3.3 Operations on Processes 116
3.4 Interprocess Communication 123
3.5 IPC in Shared-Memory Systems 125
3.6 IPC in Message-Passing Systems 127

3.7 Examples of IPC Systems 132
3.8 Communication in Client–

Server Systems 145
3.9 Summary 153

Practice Exercises 154
Further Reading 156

Contents

Chapter 4 Threads & Concurrency
4.1 Overview 160
4.2 Multicore Programming 162
4.3 Multithreading Models 166
4.4 Thread Libraries 168
4.5 Implicit Threading 176

4.6 Threading Issues 188
4.7 Operating-System Examples 194
4.8 Summary 196

Practice Exercises 197
Further Reading 198

Chapter 5 CPU Scheduling
5.1 Basic Concepts 200
5.2 Scheduling Criteria 204
5.3 Scheduling Algorithms 205
5.4 Thread Scheduling 217
5.5 Multi-Processor Scheduling 220
5.6 Real-Time CPU Scheduling 227

5.7 Operating-System Examples 234
5.8 Algorithm Evaluation 244
5.9 Summary 250

Practice Exercises 251
Further Reading 254

PART THREE PROCESS SYNCHRONIZATION

Chapter 6 Synchronization Tools
6.1 Background 257
6.2 The Critical-Section Problem 260
6.3 Peterson’s Solution 262
6.4 Hardware Support for

Synchronization 265
6.5 Mutex Locks 270
6.6 Semaphores 272

6.7 Monitors 276
6.8 Liveness 283
6.9 Evaluation 284

6.10 Summary 286
Practice Exercises 287
Further Reading 288

Chapter 7 Synchronization Examples
7.1 Classic Problems of

Synchronization 289
7.2 Synchronization within the Kernel 295
7.3 POSIX Synchronization 299
7.4 Synchronization in Java 303

7.5 Alternative Approaches 311
7.6 Summary 314

Practice Exercises 314
Further Reading 315

Chapter 8 Deadlocks
8.1 System Model 318
8.2 Deadlock in Multithreaded

Applications 319
8.3 Deadlock Characterization 321
8.4 Methods for Handling Deadlocks 326
8.5 Deadlock Prevention 327

8.6 Deadlock Avoidance 330
8.7 Deadlock Detection 337
8.8 Recovery from Deadlock 341
8.9 Summary 343

Practice Exercises 344
Further Reading 346

Contents

PART FOUR MEMORY MANAGEMENT

Chapter 9 Main Memory
9.1 Background 349
9.2 Contiguous Memory Allocation 356
9.3 Paging 360
9.4 Structure of the Page Table 371
9.5 Swapping 376

9.6 Example: Intel 32- and 64-bit
Architectures 379

9.7 Example: ARMv8 Architecture 383
9.8 Summary 384

Practice Exercises 385
Further Reading 387

Chapter 10 Virtual Memory
10.1 Background 389
10.2 Demand Paging 392
10.3 Copy-on-Write 399
10.4 Page Replacement 401
10.5 Allocation of Frames 413
10.6 Thrashing 419
10.7 Memory Compression 425

10.8 Allocating Kernel Memory 426
10.9 Other Considerations 430

10.10 Operating-System Examples 436
10.11 Summary 440

Practice Exercises 441
Further Reading 444

PART FIVE STORAGE MANAGEMENT

Chapter 11 Mass-Storage Structure
11.1 Overview of Mass-Storage

Structure 449
11.2 HDD Scheduling 457
11.3 NVM Scheduling 461
11.4 Error Detection and Correction 462
11.5 Storage Device Management 463

11.6 Swap-Space Management 467
11.7 Storage Attachment 469
11.8 RAID Structure 473
11.9 Summary 485

Practice Exercises 486
Further Reading 487

Chapter 12 I/O Systems
12.1 Overview 489
12.2 I/O Hardware 490
12.3 Application I/O Interface 500
12.4 Kernel I/O Subsystem 508
12.5 Transforming I/O Requests to

Hardware Operations 516

12.6 STREAMS 519
12.7 Performance 521
12.8 Summary 524

Practice Exercises 525
Further Reading 526

Contents

PART SIX FILE SYSTEM

Chapter 13 File-System Interface
13.1 File Concept 529
13.2 Access Methods 539
13.3 Directory Structure 541
13.4 Protection 550

13.5 Memory-Mapped Files 555
13.6 Summary 560

Practice Exercises 560
Further Reading 561

Chapter 14 File-System Implementation
14.1 File-System Structure 564
14.2 File-System Operations 566
14.3 Directory Implementation 568
14.4 Allocation Methods 570
14.5 Free-Space Management 578
14.6 Efficiency and Performance 582

14.7 Recovery 586
14.8 Example: The WAFL File System 589
14.9 Summary 593

Practice Exercises 594
Further Reading 594

Chapter 15 File-System Internals
15.1 File Systems 597
15.2 File-System Mounting 598
15.3 Partitions and Mounting 601
15.4 File Sharing 602
15.5 Virtual File Systems 603
15.6 Remote File Systems 605

15.7 Consistency Semantics 608
15.8 NFS 610
15.9 Summary 615

Practice Exercises 616
Further Reading 617

PART SEVEN SECURITY AND PROTECTION

Chapter 16 Security
16.1 The Security Problem 621
16.2 Program Threats 625
16.3 System and Network Threats 634
16.4 Cryptography as a Security Tool 637
16.5 User Authentication 648

16.6 Implementing Security Defenses 653
16.7 An Example: Windows 10 662
16.8 Summary 664

Further Reading 665

Chapter 17 Protection
17.1 Goals of Protection 667
17.2 Principles of Protection 668
17.3 Protection Rings 669
17.4 Domain of Protection 671
17.5 Access Matrix 675
17.6 Implementation of the Access

Matrix 679
17.7 Revocation of Access Rights 682
17.8 Role-Based Access Control 683

17.9 Mandatory Access Control
(MAC) 684

17.10 Capability-Based Systems 685
17.11 Other Protection Improvement

Methods 687
17.12 Language-Based Protection 690
17.13 Summary 696

Further Reading 697

Contents

PART EIGHT ADVANCED TOPICS

Chapter 18 Virtual Machines
18.1 Overview 701
18.2 History 703
18.3 Benefits and Features 704
18.4 Building Blocks 707
18.5 Types of VMs and Their

Implementations 713

18.6 Virtualization and Operating-System
Components 719

18.7 Examples 726
18.8 Virtualization Research 728
18.9 Summary 729

Further Reading 730

Chapter 19 Networks and Distributed Systems
19.1 Advantages of Distributed

Systems 733
19.2 Network Structure 735
19.3 Communication Structure 738
19.4 Network and Distributed Operating

Systems 749
19.5 Design Issues in Distributed

Systems 753

19.6 Distributed File Systems 757
19.7 DFS Naming and Transparency 761
19.8 Remote File Access 764
19.9 Final Thoughts on Distributed File

Systems 767
19.10 Summary 768

Practice Exercises 769
Further Reading 770

PART NINE CASE STUDIES

Chapter 20 The Linux System
20.1 Linux History 775
20.2 Design Principles 780
20.3 Kernel Modules 783
20.4 Process Management 786
20.5 Scheduling 790
20.6 Memory Management 795
20.7 File Systems 803

20.8 Input and Output 810
20.9 Interprocess Communication 812

20.10 Network Structure 813
20.11 Security 816
20.12 Summary 818

Practice Exercises 819
Further Reading 819

Chapter 21 Windows 10
21.1 History 821
21.2 Design Principles 826
21.3 System Components 838
21.4 Terminal Services and Fast User

Switching 874

21.5 File System 875
21.6 Networking 880
21.7 Programmer Interface 884
21.8 Summary 895

Practice Exercises 896
Further Reading 897

Contents

PART TEN APPENDICES

Chapter A Influentia Operating Systems
A.1 Feature Migration 1
A.2 Early Systems 2
A.3 Atlas 9
A.4 XDS-940 10
A.5 THE 11
A.6 RC 4000 11
A.7 CTSS 12
A.8 MULTICS 13
A.9 IBM OS/360 13

A.10 TOPS-20 15
A.11 CP/M and MS/DOS 15
A.12 Macintosh Operating System and

Windows 16
A.13 Mach 16
A.14 Capability-based Systems—Hydra and

CAP 18
A.15 Other Systems 20

Further Reading 21

Chapter B Windows 7
B.1 History 1
B.2 Design Principles 3
B.3 System Components 10
B.4 Terminal Services and Fast User

Switching 34
B.5 File System 35

B.6 Networking 41
B.7 Programmer Interface 46
B.8 Summary 55

Practice Exercises 55
Further Reading 56

Chapter C BSD UNIX
C.1 UNIX History 1
C.2 Design Principles 6
C.3 Programmer Interface 8
C.4 User Interface 15
C.5 Process Management 18
C.6 Memory Management 22

C.7 File System 25
C.8 I/O System 33
C.9 Interprocess Communication 36

C.10 Summary 41
Further Reading 42

Chapter D The Mach System
D.1 History of the Mach System 1
D.2 Design Principles 3
D.3 System Components 4
D.4 Process Management 7
D.5 Interprocess Communication 13

D.6 Memory Management 18
D.7 Programmer Interface 23
D.8 Summary 24

Further Reading 25

Credits 963

Index 965

Part One

Overview
An operating system acts as an intermediary between the user of a com-
puter and the computer hardware. The purpose of an operating system
is to provide an environment in which a user can execute programs in a
convenient and efficient manner.

An operating system is software that manages the computer hard-
ware. The hardwaremust provide appropriatemechanisms to ensure the
correct operation of the computer system and to prevent programs from
interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task, and it is important that the goals of the system be
well defined before the design begins.

Because an operating system is large and complex, it must be cre-
ated piece by piece. Each of these pieces should be a well-delineated
portion of the system, with carefully defined inputs, outputs, and func-
tions.

1CHAPTER

Introduction

An operating system is software that manages a computer’s hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how they vary in accomplishing these tasks in a wide
variety of computing environments. Operating systems are everywhere, from
cars and home appliances that include “Internet of Things” devices, to smart
phones, personal computers, enterprise computers, and cloud computing envi-
ronments.

In order to explore the role of an operating system in a modern computing
environment, it is important first to understand the organization and architec-
ture of computer hardware. This includes the CPU, memory, and I/O devices,
as well as storage. A fundamental responsibility of an operating system is to
allocate these resources to programs.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. In this chapter,
we provide a general overview of the major components of a contemporary
computer system as well as the functions provided by the operating system.
Additionally, we cover several topics to help set the stage for the remainder of
the text: data structures used in operating systems, computing environments,
and open-source and free operating systems.

CHAPTER OBJECTIVES

• Describe the general organization of a computer system and the role of
interrupts.

• Describe the components in a modern multiprocessor computer system.

• Illustrate the transition from user mode to kernel mode.

• Discuss how operating systems are used in various computing environ-
ments.

• Provide examples of free and open-source operating systems.

3

4 Chapter 1 Introduction

1.1 What Operating Systems Do

We begin our discussion by looking at the operating system’s role in the
overall computer system. A computer system can be divided roughly into four
components: the hardware, the operating system, the application programs,
and a user (Figure 1.1).

The hardware—the central processing unit (CPU), the memory, and the
input/output (I/O) devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and web browsers—define the ways in which these resources are
used to solve users’ computing problems. The operating system controls the
hardware and coordinates its use among the various application programs for
the various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function
by itself. It simply provides an environment within which other programs can
do useful work.

To understand more fully the operating system’s role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user’s view of the computer varies according to the interface being used.
Many computer users sit with a laptop or in front of a PC consisting of a
monitor, keyboard, and mouse. Such a system is designed for one user to
monopolize its resources. The goal is to maximize the work (or play) that the
user is performing. In this case, the operating system is designed mostly for
ease of use, with some attention paid to performance and security and none
paid to resource utilization—how various hardware and software resources
are shared.

(compilers, web browsers, development kits, etc.)

user

application programs

operating system

computer hardware
(CPU, memory, I/O devices, etc.)

Figure 1.1 Abstract view of the components of a computer system.

1.1 What Operating Systems Do 5

Increasingly, many users interact withmobile devices such as smartphones
and tablets—devices that are replacing desktop and laptop computer systems
for some users. These devices are typically connected to networks through
cellular or other wireless technologies. The user interface formobile computers
generally features a touch screen, where the user interacts with the system by
pressing and swiping fingers across the screen rather than using a physical
keyboard andmouse.Manymobile devices also allowusers to interact through
a voice recognition interface, such as Apple’s Siri.

Some computers have little or no user view. For example, embedded com-
puters in home devices and automobiles may have numeric keypads and may
turn indicator lights on or off to show status, but they and their operating sys-
tems and applications are designed primarily to runwithout user intervention.

1.1.2 System View

From the computer’s point of view, the operating system is the program most
intimately involved with the hardware. In this context, we can view an oper-
ating system as a resource allocator. A computer system has many resources
that may be required to solve a problem: CPU time, memory space, storage
space, I/Odevices, and so on. The operating systemacts as themanager of these
resources. Facing numerous and possibly conflicting requests for resources, the
operating system must decide how to allocate them to specific programs and
users so that it can operate the computer system efficiently and fairly.

A slightly different view of an operating system emphasizes the need to
control the various I/O devices and user programs. An operating system is a
control program. A control program manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of I/O devices.

1.1.3 Defining Operating Systems

By now, you can probably see that the term operating system covers many
roles and functions. That is the case, at least in part, because of the myriad
designs and uses of computers. Computers are present within toasters, cars,
ships, spacecraft, homes, and businesses. They are the basis for gamemachines,
cable TV tuners, and industrial control systems.

To explain this diversity, we can turn to the history of computers. Although
computers have a relatively short history, they have evolved rapidly. Comput-
ing started as an experiment to determine what could be done and quickly
moved to fixed-purpose systems for military uses, such as code breaking and
trajectory plotting, and governmental uses, such as census calculation. Those
early computers evolved into general-purpose,multifunctionmainframes, and
that’s when operating systemswere born. In the 1960s, Moore’s Law predicted
that the number of transistors on an integrated circuit would double every 18
months, and that prediction has held true. Computers gained in functionality
and shrank in size, leading to a vast number of uses and a vast number and
variety of operating systems. (See Appendix A for more details on the history
of operating systems.)

How, then, can we definewhat an operating system is? In general, we have
no completely adequate definition of an operating system. Operating systems

6 Chapter 1 Introduction

exist because they offer a reasonable way to solve the problem of creating
a usable computing system. The fundamental goal of computer systems is
to execute programs and to make solving user problems easier. Computer
hardware is constructed toward this goal. Since bare hardware alone is not
particularly easy to use, application programs are developed. These programs
require certain common operations, such as those controlling the I/O devices.
The common functions of controlling and allocating resources are then brought
together into one piece of software: the operating system.

In addition, we have no universally accepted definition of what is part of
the operating system. A simple viewpoint is that it includes everything a ven-
dor ships when you order “the operating system.” The features included, how-
ever, vary greatly across systems. Some systems take up less than a megabyte
of space and lack even a full-screen editor, whereas others require gigabytes
of space and are based entirely on graphical windowing systems. Amore com-
mon definition, and the one that we usually follow, is that the operating system
is the one program running at all times on the computer—usually called the
kernel. Along with the kernel, there are two other types of programs: system
programs, which are associated with the operating system but are not neces-
sarily part of the kernel, and application programs, which include all programs
not associated with the operation of the system.

The matter of what constitutes an operating system became increasingly
important as personal computers becamemore widespread and operating sys-
tems grew increasingly sophisticated. In 1998, the United States Department of
Justice filed suit against Microsoft, in essence claiming that Microsoft included
toomuch functionality in its operating systems and thus prevented application
vendors from competing. (For example, a web browser was an integral part of
Microsoft’s operating systems.)As a result,Microsoftwas found guilty of using
its operating-system monopoly to limit competition.

Today, however, if we look at operating systems for mobile devices, we
see that once again the number of features constituting the operating system
is increasing. Mobile operating systems often include not only a core kernel
but also middleware—a set of software frameworks that provide additional
services to application developers. For example, each of the two most promi-
nentmobile operating systems—Apple’s iOS andGoogle’s Android—features

WHY STUDY OPERATING SYSTEMS?

Although there are many practitioners of computer science, only a small per-
centage of themwill be involved in the creation or modification of an operat-
ing system. Why, then, study operating systems and how they work? Simply
because, as almost all code runs on top of an operating system, knowledge
of how operating systems work is crucial to proper, efficient, effective, and
secure programming.Understanding the fundamentals of operating systems,
how they drive computer hardware, andwhat they provide to applications is
not only essential to those who program them but also highly useful to those
who write programs on them and use them.

1.2 Computer-System Organization 7

a core kernel alongwithmiddleware that supports databases, multimedia, and
graphics (to name only a few).

In summary, for our purposes, the operating system includes the always-
running kernel, middleware frameworks that ease application development
and provide features, and system programs that aid in managing the system
while it is running. Most of this text is concerned with the kernel of general-
purpose operating systems, but other components are discussed as needed to
fully explain operating system design and operation.

1.2 Computer-System Organization

Amodern general-purpose computer system consists of one or more CPUs and
a number of device controllers connected through a common bus that provides
access between components and shared memory (Figure 1.2). Each device
controller is in charge of a specific type of device (for example, a disk drive,
audio device, or graphics display). Depending on the controller, more than one
device may be attached. For instance, one system USB port can connect to a
USB hub, to which several devices can connect. A device controller maintains
some local buffer storage and a set of special-purpose registers. The device
controller is responsible for moving the data between the peripheral devices
that it controls and its local buffer storage.

Typically, operating systems have a device driver for each device con-
troller. This device driver understands the device controller and provides the
rest of the operating systemwith a uniform interface to the device. The CPU and
the device controllers can execute in parallel, competing for memory cycles. To
ensure orderly access to the sharedmemory, amemory controller synchronizes
access to the memory.

In the following subsections, we describe some basics of how such a system
operates, focusing on three key aspects of the system. We start with interrupts,
which alert the CPU to events that require attention. We then discuss storage
structure and I/O structure.

USB controller

keyboard printermouse monitor
disks

graphics
adapter

disk
controller

memory

CPU

system bus

on-line

Figure 1.2 A typical PC computer system.

8 Chapter 1 Introduction

1.2.1 Interrupts

Consider a typical computer operation: a program performing I/O. To start an
I/O operation, the device driver loads the appropriate registers in the device
controller. The device controller, in turn, examines the contents of these reg-
isters to determine what action to take (such as “read a character from the
keyboard”). The controller starts the transfer of data from the device to its local
buffer. Once the transfer of data is complete, the device controller informs the
device driver that it has finished its operation. The device driver then gives
control to other parts of the operating system, possibly returning the data or a
pointer to the data if the operation was a read. For other operations, the device
driver returns status information such as “write completed successfully” or
“device busy”. But how does the controller inform the device driver that it has
finished its operation? This is accomplished via an interrupt.

1.2.1.1 Overview

Hardware may trigger an interrupt at any time by sending a signal to the
CPU, usually by way of the system bus. (There may be many buses within
a computer system, but the system bus is the main communications path
between the major components.) Interrupts are used for many other purposes
as well and are a key part of how operating systems and hardware interact.

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A timeline of this operation is shown in Figure 1.3.
To run the animation assicated with this figure please click here.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interruptmust transfer control to the appropriate interrupt service routine.
The straightforward method for managing this transfer would be to invoke
a generic routine to examine the interrupt information. The routine, in turn,

Figure 1.3 Interrupt timeline for a single program doing output.

1.2 Computer-System Organization 9

would call the interrupt-specific handler.However, interruptsmust be handled
quickly, as they occur very frequently. A table of pointers to interrupt routines
can be used instead to provide the necessary speed. The interrupt routine
is called indirectly through the table, with no intermediate routine needed.
Generally, the table of pointers is stored in lowmemory (the first hundred or so
locations). These locations hold the addresses of the interrupt service routines
for the various devices. This array, or interrupt vector, of addresses is then
indexed by a unique number, given with the interrupt request, to provide the
address of the interrupt service routine for the interrupting device. Operating
systems as different as Windows and UNIX dispatch interrupts in this manner.

The interrupt architecturemust also save the state information of whatever
was interrupted, so that it can restore this information after servicing the
interrupt. If the interrupt routine needs to modify the processor state—for
instance, bymodifying register values—itmust explicitly save the current state
and then restore that state before returning. After the interrupt is serviced, the
saved return address is loaded into the program counter, and the interrupted
computation resumes as though the interrupt had not occurred.

1.2.1.2 Implementation

The basic interrupt mechanism works as follows. The CPU hardware has a
wire called the interrupt-request line that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on
the interrupt-request line, it reads the interrupt number and jumps to the
interrupt-handler routine by using that interrupt number as an index into
the interrupt vector. It then starts execution at the address associated with
that index. The interrupt handler saves any state it will be changing during
its operation, determines the cause of the interrupt, performs the necessary
processing, performs a state restore, and executes a return from interrupt
instruction to return the CPU to the execution state prior to the interrupt. We
say that the device controller raises an interrupt by asserting a signal on the
interrupt request line, the CPU catches the interrupt and dispatches it to the
interrupt handler, and the handler clears the interrupt by servicing the device.
Figure 1.4 summarizes the interrupt-driven I/O cycle.

The basic interruptmechanism just described enables the CPU to respond to
an asynchronous event, as when a device controller becomes ready for service.
In amodern operating system, however,we needmore sophisticated interrupt-
handling features.

1. We need the ability to defer interrupt handling during critical processing.

2. We need an efficient way to dispatch to the proper interrupt handler for
a device.

3. We need multilevel interrupts, so that the operating system can distin-
guish between high- and low-priority interrupts and can respond with
the appropriate degree of urgency.

In modern computer hardware, these three features are provided by the CPU
and the interrupt-controller hardware.

10 Chapter 1 Introduction

device driver initiates I/O

CPU receiving interrupt,
transfers control to
interrupt handler

CPU resumes
processing of

interrupted task

CPU

1

I/O controller

CPU executing checks for
interrupts between instructions

5

interrupt handler
processes data,

returns from interrupt

initiates I/O

3

2

4

7

input ready, output
complete, or error

generates interrupt signal

6

Figure 1.4 Interrupt-driven I/O cycle.

Most CPUs have two interrupt request lines. One is the nonmaskable
interrupt, which is reserved for events such as unrecoverable memory errors.
The second interrupt line is maskable: it can be turned off by the CPU before
the execution of critical instruction sequences thatmust not be interrupted. The
maskable interrupt is used by device controllers to request service.

Recall that the purpose of a vectored interrupt mechanism is to reduce the
need for a single interrupt handler to search all possible sources of interrupts
to determine which one needs service. In practice, however, computers have
more devices (and, hence, interrupt handlers) than they have address elements
in the interrupt vector. A commonway to solve this problem is to use interrupt
chaining, in which each element in the interrupt vector points to the head of
a list of interrupt handlers. When an interrupt is raised, the handlers on the
corresponding list are called one by one, until one is found that can service
the request. This structure is a compromise between the overhead of a huge
interrupt table and the inefficiency of dispatching to a single interrupt handler.

Figure 1.5 illustrates the design of the interrupt vector for Intel processors.
The events from 0 to 31, which are nonmaskable, are used to signal various
error conditions. The events from 32 to 255, which are maskable, are used for
purposes such as device-generated interrupts.

The interrupt mechanism also implements a system of interrupt priority
levels. These levels enable the CPU to defer the handling of low-priority inter-

1.2 Computer-System Organization 11

descriptionvector number

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19–31

32–255

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow

bound range exception

invalid opcode

device not available

double fault

coprocessor segment overrun (reserved)

invalid task state segment

segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)

floating-point error

alignment check

machine check

(Intel reserved, do not use)

maskable interrupts

Figure 1.5 Intel processor event-vector table.

rupts without masking all interrupts and makes it possible for a high-priority
interrupt to preempt the execution of a low-priority interrupt.

In summary, interrupts are used throughout modern operating systems to
handle asynchronous events (and for other purposes we will discuss through-
out the text). Device controllers and hardware faults raise interrupts. To enable
the most urgent work to be done first, modern computers use a system of
interrupt priorities. Because interrupts are used so heavily for time-sensitive
processing, efficient interrupt handling is required for good system perfor-
mance.

1.2.2 Storage Structure

The CPU can load instructions only from memory, so any programs must
first be loaded into memory to run. General-purpose computers run most
of their programs from rewritable memory, called main memory (also called
random-access memory, or RAM).Mainmemory commonly is implemented in
a semiconductor technology called dynamic random-access memory (DRAM).

Computers use other forms of memory as well. For example, the first pro-
gram to run on computer power-on is a bootstrap program, which then loads
the operating system. Since RAM is volatile—loses its content when power
is turned off or otherwise lost—we cannot trust it to hold the bootstrap pro-
gram. Instead, for this and some other purposes, the computer uses electri-
cally erasable programmable read-only memory (EEPROM) and other forms of
firmwar —storage that is infrequently written to and is nonvolatile. EEPROM

12 Chapter 1 Introduction

STORAGE DEFINITIONS AND NOTATION

The basic unit of computer storage is the bit. A bit can contain one of two
values, 0 and 1. All other storage in a computer is based on collections of bits.
Given enough bits, it is amazing howmany things a computer can represent:
numbers, letters, images,movies, sounds, documents, andprograms, to name
a few. A byte is 8 bits, and on most computers it is the smallest convenient
chunk of storage. For example, most computers don’t have an instruction to
move a bit but do have one to move a byte. A less common term is word,
which is a given computer architecture’s native unit of data. Aword is made
up of one ormore bytes. For example, a computer that has 64-bit registers and
64-bit memory addressing typically has 64-bit (8-byte) words. A computer
executes many operations in its native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally
measured and manipulated in bytes and collections of bytes. A kilobyte, or
KB, is 1,024 bytes; a megabyte, or MB, is 1,0242 bytes; a gigabyte, or GB, is
1,0243 bytes; a terabyte, or TB, is 1,0244 bytes; and a petabyte, or PB, is 1,0245

bytes. Computer manufacturers often round off these numbers and say that
a megabyte is 1 million bytes and a gigabyte is 1 billion bytes. Networking
measurements are an exception to this general rule; they are given in bits
(because networks move data a bit at a time).

can be changed but cannot be changed frequently. In addition, it is low speed,
and so it contains mostly static programs and data that aren’t frequently used.
For example, the iPhone uses EEPROM to store serial numbers and hardware
information about the device.

All forms of memory provide an array of bytes. Each byte has its own
address. Interaction is achieved through a sequence of load or store instruc-
tions to specificmemory addresses. The load instructionmoves a byte or word
from main memory to an internal register within the CPU, whereas the store
instructionmoves the content of a register tomainmemory. Aside from explicit
loads and stores, the CPU automatically loads instructions from main memory
for execution from the location stored in the program counter.

A typical instruction–execution cycle, as executed on a system with a von
Neumann architecture, first fetches an instruction from memory and stores
that instruction in the instruction register. The instruction is then decoded
and may cause operands to be fetched from memory and stored in some
internal register. After the instruction on the operands has been executed, the
result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses. It does not know how they are generated (by
the instruction counter, indexing, indirection, literal addresses, or some other
means) or what they are for (instructions or data). Accordingly, we can ignore
how a memory address is generated by a program. We are interested only in
the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory per-
manently. This arrangement usually is not possible on most systems for two
reasons:

1.2 Computer-System Organization 13

1. Main memory is usually too small to store all needed programs and data
permanently.

2. Mainmemory, asmentioned, is volatile—it loses its contentswhenpower
is turned off or otherwise lost.

Thus, most computer systems provide secondary storage as an extension of
main memory. The main requirement for secondary storage is that it be able to
hold large quantities of data permanently.

The most common secondary-storage devices are hard-disk drives (HDDs)
and nonvolatile memory (NVM) devices, which provide storage for both
programs and data. Most programs (system and application) are stored in
secondary storage until they are loaded intomemory.Many programs then use
secondary storage as both the source and the destination of their processing.
Secondary storage is also much slower than main memory. Hence, the proper
management of secondary storage is of central importance to a computer sys-
tem, as we discuss in Chapter 11.

In a larger sense, however, the storage structure that we have described
—consisting of registers, main memory, and secondary storage—is only one
of many possible storage system designs. Other possible components include
cache memory, CD-ROM or blu-ray, magnetic tapes, and so on. Those that are
slow enough and large enough that they are used only for special purposes
—to store backup copies of material stored on other devices, for example—
are called tertiary storage. Each storage system provides the basic functions
of storing a datum and holding that datum until it is retrieved at a later time.
The main differences among the various storage systems lie in speed, size, and
volatility.

Thewide variety of storage systems can be organized in a hierarchy (Figure
1.6) according to storage capacity and access time. As a general rule, there is a

registers

cache

main memory

nonvolatile memory

hard-disk drives

magnetic tapes

optical disk

storage capacity

la
rg

er
sm

al
le

r

fa
st

er
sl

ow
er

access time

- -

volatile
storage

nonvolatile
storage

primary
storage

tertiary
storage

secondary
storage

Figure 1.6 Storage-device hierarchy.

14 Chapter 1 Introduction

trade-off between size and speed, with smaller and faster memory closer to the
CPU. As shown in the figure, in addition to differing in speed and capacity, the
various storage systems are either volatile or nonvolatile. Volatile storage, as
mentioned earlier, loses its contents when the power to the device is removed,
so data must be written to nonvolatile storage for safekeeping.

The top four levels of memory in the figure are constructed using semi-
conductor memory, which consists of semiconductor-based electronic circuits.
NVM devices, at the fourth level, have several variants but in general are faster
than hard disks. Themost common form of NVMdevice is flashmemory,which
is popular in mobile devices such as smartphones and tablets. Increasingly,
flash memory is being used for long-term storage on laptops, desktops, and
servers as well.

Since storage plays an important role in operating-system structure, we
will refer to it frequently in the text. In general, we will use the following
terminology:

• Volatile storagewill be referred to simply asmemory. If we need to empha-
size a particular type of storage device (for example, a register),we will do
so explicitly.

• Nonvolatile storage retains its contents when power is lost. It will be
referred to as NVS. The vast majority of the time we spend on NVS will
be on secondary storage. This type of storage can be classified into two
distinct types:

◦ Mechanical. A few examples of such storage systems are HDDs, optical
disks, holographic storage, andmagnetic tape. If we need to emphasize
a particular type of mechanical storage device (for example, magnetic
tape), we will do so explicitly.

◦ Electrical. A few examples of such storage systems are flash memory,
FRAM, NRAM, and SSD. Electrical storage will be referred to as NVM. If
we need to emphasize a particular type of electrical storage device (for
example, SSD), we will do so explicitly.

Mechanical storage is generally larger and less expensive per byte than
electrical storage. Conversely, electrical storage is typically costly, smaller,
and faster than mechanical storage.

The design of a complete storage system must balance all the factors just
discussed: it must use only as much expensive memory as necessary while
providing as much inexpensive, nonvolatile storage as possible. Caches can
be installed to improve performance where a large disparity in access time or
transfer rate exists between two components.

1.2.3 I/O Structure

A large portion of operating system code is dedicated to managing I/O, both
because of its importance to the reliability and performance of a system and
because of the varying nature of the devices.

Recall from the beginning of this section that a general-purpose computer
system consists of multiple devices, all of which exchange data via a common

1.3 Computer-System Architecture 15

thread of execution
instructions

and
data

instruction execution
cycle

data movement

DMA

memory

in
te

rru
p

t

c
a

c
h

e

d
a

ta

I/O
 re

q
u

e
s
t

CPU (*N)

device
(*M)

Figure 1.7 How a modern computer system works.

bus. The form of interrupt-driven I/O described in Section 1.2.1 is fine for
moving small amounts of data but can produce high overhead when used for
bulk data movement such as NVS I/O. To solve this problem, direct memory
access (DMA) is used. After setting up buffers, pointers, and counters for the
I/O device, the device controller transfers an entire block of data directly to
or from the device and main memory, with no intervention by the CPU. Only
one interrupt is generated per block, to tell the device driver that the operation
has completed, rather than the one interrupt per byte generated for low-speed
devices. While the device controller is performing these operations, the CPU is
available to accomplish other work.

Some high-end systems use switch rather than bus architecture. On these
systems, multiple components can talk to other components concurrently,
rather than competing for cycles on a shared bus. In this case, DMA is even
more effective. Figure 1.7 shows the interplay of all components of a computer
system.

1.3 Computer-System Architecture

In Section 1.2, we introduced the general structure of a typical computer sys-
tem. A computer system can be organized in a number of different ways,
which we can categorize roughly according to the number of general-purpose
processors used.

1.3.1 Single-Processor Systems

Many years ago, most computer systems used a single processor containing
one CPU with a single processing core. The core is the component that exe-
cutes instructions and registers for storing data locally. The one main CPU with
its core is capable of executing a general-purpose instruction set, including
instructions from processes. These systems have other special-purpose proces-

16 Chapter 1 Introduction

sors as well. They may come in the form of device-specific processors, such as
disk, keyboard, and graphics controllers.

All of these special-purpose processors run a limited instruction set and
do not run processes. Sometimes, they are managed by the operating system,
in that the operating system sends them information about their next task and
monitors their status. For example, a disk-controller microprocessor receives
a sequence of requests from the main CPU core and implements its own disk
queue and scheduling algorithm. This arrangement relieves the main CPU of
the overhead of disk scheduling. PCs contain a microprocessor in the keyboard
to convert the keystrokes into codes to be sent to the CPU. In other systems or
circumstances, special-purpose processors are low-level components built into
the hardware. The operating system cannot communicate with these proces-
sors; they do their jobs autonomously. The use of special-purposemicroproces-
sors is common anddoes not turn a single-processor system into amultiproces-
sor. If there is only one general-purpose CPUwith a single processing core, then
the system is a single-processor system. According to this definition, however,
very few contemporary computer systems are single-processor systems.

1.3.2 Multiprocessor Systems

On modern computers, from mobile devices to servers, multiprocessor sys-
tems now dominate the landscape of computing. Traditionally, such systems
have two (or more) processors, each with a single-core CPU. The proces-
sors share the computer bus and sometimes the clock, memory, and periph-
eral devices. The primary advantage of multiprocessor systems is increased
throughput. That is, by increasing the number of processors, we expect to get
more work done in less time. The speed-up ratio with N processors is not N,
however; it is less than N.Whenmultiple processors cooperate on a task, a cer-
tain amount of overhead is incurred in keeping all the parts working correctly.
This overhead, plus contention for shared resources, lowers the expected gain
from additional processors.

The most common multiprocessor systems use symmetric multiprocess-
ing (SMP), in which each peer CPU processor performs all tasks, including
operating-system functions and user processes. Figure 1.8 illustrates a typical
SMP architecture with two processors, each with its own CPU. Notice that each
CPU processor has its own set of registers, as well as a private—or local—
cache. However, all processors share physical memory over the system bus.

The benefit of this model is that many processes can run simultaneously
—N processes can run if there are N CPUs—without causing performance
to deteriorate significantly. However, since the CPUs are separate, one may
be sitting idle while another is overloaded, resulting in inefficiencies. These
inefficiencies can be avoided if the processors share certain data structures. A
multiprocessor system of this form will allow processes and resources—such
as memory—to be shared dynamically among the various processors and can
lower the workload variance among the processors. Such a system must be
written carefully, as we shall see in Chapter 5 and Chapter 6.

The definition of multiprocessor has evolved over time and now includes
multicore systems, in which multiple computing cores reside on a single chip.
Multicore systems can be more efficient than multiple chips with single cores
because on-chip communication is faster than between-chip communication.

1.3 Computer-System Architecture 17

Figure 1.8 Symmetric multiprocessing architecture.

In addition, one chip with multiple cores uses significantly less power than
multiple single-core chips, an important issue for mobile devices as well as
laptops.

In Figure 1.9, we show a dual-core design with two cores on the same pro-
cessor chip. In this design, each core has its own register set, as well as its own
local cache, often known as a level 1, or L1, cache. Notice, too, that a level 2 (L2)
cache is local to the chip but is shared by the two processing cores. Most archi-
tectures adopt this approach, combining local and shared caches, where local,
lower-level caches are generally smaller and faster than higher-level shared

Figure 1.9 A dual-core design with two cores on the same chip.

18 Chapter 1 Introduction

DEFINITIONS OF COMPUTER SYSTEM COMPONENTS

• CPU—The hardware that executes instructions.

• Processor—Aphysical chip that contains one or more CPUs.

• Core—The basic computation unit of the CPU.

• Multicore—Including multiple computing cores on the same CPU.

• Multiprocessor—Including multiple processors.

Although virtually all systems are now multicore, we use the general term
CPU when referring to a single computational unit of a computer system and
core as well as multicore when specifically referring to one or more cores on
a CPU.

caches. Aside from architectural considerations, such as cache, memory, and
bus contention, amulticore processorwithN cores appears to the operating sys-
tem as N standard CPUs. This characteristic puts pressure on operating-system
designers—and application programmers—tomake efficient use of these pro-
cessing cores, an issue we pursue in Chapter 4. Virtually all modern operating
systems—including Windows, macOS, and Linux, as well as Android and iOS
mobile systems—support multicore SMP systems.

Adding additional CPUs to a multiprocessor system will increase comput-
ing power; however, as suggested earlier, the concept does not scale very well,
and once we add too many CPUs, contention for the system bus becomes a
bottleneck and performance begins to degrade. An alternative approach is
instead to provide each CPU (or group of CPUs) with its own local memory
that is accessed via a small, fast local bus. The CPUs are connected by a shared
system interconnect, so that all CPUs share one physical address space. This
approach—known as non-uniform memory access, or NUMA—is illustrated
in Figure 1.10. The advantage is that, when a CPU accesses its local memory,
not only is it fast, but there is also no contention over the system interconnect.
Thus, NUMA systems can scale more effectively as more processors are added.

Apotential drawbackwith a NUMAsystem is increased latencywhen a CPU
must access remotememory across the system interconnect, creating a possible
performance penalty. In other words, for example, CPU0 cannot access the local
memory of CPU3 as quickly as it can access its own localmemory, slowing down
performance. Operating systems can minimize this NUMA penalty through
careful CPU scheduling andmemorymanagement, as discussed in Section 5.5.2
and Section 10.5.4. Because NUMA systems can scale to accommodate a large
number of processors, they are becoming increasingly popular on servers as
well as high-performance computing systems.

Finally, blade servers are systems in which multiple processor boards, I/O
boards, and networking boards are placed in the same chassis. The differ-
ence between these and traditional multiprocessor systems is that each blade-
processor board boots independently and runs its own operating system. Some
blade-server boards are multiprocessor as well, which blurs the lines between

1.3 Computer-System Architecture 19

CPU0

memory0

CPU2 CPU3

CPU1

memory1

memory2 memory3

interconnect

Figure 1.10 NUMA multiprocessing architecture.

types of computers. In essence, these servers consist of multiple independent
multiprocessor systems.

1.3.3 Clustered Systems

Another type of multiprocessor system is a clustered system, which gath-
ers together multiple CPUs. Clustered systems differ from the multiprocessor
systems described in Section 1.3.2 in that they are composed of two or more
individual systems—or nodes—joined together; each node is typically a mul-
ticore system. Such systems are considered loosely coupled. We should note
that the definition of clustered is not concrete; many commercial and open-
source packages wrestle to define what a clustered system is and why one
form is better than another. The generally accepted definition is that clustered
computers share storage and are closely linked via a local-area network LAN
(as described in Chapter 19) or a faster interconnect, such as InfiniBand.

Clustering is usually used to provide high-availability service—that is,
service that will continue even if one or more systems in the cluster fail.
Generally, we obtain high availability by adding a level of redundancy in the
system. A layer of cluster software runs on the cluster nodes. Each node can
monitor one ormore of the others (over the network). If themonitoredmachine
fails, the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.

High availability provides increased reliability, which is crucial in many
applications. The ability to continue providing service proportional to the level
of surviving hardware is called graceful degradation. Some systemsgo beyond
graceful degradation and are called fault tolerant, because they can suffer a
failure of any single component and still continue operation. Fault tolerance
requires a mechanism to allow the failure to be detected, diagnosed, and, if
possible, corrected.

Clustering can be structured asymmetrically or symmetrically. In asym-
metric clustering, one machine is in hot-standby mode while the other is run-
ning the applications. The hot-standby host machine does nothing but monitor
the active server. If that server fails, the hot-standby host becomes the active

20 Chapter 1 Introduction

PC MOTHERBOARD

Consider the desktop PC motherboardwith a processor socket shown below:

This board is a fully functioning computer, once its slots are populated.
It consists of a processor socket containing a CPU, DRAM sockets, PCIe bus
slots, and I/O connectors of various types. Even the lowest-cost general-
purpose CPU contains multiple cores. Some motherboards contain multiple
processor sockets. More advanced computers allow more than one system
board, creating NUMA systems.

server. In symmetric clustering, two or more hosts are running applications
and are monitoring each other. This structure is obviously more efficient, as it
uses all of the available hardware. However, it does require that more than one
application be available to run.

Since a cluster consists of several computer systems connected via a net-
work, clusters can also be used to provide high-performance computing envi-
ronments. Such systems can supply significantly greater computational power
than single-processor or even SMP systems because they can run an application
concurrently on all computers in the cluster. The application must have been
written specifically to take advantage of the cluster, however. This involves a
technique known as parallelization, which divides a program into separate
components that run in parallel on individual cores in a computer or comput-
ers in a cluster. Typically, these applications are designed so that once each
computing node in the cluster has solved its portion of the problem, the results
from all the nodes are combined into a final solution.

Other forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) (as described in Chapter 19). Parallel clusters allow
multiple hosts to access the same data on shared storage. Because most oper-

1.4 Operating-System Operations 21

computer
interconnect

computer
interconnect

computer

storage-area
network

Figure 1.11 General structure of a clustered system.

ating systems lack support for simultaneous data access by multiple hosts,
parallel clusters usually require the use of special versions of software and
special releases of applications. For example, Oracle Real Application Cluster
is a version of Oracle’s database that has been designed to run on a parallel
cluster. Each machine runs Oracle, and a layer of software tracks access to the
shared disk. Eachmachine has full access to all data in the database. To provide
this shared access, the system must also supply access control and locking to
ensure that no conflicting operations occur. This function, commonly known
as a distributed lock manager (DLM), is included in some cluster technology.

Cluster technology is changing rapidly. Some cluster products support
thousands of systems in a cluster, as well as clustered nodes that are separated
by miles. Many of these improvements are made possible by storage-area
networks (SANs), as described in Section 11.7.4, which allow many systems
to attach to a pool of storage. If the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then any other host can take
over. In a database cluster, dozens of hosts can share the same database, greatly
increasing performance and reliability. Figure 1.11 depicts the general structure
of a clustered system.

1.4 Operating-System Operations

Now that we have discussed basic information about computer-system organi-
zation and architecture, we are ready to talk about operating systems. An oper-
ating system provides the environment within which programs are executed.
Internally, operating systems vary greatly, since they are organized alongmany
different lines. There are, however, many commonalities, which we consider in
this section.

For a computer to start running—for instance, when it is powered up
or rebooted—it needs to have an initial program to run. As noted earlier,
this initial program, or bootstrap program, tends to be simple. Typically, it is
stored within the computer hardware in firmware. It initializes all aspects of
the system, from CPU registers to device controllers to memory contents. The
bootstrap program must know how to load the operating system and how to

22 Chapter 1 Introduction

HADOOP

Hadoop is an open-source software framework that is used for distributed
processing of large data sets (known as big data) in a clustered system con-
taining simple, low-cost hardware components. Hadoop is designed to scale
from a single system to a cluster containing thousands of computing nodes.
Tasks are assigned to a node in the cluster, andHadoop arranges communica-
tion between nodes to manage parallel computations to process and coalesce
results. Hadoop also detects and manages failures in nodes, providing an
efficient and highly reliable distributed computing service.

Hadoop is organized around the following three components:

1. Adistributed file system that manages data and files across distributed com-
puting nodes.

2. The YARN (“Yet Another Resource Negotiator”) framework, which manages
resources within the cluster as well as scheduling tasks on nodes in the
cluster.

3. The MapReduce system, which allows parallel processing of data across
nodes in the cluster.

Hadoop is designed to run on Linux systems, and Hadoop applications
can be written using several programming languages, including scripting
languages such as PHP, Perl, and Python. Java is a popular choice for
developing Hadoop applications, as Hadoop has several Java libraries that
support MapReduce. More information on MapReduce and Hadoop can
be found at https://hadoop.apache.org/docs/r1.2.1/mapred tutorial.html
and https://hadoop.apache.org

start executing that system. To accomplish this goal, the bootstrap program
must locate the operating-system kernel and load it into memory.

Once the kernel is loaded and executing, it can start providing services to
the system and its users. Some services are provided outside of the kernel by
system programs that are loaded into memory at boot time to become system
daemons, which run the entire time the kernel is running. On Linux, the first
system program is “systemd,” and it starts many other daemons. Once this
phase is complete, the system is fully booted, and the system waits for some
event to occur.

If there are no processes to execute, no I/O devices to service, and no users
towhom to respond, an operating systemwill sit quietly,waiting for something
to happen. Events are almost always signaled by the occurrence of an interrupt.
In Section 1.2.1 we described hardware interrupts. Another form of interrupt is
a trap (or an exception), which is a software-generated interrupt caused either
by an error (for example, division by zero or invalid memory access) or by
a specific request from a user program that an operating-system service be
performed by executing a special operation called a system call.

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org

1.4 Operating-System Operations 23

1.4.1 Multiprogramming and Multitasking

One of the most important aspects of operating systems is the ability to run
multiple programs, as a single program cannot, in general, keep either the CPU
or the I/O devices busy at all times. Furthermore, users typically want to run
more than one program at a time as well. Multiprogramming increases CPU
utilization, as well as keeping users satisfied, by organizing programs so that
the CPU always has one to execute. In a multiprogrammed system, a program
in execution is termed a process.

The idea is as follows: The operating system keeps several processes in
memory simultaneously (Figure 1.12). The operating system picks and begins
to execute one of these processes. Eventually, the process may have to wait for
some task, such as an I/O operation, to complete. In a non-multiprogrammed
system, the CPU would sit idle. In a multiprogrammed system, the operating
system simply switches to, and executes, another process. When that process
needs to wait, the CPU switches to another process, and so on. Eventually, the
first process finishes waiting and gets the CPU back. As long as at least one
process needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If she has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy.)

Multitasking is a logical extension of multiprogramming. In multitasking
systems, the CPU executes multiple processes by switching among them, but
the switches occur frequently, providing the user with a fast response time.
Consider that when a process executes, it typically executes for only a short
time before it either finishes or needs to perform I/O. I/O may be interactive;
that is, output goes to a display for the user, and input comes from a user
keyboard, mouse, or touch screen. Since interactive I/O typically runs at “peo-
ple speeds,” it may take a long time to complete. Input, for example, may be

process 1

0

max
operating system

process 2

process 3

process 4

Figure 1.12 Memory layout for a multiprogramming system.

24 Chapter 1 Introduction

bounded by the user’s typing speed; seven characters per second is fast for
people but incredibly slow for computers. Rather than let the CPU sit idle as
this interactive input takes place, the operating system will rapidly switch the
CPU to another process.

Having several processes in memory at the same time requires some form
of memory management, which we cover in Chapter 9 and Chapter 10. In
addition, if several processes are ready to run at the same time, the systemmust
choose which process will run next. Making this decision is CPU scheduling,
which is discussed in Chapter 5. Finally, running multiple processes concur-
rently requires that their ability to affect one another be limited in all phases of
the operating system, including process scheduling, disk storage, andmemory
management. We discuss these considerations throughout the text.

In a multitasking system, the operating system must ensure reasonable
response time. A common method for doing so is virtual memory, a tech-
nique that allows the execution of a process that is not completely in memory
(Chapter 10). The main advantage of this scheme is that it enables users to
run programs that are larger than actual physical memory. Further, it abstracts
main memory into a large, uniform array of storage, separating logical mem-
ory as viewed by the user from physical memory. This arrangement frees
programmers from concern over memory-storage limitations.

Multiprogramming and multitasking systems must also provide a file sys-
tem (Chapter 13, Chapter 14, and Chapter 15). The file system resides on a
secondary storage; hence, storagemanagementmust be provided (Chapter 11).
In addition, a system must protect resources from inappropriate use (Chapter
17). To ensure orderly execution, the systemmust also providemechanisms for
process synchronization and communication (Chapter 6 and Chapter 7), and it
may ensure that processes do not get stuck in a deadlock, forever waiting for
one another (Chapter 8).

1.4.2 Dual-Mode and Multimode Operation

Since the operating system and its users share the hardware and software
resources of the computer system, a properly designed operating systemmust
ensure that an incorrect (or malicious) program cannot cause other programs
—or the operating system itself—to execute incorrectly. In order to ensure
the proper execution of the system, we must be able to distinguish between
the execution of operating-system code and user-defined code. The approach
taken by most computer systems is to provide hardware support that allows
differentiation among various modes of execution.

At the very least, we need two separate modes of operation: user mode
and kernel mode (also called supervisor mode, system mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer
to indicate the current mode: kernel (0) or user (1). With the mode bit, we can
distinguish between a task that is executed on behalf of the operating system
and one that is executed on behalf of the user. When the computer system is
executing on behalf of a user application, the system is in usermode. However,
when a user application requests a service from the operating system (via a
system call), the system must transition from user to kernel mode to fulfill

1.4 Operating-System Operations 25

user process executing

user process

kernel

calls system call return from system call

user mode
(mode bit = 1)

trap
mode bit = 0

return
mode bit = 1

kernel mode
(mode bit = 0)

execute system call

Figure 1.13 Transition from user to kernel mode.

the request. This is shown in Figure 1.13. As we shall see, this architectural
enhancement is useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches fromusermode to kernelmode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another. We
accomplish this protection by designating some of the machine instructions
that may cause harm as privileged instructions. The hardware allows privi-
leged instructions to be executed only in kernel mode. If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction but rather treats it as illegal and traps it to the operating system.

The instruction to switch to kernel mode is an example of a privileged
instruction. Some other examples include I/O control, timer management, and
interrupt management. Many additional privileged instructions are discussed
throughout the text.

The concept of modes can be extended beyond two modes. For example,
Intel processors have four separate protection rings, where ring 0 is kernel
mode and ring 3 is user mode. (Although rings 1 and 2 could be used for vari-
ous operating-systemservices, in practice they are rarely used.) ARMv8 systems
have seven modes. CPUs that support virtualization (Section 18.1) frequently
have a separate mode to indicate when the virtual machine manager (VMM) is
in control of the system. In this mode, the VMM has more privileges than user
processes but fewer than the kernel. It needs that level of privilege so it can
create and manage virtual machines, changing the CPU state to do so.

We can now better understand the life cycle of instruction execution in a
computer system. Initial control resides in the operating system,where instruc-
tions are executed in kernel mode. When control is given to a user applica-
tion, the mode is set to user mode. Eventually, control is switched back to
the operating system via an interrupt, a trap, or a system call. Most contem-
porary operating systems—such as Microsoft Windows, Unix, and Linux—

26 Chapter 1 Introduction

take advantage of this dual-mode feature and provide greater protection for
the operating system.

System calls provide the means for a user program to ask the operating
system to perform tasks reserved for the operating system on the user pro-
gram’s behalf. A system call is invoked in a variety of ways, depending on
the functionality provided by the underlying processor. In all forms, it is the
method used by a process to request action by the operating system. A system
call usually takes the form of a trap to a specific location in the interrupt vector.
This trap can be executed by a generic trap instruction, although some systems
have a specific syscall instruction to invoke a system call.

When a system call is executed, it is typically treated by the hardware as
a software interrupt. Control passes through the interrupt vector to a service
routine in the operating system, and the mode bit is set to kernel mode. The
system-call service routine is a part of the operating system. The kernel exam-
ines the interrupting instruction to determine what system call has occurred;
a parameter indicates what type of service the user program is requesting.
Additional information needed for the request may be passed in registers, on
the stack, or in memory (with pointers to the memory locations passed in reg-
isters). The kernel verifies that the parameters are correct and legal, executes
the request, and returns control to the instruction following the system call. We
describe system calls more fully in Section 2.3.

Once hardware protection is in place, it detects errors that violate modes.
These errors are normally handled by the operating system. If a user program
fails in some way—such as by making an attempt either to execute an illegal
instruction or to access memory that is not in the user’s address space—then
the hardware traps to the operating system. The trap transfers control through
the interrupt vector to the operating system, just as an interrupt does. When
a program error occurs, the operating system must terminate the program
abnormally. This situation is handled by the same code as a user-requested
abnormal termination. An appropriate errormessage is given, and thememory
of the programmay be dumped. The memory dump is usually written to a file
so that the user or programmer can examine it and perhaps correct it and restart
the program.

1.4.3 Timer

We must ensure that the operating system maintains control over the CPU.
We cannot allow a user program to get stuck in an infinite loop or to fail
to call system services and never return control to the operating system. To
accomplish this goal, we can use a timer. A timer can be set to interrupt
the computer after a specified period. The period may be fixed (for example,
1/60 second) or variable (for example, from 1 millisecond to 1 second). A
variable timer is generally implemented by a fixed-rate clock and a counter.
The operating system sets the counter. Every time the clock ticks, the counter
is decremented. When the counter reaches 0, an interrupt occurs. For instance,
a 10-bit counter with a 1-millisecond clock allows interrupts at intervals from
1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures that
the timer is set to interrupt. If the timer interrupts, control transfers automati-
cally to the operating system, which may treat the interrupt as a fatal error or

1.5 Resource Management 27

LINUX TIMERS

On Linux systems, the kernel configuration parameter HZ specifies the fre-
quency of timer interrupts. An HZ value of 250means that the timer generates
250 interrupts per second, or one interrupt every 4 milliseconds. The value
of HZ depends upon how the kernel is configured, as well the machine type
and architecture on which it is running. A related kernel variable is jiffies,
which represent the number of timer interrupts that have occurred since the
system was booted. A programming project in Chapter 2 further explores
timing in the Linux kernel.

may give the programmore time. Clearly, instructions that modify the content
of the timer are privileged.

1.5 Resource Management

Aswehave seen, an operating system is a resource manager. The system’s CPU,
memory space, file-storage space, and I/O devices are among the resources that
the operating system must manage.

1.5.1 Process Management

A program can do nothing unless its instructions are executed by a CPU. A
program in execution, asmentioned, is a process. Aprogram such as a compiler
is a process, and a word-processing program being run by an individual user
on a PC is a process. Similarly, a social media app on a mobile device is a
process. For now, you can consider a process to be an instance of a program in
execution, but later you will see that the concept is more general. As described
in Chapter 3, it is possible to provide system calls that allow processes to create
subprocesses to execute concurrently.

Aprocess needs certain resources—including CPU time,memory, files, and
I/O devices—to accomplish its task. These resources are typically allocated to
the process while it is running. In addition to the various physical and logical
resources that a process obtains when it is created, various initialization data
(input) may be passed along. For example, consider a process running a web
browser whose function is to display the contents of a web page on a screen.
The process will be given the URL as an input and will execute the appropriate
instructions and system calls to obtain and display the desired information on
the screen.When the process terminates, the operating systemwill reclaim any
reusable resources.

We emphasize that a program by itself is not a process. A program is a
passive entity, like the contents of a file stored on disk, whereas a process is an
active entity. A single-threaded process has one program counter specifying
the next instruction to execute. (Threads are covered in Chapter 4.) The exe-
cution of such a process must be sequential. The CPU executes one instruction
of the process after another, until the process completes. Further, at any time,
one instruction at most is executed on behalf of the process. Thus, although

28 Chapter 1 Introduction

two processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. A multithreaded process has
multiple program counters, each pointing to the next instruction to execute
for a given thread.

A process is the unit of work in a system. A system consists of a collec-
tion of processes, some of which are operating-system processes (those that
execute system code) and the rest of which are user processes (those that exe-
cute user code). All these processes can potentially execute concurrently—by
multiplexing on a single CPU core—or in parallel across multiple CPU cores.

The operating system is responsible for the following activities in connec-
tion with process management:

• Creating and deleting both user and system processes

• Scheduling processes and threads on the CPUs

• Suspending and resuming processes

• Providing mechanisms for process synchronization

• Providing mechanisms for process communication

We discuss process-management techniques in Chapter 3 through Chapter 7.

1.5.2 Memory Management

As discussed in Section 1.2.2, the main memory is central to the operation of a
modern computer system. Main memory is a large array of bytes, ranging in
size from hundreds of thousands to billions. Each byte has its own address.
Main memory is a repository of quickly accessible data shared by the CPU
and I/O devices. The CPU reads instructions from main memory during the
instruction-fetch cycle and both reads and writes data from main memory
during the data-fetch cycle (on a von Neumann architecture). As noted earlier,
the main memory is generally the only large storage device that the CPU is able
to address and access directly. For example, for the CPU to process data from
disk, those data must first be transferred to main memory by CPU-generated
I/O calls. In the same way, instructions must be in memory for the CPU to
execute them.

For a program to be executed, it must bemapped to absolute addresses and
loaded intomemory. As the program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the computer’s
response to its users, general-purpose computers must keep several programs
inmemory, creating a need formemorymanagement.Many differentmemory-
management schemes are used. These schemes reflect various approaches, and
the effectiveness of any given algorithmdepends on the situation. In selecting a
memory-management scheme for a specific system, wemust take into account
many factors—especially the hardware design of the system. Each algorithm
requires its own hardware support.

1.5 Resource Management 29

The operating system is responsible for the following activities in connec-
tion with memory management:

• Keeping track of which parts of memory are currently being used and
which process is using them

• Allocating and deallocating memory space as needed

• Deciding which processes (or parts of processes) and data to move into
and out of memory

Memory-management techniques are discussed in Chapter 9 and Chapter 10.

1.5.3 File-System Management

To make the computer system convenient for users, the operating system
provides a uniform, logical view of information storage. The operating system
abstracts from the physical properties of its storage devices to define a logical
storage unit, the fil . The operating systemmaps files onto physical media and
accesses these files via the storage devices.

File management is one of the most visible components of an operating
system. Computers can store information on several different types of physi-
cal media. Secondary storage is the most common, but tertiary storage is also
possible. Each of these media has its own characteristics and physical orga-
nization. Most are controlled by a device, such as a disk drive, that also has
its own unique characteristics. These properties include access speed, capacity,
data-transfer rate, and access method (sequential or random).

A file is a collection of related information defined by its creator. Com-
monly, files represent programs (both source and object forms) and data. Data
files may be numeric, alphabetic, alphanumeric, or binary. Files may be free-
form (for example, text files), or they may be formatted rigidly (for example,
fixed fields such as an mp3 music file). Clearly, the concept of a file is an
extremely general one.

The operating system implements the abstract concept of a file by manag-
ing mass storage media and the devices that control them. In addition, files are
normally organized into directories to make them easier to use. Finally, when
multiple users have access to files, it may be desirable to control which user
may access a file and how that user may access it (for example, read, write,
append).

The operating system is responsible for the following activities in connec-
tion with file management:

• Creating and deleting files

• Creating and deleting directories to organize files

• Supporting primitives for manipulating files and directories

• Mapping files onto mass storage

• Backing up files on stable (nonvolatile) storage media

30 Chapter 1 Introduction

File-management techniques are discussed in Chapter 13, Chapter 14, and
Chapter 15.

1.5.4 Mass-Storage Management

Aswehave already seen, the computer systemmust provide secondary storage
to back up main memory. Most modern computer systems use HDDs and NVM
devices as the principal on-line storage media for both programs and data.
Most programs—including compilers, web browsers, word processors, and
games—are stored on these devices until loaded into memory. The programs
then use the devices as both the source and the destination of their processing.
Hence, the proper management of secondary storage is of central importance
to a computer system. The operating system is responsible for the following
activities in connection with secondary storage management:

• Mounting and unmounting

• Free-space management

• Storage allocation

• Disk scheduling

• Partitioning

• Protection

Because secondary storage is used frequently and extensively, it must be used
efficiently. The entire speedof operation of a computermayhinge on the speeds
of the secondary storage subsystem and the algorithms that manipulate that
subsystem.

At the same time, there are many uses for storage that is slower and lower
in cost (and sometimes higher in capacity) than secondary storage. Backups
of disk data, storage of seldom-used data, and long-term archival storage are
some examples.Magnetic tape drives and their tapes and CD DVD and Blu-ray
drives and platters are typical tertiary storage devices.

Tertiary storage is not crucial to system performance, but it still must
be managed. Some operating systems take on this task, while others leave
tertiary-storage management to application programs. Some of the functions
that operating systems can provide include mounting and unmounting media
in devices, allocating and freeing the devices for exclusive use by processes,
and migrating data from secondary to tertiary storage.

Techniques for secondary storage and tertiary storage management are
discussed in Chapter 11.

1.5.5 Cache Management

Caching is an important principle of computer systems. Here’s how it works.
Information is normally kept in some storage system (such as main memory).
As it is used, it is copied into a faster storage system—the cache—on a tem-
porary basis. When we need a particular piece of information, we first check
whether it is in the cache. If it is, we use the information directly from the cache.

1.5 Resource Management 31

Level

Name

Typical size

Implementation
technology

Access time (ns)

Bandwidth (MB/sec)

Managed by

Backed by

1

registers

< 1 KB

custom memory
with multiple
ports CMOS

0.25-0.5

20,000-100,000

compiler

cache

2

cache

< 16MB

on-chip or
off-chip
CMOS SRAM

0.5-25

5,000-10,000

hardware

main memory

3

main memory

< 64GB

CMOS SRAM

80-250

1,000-5,000

operating system

disk

4

solid-state disk

< 1 TB

flash memory

25,000-50,000

500

operating system

disk

5

magnetic disk

< 10 TB

magnetic disk

5,000,000

20-150

operating system

disk or tape

Figure 1.14 Characteristics of various types of storage.

If it is not, we use the information from the source, putting a copy in the cache
under the assumption that we will need it again soon.

In addition, internal programmable registers provide a high-speed cache
for main memory. The programmer (or compiler) implements the register-
allocation and register-replacement algorithms to decide which information to
keep in registers and which to keep in main memory.

Other caches are implemented totally in hardware. For instance, most
systems have an instruction cache to hold the instructions expected to be
executed next. Without this cache, the CPU would have to wait several cycles
while an instruction was fetched frommainmemory. For similar reasons, most
systems have one ormore high-speed data caches in thememory hierarchy.We
are not concerned with these hardware-only caches in this text, since they are
outside the control of the operating system.

Because caches have limited size, cache management is an important
design problem. Careful selection of the cache size and of a replacement policy
can result in greatly increasedperformance, as you can see by examining Figure
1.14. Replacement algorithms for software-controlled caches are discussed in
Chapter 10.

Themovement of information between levels of a storage hierarchymay be
either explicit or implicit, depending on the hardware design and the control-
ling operating-system software. For instance, data transfer from cache to CPU
and registers is usually a hardware function, with no operating-system inter-
vention. In contrast, transfer of data from disk to memory is usually controlled
by the operating system.

In a hierarchical storage structure, the same data may appear in different
levels of the storage system. For example, suppose that an integer A that is
to be incremented by 1 is located in file B, and file B resides on hard disk.
The increment operation proceeds by first issuing an I/O operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an internal register. Thus, the copy of A appears
in several places: on the hard disk, in main memory, in the cache, and in an
internal register (see Figure 1.15). Once the increment takes place in the internal
register, the value of A differs in the various storage systems. The value of A

32 Chapter 1 Introduction

A A A
magnetic

disk
main

memory
hardware
register

cache

Figure 1.15 Migration of integer A from disk to register.

becomes the same only after the new value of A is written from the internal
register back to the hard disk.

In a computing environment where only one process executes at a time,
this arrangement poses no difficulties, since an access to integer Awill always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CPU is switched back and forth among various pro-
cesses, extreme care must be taken to ensure that, if several processes wish to
access A, then each of these processes will obtain the most recently updated
value of A.

The situation becomes more complicated in a multiprocessor environment
where, in addition to maintaining internal registers, each of the CPUs also
contains a local cache (refer back to Figure 1.8). In such an environment, a copy
of A may exist simultaneously in several caches. Since the various CPUs can
all execute in parallel, we must make sure that an update to the value of A
in one cache is immediately reflected in all other caches where A resides. This
situation is called cache coherency, and it is usually a hardware issue (handled
below the operating-system level).

In a distributed environment, the situation becomes even more complex.
In this environment, several copies (or replicas) of the same file can be kept on
different computers. Since the various replicas may be accessed and updated
concurrently, some distributed systems ensure that, when a replica is updated
in one place, all other replicas are brought up to date as soon as possible. There
are various ways to achieve this guarantee, as we discuss in Chapter 19.

1.5.6 I/O System Management

One of the purposes of an operating system is to hide the peculiarities of
specific hardware devices from the user. For example, in UNIX, the peculiarities
of I/O devices are hidden from the bulk of the operating system itself by the
I/O subsystem. The I/O subsystem consists of several components:

• Amemory-management component that includes buffering, caching, and
spooling

• A general device-driver interface

• Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which
it is assigned.

We discussed earlier in this chapter how interrupt handlers and device
drivers are used in the construction of efficient I/O subsystems. In Chapter 12,
we discuss how the I/O subsystem interfaces to the other system components,
manages devices, transfers data, and detects I/O completion.

1.6 Security and Protection 33

1.6 Security and Protection

If a computer system has multiple users and allows the concurrent execution
of multiple processes, then access to data must be regulated. For that purpose,
mechanisms ensure that files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authoriza-
tion from the operating system. For example, memory-addressing hardware
ensures that a process can execute only within its own address space. The
timer ensures that no process can gain control of the CPU without eventually
relinquishing control. Device-control registers are not accessible to users, so the
integrity of the various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of processes
or users to the resources defined by a computer system. This mechanism must
providemeans to specify the controls to be imposed and to enforce the controls.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that is
malfunctioning. Furthermore, an unprotected resource cannot defend against
use (or misuse) by an unauthorized or incompetent user. Aprotection-oriented
system provides a means to distinguish between authorized and unauthorized
usage, as we discuss in Chapter 17.

A system can have adequate protection but still be prone to failure and
allow inappropriate access. Consider a user whose authentication information
(her means of identifying herself to the system) is stolen. Her data could be
copied or deleted, even though file and memory protection are working. It is
the job of security to defend a system from external and internal attacks. Such
attacks spread across a huge range and include viruses and worms, denial-of-
service attacks (which use all of a system’s resources and so keep legitimate
users out of the system), identity theft, and theft of service (unauthorized use
of a system). Prevention of some of these attacks is considered an operating-
system function on some systems, while other systems leave it to policy or
additional software. Due to the alarming rise in security incidents, operating-
system security features are a fast-growing area of research and implementa-
tion. We discuss security in Chapter 16.

Protection and security require the system to be able to distinguish among
all its users. Most operating systems maintain a list of user names and asso-
ciated user identifier (user IDs). In Windows parlance, this is a security ID
(SID). These numerical IDs are unique, one per user. When a user logs in to
the system, the authentication stage determines the appropriate user ID for the
user. That user ID is associated with all of the user’s processes and threads.
When an ID needs to be readable by a user, it is translated back to the user
name via the user name list.

In some circumstances, we wish to distinguish among sets of users rather
than individual users. For example, the owner of a file on a UNIX systemmay be
allowed to issue all operations on that file, whereas a selected set of users may
be allowed only to read the file. To accomplish this, we need to define a group
name and the set of users belonging to that group. Group functionality can
be implemented as a system-wide list of group names and group identifier .
A user can be in one or more groups, depending on operating-system design

34 Chapter 1 Introduction

decisions. The user’s group IDs are also included in every associated process
and thread.

In the course of normal system use, the user ID and group ID for a user
are sufficient. However, a user sometimes needs to escalate privileges to gain
extra permissions for an activity. The user may need access to a device that is
restricted, for example. Operating systems provide various methods to allow
privilege escalation. On UNIX, for instance, the setuid attribute on a program
causes that program to run with the user ID of the owner of the file, rather than
the current user’s ID. The process runs with this effective UID until it turns off
the extra privileges or terminates.

1.7 Virtualization

Virtualization is a technology that allows us to abstract the hardware of a sin-
gle computer (the CPU, memory, disk drives, network interface cards, and so
forth) into several different execution environments, thereby creating the illu-
sion that each separate environment is running on its own private computer.
These environments can be viewed as different individual operating systems
(for example, Windows and UNIX) that may be running at the same time and
may interact with each other. A user of a virtual machine can switch among
the various operating systems in the same way a user can switch among the
various processes running concurrently in a single operating system.

Virtualization allows operating systems to run as applications within other
operating systems. At first blush, there seems to be little reason for such func-
tionality. But the virtualization industry is vast and growing, which is a testa-
ment to its utility and importance.

Broadly speaking, virtualization software is onemember of a class that also
includes emulation. Emulation, which involves simulating computer hard-
ware in software, is typically used when the source CPU type is different from
the target CPU type. For example, when Apple switched from the IBM Power
CPU to the Intel x86 CPU for its desktop and laptop computers, it included an
emulation facility called “Rosetta,” which allowed applications compiled for
the IBMCPU to run on the Intel CPU. That same concept can be extended to allow
an entire operating system written for one platform to run on another. Emula-
tion comes at a heavy price, however. Everymachine-level instruction that runs
natively on the source system must be translated to the equivalent function
on the target system, frequently resulting in several target instructions. If the
source and target CPUs have similar performance levels, the emulated code
may run much more slowly than the native code.

With virtualization, in contrast, an operating system that is natively com-
piled for a particular CPU architecture runs within another operating system
also native to that CPU. Virtualization first came about on IBM mainframes as
a method for multiple users to run tasks concurrently. Running multiple vir-
tual machines allowed (and still allows) many users to run tasks on a system
designed for a single user. Later, in response to problemswith runningmultiple
Microsoft Windows applications on the Intel x86 CPU, VMware created a new
virtualization technology in the form of an application that ran on Windows.
That application ran one or more guest copies of Windows or other native
x86 operating systems, each running its own applications. (See Figure 1.16.)

1.8 Distributed Systems 35

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager

hardware

virtual machine

Figure 1.16 A computer running (a) a single operating system and (b) three virtual
machines.

Windows was the host operating system, and the VMware application was the
virtual machine manager (VMM). The VMM runs the guest operating systems,
manages their resource use, and protects each guest from the others.

Even thoughmodern operating systems are fully capable of runningmulti-
ple applications reliably, the use of virtualization continues to grow.On laptops
and desktops, a VMM allows the user to install multiple operating systems for
exploration or to run applications written for operating systems other than the
native host. For example, an Apple laptop running macOS on the x86 CPU can
run a Windows 10 guest to allow execution of Windows applications. Com-
panies writing software for multiple operating systems can use virtualization
to run all of those operating systems on a single physical server for develop-
ment, testing, and debugging. Within data centers, virtualization has become a
commonmethod of executing and managing computing environments. VMMs
like VMware ESXand Citrix XenServer no longer run on host operating systems
but rather are the host operating systems, providing services and resource
management to virtual machine processes.

With this text, we provide a Linux virtual machine that allows you to
run Linux—as well as the development tools we provide—on your personal
system regardless of your host operating system. Full details of the features
and implementation of virtualization can be found in Chapter 18.

1.8 Distributed Systems

A distributed system is a collection of physically separate, possibly heteroge-
neous computer systems that are networked to provide users with access to
the various resources that the system maintains. Access to a shared resource
increases computation speed, functionality, data availability, and reliability.
Some operating systems generalize network access as a form of file access, with
the details of networking contained in the network interface’s device driver.

36 Chapter 1 Introduction

Others make users specifically invoke network functions. Generally, systems
contain a mix of the two modes—for example FTP and NFS. The protocols
that create a distributed system can greatly affect that system’s utility and
popularity.

Anetwork, in the simplest terms, is a communication path between two or
more systems. Distributed systems depend on networking for their functional-
ity. Networks vary by the protocols used, the distances between nodes, and the
transport media. TCP/IP is the most common network protocol, and it provides
the fundamental architecture of the Internet. Most operating systems support
TCP/IP, including all general-purpose ones. Some systems support proprietary
protocols to suit their needs. For an operating system, it is necessary only that
a network protocol have an interface device—a network adapter, for example
—with a device driver to manage it, as well as software to handle data. These
concepts are discussed throughout this book.

Networks are characterized based on the distances between their nodes.
A local-area network (LAN) connects computers within a room, a building,
or a campus. A wide-area network (WAN) usually links buildings, cities, or
countries. Aglobal companymay have aWAN to connect its offices worldwide,
for example. These networks may run one protocol or several protocols. The
continuing advent of new technologies brings about new forms of networks.
For example, a metropolitan-area network (MAN) could link buildings within
a city. BlueTooth and 802.11 devices use wireless technology to communicate
over a distance of several feet, in essence creating a personal-area network
(PAN) between a phone and a headset or a smartphone and adesktop computer.

Themedia to carry networks are equally varied. They include copperwires,
fiber strands, andwireless transmissions between satellites,microwave dishes,
and radios. When computing devices are connected to cellular phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate,
they use or create a network. These networks also vary in their performance
and reliability.

Some operating systems have taken the concept of networks and dis-
tributed systems further than the notion of providing network connectivity.
A network operating system is an operating system that provides features
such as file sharing across the network, along with a communication scheme
that allows different processes on different computers to exchange messages.
A computer running a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat-
ing system provides a less autonomous environment. The different computers
communicate closely enough to provide the illusion that only a single operat-
ing system controls the network.We cover computer networks and distributed
systems in Chapter 19.

1.9 Kernel Data Structures

We turn next to a topic central to operating-system implementation: the way
data are structured in the system. In this section, we briefly describe several
fundamental data structures used extensively in operating systems. Readers

1.9 Kernel Data Structures 37

data data data null

• ••

Figure 1.17 Singly linked list.

who require further details on these structures, aswell as others, should consult
the bibliography at the end of the chapter.

1.9.1 Lists, Stacks, and Queues

An array is a simple data structure in which each element can be accessed
directly. For example, main memory is constructed as an array. If the data item
being stored is larger than one byte, then multiple bytes can be allocated to the
item, and the item is addressed as “item number × item size.” But what about
storing an itemwhose size may vary? And what about removing an item if the
relative positions of the remaining itemsmust be preserved? In such situations,
arrays give way to other data structures.

After arrays, lists are perhaps themost fundamental data structures in com-
puter science. Whereas each item in an array can be accessed directly, the items
in a list must be accessed in a particular order. That is, a list represents a collec-
tion of data values as a sequence. Themost commonmethod for implementing
this structure is a linked list, in which items are linked to one another. Linked
lists are of several types:

• In a singly linked list, each item points to its successor, as illustrated in
Figure 1.17.

• In a doubly linked list, a given item can refer either to its predecessor or to
its successor, as illustrated in Figure 1.18.

• In a circularly linked list, the last element in the list refers to the first
element, rather than to null, as illustrated in Figure 1.19.

Linked lists accommodate items of varying sizes and allow easy insertion
and deletion of items. One potential disadvantage of using a list is that per-
formance for retrieving a specified item in a list of size n is linear—O(n), as it
requires potentially traversing all n elements in the worst case. Lists are some-
times used directly by kernel algorithms. Frequently, though, they are used for
constructing more powerful data structures, such as stacks and queues.

A stack is a sequentially ordered data structure that uses the last in, first
out (LIFO) principle for adding and removing items, meaning that the last item

data null nulldata data data

• ••

Figure 1.18 Doubly linked list.

38 Chapter 1 Introduction

data data data data

• ••

Figure 1.19 Circularly linked list.

placed onto a stack is the first item removed. The operations for inserting and
removing items from a stack are known as push and pop, respectively. An
operating system often uses a stack when invoking function calls. Parameters,
local variables, and the return address are pushed onto the stack when a
function is called; returning from the function call pops those items off the
stack.

A queue, in contrast, is a sequentially ordered data structure that uses the
first in, first out (FIFO) principle: items are removed from a queue in the order
in which they were inserted. There are many everyday examples of queues,
including shoppers waiting in a checkout line at a store and cars waiting in line
at a traffic signal. Queues are also quite common in operating systems—jobs
that are sent to a printer are typically printed in the order in which they were
submitted, for example. As we shall see in Chapter 5, tasks that are waiting to
be run on an available CPU are often organized in queues.

1.9.2 Trees

A tree is a data structure that can be used to represent data hierarchically. Data
values in a tree structure are linked through parent–child relationships. In a
general tree, a parent may have an unlimited number of children. In a binary
tree, a parent may have at most two children, which we term the left child
and the right child. A binary search tree additionally requires an ordering
between the parent’s two children in which left child <= right child. Figure 1.20
provides an example of a binary search tree. When we search for an item in a
binary search tree, the worst-case performance is O(n) (consider how this can
occur). To remedy this situation, we can use an algorithm to create a balanced
binary search tree. Here, a tree containing n items has at most lg n levels, thus
ensuring worst-case performance of O(lg n). We shall see in Section 5.7.1 that
Linux uses a balanced binary search tree (known as a red-black tree) as part
its CPU-scheduling algorithm.

1.9.3 Hash Functions and Maps

A hash function takes data as its input, performs a numeric operation on the
data, and returns a numeric value. This numeric value can then be used as
an index into a table (typically an array) to quickly retrieve the data. Whereas
searching for a data item through a list of size n can require up toO(n) compar-
isons, using a hash function for retrieving data from a table can be as good as
O(1), depending on implementation details. Because of this performance, hash
functions are used extensively in operating systems.

One potential difficulty with hash functions is that two unique inputs
can result in the same output value—that is, they can link to the same table

1.9 Kernel Data Structures 39

17

35

40

38

12

146

Figure 1.20 Binary search tree.

location. We can accommodate this hash collision by having a linked list at the
table location that contains all of the itemswith the same hash value. Of course,
the more collisions there are, the less efficient the hash function is.

One use of a hash function is to implement a hash map, which associates
(or maps) [key:value] pairs using a hash function. Once the mapping is estab-
lished, we can apply the hash function to the key to obtain the value from the
hash map (Figure 1.21). For example, suppose that a user name is mapped to
a password. Password authentication then proceeds as follows: a user enters
her user name and password. The hash function is applied to the user name,
which is then used to retrieve the password. The retrieved password is then
compared with the password entered by the user for authentication.

1.9.4 Bitmaps

Abitmap is a string of n binary digits that can be used to represent the status of
n items. For example, suppose we have several resources, and the availability
of each resource is indicated by the value of a binary digit: 0 means that the
resource is available, while 1 indicates that it is unavailable (or vice versa). The

0 1 . . n

value

hash map

hash_function(key)

Figure 1.21 Hash map.

40 Chapter 1 Introduction

LINUX KERNEL DATA STRUCTURES

The data structures used in the Linux kernel are available in the kernel source
code. The include file <linux/list.h> provides details of the linked-list
data structure used throughout the kernel. A queue in Linux is known as a
kfifo, and its implementation can be found in the kfifo.c file in the kernel
directory of the source code. Linux also provides a balancedbinary search tree
implementation using red-black trees. Details can be found in the include file
<linux/rbtree.h>.

value of the ith position in the bitmap is associated with the ith resource. As an
example, consider the bitmap shown below:

0 0 1 0 1 1 1 0 1

Resources 2, 4, 5, 6, and 8 are unavailable; resources 0, 1, 3, and 7 are available.
The power of bitmaps becomes apparent when we consider their space

efficiency. If we were to use an eight-bit Boolean value instead of a single bit,
the resulting data structure would be eight times larger. Thus, bitmaps are
commonly used when there is a need to represent the availability of a large
number of resources. Disk drives provide a nice illustration. Amedium-sized
disk drivemight be divided into several thousand individual units, called disk
blocks. A bitmap can be used to indicate the availability of each disk block.

In summary, data structures are pervasive in operating system implemen-
tations. Thus, we will see the structures discussed here, along with others,
throughout this text as we explore kernel algorithms and their implementa-
tions.

1.10 Computing Environments

So far, we have briefly described several aspects of computer systems and the
operating systems that manage them. We turn now to a discussion of how
operating systems are used in a variety of computing environments.

1.10.1 Traditional Computing

As computing has matured, the lines separating many of the traditional com-
puting environments have blurred. Consider the “typical office environment.”
Just a few years ago, this environment consisted of PCs connected to a network,
with servers providing file and print services. Remote access was awkward,
and portability was achieved by use of laptop computers.

Today, web technologies and increasing WAN bandwidth are stretching the
boundaries of traditional computing. Companies establish portals, which pro-
vide web accessibility to their internal servers. Network computers (or thin
clients)—which are essentially terminals that understand web-based comput-
ing—are used in place of traditional workstations where more security or
easier maintenance is desired. Mobile computers can synchronize with PCs
to allow very portable use of company information. Mobile devices can also

1.10 Computing Environments 41

connect to wireless networks and cellular data networks to use the company’s
web portal (as well as the myriad other web resources).

At home, most users once had a single computer with a slow modem con-
nection to the office, the Internet, or both. Today, network-connection speeds
once available only at great cost are relatively inexpensive in many places,
giving home users more access to more data. These fast data connections are
allowing home computers to serve up web pages and to run networks that
include printers, client PCs, and servers. Many homes use firewall to pro-
tect their networks from security breaches. Firewalls limit the communications
between devices on a network.

In the latter half of the 20th century, computing resources were relatively
scarce. (Before that, they were nonexistent!) For a period of time, systems were
either batch or interactive. Batch systems processed jobs in bulk, with prede-
termined input from files or other data sources. Interactive systems waited for
input from users. To optimize the use of the computing resources, multiple
users shared time on these systems. These time-sharing systems used a timer
and scheduling algorithms to cycle processes rapidly through the CPU, giving
each user a share of the resources.

Traditional time-sharing systems are rare today. The same scheduling tech-
nique is still in use on desktop computers, laptops, servers, and even mobile
computers, but frequently all the processes are owned by the same user (or a
single user and the operating system). User processes, and system processes
that provide services to the user, are managed so that each frequently gets a
slice of computer time. Consider the windows created while a user is working
on a PC, for example, and the fact that they may be performing different tasks
at the same time. Even a web browser can be composed of multiple processes,
one for each website currently being visited, with time sharing applied to each
web browser process.

1.10.2 Mobile Computing

Mobile computing refers to computing on handheld smartphones and tablet
computers. These devices share the distinguishing physical features of being
portable and lightweight. Historically, compared with desktop and laptop
computers, mobile systems gave up screen size, memory capacity, and overall
functionality in return for handheld mobile access to services such as e-mail
and web browsing. Over the past few years, however, features on mobile
devices have become so rich that the distinction in functionality between, say,
a consumer laptop and a tablet computer may be difficult to discern. In fact,
we might argue that the features of a contemporary mobile device allow it to
provide functionality that is either unavailable or impractical on a desktop or
laptop computer.

Today, mobile systems are used not only for e-mail and web browsing but
also for playing music and video, reading digital books, taking photos, and
recording and editing high-definition video. Accordingly, tremendous growth
continues in the wide range of applications that run on such devices. Many
developers are now designing applications that take advantage of the unique
features of mobile devices, such as global positioning system (GPS) chips,
accelerometers, and gyroscopes.An embeddedGPS chip allows amobile device
to use satellites to determine its precise location on Earth. That functionality is

42 Chapter 1 Introduction

especially useful in designing applications that provide navigation—for exam-
ple, telling users which way to walk or drive or perhaps directing them to
nearby services, such as restaurants. An accelerometer allows a mobile device
to detect its orientation with respect to the ground and to detect certain other
forces, such as tilting and shaking. In several computer games that employ
accelerometers, players interface with the system not by using a mouse or a
keyboard but rather by tilting, rotating, and shaking themobile device! Perhaps
more a practical use of these features is found in augmented-reality appli-
cations, which overlay information on a display of the current environment.
It is difficult to imagine how equivalent applications could be developed on
traditional laptop or desktop computer systems.

To provide access to on-line services, mobile devices typically use either
IEEE standard 802.11 wireless or cellular data networks. The memory capacity
and processing speed of mobile devices, however, are more limited than those
of PCs. Whereas a smartphone or tablet may have 256 GB in storage, it is not
uncommon to find 8 TB in storage on a desktop computer. Similarly, because
power consumption is such a concern, mobile devices often use processors that
are smaller, are slower, and offer fewer processing cores than processors found
on traditional desktop and laptop computers.

Two operating systems currently dominate mobile computing: Apple iOS
and Google Android. iOS was designed to run on Apple iPhone and iPad
mobile devices. Android powers smartphones and tablet computers available
frommanymanufacturers. We examine these twomobile operating systems in
further detail in Chapter 2.

1.10.3 Client–Server Computing

Contemporary network architecture features arrangements in which server
systems satisfy requests generated by client systems. This form of specialized
distributed system, called a client–server system, has the general structure
depicted in Figure 1.22.

Server systems can be broadly categorized as compute servers and file
servers:

• The compute-server system provides an interface to which a client can
send a request to perform an action (for example, read data). In response,
the server executes the action and sends the results to the client. A server

server network

client
desktop

client
laptop

client
smartphone

Figure 1.22 General structure of a client–server system.

1.10 Computing Environments 43

running a database that responds to client requests for data is an example
of such a system.

• The file-serve system provides a file-system interface where clients can
create, update, read, and delete files. An example of such a system is a
web server that delivers files to clients running web browsers. The actual
contents of the files can vary greatly, ranging from traditional web pages
to rich multimedia content such as high-definition video.

1.10.4 Peer-to-Peer Computing

Another structure for a distributed system is the peer-to-peer (P2P) system
model. In this model, clients and servers are not distinguished from one
another. Instead, all nodes within the system are considered peers, and each
may act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client–server systems. In a client–server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the network
of peers. Once a node has joined the network, it can begin providing services
to—and requesting services from—other nodes in the network. Determining
what services are available is accomplished in one of two general ways:

• When a node joins a network, it registers its service with a centralized
lookup service on the network. Any node desiring a specific service first
contacts this centralized lookup service to determinewhich node provides
the service. The remainder of the communication takes place between the
client and the service provider.

• An alternative scheme uses no centralized lookup service. Instead, a peer
acting as a client must discover what node provides a desired service by
broadcasting a request for the service to all other nodes in the network.
The node (or nodes) providing that service responds to the peer making
the request. To support this approach, a discovery protocol must be pro-
vided that allows peers to discover services provided by other peers in the
network. Figure 1.23 illustrates such a scenario.

Peer-to-peer networks gainedwidespread popularity in the late 1990s with
several file-sharing services, such as Napster and Gnutella, that enabled peers
to exchange fileswith one another. TheNapster system used an approach simi-
lar to the first type described above: a centralized servermaintained an index of
all files stored on peer nodes in the Napster network, and the actual exchange
of files took place between the peer nodes. The Gnutella system used a tech-
nique similar to the second type: a client broadcast file requests to other nodes
in the system, and nodes that could service the request responded directly to
the client. Peer-to-peer networks can be used to exchange copyrighted mate-
rials (music, for example) anonymously, and there are laws governing the
distribution of copyrighted material. Notably, Napster ran into legal trouble
for copyright infringement, and its services were shut down in 2001. For this
reason, the future of exchanging files remains uncertain.

44 Chapter 1 Introduction

client

clientclient

client client

Figure 1.23 Peer-to-peer system with no centralized service.

Skype is another example of peer-to-peer computing. It allows clients to
make voice calls and video calls and to send text messages over the Internet
using a technology known as voice over IP (VoIP). Skype uses a hybrid peer-
to-peer approach. It includes a centralized login server, but it also incorporates
decentralized peers and allows two peers to communicate.

1.10.5 Cloud Computing

Cloud computing is a type of computing that delivers computing, storage,
and even applications as a service across a network. In some ways, it’s a
logical extension of virtualization, because it uses virtualization as a base for
its functionality. For example, theAmazon Elastic Compute Cloud (ec2) facility
has thousands of servers,millions of virtualmachines, and petabytes of storage
available for use by anyone on the Internet. Users pay per month based on
how much of those resources they use. There are actually many types of cloud
computing, including the following:

• Public cloud—a cloud available via the Internet to anyone willing to pay
for the services

• Private cloud—a cloud run by a company for that company’s own use

• Hybrid cloud—a cloud that includes both public and private cloud com-
ponents

• Software as a service (SaaS)—one or more applications (such as word
processors or spreadsheets) available via the Internet

• Platform as a service (PaaS)—a software stack ready for application use
via the Internet (for example, a database server)

• Infrastructure as a service (IaaS)—servers or storage available over the
Internet (for example, storage available for making backup copies of pro-
duction data)

1.10 Computing Environments 45

firewall
cloud

customer

interface

load balancer

virtual

machines

virtual

machines

servers servers

storage

Internet

customer

requests

cloud

management

commands

cloud

managment

services

Figure 1.24 Cloud computing.

These cloud-computing types are not discrete, as a cloud computing environ-
ment may provide a combination of several types. For example, an organiza-
tion may provide both SaaS and IaaS as publicly available services.

Certainly, there are traditional operating systems within many of the types
of cloud infrastructure. Beyond those are the VMMs that manage the virtual
machines in which the user processes run. At a higher level, the VMMs them-
selves are managed by cloud management tools, such as VMware vCloud
Director and the open-source Eucalyptus toolset. These tools manage the
resourceswithin a given cloud and provide interfaces to the cloud components,
making a good argument for considering them a new type of operating system.

Figure 1.24 illustrates a public cloud providing IaaS. Notice that both the
cloud services and the cloud user interface are protected by a firewall.

1.10.6 Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.
These devices are found everywhere, from car engines and manufacturing
robots to optical drives and microwave ovens. They tend to have very specific
tasks. The systems they run on are usually primitive, and so the operating
systems provide limited features. Usually, they have little or no user interface,
preferring to spend their time monitoring and managing hardware devices,
such as automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems—such as Linux—with
special-purpose applications to implement the functionality. Others are
hardware devices with a special-purpose embedded operating system
providing just the functionality desired. Yet others are hardware devices

46 Chapter 1 Introduction

with application-specific integrated circuits (ASICs) that perform their tasks
without an operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as elements of networks and the web, is
sure to increase as well. Even now, entire houses can be computerized, so that a
central computer—either a general-purpose computer or an embedded system
—can control heating and lighting, alarm systems, and even coffee makers.
Web access can enable a home owner to tell the house to heat up before she
arrives home. Someday, the refrigerator will be able to notify the grocery store
when it notices the milk is gone.

Embedded systems almost always run real-time operating systems. Areal-
time system is used when rigid time requirements have been placed on the
operation of a processor or the flow of data; thus, it is often used as a control
device in a dedicated application. Sensors bring data to the computer. The com-
puter must analyze the data and possibly adjust controls to modify the sensor
inputs. Systems that control scientific experiments, medical imaging systems,
industrial control systems, and certain display systems are real-time systems.
Some automobile-engine fuel-injection systems, home-appliance controllers,
and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing
must be done within the defined constraints, or the system will fail. For
instance, it would not do for a robot arm to be instructed to halt after it had
smashed into the car it was building. A real-time system functions correctly
only if it returns the correct result within its time constraints. Contrast this sys-
tem with a traditional laptop system where it is desirable (but not mandatory)
to respond quickly.

In Chapter 5, we consider the scheduling facility needed to implement real-
time functionality in an operating system, and in Chapter 20 we describe the
real-time components of Linux.

1.11 Free and Open-Source Operating Systems

The study of operating systems has been made easier by the avail-
ability of a vast number of free software and open-source releases.
Both free operating systems and open-source operating systems
are available in source-code format rather than as compiled binary
code. Note, though, that free software and open-source software are
two different ideas championed by different groups of people (see
http://gnu.org/philosophy/open-source-misses-the-point.html/ for a
discussion on the topic). Free software (sometimes referred to as free/libre
software) not only makes source code available but also is licensed to allow
no-cost use, redistribution, and modification. Open-source software does
not necessarily offer such licensing. Thus, although all free software is open
source, some open-source software is not “free.” GNU/Linux is the most
famous open-source operating system, with some distributions free and
others open source only (http://www.gnu.org/distros/). Microsoft Windows
is a well-known example of the opposite closed-source approach. Windows
is proprietary software—Microsoft owns it, restricts its use, and carefully
protects its source code. Apple’s macOS operating system comprises a hybrid

http://gnu.org/philosophy/open-source-misses-the-point.html
http://www.gnu.org/distros/
http://www.gnu.org/distros/

1.11 Free and Open-Source Operating Systems 47

approach. It contains an open-source kernel named Darwin but includes
proprietary, closed-source components as well.

Starting with the source code allows the programmer to produce binary
code that can be executed on a system. Doing the opposite—reverse engi-
neering the source code from the binaries—is quite a lot of work, and useful
items such as comments are never recovered. Learning operating systems by
examining the source code has other benefits as well. With the source code
in hand, a student can modify the operating system and then compile and
run the code to try out those changes, which is an excellent learning tool.
This text includes projects that involve modifying operating-system source
code, while also describing algorithms at a high level to be sure all important
operating-system topics are covered. Throughout the text, we provide pointers
to examples of open-source code for deeper study.

There are many benefits to open-source operating systems, including a
community of interested (and usually unpaid) programmerswho contribute to
the code by helping to write it, debug it, analyze it, provide support, and sug-
gest changes. Arguably, open-source code is more secure than closed-source
code because many more eyes are viewing the code. Certainly, open-source
code has bugs, but open-source advocates argue that bugs tend to be found
and fixed faster owing to the number of people using and viewing the code.
Companies that earn revenue from selling their programs often hesitate to
open-source their code, but RedHat and amyriad of other companies are doing
just that and showing that commercial companies benefit, rather than suffer,
when they open-source their code. Revenue can be generated through support
contracts and the sale of hardware on which the software runs, for example.

1.11.1 History

In the early days of modern computing (that is, the 1950s), software generally
came with source code. The original hackers (computer enthusiasts) at MIT’s
TechModel Railroad Club left their programs in drawers for others towork on.
“Homebrew” user groups exchanged code during their meetings. Company-
specific user groups, such asDigital EquipmentCorporation’s DECUS, accepted
contributions of source-code programs, collected them onto tapes, and dis-
tributed the tapes to interested members. In 1970, Digital’s operating systems
were distributed as source code with no restrictions or copyright notice.

Computer and software companies eventually sought to limit the use of
their software to authorized computers and paying customers. Releasing only
the binary files compiled from the source code, rather than the source code
itself, helped them to achieve this goal, aswell as protecting their code and their
ideas from their competitors. Although theHomebrewuser groups of the 1970s
exchanged code during their meetings, the operating systems for hobbyist
machines (such as CPM) were proprietary. By 1980, proprietary software was
the usual case.

1.11.2 Free Operating Systems

To counter the move to limit software use and redistribution, Richard Stallman
in 1984 started developing a free, UNIX-compatible operating system called
GNU(which is a recursive acronym for “GNU’s Not Unix!”). To Stallman, “free”
refers to freedom of use, not price. The free-softwaremovement does not object

48 Chapter 1 Introduction

to trading a copy for an amount of money but holds that users are entitled to
four certain freedoms: (1) to freely run the program, (2) to study and change
the source code, and to give or sell copies either (3) with or (4) without changes.
In 1985, Stallman published the GNUManifesto, which argues that all software
should be free. He also formed the Free Software Foundation (FSF) with the
goal of encouraging the use and development of free software.

The FSF uses the copyrights on its programs to implement “copyleft,” a
form of licensing invented by Stallman. Copylefting a work gives anyone that
possesses a copy of the work the four essential freedoms that make the work
free, with the condition that redistribution must preserve these freedoms. The
GNU General Public License (GPL) is a common license under which free
software is released. Fundamentally, the GPL requires that the source code be
distributed with any binaries and that all copies (including modified versions)
be released under the same GPL license. The Creative Commons “Attribution
Sharealike” license is also a copyleft license; “sharealike” is another way of
stating the idea of copyleft.

1.11.3 GNU/Linux

As an example of a free and open-source operating system, consider
GNU/Linux. By 1991, the GNU operating system was nearly complete. The
GNU Project had developed compilers, editors, utilities, libraries, and games
— whatever parts it could not find elsewhere. However, the GNU kernel never
became ready for prime time. In 1991, a student in Finland, Linus Torvalds,
released a rudimentary UNIX-like kernel using the GNU compilers and tools
and invited contributions worldwide. The advent of the Internet meant that
anyone interested could download the source code, modify it, and submit
changes to Torvalds. Releasing updates once a week allowed this so-called
“Linux” operating system to grow rapidly, enhanced by several thousand
programmers. In 1991, Linux was not free software, as its license permitted
only noncommercial redistribution. In 1992, however, Torvalds rereleased
Linux under the GPL, making it free software (and also, to use a term coined
later, “open source”).

The resulting GNU/Linux operating system (with the kernel properly
called Linux but the full operating system including GNU tools called
GNU/Linux) has spawned hundreds of unique distributions, or custom
builds, of the system. Major distributions include Red Hat, SUSE, Fedora,
Debian, Slackware, and Ubuntu. Distributions vary in function, utility,
installed applications, hardware support, user interface, and purpose. For
example, Red Hat Enterprise Linux is geared to large commercial use.
PCLinuxOS is a live CD—an operating system that can be booted and run
from a CD-ROM without being installed on a system’s boot disk. A variant of
PCLinuxOS—called PCLinuxOS Supergamer DVD—is a live DVD that includes
graphics drivers and games. A gamer can run it on any compatible system
simply by booting from the DVD. When the gamer is finished, a reboot of the
system resets it to its installed operating system.

You can run Linux on a Windows (or other) system using the following
simple, free approach:

1.11 Free and Open-Source Operating Systems 49

1. Download the free Virtualbox VMM tool from

https://www.virtualbox.org/

and install it on your system.

2. Choose to install an operating system from scratch, based on an
installation image like a CD, or choose pre-built operating-system images
that can be installed and run more quickly from a site like

http://virtualboxes.org/images/

These images are preinstalled with operating systems and applications
and include many flavors of GNU/Linux.

3. Boot the virtual machine within Virtualbox.

An alternative to using Virtualbox is to use the free program Qemu
(http://wiki.qemu.org/Download/), which includes the qemu-img command
for converting Virtualbox images to Qemu images to easily import them.

With this text, we provide a virtual machine image of GNU/Linux running
the Ubuntu release. This image contains the GNU/Linux source code as well as
tools for software development. We cover examples involving the GNU/Linux
image throughout this text, as well as in a detailed case study in Chapter 20.

1.11.4 BSD UNIX

BSD UNIX has a longer and more complicated history than Linux. It started in
1978 as a derivative of AT&T’s UNIX. Releases from the University of California
at Berkeley (UCB) came in source and binary form, but they were not open
source because a license fromAT&Twas required. BSDUNIX’s developmentwas
slowed by a lawsuit by AT&T, but eventually a fully functional, open-source
version, 4.4BSD-lite, was released in 1994.

Just as with Linux, there are many distributions of BSD UNIX, including
FreeBSD, NetBSD, OpenBSD, and DragonflyBSD. To explore the source code
of FreeBSD, simply download the virtual machine image of the version of
interest and boot it within Virtualbox, as described above for Linux. The
source code comes with the distribution and is stored in /usr/src/. The
kernel source code is in /usr/src/sys. For example, to examine the vir-
tual memory implementation code in the FreeBSD kernel, see the files in
/usr/src/sys/vm. Alternatively, you can simply view the source code online
at https://svnweb.freebsd.org.

As with many open-source projects, this source code is contained in
and controlled by a version control system—in this case, “subversion”
(https://subversion.apache.org/source-code). Version control systems allow
a user to “pull” an entire source code tree to his computer and “push” any
changes back into the repository for others to then pull. These systems also
provide other features, including an entire history of each file and a conflict
resolution feature in case the same file is changed concurrently. Another

https://www.virtualbox.org/
http://virtualboxes.org/images/
http://wiki.qemu.org/Download/
https://svnweb.freebsd.org
https://subversion.apache.org/source-code
http://wiki.qemu.org/Download/
https://subversion.apache.org/source-code

50 Chapter 1 Introduction

version control system is git, which is used for GNU/Linux, as well as other
programs (http://www.git-scm.com).

Darwin, the core kernel component of macOS, is based on BSD
UNIX and is open-sourced as well. That source code is available from
http://www.opensource.apple.com/. Every macOS release has its open-source
components posted at that site. The name of the package that contains the
kernel begins with “xnu.” Apple also provides extensive developer tools,
documentation, and support at http://developer.apple.com.

THE STUDY OF OPERATING SYSTEMS

There has never been a more interesting time to study operating systems,
and it has never been easier. The open-sourcemovement has overtaken oper-
ating systems, causing many of them to bemade available in both source and
binary (executable) format. The list of operating systems available in both
formats includes Linux, BSD UNIX, Solaris, and part of macOS. The availabil-
ity of source code allows us to study operating systems from the inside out.
Questions that we could once answer only by looking at documentation or
the behavior of an operating system we can now answer by examining the
code itself.

Operating systems that are no longer commercially viable have been
open-sourced as well, enabling us to study how systems operated in a
time of fewer CPU, memory, and storage resources. An extensive but
incomplete list of open-source operating-system projects is available from
http://dmoz.org/Computers/Software/Operating Systems/Open Source/.

In addition, the rise of virtualization as a mainstream (and frequently free)
computer function makes it possible to run many operating systems on top
of one core system. For example, VMware (http://www.vmware.com) pro-
vides a free “player” for Windows on which hundreds of free “virtual appli-
ances” can run. Virtualbox (http://www.virtualbox.com) provides a free,
open-source virtual machine manager on many operating systems. Using
such tools, students can try out hundreds of operating systems without ded-
icated hardware.

In some cases, simulators of specific hardware are also available, allow-
ing the operating system to run on “native” hardware, all within the con-
fines of a modern computer and modern operating system. For example,
a DECSYSTEM-20 simulator running on macOS can boot TOPS-20, load the
source tapes, and modify and compile a new TOPS-20 kernel. An interested
student can search the Internet to find the original papers that describe the
operating system, as well as the original manuals.

The advent of open-source operating systems has also made it easier to
make the move from student to operating-system developer. With some
knowledge, some effort, and an Internet connection, a student can even create
a new operating-system distribution. Not so many years ago, it was difficult
or impossible to get access to source code. Now, such access is limited only
by how much interest, time, and disk space a student has.

http://www.git-scm.com
http://www.opensource.apple.com/
http://developer.apple.com
http://dmoz.org/Computers/Software/Operating_Systems/Open_Source/
http://www.vmware.com
http://www.virtualbox.com
http://www.git-scm.com

1.12 Summary 51

1.11.5 Solaris

Solaris is the commercial UNIX-based operating system of Sun Microsystems.
Originally, Sun’s SunOS operating systemwas based on BSD UNIX. Sunmoved
to AT&T’s System V UNIX as its base in 1991. In 2005, Sun open-sourced most
of the Solaris code as the OpenSolaris project. The purchase of Sun by Oracle
in 2009, however, left the state of this project unclear.

Several groups interested in usingOpenSolaris have expanded its features,
and their working set is Project Illumos, which has expanded from the Open-
Solaris base to include more features and to be the basis for several products.
Illumos is available at http://wiki.illumos.org.

1.11.6 Open-Source Systems as Learning Tools

The free-software movement is driving legions of programmers to create
thousands of open-source projects, including operating systems. Sites like
http://freshmeat.net/ and http://distrowatch.com/ provide portals to many of
these projects. As we stated earlier, open-source projects enable students to
use source code as a learning tool. They can modify programs and test them,
help find and fix bugs, and otherwise explore mature, full-featured operating
systems, compilers, tools, user interfaces, and other types of programs. The
availability of source code for historic projects, such as Multics, can help stu-
dents to understand those projects and to build knowledge that will help in the
implementation of new projects.

Another advantage ofworkingwith open-source operating systems is their
diversity. GNU/Linux and BSD UNIX are both open-source operating systems,
for instance, but each has its own goals, utility, licensing, and purpose. Some-
times, licenses are not mutually exclusive and cross-pollination occurs, allow-
ing rapid improvements in operating-system projects. For example, several
major components of OpenSolaris have been ported to BSD UNIX. The advan-
tages of free software and open sourcing are likely to increase the number
and quality of open-source projects, leading to an increase in the number of
individuals and companies that use these projects.

1.12 Summary

• An operating system is software that manages the computer hardware, as
well as providing an environment for application programs to run.

• Interrupts are a key way in which hardware interacts with the operating
system. Ahardware device triggers an interrupt by sending a signal to the
CPU to alert the CPU that some event requires attention. The interrupt is
managed by the interrupt handler.

• For a computer to do its job of executing programs, the programs must be
in main memory, which is the only large storage area that the processor
can access directly.

• Themainmemory is usually a volatile storage device that loses its contents
when power is turned off or lost.

http://wiki.illumos.org
http://freshmeat.net/
http://distrowatch.com/

52 Chapter 1 Introduction

• Nonvolatile storage is an extension of main memory and is capable of
holding large quantities of data permanently.

• The most common nonvolatile storage device is a hard disk, which can
provide storage of both programs and data.

• Thewide variety of storage systems in a computer system can be organized
in a hierarchy according to speed and cost. The higher levels are expensive,
but they are fast. Aswemove down the hierarchy, the cost per bit generally
decreases, whereas the access time generally increases.

• Modern computer architectures are multiprocessor systems in which each
CPU contains several computing cores.

• To best utilize the CPU, modern operating systems employ multiprogram-
ming, which allows several jobs to be in memory at the same time, thus
ensuring that the CPU always has a job to execute.

• Multitasking is an extension of multiprogramming wherein CPU schedul-
ing algorithms rapidly switch between processes, providing users with a
fast response time.

• To prevent user programs from interfering with the proper operation of
the system, the system hardware has two modes: user mode and kernel
mode.

• Various instructions are privileged and can be executed only in kernel
mode. Examples include the instruction to switch to kernel mode, I/O
control, timer management, and interrupt management.

• A process is the fundamental unit of work in an operating system. Pro-
cess management includes creating and deleting processes and providing
mechanisms for processes to communicate and synchronize with each
other.

• An operating system manages memory by keeping track of what parts of
memory are being used and by whom. It is also responsible for dynami-
cally allocating and freeing memory space.

• Storage space ismanaged by the operating system; this includes providing
file systems for representing files and directories and managing space on
mass-storage devices.

• Operating systems provide mechanisms for protecting and securing the
operating system and users. Protection measures control the access of
processes or users to the resourcesmade available by the computer system.

• Virtualization involves abstracting a computer’s hardware into several
different execution environments.

• Data structures that are used in an operating system include lists, stacks,
queues, trees, and maps.

• Computing takes place in a variety of environments, including traditional
computing, mobile computing, client–server systems, peer-to-peer sys-
tems, cloud computing, and real-time embedded systems.

Practice Exercises 53

• Free and open-source operating systems are available in source-code for-
mat. Free software is licensed to allow no-cost use, redistribution, and
modification. GNU/Linux, FreeBSD, and Solaris are examples of popular
open-source systems.

Practice Exercises

1.1 What are the three main purposes of an operating system?

1.2 We have stressed the need for an operating system to make efficient use
of the computing hardware. When is it appropriate for the operating
system to forsake this principle and to “waste” resources? Why is such
a system not really wasteful?

1.3 What is themain difficulty that a programmermust overcome inwriting
an operating system for a real-time environment?

1.4 Keeping in mind the various definitions of operating system, consider
whether the operating system should include applications such as web
browsers and mail programs. Argue both that it should and that it
should not, and support your answers.

1.5 How does the distinction between kernel mode and user mode function
as a rudimentary form of protection (security)?

1.6 Which of the following instructions should be privileged?

a. Set value of timer.

b. Read the clock.

c. Clear memory.

d. Issue a trap instruction.

e. Turn off interrupts.

f. Modify entries in device-status table.

g. Switch from user to kernel mode.

h. Access I/O device.

1.7 Some early computers protected the operating system by placing it in
a memory partition that could not be modified by either the user job or
the operating system itself. Describe two difficulties that you think could
arise with such a scheme.

1.8 Some CPUs provide formore than twomodes of operation.What are two
possible uses of these multiple modes?

1.9 Timers could be used to compute the current time. Provide a short
description of how this could be accomplished.

1.10 Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the

54 Chapter 1 Introduction

device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

1.11 Distinguish between the client–server and peer-to-peer models of dis-
tributed systems.

Further Reading

Many general textbooks cover operating systems, including [Stallings (2017)]
and [Tanenbaum (2014)]. [Hennessy and Patterson (2012)] provide coverage of
I/O systems and buses and of system architecture in general. [Kurose and Ross
(2017)] provides a general overview of computer networks.

[Russinovich et al. (2017)] give an overviewofMicrosoftWindows and cov-
ers considerable technical detail about the system internals and components.
[McDougall and Mauro (2007)] cover the internals of the Solaris operating
system. The macOS and iOS internals are discussed in [Levin (2013)]. [Levin
(2015)] covers the internals of Android. [Love (2010)] provides an overview of
the Linux operating system and great detail about data structures used in the
Linux kernel. The Free Software Foundation has published its philosophy at
http://www.gnu.org/philosophy/free-software-for-freedom.html.

Bibliography

[Hennessy and Patterson (2012)] J. Hennessy andD. Patterson, Computer Archi-
tecture: A Quantitative Approach, Fifth Edition, Morgan Kaufmann (2012).

[Kurose and Ross (2017)] J. Kurose and K. Ross, Computer Networking—A Top–
Down Approach, Seventh Edition, Addison-Wesley (2017).

[Levin (2013)] J. Levin, Mac OS X and iOS Internals to the Apple’s Core, Wiley
(2013).

[Levin (2015)] J. Levin, Android Internals–A Confectioner’s Cookbook. Volume I
(2015).

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[McDougall and Mauro (2007)] R. McDougall and J. Mauro, Solaris Internals,
Second Edition, Prentice Hall (2007).

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

[Stallings (2017)] W. Stallings, Operating Systems, Internals and Design Principles
(9th Edition) Ninth Edition, Prentice Hall (2017).

[Tanenbaum (2014)] A. S. Tanenbaum,Modern Operating Systems, Prentice Hall
(2014).

http://scholar.google.com/scholar?hl/en&q=W Stallings Operating Systems Internals and Design Principles 9th Edition NinthEdition
http://scholar.google.com/scholar?hl/en&q=A S Tanenbaum Modern Operating Systems
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://scholar.google.com/scholar?hl/en&q=J Kurose and K Ross Computer NetworkingA Top Down Approach SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=J Levin Android InternalsA Confectioners Cookbook Volume I
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://scholar.google.com/scholar?hl/en&q=J Kurose and K Ross Computer NetworkingA Top Down Approach SeventhEdition
http://scholar.google.com/scholar?hl/en&q=J Kurose and K Ross Computer NetworkingA Top Down Approach SeventhEdition
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=J Levin Android InternalsA Confectioners Cookbook Volume I
http://scholar.google.com/scholar?hl/en&q=J Levin Android InternalsA Confectioners Cookbook Volume I
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=W Stallings Operating Systems Internals and Design Principles 9th Edition NinthEdition
http://scholar.google.com/scholar?hl/en&q=W Stallings Operating Systems Internals and Design Principles 9th Edition NinthEdition
http://scholar.google.com/scholar?hl/en&q=A S Tanenbaum Modern Operating Systems
http://scholar.google.com/scholar?hl/en&q=A S Tanenbaum Modern Operating Systems

Chapter 1 Exercises

1.12 How do clustered systems differ from multiprocessor systems? What is
required for twomachines belonging to a cluster to cooperate to provide
a highly available service?

1.13 Consider a computing cluster consisting of two nodes running a
database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages
of each.

1.14 What is the purpose of interrupts? How does an interrupt differ from a
trap? Can traps be generated intentionally by a user program? If so, for
what purpose?

1.15 Explain how the Linux kernel variables HZ and jiffies can be used to
determine the number of seconds the system has been running since it
was booted.

1.16 Direct memory access is used for high-speed I/O devices in order to
avoid increasing the CPU’s execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are com-
plete?

c. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms of
interference are caused.

EX-1

1.17 Some computer systems do not provide a privileged mode of operation
in hardware. Is it possible to construct a secure operating system for
these computer systems? Give arguments both that it is and that it is
not possible.

1.18 Many SMP systems have different levels of caches; one level is local to
each processing core, and another level is shared among all processing
cores. Why are caching systems designed this way?

1.19 Rank the following storage systems from slowest to fastest:

a. Hard-disk drives

b. Registers

c. Optical disk

d. Main memory

e. Nonvolatile memory

f. Magnetic tapes

g. Cache

Exercises

1.20 Consider an SMP system similar to the one shown in Figure 1.8. Illustrate
with an example how data residing in memory could in fact have a
different value in each of the local caches.

1.21 Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a. Single-processor systems

b. Multiprocessor systems

c. Distributed systems

1.22 Describe a mechanism for enforcing memory protection in order to
prevent a program from modifying the memory associated with other
programs.

1.23 Which network configuration—LAN or WAN—would best suit the fol-
lowing environments?

a. A campus student union

b. Several campus locations across a statewide university system

c. A neighborhood

1.24 Describe some of the challenges of designing operating systems for
mobile devices compared with designing operating systems for tradi-
tional PCs.

1.25 What are some advantages of peer-to-peer systems over client–server
systems?

1.26 Describe some distributed applications that would be appropriate for a
peer-to-peer system.

EX-2

1.27 Identify several advantages and several disadvantages of open-source
operating systems. Identify the types of people who would find each
aspect to be an advantage or a disadvantage.

2CHAPTEROperating -
System
Structures

An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in theirmakeup, since they
are organized alongmany different lines. The design of a newoperating system
is a major task. It is important that the goals of the system be well defined
before the design begins. These goals form the basis for choices among various
algorithms and strategies.

We can view an operating system from several vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections. In this chapter, we explore all three aspects of operating
systems, showing the viewpoints of users, programmers, and operating system
designers. We consider what services an operating system provides, how they
are provided, how they are debugged, and what the various methodologies
are for designing such systems. Finally, we describe how operating systems
are created and how a computer starts its operating system.

CHAPTER OBJECTIVES

• Identify services provided by an operating system.

• Illustrate how system calls are used to provide operating system services.

• Compare and contrast monolithic, layered, microkernel, modular, and
hybrid strategies for designing operating systems.

• Illustrate the process for booting an operating system.

• Apply tools for monitoring operating system performance.

• Design and implement kernel modules for interacting with a Linux kernel.

2.1 Operating-System Services

An operating system provides an environment for the execution of programs.
It makes certain services available to programs and to the users of those pro-
grams. The specific services provided, of course, differ from one operating

55

56 Chapter 2 Operating-System Structures

user and other system programs

services

operating system

hardware

system calls

GUI touch screen

user interfaces

command line

program
execution

I/O
operations

file
systems communication resource

allocation accounting

protection
and

security

error
detection

Figure 2.1 A view of operating system services.

system to another, but we can identify common classes. Figure 2.1 shows one
view of the various operating-system services and how they interrelate. Note
that these services alsomake the programming task easier for the programmer.

One set of operating system services provides functions that are helpful to
the user.

• User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. Most commonly, a graphical user
interface (GUI) is used. Here, the interface is a window system with a
mouse that serves as a pointing device to direct I/O, choose from menus,
and make selections and a keyboard to enter text. Mobile systems such
as phones and tablets provide a touch-screen interface, enabling users to
slide their fingers across the screen or press buttons on the screen to select
choices. Another option is a command-line interface (CLI), which uses text
commands and a method for entering them (say, a keyboard for typing
in commands in a specific format with specific options). Some systems
provide two or all three of these variations.

• Program execution. The systemmust be able to load a program into mem-
ory and to run that program. The program must be able to end its execu-
tion, either normally or abnormally (indicating error).

• I/O operations. A running program may require I/O, which may involve a
file or an I/O device. For specific devices, special functions may be desired
(such as reading from a network interface or writing to a file system). For
efficiency and protection, users usually cannot control I/O devices directly.
Therefore, the operating system must provide a means to do I/O.

• File-system manipulation. The file system is of particular interest. Obvi-
ously, programsneed to read andwrite files anddirectories. They also need
to create and delete them by name, search for a given file, and list file infor-
mation. Finally, some operating systems include permissionsmanagement
to allowor deny access to files or directories based on file ownership.Many
operating systems provide a variety of file systems, sometimes to allow

2.1 Operating-System Services 57

personal choice and sometimes to provide specific features or performance
characteristics.

• Communications. There are many circumstances in which one process
needs to exchange informationwith another process. Such communication
may occur between processes that are executing on the same computer
or between processes that are executing on different computer systems
tied together by a network. Communications may be implemented via
shared memory, inwhich two ormore processes read andwrite to a shared
section ofmemory, or message passing, inwhich packets of information in
predefined formats aremoved between processes by the operating system.

• Error detection. The operating systemneeds to be detecting and correcting
errors constantly. Errorsmay occur in the CPU andmemoryhardware (such
as amemory error or a power failure), in I/O devices (such as a parity error
on disk, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow or an attempt to
access an illegal memory location). For each type of error, the operating
system should take the appropriate action to ensure correct and consistent
computing. Sometimes, it has no choice but to halt the system. At other
times, it might terminate an error-causing process or return an error code
to a process for the process to detect and possibly correct.

Another set of operating-system functions exists not for helping the user
but rather for ensuring the efficient operation of the system itself. Systems
with multiple processes can gain efficiency by sharing the computer resources
among the different processes.

• Resource allocation. When there are multiple processes running at the
same time, resources must be allocated to each of them. The operating
system manages many different types of resources. Some (such as CPU
cycles, main memory, and file storage) may have special allocation code,
whereas others (such as I/O devices)may havemuchmore general request
and release code. For instance, in determining how best to use the CPU,
operating systems have CPU-scheduling routines that take into account
the speed of the CPU, the process that must be executed, the number of
processing cores on the CPU, and other factors. There may also be routines
to allocate printers, USB storage drives, and other peripheral devices.

• Logging. We want to keep track of which programs use how much and
what kinds of computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for system administrators
who wish to reconfigure the system to improve computing services.

• Protection and security. The owners of information stored in a multiuser
or networked computer system may want to control use of that informa-
tion. When several separate processes execute concurrently, it should not
be possible for one process to interfere with the others or with the oper-
ating system itself. Protection involves ensuring that all access to system
resources is controlled. Security of the system from outsiders is also impor-
tant. Such security starts with requiring each user to authenticate himself

58 Chapter 2 Operating-System Structures

or herself to the system, usually by means of a password, to gain access
to system resources. It extends to defending external I/O devices, includ-
ing network adapters, from invalid access attempts and recording all such
connections for detection of break-ins. If a system is to be protected and
secure, precautions must be instituted throughout it. A chain is only as
strong as its weakest link.

2.2 User and Operating-System Interface

We mentioned earlier that there are several ways for users to interface with
the operating system. Here, we discuss three fundamental approaches. One
provides a command-line interface, or command interpreter, that allows users
to directly enter commands to be performedby the operating system. The other
two allow users to interface with the operating system via a graphical user
interface, or GUI.

2.2.1 Command Interpreters

Most operating systems, including Linux, UNIX, and Windows, treat the com-
mand interpreter as a special program that is running when a process is ini-
tiated or when a user first logs on (on interactive systems). On systems with
multiple command interpreters to choose from, the interpreters are known as
shells. For example, onUNIX andLinux systems, a usermay choose among sev-
eral different shells, including the C shell, Bourne-Again shell, Korn shell, and
others. Third-party shells and free user-written shells are also available. Most
shells provide similar functionality, and a user’s choice of which shell to use
is generally based on personal preference. Figure 2.2 shows the Bourne-Again
(or bash) shell command interpreter being used on macOS.

Themain function of the command interpreter is to get and execute the next
user-specified command. Many of the commands given at this level manipu-
late files: create, delete, list, print, copy, execute, and so on. The various shells
available on UNIX systems operate in this way. These commands can be imple-
mented in two general ways.

In one approach, the command interpreter itself contains the code to exe-
cute the command. For example, a command to delete a file may cause the
command interpreter to jump to a section of its code that sets up the parameters
and makes the appropriate system call. In this case, the number of commands
that can be given determines the size of the command interpreter, since each
command requires its own implementing code.

An alternative approach—used by UNIX, among other operating systems
—implements most commands through system programs. In this case, the
command interpreter does not understand the command in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete a file

rm file.txt

would search for a file called rm, load the file into memory, and execute it with
the parameter file.txt. The logic associated with the rm command would be

2.2 User and Operating-System Interface 59

Figure 2.2 The bash shell command interpreter in macOS.

defined completely by the code in the file rm. In this way, programmers can
add new commands to the system easily by creating new files with the proper
program logic. The command-interpreter program, which can be small, does
not have to be changed for new commands to be added.

2.2.2 Graphical User Interface

A second strategy for interfacing with the operating system is through a user-
friendly graphical user interface, or GUI. Here, rather than entering commands
directly via a command-line interface, users employ a mouse-based window-
and-menu system characterized by a desktop metaphor. The user moves the
mouse to position its pointer on images, or icons, on the screen (the desktop)
that represent programs, files, directories, and system functions. Depending
on the mouse pointer’s location, clicking a button on the mouse can invoke a
program, select a file or directory—known as a folder—or pull down a menu
that contains commands.

Graphical user interfaces first appeared due in part to research taking
place in the early 1970s at Xerox PARC research facility. The first GUI appeared
on the Xerox Alto computer in 1973. However, graphical interfaces became
more widespread with the advent of Apple Macintosh computers in the 1980s.
The user interface for the Macintosh operating system has undergone various
changes over the years, the most significant being the adoption of the Aqua
interface that appeared with macOS. Microsoft’s first version of Windows—
Version 1.0—was based on the addition of a GUI interface to the MS-DOS
operating system. Later versions ofWindows havemade significant changes in
the appearance of the GUI along with several enhancements in its functionality.

60 Chapter 2 Operating-System Structures

Traditionally, UNIX systems have been dominated by command-line inter-
faces. Various GUI interfaces are available, however, with significant develop-
ment in GUI designs from various open-source projects, such as K Desktop
Environment (or KDE) and the GNOME desktop by the GNU project. Both the
KDE and GNOME desktops run on Linux and various UNIX systems and are
available under open-source licenses, which means their source code is readily
available for reading and for modification under specific license terms.

2.2.3 Touch-Screen Interface

Because a either a command-line interface or a mouse-and-keyboard system is
impractical for most mobile systems, smartphones and handheld tablet com-
puters typically use a touch-screen interface. Here, users interact by making
gestures on the touch screen—for example, pressing and swiping fingers
across the screen. Although earlier smartphones included a physical keyboard,
most smartphones and tablets now simulate a keyboard on the touch screen.
Figure 2.3 illustrates the touch screen of the Apple iPhone. Both the iPad and
the iPhone use the Springboard touch-screen interface.

2.2.4 Choice of Interface

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. System administrators who manage computers
and power users who have deep knowledge of a system frequently use the

Figure 2.3 The iPhone touch screen.

2.2 User and Operating-System Interface 61

command-line interface. For them, it is more efficient, giving them faster access
to the activities they need to perform. Indeed, on some systems, only a subset
of system functions is available via the GUI, leaving the less common tasks
to those who are command-line knowledgeable. Further, command-line inter-
faces usually make repetitive tasks easier, in part because they have their own
programmability. For example, if a frequent task requires a set of command-
line steps, those steps can be recorded into a file, and that file can be run
just like a program. The program is not compiled into executable code but
rather is interpreted by the command-line interface. These shell scripts are
very common on systems that are command-line oriented, such as UNIX and
Linux.

In contrast, most Windows users are happy to use the Windows GUI envi-
ronment and almost never use the shell interface. Recent versions of the Win-
dows operating system provide both a standard GUI for desktop and tradi-
tional laptops and a touch screen for tablets. The various changes undergone
by the Macintosh operating systems also provide a nice study in contrast. His-
torically, Mac OS has not provided a command-line interface, always requiring
its users to interfacewith the operating systemusing its GUI. However,with the
release of macOS (which is in part implemented using a UNIX kernel), the oper-
ating system now provides both an Aqua GUI and a command-line interface.
Figure 2.4 is a screenshot of the macOS GUI.

Although there are apps that provide a command-line interface for iOS
and Android mobile systems, they are rarely used. Instead, almost all users
of mobile systems interact with their devices using the touch-screen interface.

The user interface can vary from system to system and even from user
to user within a system; however, it typically is substantially removed from
the actual system structure. The design of a useful and intuitive user interface
is therefore not a direct function of the operating system. In this book, we
concentrate on the fundamental problems of providing adequate service to

Figure 2.4 The macOS GUI.

62 Chapter 2 Operating-System Structures

user programs. From the point of view of the operating system, we do not
distinguish between user programs and system programs.

2.3 System Calls

System calls provide an interface to the services made available by an operat-
ing system. These calls are generally available as functions written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly) may have to be written using assembly-language
instructions.

2.3.1 Example

Before we discuss how an operating systemmakes system calls available, let’s
first use an example to illustrate how system calls are used: writing a simple
program to read data from one file and copy them to another file. The first
input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is to pass the names of the two
files as part of the command—for example, the UNIX cp command:

cp in.txt out.txt

This command copies the input file in.txt to the output file out.txt. A sec-
ond approach is for the program to ask the user for the names. In an interactive
system, this approach will require a sequence of system calls, first to write
a prompting message on the screen and then to read from the keyboard the
characters that define the two files. On mouse-based and icon-based systems,
a menu of file names is usually displayed in a window. The user can then use
the mouse to select the source name, and a window can be opened for the
destination name to be specified. This sequence requiresmany I/O system calls.

Once the two file names have been obtained, the program must open the
input file and create and open the output file. Each of these operations requires
another system call. Possible error conditions for each system call must be
handled. For example, when the program tries to open the input file, it may
find that there is no file of that name or that the file is protected against access.
In these cases, the program should output an error message (another sequence
of system calls) and then terminate abnormally (another system call). If the
input file exists, then we must create a new output file. We may find that there
is already an output file with the same name. This situation may cause the
program to abort (a system call), or we may delete the existing file (another
system call) and create a new one (yet another system call). Another option, in
an interactive system, is to ask the user (via a sequence of system calls to output
the prompting message and to read the response from the terminal) whether
to replace the existing file or to abort the program.

When both files are set up, we enter a loop that reads from the input
file (a system call) and writes to the output file (another system call). Each
read andwrite must return status information regarding various possible error
conditions. On input, the program may find that the end of the file has been

2.3 System Calls 63

Example System-Call Sequence
Acquire input file name
 Write prompt to screen
 Accept input
Acquire output file name
 Write prompt to screen
 Accept input
Open the input file
 if file doesn't exist, abort
Create output file
 if file exists, abort
Loop
 Read from input file
 Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally

destination filesource file

Figure 2.5 Example of how system calls are used.

reached or that there was a hardware failure in the read (such as a parity error).
The write operation may encounter various errors, depending on the output
device (for example, no more available disk space).

Finally, after the entire file is copied, the program may close both files
(two system calls), write a message to the console or window (more system
calls), and finally terminate normally (the final system call). This system-call
sequence is shown in Figure 2.5.

2.3.2 Application Programming Interface

As you can see, even simple programs may make heavy use of the operat-
ing system. Frequently, systems execute thousands of system calls per second.
Most programmers never see this level of detail, however. Typically, applica-
tion developers design programs according to an application programming
interface (API). The API specifies a set of functions that are available to an appli-
cation programmer, including the parameters that are passed to each function
and the return values the programmer can expect. Three of the most common
APIs available to application programmers are the Windows API for Windows
systems, the POSIX API for POSIX-based systems (which include virtually all
versions of UNIX, Linux, and macOS), and the Java API for programs that run
on the Java virtualmachine. Aprogrammer accesses an API via a library of code
provided by the operating system. In the case of UNIX and Linux for programs
written in the C language, the library is called libc. Note that—unless specified
—the system-call names used throughout this text are generic examples. Each
operating system has its own name for each system call.

Behind the scenes, the functions that make up an API typically invoke the
actual system calls on behalf of the application programmer. For example, the
Windows function CreateProcess() (which, unsurprisingly, is used to create

64 Chapter 2 Operating-System Structures

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is avail-
able in UNIX and Linux systems. The API for this function is obtained from
the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

return

value

function

name

parameters

Aprogram that uses the read() functionmust include the unistd.h header
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read() are as follows:

• int fd—the file descriptor to be read

• void *buf—a buffer into which the data will be read

• size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read() returns −1.

a new process) actually invokes the NTCreateProcess() system call in the
Windows kernel.

Why would an application programmer prefer programming according to
an API rather than invoking actual system calls? There are several reasons for
doing so. One benefit concerns program portability. An application program-
mer designing a program using an API can expect her program to compile and
run on any system that supports the sameAPI (although, in reality, architectural
differences often make this more difficult than it may appear). Furthermore,
actual system calls can often be more detailed and difficult to work with than
the API available to an application programmer.Nevertheless, there often exists
a strong correlation between a function in the API and its associated system call
within the kernel. In fact, many of the POSIX and Windows APIs are similar to
the native system calls provided by the UNIX, Linux, and Windows operating
systems.

Another important factor in handling system calls is the run-time envi-
ronment (RTE)—the full suite of software needed to execute applications writ-
ten in a given programming language, including its compilers or interpreters
as well as other software, such as libraries and loaders. The RTE provides a

2.3 System Calls 65

Implementation
of open()
system call

open()

user
mode

return

user application

system call interface
kernel
mode

i

open()

Figure 2.6 The handling of a user application invoking the open() system call.

system-call interface that serves as the link to system calls made available
by the operating system. The system-call interface intercepts function calls in
the API and invokes the necessary system calls within the operating system.
Typically, a number is associated with each system call, and the system-call
interface maintains a table indexed according to these numbers. The system-
call interface then invokes the intended system call in the operating-system
kernel and returns the status of the system call.

The caller need know nothing about how the system call is implemented
or what it does during execution. Rather, the caller need only obey the API and
understand what the operating system will do as a result of the execution of
that system call. Thus, most of the details of the operating-system interface
are hidden from the programmer by the API and are managed by the RTE. The
relationship among an API, the system-call interface, and the operating system
is shown in Figure 2.6, which illustrates how the operating system handles a
user application invoking the open() system call.

System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and
length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.

Three general methods are used to pass parameters to the operating sys-
tem. The simplest approach is to pass the parameters in registers. In some
cases, however, there may be more parameters than registers. In these cases,
the parameters are generally stored in a block, or table, in memory, and the
address of the block is passed as a parameter in a register (Figure 2.7). Linux
uses a combination of these approaches. If there are five or fewer parameters,

66 Chapter 2 Operating-System Structures

code for
system
call 13

use parameters
from table X

register

load address X
system call 13

X

X: parameters
for call

operating system

user program

Figure 2.7 Passing of parameters as a table.

registers are used. If there are more than five parameters, the block method is
used. Parameters also can be placed, or pushed, onto a stack by the program
and popped off the stack by the operating system. Some operating systems
prefer the block or stack method because those approaches do not limit the
number or length of parameters being passed.

2.3.3 Types of System Calls

System calls can be grouped roughly into six major categories: process control,
fil management, device management, information maintenance, communi-
cations, and protection. Below, we briefly discuss the types of system calls that
may be provided by an operating system. Most of these system calls support,
or are supported by, concepts and functions that are discussed in later chap-
ters. Figure 2.8 summarizes the types of system calls normally provided by an
operating system. As mentioned, in this text, we normally refer to the system
calls by generic names. Throughout the text, however, we provide examples
of the actual counterparts to the system calls for UNIX, Linux, and Windows
systems.

2.3.3.1 Process Control

A running program needs to be able to halt its execution either normally
(end()) or abnormally (abort()). If a system call is made to terminate the
currently running program abnormally, or if the program runs into a problem
and causes an error trap, a dump of memory is sometimes taken and an
error message generated. The dump is written to a special log file on disk
and may be examined by a debugger—a system program designed to aid
the programmer in finding and correcting errors, or bugs—to determine the
cause of the problem. Under either normal or abnormal circumstances, the
operating system must transfer control to the invoking command interpreter.
The command interpreter then reads the next command. In an interactive
system, the command interpreter simply continues with the next command;
it is assumed that the user will issue an appropriate command to respond to

2.3 System Calls 67

• Process control

◦ create process, terminate process

◦ load, execute

◦ get process attributes, set process attributes

◦ wait event, signal event

◦ allocate and free memory

• File management
◦ create file, delete file

◦ open, close

◦ read, write, reposition

◦ get file attributes, set file attributes

• Device management
◦ request device, release device

◦ read, write, reposition

◦ get device attributes, set device attributes

◦ logically attach or detach devices

• Information maintenance
◦ get time or date, set time or date

◦ get system data, set system data

◦ get process, file, or device attributes

◦ set process, file, or device attributes

• Communications
◦ create, delete communication connection

◦ send, receive messages

◦ transfer status information

◦ attach or detach remote devices

• Protection
◦ get file permissions

◦ set file permissions

Figure 2.8 Types of system calls.

68 Chapter 2 Operating-System Structures

EXAMPLES OFWINDOWS AND UNIX SYSTEM CALLS

The following illustrates various equivalent system calls for Windows and
UNIX operating systems.

Windows Unix

Process CreateProcess() fork()
control ExitProcess() exit()

WaitForSingleObject() wait()

File CreateFile() open()
management ReadFile() read()

WriteFile() write()
CloseHandle() close()

Device SetConsoleMode() ioctl()
management ReadConsole() read()

WriteConsole() write()

Information GetCurrentProcessID() getpid()
maintenance SetTimer() alarm()

Sleep() sleep()

Communications CreatePipe() pipe()
CreateFileMapping() shm open()
MapViewOfFile() mmap()

Protection SetFileSecurity() chmod()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown()

any error. In a GUI system, a pop-up window might alert the user to the error
and ask for guidance. Some systems may allow for special recovery actions in
case an error occurs. If the program discovers an error in its input and wants
to terminate abnormally, it may also want to define an error level. More severe
errors can be indicated by a higher-level error parameter. It is then possible to
combine normal and abnormal termination by defining a normal termination
as an error at level 0. The command interpreter or a following program can use
this error level to determine the next action automatically.

A process executing one program may want to load() and execute()
another program. This feature allows the command interpreter to execute a
program as directed by, for example, a user command or the click of a mouse.
An interesting question is where to return control when the loaded program
terminates. This question is related to whether the existing program is lost,
saved, or allowed to continue execution concurrently with the new program.

If control returns to the existing program when the new program termi-
nates, we must save the memory image of the existing program; thus, we have

2.3 System Calls 69

THE STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C pro-
gram invokes the printf() statement. The C library intercepts this call and
invokes the necessary system call (or calls) in the operating system—in this
instance, the write() system call. The C library takes the value returned by
write() and passes it back to the user program:

write()
system call

user
mode

kernel
mode

#include <stdio.h>
int main()
{
 •
 •
 •
 printf ("Greetings");
 •
 •
 •
 return 0;
}

standard C library

write()

effectively created a mechanism for one program to call another program. If
both programs continue concurrently, we have created a new process to be
multiprogrammed. Often, there is a system call specifically for this purpose
(create process()).

If we create a new process, or perhaps even a set of processes, we should
be able to control its execution. This control requires the ability to determine
and reset the attributes of a process, including the process’s priority, its max-
imum allowable execution time, and so on (get process attributes() and
set process attributes()). We may also want to terminate a process that
we created (terminate process()) if we find that it is incorrect or is no longer
needed.

Having created new processes, we may need to wait for them to finish
their execution. We may want to wait for a certain amount of time to pass
(wait time()). More probably, we will want to wait for a specific event to
occur (wait event()). The processes should then signal when that event has
occurred (signal event()).

Quite often, two or more processes may share data. To ensure the integrity
of the data being shared, operating systems often provide system calls allowing

70 Chapter 2 Operating-System Structures

free memory

free memory

boot loaderboot loader

user
program
(sketch)

(a) (b)

Figure 2.9 Arduino execution. (a) At system startup. (b) Running a sketch.

a process to lock shared data. Then, no other process can access the data until
the lock is released. Typically, such system calls include acquire lock() and
release lock(). System calls of these types, dealing with the coordination of
concurrent processes, are discussed in great detail in Chapter 6 and Chapter 7.

There are so many facets of and variations in process control that we
next use two examples—one involving a single-tasking system and the other
a multitasking system—to clarify these concepts. The Arduino is a simple
hardware platform consisting of a microcontroller along with input sensors
that respond to a variety of events, such as changes to light, temperature, and
barometric pressure, to just name a few. Towrite a program for theArduino,we
first write the program on a PC and then upload the compiled program (known
as a sketch) from the PC to the Arduino’s flash memory via a USB connection.
The standardArduino platformdoes not provide an operating system; instead,
a small piece of software known as a boot loader loads the sketch into a specific
region in the Arduino’s memory (Figure 2.9). Once the sketch has been loaded,
it begins running, waiting for the events that it is programmed to respond to.
For example, if the Arduino’s temperature sensor detects that the temperature
has exceeded a certain threshold, the sketch may have the Arduino start the
motor for a fan. An Arduino is considered a single-tasking system, as only
one sketch can be present in memory at a time; if another sketch is loaded,
it replaces the existing sketch. Furthermore, the Arduino provides no user
interface beyond hardware input sensors.

FreeBSD (derived from Berkeley UNIX) is an example of a multitasking
system. When a user logs on to the system, the shell of the user’s choice is
run, awaiting commands and running programs the user requests. However,
since FreeBSD is a multitasking system, the command interpreter may continue
running while another program is executed (Figure 2.10). To start a new pro-
cess, the shell executes a fork() system call. Then, the selected program is
loaded into memory via an exec() system call, and the program is executed.
Depending on how the commandwas issued, the shell then eitherwaits for the
process to finish or runs the process “in the background.” In the latter case, the
shell immediately waits for another command to be entered.When a process is
running in the background, it cannot receive input directly from the keyboard,
because the shell is using this resource. I/O is therefore done through files or
through a GUI interface. Meanwhile, the user is free to ask the shell to run
other programs, to monitor the progress of the running process, to change that
program’s priority, and so on. When the process is done, it executes an exit()

2.3 System Calls 71

free memory

interpreter

kernel

process D

process C

process B

high
memory

low
memory

Figure 2.10 FreeBSD running multiple programs.

system call to terminate, returning to the invoking process a status code of 0 or
a nonzero error code. This status or error code is then available to the shell or
other programs. Processes are discussed in Chapter 3 with a program example
using the fork() and exec() system calls.

2.3.3.2 File Management

The file system is discussed in more detail in Chapter 13 through Chapter 15.
Here, we identify several common system calls dealing with files.

We first need to be able to create() and delete() files. Either system call
requires the name of the file and perhaps some of the file’s attributes. Once
the file is created, we need to open() it and to use it. We may also read(),
write(), or reposition() (rewind or skip to the end of the file, for example).
Finally, we need to close() the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to set them if necessary. File attributes include the file
name, file type, protection codes, accounting information, and so on. At least
two system calls, get file attributes() and set file attributes(), are
required for this function. Some operating systems provide many more calls,
such as calls for file move() and copy(). Others might provide an API that
performs those operations using code and other system calls, and others might
provide system programs to perform the tasks. If the system programs are
callable by other programs, then each can be considered an API by other system
programs.

2.3.3.3 Device Management

Aprocess may need several resources to execute—main memory, disk drives,
access to files, and so on. If the resources are available, they can be granted, and
control can be returned to the user process. Otherwise, the process will have to
wait until sufficient resources are available.

72 Chapter 2 Operating-System Structures

The various resources controlled by the operating system can be thought
of as devices. Some of these devices are physical devices (for example, disk
drives), while others can be thought of as abstract or virtual devices (for
example, files). Asystemwithmultiple usersmay require us to first request()
a device, to ensure exclusive use of it. After we are finished with the device, we
release() it. These functions are similar to the open() and close() system
calls for files. Other operating systems allow unmanaged access to devices. The
hazard then is the potential for device contention and perhaps deadlock,which
are described in Chapter 8.

Once the device has been requested (and allocated to us), we can read(),
write(), and (possibly) reposition() the device, just as we can with files. In
fact, the similarity between I/O devices and files is so great thatmany operating
systems, including UNIX, merge the two into a combined file–device structure.
In this case, a set of system calls is used on both files and devices. Sometimes,
I/O devices are identified by special file names, directory placement, or file
attributes.

The user interface can alsomake files and devices appear to be similar, even
though the underlying system calls are dissimilar. This is another example of
the many design decisions that go into building an operating system and user
interface.

2.3.3.4 Information Maintenance

Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most sys-
tems have a system call to return the current time() and date(). Other system
calls may return information about the system, such as the version number of
the operating system, the amount of free memory or disk space, and so on.

Another set of system calls is helpful in debugging a program. Many
systems provide system calls to dump() memory. This provision is useful for
debugging. The program strace, which is available on Linux systems, lists
each system call as it is executed. Even microprocessors provide a CPU mode,
known as single step, in which a trap is executed by the CPU after every
instruction. The trap is usually caught by a debugger.

Many operating systems provide a time profile of a program to indicate
the amount of time that the program executes at a particular location or set
of locations. A time profile requires either a tracing facility or regular timer
interrupts. At every occurrence of the timer interrupt, the value of the program
counter is recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

In addition, the operating system keeps information about all its processes,
and system calls are used to access this information. Generally, calls are also
used to get and set the process information (get process attributes() and
set process attributes()). In Section 3.1.3, we discuss what information is
normally kept.

2.3.3.5 Communication

There are two common models of interprocess communication: the message-
passingmodel and the shared-memorymodel. In the message-passing model,
the communicating processes exchange messages with one another to trans-

2.3 System Calls 73

fer information. Messages can be exchanged between the processes either
directly or indirectly through a common mailbox. Before communication can
take place, a connection must be opened. The name of the other communica-
tor must be known, be it another process on the same system or a process on
another computer connected by a communications network. Each computer in
a network has a host name by which it is commonly known. A host also has a
network identifier, such as an IP address. Similarly, each process has a process
name, and this name is translated into an identifier by which the operating
system can refer to the process. The get hostid() and get processid()
system calls do this translation. The identifiers are then passed to the general-
purpose open() and close() calls provided by the file system or to specific
open connection() and close connection() system calls, depending on
the system’s model of communication. The recipient process usually must give
its permission for communication to take placewith an accept connection()
call. Most processes that will be receiving connections are special-purpose dae-
mons, which are system programs provided for that purpose. They execute a
wait for connection() call and are awakened when a connection is made.
The source of the communication, known as the client, and the receiving dae-
mon, known as a server, then exchange messages by using read message()
and write message() system calls. The close connection() call terminates
the communication.

In the shared-memory model, processes use shared memory create()
and shared memory attach() system calls to create and gain access to regions
of memory owned by other processes. Recall that, normally, the operating
system tries to prevent one process from accessing another process’s memory.
Shared memory requires that two or more processes agree to remove this
restriction. They can then exchange information by reading and writing data
in the shared areas. The form of the data is determined by the processes and
is not under the operating system’s control. The processes are also responsible
for ensuring that they are notwriting to the same location simultaneously. Such
mechanisms are discussed in Chapter 6. In Chapter 4, we look at a variation of
the process scheme—threads—in which some memory is shared by default.

Both of the models just discussed are common in operating systems,
and most systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. It is also eas-
ier to implement than is shared memory for intercomputer communication.
Shared memory allows maximum speed and convenience of communication,
since it can be done at memory transfer speeds when it takes place within a
computer. Problems exist, however, in the areas of protection and synchroniza-
tion between the processes sharing memory.

2.3.3.6 Protection

Protection provides a mechanism for controlling access to the resources pro-
vided by a computer system. Historically, protection was a concern only on
multiprogrammed computer systems with several users. However, with the
advent of networking and the Internet, all computer systems, from servers to
mobile handheld devices, must be concerned with protection.

Typically, system calls providing protection include set permission()
and get permission(), which manipulate the permission settings of

74 Chapter 2 Operating-System Structures

resources such as files and disks. The allow user() and deny user() system
calls specify whether particular users can—or cannot—be allowed access
to certain resources. We cover protection in Chapter 17 and the much larger
issue of security—which involves using protection against external threats—
in Chapter 16.

2.4 System Services

Another aspect of a modern system is its collection of system services. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowest level
is hardware. Next is the operating system, then the system services, and finally
the application programs. System services, also known as system utilities,
provide a convenient environment for program development and execution.
Some of them are simply user interfaces to system calls. Others are consider-
ably more complex. They can be divided into these categories:

• File management. These programs create, delete, copy, rename, print, list,
and generally access and manipulate files and directories.

• Status information. Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing detailed
performance, logging, and debugging information. Typically, these pro-
grams format and print the output to the terminal or other output devices
or files or display it in a window of the GUI. Some systems also support a
registry, which is used to store and retrieve configuration information.

• File modificatio . Several text editorsmay be available to create andmod-
ify the content of files stored on disk or other storage devices. There may
also be special commands to search contents of files or perform transfor-
mations of the text.

• Programming-language support. Compilers, assemblers, debuggers, and
interpreters for common programming languages (such as C, C++, Java,
and Python) are often provided with the operating system or available as
a separate download.

• Program loading and execution. Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed as well.

• Communications. These programs provide the mechanism for creating
virtual connections among processes, users, and computer systems. They
allow users to send messages to one another’s screens, to browse web
pages, to send e-mail messages, to log in remotely, or to transfer files from
one machine to another.

• Background services. All general-purpose systems have methods for
launching certain system-program processes at boot time. Some of these
processes terminate after completing their tasks, while others continue to

2.5 Linkers and Loaders 75

run until the system is halted. Constantly running system-program pro-
cesses are known as services, subsystems, or daemons. One example is
the network daemon discussed in Section 2.3.3.5. In that example, a sys-
tem needed a service to listen for network connections in order to connect
those requests to the correct processes. Other examples include process
schedulers that start processes according to a specified schedule, system
error monitoring services, and print servers. Typical systems have dozens
of daemons. In addition, operating systems that run important activities in
user context rather than in kernel context may use daemons to run these
activities.

Along with system programs, most operating systems are supplied with
programs that are useful in solving common problems or performing common
operations. Such application programs include web browsers, word proces-
sors and text formatters, spreadsheets, database systems, compilers, plotting
and statistical-analysis packages, and games.

The view of the operating system seen by most users is defined by the
application and system programs, rather than by the actual system calls. Con-
sider a user’s PC. When a user’s computer is running the macOS operating
system, the user might see the GUI, featuring a mouse-and-windows interface.
Alternatively, or even in one of the windows, the user might have a command-
line UNIX shell. Both use the same set of system calls, but the system calls look
different and act in different ways. Further confusing the user view, consider
the user dual-booting from macOS into Windows. Now the same user on the
same hardware has two entirely different interfaces and two sets of applica-
tions using the same physical resources. On the same hardware, then, a user
can be exposed to multiple user interfaces sequentially or concurrently.

2.5 Linkers and Loaders

Usually, a program resides on disk as a binary executable file—for example,
a.out or prog.exe. To run on a CPU, the programmust be brought into mem-
ory and placed in the context of a process. In this section, we describe the steps
in this procedure, from compiling a program to placing it in memory, where it
becomes eligible to run on an available CPU core. The steps are highlighted in
Figure 2.11.

Source files are compiled into object files that are designed to be loaded
into any physical memory location, a format known as an relocatable object
fil . Next, the linker combines these relocatable object files into a single binary
executable file. During the linking phase, other object files or libraries may be
included aswell, such as the standard C ormath library (specifiedwith the flag
-lm).

A loader is used to load the binary executable file into memory, where it is
eligible to run on a CPU core. An activity associated with linking and loading
is relocation, which assigns final addresses to the program parts and adjusts
code and data in the program tomatch those addresses so that, for example, the
code can call library functions and access its variables as it executes. In Figure
2.11, we see that to run the loader, all that is necessary is to enter the name of the
executable file on the command line. When a program name is entered on the

76 Chapter 2 Operating-System Structures

source
program

object
fileother

object
files

dynamically
linked

libraries

executable
file

program
in memory

compiler

linker

loader

main.c

main.o

main

./main

gcc -c main.c

gcc -o main main.o -lm

generates

generates

Figure 2.11 The role of the linker and loader.

command line on UNIX systems—for example, ./main—the shell first creates
a new process to run the program using the fork() system call. The shell then
invokes the loader with the exec() system call, passing exec() the name of
the executable file. The loader then loads the specified program into memory
using the address space of the newly created process. (When a GUI interface is
used, double-clicking on the icon associated with the executable file invokes
the loader using a similar mechanism.)

The process described thus far assumes that all libraries are linked into
the executable file and loaded into memory. In reality, most systems allow
a program to dynamically link libraries as the program is loaded. Windows,
for instance, supports dynamically linked libraries (DLLs). The benefit of this
approach is that it avoids linking and loading libraries that may end up not
being used into an executable file. Instead, the library is conditionally linked
and is loaded if it is required during program run time. For example, in Figure
2.11, the math library is not linked into the executable file main. Rather, the
linker inserts relocation information that allows it to be dynamically linked
and loaded as the program is loaded. We shall see in Chapter 9 that it is
possible for multiple processes to share dynamically linked libraries, resulting
in a significant savings in memory use.

Object files and executable files typically have standard formats that
include the compiled machine code and a symbol table containing metadata
about functions and variables that are referenced in the program. For UNIX
and Linux systems, this standard format is known as ELF (for Executable
and Linkable Format). There are separate ELF formats for relocatable and

2.6 Why Applications Are Operating-System Specifi 77

ELF FORMAT

Linux provides various commands to identify and evaluate ELF files. For
example, the file command determines a file type. If main.o is an object
file, and main is an executable file, the command

file main.o

will report that main.o is an ELF relocatable file, while the command

file main

will report that main is an ELF executable. ELF files are divided into a number
of sections and can be evaluated using the readelf command.

executable files. One piece of information in the ELF file for executable files is
the program’s entry point, which contains the address of the first instruction
to be executed when the program runs. Windows systems use the Portable
Executable (PE) format, and macOS uses the Mach-O format.

2.6 Why Applications Are Operating-System Specific

Fundamentally, applications compiled on one operating system are not exe-
cutable on other operating systems. If they were, the world would be a better
place, and our choice of what operating system to use would depend on utility
and features rather than which applications were available.

Based on our earlier discussion, we can now see part of the problem—each
operating system provides a unique set of system calls. System calls are part of
the set of services provided by operating systems for use by applications. Even
if system calls were somehow uniform, other barriers would make it difficult
for us to execute application programs on different operating systems. But if
you have used multiple operating systems, you may have used some of the
same applications on them. How is that possible?

An application can bemade available to run onmultiple operating systems
in one of three ways:

1. The application can bewritten in an interpreted language (such as Python
or Ruby) that has an interpreter available for multiple operating systems.
The interpreter reads each line of the source program, executes equivalent
instructions on the native instruction set, and calls native operating sys-
tem calls. Performance suffers relative to that for native applications, and
the interpreter provides only a subset of each operating system’s features,
possibly limiting the feature sets of the associated applications.

2. The application can be written in a language that includes a virtual
machine containing the running application. The virtual machine is part
of the language’s full RTE. One example of thismethod is Java. Java has an
RTE that includes a loader, byte-code verifier, and other components that
load the Java application into the Java virtual machine. This RTE has been

78 Chapter 2 Operating-System Structures

ported, or developed, for many operating systems, from mainframes to
smartphones, and in theory any Java app can runwithin the RTEwherever
it is available. Systems of this kind have disadvantages similar to those
of interpreters, discussed above.

3. The application developer can use a standard language or API in which
the compiler generates binaries in a machine- and operating-system-
specific language. The application must be ported to each operating sys-
tem on which it will run. This porting can be quite time consuming and
must be done for each new version of the application, with subsequent
testing and debugging. Perhaps the best-known example is the POSIX
API and its set of standards for maintaining source-code compatibility
between different variants of UNIX-like operating systems.

In theory, these three approaches seemingly provide simple solutions for
developing applications that can run across different operating systems. How-
ever, the general lack of application mobility has several causes, all of which
still make developing cross-platform applications a challenging task. At the
application level, the libraries providedwith the operating system contain APIs
to provide features like GUI interfaces, and an application designed to call one
set of APIs (say, those available from iOS on the Apple iPhone) will not work on
an operating system that does not provide those APIs (such as Android). Other
challenges exist at lower levels in the system, including the following.

• Each operating system has a binary format for applications that dictates
the layout of the header, instructions, and variables. Those components
need to be at certain locations in specified structures within an executable
file so the operating system can open the file and load the application for
proper execution.

• CPUs have varying instruction sets, and only applications containing the
appropriate instructions can execute correctly.

• Operating systems provide system calls that allow applications to request
various activities, such as creating files and opening network connec-
tions. Those system calls vary among operating systems in many respects,
including the specific operands and operand ordering used, how an appli-
cation invokes the system calls, their numbering and number, their mean-
ings, and their return of results.

There are some approaches that have helped address, though not com-
pletely solve, these architectural differences. For example, Linux—and almost
every UNIX system—has adopted the ELF format for binary executable files.
Although ELF provides a common standard across Linux and UNIX systems,
the ELF format is not tied to any specific computer architecture, so it does not
guarantee that an executable file will run across different hardware platforms.

APIs, as mentioned above, specify certain functions at the application level.
At the architecture level, an application binary interface (ABI) is used to define
how different components of binary code can interface for a given operating
system on a given architecture. An ABI specifies low-level details, including
addresswidth,methods of passing parameters to system calls, the organization

2.7 Operating-System Design and Implementation 79

of the run-time stack, the binary format of system libraries, and the size of data
types, just to name a few. Typically, an ABI is specified for a given architecture
(for example, there is an ABI for the ARMv8 processor). Thus, an ABI is the
architecture-level equivalent of an API. If a binary executable file has been
compiled and linked according to a particular ABI, it should be able to run on
different systems that support that ABI. However, because a particular ABI is
defined for a certain operating system running on a given architecture, ABIs do
little to provide cross-platform compatibility.

In sum, all of these differences mean that unless an interpreter, RTE, or
binary executable file iswritten for and compiled on a specific operating system
on a specific CPU type (such as Intel x86 or ARMv8), the application will fail to
run. Imagine the amount of work that is required for a program such as the
Firefox browser to run on Windows, macOS, various Linux releases, iOS, and
Android, sometimes on various CPU architectures.

2.7 Operating-System Design and Implementation

In this section, we discuss problemswe face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

2.7.1 Design Goals

The first problem in designing a system is to define goals and specifications. At
the highest level, the design of the systemwill be affected by the choice of hard-
ware and the type of system: traditional desktop/laptop, mobile, distributed,
or real time.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and system goals.

Users want certain obvious properties in a system. The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve them.

A similar set of requirements can be defined by the developers who must
design, create, maintain, and operate the system. The system should be easy to
design, implement, and maintain; and it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
various ways.

There is, in short, no unique solution to the problemof defining the require-
ments for an operating system. The wide range of systems in existence shows
that different requirements can result in a large variety of solutions for different
environments. For example, the requirements for Wind River VxWorks, a real-
time operating system for embedded systems, must have been substantially
different from those for Windows Server, a large multiaccess operating system
designed for enterprise applications.

Specifying and designing an operating system is a highly creative task.
Although no textbook can tell you how to do it, general principles have been

80 Chapter 2 Operating-System Structures

developed in the field of software engineering, and we turn now to a discus-
sion of some of these principles.

2.7.2 Mechanisms and Policies

One important principle is the separation of policy from mechanism. Mecha-
nisms determine how to do something; policies determine what will be done.
For example, the timer construct (see Section 1.4.3) is amechanism for ensuring
CPU protection, but deciding how long the timer is to be set for a particular user
is a policy decision.

The separation of policy andmechanism is important for flexibility. Policies
are likely to change across places or over time. In the worst case, each change
in policy would require a change in the underlying mechanism. A general
mechanism flexible enough to work across a range of policies is preferable.
A change in policy would then require redefinition of only certain parameters
of the system. For instance, consider a mechanism for giving priority to certain
types of programs over others. If the mechanism is properly separated from
policy, it can be used either to support a policy decision that I/O-intensive
programs should have priority over CPU-intensive ones or to support the
opposite policy.

Microkernel-based operating systems (discussed in Section 2.8.3) take the
separation of mechanism and policy to one extreme by implementing a basic
set of primitive building blocks. These blocks are almost policy free, allowing
more advanced mechanisms and policies to be added via user-created kernel
modules or user programs themselves. In contrast, consider Windows, an
enormously popular commercial operating system available for over three
decades. Microsoft has closely encoded both mechanism and policy into the
system to enforce a global look and feel across all devices that run theWindows
operating system.All applications have similar interfaces, because the interface
itself is built into the kernel and system libraries. Apple has adopted a similar
strategy with its macOS and iOS operating systems.

We can make a similar comparison between commercial and open-source
operating systems. For instance, contrast Windows, discussed above, with
Linux, an open-source operating system that runs on a wide range of com-
puting devices and has been available for over 25 years. The “standard” Linux
kernel has a specific CPU scheduling algorithm (covered in Section 5.7.1), which
is a mechanism that supports a certain policy. However, anyone is free to
modify or replace the scheduler to support a different policy.

Policy decisions are important for all resource allocation. Whenever it is
necessary to decidewhether or not to allocate a resource, a policy decisionmust
be made. Whenever the question is how rather than what, it is a mechanism
that must be determined.

2.7.3 Implementation

Once an operating system is designed, it must be implemented. Because oper-
ating systems are collections of many programs, written by many people over
a long period of time, it is difficult to make general statements about how they
are implemented.

Early operating systems were written in assembly language. Now, most
are written in higher-level languages such as C or C++, with small amounts

2.8 Operating-System Structure 81

of the system written in assembly language. In fact, more than one higher-
level language is often used. The lowest levels of the kernel might be written
in assembly language and C. Higher-level routines might be written in C and
C++, and system libraries might be written in C++ or even higher-level lan-
guages. Android provides a nice example: its kernel is writtenmostly in Cwith
some assembly language. Most Android system libraries are written in C or
C++, and its application frameworks—which provide the developer interface
to the system—are written mostly in Java. We cover Android’s architecture in
more detail in Section 2.8.5.2.

The advantages of using a higher-level language, or at least a systems-
implementation language, for implementing operating systems are the same
as those gained when the language is used for application programs: the code
can be written faster, is more compact, and is easier to understand and debug.
In addition, improvements in compiler technology will improve the gener-
ated code for the entire operating system by simple recompilation. Finally,
an operating system is far easier to port to other hardware if it is written in
a higher-level language. This is particularly important for operating systems
that are intended to run on several different hardware systems, such as small
embedded devices, Intel x86 systems, and ARM chips running on phones and
tablets.

The only possible disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
This, however, is not a major issue in today’s systems. Although an expert
assembly-language programmer can produce efficient small routines, for large
programs amodern compiler can perform complex analysis and apply sophis-
ticated optimizations that produce excellent code. Modern processors have
deep pipelining and multiple functional units that can handle the details of
complex dependencies much more easily than can the human mind.

As is true in other systems, major performance improvements in operating
systems aremore likely to be the result of better data structures and algorithms
than of excellent assembly-language code. In addition, although operating sys-
tems are large, only a small amount of the code is critical to high performance;
the interrupt handlers, I/O manager, memory manager, and CPU scheduler are
probably the most critical routines. After the system is written and is working
correctly, bottlenecks can be identified and can be refactored to operate more
efficiently.

2.8 Operating-System Structure

A system as large and complex as a modern operating system must be engi-
neered carefully if it is to function properly and be modified easily. A common
approach is to partition the task into small components, or modules, rather
than have one single system. Each of these modules should be a well-defined
portion of the system,with carefully defined interfaces and functions. Youmay
use a similar approach when you structure your programs: rather than placing
all of your code in the main() function, you instead separate logic into a num-
ber of functions, clearly articulate parameters and return values, and then call
those functions from main().

82 Chapter 2 Operating-System Structures

k
e

rn
e

l

(the users)

shells and commands
compilers and interpreters

system libraries

system-call interface to the kernel

signals terminal
handling

character I/O system
terminal drivers

file system
swapping block I/O

system
disk and tape drivers

CPU scheduling
page replacement
demand paging
virtual memory

kernel interface to the hardware

terminal controllers
terminals

device controllers
disks and tapes

memory controllers
physical memory

Figure 2.12 Traditional UNIX system structure.

We briefly discussed the common components of operating systems in
Chapter 1. In this section,we discuss how these components are interconnected
and melded into a kernel.

2.8.1 Monolithic Structure

The simplest structure for organizing an operating system is no structure at all.
That is, place all of the functionality of the kernel into a single, static binary file
that runs in a single address space. This approach—known as a monolithic
structure—is a common technique for designing operating systems.

An example of such limited structuring is the original UNIX operating
system, which consists of two separable parts: the kernel and the system
programs. The kernel is further separated into a series of interfaces and device
drivers, which have been added and expanded over the years as UNIX has
evolved. We can view the traditional UNIX operating system as being layered
to some extent, as shown in Figure 2.12. Everything below the system-call
interface and above the physical hardware is the kernel. The kernel provides
the file system, CPU scheduling, memory management, and other operating-
system functions through system calls. Taken in sum, that is an enormous
amount of functionality to be combined into one single address space.

The Linux operating system is based on UNIX and is structured similarly, as
shown in Figure 2.13. Applications typically use the glibc standard C library
when communicating with the system call interface to the kernel. The Linux
kernel is monolithic in that it runs entirely in kernel mode in a single address
space, but as we shall see in Section 2.8.4, it does have a modular design that
allows the kernel to be modified during run time.

Despite the apparent simplicity of monolithic kernels, they are difficult
to implement and extend. Monolithic kernels do have a distinct performance
advantage, however: there is very little overhead in the system-call interface,
and communication within the kernel is fast. Therefore, despite the drawbacks

2.8 Operating-System Structure 83

glibc standard c library

system-call interface

hardware

applications

file
systems

CPU
scheduler

memory
manager

character
devices

block
devices

networks
(TCP/IP)

device drivers

Figure 2.13 Linux system structure.

of monolithic kernels, their speed and efficiency explains why we still see
evidence of this structure in the UNIX, Linux, andWindows operating systems.

2.8.2 Layered Approach

The monolithic approach is often known as a tightly coupled system because
changes to one part of the system can have wide-ranging effects on other parts.
Alternatively, we could design a loosely coupled system. Such a system is
divided into separate, smaller components that have specific and limited func-
tionality. All these components together comprise the kernel. The advantage
of this modular approach is that changes in one component affect only that
component, and no others, allowing system implementers more freedom in
creating and changing the inner workings of the system.

A system can be made modular in many ways. One method is the layered
approach, in which the operating system is broken into a number of layers
(levels). The bottom layer (layer 0) is the hardware; the highest (layer N) is the
user interface. This layering structure is depicted in Figure 2.14.

An operating-system layer is an implementation of an abstract object made
up of data and the operations that can manipulate those data. A typical
operating-system layer—say, layer M—consists of data structures and a set
of functions that can be invoked by higher-level layers. Layer M, in turn, can
invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction
and debugging. The layers are selected so that each uses functions (operations)

84 Chapter 2 Operating-System Structures

layer N
user interface

•
•
•

layer 1

layer 0
hardware

Figure 2.14 A layered operating system.

and services of only lower-level layers. This approach simplifies debugging
and system verification. The first layer can be debugged without any concern
for the rest of the system, because, by definition, it uses only the basic hardware
(which is assumed correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the second layer is
debugged, and so on. If an error is found during the debugging of a particular
layer, the error must be on that layer, because the layers below it are already
debugged. Thus, the design and implementation of the system are simplified.

Each layer is implemented only with operations provided by lower-level
layers. A layer does not need to know how these operations are implemented;
it needs to know only what these operations do. Hence, each layer hides the
existence of certain data structures, operations, and hardware from higher-
level layers.

Layered systems have been successfully used in computer networks (such
as TCP/IP) and web applications. Nevertheless, relatively few operating sys-
tems use a pure layered approach. One reason involves the challenges of
appropriately defining the functionality of each layer. In addition, the overall
performance of such systems is poor due to the overhead of requiring a user
program to traverse throughmultiple layers to obtain an operating-system ser-
vice. Some layering is common in contemporary operating systems, however.
Generally, these systems have fewer layers with more functionality, providing
most of the advantages of modularized code while avoiding the problems of
layer definition and interaction.

2.8.3 Microkernels

We have already seen that the original UNIX system had a monolithic struc-
ture. As UNIX expanded, the kernel became large and difficult to manage.
In the mid-1980s, researchers at Carnegie Mellon University developed an
operating system called Mach that modularized the kernel using the micro-
kernel approach. This method structures the operating system by removing

2.8 Operating-System Structure 85

file
system

device
driver

application
program

interprocess
communication

Figure 2.15 Architecture of a typical microkernel.

all nonessential components from the kernel and implementing them as user-
level programs that reside in separate address spaces. The result is a smaller
kernel. There is little consensus regarding which services should remain in the
kernel and which should be implemented in user space. Typically, however,
microkernels provide minimal process and memory management, in addition
to a communication facility. Figure 2.15 illustrates the architecture of a typical
microkernel.

The main function of the microkernel is to provide communication
between the client program and the various services that are also running in
user space. Communication is provided through message passing, which was
described in Section 2.3.3.5. For example, if the client programwishes to access
a file, it must interact with the file server. The client program and service never
interact directly. Rather, they communicate indirectly by exchanging messages
with the microkernel.

One benefit of the microkernel approach is that it makes extending the
operating system easier. All new services are added to user space and conse-
quently do not requiremodification of the kernel.When the kernel does have to
be modified, the changes tend to be fewer, because the microkernel is a smaller
kernel. The resulting operating system is easier to port from one hardware
design to another. The microkernel also provides more security and reliability,
since most services are running as user—rather than kernel—processes. If a
service fails, the rest of the operating system remains untouched.

Perhaps the best-known illustration of a microkernel operating system
is Darwin, the kernel component of the macOS and iOS operating systems.
Darwin, in fact, consists of two kernels, one of which is the Mach microkernel.
We will cover the macOS and iOS systems in further detail in Section 2.8.5.1.

Another example is QNX, a real-time operating system for embedded sys-
tems. The QNX Neutrino microkernel provides services for message passing
and process scheduling. It also handles low-level network communication and
hardware interrupts. All other services in QNX are provided by standard pro-
cesses that run outside the kernel in user mode.

Unfortunately, the performance ofmicrokernels can suffer due to increased
system-function overhead. When two user-level services must communicate,
messages must be copied between the services, which reside in separate

86 Chapter 2 Operating-System Structures

address spaces. In addition, the operating system may have to switch from
one process to the next to exchange the messages. The overhead involved
in copying messages and switching between processes has been the largest
impediment to the growth of microkernel-based operating systems. Consider
the history of Windows NT: The first release had a layered microkernel organi-
zation. This version’s performance was low compared with that of Windows
95. Windows NT 4.0 partially corrected the performance problem by moving
layers from user space to kernel space and integrating them more closely.
By the time Windows XP was designed, Windows architecture had become
more monolithic than microkernel. Section 2.8.5.1 will describe how macOS
addresses the performance issues of the Mach microkernel.

2.8.4 Modules

Perhaps the best current methodology for operating-system design involves
using loadable kernel modules (LKMs). Here, the kernel has a set of core
components and can link in additional services viamodules, either at boot time
or during run time. This type of design is common inmodern implementations
of UNIX, such as Linux, macOS, and Solaris, as well as Windows.

The idea of the design is for the kernel to provide core services, while
other services are implemented dynamically, as the kernel is running. Linking
services dynamically is preferable to adding new features directly to the kernel,
which would require recompiling the kernel every time a change was made.
Thus, for example, we might build CPU scheduling and memory management
algorithms directly into the kernel and then add support for different file
systems by way of loadable modules.

The overall result resembles a layered system in that each kernel section
has defined, protected interfaces; but it is more flexible than a layered system,
because any module can call any other module. The approach is also similar to
the microkernel approach in that the primary module has only core functions
and knowledge of how to load and communicate with other modules; but it
is more efficient, because modules do not need to invoke message passing in
order to communicate.

Linux uses loadable kernel modules, primarily for supporting device
drivers and file systems. LKMs can be “inserted” into the kernel as the sys-
tem is started (or booted) or during run time, such as when a USB device is
plugged into a running machine. If the Linux kernel does not have the nec-
essary driver, it can be dynamically loaded. LKMs can be removed from the
kernel during run time as well. For Linux, LKMs allow a dynamic andmodular
kernel, while maintaining the performance benefits of a monolithic system.We
cover creating LKMs in Linux in several programming exercises at the end of
this chapter.

2.8.5 Hybrid Systems

In practice, very few operating systems adopt a single, strictly defined struc-
ture. Instead, they combine different structures, resulting in hybrid systems
that address performance, security, and usability issues. For example, Linux
is monolithic, because having the operating system in a single address space
provides very efficient performance. However, it also modular, so that new
functionality can be dynamically added to the kernel. Windows is largely

2.8 Operating-System Structure 87

monolithic as well (again primarily for performance reasons), but it retains
some behavior typical of microkernel systems, including providing support
for separate subsystems (known as operating-system personalities) that run as
user-mode processes. Windows systems also provide support for dynamically
loadable kernel modules. We provide case studies of Linux and Windows 10
in Chapter 20 and Chapter 21, respectively. In the remainder of this section,
we explore the structure of three hybrid systems: the Apple macOS operat-
ing system and the two most prominent mobile operating systems—iOS and
Android.

2.8.5.1 macOS and iOS

Apple’s macOS operating system is designed to run primarily on desktop and
laptop computer systems, whereas iOS is a mobile operating system designed
for the iPhone smartphone and iPad tablet computer. Architecturally, macOS
and iOS have much in common, and so we present them together, highlighting
what they share as well as how they differ from each other. The general archi-
tecture of these two systems is shown in Figure 2.16. Highlights of the various
layers include the following:

• User experience layer. This layer defines the software interface that allows
users to interact with the computing devices. macOS uses the Aqua user
interface, which is designed for a mouse or trackpad, whereas iOS uses the
Springboard user interface, which is designed for touch devices.

• Application frameworks layer. This layer includes the Cocoa and Cocoa
Touch frameworks, which provide an API for the Objective-C and Swift
programming languages. The primary difference between Cocoa and
Cocoa Touch is that the former is used for developingmacOS applications,
and the latter by iOS to provide support for hardware features unique to
mobile devices, such as touch screens.

• Core frameworks. This layer defines frameworks that support graphics
and media including, Quicktime and OpenGL.

applications

user experience

application frameworks

core frameworks

kernel environment (Darwin)

Figure 2.16 Architecture of Apple’s macOS and iOS operating systems.

88 Chapter 2 Operating-System Structures

• Kernel environment. This environment, also known as Darwin, includes
the Mach microkernel and the BSD UNIX kernel. We will elaborate on
Darwin shortly.

As shown in Figure 2.16, applications can be designed to take advantage of
user-experience features or to bypass them and interact directly with either
the application framework or the core framework. Additionally, an application
can forego frameworks entirely and communicate directly with the kernel
environment. (An example of this latter situation is a C program written with
no user interface that makes POSIX system calls.)

Some significant distinctions between macOS and iOS include the follow-
ing:

• Because macOS is intended for desktop and laptop computer systems, it is
compiled to run on Intel architectures. iOS is designed for mobile devices
and thus is compiled for ARM-based architectures. Similarly, the iOS ker-
nel has been modified somewhat to address specific features and needs
of mobile systems, such as power management and aggressive memory
management. Additionally, iOS has more stringent security settings than
macOS.

• The iOS operating system is generally much more restricted to developers
than macOS and may even be closed to developers. For example, iOS
restricts access to POSIX and BSD APIs on iOS, whereas they are openly
available to developers on macOS.

We now focus on Darwin, which uses a hybrid structure. Darwin is a
layered system that consists primarily of the Mach microkernel and the BSD
UNIX kernel. Darwin’s structure is shown in Figure 2.17.

Whereas most operating systems provide a single system-call interface to
the kernel—such as through the standardC library on UNIX and Linux systems
—Darwin provides two system-call interfaces: Mach system calls (known as

library interface

Mach
traps

BSD (POSIX)
system calls

Mach kernel

scheduling

iokit

IPC
memory

management

kexts

applications

Figure 2.17 The structure of Darwin.

2.8 Operating-System Structure 89

traps) and BSD system calls (which provide POSIX functionality). The interface
to these system calls is a rich set of libraries that includes not only the standard
C library but also libraries that provide networking, security, and progamming
language support (to name just a few).

Beneath the system-call interface, Mach provides fundamental operating-
system services, including memory management, CPU scheduling, and inter-
process communication (IPC) facilities such as message passing and remote
procedure calls (RPCs).Much of the functionality providedbyMach is available
through kernel abstractions, which include tasks (a Mach process), threads,
memory objects, and ports (used for IPC). As an example, an application may
create a new process using the BSD POSIX fork() system call. Mach will, in
turn, use a task kernel abstraction to represent the process in the kernel.

In addition to Mach and BSD, the kernel environment provides an I/O kit
for development of device drivers and dynamically loadable modules (which
macOS refers to as kernel extensions, or kexts).

In Section 2.8.3, we described how the overhead of message passing
betweendifferent services running in user space compromises the performance
of microkernels. To address such performance problems, Darwin combines
Mach, BSD, the I/O kit, and any kernel extensions into a single address space.
Thus, Mach is not a pure microkernel in the sense that various subsystems run
in user space. Message passing within Mach still does occur, but no copying is
necessary, as the services have access to the same address space.

Apple has released the Darwin operating system as open source. As a
result, various projects have added extra functionality toDarwin, such as the X-
11 windowing system and support for additional file systems. Unlike Darwin,
however, the Cocoa interface, as well as other proprietary Apple frameworks
available for developing macOS applications, are closed.

2.8.5.2 Android

The Android operating system was designed by the Open Handset Alliance
(led primarily by Google) and was developed for Android smartphones and
tablet computers. Whereas iOS is designed to run on Apple mobile devices and
is close-sourced, Android runs on a variety of mobile platforms and is open-
sourced, partly explaining its rapid rise in popularity. The structure of Android
appears in Figure 2.18.

Android is similar to iOS in that it is a layered stack of software that
provides a rich set of frameworks supporting graphics, audio, and hardware
features. These features, in turn, provide a platform for developing mobile
applications that run on a multitude of Android-enabled devices.

Software designers for Android devices develop applications in the Java
language, but they do not generally use the standard Java API. Google has
designed a separate Android API for Java development. Java applications are
compiled into a form that can execute on the Android RunTime ART, a virtual
machine designed for Android and optimized for mobile devices with limited
memory and CPU processing capabilities. Java programs are first compiled to
a Java bytecode .class file and then translated into an executable .dex file.
Whereas many Java virtual machines perform just-in-time (JIT) compilation to
improve application efficiency, ART performs ahead-of-time (AOT) compila-

90 Chapter 2 Operating-System Structures

applications

ART
VM

Android
frameworks JNI

native libraries

Bionic

HAL

Linux kernel

hardware

SSL

webkitopenGL

surface
manager

SQLite

media
framework

Figure 2.18 Architecture of Google’s Android.

tion. Here, .dex files are compiled into native machine code when they are
installed on a device, from which they can execute on the ART. AOT compi-
lation allows more efficient application execution as well as reduced power
consumption, features that are crucial for mobile systems.

Android developers can also write Java programs that use the Java native
interface—or JNI—which allows developers to bypass the virtual machine
and instead write Java programs that can access specific hardware features.
Programs written using JNI are generally not portable from one hardware
device to another.

The set of native libraries available for Android applications includes
frameworks for developing web browsers (webkit), database support (SQLite),
and network support, such as secure sockets (SSLs).

Because Android can run on an almost unlimited number of hardware
devices, Google has chosen to abstract the physical hardware through the hard-
ware abstraction layer, or HAL. By abstracting all hardware, such as the camera,
GPS chip, and other sensors, the HAL provides applications with a consistent
view independent of specific hardware. This feature, of course, allows devel-
opers to write programs that are portable across different hardware platforms.

The standardC library used by Linux systems is the GNUC library (glibc).
Google instead developed the Bionic standard C library for Android. Not only
does Bionic have a smaller memory footprint than glibc, but it also has been
designed for the slower CPUs that characterize mobile devices. (In addition,
Bionic allows Google to bypass GPL licensing of glibc.)

2.8 Operating-System Structure 91

At the bottom of Android’s software stack is the Linux kernel. Google has
modified the Linux kernel used in Android in a variety of areas to support the
special needs of mobile systems, such as power management. It has also made
changes in memory management and allocation and has added a new form of
IPC known as Binder (which we will cover in Section 3.8.2.1).

WINDOWS SUBSYSTEM FOR LINUX

Windows uses a hybrid architecture that provides subsystems to emu-
late different operating-system environments. These user-mode subsystems
communicate with the Windows kernel to provide actual services. Windows
10 adds a Windows subsystem for Linux (WSL), which allows native Linux
applications (specified as ELF binaries) to run on Windows 10. The typical
operation is for a user to start the Windows application bash.exe, which
presents the user with a bash shell running Linux. Internally, theWSL creates
a Linux instance consisting of the init process, which in turn creates the
bash shell running the native Linux application /bin/bash. Each of these
processes runs in a Windows Pico process. This special process loads the
native Linux binary into the process’s own address space, thus providing an
environment in which a Linux application can execute.

Pico processes communicate with the kernel services LXCore and LXSS
to translate Linux system calls, if possible using native Windows system
calls. When the Linux application makes a system call that has no Windows
equivalent, the LXSS service must provide the equivalent functionality. When
there is a one-to-one relationship between the Linux and Windows system
calls, LXSS forwards the Linux system call directly to the equivalent call in
the Windows kernel. In some situations, Linux and Windows have system
calls that are similar but not identical. When this occurs, LXSS will provide
some of the functionality and will invoke the similar Windows system call
to provide the remainder of the functionality. The Linux fork() provides an
illustration of this: TheWindows CreateProcess() system call is similar to
fork() but does not provide exactly the same functionality. When fork()
is invoked in WSL, the LXSS service does some of the initial work of fork()
and then calls CreateProcess() to do the remainder of thework. The figure
below illustrates the basic behavior of WSL.

user mode

kernel mode

bash.exe /bin/bashinit

Linux instance

LXSS/LXCore Windows kernel
CreateProcess()

fork()

92 Chapter 2 Operating-System Structures

2.9 Building and Booting an Operating System

It is possible to design, code, and implement an operating system specifically
for one specific machine configuration. More commonly, however, operating
systems are designed to run on any of a class of machines with a variety of
peripheral configurations.

2.9.1 Operating-System Generation

Most commonly, a computer system,when purchased, has an operating system
already installed. For example, youmay purchase a new laptop withWindows
or macOS preinstalled. But suppose you wish to replace the preinstalled oper-
ating system or add additional operating systems. Or suppose you purchase a
computer without an operating system. In these latter situations, you have a
few options for placing the appropriate operating system on the computer and
configuring it for use.

If you are generating (or building) an operating system from scratch, you
must follow these steps:

1. Write the operating system source code (or obtain previously written
source code).

2. Configure the operating system for the system on which it will run.

3. Compile the operating system.

4. Install the operating system.

5. Boot the computer and its new operating system.

Configuring the system involves specifying which features will be
included, and this varies by operating system. Typically, parameters describing
how the system is configured is stored in a configuration file of some type,
and once this file is created, it can be used in several ways.

At one extreme, a system administrator can use it to modify a copy of
the operating-system source code. Then the operating system is completely
compiled (known as a system build). Data declarations, initializations, and
constants, along with compilation, produce an output-object version of the
operating system that is tailored to the system described in the configuration
file.

At a slightly less tailored level, the system description can lead to the selec-
tion of precompiled objectmodules from an existing library. Thesemodules are
linked together to form the generated operating system. This process allows
the library to contain the device drivers for all supported I/O devices, but only
those needed are selected and linked into the operating system. Because the
system is not recompiled, system generation is faster, but the resulting system
may be overly general andmay not support different hardware configurations.

At the other extreme, it is possible to construct a system that is completely
modular. Here, selection occurs at execution time rather than at compile or link
time. System generation involves simply setting the parameters that describe
the system configuration.

2.9 Building and Booting an Operating System 93

The major differences among these approaches are the size and generality
of the generated system and the ease of modifying it as the hardware configu-
ration changes. For embedded systems, it is not uncommon to adopt the first
approach and create an operating system for a specific, static hardware config-
uration. However, most modern operating systems that support desktop and
laptop computers aswell asmobile devices have adopted the second approach.
That is, the operating system is still generated for a specific hardware config-
uration, but the use of techniques such as loadable kernel modules provides
modular support for dynamic changes to the system.

We now illusrate how to build a Linux system from scratch, where it is
typically necessary to perform the following steps:

1. Download the Linux source code from http://www.kernel.org.

2. Configure the kernel using the “make menuconfig” command. This step
generates the .config configuration file.

3. Compile themain kernel using the “make” command. The make command
compiles the kernel based on the configuration parameters identified in
the .config file, producing the file vmlinuz, which is the kernel image.

4. Compile the kernel modules using the “make modules” command. Just
as with compiling the kernel, module compilation depends on the con-
figuration parameters specified in the .config file.

5. Use the command “make modules install” to install the kernel mod-
ules into vmlinuz.

6. Install the new kernel on the system by entering the “make install”
command.

When the system reboots, it will begin running this new operating system.
Alternatively, it is possible to modify an existing system by installing a

Linux virtual machine. This will allow the host operating system (such as
Windows or macOS) to run Linux. (We introduced virtualization in Section 1.7
and cover the topic more fully in Chapter 18.)

There are a few options for installing Linux as a virtual machine. One
alternative is to build a virtual machine from scratch. This option is similar
to building a Linux system from scratch; however, the operating system does
not need to be compiled. Another approach is to use a Linux virtual machine
appliance, which is an operating system that has already been built and con-
figured. This option simply requires downloading the appliance and installing
it using virtualization software such as VirtualBox or VMware. For example,
to build the operating system used in the virtual machine provided with this
text, the authors did the following:

1. Downloaded the Ubuntu ISO image from https://www.ubuntu.com/

2. Instructed the virtual machine software VirtualBox to use the ISO as the
bootable medium and booted the virtual machine

3. Answered the installation questions and then installed and booted the
operating system as a virtual machine

http://www.kernel.org
http://www.ubuntu.com/

94 Chapter 2 Operating-System Structures

2.9.2 System Boot

After an operating system is generated, it must be made available for use by
the hardware. But how does the hardware know where the kernel is or how to
load that kernel? The process of starting a computer by loading the kernel is
known as booting the system. On most systems, the boot process proceeds as
follows:

1. A small piece of code known as the bootstrap program or boot loader
locates the kernel.

2. The kernel is loaded into memory and started.

3. The kernel initializes hardware.

4. The root file system is mounted.

In this section, we briefly describe the boot process in more detail.
Some computer systems use amultistage boot process:When the computer

is first powered on, a small boot loader located in nonvolatile firmware known
as BIOS is run. This initial boot loader usually does nothing more than load
a second boot loader, which is located at a fixed disk location called the boot
block. The program stored in the boot block may be sophisticated enough to
load the entire operating system into memory and begin its execution. More
typically, it is simple code (as it must fit in a single disk block) and knows only
the address on disk and the length of the remainder of the bootstrap program.

Many recent computer systems have replaced the BIOS-based boot process
with UEFI (UnifiedExtensible Firmware Interface). UEFI has several advantages
over BIOS, including better support for 64-bit systems and larger disks. Perhaps
the greatest advantage is that UEFI is a single, complete boot manager and
therefore is faster than the multistage BIOS boot process.

Whether booting from BIOS or UEFI, the bootstrap program can perform a
variety of tasks. In addition to loading the file containing the kernel program
into memory, it also runs diagnostics to determine the state of the machine
—for example, inspecting memory and the CPUand discovering devices. If
the diagnostics pass, the program can continue with the booting steps. The
bootstrap can also initialize all aspects of the system, from CPU registers to
device controllers and the contents of main memory. Sooner or later, it starts
the operating system and mounts the root file system. It is only at this point is
the system said to be running.

GRUB is an open-source bootstrap program for Linux and UNIX systems.
Boot parameters for the system are set in a GRUB configuration file, which is
loaded at startup. GRUB is flexible and allows changes to be made at boot time,
including modifying kernel parameters and even selecting among different
kernels that can be booted. As an example, the following are kernel parameters
from the special Linux file /proc/cmdline, which is used at boot time:

BOOT IMAGE=/boot/vmlinuz-4.4.0-59-generic
root=UUID=5f2e2232-4e47-4fe8-ae94-45ea749a5c92

BOOT IMAGE is the name of the kernel image to be loaded into memory, and
root specifies a unique identifier of the root file system.

2.10 Operating-System Debugging 95

To save space as well as decrease boot time, the Linux kernel image is a
compressed file that is extracted after it is loaded intomemory. During the boot
process, the boot loader typically creates a temporary RAM file system, known
as initramfs. This file system contains necessary drivers and kernel modules
that must be installed to support the real root file system (which is not in main
memory). Once the kernel has started and the necessary drivers are installed,
the kernel switches the root file system from the temporary RAM location to
the appropriate root file system location. Finally, Linux creates the systemd
process, the initial process in the system, and then starts other services (for
example, a web server and/or database). Ultimately, the system will present
the user with a login prompt. In Section 11.5.2, we describe the boot process
for Windows.

It is worthwhile to note that the booting mechanism is not independent
from the boot loader. Therefore, there are specific versions of the GRUB boot
loader for BIOS and UEFI, and the firmware must know as well which specific
bootloader is to be used.

The boot process for mobile systems is slightly different from that for
traditional PCs. For example, although its kernel is Linux-based, Android does
not use GRUB and instead leaves it up to vendors to provide boot loaders.
The most common Android boot loader is LK (for “little kernel”). Android
systems use the same compressed kernel image as Linux, as well as an initial
RAM file system. However, whereas Linux discards the initramfs once all
necessary drivers have been loaded, Androidmaintains initramfs as the root
file system for the device. Once the kernel has been loaded and the root file
system mounted, Android starts the init process and creates a number of
services before displaying the home screen.

Finally, boot loaders for most operating systems—including Windows,
Linux, and macOS, as well as both iOS and Android—provide booting into
recovery mode or single-user mode for diagnosing hardware issues, fixing
corrupt file systems, and even reinstalling the operating system. In addition to
hardware failures, computer systems can suffer from software errors and poor
operating-system performance, which we consider in the following section.

2.10 Operating-System Debugging

We havementioned debugging from time to time in this chapter. Here, we take
a closer look. Broadly, debugging is the activity of finding and fixing errors
in a system, both in hardware and in software. Performance problems are
considered bugs, so debugging can also include performance tuning, which
seeks to improve performance by removing processing bottlenecks. In this
section, we explore debugging process and kernel errors and performance
problems. Hardware debugging is outside the scope of this text.

2.10.1 Failure Analysis

If a process fails, most operating systems write the error information to a log
fil to alert system administrators or users that the problem occurred. The
operating system can also take a core dump—a capture of the memory of the
process—and store it in a file for later analysis. (Memorywas referred to as the

96 Chapter 2 Operating-System Structures

“core” in the early days of computing.) Running programs and core dumps can
be probed by a debugger, which allows a programmer to explore the code and
memory of a process at the time of failure.

Debugging user-level process code is a challenge. Operating-system kernel
debugging is even more complex because of the size and complexity of the
kernel, its control of the hardware, and the lack of user-level debugging tools.
A failure in the kernel is called a crash. When a crash occurs, error information
is saved to a log file, and the memory state is saved to a crash dump.

Operating-system debugging and process debugging frequently use dif-
ferent tools and techniques due to the very different nature of these two tasks.
Consider that a kernel failure in the file-system code would make it risky for
the kernel to try to save its state to a file on the file system before rebooting. A
common technique is to save the kernel’s memory state to a section of disk
set aside for this purpose that contains no file system. If the kernel detects
an unrecoverable error, it writes the entire contents of memory, or at least the
kernel-owned parts of the system memory, to the disk area. When the system
reboots, a process runs to gather the data from that area and write it to a crash
dump file within a file system for analysis. Obviously, such strategies would
be unnecessary for debugging ordinary user-level processes.

2.10.2 Performance Monitoring and Tuning

We mentioned earlier that performance tuning seeks to improve performance
by removing processing bottlenecks. To identify bottlenecks, we must be able
to monitor system performance. Thus, the operating system must have some
means of computing and displaying measures of system behavior. Tools may
be characterized as providing either per-process or system-wide observations.
To make these observations, tools may use one of two approaches—counters
or tracing. We explore each of these in the following sections.

2.10.2.1 Counters

Operating systems keep track of system activity through a series of counters,
such as the number of system calls made or the number of operations
performed to a network device or disk. The following are examples of Linux
tools that use counters:

Per-Process

• ps—reports information for a single process or selection of processes

• top—reports real-time statistics for current processes

System-Wide

• vmstat—reports memory-usage statistics

• netstat—reports statistics for network interfaces

• iostat—reports I/O usage for disks

2.10 Operating-System Debugging 97

Figure 2.19 The Windows 10 task manager.

Most of the counter-based tools on Linux systems read statistics from the
/proc file system. /proc is a “pseudo” file system that exists only in kernel
memory and is used primarily for querying various per-process as well as
kernel statistics. The /proc file system is organized as a directory hierarchy,
with the process (a unique integer value assigned to each process) appearing
as a subdirectory below /proc. For example, the directory entry /proc/2155
would contain per-process statistics for the process with an ID of 2155. There
are /proc entries for various kernel statistics as well. In both this chapter and
Chapter 3, we provide programming projects where you will create and access
the /proc file system.

Windows systems provide the Windows Task Manager, a tool that
includes information for current applications as well as processes, CPU and
memory usage, and networking statistics. A screen shot of the task manager
in Windows 10 appears in Figure 2.19.

2.10.3 Tracing

Whereas counter-based tools simply inquire on the current value of certain
statistics that are maintained by the kernel, tracing tools collect data for a
specific event—such as the steps involved in a system-call invocation.

The following are examples of Linux tools that trace events:

Per-Process

• strace—traces system calls invoked by a process

• gdb—a source-level debugger

System-Wide

• perf—a collection of Linux performance tools

• tcpdump—collects network packets

98 Chapter 2 Operating-System Structures

Kernighan’s Law

“Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart
enough to debug it.”

Making operating systems easier to understand, debug, and tune as they
run is an active area of research and practice. A new generation of kernel-
enabled performance analysis tools hasmade significant improvements in how
this goal can be achieved. Next, we discuss BCC, a toolkit for dynamic kernel
tracing in Linux.

2.10.4 BCC

Debugging the interactions between user-level and kernel code is nearly
impossible without a toolset that understands both sets of code and can instru-
ment their interactions. For that toolset to be truly useful, it must be able to
debug any area of a system, including areas that were not written with debug-
ging in mind, and do so without affecting system reliability. This toolset must
also have a minimal performance impact—ideally it should have no impact
when not in use and a proportional impact during use. The BCC toolkit meets
these requirements and provides a dynamic, secure, low-impact debugging
environment.

BCC (BPF Compiler Collection) is a rich toolkit that provides tracing fea-
tures for Linux systems. BCC is a front-end interface to the eBPF (extended
Berkeley Packet Filter) tool. The BPF technology was developed in the early
1990s for filtering traffic across a computer network. The “extended” BPF (eBPF)
added various features to BPF. eBPF programs are written in a subset of C and
are compiled into eBPF instructions, which can be dynamically inserted into a
running Linux system. The eBPF instructions can be used to capture specific
events (such as a certain system call being invoked) or to monitor system per-
formance (such as the time required to perform disk I/O). To ensure that eBPF
instructions are well behaved, they are passed through a verifie before being
inserted into the running Linux kernel. The verifier checks to make sure that
the instructions do not affect system performance or security.

Although eBPF provides a rich set of features for tracing within the Linux
kernel, it traditionally has been very difficult to develop programs using its
C interface. BCC was developed to make it easier to write tools using eBPF by
providing a front-end interface in Python. A BCC tool is written in Python and
it embeds C code that interfaces with the eBPF instrumentation, which in turn
interfaces with the kernel. The BCC tool also compiles the C program into eBPF
instructions and inserts it into the kernel using either probes or tracepoints,
two techniques that allow tracing events in the Linux kernel.

The specifics of writing custom BCC tools are beyond the scope of this
text, but the BCC package (which is installed on the Linux virtual machine
we provide) provides a number of existing tools that monitor several areas

2.10 Operating-System Debugging 99

of activity in a running Linux kernel. As an example, the BCC disksnoop tool
traces disk I/O activity. Entering the command

./disksnoop.py

generates the following example output:

TIME(s) T BYTES LAT(ms)
1946.29186700 R 8 0.27
1946.33965000 R 8 0.26
1948.34585000 W 8192 0.96
1950.43251000 R 4096 0.56
1951.74121000 R 4096 0.35

This output tells us the timestamp when the I/O operation occurred, whether
the I/O was a Read or Write operation, and how many bytes were involved in
the I/O. The final column reflects the duration (expressed as latency or LAT) in
milliseconds of the I/O.

Many of the tools provided by BCC can be used for specific applications,
such as MySQL databases, as well as Java and Python programs. Probes can
also be placed to monitor the activity of a specific process. For example, the
command

./opensnoop -p 1225

will trace open() system calls performed only by the process with an identifier
of 1225.

Figure 2.20 The BCC and eBPF tracing tools.

100 Chapter 2 Operating-System Structures

What makes BCC especially powerful is that its tools can be used on
live production systems that are running critical applications without causing
harm to the system. This is particularly useful for system administrators who
must monitor system performance to identify possible bottlenecks or security
exploits. Figure 2.20 illustrates the wide range of tools currently provided by
BCC and eBPF and their ability to trace essentially any area of the Linux operat-
ing system. BCC is a rapidly changing technology with new features constantly
being added.

2.11 Summary

• An operating system provides an environment for the execution of pro-
grams by providing services to users and programs.

• The three primary approaches for interacting with an operating system
are (1) command interpreters, (2) graphical user interfaces, and (3) touch-
screen interfaces.

• System calls provide an interface to the servicesmade available by an oper-
ating system. Programmers use a system call’s application programming
interface (API) for accessing system-call services.

• System calls can be divided into six major categories: (1) process control,
(2) filemanagement, (3) devicemanagement, (4) informationmaintenance,
(5) communications, and (6) protection.

• The standard C library provides the system-call interface for UNIX and
Linux systems.

• Operating systems also include a collection of system programs that pro-
vide utilities to users.

• A linker combines several relocatable object modules into a single binary
executable file. A loader loads the executable file into memory, where it
becomes eligible to run on an available CPU.

• There are several reasons why applications are operating-system specific.
These include different binary formats for program executables, different
instruction sets for different CPUs, and system calls that vary from one
operating system to another.

• An operating system is designed with specific goals in mind. These goals
ultimately determine the operating system’s policies. An operating system
implements these policies through specific mechanisms.

• A monolithic operating system has no structure; all functionality is pro-
vided in a single, static binary file that runs in a single address space.
Although such systems are difficult to modify, their primary benefit is
efficiency.

• A layered operating system is divided into a number of discrete layers,
where the bottom layer is the hardware interface and the highest layer is
the user interface. Although layered software systems have had some suc-

Further Reading 101

cess, this approach is generally not ideal for designing operating systems
due to performance problems.

• Themicrokernel approach for designing operating systems uses aminimal
kernel; most services run as user-level applications. Communication takes
place via message passing.

• Amodular approach for designing operating systems provides operating-
system services through modules that can be loaded and removed during
run time.Many contemporary operating systems are constructed as hybrid
systems using a combination of a monolithic kernel and modules.

• Aboot loader loads an operating system into memory, performs initializa-
tion, and begins system execution.

• The performance of an operating system can be monitored using either
counters or tracing. Counters are a collection of system-wide or per-
process statistics, while tracing follows the execution of a program through
the operating system.

Practice Exercises

2.1 What is the purpose of system calls?

2.2 What is the purpose of the command interpreter? Why is it usually
separate from the kernel?

2.3 What system calls have to be executed by a command interpreter or shell
in order to start a new process on a UNIX system?

2.4 What is the purpose of system programs?

2.5 What is the main advantage of the layered approach to system design?
What are the disadvantages of the layered approach?

2.6 List five services providedby an operating system, and explainhow each
creates convenience for users. In which cases would it be impossible for
user-level programs to provide these services? Explain your answer.

2.7 Why do some systems store the operating system in firmware, while
others store it on disk?

2.8 How could a system be designed to allow a choice of operating systems
from which to boot? What would the bootstrap program need to do?

Further Reading

[Bryant and O’Hallaron (2015)] provide an overview of computer systems,
including the role of the linker and loader. [Atlidakis et al. (2016)] discuss POSIX
system calls and how they relate to modern operating systems. [Levin (2013)]
covers the internals of bothmacOS and iOS, and [Levin (2015)] describes details
of the Android system.Windows 10 internals are covered in [Russinovich et al.
(2017)]. BSD UNIX is described in [McKusick et al. (2015)]. [Love (2010)] and

http://scholar.google.com/scholar?hl/en&q=R Bryant and D OHallaron Computer Systems A Programmers Perspective ThirdEdition
http://scholar.google.com/scholar?hl/en&q=V Atlidakis and J Andrus and R Geambasu and D Mitropoulos and J Nieh POSIX Abstractions in Modern Operating Systems The Old the New and the Missing
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=J Levin Android InternalsA Confectioners Cookbook Volume I
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition

102 Chapter 2 Operating-System Structures

[Mauerer (2008)] thoroughly discuss the Linux kernel. Solaris is fully described
in [McDougall and Mauro (2007)].

Linux source code is available at http://www.kernel.org. The Ubuntu ISO
image is available from https://www.ubuntu.com/.

Comprehensive coverage of Linux kernel modules can be found at
http://www.tldp.org/LDP/lkmpg/2.6/lkmpg.pdf. [Ward (2015)] and http://www
.ibm.com/developerworks/linux/library/l-linuxboot/ describe the Linux boot
process using GRUB. Performance tuning—with a focus on Linux and Solaris
systems—is covered in [Gregg (2014)]. Details for the BCC toolkit can be found
at https://github.com/iovisor/bcc/#tools.

Bibliography

[Atlidakis et al. (2016)] V. Atlidakis, J. Andrus, R. Geambasu, D. Mitropoulos,
and J. Nieh, “POSIX Abstractions in Modern Operating Systems: The Old, the
New, and the Missing” (2016), pages 19:1–19:17.

[Bryant and O’Hallaron (2015)] R. Bryant andD.O’Hallaron,Computer Systems:
A Programmer’s Perspective, Third Edition (2015).

[Gregg (2014)] B. Gregg, Systems Performance–Enterprise and the Cloud, Pearson
(2014).

[Levin (2013)] J. Levin, Mac OS X and iOS Internals to the Apple’s Core, Wiley
(2013).

[Levin (2015)] J. Levin, Android Internals–A Confectioner’s Cookbook. Volume I
(2015).

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[Mauerer (2008)] W. Mauerer, Professional Linux Kernel Architecture, John Wiley
and Sons (2008).

[McDougall and Mauro (2007)] R. McDougall and J. Mauro, Solaris Internals,
Second Edition, Prentice Hall (2007).

[McKusick et al. (2015)] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Wat-
son,The Design and Implementation of the FreeBSDUNIXOperating System–Second
Edition, Pearson (2015).

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

[Ward (2015)] B. Ward, How LINUX Works–What Every Superuser Should Know,
Second Edition, No Starch Press (2015).

http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://www.kernel.org
http://www.ubuntu.com/
http://www.tldp.org/LDP/lkmpg/2.6/lkmpg.pdf
http://scholar.google.com/scholar?hl/en&q=B Ward How LINUX WorksWhat Every Superuser Should Know SecondEdition
http://www.ibm.com/developerworks/linux/library/l-linuxboot/
http://scholar.google.com/scholar?hl/en&q=B Gregg Systems PerformanceEnterprise and the Cloud
https://github.com/iovisor/bcc/#tools
http://scholar.google.com/scholar?hl/en&q=V Atlidakis and J Andrus and R Geambasu and D Mitropoulos and J Nieh POSIX Abstractions in Modern Operating Systems The Old the New and the Missing
http://scholar.google.com/scholar?hl/en&q=V Atlidakis and J Andrus and R Geambasu and D Mitropoulos and J Nieh POSIX Abstractions in Modern Operating Systems The Old the New and the Missing
http://scholar.google.com/scholar?hl/en&q=R Bryant and D OHallaron Computer Systems A Programmers Perspective ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Bryant and D OHallaron Computer Systems A Programmers Perspective ThirdEdition
http://scholar.google.com/scholar?hl/en&q=B Gregg Systems PerformanceEnterprise and the Cloud
http://scholar.google.com/scholar?hl/en&q=B Gregg Systems PerformanceEnterprise and the Cloud
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=J Levin Android InternalsA Confectioners Cookbook Volume I
http://scholar.google.com/scholar?hl/en&q=J Levin Android InternalsA Confectioners Cookbook Volume I
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=B Ward How LINUX WorksWhat Every Superuser Should Know SecondEdition
http://scholar.google.com/scholar?hl/en&q=B Ward How LINUX WorksWhat Every Superuser Should Know SecondEdition
http://www.ibm.com/developerworks/linux/library/l-linuxboot/describe
http://www.ibm.com/developerworks/linux/library/l-linuxboot/describe

Chapter 2 Exercises

2.9 The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories,
and discuss how they differ.

2.10 Describe three general methods for passing parameters to the operating
system.

2.11 Describe how you could obtain a statistical profile of the amount of time
a program spends executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.

2.12 What are the advantages and disadvantages of using the same system-
call interface for manipulating both files and devices?

2.13 Would it be possible for the user to develop a new command interpreter
using the system-call interface provided by the operating system?

2.14 DescribewhyAndroid uses ahead-of-time (AOT) rather than just-in-time
(JIT) compilation.

2.15 What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?

2.16 Contrast and compare an application programming interface (API) and
an application binary interface (ABI).

2.17 Why is the separation of mechanism and policy desirable?

2.18 It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.

2.19 What is the main advantage of the microkernel approach to system
design? How do user programs and system services interact in a micro-
kernel architecture? What are the disadvantages of using the microker-
nel approach?

2.20 What are the advantages of using loadable kernel modules?

2.21 How are iOS and Android similar? How are they different?

2.22 Explain why Java programs running on Android systems do not use the
standard Java API and virtual machine.

2.23 The experimental Synthesis operating system has an assembler incor-
porated in the kernel. To optimize system-call performance, the kernel
assembles routineswithin kernel space tominimize the path that the sys-
tem call must take through the kernel. This approach is the antithesis of
the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and system-performance
optimization.

EX-3

Chapter 2 Operating-System Structures

Programming Problems

2.24 In Section 2.3, we described a program that copies the contents of one file
to a destination file. This program works by first prompting the user for
the name of the source and destination files. Write this program using
either the POSIX or Windows API. Be sure to include all necessary error
checking, including ensuring that the source file exists.

Once youhave correctly designedand tested the program, if youused
a system that supports it, run the program using a utility that traces sys-
tem calls. Linux systems provide the strace utility, and macOS systems
use the dtruss command. (The dtruss command, which actually is a
front end to dtrace, requires admin privileges, so it must be run using
sudo.) These tools can be used as follows (assume that the name of the
executable file is FileCopy:

Linux:

strace ./FileCopy

macOS:

sudo dtruss ./FileCopy

Since Windows systems do not provide such a tool, you will have to
trace through the Windows version of this program using a debugger.

Programming Projects

Introduction to Linux Kernel Modules
In this project, youwill learn how to create a kernel module and load it into the
Linux kernel. Youwill thenmodify the kernelmodule so that it creates an entry
in the /proc file system. The project can be completed using the Linux virtual
machine that is available with this text. Although you may use any text editor
to write these C programs, you will have to use the terminal application to
compile the programs, and you will have to enter commands on the command
line to manage the modules in the kernel.

As you’ll discover, the advantage of developing kernel modules is that it
is a relatively easy method of interacting with the kernel, thus allowing you
to write programs that directly invoke kernel functions. It is important for you
to keep in mind that you are indeed writing kernel code that directly interacts
with the kernel. That normally means that any errors in the code could crash
the system! However, since you will be using a virtual machine, any failures
will at worst only require rebooting the system.

P-1

Programming Projects

I. Kernel Modules Overview

The first part of this project involves following a series of steps for creating and
inserting a module into the Linux kernel.

You can list all kernel modules that are currently loaded by entering the
command

lsmod

This command will list the current kernel modules in three columns: name,
size, and where the module is being used.

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>

/* This function is called when the module is loaded. */
int simple init(void)
{

printk(KERN INFO "Loading Kernel Module∖n");

return 0;
}

/* This function is called when the module is removed. */
void simple exit(void)
{

printk(KERN INFO "Removing Kernel Module∖n");
}

/* Macros for registering module entry and exit points. */
module init(simple init);
module exit(simple exit);

MODULE LICENSE("GPL");
MODULE DESCRIPTION("Simple Module");
MODULE AUTHOR("SGG");

Figure 2.21 Kernel module simple.c.

The program in Figure 2.21 (named simple.c and available with the
source code for this text) illustrates a very basic kernel module that prints
appropriate messages when it is loaded and unloaded.

The function simple init() is the module entry point, which represents
the function that is invoked when the module is loaded into the kernel. Simi-
larly, the simple exit() function is the module exit point—the function that
is called when the module is removed from the kernel.

P-2

Chapter 2 Operating-System Structures

The module entry point function must return an integer value, with 0
representing success and any other value representing failure. Themodule exit
point function returns void. Neither the module entry point nor the module
exit point is passed any parameters. The two following macros are used for
registering the module entry and exit points with the kernel:

module init(simple init)

module exit(simple exit)

Notice in the figure how the module entry and exit point functions make
calls to the printk() function. printk() is the kernel equivalent of printf(),
but its output is sent to a kernel log buffer whose contents can be read by
the dmesg command. One difference between printf() and printk() is that
printk() allows us to specify a priority flag, whose values are given in the
<linux/printk.h> include file. In this instance, the priority is KERN INFO,
which is defined as an informationalmessage.

The final lines—MODULE LICENSE(), MODULE DESCRIPTION(), and MOD-
ULE AUTHOR()—represent details regarding the software license, description
of the module, and author. For our purposes, we do not require this infor-
mation, but we include it because it is standard practice in developing kernel
modules.

This kernel module simple.c is compiled using the Makefile accom-
panying the source code with this project. To compile the module, enter the
following on the command line:

make

The compilation produces several files. The file simple.ko represents the
compiled kernel module. The following step illustrates inserting this module
into the Linux kernel.

II. Loading and Removing Kernel Modules

Kernel modules are loaded using the insmod command, which is run as fol-
lows:

sudo insmod simple.ko

To checkwhether themodule has loaded, enter the lsmod command and search
for themodule simple. Recall that themodule entry point is invokedwhen the
module is inserted into the kernel. To check the contents of this message in the
kernel log buffer, enter the command

dmesg

You should see the message "Loading Module."
Removing the kernel module involves invoking the rmmod command

(notice that the .ko suffix is unnecessary):

sudo rmmod simple

P-3

Programming Projects

Be sure to check with the dmesg command to ensure the module has been
removed.

Because the kernel log buffer can fill up quickly, it often makes sense to
clear the buffer periodically. This can be accomplished as follows:

sudo dmesg -c

Proceed through the steps described above to create the kernelmodule and
to load and unload the module. Be sure to check the contents of the kernel log
buffer using dmesg to ensure that you have followed the steps properly.

As kernel modules are running within the kernel, it is possible to obtain
values and call functions that are available only in the kernel and not to regular
user applications. For example, the Linux include file <linux/hash.h>defines
several hashing functions for use within the kernel. This file also defines the
constant value GOLDEN RATIO PRIME (which is defined as an unsigned long).
This value can be printed out as follows:

printk(KERN INFO "%lu∖n", GOLDEN RATIO PRIME);

As another example, the include file <linux/gcd.h> defines the following
function

unsigned long gcd(unsigned long a, unsigned b);

which returns the greatest common divisor of the parameters a and b.
Once you are able to correctly load and unload your module, complete the

following additional steps:

1. Print out the value of GOLDEN RATIO PRIME in the simple init() func-
tion.

2. Print out the greatest common divisor of 3,300 and 24 in the sim-
ple exit() function.

As compiler errors are not often helpfulwhen performing kernel development,
it is important to compile your program often by running make regularly. Be
sure to load and remove the kernel module and check the kernel log buffer
using dmesg to ensure that your changes to simple.c are working properly.

In Section 1.4.3, we described the role of the timer as well as the timer
interrupt handler. In Linux, the rate at which the timer ticks (the tick rate) is the
value HZ defined in <asm/param.h>. The value of HZ determines the frequency
of the timer interrupt, and its value varies by machine type and architecture.
For example, if the value of HZ is 100, a timer interrupt occurs 100 times per
second, or every 10 milliseconds. Additionally, the kernel keeps track of the
global variable jiffies, which maintains the number of timer interrupts that
have occurred since the system was booted. The jiffies variable is declared
in the file <linux/jiffies.h>.

1. Print out the values of jiffies and HZ in the simple init() function.

2. Print out the value of jiffies in the simple exit() function.

P-4

Chapter 2 Operating-System Structures

Before proceeding to the next set of exercises, consider how you can use
the different values of jiffies in simple init() and simple exit() to
determine the number of seconds that have elapsed since the time the kernel
module was loaded and then removed.

III. The /proc File System

The /proc file system is a “pseudo” file system that exists only in kernel mem-
ory and is usedprimarily for querying various kernel and per-process statistics.

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/proc fs.h>
#include <asm/uaccess.h>

#define BUFFER SIZE 128
#define PROC NAME "hello"

ssize t proc read(struct file *file, char user *usr buf,
size t count, loff t *pos);

static struct file operations proc ops = {
.owner = THIS MODULE,
.read = proc read,

};

/* This function is called when the module is loaded. */
int proc init(void)
{

/* creates the /proc/hello entry */
proc create(PROC NAME, 0666, NULL, &proc ops);

return 0;
}

/* This function is called when the module is removed. */
void proc exit(void)
{

/* removes the /proc/hello entry */
remove proc entry(PROC NAME, NULL);

}

Figure 2.22 The /proc file-system kernel module, Part 1

This exercise involves designing kernel modules that create additional entries
in the /procfile system involving both kernel statistics and information related

P-5

Programming Projects

to specific processes. The entire program is included in Figure 2.22 and Figure
2.23.

We begin by describing how to create a new entry in the /proc file sys-
tem. The following program example (named hello.c and available with the
source code for this text) creates a /proc entry named /proc/hello. If a user
enters the command

cat /proc/hello

the infamous Hello Worldmessage is returned.

/* This function is called each time /proc/hello is read */
ssize t proc read(struct file *file, char user *usr buf,

size t count, loff t *pos)
{

int rv = 0;
char buffer[BUFFER SIZE];
static int completed = 0;

if (completed) {
completed = 0;
return 0;

}

completed = 1;

rv = sprintf(buffer, "Hello World∖n");

/* copies kernel space buffer to user space usr buf */
copy to user(usr buf, buffer, rv);

return rv;
}
module init(proc init);
module exit(proc exit);

MODULE LICENSE("GPL");
MODULE DESCRIPTION("Hello Module");
MODULE AUTHOR("SGG");

Figure 2.23 The /proc file system kernel module, Part 2

In the module entry point proc init(), we create the new /proc/hello
entry using the proc create() function. This function is passed proc ops,
which contains a reference to a struct file operations. This struct initial-

P-6

Chapter 2 Operating-System Structures

izes the .owner and .read members. The value of .read is the name of the
function proc read() that is to be called whenever /proc/hello is read.

Examining this proc read() function, we see that the string "Hello
World∖n" iswritten to the variable bufferwhere buffer exists in kernelmem-
ory. Since /proc/hello can be accessed from user space, we must copy the
contents of buffer to user space using the kernel function copy to user().
This function copies the contents of kernel memory buffer to the variable
usr buf, which exists in user space.

Each time the /proc/hello file is read, the proc read() function is called
repeatedly until it returns 0, so there must be logic to ensure that this func-
tion returns 0 once it has collected the data (in this case, the string "Hello
World∖n") that is to go into the corresponding /proc/hello file.

Finally, notice that the /proc/hello file is removed in the module exit
point proc exit() using the function remove proc entry().

IV. Assignment

This assignment will involve designing two kernel modules:

1. Design a kernel module that creates a /proc file named /proc/jiffies
that reports the current value of jiffies when the /proc/jiffies file
is read, such as with the command

cat /proc/jiffies

Be sure to remove /proc/jiffieswhen the module is removed.

2. Design a kernel module that creates a proc file named /proc/seconds
that reports the number of elapsed seconds since the kernel module was
loaded. This will involve using the value of jiffies as well as the HZ
rate. When a user enters the command

cat /proc/seconds

your kernel module will report the number of seconds that have
elapsed since the kernel module was first loaded. Be sure to remove
/proc/secondswhen the module is removed.

P-7

Part Two

Process
Management

A process is a program in execution. A process will need certain
resources—such as CPU time, memory, files, and I/O devices—to
accomplish its task. These resources are typically allocated to the
process while it is executing.

A process is the unit of work in most systems. Systems consist of
a collection of processes: operating-system processes execute system
code, and user processes execute user code. All these processes may
execute concurrently.

Modern operating systems support processes having multiple
threads of control. On systems with multiple hardware processing cores,
these threads can run in parallel.

One of the most important aspects of an operating system is how it
schedules threads onto available processing cores. Several choices for
designing CPU schedulers are available to programmers.

3CHAPTER

Processes

Early computers allowed only one program to be executed at a time. This pro-
gram had complete control of the system and had access to all the system’s
resources. In contrast, contemporary computer systems allow multiple pro-
grams to be loaded into memory and executed concurrently. This evolution
required firmer control and more compartmentalization of the various pro-
grams; and these needs resulted in the notion of a process, which is a program
in execution. A process is the unit of work in a modern computing system.

The more complex the operating system is, the more it is expected to do on
behalf of its users. Although itsmain concern is the execution of user programs,
it also needs to take care of various system tasks that are best done in user space,
rather than within the kernel. A system therefore consists of a collection of
processes, some executing user code, others executing operating system code.
Potentially, all these processes can execute concurrently, with the CPU (or CPUs)
multiplexed among them. In this chapter, you will read about what processes
are, how they are represented in an operating system, and how they work.

CHAPTER OBJECTIVES

• Identify the separate components of a process and illustrate how they are
represented and scheduled in an operating system.

• Describe how processes are created and terminated in an operating sys-
tem, including developing programs using the appropriate system calls
that perform these operations.

• Describe and contrast interprocess communication using shared memory
and message passing.

• Design programs that use pipes and POSIX shared memory to perform
interprocess communication.

• Describe client–server communication using sockets and remote proce-
dure calls.

• Design kernel modules that interact with the Linux operating system.

105

106 Chapter 3 Processes

3.1 Process Concept

A question that arises in discussing operating systems involves what to call
all the CPU activities. Early computers were batch systems that executed jobs,
followed by the emergence of time-shared systems that ran user programs, or
tasks. Even on a single-user system, a usermay be able to run several programs
at one time: a word processor, a web browser, and an e-mail package. And even
if a computer can execute only one program at a time, such as on an embedded
device that does not support multitasking, the operating system may need to
support its own internal programmed activities, such asmemorymanagement.
Inmany respects, all these activities are similar, sowe call all of themprocesses.

Although we personally prefer the more contemporary term process, the
term job has historical significance, as much of operating system theory and
terminologywas developedduring a timewhen themajor activity of operating
systems was job processing. Therefore, in some appropriate instances we use
jobwhen describing the role of the operating system. As an example, it would
be misleading to avoid the use of commonly accepted terms that include the
word job (such as job scheduling) simply because process has superseded job.

3.1.1 The Process

Informally, asmentioned earlier, a process is a program in execution. The status
of the current activity of a process is represented by the value of the program
counter and the contents of the processor’s registers. The memory layout of a
process is typically divided into multiple sections, and is shown in Figure 3.1.
These sections include:

• Text section—the executable code

• Data section—global variables

text

0

max

data

heap

stack

Figure 3.1 Layout of a process in memory.

3.1 Process Concept 107

• Heap section—memory that is dynamically allocated during program run
time

• Stack section—temporary data storage when invoking functions (such as
function parameters, return addresses, and local variables)

Notice that the sizes of the text and data sections are fixed, as their sizes do
not change during program run time.However, the stack and heap sections can
shrink and grow dynamically during program execution. Each time a function
is called, an activation record containing function parameters, local variables,
and the return address is pushed onto the stack; when control is returned from
the function, the activation record is popped from the stack. Similarly, the heap
will grow as memory is dynamically allocated, and will shrink when memory
is returned to the system. Although the stack and heap sections grow toward
one another, the operating systemmust ensure theydonotoverlap one another.

We emphasize that a program by itself is not a process. A program is a
passive entity, such as a file containing a list of instructions stored on disk
(often called an executable fil). In contrast, a process is an active entity,
with a program counter specifying the next instruction to execute and a set
of associated resources. A program becomes a process when an executable file
is loaded into memory. Two common techniques for loading executable files
are double-clicking an icon representing the executable file and entering the
name of the executable file on the command line (as in prog.exe or a.out).

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,
several users may be running different copies of the mail program, or the same
user may invoke many copies of the web browser program. Each of these is a
separate process; and although the text sections are equivalent, the data, heap,
and stack sections vary. It is also common to have a process that spawns many
processes as it runs. We discuss such matters in Section 3.4.

Note that a process can itself be an execution environment for other code.
The Java programming environment provides a good example. In most cir-
cumstances, an executable Java program is executed within the Java virtual
machine (JVM). The JVM executes as a process that interprets the loaded Java
code and takes actions (via native machine instructions) on behalf of that code.
For example, to run the compiled Java program Program.class, we would
enter

java Program

The command java runs the JVM as an ordinary process, which in turns
executes the Java program Program in the virtual machine. The concept is the
same as simulation, except that the code, instead of beingwritten for a different
instruction set, is written in the Java language.

3.1.2 Process State

As a process executes, it changes state. The state of a process is defined in part
by the current activity of that process. Aprocess may be in one of the following
states:

108 Chapter 3 Processes

MEMORY LAYOUT OF AC PROGRAM

The figure shown below illustrates the layout of a C program in memory,
highlighting how the different sections of a process relate to an actual C
program. This figure is similar to the general concept of a process in memory
as shown in Figure 3.1, with a few differences:

• The global data section is divided into different sections for (a) initialized
data and (b) uninitialized data.

• Aseparate section is provided for the argc and argv parameters passed
to the main() function.

#include <stdio.h>
#include <stdlib.h>

int x;
int y = 15;

int main(int argc, char *argv[])
{
 int *values;
 int i;

 values = (int *)malloc(sizeof(int)*5);

 for(i = 0; i < 5; i++)
 values[i] = i;

 return 0;
}

argc, agrv

uninitialized
data

high
memory

low
memory

initialized
data

stack

heap

text

The GNU size command can be used to determine the size (in bytes) of
some of these sections. Assuming the name of the executable file of the above
C program is memory, the following is the output generated by entering the
command size memory:

text data bss dec hex filename
1158 284 8 1450 5aa memory

The data field refers to uninitialized data, and bss refers to initialized data.
(bss is a historical term referring to block started by symbol.) The dec and
hex values are the sum of the three sections represented in decimal and
hexadecimal, respectively.

• New. The process is being created.

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O
completion or reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

3.1 Process Concept 109

new terminated

runningready

admitted interrupt

scheduler dispatch
I/O or event completion I/O or event wait

exit

waiting

Figure 3.2 Diagram of process state.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating sys-
tems also more finely delineate process states. It is important to realize that
only one process can be running on any processor core at any instant. Many
processesmay be ready andwaiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control
block (PCB)—also called a task control block. A PCB is shown in Figure 3.3.
It contains many pieces of information associated with a specific process,
including these:

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

process state

process number

program counter

memory limits

list of open files

registers

• • •

Figure 3.3 Process control block (PCB).

110 Chapter 3 Processes

• CPU registers. The registers vary in number and type, depending on the
computer architecture. They include accumulators, index registers, stack
pointers, and general-purpose registers, plus any condition-code informa-
tion. Alongwith the program counter, this state informationmust be saved
when an interrupt occurs, to allow the process to be continued correctly
afterward when it is rescheduled to run.

• CPU-scheduling information. This information includes a process prior-
ity, pointers to scheduling queues, and any other scheduling parameters.
(Chapter 5 describes process scheduling.)

• Memory-management information. This information may include such
items as the value of the base and limit registers and the page tables, or the
segment tables, depending on the memory system used by the operating
system (Chapter 9).

• Accounting information. This information includes the amount of CPU
and real time used, time limits, account numbers, job or process numbers,
and so on.

• I/O status information. This information includes the list of I/O devices
allocated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for all the data needed to start,
or restart, a process, along with some accounting data.

3.1.4 Threads

The processmodel discussed so far has implied that a process is a program that
performs a single thread of execution. For example, when a process is running
a word-processor program, a single thread of instructions is being executed.
This single thread of control allows the process to perform only one task at a
time. Thus, the user cannot simultaneously type in characters and run the spell
checker. Most modern operating systems have extended the process concept
to allow a process to have multiple threads of execution and thus to perform
more than one task at a time. This feature is especially beneficial on multicore
systems, where multiple threads can run in parallel. A multithreaded word
processor could, for example, assign one thread to manage user input while
another thread runs the spell checker. On systems that support threads, the PCB
is expanded to include information for each thread. Other changes throughout
the system are also needed to support threads. Chapter 4 explores threads in
detail.

3.2 Process Scheduling

The objective ofmultiprogramming is to have someprocess running at all times
so as to maximize CPU utilization. The objective of time sharing is to switch
a CPU core among processes so frequently that users can interact with each
program while it is running. To meet these objectives, the process scheduler
selects an available process (possibly from a set of several available processes)
for program execution on a core. Each CPU core can run one process at a time.

3.2 Process Scheduling 111

PROCESS REPRESENTATION IN LINUX

The process control block in the Linux operating system is rep-
resented by the C structure task struct, which is found in the
<include/linux/sched.h> include file in the kernel source-code
directory. This structure contains all the necessary information for
representing a process, including the state of the process, scheduling
and memory-management information, list of open files, and pointers to the
process’s parent and a list of its children and siblings. (A process’s parent
is the process that created it; its children are any processes that it creates.
Its siblings are children with the same parent process.) Some of these fields
include:

long state; /* state of the process */
struct sched entity se; /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space */

For example, the state of a process is represented by the field long state
in this structure. Within the Linux kernel, all active processes are represented
using a doubly linked list of task struct. The kernel maintains a pointer–
current–to the process currently executing on the system, as shown below:

struct task_struct
process information

•
•
•

struct task_struct
process information

•
•
•

current
(currently executing proccess)

struct task_struct
process information

•
•
•

• • •

As an illustration of how the kernel might manipulate one of the fields in
the task struct for a specified process, let’s assume the system would like
to change the state of the process currently running to the value new state.
If current is a pointer to the process currently executing, its state is changed
with the following:

current->state = new state;

For a system with a single CPU core, there will never be more than one process
running at a time, whereas a multicore system can run multiple processes at
one time. If there are more processes than cores, excess processes will have

112 Chapter 3 Processes

queue header PCB 7

PCB3 PCB14 PCB6

PCB 2

head

head

ready
queue

wait
queue

tail registers registers

tail

•
•
•

•
•
•

Figure 3.4 The ready queue and wait queues.

to wait until a core is free and can be rescheduled. The number of processes
currently in memory is known as the degree of multiprogramming.

Balancing the objectives of multiprogramming and time sharing also
requires taking the general behavior of a process into account. In general, most
processes can be described as either I/O bound or CPU bound. An I/O-bound
process is one that spends more of its time doing I/O than it spends doing
computations. A CPU-bound process, in contrast, generates I/O requests
infrequently, using more of its time doing computations.

3.2.1 Scheduling Queues

As processes enter the system, they are put into a ready queue, where they are
ready and waiting to execute on a CPU’s core This queue is generally stored as
a linked list; a ready-queue header contains pointers to the first PCB in the list,
and each PCB includes a pointer field that points to the next PCB in the ready
queue.

The system also includes other queues. When a process is allocated a CPU
core, it executes for a while and eventually terminates, is interrupted, or waits
for the occurrence of a particular event, such as the completion of an I/O
request. Suppose the process makes an I/O request to a device such as a disk.
Since devices run significantly slower than processors, the process will have
to wait for the I/O to become available. Processes that are waiting for a certain
event to occur — such as completion of I/O — are placed in a wait queue
(Figure 3.4).

A common representation of process scheduling is a queueing diagram,
such as that in Figure 3.5. Two types of queues are present: the ready queue and
a set of wait queues. The circles represent the resources that serve the queues,
and the arrows indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there until it is
selected for execution, or dispatched. Once the process is allocated a CPU core
and is executing, one of several events could occur:

3.2 Process Scheduling 113

ready queue CPU

I/O I/O wait queue I/O request

time slice
expired

create child
process

child
termination
wait queue

wait for an
interrupt

interrupt
wait queue

interrupt
occurs

child
terminates

Figure 3.5 Queueing-diagram representation of process scheduling.

• The process could issue an I/O request and then be placed in an I/O wait
queue.

• The process could create a new child process and then be placed in a wait
queue while it awaits the child’s termination.

• The process could be removed forcibly from the core, as a result of an
interrupt or having its time slice expire, and be put back in the readyqueue.

In the first two cases, the process eventually switches from thewaiting state
to the ready state and is then put back in the ready queue. Aprocess continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 CPU Scheduling

Aprocess migrates among the ready queue and various wait queues through-
out its lifetime. The role of the CPU scheduler is to select from among the
processes that are in the ready queue and allocate a CPU core to one of them. The
CPU scheduler must select a new process for the CPU frequently. An I/O-bound
process may execute for only a few milliseconds before waiting for an I/O
request.Although a CPU-bound processwill require a CPU core for longer dura-
tions, the scheduler is unlikely to grant the core to a process for an extended
period. Instead, it is likely designed to forcibly remove the CPU from a process
and schedule another process to run. Therefore, the CPU scheduler executes at
least once every 100 milliseconds, although typically much more frequently.

Some operating systems have an intermediate form of scheduling, known
as swapping, whose key idea is that sometimes it can be advantageous to
remove a process from memory (and from active contention for the CPU)
and thus reduce the degree of multiprogramming. Later, the process can be
reintroduced into memory, and its execution can be continued where it left off.
This scheme is known as swapping because a process can be “swapped out”

114 Chapter 3 Processes

frommemory to disk, where its current status is saved, and later “swapped in”
from disk back to memory, where its status is restored. Swapping is typically
only necessary when memory has been overcommitted and must be freed up.
Swapping is discussed in Chapter 9.

3.2.3 Context Switch

Asmentioned in Section 1.2.1, interrupts cause the operating system to change
a CPU core from its current task and to run a kernel routine. Such operations
happen frequently on general-purpose systems. When an interrupt occurs, the
system needs to save the current context of the process running on the CPU
core so that it can restore that context when its processing is done, essentially
suspending the process and then resuming it. The context is represented in
the PCB of the process. It includes the value of the CPU registers, the process
state (see Figure 3.2), and memory-management information. Generically, we
perform a state save of the current state of the CPU core, be it in kernel or user
mode, and then a state restore to resume operations.

Switching the CPU core to another process requires performing a state
save of the current process and a state restore of a different process. This
task is known as a context switch and is illustrated in Figure 3.6. When a
context switch occurs, the kernel saves the context of the old process in its
PCB and loads the saved context of the new process scheduled to run. Context-
switch time is pure overhead, because the system does no useful work while
switching. Switching speed varies frommachine tomachine, depending on the

process P0 process P1

save state into PCB0

save state into PCB1

reload state from PCB1

reload state from PCB0

operating system

idle

idle

executingidle

executing

executing

interrupt or system call

interrupt or system call

•
•
•

•
•
•

Figure 3.6 Diagram showing context switch from process to process.

3.2 Process Scheduling 115

MULTITASKING IN MOBILE SYSTEMS

Because of the constraints imposed on mobile devices, early versions of iOS
did not provide user-application multitasking; only one application ran in
the foregroundwhile all other user applications were suspended. Operating-
system tasks were multitasked because they were written by Apple and well
behaved. However, beginning with iOS 4, Apple provided a limited form of
multitasking for user applications, thus allowing a single foreground appli-
cation to run concurrently with multiple background applications. (On a
mobile device, the foreground application is the application currently open
and appearing on the display. The background application remains in mem-
ory, but does not occupy the display screen.) The iOS 4 programming API
provided support formultitasking, thus allowing a process to run in the back-
groundwithout being suspended.However, it was limited and only available
for a few application types. As hardware for mobile devices began to offer
larger memory capacities, multiple processing cores, and greater battery life,
subsequent versions of iOS began to support richer functionality for multi-
tasking with fewer restrictions. For example, the larger screen on iPad tablets
allowed running two foreground apps at the same time, a technique known
as split-screen.

Since its origins, Android has supported multitasking and does not place
constraints on the types of applications that can run in the background. If
an application requires processing while in the background, the application
must use a service, a separate application component that runs on behalf
of the background process. Consider a streaming audio application: if the
application moves to the background, the service continues to send audio
data to the audio device driver on behalf of the background application. In
fact, the service will continue to run even if the background application is
suspended. Services do not have a user interface and have a small memory
footprint, thus providing an efficient technique for multitasking in a mobile
environment.

memory speed, the number of registers that must be copied, and the existence
of special instructions (such as a single instruction to load or store all registers).
A typical speed is a several microseconds.

Context-switch times are highly dependent on hardware support. For
instance, some processors provide multiple sets of registers. A context switch
here simply requires changing the pointer to the current register set. Of course,
if there are more active processes than there are register sets, the system resorts
to copying register data to and frommemory, as before. Also, themore complex
the operating system, the greater the amount of work that must be done during
a context switch. As we will see in Chapter 9, advanced memory-management
techniques may require that extra data be switched with each context. For
instance, the address space of the current process must be preserved as the
space of the next task is prepared for use. How the address space is preserved,
and what amount of work is needed to preserve it, depend on the memory-
management method of the operating system.

116 Chapter 3 Processes

3.3 Operations on Processes

The processes in most systems can execute concurrently, and they may be cre-
ated and deleted dynamically. Thus, these systems must provide a mechanism
for process creation and termination. In this section, we explore the mecha-
nisms involved in creating processes and illustrate process creation on UNIX
and Windows systems.

3.3.1 Process Creation

During the course of execution, a processmay create several new processes. As
mentioned earlier, the creating process is called a parent process, and the new
processes are called the children of that process. Each of these new processes
may in turn create other processes, forming a tree of processes.

Most operating systems (including UNIX, Linux, and Windows) identify
processes according to a unique process identifie (or pid), which is typically
an integer number. The pid provides a unique value for each process in the
system, and it can be used as an index to access various attributes of a process
within the kernel.

Figure 3.7 illustrates a typical process tree for the Linux operating system,
showing the name of each process and its pid. (We use the term process rather
loosely in this situation, as Linux prefers the term task instead.) The systemd
process (which always has a pid of 1) serves as the root parent process for all
user processes, and is the first user process created when the system boots.
Once the system has booted, the systemd process creates processes which
provide additional services such as a web or print server, an ssh server, and
the like. In Figure 3.7, we see two children of systemd—logind and sshd.
The logind process is responsible for managing clients that directly log onto
the system. In this example, a client has logged on and is using the bash shell,
which has been assigned pid 8416. Using the bash command-line interface,
this user has created the process ps as well as the vim editor. The sshd process
is responsible for managing clients that connect to the system by using ssh
(which is short for secure shell).

python
pid = 2808

logind
pid = 8415

systemd
pid = 1

bash
pid = 8416

ps
pid = 9298

vim
pid = 9204

sshd
pid = 3028

sshd
pid = 3610

tcsh
pid = 4005

Figure 3.7 A tree of processes on a typical Linux system.

3.3 Operations on Processes 117

THE init AND systemd PROCESSES

Traditional UNIX systems identify the process init as the root of all child
processes. init (also known as System V init) is assigned a pid of 1, and is
the first process created when the system is booted. On a process tree similar
to what is shown in Figure 3.7, init is at the root.

Linux systems initially adopted the System V init approach, but recent
distributions have replaced it with systemd. As described in Section 3.3.1,
systemd serves as the system’s initial process, much the same as System V
init; however it is much more flexible, and can provide more services, than
init.

On UNIX and Linux systems, we can obtain a listing of processes by using
the ps command. For example, the command

ps -el

will list complete information for all processes currently active in the system.
A process tree similar to the one shown in Figure 3.7 can be constructed by
recursively tracing parent processes all the way to the systemd process. (In
addition, Linux systems provide the pstree command, which displays a tree
of all processes in the system.)

In general, when a process creates a child process, that child process will
need certain resources (CPU time, memory, files, I/O devices) to accomplish
its task. A child process may be able to obtain its resources directly from
the operating system, or it may be constrained to a subset of the resources
of the parent process. The parent may have to partition its resources among
its children, or it may be able to share some resources (such as memory or
files) among several of its children. Restricting a child process to a subset of
the parent’s resources prevents any process from overloading the system by
creating too many child processes.

In addition to supplying various physical and logical resources, the parent
process may pass along initialization data (input) to the child process. For
example, consider a processwhose function is to display the contents of a file—
say, hw1.c—on the screen of a terminal.When the process is created, it will get,
as an input from its parent process, the name of the file hw1.c. Using that file
name, it will open the file and write the contents out. It may also get the name
of the output device. Alternatively, some operating systems pass resources to
child processes. On such a system, the new process may get two open files,
hw1.c and the terminal device, and may simply transfer the datum between
the two.

When a process creates a new process, two possibilities for execution exist:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

There are also two address-space possibilities for the new process:

118 Chapter 3 Processes

1. The child process is a duplicate of the parent process (it has the same
program and data as the parent).

2. The child process has a new program loaded into it.

To illustrate these differences, let’s first consider the UNIX operating system. In
UNIX, as we’ve seen, each process is identified by its process identifier, which
is a unique integer. A new process is created by the fork() system call. The
new process consists of a copy of the address space of the original process.
This mechanism allows the parent process to communicate easilywith its child
process. Both processes (the parent and the child) continue execution at the
instruction after the fork(), with one difference: the return code for the fork()
is zero for the new (child) process, whereas the (nonzero) process identifier of
the child is returned to the parent.

After a fork() system call, one of the two processes typically uses the
exec() system call to replace the process’s memory space with a new pro-
gram. The exec() system call loads a binary file into memory (destroying the
memory image of the program containing the exec() system call) and starts

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls","ls",NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete");

}

return 0;
}

Figure 3.8 Creating a separate process using the UNIX fork() system call.

3.3 Operations on Processes 119

its execution. In this manner, the two processes are able to communicate and
then go their separate ways. The parent can then create more children; or, if it
has nothing else to do while the child runs, it can issue a wait() system call
to move itself off the ready queue until the termination of the child. Because
the call to exec() overlays the process’s address space with a new program,
exec() does not return control unless an error occurs.

The C program shown in Figure 3.8 illustrates the UNIX system calls pre-
viously described. We now have two different processes running copies of the
same program. The only difference is that the value of the variable pid for the
child process is zero, while that for the parent is an integer value greater than
zero (in fact, it is the actual pid of the child process). The child process inherits
privileges and scheduling attributes from the parent, as well certain resources,
such as open files. The child process then overlays its address space with the
UNIX command /bin/ls (used to get a directory listing) using the execlp()
system call (execlp() is a version of the exec() system call). The parent waits
for the child process to complete with the wait() system call. When the child
process completes (by either implicitly or explicitly invoking exit()), the par-
ent process resumes from the call to wait(), where it completes using the
exit() system call. This is also illustrated in Figure 3.9.

Of course, there is nothing to prevent the child from not invoking exec()
and instead continuing to execute as a copy of the parent process. In this
scenario, the parent and child are concurrent processes running the same code
instructions. Because the child is a copy of the parent, each process has its own
copy of any data.

As an alternative example, we next consider process creation in Windows.
Processes are created in the Windows API using the CreateProcess() func-
tion, which is similar to fork() in that a parent creates a new child process.
However, whereas fork() has the child process inheriting the address space
of its parent, CreateProcess() requires loading a specified program into the
address space of the child process at process creation. Furthermore, whereas
fork() is passed no parameters, CreateProcess() expects no fewer than ten
parameters.

The C program shown in Figure 3.10 illustrates the CreateProcess()
function, which creates a child process that loads the application mspaint.exe.
We opt for many of the default values of the ten parameters passed to Cre-
ateProcess(). Readers interested in pursuing the details of process creation
and management in the Windows API are encouraged to consult the biblio-
graphical notes at the end of this chapter.

The two parameters passed to the CreateProcess() function are
instances of the STARTUPINFO and PROCESS INFORMATION structures.
STARTUPINFO specifies many properties of the new process, such as window

Figure 3.9 Process creation using the fork() system call.

120 Chapter 3 Processes

#include <stdio.h>
#include <windows.h>

int main(VOID)
{
STARTUPINFO si;
PROCESS INFORMATION pi;

/* allocate memory */
ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory(&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:∖∖WINDOWS∖∖system32∖∖mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si,
&pi))

{
fprintf(stderr, "Create Process Failed");
return -1;

}
/* parent will wait for the child to complete */
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

}

Figure 3.10 Creating a separate process using the Windows API.

size and appearance and handles to standard input and output files. The
PROCESS INFORMATION structure contains a handle and the identifiers to
the newly created process and its thread. We invoke the ZeroMemory()
function to allocate memory for each of these structures before proceeding
with CreateProcess().

The first two parameters passed to CreateProcess() are the application
name and command-line parameters. If the application name is NULL (as it
is in this case), the command-line parameter specifies the application to load.

3.3 Operations on Processes 121

In this instance, we are loading the Microsoft Windows mspaint.exe appli-
cation. Beyond these two initial parameters, we use the default parameters for
inheriting process and thread handles aswell as specifying that therewill be no
creation flags.We also use the parent’s existing environment block and starting
directory. Last, we provide two pointers to the STARTUPINFO and PROCESS -
INFORMATION structures created at the beginning of the program. In Figure
3.8, the parent process waits for the child to complete by invoking the wait()
system call. The equivalent of this in Windows is WaitForSingleObject(),
which is passed a handle of the child process—pi.hProcess—and waits for
this process to complete. Once the child process exits, control returns from the
WaitForSingleObject() function in the parent process.

3.3.2 Process Termination

A process terminates when it finishes executing its final statement and asks
the operating system to delete it by using the exit() system call. At that
point, the process may return a status value (typically an integer) to its waiting
parent process (via the wait() system call). All the resources of the process
—including physical and virtual memory, open files, and I/O buffers—are
deallocated and reclaimed by the operating system.

Termination can occur in other circumstances as well. A process can cause
the termination of another process via an appropriate system call (for example,
TerminateProcess() inWindows). Usually, such a system call can be invoked
only by the parent of the process that is to be terminated. Otherwise, a user—
or a misbehaving application—could arbitrarily kill another user’s processes.
Note that a parent needs to know the identities of its children if it is to terminate
them. Thus, when one process creates a new process, the identity of the newly
created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of
reasons, such as these:

• The child has exceeded its usage of some of the resources that it has been
allocated. (To determine whether this has occurred, the parent must have
a mechanism to inspect the state of its children.)

• The task assigned to the child is no longer required.

• The parent is exiting, and the operating system does not allow a child to
continue if its parent terminates.

Some systems do not allow a child to exist if its parent has terminated.
In such systems, if a process terminates (either normally or abnormally), then
all its children must also be terminated. This phenomenon, referred to as
cascading termination, is normally initiated by the operating system.

To illustrate process execution and termination, consider that, in Linux and
UNIX systems, we can terminate a process by using the exit() system call,
providing an exit status as a parameter:

/* exit with status 1 */
exit(1);

122 Chapter 3 Processes

In fact, under normal termination, exit() will be called either directly (as
shown above) or indirectly, as the C run-time library (which is added to UNIX
executable files) will include a call to exit() by default.

A parent process may wait for the termination of a child process by using
the wait() system call. The wait() system call is passed a parameter that
allows the parent to obtain the exit status of the child. This system call also
returns the process identifier of the terminated child so that the parent can tell
which of its children has terminated:

pid t pid;
int status;

pid = wait(&status);

When a process terminates, its resources are deallocated by the operating
system. However, its entry in the process table must remain there until the
parent calls wait(), because the process table contains the process’s exit status.
A process that has terminated, but whose parent has not yet called wait(), is
known as a zombie process. All processes transition to this state when they
terminate, but generally they exist as zombies only briefly. Once the parent
calls wait(), the process identifier of the zombie process and its entry in the
process table are released.

Now consider what would happen if a parent did not invoke wait() and
instead terminated, thereby leaving its child processes as orphans. Traditional
UNIX systems addressed this scenario by assigning the init process as the new
parent to orphan processes. (Recall from Section 3.3.1 that init serves as the
root of the process hierarchy in UNIX systems.) The init process periodically
invokes wait(), thereby allowing the exit status of any orphaned process to be
collected and releasing the orphan’s process identifier and process-table entry.

Althoughmost Linux systems have replaced initwith systemd, the latter
process can still serve the same role, although Linux also allows processes other
than systemd to inherit orphan processes and manage their termination.

3.3.2.1 Android Process Hierarchy

Because of resource constraints such as limited memory, mobile operating
systems may have to terminate existing processes to reclaim limited system
resources. Rather than terminating an arbitrary process, Android has identified
an importance hierarchy of processes, and when the system must terminate
a process to make resources available for a new, or more important, process,
it terminates processes in order of increasing importance. From most to least
important, the hierarchy of process classifications is as follows:

• Foreground process—The current process visible on the screen, represent-
ing the application the user is currently interacting with

• Visible process—A process that is not directly visible on the foreground
but that is performing an activity that the foreground process is referring
to (that is, a process performing an activity whose status is displayed on
the foreground process)

3.4 Interprocess Communication 123

• Service process—A process that is similar to a background process but
is performing an activity that is apparent to the user (such as streaming
music)

• Background process—A process that may be performing an activity but
is not apparent to the user.

• Empty process—A process that holds no active components associated
with any application

If system resources must be reclaimed, Android will first terminate empty
processes, followed by background processes, and so forth. Processes are
assigned an importance ranking, and Android attempts to assign a process as
high a ranking as possible. For example, if a process is providing a service and
is also visible, it will be assigned the more-important visible classification.

Furthermore, Android development practices suggest following the guide-
lines of the process life cycle. When these guidelines are followed, the state of
a process will be saved prior to termination and resumed at its saved state if
the user navigates back to the application.

3.4 Interprocess Communication

Processes executing concurrently in the operating system may be either inde-
pendent processes or cooperating processes. Aprocess is independent if it does
not share data with any other processes executing in the system. A process
is cooperating if it can affect or be affected by the other processes executing
in the system. Clearly, any process that shares data with other processes is a
cooperating process.

There are several reasons for providing an environment that allows process
cooperation:

• Information sharing. Since several applications may be interested in the
same piece of information (for instance, copying and pasting), we must
provide an environment to allow concurrent access to such information.

• Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer
has multiple processing cores.

• Modularity. We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads, as we
discussed in Chapter 2.

Cooperating processes require an interprocess communication (IPC)
mechanism that will allow them to exchange data— that is, send data to
and receive data from each other. There are two fundamental models of
interprocess communication: shared memory and message passing. In the
shared-memory model, a region of memory that is shared by the cooperating
processes is established. Processes can then exchange information by reading
and writing data to the shared region. In the message-passing model,

124 Chapter 3 Processes

MULTIPROCESS ARCHITECTURE—CHROME BROWSER

Many websites contain active content, such as JavaScript, Flash, and HTML5
to provide a rich and dynamic web-browsing experience. Unfortunately,
these web applications may also contain software bugs, which can result in
sluggish response times and can even cause the web browser to crash. This
isn’t a big problem in aweb browser that displays content from only oneweb-
site. But most contemporary web browsers provide tabbed browsing, which
allows a single instance of aweb browser application to open severalwebsites
at the same time, with each site in a separate tab. To switch between the dif-
ferent sites, a user need only click on the appropriate tab. This arrangement
is illustrated below:

Aproblemwith this approach is that if aweb application in any tab crashes,
the entire process—including all other tabs displaying additional websites—
crashes as well.

Google’s Chrome web browser was designed to address this issue by
using a multiprocess architecture. Chrome identifies three different types of
processes: browser, renderers, and plug-ins.

• The browser process is responsible for managing the user interface as
well as disk and network I/O. A new browser process is created when
Chrome is started. Only one browser process is created.

• Renderer processes contain logic for rendering web pages. Thus, they
contain the logic for handling HTML, Javascript, images, and so forth. As
a general rule, a new renderer process is created for each website opened
in a new tab, and so several renderer processes may be active at the same
time.

• A plug-in process is created for each type of plug-in (such as Flash or
QuickTime) in use. Plug-in processes contain the code for the plug-in as
well as additional code that enables the plug-in to communicate with
associated renderer processes and the browser process.

The advantage of the multiprocess approach is that websites run in iso-
lation from one another. If one website crashes, only its renderer process is
affected; all other processes remain unharmed. Furthermore, renderer pro-
cesses run in a sandbox, which means that access to disk and network I/O is
restricted, minimizing the effects of any security exploits.

communication takes place by means of messages exchanged between the
cooperating processes. The two communications models are contrasted in
Figure 3.11.

3.5 IPC in Shared-Memory Systems 125

process A

message queue

(a) (b)

process B

m0 m1 m2 ...m3 mn

kernel

shared memory

kernel

process

process

B

A

Figure 3.11 Communications models. (a) Shared memory. (b) Message passing.

Both of the models just mentioned are common in operating systems,
and many systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Message pass-
ing is also easier to implement in a distributed system than shared memory.
(Although there are systems that provide distributed shared memory, we do
not consider them in this text.) Sharedmemory can be faster thanmessagepass-
ing, since message-passing systems are typically implemented using system
calls and thus require the more time-consuming task of kernel intervention.
In shared-memory systems, system calls are required only to establish shared-
memory regions. Once shared memory is established, all accesses are treated
as routine memory accesses, and no assistance from the kernel is required.

In Section 3.5 and Section 3.6 we explore shared-memory and message-
passing systems in more detail.

3.5 IPC in Shared-Memory Systems

Interprocess communication using shared memory requires communicating
processes to establish a region of shared memory. Typically, a shared-memory
region resides in the address space of the process creating the shared-memory
segment. Other processes that wish to communicate using this shared-memory
segment must attach it to their address space. Recall that, normally, the oper-
ating system tries to prevent one process from accessing another process’s
memory. Shared memory requires that two or more processes agree to remove
this restriction. They can then exchange information by reading and writing
data in the shared areas. The form of the data and the location are determined
by these processes and are not under the operating system’s control. The pro-
cesses are also responsible for ensuring that they are not writing to the same
location simultaneously.

126 Chapter 3 Processes

To illustrate the concept of cooperating processes, let’s consider the pro-
ducer–consumer problem, which is a common paradigm for cooperating pro-
cesses. A producer process produces information that is consumed by a con-
sumer process. For example, a compiler may produce assembly code that is
consumed by an assembler. The assembler, in turn, may produce object mod-
ules that are consumed by the loader. The producer–consumer problem also
provides a usefulmetaphor for the client–server paradigm.We generally think
of a server as a producer and a client as a consumer. For example, a web server
produces (that is, provides) web content such as HTML files and images, which
are consumed (that is, read) by the client web browser requesting the resource.

One solution to the producer–consumer problem uses shared memory. To
allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by
the consumer. This buffer will reside in a region of memory that is shared by
the producer and consumer processes. Aproducer can produce one itemwhile
the consumer is consuming another item. The producer and consumer must be
synchronized, so that the consumer does not try to consume an item that has
not yet been produced.

Two types of buffers can be used. The unbounded buffer places no prac-
tical limit on the size of the buffer. The consumer may have to wait for new
items, but the producer can always produce new items. The bounded buffer
assumes a fixed buffer size. In this case, the consumer must wait if the buffer
is empty, and the producer must wait if the buffer is full.

Let’s look more closely at how the bounded buffer illustrates interprocess
communication using shared memory. The following variables reside in a
region of memory shared by the producer and consumer processes:

#define BUFFER SIZE 10

typedef struct {
. . .

} item;

item buffer[BUFFER SIZE];
int in = 0;
int out = 0;

The shared buffer is implemented as a circular arraywith two logical pointers:
in and out. The variable in points to the next free position in the buffer; out
points to the first full position in the buffer. The buffer is empty when in ==
out; the buffer is full when ((in + 1) % BUFFER SIZE) == out.

The code for the producer process is shown in Figure 3.12, and the code for
the consumer process is shown in Figure 3.13. The producer process has a local
variable next produced in which the new item to be produced is stored. The
consumer process has a local variable next consumed in which the item to be
consumed is stored.

This scheme allows at most BUFFER SIZE − 1 items in the buffer at the
same time. We leave it as an exercise for you to provide a solution in which
BUFFER SIZE items can be in the buffer at the same time. In Section 3.7.1, we
illustrate the POSIX API for shared memory.

3.6 IPC in Message-Passing Systems 127

item next produced;

while (true) {
/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */

buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;

}

Figure 3.12 The producer process using shared memory.

One issue this illustration does not address concerns the situation in which
both the producer process and the consumer process attempt to access the
shared buffer concurrently. In Chapter 6 and Chapter 7, we discuss how syn-
chronization among cooperating processes can be implemented effectively in
a shared-memory environment.

3.6 IPC in Message-Passing Systems

In Section 3.5, we showed how cooperating processes can communicate in a
shared-memory environment. The scheme requires that these processes share a
region of memory and that the code for accessing andmanipulating the shared
memory be written explicitly by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means for
cooperating processes to communicate with each other via a message-passing
facility.

item next consumed;

while (true) {
while (in == out)

; /* do nothing */

next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */
}

Figure 3.13 The consumer process using shared memory.

128 Chapter 3 Processes

Message passingprovides amechanism to allowprocesses to communicate
and to synchronize their actions without sharing the same address space. It
is particularly useful in a distributed environment, where the communicating
processes may reside on different computers connected by a network. For
example, an Internet chat program could be designed so that chat participants
communicate with one another by exchanging messages.

Amessage-passing facility provides at least two operations:

send(message)
and

receive(message)

Messages sent by a process can be either fixed or variable in size. If only
fixed-sized messages can be sent, the system-level implementation is straight-
forward. This restriction, however, makes the task of programming more diffi-
cult. Conversely, variable-sizedmessages require amore complex system-level
implementation, but the programming task becomes simpler. This is a common
kind of tradeoff seen throughout operating-system design.

If processesP andQwant to communicate, theymust sendmessages to and
receive messages from each other: a communication link must exist between
them. This link can be implemented in a variety ofways.We are concerned here
notwith the link’s physical implementation (such as sharedmemory, hardware
bus, or network, which are covered in Chapter 19) but rather with its logical
implementation. Here are several methods for logically implementing a link
and the send()/receive() operations:

• Direct or indirect communication

• Synchronous or asynchronous communication

• Automatic or explicit buffering

We look at issues related to each of these features next.

3.6.1 Naming

Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communication.

Under direct communication, each process that wants to communicate
must explicitly name the recipient or sender of the communication. In this
scheme, the send() and receive() primitives are defined as:

• send(P, message)—Send a message to process P.

• receive(Q, message)—Receive a message from process Q.

A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other’s
identity to communicate.

3.6 IPC in Message-Passing Systems 129

• A link is associated with exactly two processes.

• Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender pro-
cess and the receiver process must name the other to communicate. A variant
of this scheme employs asymmetry in addressing. Here, only the sender names
the recipient; the recipient is not required to name the sender. In this scheme,
the send() and receive() primitives are defined as follows:

• send(P, message)—Send a message to process P.

• receive(id, message)—Receive a message from any process. The vari-
able id is set to the name of the process with which communication has
taken place.

The disadvantage in both of these schemes (symmetric and asymmetric)
is the limited modularity of the resulting process definitions. Changing the
identifier of a process may necessitate examining all other process definitions.
All references to the old identifier must be found, so that they can be modified
to the new identifier. In general, any such hard-coding techniques, where iden-
tifiers must be explicitly stated, are less desirable than techniques involving
indirection, as described next.

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into
which messages can be placed by processes and from which messages can
be removed. Each mailbox has a unique identification. For example, POSIX
message queues use an integer value to identify a mailbox. Aprocess can com-
municate with another process via a number of different mailboxes, but two
processes can communicate only if they have a shared mailbox. The send()
and receive() primitives are defined as follows:

• send(A, message)—Send a message to mailbox A.

• receive(A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both members of
the pair have a shared mailbox.

• A link may be associated with more than two processes.

• Between each pair of communicating processes, a number of different links
may exist, with each link corresponding to one mailbox.

Now suppose that processes P1, P2, and P3 all share mailbox A. Process P1
sends amessage toA, while both P2 andP3 execute a receive() fromA.Which
process will receive the message sent by P1? The answer depends on which of
the following methods we choose:

• Allow a link to be associated with two processes at most.

130 Chapter 3 Processes

• Allow at most one process at a time to execute a receive() operation.

• Allow the system to select arbitrarily which process will receive the mes-
sage (that is, either P2 or P3, but not both, will receive the message). The
system may define an algorithm for selecting which process will receive
the message (for example, round robin,where processes take turns receiv-
ing messages). The system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system.
If the mailbox is owned by a process (that is, the mailbox is part of the address
space of the process), then we distinguish between the owner (which can
only receive messages through this mailbox) and the user (which can only
send messages to the mailbox). Since each mailbox has a unique owner, there
can be no confusion about which process should receive a message sent to
this mailbox. When a process that owns a mailbox terminates, the mailbox
disappears. Any process that subsequently sends a message to this mailbox
must be notified that the mailbox no longer exists.

In contrast, a mailbox that is owned by the operating system has an exis-
tence of its own. It is independent and is not attached to any particular process.
The operating system then must provide a mechanism that allows a process to
do the following:

• Create a new mailbox.

• Send and receive messages through the mailbox.

• Delete a mailbox.

The process that creates a new mailbox is that mailbox’s owner by default.
Initially, the owner is the only process that can receive messages through this
mailbox. However, the ownership and receiving privilege may be passed to
other processes through appropriate system calls. Of course, this provision
could result in multiple receivers for each mailbox.

3.6.2 Synchronization

Communication between processes takes place through calls to send() and
receive() primitives. There are different design options for implementing
each primitive. Message passing may be either blocking or nonblocking—
also known as synchronous and asynchronous. (Throughout this text, youwill
encounter the concepts of synchronous and asynchronous behavior in relation
to various operating-system algorithms.)

• Blocking send. The sending process is blocked until the message is
received by the receiving process or by the mailbox.

• Nonblocking send. The sending process sends the message and resumes
operation.

• Blocking receive. The receiver blocks until a message is available.

• Nonblocking receive. The receiver retrieves either a valid message or a
null.

3.6 IPC in Message-Passing Systems 131

message next produced;

while (true) {
/* produce an item in next produced */

send(next produced);
}

Figure 3.14 The producer process using message passing.

Different combinations of send() and receive() are possible. When both
send() and receive() are blocking, we have a rendezvous between the
sender and the receiver. The solution to the producer–consumer problem
becomes trivial when we use blocking send() and receive() statements. The
producer merely invokes the blocking send() call and waits until the message
is delivered to either the receiver or the mailbox. Likewise, when the consumer
invokes receive(), it blocks until a message is available. This is illustrated in
Figures 3.14 and 3.15.

3.6.3 Buffering

Whether communication is direct or indirect, messages exchanged by commu-
nicating processes reside in a temporary queue. Basically, such queues can be
implemented in three ways:

• Zero capacity. The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block
until the recipient receives the message.

• Bounded capacity. The queue has finite length n; thus, at most nmessages
can reside in it. If the queue is not full when a new message is sent, the
message is placed in the queue (either the message is copied or a pointer
to the message is kept), and the sender can continue execution without

message next consumed;

while (true) {
receive(next consumed);

/* consume the item in next consumed */
}

Figure 3.15 The consumer process using message passing.

132 Chapter 3 Processes

waiting. The link’s capacity is finite, however. If the link is full, the sender
must block until space is available in the queue.

• Unbounded capacity. The queue’s length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering. The other cases are referred to as systems with automatic buffering.

3.7 Examples of IPC Systems

In this section, we explore four different IPC systems. We first cover the POSIX
API for shared memory and then discuss message passing in the Mach oper-
ating system. Next, we present Windows IPC, which interestingly uses shared
memory as a mechanism for providing certain types of message passing. We
conclude with pipes, one of the earliest IPC mechanisms on UNIX systems.

3.7.1 POSIX Shared Memory

Several IPC mechanisms are available for POSIX systems, including shared
memory and message passing. Here, we explore the POSIX API for shared
memory.

POSIX shared memory is organized using memory-mapped files, which
associate the region of shared memory with a file. A process must first create
a shared-memory object using the shm open() system call, as follows:

fd = shm open(name, O CREAT | O RDWR, 0666);

The first parameter specifies the name of the shared-memory object. Processes
that wish to access this shared memory must refer to the object by this name.
The subsequent parameters specify that the shared-memory object is to be cre-
ated if it does not yet exist (O CREAT) and that the object is open for reading and
writing (O RDWR). The last parameter establishes the file-access permissions of
the shared-memory object. A successful call to shm open() returns an integer
file descriptor for the shared-memory object.

Once the object is established, the ftruncate() function is used to
configure the size of the object in bytes. The call

ftruncate(fd, 4096);

sets the size of the object to 4,096 bytes.
Finally, the mmap() function establishes a memory-mapped file containing

the shared-memory object. It also returns a pointer to the memory-mapped file
that is used for accessing the shared-memory object.

The programs shown in Figure 3.16 and Figure 3.17 use the producer–
consumer model in implementing shared memory. The producer establishes a
shared-memory object and writes to shared memory, and the consumer reads
from shared memory.

3.7 Examples of IPC Systems 133

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

#include <sys/mman.h>

int main()
{
/* the size (in bytes) of shared memory object */
const int SIZE = 4096;
/* name of the shared memory object */
const char *name = "OS";
/* strings written to shared memory */
const char *message 0 = "Hello";
const char *message 1 = "World!";

/* shared memory file descriptor */
int fd;
/* pointer to shared memory obect */
char *ptr;

/* create the shared memory object */
fd = shm open(name,O CREAT | O RDWR,0666);

/* configure the size of the shared memory object */
ftruncate(fd, SIZE);

/* memory map the shared memory object */
ptr = (char *)

mmap(0, SIZE, PROT READ | PROT WRITE, MAP SHARED, fd, 0);

/* write to the shared memory object */
sprintf(ptr,"%s",message 0);
ptr += strlen(message 0);
sprintf(ptr,"%s",message 1);
ptr += strlen(message 1);

return 0;
}

Figure 3.16 Producer process illustrating POSIX shared-memory API.

134 Chapter 3 Processes

The producer, shown in Figure 3.16, creates a shared-memory object named
OS and writes the infamous string "Hello World!" to shared memory. The
program memory-maps a shared-memory object of the specified size and
allows writing to the object. The flag MAP SHARED specifies that changes to the
shared-memory object will be visible to all processes sharing the object. Notice
that we write to the shared-memory object by calling the sprintf() function
and writing the formatted string to the pointer ptr. After each write, we must
increment the pointer by the number of bytes written.

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

#include <sys/mman.h>

int main()
{
/* the size (in bytes) of shared memory object */
const int SIZE = 4096;
/* name of the shared memory object */
const char *name = "OS";
/* shared memory file descriptor */
int fd;
/* pointer to shared memory obect */
char *ptr;

/* open the shared memory object */
fd = shm open(name, O RDONLY, 0666);

/* memory map the shared memory object */
ptr = (char *)

mmap(0, SIZE, PROT READ | PROT WRITE, MAP SHARED, fd, 0);

/* read from the shared memory object */
printf("%s",(char *)ptr);

/* remove the shared memory object */
shm unlink(name);

return 0;
}

Figure 3.17 Consumer process illustrating POSIX shared-memory API.

3.7 Examples of IPC Systems 135

The consumer process, shown in Figure 3.17, reads and outputs the con-
tents of the shared memory. The consumer also invokes the shm unlink()
function, which removes the shared-memory segment after the consumer has
accessed it.We provide further exercises using the POSIX shared-memoryAPI in
the programming exercises at the end of this chapter. Additionally, we provide
more detailed coverage of memory mapping in Section 13.5.

3.7.2 Mach Message Passing

As an example of message passing, we next consider the Mach operating
system.Mach was especially designed for distributed systems, but was shown
to be suitable for desktop and mobile systems as well, as evidenced by its
inclusion in the macOS and iOS operating systems, as discussed in Chapter 2.

The Mach kernel supports the creation and destruction of multiple tasks,
which are similar to processes but have multiple threads of control and
fewer associated resources.Most communication inMach—including all inter-
task communication—is carried out by messages. Messages are sent to, and
received from,mailboxes,which are calledports inMach. Ports are finite in size
and unidirectional; for two-way communication, a message is sent to one port,
and a response is sent to a separate reply port. Each port may have multiple
senders, but only one receiver. Mach uses ports to represent resources such
as tasks, threads, memory, and processors, while message passing provides
an object-oriented approach for interacting with these system resources and
services. Message passing may occur between any two ports on the same host
or on separate hosts on a distributed system.

Associated with each port is a collection of port rights that identify
the capabilities necessary for a task to interact with the port. For example,
for a task to receive a message from a port, it must have the capability
MACH PORT RIGHT RECEIVE for that port. The task that creates a port is that
port’s owner, and the owner is the only task that is allowed to receivemessages
from that port. A port’s owner may also manipulate the capabilities for a port.
This is most commonly done in establishing a reply port. For example, assume
that task T1 owns port P1, and it sends a message to port P2, which is owned
by task T2. If T1 expects to receive a reply from T2, it must grant T2 the
right MACH PORT RIGHT SEND for port P1. Ownership of port rights is at the
task level, which means that all threads belonging to the same task share the
same port rights. Thus, two threads belonging to the same task can easily
communicate by exchanging messages through the per-thread port associated
with each thread.

When a task is created, two special ports—the Task Self port and the
Notify port—are also created. The kernel has receive rights to the Task Self
port, which allows a task to send messages to the kernel. The kernel can send
notification of event occurrences to a task’s Notify port (to which, of course,
the task has receive rights).

The mach port allocate() function call creates a new port and allocates
space for its queue of messages. It also identifies the rights for the port. Each
port right represents a name for that port, and a port can only be accessed via

136 Chapter 3 Processes

a right. Port names are simple integer values and behave much like UNIX file
descriptors. The following example illustrates creating a port using this API:

mach port t port; // the name of the port right

mach port allocate(
mach task self(), // a task referring to itself
MACH PORT RIGHT RECEIVE, // the right for this port
&port); // the name of the port right

Each task also has access to a bootstrap port, which allows a task to register
a port it has createdwith a system-wide bootstrap server. Once a port has been
registered with the bootstrap server, other tasks can look up the port in this
registry and obtain rights for sending messages to the port.

The queue associated with each port is finite in size and is initially empty.
As messages are sent to the port, the messages are copied into the queue. All
messages are delivered reliably and have the same priority. Mach guarantees
that multiple messages from the same sender are queued in first-in, first-
out (FIFO) order but does not guarantee an absolute ordering. For instance,
messages from two senders may be queued in any order.

Mach messages contain the following two fields:

• A fixed-size message header containing metadata about the message,
including the size of the message as well as source and destination ports.
Commonly, the sending thread expects a reply, so the port name of the
source is passed on to the receiving task, which can use it as a “return
address” in sending a reply.

• A variable-sized body containing data.

Messages may be either simple or complex. A simple message contains
ordinary, unstructured user data that are not interpreted by the kernel. A
complex message may contain pointers to memory locations containing data
(known as “out-of-line” data) or may also be used for transferring port rights
to another task. Out-of-line data pointers are especially useful when amessage
must pass large chunks of data. A simple message would require copying and
packaging the data in the message; out-of-line data transmission requires only
a pointer that refers to the memory location where the data are stored.

The function mach msg() is the standard API for both sending and
receiving messages. The value of one of the function’s parameters—either
MACH SEND MSG or MACH RCV MSG—indicates if it is a send or receive operation.
We now illustrate how it is used when a client task sends a simple message to
a server task. Assume there are two ports—client and server—associated
with the client and server tasks, respectively. The code in Figure 3.18 shows
the client task constructing a header and sending a message to the server, as
well as the server task receiving the message sent from the client.

The mach msg() function call is invoked by user programs for performing
message passing. mach msg() then invokes the function mach msg trap(),
which is a system call to the Mach kernel. Within the kernel, mach msg trap()
next calls the function mach msg overwrite trap(), which then handles the
actual passing of the message.

3.7 Examples of IPC Systems 137

#include<mach/mach.h>

struct message {
mach msg header t header;
int data;

};

mach port t client;
mach port t server;

/* Client Code */

struct message message;

// construct the header
message.header.msgh size = sizeof(message);
message.header.msgh remote port = server;
message.header.msgh local port = client;

// send the message
mach msg(&message.header, // message header

MACH SEND MSG, // sending a message
sizeof(message), // size of message sent
0, // maximum size of received message - unnecessary
MACH PORT NULL, // name of receive port - unnecessary
MACH MSG TIMEOUT NONE, // no time outs
MACH PORT NULL // no notify port

);

/* Server Code */

struct message message;

// receive the message
mach msg(&message.header, // message header

MACH RCV MSG, // sending a message
0, // size of message sent
sizeof(message), // maximum size of received message
server, // name of receive port
MACH MSG TIMEOUT NONE, // no time outs
MACH PORT NULL // no notify port

);

Figure 3.18 Example program illustrating message passing in Mach.

The send and receive operations themselves are flexible. For instance,when
a message is sent to a port, its queue may be full. If the queue is not full,
the message is copied to the queue, and the sending task continues. If the

138 Chapter 3 Processes

port’s queue is full, the sender has several options (specified via parameters
to mach msg():

1. Wait indefinitely until there is room in the queue.

2. Wait at most nmilliseconds.

3. Do not wait at all but rather return immediately.

4. Temporarily cache a message. Here, a message is given to the operating
system to keep, even though the queue to which that message is being
sent is full. When the message can be put in the queue, a notification
message is sent back to the sender. Only one message to a full queue can
be pending at any time for a given sending thread.

The final option is meant for server tasks. After finishing a request, a server
task may need to send a one-time reply to the task that requested the service,
but it must also continue with other service requests, even if the reply port for
a client is full.

The major problem with message systems has generally been poor perfor-
mance caused by copying of messages from the sender’s port to the receiver’s
port. The Mach message system attempts to avoid copy operations by using
virtual-memory-management techniques (Chapter 10). Essentially,Machmaps
the address space containing the sender’s message into the receiver’s address
space. Therefore, the message itself is never actually copied, as both the sender
and receiver access the same memory. This message-management technique
provides a large performance boost but works only for intrasystem messages.

3.7.3 Windows

The Windows operating system is an example of modern design that employs
modularity to increase functionality and decrease the time needed to imple-
ment new features. Windows provides support for multiple operating envi-
ronments, or subsystems. Application programs communicate with these sub-
systems via a message-passingmechanism. Thus, application programs can be
considered clients of a subsystem server.

The message-passing facility in Windows is called the advanced local pro-
cedure call (ALPC) facility. It is used for communication between two processes
on the same machine. It is similar to the standard remote procedure call (RPC)
mechanism that is widely used, but it is optimized for and specific toWindows.
(Remote procedure calls are covered in detail in Section 3.8.2.) LikeMach,Win-
dows uses a port object to establish and maintain a connection between two
processes. Windows uses two types of ports: connection ports and communi-
cation ports.

Server processes publish connection-port objects that are visible to all pro-
cesses. When a client wants services from a subsystem, it opens a handle to the
server’s connection-port object and sends a connection request to that port.
The server then creates a channel and returns a handle to the client. The chan-
nel consists of a pair of private communication ports: one for client–server
messages, the other for server–client messages. Additionally, communication
channels support a callback mechanism that allows the client and server to
accept requests when they would normally be expecting a reply.

3.7 Examples of IPC Systems 139

Connection

Port

Connection

request Handle

Handle

Handle

Client

Communication Port

Server

Communication Port

Shared

Section Object

(> 256 bytes)

ServerClient

Figure 3.19 Advanced local procedure calls in Windows.

When an ALPC channel is created, one of threemessage-passing techniques
is chosen:

1. For small messages (up to 256 bytes), the port’s message queue is used
as intermediate storage, and the messages are copied from one process to
the other.

2. Larger messages must be passed through a section object, which is a
region of shared memory associated with the channel.

3. When the amount of data is too large to fit into a section object, an API is
available that allows server processes to read and write directly into the
address space of a client.

The client has to decide when it sets up the channel whether it will need
to send a large message. If the client determines that it does want to send
large messages, it asks for a section object to be created. Similarly, if the server
decides that replies will be large, it creates a section object. So that the section
object can be used, a small message is sent that contains a pointer and size
information about the section object. Thismethod ismore complicated than the
firstmethod listed above, but it avoids data copying. The structure of advanced
local procedure calls in Windows is shown in Figure 3.19.

It is important to note that the ALPC facility in Windows is not part of the
Windows API and hence is not visible to the application programmer. Rather,
applications using the Windows API invoke standard remote procedure calls.
When the RPC is being invoked on a process on the same system, the RPC is
handled indirectly through an ALPC procedure call. Additionally, many kernel
services use ALPC to communicate with client processes.

3.7.4 Pipes

A pipe acts as a conduit allowing two processes to communicate. Pipes were
one of the first IPC mechanisms in early UNIX systems. They typically pro-
vide one of the simpler ways for processes to communicate with one another,
although they also have some limitations. In implementing a pipe, four issues
must be considered:

140 Chapter 3 Processes

1. Does the pipe allow bidirectional communication, or is communication
unidirectional?

2. If two-way communication is allowed, is it half duplex (data can travel
only one way at a time) or full duplex (data can travel in both directions
at the same time)?

3. Must a relationship (such as parent–child) exist between the communi-
cating processes?

4. Can the pipes communicate over a network, or must the communicating
processes reside on the same machine?

In the following sections, we explore two common types of pipes used on both
UNIX and Windows systems: ordinary pipes and named pipes.

3.7.4.1 Ordinary Pipes

Ordinary pipes allow two processes to communicate in standard producer–
consumer fashion: the producer writes to one end of the pipe (the write end)
and the consumer reads from the other end (the read end). As a result, ordinary
pipes are unidirectional, allowing only one-way communication. If two-way
communication is required, two pipes must be used, with each pipe sending
data in a different direction. We next illustrate constructing ordinary pipes
on both UNIX and Windows systems. In both program examples, one process
writes the message Greetings to the pipe, while the other process reads this
message from the pipe.

On UNIX systems, ordinary pipes are constructed using the function

pipe(int fd[])

This function creates a pipe that is accessed through the int fd[] file descrip-
tors: fd[0] is the read end of the pipe, and fd[1] is the write end. UNIX treats a
pipe as a special type of file. Thus, pipes can be accessed using ordinary read()
and write() system calls.

An ordinary pipe cannot be accessed from outside the process that created
it. Typically, a parent process creates a pipe and uses it to communicate with
a child process that it creates via fork(). Recall from Section 3.3.1 that a child
process inherits open files from its parent. Since a pipe is a special type of
file, the child inherits the pipe from its parent process. Figure 3.20 illustrates

Parent Child

fd [0]
fd [1]

fd [0]
fd [1]

pipe

Figure 3.20 File descriptors for an ordinary pipe.

3.7 Examples of IPC Systems 141

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#define BUFFER SIZE 25
#define READ END 0
#define WRITE END 1

int main(void)
{

char write msg[BUFFER SIZE] = "Greetings";
char read msg[BUFFER SIZE];
int fd[2];
pid t pid;

/* Program continues in Figure 3.22 */

Figure 3.21 Ordinary pipe in UNIX.

the relationship of the file descriptors in the fd array to the parent and child
processes. As this illustrates, any writes by the parent to its write end of the
pipe—fd[1]—can be read by the child from its read end—fd[0]—of the
pipe.

In the UNIX program shown in Figure 3.21, the parent process creates a
pipe and then sends a fork() call creating the child process. What occurs
after the fork() call depends on how the data are to flow through the pipe.
In this instance, the parent writes to the pipe, and the child reads from it. It is
important to notice that both the parent process and the child process initially
close their unused ends of the pipe. Although the program shown in Figure
3.21 does not require this action, it is an important step to ensure that a process
reading from the pipe can detect end-of-file (read() returns 0) when thewriter
has closed its end of the pipe.

Ordinary pipes on Windows systems are termed anonymous pipes, and
they behave similarly to their UNIX counterparts: they are unidirectional and
employ parent–child relationships between the communicating processes. In
addition, reading and writing to the pipe can be accomplished with the ordi-
nary ReadFile() and WriteFile() functions. The Windows API for creating
pipes is the CreatePipe() function, which is passed four parameters. The
parameters provide separate handles for (1) reading and (2) writing to the pipe,
as well as (3) an instance of the STARTUPINFO structure, which is used to specify
that the child process is to inherit the handles of the pipe. Furthermore, (4) the
size of the pipe (in bytes) may be specified.

Figure 3.23 illustrates a parent process creating an anonymous pipe for
communicating with its child. Unlike UNIX systems, in which a child pro-
cess automatically inherits a pipe created by its parent, Windows requires the
programmer to specify which attributes the child process will inherit. This is

142 Chapter 3 Processes

/* create the pipe */
if (pipe(fd) == -1) {

fprintf(stderr,"Pipe failed");
return 1;

}

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}

if (pid > 0) { /* parent process */
/* close the unused end of the pipe */
close(fd[READ END]);

/* write to the pipe */
write(fd[WRITE END], write msg, strlen(write msg)+1);

/* close the write end of the pipe */
close(fd[WRITE END]);

}
else { /* child process */

/* close the unused end of the pipe */
close(fd[WRITE END]);

/* read from the pipe */
read(fd[READ END], read msg, BUFFER SIZE);
printf("read %s",read msg);

/* close the read end of the pipe */
close(fd[READ END]);

}

return 0;
}

Figure 3.22 Figure 3.21, continued.

accomplished by first initializing the SECURITY ATTRIBUTES structure to allow
handles to be inherited and then redirecting the child process’s handles for
standard input or standard output to the read or write handle of the pipe. Since
the child will be reading from the pipe, the parent must redirect the child’s
standard input to the read handle of the pipe. Furthermore, as the pipes are half
duplex, it is necessary to prohibit the child from inheriting the write end of the

3.7 Examples of IPC Systems 143

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

#define BUFFER SIZE 25

int main(VOID)
{

HANDLE ReadHandle, WriteHandle;
STARTUPINFO si;
PROCESS INFORMATION pi;
char message[BUFFER SIZE] = "Greetings";
DWORD written;

/* Program continues in Figure 3.24 */

Figure 3.23 Windows anonymous pipe—parent process.

pipe. The program to create the child process is similar to the program in Figure
3.10, except that the fifth parameter is set to TRUE, indicating that the child
process is to inherit designated handles from its parent. Before writing to the
pipe, the parent first closes its unused read end of the pipe. The child process
that reads from the pipe is shown in Figure 3.25. Before reading from the pipe,
this programobtains the readhandle to the pipe by invoking GetStdHandle().

Note that ordinary pipes require a parent–child relationship between the
communicating processes on both UNIX and Windows systems. This means
that these pipes can be used only for communication between processes on the
same machine.

3.7.4.2 Named Pipes

Ordinary pipes provide a simple mechanism for allowing a pair of processes
to communicate. However, ordinary pipes exist only while the processes are
communicating with one another. On both UNIX and Windows systems, once
the processes have finished communicating and have terminated, the ordinary
pipe ceases to exist.

Named pipes provide a much more powerful communication tool. Com-
munication can be bidirectional, and no parent–child relationship is required.
Once a named pipe is established, several processes can use it for communi-
cation. In fact, in a typical scenario, a named pipe has several writers. Addi-
tionally, named pipes continue to exist after communicating processes have
finished. Both UNIX andWindows systems support named pipes, although the
details of implementation differ greatly. Next, we explore named pipes in each
of these systems.

Named pipes are referred to as FIFOs in UNIX systems. Once created, they
appear as typical files in the file system. A FIFO is created with the mkfifo()
system call and manipulated with the ordinary open(), read(), write(),
and close() system calls. It will continue to exist until it is explicitly deleted

144 Chapter 3 Processes

/* set up security attributes allowing pipes to be inherited */
SECURITY ATTRIBUTES sa = {sizeof(SECURITY ATTRIBUTES),NULL,TRUE};
/* allocate memory */
ZeroMemory(&pi, sizeof(pi));

/* create the pipe */
if (!CreatePipe(&ReadHandle, &WriteHandle, &sa, 0)) {

fprintf(stderr, "Create Pipe Failed");
return 1;

}

/* establish the START INFO structure for the child process */
GetStartupInfo(&si);
si.hStdOutput = GetStdHandle(STD OUTPUT HANDLE);

/* redirect standard input to the read end of the pipe */
si.hStdInput = ReadHandle;
si.dwFlags = STARTF USESTDHANDLES;

/* don’t allow the child to inherit the write end of pipe */
SetHandleInformation(WriteHandle, HANDLE FLAG INHERIT, 0);

/* create the child process */
CreateProcess(NULL, "child.exe", NULL, NULL,
TRUE, /* inherit handles */
0, NULL, NULL, &si, &pi);

/* close the unused end of the pipe */
CloseHandle(ReadHandle);

/* the parent writes to the pipe */
if (!WriteFile(WriteHandle, message,BUFFER SIZE,&written,NULL))

fprintf(stderr, "Error writing to pipe.");

/* close the write end of the pipe */
CloseHandle(WriteHandle);

/* wait for the child to exit */
WaitForSingleObject(pi.hProcess, INFINITE);
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
return 0;
}

Figure 3.24 Figure 3.23, continued.

3.8 Communication in Client–Server Systems 145

#include <stdio.h>
#include <windows.h>

#define BUFFER SIZE 25

int main(VOID)
{
HANDLE Readhandle;
CHAR buffer[BUFFER SIZE];
DWORD read;

/* get the read handle of the pipe */
ReadHandle = GetStdHandle(STD INPUT HANDLE);

/* the child reads from the pipe */
if (ReadFile(ReadHandle, buffer, BUFFER SIZE, &read, NULL))

printf("child read %s",buffer);
else

fprintf(stderr, "Error reading from pipe");

return 0;
}

Figure 3.25 Windows anonymous pipes—child process.

from the file system. Although FIFOs allow bidirectional communication, only
half-duplex transmission is permitted. If data must travel in both directions,
two FIFOs are typically used. Additionally, the communicating processes must
reside on the same machine. If intermachine communication is required, sock-
ets (Section 3.8.1) must be used.

Named pipes onWindows systems provide a richer communicationmech-
anism than their UNIX counterparts. Full-duplex communication is allowed,
and the communicating processes may reside on either the same or different
machines. Additionally, only byte-oriented data may be transmitted across a
UNIX FIFO, whereas Windows systems allow either byte- or message-oriented
data. Named pipes are created with the CreateNamedPipe() function, and a
client can connect to a named pipe using ConnectNamedPipe(). Communi-
cation over the named pipe can be accomplished using the ReadFile() and
WriteFile() functions.

3.8 Communication in Client–Server Systems

In Section 3.4, we described how processes can communicate using shared
memory and message passing. These techniques can be used for communica-
tion in client–server systems (Section 1.10.3) as well. In this section, we explore
two other strategies for communication in client–server systems: sockets and

146 Chapter 3 Processes

PIPES IN PRACTICE

Pipes are used quite often in the UNIX command-line environment for situ-
ations in which the output of one command serves as input to another. For
example, the UNIX ls command produces a directory listing. For especially
long directory listings, the output may scroll through several screens. The
command less manages output by displaying only one screen of output at
a time where the user may use certain keys to move forward or backward
in the file. Setting up a pipe between the ls and less commands (which
are running as individual processes) allows the output of ls to be delivered
as the input to less, enabling the user to display a large directory listing a
screen at a time. A pipe can be constructed on the command line using the |
character. The complete command is

ls | less

In this scenario, the ls command serves as the producer, and its output is
consumed by the less command.

Windows systems provide a more command for the DOS shell with func-
tionality similar to that of its UNIX counterpart less. (UNIX systems also
provide a more command, but in the tongue-in-cheek style common in UNIX,
the less command in fact provides more functionality than more!) The DOS
shell also uses the | character for establishing a pipe. The only difference is
that to get a directory listing, DOS uses the dir command rather than ls, as
shown below:

dir | more

remote procedure calls (RPCs). As we shall see in our coverage of RPCs, not
only are they useful for client–server computing, but Android also uses remote
procedures as a form of IPC between processes running on the same system.

3.8.1 Sockets

Asocket is defined as an endpoint for communication. Apair of processes com-
municating over a network employs a pair of sockets—one for each process.
A socket is identified by an IP address concatenated with a port number. In
general, sockets use a client–server architecture. The serverwaits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a connection from the client socket to complete the connection.
Servers implementing specific services (such as SSH, FTP, and HTTP) listen to
well-known ports (an SSH server listens to port 22; an FTP server listens to
port 21; and a web, or HTTP, server listens to port 80). All ports below 1024
are consideredwell known and are used to implement standard services.

When a client process initiates a request for a connection, it is assigned a
port by its host computer. This port has some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a web server (which is listening on port 80) at

3.8 Communication in Client–Server Systems 147

socket
(146.86.5.20:1625)

host X
(146.86.5.20)

socket
(161.25.19.8:80)

web server
(161.25.19.8)

Figure 3.26 Communication using sockets.

address 161.25.19.8, host X may be assigned port 1625. The connection will
consist of a pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80)
on the web server. This situation is illustrated in Figure 3.26. The packets
traveling between the hosts are delivered to the appropriate process based on
the destination port number.

All connections must be unique. Therefore, if another process also on host
Xwished to establish another connection with the sameweb server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets.

Although most program examples in this text use C, we will illustrate
sockets using Java, as it provides a much easier interface to sockets and has
a rich library for networking utilities. Those interested in socket programming
in C or C++ should consult the bibliographical notes at the end of the chapter.

Java provides three different types of sockets. Connection-oriented (TCP)
sockets are implemented with the Socket class. Connectionless (UDP) sockets
use the DatagramSocket class. Finally, the MulticastSocket class is a sub-
class of the DatagramSocket class. Amulticast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connection-oriented TCP
sockets. The operation allows clients to request the current date and time from
the server. The server listens to port 6013, although the port could have any
arbitrary, unused number greater than 1024. When a connection is received,
the server returns the date and time to the client.

The date server is shown in Figure 3.27. The server creates a ServerSocket
that specifies that it will listen to port 6013. The server then begins listening
to the port with the accept() method. The server blocks on the accept()
methodwaiting for a client to request a connection. When a connection request
is received, accept() returns a socket that the server can use to communicate
with the client.

The details of how the server communicates with the socket are as follows.
The server first establishes a PrintWriter object that it will use to communi-
cate with the client. A PrintWriter object allows the server to write to the
socket using the routine print() and println() methods for output. The

148 Chapter 3 Processes

import java.net.*;
import java.io.*;

public class DateServer
{

public static void main(String[] args) {
try {

ServerSocket sock = new ServerSocket(6013);

/* now listen for connections */
while (true) {

Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */
pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections */
client.close();

}
}
catch (IOException ioe) {

System.err.println(ioe);
}

}
}

Figure 3.27 Date server.

server process sends the date to the client, calling themethod println(). Once
it has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and connecting
to the port on which the server is listening. We implement such a client in the
Java program shown in Figure 3.28. The client creates a Socket and requests
a connection with the server at IP address 127.0.0.1 on port 6013. Once the
connection is made, the client can read from the socket using normal stream
I/O statements. After it has received the date from the server, the client closes
the socket and exits. The IP address 127.0.0.1 is a special IP address known as the
loopback.When a computer refers to IP address 127.0.0.1, it is referring to itself.
This mechanism allows a client and server on the same host to communicate
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the date server. In addition to an IP address,
an actual host name, such as www.westminstercollege.edu, can be used as
well.

http://www.westminstercollege.edu

3.8 Communication in Client–Server Systems 149

import java.net.*;
import java.io.*;

public class DateClient
{

public static void main(String[] args) {
try {

/* make connection to server socket */
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream();
BufferedReader bin = new

BufferedReader(new InputStreamReader(in));

/* read the date from the socket */
String line;
while ((line = bin.readLine()) != null)

System.out.println(line);

/* close the socket connection*/
sock.close();

}
catch (IOException ioe) {

System.err.println(ioe);
}

}
}

Figure 3.28 Date client.

Communication using sockets—although common and efficient—is con-
sidered a low-level form of communication between distributed processes.
One reason is that sockets allow only an unstructured stream of bytes to be
exchanged between the communicating threads. It is the responsibility of the
client or server application to impose a structure on the data. In the next sub-
section, we look a higher-level method of communication: remote procedure
calls (RPCs).

3.8.2 Remote Procedure Calls

One of the most common forms of remote service is the RPC paradigm, which
was designed as a way to abstract the procedure-call mechanism for use
between systemswith network connections. It is similar inmany respects to the
IPC mechanism described in Section 3.4, and it is usually built on top of such a
system. Here, however, because we are dealing with an environment in which
the processes are executing on separate systems, wemust use a message-based
communication scheme to provide remote service.

150 Chapter 3 Processes

In contrast to IPC messages, the messages exchanged in RPC communi-
cation are well structured and are thus no longer just packets of data. Each
message is addressed to an RPC daemon listening to a port on the remote sys-
tem, and each contains an identifier specifying the function to execute and the
parameters to pass to that function. The function is then executed as requested,
and any output is sent back to the requester in a separate message.

Aport in this context is simply a number included at the start of a message
packet. Whereas a system normally has one network address, it can have
many ports within that address to differentiate the many network services it
supports. If a remote process needs a service, it addresses a message to the
proper port. For instance, if a system wished to allow other systems to be
able to list its current users, it would have a daemon supporting such an RPC
attached to a port—say, port 3027. Any remote system could obtain the needed
information (that is, the list of current users) by sending an RPCmessage to port
3027 on the server. The data would be received in a reply message.

The semantics of RPCs allows a client to invoke a procedure on a remote
host as it would invoke a procedure locally. The RPC system hides the details
that allow communication to take place by providing a stub on the client side.
Typically, a separate stub exists for each separate remote procedure. When
the client invokes a remote procedure, the RPC system calls the appropriate
stub, passing it the parameters provided to the remote procedure. This stub
locates the port on the server and marshals the parameters. The stub then
transmits a message to the server using message passing. A similar stub on the
server side receives this message and invokes the procedure on the server. If
necessary, return values are passed back to the client using the same technique.
OnWindows systems, stub code is compiled from a specification written in the
Microsoft Interface Definitio Language (MIDL), which is used for defining
the interfaces between client and server programs.

Parameter marshaling addresses the issue concerning differences in data
representation on the client and server machines. Consider the representa-
tion of 32-bit integers. Some systems (known as big-endian) store the most
significant byte first, while other systems (known as little-endian) store the
least significant byte first. Neither order is “better” per se; rather, the choice is
arbitrary within a computer architecture. To resolve differences like this, many
RPC systems define a machine-independent representation of data. One such
representation is known as external data representation (XDR). On the client
side, parameter marshaling involves converting the machine-dependent data
into XDR before they are sent to the server. On the server side, the XDR data are
unmarshaled and converted to the machine-dependent representation for the
server.

Another important issue involves the semantics of a call. Whereas local
procedure calls fail only under extreme circumstances, RPCs can fail, or be
duplicated and executed more than once, as a result of common network
errors. One way to address this problem is for the operating system to ensure
that messages are acted on exactly once, rather than at most once. Most local
procedure calls have the “exactly once” functionality, but it is more difficult to
implement.

First, consider “atmost once.”This semantic can be implemented by attach-
ing a timestamp to each message. The server must keep a history of all the
timestamps of messages it has already processed or a history large enough

3.8 Communication in Client–Server Systems 151

to ensure that repeated messages are detected. Incoming messages that have
a timestamp already in the history are ignored. The client can then send a
message one or more times and be assured that it only executes once.

For “exactly once,” we need to remove the risk that the server will never
receive the request. To accomplish this, the servermust implement the “at most
once” protocol described above but must also acknowledge to the client that
the RPC call was received and executed. These ACK messages are common
throughout networking. The client must resend each RPC call periodically until
it receives the ACK for that call.

Yet another important issue concerns the communication between a server
and a client. With standard procedure calls, some form of binding takes place
during link, load, or execution time (Chapter 9) so that a procedure call’s name
is replaced by the memory address of the procedure call. The RPC scheme
requires a similar binding of the client and the server port, but howdoes a client
know the port numbers on the server? Neither system has full information
about the other, because they do not share memory.

Two approaches are common. First, the binding informationmay be prede-
termined, in the form of fixed port addresses. At compile time, an RPC call has
a fixed port number associated with it. Once a program is compiled, the server
cannot change the port number of the requested service. Second, binding can be
done dynamically by a rendezvousmechanism. Typically, an operating system
provides a rendezvous (also called a matchmaker) daemon on a fixed RPC port.
Aclient then sends amessage containing the name of the RPC to the rendezvous
daemon requesting the port address of the RPC it needs to execute. The port
number is returned, and the RPC calls can be sent to that port until the process
terminates (or the server crashes). This method requires the extra overhead of
the initial request but ismore flexible than the first approach. Figure 3.29 shows
a sample interaction.

The RPC scheme is useful in implementing a distributed file system (Chap-
ter 19). Such a system can be implemented as a set of RPC daemons and clients.
The messages are addressed to the distributed file system port on a server on
which a file operation is to take place. The message contains the disk operation
to be performed. The disk operation might be read(), write(), rename(),
delete(), or status(), corresponding to the usual file-related system calls.
The return message contains any data resulting from that call, which is exe-
cuted by the DFS daemon on behalf of the client. For instance, a message might
contain a request to transfer a whole file to a client or be limited to a simple
block request. In the latter case, several requests may be needed if a whole file
is to be transferred.

3.8.2.1 Android RPC

Although RPCs are typically associated with client-server computing in a dis-
tributed system, they can also be used as a form of IPC between processes
running on the same system. The Android operating system has a rich set of
IPC mechanisms contained in its binder framework, including RPCs that allow
one process to request services from another process.

Android defines an application component as a basic building block that
provides utility to an Android application, and an app may combine multiple
application components to provide functionality to an app. One such applica-

152 Chapter 3 Processes

client

user calls kernel
to send RPC
message to
procedure X

matchmaker
receives
message, looks
up answer

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

daemon
processes
request and
processes send
output

kernel sends
message to
matchmaker to
find port number

From: client
To: server

Port: matchmaker
Re: address
for RPC X

From: client
To: server

Port: port P
<contents>

From: RPC
Port: P

To: client
Port: kernel
<output>

From: server
To: client

Port: kernel
Re: RPC X

Port: P

kernel places
port P in user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user

messages server

Figure 3.29 Execution of a remote procedure call (RPC).

tion component is a service, which has no user interface but instead runs in
the background while executing long-running operations or performing work
for remote processes. Examples of services include playing music in the back-
ground and retrieving data over a network connection on behalf of another
process, thereby preventing the other process from blocking as the data are
being downloaded. When a client app invokes the bindService() method
of a service, that service is “bound” and available to provide client-server
communication using either message passing or RPCs.

A bound service must extend the Android class Service and must imple-
ment the method onBind(), which is invoked when a client calls bindSer-
vice(). In the case of message passing, the onBind() method returns a Mes-
senger service, which is used for sending messages from the client to the
service. The Messenger service is only one-way; if the servicemust send a reply
back to the client, the client must also provide a Messenger service, which is
contained in the replyTo field of the Message object sent to the service. The
service can then send messages back to the client.

To provide RPCs, the onBind() method must return an interface repre-
senting the methods in the remote object that clients use to interact with the

3.9 Summary 153

service. This interface is written in regular Java syntax and uses the Android
Interface Definition Language—AIDL—to create stub files, which serve as the
client interface to remote services.

Here, we briefly outline the process required to provide a generic remote
service named remoteMethod() using AIDL and the binder service. The inter-
face for the remote service appears as follows:

/* RemoteService.aidl */
interface RemoteService
{

boolean remoteMethod(int x, double y);
{

This file is written as RemoteService.aidl. The Android development kit
will use it to generate a .java interface from the .aidl file, as well as a stub
that serves as the RPC interface for this service. The server must implement the
interface generated by the .aidl file, and the implementation of this interface
will be called when the client invokes remoteMethod().

When a client calls bindService(), the onBind() method is invoked on
the server, and it returns the stub for the RemoteService object to the client.
The client can then invoke the remote method as follows:

RemoteService service;
. . .

service.remoteMethod(3, 0.14);

Internally, the Android binder framework handles parameter marshaling,
transferring marshaled parameters between processes, and invoking the nec-
essary implementation of the service, as well as sending any return values back
to the client process.

3.9 Summary

• Aprocess is a program in execution, and the status of the current activity of
a process is represented by the program counter, as well as other registers.

• The layout of a process inmemory is represented by four different sections:
(1) text, (2) data, (3) heap, and (4) stack.

• As a process executes, it changes state. There are four general states of a
process: (1) ready, (2) running, (3) waiting, and (4) terminated.

• A process control block (PCB) is the kernel data structure that represents a
process in an operating system.

• The role of the process scheduler is to select an available process to run on
a CPU.

• An operating system performs a context switch when it switches from
running one process to running another.

154 Chapter 3 Processes

• The fork() and CreateProcess() system calls are used to create pro-
cesses on UNIX and Windows systems, respectively.

• When shared memory is used for communication between processes, two
(or more) processes share the same region of memory. POSIX provides an
API for shared memory.

• Two processes may communicate by exchanging messages with one
another using message passing. The Mach operating system uses message
passing as its primary form of interprocess communication. Windows
provides a form of message passing as well.

• A pipe provides a conduit for two processes to communicate. There are
two forms of pipes, ordinary and named. Ordinary pipes are designed for
communication between processes that have a parent–child relationship.
Named pipes are more general and allow several processes to communi-
cate.

• UNIX systems provide ordinary pipes through the pipe() system call.
Ordinary pipes have a read end and a write end. A parent process can, for
example, send data to the pipe using its write end, and the child process
can read it from its read end. Named pipes in UNIX are termed FIFOs.

• Windows systems also provide two forms of pipes—anonymous and
named pipes. Anonymous pipes are similar to UNIX ordinary pipes. They
are unidirectional and employ parent–child relationships between the
communicating processes. Named pipes offer a richer form of interprocess
communication than the UNIX counterpart, FIFOs.

• Two common forms of client–server communication are sockets and
remote procedure calls (RPCs). Sockets allow two processes on different
machines to communicate over a network. RPCs abstract the concept of
function (procedure) calls in such a way that a function can be invoked on
another process that may reside on a separate computer.

• The Android operating system uses RPCs as a form of interprocess com-
munication using its binder framework.

Practice Exercises

3.1 Using the program shown in Figure 3.30, explain what the output will
be at LINE A.

3.2 Including the initial parent process, how many processes are created by
the program shown in Figure 3.31?

3.3 Original versions of Apple’s mobile iOS operating system provided no
means of concurrent processing. Discuss three major complications that
concurrent processing adds to an operating system.

3.4 Some computer systems provide multiple register sets. Describe what
happens when a context switch occurs if the new context is already

Practice Exercises 155

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int value = 5;

int main()
{
pid t pid;

pid = fork();

if (pid == 0) { /* child process */
value += 15;
return 0;

}
else if (pid > 0) { /* parent process */

wait(NULL);
printf("PARENT: value = %d",value); /* LINE A */
return 0;

}
}

Figure 3.30 What output will be at Line A?

loaded into one of the register sets. What happens if the new context
is in memory rather than in a register set and all the register sets are in
use?

3.5 When a process creates a newprocess using the fork() operation,which
of the following states is shared between the parent process and the child
process?

a. Stack

b. Heap

c. Shared memory segments

3.6 Consider the “exactly once”semanticwith respect to the RPCmechanism.
Does the algorithm for implementing this semantic execute correctly
even if the ACK message sent back to the client is lost due to a net-
work problem?Describe the sequence of messages, and discuss whether
“exactly once” is still preserved.

3.7 Assume that a distributed system is susceptible to server failure. What
mechanismswould be required to guarantee the “exactly once” semantic
for execution of RPCs?

156 Chapter 3 Processes

#include <stdio.h>
#include <unistd.h>

int main()
{

/* fork a child process */
fork();

/* fork another child process */
fork();

/* and fork another */
fork();

return 0;
}

Figure 3.31 How many processes are created?

Further Reading

Process creation, management, and IPC in UNIX and Windows systems,
respectively, are discussed in [Robbins and Robbins (2003)] and [Russinovich
et al. (2017)]. [Love (2010)] covers support for processes in the Linux
kernel, and [Hart (2005)] covers Windows systems programming in detail.
Coverage of the multiprocess model used in Google’s Chrome can be found at
http://blog.chromium.org/2008/09/multi-process-architecture.html.

Message passing formulticore systems is discussed in [Holland and Seltzer
(2011)]. [Levin (2013)] describes message passing in the Mach system, particu-
larly with respect to macOS and iOS.

[Harold (2005)] provides coverage of socket programming in Java. Details
onAndroid RPCs can be found at https://developer.android.com/guide/compo
nents/aidl.html. [Hart (2005)] and [Robbins and Robbins (2003)] cover pipes in
Windows and UNIX systems, respectively.

Guidelines forAndroiddevelopment can be found at https://developer.and
roid.com/guide/.

Bibliography

[Harold (2005)] E. R. Harold, Java Network Programming, Third Edition, O’Reilly
& Associates (2005).

[Hart (2005)] J. M. Hart,Windows System Programming, Third Edition, Addison-
Wesley (2005).

http://scholar.google.com/scholar?hl/en&q=K Robbins and S Robbins Unix Systems Programming Communication Concurrency and Threads SecondEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=J M Hart Windows System Programming ThirdEdition
http://blog.chromium.org/2008/09/multi-process-architecture.html
http://dl.acm.org/citation.cfm?id=1991596.1991640
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=E R Harold Java Network Programming ThirdEdition
https://developer.android.com/guide/components/aidl.html
http://scholar.google.com/scholar?hl/en&q=J M Hart Windows System Programming ThirdEdition
http://scholar.google.com/scholar?hl/en&q=K Robbins and S Robbins Unix Systems Programming Communication Concurrency and Threads SecondEdition
https://developer.android.com/guide/
http://scholar.google.com/scholar?hl/en&q=E R Harold Java Network Programming ThirdEdition
http://scholar.google.com/scholar?hl/en&q=E R Harold Java Network Programming ThirdEdition
http://scholar.google.com/scholar?hl/en&q=J M Hart Windows System Programming ThirdEdition
http://scholar.google.com/scholar?hl/en&q=J M Hart Windows System Programming ThirdEdition
https://developer.android.com/guide/components/aidl.html
https://developer.android.com/guide/

Bibliography 157

[Holland and Seltzer (2011)] D.Holland andM. Seltzer, “MulticoreOSes: Look-
ing Forward from 1991, er, 2011”,Proceedings of the 13th USENIX conference onHot
topics in operating systems (2011), pages 33–33.

[Levin (2013)] J. Levin, Mac OS X and iOS Internals to the Apple’s Core, Wiley
(2013).

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[Robbins and Robbins (2003)] K. Robbins and S. Robbins, Unix Systems Pro-
gramming: Communication, Concurrency and Threads, Second Edition, Prentice
Hall (2003).

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

http://dl.acm.org/citation.cfm?id=1991596.1991640
http://dl.acm.org/citation.cfm?id=1991596.1991640
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=K Robbins and S Robbins Unix Systems Programming Communication Concurrency and Threads SecondEdition
http://scholar.google.com/scholar?hl/en&q=K Robbins and S Robbins Unix Systems Programming Communication Concurrency and Threads SecondEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition

Exercises

Chapter 3 Exercises

3.8 Describe the actions taken by a kernel to context-switch between pro-
cesses.

3.9 Construct a process tree similar to Figure 3.7. To obtain process infor-
mation for the UNIX or Linux system, use the command ps -ael.
Use the command man ps to get more information about the ps com-
mand. The task manager on Windows systems does not provide the
parent process ID, but the process monitor tool, available from tech-
net.microsoft.com, provides a process-tree tool.

3.10 Explain the role of the init (or systemd) process on UNIX and Linux
systems in regard to process termination.

3.11 Including the initial parent process, how many processes are created by
the program shown in Figure 3.32?

3.12 Explain the circumstances under which the line of code marked
printf("LINE J") in Figure 3.33 will be reached.

3.13 Using the program in Figure 3.34, identify the values of pid at lines A, B,
C, and D. (Assume that the actual pids of the parent and child are 2600
and 2603, respectively.)

3.14 Give an example of a situation inwhich ordinary pipes aremore suitable
than named pipes and an example of a situation in which named pipes
are more suitable than ordinary pipes.

3.15 Consider the RPC mechanism. Describe the undesirable consequences
that could arise from not enforcing either the “at most once” or “exactly
once” semantic. Describe possible uses for a mechanism that has neither
of these guarantees.

3.16 Using the program shown in Figure 3.35, explain what the output will
be at lines X and Y.

#include <stdio.h>
#include <unistd.h>

int main()
{

int i;

for (i = 0; i < 4; i++)
fork();

return 0;
}

Figure 3.21 How many processes are created?

EX-4

3.17 What are the benefits and the disadvantages of each of the following?
Consider both the system level and the programmer level.

a. Synchronous and asynchronous communication

b. Automatic and explicit buffering

c. Send by copy and send by reference

d. Fixed-sized and variable-sized messages

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls","ls",NULL);
printf("LINE J");

}
else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete");

}

return 0;
}

Figure 3.22 When will LINE J be reached?

EX-5

Exercises

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
pid t pid, pid1;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

pid1 = getpid();
printf("child: pid = %d",pid); /* A */
printf("child: pid1 = %d",pid1); /* B */

}
else { /* parent process */

pid1 = getpid();
printf("parent: pid = %d",pid); /* C */
printf("parent: pid1 = %d",pid1); /* D */
wait(NULL);

}

return 0;
}

Figure 3.23 What are the pid values?

EX-6

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

#define SIZE 5

int nums[SIZE] = {0,1,2,3,4};

int main()
{
int i;
pid t pid;

pid = fork();

if (pid == 0) {
for (i = 0; i < SIZE; i++) {

nums[i] *= -i;
printf("CHILD: %d ",nums[i]); /* LINE X */

}
}
else if (pid > 0) {

wait(NULL);
for (i = 0; i < SIZE; i++)

printf("PARENT: %d ",nums[i]); /* LINE Y */
}

return 0;
}

Figure 3.24 What output will be at Line X and Line Y?

EX-7

Programming Problems

Programming Problems

3.18 Using either a UNIX or a Linux system, write a C program that forks
a child process that ultimately becomes a zombie process. This zombie
process must remain in the system for at least 10 seconds. Process states
can be obtained from the command

ps -l

The process states are shown below the S column; processes with a state
of Z are zombies. The process identifier (pid) of the child process is listed
in the PID column, and that of the parent is listed in the PPID column.

Perhaps the easiest way to determine that the child process is indeed
a zombie is to run the program that you have written in the background
(using the &) and then run the command ps -l to determine whether
the child is a zombie process. Because you do not want toomany zombie
processes existing in the system, you will need to remove the one that
you have created. The easiest way to do that is to terminate the parent
process using the kill command. For example, if the pid of the parent
is 4884, you would enter

kill -9 4884

3.19 Write a C program called time.c that determines the amount of time
necessary to run a command from the command line. This programwill
be run as "./time <command>" and will report the amount of elapsed
time to run the specified command. This will involve using fork() and
exec() functions, as well as the gettimeofday() function to deter-
mine the elapsed time. It will also require the use of two different IPC
mechanisms.

The general strategy is to fork a child process that will execute the
specified command. However, before the child executes the command,
it will record a timestamp of the current time (which we term “starting
time”). The parent process will wait for the child process to terminate.
Once the child terminates, the parent will record the current timestamp
for the ending time. The difference between the starting and ending
times represents the elapsed time to execute the command. The example
output below reports the amount of time to run the command ls :

./time ls
time.c
time

Elapsed time: 0.25422

As the parent and child are separate processes, they will need to
arrange how the starting time will be shared between them. You will
write two versions of this program, each representing a differentmethod
of IPC.

P-8

Chapter 3 Processes

The first version will have the child process write the starting time to
a region of sharedmemory before it calls exec(). After the child process
terminates, the parent will read the starting time from shared memory.
Refer to Section 3.7.1 for details using POSIX shared memory. In that
section, there are separate programs for the producer and consumer. As
the solution to this problem requires only a single program, the region
of shared memory can be established before the child process is forked,
allowing both the parent and child processes access to the region of
shared memory.

The second version will use a pipe. The child will write the starting
time to the pipe, and the parent will read from it following the termina-
tion of the child process.

You will use the gettimeofday() function to record the current
timestamp. This function is passed a pointer to a struct timeval
object, which contains two members: tv sec and t usec. These repre-
sent the number of elapsed seconds and microseconds since January 1,
1970 (known as the UNIX EPOCH). The following code sample illustrates
how this function can be used:

struct timeval current;

gettimeofday(¤t,NULL);

// current.tv sec represents seconds
// current.tv usec represents microseconds

For IPC between the child and parent processes, the contents of the
shared memory pointer can be assigned the struct timeval repre-
senting the starting time. When pipes are used, a pointer to a struct
timeval can be written to—and read from—the pipe.

3.20 An operating system’s pid manager is responsible formanaging process
identifiers. When a process is first created, it is assigned a unique pid
by the pid manager. The pid is returned to the pid manager when the
process completes execution, and the manager may later reassign this
pid. Process identifiers are discussed more fully in Section 3.3.1. What
is most important here is to recognize that process identifiers must be
unique; no two active processes can have the same pid.

Use the following constants to identify the range of possible pid
values:

#define MIN PID 300
#define MAX PID 5000

You may use any data structure of your choice to represent the avail-
ability of process identifiers. One strategy is to adopt what Linux has
done and use a bitmap in which a value of 0 at position i indicates that

P-9

Programming Problems

a process id of value i is available and a value of 1 indicates that the
process id is currently in use.

Implement the following API for obtaining and releasing a pid:

• int allocate map(void)—Creates and initializes a data struc-
ture for representing pids; returns −1 if unsuccessful, 1 if successful

• int allocate pid(void)—Allocates and returns a pid; returns
−1 if unable to allocate a pid (all pids are in use)

• void release pid(int pid)—Releases a pid

This programming problem will be modified later on in Chapter 4 and
in Chapter 6.

3.21 The Collatz conjecture concerns what happens when we take any posi-
tive integer n and apply the following algorithm:

n =
{

n∕2, if n is even
3 × n + 1, if n is odd

The conjecture states that when this algorithm is continually applied,
all positive integers will eventually reach 1. For example, if n = 35, the
sequence is

35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

Write a C program using the fork() system call that generates this
sequence in the child process. The starting number will be provided
from the command line. For example, if 8 is passed as a parameter on
the command line, the child process will output 8, 4, 2, 1. Because the
parent and child processes have their own copies of the data, it will be
necessary for the child to output the sequence. Have the parent invoke
the wait() call to wait for the child process to complete before exiting
the program. Perform necessary error checking to ensure that a positive
integer is passed on the command line.

3.22 In Exercise 3.21, the child process must output the sequence of num-
bers generated from the algorithm specified by the Collatz conjecture
because the parent and child have their own copies of the data. Another
approach to designing this program is to establish a shared-memory
object between the parent and child processes. This technique allows
the child to write the contents of the sequence to the shared-memory
object. The parent can then output the sequence when the child com-
pletes. Because the memory is shared, any changes the child makes will
be reflected in the parent process as well.

This program will be structured using POSIX shared memory as
described in Section 3.7.1. The parent process will progress through the
following steps:

a. Establish the shared-memory object (shm open(), ftruncate(),
and mmap()).

P-10

Chapter 3 Processes

b. Create the child process and wait for it to terminate.

c. Output the contents of shared memory.

d. Remove the shared-memory object.

One area of concern with cooperating processes involves synchro-
nization issues. In this exercise, the parent and child processes must be
coordinated so that the parent does not output the sequence until the
child finishes execution. These two processeswill be synchronized using
the wait() system call: the parent process will invoke wait(), which
will suspend it until the child process exits.

3.23 Section 3.8.1 describes certain port numbers as being well known—that
is, they provide standard services. Port 17 is known as the quote-of-the-
day service. When a client connects to port 17 on a server, the server
responds with a quote for that day.

Modify the date server shown in Figure 3.27 so that it delivers a quote
of the day rather than the current date. The quotes should be printable
ASCII characters and should contain fewer than 512 characters, although
multiple lines are allowed. Since these well-known ports are reserved
and therefore unavailable, have your server listen to port 6017. The date
client shown in Figure 3.28 can be used to read the quotes returned by
your server.

3.24 Ahaiku is a three-line poem inwhich the first line contains five syllables,
the second line contains seven syllables, and the third line contains five
syllables. Write a haiku server that listens to port 5575. When a client
connects to this port, the server responds with a haiku. The date client
shown in Figure 3.28 can be used to read the quotes returned by your
haiku server.

3.25 An echo server echoes back whatever it receives from a client. For exam-
ple, if a client sends the server the string Hello there!, the server will
respond with Hello there!

Write an echo server using the Java networking API described in
Section 3.8.1. This server will wait for a client connection using the
accept()method. When a client connection is received, the server will
loop, performing the following steps:

• Read data from the socket into a buffer.

• Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.

The date server of Figure 3.27 uses the java.io.BufferedReader
class. BufferedReader extends the java.io.Reader class, which is
used for reading character streams. However, the echo server cannot
guarantee that it will read characters from clients; it may receive binary
data aswell. The class java.io.InputStreamdealswithdata at the byte
level rather than the character level. Thus, your echo server must use an
object that extends java.io.InputStream. The read() method in the

P-11

Programming Problems

java.io.InputStream class returns −1 when the client has closed its
end of the socket connection.

3.26 Design a program using ordinary pipes in which one process sends a
string message to a second process, and the second process reverses
the case of each character in the message and sends it back to the first
process. For example, if the first process sends the message Hi There,
the second process will return hI tHERE. This will require using two
pipes, one for sending the original message from the first to the second
process and the other for sending themodifiedmessage from the second
to the first process. You can write this program using either UNIX or
Windows pipes.

3.27 Design a file-copying program named filecopy.c using ordinary
pipes. This program will be passed two parameters: the name of the file
to be copied and the name of the destination file. The program will then
create an ordinary pipe and write the contents of the file to be copied to
the pipe. The child process will read this file from the pipe and write it
to the destination file. For example, if we invoke the program as follows:

./filecopy input.txt copy.txt

the file input.txtwill bewritten to the pipe. The child processwill read
the contents of this file and write it to the destination file copy.txt. You
may write this program using either UNIX or Windows pipes.

Programming Projects

Project 1—UNIX Shell
This project consists of designing a C program to serve as a shell interface
that accepts user commands and then executes each command in a separate
process. Your implementation will support input and output redirection, as
well as pipes as a form of IPC between a pair of commands. Completing this
project will involve using the UNIX fork(), exec(), wait(), dup2(), and
pipe() system calls and can be completed on any Linux, UNIX, or macOS
system.

I. Overview

A shell interface gives the user a prompt, after which the next command
is entered. The example below illustrates the prompt osh> and the user’s
next command: cat prog.c. (This command displays the file prog.c on the
terminal using the UNIX cat command.)

osh>cat prog.c

P-12

Chapter 3 Processes

One technique for implementing a shell interface is to have the parent process
first read what the user enters on the command line (in this case, cat prog.c)
and then create a separate child process that performs the command. Unless
otherwise specified, the parent process waits for the child to exit before contin-
uing. This is similar in functionality to the new process creation illustrated in
Figure 3.9. However, UNIX shells typically also allow the child process to run
in the background, or concurrently. To accomplish this, we add an ampersand
(&) at the end of the command. Thus, if we rewrite the above command as

osh>cat prog.c &

the parent and child processes will run concurrently.
The separate child process is created using the fork() system call, and the

user’s command is executed using one of the system calls in the exec() family
(as described in Section 3.3.1).

AC program that provides the general operations of a command-line shell
is supplied in Figure 3.36. The main() function presents the prompt osh->
and outlines the steps to be taken after input from the user has been read. The
main() function continually loops as long as should run equals 1; when the
user enters exit at the prompt, your program will set should run to 0 and
terminate.

#include <stdio.h>
#include <unistd.h>

#define MAX LINE 80 /* The maximum length command */

int main(void)
{
char *args[MAX LINE/2 + 1]; /* command line arguments */
int should run = 1; /* flag to determine when to exit program */

while (should run) {
printf("osh>");
fflush(stdout);

/**
* After reading user input, the steps are:
* (1) fork a child process using fork()
* (2) the child process will invoke execvp()
* (3) parent will invoke wait() unless command included &
*/

}

return 0;
}

Figure 3.36 Outline of simple shell.

P-13

Programming Projects

This project is organized into several parts:

1. Creating the child process and executing the command in the child

2. Providing a history feature

3. Adding support of input and output redirection

4. Allowing the parent and child processes to communicate via a pipe

II. Executing Command in a Child Process

The first task is to modify the main() function in Figure 3.36 so that a child
process is forked and executes the command specified by the user. This will
require parsing what the user has entered into separate tokens and storing the
tokens in an array of character strings (args in Figure 3.36). For example, if the
user enters the command ps -ael at the osh> prompt, the values stored in the
args array are:

args[0] = "ps"
args[1] = "-ael"
args[2] = NULL

This args array will be passed to the execvp() function, which has the follow-
ing prototype:

execvp(char *command, char *params[])

Here, command represents the command to be performed and params stores the
parameters to this command. For this project, the execvp() function should
be invoked as execvp(args[0], args). Be sure to check whether the user
included & to determine whether or not the parent process is to wait for the
child to exit.

III. Creating a History Feature

The next task is to modify the shell interface program so that it provides a
history feature to allow a user to execute themost recent command by entering
!!. For example, if a user enters the command ls -l, she can then execute that
command again by entering !! at the prompt. Any command executed in this
fashion should be echoed on the user’s screen, and the command should also
be placed in the history buffer as the next command.

Your program should alsomanage basic error handling. If there is no recent
command in the history, entering !! should result in a message “No commands
in history.”

IV. Redirecting Input and Output

Your shell should then be modified to support the ‘>’ and ‘<’ redirection

P-14

Chapter 3 Processes

operators, where ‘>’ redirects the output of a command to a file and ‘<’ redirects
the input to a command from a file. For example, if a user enters

osh>ls > out.txt

the output from the ls command will be redirected to the file out.txt. Simi-
larly, input can be redirected as well. For example, if the user enters

osh>sort < in.txt

the file in.txtwill serve as input to the sort command.
Managing the redirection of both input and output will involve using the

dup2() function, which duplicates an existing file descriptor to another file
descriptor. For example, if fd is a file descriptor to the file out.txt, the call

dup2(fd, STDOUT FILENO);

duplicates fd to standard output (the terminal). This means that any writes to
standard output will in fact be sent to the out.txt file.

You can assume that commandswill contain either one input or one output
redirection and will not contain both. In other words, you do not have to be
concerned with command sequences such as sort < in.txt > out.txt.

V. Communication via a Pipe

The final modification to your shell is to allow the output of one command to
serve as input to another using a pipe. For example, the following command
sequence

osh>ls -l | less

has the output of the command ls -l serve as the input to the less com-
mand. Both the ls and less commands will run as separate processes and
will communicate using the UNIX pipe() function described in Section 3.7.4.
Perhaps the easiest way to create these separate processes is to have the parent
process create the child process (which will execute ls -l). This child will also
create another child process (which will execute less) andwill establish a pipe
between itself and the child process it creates. Implementing pipe functionality
will also require using the dup2() function as described in the previous section.
Finally, although several commands can be chained together using multiple
pipes, you can assume that commands will contain only one pipe character
and will not be combined with any redirection operators.

Project 2 —Linux Kernel Module for Task Information
In this project, you will write a Linux kernel module that uses the /proc file
system for displaying a task’s information based on its process identifier value
pid. Before beginning this project, be sure youhave completed the Linux kernel
module programming project in Chapter 2, which involves creating an entry
in the /proc file system. This project will involve writing a process identifier to

P-15

Programming Projects

the file /proc/pid. Once a pid has been written to the /proc file, subsequent
reads from /proc/pidwill report (1) the command the task is running, (2) the
value of the task’s pid, and (3) the current state of the task. An example of how
your kernel module will be accessed once loaded into the system is as follows:

echo "1395" > /proc/pid
cat /proc/pid
command = [bash] pid = [1395] state = [1]

The echo command writes the characters "1395" to the /proc/pid file. Your
kernel module will read this value and store its integer equivalent as it rep-
resents a process identifier. The cat command reads from /proc/pid, where
your kernel module will retrieve the three fields from the task struct associ-
ated with the task whose pid value is 1395.

ssize t proc write(struct file *file, char user *usr buf,
size t count, loff t *pos)

{
int rv = 0;
char *k mem;

/* allocate kernel memory */
k mem = kmalloc(count, GFP KERNEL);

/* copies user space usr buf to kernel memory */
copy from user(k mem, usr buf, count);

printk(KERN INFO "%s∖n", k mem);

/* return kernel memory */
kfree(k mem);

return count;
}

Figure 3.37 The proc write() function.

I. Writing to the /proc File System

In the kernel module project in Chapter 2, you learned how to read from the
/proc file system. We now cover how to write to /proc. Setting the field
.write in struct file operations to

.write = proc write

causes the proc write() function of Figure 3.37 to be called when a write
operation is made to /proc/pid

P-16

Chapter 3 Processes

The kmalloc() function is the kernel equivalent of the user-level mal-
loc() function for allocating memory, except that kernel memory is being
allocated. The GFP KERNEL flag indicates routine kernel memory allocation.
The copy from user() function copies the contents of usr buf (which con-
tains what has been written to /proc/pid) to the recently allocated kernel
memory. Your kernel module will have to obtain the integer equivalent of this
value using the kernel function kstrtol(), which has the signature

int kstrtol(const char *str, unsigned int base, long *res)

This stores the character equivalent of str, which is expressed as a base into
res.

Finally, note that we return memory that was previously allocated with
kmalloc() back to the kernel with the call to kfree(). Careful memory man-
agement—which includes releasing memory to prevent memory leaks—is
crucial when developing kernel-level code.

II. Reading from the /proc File System

Once the process identifier has been stored, any reads from /proc/pid
will return the name of the command, its process identifier, and its state.
As illustrated in Section 3.1, the PCB in Linux is represented by the
structure task struct, which is found in the <linux/sched.h> include
file. Given a process identifier, the function pid task() returns the associated
task struct. The signature of this function appears as follows:

struct task struct pid task(struct pid *pid,
enum pid type type)

The kernel function find vpid(int pid) can be used to obtain the struct
pid, and PIDTYPE PID can be used as the pid type.

For a valid pid in the system, pid task will return its task struct. You
can then display the values of the command, pid, and state. (You will probably
have to read through the task struct structure in <linux/sched.h> to obtain
the names of these fields.)

If pid task() is not passed a valid pid, it returns NULL. Be sure to perform
appropriate error checking to check for this condition. If this situation occurs,
the kernel module function associated with reading from /proc/pid should
return 0.

In the source code download, we give the C program pid.c, which pro-
vides some of the basic building blocks for beginning this project.

Project 3—Linux Kernel Module for Listing Tasks
In this project, you will write a kernel module that lists all current tasks in a
Linux system. You will iterate through the tasks both linearly and depth first.

Part I—Iterating over Tasks Linearly

In the Linux kernel, the for each process() macro easily allows iteration
over all current tasks in the system:

P-17

Programming Projects

#include <linux/sched.h>

struct task struct *task;

for each process(task) {
/* on each iteration task points to the next task */

}

The various fields in task struct can then be displayed as the program loops
through the for each process()macro.

Assignment

Design a kernel module that iterates through all tasks in the system using the
for each process() macro. In particular, output the task command, state,
and process id of each task. (You will probably have to read through the
task struct structure in <linux/sched.h> to obtain the names of these
fields.)Write this code in themodule entry point so that its contents will appear
in the kernel log buffer, which can be viewed using the dmesg command. To
verify that your code is working correctly, compare the contents of the kernel
log buffer with the output of the following command, which lists all tasks in
the system:

ps -el

The two values should be very similar. Because tasks are dynamic, however, it
is possible that a few tasks may appear in one listing but not the other.

Part II—Iterating over Tasks with a Depth-First Search Tree

The second portion of this project involves iterating over all tasks in the system
using a depth-first search (DFS) tree. (As an example: the DFS iteration of the
processes in Figure 3.7 is 1, 8415, 8416, 9298, 9204, 2808, 3028, 3610, 4005.)

Linux maintains its process tree as a series of lists. Examining the
task struct in <linux/sched.h>, we see two struct list head objects:

children

and

sibling

These objects are pointers to a list of the task’s children, as well as its siblings.
Linux also maintains a reference to the initial task in the system — init task
— which is of type task struct. Using this information as well as macro
operations on lists, we can iterate over the children of init task as follows:

struct task struct *task;
struct list head *list;

P-18

Chapter 3 Processes

list for each(list, &init task->children) {
task = list entry(list, struct task struct, sibling);
/* task points to the next child in the list */

}

The list for each() macro is passed two parameters, both of type struct
list head:

• A pointer to the head of the list to be traversed

• Apointer to the head node of the list to be traversed

At each iteration of list for each(), the first parameter is set to the list
structure of the next child. We then use this value to obtain each structure in
the list using the list entry()macro.

Assignment

Beginning from init task task, design a kernel module that iterates over all
tasks in the systemusing aDFS tree. Just as in the first part of this project, output
the name, state, and pid of each task. Perform this iteration in the kernel entry
module so that its output appears in the kernel log buffer.

If you output all tasks in the system, you may see many more tasks than
appear with the ps -ael command. This is because some threads appear as
children but do not show up as ordinary processes. Therefore, to check the
output of the DFS tree, use the command

ps -eLf

This command lists all tasks—including threads—in the system. To verify that
you have indeed performed an appropriate DFS iteration, you will have to
examine the relationships among the various tasks output by the ps command.

Project 4—Kernel Data Structures

In Section 1.9, we covered various data structures that are common in oper-
ating systems. The Linux kernel provides several of these structures. Here,
we explore using the circular, doubly linked list that is available to kernel
developers. Much of what we discuss is available in the Linux source code—
in this instance, the include file <linux/list.h>—and we recommend that
you examine this file as you proceed through the following steps.

Initially, you must define a struct containing the elements that are to be
inserted in the linked list. The following C struct defines a color as a mixture
of red, blue, and green:

struct color {
int red;
int blue;
int green;

P-19

Programming Projects

struct list head list;
};

Notice the member struct list head list. The list head structure is
defined in the include file <linux/types.h>, and its intention is to embed the
linked list within the nodes that comprise the list. This list head structure is
quite simple—it merely holds two members, next and prev, that point to the
next and previous entries in the list. By embedding the linked list within the
structure, Linux makes it possible to manage the data structure with a series of
macro functions.

I. Inserting Elements into the Linked List

We can declare a list head object, which we use as a reference to the head of
the list by using the LIST HEAD()macro:

static LIST HEAD(color list);

This macro defines and initializes the variable color list, which is of type
struct list head.

We create and initialize instances of struct color as follows:

struct color *violet;

violet = kmalloc(sizeof(*violet), GFP KERNEL);
violet->red = 138;
violet->blue = 43;
violet->green = 226;
INIT LIST HEAD(&violet->list);

The kmalloc() function is the kernel equivalent of the user-level malloc()
function for allocating memory, except that kernel memory is being allocated.
The GFP KERNEL flag indicates routine kernel memory allocation. The macro
INIT LIST HEAD() initializes the listmember in struct color.We can then
add this instance to the end of the linked list using the list add tail()macro:

list add tail(&violet->list, &color list);

II. Traversing the Linked List

Traversing the list involves using the list for each entry() macro, which
accepts three parameters:

• A pointer to the structure being iterated over

• Apointer to the head of the list being iterated over

• The name of the variable containing the list head structure

The following code illustrates this macro:

P-20

Chapter 3 Processes

struct color *ptr;

list for each entry(ptr, &color list, list) {
/* on each iteration ptr points */
/* to the next struct color */

}

III. Removing Elements from the Linked List

Removing elements from the list involves using the list del()macro, which
is passed a pointer to struct list head:

list del(struct list head *element);

This removes element from the list while maintaining the structure of the
remainder of the list.

Perhaps the simplest approach for removing all elements from a
linked list is to remove each element as you traverse the list. The macro
list for each entry safe() behaves much like list for each entry()
except that it is passed an additional argument that maintains the value of the
next pointer of the item being deleted. (This is necessary for preserving the
structure of the list.) The following code example illustrates this macro:

struct color *ptr, *next;

list for each entry safe(ptr,next,&color list,list) {
/* on each iteration ptr points */
/* to the next struct color */
list del(&ptr->list);
kfree(ptr);

}

Notice that after deleting each element, we returnmemory that was previously
allocated with kmalloc() back to the kernel with the call to kfree().

Part I—Assignment

In the module entry point, create a linked list containing four struct color
elements. Traverse the linked list and output its contents to the kernel log
buffer. Invoke the dmesg command to ensure that the list is properly con-
structed once the kernel module has been loaded.

In themodule exit point, delete the elements from the linked list and return
the freememory back to the kernel.Again, invoke the dmesg command to check
that the list has been removed once the kernel module has been unloaded.

Part II—Parameter Passing

This portion of the project will involve passing a parameter to a kernel module.
The module will use this parameter as an initial value and generate the Collatz
sequence as described in Exercise 3.21.

P-21

Programming Projects

Passing a Parameter to a Kernel Module

Parameters may be passed to kernel modules when they are loaded. For exam-
ple, if the name of the kernel module is collatz, we can pass the initial value
of 15 to the kernel parameter start as follows:

sudo insmod collatz.ko start=15

Within the kernelmodule,we declare start as a parameter using the following
code:

#include<linux/moduleparam.h>

static int start = 25;

module param(start, int, 0);

The module param() macro is used to establish variables as parameters to
kernel modules. module param() is provided three arguments: (1) the name
of the parameter, (2) its type, and (3) file permissions. Since we are not using a
file system for accessing the parameter, we are not concerned with permissions
and use a default value of 0. Note that the name of the parameter used with
the insmod commandmustmatch the name of the associated kernel parameter.
Finally, if we do not provide a value to the module parameter during loading
with insmod, the default value (which in this case is 25) is used.

Part II—Assignment

Design a kernel module named collatz that is passed an initial value as a
module parameter. Your module will then generate and store the sequence in
a kernel linked list when the module is loaded. Once the sequence has been
stored, your module will traverse the list and output its contents to the kernel
log buffer. Use the dmesg command to ensure that the sequence is properly
generated once the module has been loaded.

In the module exit point, delete the contents of the list and return the free
memory back to the kernel. Again, use dmesg to check that the list has been
removed once the kernel module has been unloaded.

P-22

4CHAPTER

Threads &
Concurrency

The process model introduced in Chapter 3 assumed that a process was an
executing programwith a single thread of control. Virtually all modern operat-
ing systems, however, provide features enabling a process to contain multiple
threads of control. Identifying opportunities for parallelism through the use of
threads is becoming increasingly important for modernmulticore systems that
provide multiple CPUs.

In this chapter, we introduce many concepts, as well as challenges, associ-
ated with multithreaded computer systems, including a discussion of the APIs
for the Pthreads, Windows, and Java thread libraries. Additionally, we explore
several new features that abstract the concept of creating threads, allowing
developers to focus on identifying opportunities for parallelism and letting
language features and API frameworks manage the details of thread creation
and management. We look at a number of issues related to multithreaded pro-
gramming and its effect on the design of operating systems. Finally, we explore
how the Windows and Linux operating systems support threads at the kernel
level.

CHAPTER OBJECTIVES

• Identify the basic components of a thread, and contrast threads and
processes.

• Describe the major benefits and significant challenges of designing multi-
threaded processes.

• Illustrate different approaches to implicit threading, including thread pools,
fork-join, and Grand Central Dispatch.

• Describe how the Windows and Linux operating systems represent
threads.

• Design multithreaded applications using the Pthreads, Java, and Windows
threading APIs.

159

160 Chapter 4 Threads & Concurrency

4.1 Overview

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program
counter (PC), a register set, and a stack. It shares with other threads belonging
to the same process its code section, data section, and other operating-system
resources, such as open files and signals. A traditional process has a single
thread of control. If a process has multiple threads of control, it can perform
more than one task at a time. Figure 4.1 illustrates the difference between a
traditional single-threaded process and a multithreaded process.

4.1.1 Motivation

Most software applications that run on modern computers and mobile devices
are multithreaded. An application typically is implemented as a separate pro-
cess with several threads of control. Below we highlight a few examples of
multithreaded applications:

• An application that creates photo thumbnails from a collection of images
may use a separate thread to generate a thumbnail from each separate
image.

• Awebbrowsermight have one thread display images or textwhile another
thread retrieves data from the network.

• A word processor may have a thread for displaying graphics, another
thread for responding to keystrokes from the user, and a third thread for
performing spelling and grammar checking in the background.

thread

multithreaded process single-threaded process

registers

kk

stack

k

filesdatacodefilesdatacode

thread

PC registers registers

stackstacstac

registers

PC PC PC

Figure 4.1 Single-threaded and multithreaded processes.

4.1 Overview 161

Applications can also be designed to leverage processing capabilities on mul-
ticore systems. Such applications can perform several CPU-intensive tasks in
parallel across the multiple computing cores.

In certain situations, a single application may be required to perform sev-
eral similar tasks. For example, a web server accepts client requests for web
pages, images, sound, and so forth. A busy web server may have several (per-
haps thousands of) clients concurrently accessing it. If the web server ran as a
traditional single-threaded process, it would be able to service only one client
at a time, and a client might have to wait a very long time for its request to be
serviced.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process
to service that request. In fact, this process-creation method was in common
use before threads became popular. Process creation is time consuming and
resource intensive, however. If the new process will perform the same tasks as
the existing process, why incur all that overhead? It is generally more efficient
to use one process that contains multiple threads. If the web-server process is
multithreaded, the server will create a separate thread that listens for client
requests. When a request is made, rather than creating another process, the
server creates a new thread to service the request and resumes listening for
additional requests. This is illustrated in Figure 4.2.

Most operating system kernels are also typically multithreaded. As an
example, during system boot time on Linux systems, several kernel threads
are created. Each thread performs a specific task, such as managing devices,
memory management, or interrupt handling. The command ps -ef can be
used to display the kernel threads on a running Linux system. Examining the
output of this command will show the kernel thread kthreadd (with pid = 2),
which serves as the parent of all other kernel threads.

Many applications can also take advantage of multiple threads, including
basic sorting, trees, and graph algorithms. In addition, programmerswhomust
solve contemporary CPU-intensive problems in data mining, graphics, and
artificial intelligence can leverage the power of modern multicore systems by
designing solutions that run in parallel.

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

Figure 4.2 Multithreaded server architecture.

162 Chapter 4 Threads & Concurrency

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

1. Responsiveness. Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is perform-
ing a lengthy operation, thereby increasing responsiveness to the user.
This quality is especially useful in designing user interfaces. For instance,
consider what happens when a user clicks a button that results in the
performance of a time-consuming operation. A single-threaded appli-
cation would be unresponsive to the user until the operation had been
completed. In contrast, if the time-consuming operation is performed in
a separate, asynchronous thread, the application remains responsive to
the user.

2. Resource sharing. Processes can share resources only through techniques
such as shared memory and message passing. Such techniques must
be explicitly arranged by the programmer. However, threads share the
memory and the resources of the process towhich they belong by default.
The benefit of sharing code and data is that it allows an application to
have several different threads of activity within the same address space.

3. Economy. Allocating memory and resources for process creation is
costly. Because threads share the resources of the process to which they
belong, it is more economical to create and context-switch threads.
Empirically gauging the difference in overhead can be difficult, but in
general thread creation consumes less time and memory than process
creation. Additionally, context switching is typically faster between
threads than between processes.

4. Scalability. The benefits of multithreading can be even greater in a mul-
tiprocessor architecture, where threads may be running in parallel on
different processing cores. A single-threaded process can run on only
one processor, regardless how many are available. We explore this issue
further in the following section.

4.2 Multicore Programming

Earlier in the history of computer design, in response to the need for more
computing performance, single-CPU systems evolved into multi-CPU systems.
A later, yet similar, trend in system design is to place multiple computing
cores on a single processing chip where each core appears as a separate CPU
to the operating system (Section 1.3.2). We refer to such systems as multicore,
and multithreaded programming provides a mechanism for more efficient
use of these multiple computing cores and improved concurrency. Consider
an application with four threads. On a system with a single computing core,
concurrency merelymeans that the execution of the threads will be interleaved
over time (Figure 4.3), because the processing core is capable of executing only
one thread at a time. On a system with multiple cores, however, concurrency

4.2 Multicore Programming 163

single core

time

T ...1 T2 T2T3 T3T4 T4T1 T1

Figure 4.3 Concurrent execution on a single-core system.

means that some threads can run in parallel, because the system can assign a
separate thread to each core (Figure 4.4).

Notice the distinction between concurrency and parallelism in this discus-
sion. Aconcurrent system supportsmore than one task by allowing all the tasks
tomake progress. In contrast, a parallel system can performmore than one task
simultaneously. Thus, it is possible to have concurrency without parallelism.
Before the advent of multiprocessor and multicore architectures, most com-
puter systems had only a single processor, and CPU schedulers were designed
to provide the illusion of parallelism by rapidly switching between processes,
thereby allowing each process to make progress. Such processes were running
concurrently, but not in parallel.

4.2.1 Programming Challenges

The trend toward multicore systems continues to place pressure on system
designers and application programmers to make better use of the multiple
computing cores. Designers of operating systems must write scheduling algo-
rithms that usemultiple processing cores to allow the parallel execution shown
in Figure 4.4. For application programmers, the challenge is to modify existing
programs as well as design new programs that are multithreaded.

In general, five areas present challenges in programming for multicore
systems:

1. Identifying tasks. This involves examining applications to find areas
that can be divided into separate, concurrent tasks. Ideally, tasks are
independent of one another and thus can run in parallel on individual
cores.

2. Balance. While identifying tasks that can run in parallel, programmers
must also ensure that the tasks perform equal work of equal value. In
some instances, a certain task may not contribute as much value to the
overall process as other tasks. Using a separate execution core to run that
task may not be worth the cost.

core 2

core 1

time

T ...

...

1T1T1

T2T2T2

T3T3

T4T4

Figure 4.4 Parallel execution on a multicore system.

164 Chapter 4 Threads & Concurrency

AMDAHL’S LAW

Amdahl’s Law is a formula that identifies potential performance gains from
adding additional computing cores to an application that has both serial
(nonparallel) and parallel components. If S is the portion of the application
that must be performed serially on a system with N processing cores, the
formula appears as follows:

speedup ≤
1

S + (1−S)
N

As an example, assume we have an application that is 75 percent parallel and
25 percent serial. If we run this application on a system with two processing
cores, we can get a speedup of 1.6 times. If we add two additional cores
(for a total of four), the speedup is 2.28 times. Below is a graph illustrating
Amdahl’s Law in several different scenarios.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Processing Cores

Ideal Speedup
S = 0.05
S = 0.10
S = 0.50

One interesting fact about Amdahl’s Law is that as N approaches infinity,
the speedup converges to 1∕S. For example, if 50 percent of an application
is performed serially, the maximum speedup is 2.0 times, regardless of the
number of processing coreswe add. This is the fundamental principle behind
Amdahl’s Law: the serial portion of an application can have a dispropor-
tionate effect on the performance we gain by adding additional computing
cores.

3. Data splitting. Just as applications are divided into separate tasks, the
data accessed and manipulated by the tasks must be divided to run on
separate cores.

4. Data dependency. The data accessed by the tasks must be examined for
dependencies between two or more tasks. When one task depends on
data from another, programmers must ensure that the execution of the
tasks is synchronized to accommodate the data dependency. We examine
such strategies in Chapter 6.

4.2 Multicore Programming 165

core 0

data

data

data
parallelism

task
parallelism

core 1 core 2 core 3

core 0 core 1 core 2 core 3

Figure 4.5 Data and task parallelism.

5. Testing and debugging. When a program is running in parallel on multi-
ple cores,many different execution paths are possible. Testing and debug-
ging such concurrent programs is inherently more difficult than testing
and debugging single-threaded applications.

Because of these challenges,many software developers argue that the advent of
multicore systems will require an entirely new approach to designing software
systems in the future. (Similarly,many computer science educators believe that
software development must be taught with increased emphasis on parallel
programming.)

4.2.2 Types of Parallelism

In general, there are two types of parallelism: data parallelism and task par-
allelism. Data parallelism focuses on distributing subsets of the same data
across multiple computing cores and performing the same operation on each
core. Consider, for example, summing the contents of an array of size N. On a
single-core system, one thread would simply sum the elements [0] . . . [N − 1].
On a dual-core system, however, thread A, running on core 0, could sum the
elements [0] . . . [N∕2 − 1] while thread B, running on core 1, could sum the
elements [N∕2] . . . [N − 1]. The two threads would be running in parallel on
separate computing cores.

Task parallelism involves distributing not data but tasks (threads) across
multiple computing cores. Each thread is performing a unique operation. Dif-
ferent threads may be operating on the same data, or theymay be operating on
different data. Consider again our example above. In contrast to that situation,
an example of task parallelism might involve two threads, each performing
a unique statistical operation on the array of elements. The threads again are
operating in parallel on separate computing cores, but each is performing a
unique operation.

Fundamentally, then, data parallelism involves the distribution of data
across multiple cores, and task parallelism involves the distribution of tasks
across multiple cores, as shown in Figure 4.5. However, data and task paral-

166 Chapter 4 Threads & Concurrency

user threads
user
space

kernel threads

kernel
space

Figure 4.6 User and kernel threads.

lelism are not mutually exclusive, and an application may in fact use a hybrid
of these two strategies.

4.3 Multithreading Models

Our discussion so far has treated threads in a generic sense. However, support
for threads may be provided either at the user level, for user threads, or by the
kernel, for kernel threads. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported
and managed directly by the operating system. Virtually all contemporary
operating systems—including Windows, Linux, and macOS— support kernel
threads.

Ultimately, a relationship must exist between user threads and kernel
threads, as illustrated in Figure 4.6. In this section, we look at three common
ways of establishing such a relationship: the many-to-one model, the one-to-
one model, and the many-to-many model.

4.3.1 Many-to-One Model

The many-to-one model (Figure 4.7) maps many user-level threads to one
kernel thread. Thread management is done by the thread library in user space,
so it is efficient (we discuss thread libraries in Section 4.4). However, the entire
process will block if a thread makes a blocking system call. Also, because only

user threads
user
space

kernel threads

kernel
space

Figure 4.7 Many-to-one model.

4.3 Multithreading Models 167

user threads
user
space

kernel threads

kernel
space

Figure 4.8 One-to-one model.

one thread can access the kernel at a time, multiple threads are unable to run
in parallel on multicore systems. Green threads—a thread library available
for Solaris systems and adopted in early versions of Java—used the many-to-
one model. However, very few systems continue to use the model because of
its inability to take advantage of multiple processing cores, which have now
become standard on most computer systems.

4.3.2 One-to-One Model

The one-to-one model (Figure 4.8) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call. It also allows mul-
tiple threads to run in parallel on multiprocessors. The only drawback to this
model is that creating a user thread requires creating the corresponding kernel
thread, and a large number of kernel threads may burden the performance of
a system. Linux, along with the family of Windows operating systems, imple-
ment the one-to-one model.

4.3.3 Many-to-Many Model

The many-to-many model (Figure 4.9) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an
application may be allocated more kernel threads on a system with eight
processing cores than a system with four cores).

user threads
user
space

kernel threads

kernel
space

Figure 4.9 Many-to-many model.

168 Chapter 4 Threads & Concurrency

user threads
user
space

kernel threads

kernel
space

Figure 4.10 Two-level model.

Let’s consider the effect of this design on concurrency. Whereas the many-
to-one model allows the developer to create as many user threads as she
wishes, it does not result in parallelism, because the kernel can schedule only
one kernel thread at a time. The one-to-one model allows greater concurrency,
but the developer has to be careful not to create too many threads within an
application. (In fact, on some systems, she may be limited in the number of
threads she can create.) The many-to-many model suffers from neither of these
shortcomings: developers can create as many user threads as necessary, and
the corresponding kernel threads can run in parallel on a multiprocessor. Also,
when a thread performs a blocking system call, the kernel can schedule another
thread for execution.

One variation on the many-to-many model still multiplexes many user-
level threads to a smaller or equal number of kernel threads but also allows a
user-level thread to be bound to a kernel thread. This variation is sometimes
referred to as the two-level model (Figure 4.10).

Although the many-to-many model appears to be the most flexible of the
models discussed, in practice it is difficult to implement. In addition, with an
increasing number of processing cores appearing on most systems, limiting
the number of kernel threads has become less important. As a result, most
operating systems now use the one-to-one model. However, as we shall see in
Section 4.5, some contemporary concurrency libraries have developers identify
tasks that are then mapped to threads using the many-to-many model.

4.4 Thread Libraries

A thread library provides the programmer with an API for creating and man-
aging threads. There are two primary ways of implementing a thread library.
The first approach is to provide a library entirely in user space with no kernel
support. All code and data structures for the library exist in user space. This
means that invoking a function in the library results in a local function call in
user space and not a system call.

The second approach is to implement a kernel-level library supported
directly by the operating system. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the API for the library
typically results in a system call to the kernel.

4.4 Thread Libraries 169

Threemain thread libraries are in use today: POSIX Pthreads,Windows, and
Java. Pthreads, the threads extension of the POSIX standard, may be provided
as either a user-level or a kernel-level library. The Windows thread library
is a kernel-level library available on Windows systems. The Java thread API
allows threads to be created andmanaged directly in Java programs. However,
because inmost instances the JVM is running on top of a host operating system,
the Java thread API is generally implemented using a thread library available
on the host system. Thismeans that onWindows systems, Java threads are typ-
ically implemented using the Windows API; UNIX, Linux, and macOS systems
typically use Pthreads.

For POSIX and Windows threading, any data declared globally—that is,
declared outside of any function—are shared among all threads belonging to
the same process. Because Java has no equivalent notion of global data, access
to shared data must be explicitly arranged between threads.

In the remainder of this section, we describe basic thread creation using
these three thread libraries. As an illustrative example, we design a multi-
threaded program that performs the summation of a non-negative integer in a
separate thread using the well-known summation function:

sum =
N∑

i=1
i

For example, if N were 5, this function would represent the summation of
integers from 1 to 5, which is 15. Each of the three programs will be run with
the upper bounds of the summation entered on the command line. Thus, if the
user enters 8, the summation of the integer values from 1 to 8 will be output.

Before we proceed with our examples of thread creation, we introduce
two general strategies for creating multiple threads: asynchronous threading
and synchronous threading. With asynchronous threading, once the parent
creates a child thread, the parent resumes its execution, so that the parent
and child execute concurrently and independently of one another. Because
the threads are independent, there is typically little data sharing between
them.Asynchronous threading is the strategy used in themultithreaded server
illustrated in Figure 4.2 and is also commonly used for designing responsive
user interfaces.

Synchronous threading occurs when the parent thread creates one or more
children and thenmustwait for all of its children to terminate before it resumes.
Here, the threads created by the parent perform work concurrently, but the
parent cannot continue until this work has been completed. Once each thread
has finished itswork, it terminates and joinswith its parent. Only after all of the
children have joined can the parent resume execution. Typically, synchronous
threading involves significant data sharing among threads. For example, the
parent thread may combine the results calculated by its various children. All
of the following examples use synchronous threading.

4.4.1 Pthreads

Pthreads refers to the POSIX standard (IEEE 1003.1c) defining an API for thread
creation and synchronization. This is a specification for thread behavior, not an
implementation. Operating-systemdesignersmay implement the specification

170 Chapter 4 Threads & Concurrency

#include <pthread.h>
#include <stdio.h>

#include <stdlib.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv[])
{

pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */

/* set the default attributes of the thread */
pthread attr init(&attr);
/* create the thread */
pthread create(&tid, &attr, runner, argv[1]);
/* wait for the thread to exit */
pthread join(tid,NULL);

printf("sum = %d∖n",sum);
}

/* The thread will execute in this function */
void *runner(void *param)
{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += i;

pthread exit(0);
}

Figure 4.11 Multithreaded C program using the Pthreads API.

in any way they wish. Numerous systems implement the Pthreads specifica-
tion; most are UNIX-type systems, including Linux and macOS. AlthoughWin-
dows doesn’t support Pthreads natively, some third-party implementations for
Windows are available.

The C program shown in Figure 4.11 demonstrates the basic Pthreads API
for constructing a multithreaded program that calculates the summation of
a non-negative integer in a separate thread. In a Pthreads program, separate
threads begin execution in a specified function. In Figure 4.11, this is the run-
ner() function. When this program begins, a single thread of control begins in

4.4 Thread Libraries 171

#define NUM THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM THREADS];

for (int i = 0; i < NUM THREADS; i++)
pthread join(workers[i], NULL);

Figure 4.12 Pthread code for joining ten threads.

main(). After some initialization, main() creates a second thread that begins
control in the runner() function. Both threads share the global data sum.

Let’s look more closely at this program. All Pthreads programs must
include the pthread.h header file. The statement pthread t tid declares the
identifier for the thread we will create. Each thread has a set of attributes,
including stack size and scheduling information. The pthread attr t attr
declaration represents the attributes for the thread. We set the attributes in
the function call pthread attr init(&attr). Because we did not explicitly
set any attributes, we use the default attributes provided. (In Chapter 5, we
discuss some of the scheduling attributes provided by the Pthreads API.) A
separate thread is created with the pthread create() function call. In addi-
tion to passing the thread identifier and the attributes for the thread, we also
pass the name of the function where the new thread will begin execution—in
this case, the runner() function. Last, we pass the integer parameter that was
provided on the command line, argv[1].

At this point, the program has two threads: the initial (or parent) thread in
main() and the summation (or child) thread performing the summation oper-
ation in the runner() function. This program follows the thread create/join
strategy, whereby after creating the summation thread, the parent thread will
wait for it to terminate by calling the pthread join() function. The summa-
tion threadwill terminatewhen it calls the function pthread exit(). Once the
summation thread has returned, the parent thread will output the value of the
shared data sum.

This example program creates only a single thread. With the growing
dominance of multicore systems, writing programs containing several threads
has become increasingly common. A simple method for waiting on several
threads using the pthread join() function is to enclose the operation within
a simple for loop. For example, you can join on ten threads using the Pthread
code shown in Figure 4.12.

4.4.2 Windows Threads

The technique for creating threads using theWindows thread library is similar
to the Pthreads technique in several ways. We illustrate the Windows thread
API in the C program shown in Figure 4.13. Notice that we must include the
windows.h header file when using the Windows API.

172 Chapter 4 Threads & Concurrency

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* The thread will execute in this function */
DWORD WINAPI Summation(LPVOID Param)
{

DWORD Upper = *(DWORD*)Param;
for (DWORD i = 1; i <= Upper; i++)

Sum += i;
return 0;

}

int main(int argc, char *argv[])
{

DWORD ThreadId;
HANDLE ThreadHandle;
int Param;

Param = atoi(argv[1]);
/* create the thread */
ThreadHandle = CreateThread(

NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
&Param, /* parameter to thread function */
0, /* default creation flags */
&ThreadId); /* returns the thread identifier */

/* now wait for the thread to finish */
WaitForSingleObject(ThreadHandle,INFINITE);

/* close the thread handle */
CloseHandle(ThreadHandle);

printf("sum = %d∖n",Sum);
}

Figure 4.13 Multithreaded C program using the Windows API.

Just as in the Pthreads version shown in Figure 4.11, data shared by the
separate threads—in this case, Sum—are declared globally (the DWORD data
type is an unsigned 32-bit integer). We also define the Summation() function
that is to be performed in a separate thread. This function is passed a pointer
to a void, which Windows defines as LPVOID. The thread performing this
function sets the global data Sum to the value of the summation from 0 to the
parameter passed to Summation().

4.4 Thread Libraries 173

Threads are created in the Windows API using the CreateThread() func-
tion, and—just as in Pthreads—a set of attributes for the thread is passed
to this function. These attributes include security information, the size of the
stack, and a flag that can be set to indicate if the thread is to start in a suspended
state. In this program, we use the default values for these attributes. (The
default values do not initially set the thread to a suspended state and instead
make it eligible to be run by the CPU scheduler.) Once the summation thread
is created, the parent must wait for it to complete before outputting the value
of Sum, as the value is set by the summation thread. Recall that the Pthread
program (Figure 4.11) had the parent thread wait for the summation thread
using the pthread join() statement. We perform the equivalent of this in the
Windows API using the WaitForSingleObject() function, which causes the
creating thread to block until the summation thread has exited.

In situations that require waiting for multiple threads to complete, the
WaitForMultipleObjects() function is used. This function is passed four
parameters:

1. The number of objects to wait for

2. Apointer to the array of objects

3. Aflag indicating whether all objects have been signaled

4. A timeout duration (or INFINITE)

For example, if THandles is an array of thread HANDLE objects of size N, the
parent thread can wait for all its child threads to complete with this statement:

WaitForMultipleObjects(N, THandles, TRUE, INFINITE);

4.4.3 Java Threads

Threads are the fundamental model of program execution in a Java program,
and the Java language and its API provide a rich set of features for the creation
and management of threads. All Java programs comprise at least a single
thread of control—even a simple Java program consisting of only a main()
method runs as a single thread in the JVM. Java threads are available on any
system that provides a JVM including Windows, Linux, and macOS. The Java
thread API is available for Android applications as well.

There are two techniques for explicitly creating threads in a Java program.
One approach is to create a new class that is derived from the Thread class
and to override its run()method. An alternative—and more commonly used
—technique is to define a class that implements the Runnable interface. This
interface defines a single abstract method with the signature public void
run(). The code in the run() method of a class that implements Runnable
is what executes in a separate thread. An example is shown below:

class Task implements Runnable
{

public void run() {
System.out.println("I am a thread.");

}
}

174 Chapter 4 Threads & Concurrency

LAMBDAEXPRESSIONS IN JAVA

Beginning with Version 1.8 of the language, Java introduced Lambda expres-
sions, which allow a much cleaner syntax for creating threads. Rather than
defining a separate class that implements Runnable, a Lambda expression
can be used instead:

Runnable task = () -> {
System.out.println("I am a thread.");

};

Thread worker = new Thread(task);
worker.start();

Lambda expressions—as well as similar functions known as closures—are
a prominent feature of functional programming languages and have been
available in several nonfunctional languages as well including Python, C++,
and C#. As we shall see in later examples in this chapter, Lamdba expressions
often provide a simple syntax for developing parallel applications.

Thread creation in Java involves creating a Thread object and passing it
an instance of a class that implements Runnable, followed by invoking the
start()method on the Thread object. This appears in the following example:

Thread worker = new Thread(new Task());
worker.start();

Invoking the start()method for the new Thread object does two things:

1. It allocates memory and initializes a new thread in the JVM.

2. It calls the run()method,making the thread eligible to be run by the JVM.
(Note again that we never call the run()method directly. Rather, we call
the start()method, and it calls the run()method on our behalf.)

Recall that the parent threads in the Pthreads and Windows libraries use
pthread join() and WaitForSingleObject() (respectively) to wait for the
summation threads to finish before proceeding. The join() method in Java
provides similar functionality. (Notice that join() can throw an Interrupt-
edException, which we choose to ignore.)

try {
worker.join();

}
catch (InterruptedException ie) { }

If the parent must wait for several threads to finish, the join()method can be
enclosed in a for loop similar to that shown for Pthreads in Figure 4.12.

4.4 Thread Libraries 175

4.4.3.1 Java Executor Framework

Java has supported thread creation using the approachwe have described thus
far since its origins. However, beginning with Version 1.5 and its API, Java
introduced several new concurrency features that provide developers with
much greater control over thread creation and communication. These tools are
available in the java.util.concurrent package.

Rather than explicitly creating Thread objects, thread creation is instead
organized around the Executor interface:

public interface Executor
{

void execute(Runnable command);
}

Classes implementing this interfacemust define the execute()method,which
is passed a Runnable object. For Java developers, this means using the Execu-
tor rather than creating a separate Thread object and invoking its start()
method. The Executor is used as follows:

Executor service = new Executor;
service.execute(new Task());

The Executor framework is based on the producer-consumermodel; tasks
implementing the Runnable interface are produced, and the threads that exe-
cute these tasks consume them. The advantage of this approach is that it not
only divides thread creation from execution but also provides a mechanism for
communication between concurrent tasks.

Data sharing between threads belonging to the same process occurs easily
in Windows and Pthreads, since shared data are simply declared globally. As
a pure object-oriented language, Java has no such notion of global data. We
can pass parameters to a class that implements Runnable, but Java threads
cannot return results. To address this need, the java.util.concurrent pack-
age additionally defines the Callable interface, which behaves similarly to
Runnable except that a result can be returned. Results returned from Callable
tasks are known as Future objects. A result can be retrieved from the get()
method defined in the Future interface. The program shown in Figure 4.14
illustrates the summation program using these Java features.

The Summation class implements the Callable interface, which specifies
the method V call()—it is the code in this call() method that is executed
in a separate thread. To execute this code, we create a newSingleThreadEx-
ecutor object (provided as a static method in the Executors class), which is
of type ExecutorService, and pass it a Callable task using its submit()
method. (The primary difference between the execute() and submit()meth-
ods is that the former returns no result, whereas the latter returns a result as
a Future.) Once we submit the callable task to the thread, we wait for its
result by calling the get()method of the Future object it returns.

It is quite easy to notice at first that this model of thread creation appears
more complicated than simply creating a thread and joining on its termination.
However, incurring this modest degree of complication confers benefits. Aswe
have seen, using Callable and Future allows for threads to return results.

176 Chapter 4 Threads & Concurrency

import java.util.concurrent.*;

class Summation implements Callable<Integer>
{

private int upper;
public Summation(int upper) {

this.upper = upper;
}

/* The thread will execute in this method */
public Integer call() {

int sum = 0;
for (int i = 1; i <= upper; i++)

sum += i;

return new Integer(sum);
}

}

public class Driver
{
public static void main(String[] args) {

int upper = Integer.parseInt(args[0]);

ExecutorService pool = Executors.newSingleThreadExecutor();
Future<Integer> result = pool.submit(new Summation(upper));

try {
System.out.println("sum = " + result.get());

} catch (InterruptedException | ExecutionException ie) { }
}

}

Figure 4.14 Illustration of Java Executor framework API.

Additionally, this approach separates the creation of threads from the results
they produce: rather than waiting for a thread to terminate before retrieving
results, the parent instead onlywaits for the results to become available. Finally,
as we shall see in Section 4.5.1, this framework can be combined with other
features to create robust tools for managing a large number of threads.

4.5 Implicit Threading

With the continued growth of multicore processing, applications contain-
ing hundreds—or even thousands—of threads are looming on the horizon.
Designing such applications is not a trivial undertaking: programmers must

4.5 Implicit Threading 177

THE JVM AND THE HOST OPERATING SYSTEM

The JVM is typically implemented on top of a host operating system (see
Figure 18.10). This setup allows the JVM to hide the implementation details
of the underlying operating system and to provide a consistent, abstract
environment that allows Java programs to operate on any platform that
supports a JVM. The specification for the JVM does not indicate how Java
threads are to bemapped to the underlying operating system, instead leaving
that decision to the particular implementation of the JVM. For example, the
Windows operating system uses the one-to-one model; therefore, each Java
thread for a JVM running on Windows maps to a kernel thread. In addition,
there may be a relationship between the Java thread library and the thread
library on the host operating system. For example, implementations of a JVM
for the Windows family of operating systems might use the Windows API
when creating Java threads; Linux andmacOS systemsmight use the Pthreads
API.

address not only the challenges outlined in Section 4.2 but additional difficul-
ties as well. These difficulties, which relate to program correctness, are covered
in Chapter 6 and Chapter 8.

One way to address these difficulties and better support the design of con-
current and parallel applications is to transfer the creation and management
of threading from application developers to compilers and run-time libraries.
This strategy, termed implicit threading, is an increasingly popular trend. In
this section, we explore four alternative approaches to designing applications
that can take advantage of multicore processors through implicit threading.
As we shall see, these strategies generally require application developers to
identify tasks—not threads—that can run in parallel. A task is usually writ-
ten as a function, which the run-time library then maps to a separate thread,
typically using the many-to-many model (Section 4.3.3). The advantage of
this approach is that developers only need to identify parallel tasks, and the
libraries determine the specific details of thread creation and management.

4.5.1 Thread Pools

In Section 4.1, we described a multithreaded web server. In this situation,
whenever the server receives a request, it creates a separate thread to service
the request.Whereas creating a separate thread is certainly superior to creating
a separate process, a multithreaded server nonetheless has potential problems.
The first issue concerns the amount of time required to create the thread,
together with the fact that the thread will be discarded once it has completed
its work. The second issue is more troublesome. If we allow each concurrent
request to be serviced in a new thread, we have not placed a bound on the
number of threads concurrently active in the system. Unlimited threads could
exhaust system resources, such as CPU time or memory. One solution to this
problem is to use a thread pool.

178 Chapter 4 Threads & Concurrency

ANDROID THREAD POOLS

In Section 3.8.2.1, we covered RPCs in the Android operating system. You
may recall from that section that Android uses the Android Interface Defi-
nition Language (AIDL), a tool that specifies the remote interface that clients
interactwith on the server. AIDLalso provides a thread pool. Aremote service
using the thread pool can handlemultiple concurrent requests, servicing each
request using a separate thread from the pool.

The general idea behind a thread pool is to create a number of threads at
start-up and place them into a pool, where they sit and wait for work. When a
server receives a request, rather than creating a thread, it instead submits the
request to the thread pool and resumes waiting for additional requests. If there
is an available thread in the pool, it is awakened, and the request is serviced
immediately. If the pool contains no available thread, the task is queued until
one becomes free. Once a thread completes its service, it returns to the pool
and awaits more work. Thread pools work well when the tasks submitted to
the pool can be executed asynchronously.

Thread pools offer these benefits:

1. Servicing a request with an existing thread is often faster than waiting to
create a thread.

2. Athreadpool limits the number of threads that exist at any one point. This
is particularly important on systems that cannot support a large number
of concurrent threads.

3. Separating the task to be performed from the mechanics of creating the
task allows us to use different strategies for running the task. For example,
the task could be scheduled to execute after a time delay or to execute
periodically.

The number of threads in the pool can be set heuristically based on factors
such as the number of CPUs in the system, the amount of physical memory, and
the expected number of concurrent client requests. More sophisticated thread-
pool architectures can dynamically adjust the number of threads in the pool
according to usage patterns. Such architectures provide the further benefit of
having a smaller pool—thereby consuming less memory—when the load on
the system is low. We discuss one such architecture, Apple’s Grand Central
Dispatch, later in this section.

TheWindows API provides several functions related to thread pools. Using
the thread pool API is similar to creating a thread with the Thread Create()
function, as described in Section 4.4.2. Here, a function that is to run as a
separate thread is defined. Such a function may appear as follows:

DWORD WINAPI PoolFunction(PVOID Param) {
/* this function runs as a separate thread. */

}

4.5 Implicit Threading 179

A pointer to PoolFunction() is passed to one of the functions in the thread
pool API, and a thread from the pool executes this function. One such member
in the thread pool API is the QueueUserWorkItem() function, which is passed
three parameters:

• LPTHREAD START ROUTINE Function—a pointer to the function that is to
run as a separate thread

• PVOID Param—the parameter passed to Function

• ULONG Flags—flags indicating how the thread pool is to create and man-
age execution of the thread

An example of invoking a function is the following:

QueueUserWorkItem(&PoolFunction, NULL, 0);

This causes a thread from the thread pool to invoke PoolFunction() on behalf
of the programmer. In this instance, we pass no parameters to PoolFunc-
tion(). Because we specify 0 as a flag, we provide the thread pool with no
special instructions for thread creation.

Other members in the Windows thread pool API include utilities that
invoke functions at periodic intervals or when an asynchronous I/O request
completes.

4.5.1.1 Java Thread Pools

The java.util.concurrent package includes an API for several varieties of
thread-pool architectures. Here, we focus on the following three models:

1. Single thread executor—newSingleThreadExecutor()—creates a pool
of size 1.

2. Fixed thread executor—newFixedThreadPool(int size)—creates a
thread pool with a specified number of threads.

3. Cached thread executor—newCachedThreadPool()—creates an
unbounded thread pool, reusing threads in many instances.

We have, in fact, already seen the use of a Java thread pool in Section
4.4.3, wherewe created a newSingleThreadExecutor in the program example
shown in Figure 4.14. In that section, we noted that the Java executor frame-
work can be used to construct more robust threading tools. We now describe
how it can be used to create thread pools.

A thread pool is created using one of the factorymethods in the Executors
class:

• static ExecutorService newSingleThreadExecutor()

• static ExecutorService newFixedThreadPool(int size)

• static ExecutorService newCachedThreadPool()

Each of these factorymethods creates and returns an object instance that imple-
ments the ExecutorService interface. ExecutorService extends the Execu-

180 Chapter 4 Threads & Concurrency

import java.util.concurrent.*;

public class ThreadPoolExample
{
public static void main(String[] args) {

int numTasks = Integer.parseInt(args[0].trim());

/* Create the thread pool */
ExecutorService pool = Executors.newCachedThreadPool();

/* Run each task using a thread in the pool */
for (int i = 0; i < numTasks; i++)

pool.execute(new Task());

/* Shut down the pool once all threads have completed */
pool.shutdown();

}

Figure 4.15 Creating a thread pool in Java.

tor interface, allowing us to invoke the execute() method on this object. In
addition, ExecutorService provides methods for managing termination of
the thread pool.

The example shown in Figure 4.15 creates a cached threadpool and submits
tasks to be executedby a thread in the pool using the execute()method.When
the shutdown()method is invoked, the thread pool rejects additional tasks and
shuts down once all existing tasks have completed execution.

4.5.2 Fork Join

The strategy for thread creation covered in Section 4.4 is often known as the
fork-join model. Recall that with this method, the main parent thread creates
(forks) one or more child threads and then waits for the children to terminate
and join with it, at which point it can retrieve and combine their results. This
synchronous model is often characterized as explicit thread creation, but it
is also an excellent candidate for implicit threading. In the latter situation,
threads are not constructed directly during the fork stage; rather, parallel tasks
are designated. This model is illustrated in Figure 4.16. A library manages the
number of threads that are created and is also responsible for assigning tasks to
threads. In some ways, this fork-join model is a synchronous version of thread
pools in which a library determines the actual number of threads to create—
for example, by using the heuristics described in Section 4.5.1.

4.5.2.1 Fork Join in Java

Java introduced a fork-join library in Version 1.7 of the API that is designed
to be used with recursive divide-and-conquer algorithms such as Quicksort
andMergesort.When implementingdivide-and-conquer algorithms using this

4.5 Implicit Threading 181

task

task

fork

fork

main thread

join

join

main thread

Figure 4.16 Fork-join parallelism.

library, separate tasks are forked during the divide step and assigned smaller
subsets of the original problem. Algorithms must be designed so that these
separate tasks can execute concurrently. At some point, the size of the problem
assigned to a task is small enough that it can be solved directly and requires
creating no additional tasks. The general recursive algorithm behind Java’s
fork-join model is shown below:

Task(problem)
if problem is small enough

solve the problem directly
else

subtask1 = fork(new Task(subset of problem)
subtask2 = fork(new Task(subset of problem)

result1 = join(subtask1)
result2 = join(subtask2)

return combined results

Figure 4.17 depicts the model graphically.
We now illustrate Java’s fork-join strategy by designing a divide-and-

conquer algorithm that sums all elements in an array of integers. In Version 1.7
of the API Java introduced a new thread pool—the ForkJoinPool—that can
be assigned tasks that inherit the abstract base class ForkJoinTask (which for
now we will assume is the SumTask class). The following creates a ForkJoin-
Pool object and submits the initial task via its invoke()method:

ForkJoinPool pool = new ForkJoinPool();
// array contains the integers to be summed
int[] array = new int[SIZE];

SumTask task = new SumTask(0, SIZE - 1, array);
int sum = pool.invoke(task);

Upon completion, the initial call to invoke() returns the summation of array.
The class SumTask—shown in Figure 4.18—implements a divide-and-

conquer algorithm that sums the contents of the array using fork-join. New
tasks are created using the fork()method, and the compute()method speci-
fies the computation that is performed by each task. The method compute() is
invoked until it can directly calculate the sum of the subset it is assigned. The

182 Chapter 4 Threads & Concurrency

task

fork

fork

join

join

task

task

taskfork

fork

join

join

task

task

taskfork

fork

join

join

Figure 4.17 Fork-join in Java.

call to join() blocks until the task completes, upon which join() returns the
results calculated in compute().

Notice that SumTask in Figure 4.18 extends RecursiveTask. The Java fork-
join strategy is organized around the abstract base class ForkJoinTask, and
the RecursiveTask and RecursiveAction classes extend this class. The fun-
damental difference between these two classes is that RecursiveTask returns
a result (via the return value specified in compute()), and RecursiveAction
does not return a result. The relationship between the three classes is illustrated
in the UML class diagram in Figure 4.19.

An important issue to consider is determining when the problem is “small
enough” to be solved directly and no longer requires creating additional tasks.
In SumTask, this occurs when the number of elements being summed is less
than the value THRESHOLD, which in Figure 4.18we have arbitrarily set to 1,000.
In practice, determiningwhen a problem can be solved directly requires careful
timing trials, as the value can vary according to implementation.

What is interesting in Java’s fork-join model is the management of tasks
wherein the library constructs a pool of worker threads and balances the load
of tasks among the available workers. In some situations, there are thousands
of tasks, yet only a handful of threads performing the work (for example, a
separate thread for each CPU). Additionally, each thread in a ForkJoinPool
maintains a queue of tasks that it has forked, and if a thread’s queue is empty,
it can steal a task from another thread’s queue using awork stealing algorithm,
thus balancing the workload of tasks among all threads.

4.5 Implicit Threading 183

import java.util.concurrent.*;

public class SumTask extends RecursiveTask<Integer>
{

static final int THRESHOLD = 1000;

private int begin;
private int end;
private int[] array;

public SumTask(int begin, int end, int[] array) {
this.begin = begin;
this.end = end;
this.array = array;

}

protected Integer compute() {
if (end - begin < THRESHOLD) {

int sum = 0;
for (int i = begin; i <= end; i++)

sum += array[i];

return sum;
}
else {

int mid = (begin + end) / 2;

SumTask leftTask = new SumTask(begin, mid, array);
SumTask rightTask = new SumTask(mid + 1, end, array);

leftTask.fork();
rightTask.fork();

return rightTask.join() + leftTask.join();
}

}
}

Figure 4.18 Fork-join calculation using the Java API.

4.5.3 OpenMP

OpenMP is a set of compiler directives as well as an API for programswritten in
C, C++, or FORTRAN that provides support for parallel programming in shared-
memory environments. OpenMP identifies parallel regions as blocks of code
that may run in parallel. Application developers insert compiler directives into
their code at parallel regions, and these directives instruct the OpenMP run-

184 Chapter 4 Threads & Concurrency

ForkJoinTask <V>
<abstract>

RecursiveTask <V>
<abstract>

RecursiveAction
<abstract>

V compute() void compute()

Figure 4.19 UML class diagram for Java’s fork-join.

time library to execute the region in parallel. The following C program illus-
trates a compiler directive above the parallel region containing the printf()
statement:

#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

/* sequential code */

#pragma omp parallel
{

printf("I am a parallel region.");
}

/* sequential code */

return 0;
}

When OpenMP encounters the directive

#pragma omp parallel

it creates as many threads as there are processing cores in the system. Thus, for
a dual-core system, two threads are created; for a quad-core system, four are
created; and so forth. All the threads then simultaneously execute the parallel
region. As each thread exits the parallel region, it is terminated.

OpenMP provides several additional directives for running code regions
in parallel, including parallelizing loops. For example, assume we have two
arrays, a and b, of size N. We wish to sum their contents and place the results

4.5 Implicit Threading 185

in array c. We can have this task run in parallel by using the following code
segment, which contains the compiler directive for parallelizing for loops:

#pragma omp parallel for
for (i = 0; i < N; i++) {

c[i] = a[i] + b[i];
}

OpenMP divides the work contained in the for loop among the threads it has
created in response to the directive

#pragma omp parallel for

In addition to providing directives for parallelization, OpenMP allows
developers to choose among several levels of parallelism. For example, they
can set the number of threads manually. It also allows developers to identify
whether data are shared between threads or are private to a thread. OpenMP
is available on several open-source and commercial compilers for Linux, Win-
dows, and macOS systems. We encourage readers interested in learning more
about OpenMP to consult the bibliography at the end of the chapter.

4.5.4 Grand Central Dispatch

Grand Central Dispatch (GCD) is a technology developed by Apple for its
macOS and iOS operating systems. It is a combination of a run-time library,
an API, and language extensions that allow developers to identify sections of
code (tasks) to run in parallel. Like OpenMP, GCD manages most of the details
of threading.

GCD schedules tasks for run-time execution by placing them on a dispatch
queue. When it removes a task from a queue, it assigns the task to an available
thread from a pool of threads that it manages. GCD identifies two types of
dispatch queues: serial and concurrent.

Tasks placed on a serial queue are removed in FIFO order. Once a task has
been removed from the queue, it must complete execution before another task
is removed. Each process has its own serial queue (known as its main queue),
and developers can create additional serial queues that are local to a particular
process. (This is why serial queues are also known as private dispatch queues.)
Serial queues are useful for ensuring the sequential execution of several tasks.

Tasks placed on a concurrent queue are also removed in FIFO order, but
several tasksmay be removed at a time, thus allowingmultiple tasks to execute
in parallel. There are several system-wide concurrent queues (also known as
global dispatch queues), which are divided into four primary quality-of-service
classes:

• QOS CLASS USER INTERACTIVE—The user-interactive class represents
tasks that interact with the user, such as the user interface and event
handling, to ensure a responsive user interface. Completing a task
belonging to this class should require only a small amount of work.

• QOS CLASS USER INITIATED—The user-initiated class is similar to the
user-interactive class in that tasks are associated with a responsive user
interface; however, user-initiated tasks may require longer processing

186 Chapter 4 Threads & Concurrency

times. Opening a file or a URL is a user-initiated task, for example. Tasks
belonging to this class must be completed for the user to continue inter-
acting with the system, but they do not need to be serviced as quickly as
tasks in the user-interactive queue.

• QOS CLASS UTILITY —The utility class represents tasks that require a
longer time to complete but do not demand immediate results. This class
includes work such as importing data.

• QOS CLASS BACKGROUND —Tasks belonging to the background class are
not visible to the user and are not time sensitive. Examples include index-
ing a mailbox system and performing backups.

Tasks submitted to dispatch queues may be expressed in one of two
different ways:

1. For the C, C++, and Objective-C languages, GCD identifies a language
extension known as a block, which is simply a self-contained unit of
work. A block is specified by a caret ˆ inserted in front of a pair of braces
{ }. Code within the braces identifies the unit of work to be performed. A
simple example of a block is shown below:

^{ printf("I am a block"); }

2. For the Swift programming language, a task is defined using a closure,
which is similar to a block in that it expresses a self-contained unit of
functionality. Syntactically, a Swift closure is written in the same way as
a block, minus the leading caret.

The following Swift code segment illustrates obtaining a concurrent
queue for the user-initiated class and submitting a task to the queue using
the dispatch async() function:

let queue = dispatch get global queue
(QOS CLASS USER INITIATED, 0)

dispatch async(queue,{ print("I am a closure.") })

Internally, GCD’s thread pool is composed of POSIX threads. GCD actively
manages the pool, allowing the number of threads to grow and shrink accord-
ing to application demand and system capacity. GCD is implemented by the
libdispatch library, which Apple has released under the Apache Commons
license. It has since been ported to the FreeBSD operating system.

4.5.5 Intel Thread Building Blocks

Intel threading building blocks (TBB) is a template library that supports design-
ing parallel applications in C++. As this is a library, it requires no special
compiler or language support. Developers specify tasks that can run in par-

4.5 Implicit Threading 187

allel, and the TBB task scheduler maps these tasks onto underlying threads.
Furthermore, the task scheduler provides load balancing and is cache aware,
meaning that it will give precedence to tasks that likely have their data stored
in cache memory and thus will execute more quickly. TBB provides a rich set
of features, including templates for parallel loop structures, atomic operations,
and mutual exclusion locking. In addition, it provides concurrent data struc-
tures, including a hash map, queue, and vector, which can serve as equivalent
thread-safe versions of the C++ standard template library data structures.

Let’s use parallel for loops as an example. Initially, assume there is a func-
tion named apply(float value) that performs an operation on the parameter
value. If we had an array v of size n containing float values, we could use the
following serial for loop to pass each value in v to the apply() function:

for (int i = 0; i < n; i++) {
apply(v[i]);

}

A developer could manually apply data parallelism (Section 4.2.2) on a
multicore system by assigning different regions of the array v to each pro-
cessing core; however, this ties the technique for achieving parallelism closely
to the physical hardware, and the algorithm would have to be modified and
recompiled for the number of processing cores on each specific architecture.

Alternatively, a developer could use TBB, which provides a parallel for
template that expects two values:

parallel for (range body)

where range refers to the range of elements that will be iterated (known as the
iteration space) and body specifies an operation that will be performed on a
subrange of elements.

We can now rewrite the above serial for loop using the TBB parallel for
template as follows:

parallel for (size t(0), n, [=](size t i) {apply(v[i]);});

The first two parameters specify that the iteration space is from 0 to n−1 (which
corresponds to the number of elements in the array v). The second parameter
is a C++ lambda function that requires a bit of explanation. The expression
[=](size t i) is the parameter i, which assumes each of the values over the
iteration space (in this case from 0 to 𝚗 − 1). Each value of i is used to identify
which array element in v is to be passed as a parameter to the apply(v[i])
function.

The TBB library will divide the loop iterations into separate “chunks” and
create a number of tasks that operate on those chunks. (The parallel for
function allows developers to manually specify the size of the chunks if they
wish to.) TBB will also create a number of threads and assign tasks to available
threads. This is quite similar to the fork-join library in Java. The advantage of
this approach is that it requires only that developers identify what operations
can run in parallel (by specifying a parallel for loop), and the library man-

188 Chapter 4 Threads & Concurrency

ages the details involved in dividing the work into separate tasks that run in
parallel. Intel TBB has both commercial and open-source versions that run on
Windows, Linux, and macOS. Refer to the bibliography for further details on
how to develop parallel applications using TBB.

4.6 Threading Issues

In this section, we discuss some of the issues to consider in designing multi-
threaded programs.

4.6.1 The fork() and exec() System Calls

In Chapter 3, we described how the fork() system call is used to create a
separate, duplicate process. The semantics of the fork() and exec() system
calls change in a multithreaded program.

If one thread in a program calls fork(), does the new process duplicate
all threads, or is the new process single-threaded? Some UNIX systems have
chosen to have two versions of fork(), one that duplicates all threads and
another that duplicates only the thread that invoked the fork() system call.

The exec() system call typically works in the same way as described in
Chapter 3. That is, if a thread invokes the exec() system call, the program
specified in the parameter to exec()will replace the entire process—including
all threads.

Which of the two versions of fork() to use depends on the application.
If exec() is called immediately after forking, then duplicating all threads is
unnecessary, as the program specified in the parameters to exec()will replace
the process. In this instance, duplicating only the calling thread is appropri-
ate. If, however, the separate process does not call exec() after forking, the
separate process should duplicate all threads.

4.6.2 Signal Handling

A signal is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,
depending on the source of and the reason for the event being signaled. All
signals, whether synchronous or asynchronous, follow the same pattern:

1. A signal is generated by the occurrence of a particular event.

2. The signal is delivered to a process.

3. Once delivered, the signal must be handled.

Examples of synchronous signals include illegal memory access and divi-
sion by 0. If a running program performs either of these actions, a signal is gen-
erated. Synchronous signals are delivered to the same process that performed
the operation that caused the signal (that is the reason they are considered
synchronous).

When a signal is generated by an event external to a running process, that
process receives the signal asynchronously. Examples of such signals include
terminating a process with specific keystrokes (such as <control><C>) and

4.6 Threading Issues 189

having a timer expire. Typically, an asynchronous signal is sent to another
process.

A signal may be handled by one of two possible handlers:

1. Adefault signal handler

2. Auser-defined signal handler

Every signal has a default signal handler that the kernel runs when han-
dling that signal. This default action can be overridden by a user-define
signal handler that is called to handle the signal. Signals are handled in differ-
ent ways. Some signals may be ignored, while others (for example, an illegal
memory access) are handled by terminating the program.

Handling signals in single-threaded programs is straightforward: signals
are always delivered to a process. However, delivering signals is more compli-
cated in multithreaded programs, where a process may have several threads.
Where, then, should a signal be delivered?

In general, the following options exist:

1. Deliver the signal to the thread to which the signal applies.

2. Deliver the signal to every thread in the process.

3. Deliver the signal to certain threads in the process.

4. Assign a specific thread to receive all signals for the process.

Themethod for delivering a signal depends on the type of signal generated.
For example, synchronous signals need to be delivered to the thread causing
the signal and not to other threads in the process. However, the situation with
asynchronous signals is not as clear. Some asynchronous signals—such as a
signal that terminates a process (<control><C>, for example)—should be
sent to all threads.

The standard UNIX function for delivering a signal is

kill(pid t pid, int signal)

This function specifies the process (pid) towhich a particular signal (signal) is
to be delivered.Most multithreaded versions of UNIX allow a thread to specify
which signals it will accept and which it will block. Therefore, in some cases,
an asynchronous signal may be delivered only to those threads that are not
blocking it. However, because signals need to be handled only once, a signal is
typically delivered only to the first thread found that is not blocking it. POSIX
Pthreads provides the following function, which allows a signal to be delivered
to a specified thread (tid):

pthread kill(pthread t tid, int signal)

Although Windows does not explicitly provide support for signals, it
allows us to emulate them using asynchronous procedure calls (APCs). The
APC facility enables a user thread to specify a function that is to be called
when the user thread receives notification of a particular event. As indicated

190 Chapter 4 Threads & Concurrency

by its name, an APC is roughly equivalent to an asynchronous signal in UNIX.
However, whereas UNIX must contend with how to deal with signals in a mul-
tithreaded environment, the APC facility is more straightforward, since an APC
is delivered to a particular thread rather than a process.

4.6.3 Thread Cancellation

Thread cancellation involves terminating a thread before it has completed. For
example, if multiple threads are concurrently searching through a database
and one thread returns the result, the remaining threads might be canceled.
Another situation might occur when a user presses a button on a web browser
that stops a web page from loading any further. Often, a web page loads
using several threads—each image is loaded in a separate thread. When a
user presses the stop button on the browser, all threads loading the page are
canceled.

A thread that is to be canceled is often referred to as the target thread.
Cancellation of a target thread may occur in two different scenarios:

1. Asynchronous cancellation. One thread immediately terminates the tar-
get thread.

2. Deferred cancellation. The target thread periodically checks whether it
should terminate, allowing it an opportunity to terminate itself in an
orderly fashion.

The difficulty with cancellation occurs in situations where resources have
been allocated to a canceled thread or where a thread is canceled while in
the midst of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. Often, the operating
system will reclaim system resources from a canceled thread but will not
reclaim all resources. Therefore, canceling a thread asynchronously may not
free a necessary system-wide resource.

With deferred cancellation, in contrast, one thread indicates that a target
thread is to be canceled, but cancellation occurs only after the target thread has
checked a flag to determine whether or not it should be canceled. The thread
can perform this check at a point at which it can be canceled safely.

In Pthreads, thread cancellation is initiated using the pthread cancel()
function. The identifier of the target thread is passed as a parameter to the func-
tion. The following code illustrates creating—and then canceling—a thread:

pthread t tid;

/* create the thread */
pthread create(&tid, 0, worker, NULL);

. . .

/* cancel the thread */
pthread cancel(tid);

/* wait for the thread to terminate */
pthread join(tid,NULL);

4.6 Threading Issues 191

Invoking pthread cancel()indicates only a request to cancel the target
thread, however; actual cancellation depends on how the target thread is set
up to handle the request. When the target thread is finally canceled, the call
to pthread join() in the canceling thread returns. Pthreads supports three
cancellation modes. Each mode is defined as a state and a type, as illustrated
in the table below. A threadmay set its cancellation state and type using an API.

Mode State Type

Off Disabled –

Deferred Enabled Deferred

Asynchronous Enabled Asynchronous

As the table illustrates, Pthreads allows threads to disable or enable can-
cellation. Obviously, a thread cannot be canceled if cancellation is disabled.
However, cancellation requests remain pending, so the thread can later enable
cancellation and respond to the request.

The default cancellation type is deferred cancellation. However, cancella-
tion occurs only when a thread reaches a cancellation point. Most of the block-
ing system calls in the POSIX and standard C library are defined as cancellation
points, and these are listed when invoking the command man pthreads on a
Linux system. For example, the read() system call is a cancellation point that
allows cancelling a thread that is blocked while awaiting input from read().

One technique for establishing a cancellation point is to invoke the
pthread testcancel() function. If a cancellation request is found to be
pending, the call to pthread testcancel() will not return, and the thread
will terminate; otherwise, the call to the function will return, and the thread
will continue to run. Additionally, Pthreads allows a function known as a
cleanup handler to be invoked if a thread is canceled. This function allows
any resources a thread may have acquired to be released before the thread is
terminated.

The following code illustrates how a thread may respond to a cancellation
request using deferred cancellation:

while (1) {
/* do some work for awhile */

. . .

/* check if there is a cancellation request */
pthread testcancel();

}

Because of the issues described earlier, asynchronous cancellation is not
recommended in Pthreads documentation. Thus, we do not cover it here.
An interesting note is that on Linux systems, thread cancellation using the
Pthreads API is handled through signals (Section 4.6.2).

Thread cancellation in Java uses a policy similar to deferred cancellation in
Pthreads. To cancel a Java thread, you invoke the interrupt()method, which
sets the interruption status of the target thread to true:

192 Chapter 4 Threads & Concurrency

Thread worker;

. . .

/* set the interruption status of the thread */
worker.interrupt()

A thread can check its interruption status by invoking the isInter-
rupted() method, which returns a boolean value of a thread’s interruption
status:

while (!Thread.currentThread().isInterrupted()) {
. . .

}

4.6.4 Thread-Local Storage

Threads belonging to a process share the data of the process. Indeed, this
data sharing provides one of the benefits of multithreaded programming.
However, in some circumstances, each thread might need its own copy of
certain data. We will call such data thread-local storage (or TLS). For example,
in a transaction-processing system, we might service each transaction in a
separate thread. Furthermore, each transaction might be assigned a unique
identifier. To associate each thread with its unique transaction identifier, we
could use thread-local storage.

It is easy to confuse TLS with local variables. However, local variables
are visible only during a single function invocation, whereas TLS data are
visible across function invocations. Additionally, when the developer has no
control over the thread creation process—for example, when using an implicit
technique such as a thread pool—then an alternative approach is necessary.

In some ways, TLS is similar to static data; the difference is that TLS
data are unique to each thread. (In fact, TLS is usually declared as static.)
Most thread libraries and compilers provide support for TLS. For example,
Java provides a ThreadLocal<T> class with set() and get() methods for
ThreadLocal<T> objects. Pthreads includes the type pthread key t, which
provides a key that is specific to each thread. This key can then be used to access
TLS data. Microsoft’s C# language simply requires adding the storage attribute
[ThreadStatic] to declare thread-local data. The gcc compiler provides the
storage class keyword thread for declaring TLS data. For example, if we
wished to assign a unique identifier for each thread, we would declare it as
follows:

static thread int threadID;

4.6.5 Scheduler Activations

Afinal issue to be considered with multithreaded programs concerns commu-
nication between the kernel and the thread library, which may be required

4.6 Threading Issues 193

by the many-to-many and two-level models discussed in Section 4.3.3. Such
coordination allows the number of kernel threads to be dynamically adjusted
to help ensure the best performance.

Many systems implementing either the many-to-many or the two-level
model place an intermediate data structure between the user and kernel
threads. This data structure—typically known as a lightweight process, or
LWP—is shown in Figure 4.20. To the user-thread library, the LWP appears to
be a virtual processor on which the application can schedule a user thread to
run. Each LWP is attached to a kernel thread, and it is kernel threads that the
operating system schedules to run on physical processors. If a kernel thread
blocks (such as while waiting for an I/O operation to complete), the LWP blocks
as well. Up the chain, the user-level thread attached to the LWP also blocks.

An applicationmay require any number of LWPs to run efficiently. Consider
a CPU-bound application running on a single processor. In this scenario, only
one thread can run at a time, so one LWP is sufficient. An application that is I/O-
intensive may require multiple LWPs to execute, however. Typically, an LWP is
required for each concurrent blocking system call. Suppose, for example, that
five different file-read requests occur simultaneously. Five LWPs are needed,
because all could be waiting for I/O completion in the kernel. If a process has
only four LWPs, then the fifth request must wait for one of the LWPs to return
from the kernel.

One scheme for communication between the user-thread library and the
kernel is known as scheduler activation. It works as follows: The kernel pro-
vides an applicationwith a set of virtual processors (LWPs), and the application
can schedule user threads onto an available virtual processor. Furthermore,
the kernel must inform an application about certain events. This procedure is
known as an upcall. Upcalls are handled by the thread library with an upcall
handler, and upcall handlers must run on a virtual processor.

One event that triggers an upcall occurs when an application thread is
about to block. In this scenario, the kernel makes an upcall to the application
informing it that a thread is about to block and identifying the specific thread.
The kernel then allocates a new virtual processor to the application. The appli-
cation runs an upcall handler on this new virtual processor, which saves the

LWP

user thread

lightweight process

kernel thread

Figure 4.20 Lightweight process (LWP).

194 Chapter 4 Threads & Concurrency

state of the blocking thread and relinquishes the virtual processor onwhich the
blocking thread is running. The upcall handler then schedules another thread
that is eligible to run on the new virtual processor. When the event that the
blocking thread was waiting for occurs, the kernel makes another upcall to the
thread library informing it that the previously blocked thread is now eligible
to run. The upcall handler for this event also requires a virtual processor, and
the kernel may allocate a new virtual processor or preempt one of the user
threads and run the upcall handler on its virtual processor. After marking the
unblocked thread as eligible to run, the application schedules an eligible thread
to run on an available virtual processor.

4.7 Operating-System Examples

At this point, we have examined a number of concepts and issues related to
threads. We conclude the chapter by exploring how threads are implemented
in Windows and Linux systems.

4.7.1 Windows Threads

A Windows application runs as a separate process, and each process may
contain one or more threads. The Windows API for creating threads is covered
in Section 4.4.2. Additionally,Windows uses the one-to-onemapping described
in Section 4.3.2, where each user-level thread maps to an associated kernel
thread.

The general components of a thread include:

• A thread ID uniquely identifying the thread

• A register set representing the status of the processor

• Aprogram counter

• A user stack, employed when the thread is running in user mode, and a
kernel stack, employed when the thread is running in kernel mode

• Aprivate storage area used by various run-time libraries and dynamic link
libraries (DLLs)

The register set, stacks, and private storage area are known as the context of
the thread.

The primary data structures of a thread include:

• ETHREAD—executive thread block

• KTHREAD—kernel thread block

• TEB—thread environment block

The key components of the ETHREAD include a pointer to the process
to which the thread belongs and the address of the routine in which the
thread starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

4.7 Operating-System Examples 195

user spacekernel space

pointer to
parent process

thread start
 address

ETHREAD

KTHREAD

•
•
•

kernel
stack

scheduling
and

synchronization
information

•
•
•

user
stack

thread-local
storage

thread identifier

TEB

•
•
•

Figure 4.21 Data structures of a Windows thread.

The KTHREAD includes scheduling and synchronization information for
the thread. In addition, the KTHREAD includes the kernel stack (used when the
thread is running in kernel mode) and a pointer to the TEB.

The ETHREAD and the KTHREAD exist entirely in kernel space; this means
that only the kernel can access them. The TEB is a user-space data structure
that is accessed when the thread is running in user mode. Among other fields,
the TEB contains the thread identifier, a user-mode stack, and an array for
thread-local storage. The structure of a Windows thread is illustrated in Figure
4.21.

4.7.2 Linux Threads

Linux provides the fork() system call with the traditional functionality of
duplicating a process, as described in Chapter 3. Linux also provides the ability
to create threads using the clone() system call. However, Linux does not
distinguish between processes and threads. In fact, Linux uses the term task
—rather than process or thread— when referring to a flow of control within a
program.

When clone() is invoked, it is passed a set of flags that determine how
much sharing is to take place between the parent and child tasks. Some of these
flags are listed in Figure 4.22. For example, suppose that clone() is passed
the flags CLONE FS, CLONE VM, CLONE SIGHAND, and CLONE FILES. The parent
and child tasks will then share the same file-system information (such as the
current working directory), the same memory space, the same signal handlers,

196 Chapter 4 Threads & Concurrency

flag meaning

CLONE_FS

CLONE_VM

CLONE_SIGHAND

CLONE_FILES

File-system information is shared.

The same memory space is shared.

Signal handlers are shared.

The set of open files is shared.

Figure 4.22 Some of the flags passed when clone() is invoked.

and the same set of open files. Using clone() in this fashion is equivalent to
creating a thread as described in this chapter, since the parent task shares most
of its resources with its child task. However, if none of these flags is set when
clone() is invoked, no sharing takes place, resulting in functionality similar
to that provided by the fork() system call.

The varying level of sharing is possible because of the way a task is repre-
sented in the Linux kernel. Aunique kernel data structure (specifically, struct
task struct) exists for each task in the system. This data structure, instead
of storing data for the task, contains pointers to other data structures where
these data are stored—for example, data structures that represent the list of
open files, signal-handling information, and virtual memory. When fork() is
invoked, a new task is created, along with a copy of all the associated data
structures of the parent process. A new task is also created when the clone()
system call is made. However, rather than copying all data structures, the new
task points to the data structures of the parent task, depending on the set of
flags passed to clone().

Finally, the flexibility of the clone() system call can be extended to the
concept of containers, a virtualization topic which was introduced in Chapter
1. Recall from that chapter that a container is a virtualization technique pro-
vided by the operating system that allows creating multiple Linux systems
(containers) under a single Linux kernel that run in isolation to one another.
Just as certain flags passed to clone() can distinguish between creating a task
that behaves more like a process or a thread based upon the amount of sharing
between the parent and child tasks, there are other flags that can be passed to
clone() that allow a Linux container to be created. Containers will be covered
more fully in Chapter 18.

4.8 Summary

• A thread represents a basic unit of CPU utilization, and threads belonging
to the same process share many of the process resources, including code
and data.

• There are four primary benefits to multithreaded applications: (1) respon-
siveness, (2) resource sharing, (3) economy, and (4) scalability.

• Concurrency exists when multiple threads are making progress, whereas
parallelism exists when multiple threads are making progress simulta-

Practice Exercises 197

neously. On a system with a single CPU, only concurrency is possible;
parallelism requires a multicore system that provides multiple CPUs.

• There are several challenges in designing multithreaded applications.
They include dividing and balancing the work, dividing the data between
the different threads, and identifying any data dependencies. Finally, mul-
tithreaded programs are especially challenging to test and debug.

• Data parallelism distributes subsets of the same data across different com-
puting cores and performs the same operation on each core. Task paral-
lelism distributes not data but tasks across multiple cores. Each task is
running a unique operation.

• User applications create user-level threads, which must ultimately be
mapped to kernel threads to execute on a CPU. The many-to-one model
maps many user-level threads to one kernel thread. Other approaches
include the one-to-one and many-to-many models.

• A thread library provides an API for creating andmanaging threads. Three
common thread libraries include Windows, Pthreads, and Java threading.
Windows is for the Windows system only, while Pthreads is available for
POSIX-compatible systems such as UNIX, Linux, and macOS. Java threads
will run on any system that supports a Java virtual machine.

• Implicit threading involves identifying tasks—not threads—and allowing
languages or API frameworks to create and manage threads. There are
several approaches to implicit threading, including thread pools, fork-join
frameworks, and Grand Central Dispatch. Implicit threading is becoming
an increasingly common technique for programmers to use in developing
concurrent and parallel applications.

• Threads may be terminated using either asynchronous or deferred cancel-
lation. Asynchronous cancellation stops a thread immediately, even if it
is in the middle of performing an update. Deferred cancellation informs
a thread that it should terminate but allows the thread to terminate in an
orderly fashion. In most circumstances, deferred cancellation is preferred
to asynchronous termination.

• Unlikemany other operating systems, Linux does not distinguish between
processes and threads; instead, it refers to each as a task. The Linux
clone() system call can be used to create tasks that behave either more
like processes or more like threads.

Practice Exercises

4.1 Provide three programming examples inwhichmultithreadingprovides
better performance than a single-threaded solution.

4.2 Using Amdahl’s Law, calculate the speedup gain of an application that
has a 60 percent parallel component for (a) two processing cores and (b)
four processing cores.

198 Chapter 4 Threads & Concurrency

4.3 Does the multithreaded web server described in Section 4.1 exhibit task
or data parallelism?

4.4 What are two differences between user-level threads and kernel-level
threads? Under what circumstances is one type better than the other?

4.5 Describe the actions taken by a kernel to context-switch between kernel-
level threads.

4.6 What resources are used when a thread is created? How do they differ
from those used when a process is created?

4.7 Assume that an operating system maps user-level threads to the kernel
using the many-to-many model and that the mapping is done through
LWPs. Furthermore, the system allows developers to create real-time
threads for use in real-time systems. Is it necessary to bind a real-time
thread to an LWP? Explain.

Further Reading

[Vahalia (1996)] covers threading in several versions of UNIX. [McDougall and
Mauro (2007)] describes developments in threading the Solaris kernel. [Russi-
novich et al. (2017)] discuss threading in theWindows operating system family.
[Mauerer (2008)] and [Love (2010)] explain how Linux handles threading, and
[Levin (2013)] covers threads in macOS and iOS. [Herlihy and Shavit (2012)]
covers parallelism issues on multicore systems. [Aubanel (2017)] covers paral-
lelism of several different algorithms.

Bibliography

[Aubanel (2017)] E. Aubanel, Elements of Parallel Computing, CRC Press (2017).

[Herlihy and Shavit (2012)] M. Herlihy and N. Shavit, The Art of Multiprocessor
Programming, Revised First Edition, Morgan Kaufmann Publishers Inc. (2012).

[Levin (2013)] J. Levin, Mac OS X and iOS Internals to the Apple’s Core, Wiley
(2013).

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[Mauerer (2008)] W. Mauerer, Professional Linux Kernel Architecture, John Wiley
and Sons (2008).

[McDougall and Mauro (2007)] R. McDougall and J. Mauro, Solaris Internals,
Second Edition, Prentice Hall (2007).

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

[Vahalia (1996)] U. Vahalia, Unix Internals: The New Frontiers, Prentice Hall
(1996).

http://scholar.google.com/scholar?hl/en&q=U Vahalia Unix Internals The New Frontiers
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=M Herlihy and N Shavit The Art of Multiprocessor Programming RevisedFirstEdition
http://scholar.google.com/scholar?hl/en&q=E Aubanel Elements of Parallel Computing
http://scholar.google.com/scholar?hl/en&q=E Aubanel Elements of Parallel Computing
http://scholar.google.com/scholar?hl/en&q=E Aubanel Elements of Parallel Computing
http://scholar.google.com/scholar?hl/en&q=M Herlihy and N Shavit The Art of Multiprocessor Programming RevisedFirstEdition
http://scholar.google.com/scholar?hl/en&q=M Herlihy and N Shavit The Art of Multiprocessor Programming RevisedFirstEdition
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=J Levin Mac OSX and IOS Internals to the Apples Core
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=U Vahalia Unix Internals The New Frontiers
http://scholar.google.com/scholar?hl/en&q=U Vahalia Unix Internals The New Frontiers

Exercises

Chapter 4 Exercises

4.8 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

4.9 Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

4.10 Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values

b. Heap memory

c. Global variables

d. Stack memory

4.11 Can a multithreaded solution using multiple user-level threads
achieve better performance on a multiprocessor system than on a
single-processor system? Explain.

4.12 In Chapter 3, we discussed Google’s Chrome browser and its practice
of opening each new tab in a separate process. Would the same benefits
have been achieved if, instead, Chrome had been designed to open each
new tab in a separate thread? Explain.

4.13 Is it possible to have concurrency but not parallelism? Explain.

4.14 UsingAmdahl’s Law, calculate the speedup gain for the following appli-
cations:

• 40 percent parallel with (a) eight processing cores and (b) sixteen
processing cores

• 67 percent parallel with (a) two processing cores and (b) four pro-
cessing cores

• 90 percent parallel with (a) four processing cores and (b) eight pro-
cessing cores

4.15 Determine if the following problems exhibit task or data parallelism:

• Using a separate thread to generate a thumbnail for each photo in a
collection

• Transposing a matrix in parallel

• A networked application where one thread reads from the network
and another writes to the network

• The fork-join array summation application described in Section 4.5.2

• The Grand Central Dispatch system

4.16 A system with two dual-core processors has four processors available
for scheduling. A CPU-intensive application is running on this system.
All input is performed at program start-up, when a single file must be

EX-8

opened. Similarly, all output is performed just before the program termi-
nates, when the program resultsmust bewritten to a single file. Between
start-up and termination, the program is entirely CPU-bound. Your task
is to improve the performance of this application by multithreading it.
The application runs on a system that uses the one-to-one threading
model (each user thread maps to a kernel thread).

• Howmany threadswill you create to perform the input and output?
Explain.

• How many threads will you create for the CPU-intensive portion of
the application? Explain.

4.17 Consider the following code segment:

pid t pid;

pid = fork();
if (pid == 0) { /* child process */

fork();
thread create(. . .);

}
fork();

a. How many unique processes are created?

b. How many unique threads are created?

4.18 As described in Section 4.7.2, Linux does not distinguish between pro-
cesses and threads. Instead, Linux treats both in the sameway, allowing a
task to bemore akin to a process or a thread depending on the set of flags
passed to the clone() system call. However, other operating systems,
such asWindows, treat processes and threads differently. Typically, such
systems use a notation in which the data structure for a process contains
pointers to the separate threads belonging to the process. Contrast these
two approaches for modeling processes and threads within the kernel.

4.19 The program shown in Figure 4.23 uses the Pthreads API. What would
be the output from the program at LINE C and LINE P?

4.20 Consider a multicore system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be greater than the number of processing cores
in the system. Discuss the performance implications of the following
scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processing cores.

b. The number of kernel threads allocated to the program is equal to
the number of processing cores.

c. The number of kernel threads allocated to the program is greater
than the number of processing cores but less than the number of
user-level threads.

EX-9

Exercises

#include <pthread.h>
#include <stdio.h>

int value = 0;
void *runner(void *param); /* the thread */

int main(int argc, char *argv[])
{
pid t pid;
pthread t tid;
pthread attr t attr;

pid = fork();

if (pid == 0) { /* child process */
pthread attr init(&attr);
pthread create(&tid,&attr,runner,NULL);
pthread join(tid,NULL);
printf("CHILD: value = %d",value); /* LINE C */

}
else if (pid > 0) { /* parent process */

wait(NULL);
printf("PARENT: value = %d",value); /* LINE P */

}
}

void *runner(void *param) {
value = 5;
pthread exit(0);

}

Figure 4.22 C program for Exercise 4.19.

4.21 Pthreads provides an API for managing thread cancellation. The
pthread setcancelstate() function is used to set the cancellation
state. Its prototype appears as follows:

pthread setcancelstate(int state, int *oldstate)

The two possible values for the state are PTHREAD CANCEL ENABLE and
PTHREAD CANCEL DISABLE.

Using the code segment shown in Figure 4.24, provide examples of
two operations that would be suitable to perform between the calls to
disable and enable thread cancellation.

EX-10

int oldstate;

pthread setcancelstate(PTHREAD CANCEL DISABLE, &oldstate);

/* What operations would be performed here? */

pthread setcancelstate(PTHREAD CANCEL ENABLE, &oldstate);

Figure 4.23 C program for Exercise 4.21.

EX-11

Programming Problems

Programming Problems

4.22 Write a multithreaded program that calculates various statistical values
for a list of numbers. This program will be passed a series of numbers
on the command line andwill then create three separate worker threads.
One thread will determine the average of the numbers, the second will
determine the maximum value, and the third will determine the mini-
mum value. For example, suppose your program is passed the integers

90 81 78 95 79 72 85

The program will report

The average value is 82
The minimum value is 72
The maximum value is 95

The variables representing the average,minimum, andmaximumvalues
will be stored globally. The worker threads will set these values, and
the parent thread will output the values once the workers have exited.
(We could obviously expand this programby creating additional threads
that determine other statistical values, such as median and standard
deviation.)

4.23 Write a multithreaded program that outputs prime numbers. This pro-
gram should work as follows: The user will run the program and will
enter a number on the command line. The program will then create a
separate thread that outputs all the prime numbers less than or equal to
the number entered by the user.

4.24 An interestingway of calculating π is to use a technique known asMonte
Carlo,which involves randomization. This technique works as follows:

Suppose you have a circle inscribed within a square, as shown in
Figure 4.25. (Assume that the radius of this circle is 1.)

• First, generate a series of random points as simple (x, y) coordinates.
These points must fall within the Cartesian coordinates that bound
the square. Of the total number of randompoints that are generated,
some will occur within the circle.

• Next, estimate π by performing the following calculation:

π = 4× (number of points in circle) / (total number of points)

Write a multithreaded version of this algorithm that creates a separate
thread to generate a number of random points. The thread will count
the number of points that occur within the circle and store that result
in a global variable. When this thread has exited, the parent thread will
calculate and output the estimated value of π. It is worth experimenting
with the number of random points generated. As a general rule, the
greater the number of points, the closer the approximation to π.

P-23

Chapter 4 Threads & Concurrency

(−1, 1)

(−1, −1)

(1, 1)

(1, −1)

(0, 0)

Figure 4.25 Monte Carlo technique for calculating π.

In the source-code download for this text, you will find a sample
program that provides a technique for generating random numbers, as
well as determining if the random (x, y) point occurs within the circle.

Readers interested in the details of the Monte Carlo method for
estimating π should consult the bibliography at the end of this chapter.
In Chapter 6, we modify this exercise using relevant material from that
chapter.

4.25 Repeat Exercise 4.24, but instead of using a separate thread to generate
random points, use OpenMP to parallelize the generation of points. Be
careful not to place the calculation of π in the parallel region, since you
want to calculate π only once.

4.26 Modify the socket-based date server (Figure 3.27) in Chapter 3 so that
the server services each client request in a separate thread.

4.27 The Fibonacci sequence is the series of numbers 0, 1, 1, 2, 3, 5, 8, For-
mally, it can be expressed as:

fib0 = 0
fib1 = 1
fibn = fibn−1 + fibn−2

Write a multithreaded program that generates the Fibonacci sequence.
This program should work as follows: On the command line, the user
will enter the number of Fibonacci numbers that the program is to gen-
erate. The program will then create a separate thread that will generate
the Fibonacci numbers, placing the sequence in data that can be shared
by the threads (an array is probably the most convenient data struc-
ture). When the thread finishes execution, the parent thread will output
the sequence generated by the child thread. Because the parent thread
cannot begin outputting the Fibonacci sequence until the child thread
finishes, the parent threadwill have to wait for the child thread to finish.
Use the techniques described in Section 4.4 to meet this requirement.

4.28 Modify programming problem Exercise 3.20 fromChapter 3, which asks
you to design a pid manager. This modification will consist of writing a

P-24

Programming Problems

multithreaded program that tests your solution to Exercise 3.20. Youwill
create a number of threads—for example, 100—and each thread will
request a pid, sleep for a random period of time, and then release the
pid. (Sleeping for a random period of time approximates the typical pid
usage in which a pid is assigned to a new process, the process executes
and then terminates, and the pid is released on the process’s termina-
tion.) On UNIX and Linux systems, sleeping is accomplished through
the sleep() function, which is passed an integer value representing the
number of seconds to sleep. This problemwill be modified in Chapter 7.

4.29 Exercise 3.25 in Chapter 3 involves designing an echo server using the
Java threading API. This server is single-threaded, meaning that the
server cannot respond to concurrent echo clients until the current client
exits.Modify the solution to Exercise 3.25 so that the echo server services
each client in a separate request.

6 2 4 5 3 9 1 8 7

5 1 9 7 2 8 6 3 4

8 3 7 6 1 4 2 9 5

1 4 3 8 6 5 7 2 9

9 5 8 2 4 7 3 6 1

7 6 2 3 9 1 4 5 8

3 7 1 9 5 6 8 4 2

4 9 6 1 8 2 5 7 3

2 8 5 4 7 3 9 1 6

Figure 4.26 Solution to a 9 × 9 Sudoku puzzle.

Programming Projects

Project 1—Sudoku Solution Validator

A Sudoku puzzle uses a 9 × 9 grid in which each column and row, as well as
each of the nine 3 × 3 subgrids, must contain all of the digits 1 ⋅ ⋅ ⋅ 9. Figure
4.26 presents an example of a valid Sudoku puzzle. This project consists of
designing a multithreaded application that determines whether the solution
to a Sudoku puzzle is valid.

There are several different ways of multithreading this application. One
suggested strategy is to create threads that check the following criteria:

• A thread to check that each column contains the digits 1 through 9

• A thread to check that each row contains the digits 1 through 9

P-25

Chapter 4 Threads & Concurrency

• Nine threads to check that each of the 3 × 3 subgrids contains the digits 1
through 9

This would result in a total of eleven separate threads for validating a
Sudoku puzzle. However, you are welcome to create even more threads for
this project. For example, rather than creating one thread that checks all nine
columns, you could create nine separate threads and have each of them check
one column.

I. Passing Parameters to Each Thread

The parent thread will create the worker threads, passing each worker the
location that it must check in the Sudoku grid. This step will require passing
several parameters to each thread. The easiest approach is to create a data
structure using a struct. For example, a structure to pass the row and column
where a thread must begin validating would appear as follows:

/* structure for passing data to threads */
typedef struct
{

int row;
int column;

} parameters;

Both Pthreads and Windows programs will create worker threads using a
strategy similar to that shown below:

parameters *data = (parameters *) malloc(sizeof(parameters));
data->row = 1;
data->column = 1;
/* Now create the thread passing it data as a parameter */

The data pointer will be passed to either the pthread create() (Pthreads)
function or the CreateThread() (Windows) function, which in turn will pass
it as a parameter to the function that is to run as a separate thread.

II. Returning Results to the Parent Thread

Each worker thread is assigned the task of determining the validity of a partic-
ular region of the Sudoku puzzle. Once a worker has performed this check, it
must pass its results back to the parent. One goodway to handle this is to create
an array of integer values that is visible to each thread. The ith index in this
array corresponds to the ith worker thread. If a worker sets its corresponding
value to 1, it is indicating that its region of the Sudoku puzzle is valid. A value
of 0 indicates otherwise. When all worker threads have completed, the parent
thread checks each entry in the result array to determine if the Sudoku puzzle
is valid.

Project 2—Multithreaded Sorting Application
Write a multithreaded sorting program that works as follows: A list of integers
is divided into two smaller lists of equal size. Two separate threads (which we

P-26

Programming Projects

will term sorting threads) sort each sublist using a sorting algorithm of your
choice. The two sublists are then merged by a third thread—a merging thread
—which merges the two sublists into a single sorted list.

Because global data are shared across all threads, perhaps the easiest way
to set up the data is to create a global array. Each sorting thread will work on
one half of this array. A second global array of the same size as the unsorted
integer array will also be established. The merging thread will then merge the
two sublists into this second array. Graphically, this program is structured as
in Figure 4.27.

This programming project will require passing parameters to each of the
sorting threads. In particular, it will be necessary to identify the starting index
from which each thread is to begin sorting. Refer to the instructions in Project
1 for details on passing parameters to a thread.

The parent threadwill output the sorted array once all sorting threads have
exited.

7, 12, 19, 3, 18

7, 12, 19, 3, 18, 4, 2, 6, 15, 8

original list

2, 3, 4, 6, 7, 8, 12, 15, 18, 19

merge thread

sorted list

sorting
thread0

sorting
shread1

4, 2, 6, 15, 8

Figure 4.27 Multithreaded sorting.

Project 3—Fork-Join Sorting Application
Implement the preceding project (Multithreaded Sorting Application) using
Java’s fork-join parallelism API. This project will be developed in two different
versions. Each version will implement a different divide-and-conquer sorting
algorithm:

1. Quicksort

2. Mergesort

The Quicksort implementation will use the Quicksort algorithm for dividing
the list of elements to be sorted into a left half and a right half based on the

P-27

Chapter 4 Threads & Concurrency

position of the pivot value. The Mergesort algorithm will divide the list into
two evenly sized halves. For both the Quicksort and Mergesort algorithms,
when the list to be sorted falls within some threshold value (for example, the
list is size 100 or fewer), directly apply a simple algorithm such as the Selection
or Insertion sort. Most data structures texts describe these two well-known,
divide-and-conquer sorting algorithms.

The class SumTask shown in Section 4.5.2.1 extends RecursiveTask, which
is a result-bearing ForkJoinTask. As this assignment will involve sorting
the array that is passed to the task, but not returning any values, you will
instead create a class that extends RecursiveAction, a non result-bearing
ForkJoinTask (see Figure 4.19).

The objects passed to each sorting algorithm are required to implement
Java’s Comparable interface, and this will need to be reflected in the class
definition for each sorting algorithm. The source code download for this text
includes Java code that provides the foundations for beginning this project.

P-28

5CHAPTER

CPU
Scheduling

CPU scheduling is the basis ofmultiprogrammedoperating systems. By switch-
ing the CPU among processes, the operating system can make the computer
more productive. In this chapter, we introduce basic CPU-scheduling concepts
and present several CPU-scheduling algorithms, including real-time systems.
We also consider the problem of selecting an algorithm for a particular system.

InChapter 4,we introduced threads to the processmodel.Onmodern oper-
ating systems it is kernel-level threads—not processes—that are in fact being
scheduled by the operating system. However, the terms "process scheduling"
and "thread scheduling" are often used interchangeably. In this chapter, we use
process scheduling when discussing general scheduling concepts and thread
scheduling to refer to thread-specific ideas.

Similarly, in Chapter 1 we describe how a core is the basic computational
unit of a CPU, and that a process executes on a CPU’s core. However, in many
instances in this chapter, when we use the general terminology of scheduling
a process to "run on a CPU", we are implying that the process is running on a
CPU’s core.

CHAPTER OBJECTIVES

• Describe various CPU scheduling algorithms.

• Assess CPU scheduling algorithms based on scheduling criteria.

• Explain the issues related to multiprocessor and multicore scheduling.

• Describe various real-time scheduling algorithms.

• Describe the scheduling algorithms used in the Windows, Linux, and
Solaris operating systems.

• Apply modeling and simulations to evaluate CPU scheduling algorithms.

• Design a program that implements several different CPU scheduling algo-
rithms.

199

200 Chapter 5 CPU Scheduling

5.1 Basic Concepts

In a system with a single CPU core, only one process can run at a time. Others
must wait until the CPU’s core is free and can be rescheduled. The objective of
multiprogramming is to have some process running at all times, to maximize
CPU utilization. The idea is relatively simple. Aprocess is executed until it must
wait, typically for the completion of some I/O request. In a simple computer
system, the CPU then just sits idle. All this waiting time is wasted; no useful
work is accomplished.Withmultiprogramming,we try to use this timeproduc-
tively. Several processes are kept inmemory at one time.When one process has
to wait, the operating system takes the CPU away from that process and gives
the CPU to another process. This pattern continues. Every time one process has
to wait, another process can take over use of the CPU. On a multicore system,
this concept of keeping the CPU busy is extended to all processing cores on the
system.

Scheduling of this kind is a fundamental operating-system function.
Almost all computer resources are scheduled before use. The CPU is, of course,
one of the primary computer resources. Thus, its scheduling is central to
operating-system design.

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

Figure 5.1 Alternating sequence of CPU and I/O bursts.

5.1 Basic Concepts 201

5.1.1 CPU–I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:
process execution consists of a cycle of CPU execution and I/O wait. Processes
alternate between these two states. Process execution begins with a CPU burst.
That is followed by an I/O burst, which is followed by another CPU burst, then
another I/O burst, and so on. Eventually, the final CPU burst endswith a system
request to terminate execution (Figure 5.1).

The durations of CPU bursts have been measured extensively. Although
they vary greatly from process to process and from computer to computer,
they tend to have a frequency curve similar to that shown in Figure 5.2. The
curve is generally characterized as exponential or hyperexponential, with a
large number of short CPU bursts and a small number of long CPU bursts.
An I/O-bound program typically has many short CPU bursts. A CPU-bound
programmight have a few long CPU bursts. This distribution can be important
when implementing a CPU-scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried out
by the CPU scheduler, which selects a process from the processes in memory
that are ready to execute and allocates the CPU to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
queue can be implemented as a FIFO queue, a priority queue, a tree, or simply
an unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

burst duration

fr
eq

ue
nc

y

Figure 5.2 Histogram of CPU-burst durations.

202 Chapter 5 CPU Scheduling

5.1.3 Preemptive and Nonpreemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-
stances:

1. When a process switches from the running state to the waiting state (for
example, as the result of an I/O request or an invocation of wait() for the
termination of a child process)

2. When a process switches from the running state to the ready state (for
example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for
example, at completion of I/O)

4. When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. Anew process
(if one exists in the ready queue) must be selected for execution. There is a
choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4,we say that
the scheduling scheme is nonpreemptive or cooperative. Otherwise, it is pre-
emptive. Under nonpreemptive scheduling, once the CPU has been allocated
to a process, the process keeps the CPU until it releases it either by terminating
or by switching to the waiting state. Virtually all modern operating systems
includingWindows, macOS, Linux, and UNIX use preemptive scheduling algo-
rithms.

Unfortunately, preemptive scheduling can result in race conditions when
data are shared among several processes. Consider the case of two processes
that share data. While one process is updating the data, it is preempted so
that the second process can run. The second process then tries to read the
data, which are in an inconsistent state. This issue will be explored in detail
in Chapter 6.

Preemption also affects the design of the operating-system kernel. During
the processing of a system call, the kernel may be busy with an activity on
behalf of a process. Such activities may involve changing important kernel
data (for instance, I/O queues). What happens if the process is preempted
in the middle of these changes and the kernel (or the device driver) needs
to read or modify the same structure? Chaos ensues. As will be discussed in
Section 6.2, operating-system kernels can be designed as either nonpreemptive
or preemptive. A nonpreemptive kernel will wait for a system call to complete
or for a process to block while waiting for I/O to complete to take place before
doing a context switch. This scheme ensures that the kernel structure is simple,
since the kernel will not preempt a process while the kernel data structures are
in an inconsistent state. Unfortunately, this kernel-execution model is a poor
one for supporting real-time computing, where tasks must complete execution
within a given time frame. In Section 5.6, we explore scheduling demands of
real-time systems. A preemptive kernel requires mechanisms such as mutex
locks to prevent race conditions when accessing shared kernel data structures.
Most modern operating systems are now fully preemptive when running in
kernel mode.

5.1 Basic Concepts 203

P0
executing

P1
executing

save state
into PCB0

restore state
from PCB1

dispatch
latency

Figure 5.3 The role of the dispatcher.

Because interrupts can, by definition, occur at any time, and because they
cannot always be ignored by the kernel, the sections of code affected by inter-
rupts must be guarded from simultaneous use. The operating system needs to
accept interrupts at almost all times. Otherwise, input might be lost or output
overwritten. So that these sections of code are not accessed concurrently by
several processes, they disable interrupts at entry and reenable interrupts at
exit. It is important to note that sections of code that disable interrupts do not
occur very often and typically contain few instructions.

5.1.4 Dispatcher

Another component involved in the CPU-scheduling function is thedispatcher.
The dispatcher is the module that gives control of the CPU’s core to the process
selected by the CPU scheduler. This function involves the following:

• Switching context from one process to another

• Switching to user mode

• Jumping to the proper location in the user program to resume that program

Thedispatcher should be as fast as possible, since it is invokedduring every
context switch. The time it takes for the dispatcher to stop one process and start
another running is known as the dispatch latency and is illustrated in Figure
5.3.

An interesting question to consider is, how often do context switches
occur? On a system-wide level, the number of context switches can be obtained
by using the vmstat command that is available on Linux systems. Below is the
output (which has been trimmed) from the command

vmstat 1 3

204 Chapter 5 CPU Scheduling

This command provides 3 lines of output over a 1-second delay:

------cpu-----
24
225
339

The first line gives the average number of context switches over 1 second
since the system booted, and the next two lines give the number of context
switches over two 1-second intervals. Since this machine booted, it has aver-
aged 24 context switches per second. And in the past second, 225 context
switches were made, with 339 context switches in the second prior to that.

We can also use the /proc file system to determine the number of
context switches for a given process. For example, the contents of the file
/proc/2166/status will list various statistics for the process with pid =
2166. The command

cat /proc/2166/status

provides the following trimmed output:

voluntary ctxt switches 150
nonvoluntary ctxt switches 8

This output shows the number of context switches over the lifetime of the
process. Notice the distinction between voluntary and nonvoluntary context
switches. A voluntary context switch occurs when a process has given up
control of the CPU because it requires a resource that is currently unavailable
(such as blocking for I/O.) Anonvoluntary context switch occurs when the CPU
has been taken away from a process, such as when its time slice has expired or
it has been preempted by a higher-priority process.

5.2 Scheduling Criteria

Different CPU-scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
choosing which algorithm to use in a particular situation, we must consider
the properties of the various algorithms.

Many criteria have been suggested for comparing CPU-scheduling algo-
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following:

• CPU utilization. We want to keep the CPU as busy as possible. Concep-
tually, CPU utilization can range from 0 to 100 percent. In a real system, it
should range from 40 percent (for a lightly loaded system) to 90 percent
(for a heavily loaded system). (CPU utilization can be obtained by using
the top command on Linux, macOS, and UNIX systems.)

• Throughput. If the CPU is busy executing processes, then work is being
done. One measure of work is the number of processes that are completed

5.3 Scheduling Algorithms 205

per time unit, called throughput. For long processes, this rate may be
one process over several seconds; for short transactions, it may be tens of
processes per second.

• Turnaround time. From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent waiting
in the ready queue, executing on the CPU, and doing I/O.

• Waiting time. The CPU-scheduling algorithm does not affect the amount
of time during which a process executes or does I/O. It affects only the
amount of time that a process spends waiting in the ready queue. Waiting
time is the sum of the periods spent waiting in the ready queue.

• Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being
output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the time it takes to start responding, not the time it takes
to output the response.

It is desirable tomaximize CPU utilization and throughput and tominimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, we prefer to opti-
mize the minimum or maximum values rather than the average. For example,
to guarantee that all users get good service, we may want to minimize the
maximum response time.

Investigators have suggested that, for interactive systems (such as a PC
desktop or laptop system), it is more important to minimize the variance in
the response time than to minimize the average response time. A system with
reasonable and predictable response time may be considered more desirable
than a system that is faster on the average but is highly variable. However, little
work has been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we illustrate their operation. An accurate illustration should involve many
processes, each a sequence of several hundred CPU bursts and I/O bursts.
For simplicity, though, we consider only one CPU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.8.

5.3 Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes in
the ready queue is to be allocated the CPU’s core. There aremany different CPU-
scheduling algorithms. In this section, we describe several of them. Although
most modern CPU architectures have multiple processing cores, we describe
these scheduling algorithms in the context of only one processing core avail-
able. That is, a single CPU that has a single processing core, thus the system is

206 Chapter 5 CPU Scheduling

capable of only running one process at a time. In Section 5.5 we discuss CPU
scheduling in the context of multiprocessor systems.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come first-serve
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

On the negative side, the average waiting time under the FCFS policy is
often quite long. Consider the following set of processes that arrive at time 0,
with the length of the CPU burst given in milliseconds:

Process Burst Time
P1 24
P2 3
P3 3

If the processes arrive in the order P1, P2, P3, and are served in FCFS order,
we get the result shown in the following Gantt chart, which is a bar chart that
illustrates a particular schedule, including the start and finish times of each of
the participating processes:

P1 P2 P3

3027240

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process
P2, and 27 milliseconds for process P3. Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, P1,
however, the results will be as shown in the following Gantt chart:

P1P2 P3

300 3 6

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the processes’ CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I/O-bound pro-
cesses. As the processes flow around the system, the following scenario may
result. The CPU-bound process will get and hold the CPU. During this time, all
the other processes will finish their I/O and will move into the ready queue,
waiting for the CPU. While the processes wait in the ready queue, the I/O

5.3 Scheduling Algorithms 207

devices are idle. Eventually, the CPU-bound process finishes its CPU burst and
moves to an I/O device. All the I/O-bound processes, which have short CPU
bursts, execute quickly and move back to the I/O queues. At this point, the
CPU sits idle. The CPU-bound process will then move back to the ready queue
and be allocated the CPU. Again, all the I/O processes end up waiting in the
ready queue until the CPU-bound process is done. There is a convoy effect as
all the other processes wait for the one big process to get off the CPU. This effect
results in lower CPU and device utilization thanmight be possible if the shorter
processes were allowed to go first.

Note also that the FCFS scheduling algorithm is nonpreemptive. Once the
CPU has been allocated to a process, that process keeps the CPU until it releases
the CPU, either by terminating or by requesting I/O. The FCFS algorithm is thus
particularly troublesome for interactive systems, where it is important that
each process get a share of the CPU at regular intervals. It would be disastrous
to allow one process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-firs (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process’s next CPU burst.When the CPU is available, it is assigned to the process
that has the smallest next CPU burst. If the next CPU bursts of two processes are
the same, FCFS scheduling is used to break the tie. Note that a more appro-
priate term for this scheduling method would be the shortest-next-CPU-burst
algorithm, because scheduling depends on the length of the next CPU burst of
a process, rather than its total length. We use the term SJF because most people
and textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

Process Burst Time
P1 6
P2 8
P3 7
P4 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

P3 P2P4 P1

241690 3

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process
P2, 9 milliseconds for process P3, and 0 milliseconds for process P4. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the mini-
mum average waiting time for a given set of processes. Moving a short process

208 Chapter 5 CPU Scheduling

before a long one decreases the waiting time of the short process more than
it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

Although the SJF algorithm is optimal, it cannot be implemented at the level
of CPU scheduling, as there is no way to know the length of the next CPU burst.
One approach to this problem is to try to approximate SJF scheduling. We may
not know the length of the next CPU burst, but we may be able to predict its
value.We expect that the next CPU burstwill be similar in length to the previous
ones. By computing an approximation of the length of the next CPU burst, we
can pick the process with the shortest predicted CPU burst.

The next CPU burst is generally predicted as an exponential average of
the measured lengths of previous CPU bursts. We can define the exponential
average with the following formula. Let tn be the length of the nth CPU burst,
and let τn+1 be our predicted value for the next CPU burst. Then, for α, 0 ≤ α ≤

1, define

τn+1 = α tn + (1 − α)τn.

The value of tn contains our most recent information, while τn stores the past
history. The parameter α controls the relative weight of recent and past history
in our prediction. If α = 0, then τn+1 = τn, and recent history has no effect
(current conditions are assumed to be transient). If α = 1, then τn+1 = tn, and
only the most recent CPU burst matters (history is assumed to be old and
irrelevant). More commonly, α = 1/2, so recent history and past history are
equally weighted. The initial τ0 can be defined as a constant or as an overall
system average. Figure 5.4 shows an exponential average with α = 1/2 and
τ0 = 10.

6 4 6 4 13 13 13 …

810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

Figure 5.4 Prediction of the length of the next CPU burst.

5.3 Scheduling Algorithms 209

To understand the behavior of the exponential average, we can expand the
formula for τn+1 by substituting for τn to find

τn+1 = αtn + (1 − α)αtn−1 + · · · + (1 − α)jαtn−j + · · · + (1 − α)n+1τ0.

Typically, α is less than 1. As a result, (1 − α) is also less than 1, and each
successive term has less weight than its predecessor.

The SJF algorithm can be either preemptive or nonpreemptive. The choice
arises when a new process arrives at the ready queue while a previous pro-
cess is still executing. The next CPU burst of the newly arrived process may
be shorter than what is left of the currently executing process. A preemptive
SJF algorithm will preempt the currently executing process, whereas a non-
preemptive SJF algorithm will allow the currently running process to finish its
CPU burst. Preemptive SJF scheduling is sometimes called shortest-remaining-
time-firs scheduling.

As an example, consider the following four processes, with the length of
the CPU burst given in milliseconds:

Process Arrival Time Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

P
1

P
3

P
1

P
2

P
4

2617100 1 5

Process P1 is started at time 0, since it is the only process in the queue. Process
P2 arrives at time 1. The remaining time for process P1 (7 milliseconds) is
larger than the time required by process P2 (4 milliseconds), so process P1 is
preempted, and process P2 is scheduled. The average waiting time for this
example is [(10 − 1) + (1 − 1) + (17 − 2) + (5 − 3)]/4 = 26/4 = 6.5 milliseconds.
Nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.3 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is similar to FCFS scheduling, but
preemption is added to enable the system to switch between processes. Asmall
unit of time, called a time quantum or time slice, is defined. A time quantum
is generally from 10 to 100milliseconds in length. The ready queue is treated as
a circular queue. The CPU scheduler goes around the ready queue, allocating
the CPU to each process for a time interval of up to 1 time quantum.

To implement RR scheduling, we again treat the ready queue as a FIFO
queue of processes. New processes are added to the tail of the ready queue.

210 Chapter 5 CPU Scheduling

The CPU scheduler picks the first process from the ready queue, sets a timer to
interrupt after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CPU
voluntarily. The scheduler will then proceed to the next process in the ready
queue. If the CPU burst of the currently running process is longer than 1 time
quantum, the timer will go off and will cause an interrupt to the operating
system. A context switch will be executed, and the process will be put at the
tail of the ready queue. The CPU scheduler will then select the next process in
the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CPU burst
given in milliseconds:

Process Burst Time
P1 24
P2 3
P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4
milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the queue,
process P2. Process P2 does not need 4 milliseconds, so it quits before its time
quantum expires. The CPU is then given to the next process, process P3. Once
each process has received 1 time quantum, the CPU is returned to process P1
for an additional time quantum. The resulting RR schedule is as follows:

P
1

P
1

P
1

P
1

P
1

P
1

P
2

301814 26221070 4

P
3

Let’s calculate the average waiting time for this schedule. P1 waits for 6 mil-
liseconds (10 − 4), P2 waits for 4 milliseconds, and P3 waits for 7 milliseconds.
Thus, the average waiting time is 17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more
than 1 time quantum in a row (unless it is the only runnable process). If a
process’s CPU burst exceeds 1 time quantum, that process is preempted and is
put back in the ready queue. The RR scheduling algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is q, then
each process gets 1/n of the CPU time in chunks of at most q time units. Each
process must wait no longer than (n− 1)× q time units until its next time quan-
tum. For example, with five processes and a time quantum of 20 milliseconds,
each process will get up to 20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantum. At one extreme, if the time quantum is extremely large, the
RR policy is the same as the FCFS policy. In contrast, if the time quantum is
extremely small (say, 1 millisecond), the RR approach can result in a large

5.3 Scheduling Algorithms 211

process time = 10 quantum context
switches

12 0

6 1

1 9

0 10

0 10

0 1 2 3 4 5 6 7 8 9 10

6

Figure 5.5 How a smaller time quantum increases context switches.

number of context switches. Assume, for example, that we have only one
process of 10 time units. If the quantum is 12 time units, the process finishes
in less than 1 time quantum, with no overhead. If the quantum is 6 time units,
however, the process requires 2 quanta, resulting in a context switch. If the
time quantum is 1 time unit, then nine context switches will occur, slowing the
execution of the process accordingly (Figure 5.5).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

Turnaround time also depends on the size of the time quantum. As we
can see from Figure 5.6, the average turnaround time of a set of processes
does not necessarily improve as the time-quantum size increases. In general,
the average turnaround time can be improved if most processes finish their
next CPU burst in a single time quantum. For example, given three processes
of 10 time units each and a quantum of 1 time unit, the average turnaround
time is 29. If the time quantum is 10, however, the average turnaround time
drops to 20. If context-switch time is added in, the average turnaround time
increases even more for a smaller time quantum, since more context switches
are required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. As we pointed out earlier, if the time
quantum is too large, RR scheduling degenerates to an FCFS policy. A rule of
thumb is that 80 percent of the CPU bursts should be shorter than the time
quantum.

5.3.4 Priority Scheduling

The SJF algorithm is a special case of the generalpriority-scheduling algorithm.
A priority is associated with each process, and the CPU is allocated to the

212 Chapter 5 CPU Scheduling

a
v
e

ra
g

e
 t

u
rn

a
ro

u
n

d
 t

im
e

1

12.5

12.0

11.5

11.0

10.5

10.0

9.5

9.0

2 3 4

time quantum

5 6 7

P1

P2

P3

P4

6

3

1

7

process time

Figure 5.6 How turnaround time varies with the time quantum.

process with the highest priority. Equal-priority processes are scheduled in
FCFS order. An SJF algorithm is simply a priority algorithm where the priority
(p) is the inverse of the (predicted) next CPU burst. The larger the CPU burst,
the lower the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or 0 to 4,095. However, there is no general agreement on whether 0 is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time 0 in the order P1, P2, · · ·, P5, with the length of the CPU burst
given in milliseconds:

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

Using priority scheduling, wewould schedule these processes according to the
following Gantt chart:

5.3 Scheduling Algorithms 213

P
1

P
4

P
3

P
2

P
5

19181660 1

The average waiting time is 8.2 milliseconds.
Priorities can be defined either internally or externally. Internally defined

priorities use some measurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average I/O burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority of
the currently running process. Apreemptivepriority scheduling algorithmwill
preempt the CPU if the priority of the newly arrived process is higher than the
priority of the currently running process. Anonpreemptive priority scheduling
algorithm will simply put the new process at the head of the ready queue.

Amajor problem with priority scheduling algorithms is indefinit block-
ing, or starvation. A process that is ready to run but waiting for the CPU can
be considered blocked. A priority scheduling algorithm can leave some low-
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either
the process will eventually be run (at 2 A.M. Sunday, when the system is finally
lightly loaded), or the computer systemwill eventually crash and lose all unfin-
ished low-priority processes. (Rumor has it that when they shut down the IBM
7094 at MIT in 1973, they found a low-priority process that had been submitted
in 1967 and had not yet been run.)

Asolution to the problemof indefinite blockage of low-priority processes is
aging. Aging involves gradually increasing the priority of processes that wait
in the system for a long time. For example, if priorities range from 127 (low)
to 0 (high), we could periodically (say, every second) increase the priority of
a waiting process by 1. Eventually, even a process with an initial priority of
127 would have the highest priority in the system and would be executed. In
fact, it would take a little over 2 minutes for a priority-127 process to age to a
priority-0 process.

Another option is to combine round-robin and priority scheduling in such
a way that the system executes the highest-priority process and runs processes
with the same priority using round-robin scheduling. Let’s illustrate with an
example using the following set of processes, with the burst time in millisec-
onds:

Process Burst Time Priority
P1 4 3
P2 5 2
P3 8 2
P4 7 1
P5 3 3

214 Chapter 5 CPU Scheduling

Using priority scheduling with round-robin for processes with equal priority,
we would schedule these processes according to the following Gantt chart
using a time quantum of 2 milliseconds:

P4 P2 P3 P2 P3 P2 P3 P1 P5 P1 P5

0 7 9 11 13 15 16 20 22 24 26 27

In this example, process P4 has the highest priority, so it will run to comple-
tion. ProcessesP2 andP3 have the next-highest priority, and theywill execute in
a round-robin fashion. Notice that when process P2 finishes at time 16, process
P3 is the highest-priority process, so it will run until it completes execution.
Now, only processes P1 and P5 remain, and as they have equal priority, they
will execute in round-robin order until they complete.

5.3.5 Multilevel Queue Scheduling

With both priority and round-robin scheduling, all processes may be placed
in a single queue, and the scheduler then selects the process with the highest
priority to run. Depending on how the queues are managed, an O(n) search
may be necessary to determine the highest-priority process. In practice, it is
often easier to have separate queues for each distinct priority, and priority
scheduling simply schedules the process in the highest-priority queue. This
is illustrated in Figure 5.7. This approach—known as multilevel queue—
also works well when priority scheduling is combined with round-robin: if
there are multiple processes in the highest-priority queue, they are executed in
round-robin order. In the most generalized form of this approach, a priority is
assigned statically to each process, and a process remains in the same queue
for the duration of its runtime.

T0 T1 T2 T3 T4

T5 T6 T7

T8 T9 T10 T11

Tx Ty Tz

priority = 2

priority = n

priority = 1

priority = 0

Figure 5.7 Separate queues for each priority.

5.3 Scheduling Algorithms 215

real-time processes

highest priority

lowest priority

system processes

interactive processes

batch processes

Figure 5.8 Multilevel queue scheduling.

A multilevel queue scheduling algorithm can also be used to partition
processes into several separate queues based on the process type (Figure
5.8). For example, a common division is made between foreground (interac-
tive) processes and background (batch) processes. These two types of pro-
cesses have different response-time requirements and so may have different
scheduling needs. In addition, foreground processes may have priority (exter-
nally defined) over background processes. Separate queues might be used for
foreground and background processes, and each queue might have its own
scheduling algorithm. The foreground queue might be scheduled by an RR
algorithm, for example, while the background queue is scheduled by an FCFS
algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
real-time queue may have absolute priority over the interactive queue.

Let’s look at an example of a multilevel queue scheduling algorithm with
four queues, listed below in order of priority:

1. Real-time processes

2. System processes

3. Interactive processes

4. Batch processes

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for real-time processes,
system processes, and interactive processes were all empty. If an interactive
process entered the ready queue while a batch process was running, the batch
process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue
gets a certain portion of the CPU time,which it can then schedule among its var-
ious processes. For instance, in the foreground–background queue example,
the foreground queue can be given 80 percent of the CPU time for RR scheduling

216 Chapter 5 CPU Scheduling

among its processes, while the background queue receives 20 percent of the
CPU to give to its processes on an FCFS basis.

5.3.6 Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves I/O-bound and
interactive processes—which are typically characterized by short CPU bursts
—in the higher-priority queues. In addition, a process that waits too long in a
lower-priority queue may be moved to a higher-priority queue. This form of
aging prevents starvation.

For example, consider a multilevel feedback queue scheduler with three
queues, numbered from 0 to 2 (Figure 5.9). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will be executed only if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

An entering process is put in queue 0. A process in queue 0 is given a time
quantum of 8 milliseconds. If it does not finish within this time, it is moved
to the tail of queue 1. If queue 0 is empty, the process at the head of queue 1 is
given a quantum of 16milliseconds. If it does not complete, it is preempted and
is put into queue 2. Processes in queue 2 are run on an FCFS basis but are run
onlywhen queues 0 and 1 are empty. To prevent starvation, a process that waits
too long in a lower-priority queuemay gradually bemoved to a higher-priority
queue.

quantum = 8

quantum = 16

FCFS

Figure 5.9 Multilevel feedback queues.

5.4 Thread Scheduling 217

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/O burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

In general, a multilevel feedback queue scheduler is defined by the follow-
ing parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higher-
priority queue

• The method used to determine when to demote a process to a lower-
priority queue

• Themethod used to determinewhich queue a process will enter when that
process needs service

The definition of a multilevel feedback queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires somemeans bywhich to select values
for all the parameters.

5.4 Thread Scheduling

In Chapter 4, we introduced threads to the process model, distinguishing
between user-level and kernel-level threads. On most modern operating sys-
tems it is kernel-level threads—not processes—that are being scheduled by
the operating system. User-level threads are managed by a thread library, and
the kernel is unaware of them. To run on a CPU, user-level threads must ulti-
mately be mapped to an associated kernel-level thread, although this mapping
may be indirect and may use a lightweight process (LWP). In this section, we
explore scheduling issues involving user-level and kernel-level threads and
offer specific examples of scheduling for Pthreads.

5.4.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they
are scheduled. On systems implementing the many-to-one (Section 4.3.1)
and many-to-many (Section 4.3.3) models, the thread library schedules user-
level threads to run on an available LWP. This scheme is known as process-
contention scope (PCS), since competition for the CPU takes place among
threads belonging to the same process. (When we say the thread library sched-
ules user threads onto available LWPs, we do not mean that the threads are
actually running on a CPU as that further requires the operating system to
schedule the LWP’s kernel thread onto a physical CPU core.) To decide which

218 Chapter 5 CPU Scheduling

kernel-level thread to schedule onto a CPU, the kernel uses system-contention
scope (SCS). Competition for the CPU with SCS scheduling takes place among
all threads in the system. Systems using the one-to-one model (Section 4.3.2),
such as Windows and Linux schedule threads using only SCS.

Typically, PCS is done according to priority—the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities
are set by the programmer and are not adjusted by the thread library, although
some thread libraries may allow the programmer to change the priority of
a thread. It is important to note that PCS will typically preempt the thread
currently running in favor of a higher-priority thread; however, there is no
guarantee of time slicing (Section 5.3.3) among threads of equal priority.

5.4.2 Pthread Scheduling

We provided a sample POSIX Pthread program in Section 4.4.1, along with an
introduction to thread creation with Pthreads. Now, we highlight the POSIX
Pthread API that allows specifying PCS or SCS during thread creation. Pthreads
identifies the following contention scope values:

• PTHREAD SCOPE PROCESS schedules threads using PCS scheduling.

• PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling.

On systems implementing the many-to-many model, the
PTHREAD SCOPE PROCESS policy schedules user-level threads onto available
LWPs. The number of LWPs is maintained by the thread library, perhaps using
scheduler activations (Section 4.6.5). The PTHREAD SCOPE SYSTEM scheduling
policy will create and bind an LWP for each user-level thread onmany-to-many
systems, effectively mapping threads using the one-to-one policy.

The Pthread IPC (Interprocess Communication) provides two functions for
setting—and getting—the contention scope policy:

• pthread attr setscope(pthread attr t *attr, int scope)

• pthread attr getscope(pthread attr t *attr, int *scope)

The first parameter for both functions contains a pointer to the attribute set for
the thread. The second parameter for the pthread attr setscope() function
is passed either the PTHREAD SCOPE SYSTEM or the PTHREAD SCOPE PROCESS
value, indicating how the contention scope is to be set. In the case of
pthread attr getscope(), this second parameter contains a pointer to an
int value that is set to the current value of the contention scope. If an error
occurs, each of these functions returns a nonzero value.

In Figure 5.10, we illustrate a Pthread scheduling API. The pro-
gram first determines the existing contention scope and sets it to
PTHREAD SCOPE SYSTEM. It then creates five separate threads that will
run using the SCS scheduling policy. Note that on some systems, only certain
contention scope values are allowed. For example, Linux and macOS systems
allow only PTHREAD SCOPE SYSTEM.

5.4 Thread Scheduling 219

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5

int main(int argc, char *argv[])
{

int i, scope;
pthread t tid[NUM THREADS];
pthread attr t attr;

/* get the default attributes */
pthread attr init(&attr);

/* first inquire on the current scope */
if (pthread attr getscope(&attr, &scope) != 0)

fprintf(stderr, "Unable to get scheduling scope∖n");
else {

if (scope == PTHREAD SCOPE PROCESS)
printf("PTHREAD SCOPE PROCESS");

else if (scope == PTHREAD SCOPE SYSTEM)
printf("PTHREAD SCOPE SYSTEM");

else
fprintf(stderr, "Illegal scope value.∖n");

}

/* set the scheduling algorithm to PCS or SCS */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);

/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);
}

/* Each thread will begin control in this function */
void *runner(void *param)
{

/* do some work ... */

pthread exit(0);
}

Figure 5.10 Pthread scheduling API.

220 Chapter 5 CPU Scheduling

5.5 Multi-Processor Scheduling

Our discussion thus far has focused on the problems of scheduling the CPU in a
system with a single processing core. If multiple CPUs are available, load shar-
ing, where multiple threads may run in parallel, becomes possible, however
scheduling issues become correspondingly more complex. Many possibilities
have been tried; and as we saw with CPU scheduling with a single-core CPU,
there is no one best solution.

Traditionally, the term multiprocessor referred to systems that provided
multiple physical processors, where each processor contained one single-core
CPU. However, the definition of multiprocessor has evolved significantly, and
on modern computing systems, multiprocessor now applies to the following
system architectures:

• Multicore CPUs

• Multithreaded cores

• NUMA systems

• Heterogeneous multiprocessing

Here, we discuss several concerns inmultiprocessor scheduling in the con-
text of these different architectures. In the first three examples we concentrate
on systems in which the processors are identical—homogeneous—in terms of
their functionality. We can then use any available CPU to run any process in the
queue. In the last example we explore a system where the processors are not
identical in their capabilities.

5.5.1 Approaches to Multiple-Processor Scheduling

One approach to CPU scheduling in amultiprocessor system has all scheduling
decisions, I/O processing, and other system activities handled by a single
processor — the master server. The other processors execute only user code.
This asymmetric multiprocessing is simple because only one core accesses the
system data structures, reducing the need for data sharing. The downfall of
this approach is themaster server becomes a potential bottleneckwhere overall
system performance may be reduced.

The standard approach for supporting multiprocessors is symmetric mul-
tiprocessing (SMP), where each processor is self-scheduling. Scheduling pro-
ceeds by having the scheduler for each processor examine the ready queue
and select a thread to run. Note that this provides two possible strategies for
organizing the threads eligible to be scheduled:

1. All threads may be in a common ready queue.

2. Each processor may have its own private queue of threads.

These two strategies are contrasted in Figure 5.11. If we select the first
option, we have a possible race condition on the shared ready queue and
therefore must ensure that two separate processors do not choose to schedule
the same thread and that threads are not lost from the queue. As discussed in

5.5 Multi-Processor Scheduling 221

T1

T1

T1T1
T3

T0

T0

T0

core0 core1 coren

T0 T2 Tn
T2

T2...

... core0 core1 coren...
common ready queue

(a)
per-core run queues

(b)

Figure 5.11 Organization of ready queues.

Chapter 6, we could use some form of locking to protect the common ready
queue from this race condition. Locking would be highly contended, however,
as all accesses to the queue would require lock ownership, and accessing the
shared queue would likely be a performance bottleneck. The second option
permits each processor to schedule threads from its private run queue and
therefore does not suffer from the possible performance problems associated
with a shared run queue. Thus, it is the most common approach on systems
supporting SMP. Additionally, as described in Section 5.5.4, having private, per-
processor run queues in fact may lead to more efficient use of cache memory.
There are issues with per-processor run queues—most notably, workloads of
varying sizes. However, as we shall see, balancing algorithms can be used to
equalize workloads among all processors.

Virtually all modern operating systems support SMP, including Windows,
Linux, and macOS as well as mobile systems including Android and iOS. In
the remainder of this section, we discuss issues concerning SMP systems when
designing CPU scheduling algorithms.

5.5.2 Multicore Processors

Traditionally, SMP systems have allowed several processes to run in parallel by
providing multiple physical processors. However, most contemporary com-
puter hardware now places multiple computing cores on the same physical
chip, resulting in a multicore processor. Each core maintains its architectural
state and thus appears to the operating system to be a separate logical CPU.
SMP systems that use multicore processors are faster and consume less power
than systems in which each CPU has its own physical chip.

Multicore processors may complicate scheduling issues. Let’s consider
how this can happen. Researchers have discovered that when a processor
accesses memory, it spends a significant amount of time waiting for the data to
become available. This situation, known as a memory stall, occurs primarily
because modern processors operate at much faster speeds thanmemory. How-
ever, a memory stall can also occur because of a cache miss (accessing data
that are not in cache memory). Figure 5.12 illustrates a memory stall. In this
scenario, the processor can spend up to 50 percent of its time waiting for data
to become available from memory.

222 Chapter 5 CPU Scheduling

time

compute cycle memory stall cycle

thread
C

C

M C M C M

M

C M

Figure 5.12 Memory stall.

To remedy this situation, many recent hardware designs have imple-
mented multithreaded processing cores in which two (or more) hardware
threads are assigned to each core. That way, if one hardware thread stalls while
waiting for memory, the core can switch to another thread. Figure 5.13 illus-
trates a dual-threaded processing core on which the execution of thread 0 and
the execution of thread 1 are interleaved. From an operating system perspec-
tive, each hardware thread maintains its architectural state, such as instruction
pointer and register set, and thus appears as a logical CPU that is available to
run a software thread. This technique—known as chip multithreading (CMT)
—is illustrated in Figure 5.14. Here, the processor contains four computing
cores, with each core containing two hardware threads. From the perspective
of the operating system, there are eight logical CPUs.

Intel processors use the term hyper-threading (also known as simultane-
ous multithreadingor SMT) to describe assigningmultiple hardware threads to
a single processing core. Contemporary Intel processors—such as the i7—sup-
port two threads per core, while the Oracle Sparc M7 processor supports eight
threads per core, with eight cores per processor, thus providing the operating
system with 64 logical CPUs.

In general, there are two ways to multithread a processing core: coarse-
grained and fine-graine multithreading. With coarse-grained multithread-
ing, a thread executes on a core until a long-latency event such as a memory
stall occurs. Because of the delay caused by the long-latency event, the core
must switch to another thread to begin execution. However, the cost of switch-
ing between threads is high, since the instruction pipeline must be flushed
before the other thread can begin execution on the processor core. Once this
new thread begins execution, it begins filling the pipeline with its instructions.
Fine-grained (or interleaved) multithreading switches between threads at a
much finer level of granularity—typically at the boundary of an instruction

time

thread0

thread1

C M C M C M C

C M C M C M C

Figure 5.13 Multithreaded multicore system.

5.5 Multi-Processor Scheduling 223

processor

operating system view

core 0

hardware thread

core core

core 1

2 3

CPU0 CPU1
CPU3CPU2

CPU4 CPU5 CPU6 CPU7

hardware thread

hardware thread

hardware thread

hardware thread

hardware thread

hardware thread

hardware thread

Figure 5.14 Chip multithreading.

cycle. However, the architectural design of fine-grained systems includes logic
for thread switching. As a result, the cost of switching between threads is small.

It is important to note that the resources of the physical core (such as caches
and pipelines) must be shared among its hardware threads, and therefore a
processing core can only execute one hardware thread at a time. Consequently,
a multithreaded, multicore processor actually requires two different levels of
scheduling, as shown in Figure 5.15, which illustrates a dual-threaded process-
ing core.

On one level are the scheduling decisions that must be made by the oper-
ating system as it chooses which software thread to run on each hardware
thread (logical CPU). For all practical purposes, such decisions have been the
primary focus of this chapter. Therefore, for this level of scheduling, the oper-
ating systemmay choose any scheduling algorithm, including those described
in Section 5.3.

A second level of scheduling specifies how each core decides which hard-
ware thread to run. There are several strategies to adopt in this situation. One
approach is to use a simple round-robin algorithm to schedule a hardware
thread to the processing core. This is the approach adopted by the UltraSPARC
T3. Another approach is used by the Intel Itanium, a dual-core processor with
two hardware-managed threads per core. Assigned to each hardware thread is
a dynamic urgency value ranging from 0 to 7, with 0 representing the lowest
urgency and 7 the highest. The Itanium identifies five different events that may

224 Chapter 5 CPU Scheduling

processing
core

level 1

level 2

software threads

hardware threads
(logical processors)

Figure 5.15 Two levels of scheduling.

trigger a thread switch. When one of these events occurs, the thread-switching
logic compares the urgency of the two threads and selects the thread with the
highest urgency value to execute on the processor core.

Note that the two different levels of scheduling shown in Figure 5.15 are
not necessarily mutually exclusive. In fact, if the operating system scheduler
(the first level) is made aware of the sharing of processor resources, it canmake
more effective scheduling decisions. As an example, assume that a CPU has
two processing cores, and each core has two hardware threads. If two software
threads are running on this system, they can be running either on the same core
or on separate cores. If they are both scheduled to run on the same core, they
have to share processor resources and thus are likely to proceed more slowly
than if they were scheduled on separate cores. If the operating system is aware
of the level of processor resource sharing, it can schedule software threads onto
logical processors that do not share resources.

5.5.3 Load Balancing

On SMP systems, it is important to keep the workload balanced among all
processors to fully utilize the benefits of having more than one processor. Oth-
erwise, one or more processors may sit idle while other processors have high
workloads, alongwith ready queues of threads awaiting the CPU. Load balanc-
ing attempts to keep the workload evenly distributed across all processors in
an SMP system. It is important to note that load balancing is typically necessary
only on systemswhere each processor has its own private ready queue of eligi-
ble threads to execute. On systems with a common run queue, load balancing
is unnecessary, because once a processor becomes idle, it immediately extracts
a runnable thread from the common ready queue.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and—if it finds an imbalance—evenly distributes the
load by moving (or pushing) threads from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pullmigration need not bemutually exclusive
and are, in fact, often implemented in parallel on load-balancing systems. For

5.5 Multi-Processor Scheduling 225

example, the Linux CFS scheduler (described in Section 5.7.1) and the ULE
scheduler available for FreeBSD systems implement both techniques.

The concept of a “balanced load” may have different meanings. One view
of a balanced load may require simply that all queues have approximately the
same number of threads. Alternatively, balance may require an equal distri-
bution of thread priorities across all queues. In addition, in certain situations,
neither of these strategiesmay be sufficient. Indeed, theymaywork against the
goals of the scheduling algorithm. (We leave further consideration of this as an
exercise.)

5.5.4 Processor Affinity

Considerwhat happens to cachememorywhen a thread has been running on a
specific processor. The data most recently accessed by the thread populate the
cache for the processor. As a result, successive memory accesses by the thread
are often satisfied in cache memory (known as a “warm cache”). Now consider
what happens if the thread migrates to another processor—say, due to load
balancing. The contents of cache memory must be invalidated for the first pro-
cessor, and the cache for the second processor must be repopulated. Because of
the high cost of invalidating and repopulating caches, most operating systems
with SMP support try to avoidmigrating a thread fromone processor to another
and instead attempt to keep a thread running on the same processor and take
advantage of a warm cache. This is known as processor affinit —that is, a
process has an affinity for the processor on which it is currently running.

The two strategies described in Section 5.5.1 for organizing the queue of
threads available for scheduling have implications for processor affinity. If we
adopt the approach of a common ready queue, a thread may be selected for
execution by any processor. Thus, if a thread is scheduled on a new processor,
that processor’s cache must be repopulated. With private, per-processor ready
queues, a thread is always scheduled on the same processor and can therefore
benefit from the contents of a warm cache. Essentially, per-processor ready
queues provide processor affinity for free!

Processor affinity takes several forms. When an operating system has a
policy of attempting to keep a process running on the same processor—but
not guaranteeing that it will do so—we have a situation known as soft affinit .
Here, the operating systemwill attempt to keep a process on a single processor,
but it is possible for a process to migrate between processors during load
balancing. In contrast, some systems provide system calls that support hard
affinit , thereby allowing a process to specify a subset of processors onwhich it
can run. Many systems provide both soft and hard affinity. For example, Linux
implements soft affinity, but it also provides the sched setaffinity() system
call, which supports hard affinity by allowing a thread to specify the set of CPUs
on which it is eligible to run.

The main-memory architecture of a system can affect processor affinity
issues as well. Figure 5.16 illustrates an architecture featuring non-uniform
memory access (NUMA)where there are two physical processor chips eachwith
their own CPU and local memory. Although a system interconnect allows all
CPUs in a NUMA system to share one physical address space, a CPU has faster
access to its localmemory than tomemory local to another CPU. If the operating
system’s CPU scheduler and memory-placement algorithms are NUMA-aware

226 Chapter 5 CPU Scheduling

CPU

fast access

memory

CPU

fast access
slow access

memory

interconnect

Figure 5.16 NUMA and CPU scheduling.

andwork together, then a thread that has been scheduled onto a particular CPU
can be allocated memory closest to where the CPU resides, thus providing the
thread the fastest possible memory access.

Interestingly, load balancing often counteracts the benefits of processor
affinity. That is, the benefit of keeping a thread running on the same processor
is that the thread can take advantage of its data being in that processor’s cache
memory. Balancing loads by moving a thread from one processor to another
removes this benefit. Similarly, migrating a thread between processors may
incur a penalty on NUMAsystems, where a threadmay bemoved to a processor
that requires longer memory access times. In other words, there is a natural
tension between load balancing and minimizing memory access times. Thus,
scheduling algorithms formodernmulticoreNUMAsystems have become quite
complex. In Section 5.7.1, we examine the Linux CFS scheduling algorithm and
explore how it balances these competing goals.

5.5.5 Heterogeneous Multiprocessing

In the examples we have discussed so far, all processors are identical in terms
of their capabilities, thus allowing any thread to run on any processing core.
The only difference being that memory access timesmay vary based upon load
balancing and processor affinity policies, as well as on NUMA systems.

Although mobile systems now include multicore architectures, some sys-
tems are now designed using cores that run the same instruction set, yet vary
in terms of their clock speed and power management, including the ability to
adjust the power consumption of a core to the point of idling the core. Such
systems are known as heterogeneous multiprocessing (HMP). Note this is not
a form of asymmetric multiprocessing as described in Section 5.5.1 as both
system and user tasks can run on any core. Rather, the intention behind HMP is
to better manage power consumption by assigning tasks to certain cores based
upon the specific demands of the task.

For ARM processors that support it, this type of architecture is known
as big.LITTLE where higher-peformance big cores are combined with energy
efficient LITTLE cores. Big cores consume greater energy and therefore should

5.6 Real-Time CPU Scheduling 227

only be used for short periods of time. Likewise, little cores use less energy
and can therefore be used for longer periods.

There are several advantages to this approach. By combining a number of
slower cores with faster ones, a CPU scheduler can assign tasks that do not
require high performance, but may need to run for longer periods, (such as
background tasks) to little cores, thereby helping to preserve a battery charge.
Similarly, interactive applications which require more processing power, but
may run for shorter durations, can be assigned to big cores. Additionally, if
the mobile device is in a power-saving mode, energy-intensive big cores can
be disabled and the system can rely solely on energy-efficient little cores. Win-
dows 10 supports HMP scheduling by allowing a thread to select a scheduling
policy that best supports its power management demands.

5.6 Real-Time CPU Scheduling

CPU scheduling for real-time operating systems involves special issues. In
general, we can distinguish between soft real-time systems and hard real-time
systems. Soft real-time systems provide no guarantee as to when a critical
real-time process will be scheduled. They guarantee only that the process will
be given preference over noncritical processes. Hard real-time systems have
stricter requirements. A task must be serviced by its deadline; service after the
deadline has expired is the same as no service at all. In this section, we explore
several issues related to process scheduling in both soft and hard real-time
operating systems.

5.6.1 Minimizing Latency

Consider the event-driven nature of a real-time system. The system is typically
waiting for an event in real time to occur. Events may arise either in software
—as when a timer expires—or in hardware—as when a remote-controlled
vehicle detects that it is approaching an obstruction. When an event occurs,
the system must respond to and service it as quickly as possible. We refer to
event latency as the amount of time that elapses fromwhen an event occurs to
when it is serviced (Figure 5.17).

t1t0

event latency

event E first occurs

real-time system responds to E

Time

Figure 5.17 Event latency.

228 Chapter 5 CPU Scheduling

Usually, different events have different latency requirements. For example,
the latency requirement for an antilock brake system might be 3 to 5 millisec-
onds. That is, from the time a wheel first detects that it is sliding, the system
controlling the antilock brakes has 3 to 5milliseconds to respond to and control
the situation. Any response that takes longer might result in the automobile’s
veering out of control. In contrast, an embedded system controlling radar in an
airliner might tolerate a latency period of several seconds.

Two types of latencies affect the performance of real-time systems:

1. Interrupt latency

2. Dispatch latency

Interrupt latency refers to the period of time from the arrival of an interrupt
at the CPU to the start of the routine that services the interrupt. When an
interrupt occurs, the operating system must first complete the instruction it is
executing and determine the type of interrupt that occurred. It must then save
the state of the current process before servicing the interrupt using the specific
interrupt service routine (ISR). The total time required to perform these tasks is
the interrupt latency (Figure 5.18).

Obviously, it is crucial for real-time operating systems to minimize inter-
rupt latency to ensure that real-time tasks receive immediate attention. Indeed,
for hard real-time systems, interrupt latency must not simply be minimized, it
must be bounded to meet the strict requirements of these systems.

One important factor contributing to interrupt latency is the amount
of time interrupts may be disabled while kernel data structures are being
updated. Real-time operating systems require that interrupts be disabled for
only very short periods of time.

The amount of time required for the scheduling dispatcher to stop one
process and start another is known as dispatch latency. Providing real-time

task T running

ISR

determine
interrupt
type

interrupt

interrupt
latency

context
switch

time

Figure 5.18 Interrupt latency.

5.6 Real-Time CPU Scheduling 229

response to event

real-time

process

execution

event

conflicts

time

dispatch

response interval

dispatch latency

process made
availableinterrupt

processing

Figure 5.19 Dispatch latency.

tasks with immediate access to the CPU mandates that real-time operating
systemsminimize this latency aswell. Themost effective technique for keeping
dispatch latency low is to provide preemptive kernels. For hard real-time
systems, dispatch latency is typically measured in several microseconds.

In Figure 5.19, we diagram the makeup of dispatch latency. The conflic
phase of dispatch latency has two components:

1. Preemption of any process running in the kernel

2. Release by low-priority processes of resources needed by a high-priority
process

Following the conflict phase, the dispatch phase schedules the high-priority
process onto an available CPU.

5.6.2 Priority-Based Scheduling

Themost important feature of a real-time operating system is to respond imme-
diately to a real-time process as soon as that process requires the CPU. As a
result, the scheduler for a real-time operating system must support a priority-
based algorithm with preemption. Recall that priority-based scheduling algo-
rithms assign each process a priority based on its importance; more important
tasks are assigned higher priorities than those deemed less important. If the
scheduler also supports preemption, a process currently running on the CPU
will be preempted if a higher-priority process becomes available to run.

Preemptive, priority-based scheduling algorithms are discussed in detail in
Section 5.3.4, and Section 5.7 presents examples of the soft real-time schedul-
ing features of the Linux, Windows, and Solaris operating systems. Each of
these systems assigns real-time processes the highest scheduling priority. For

230 Chapter 5 CPU Scheduling

period1 period2 period3

Time

p p p

ddd

t tt

Figure 5.20 Periodic task.

example,Windows has 32 different priority levels. The highest levels—priority
values 16 to 31—are reserved for real-time processes. Solaris and Linux have
similar prioritization schemes.

Note that providing a preemptive, priority-based scheduler only guaran-
tees soft real-time functionality. Hard real-time systemsmust further guarantee
that real-time taskswill be serviced in accordwith their deadline requirements,
and making such guarantees requires additional scheduling features. In the
remainder of this section, we cover scheduling algorithms appropriate for hard
real-time systems.

Before we proceed with the details of the individual schedulers, however,
wemust define certain characteristics of the processes that are to be scheduled.
First, the processes are considered periodic. That is, they require the CPU at
constant intervals (periods). Once a periodic process has acquired the CPU, it
has a fixed processing time t, a deadline d by which it must be serviced by the
CPU, and a period p. The relationship of the processing time, the deadline, and
the period can be expressed as 0 ≤ t ≤ d ≤ p. The rate of a periodic task is 1∕p.
Figure 5.20 illustrates the execution of a periodic process over time. Schedulers
can take advantage of these characteristics and assign priorities according to a
process’s deadline or rate requirements.

What is unusual about this form of scheduling is that a processmay have to
announce its deadline requirements to the scheduler. Then, using a technique
known as an admission-control algorithm, the scheduler does one of two
things. It either admits the process, guaranteeing that the processwill complete
on time, or rejects the request as impossible if it cannot guarantee that the task
will be serviced by its deadline.

5.6.3 Rate-Monotonic Scheduling

The rate-monotonic scheduling algorithm schedules periodic tasks using a
static priority policy with preemption. If a lower-priority process is run-
ning and a higher-priority process becomes available to run, it will preempt
the lower-priority process. Upon entering the system, each periodic task is
assigned a priority inversely based on its period. The shorter the period, the
higher the priority; the longer the period, the lower the priority. The rationale
behind this policy is to assign a higher priority to tasks that require the CPU
more often. Furthermore, rate-monotonic scheduling assumes that the process-

5.6 Real-Time CPU Scheduling 231

0 10 20 30 40 50 60 70 80 12090 100 110

P1

P1

P1, P2

P2

deadlines

Figure 5.21 Scheduling of tasks when P2 has a higher priority than P1.

ing time of a periodic process is the same for each CPU burst. That is, every time
a process acquires the CPU, the duration of its CPU burst is the same.

Let’s consider an example. We have two processes, P1 and P2. The periods
for P1 and P2 are 50 and 100, respectively—that is, p1 = 50 and p2 = 100. The
processing times are t1 = 20 for P1 and t2 = 35 for P2. The deadline for each
process requires that it complete its CPU burst by the start of its next period.

We must first ask ourselves whether it is possible to schedule these tasks
so that each meets its deadlines. If we measure the CPU utilization of a process
Pi as the ratio of its burst to its period—ti∕pi—the CPU utilization of P1 is
20∕50 = 0.40 and that of P2 is 35∕100 = 0.35, for a total CPU utilization of
75 percent. Therefore, it seems we can schedule these tasks in such a way that
both meet their deadlines and still leave the CPU with available cycles.

Suppose we assign P2 a higher priority than P1. The execution of P1 and P2
in this situation is shown in Figure 5.21. As we can see, P2 starts execution first
and completes at time 35. At this point, P1 starts; it completes its CPU burst at
time 55. However, the first deadline for P1 was at time 50, so the scheduler has
caused P1 to miss its deadline.

Now suppose we use rate-monotonic scheduling, in which we assign P1
a higher priority than P2 because the period of P1 is shorter than that of P2.
The execution of these processes in this situation is shown in Figure 5.22. P1
starts first and completes its CPU burst at time 20, thereby meeting its first
deadline.P2 starts running at this point and runs until time 50. At this time, it is
preempted by P1, although it still has 5milliseconds remaining in its CPU burst.
P1 completes its CPU burst at time 70, at which point the scheduler resumes P2.
P2 completes its CPU burst at time 75, alsomeeting its first deadline. The system
is idle until time 100, when P1 is scheduled again.

Rate-monotonic scheduling is considered optimal in that if a set of pro-
cesses cannot be scheduled by this algorithm, it cannot be scheduled by any
other algorithm that assigns static priorities. Let’s next examine a set of pro-
cesses that cannot be scheduled using the rate-monotonic algorithm.

Assume that process P1 has a period of p1 = 50 and a CPU burst of t1 = 25.
For P2, the corresponding values are p2 = 80 and t2 = 35. Rate-monotonic

0 10 20 30 40 50 60 70 80 120 130 140 150 160 170 180 190 20090 100 110

P1

P1

P1, P2

P1 P2

deadlines P1, P2P1

P2 P1 P2 P1 P2

Figure 5.22 Rate-monotonic scheduling.

232 Chapter 5 CPU Scheduling

0 10 20 30 40 50 60 70 80 120 130 140 150 16090 100 110

P1

P1

P2

P1 P2

deadlines P1

P2

P1, P2

Figure 5.23 Missing deadlines with rate-monotonic scheduling.

scheduling would assign process P1 a higher priority, as it has the shorter
period. The total CPU utilization of the two processes is (25∕50) + (35∕80) =
0.94, and it therefore seems logical that the two processes could be scheduled
and still leave the CPU with 6 percent available time. Figure 5.23 shows the
scheduling of processes P1 and P2. Initially, P1 runs until it completes its CPU
burst at time 25. Process P2 then begins running and runs until time 50, when
it is preempted by P1. At this point, P2 still has 10 milliseconds remaining in its
CPU burst. Process P1 runs until time 75; consequently, P2 finishes its burst at
time 85, after the deadline for completion of its CPU burst at time 80.

Despite being optimal, then, rate-monotonic scheduling has a limitation:
CPU utilization is bounded, and it is not always possible to maximize CPU
resources fully. The worst-case CPU utilization for scheduling N processes is

N(21∕N − 1).

With one process in the system, CPU utilization is 100 percent, but it falls to
approximately 69 percent as the number of processes approaches infinity. With
two processes, CPU utilization is bounded at about 83 percent. Combined CPU
utilization for the two processes scheduled in Figure 5.21 and Figure 5.22 is
75 percent; therefore, the rate-monotonic scheduling algorithm is guaranteed
to schedule them so that they can meet their deadlines. For the two processes
scheduled in Figure 5.23, combined CPU utilization is approximately 94 per-
cent; therefore, rate-monotonic scheduling cannot guarantee that they can be
scheduled so that they meet their deadlines.

5.6.4 Earliest-Deadline-First Scheduling

Earliest-deadline-firs (EDF) scheduling assigns priorities dynamically accord-
ing to deadline. The earlier the deadline, the higher the priority; the later the
deadline, the lower the priority. Under the EDF policy, when a process becomes
runnable, it must announce its deadline requirements to the system. Priorities
may have to be adjusted to reflect the deadline of the newly runnable process.
Note how this differs from rate-monotonic scheduling, where priorities are
fixed.

To illustrate EDF scheduling, we again schedule the processes shown in
Figure 5.23, which failed to meet deadline requirements under rate-monotonic
scheduling. Recall that P1 has values of p1 = 50 and t1 = 25 and that P2 has
values of p2 = 80 and t2 = 35. The EDF scheduling of these processes is shown
in Figure 5.24. ProcessP1 has the earliest deadline, so its initial priority is higher
than that of process P2. Process P2 begins running at the end of the CPU burst
for P1. However, whereas rate-monotonic scheduling allows P1 to preempt P2

5.6 Real-Time CPU Scheduling 233

0 10 20 30 40 50 60 70 80 120 130 140 150 16090 100 110

P1

P1 P1

P2

P1 P2

deadlines P2P1P1

P2 P2

Figure 5.24 Earliest-deadline-first scheduling.

at the beginning of its next period at time 50, EDF scheduling allows process
P2 to continue running. P2 now has a higher priority than P1 because its next
deadline (at time 80) is earlier than that of P1 (at time 100). Thus, both P1 and
P2 meet their first deadlines. Process P1 again begins running at time 60 and
completes its second CPU burst at time 85, also meeting its second deadline at
time 100. P2 begins running at this point, only to be preempted by P1 at the
start of its next period at time 100. P2 is preempted because P1 has an earlier
deadline (time 150) than P2 (time 160). At time 125, P1 completes its CPU burst
and P2 resumes execution, finishing at time 145 and meeting its deadline as
well. The system is idle until time 150, when P1 is scheduled to run once again.

Unlike the rate-monotonic algorithm, EDF scheduling does not require that
processes be periodic, nor must a process require a constant amount of CPU
time per burst. The only requirement is that a process announce its deadline
to the scheduler when it becomes runnable. The appeal of EDF scheduling is
that it is theoretically optimal—theoretically, it can schedule processes so that
each process can meet its deadline requirements and CPU utilization will be
100 percent. In practice, however, it is impossible to achieve this level of CPU
utilization due to the cost of context switching between processes and interrupt
handling.

5.6.5 Proportional Share Scheduling

Proportional share schedulers operate by allocating T shares among all appli-
cations. An application can receive N shares of time, thus ensuring that the
application will have N∕T of the total processor time. As an example, assume
that a total of T = 100 shares is to be divided among three processes, A, B, and
C. A is assigned 50 shares, B is assigned 15 shares, and C is assigned 20 shares.
This scheme ensures that Awill have 50 percent of total processor time, Bwill
have 15 percent, and C will have 20 percent.

Proportional share schedulers must work in conjunction with an
admission-control policy to guarantee that an application receives its allocated
shares of time. An admission-control policy will admit a client requesting
a particular number of shares only if sufficient shares are available. In our
current example, we have allocated 50 + 15 + 20 = 85 shares of the total of
100 shares. If a new process D requested 30 shares, the admission controller
would deny D entry into the system.

5.6.6 POSIX Real-Time Scheduling

The POSIX standard also provides extensions for real-time computing—
POSIX.1b. Here, we cover some of the POSIX API related to scheduling real-time
threads. POSIX defines two scheduling classes for real-time threads:

234 Chapter 5 CPU Scheduling

• SCHED FIFO

• SCHED RR

SCHED FIFO schedules threads according to a first-come, first-served policy
using a FIFO queue as outlined in Section 5.3.1. However, there is no time slic-
ing among threads of equal priority. Therefore, the highest-priority real-time
thread at the front of the FIFO queue will be granted the CPU until it termi-
nates or blocks. SCHED RR uses a round-robin policy. It is similar to SCHED FIFO
except that it provides time slicing among threads of equal priority. POSIX
provides an additional scheduling class—SCHED OTHER—but its implemen-
tation is undefined and system specific; it may behave differently on different
systems.

The POSIX API specifies the following two functions for getting and setting
the scheduling policy:

• pthread attr getschedpolicy(pthread attr t *attr, int
*policy)

• pthread attr setschedpolicy(pthread attr t *attr, int
policy)

The first parameter to both functions is a pointer to the set of attributes for
the thread. The second parameter is either (1) a pointer to an integer that is
set to the current scheduling policy (for pthread attr getsched policy())
or (2) an integer value (SCHED FIFO, SCHED RR, or SCHED OTHER) for the
pthread attr setsched policy() function. Both functions return nonzero
values if an error occurs.

In Figure 5.25, we illustrate a POSIX Pthread program using this API. This
program first determines the current scheduling policy and then sets the
scheduling algorithm to SCHED FIFO.

5.7 Operating-System Examples

We turn next to a description of the scheduling policies of the Linux, Win-
dows, and Solaris operating systems. It is important to note that we use the
term process scheduling in a general sense here. In fact, we are describing the
scheduling of kernel threads with Solaris and Windows systems and of tasks
with the Linux scheduler.

5.7.1 Example: Linux Scheduling

Process scheduling in Linux has had an interesting history. Prior to Version 2.5,
the Linux kernel ran a variation of the traditional UNIX scheduling algorithm.
However, as this algorithm was not designed with SMP systems in mind, it
did not adequately support systems with multiple processors. In addition, it
resulted in poor performance for systemswith a large number of runnable pro-
cesses. With Version 2.5 of the kernel, the scheduler was overhauled to include
a scheduling algorithm—known as O(1)—that ran in constant time regard-
less of the number of tasks in the system. The O(1) scheduler also provided

5.7 Operating-System Examples 235

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5

int main(int argc, char *argv[])
{

int i, policy;
pthread t tid[NUM THREADS];
pthread attr t attr;

/* get the default attributes */
pthread attr init(&attr);

/* get the current scheduling policy */
if (pthread attr getschedpolicy(&attr, &policy) != 0)

fprintf(stderr, "Unable to get policy.∖n");
else {

if (policy == SCHED OTHER)
printf("SCHED OTHER∖n");

else if (policy == SCHED RR)
printf("SCHED RR∖n");

else if (policy == SCHED FIFO)
printf("SCHED FIFO∖n");

}

/* set the scheduling policy - FIFO, RR, or OTHER */
if (pthread attr setschedpolicy(&attr, SCHED FIFO) != 0)

fprintf(stderr, "Unable to set policy.∖n");

/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);
}

/* Each thread will begin control in this function */
void *runner(void *param)
{

/* do some work ... */

pthread exit(0);
}

Figure 5.25 POSIX real-time scheduling API.

236 Chapter 5 CPU Scheduling

increased support for SMP systems, including processor affinity and load bal-
ancing between processors. However, in practice, although the O(1) scheduler
delivered excellent performance on SMP systems, it led to poor response times
for the interactive processes that are common on many desktop computer sys-
tems. During development of the 2.6 kernel, the scheduler was again revised;
and in release 2.6.23 of the kernel, the Completely Fair Scheduler (CFS) became
the default Linux scheduling algorithm.

Scheduling in the Linux system is based on scheduling classes. Each class
is assigned a specific priority. By using different scheduling classes, the kernel
can accommodate different scheduling algorithms based on the needs of the
system and its processes. The scheduling criteria for a Linux server, for exam-
ple, may be different from those for a mobile device running Linux. To decide
which task to run next, the scheduler selects the highest-priority task belong-
ing to the highest-priority scheduling class. Standard Linux kernels implement
two scheduling classes: (1) a default scheduling class using the CFS scheduling
algorithm and (2) a real-time scheduling class. We discuss each of these classes
here. New scheduling classes can, of course, be added.

Rather than using strict rules that associate a relative priority value with
the length of a time quantum, the CFS scheduler assigns a proportion of CPU
processing time to each task. This proportion is calculated based on the nice
value assigned to each task. Nice values range from −20 to +19, where a
numerically lower nice value indicates a higher relative priority. Tasks with
lower nice values receive a higher proportion of CPU processing time than tasks
with higher nice values. The default nice value is 0. (The term nice comes from
the idea that if a task increases its nice value from, say, 0 to +10, it is being nice
to other tasks in the systemby lowering its relative priority. In otherwords, nice
processes finish last!) CFS doesn’t use discrete values of time slices and instead
identifies a targeted latency, which is an interval of time during which every
runnable task should run at least once. Proportions of CPU time are allocated
from the value of targeted latency. In addition to having default and minimum
values, targeted latency can increase if the number of active tasks in the system
grows beyond a certain threshold.

The CFS scheduler doesn’t directly assign priorities. Rather, it records how
long each task has run by maintaining the virtual run time of each task using
the per-task variable vruntime. The virtual run time is associated with a decay
factor based on the priority of a task: lower-priority tasks have higher rates
of decay than higher-priority tasks. For tasks at normal priority (nice values
of 0), virtual run time is identical to actual physical run time. Thus, if a task
with default priority runs for 200 milliseconds, its vruntime will also be 200
milliseconds. However, if a lower-priority task runs for 200 milliseconds, its
vruntime will be higher than 200 milliseconds. Similarly, if a higher-priority
task runs for 200 milliseconds, its vruntimewill be less than 200 milliseconds.
To decide which task to run next, the scheduler simply selects the task that has
the smallest vruntime value. In addition, a higher-priority task that becomes
available to run can preempt a lower-priority task.

Let’s examine the CFS scheduler in action: Assume that two tasks have
the same nice values. One task is I/O-bound, and the other is CPU-bound.
Typically, the I/O-bound taskwill run only for short periods before blocking for
additional I/O, and the CPU-bound taskwill exhaust its timeperiodwhenever it
has an opportunity to run on a processor. Therefore, the value of vruntimewill

5.7 Operating-System Examples 237

CFS PERFORMANCE

The Linux CFS scheduler provides an efficient algorithm for selecting which
task to run next. Rather than using a standard queue data structure, each
runnable task is placed in a red-black tree—a balanced binary search tree
whose key is based on the value of vruntime. This tree is shown below.

T0

T2

T3 T5 T6

T1

T4

T9T7 T8

smaller larger

task with the smallest
value of vruntime

value of vruntime

When a task becomes runnable, it is added to the tree. If a task on the
tree is not runnable (for example, if it is blocked while waiting for I/O), it is
removed.Generally speaking, tasks that have been given less processing time
(smaller values of vruntime) are toward the left side of the tree, and tasks
that have been given more processing time are on the right side. According
to the properties of a binary search tree, the leftmost node has the smallest
key value, which for the sake of the CFS scheduler means that it is the task
with the highest priority. Because the red-black tree is balanced, navigating
it to discover the leftmost node will require O(log N) operations (where N
is the number of nodes in the tree). However, for efficiency reasons, the
Linux scheduler caches this value in the variable rb leftmost, and thus
determiningwhich task to run next requires only retrieving the cached value.

eventually be lower for the I/O-bound task than for the CPU-bound task, giving
the I/O-bound task higher priority than the CPU-bound task. At that point, if
the CPU-bound task is executing when the I/O-bound task becomes eligible
to run (for example, when I/O the task is waiting for becomes available), the
I/O-bound task will preempt the CPU-bound task.

Linux also implements real-time scheduling using the POSIX standard as
described in Section 5.6.6. Any task scheduled using either the SCHED FIFO or
the SCHED RR real-time policy runs at a higher priority than normal (non-real-
time) tasks. Linux uses two separate priority ranges, one for real-time tasks and
a second for normal tasks. Real-time tasks are assigned static priorities within
the range of 0 to 99, and normal tasks are assigned priorities from 100 to 139.
These two rangesmap into a global priority schemewherein numerically lower
values indicate higher relative priorities. Normal tasks are assigned a priority

238 Chapter 5 CPU Scheduling

0 100 13999

real-time normal

priority
higher lower

Figure 5.26 Scheduling priorities on a Linux system.

based on their nice values, where a value of−20maps to priority 100 and a nice
value of +19 maps to 139. This scheme is shown in Figure 5.26.

The CFS scheduler also supports load balancing, using a sophisticated
technique that equalizes the load among processing cores yet is also NUMA-
aware and minimizes the migration of threads. CFS defines the load of each
thread as a combination of the thread’s priority and its average rate of CPU
utilization. Therefore, a thread that has a high priority, yet is mostly I/O-bound
and requires little CPU usage, has a generally low load, similar to the load of
a low-priority thread that has high CPU utilization. Using this metric, the load
of a queue is the sum of the loads of all threads in the queue, and balancing is
simply ensuring that all queues have approximately the same load.

As highlighted in Section 5.5.4, however, migrating a thread may result
in a memory access penalty due to either having to invalidate cache con-
tents or, on NUMA systems, incurring longer memory access times. To address
this problem, Linux identifies a hierarchical system of scheduling domains.
A scheduling domain is a set of CPU cores that can be balanced against one
another. This idea is illustrated in Figure 5.27. The cores in each scheduling
domain are grouped according to how they share the resources of the system.
For example, although each core shown in Figure 5.27 may have its own level
1 (L1) cache, pairs of cores share a level 2 (L2) cache and are thus organized
into separate domain0 and domain1. Likewise, these two domains may share a
level 3 (L3) cache, and are therefore organized into a processor-level domain
(also known as a NUMA node). Taking this one-step further, on a NUMAsystem,

core0

core1

domain0

core2

core3

domain1

physical processor domain
(NUMA node)

L2 L2

L3

Figure 5.27 NUMA-aware load balancing with Linux CFS scheduler.

5.7 Operating-System Examples 239

a larger system-level domain would combine separate processor-level NUMA
nodes.

The general strategy behind CFS is to balance loads within domains, begin-
ning at the lowest level of the hierarchy. Using Figure 5.27 as an example,
initially a thread would only migrate between cores on the same domain
(i.e. within domain0 or domain1.) Load balancing at the next level would occur
between domain0 and domain1. CFS is reluctant to migrate threads between sep-
arate NUMA nodes if a thread would be moved farther from its local memory,
and such migration would only occur under severe load imbalances. As a
general rule, if the overall system is busy, CFS will not load-balance beyond
the domain local to each core to avoid the memory latency penalties of NUMA
systems.

5.7.2 Example: Windows Scheduling

Windows schedules threads using a priority-based, preemptive scheduling
algorithm. The Windows scheduler ensures that the highest-priority thread
will always run. The portion of the Windows kernel that handles scheduling
is called the dispatcher. A thread selected to run by the dispatcher will run
until it is preempted by a higher-priority thread, until it terminates, until its
time quantum ends, or until it calls a blocking system call, such as for I/O. If a
higher-priority real-time thread becomes ready while a lower-priority thread
is running, the lower-priority threadwill be preempted. This preemption gives
a real-time thread preferential access to the CPU when the thread needs such
access.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes. The variable class
contains threads having priorities from 1 to 15, and the real-time class contains
threads with priorities ranging from 16 to 31. (There is also a thread running at
priority 0 that is used for memory management.) The dispatcher uses a queue
for each scheduling priority and traverses the set of queues from highest to
lowest until it finds a thread that is ready to run. If no ready thread is found,
the dispatcher will execute a special thread called the idle thread.

There is a relationship between the numeric priorities of the Windows
kernel and the Windows API. The Windows API identifies the following six
priority classes to which a process can belong:

• IDLE PRIORITY CLASS

• BELOW NORMAL PRIORITY CLASS

• NORMAL PRIORITY CLASS

• ABOVE NORMAL PRIORITY CLASS

• HIGH PRIORITY CLASS

• REALTIME PRIORITY CLASS

Processes are typically members of the NORMAL PRIORITY CLASS. A process
belongs to this class unless the parent of the process was a member of the
IDLE PRIORITY CLASS or unless another class was specified when the process
was created. Additionally, the priority class of a process can be altered with

240 Chapter 5 CPU Scheduling

the SetPriorityClass() function in theWindows API. Priorities in all classes
except the REALTIME PRIORITY CLASS are variable, meaning that the priority of
a thread belonging to one of these classes can change.

Athreadwithin a given priority class also has a relative priority. The values
for relative priorities include:

• IDLE

• LOWEST

• BELOW NORMAL

• NORMAL

• ABOVE NORMAL

• HIGHEST

• TIME CRITICAL

The priority of each thread is based on both the priority class it belongs
to and its relative priority within that class. This relationship is shown in
Figure 5.28. The values of the priority classes appear in the top row. The
left column contains the values for the relative priorities. For example, if the
relative priority of a thread in the ABOVE NORMAL PRIORITY CLASS is NORMAL,
the numeric priority of that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class to which the thread belongs. By default, the base
priority is the value of the NORMAL relative priority for that class. The base
priorities for each priority class are as follows:

• REALTIME PRIORITY CLASS—24

• HIGH PRIORITY CLASS—13

• ABOVE NORMAL PRIORITY CLASS—10

• NORMAL PRIORITY CLASS—8

high
above
normal

normal
below
normal

idle
priority

time-critical

real-
time

31

26

25

24

23

22

16

15

15

14

13

12

11

1

15

12

11

10

9

8

1

15

10

9

8

7

6

1

15

8

7

6

5

4

1

15

6

5

4

3

2

1

highest

above normal

normal

lowest

idle

below normal

Figure 5.28 Windows thread priorities.

5.7 Operating-System Examples 241

• BELOW NORMAL PRIORITY CLASS—6

• IDLE PRIORITY CLASS—4

The initial priority of a thread is typically the base priority of the process
the thread belongs to, although the SetThreadPriority() function in the
Windows API can also be used to modify a thread’s base priority.

When a thread’s time quantum runs out, that thread is interrupted. If the
thread is in the variable-priority class, its priority is lowered. The priority is
never lowered below the base priority, however. Lowering the priority tends
to limit the CPU consumption of compute-bound threads. When a variable-
priority thread is released from a wait operation, the dispatcher boosts the
priority. The amount of the boost depends on what the thread was waiting for.
For example, a thread waiting for keyboard I/O would get a large increase,
whereas a thread waiting for a disk operation would get a moderate one.
This strategy tends to give good response times to interactive threads that are
using the mouse and windows. It also enables I/O-bound threads to keep the
I/O devices busy while permitting compute-bound threads to use spare CPU
cycles in the background. This strategy is used by several operating systems,
including UNIX. In addition, the window with which the user is currently
interacting receives a priority boost to enhance its response time.

When a user is running an interactive program, the system needs to pro-
vide especially good performance. For this reason, Windows has a special
scheduling rule for processes in theNORMAL PRIORITY CLASS.Windows distin-
guishes between the foreground process that is currently selected on the screen
and the background processes that are not currently selected. When a process
moves into the foreground, Windows increases the scheduling quantum by
some factor—typically by 3. This increase gives the foreground process three
times longer to run before a time-sharing preemption occurs.

Windows 7 introduced user-mode scheduling (UMS), which allows appli-
cations to create and manage threads independently of the kernel. Thus, an
application can create and schedule multiple threads without involving the
Windows kernel scheduler. For applications that create a large number of
threads, scheduling threads in user mode is much more efficient than kernel-
mode thread scheduling, as no kernel intervention is necessary.

Earlier versions of Windows provided a similar feature known as fiber ,
which allowed several user-mode threads (fibers) to be mapped to a single
kernel thread. However, fibers were of limited practical use. Afiber was unable
to make calls to the Windows API because all fibers had to share the thread
environment block (TEB) of the thread on which they were running. This pre-
sented a problem if a Windows API function placed state information into the
TEB for one fiber, only to have the information overwritten by a different fiber.
UMS overcomes this obstacle by providing each user-mode threadwith its own
thread context.

In addition, unlike fibers, UMS is not intended to be used directly by the
programmer. The details of writing user-mode schedulers can be very chal-
lenging, and UMS does not include such a scheduler. Rather, the schedulers
come from programming language libraries that build on top of UMS. For
example, Microsoft provides Concurrency Runtime (ConcRT), a concurrent
programming framework for C++ that is designed for task-based parallelism

242 Chapter 5 CPU Scheduling

(Section 4.2) on multicore processors. ConcRT provides a user-mode scheduler
together with facilities for decomposing programs into tasks, which can then
be scheduled on the available processing cores.

Windows also supports scheduling on multiprocessor systems as
described in Section 5.5 by attempting to schedule a thread on the most
optimal processing core for that thread, which includes maintaining a thread’s
preferred as well as most recent processor. One technique used by Windows is
to create sets of logical processors (known as SMT sets). On a hyper-threaded
SMT system, hardware threads belonging to the same CPU core would also
belong to the same SMT set. Logical processors are numbered, beginning from
0. As an example, a dual-threaded/quad-core system would contain eight
logical processors, consisting of the four SMT sets: {0, 1}, {2, 3}, {4, 5}, and {6,
7}. To avoid cache memory access penalites highlighted in Section 5.5.4, the
scheduler attempts to maintain a thread running on logical processors within
the same SMT set.

To distribute loads across different logical processors, each thread is
assigned an ideal processor, which is a number representing a thread’s
preferred processor. Each process has an initial seed value identifying the
ideal CPU for a thread belonging to that process. This seed is incremented for
each new thread created by that process, thereby distributing the load across
different logical processors. On SMT systems, the increment for the next ideal
processor is in the next SMT set. For example, on a dual-threaded/quad-core
system, the ideal processors for threads in a specific process would be assigned
0, 2, 4, 6, 0, 2, To avoid the situation wherby the first thread for each process
is assigned processor 0, processes are assigned different seed values, thereby
distributing the load of threads across all physical processing cores in the
system. Continuing our example from above, if the seed for a second process
were 1, the ideal processors would be assigned in the order 1, 3, 5, 7, 1, 3, and
so forth.

5.7.3 Example: Solaris Scheduling

Solaris uses priority-based thread scheduling. Each thread belongs to one of
six classes:

1. Time sharing (TS)

2. Interactive (IA)

3. Real time (RT)

4. System (SYS)

5. Fair share (FSS)

6. Fixed priority (FP)

Within each class there are different priorities and different scheduling algo-
rithms.

The default scheduling class for a process is time sharing. The scheduling
policy for the time-sharing class dynamically alters priorities and assigns time
slices of different lengths using a multilevel feedback queue. By default, there
is an inverse relationship between priorities and time slices. The higher the

5.7 Operating-System Examples 243

time
quantumpriority

return
from
sleep

time
quantum
expired

0

5

10

15

20

25

30

35

40

45

50

55

59

200

200

160

160

120

120

80

80

40

40

40

40

20

0

0

0

5

10

15

20

25

30

35

40

45

49

50

50

51

51

52

52

53

54

55

56

58

58

59

Figure 5.29 Solaris dispatch table for time-sharing and interactive threads.

priority, the smaller the time slice; and the lower the priority, the larger the
time slice. Interactive processes typically have a higher priority; CPU-bound
processes, a lower priority. This scheduling policy gives good response time
for interactive processes and good throughput for CPU-bound processes. The
interactive class uses the same scheduling policy as the time-sharing class, but
it gives windowing applications—such as those created by the KDE or GNOME
window managers—a higher priority for better performance.

Figure 5.29 shows the simplifieddispatch table for scheduling time-sharing
and interactive threads. These two scheduling classes include 60 priority levels,
but for brevity, we display only a handful. (To see the full dispatch table on a
Solaris system or VM, run dispadmin -c TS -g.) The dispatch table shown in
Figure 5.29 contains the following fields:

• Priority. The class-dependent priority for the time-sharing and interactive
classes. A higher number indicates a higher priority.

• Time quantum. The time quantum for the associated priority. This illus-
trates the inverse relationship between priorities and time quanta: the
lowest priority (priority 0) has the highest time quantum (200 millisec-
onds), and the highest priority (priority 59) has the lowest time quantum
(20 milliseconds).

• Time quantum expired. The new priority of a thread that has used its
entire time quantum without blocking. Such threads are considered CPU-
intensive. As shown in the table, these threads have their priorities low-
ered.

244 Chapter 5 CPU Scheduling

• Return from sleep. The priority of a thread that is returning from sleeping
(such as fromwaiting for I/O). As the table illustrates,when I/O is available
for a waiting thread, its priority is boosted to between 50 and 59, support-
ing the scheduling policy of providing good response time for interactive
processes.

Threads in the real-time class are given the highest priority. A real-time
process will run before a process in any other class. This assignment allows
a real-time process to have a guaranteed response from the system within
a bounded period of time. In general, however, few processes belong to the
real-time class.

Solaris uses the system class to run kernel threads, such as the scheduler
and paging daemon. Once the priority of a system thread is established, it does
not change. The system class is reserved for kernel use (user processes running
in kernel mode are not in the system class).

The fixed-priority and fair-share classes were introduced with Solaris 9.
Threads in the fixed-priority class have the same priority range as those in
the time-sharing class; however, their priorities are not dynamically adjusted.
The fair-share class uses CPU shares instead of priorities to make scheduling
decisions. CPU shares indicate entitlement to available CPU resources and are
allocated to a set of processes (known as a project).

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities and selects the thread
with the highest global priority to run. The selected thread runs on the CPU
until it (1) blocks, (2) uses its time slice, or (3) is preempted by a higher-priority
thread. If there are multiple threads with the same priority, the scheduler uses
a round-robin queue. Figure 5.30 illustrates how the six scheduling classes
relate to one another and how they map to global priorities. Notice that the
kernel maintains ten threads for servicing interrupts. These threads do not
belong to any scheduling class and execute at the highest priority (160–169).
Asmentioned, Solaris has traditionally used themany-to-manymodel (Section
4.3.3) but switched to the one-to-one model (Section 4.3.2) beginning with
Solaris 9.

5.8 Algorithm Evaluation

How do we select a CPU-scheduling algorithm for a particular system? As we
saw in Section 5.3, there are many scheduling algorithms, each with its own
parameters. As a result, selecting an algorithm can be difficult.

The first problem is defining the criteria to be used in selecting an algo-
rithm. As we saw in Section 5.2, criteria are often defined in terms of CPU
utilization, response time, or throughput. To select an algorithm, we must
first define the relative importance of these elements. Our criteria may include
several measures, such as these:

• Maximizing CPU utilization under the constraint that the maximum
response time is 300 milliseconds

5.8 Algorithm Evaluation 245

interrupt threads

169
highest

lowest

first

scheduling
order

global
priority

last

160

159

100

60
59

0

99

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads

fixed priority (FX) threads

timeshare (TS) threads

interactive (IA) threads

Figure 5.30 Solaris scheduling.

• Maximizing throughput such that turnaround time is (on average) linearly
proportional to total execution time

Once the selection criteria have been defined,wewant to evaluate the algo-
rithms under consideration. We next describe the various evaluation methods
we can use.

5.8.1 Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic evalu-
ation uses the given algorithm and the system workload to produce a formula
or number to evaluate the performance of the algorithm for that workload.

Deterministic modeling is one type of analytic evaluation. This method
takes a particular predetermined workload and defines the performance of
each algorithm for that workload. For example, assume that we have the
workload shown below. All five processes arrive at time 0, in the order given,
with the length of the CPU burst given in milliseconds:

246 Chapter 5 CPU Scheduling

Process Burst Time
P1 10
P2 29
P3 3
P4 7
P5 12

Consider the FCFS, SJF, and RR (quantum = 10 milliseconds) scheduling algo-
rithms for this set of processes. Which algorithm would give the minimum
average waiting time?

For the FCFS algorithm, we would execute the processes as

P
2

P
5

P
3

P
4

P
1

6139 49420 10

The waiting time is 0 milliseconds for process P1, 10 milliseconds for process
P2, 39 milliseconds for process P3, 42 milliseconds for process P4, and 49
milliseconds for process P5. Thus, the average waiting time is (0 + 10 + 39 +
42 + 49)/5 = 28 milliseconds.

With nonpreemptive SJF scheduling, we execute the processes as

P
5

P
2

P
3

P
4

613220100 3

P
1

The waiting time is 10 milliseconds for process P1, 32 milliseconds for process
P2, 0 milliseconds for process P3, 3 milliseconds for process P4, and 20 millisec-
onds for process P5. Thus, the average waiting time is (10 + 32 + 0 + 3 + 20)/5
= 13 milliseconds.

With the RR algorithm, we execute the processes as

P
5

P
5

P
2

P
2

P
2

P
3

P
4

6130 40 50 5220 23100

P
1

The waiting time is 0 milliseconds for process P1, 32 milliseconds for process
P2, 20 milliseconds for process P3, 23 milliseconds for process P4, and 40
milliseconds for process P5. Thus, the average waiting time is (0 + 32 + 20 +
23 + 40)/5 = 23 milliseconds.

We can see that, in this case, the average waiting time obtained with the SJF
policy is less than half that obtained with FCFS scheduling; the RR algorithm
gives us an intermediate value.

Deterministicmodeling is simple and fast. It gives us exact numbers, allow-
ing us to compare the algorithms.However, it requires exact numbers for input,
and its answers apply only to those cases. The main uses of deterministic
modeling are in describing scheduling algorithms and providing examples.
In cases where we are running the same program over and over again and can

5.8 Algorithm Evaluation 247

measure the program’s processing requirements exactly, wemay be able to use
deterministic modeling to select a scheduling algorithm. Furthermore, over a
set of examples, deterministic modeling may indicate trends that can then be
analyzed and proved separately. For example, it can be shown that, for the
environment described (all processes and their times available at time 0), the
SJF policy will always result in the minimum waiting time.

5.8.2 Queueing Models

On many systems, the processes that are run vary from day to day, so there is
no static set of processes (or times) to use for deterministicmodeling.What can
be determined, however, is the distribution of CPU and I/O bursts. These dis-
tributions can be measured and then approximated or simply estimated. The
result is a mathematical formula describing the probability of a particular CPU
burst. Commonly, this distribution is exponential and is described by its mean.
Similarly, we can describe the distribution of times when processes arrive in
the system (the arrival-time distribution). From these two distributions, it is
possible to compute the average throughput, utilization, waiting time, and so
on for most algorithms.

The computer system is described as a network of servers. Each server has
a queue of waiting processes. The CPU is a server with its ready queue, as is the
I/O system with its device queues. Knowing arrival rates and service rates, we
can compute utilization, average queue length, average wait time, and so on.
This area of study is called queueing-network analysis.

As an example, let n be the average long-term queue length (excluding the
process being serviced), let W be the average waiting time in the queue, and
let λ be the average arrival rate for new processes in the queue (such as three
processes per second). We expect that during the time W that a process waits,
λ ×W new processes will arrive in the queue. If the system is in a steady state,
then the number of processes leaving the queue must be equal to the number
of processes that arrive. Thus,

n = λ ×W.

This equation, known as Little’s formula, is particularly useful because it is
valid for any scheduling algorithm and arrival distribution. For example n
could be the number of customers in a store.

We can use Little’s formula to compute one of the three variables if we
know the other two. For example, if we know that 7 processes arrive every
second (on average) and that there are normally 14 processes in the queue,
then we can compute the average waiting time per process as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms, but
it also has limitations. At the moment, the classes of algorithms and distribu-
tions that can be handled are fairly limited. The mathematics of complicated
algorithms and distributions can be difficult to work with. Thus, arrival and
service distributions are often defined in mathematically tractable—but unre-
alistic—ways. It is also generally necessary to make a number of indepen-
dent assumptions, which may not be accurate. As a result of these difficulties,
queueing models are often only approximations of real systems, and the accu-
racy of the computed results may be questionable.

248 Chapter 5 CPU Scheduling

5.8.3 Simulations

To get a more accurate evaluation of scheduling algorithms, we can use simu-
lations. Running simulations involves programming a model of the computer
system. Software data structures represent the major components of the sys-
tem. The simulator has a variable representing a clock. As this variable’s value
is increased, the simulator modifies the system state to reflect the activities
of the devices, the processes, and the scheduler. As the simulation executes,
statistics that indicate algorithm performance are gathered and printed.

The data to drive the simulation can be generated in severalways. Themost
common method uses a random-number generator that is programmed to
generate processes, CPU burst times, arrivals, departures, and so on, according
to probability distributions. The distributions can be defined mathematically
(uniform, exponential, Poisson) or empirically. If a distribution is to be defined
empirically, measurements of the actual system under study are taken. The
results define the distribution of events in the real system; this distribution can
then be used to drive the simulation.

A distribution-driven simulation may be inaccurate, however, because of
relationships between successive events in the real system. The frequency
distribution indicates only howmany instances of each event occur; it does not
indicate anything about the order of their occurrence. To correct this problem,
we can use trace files. We create a trace by monitoring the real system and
recording the sequence of actual events (Figure 5.31).We then use this sequence
to drive the simulation. Trace files provide an excellent way to compare two
algorithms on exactly the same set of real inputs. This method can produce
accurate results for its inputs.

Simulations can be expensive, often requiring many hours of computer
time. A more detailed simulation provides more accurate results, but it also

actual
process

execution

performance
statistics
for FCFS

simulation

FCFS

performance
statistics
for SJF

performance
statistics

for RR (q = 14)

trace tape

simulation

SJF

simulation

RR (q = 14)

• • •
CPU 10
I/O 213
CPU 12
I/O 112
CPU 2
I/O 147
CPU 173

• • •

Figure 5.31 Evaluation of CPU schedulers by simulation.

5.8 Algorithm Evaluation 249

takes more computer time. In addition, trace files can require large amounts of
storage space. Finally, the design, coding, and debugging of the simulator can
be a major task.

5.8.4 Implementation

Even a simulation is of limited accuracy. The only completely accurate way
to evaluate a scheduling algorithm is to code it up, put it in the operating
system, and see how it works. This approach puts the actual algorithm in the
real system for evaluation under real operating conditions.

This method is not without expense. The expense is incurred in coding the
algorithm and modifying the operating system to support it (along with its
required data structures). There is also cost in testing the changes, usually in
virtual machines rather than on dedicated hardware. Regression testing con-
firms that the changes haven’t made anything worse, and haven’t caused new
bugs or caused old bugs to be recreated (for example because the algorithm
being replaced solved some bug and changing it caused that bug to reoccur).

Another difficulty is that the environment in which the algorithm is used
will change. The environment will change not only in the usual way, as new
programs are written and the types of problems change, but also as a result
of the performance of the scheduler. If short processes are given priority, then
users may break larger processes into sets of smaller processes. If interactive
processes are given priority over noninteractive processes, then users may
switch to interactive use. This problem is usually addressed by using tools or
scripts that encapsulate complete sets of actions, repeatedly using those tools,
and using those tools while measuring the results (and detecting any problems
they cause in the new environment).

Of course human or program behavior can attempt to circumvent schedul-
ing algorithms. For example, researchers designed one system that classi-
fied interactive and noninteractive processes automatically by looking at the
amount of terminal I/O. If a process did not input or output to the terminal
in a 1-second interval, the process was classified as noninteractive and was
moved to a lower-priority queue. In response to this policy, one programmer
modified his programs to write an arbitrary character to the terminal at regular
intervals of less than 1 second. The system gave his programs a high priority,
even though the terminal output was completely meaningless.

In general, most flexible scheduling algorithms are those that can be altered
by the system managers or by the users so that they can be tuned for a spe-
cific application or set of applications. A workstation that performs high-end
graphical applications, for instance, may have scheduling needs different from
those of a web server or file server. Some operating systems—particularly sev-
eral versions of UNIX—allow the system manager to fine-tune the scheduling
parameters for a particular system configuration. For example, Solaris pro-
vides the dispadmin command to allow the system administrator to modify
the parameters of the scheduling classes described in Section 5.7.3.

Another approach is to use APIs that can modify the priority of a process
or thread. The Java, POSIX, and Windows APIs provide such functions. The
downfall of this approach is that performance-tuning a system or application
most often does not result in improvedperformance inmore general situations.

250 Chapter 5 CPU Scheduling

5.9 Summary

• CPU scheduling is the task of selecting a waiting process from the ready
queue and allocating the CPU to it. The CPU is allocated to the selected
process by the dispatcher.

• Scheduling algorithms may be either preemptive (where the CPU can be
taken away from a process) or nonpreemptive (where a process must
voluntarily relinquish control of the CPU). Almost all modern operating
systems are preemptive.

• Scheduling algorithms can be evaluated according to the following five
criteria: (1) CPUutilization, (2) throughput, (3) turnaround time, (4)waiting
time, and (5) response time.

• First-come, first-served (FCFS) scheduling is the simplest scheduling algo-
rithm, but it can cause short processes to wait for very long processes.

• Shortest-job-first (SJF) scheduling is provably optimal, providing the short-
est average waiting time. Implementing SJF scheduling is difficult, how-
ever, because predicting the length of the next CPU burst is difficult.

• Round-robin (RR) scheduling allocates the CPU to each process for a time
quantum. If the process does not relinquish the CPU before its time quan-
tum expires, the process is preempted, and another process is scheduled
to run for a time quantum.

• Priority scheduling assigns each process a priority, and the CPU is allocated
to the process with the highest priority. Processes with the same priority
can be scheduled in FCFS order or using RR scheduling.

• Multilevel queue scheduling partitions processes into several separate
queues arranged by priority, and the scheduler executes the processes in
the highest-priority queue. Different scheduling algorithms may be used
in each queue.

• Multilevel feedback queues are similar to multilevel queues, except that a
process may migrate between different queues.

• Multicore processors place one or more CPUs on the same physical chip,
and each CPU may have more than one hardware thread. From the per-
spective of the operating system, each hardware thread appears to be a
logical CPU.

• Load balancing on multicore systems equalizes loads between CPU cores,
althoughmigrating threads between cores to balance loadsmay invalidate
cache contents and therefore may increase memory access times.

• Soft real-time scheduling gives priority to real-time tasks over non-real-
time tasks. Hard real-time scheduling provides timing guarantees for real-
time tasks,

• Rate-monotonic real-time scheduling schedules periodic tasks using a
static priority policy with preemption.

Practice Exercises 251

• Earliest-deadline-first (EDF) scheduling assigns priorities according to
deadline. The earlier the deadline, the higher the priority; the later the
deadline, the lower the priority.

• Proportional share scheduling allocates T shares among all applications. If
an application is allocatedN shares of time, it is ensured of having N∕T of
the total processor time.

• Linux uses the completely fair scheduler (CFS), which assigns a proportion
of CPU processing time to each task. The proportion is based on the virtual
runtime (vruntime) value associated with each task.

• Windows scheduling uses a preemptive, 32-level priority scheme to deter-
mine the order of thread scheduling.

• Solaris identifies six unique scheduling classes that are mapped to a global
priority. CPU-intensive threads are generally assigned lower priorities
(and longer time quantums), and I/O-bound threads are usually assigned
higher priorities (with shorter time quantums.)

• Modeling and simulations can be used to evaluate a CPU scheduling algo-
rithm.

Practice Exercises

5.1 ACPU-scheduling algorithm determines an order for the execution of its
scheduled processes. Given n processes to be scheduled on one proces-
sor, howmany different schedules are possible? Give a formula in terms
of n.

5.2 Explain the difference betweenpreemptive and nonpreemptive schedul-
ing.

5.3 Suppose that the following processes arrive for execution at the times
indicated. Each processwill run for the amount of time listed. In answer-
ing the questions, use nonpreemptive scheduling, and base all decisions
on the information you have at the time the decision must be made.

Process Arrival Time Burst Time
P1 0.0 8
P2 0.4 4
P3 1.0 1

a. What is the average turnaround time for these processes with the
FCFS scheduling algorithm?

b. What is the average turnaround time for these processes with the
SJF scheduling algorithm?

c. The SJF algorithm is supposed to improve performance, but notice
that we chose to run process P1 at time 0 because we did not know
that two shorter processes would arrive soon. Compute what the

252 Chapter 5 CPU Scheduling

average turnaround time will be if the CPU is left idle for the first
1 unit and then SJF scheduling is used. Remember that processes
P1 and P2 are waiting during this idle time, so their waiting time
may increase. This algorithm could be known as future-knowledge
scheduling.

5.4 Consider the following set of processes, with the length of the CPU burst
time given in milliseconds:

Process Burst Time Priority
P1 2 2
P2 1 1
P3 8 4
P4 4 2
P5 5 3

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5,
all at time 0.

a. Draw four Gantt charts that illustrate the execution of these pro-
cesses using the following scheduling algorithms: FCFS, SJF, non-
preemptive priority (a larger priority number implies a higher
priority), and RR (quantum = 2).

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. What is the waiting time of each process for each of these schedul-
ing algorithms?

d. Which of the algorithms results in the minimum average waiting
time (over all processes)?

5.5 The following processes are being scheduled using a preemptive, round-
robin scheduling algorithm.

Process Priority Burst Arrival
P1 40 20 0
P2 30 25 25
P3 30 25 30
P4 35 15 60
P5 5 10 100
P6 10 10 105

Each process is assigned a numerical priority,with a higher number indi-
cating a higher relative priority. In addition to the processes listed below,
the system also has an idle task (which consumes no CPU resources and
is identified as Pidle). This task has priority 0 and is scheduled when-
ever the system has no other available processes to run. The length of a

Practice Exercises 253

time quantum is 10 units. If a process is preempted by a higher-priority
process, the preempted process is placed at the end of the queue.

a. Show the scheduling order of the processes using a Gantt chart.

b. What is the turnaround time for each process?

c. What is the waiting time for each process?

d. What is the CPU utilization rate?

5.6 What advantage is there in having different time-quantum sizes at dif-
ferent levels of a multilevel queueing system?

5.7 Many CPU-scheduling algorithms are parameterized. For example, the
RR algorithm requires a parameter to indicate the time slice. Multilevel
feedback queues require parameters to define the number of queues,
the scheduling algorithms for each queue, the criteria used to move
processes between queues, and so on.
These algorithms are thus really sets of algorithms (for example, the set

of RR algorithms for all time slices, and so on). One set of algorithmsmay
include another (for example, the FCFS algorithm is the RR algorithm
with an infinite time quantum). What (if any) relation holds between
the following pairs of algorithm sets?

a. Priority and SJF

b. Multilevel feedback queues and FCFS

c. Priority and FCFS

d. RR and SJF

5.8 Suppose that a CPU scheduling algorithm favors those processes that
have used the least processor time in the recent past. Why will this
algorithm favor I/O-bound programs and yet not permanently starve
CPU-bound programs?

5.9 Distinguish between PCS and SCS scheduling.

5.10 The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: the higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process P1 is 40, for process P2 is 18,
and for process P3 is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?

254 Chapter 5 CPU Scheduling

Further Reading

Scheduling policies used in the UNIX FreeBSD 5.2 are presented by
[McKusick et al. (2015)]; The Linux CFS scheduler is further described in
https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/.
Solaris scheduling is described by [Mauro and McDougall (2007)]. [Russi-
novich et al. (2017)] discusses scheduling in Windows internals. [Butenhof
(1997)] and [Lewis and Berg (1998)] describe scheduling in Pthreads systems.
Multicore scheduling is examined in [McNairy and Bhatia (2005)], [Kongetira
et al. (2005)], and [Siddha et al. (2007)] .

Bibliography

[Butenhof (1997)] D. Butenhof, Programming with POSIX Threads, Addison-
Wesley (1997).

[Kongetira et al. (2005)] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara:
A 32-Way Multithreaded SPARC Processor”, IEEE Micro Magazine, Volume 25,
Number 2 (2005), pages 21–29.

[Lewis and Berg (1998)] B. Lewis and D. Berg, Multithreaded Programming with
Pthreads, Sun Microsystems Press (1998).

[Mauro and McDougall (2007)] J. Mauro and R. McDougall, Solaris Internals:
Core Kernel Architecture, Prentice Hall (2007).

[McKusick et al. (2015)] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Wat-
son,The Design and Implementation of the FreeBSDUNIXOperating System–Second
Edition, Pearson (2015).

[McNairy and Bhatia (2005)] C. McNairy and R. Bhatia, “Montecito: A Dual–
Core, Dual-Threaded Itanium Processor”, IEEE Micro Magazine, Volume 25,
Number 2 (2005), pages 10–20.

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

[Siddha et al. (2007)] S. Siddha, V. Pallipadi, and A. Mallick, “Process Schedul-
ing Challenges in the Era of Multi-Core Processors”, Intel Technology Journal,
Volume 11, Number 4 (2007).

http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/
http://scholar.google.com/scholar?hl/en&q=J Mauro and R McDougall Solaris Internals Core Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=D Butenhof Programming with POSIX Threads
http://scholar.google.com/scholar?hl/en&q=B Lewis and D Berg Multithreaded Programming with Pthreads
http://doi.ieeecomputersociety.org/10.1109/MM.2005.34
http://doi.ieeecomputersociety.org/10.1109/MM.2005.35
http://scholar.google.com/scholar?hl/en&q=S Siddha and V Pallipadi and A Mallick Process Scheduling Challenges in the Era of Multi Core Processors
http://scholar.google.com/scholar?hl/en&q=D Butenhof Programming with POSIX Threads
http://scholar.google.com/scholar?hl/en&q=D Butenhof Programming with POSIX Threads
http://doi.ieeecomputersociety.org/10.1109/MM.2005.35
http://doi.ieeecomputersociety.org/10.1109/MM.2005.35
http://scholar.google.com/scholar?hl/en&q=B Lewis and D Berg Multithreaded Programming with Pthreads
http://scholar.google.com/scholar?hl/en&q=B Lewis and D Berg Multithreaded Programming with Pthreads
http://scholar.google.com/scholar?hl/en&q=J Mauro and R McDougall Solaris Internals Core Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=J Mauro and R McDougall Solaris Internals Core Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://doi.ieeecomputersociety.org/10.1109/MM.2005.34
http://doi.ieeecomputersociety.org/10.1109/MM.2005.34
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=S Siddha and V Pallipadi and A Mallick Process Scheduling Challenges in the Era of Multi Core Processors
http://scholar.google.com/scholar?hl/en&q=S Siddha and V Pallipadi and A Mallick Process Scheduling Challenges in the Era of Multi Core Processors

Exercises

Chapter 5 Exercises

5.11 Of these two types of programs:

a. I/O-bound

b. CPU-bound

which is more likely to have voluntary context switches, and which
is more likely to have nonvoluntary context switches? Explain your
answer.

5.12 Discuss how the following pairs of scheduling criteria conflict in certain
settings.

a. CPU utilization and response time

b. Average turnaround time and maximum waiting time

c. I/O device utilization and CPU utilization

5.13 One technique for implementing lottery scheduling works by assigning
processes lottery tickets, which are used for allocating CPU time. When-
ever a scheduling decision has to be made, a lottery ticket is chosen at
random, and the process holding that ticket gets the CPU. The BTV oper-
ating system implements lottery scheduling by holding a lottery 50 times
each second, with each lottery winner getting 20 milliseconds of CPU
time (20 milliseconds × 50 = 1 second). Describe how the BTV scheduler
can ensure that higher-priority threads receive more attention from the
CPU than lower-priority threads.

5.14 Most scheduling algorithmsmaintain a run queue, which lists processes
eligible to run on a processor. On multicore systems, there are two
general options: (1) each processing core has its own run queue, or
(2) a single run queue is shared by all processing cores. What are the
advantages and disadvantages of each of these approaches?

5.15 Consider the exponential average formula used to predict the length of
the next CPU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a. α = 0 and τ0 = 100 milliseconds

b. α = 0.99 and τ0 = 10 milliseconds

5.16 A variation of the round-robin scheduler is the regressive round-robin
scheduler. This scheduler assigns each process a time quantum and a
priority. The initial value of a time quantum is 50milliseconds.However,
every time a process has been allocated the CPU and uses its entire time
quantum (does not block for I/O), 10 milliseconds is added to its time
quantum, and its priority level is boosted. (The time quantum for a
process can be increased to a maximum of 100 milliseconds.) When a
process blocks before using its entire time quantum, its time quantum is
reduced by 5 milliseconds, but its priority remains the same. What type
of process (CPU-bound or I/O-bound) does the regressive round-robin
scheduler favor? Explain.

EX-12

5.17 Consider the following set of processes, with the length of the CPU burst
given in milliseconds:

Process Burst Time Priority
P1 5 4
P2 3 1
P3 1 2
P4 7 2
P5 4 3

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5,
all at time 0.

a. Draw four Gantt charts that illustrate the execution of these pro-
cesses using the following scheduling algorithms: FCFS, SJF, non-
preemptive priority (a larger priority number implies a higher
priority), and RR (quantum = 2).

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. What is the waiting time of each process for each of these schedul-
ing algorithms?

d. Which of the algorithms results in the minimum average waiting
time (over all processes)?

5.18 The following processes are being scheduled using a preemptive,
priority-based, round-robin scheduling algorithm.

Process Priority Burst Arrival
P1 8 15 0
P2 3 20 0
P3 4 20 20
P4 4 20 25
P5 5 5 45
P6 5 15 55

Each process is assigned a numerical priority,with a higher number indi-
cating a higher relative priority. The scheduler will execute the highest-
priority process. For processes with the same priority, a round-robin
scheduler will be used with a time quantum of 10 units. If a process is
preempted by a higher-priority process, the preempted process is placed
at the end of the queue.

a. Show the scheduling order of the processes using a Gantt chart.

b. What is the turnaround time for each process?

c. What is the waiting time for each process?

5.19 The nice command is used to set the nice value of a process on Linux,
as well as on other UNIX systems. Explain why some systemsmay allow
any user to assign a process a nice value >= 0 yet allow only the root (or
administrator) user to assign nice values < 0.

EX-13

Exercises

5.20 Which of the following scheduling algorithms could result in starvation?

a. First-come, first-served

b. Shortest job first

c. Round robin

d. Priority

5.21 Consider a variant of the RR scheduling algorithm in which the entries
in the ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same
process in the ready queue?

b. What would be two major advantages and two disadvantages of
this scheme?

c. Howwould youmodify the basic RR algorithm to achieve the same
effect without the duplicate pointers?

5.22 Consider a system running ten I/O-bound tasks and one CPU-bound
task. Assume that the I/O-bound tasks issue an I/O operation once for
every millisecond of CPU computing and that each I/O operation takes
10 milliseconds to complete. Also assume that the context-switching
overhead is 0.1millisecond and that all processes are long-running tasks.
Describe the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond

b. The time quantum is 10 milliseconds

5.23 Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CPU
time allocated to the user’s process?

5.24 Consider a preemptive priority scheduling algorithm based on dynami-
cally changing priorities. Larger priority numbers imply higher priority.
When a process is waiting for the CPU (in the ready queue, but not run-
ning), its priority changes at a rate α. When it is running, its priority
changes at a rate β. All processes are given a priority of 0 when they
enter the ready queue. The parameters α and β can be set to give many
different scheduling algorithms.

a. What is the algorithm that results from β > α > 0?

b. What is the algorithm that results from α < β < 0?

5.25 Explain the how the following scheduling algorithmsdiscriminate either
in favor of or against short processes:

a. FCFS

b. RR

c. Multilevel feedback queues

EX-14

5.26 Describe why a shared ready queue might suffer from performance
problems in an SMP environment.

5.27 Consider a load-balancing algorithm that ensures that each queue has
approximately the same number of threads, independent of priority.
How effectively would a priority-based scheduling algorithm handle
this situation if one run queue had all high-priority threads and a second
queue had all low-priority threads?

5.28 Assume that an SMP system has private, per-processor run queues.
When a new process is created, it can be placed in either the same queue
as the parent process or a separate queue.

a. What are the benefits of placing the new process in the same queue
as its parent?

b. What are the benefits of placing the new process in a different
queue?

5.29 Assume that a thread has blocked for network I/O and is eligible to
run again. Describe why a NUMA-aware scheduling algorithm should
reschedule the thread on the same CPU on which it previously ran.

5.30 Using the Windows scheduling algorithm, determine the numeric pri-
ority of each of the following threads.

a. A thread in the REALTIME PRIORITY CLASS with a relative priority
of NORMAL

b. A thread in the ABOVE NORMAL PRIORITY CLASS with a relative
priority of HIGHEST

c. A thread in the BELOW NORMAL PRIORITY CLASS with a relative
priority of ABOVE NORMAL

5.31 Assuming that no threads belong to the REALTIME PRIORITY CLASS and
that none may be assigned a TIME CRITICAL priority, what combination
of priority class and priority corresponds to the highest possible relative
priority in Windows scheduling?

5.32 Consider the scheduling algorithm in the Solaris operating system for
time-sharing threads.

a. What is the time quantum (in milliseconds) for a thread with pri-
ority 15? With priority 40?

b. Assume that a thread with priority 50 has used its entire time
quantum without blocking. What new priority will the scheduler
assign this thread?

c. Assume that a thread with priority 20 blocks for I/O before its time
quantum has expired. What new priority will the scheduler assign
this thread?

EX-15

Exercises

5.33 Assume that two tasks,A and B, are running on a Linux system. The nice
values ofA and B are−5 and+5, respectively. Using the CFS scheduler as
a guide, describe how the respective values of vruntime vary between
the two processes given each of the following scenarios:

• Both A and B are CPU-bound.

• A is I/O-bound, and B is CPU-bound.

• A is CPU-bound, and B is I/O-bound.

5.34 Provide a specific circumstance that illustrates where rate-monotonic
scheduling is inferior to earliest-deadline-first scheduling in meeting
real-time process deadlines?

5.35 Consider two processes, P1 and P2, where p1 = 50, t1 = 25, p2 = 75, and
t2 = 30.

a. Can these two processes be scheduled using rate-monotonic
scheduling? Illustrate your answer using a Gantt chart such as the
ones in Figure 5.21–Figure 5.24.

b. Illustrate the scheduling of these two processes using earliest-
deadline-first (EDF) scheduling.

5.36 Explain why interrupt and dispatch latency times must be bounded in a
hard real-time system.

5.37 Describe the advantages of using heterogeneous multiprocessing in a
mobile system.

EX-16

Chapter 5 CPU Scheduling

Programming Projects

Scheduling Algorithms

This project involves implementing several different process scheduling algo-
rithms. The scheduler will be assigned a predefined set of tasks and will
schedule the tasks based on the selected scheduling algorithm. Each task is
assigned a priority and CPU burst. The following scheduling algorithms will
be implemented:

• First-come, first-served (FCFS), which schedules tasks in the order inwhich
they request the CPU.

• Shortest-job-first (SJF), which schedules tasks in order of the length of the
tasks’ next CPU burst.

• Priority scheduling, which schedules tasks based on priority.

• Round-robin (RR) scheduling, where each task is run for a time quantum
(or for the remainder of its CPU burst).

• Priority with round-robin, which schedules tasks in order of priority and
uses round-robin scheduling for tasks with equal priority.

Priorities range from 1 to 10, where a higher numeric value indicates a higher
relative priority. For round-robin scheduling, the length of a time quantum is
10 milliseconds.

I. Implementation

The implementation of this project may be completed in either C or Java, and
program files supporting both of these languages are provided in the source
code download for the text. These supporting files read in the schedule of tasks,
insert the tasks into a list, and invoke the scheduler.

The schedule of tasks has the form [task name] [priority] [CPU burst], with
the following example format:

T1, 4, 20
T2, 2, 25
T3, 3, 25
T4, 3, 15
T5, 10, 10

Thus, task T1 has priority 4 and a CPU burst of 20 milliseconds, and so forth. It
is assumed that all tasks arrive at the same time, so your scheduler algorithms
do not have to support higher-priority processes preempting processes with
lower priorities. In addition, tasks do not have to be placed into a queue or list
in any particular order.

There are a few different strategies for organizing the list of tasks, as
first presented in Section 5.1.2. One approach is to place all tasks in a single
unordered list, where the strategy for task selection depends on the scheduling

P-29

Programming Projects

algorithm. For example, SJF scheduling would search the list to find the task
with the shortest next CPU burst. Alternatively, a list could be ordered accord-
ing to scheduling criteria (that is, by priority). One other strategy involves
having a separate queue for each unique priority, as shown in Figure 5.7. These
approaches are briefly discussed in Section 5.3.6. It is also worth highlight-
ing that we are using the terms list and queue somewhat interchangeably.
However, a queue has very specific FIFO functionality, whereas a list does not
have such strict insertion and deletion requirements. You are likely to find the
functionality of a general list to be more suitable when completing this project.

II. C Implementation Details

The file driver.c reads in the schedule of tasks, inserts each task into a linked
list, and invokes the process scheduler by calling the schedule() function. The
schedule() function executes each task according to the specified scheduling
algorithm. Tasks selected for execution on the CPU are determinedby the pick-
NextTask() function and are executed by invoking the run() function defined
in the CPU.c file. AMakefile is used to determine the specific scheduling algo-
rithm that will be invoked by driver. For example, to build the FCFS scheduler,
we would enter

make fcfs

and would execute the scheduler (using the schedule of tasks schedule.txt)
as follows:

./fcfs schedule.txt

Refer to the README file in the source code download for further details. Before
proceeding, be sure to familiarize yourself with the source code provided as
well as the Makefile.

III. Java Implementation Details

The file Driver.java reads in the schedule of tasks, inserts each task into a
Java ArrayList, and invokes the process scheduler by calling the schedule()
method. The following interface identifies a generic scheduling algorithm,
which the five different scheduling algorithms will implement:

public interface Algorithm
{

// Implementation of scheduling algorithm
public void schedule();

// Selects the next task to be scheduled
public Task pickNetTask();

}
The schedule()method obtains the next task to be run on the CPU by invok-
ing the pickNextTask() method and then executes this Task by calling the
static run()method in the CPU.java class.

The program is run as follows:

java Driver fcfs schedule.txt

P-30

Chapter 5 CPU Scheduling

Refer to the README file in the source code download for further details. Before
proceeding, be sure to familiarize yourself with all Java source files provided
in the source code download.

IV. Further Challenges

Two additional challenges are presented for this project:

1. Each task provided to the scheduler is assigned a unique task (tid).
If a scheduler is running in an SMP environment where each CPU is
separately running its own scheduler, there is a possible race condition on
the variable that is used to assign task identifiers. Fix this race condition
using an atomic integer.

On Linux and macOS systems, the sync fetch and add() function
can be used to atomically increment an integer value. As an example, the
following code sample atomically increments value by 1:

int value = 0;
sync fetch and add(&value,1);

Refer to the Java API for details on how to use the AtomicInteger class
for Java programs.

2. Calculate the average turnaround time, waiting time, and response time
for each of the scheduling algorithms.

P-31

Part Three

Process
Synchronization

A system typically consists of several (perhaps hundreds or even thou-
sands) of threads running either concurrently or in parallel. Threads often
share user data. Meanwhile, the operating system continuously updates
various data structures to support multiple threads. A race condition
exists when access to shared data is not controlled, possibly resulting
in corrupt data values.

Process synchronization involves using tools that control access to
shared data to avoid race conditions. These tools must be used carefully,
as their incorrect use can result in poor system performance, including
deadlock.

6CHAPTER

Synchronization
Tools

A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes can either directly share a
logical address space (that is, both code and data) or be allowed to share data
only through sharedmemory or message passing. Concurrent access to shared
data may result in data inconsistency, however. In this chapter, we discuss
various mechanisms to ensure the orderly execution of cooperating processes
that share a logical address space, so that data consistency is maintained.

CHAPTER OBJECTIVES

• Describe the critical-section problem and illustrate a race condition.

• Illustrate hardware solutions to the critical-section problem using memory
barriers, compare-and-swap operations, and atomic variables.

• Demonstrate how mutex locks, semaphores, monitors, and condition vari-
ables can be used to solve the critical-section problem.

• Evaluate tools that solve the critical-section problem in low-, moderate-,
and high-contention scenarios.

6.1 Background

We’ve already seen that processes can execute concurrently or in parallel. Sec-
tion 3.2.2 introduced the role of process scheduling and described how the
CPU scheduler switches rapidly between processes to provide concurrent exe-
cution. This means that one process may only partially complete execution
before another process is scheduled. In fact, a process may be interrupted at
any point in its instruction stream, and the processing core may be assigned to
execute instructions of another process. Additionally, Section 4.2 introduced
parallel execution, in which two instruction streams (representing different
processes) execute simultaneously on separate processing cores. In this chap-
ter, we explain how concurrent or parallel execution can contribute to issues
involving the integrity of data shared by several processes.

257

258 Chapter 6 Synchronization Tools

Let’s consider an example of how this can happen. In Chapter 3, we devel-
oped a model of a system consisting of cooperating sequential processes or
threads, all running asynchronously and possibly sharing data. We illustrated
this model with the producer–consumer problem, which is a representative
paradigm of many operating system functions. Specifically, in Section 3.5, we
described how a bounded buffer could be used to enable processes to share
memory.

We now return to our consideration of the bounded buffer. As we pointed
out, our original solution allowed at most BUFFER SIZE − 1 items in the buffer
at the same time. Suppose we want to modify the algorithm to remedy this
deficiency. One possibility is to add an integer variable, count, initialized to
0. count is incremented every time we add a new item to the buffer and is
decremented every time we remove one item from the buffer. The code for the
producer process can be modified as follows:

while (true) {
/* produce an item in next produced */

while (count == BUFFER SIZE)
; /* do nothing */

buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;
count++;

}

The code for the consumer process can be modified as follows:

while (true) {
while (count == 0)

; /* do nothing */

next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;
count--;

/* consume the item in next consumed */
}

Although the producer and consumer routines shown above are correct
separately, they may not function correctly when executed concurrently. As
an illustration, suppose that the value of the variable count is currently 5 and
that the producer and consumer processes concurrently execute the statements
“count++” and “count--”. Following the execution of these two statements,
the value of the variable countmay be 4, 5, or 6! The only correct result, though,
is count == 5, which is generated correctly if the producer and consumer
execute separately.

6.1 Background 259

We can show that the value of count may be incorrect as follows. Note
that the statement “count++” may be implemented in machine language (on a
typical machine) as follows:

register1 = count
register1 = register1 + 1
count = register1

where register1 is one of the local CPU registers. Similarly, the statement “count-
-” is implemented as follows:

register2 = count
register2 = register2 − 1
count = register2

where again register2 is one of the local CPU registers. Even though register1 and
register2 may be the same physical register, remember that the contents of this
register will be saved and restored by the interrupt handler (Section 1.2.3).

The concurrent execution of “count++” and “count--” is equivalent to a
sequential execution in which the lower-level statements presented previously
are interleaved in some arbitrary order (but the order within each high-level
statement is preserved). One such interleaving is the following:

T0: producer execute register1 = count {register1 = 5}
T1: producer execute register1 = register1 + 1 {register1 = 6}
T2: consumer execute register2 = count {register2 = 5}
T3: consumer execute register2 = register2 − 1 {register2 = 4}
T4: producer execute count = register1 {count = 6}
T5: consumer execute count = register2 {count = 4}

Notice that we have arrived at the incorrect state “count == 4”, indicating that
four buffers are full, when, in fact, five buffers are full. If we reversed the order
of the statements at T4 and T5, we would arrive at the incorrect state “count
== 6”.

We would arrive at this incorrect state because we allowed both processes
to manipulate the variable count concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is called a race condition. To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
the variable count. To make such a guarantee, we require that the processes be
synchronized in some way.

Situations such as the one just described occur frequently in operating
systems as different parts of the system manipulate resources. Furthermore,
as we have emphasized in earlier chapters, the prominence of multicore sys-
tems has brought an increased emphasis on developing multithreaded appli-
cations. In such applications, several threads—which are quite possibly shar-
ing data—are running in parallel on different processing cores. Clearly, we
want any changes that result from such activities not to interfere with one

260 Chapter 6 Synchronization Tools

another. Because of the importance of this issue, we devote a major portion of
this chapter to process synchronization and coordination among cooperating
processes.

6.2 The Critical-Section Problem

We begin our consideration of process synchronization by discussing the so-
called critical-section problem. Consider a system consisting of n processes
{P0,P1, ...,Pn−1}. Each process has a segment of code, called a critical section,
in which the process may be accessing — and updating — data that is shared
with at least one other process. The important feature of the system is that,
when one process is executing in its critical section, no other process is allowed
to execute in its critical section. That is, no two processes are executing in their
critical sections at the same time. The critical-section problem is to design
a protocol that the processes can use to synchronize their activity so as to
cooperatively share data. Each process must request permission to enter its
critical section. The section of code implementing this request is the entry
section. The critical section may be followed by an exit section. The remaining
code is the remainder section. The general structure of a typical process is
shown in Figure 6.1. The entry section and exit section are enclosed in boxes to
highlight these important segments of code.

A solution to the critical-section problem must satisfy the following three
requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no
other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some pro-
cesses wish to enter their critical sections, then only those processes that
are not executing in their remainder sections can participate in decid-
ing which will enter its critical section next, and this selection cannot be
postponed indefinitely.

while (true) {

entry section

critical section

exit section

remainder section

}

Figure 6.1 General structure of a typical process.

6.2 The Critical-Section Problem 261

3. Bounded waiting. There exists a bound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However, we can
make no assumption concerning the relative speed of the n processes.

At a given point in time, many kernel-mode processes may be active in
the operating system. As a result, the code implementing an operating system
(kernel code) is subject to several possible race conditions. Consider as an
example a kernel data structure that maintains a list of all open files in the
system. This list must be modifiedwhen a new file is opened or closed (adding
the file to the list or removing it from the list). If two processeswere to open files
simultaneously, the separate updates to this list could result in a race condition.

Another example is illustrated in Figure 6.2. In this situation, two pro-
cesses, P0 and P1, are creating child processes using the fork() system call.
Recall from Section 3.3.1 that fork() returns the process identifier of the newly
created process to the parent process. In this example, there is a race condi-
tion on the variable kernel variable next available pid which represents
the value of the next available process identifier. Unless mutual exclusion is
provided, it is possible the same process identifier number could be assigned
to two separate processes.

Other kernel data structures that are prone to possible race conditions
include structures for maintaining memory allocation, for maintaining process
lists, and for interrupt handling. It is up to kernel developers to ensure that the
operating system is free from such race conditions.

The critical-section problem could be solved simply in a single-core envi-
ronment if we could prevent interrupts from occurring while a shared variable
was being modified. In this way, we could be sure that the current sequence

next_available_pid = 2615

pid_t child = fork ();

child = 2615

return
2615

request
pid

request
pid

return
2615

child = 2615

0

pid_t child = fork ();

P 1P

tim
e

Figure 6.2 Race condition when assigning a pid.

262 Chapter 6 Synchronization Tools

of instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be
made to the shared variable.

Unfortunately, this solution is not as feasible in a multiprocessor environ-
ment. Disabling interrupts on a multiprocessor can be time consuming, since
the message is passed to all the processors. This message passing delays entry
into each critical section, and system efficiency decreases. Also consider the
effect on a system’s clock if the clock is kept updated by interrupts.

Two general approaches are used to handle critical sections in operating
systems: preemptive kernels and nonpreemptive kernels. A preemptive ker-
nel allows a process to be preempted while it is running in kernel mode. A
nonpreemptive kernel does not allow a process running in kernel mode to be
preempted; a kernel-mode process will run until it exits kernel mode, blocks,
or voluntarily yields control of the CPU.

Obviously, a nonpreemptive kernel is essentially free from race conditions
on kernel data structures, as only one process is active in the kernel at a time.
We cannot say the same about preemptive kernels, so they must be carefully
designed to ensure that shared kernel data are free from race conditions. Pre-
emptive kernels are especially difficult to design for SMP architectures, since
in these environments it is possible for two kernel-mode processes to run
simultaneously on different CPU cores.

Why, then, would anyone favor a preemptive kernel over a nonpreemp-
tive one? A preemptive kernel may be more responsive, since there is less risk
that a kernel-mode process will run for an arbitrarily long period before relin-
quishing the processor to waiting processes. (Of course, this risk can also be
minimized by designing kernel code that does not behave in this way.) Fur-
thermore, a preemptive kernel is more suitable for real-time programming, as
it will allow a real-time process to preempt a process currently running in the
kernel.

6.3 Peterson’s Solution

Next, we illustrate a classic software-based solution to the critical-section prob-
lem known as Peterson’s solution. Because of the way modern computer
architectures perform basic machine-language instructions, such as load and
store, there are no guarantees that Peterson’s solution will work correctly
on such architectures. However, we present the solution because it provides a
good algorithmic description of solving the critical-section problem and illus-
trates some of the complexities involved in designing software that addresses
the requirements of mutual exclusion, progress, and bounded waiting.

Peterson’s solution is restricted to two processes that alternate execution
between their critical sections and remainder sections. The processes are num-
bered P0 and P1. For convenience, when presenting Pi, we use Pj to denote the
other process; that is, j equals 1 − i.

Peterson’s solution requires the two processes to share two data items:

int turn;
boolean flag[2];

6.3 Peterson’s Solution 263

while (true) {
flag[i] = true;
turn = j;
while (flag[j] && turn == j)

;

/* critical section */

flag[i] = false;

/*remainder section */
}

Figure 6.3 The structure of process Pi in Peterson’s solution.

The variable turn indicates whose turn it is to enter its critical section. That is,
if turn == i, then process Pi is allowed to execute in its critical section. The
flag array is used to indicate if a process is ready to enter its critical section.
For example, if flag[i] is true, Pi is ready to enter its critical section. With an
explanation of these data structures complete, we are now ready to describe
the algorithm shown in Figure 6.3.

To enter the critical section, process Pi first sets flag[i] to be true and
then sets turn to the value j, thereby asserting that if the other process wishes
to enter the critical section, it can do so. If both processes try to enter at the same
time, turn will be set to both i and j at roughly the same time. Only one of
these assignments will last; the other will occur but will be overwritten imme-
diately. The eventual value of turn determines which of the two processes is
allowed to enter its critical section first.

We now prove that this solution is correct. We need to show that:

1. Mutual exclusion is preserved.

2. The progress requirement is satisfied.

3. The bounded-waiting requirement is met.

To prove property 1, we note that each Pi enters its critical section only
if either flag[j] == false or turn == i. Also note that, if both processes
can be executing in their critical sections at the same time, then flag[0] ==
flag[1] == true. These two observations imply that P0 and P1 could not
have successfully executed their while statements at about the same time,
since the value of turn can be either 0 or 1 but cannot be both. Hence, one of
the processes—say, Pj—must have successfully executed the while statement,
whereas Pi had to execute at least one additional statement (“turn == j”).
However, at that time, flag[j] == true and turn == j, and this condition
will persist as long as Pj is in its critical section; as a result, mutual exclusion is
preserved.

264 Chapter 6 Synchronization Tools

Toprove properties 2 and 3,we note that a processPi can be prevented from
entering the critical section only if it is stuck in the while loopwith the condition
flag[j] == true and turn == j; this loop is the only one possible. If Pj is not
ready to enter the critical section, then flag[j] == false, and Pi can enter its
critical section. If Pj has set flag[j] to true and is also executing in its while
statement, then either turn == i or turn == j. If turn == i, then Pi will enter
the critical section. If turn == j, then Pj will enter the critical section. However,
once Pj exits its critical section, it will reset flag[j] to false, allowing Pi to
enter its critical section. If Pj resets flag[j] to true, it must also set turn to i.
Thus, since Pi does not change the value of the variable turn while executing
the while statement, Pi will enter the critical section (progress) after at most
one entry by Pj (bounded waiting).

As mentioned at the beginning of this section, Peterson’s solution is not
guaranteed to work on modern computer architectures for the primary rea-
son that, to improve system performance, processors and/or compilers may
reorder read and write operations that have no dependencies. For a single-
threaded application, this reordering is immaterial as far as program correct-
ness is concerned, as the final values are consistent withwhat is expected. (This
is similar to balancing a checkbook—the actual order in which credit and debit
operations are performed is unimportant, because the final balance will still be
the same.) But for amultithreaded applicationwith shared data, the reordering
of instructions may render inconsistent or unexpected results.

As an example, consider the following data that are shared between two
threads:

boolean flag = false;
int x = 0;

where Thread 1 performs the statements

while (!flag)
;

print x;

and Thread 2 performs

x = 100;
flag = true;

The expected behavior is, of course, that Thread 1 outputs the value 100 for
variable x. However, as there are no data dependencies between the variables
flag and x, it is possible that a processor may reorder the instructions for
Thread 2 so that flag is assigned true before assignment of x = 100. In
this situation, it is possible that Thread 1 would output 0 for variable x. Less
obvious is that the processor may also reorder the statements issued by Thread
1 and load the variable x before loading the value of flag. If this were to occur,
Thread 1would output 0 for variable x even if the instructions issuedbyThread
2 were not reordered.

6.4 Hardware Support for Synchronization 265

process

process

time

cs

cs

flag[0] = trueturn = 10

1 turn = 0 , flag[1] = true

Figure 6.4 The effects of instruction reordering in Peterson’s solution.

How does this affect Peterson’s solution? Consider what happens if the
assignments of the first two statements that appear in the entry section of
Peterson’s solution in Figure 6.3 are reordered; it is possible that both threads
may be active in their critical sections at the same time, as shown in Figure 6.4.

As you will see in the following sections, the only way to preserve mutual
exclusion is by using proper synchronization tools. Our discussion of these
tools begins with primitive support in hardware and proceeds through
abstract, high-level, software-based APIs available to both kernel developers
and application programmers.

6.4 Hardware Support for Synchronization

Wehave just described one software-based solution to the critical-section prob-
lem. (We refer to it as a software-based solution because the algorithm involves
no special support from the operating system or specific hardware instructions
to ensure mutual exclusion.) However, as discussed, software-based solutions
are not guaranteed to work on modern computer architectures. In this section,
we present three hardware instructions that provide support for solving the
critical-section problem. These primitive operations can be used directly as
synchronization tools, or they can be used to form the foundation of more
abstract synchronization mechanisms.

6.4.1 Memory Barriers

In Section 6.3, we saw that a systemmay reorder instructions, a policy that can
lead to unreliable data states. How a computer architecture determines what
memory guarantees it will provide to an application program is known as its
memory model. In general, a memory model falls into one of two categories:

1. Strongly ordered, where a memory modification on one processor is
immediately visible to all other processors.

2. Weakly ordered, where modifications to memory on one processor may
not be immediately visible to other processors.

Memorymodels vary by processor type, so kernel developers cannot make
any assumptions regarding the visibility of modifications to memory on a
shared-memory multiprocessor. To address this issue, computer architectures
provide instructions that can force any changes in memory to be propagated to
all other processors, thereby ensuring that memorymodifications are visible to

266 Chapter 6 Synchronization Tools

threads running on other processors. Such instructions are known as memory
barriers or memory fences. When a memory barrier instruction is performed,
the system ensures that all loads and stores are completed before any subse-
quent load or store operations are performed. Therefore, even if instructions
were reordered, the memory barrier ensures that the store operations are com-
pleted in memory and visible to other processors before future load or store
operations are performed.

Let’s return to ourmost recent example, inwhich reordering of instructions
could have resulted in the wrong output, and use a memory barrier to ensure
that we obtain the expected output.

If we add a memory barrier operation to Thread 1

while (!flag)
memory barrier();

print x;

we guarantee that the value of flag is loaded before the value of x.
Similarly, if we place a memory barrier between the assignments per-

formed by Thread 2

x = 100;
memory barrier();
flag = true;

we ensure that the assignment to x occurs before the assignment to flag.
With respect to Peterson’s solution, we could place a memory barrier

between the first two assignment statements in the entry section to avoid the
reordering of operations shown in Figure 6.4. Note that memory barriers are
considered very low-level operations and are typically only used by kernel
developers when writing specialized code that ensures mutual exclusion.

6.4.2 Hardware Instructions

Many modern computer systems provide special hardware instructions that
allow us either to test andmodify the content of a word or to swap the contents
of two words atomically—that is, as one uninterruptible unit. We can use
these special instructions to solve the critical-section problem in a relatively
simple manner. Rather than discussing one specific instruction for one specific
machine, we abstract the main concepts behind these types of instructions by
describing the test and set() and compare and swap() instructions.

boolean test and set(boolean *target) {
boolean rv = *target;
*target = true;

return rv;
}

Figure 6.5 The definition of the atomic test and set() instruction.

6.4 Hardware Support for Synchronization 267

do {
while (test and set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */
} while (true);

Figure 6.6 Mutual-exclusion implementation with test and set().

The test and set() instruction can be defined as shown in Figure 6.5.
The important characteristic of this instruction is that it is executed atomi-
cally. Thus, if two test and set() instructions are executed simultaneously
(each on a different core), they will be executed sequentially in some arbitrary
order. If the machine supports the test and set() instruction, then we can
implement mutual exclusion by declaring a boolean variable lock, initialized
to false. The structure of process Pi is shown in Figure 6.6.

The compare and swap() instruction (CAS), just like the test and set()
instruction, operates on two words atomically, but uses a different mechanism
that is based on swapping the content of two words.

The CAS instruction operates on three operands and is defined in Figure
6.7. The operand value is set to new value only if the expression (*value
== expected) is true. Regardless, CAS always returns the original value of
the variable value. The important characteristic of this instruction is that it is
executed atomically. Thus, if two CAS instructions are executed simultaneously
(each on a different core), they will be executed sequentially in some arbitrary
order.

Mutual exclusion using CAS can be provided as follows: A global vari-
able (lock) is declared and is initialized to 0. The first process that invokes
compare and swap() will set lock to 1. It will then enter its critical section,

int compare and swap(int *value, int expected, int new value) {
int temp = *value;

if (*value == expected)
*value = new value;

return temp;
}

Figure 6.7 The definition of the atomic compare and swap() instruction.

268 Chapter 6 Synchronization Tools

while (true) {
while (compare and swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */
}

Figure 6.8 Mutual exclusion with the compare and swap() instruction.

because the original value of lockwas equal to the expected value of 0. Subse-
quent calls to compare and swap()will not succeed, because lock now is not
equal to the expected value of 0. When a process exits its critical section, it sets
lock back to 0, which allows another process to enter its critical section. The
structure of process Pi is shown in Figure 6.8.

Although this algorithm satisfies the mutual-exclusion requirement, it
does not satisfy the bounded-waiting requirement. In Figure 6.9, we present

while (true) {
waiting[i] = true;
key = 1;
while (waiting[i] && key == 1)

key = compare and swap(&lock,0,1);
waiting[i] = false;

/* critical section */

j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)
lock = 0;

else
waiting[j] = false;

/* remainder section */
}

Figure 6.9 Bounded-waiting mutual exclusion with compare and swap().

6.4 Hardware Support for Synchronization 269

MAKING COMPARE-AND-SWAPATOMIC

On Intel x86 architectures, the assembly language statement cmpxchg is
used to implement the compare and swap() instruction. To enforce atomic
execution, the lock prefix is used to lock the bus while the destination
operand is being updated. The general form of this instruction appears as:

lock cmpxchg <destination operand>, <source operand>

another algorithm using the compare and swap() instruction that satisfies all
the critical-section requirements. The common data structures are

boolean waiting[n];
int lock;

The elements in the waiting array are initialized to false, and lock is initial-
ized to 0. To prove that the mutual-exclusion requirement is met, we note that
process Pi can enter its critical section only if either waiting[i] == false or
key == 0. The value of key can become 0 only if the compare and swap() is
executed. The first process to execute the compare and swap() will find key
== 0; all others must wait. The variable waiting[i] can become false only if
another process leaves its critical section; only one waiting[i] is set to false,
maintaining the mutual-exclusion requirement.

To prove that the progress requirement is met, we note that the arguments
presented for mutual exclusion also apply here, since a process exiting the
critical section either sets lock to 0 or sets waiting[j] to false. Both allow a
process that is waiting to enter its critical section to proceed.

To prove that the bounded-waiting requirement is met, we note that, when
a process leaves its critical section, it scans the array waiting in the cyclic
ordering (i + 1, i + 2, ..., n − 1, 0, ..., i − 1). It designates the first process in
this ordering that is in the entry section (waiting[j] == true) as the next one
to enter the critical section. Any process waiting to enter its critical section will
thus do so within n − 1 turns.

Details describing the implementation of the atomic test and set() and
compare and swap() instructions are discussed more fully in books on com-
puter architecture.

6.4.3 Atomic Variables

Typically, the compare and swap() instruction is not used directly to provide
mutual exclusion. Rather, it is used as a basic building block for constructing
other tools that solve the critical-section problem. One such tool is an atomic
variable, which provides atomic operations on basic data types such as integers
and booleans.We know from Section 6.1 that incrementing or decrementing an
integer value may produce a race condition. Atomic variables can be used in
to ensure mutual exclusion in situations where there may be a data race on a
single variable while it is being updated, as when a counter is incremented.

Most systems that support atomic variables provide special atomic data
types as well as functions for accessing and manipulating atomic variables.

270 Chapter 6 Synchronization Tools

These functions are often implemented using compare and swap() opera-
tions. As an example, the following increments the atomic integer sequence:

increment(&sequence);

where the increment() function is implemented using the CAS instruction:

void increment(atomic int *v)
{

int temp;

do {
temp = *v;

}
while (temp != compare and swap(v, temp, temp+1));

}

It is important to note that although atomic variables provide atomic
updates, they do not entirely solve race conditions in all circumstances. For
example, in the bounded-buffer problemdescribed in Section 6.1, we could use
an atomic integer for count. This would ensure that the updates to countwere
atomic. However, the producer and consumer processes also have while loops
whose condition depends on the value of count. Consider a situation in which
the buffer is currently empty and two consumers are looping while waiting for
count > 0. If a producer entered one item in the buffer, both consumers could
exit their while loops (as countwould no longer be equal to 0) and proceed to
consume, even though the value of countwas only set to 1.

Atomic variables are commonly used in operating systems as well as con-
current applications, although their use is often limited to single updates of
shared data such as counters and sequence generators. In the following sec-
tions, we explore more robust tools that address race conditions in more gen-
eralized situations.

6.5 Mutex Locks

The hardware-based solutions to the critical-section problem presented in Sec-
tion 6.4 are complicated as well as generally inaccessible to application pro-
grammers. Instead, operating-system designers build higher-level software
tools to solve the critical-section problem. The simplest of these tools is the
mutex lock. (In fact, the termmutex is short for mutual exclusion.) We use the
mutex lock to protect critical sections and thus prevent race conditions. That
is, a process must acquire the lock before entering a critical section; it releases
the lock when it exits the critical section. The acquire()function acquires the
lock, and the release() function releases the lock, as illustrated in Figure 6.10.

A mutex lock has a boolean variable available whose value indicates if
the lock is available or not. If the lock is available, a call to acquire() succeeds,
and the lock is then considered unavailable. Aprocess that attempts to acquire
an unavailable lock is blocked until the lock is released.

6.5 Mutex Locks 271

while (true) {

acquire lock

critical section

release lock

remainder section

}

Figure 6.10 Solution to the critical-section problem using mutex locks.

The definition of acquire() is as follows:

acquire() {
while (!available)

; /* busy wait */
available = false;

}

The definition of release() is as follows:

release() {
available = true;

}

Calls to either acquire() or release() must be performed atomically.
Thus, mutex locks can be implemented using the CAS operation described in
Section 6.4, and we leave the description of this technique as an exercise.

LOCK CONTENTION

Locks are either contended or uncontended. A lock is considered contended
if a thread blocks while trying to acquire the lock. If a lock is available when
a thread attempts to acquire it, the lock is considered uncontended. Con-
tended locks can experience either high contention (a relatively large number
of threads attempting to acquire the lock) or low contention (a relatively
small number of threads attempting to acquire the lock.) Unsurprisingly,
highly contended locks tend to decrease overall performance of concurrent
applications.

272 Chapter 6 Synchronization Tools

WHAT IS MEANT BY “SHORT DURATION”?

Spinlocks are often identified as the locking mechanism of choice on multi-
processor systems when the lock is to be held for a short duration. But what
exactly constitutes a short duration? Given that waiting on a lock requires
two context switches—a context switch to move the thread to the waiting
state and a second context switch to restore the waiting thread once the lock
becomes available—the general rule is to use a spinlock if the lock will be
held for a duration of less than two context switches.

The main disadvantage of the implementation given here is that it requires
busy waiting. While a process is in its critical section, any other process that
tries to enter its critical sectionmust loop continuously in the call to acquire().
This continual looping is clearly a problem in a realmultiprogramming system,
where a single CPU core is shared among many processes. Busy waiting also
wastes CPU cycles that some other process might be able to use productively.
(In Section 6.6, we examine a strategy that avoids busy waiting by temporarily
putting the waiting process to sleep and then awakening it once the lock
becomes available.)

The type of mutex lock we have been describing is also called a spin-
lock because the process “spins” while waiting for the lock to become avail-
able. (We see the same issue with the code examples illustrating the com-
pare and swap() instruction.) Spinlocks do have an advantage, however, in
that no context switch is required when a process must wait on a lock, and a
context switch may take considerable time. In certain circumstances on multi-
core systems, spinlocks are in fact the preferable choice for locking. If a lock is
to be held for a short duration, one thread can “spin” on one processing core
while another thread performs its critical section on another core. On modern
multicore computing systems, spinlocks are widely used in many operating
systems.

In Chapter 7 we examine how mutex locks can be used to solve classical
synchronization problems. We also discuss howmutex locks and spinlocks are
used in several operating systems, as well as in Pthreads.

6.6 Semaphores

Mutex locks, as we mentioned earlier, are generally considered the simplest of
synchronization tools. In this section, we examine a more robust tool that can
behave similarly to a mutex lock but can also providemore sophisticated ways
for processes to synchronize their activities.

A semaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait() and signal().
Semaphores were introduced by the Dutch computer scientist Edsger Dijk-
stra, and such, the wait() operation was originally termed P (from the Dutch

6.6 Semaphores 273

proberen, “to test”); signal()was originally called V (from verhogen, “to incre-
ment”). The definition of wait() is as follows:

wait(S) {
while (S <= 0)

; // busy wait
S--;

}

The definition of signal() is as follows:

signal(S) {
S++;

}
All modifications to the integer value of the semaphore in the wait() and

signal() operations must be executed atomically. That is, when one process
modifies the semaphore value, no other process can simultaneously modify
that same semaphore value. In addition, in the case of wait(S), the testing of
the integer value of S (S ≤ 0), as well as its possible modification (S--), must
be executed without interruption. We shall see how these operations can be
implemented in Section 6.6.2. First, let’s see how semaphores can be used.

6.6.1 Semaphore Usage

Operating systems often distinguish between counting and binary
semaphores. The value of a counting semaphore can range over an
unrestricted domain. The value of a binary semaphore can range only
between 0 and 1. Thus, binary semaphores behave similarly to mutex locks. In
fact, on systems that do not provide mutex locks, binary semaphores can be
used instead for providing mutual exclusion.

Counting semaphores can be used to control access to a given resource
consisting of a finite number of instances. The semaphore is initialized to the
number of resources available. Each process that wishes to use a resource
performs a wait() operation on the semaphore (thereby decrementing the
count). When a process releases a resource, it performs a signal() operation
(incrementing the count). When the count for the semaphore goes to 0, all
resources are being used. After that, processes that wish to use a resource will
block until the count becomes greater than 0.

We can also use semaphores to solve various synchronization problems.
For example, consider two concurrently running processes:P1 with a statement
S1 andP2 with a statement S2. Supposewe require that S2 be executed only after
S1 has completed. We can implement this scheme readily by letting P1 and P2
share a common semaphore synch, initialized to 0. In process P1, we insert the
statements

S1;
signal(synch);

274 Chapter 6 Synchronization Tools

In process P2, we insert the statements

wait(synch);
S2;

Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked
signal(synch), which is after statement S1 has been executed.

6.6.2 Semaphore Implementation

Recall that the implementation of mutex locks discussed in Section 6.5 suffers
from busy waiting. The definitions of the wait() and signal() semaphore
operations just described present the same problem. To overcome this prob-
lem, we can modify the definition of the wait() and signal() operations
as follows: When a process executes the wait() operation and finds that the
semaphore value is not positive, it must wait. However, rather than engaging
in busy waiting, the process can suspend itself. The suspend operation places
a process into a waiting queue associated with the semaphore, and the state of
the process is switched to the waiting state. Then control is transferred to the
CPU scheduler, which selects another process to execute.

Aprocess that is suspended,waiting on a semaphore S, should be restarted
when some other process executes a signal() operation. The process is
restarted by a wakeup() operation,which changes the process from thewaiting
state to the ready state. The process is then placed in the ready queue. (The
CPU may or may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a semaphore as
follows:

typedef struct {
int value;
struct process *list;

} semaphore;

Each semaphore has an integer value and a list of processes list. When
a process must wait on a semaphore, it is added to the list of processes. A
signal() operation removes one process from the list of waiting processes
and awakens that process.

Now, the wait() semaphore operation can be defined as

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this process to S->list;
sleep();

}
}

6.6 Semaphores 275

and the signal() semaphore operation can be defined as

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

}
}

The sleep() operation suspends the process that invokes it. The wakeup(P)
operation resumes the execution of a suspended process P. These two opera-
tions are provided by the operating system as basic system calls.

Note that in this implementation, semaphore values may be negative,
whereas semaphore values are never negative under the classical definition of
semaphoreswith busywaiting. If a semaphore value is negative, its magnitude
is the number of processes waiting on that semaphore. This fact results from
switching the order of the decrement and the test in the implementation of the
wait() operation.

The list of waiting processes can be easily implemented by a link field in
each process control block (PCB). Each semaphore contains an integer value and
a pointer to a list of PCBs. One way to add and remove processes from the list
so as to ensure bounded waiting is to use a FIFO queue, where the semaphore
contains both head and tail pointers to the queue. In general, however, the list
can use any queuing strategy. Correct usage of semaphores does not depend
on a particular queuing strategy for the semaphore lists.

As mentioned, it is critical that semaphore operations be executed atomi-
cally. We must guarantee that no two processes can execute wait() and sig-
nal() operations on the same semaphore at the same time. This is a critical-
section problem, and in a single-processor environment, we can solve it by sim-
ply inhibiting interrupts during the time the wait() and signal() operations
are executing. This scheme works in a single-processor environment because,
once interrupts are inhibited, instructions from different processes cannot be
interleaved. Only the currently running process executes until interrupts are
reenabled and the scheduler can regain control.

In a multicore environment, interrupts must be disabled on every pro-
cessing core. Otherwise, instructions from different processes (running on dif-
ferent cores) may be interleaved in some arbitrary way. Disabling interrupts
on every core can be a difficult task and can seriously diminish performance.
Therefore, SMP systems must provide alternative techniques—such as com-
pare and swap() or spinlocks—to ensure that wait() and signal() are per-
formed atomically.

It is important to admit that we have not completely eliminated busy
waiting with this definition of the wait() and signal() operations. Rather,
we have moved busy waiting from the entry section to the critical sections
of application programs. Furthermore, we have limited busy waiting to the
critical sections of the wait() and signal() operations, and these sections are
short (if properly coded, they should be no more than about ten instructions).
Thus, the critical section is almost never occupied, and busy waiting occurs

276 Chapter 6 Synchronization Tools

rarely, and then for only a short time. An entirely different situation exists
with application programs whose critical sections may be long (minutes or
even hours) or may almost always be occupied. In such cases, busy waiting
is extremely inefficient.

6.7 Monitors

Although semaphores provide a convenient and effective mechanism for pro-
cess synchronization, using them incorrectly can result in timing errors that
are difficult to detect, since these errors happen only if particular execution
sequences take place, and these sequences do not always occur.

We have seen an example of such errors in the use of a count in our solution
to the producer–consumer problem (Section 6.1). In that example, the timing
problem happened only rarely, and even then the count value appeared to
be reasonable—off by only 1. Nevertheless, the solution is obviously not an
acceptable one. It is for this reason that mutex locks and semaphores were
introduced in the first place.

Unfortunately, such timing errors can still occur when either mutex locks
or semaphores are used. To illustrate how, we review the semaphore solution
to the critical-section problem. All processes share a binary semaphore variable
mutex, which is initialized to 1. Each processmust execute wait(mutex) before
entering the critical section and signal(mutex) afterward. If this sequence is
not observed, two processes may be in their critical sections simultaneously.
Next, we list several difficulties that may result. Note that these difficulties will
arise even if a single process is not well behaved. This situation may be caused
by an honest programming error or an uncooperative programmer.

• Suppose that a program interchanges the order in which the wait() and
signal() operations on the semaphore mutex are executed, resulting in
the following execution:

signal(mutex);
...

critical section
...

wait(mutex);

In this situation, several processes may be executing in their critical sec-
tions simultaneously, violating the mutual-exclusion requirement. This
errormay be discovered only if several processes are simultaneously active
in their critical sections. Note that this situation may not always be repro-
ducible.

• Suppose that a program replaces signal(mutex)with wait(mutex). That
is, it executes

wait(mutex);
...

critical section
...

wait(mutex);

6.7 Monitors 277

In this case, the process will permanently block on the second call to
wait(), as the semaphore is now unavailable.

• Suppose that a process omits the wait(mutex), or the signal(mutex), or
both. In this case, either mutual exclusion is violated or the process will
permanently block.

These examples illustrate that various types of errors can be generated easily
when programmers use semaphores or mutex locks incorrectly to solve the
critical-section problem. One strategy for dealing with such errors is to incor-
porate simple synchronization tools as high-level language constructs. In this
section, we describe one fundamental high-level synchronization construct—
the monitor type.

6.7.1 Monitor Usage

An abstract data type—or ADT—encapsulates data with a set of functions to
operate on that data that are independent of any specific implementation of
the ADT. Amonitor type is an ADT that includes a set of programmer-defined
operations that are provided with mutual exclusion within the monitor. The
monitor type also declares the variables whose values define the state of an

monitor monitor name
{

/* shared variable declarations */

function P1 (. . .) {
. . .

}

function P2 (. . .) {
. . .

}

.

.

.
function Pn (. . .) {

. . .
}

initialization code (. . .) {
. . .

}
}

Figure 6.11 Pseudocode syntax of a monitor.

278 Chapter 6 Synchronization Tools

instance of that type, along with the bodies of functions that operate on those
variables. The syntax of a monitor type is shown in Figure 6.11. The repre-
sentation of a monitor type cannot be used directly by the various processes.
Thus, a function defined within a monitor can access only those variables
declared locally within the monitor and its formal parameters. Similarly, the
local variables of a monitor can be accessed by only the local functions.

The monitor construct ensures that only one process at a time is active
within the monitor. Consequently, the programmer does not need to code
this synchronization constraint explicitly (Figure 6.12). However, the monitor
construct, as defined so far, is not sufficiently powerful for modeling some
synchronization schemes. For this purpose, we need to define additional syn-
chronization mechanisms. These mechanisms are provided by the condition
construct. A programmer who needs to write a tailor-made synchronization
scheme can define one or more variables of type condition:

condition x, y;

The only operations that can be invoked on a condition variable are wait()
and signal(). The operation

x.wait();

means that the process invoking this operation is suspended until another
process invokes

x.signal();

entry queue

shared data

operations

initialization

code

. . .

Figure 6.12 Schematic view of a monitor.

6.7 Monitors 279

The x.signal() operation resumes exactly one suspended process. If no
process is suspended, then the signal() operation has no effect; that is, the
state of x is the same as if the operation had never been executed (Figure
6.13). Contrast this operation with the signal() operation associated with
semaphores, which always affects the state of the semaphore.

Now suppose that, when the x.signal() operation is invoked by a pro-
cess P, there exists a suspended processQ associated with condition x. Clearly,
if the suspended process Q is allowed to resume its execution, the signaling
process P must wait. Otherwise, both P and Q would be active simultane-
ously within the monitor. Note, however, that conceptually both processes can
continue with their execution. Two possibilities exist:

1. Signal and wait. P either waits until Q leaves the monitor or waits for
another condition.

2. Signal and continue. Q either waits until P leaves the monitor or waits
for another condition.

There are reasonable arguments in favor of adopting either option. On
the one hand, since P was already executing in the monitor, the signal-and-
continuemethod seems more reasonable. On the other, if we allow thread P to
continue, then by the timeQ is resumed, the logical condition for whichQwas
waiting may no longer hold. A compromise between these two choices exists
as well: when thread P executes the signal operation, it immediately leaves the
monitor. Hence, Q is immediately resumed.

operations

queues associated with
x, y conditions

entry queue

shared data

x
y

initialization
code

• • •

Figure 6.13 Monitor with condition variables.

280 Chapter 6 Synchronization Tools

Many programming languages have incorporated the idea of the monitor
as described in this section, including Java and C#. Other languages—such as
Erlang—provide concurrency support using a similar mechanism.

6.7.2 Implementing a Monitor Using Semaphores

We now consider a possible implementation of the monitor mechanism using
semaphores. For each monitor, a binary semaphore mutex (initialized to 1) is
provided to ensure mutual exclusion. A process must execute wait(mutex)
before entering the monitor and must execute signal(mutex) after leaving
the monitor.

We will use the signal-and-wait scheme in our implementation. Since a
signaling process must wait until the resumed process either leaves or waits,
an additional binary semaphore, next, is introduced, initialized to 0. The
signaling processes can use next to suspend themselves. An integer variable
next count is also provided to count the number of processes suspended on
next. Thus, each external function F is replaced by

wait(mutex);
...

body of F
...

if (next count > 0)
signal(next);

else
signal(mutex);

Mutual exclusion within a monitor is ensured.
We can now describe how condition variables are implemented as well.

For each condition x, we introduce a binary semaphore x sem and an integer
variable x count, both initialized to 0. The operation x.wait() can now be
implemented as

x count++;
if (next count > 0)

signal(next);
else

signal(mutex);
wait(x sem);
x count--;

The operation x.signal() can be implemented as

if (x count > 0) {
next count++;
signal(x sem);
wait(next);
next count--;

}
This implementation is applicable to the definitions of monitors given by

both Hoare and Brinch-Hansen (see the bibliographical notes at the end of
the chapter). In some cases, however, the generality of the implementation is

6.7 Monitors 281

monitor ResourceAllocator
{

boolean busy;
condition x;

void acquire(int time) {
if (busy)

x.wait(time);
busy = true;

}

void release() {
busy = false;
x.signal();

}

initialization code() {
busy = false;

}
}

Figure 6.14 A monitor to allocate a single resource.

unnecessary, and a significant improvement in efficiency is possible. We leave
this problem to you in Exercise 6.27.

6.7.3 Resuming Processes within a Monitor

We turn now to the subject of process-resumption order within a monitor. If
several processes are suspended on condition x, and an x.signal() opera-
tion is executed by some process, then how do we determine which of the
suspended processes should be resumed next? One simple solution is to use a
first-come, first-served (FCFS) ordering, so that the process that has been wait-
ing the longest is resumedfirst. Inmany circumstances, however, such a simple
scheduling scheme is not adequate. In these circumstances, the conditional-
wait construct can be used. This construct has the form

x.wait(c);

where c is an integer expression that is evaluated when the wait() operation
is executed. The value of c, which is called a priority number, is then stored
with the name of the process that is suspended.When x.signal() is executed,
the process with the smallest priority number is resumed next.

To illustrate this new mechanism, consider the ResourceAllocatormon-
itor shown in Figure 6.14, which controls the allocation of a single resource
among competing processes. Each process, when requesting an allocation of
this resource, specifies themaximum time it plans to use the resource. Themon-
itor allocates the resource to the process that has the shortest time-allocation

282 Chapter 6 Synchronization Tools

request. A process that needs to access the resource in question must observe
the following sequence:

R.acquire(t);
...

access the resource;
...

R.release();

where R is an instance of type ResourceAllocator.
Unfortunately, the monitor concept cannot guarantee that the preceding

access sequence will be observed. In particular, the following problems can
occur:

• A process might access a resource without first gaining access permission
to the resource.

• A process might never release a resource once it has been granted access
to the resource.

• A process might attempt to release a resource that it never requested.

• A process might request the same resource twice (without first releasing
the resource).

The same difficulties are encountered with the use of semaphores, and
these difficulties are similar in nature to those that encouraged us to develop
the monitor constructs in the first place. Previously, we had to worry about
the correct use of semaphores. Now, we have to worry about the correct use of
higher-level programmer-defined operations, with which the compiler can no
longer assist us.

One possible solution to the current problem is to include the resource-
access operations within the ResourceAllocator monitor. However, using
this solution will mean that scheduling is done according to the built-in
monitor-scheduling algorithm rather than the one we have coded.

To ensure that the processes observe the appropriate sequences, we must
inspect all the programs thatmake use of the ResourceAllocatormonitor and
its managed resource. We must check two conditions to establish the correct-
ness of this system. First, user processes must always make their calls on the
monitor in a correct sequence. Second, we must be sure that an uncooperative
process does not simply ignore the mutual-exclusion gateway provided by the
monitor and try to access the shared resource directly, without using the access
protocols. Only if these two conditions can be ensured can we guarantee that
no time-dependent errorswill occur and that the scheduling algorithmwill not
be defeated.

Although this inspection may be possible for a small, static system, it is
not reasonable for a large system or a dynamic system. This access-control
problem can be solved only through the use of the additional mechanisms that
are described in Chapter 17.

6.8 Liveness 283

6.8 Liveness

One consequence of using synchronization tools to coordinate access to critical
sections is the possibility that a process attempting to enter its critical section
will wait indefinitely. Recall that in Section 6.2, we outlined three criteria that
solutions to the critical-sectionproblemmust satisfy. Indefinitewaiting violates
two of these—the progress and bounded-waiting criteria.

Liveness refers to a set of properties that a system must satisfy to ensure
that processes make progress during their execution life cycle. A process wait-
ing indefinitely under the circumstances just described is an example of a
“liveness failure.”

There are many different forms of liveness failure; however, all are gen-
erally characterized by poor performance and responsiveness. A very simple
example of a liveness failure is an infinite loop. A busy wait loop presents the
possibility of a liveness failure, especially if a process may loop an arbitrarily
long period of time. Efforts at providing mutual exclusion using tools such as
mutex locks and semaphores can often lead to such failures in concurrent pro-
gramming. In this section, we explore two situations that can lead to liveness
failures.

6.8.1 Deadlock

The implementation of a semaphore with a waiting queue may result in a
situation where two or more processes are waiting indefinitely for an event
that can be caused only by one of the waiting processes. The event in question
is the execution of a signal() operation. When such a state is reached, these
processes are said to be deadlocked.

To illustrate this, consider a system consisting of two processes, P0 and P1,
each accessing two semaphores, S and Q, set to the value 1:

P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

. .

. .

. .
signal(S); signal(Q);
signal(Q); signal(S);

Suppose that P0 executes wait(S) and then P1 executes wait(Q). When P0
executes wait(Q), it must wait until P1 executes signal(Q). Similarly, when
P1 executes wait(S), it must wait until P0 executes signal(S). Since these
signal() operations cannot be executed, P0 and P1 are deadlocked.

We say that a set of processes is in a deadlocked state when every process
in the set is waiting for an event that can be caused only by another process in the
set. The “events” with which we are mainly concerned here are the acquisition
and release of resources such as mutex locks and semaphores. Other types of
events may result in deadlocks, as we show in more detail in Chapter 8. In

284 Chapter 6 Synchronization Tools

that chapter, we describe various mechanisms for dealing with the deadlock
problem, as well as other forms of liveness failures.

6.8.2 Priority Inversion

A scheduling challenge arises when a higher-priority process needs to read
or modify kernel data that are currently being accessed by a lower-priority
process—or a chain of lower-priority processes. Since kernel data are typi-
cally protected with a lock, the higher-priority process will have to wait for
a lower-priority one to finish with the resource. The situation becomes more
complicated if the lower-priority process is preempted in favor of another
process with a higher priority.

As an example, assume we have three processes—L, M, and H—whose
priorities follow the order L < M < H. Assume that process H requires
a semaphore S, which is currently being accessed by process L. Ordinarily,
process H would wait for L to finish using resource S. However, now suppose
that process M becomes runnable, thereby preempting process L. Indirectly, a
process with a lower priority—process M—has affected how long process H
must wait for L to relinquish resource S.

This liveness problem is known as priority inversion, and it can occur
only in systems with more than two priorities. Typically, priority inversion is
avoided by implementing a priority-inheritance protocol. According to this
protocol, all processes that are accessing resources needed by a higher-priority
process inherit the higher priority until they are finished with the resources in
question.When they are finished, their priorities revert to their original values.
In the example above, a priority-inheritance protocol would allow process L
to temporarily inherit the priority of process H, thereby preventing processM
frompreempting its execution.Whenprocess Lhadfinished using resource S, it
would relinquish its inherited priority fromH and assume its original priority.
Because resource S would now be available, process H—not M—would run
next.

6.9 Evaluation

We have described several different synchronization tools that can be used to
solve the critical-section problem. Given correct implementation and usage,
these tools can be used effectively to ensuremutual exclusion aswell as address
liveness issues. With the growth of concurrent programs that leverage the
power of modern multicore computer systems, increasing attention is being
paid to the performance of synchronization tools. Trying to identify when
to use which tool, however, can be a daunting challenge. In this section, we
present some simple strategies for determining when to use specific synchro-
nization tools.

The hardware solutions outlined in Section 6.4 are considered very low
level and are typically used as the foundations for constructing other synchro-
nization tools, such as mutex locks. However, there has been a recent focus
on using the CAS instruction to construct lock-free algorithms that provide
protection from race conditions without requiring the overhead of locking.
Although these lock-free solutions are gaining popularity due to low overhead

6.9 Evaluation 285

PRIORITY INVERSION AND THE MARS PATHFINDER

Priority inversion can be more than a scheduling inconvenience. On systems
with tight time constraints—such as real-time systems—priority inversion
can cause a process to take longer than it should to accomplish a task. When
that happens, other failures can cascade, resulting in system failure.

Consider theMars Pathfinder, a NASA space probe that landed a robot, the
Sojourner rover, on Mars in 1997 to conduct experiments. Shortly after the
Sojourner began operating, it started to experience frequent computer resets.
Each reset reinitialized all hardware and software, including communica-
tions. If the problem had not been solved, the Sojourner would have failed
in its mission.

The problem was caused by the fact that one high-priority task, “bc dist,”
was taking longer than expected to complete its work. This task was being
forced to wait for a shared resource that was held by the lower-priority
“ASI/MET” task, which in turn was preempted by multiple medium-priority
tasks. The “bc dist” task would stall waiting for the shared resource, and
ultimately the “bc sched” task would discover the problem and perform the
reset. The Sojourner was suffering from a typical case of priority inversion.

The operating system on the Sojourner was the VxWorks real-time operat-
ing system, which had a global variable to enable priority inheritance on all
semaphores. After testing, the variable was set on the Sojourner (on Mars!),
and the problem was solved.

A full description of the problem, its detection, and its solu-
tion was written by the software team lead and is available at
http://research.microsoft.com/en-us/um/people/mbj/mars pathfinder/
authoritative account.html.

and ability to scale, the algorithms themselves are often difficult to develop
and test. (In the exercises at the end of this chapter, we ask you to evaluate the
correctness of a lock-free stack.)

CAS-based approaches are considered an optimistic approach—you opti-
mistically first update a variable and then use collision detection to see if
another thread is updating the variable concurrently. If so, you repeatedly
retry the operation until it is successfully updated without conflict. Mutual-
exclusion locking, in contrast, is considered a pessimistic strategy; you assume
another thread is concurrently updating the variable, so you pessimistically
acquire the lock before making any updates.

The following guidelines identify general rules concerning performance
differences between CAS-based synchronization and traditional synchroniza-
tion (such as mutex locks and semaphores) under varying contention loads:

• Uncontended. Although both options are generally fast, CAS protection
will be somewhat faster than traditional synchronization.

• Moderate contention. CAS protectionwill be faster—possiblymuch faster
—than traditional synchronization.

http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/authoritative_account.html

286 Chapter 6 Synchronization Tools

• High contention. Under very highly contended loads, traditional synchro-
nization will ultimately be faster than CAS-based synchronization.

Moderate contention is particularly interesting to examine. In this scenario,
the CAS operation succeeds most of the time, and when it fails, it will iterate
through the loop shown in Figure 6.8 only a few times before ultimately suc-
ceeding. By comparison,withmutual-exclusion locking, any attempt to acquire
a contended lockwill result in amore complicated—and time-intensive—code
path that suspends a thread and places it on a wait queue, requiring a context
switch to another thread.

The choice of a mechanism that addresses race conditions can also greatly
affect system performance. For example, atomic integers are much lighter
weight than traditional locks, and are generally more appropriate than mutex
locks or semaphores for single updates to shared variables such as counters.
We also see this in the design of operating systems where spinlocks are used
on multiprocessor systems when locks are held for short durations. In general,
mutex locks are simpler and require less overhead than semaphores and are
preferable to binary semaphores for protecting access to a critical section.
However, for some uses—such as controlling access to a finite number of
resources—a counting semaphore is generally more appropriate than a mutex
lock. Similarly, in some instances, a reader–writer lock may be preferred over
a mutex lock, as it allows a higher degree of concurrency (that is, multiple
readers).

The appeal of higher-level tools such as monitors and condition variables
is based on their simplicity and ease of use. However, such tools may have
significant overhead and, depending on their implementation, may be less
likely to scale in highly contended situations.

Fortunately, there is much ongoing research toward developing scalable,
efficient tools that address the demands of concurrent programming. Some
examples include:

• Designing compilers that generate more efficient code.

• Developing languages that provide support for concurrent programming.

• Improving the performance of existing libraries and APIs.

In the next chapter, we examine how various operating systems and APIs
available to developers implement the synchronization tools presented in this
chapter.

6.10 Summary

• A race condition occurs when processes have concurrent access to shared
data and the final result depends on the particular order in which con-
current accesses occur. Race conditions can result in corrupted values of
shared data.

• A critical section is a section of code where shared data may be manipu-
lated and a possible race conditionmay occur. The critical-section problem

Practice Exercises 287

is to design a protocol whereby processes can synchronize their activity to
cooperatively share data.

• A solution to the critical-section problem must satisfy the following three
requirements: (1) mutual exclusion, (2) progress, and (3) boundedwaiting.
Mutual exclusion ensures that only one process at a time is active in its crit-
ical section. Progress ensures that programs will cooperatively determine
what process will next enter its critical section. Bounded waiting limits
how much time a program will wait before it can enter its critical section.

• Software solutions to the critical-section problem, such as Peterson’s solu-
tion, do not work well on modern computer architectures.

• Hardware support for the critical-section problem includes memory barri-
ers; hardware instructions, such as the compare-and-swap instruction; and
atomic variables.

• A mutex lock provides mutual exclusion by requiring that a process
acquire a lock before entering a critical section and release the lock on
exiting the critical section.

• Semaphores, like mutex locks, can be used to provide mutual exclusion.
However, whereas amutex lock has a binary value that indicates if the lock
is available or not, a semaphore has an integer value and can therefore be
used to solve a variety of synchronization problems.

• A monitor is an abstract data type that provides a high-level form of
process synchronization. A monitor uses condition variables that allow
processes to wait for certain conditions to become true and to signal one
another when conditions have been set to true.

• Solutions to the critical-section problem may suffer from liveness prob-
lems, including deadlock.

• The various tools that can be used to solve the critical-section problem as
well as to synchronize the activity of processes can be evaluated under
varying levels of contention. Some tools work better under certain con-
tention loads than others.

Practice Exercises

6.1 In Section 6.4, we mentioned that disabling interrupts frequently can
affect the system’s clock. Explain why this can occur and how such
effects can be minimized.

6.2 What is the meaning of the term busy waiting? What other kinds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

6.3 Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.

6.4 Show that, if the wait() and signal() semaphore operations are not
executed atomically, then mutual exclusion may be violated.

288 Chapter 6 Synchronization Tools

6.5 Illustrate how a binary semaphore can be used to implement mutual
exclusion among n processes.

6.6 Race conditions are possible in many computer systems. Consider a
banking system that maintains an account balance with two functions:
deposit(amount) and withdraw(amount). These two functions are
passed the amount that is to be deposited or withdrawn from the bank
account balance. Assume that a husband and wife share a bank account.
Concurrently, the husband calls the withdraw() function, and the wife
calls deposit(). Describe how a race condition is possible and what
might be done to prevent the race condition from occurring.

Further Reading

The mutual-exclusion problem was first discussed in a classic paper by [Dijk-
stra (1965)]. The semaphore concept was suggested by [Dijkstra (1965)]. The
monitor concept was developed by [Brinch-Hansen (1973)]. [Hoare (1974)]
gave a complete description of the monitor.

Formore on theMars Pathfinder problem see http://research.microsoft.co
m/en-us/um/people/mbj/mars pathfinder/authoritative account.html

Athorough discussion of memory barriers and cache memory is presented
in [Mckenney (2010)]. [Herlihy and Shavit (2012)] presents details on several
issues related to multiprocessor programming, including memorymodels and
compare-and-swap instructions. [Bahra (2013)] examines nonblocking algo-
rithms on modern multicore systems.

Bibliography

[Bahra (2013)] S. A. Bahra, “Nonblocking Algorithms and Scalable Multicore
Programming”, ACM queue, Volume 11, Number 5 (2013).

[Brinch-Hansen (1973)] P. Brinch-Hansen, Operating System Principles, Prentice
Hall (1973).

[Dijkstra (1965)] E. W. Dijkstra, “Cooperating Sequential Processes”, Technical
report, Technological University, Eindhoven, the Netherlands (1965).

[Herlihy and Shavit (2012)] M. Herlihy and N. Shavit, The Art of Multiprocessor
Programming, Revised First Edition, Morgan Kaufmann Publishers Inc. (2012).

[Hoare (1974)] C. A. R. Hoare, “Monitors: An Operating System Structuring
Concept”, Communications of the ACM, Volume 17, Number 10 (1974), pages
549–557.

[Mckenney (2010)] P. E. Mckenney, “Memory Barriers: a Hardware View for
Software Hackers” (2010).

http://dl.acm.org/citation.cfm?id=1102034
http://dl.acm.org/citation.cfm?id=1102034
http://scholar.google.com/scholar?hl/en&q=P Brinch Hansen Operating System Principles
http://doi.acm.org/10.1145/355620.361161
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/authoritative_account.html
http://scholar.google.com/scholar?hl/en&q=P E Mckenney Memory Barriers a Hardware View for Software Hackers
http://scholar.google.com/scholar?hl/en&q=M Herlihy and N Shavit The Art of Multiprocessor Programming RevisedFirstEdition
http://queue.acm.org/detail.cfm?id=2492433
http://queue.acm.org/detail.cfm?id=2492433
http://queue.acm.org/detail.cfm?id=2492433
http://scholar.google.com/scholar?hl/en&q=P Brinch Hansen Operating System Principles
http://scholar.google.com/scholar?hl/en&q=P Brinch Hansen Operating System Principles
http://dl.acm.org/citation.cfm?id=1102034
http://dl.acm.org/citation.cfm?id=1102034
http://scholar.google.com/scholar?hl/en&q=M Herlihy and N Shavit The Art of Multiprocessor Programming RevisedFirstEdition
http://scholar.google.com/scholar?hl/en&q=M Herlihy and N Shavit The Art of Multiprocessor Programming RevisedFirstEdition
http://doi.acm.org/10.1145/355620.361161
http://doi.acm.org/10.1145/355620.361161
http://scholar.google.com/scholar?hl/en&q=P E Mckenney Memory Barriers a Hardware View for Software Hackers
http://scholar.google.com/scholar?hl/en&q=P E Mckenney Memory Barriers a Hardware View for Software Hackers
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/authoritative_account.html

Chapter 6 Exercises

6.7 The pseudocode of Figure 6.15 illustrates the basic push() and pop()
operations of an array-based stack. Assuming that this algorithm could
be used in a concurrent environment, answer the following questions:

a. What data have a race condition?

b. How could the race condition be fixed?

6.8 Race conditions are possible in many computer systems. Consider an
online auction system where the current highest bid for each item
must be maintained. A person who wishes to bid on an item calls the
bid(amount) function, which compares the amount being bid to the
current highest bid. If the amount exceeds the current highest bid, the
highest bid is set to the new amount. This is illustrated below:

void bid(double amount) {
if (amount > highestBid)

highestBid = amount;
}

push(item) {
if (top < SIZE) {

stack[top] = item;
top++;

}
else

ERROR
}

pop() {
if (!is empty()) {

top--;
return stack[top];

}
else

ERROR
}

is empty() {
if (top == 0)

return true;
else

return false;
}

Figure 6.16 Array-based stack for Exercise 6.12.

EX-17

Exercises

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

5 10 15 20

130

180

3025

5 15 15

5 15 15

5 15 15

25

25

25

55

55

55

35 35

35

35

75

40

50

50

35

+

+

+ + +

+

+

Figure 6.17 Summing an array as a series of partial sums for Exercise 6.14.

Describe how a race condition is possible in this situation and what
might be done to prevent the race condition from occurring.

6.9 The following program example can be used to sum the array values
of sizeN elements in parallel on a system containingN computing cores
(there is a separate processor for each array element):

for j = 1 to log 2(N) {
for k = 1 to N {

if ((k + 1) % pow(2,j) == 0) {
values[k] += values[k - pow(2,(j-1))]

}
}

}
This has the effect of summing the elements in the array as a series
of partial sums, as shown in Figure 6.16. After the code has executed,
the sum of all elements in the array is stored in the last array location.
Are there any race conditions in the above code example? If so, identify
where they occur and illustrate with an example. If not, demonstrate
why this algorithm is free from race conditions.

6.10 The compare and swap() instruction can be used to design lock-free
data structures such as stacks, queues, and lists. The program example
shown in Figure 6.17 presents a possible solution to a lock-free stack
using CAS instructions, where the stack is represented as a linked list
of Node elements with top representing the top of the stack. Is this
implementation free from race conditions?

EX-18

typedef struct node {
value t data;
struct node *next;

} Node;

Node *top; // top of stack

void push(value t item) {
Node *old node;
Node *new node;

new node = malloc(sizeof(Node));
new node->data = item;

do {
old node = top;
new node->next = old node;

}
while (compare and swap(top,old node,new node) != old node);

}

value t pop() {
Node *old node;
Node *new node;

do {
old node = top;
if (old node == NULL)

return NULL;
new node = old node->next;

}
while (compare and swap(top,old node,new node) != old node);

return old node->data;
}

Figure 6.18 Lock-free stack for Exercise 6.15.

6.11 One approach for using compare and swap() for implementing a spin-
lock is as follows:

void lock spinlock(int *lock) {
while (compare and swap(lock, 0, 1) != 0)

; /* spin */
}

A suggested alternative approach is to use the “compare and compare-
and-swap” idiom,which checks the status of the lock before invoking the

EX-19

Exercises

compare and swap() operation. (The rationale behind this approach is
to invoke compare and swap()only if the lock is currently available.)
This strategy is shown below:

void lock spinlock(int *lock) {
{

while (true) {
if (*lock == 0) {

/* lock appears to be available */

if (!compare and swap(lock, 0, 1))
break;

}
}

}
Does this “compare and compare-and-swap” idiom work appropriately
for implementing spinlocks? If so, explain. If not, illustrate how the
integrity of the lock is compromised.

6.12 Some semaphore implementations provide a function getValue() that
returns the current value of a semaphore. This functionmay, for instance,
be invoked prior to calling wait() so that a processwill only call wait()
if the value of the semaphore is > 0, thereby preventing blocking while
waiting for the semaphore. For example:

if (getValue(&sem) > 0)
wait(&sem);

Many developers argue against such a function and discourage its use.
Describe a potential problem that could occur when using the function
getValue() in this scenario.

6.13 The first known correct software solution to the critical-section problem
for two processes was developed by Dekker. The two processes, P0 and
P1, share the following variables:

boolean flag[2]; /* initially false */
int turn;

The structure of process Pi (i == 0 or 1) is shown in Figure 6.18. The
other process is Pj (j == 1 or 0). Prove that the algorithm satisfies all
three requirements for the critical-section problem.

6.14 The first known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n − 1 turns was
presented by Eisenberg andMcGuire. The processes share the following
variables:

enum pstate {idle, want in, in cs};
pstate flag[n];
int turn;

EX-20

while (true) {
flag[i] = true;

while (flag[j]) {
if (turn == j) {

flag[i] = false;
while (turn == j)

; /* do nothing */
flag[i] = true;

}
}

/* critical section */

turn = j;
flag[i] = false;

/* remainder section */
}

Figure 6.19 The structure of process Pi in Dekker’s algorithm.

All the elements of flag are initially idle. The initial value of turn is
immaterial (between 0 and n-1). The structure of process Pi is shown in
Figure 6.19. Prove that the algorithm satisfies all three requirements for
the critical-section problem.

6.15 Explain why implementing synchronization primitives by disabling
interrupts is not appropriate in a single-processor system if the synchro-
nization primitives are to be used in user-level programs.

6.16 Consider how to implement a mutex lock using the com-
pare and swap() instruction. Assume that the following structure
defining the mutex lock is available:

typedef struct {
int available;

} lock;

The value (available == 0) indicates that the lock is available, and
a value of 1 indicates that the lock is unavailable. Using this struct,
illustrate how the following functions can be implemented using the
compare and swap() instruction:

• void acquire(lock *mutex)

• void release(lock *mutex)

Be sure to include any initialization that may be necessary.

EX-21

Exercises

while (true) {
while (true) {

flag[i] = want in;
j = turn;

while (j != i) {
if (flag[j] != idle) {

j = turn;
else

j = (j + 1) % n;
}

flag[i] = in cs;
j = 0;

while ((j < n) && (j == i || flag[j] != in cs))
j++;

if ((j >= n) && (turn == i || flag[turn] == idle))
break;

}

/* critical section */

j = (turn + 1) % n;

while (flag[j] == idle)
j = (j + 1) % n;

turn = j;
flag[i] = idle;

/* remainder section */
}

Figure 6.20 The structure of process Pi in Eisenberg and McGuire’s algorithm.

6.17 Explain why interrupts are not appropriate for implementing synchro-
nization primitives in multiprocessor systems.

6.18 The implementation of mutex locks provided in Section 6.5 suffers from
busy waiting. Describe what changes would be necessary so that a
process waiting to acquire a mutex lock would be blocked and placed
into a waiting queue until the lock became available.

6.19 Assume that a system has multiple processing cores. For each of the
following scenarios, describe which is a better locking mechanism—a

EX-22

spinlock or a mutex lock where waiting processes sleep while waiting
for the lock to become available:

• The lock is to be held for a short duration.

• The lock is to be held for a long duration.

• A thread may be put to sleep while holding the lock.

6.20 Assume that a context switch takes T time. Suggest an upper bound
(in terms of T) for holding a spinlock. If the spinlock is held for any
longer, a mutex lock (where waiting threads are put to sleep) is a better
alternative.

6.21 A multithreaded web server wishes to keep track of the number of
requests it services (known as hits). Consider the two following strate-
gies to prevent a race condition on the variable hits. The first strategy
is to use a basic mutex lock when updating hits:

int hits;
mutex lock hit lock;

hit lock.acquire();
hits++;
hit lock.release();

A second strategy is to use an atomic integer:

atomic t hits;
atomic inc(&hits);

Explain which of these two strategies is more efficient.

6.22 Consider the code example for allocating and releasing processes shown
in Figure 6.20.

a. Identify the race condition(s).

b. Assume you have a mutex lock named mutex with the operations
acquire() and release(). Indicate where the locking needs to be
placed to prevent the race condition(s).

c. Could we replace the integer variable

int number of processes = 0

with the atomic integer

atomic t number of processes = 0

to prevent the race condition(s)?

6.23 Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will
not accept another incoming connection until an existing connection is

EX-23

Exercises

#define MAX PROCESSES 255
int number of processes = 0;

/* the implementation of fork() calls this function */
int allocate process() {
int new pid;

if (number of processes == MAX PROCESSES)
return -1;

else {
/* allocate necessary process resources */
++number of processes;

return new pid;
}

}

/* the implementation of exit() calls this function */
void release process() {

/* release process resources */
--number of processes;

}

Figure 6.21 Allocating and releasing processes for Exercise 6.27.

released. Illustrate how semaphores can be used by a server to limit the
number of concurrent connections.

6.24 In Section 6.7, we use the following illustration as an incorrect use of
semaphores to solve the critical-section problem:

wait(mutex);
...

critical section
...

wait(mutex);

Explain why this is an example of a liveness failure.

6.25 Demonstrate that monitors and semaphores are equivalent to the degree
that they can be used to implement solutions to the same types of syn-
chronization problems.

6.26 Describe how the signal() operation associated with monitors differs
from the corresponding operation defined for semaphores.

6.27 Suppose the signal() statement can appear only as the last statement
in a monitor function. Suggest how the implementation described in
Section 6.7 can be simplified in this situation.

EX-24

6.28 Consider a system consisting of processesP1,P2, ...,Pn, each ofwhich has
a unique priority number. Write a monitor that allocates three identical
printers to these processes, using the priority numbers for deciding the
order of allocation.

6.29 A file is to be shared among different processes, each of which has
a unique number. The file can be accessed simultaneously by several
processes, subject to the following constraint: the sum of all unique
numbers associated with all the processes currently accessing the file
must be less than n. Write a monitor to coordinate access to the file.

6.30 When a signal is performedon a condition inside amonitor, the signaling
process can either continue its execution or transfer control to the process
that is signaled. Howwould the solution to the preceding exercise differ
with these two different ways in which signaling can be performed?

6.31 Design an algorithm for a monitor that implements an alarm clock that
enables a calling program to delay itself for a specified number of time
units (ticks). You may assume the existence of a real hardware clock that
invokes a function tick() in your monitor at regular intervals.

6.32 Discuss ways in which the priority inversion problem could be
addressed in a real-time system. Also discuss whether the solutions
could be implemented within the context of a proportional share
scheduler.

EX-25

Chapter 6 Synchronization Tools

Programming Problems

6.33 Assume that a finite number of resources of a single resource type must
bemanaged. Processes may ask for a number of these resources andwill
return them once finished. As an example, many commercial software
packages provide a given number of licenses, indicating the number of
applications that may run concurrently. When the application is started,
the license count is decremented. When the application is terminated,
the license count is incremented. If all licenses are in use, requests to
start the application are denied. Such a request will be granted only
when an existing license holder terminates the application and a license
is returned.

The following program segment is used tomanage a finite number of
instances of an available resource. The maximum number of resources
and the number of available resources are declared as follows:

#define MAX RESOURCES 5
int available resources = MAX RESOURCES;

When a process wishes to obtain a number of resources, it invokes the
decrease count() function:

/* decrease available resources by count resources */
/* return 0 if sufficient resources available, */
/* otherwise return -1 */
int decrease count(int count) {

if (available resources < count)
return -1;

else {
available resources -= count;

return 0;
}

}

When a process wants to return a number of resources, it calls the
increase count() function:

/* increase available resources by count */
int increase count(int count) {

available resources += count;

return 0;
}

The preceding program segment produces a race condition. Do the fol-
lowing:

a. Identify the data involved in the race condition.

P-32

Programming Problems

b. Identify the location (or locations) in the code where the race con-
dition occurs.

c. Using a semaphore or mutex lock, fix the race condition. It is
permissible to modify the decrease count() function so that the
calling process is blocked until sufficient resources are available.

6.34 The decrease count() function in the previous exercise currently
returns 0 if sufficient resources are available and −1 otherwise. This
leads to awkward programming for a process that wishes to obtain a
number of resources:

while (decrease count(count) == -1)
;

Rewrite the resource-manager code segment using a monitor and con-
dition variables so that the decrease count() function suspends the
process until sufficient resources are available. This will allow a process
to invoke decrease count() by simply calling

decrease count(count);

The process will return from this function call only when sufficient
resources are available.

P-33

7CHAPTER

Synchronization
Examples

In Chapter 6, we presented the critical-section problem and focused on how
race conditions can occur when multiple concurrent processes share data. We
went on to examine several tools that address the critical-section problem by
preventing race conditions from occurring. These tools ranged from low-level
hardware solutions (such asmemory barriers and the compare-and-swap oper-
ation) to increasingly higher-level tools (from mutex locks to semaphores to
monitors). We also discussed various challenges in designing applications that
are free from race conditions, including liveness hazards such as deadlocks.
In this chapter, we apply the tools presented in Chapter 6 to several classic
synchronization problems. We also explore the synchronization mechanisms
used by the Linux, UNIX, and Windows operating systems, and we describe
API details for both Java and POSIX systems.

CHAPTER OBJECTIVES

• Explain the bounded-buffer, readers–writers, and dining–philosophers
synchronization problems.

• Describe specific tools used by Linux and Windows to solve process
synchronization problems.

• Illustrate how POSIX and Java can be used to solve process synchroniza-
tion problems.

• Design and develop solutions to process synchronization problems using
POSIX and Java APIs.

7.1 Classic Problems of Synchronization

In this section, we present a number of synchronization problems as examples
of a large class of concurrency-control problems. These problems are used for
testing nearly every newly proposed synchronization scheme. In our solutions
to the problems, we use semaphores for synchronization, since that is the

289

290 Chapter 7 Synchronization Examples

while (true) {
. . .

/* produce an item in next produced */
. . .

wait(empty);
wait(mutex);

. . .
/* add next produced to the buffer */

. . .
signal(mutex);
signal(full);

}

Figure 7.1 The structure of the producer process.

traditional way to present such solutions. However, actual implementations
of these solutions could use mutex locks in place of binary semaphores.

7.1.1 The Bounded-Buffer Problem

The bounded-buffer problemwas introduced in Section 6.1; it is commonly used
to illustrate the power of synchronization primitives. Here, we present a gen-
eral structure of this scheme without committing ourselves to any particular
implementation. We provide a related programming project in the exercises at
the end of the chapter.

In our problem, the producer and consumer processes share the following
data structures:

int n;
semaphore mutex = 1;
semaphore empty = n;
semaphore full = 0

We assume that the pool consists of n buffers, each capable of holding one item.
The mutex binary semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and full semaphores
count the number of empty and full buffers. The semaphore empty is initialized
to the value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 7.1, and the code
for the consumer process is shown in Figure 7.2. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full buffers for the consumer or as the consumer producing empty
buffers for the producer.

7.1.2 The Readers–Writers Problem

Suppose that a database is to be shared among several concurrent processes.
Some of these processes may want only to read the database, whereas others
may want to update (that is, read and write) the database. We distinguish

7.1 Classic Problems of Synchronization 291

while (true) {
wait(full);
wait(mutex);

. . .
/* remove an item from buffer to next consumed */

. . .
signal(mutex);
signal(empty);

. . .
/* consume the item in next consumed */

. . .
}

Figure 7.2 The structure of the consumer process.

between these two types of processes by referring to the former as readers
and to the latter as writers. Obviously, if two readers access the shared data
simultaneously, no adverse effects will result. However, if a writer and some
other process (either a reader or a writer) access the database simultaneously,
chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared databasewhilewriting to the database. This
synchronization problem is referred to as the readers–writers problem. Since it
was originally stated, it has been used to test nearly every new synchronization
primitive.

The readers–writers problem has several variations, all involving priori-
ties. The simplest one, referred to as the first readers–writers problem, requires
that no reader be kept waiting unless a writer has already obtained permission
to use the shared object. In other words, no reader should wait for other read-
ers to finish simply because a writer is waiting. The second readers–writers
problem requires that, once a writer is ready, that writer perform its write as
soon as possible. In other words, if a writer is waiting to access the object, no
new readers may start reading.

A solution to either problem may result in starvation. In the first case,
writers may starve; in the second case, readers may starve. For this reason,
other variants of the problem have been proposed. Next, we present a solution
to the first readers–writers problem. See the bibliographical notes at the end
of the chapter for references describing starvation-free solutions to the second
readers–writers problem.

In the solution to the first readers–writers problem, the reader processes
share the following data structures:

semaphore rw mutex = 1;
semaphore mutex = 1;
int read count = 0;

The binary semaphores mutex and rw mutex are initialized to 1;
read count is a counting semaphore initialized to 0. The semaphore rw mutex

292 Chapter 7 Synchronization Examples

while (true) {
wait(rw mutex);

. . .
/* writing is performed */

. . .
signal(rw mutex);

}

Figure 7.3 The structure of a writer process.

is common to both reader and writer processes. The mutex semaphore is used
to ensure mutual exclusion when the variable read count is updated.
The read count variable keeps track of how many processes are currently
reading the object. The semaphore rw mutex functions as a mutual exclusion
semaphore for the writers. It is also used by the first or last reader that enters
or exits the critical section. It is not used by readers that enter or exit while
other readers are in their critical sections.

The code for a writer process is shown in Figure 7.3; the code for a reader
process is shown in Figure 7.4. Note that, if a writer is in the critical section
and n readers are waiting, then one reader is queued on rw mutex, and n − 1
readers are queued on mutex. Also observe that, when a writer executes sig-
nal(rw mutex), we may resume the execution of either the waiting readers or
a single waiting writer. The selection is made by the scheduler.

The readers–writers problem and its solutions have been generalized to
provide reader–writer locks on some systems. Acquiring a reader–writer lock
requires specifying the mode of the lock: either read or write access. When a

while (true) {
wait(mutex);
read count++;
if (read count == 1)

wait(rw mutex);
signal(mutex);

. . .
/* reading is performed */

. . .
wait(mutex);
read count--;
if (read count == 0)

signal(rw mutex);
signal(mutex);

}

Figure 7.4 The structure of a reader process.

7.1 Classic Problems of Synchronization 293

process wishes only to read shared data, it requests the reader–writer lock
in read mode. A process wishing to modify the shared data must request the
lock in write mode. Multiple processes are permitted to concurrently acquire
a reader–writer lock in read mode, but only one process may acquire the lock
for writing, as exclusive access is required for writers.

Reader–writer locks are most useful in the following situations:

• In applications where it is easy to identify which processes only read
shared data and which processes only write shared data.

• In applications that have more readers than writers. This is because
reader–writer locks generally require more overhead to establish than
semaphores or mutual-exclusion locks. The increased concurrency of
allowing multiple readers compensates for the overhead involved in
setting up the reader–writer lock.

7.1.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a circular table surrounded by five chairs, each belonging to
one philosopher. In the center of the table is a bowl of rice, and the table is laid
with five single chopsticks (Figure 7.5). When a philosopher thinks, she does
not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks
that are between her and her left and right neighbors). Aphilosopher may pick
up only one chopstick at a time. Obviously, she cannot pick up a chopstick that
is already in the hand of a neighbor. When a hungry philosopher has both her
chopsticks at the same time, she eats without releasing the chopsticks. When
she is finished eating, she puts down both chopsticks and starts thinking again.

The dining-philosophers problem is considered a classic synchronization
problem neither because of its practical importance nor because computer
scientists dislike philosophers but because it is an example of a large class
of concurrency-control problems. It is a simple representation of the need

RICE

Figure 7.5 The situation of the dining philosophers.

294 Chapter 7 Synchronization Examples

while (true) {
wait(chopstick[i]);
wait(chopstick[(i+1) % 5]);

. . .
/* eat for a while */

. . .
signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

. . .
/* think for awhile */

. . .
}

Figure 7.6 The structure of philosopher i.

to allocate several resources among several processes in a deadlock-free and
starvation-free manner.

7.1.3.1 Semaphore Solution

One simple solution is to represent each chopstick with a semaphore. A
philosopher tries to grab a chopstick by executing a wait() operation on that
semaphore. She releases her chopsticks by executing the signal() operation
on the appropriate semaphores. Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of
philosopher i is shown in Figure 7.6.

Although this solution guarantees that no two neighbors are eating simul-
taneously, it nevertheless must be rejected because it could create a deadlock.
Suppose that all five philosophers become hungry at the same time and each
grabs her left chopstick. All the elements of chopstick will now be equal to
0. When each philosopher tries to grab her right chopstick, she will be delayed
forever.

Several possible remedies to the deadlock problem are the following:

• Allow at most four philosophers to be sitting simultaneously at the table.

• Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this, she must pick them up in a critical section).

• Use an asymmetric solution—that is, an odd-numbered philosopher picks
up first her left chopstick and then her right chopstick, whereas an even-
numbered philosopher picks up her right chopstick and then her left
chopstick.

In Section 6.7, we present a solution to the dining-philosophers problem
that ensures freedom from deadlocks. Note, however, that any satisfactory
solution to the dining-philosophers problemmust guard against the possibility

7.2 Synchronization within the Kernel 295

that one of the philosophers will starve to death. Adeadlock-free solution does
not necessarily eliminate the possibility of starvation.

7.1.3.2 Monitor Solution

Next, we illustrate monitor concepts by presenting a deadlock-free solution to
the dining-philosophers problem. This solution imposes the restriction that a
philosopher may pick up her chopsticks only if both of them are available. To
code this solution, we need to distinguish among three states in which wemay
find a philosopher. For this purpose,we introduce the following data structure:

enum {THINKING, HUNGRY, EATING} state[5];

Philosopher i can set the variable state[i] = EATING only if her two neigh-
bors are not eating: (state[(i+4) % 5] != EATING) and (state[(i+1) %
5] != EATING).

We also need to declare

condition self[5];

This allows philosopher i to delay herself when she is hungry but is unable to
obtain the chopsticks she needs.

We are now in a position to describe our solution to the dining-
philosophers problem. The distribution of the chopsticks is controlled by
the monitor DiningPhilosophers, whose definition is shown in Figure 7.7.
Each philosopher, before starting to eat, must invoke the operation pickup().
This act may result in the suspension of the philosopher process. After the
successful completion of the operation, the philosopher may eat. Following
this, the philosopher invokes the putdown() operation. Thus, philosopher
i must invoke the operations pickup() and putdown() in the following
sequence:

DiningPhilosophers.pickup(i);
...
eat
...

DiningPhilosophers.putdown(i);

It is easy to show that this solution ensures that no two neighbors are
eating simultaneously and that no deadlocks will occur. As we already noted,
however, it is possible for a philosopher to starve to death. We do not present
a solution to this problem but rather leave it as an exercise for you.

7.2 Synchronization within the Kernel

We next describe the synchronization mechanisms provided by the Windows
and Linux operating systems. These two operating systems provide good
examples of different approaches to synchronizing the kernel, and as you will

296 Chapter 7 Synchronization Examples

monitor DiningPhilosophers
{

enum {THINKING, HUNGRY, EATING} state[5];
condition self[5];

void pickup(int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING)

self[i].wait();
}

void putdown(int i) {
state[i] = THINKING;
test((i + 4) % 5);
test((i + 1) % 5);

}

void test(int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING;
self[i].signal();

}
}

initialization code() {
for (int i = 0; i < 5; i++)

state[i] = THINKING;
}

}

Figure 7.7 A monitor solution to the dining-philosophers problem.

see, the synchronizationmechanisms available in these systems differ in subtle
yet significant ways.

7.2.1 Synchronization in Windows

The Windows operating system is a multithreaded kernel that provides sup-
port for real-time applications and multiple processors. When the Windows
kernel accesses a global resource on a single-processor system, it temporar-
ily masks interrupts for all interrupt handlers that may also access the global
resource. On a multiprocessor system, Windows protects access to global
resources using spinlocks, although the kernel uses spinlocks only to protect
short code segments. Furthermore, for reasons of efficiency, the kernel ensures
that a thread will never be preempted while holding a spinlock.

7.2 Synchronization within the Kernel 297

For thread synchronization outside the kernel, Windows provides dis-
patcher objects. Using a dispatcher object, threads synchronize according to
several different mechanisms, including mutex locks, semaphores, events, and
timers. The system protects shared data by requiring a thread to gain owner-
ship of a mutex to access the data and to release ownership when it is finished.
Semaphores behave as described in Section 6.6. Events are similar to condition
variables; that is, they may notify a waiting thread when a desired condition
occurs. Finally, timers are used to notify one (or more than one) thread that a
specified amount of time has expired.

Dispatcher objects may be in either a signaled state or a nonsignaled state.
An object in a signaled state is available, and a thread will not block when
acquiring the object. An object in a nonsignaled state is not available, and a
thread will block when attempting to acquire the object. We illustrate the state
transitions of a mutex lock dispatcher object in Figure 7.8.

A relationship exists between the state of a dispatcher object and the state
of a thread. When a thread blocks on a nonsignaled dispatcher object, its state
changes from ready to waiting, and the thread is placed in a waiting queue
for that object. When the state for the dispatcher object moves to signaled, the
kernel checks whether any threads are waiting on the object. If so, the kernel
moves one thread—or possibly more—from the waiting state to the ready
state, where they can resume executing. The number of threads the kernel
selects from the waiting queue depends on the type of dispatcher object for
which each thread is waiting. The kernel will select only one thread from the
waiting queue for a mutex, since a mutex object may be “owned” by only a
single thread. For an event object, the kernel will select all threads that are
waiting for the event.

We can use a mutex lock as an illustration of dispatcher objects and
thread states. If a thread tries to acquire a mutex dispatcher object that is in a
nonsignaled state, that threadwill be suspended and placed in awaiting queue
for the mutex object. When the mutex moves to the signaled state (because
another thread has released the lock on the mutex), the thread waiting at the
front of the queue will be moved from the waiting state to the ready state and
will acquire the mutex lock.

A critical-section object is a user-mode mutex that can often be acquired
and released without kernel intervention. On a multiprocessor system, a
critical-section object first uses a spinlock while waiting for the other thread to
release the object. If it spins too long, the acquiring thread will then allocate a
kernelmutex and yield its CPU. Critical-section objects are particularly efficient
because the kernel mutex is allocated only when there is contention for the
object. In practice, there is very little contention, so the savings are significant.

nonsignaled signaled

owner thread releases mutex lock

thread acquires mutex lock

Figure 7.8 Mutex dispatcher object.

298 Chapter 7 Synchronization Examples

We provide a programming project at the end of this chapter that uses
mutex locks and semaphores in the Windows API.

7.2.2 Synchronization in Linux

Prior to Version 2.6, Linuxwas a nonpreemptive kernel, meaning that a process
running in kernel mode could not be preempted—even if a higher-priority
process became available to run. Now, however, the Linux kernel is fully
preemptive, so a task can be preempted when it is running in the kernel.

Linux provides several different mechanisms for synchronization in
the kernel. As most computer architectures provide instructions for atomic
versions of simple math operations, the simplest synchronization technique
within the Linux kernel is an atomic integer, which is represented using the
opaque data type atomic t. As the name implies, all math operations using
atomic integers are performed without interruption. To illustrate, consider a
program that consists of an atomic integer counter and an integer value.

atomic t counter;
int value;

The following code illustrates the effect of performing various atomic opera-
tions:

Atomic Operation Effect
atomic set(&counter,5); counter = 5
atomic add(10,&counter); counter = counter + 10
atomic sub(4,&counter); counter = counter - 4
atomic inc(&counter); counter = counter + 1
value = atomic read(&counter); value = 12

Atomic integers are particularly efficient in situations where an integer
variable—such as a counter—needs to be updated, since atomic operations do
not require the overhead of locking mechanisms. However, their use is limited
to these sorts of scenarios. In situations where there are several variables
contributing to a possible race condition,more sophisticated locking toolsmust
be used.

Mutex locks are available in Linux for protecting critical sectionswithin the
kernel. Here, a task must invoke the mutex lock() function prior to entering
a critical section and the mutex unlock() function after exiting the critical
section. If themutex lock is unavailable, a task calling mutex lock() is put into
a sleep state and is awakenedwhen the lock’s owner invokes mutex unlock().

Linux also provides spinlocks and semaphores (as well as reader–writer
versions of these two locks) for locking in the kernel. On SMPmachines, the fun-
damental locking mechanism is a spinlock, and the kernel is designed so that
the spinlock is held only for short durations. On single-processor machines,
such as embedded systems with only a single processing core, spinlocks are
inappropriate for use and are replaced by enabling and disabling kernel pre-
emption. That is, on systems with a single processing core, rather than holding
a spinlock, the kernel disables kernel preemption; and rather than releasing the
spinlock, it enables kernel preemption. This is summarized below:

7.3 POSIX Synchronization 299

Single Processor Multiple Processors

Acquire spin lock

Release spin lock

Disable kernel preemption

Enable kernel preemption

In the Linux kernel, both spinlocks and mutex locks are nonrecursive,
which means that if a thread has acquired one of these locks, it cannot acquire
the same lock a second time without first releasing the lock. Otherwise, the
second attempt at acquiring the lock will block.

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls—preempt disable() and pre-
empt enable()—for disabling and enabling kernel preemption. The kernel is
not preemptible, however, if a task running in the kernel is holding a lock. To
enforce this rule, each task in the system has a thread-info structure contain-
ing a counter, preempt count, to indicate the number of locks being held by
the task. When a lock is acquired, preempt count is incremented. It is decre-
mented when a lock is released. If the value of preempt count for the task
currently running in the kernel is greater than 0, it is not safe to preempt the ker-
nel, as this task currently holds a lock. If the count is 0, the kernel can safely be
interrupted (assuming there are no outstanding calls to preempt disable()).

Spinlocks—along with enabling and disabling kernel preemption—are
used in the kernel only when a lock (or disabling kernel preemption) is held
for a short duration.When a lockmust be held for a longer period, semaphores
or mutex locks are appropriate for use.

7.3 POSIX Synchronization

The synchronization methods discussed in the preceding section pertain to
synchronization within the kernel and are therefore available only to kernel
developers. In contrast, the POSIX API is available for programmers at the user
level and is not part of any particular operating-system kernel. (Of course, it
must ultimately be implemented using tools provided by the host operating
system.)

In this section, we cover mutex locks, semaphores, and condition variables
that are available in the Pthreads and POSIX APIs. These APIs are widely used
for thread creation and synchronization by developers on UNIX, Linux, and
macOS systems.

7.3.1 POSIX Mutex Locks

Mutex locks represent the fundamental synchronization technique used with
Pthreads. A mutex lock is used to protect critical sections of code—that is, a
thread acquires the lock before entering a critical section and releases it upon
exiting the critical section. Pthreads uses the pthread mutex t data type for
mutex locks. A mutex is created with the pthread mutex init() function.
The first parameter is a pointer to the mutex. By passing NULL as a second
parameter, we initialize the mutex to its default attributes. This is illustrated
below:

300 Chapter 7 Synchronization Examples

#include <pthread.h>

pthread mutex t mutex;

/* create and initialize the mutex lock */
pthread mutex init(&mutex,NULL);

The mutex is acquired and released with the pthread mutex lock() and
pthread mutex unlock() functions. If the mutex lock is unavailable when
pthread mutex lock() is invoked, the calling thread is blocked until the
owner invokes pthread mutex unlock(). The following code illustrates pro-
tecting a critical section with mutex locks:

/* acquire the mutex lock */
pthread mutex lock(&mutex);

/* critical section */

/* release the mutex lock */
pthread mutex unlock(&mutex);

Allmutex functions return a value of 0with correct operation; if an error occurs,
these functions return a nonzero error code.

7.3.2 POSIX Semaphores

Many systems that implement Pthreads also provide semaphores, although
semaphores are not part of the POSIX standard and instead belong to the
POSIX SEM extension. POSIX specifies two types of semaphores—named and
unnamed. Fundamentally, the two are quite similar, but they differ in terms of
how they are created and shared between processes. Because both techniques
are common, we discuss both here. Beginning with Version 2.6 of the kernel,
Linux systems provide support for both named and unnamed semaphores.

7.3.2.1 POSIX Named Semaphores

The function sem open() is used to create and open a POSIX named sempahore:

#include <semaphore.h>
sem t *sem;

/* Create the semaphore and initialize it to 1 */
sem = sem open("SEM", O CREAT, 0666, 1);

In this instance, we are naming the semaphore SEM. The O CREAT flag indicates
that the semaphore will be created if it does not already exist. Additionally, the
semaphore has read and write access for other processes (via the parameter
0666) and is initialized to 1.

The advantage of named semaphores is that multiple unrelated processes
can easily use a common semaphore as a synchronization mechanism by

7.3 POSIX Synchronization 301

simply referring to the semaphore’s name. In the example above, once the
semaphore SEM has been created, subsequent calls to sem open() (with
the same parameters) by other processes return a descriptor to the existing
semaphore.

In Section 6.6, we described the classic wait() and signal() semaphore
operations. POSIX declares these operations sem wait() and sem post(),
respectively. The following code sample illustrates protecting a critical section
using the named semaphore created above:

/* acquire the semaphore */
sem wait(sem);

/* critical section */

/* release the semaphore */
sem post(sem);

Both Linux and macOS systems provide POSIX named semaphores.

7.3.2.2 POSIX Unnamed Semaphores

An unnamed semaphore is created and initialized using the sem init() func-
tion, which is passed three parameters:

1. Apointer to the semaphore

2. Aflag indicating the level of sharing

3. The semaphore’s initial value

and is illusrated in the following programming example:

#include <semaphore.h>
sem t sem;

/* Create the semaphore and initialize it to 1 */
sem init(&sem, 0, 1);

In this example, by passing the flag 0, we are indicating that this semaphore can
be shared only by threads belonging to the process that created the semaphore.
(If we supplied a nonzero value, we could allow the semaphore to be shared
between separate processes by placing it in a region of shared memory.) In
addition, we initialize the semaphore to the value 1.

POSIX unnamed semaphores use the same sem wait() and sem post()
operations as named semaphores. The following code sample illustrates pro-
tecting a critical section using the unnamed semaphore created above:

302 Chapter 7 Synchronization Examples

/* acquire the semaphore */
sem wait(&sem);

/* critical section */

/* release the semaphore */
sem post(&sem);

Just like mutex locks, all semaphore functions return 0 when successful and
nonzero when an error condition occurs.

7.3.3 POSIX Condition Variables

Condition variables in Pthreads behave similarly to those described in Section
6.7. However, in that section, condition variables are used within the context
of a monitor, which provides a locking mechanism to ensure data integrity.
Since Pthreads is typically used in C programs—and since C does not have a
monitor— we accomplish locking by associating a condition variable with a
mutex lock.

Condition variables in Pthreads use the pthread cond t data type and
are initialized using the pthread cond init() function. The following code
creates and initializes a condition variable as well as its associated mutex lock:

pthread mutex t mutex;
pthread cond t cond var;

pthread mutex init(&mutex,NULL);
pthread cond init(&cond var,NULL);

The pthread cond wait() function is used for waiting on a condition
variable. The following code illustrates how a thread canwait for the condition
a == b to become true using a Pthread condition variable:

pthread mutex lock(&mutex);
while (a != b)

pthread cond wait(&cond var, &mutex);

pthread mutex unlock(&mutex);

The mutex lock associated with the condition variable must be locked
before the pthread cond wait() function is called, since it is used to protect
the data in the conditional clause from a possible race condition. Once this lock
is acquired, the thread can check the condition. If the condition is not true,
the thread then invokes pthread cond wait(), passing the mutex lock and
the condition variable as parameters. Calling pthread cond wait() releases
the mutex lock, thereby allowing another thread to access the shared data and
possibly update its value so that the condition clause evaluates to true. (To
protect against program errors, it is important to place the conditional clause
within a loop so that the condition is rechecked after being signaled.)

7.4 Synchronization in Java 303

Athread thatmodifies the shareddata can invoke the pthread cond signal()
function, thereby signaling one thread waiting on the condition variable. This
is illustrated below:

pthread mutex lock(&mutex);
a = b;
pthread cond signal(&cond var);
pthread mutex unlock(&mutex);

It is important to note that the call to pthread cond signal() does not
release the mutex lock. It is the subsequent call to pthread mutex unlock()
that releases the mutex. Once the mutex lock is released, the signaled thread
becomes the owner of the mutex lock and returns control from the call to
pthread cond wait().

We provide several programming problems and projects at the end of this
chapter that use Pthreadsmutex locks and condition variables, as well as POSIX
semaphores.

7.4 Synchronization in Java

The Java language and its API have provided rich support for thread syn-
chronization since the origins of the language. In this section, we first cover
Javamonitors, Java’s original synchronizationmechanism.We then cover three
additional mechanisms that were introduced in Release 1.5: reentrant locks,
semaphores, and condition variables. We include these because they represent
the most common locking and synchronization mechanisms. However, the
Java API provides many features that we do not cover in this text—for exam-
ple, support for atomic variables and the CAS instruction—and we encourage
interested readers to consult the bibliography for more information.

7.4.1 Java Monitors

Java provides a monitor-like concurrency mechanism for thread synchroniza-
tion. We illustrate this mechanism with the BoundedBuffer class (Figure 7.9),
which implements a solution to the bounded-buffer problem wherein the pro-
ducer and consumer invoke the insert() and remove() methods, respec-
tively.

Every object in Java has associated with it a single lock. When a method is
declared to be synchronized, calling the method requires owning the lock for
the object. We declare a synchronizedmethod by placing the synchronized
keyword in the method definition, such as with the insert() and remove()
methods in the BoundedBuffer class.

Invoking a synchronized method requires owning the lock on an object
instance of BoundedBuffer. If the lock is already owned by another thread,
the thread calling the synchronizedmethod blocks and is placed in the entry
set for the object’s lock. The entry set represents the set of threads waiting for
the lock to become available. If the lock is available when a synchronized
method is called, the calling thread becomes the owner of the object’s lock and
can enter the method. The lock is released when the thread exits the method.
If the entry set for the lock is not empty when the lock is released, the JVM

304 Chapter 7 Synchronization Examples

public class BoundedBuffer<E>
{

private static final int BUFFER SIZE = 5;

private int count, in, out;
private E[] buffer;

public BoundedBuffer() {
count = 0;
in = 0;
out = 0;
buffer = (E[]) new Object[BUFFER SIZE];

}

/* Producers call this method */
public synchronized void insert(E item) {

/* See Figure 7.11 */
}

/* Consumers call this method */
public synchronized E remove() {

/* See Figure 7.11 */
}

}

Figure 7.9 Bounded buffer using Java synchronization.

arbitrarily selects a thread from this set to be the owner of the lock. (When we
say “arbitrarily,”wemean that the specification does not require that threads in
this set be organized in any particular order. However, in practice, most virtual
machines order threads in the entry set according to a FIFO policy.) Figure 7.10
illustrates how the entry set operates.

In addition to having a lock, every object also has associated with it a wait
set consisting of a set of threads. This wait set is initially empty. When a thread
enters a synchronizedmethod, it owns the lock for the object. However, this
thread may determine that it is unable to continue because a certain condition

entry set

acquire lock
object
lock

owner

Figure 7.10 Entry set for a lock.

7.4 Synchronization in Java 305

BLOCK SYNCHRONIZATION

The amount of time between when a lock is acquired and when it is released
is defined as the scope of the lock. A synchronized method that has only
a small percentage of its code manipulating shared data may yield a scope
that is too large. In such an instance, it may be better to synchronize only
the block of code that manipulates shared data than to synchronize the entire
method. Such a design results in a smaller lock scope. Thus, in addition to
declaring synchronized methods, Java also allows block synchronization,
as illustrated below. Only the access to the critical-section code requires
ownership of the object lock for the this object.

public void someMethod() {
/* non-critical section */

synchronized(this) {
/* critical section */

}

/* remainder section */
}

has not been met. That will happen, for example, if the producer calls the
insert() method and the buffer is full. The thread then will release the lock
and wait until the condition that will allow it to continue is met.

When a thread calls the wait()method, the following happens:

1. The thread releases the lock for the object.

2. The state of the thread is set to blocked.

3. The thread is placed in the wait set for the object.

Consider the example in Figure 7.11. If the producer calls the insert()
method and sees that the buffer is full, it calls the wait() method. This call
releases the lock, blocks the producer, and puts the producer in the wait set for
the object. Because the producer has released the lock, the consumer ultimately
enters the remove()method,where it frees space in the buffer for the producer.
Figure 7.12 illustrates the entry and wait sets for a lock. (Note that although
wait() can throw an InterruptedException, we choose to ignore it for code
clarity and simplicity.)

Howdoes the consumer thread signal that the producermay nowproceed?
Ordinarily, when a thread exits a synchronizedmethod, the departing thread
releases only the lock associated with the object, possibly removing a thread
from the entry set and giving it ownership of the lock. However, at the end of
the insert() and remove()methods, we have a call to the method notify().
The call to notify():

1. Picks an arbitrary thread T from the list of threads in the wait set

306 Chapter 7 Synchronization Examples

/* Producers call this method */
public synchronized void insert(E item) {

while (count == BUFFER SIZE) {
try {

wait();
}
catch (InterruptedException ie) { }

}

buffer[in] = item;
in = (in + 1) % BUFFER SIZE;
count++;

notify();
}

/* Consumers call this method */
public synchronized E remove() {

E item;

while (count == 0) {
try {

wait();
}
catch (InterruptedException ie) { }

}

item = buffer[out];
out = (out + 1) % BUFFER SIZE;
count--;

notify();

return item;
}

Figure 7.11 insert() and remove() methods using wait() and notify().

2. Moves T from the wait set to the entry set

3. Sets the state of T from blocked to runnable

T is now eligible to compete for the lock with the other threads. Once T has
regained control of the lock, it returns from calling wait(), where it may
check the value of count again. (Again, the selection of an arbitrary thread
is according to the Java specification; in practice, most Java virtual machines
order threads in the wait set according to a FIFO policy.)

7.4 Synchronization in Java 307

entry set wait set

acquire lock wait
object
lock

owner

Figure 7.12 Entry and wait sets.

Next, we describe the wait() and notify() methods in terms of the
methods shown in Figure 7.11. We assume that the buffer is full and the lock
for the object is available.

• The producer calls the insert() method, sees that the lock is available,
and enters the method. Once in the method, the producer determines that
the buffer is full and calls wait(). The call to wait() releases the lock for
the object, sets the state of the producer to blocked, and puts the producer
in the wait set for the object.

• The consumer ultimately calls and enters the remove() method, as the
lock for the object is now available. The consumer removes an item from
the buffer and calls notify(). Note that the consumer still owns the lock
for the object.

• The call to notify() removes the producer from the wait set for the
object, moves the producer to the entry set, and sets the producer’s state
to runnable.

• The consumer exits the remove()method. Exiting thismethod releases the
lock for the object.

• The producer tries to reacquire the lock and is successful. It resumes execu-
tion from the call to wait(). The producer tests the while loop, determines
that room is available in the buffer, and proceedswith the remainder of the
insert() method. If no thread is in the wait set for the object, the call to
notify() is ignored. When the producer exits the method, it releases the
lock for the object.

The synchronized, wait(), and notify()mechanisms have been part of
Java since its origins. However, later revisions of the Java API introducedmuch
more flexible and robust locking mechanisms, some of which we examine in
the following sections.

7.4.2 Reentrant Locks

Perhaps the simplest lockingmechanism available in the API is the Reentrant-
Lock. In many ways, a ReentrantLock acts like the synchronized statement
described in Section 7.4.1: a ReentrantLock is owned by a single thread and is
used to provide mutually exclusive access to a shared resource. However, the
ReentrantLock provides several additional features, such as setting a fairness
parameter,which favors granting the lock to the longest-waiting thread. (Recall

308 Chapter 7 Synchronization Examples

that the specification for the JVM does not indicate that threads in the wait set
for an object lock are to be ordered in any specific fashion.)

A thread acquires a ReentrantLock lock by invoking its lock() method.
If the lock is available—or if the thread invoking lock() already owns it,
which is why it is termed reentrant—lock() assigns the invoking thread
lock ownership and returns control. If the lock is unavailable, the invoking
thread blocks until it is ultimately assigned the lock when its owner invokes
unlock().ReentrantLock implements the Lock interface; it is used as follows:

Lock key = new ReentrantLock();

key.lock();
try {

/* critical section */
}
finally {

key.unlock();
}

The programming idiom of using try and finally requires a bit of expla-
nation. If the lock is acquired via the lock() method, it is important that the
lock be similarly released. By enclosing unlock() in a finally clause, we
ensure that the lock is released once the critical section completes or if an excep-
tion occurs within the try block. Notice that we do not place the call to lock()
within the try clause, as lock() does not throw any checked exceptions. Con-
siderwhat happens ifwe place lock()within the try clause and an unchecked
exception occurs when lock() is invoked (such as OutofMemoryError): The
finally clause triggers the call tounlock(), which then throws the unchecked
IllegalMonitorStateException, as the lockwas never acquired. This Ille-
galMonitorStateException replaces the unchecked exception that occurred
when lock() was invoked, thereby obscuring the reason why the program
initially failed.

Whereas a ReentrantLock provides mutual exclusion, it may be too con-
servative a strategy if multiple threads only read, but do not write, shared
data. (We described this scenario in Section 7.1.2.) To address this need, the
Java API also provides a ReentrantReadWriteLock, which is a lock that allows
multiple concurrent readers but only one writer.

7.4.3 Semaphores

The Java API also provides a counting semaphore, as described in Section 6.6.
The constructor for the semaphore appears as

Semaphore(int value);

where value specifies the initial value of the semaphore (a negative value
is allowed). The acquire() method throws an InterruptedException if
the acquiring thread is interrupted. The following example illustrates using
a semaphore for mutual exclusion:

7.4 Synchronization in Java 309

Semaphore sem = new Semaphore(1);

try {
sem.acquire();
/* critical section */

}
catch (InterruptedException ie) { }
finally {

sem.release();
}

Notice that we place the call to release() in the finally clause to ensure that
the semaphore is released.

7.4.4 Condition Variables

The last utility we cover in the Java API is the condition variable. Just as
the ReentrantLock is similar to Java’s synchronized statement, condition
variables provide functionality similar to the wait() and notify()methods.
Therefore, to providemutual exclusion, a condition variablemust be associated
with a reentrant lock.

We create a condition variable by first creating a ReentrantLock and
invoking its newCondition()method, which returns a Condition object rep-
resenting the condition variable for the associated ReentrantLock. This is
illustrated in the following statements:

Lock key = new ReentrantLock();
Condition condVar = key.newCondition();

Once the condition variable has been obtained, we can invoke its await()
and signal() methods, which function in the same way as the wait() and
signal() commands described in Section 6.7.

Recall that with monitors as described in Section 6.7, the wait() and
signal() operations can be applied to named condition variables, allowing a
thread towait for a specific condition or to be notifiedwhen a specific condition
has been met. At the language level, Java does not provide support for named
condition variables. Each Java monitor is associated with just one unnamed
condition variable, and the wait() and notify() operations described in
Section 7.4.1 apply only to this single condition variable. When a Java thread is
awakened via notify(), it receives no information as towhy it was awakened;
it is up to the reactivated thread to check for itself whether the condition
for which it was waiting has been met. Condition variables remedy this by
allowing a specific thread to be notified.

We illustrate with the following example: Suppose we have five threads,
numbered 0 through 4, and a shared variable turn indicating which thread’s
turn it is. When a thread wishes to do work, it calls the doWork() method
in Figure 7.13, passing its thread number. Only the thread whose value of
threadNumbermatches the value of turn can proceed; other threadsmustwait
their turn.

310 Chapter 7 Synchronization Examples

/* threadNumber is the thread that wishes to do some work */
public void doWork(int threadNumber)
{

lock.lock();

try {
/**
* If it’s not my turn, then wait
* until I’m signaled.
*/

if (threadNumber != turn)
condVars[threadNumber].await();

/**
* Do some work for awhile ...
*/

/**
* Now signal to the next thread.
*/

turn = (turn + 1) % 5;
condVars[turn].signal();

}
catch (InterruptedException ie) { }
finally {

lock.unlock();
}

}

Figure 7.13 Example using Java condition variables.

We also must create a ReentrantLock and five condition variables (repre-
senting the conditions the threads are waiting for) to signal the thread whose
turn is next. This is shown below:

Lock lock = new ReentrantLock();
Condition[] condVars = new Condition[5];

for (int i = 0; i < 5; i++)
condVars[i] = lock.newCondition();

When a thread enters doWork(), it invokes the await() method on its
associated condition variable if its threadNumber is not equal to turn, only
to resume when it is signaled by another thread. After a thread has completed
itswork, it signals the condition variable associatedwith the threadwhose turn
follows.

It is important to note that doWork() does not need to be declared syn-
chronized, as the ReentrantLock provides mutual exclusion. When a thread

7.5 Alternative Approaches 311

invokes await() on the condition variable, it releases the associated Reen-
trantLock, allowing another thread to acquire the mutual exclusion lock.
Similarly, when signal() is invoked, only the condition variable is signaled;
the lock is released by invoking unlock().

7.5 Alternative Approaches

With the emergence of multicore systems has come increased pressure to
develop concurrent applications that take advantage of multiple processing
cores. However, concurrent applications present an increased risk of race con-
ditions and liveness hazards such as deadlock. Traditionally, techniques such
as mutex locks, semaphores, and monitors have been used to address these
issues, but as the number of processing cores increases, it becomes increasingly
difficult to designmultithreaded applications that are free from race conditions
and deadlock. In this section, we explore various features provided in both
programming languages and hardware that support the design of thread-safe
concurrent applications.

7.5.1 Transactional Memory

Quite often in computer science, ideas from one area of study can be used
to solve problems in other areas. The concept of transactional memory orig-
inated in database theory, for example, yet it provides a strategy for process
synchronization. A memory transaction is a sequence of memory read–write
operations that are atomic. If all operations in a transaction are completed, the
memory transaction is committed. Otherwise, the operations must be aborted
and rolled back. The benefits of transactional memory can be obtained through
features added to a programming language.

Consider an example. Supposewe have a function update() that modifies
shared data. Traditionally, this functionwould bewritten usingmutex locks (or
semaphores) such as the following:

void update ()
{

acquire();

/* modify shared data */

release();
}

However, using synchronization mechanisms such as mutex locks and
semaphores involves many potential problems, including deadlock.
Additionally, as the number of threads increases, traditional locking doesn’t
scale as well, because the level of contention among threads for lock ownership
becomes very high.

As an alternative to traditional locking methods, new features that take
advantage of transactional memory can be added to a programming language.
In our example, suppose we add the construct atomic{S}, which ensures that

312 Chapter 7 Synchronization Examples

the operations in S execute as a transaction. This allows us to rewrite the
update() function as follows:

void update ()
{

atomic {
/* modify shared data */

}
}

The advantage of using such a mechanism rather than locks is that the
transactional memory system—not the developer—is responsible for guar-
anteeing atomicity. Additionally, because no locks are involved, deadlock is
not possible. Furthermore, a transactional memory system can identify which
statements in atomic blocks can be executed concurrently, such as concurrent
read access to a shared variable. It is, of course, possible for a programmer
to identify these situations and use reader–writer locks, but the task becomes
increasingly difficult as the number of threads within an application grows.

Transactional memory can be implemented in either software or hardware.
Software transactional memory (STM), as the name suggests, implements
transactionalmemory exclusively in software—no special hardware is needed.
STM works by inserting instrumentation code inside transaction blocks. The
code is inserted by a compiler and manages each transaction by examining
where statementsmay run concurrently andwhere specific low-level locking is
required. Hardware transactional memory (HTM) uses hardware cache hierar-
chies and cache coherency protocols to manage and resolve conflicts involving
shared data residing in separate processors’ caches. HTM requires no special
code instrumentation and thus has less overhead than STM. However, HTM
does require that existing cache hierarchies and cache coherency protocols be
modified to support transactional memory.

Transactional memory has existed for several years without widespread
implementation. However, the growth of multicore systems and the associ-
ated emphasis on concurrent and parallel programming have prompted a
significant amount of research in this area on the part of both academics and
commercial software and hardware vendors.

7.5.2 OpenMP

In Section 4.5.2,weprovidedan overviewofOpenMPand its support of parallel
programming in a shared-memory environment. Recall that OpenMP includes
a set of compiler directives and an API. Any code following the compiler direc-
tive #pragma omp parallel is identified as a parallel region and is performed
by a number of threads equal to the number of processing cores in the system.
The advantage of OpenMP (and similar tools) is that thread creation and man-
agement are handled by the OpenMP library and are not the responsibility of
application developers.

Along with its #pragma omp parallel compiler directive, OpenMP pro-
vides the compiler directive #pragma omp critical, which specifies the code
region following the directive as a critical section inwhich only one threadmay
be active at a time. In this way, OpenMP provides support for ensuring that
threads do not generate race conditions.

7.5 Alternative Approaches 313

As an example of the use of the critical-section compiler directive, first
assume that the shared variable counter can be modified in the update()
function as follows:

void update(int value)
{

counter += value;
}

If the update() function can be part of—or invoked from—a parallel region,
a race condition is possible on the variable counter.

The critical-section compiler directive can be used to remedy this race
condition and is coded as follows:

void update(int value)
{

#pragma omp critical
{

counter += value;
}

}
The critical-section compiler directive behaves much like a binary semaphore
or mutex lock, ensuring that only one thread at a time is active in the critical
section. If a thread attempts to enter a critical section when another thread is
currently active in that section (that is, owns the section), the calling thread is
blocked until the owner thread exits. If multiple critical sections must be used,
each critical section can be assigned a separate name, and a rule can specify
that no more than one thread may be active in a critical section of the same
name simultaneously.

An advantage of using the critical-section compiler directive in OpenMP
is that it is generally considered easier to use than standard mutex locks.
However, a disadvantage is that application developers must still identify
possible race conditions and adequately protect shared data using the compiler
directive. Additionally, because the critical-section compiler directive behaves
much like a mutex lock, deadlock is still possible when two or more critical
sections are identified.

7.5.3 Functional Programming Languages

Most well-known programming languages—such as C, C++, Java, and C#—
are known as imperative (or procedural) languages. Imperative languages are
used for implementing algorithms that are state-based. In these languages, the
flow of the algorithm is crucial to its correct operation, and state is represented
with variables and other data structures. Of course, program state is mutable,
as variables may be assigned different values over time.

With the current emphasis on concurrent and parallel programming for
multicore systems, there has been greater focus on functional programming
languages, which follow a programming paradigm much different from that
offered by imperative languages. The fundamental difference between imper-
ative and functional languages is that functional languages do not maintain
state. That is, once a variable has been defined and assigned a value, its value

314 Chapter 7 Synchronization Examples

is immutable—it cannot change. Because functional languages disallowmuta-
ble state, they need not be concerned with issues such as race conditions and
deadlocks. Essentially, most of the problems addressed in this chapter are
nonexistent in functional languages.

Several functional languages are presently in use, and we briefly mention
two of them here: Erlang and Scala. The Erlang language has gained significant
attention because of its support for concurrency and the ease with which it can
be used to develop applications that run on parallel systems. Scala is a func-
tional language that is also object-oriented. In fact, much of the syntax of Scala
is similar to the popular object-oriented languages Java and C#. Readers inter-
ested in Erlang and Scala, and in further details about functional languages in
general, are encouraged to consult the bibliography at the end of this chapter
for additional references.

7.6 Summary

• Classic problems of process synchronization include the bounded-buffer,
readers–writers, and dining-philosophers problems. Solutions to these
problems can be developed using the tools presented in Chapter 6, includ-
ing mutex locks, semaphores, monitors, and condition variables.

• Windows uses dispatcher objects as well as events to implement process
synchronization tools.

• Linux uses a variety of approaches to protect against race conditions,
including atomic variables, spinlocks, and mutex locks.

• The POSIX API providesmutex locks, semaphores, and condition variables.
POSIX provides two forms of semaphores: named and unnamed. Several
unrelated processes can easily access the same named semaphore by sim-
ply referring to its name. Unnamed semaphores cannot be shared as easily,
and require placing the semaphore in a region of shared memory.

• Java has a rich library and API for synchronization. Available tools include
monitors (which are provided at the language level) as well as reentrant
locks, semaphores, and condition variables (which are supported by the
API).

• Alternative approaches to solving the critical-section problem include
transactional memory, OpenMP, and functional languages. Functional lan-
guages are particularly intriguing, as they offer a different programming
paradigm from procedural languages. Unlike procedural languages, func-
tional languages do notmaintain state and therefore are generally immune
from race conditions and critical sections.

Practice Exercises

7.1 Explain why Windows and Linux implement multiple locking mech-
anisms. Describe the circumstances under which they use spinlocks,
mutex locks, semaphores, and condition variables. In each case, explain
why the mechanism is needed.

Bibliography 315

7.2 Windows provides a lightweight synchronization tool called slim reader
–writer locks. Whereas most implementations of reader–writer locks
favor either readers or writers, or perhaps order waiting threads using a
FIFO policy, slim reader–writer locks favor neither readers nor writers,
nor are waiting threads ordered in a FIFO queue. Explain the benefits of
providing such a synchronization tool.

7.3 Describe what changes would be necessary to the producer and con-
sumer processes in Figure 7.1 and Figure 7.2 so that a mutex lock could
be used instead of a binary semaphore.

7.4 Describe how deadlock is possible with the dining-philosophers prob-
lem.

7.5 Explain the difference between signaled and non-signaled states with
Windows dispatcher objects.

7.6 Assume val is an atomic integer in a Linux system. What is the value of
val after the following operations have been completed?

atomic set(&val,10);
atomic sub(8,&val);
atomic inc(&val);
atomic inc(&val);
atomic add(6,&val);
atomic sub(3,&val);

Further Reading

Details of Windows synchronization can be found in [Solomon and Russi-
novich (2000)]. [Love (2010)] describes synchronization in the Linux kernel.
[Hart (2005)] describes thread synchronization using Windows. [Breshears
(2009)] and [Pacheco (2011)] provide detailed coverage of synchronization
issues in relation to parallel programming. Details on using OpenMP can be
found at http://openmp.org. Both [Oaks (2014)] and [Goetz et al. (2006)] con-
trast traditional synchronization and CAS-based strategies in Java.

Bibliography

[Breshears (2009)] C. Breshears, The Art of Concurrency, O’Reilly & Associates
(2009).

[Goetz et al. (2006)] B. Goetz, T. Peirls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea, Java Concurrency in Practice, Addison-Wesley (2006).

[Hart (2005)] J. M. Hart,Windows System Programming, Third Edition, Addison-
Wesley (2005).

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

http://scholar.google.com/scholar?hl/en&q=D A Solomon and M E Russinovich Inside Microsoft Windows 2000 ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=J M Hart Windows System Programming ThirdEdition
http://scholar.google.com/scholar?hl/en&q=C Breshears The Art of Concurrency
http://codex.cs.yale.edu/avi/os-book/BIB/NOT.html
http://openmp.org
http://scholar.google.com/scholar?hl/en&q=S Oaks Java PerformanceThe Definitive Guide
http://scholar.google.com/scholar?hl/en&q=B Goetz and T Peirls and J Bloch and J Bowbeer and D Holmes and D Lea Java Concurrency in Practice
http://scholar.google.com/scholar?hl/en&q=C Breshears The Art of Concurrency
http://scholar.google.com/scholar?hl/en&q=C Breshears The Art of Concurrency
http://scholar.google.com/scholar?hl/en&q=B Goetz and T Peirls and J Bloch and J Bowbeer and D Holmes and D Lea Java Concurrency in Practice
http://scholar.google.com/scholar?hl/en&q=B Goetz and T Peirls and J Bloch and J Bowbeer and D Holmes and D Lea Java Concurrency in Practice
http://scholar.google.com/scholar?hl/en&q=J M Hart Windows System Programming ThirdEdition
http://scholar.google.com/scholar?hl/en&q=J M Hart Windows System Programming ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition

316 Chapter 7 Synchronization Examples

[Oaks (2014)] S. Oaks, Java Performance—The Definitive Guide, O’Reilly & Asso-
ciates (2014).

[Pacheco (2011)] P. S. Pacheco, An Introduction to Parallel Programming, Morgan
Kaufmann (2011).

[Solomon and Russinovich (2000)] D. A. Solomon and M. E. Russinovich,
Inside Microsoft Windows 2000, Third Edition, Microsoft Press (2000).

http://scholar.google.com/scholar?hl/en&q=S Oaks Java PerformanceThe Definitive Guide
http://scholar.google.com/scholar?hl/en&q=S Oaks Java PerformanceThe Definitive Guide
http://codex.cs.yale.edu/avi/os-book/BIB/NOT.html
http://codex.cs.yale.edu/avi/os-book/BIB/NOT.html
http://scholar.google.com/scholar?hl/en&q=D A Solomon and M E Russinovich Inside Microsoft Windows 2000 ThirdEdition
http://scholar.google.com/scholar?hl/en&q=D A Solomon and M E Russinovich Inside Microsoft Windows 2000 ThirdEdition

Exercises

Chapter 7 Exercises

7.7 Describe two kernel data structures in which race conditions are possi-
ble. Be sure to include a description of how a race condition can occur.

7.8 The Linux kernel has a policy that a process cannot hold a spinlockwhile
attempting to acquire a semaphore. Explain why this policy is in place.

7.9 Design an algorithm for a bounded-buffer monitor in which the buffers
(portions) are embedded within the monitor itself.

7.10 The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 7.14 mainly suitable for small portions.

a. Explain why this is true.

b. Design a new scheme that is suitable for larger portions.

7.11 Discuss the tradeoff between fairness and throughput of operations
in the readers–writers problem. Propose a method for solving the
readers–writers problem without causing starvation.

7.12 Explain why the call to the lock()method in a Java ReentrantLock is
not placed in the try clause for exception handling, yet the call to the
unlock()method is placed in a finally clause.

7.13 Explain the difference between software and hardware transactional
memory.

EX-26

Programming Problems

7.14 Exercise 3.20 required you to design a PID manager that allocated a
unique process identifier to each process. Exercise 4.28 required you to
modify your solution to Exercise 3.20 bywriting a program that created a
number of threads that requested and released process identifiers. Using
mutex locks, modify your solution to Exercise 4.28 by ensuring that the
data structure used to represent the availability of process identifiers is
safe from race conditions.

7.15 In Exercise 4.27, you wrote a program to generate the Fibonacci
sequence. The program required the parent thread to wait for the child
thread to finish its execution before printing out the computed values.
If we let the parent thread access the Fibonacci numbers as soon as they
were computed by the child thread—rather than waiting for the child
thread to terminate—what changes would be necessary to the solution
for this exercise? Implement your modified solution.

7.16 The C program stack-ptr.c (available in the source-code download)
contains an implementation of a stack using a linked list. An example of
its use is as follows:

StackNode *top = NULL;
push(5, &top);
push(10, &top);
push(15, &top);

int value = pop(&top);
value = pop(&top);
value = pop(&top);

This program currently has a race condition and is not appropriate for
a concurrent environment. Using Pthreads mutex locks (described in
Section 7.3.1), fix the race condition.

7.17 Exercise 4.24 asked you to design a multithreaded program that esti-
mated π using the Monte Carlo technique. In that exercise, you were
asked to create a single thread that generated random points, storing
the result in a global variable. Once that thread exited, the parent thread
performed the calculation that estimated the value of π. Modify that pro-
gram so that you create several threads, each ofwhich generates random
points and determines if the points fall within the circle. Each threadwill
have to update the global count of all points that fall within the circle.
Protect against race conditions on updates to the shared global variable
by using mutex locks.

7.18 Exercise 4.25 asked you to design a program using OpenMP that esti-
mated π using theMonte Carlo technique. Examine your solution to that
program looking for any possible race conditions. If you identify a race
condition, protect against it using the strategy outlined in Section 7.5.2.

7.19 A barrier is a tool for synchronizing the activity of a number of threads.
When a thread reaches a barrier point, it cannot proceed until all other

Chapter 7 Synchronization ExamplesP-34

Programming Projects

threads have reached this point as well. When the last thread reaches
the barrier point, all threads are released and can resume concurrent
execution.

Assume that the barrier is initialized to N—the number of threads
that must wait at the barrier point:

init(N);

Each thread then performs some work until it reaches the barrier point:

/* do some work for awhile */

barrier point();

/* do some work for awhile */

Using either the POSIX or Java synchronization tools described in this
chapter, construct a barrier that implements the following API:

• int init(int n)—Initializes the barrier to the specified size.

• int barrier point(void)—Identifies the barrier point. All
threads are released from the barrier when the last thread reaches
this point.

The return value of each function is used to identify error conditions.
Each function will return 0 under normal operation and will return
−1 if an error occurs. A testing harness is provided in the source-code
download to test your implementation of the barrier.

Programming Projects

Project 1—Designing a Thread Pool

Thread pools were introduced in Section 4.5.1. When thread pools are used, a
task is submitted to the pool and executed by a thread from the pool. Work is
submitted to the pool using a queue, and an available thread removes work
from the queue. If there are no available threads, the work remains queued
until one becomes available. If there is nowork, threads await notification until
a task becomes available.

This project involves creating and managing a thread pool, and it may be
completed using either Pthreds and POSIX synchronization or Java. Below we
provide the details relevant to each specific technology.

I. POSIX

The POSIX version of this project will involve creating a number of threads
using the Pthreads API as well as using POSIX mutex locks and semaphores
for synchronization.

P-35

Chapter 7 Synchronization Examples

The Client

Users of the thread pool will utilize the following API:

• void pool init()—Initializes the thread pool.

• int pool submit(void (*somefunction)(void *p), void *p)—
where somefunction is a pointer to the function that will be executed by
a thread from the pool and p is a parameter passed to the function.

• void pool shutdown(void)—Shuts down the thread pool once all tasks
have completed.

We provide an example program client.c in the source code download that
illustrates how to use the thread pool using these functions.

Implementation of the Thread Pool

In the source code download we provide the C source file threadpool.c as
a partial implementation of the thread pool. You will need to implement the
functions that are called by client users, as well as several additional functions
that support the internals of the thread pool. Implementation will involve the
following activities:

1. The pool init() function will create the threads at startup as well as
initialize mutual-exclusion locks and semaphores.

2. The pool submit() function is partially implemented and currently
places the function to be executed—as well as its data— into a task
struct. The task struct representswork that will be completed by a thread
in the pool. pool submit() will add these tasks to the queue by invok-
ing the enqueue() function, and worker threads will call dequeue() to
retrieve work from the queue. The queue may be implemented statically
(using arrays) or dynamically (using a linked list).

The pool init() function has an int return value that is used to
indicate if the task was successfully submitted to the pool (0 indicates
success, 1 indicates failure). If the queue is implemented using arrays,
pool init() will return 1 if there is an attempt to submit work and the
queue is full. If the queue is implemented as a linked list, pool init()
should always return 0 unless a memory allocation error occurs.

3. The worker() function is executed by each thread in the pool, where each
thread will wait for available work. Once work becomes available, the
thread will remove it from the queue and invoke execute() to run the
specified function.

A semaphore can be used for notifying a waiting thread when work
is submitted to the thread pool. Either named or unnamed semaphores
may be used. Refer to Section 7.3.2 for further details on using POSIX
semaphores.

P-36

Programming Projects

4. A mutex lock is necessary to avoid race conditions when accessing or
modifying the queue. (Section 7.3.1 provides details on Pthreads mutex
locks.)

5. The pool shutdown() function will cancel each worker thread and then
wait for each thread to terminate by calling pthread join(). Refer to
Section 4.6.3 for details on POSIX thread cancellation. (The semaphore
operation sem wait() is a cancellation point that allows a thread waiting
on a semaphore to be cancelled.)

Refer to the source-code download for additional details on this project. In
particular, the README file describes the source and header files, as well as the
Makefile for building the project.

II. Java

The Java version of this project may be completed using Java synchroniza-
tion tools as described in Section 7.4. Synchronization may depend on either
(a) monitors using synchronized/wait()/notify() (Section 7.4.1) or (b)
semaphores and reentrant locks (Section 7.4.2 and Section 7.4.3). Java threads
are described in Section 4.4.3.

Implementation of the Thread Pool

Your thread pool will implement the following API:

• ThreadPool()—Create a default-sized thread pool.

• ThreadPool(int size)—Create a thread pool of size size.

• void add(Runnable task)—Add a task to be performed by a thread in
the pool.

• void shutdown()—Stop all threads in the pool.

We provide the Java source file ThreadPool.java as a partial implemen-
tation of the thread pool in the source code download. You will need to imple-
ment the methods that are called by client users, as well as several additional
methods that support the internals of the thread pool. Implementation will
involve the following activities:

1. The constructor will first create a number of idle threads that await work.

2. Work will be submitted to the pool via the add() method, which adds a
task implementing the Runnable interface. The add()method will place
the Runnable task into a queue (you may use an available structure from
the Java API such as java.util.List).

3. Once a thread in the pool becomes available for work, it will check the
queue for any Runnable tasks. If there is such a task, the idle thread
will remove the task from the queue and invoke its run() method. If
the queue is empty, the idle thread will wait to be notified when work

P-37

Chapter 7 Synchronization Examples

becomes available. (The add()methodmay implement notification using
either notify() or semaphore operationswhen it places a Runnable task
into the queue to possibly awaken an idle thread awaiting work.)

4. The shutdown() method will stop all threads in the pool by invoking
their interrupt()method. This, of course, requires that Runnable tasks
being executed by the thread pool check their interruption status (Section
4.6.3).

Refer to the source-code download for additional details on this project. In
particular, the README file describes the Java source files, as well as further
details on Java thread interruption.

Project 2—The Sleeping Teaching Assistant

A university computer science department has a teaching assistant (TA) who
helps undergraduate students with their programming assignments during
regular office hours. The TA’s office is rather small and has room for only one
desk with a chair and computer. There are three chairs in the hallway outside
the office where students can sit and wait if the TA is currently helping another
student. When there are no students who need help during office hours, the
TA sits at the desk and takes a nap. If a student arrives during office hours
and finds the TA sleeping, the student must awaken the TA to ask for help. If a
student arrives and finds the TA currently helping another student, the student
sits on one of the chairs in the hallway and waits. If no chairs are available, the
student will come back at a later time.

Using POSIX threads, mutex locks, and semaphores, implement a solu-
tion that coordinates the activities of the TA and the students. Details for this
assignment are provided below.

The Students and the TA

Using Pthreads (Section 4.4.1), begin by creating n studentswhere each student
will run as a separate thread. The TA will run as a separate thread as well.
Student threads will alternate between programming for a period of time and
seeking help from the TA. If the TAis available, theywill obtain help. Otherwise,
they will either sit in a chair in the hallway or, if no chairs are available, will
resume programming and will seek help at a later time. If a student arrives
and notices that the TA is sleeping, the student must notify the TA using a
semaphore. When the TA finishes helping a student, the TA must check to see
if there are students waiting for help in the hallway. If so, the TA must help
each of these students in turn. If no students are present, the TAmay return to
napping.

Perhaps the best option for simulating students programming—as well as
the TA providing help to a student—is to have the appropriate threads sleep
for a random period of time.

Coverage of POSIX mutex locks and semaphores is provided in Section 7.3.
Consult that section for details.

P-38

Programming Projects

Project 3—The Dining-Philosophers Problem

In Section 7.1.3, we provide an outline of a solution to the dining-philosophers
problem using monitors. This project involves implementing a solution to
this problem using either POSIX mutex locks and condition variables or Java
condition variables. Solutions will be based on the algorithm illustrated in
Figure 7.7.

Both implementations will require creating five philosophers, each identi-
fied by a number 0 . . 4. Each philosopherwill run as a separate thread. Philoso-
phers alternate between thinking and eating. To simulate both activities, have
each thread sleep for a random period between one and three seconds.

I. POSIX

Thread creation using Pthreads is covered in Section 4.4.1. When a philosopher
wishes to eat, she invokes the function

pickup forks(int philosopher number)

where philosopher number identifies the number of the philosopher wishing
to eat. When a philosopher finishes eating, she invokes

return forks(int philosopher number)

Your implementation will require the use of POSIX condition variables, which
are covered in Section 7.3.

II. Java

When a philosopher wishes to eat, she invokes the method take-
Forks(philosopherNumber), where philosopherNumber identifies the
number of the philosopher wishing to eat. When a philosopher finishes eating,
she invokes returnForks(philosopherNumber).

Your solution will implement the following interface:

public interface DiningServer
{

/* Called by a philosopher when it wishes to eat */
public void takeForks(int philosopherNumber);

/* Called by a philosopher when it is finished eating */
public void returnForks(int philosopherNumber);

}

It will require the use of Java condition variables, which are covered in Section
7.4.4.

P-39

Chapter 7 Synchronization Examples

Project 4—The Producer–Consumer Problem

In Section 7.1.1, we presented a semaphore-based solution to the producer–
consumer problem using a bounded buffer. In this project, you will design a
programming solution to the bounded-buffer problem using the producer and
consumer processes shown in Figures 5.9 and 5.10. The solution presented in
Section 7.1.1 uses three semaphores: empty and full, which count the number
of empty and full slots in the buffer, and mutex, which is a binary (or mutual-
exclusion) semaphore that protects the actual insertion or removal of items
in the buffer. For this project, you will use standard counting semaphores
for empty and full and a mutex lock, rather than a binary semaphore, to
represent mutex. The producer and consumer—running as separate threads
—will move items to and from a buffer that is synchronized with the empty,
full, and mutex structures. You can solve this problem using either Pthreads
or the Windows API.

The Buffer

Internally, the buffer will consist of a fixed-size array of type buffer item
(which will be defined using a typedef). The array of buffer item objects
will be manipulated as a circular queue. The definition of buffer item, along
with the size of the buffer, can be stored in a header file such as the following:

/* buffer.h */
typedef int buffer item;
#define BUFFER SIZE 5

The buffer will be manipulated with two functions, insert item() and
remove item(), which are called by the producer and consumer threads,
respectively. A skeleton outlining these functions appears in Figure 7.14.

The insert item() and remove item() functions will synchronize the
producer and consumer using the algorithms outlined in Figure 7.1 and Figure
7.2. The buffer will also require an initialization function that initializes the
mutual-exclusion object mutex along with the empty and full semaphores.

The main() function will initialize the buffer and create the separate pro-
ducer and consumer threads. Once it has created the producer and consumer
threads, the main() function will sleep for a period of time and, upon awaken-
ing, will terminate the application. The main() function will be passed three
parameters on the command line:

1. How long to sleep before terminating

2. The number of producer threads

3. The number of consumer threads

A skeleton for this function appears in Figure 7.15.

P-40

Programming Projects

#include "buffer.h"

/* the buffer */
buffer item buffer[BUFFER SIZE];

int insert item(buffer item item) {
/* insert item into buffer
return 0 if successful, otherwise
return -1 indicating an error condition */

}

int remove item(buffer item *item) {
/* remove an object from buffer
placing it in item
return 0 if successful, otherwise
return -1 indicating an error condition */

}

Figure 7.14 Outline of buffer operations.

The Producer and Consumer Threads

The producer thread will alternate between sleeping for a random period of
time and inserting a random integer into the buffer. Random numbers will
be produced using the rand() function, which produces random integers
between 0 and RAND MAX. The consumer will also sleep for a random period
of time and, upon awakening, will attempt to remove an item from the buffer.
An outline of the producer and consumer threads appears in Figure 7.16.

#include "buffer.h"

int main(int argc, char *argv[]) {
/* 1. Get command line arguments argv[1],argv[2],argv[3] */
/* 2. Initialize buffer */
/* 3. Create producer thread(s) */
/* 4. Create consumer thread(s) */
/* 5. Sleep */
/* 6. Exit */

}

Figure 7.15 Outline of skeleton program.

P-41

Chapter 7 Synchronization Examples

#include <stdlib.h> /* required for rand() */
#include "buffer.h"

void *producer(void *param) {
buffer item item;

while (true) {
/* sleep for a random period of time */
sleep(...);
/* generate a random number */
item = rand();
if (insert item(item))

fprintf("report error condition");
else

printf("producer produced %d∖n",item);
}

void *consumer(void *param) {
buffer item item;

while (true) {
/* sleep for a random period of time */
sleep(...);
if (remove item(&item))

fprintf("report error condition");
else

printf("consumer consumed %d∖n",item);
}

Figure 7.16 An outline of the producer and consumer threads.

As noted earlier, you can solve this problem using either Pthreads or the
Windows API. In the following sections, we supply more information on each
of these choices.

Pthreads Thread Creation and Synchronization

Creating threads using the Pthreads API is discussed in Section 4.4.1. Coverage
of mutex locks and semaphores using Pthreads is provided in Section 7.3.
Refer to those sections for specific instructions on Pthreads thread creation and
synchronization.

Windows Threads

Section 4.4.2 discusses thread creation using the Windows API. Refer to that
section for specific instructions on creating threads.

P-42

Programming Projects

Windows Mutex Locks

Mutex locks are a type of dispatcher object, as described in Section 7.2.1. The
following illustrates how to create a mutex lock using the CreateMutex()
function:

#include <windows.h>

HANDLE Mutex;
Mutex = CreateMutex(NULL, FALSE, NULL);

The first parameter refers to a security attribute for the mutex lock. By setting
this attribute to NULL, we prevent any children of the process from creating this
mutex lock to inherit the handle of the lock. The second parameter indicates
whether the creator of themutex lock is the lock’s initial owner. Passing a value
of FALSE indicates that the thread creating the mutex is not the initial owner.
(We shall soon see how mutex locks are acquired.) The third parameter allows
us to name themutex.However, becausewe provide a value of NULL, we do not
name the mutex. If successful, CreateMutex() returns a HANDLE to the mutex
lock; otherwise, it returns NULL.

In Section 7.2.1, we identified dispatcher objects as being either signaled or
nonsignaled. A signaled dispatcher object (such as a mutex lock) is available
for ownership. Once it is acquired, it moves to the nonsignaled state. When it
is released, it returns to signaled.

Mutex locks are acquired by invoking the WaitForSingleObject() func-
tion. The function is passed the HANDLE to the lock along with a flag indicating
how long towait. The following code demonstrates how themutex lock created
above can be acquired:

WaitForSingleObject(Mutex, INFINITE);

The parameter value INFINITE indicates that we will wait an infinite amount
of time for the lock to become available. Other values could be used that would
allow the calling thread to time out if the lock did not become available within
a specified time. If the lock is in a signaled state, WaitForSingleObject()
returns immediately, and the lock becomes nonsignaled. A lock is released
(moves to the signaled state) by invoking ReleaseMutex()—for example, as
follows:

ReleaseMutex(Mutex);

Windows Semaphores

Semaphores in the Windows API are dispatcher objects and thus use the same
signaling mechanism as mutex locks. Semaphores are created as follows:

#include <windows.h>

HANDLE Sem;
Sem = CreateSemaphore(NULL, 1, 5, NULL);

P-43

Chapter 7 Synchronization Examples

The first and last parameters identify a security attribute and a name for the
semaphore, similar towhatwe described formutex locks. The second and third
parameters indicate the initial value and maximum value of the semaphore. In
this instance, the initial value of the semaphore is 1, and its maximum value
is 5. If successful, CreateSemaphore() returns a HANDLE to the mutex lock;
otherwise, it returns NULL.

Semaphores are acquired with the same WaitForSingleObject() func-
tion as mutex locks. We acquire the semaphore Sem created in this example by
using the following statement:

WaitForSingleObject(Sem, INFINITE);

If the value of the semaphore is > 0, the semaphore is in the signaled state
and thus is acquired by the calling thread. Otherwise, the calling thread blocks
indefinitely—as we are specifying INFINITE—until the semaphore returns to
the signaled state.

The equivalent of the signal() operation for Windows semaphores is the
ReleaseSemaphore() function. This function is passed three parameters:

1. The HANDLE of the semaphore

2. How much to increase the value of the semaphore

3. Apointer to the previous value of the semaphore

We can use the following statement to increase Sem by 1:

ReleaseSemaphore(Sem, 1, NULL);

Both ReleaseSemaphore() and ReleaseMutex() return a nonzero value if
successful and 0 otherwise.

P-44

http://scholar.google.com/scholar?hl/en&q=D A Solomon and M E Russinovich Inside Microsoft Windows 2000 ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=J M Hart Windows System Programming ThirdEdition
http://scholar.google.com/scholar?hl/en&q=C Breshears The Art of Concurrency
http://codex.cs.yale.edu/avi/os-book/BIB/NOT.html
http://openmp.org
http://scholar.google.com/scholar?hl/en&q=S Oaks Java PerformanceThe Definitive Guide
http://scholar.google.com/scholar?hl/en&q=B Goetz and T Peirls and J Bloch and J Bowbeer and D Holmes and D Lea Java Concurrency in Practice
http://scholar.google.com/scholar?hl/en&q=C Breshears The Art of Concurrency
http://scholar.google.com/scholar?hl/en&q=C Breshears The Art of Concurrency
http://scholar.google.com/scholar?hl/en&q=B Goetz and T Peirls and J Bloch and J Bowbeer and D Holmes and D Lea Java Concurrency in Practice
http://scholar.google.com/scholar?hl/en&q=B Goetz and T Peirls and J Bloch and J Bowbeer and D Holmes and D Lea Java Concurrency in Practice

8CHAPTER

Deadlocks

In a multiprogramming environment, several threads may compete for a finite
number of resources. A thread requests resources; if the resources are not
available at that time, the thread enters a waiting state. Sometimes, a waiting
thread can never again change state, because the resources it has requested are
held by otherwaiting threads. This situation is called a deadlock.We discussed
this issue briefly in Chapter 6 as a form of liveness failure. There, we defined
deadlock as a situation in which every process in a set of processes is waiting for an
event that can be caused only by another process in the set.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: “When two
trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone.”

In this chapter, we describe methods that application developers as well
as operating-system programmers can use to prevent or deal with dead-
locks. Although some applications can identify programs that may dead-
lock, operating systems typically do not provide deadlock-prevention facil-
ities, and it remains the responsibility of programmers to ensure that they
design deadlock-free programs. Deadlock problems—aswell as other liveness
failures—are becoming more challenging as demand continues for increased
concurrency and parallelism on multicore systems.

CHAPTER OBJECTIVES

• Illustrate how deadlock can occur when mutex locks are used.

• Define the four necessary conditions that characterize deadlock.

• Identify a deadlock situation in a resource allocation graph.

• Evaluate the four different approaches for preventing deadlocks.

• Apply the banker’s algorithm for deadlock avoidance.

• Apply the deadlock detection algorithm.

• Evaluate approaches for recovering from deadlock.

317

318 Chapter 8 Deadlocks

8.1 System Model

A system consists of a finite number of resources to be distributed among a
number of competing threads. The resources may be partitioned into several
types (or classes), each consisting of some number of identical instances. CPU
cycles, files, and I/O devices (such as network interfaces and DVD drives) are
examples of resource types. If a system has four CPUs, then the resource type
CPU has four instances. Similarly, the resource type network may have two
instances. If a thread requests an instance of a resource type, the allocation
of any instance of the type should satisfy the request. If it does not, then the
instances are not identical, and the resource type classes have not been defined
properly.

The various synchronization tools discussed in Chapter 6, such as mutex
locks and semaphores, are also system resources; and on contemporary com-
puter systems, they are the most common sources of deadlock. However, def-
inition is not a problem here. A lock is typically associated with a specific data
structure—that is, one lock may be used to protect access to a queue, another
to protect access to a linked list, and so forth. For that reason, each instance of
a lock is typically assigned its own resource class.

Note that throughout this chapter we discuss kernel resources, but threads
may use resources from other processes (for example, via interprocess commu-
nication), and those resource uses can also result in deadlock. Such deadlocks
are not the concern of the kernel and thus not described here.

A thread must request a resource before using it and must release the
resource after using it. A thread may request as many resources as it requires
to carry out its designated task. Obviously, the number of resources requested
may not exceed the total number of resources available in the system. In other
words, a thread cannot request two network interfaces if the system has only
one.

Under the normal mode of operation, a thread may utilize a resource in
only the following sequence:

1. Request. The thread requests the resource. If the request cannot be
granted immediately (for example, if a mutex lock is currently held by
another thread), then the requesting thread must wait until it can acquire
the resource.

2. Use. The thread can operate on the resource (for example, if the resource
is a mutex lock, the thread can access its critical section).

3. Release. The thread releases the resource.

The request and release of resources may be system calls, as explained in
Chapter 2. Examples are the request() and release() of a device, open()
and close() of a file, and allocate() and free() memory system calls.
Similarly, as we saw in Chapter 6, request and release can be accomplished
through the wait() and signal() operations on semaphores and through
acquire() and release() of a mutex lock. For each use of a kernel-managed
resource by a thread, the operating system checks to make sure that the thread
has requested and has been allocated the resource. A system table records
whether each resource is free or allocated. For each resource that is allocated,

8.2 Deadlock in Multithreaded Applications 319

the table also records the thread to which it is allocated. If a thread requests
a resource that is currently allocated to another thread, it can be added to a
queue of threads waiting for this resource.

Aset of threads is in a deadlocked statewhen every thread in the set iswait-
ing for an event that can be caused only by another thread in the set. The events
with which we are mainly concerned here are resource acquisition and release.
The resources are typically logical (for example, mutex locks, semaphores, and
files); however, other types of events may result in deadlocks, including read-
ing from a network interface or the IPC (interprocess communication) facilities
discussed in Chapter 3.

To illustrate a deadlocked state, we refer back to the dining-philosophers
problem from Section 7.1.3. In this situation, resources are represented by
chopsticks. If all the philosophers get hungry at the same time, and each
philosopher grabs the chopstick on her left, there are no longer any available
chopsticks. Each philosopher is then blocked waiting for her right chopstick to
become available.

Developers of multithreaded applications must remain aware of the pos-
sibility of deadlocks. The locking tools presented in Chapter 6 are designed
to avoid race conditions. However, in using these tools, developers must pay
careful attention to how locks are acquired and released. Otherwise, deadlock
can occur, as described next.

8.2 Deadlock in Multithreaded Applications

Prior to examining how deadlock issues can be identified and man-
aged, we first illustrate how deadlock can occur in a multithreaded
Pthread program using POSIX mutex locks. The pthread mutex init()
function initializes an unlocked mutex. Mutex locks are acquired and
released using pthread mutex lock() and pthread mutex unlock(),
respectively. If a thread attempts to acquire a locked mutex, the call to
pthread mutex lock() blocks the thread until the owner of the mutex lock
invokes pthread mutex unlock().

Twomutex locks are created and initialized in the following code example:

pthread mutex t first mutex;
pthread mutex t second mutex;

pthread mutex init(&first mutex,NULL);
pthread mutex init(&second mutex,NULL);

Next, two threads—thread one and thread two—are created, and both
these threads have access to both mutex locks. thread one and thread two
run in the functions do work one() and do work two(), respectively, as
shown in Figure 8.1.

In this example, thread one attempts to acquire the mutex locks in the
order (1) first mutex, (2) second mutex. At the same time, thread two
attempts to acquire the mutex locks in the order (1) second mutex, (2)
first mutex. Deadlock is possible if thread one acquires first mutex
while thread two acquires second mutex.

320 Chapter 8 Deadlocks

/* thread one runs in this function */
void *do work one(void *param)
{

pthread mutex lock(&first mutex);
pthread mutex lock(&second mutex);
/**
* Do some work
*/

pthread mutex unlock(&second mutex);
pthread mutex unlock(&first mutex);

pthread exit(0);
}

/* thread two runs in this function */
void *do work two(void *param)
{

pthread mutex lock(&second mutex);
pthread mutex lock(&first mutex);
/**
* Do some work
*/

pthread mutex unlock(&first mutex);
pthread mutex unlock(&second mutex);

pthread exit(0);
}

Figure 8.1 Deadlock example.

Note that, even though deadlock is possible, it will not occur if thread one
can acquire and release the mutex locks for first mutex and second mutex
before thread two attempts to acquire the locks. And, of course, the order
in which the threads run depends on how they are scheduled by the CPU
scheduler. This example illustrates a problem with handling deadlocks: it is
difficult to identify and test for deadlocks that may occur only under certain
scheduling circumstances.

8.2.1 Livelock

Livelock is another form of liveness failure. It is similar to deadlock; both
prevent two or more threads from proceeding, but the threads are unable to
proceed for different reasons. Whereas deadlock occurs when every thread
in a set is blocked waiting for an event that can be caused only by another
thread in the set, livelock occurswhen a thread continuously attempts an action
that fails. Livelock is similar to what sometimes happens when two people
attempt to pass in a hallway: One moves to his right, the other to her left, still
obstructing each other’s progress. Then he moves to his left, and she moves

8.3 Deadlock Characterization 321

to her right, and so forth. They aren’t blocked, but they aren’t making any
progress.

Livelock can be illustrated with the Pthreads pthread mutex trylock()
function, which attempts to acquire a mutex lock without blocking. The code
example in Figure 8.2 rewrites the example from Figure 8.1 so that it now uses
pthread mutex trylock(). This situation can lead to livelock if thread one
acquires first mutex, followed by thread two acquiring second mutex.
Each thread then invokes pthread mutex trylock(), which fails, releases
their respective locks, and repeats the same actions indefinitely.

Livelock typically occurs when threads retry failing operations at the same
time. It thus can generally be avoided by having each thread retry the failing
operation at random times. This is precisely the approach taken by Ethernet
networks when a network collision occurs. Rather than trying to retransmit a
packet immediately after a collision occurs, a host involved in a collision will
backoff a random period of time before attempting to transmit again.

Livelock is less common than deadlock but nonetheless is a challenging
issue indesigning concurrent applications, and like deadlock, itmay only occur
under specific scheduling circumstances.

8.3 Deadlock Characterization

In the previous section we illustrated how deadlock could occur in multi-
threaded programming using mutex locks. We now look more closely at con-
ditions that characterize deadlock.

8.3.1 Necessary Conditions

Adeadlock situation can arise if the following four conditions hold simultane-
ously in a system:

1. Mutual exclusion. At least one resource must be held in a nonsharable
mode; that is, only one thread at a time can use the resource. If another
thread requests that resource, the requesting threadmust be delayeduntil
the resource has been released.

2. Hold and wait. A thread must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
other threads.

3. No preemption. Resources cannot be preempted; that is, a resource can
be released only voluntarily by the thread holding it, after that thread has
completed its task.

4. Circular wait. A set {T0, T1, ..., Tn} of waiting threadsmust exist such that
T0 is waiting for a resource held by T1, T1 is waiting for a resource held
by T2, ..., Tn−1 is waiting for a resource held by Tn, and Tn is waiting for a
resource held by T0.

We emphasize that all four conditions must hold for a deadlock to occur.
The circular-wait condition implies the hold-and-wait condition, so the four

322 Chapter 8 Deadlocks

/* thread one runs in this function */
void *do work one(void *param)
{

int done = 0;

while (!done) {
pthread mutex lock(&first mutex);
if (pthread mutex trylock(&second mutex)) {

/**
* Do some work
*/

pthread mutex unlock(&second mutex);
pthread mutex unlock(&first mutex);
done = 1;

}
else

pthread mutex unlock(&first mutex);
}

pthread exit(0);
}

/* thread two runs in this function */
void *do work two(void *param)
{

int done = 0;

while (!done) {
pthread mutex lock(&second mutex);
if (pthread mutex trylock(&first mutex)) {

/**
* Do some work
*/

pthread mutex unlock(&first mutex);
pthread mutex unlock(&second mutex);
done = 1;

}
else

pthread mutex unlock(&second mutex);
}

pthread exit(0);
}

Figure 8.2 Livelock example.

8.3 Deadlock Characterization 323

first_mutex second_mutex

thread_twothread_one

. .

Figure 8.3 Resource-allocation graph for program in Figure 8.1.

conditions are not completely independent. We shall see in Section 8.5, how-
ever, that it is useful to consider each condition separately.

8.3.2 Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called
a system resource-allocation graph. This graph consists of a set of vertices V
and a set of edges E. The set of verticesV is partitioned into two different types
of nodes: T = {T1, T2, ..., Tn}, the set consisting of all the active threads in the
system, and R = {R1, R2, ..., Rm}, the set consisting of all resource types in the
system.

A directed edge from thread Ti to resource type Rj is denoted by Ti → Rj;
it signifies that thread Ti has requested an instance of resource type Rj and is
currently waiting for that resource. A directed edge from resource type Rj to
thread Ti is denoted by Rj → Ti; it signifies that an instance of resource type
Rj has been allocated to thread Ti. A directed edge Ti → Rj is called a request
edge; a directed edge Rj → Ti is called an assignment edge.

Pictorially, we represent each thread Ti as a circle and each resource type
Rj as a rectangle. As a simple example, the resource allocation graph shown
in Figure 8.3 illustrates the deadlock situation from the program in Figure 8.1.
Since resource type Rj may have more than one instance, we represent each
such instance as a dot within the rectangle. Note that a request edge points
only to the rectangle Rj, whereas an assignment edge must also designate one
of the dots in the rectangle.

When thread Ti requests an instance of resource type Rj, a request edge is
inserted in the resource-allocation graph. When this request can be fulfilled,
the request edge is instantaneously transformed to an assignment edge.When
the thread no longer needs access to the resource, it releases the resource. As a
result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 8.4 depicts the following
situation.

• The sets T, R, and E:

◦ T = {T1, T2, T3}
◦ R = {R1, R2, R3, R4}

324 Chapter 8 Deadlocks

R1 R3

R2

R4

T3T2T1

Figure 8.4 Resource-allocation graph.

◦ E = {T1 → R1, T2 → R3, R1 → T2, R2 → T2, R2 → T1, R3 → T3}
• Resource instances:

◦ One instance of resource type R1

◦ Two instances of resource type R2

◦ One instance of resource type R3

◦ Three instances of resource type R4

• Thread states:

◦ Thread T1 is holding an instance of resource type R2 and is waiting for
an instance of resource type R1.

◦ Thread T2 is holding an instance of R1 and an instance of R2 and is
waiting for an instance of R3.

◦ Thread T3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can be shown that, if
the graph contains no cycles, then no thread in the system is deadlocked. If the
graph does contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each
of which has only a single instance, then a deadlock has occurred. Each thread
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph
depicted in Figure 8.4. Suppose that thread T3 requests an instance of resource
type R2. Since no resource instance is currently available, we add a request

8.3 Deadlock Characterization 325

R1 R3

R2

R4

T3T2T1

Figure 8.5 Resource-allocation graph with a deadlock.

edge T3 → R2 to the graph (Figure 8.5). At this point, two minimal cycles exist
in the system:

T1 → R1 → T2 → R3 → T3 → R2 → T1
T2 → R3 → T3 → R2 → T2

Threads T1, T2, and T3 are deadlocked. Thread T2 is waiting for the resource
R3, which is held by thread T3. Thread T3 is waiting for either thread T1 or
thread T2 to release resource R2. In addition, thread T1 is waiting for thread T2
to release resource R1.

Now consider the resource-allocation graph in Figure 8.6. In this example,
we also have a cycle:

T1 → R1 → T3 → R2 → T1

R2

R1

T3

T4

T2

T1

Figure 8.6 Resource-allocation graph with a cycle but no deadlock.

326 Chapter 8 Deadlocks

However, there is no deadlock. Observe that thread T4 may release its instance
of resource type R2. That resource can then be allocated to T3, breaking the
cycle.

In summary, if a resource-allocation graph does not have a cycle, then the
system is not in a deadlocked state. If there is a cycle, then the system may or
may not be in a deadlocked state. This observation is important when we deal
with the deadlock problem.

8.4 Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three
ways:

• We can ignore the problem altogether and pretend that deadlocks never
occur in the system.

• We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will never enter a deadlocked state.

• We can allow the system to enter a deadlocked state, detect it, and recover.

The first solution is the one used by most operating systems, including Linux
and Windows. It is then up to kernel and application developers to write
programs that handle deadlocks, typically using approaches outlined in the
second solution. Some systems—such as databases—adopt the third solution,
allowing deadlocks to occur and then managing the recovery.

Next, we elaborate briefly on the three methods for handling deadlocks.
Then, in Section 8.5 through Section 8.8, we present detailed algorithms. Before
proceeding,we shouldmention that some researchers have argued that none of
the basic approaches alone is appropriate for the entire spectrum of resource-
allocation problems in operating systems. The basic approaches can be com-
bined, however, allowing us to select an optimal approach for each class of
resources in a system.

To ensure that deadlocks never occur, the system can use either a deadlock-
prevention or a deadlock-avoidance scheme. Deadlock prevention provides a
set of methods to ensure that at least one of the necessary conditions (Section
8.3.1) cannot hold. These methods prevent deadlocks by constraining how
requests for resources can be made. We discuss these methods in Section 8.5.

Deadlock avoidance requires that the operating system be given addi-
tional information in advance concerningwhich resources a threadwill request
and use during its lifetime. With this additional knowledge, the operating sys-
tem can decide for each request whether or not the thread should wait. To
decide whether the current request can be satisfied or must be delayed, the
systemmust consider the resources currently available, the resources currently
allocated to each thread, and the future requests and releases of each thread.
We discuss these schemes in Section 8.6.

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situationmay arise. In this environment,
the system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from

8.5 Deadlock Prevention 327

the deadlock (if a deadlock has indeed occurred). We discuss these issues in
Section 8.7 and Section 8.8.

In the absence of algorithms to detect and recover from deadlocks, wemay
arrive at a situation in which the system is in a deadlocked state yet has no
way of recognizing what has happened. In this case, the undetected deadlock
will cause the system’s performance to deteriorate, because resources are being
held by threads that cannot run and because more and more threads, as they
make requests for resources, will enter a deadlocked state. Eventually, the
system will stop functioning and will need to be restarted manually.

Although this method may not seem to be a viable approach to the dead-
lock problem, it is nevertheless used in most operating systems, as mentioned
earlier. Expense is one important consideration. Ignoring the possibility of
deadlocks is cheaper than the other approaches. Since in many systems, dead-
locks occur infrequently (say, once per month), the extra expense of the other
methods may not seem worthwhile.

In addition, methods used to recover from other liveness conditions, such
as livelock, may be used to recover from deadlock. In some circumstances, a
system is suffering from a liveness failure but is not in a deadlocked state.
We see this situation, for example, with a real-time thread running at the
highest priority (or any thread running on a nonpreemptive scheduler) and
never returning control to the operating system. The systemmust havemanual
recoverymethods for such conditions andmay simply use those techniques for
deadlock recovery.

8.5 Deadlock Prevention

As we noted in Section 8.3.1, for a deadlock to occur, each of the four neces-
sary conditions must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock. We elaborate on this
approach by examining each of the four necessary conditions separately.

8.5.1 Mutual Exclusion

The mutual-exclusion condition must hold. That is, at least one resource must
be nonsharable. Sharable resources do not require mutually exclusive access
and thus cannot be involved in a deadlock. Read-only files are a good example
of a sharable resource. If several threads attempt to open a read-only file at
the same time, they can be granted simultaneous access to the file. A thread
never needs to wait for a sharable resource. In general, however, we cannot
prevent deadlocks by denying the mutual-exclusion condition, because some
resources are intrinsically nonsharable. For example, a mutex lock cannot be
simultaneously shared by several threads.

8.5.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system,wemust
guarantee that, whenever a thread requests a resource, it does not hold any
other resources. One protocol that we can use requires each thread to request
and be allocated all its resources before it begins execution. This is, of course,

328 Chapter 8 Deadlocks

impractical for most applications due to the dynamic nature of requesting
resources.

An alternative protocol allows a thread to request resources only when it
has none. A thread may request some resources and use them. Before it can
request any additional resources, it must release all the resources that it is
currently allocated.

Both these protocols have two main disadvantages. First, resource utiliza-
tionmay be low, since resourcesmay be allocated but unused for a long period.
For example, a thread may be allocated a mutex lock for its entire execution,
yet only require it for a short duration. Second, starvation is possible. A thread
that needs several popular resources may have to wait indefinitely, because at
least one of the resources that it needs is always allocated to some other thread.

8.5.3 No Preemption

The third necessary condition for deadlocks is that there be no preemption
of resources that have already been allocated. To ensure that this condition
does not hold, we can use the following protocol. If a thread is holding some
resources and requests another resource that cannot be immediately allocated
to it (that is, the thread must wait), then all resources the thread is currently
holding are preempted. In other words, these resources are implicitly released.
The preempted resources are added to the list of resources for which the thread
iswaiting. The threadwill be restarted onlywhen it can regain its old resources,
as well as the new ones that it is requesting.

Alternatively, if a thread requests some resources, we first check whether
they are available. If they are, we allocate them. If they are not, we check
whether they are allocated to some other thread that is waiting for additional
resources. If so, we preempt the desired resources from the waiting thread and
allocate them to the requesting thread. If the resources are neither available nor
held by a waiting thread, the requesting thread must wait. While it is waiting,
some of its resources may be preempted, but only if another thread requests
them. A thread can be restarted only when it is allocated the new resources
it is requesting and recovers any resources that were preempted while it was
waiting.

This protocol is often applied to resources whose state can be easily saved
and restored later, such as CPU registers and database transactions. It can-
not generally be applied to such resources as mutex locks and semaphores,
precisely the type of resources where deadlock occurs most commonly.

8.5.4 Circular Wait

The three options presented thus far for deadlock prevention are generally
impractical in most situations. However, the fourth and final condition for
deadlocks — the circular-wait condition — presents an opportunity for a
practical solution by invalidating one of the necessary conditions. One way
to ensure that this condition never holds is to impose a total ordering of
all resource types and to require that each thread requests resources in an
increasing order of enumeration.

To illustrate, we let R = {R1, R2, ..., Rm} be the set of resource types. We
assign to each resource type a unique integer number, which allows us to

8.5 Deadlock Prevention 329

compare two resources and to determine whether one precedes another in our
ordering. Formally,we define a one-to-one function F:R→N,whereN is the set
of natural numbers. We can accomplish this scheme in an application program
by developing an ordering among all synchronization objects in the system.
For example, the lock ordering in the Pthread program shown in Figure 8.1
could be

F(first mutex) = 1
F(second mutex) = 5

We can now consider the following protocol to prevent deadlocks: Each
thread can request resources only in an increasing order of enumeration. That
is, a thread can initially request an instance of a resource—say, Ri. After that,
the thread can request an instance of resource Rj if and only if F(Rj) > F(Ri).
For example, using the function defined above, a thread that wants to use
both first mutex and second mutex at the same time must first request
first mutex and then second mutex. Alternatively, we can require that a
thread requesting an instance of resource Rj must have released any resources
Ri such that F(Ri)≥ F(Rj). Note also that if several instances of the same resource
type are needed, a single request for all of them must be issued.

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by assuming that a circular wait exists
(proof by contradiction). Let the set of threads involved in the circular wait be
{T0, T1, ..., Tn}, where Ti is waiting for a resource Ri, which is held by thread
Ti+1. (Modulo arithmetic is used on the indexes, so that Tn is waiting for a
resource Rn held by T0.) Then, since thread Ti+1 is holding resource Ri while
requesting resource Ri+1, we must have F(Ri) < F(Ri+1) for all i. But this condi-
tionmeans that F(R0)< F(R1)< ...< F(Rn)< F(R0). By transitivity, F(R0) < F(R0),
which is impossible. Therefore, there can be no circular wait.

Keep in mind that developing an ordering, or hierarchy, does not in itself
prevent deadlock. It is up to application developers to write programs that
follow the ordering. However, establishing a lock ordering can be difficult,
especially on a system with hundreds—or thousands—of locks. To address
this challenge, many Java developers have adopted the strategy of using
the method System.identityHashCode(Object) (which returns the default
hash code value of the Object parameter it has been passed) as the function
for ordering lock acquisition.

It is also important to note that imposing a lock ordering does not guar-
antee deadlock prevention if locks can be acquired dynamically. For exam-
ple, assume we have a function that transfers funds between two accounts.
To prevent a race condition, each account has an associated mutex lock that
is obtained from a get lock() function such as that shown in Figure 8.7.
Deadlock is possible if two threads simultaneously invoke the transaction()
function, transposing different accounts. That is, one thread might invoke

transaction(checking account, savings account, 25.0)

and another might invoke

transaction(savings account, checking account, 50.0)

330 Chapter 8 Deadlocks

void transaction(Account from, Account to, double amount)
{

mutex lock1, lock2;
lock1 = get lock(from);
lock2 = get lock(to);

acquire(lock1);
acquire(lock2);

withdraw(from, amount);
deposit(to, amount);

release(lock2);
release(lock1);

}

Figure 8.7 Deadlock example with lock ordering.

8.6 Deadlock Avoidance

Deadlock-prevention algorithms, as discussed in Section 8.5, prevent dead-
locks by limiting how requests can be made. The limits ensure that at least
one of the necessary conditions for deadlock cannot occur. Possible side effects
of preventing deadlocks by this method, however, are low device utilization
and reduced system throughput.

An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a system
with resources R1 and R2, the system might need to know that thread P
will request first R1 and then R2 before releasing both resources, whereas
thread Q will request R2 and then R1. With this knowledge of the complete
sequence of requests and releases for each thread, the system can decide for
each request whether or not the thread should wait in order to avoid a possible
future deadlock. Each request requires that in making this decision the system
consider the resources currently available, the resources currently allocated to
each thread, and the future requests and releases of each thread.

The various algorithms that use this approach differ in the amount and
type of information required. The simplest andmost usefulmodel requires that
each thread declare themaximum number of resources of each type that it may
need. Given this a priori information, it is possible to construct an algorithm
that ensures that the system will never enter a deadlocked state. A deadlock-
avoidance algorithm dynamically examines the resource-allocation state to
ensure that a circular-wait condition can never exist. The resource-allocation
state is defined by the number of available and allocated resources and the
maximum demands of the threads. In the following sections, we explore two
deadlock-avoidance algorithms.

8.6 Deadlock Avoidance 331

LINUX LOCKDEP TOOL

Although ensuring that resources are acquired in the proper order is the
responsibility of kernel and application developers, certain software can be
used to verify that locks are acquired in the proper order. To detect possible
deadlocks, Linux provides lockdep, a tool with rich functionality that can be
used to verify locking order in the kernel. lockdep is designed to be enabled
on a running kernel as it monitors usage patterns of lock acquisitions and
releases against a set of rules for acquiring and releasing locks. Two examples
follow, but note that lockdep provides significantly more functionality than
what is described here:

• The order in which locks are acquired is dynamically maintained by the
system. If lockdep detects locks being acquired out of order, it reports a
possible deadlock condition.

• In Linux, spinlocks can be used in interrupt handlers. A possible source
of deadlock occurs when the kernel acquires a spinlock that is also used
in an interrupt handler. If the interrupt occurs while the lock is being
held, the interrupt handler preempts the kernel code currently holding
the lock and then spins while attempting to acquire the lock, resulting
in deadlock. The general strategy for avoiding this situation is to disable
interrupts on the current processor before acquiring a spinlock that is
also used in an interrupt handler. If lockdep detects that interrupts are
enabledwhile kernel code acquires a lock that is also used in an interrupt
handler, it will report a possible deadlock scenario.

lockdep was developed to be used as a tool in developing or modifying
code in the kernel and not to be used on production systems, as it can
significantly slow down a system. Its purpose is to test whether software
such as a new device driver or kernel module provides a possible source
of deadlock. The designers of lockdep have reported that within a few
years of its development in 2006, the number of deadlocks from system
reports had been reduced by an order of magnitude.âŁž Although lockdep
was originally designed only for use in the kernel, recent revisions of this
tool can now be used for detecting deadlocks in user applications using
Pthreads mutex locks. Further details on the lockdep tool can be found at
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt.

8.6.1 Safe State

A state is safe if the system can allocate resources to each thread (up to its
maximum) in some order and still avoid a deadlock. More formally, a system
is in a safe state only if there exists a safe sequence. A sequence of threads
<T1, T2, ..., Tn> is a safe sequence for the current allocation state if, for each
Ti, the resource requests that Ti can still make can be satisfied by the currently
available resources plus the resources held by all Tj, with j < i. In this situation,
if the resources that Ti needs are not immediately available, then Ti can wait
until all Tj have finished. When they have finished, Ti can obtain all of its

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt

332 Chapter 8 Deadlocks

deadlock

unsafe

safe

Figure 8.8 Safe, unsafe, and deadlocked state spaces.

needed resources, complete its designated task, return its allocated resources,
and terminate. When Ti terminates, Ti+1 can obtain its needed resources, and
so on. If no such sequence exists, then the system state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is
an unsafe state. Not all unsafe states are deadlocks, however (Figure 8.8).
An unsafe state may lead to a deadlock. As long as the state is safe, the
operating system can avoid unsafe (and deadlocked) states. In an unsafe state,
the operating system cannot prevent threads from requesting resources in such
away that a deadlock occurs. The behavior of the threads controls unsafe states.

To illustrate, consider a system with twelve resources and three threads:
T0, T1, and T2. Thread T0 requires ten resources, thread T1 may need as many
as four, and thread T2 may need up to nine resources. Suppose that, at time
t0, thread T0 is holding five resources, thread T1 is holding two resources, and
thread T2 is holding two resources. (Thus, there are three free resources.)

Maximum Needs Current Needs
T0 10 5
T1 4 2
T2 9 2

At time t0, the system is in a safe state. The sequence <T1, T0, T2> satisfies
the safety condition. Thread T1 can immediately be allocated all its resources
and then return them (the systemwill then have five available resources); then
threadT0 can get all its resources and return them (the systemwill then have ten
available resources); and finally thread T2 can get all its resources and return
them (the system will then have all twelve resources available).

Asystem can go from a safe state to an unsafe state. Suppose that, at time t1,
thread T2 requests and is allocated one more resource. The system is no longer
in a safe state. At this point, only thread T1 can be allocated all its resources.
When it returns them, the system will have only four available resources.
Since thread T0 is allocated five resources but has a maximum of ten, it may
request five more resources. If it does so, it will have to wait, because they are
unavailable. Similarly, thread T2 may request six additional resources and have
to wait, resulting in a deadlock. Our mistake was in granting the request from
threadT2 for onemore resource. If we hadmadeT2 wait until either of the other

8.6 Deadlock Avoidance 333

threads had finished and released its resources, then we could have avoided
the deadlock.

Given the concept of a safe state, we can define avoidance algorithms that
ensure that the systemwill never deadlock. The idea is simply to ensure that the
system will always remain in a safe state. Initially, the system is in a safe state.
Whenever a thread requests a resource that is currently available, the system
must decide whether the resource can be allocated immediately or the thread
must wait. The request is granted only if the allocation leaves the system in a
safe state.

In this scheme, if a thread requests a resource that is currently available, it
may still have to wait. Thus, resource utilization may be lower than it would
otherwise be.

8.6.2 Resource-Allocation-Graph Algorithm

If we have a resource-allocation systemwith only one instance of each resource
type, we can use a variant of the resource-allocation graph defined in Section
8.3.2 for deadlock avoidance. In addition to the request and assignment edges
already described, we introduce a new type of edge, called a claim edge. A
claim edgeTi→Rj indicates that threadTimay request resourceRj at some time
in the future. This edge resembles a request edge in direction but is represented
in the graph by a dashed line. When thread Ti requests resource Rj, the claim
edge Ti → Rj is converted to a request edge. Similarly, when a resource Rj is
released by Ti, the assignment edge Rj → Ti is reconverted to a claim edge Ti →
Rj.

Note that the resources must be claimed a priori in the system. That is,
before thread Ti starts executing, all its claim edges must already appear in the
resource-allocation graph.We can relax this condition by allowing a claim edge
Ti → Rj to be added to the graph only if all the edges associated with thread Ti
are claim edges.

Now suppose that thread Ti requests resource Rj. The request can be
granted only if converting the request edge Ti → Rj to an assignment edge
Rj → Ti does not result in the formation of a cycle in the resource-allocation
graph. We check for safety by using a cycle-detection algorithm. An algorithm
for detecting a cycle in this graph requires an order of n2 operations, where n
is the number of threads in the system.

If no cycle exists, then the allocation of the resource will leave the system
in a safe state. If a cycle is found, then the allocation will put the system in
an unsafe state. In that case, thread Ti will have to wait for its requests to be
satisfied.

To illustrate this algorithm, we consider the resource-allocation graph of
Figure 8.9. Suppose that T2 requests R2. Although R2 is currently free, we
cannot allocate it to T2, since this action will create a cycle in the graph (Figure
8.10). A cycle, as mentioned, indicates that the system is in an unsafe state. If
T1 requests R2, and T2 requests R1, then a deadlock will occur.

8.6.3 Banker’s Algorithm

The resource-allocation-graph algorithm is not applicable to a resource-
allocation system with multiple instances of each resource type. The

334 Chapter 8 Deadlocks

R1

R2

T2T1

Figure 8.9 Resource-allocation graph for deadlock avoidance.

deadlock-avoidance algorithm that we describe next is applicable to such a
system but is less efficient than the resource-allocation graph scheme. This
algorithm is commonly known as the banker’s algorithm. The name was
chosen because the algorithm could be used in a banking system to ensure
that the bank never allocated its available cash in such a way that it could no
longer satisfy the needs of all its customers.

When a new thread enters the system, it must declare the maximum num-
ber of instances of each resource type that it may need. This number may not
exceed the total number of resources in the system. When a user requests a
set of resources, the system must determine whether the allocation of these
resources will leave the system in a safe state. If it will, the resources are allo-
cated; otherwise, the threadmust wait until some other thread releases enough
resources.

Several data structures must be maintained to implement the banker’s
algorithm. These data structures encode the state of the resource-allocation
system. We need the following data structures, where n is the number of
threads in the system and m is the number of resource types:

• Available. Avector of lengthm indicates the number of available resources
of each type. If Available[j] equals k, then k instances of resource type Rj
are available.

R1

R2

T2T1

Figure 8.10 An unsafe state in a resource-allocation graph.

8.6 Deadlock Avoidance 335

• Max. An n × m matrix defines the maximum demand of each thread.
If Max[i][j] equals k, then thread Ti may request at most k instances of
resource type Rj.

• Allocation. An n × mmatrix defines the number of resources of each type
currently allocated to each thread. If Allocation[i][j] equals k, then thread
Ti is currently allocated k instances of resource type Rj.

• Need. An n × m matrix indicates the remaining resource need of each
thread. If Need[i][j] equals k, then thread Ti may need k more instances of
resource type Rj to complete its task. Note that Need[i][j] equals Max[i][j]
− Allocation[i][j].

These data structures vary over time in both size and value.
To simplify the presentation of the banker’s algorithm, we next establish

some notation. LetX andY be vectors of length n.We say thatX ≤Y if and only
if X[i] ≤ Y[i] for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y = (0,3,2,1),
then Y ≤ X. In addition, Y < X if Y ≤ X and Y ≠ X.

We can treat each row in the matrices Allocation and Need as vectors
and refer to them as Allocationi and Needi. The vector Allocationi specifies
the resources currently allocated to thread Ti; the vector Needi specifies the
additional resources that thread Ti may still request to complete its task.

8.6.3.1 Safety Algorithm

We can now present the algorithm for finding out whether or not a system is
in a safe state. This algorithm can be described as follows:

1. LetWork and Finish be vectors of length m and n, respectively. Initialize
Work = Available and Finish[i] = false for i = 0, 1, ..., n − 1.

2. Find an index i such that both

a. Finish[i] == false

b. Needi ≤Work

If no such i exists, go to step 4.

3. Work =Work + Allocationi
Finish[i] = true
Go to step 2.

4. If Finish[i] == true for all i, then the system is in a safe state.

This algorithmmay require an order ofm × n2 operations to determinewhether
a state is safe.

8.6.3.2 Resource-Request Algorithm

Next, we describe the algorithm for determining whether requests can be
safely granted. Let Requesti be the request vector for thread Ti. If Requesti
[j] == k, then thread Ti wants k instances of resource type Rj. When a request
for resources is made by thread Ti, the following actions are taken:

336 Chapter 8 Deadlocks

1. IfRequesti ≤Needi, go to step 2. Otherwise, raise an error condition, since
the thread has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise, Ti must wait, since the
resources are not available.

3. Have the system pretend to have allocated the requested resources to
thread Ti by modifying the state as follows:

Available = Available–Requesti
Allocationi = Allocationi + Requesti
Needi = Needi–Requesti

If the resulting resource-allocation state is safe, the transaction is com-
pleted, and thread Ti is allocated its resources. However, if the new state
is unsafe, then Ti must wait for Requesti, and the old resource-allocation
state is restored.

8.6.3.3 An Illustrative Example

To illustrate the use of the banker’s algorithm, consider a system with five
threads T0 through T4 and three resource types A, B, and C. Resource type A
has ten instances, resource type B has five instances, and resource type C has
seven instances. Suppose that the following snapshot represents the current
state of the system:

Allocation Max Available
A B C A B C A B C

T0 0 1 0 7 5 3 3 3 2
T1 2 0 0 3 2 2
T2 3 0 2 9 0 2
T3 2 1 1 2 2 2
T4 0 0 2 4 3 3

The content of the matrix Need is defined to be Max − Allocation and is as
follows:

Need
A B C

T0 7 4 3
T1 1 2 2
T2 6 0 0
T3 0 1 1
T4 4 3 1

We claim that the system is currently in a safe state. Indeed, the sequence
<T1, T3, T4, T2, T0> satisfies the safety criteria. Suppose now that thread
T1 requests one additional instance of resource type A and two instances of
resource type C, so Request1 = (1,0,2). To decide whether this request can be
immediately granted, we first check that Request1 ≤ Available—that is, that

8.7 Deadlock Detection 337

(1,0,2) ≤ (3,3,2), which is true. We then pretend that this request has been
fulfilled, and we arrive at the following new state:

Allocation Need Available
A B C A B C A B C

T0 0 1 0 7 4 3 2 3 0
T1 3 0 2 0 2 0
T2 3 0 2 6 0 0
T3 2 1 1 0 1 1
T4 0 0 2 4 3 1

We must determine whether this new system state is safe. To do so, we
execute our safety algorithm and find that the sequence <T1, T3, T4, T0, T2>

satisfies the safety requirement. Hence, we can immediately grant the request
of thread T1.

You should be able to see, however, that when the system is in this state, a
request for (3,3,0) by T4 cannot be granted, since the resources are not available.
Furthermore, a request for (0,2,0) by T0 cannot be granted, even though the
resources are available, since the resulting state is unsafe.

We leave it as a programming exercise for students to implement the
banker’s algorithm.

8.7 Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situationmay occur. In this environment,
the system may provide:

• An algorithm that examines the state of the system to determine whether
a deadlock has occurred

• An algorithm to recover from the deadlock

Next, we discuss these two requirements as they pertain to systems with
only a single instance of each resource type, as well as to systems with sev-
eral instances of each resource type. At this point, however, we note that a
detection-and-recovery scheme requires overhead that includes not only the
run-time costs of maintaining the necessary information and executing the
detection algorithm but also the potential losses inherent in recovering from
a deadlock.

8.7.1 Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock-
detection algorithm that uses a variant of the resource-allocation graph, called
a wait-for graph. We obtain this graph from the resource-allocation graph by
removing the resource nodes and collapsing the appropriate edges.

More precisely, an edge from Ti to Tj in a wait-for graph implies that thread
Ti is waiting for thread Tj to release a resource that Ti needs. An edge Ti → Tj

338 Chapter 8 Deadlocks

T3

T5

T4

T2T1

R2

R1 R3 R4

R5

T3

T5

T4

T2T1

(b)(a)

Figure 8.11 (a) Resource-allocation graph. (b) Corresponding wait-for graph.

exists in a wait-for graph if and only if the corresponding resource-allocation
graph contains two edges Ti → Rq and Rq → Tj for some resource Rq. In Figure
8.11, we present a resource-allocation graph and the corresponding wait-for
graph.

As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to maintain the wait-
for graph and periodically invoke an algorithm that searches for a cycle in the
graph. An algorithm to detect a cycle in a graph requires O(n2) operations,
where n is the number of vertices in the graph.

The BCC toolkit described in Section 2.10.4 provides a tool that can
detect potential deadlocks with Pthreads mutex locks in a user process
running on a Linux system. The BCC tool deadlock detector operates
by inserting probes which trace calls to the pthread mutex lock() and
pthread mutex unlock() functions. When the specified process makes a call
to either function, deadlock detector constructs a wait-for graph of mutex
locks in that process, and reports the possibility of deadlock if it detects a cycle
in the graph.

8.7.2 Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. We turn now to a deadlock-
detection algorithm that is applicable to such a system. The algorithm employs
several time-varying data structures that are similar to those used in the
banker’s algorithm (Section 8.6.3):

• Available. Avector of lengthm indicates the number of available resources
of each type.

8.7 Deadlock Detection 339

DEADLOCK DETECTION USING JAVATHREAD DUMPS

Although Java does not provide explicit support for deadlock detection, a
thread dump can be used to analyze a running program to determine if
there is a deadlock. A thread dump is a useful debugging tool that displays a
snapshot of the states of all threads in a Java application. Java thread dumps
also show locking information, including which locks a blocked thread is
waiting to acquire. When a thread dump is generated, the JVM searches the
wait-for graph to detect cycles, reporting anydeadlocks it detects. To generate
a thread dump of a running application, from the command line enter:

Ctrl-L (UNIX, Linux, or macOS)
Ctrl-Break (Windows)

In the source-code download for this text, we provide a Java example of the
program shown in Figure 8.1 and describe how to generate a thread dump
that reports the deadlocked Java threads.

• Allocation. An n × mmatrix defines the number of resources of each type
currently allocated to each thread.

• Request. An n × m matrix indicates the current request of each thread.
If Request[i][j] equals k, then thread Ti is requesting k more instances of
resource type Rj.

The ≤ relation between two vectors is defined as in Section 8.6.3. To sim-
plify notation, we again treat the rows in the matrices Allocation and Request
as vectors; we refer to them as Allocationi and Requesti. The detection algo-
rithm described here simply investigates every possible allocation sequence
for the threads that remain to be completed. Compare this algorithm with the
banker’s algorithm of Section 8.6.3.

1. LetWork and Finish be vectors of length m and n, respectively. Initialize
Work = Available. For i = 0, 1, ..., n–1, if Allocationi ≠ 0, then Finish[i] =
false. Otherwise, Finish[i] = true.

2. Find an index i such that both

a. Finish[i] == false

b. Requesti ≤Work

If no such i exists, go to step 4.

3. Work =Work + Allocationi
Finish[i] = true
Go to step 2.

4. If Finish[i] == false for some i, 0≤ i< n, then the system is in a deadlocked
state. Moreover, if Finish[i] == false, then thread Ti is deadlocked.

This algorithm requires an order of m × n2 operations to detect whether the
system is in a deadlocked state.

340 Chapter 8 Deadlocks

You may wonder why we reclaim the resources of thread Ti (in step 3) as
soon as we determine that Requesti ≤ Work (in step 2b). We know that Ti is
currently not involved in a deadlock (since Requesti ≤ Work). Thus, we take
an optimistic attitude and assume that Ti will require no more resources to
complete its task; it will thus soon return all currently allocated resources to
the system. If our assumption is incorrect, a deadlock may occur later. That
deadlock will be detected the next time the deadlock-detection algorithm is
invoked.

To illustrate this algorithm, we consider a system with five threads T0
through T4 and three resource types A, B, and C. Resource type A has seven
instances, resource type B has two instances, and resource type C has six
instances. The following snapshot represents the current state of the system:

Allocation Request Available
A B C A B C A B C

T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 0
T3 2 1 1 1 0 0
T4 0 0 2 0 0 2

We claim that the system is not in a deadlocked state. Indeed, if we execute
our algorithm, we will find that the sequence <T0, T2, T3, T1, T4> results in
Finish[i] == true for all i.

Suppose now that thread T2 makes one additional request for an instance
of type C. The Request matrix is modified as follows:

Request
A B C

T0 0 0 0
T1 2 0 2
T2 0 0 1
T3 1 0 0
T4 0 0 2

We claim that the system is now deadlocked. Although we can reclaim the
resources held by thread T0, the number of available resources is not sufficient
to fulfill the requests of the other threads. Thus, a deadlock exists, consisting
of threads T1, T2, T3, and T4.

8.7.3 Detection-Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two
factors:

1. How often is a deadlock likely to occur?

2. How many threads will be affected by deadlock when it happens?

8.8 Recovery from Deadlock 341

MANAGING DEADLOCK IN DATABASES

Database systems provide a useful illustration of how both open-source
and commercial software manage deadlock. Updates to a database may be
performed as transactions, and to ensure data integrity, locks are typically
used. A transaction may involve several locks, so it comes as no surprise
that deadlocks are possible in a database with multiple concurrent transac-
tions. To manage deadlock, most transactional database systems include a
deadlock detection and recovery mechanism. The database server will peri-
odically search for cycles in the wait-for graph to detect deadlock among a
set of transactions. When deadlock is detected, a victim is selected and the
transaction is aborted and rolled back, releasing the locks held by the victim
transaction and freeing the remaining transactions from deadlock. Once the
remaining transactions have resumed, the aborted transaction is reissued.
Choice of a victim transaction depends on the database system; for instance,
MySQL attempts to select transactions that minimize the number of rows
being inserted, updated, or deleted.

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Resources allocated to deadlocked threads will be idle until the
deadlock can be broken. In addition, the number of threads involved in the
deadlock cycle may grow.

Deadlocks occur only when some thread makes a request that cannot be
granted immediately. This request may be the final request that completes a
chain of waiting threads. In the extreme, then, we can invoke the deadlock-
detection algorithm every time a request for allocation cannot be granted
immediately. In this case,we can identify not only the deadlocked set of threads
but also the specific thread that “caused” the deadlock. (In reality, each of the
deadlocked threads is a link in the cycle in the resource graph, so all of them,
jointly, caused the deadlock.) If there are many different resource types, one
request may create many cycles in the resource graph, each cycle completed
by the most recent request and “caused” by the one identifiable thread.

Of course, invoking the deadlock-detection algorithm for every resource
request will incur considerable overhead in computation time. A less expen-
sive alternative is simply to invoke the algorithm at defined intervals—for
example, once per hour or whenever CPU utilization drops below 40 percent.
(Adeadlock eventually cripples system throughput and causes CPU utilization
to drop.) If the detection algorithm is invoked at arbitrary points in time, the
resource graph may contain many cycles. In this case, we generally cannot tell
which of the many deadlocked threads “caused” the deadlock.

8.8 Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several alter-
natives are available. One possibility is to inform the operator that a deadlock
has occurred and to let the operator deal with the deadlock manually. Another
possibility is to let the system recover from the deadlock automatically. There

342 Chapter 8 Deadlocks

are two options for breaking a deadlock. One is simply to abort one or more
threads to break the circular wait. The other is to preempt some resources from
one or more of the deadlocked threads.

8.8.1 Process and Thread Termination

To eliminate deadlocks by aborting a process or thread, we use one of two
methods. In both methods, the system reclaims all resources allocated to the
terminated processes.

• Abort all deadlocked processes. This method clearly will break the dead-
lock cycle, but at great expense. The deadlocked processes may have com-
puted for a long time, and the results of these partial computations must
be discarded and probably will have to be recomputed later.

• Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since after each process is aborted, a
deadlock-detection algorithm must be invoked to determine whether any
processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of
updating a file, terminating it may leave that file in an incorrect state. Similarly,
if the process was in the midst of updating shared data while holding a mutex
lock, the systemmust restore the status of the lock as being available, although
no guarantees can be made regarding the integrity of the shared data.

If the partial termination method is used, then we must determine which
deadlocked process (or processes) should be terminated. This determination is
a policy decision, similar to CPU-scheduling decisions. The question is basically
an economic one; we should abort those processes whose termination will
incur theminimum cost. Unfortunately, the termminimum cost is not a precise
one. Many factors may affect which process is chosen, including:

1. What the priority of the process is

2. How long the process has computed and how much longer the process
will compute before completing its designated task

3. How many and what types of resources the process has used (for exam-
ple, whether the resources are simple to preempt)

4. How many more resources the process needs in order to complete

5. How many processes will need to be terminated

8.8.2 Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt
some resources fromprocesses and give these resources to other processes until
the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to
be addressed:

8.9 Summary 343

1. Selecting a victim. Which resources and which processes are to be pre-
empted? As in process termination, we must determine the order of pre-
emption to minimize cost. Cost factors may include such parameters as
the number of resources a deadlocked process is holding and the amount
of time the process has thus far consumed.

2. Rollback. If we preempt a resource from a process, what should be done
with that process? Clearly, it cannot continue with its normal execution; it
is missing some needed resource. We must roll back the process to some
safe state and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the
simplest solution is a total rollback: abort the process and then restart
it. Although it is more effective to roll back the process only as far as
necessary to break the deadlock, this method requires the system to keep
more information about the state of all running processes.

3. Starvation. Howdowe ensure that starvationwill not occur? That is, how
can we guarantee that resources will not always be preempted from the
same process?

In a system where victim selection is based primarily on cost factors,
it may happen that the same process is always picked as a victim. As
a result, this process never completes its designated task, a starvation
situation any practical systemmust address. Clearly, wemust ensure that
a process can be picked as a victim only a (small) finite number of times.
The most common solution is to include the number of rollbacks in the
cost factor.

8.9 Summary

• Deadlock occurs in a set of processes when every process in the set is
waiting for an event that can only be caused by another process in the set.

• There are four necessary conditions for deadlock: (1) mutual exclusion, (2)
hold and wait, (3) no preemption, and (4) circular wait. Deadlock is only
possible when all four conditions are present.

• Deadlocks can be modeled with resource-allocation graphs, where a cycle
indicates deadlock.

• Deadlocks can be prevented by ensuring that one of the four necessary
conditions for deadlock cannot occur. Of the four necessary conditions,
eliminating the circular wait is the only practical approach.

• Deadlock can be avoided by using the banker’s algorithm, which does
not grant resources if doing so would lead the system into an unsafe state
where deadlock would be possible.

• Adeadlock-detection algorithm can evaluate processes and resources on a
running system to determine if a set of processes is in a deadlocked state.

• If deadlock does occur, a system can attempt to recover from the deadlock
by either aborting one of the processes in the circular wait or preempting
resources that have been assigned to a deadlocked process.

344 Chapter 8 Deadlocks

Practice Exercises

8.1 List three examples of deadlocks that are not related to a computer-
system environment.

8.2 Suppose that a system is in an unsafe state. Show that it is possible for
the threads to complete their execution without entering a deadlocked
state.

8.3 Consider the following snapshot of a system:

Allocation Max Available
A B C D A B C D A B C D

T0 0 0 1 2 0 0 1 2 1 5 2 0
T1 1 0 0 0 1 7 5 0
T2 1 3 5 4 2 3 5 6
T3 0 6 3 2 0 6 5 2
T4 0 0 1 4 0 6 5 6

Answer the following questions using the banker’s algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from thread T1 arrives for (0,4,2,0), can the request be
granted immediately?

8.4 A possible method for preventing deadlocks is to have a single,
higher-order resource that must be requested before any other resource.
For example, if multiple threads attempt to access the synchronization
objects A · · · E, deadlock is possible. (Such synchronization objects may
include mutexes, semaphores, condition variables, and the like.) We can
prevent deadlock by adding a sixth object F. Whenever a thread wants
to acquire the synchronization lock for any object A · · · E, it must first
acquire the lock for object F. This solution is known as containment:
the locks for objects A · · · E are contained within the lock for object F.
Compare this scheme with the circular-wait scheme of Section 8.5.4.

8.5 Prove that the safety algorithm presented in Section 8.6.3 requires an
order of m × n2 operations.

8.6 Consider a computer system that runs 5,000 jobs per month and has no
deadlock-prevention or deadlock-avoidance scheme. Deadlocks occur
about twice per month, and the operator must terminate and rerun
about ten jobs per deadlock. Each job is worth about two dollars (in CPU
time), and the jobs terminated tend to be about half done when they are
aborted.

A systems programmer has estimated that a deadlock-avoidance
algorithm (like the banker’s algorithm) could be installed in the system
with an increase of about 10 percent in the average execution time per

Practice Exercises 345

job. Since the machine currently has 30 percent idle time, all 5,000 jobs
per month could still be run, although turnaround time would increase
by about 20 percent on average.

a. What are the arguments for installing the deadlock-avoidance
algorithm?

b. What are the arguments against installing the deadlock-avoidance
algorithm?

8.7 Can a system detect that some of its threads are starving? If you answer
“yes,” explain how it can. If you answer “no,” explain how the system
can deal with the starvation problem.

8.8 Consider the following resource-allocation policy. Requests for and
releases of resources are allowed at any time. If a request for resources
cannot be satisfied because the resources are not available, thenwe check
any threads that are blocked waiting for resources. If a blocked thread
has the desired resources, then these resources are taken away from it
and are given to the requesting thread. The vector of resources for which
the blocked thread is waiting is increased to include the resources that
were taken away.

For example, a system has three resource types, and the vectorAvail-
able is initialized to (4,2,2). If thread T0 asks for (2,2,1), it gets them. If
T1 asks for (1,0,1), it gets them. Then, if T0 asks for (0,0,1), it is blocked
(resource not available). If T2 now asks for (2,0,0), it gets the available
one (1,0,0), as well as one that was allocated to T0 (since T0 is blocked).
T0’s Allocation vector goes down to (1,2,1), and its Need vector goes up
to (1,0,1).

a. Can deadlock occur? If you answer “yes,” give an example. If you
answer “no,” specify which necessary condition cannot occur.

b. Can indefinite blocking occur? Explain your answer.

8.9 Consider the following snapshot of a system:

Allocation Max
A B C D A B C D

T0 3 0 1 4 5 1 1 7
T1 2 2 1 0 3 2 1 1
T2 3 1 2 1 3 3 2 1
T3 0 5 1 0 4 6 1 2
T4 4 2 1 2 6 3 2 5

Using the banker’s algorithm, determine whether or not each of the
following states is unsafe. If the state is safe, illustrate the order in which
the threads may complete. Otherwise, illustrate why the state is unsafe.

a. Available = (0, 3, 0, 1)

b. Available = (1, 0, 0, 2)

346 Chapter 8 Deadlocks

8.10 Suppose that you have coded the deadlock-avoidance safety algorithm
that determines if a system is in a safe state or not, and now have been
asked to implement the deadlock-detection algorithm. Can you do so by
simply using the safety algorithm code and redefiningMaxi =Waitingi
+ Allocationi, where Waitingi is a vector specifying the resources for
which thread i is waiting and Allocationi is as defined in Section 8.6?
Explain your answer.

8.11 Is it possible to have a deadlock involving only one single-threaded
process? Explain your answer.

Further Reading

Most research involving deadlock was conducted many years ago. [Dijkstra
(1965)] was one of the first and most influential contributors in the deadlock
area.

Details of how the MySQL database manages deadlock can be found at
http://dev.mysql.com/.

Details on the lockdep tool can be found at https://www.kernel.org/doc/
Documentation/locking/lockdep-design.txt.

Bibliography

[Dijkstra (1965)] E. W. Dijkstra, “Cooperating Sequential Processes”, Technical
report, Technological University, Eindhoven, the Netherlands (1965).

http://dl.acm.org/citation.cfm?id=1102034
http://dev.mysql.com/
http://dl.acm.org/citation.cfm?id=1102034
http://dl.acm.org/citation.cfm?id=1102034
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt

Chapter 8 Exercises

8.12 Consider the traffic deadlock depicted in Figure 8.12.

a. Show that the four necessary conditions for deadlock hold in this
example.

b. State a simple rule for avoiding deadlocks in this system.

8.13 Draw the resource-allocation graph that illustrates deadlock from the
program example shown in Figure 8.1 in Section 8.2.

8.14 In Section 6.8.1, we described a potential deadlock scenario involv-
ing processes P0 and P1 and semaphores S and Q. Draw the resource-
allocation graph that illustrates deadlock under the scenario presented
in that section.

8.15 Assume that a multithreaded application uses only reader–writer locks
for synchronization. Applying the four necessary conditions for dead-
lock, is deadlock still possible if multiple reader–writer locks are used?

8.16 The program example shown in Figure 8.1 doesn’t always lead to dead-
lock. Describe what role the CPU scheduler plays and how it can con-
tribute to deadlock in this program.

8.17 In Section 8.5.4, we described a situation in which we prevent deadlock
by ensuring that all locks are acquired in a certain order. However, we
also point out that deadlock is possible in this situation if two threads
simultaneously invoke the transaction() function. Fix the transac-
tion() function to prevent deadlocks.

•
•
•

•
•
•

• • •

• • •

Figure 8.11 Traffic deadlock for Exercise 8.12.

EX-27

Exercises

8.18 Which of the six resource-allocation graphs shown in Figure 8.12 illus-
trate deadlock? For those situations that are deadlocked, provide the
cycle of threads and resources. Where there is not a deadlock situation,
illustrate the order in which the threads may complete execution.

8.19 Compare the circular-wait schemewith the various deadlock-avoidance
schemes (like the banker’s algorithm) with respect to the following
issues:

a. Runtime overhead

b. System throughput

8.20 In a real computer system, neither the resources available nor the
demands of threads for resources are consistent over long periods
(months). Resources break or are replaced, new processes and threads
come and go, and new resources are bought and added to the system.
If deadlock is controlled by the banker’s algorithm, which of the

• •
R1 R 2

T1 T3T2

(a)
T1 T3

T 2

•• ••••• • •

(b)

R1 R 2 R 3

•• ••

T1 T 3T2

(c)

R1 R 2

••

T1

T3 T 4

T2

 (d)

R1 R 2
••

•• ••

T1

T3 T4

T2

(e) (f)

R1 R 2

• •• ••

T1

T3 T4

T2

R1 R2 R 3

Figure 8.12 Resource-allocation graphs for Exercise 8.18.

EX-28

following changes can be made safely (without introducing the
possibility of deadlock), and under what circumstances?

a. Increase Available (new resources added).

b. DecreaseAvailable (resource permanently removed from system).

c. Increase Max for one thread (the thread needs or wants more
resources than allowed).

d. Decrease Max for one thread (the thread decides it does not need
that many resources).

e. Increase the number of threads.

f. Decrease the number of threads.

8.21 Consider the following snapshot of a system:

Allocation Max
A B C D A B C D

T0 2 1 0 6 6 3 2 7
T1 3 3 1 3 5 4 1 5
T2 2 3 1 2 6 6 1 4
T3 1 2 3 4 4 3 4 5
T4 3 0 3 0 7 2 6 1

What are the contents of the Needmatrix?

8.22 Consider a system consisting of four resources of the same type that
are shared by three threads, each of which needs at most two resources.
Show that the system is deadlock free.

8.23 Consider a system consisting of m resources of the same type being
shared by n threads. A thread can request or release only one resource
at a time. Show that the system is deadlock free if the following two
conditions hold:

a. The maximum need of each thread is between one resource and m
resources.

b. The sum of all maximum needs is less than m + n.

8.24 Consider the version of the dining-philosophers problem in which the
chopsticks are placed at the center of the table and any two of them
can be used by a philosopher. Assume that requests for chopsticks are
made one at a time. Describe a simple rule for determining whether a
particular request can be satisfied without causing deadlock given the
current allocation of chopsticks to philosophers.

8.25 Consider again the setting in the preceding exercise. Assume now that
each philosopher requires three chopsticks to eat. Resource requests are
still issued one at a time. Describe some simple rules for determining
whether a particular request can be satisfied without causing deadlock
given the current allocation of chopsticks to philosophers.

EX-29

Exercises

8.26 We can obtain the banker’s algorithm for a single resource type from
the general banker’s algorithm simply by reducing the dimensionality
of the various arrays by 1.

Show through an example that we cannot implement the multiple-
resource-type banker’s scheme by applying the single-resource-type
scheme to each resource type individually.

8.27 Consider the following snapshot of a system:

Allocation Max
A B C D A B C D

T0 1 2 0 2 4 3 1 6
T1 0 1 1 2 2 4 2 4
T2 1 2 4 0 3 6 5 1
T3 1 2 0 1 2 6 2 3
T4 1 0 0 1 3 1 1 2

Using the banker’s algorithm, determine whether or not each of the
following states is unsafe. If the state is safe, illustrate the order in which
the threads may complete. Otherwise, illustrate why the state is unsafe.

a. Available = (2, 2, 2, 3)

b. Available = (4, 4, 1, 1)

c. Available = (3, 0, 1, 4)

d. Available = (1, 5, 2, 2)

8.28 Consider the following snapshot of a system:

Allocation Max Available
A B C D A B C D A B C D

T0 3 1 4 1 6 4 7 3 2 2 2 4
T1 2 1 0 2 4 2 3 2
T2 2 4 1 3 2 5 3 3
T3 4 1 1 0 6 3 3 2
T4 2 2 2 1 5 6 7 5

Answer the following questions using the banker’s algorithm:

a. Illustrate that the system is in a safe state by demonstrating an
order in which the threads may complete.

b. If a request from thread T4 arrives for (2, 2, 2, 4), can the request be
granted immediately?

c. If a request from thread T2 arrives for (0, 1, 1, 0), can the request be
granted immediately?

d. If a request from thread T3 arrives for (2, 2, 1, 2), can the request be
granted immediately?

EX-30

8.29 What is the optimistic assumption made in the deadlock-detection algo-
rithm? How can this assumption be violated?

8.30 A single-lane bridge connects the two Vermont villages of North Tun-
bridge and South Tunbridge. Farmers in the two villages use this bridge
to deliver their produce to the neighboring town. The bridge can become
deadlocked if a northbound and a southbound farmer get on the bridge
at the same time. (Vermont farmers are stubborn and are unable to
back up.) Using semaphores and/or mutex locks, design an algorithm
in pseudocode that prevents deadlock. Initially, do not be concerned
about starvation (the situation in which northbound farmers prevent
southbound farmers from using the bridge, or vice versa).

8.31 Modify your solution to Exercise 8.30 so that it is starvation-free.

EX-31

Chapter 8 Deadlocks

Programming Problems

8.32 Implement your solution to Exercise 8.30 using POSIX synchronization.
In particular, represent northbound and southbound farmers as separate
threads. Once a farmer is on the bridge, the associated thread will sleep
for a random period of time, representing traveling across the bridge.
Design your program so that you can create several threads representing
the northbound and southbound farmers.

8.33 In Figure 8.7, we illustrate a transaction() function that dynamically
acquires locks. In the text, we describe how this function presents
difficulties for acquiring locks in a way that avoids deadlock. Using
the Java implementation of transaction() that is provided in
the source-code download for this text, modify it using the Sys-
tem.identityHashCode() method so that the locks are acquired in
order.

Programming Projects

Banker’s Algorithm

For this project, you will write a program that implements the banker’s algo-
rithm discussed in Section 8.6.3. Customers request and release resources from
the bank. The banker will grant a request only if it leaves the system in a
safe state. A request that leaves the system in an unsafe state will be denied.
Although the code examples that describe this project are illustrated in C, you
may also develop a solution using Java.

The Banker

The banker will consider requests from n customers for m resources types, as
outlined in Section 8.6.3. The banker will keep track of the resources using the
following data structures:

#define NUMBER OF CUSTOMERS 5
#define NUMBER OF RESOURCES 4

/* the available amount of each resource */
int available[NUMBER OF RESOURCES];

/*the maximum demand of each customer */
int maximum[NUMBER OF CUSTOMERS][NUMBER OF RESOURCES];

/* the amount currently allocated to each customer */
int allocation[NUMBER OF CUSTOMERS][NUMBER OF RESOURCES];

/* the remaining need of each customer */
int need[NUMBER OF CUSTOMERS][NUMBER OF RESOURCES];

P-45

Programming Projects

The banker will grant a request if it satisfies the safety algorithm outlined in
Section 8.6.3.1. If a request does not leave the system in a safe state, the banker
will deny it. Function prototypes for requesting and releasing resources are as
follows:

int request resources(int customer num, int request[]);

void release resources(int customer num, int release[]);

The request resources() function should return 0 if successful and –1 if
unsuccessful.

Testing Your Implementation

Design a program that allows the user to interactively enter a request for
resources, to release resources, or to output the values of the different data
structures (available, maximum, allocation, and need) used with the
banker’s algorithm.

You should invoke your program by passing the number of resources of
each type on the command line. For example, if there were four resource types,
with ten instances of the first type, five of the second type, seven of the third
type, and eight of the fourth type, you would invoke your program as follows:

./a.out 10 5 7 8

The available array would be initialized to these values.
Your program will initially read in a file containing the maximum number

of requests for each customer. For example, if there are five customers and four
resources, the input file would appear as follows:

6,4,7,3
4,2,3,2
2,5,3,3
6,3,3,2
5,6,7,5

where each line in the input file represents the maximum request of each
resource type for each customer. Your programwill initialize the maximum array
to these values.

Your program will then have the user enter commands responding to a
request of resources, a release of resources, or the current values of the different
data structures. Use the command ‘RQ’ for requesting resources, ‘RL’ for releas-
ing resources, and ‘*’ to output the values of the different data structures. For
example, if customer 0 were to request the resources (3, 1, 2, 1), the following
command would be entered:

RQ 0 3 1 2 1

Your program would then output whether the request would be satisfied or
denied using the safety algorithm outlined in Section 8.6.3.1.

P-46

Chapter 8 Deadlocks

Similarly, if customer 4 were to release the resources (1, 2, 3, 1), the user would
enter the following command:

RL 4 1 2 3 1

Finally, if the command ‘*’ is entered, your program would output the values
of the available, maximum, allocation, and need arrays.

P-47

http://dl.acm.org/citation.cfm?id=1102034
http://dev.mysql.com/
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://dl.acm.org/citation.cfm?id=1102034
http://dl.acm.org/citation.cfm?id=1102034

Part Four

Memory
Management

The main purpose of a computer system is to execute programs. These
programs, together with the data they access, must be at least partially
in main memory during execution.

Modern computer systems maintain several processes in memory
during system execution. Many memory-management schemes exist,
reflecting various approaches, and the effectiveness of each algorithm
varieswith the situation. Selection of amemory-management scheme for
a system depends onmany factors, especially on the system’s hardware
design. Most algorithms require some form of hardware support.

9CHAPTER

Main Memory

In Chapter 5, we showed how the CPU can be shared by a set of processes. As
a result of CPU scheduling, we can improve both the utilization of the CPU and
the speed of the computer’s response to its users. To realize this increase in
performance, however, we must keepmany processes in memory—that is, we
must share memory.

In this chapter, we discuss various ways to manage memory. The memory-
management algorithms vary from a primitive bare-machine approach to a
strategy that uses paging. Each approach has its own advantages and disad-
vantages. Selection of a memory-management method for a specific system
depends on many factors, especially on the hardware design of the system.
As we shall see, most algorithms require hardware support, leading many
systems to have closely integrated hardware and operating-system memory
management.

CHAPTER OBJECTIVES

• Explain the difference between a logical and a physical address and the
role of the memory management unit (MMU) in translating addresses.

• Apply first-, best-, and worst-fit strategies for allocating memory contigu-
ously.

• Explain the distinction between internal and external fragmentation.

• Translate logical to physical addresses in a paging system that includes a
translation look-aside buffer (TLB).

• Describe hierarchical paging, hashed paging, and inverted page tables.

• Describe address translation for IA-32, x86-64, and ARMv8 architectures.

9.1 Background

As we saw in Chapter 1, memory is central to the operation of a modern
computer system. Memory consists of a large array of bytes, each with its own
address. The CPU fetches instructions from memory according to the value of

349

350 Chapter 9 Main Memory

the program counter. These instructions may cause additional loading from
and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruc-
tion from memory. The instruction is then decoded and may cause operands
to be fetched from memory. After the instruction has been executed on the
operands, results may be stored back in memory. The memory unit sees only a
stream of memory addresses; it does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses, and so on) or what
they are for (instructions or data). Accordingly, we can ignore how a program
generates amemory address.We are interested only in the sequence ofmemory
addresses generated by the running program.

We begin our discussion by covering several issues that are pertinent to
managing memory: basic hardware, the binding of symbolic (or virtual) mem-
ory addresses to actual physical addresses, and the distinction between logical
and physical addresses. We conclude the section with a discussion of dynamic
linking and shared libraries.

9.1.1 Basic Hardware

Main memory and the registers built into each processing core are the only
general-purpose storage that the CPU can access directly. There are machine
instructions that take memory addresses as arguments, but none that take disk
addresses. Therefore, any instructions in execution, and any data being used
by the instructions, must be in one of these direct-access storage devices. If the
data are not in memory, they must be moved there before the CPU can operate
on them.

Registers that are built into each CPU core are generally accessible within
one cycle of the CPU clock. Some CPU cores can decode instructions and per-
form simple operations on register contents at the rate of one or more opera-
tions per clock tick. The same cannot be said ofmainmemory,which is accessed
via a transaction on the memory bus. Completing a memory access may take
many cycles of the CPU clock. In such cases, the processor normally needs to
stall, since it does not have the data required to complete the instruction that it
is executing. This situation is intolerable because of the frequency of memory
accesses. The remedy is to add fast memory between the CPU and main mem-
ory, typically on the CPU chip for fast access. Such a cache was described in
Section 1.5.5. Tomanage a cache built into the CPU, the hardware automatically
speeds up memory access without any operating-system control. (Recall from
Section 5.5.2 that during a memory stall, a multithreaded core can switch from
the stalled hardware thread to another hardware thread.)

Not only are we concerned with the relative speed of accessing physi-
cal memory, but we also must ensure correct operation. For proper system
operation, we must protect the operating system from access by user pro-
cesses, as well as protect user processes from one another. This protectionmust
be provided by the hardware, because the operating system doesn’t usually
intervene between the CPU and its memory accesses (because of the resulting
performance penalty). Hardware implements this production in several differ-
ent ways, as we show throughout the chapter. Here, we outline one possible
implementation.

9.1 Background 351

base

base + limit

operating
 system

process

process

process

1024000

880000

420940

0

300040

256000

Figure 9.1 A base and a limit register define a logical address space.

We first need to make sure that each process has a separate memory space.
Separate per-processmemory space protects the processes from each other and
is fundamental to having multiple processes loaded in memory for concurrent
execution. To separate memory spaces, we need the ability to determine the
range of legal addresses that the process may access and to ensure that the
process can access only these legal addresses. We can provide this protection
by using two registers, usually a base and a limit, as illustrated in Figure 9.1.
The base register holds the smallest legal physical memory address; the limit
register specifies the size of the range. For example, if the base register holds
300040 and the limit register is 120900, then the program can legally access all
addresses from 300040 through 420939 (inclusive).

Protection of memory space is accomplished by having the CPU hardware
compare every address generated in usermodewith the registers. Any attempt
by a program executing in user mode to access operating-system memory or
other users’ memory results in a trap to the operating system, which treats the
attempt as a fatal error (Figure 9.2). This scheme prevents a user program from
(accidentally or deliberately) modifying the code or data structures of either
the operating system or other users.

The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can
be executed only in kernel mode, and since only the operating system executes
in kernelmode, only the operating system can load the base and limit registers.
This scheme allows the operating system to change the value of the registers
but prevents user programs from changing the registers’ contents.

The operating system, executing in kernel mode, is given unrestricted
access to both operating-system memory and users’ memory. This provision
allows the operating system to load users’ programs into users’ memory, to
dump out those programs in case of errors, to access and modify parameters
of system calls, to perform I/O to and from user memory, and to provide
many other services. Consider, for example, that an operating system for a

352 Chapter 9 Main Memory

<

base

trap to operating system
illegal addressing error

base + limit

memory

CPU
address yes yes

no no

≥

Figure 9.2 Hardware address protection with base and limit registers.

multiprocessing systemmust execute context switches, storing the state of one
process from the registers into main memory before loading the next process’s
context from main memory into the registers.

9.1.2 Address Binding

Usually, a program resides on a disk as a binary executable file. To run, the
program must be brought into memory and placed within the context of a
process (as described in Section 2.5), where it becomes eligible for execution
on an available CPU. As the process executes, it accesses instructions and data
frommemory. Eventually, the process terminates, and its memory is reclaimed
for use by other processes.

Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer may start at 00000,
the first address of the user process need not be 00000. You will see later how
the operating system actually places a process in physical memory.

In most cases, a user program goes through several steps—some of which
may be optional—before being executed (Figure 9.3). Addressesmay be repre-
sented in different ways during these steps. Addresses in the source program
are generally symbolic (such as the variable count). Acompiler typically binds
these symbolic addresses to relocatable addresses (such as “14 bytes from the
beginning of this module”). The linker or loader (see Section 2.5) in turn binds
the relocatable addresses to absolute addresses (such as 74014). Each binding
is a mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses can
be done at any step along the way:

• Compile time. If you know at compile timewhere the processwill reside in
memory, then absolute code can be generated. For example, if you know
that a user process will reside starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary to
recompile this code.

9.1 Background 353

source
program

object
fileother

object
files

dynamically
linked

libraries

executable
file

program
in memory

compiler

linker

loader

compile
time

execution
time

(run time)

load
time

Figure 9.3 Multistep processing of a user program.

• Load time. If it is not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. In this case,
final binding is delayed until load time. If the starting address changes, we
need only reload the user code to incorporate this changed value.

• Execution time. If the process can be moved during its execution from one
memory segment to another, then binding must be delayed until run time.
Special hardware must be available for this scheme to work, as will be
discussed in Section 9.1.3. Most operating systems use this method.

Amajor portion of this chapter is devoted to showing how these various bind-
ings can be implemented effectively in a computer system and to discussing
appropriate hardware support.

9.1.3 Logical Versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical address,
whereas an address seen by the memory unit—that is, the one loaded into

354 Chapter 9 Main Memory

logical
address

physical
address

physical
memoryMMUCPU

Figure 9.4 Memory management unit (MMU).

the memory-address register of the memory—is commonly referred to as a
physical address.

Binding addresses at either compile or load time generates identical logical
and physical addresses. However, the execution-time address-binding scheme
results in differing logical and physical addresses. In this case, we usually refer
to the logical address as a virtual address. We use logical address and virtual
address interchangeably in this text. The set of all logical addresses generated
by a program is a logical address space. The set of all physical addresses
corresponding to these logical addresses is a physical address space. Thus, in
the execution-time address-binding scheme, the logical and physical address
spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU) (Figure 9.4).
We can choose from many different methods to accomplish such mapping, as
we discuss in Section 9.2 through Section 9.3. For the time being, we illustrate
this mapping with a simple MMU scheme that is a generalization of the base-
register scheme described in Section 9.1.1. The base register is now called
a relocation register. The value in the relocation register is added to every
address generated by a user process at the time the address is sent to memory
(see Figure 9.5). For example, if the base is at 14000, then an attempt by the
user to address location 0 is dynamically relocated to location 14000; an access
to location 346 is mapped to location 14346.

The user program never accesses the real physical addresses. The program
can create a pointer to location 346, store it in memory, manipulate it, and com-
pare it with other addresses—all as the number 346. Only when it is used as a
memory address (in an indirect load or store, perhaps) is it relocated relative to
the base register. The user program deals with logical addresses. The memory-
mapping hardware converts logical addresses into physical addresses. This
form of execution-time binding was discussed in Section 9.1.2. The final loca-
tion of a referenced memory address is not determined until the reference is
made.

We now have two different types of addresses: logical addresses (in the
range 0 tomax) and physical addresses (in the range R + 0 to R +max for a base
value R). The user program generates only logical addresses and thinks that
the process runs in memory locations from 0 to max. However, these logical
addresses must be mapped to physical addresses before they are used. The

9.1 Background 355

≶

MMU

CPU memory
14346

14000

relocation
register

346

logical
address

physical
address

Figure 9.5 Dynamic relocation using a relocation register.

concept of a logical address space that is bound to a separate physical address
space is central to proper memory management.

9.1.4 Dynamic Loading

In our discussion so far, it has been necessary for the entire program and all
data of a process to be in physical memory for the process to execute. The size
of a process has thus been limited to the size of physical memory. To obtain
better memory-space utilization, we can use dynamic loading. With dynamic
loading, a routine is not loaded until it is called. All routines are kept on disk
in a relocatable load format. The main program is loaded into memory and
is executed. When a routine needs to call another routine, the calling routine
first checks to see whether the other routine has been loaded. If it has not, the
relocatable linking loader is called to load the desired routine intomemory and
to update the program’s address tables to reflect this change. Then control is
passed to the newly loaded routine.

The advantage of dynamic loading is that a routine is loaded only when it
is needed. This method is particularly useful when large amounts of code are
needed to handle infrequently occurring cases, such as error routines. In such
a situation, although the total program size may be large, the portion that is
used (and hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating
system. It is the responsibility of the users to design their programs to take
advantage of such a method. Operating systems may help the programmer,
however, by providing library routines to implement dynamic loading.

9.1.5 Dynamic Linking and Shared Libraries

Dynamically linked libraries (DLLs) are system libraries that are linked to user
programswhen the programs are run (refer back to Figure 9.3). Some operating
systems support only static linking, in which system libraries are treated

356 Chapter 9 Main Memory

like any other object module and are combined by the loader into the binary
program image. Dynamic linking, in contrast, is similar to dynamic loading.
Here, though, linking, rather than loading, is postponed until execution time.
This feature is usually used with system libraries, such as the standard C
language library.Without this facility, each programon a systemmust include a
copy of its language library (or at least the routines referenced by the program)
in the executable image. This requirement not only increases the size of an
executable image but also may waste main memory. A second advantage of
DLLs is that these libraries can be shared among multiple processes, so that
only one instance of the DLL in main memory. For this reason, DLLs are also
known as shared libraries, and are used extensively in Windows and Linux
systems.

When a program references a routine that is in a dynamic library, the loader
locates the DLL, loading it into memory if necessary. It then adjusts addresses
that reference functions in the dynamic library to the location inmemorywhere
the DLL is stored.

Dynamically linked libraries can be extended to library updates (such as
bug fixes). In addition, a library may be replaced by a new version, and all
programs that reference the library will automatically use the new version.
Without dynamic linking, all such programs would need to be relinked to gain
access to the new library. So that programs will not accidentally execute new,
incompatible versions of libraries, version information is included in both the
program and the library. More than one version of a library may be loaded
into memory, and each program uses its version information to decide which
copy of the library to use. Versions with minor changes retain the same version
number, whereas versions with major changes increment the number. Thus,
only programs that are compiled with the new library version are affected by
any incompatible changes incorporated in it. Other programs linked before the
new library was installed will continue using the older library.

Unlike dynamic loading, dynamic linking and shared libraries generally
require help from the operating system. If the processes in memory are pro-
tected from one another, then the operating system is the only entity that can
check to see whether the needed routine is in another process’s memory space
or that can allow multiple processes to access the same memory addresses.
We elaborate on this concept, as well as how DLLs can be shared by multiple
processes, when we discuss paging in Section 9.3.4.

9.2 Contiguous Memory Allocation

The main memory must accommodate both the operating system and the
various user processes. We therefore need to allocate main memory in the
most efficientway possible. This section explains one earlymethod, contiguous
memory allocation.

The memory is usually divided into two partitions: one for the operating
system and one for the user processes. We can place the operating system
in either low memory addresses or high memory addresses. This decision
depends onmany factors, such as the location of the interrupt vector. However,
many operating systems (including Linux and Windows) place the operating
system in high memory, and therefore we discuss only that situation.

9.2 Contiguous Memory Allocation 357

We usually want several user processes to reside in memory at the same
time. We therefore need to consider how to allocate available memory to the
processes that are waiting to be brought into memory. In contiguous mem-
ory allocation, each process is contained in a single section of memory that
is contiguous to the section containing the next process. Before discussing
this memory allocation scheme further, though, we must address the issue of
memory protection.

9.2.1 Memory Protection

We can prevent a process from accessing memory that it does not own by
combining two ideas previously discussed. If we have a system with a relo-
cation register (Section 9.1.3), together with a limit register (Section 9.1.1), we
accomplish our goal. The relocation register contains the value of the smallest
physical address; the limit register contains the range of logical addresses (for
example, relocation = 100040 and limit = 74600). Each logical address must
fall within the range specified by the limit register. The MMU maps the log-
ical address dynamically by adding the value in the relocation register. This
mapped address is sent to memory (Figure 9.6).

When the CPU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part of the
context switch. Because every address generated by a CPU is checked against
these registers, we can protect both the operating system and the other users’
programs and data from being modified by this running process.

The relocation-register scheme provides an effectiveway to allow the oper-
ating system’s size to change dynamically. This flexibility is desirable in many
situations. For example, the operating system contains code and buffer space
for device drivers. If a device driver is not currently in use, it makes little
sense to keep it in memory; instead, it can be loaded into memory only when
it is needed. Likewise, when the device driver is no longer needed, it can be
removed and its memory allocated for other needs.

CPU memory

logical
address

trap: addressing error

no

yes
physical
address

relocation
register

+<

limit
register

Figure 9.6 Hardware support for relocation and limit registers.

358 Chapter 9 Main Memory

9.2.2 Memory Allocation

Nowweare ready to turn tomemory allocation.One of the simplestmethods of
allocating memory is to assign processes to variably sized partitions in mem-
ory, where each partition may contain exactly one process. In this variable-
partition scheme, the operating system keeps a table indicating which parts of
memory are available andwhich are occupied. Initially, all memory is available
for user processes and is considered one large block of available memory, a
hole. Eventually, as you will see, memory contains a set of holes of various
sizes.

Figure 9.7 depicts this scheme. Initially, the memory is fully utilized, con-
taining processes 5, 8, and 2. After process 8 leaves, there is one contiguous
hole. Later on, process 9 arrives and is allocated memory. Then process 5
departs, resulting in two noncontiguous holes.

As processes enter the system, the operating system takes into account the
memory requirements of each process and the amount of available memory
space in determining which processes are allocated memory. When a process
is allocated space, it is loaded into memory, where it can then compete for CPU
time. When a process terminates, it releases its memory, which the operating
system may then provide to another process.

What happens when there isn’t sufficient memory to satisfy the demands
of an arriving process? One option is to simply reject the process and provide
an appropriate error message. Alternatively, we can place such processes into
a wait queue. When memory is later released, the operating system checks the
wait queue to determine if it will satisfy the memory demands of a waiting
process.

In general, as mentioned, the memory blocks available comprise a set of
holes of various sizes scattered throughout memory. When a process arrives
and needs memory, the system searches the set for a hole that is large enough
for this process. If the hole is too large, it is split into two parts. One part is
allocated to the arriving process; the other is returned to the set of holes. When
a process terminates, it releases its block of memory, which is then placed back
in the set of holes. If the newhole is adjacent to other holes, these adjacent holes
are merged to form one larger hole.

This procedure is a particular instance of the general dynamic storage-
allocation problem, which concerns how to satisfy a request of size n from a
list of free holes. There aremany solutions to this problem. The first-fit, best-fi ,
and worst-fi strategies are the ones most commonly used to select a free hole
from the set of available holes.

OS
process 5

process 8

process 2

OS

process 2

OS
process 5
process 9 process 9

process 2

OS
process 5

process 2low
memory

high
memory

Figure 9.7 Variable partition.

9.2 Contiguous Memory Allocation 359

• First fit. Allocate the first hole that is big enough. Searching can start either
at the beginning of the set of holes or at the location where the previous
first-fit search ended. We can stop searching as soon as we find a free hole
that is large enough.

• Best fi . Allocate the smallest hole that is big enough. We must search the
entire list, unless the list is ordered by size. This strategy produces the
smallest leftover hole.

• Worst fit. Allocate the largest hole. Again, we must search the entire list,
unless it is sorted by size. This strategy produces the largest leftover hole,
which may be more useful than the smaller leftover hole from a best-fit
approach.

Simulations have shown that both first fit and best fit are better than worst
fit in terms of decreasing time and storage utilization. Neither first fit nor best
fit is clearly better than the other in terms of storage utilization, but first fit is
generally faster.

9.2.3 Fragmentation

Both the first-fit and best-fit strategies for memory allocation suffer from exter-
nal fragmentation. As processes are loaded and removed from memory, the
free memory space is broken into little pieces. External fragmentation exists
when there is enough total memory space to satisfy a request but the available
spaces are not contiguous: storage is fragmented into a large number of small
holes. This fragmentation problem can be severe. In the worst case, we could
have a block of free (or wasted) memory between every two processes. If all
these small pieces of memory were in one big free block instead, we might be
able to run several more processes.

Whether we are using the first-fit or best-fit strategy can affect the amount
of fragmentation. (First fit is better for some systems, whereas best fit is better
for others.) Another factor is which end of a free block is allocated. (Which is
the leftover piece—the one on the top or the one on the bottom?) No matter
which algorithm is used, however, external fragmentation will be a problem.

Depending on the total amount ofmemory storage and the average process
size, external fragmentation may be a minor or a major problem. Statistical
analysis of first fit, for instance, reveals that, even with some optimization,
given N allocated blocks, another 0.5 N blocks will be lost to fragmentation.
That is, one-third of memory may be unusable! This property is known as the
50-percent rule.

Memory fragmentation can be internal as well as external. Consider a
multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that
the next process requests 18,462 bytes. If we allocate exactly the requested
block, we are left with a hole of 2 bytes. The overhead to keep track of this
hole will be substantially larger than the hole itself. The general approach
to avoiding this problem is to break the physical memory into fixed-sized
blocks and allocate memory in units based on block size. With this approach,
the memory allocated to a process may be slightly larger than the requested
memory. The difference between these two numbers is internal fragmentation
—unused memory that is internal to a partition.

360 Chapter 9 Main Memory

One solution to the problem of external fragmentation is compaction. The
goal is to shuffle the memory contents so as to place all free memory together
in one large block. Compaction is not always possible, however. If relocation
is static and is done at assembly or load time, compaction cannot be done. It is
possible only if relocation is dynamic and is done at execution time. If addresses
are relocated dynamically, relocation requires only moving the program and
data and then changing the base register to reflect the new base address. When
compaction is possible, we must determine its cost. The simplest compaction
algorithm is tomove all processes toward one end ofmemory; all holesmove in
the other direction, producing one large hole of availablememory. This scheme
can be expensive.

Another possible solution to the external-fragmentation problem is to per-
mit the logical address space of processes to be noncontiguous, thus allowing a
process to be allocated physical memory wherever such memory is available.
This is the strategy used in paging, the most common memory-management
technique for computer systems. We describe paging in the following section.

Fragmentation is a general problem in computing that can occur wherever
we must manage blocks of data. We discuss the topic further in the storage
management chapters (Chapter 11 through Chapter 15).

9.3 Paging

Memory management discussed thus far has required the physical address
space of a process to be contiguous. We now introduce paging, a memory-
management scheme that permits a process’s physical address space to be non-
contiguous. Paging avoids external fragmentation and the associated need for
compaction, two problems that plague contiguousmemory allocation. Because
it offers numerous advantages, paging in its various forms is used inmost oper-
ating systems, from those for large servers through those for mobile devices.
Paging is implemented through cooperation between the operating systemand
the computer hardware.

9.3.1 Basic Method

The basic method for implementing paging involves breaking physical mem-
ory into fixed-sized blocks called frames and breaking logical memory into
blocks of the same size called pages. When a process is to be executed, its pages
are loaded into any availablememory frames from their source (a file system or
the backing store). The backing store is divided into fixed-sized blocks that are
the same size as the memory frames or clusters of multiple frames. This rather
simple idea has great functionality and wide ramifications. For example, the
logical address space is now totally separate from the physical address space,
so a process can have a logical 64-bit address space even though the system has
less than 264 bytes of physical memory.

Every address generated by the CPU is divided into two parts: a page
number (p) and a page offset (d):

p d

page number page offset

9.3 Paging 361

Figure 9.8 Paging hardware.

The page number is used as an index into a per-process page table. This is
illustrated in Figure 9.8. The page table contains the base address of each frame
in physical memory, and the offset is the location in the frame being referenced.
Thus, the base address of the frame is combined with the page offset to define
the physicalmemory address. The pagingmodel ofmemory is shown in Figure
9.9.

The following outlines the steps taken by the MMU to translate a logical
address generated by the CPU to a physical address:

1. Extract the page number p and use it as an index into the page table.

2. Extract the corresponding frame number f from the page table.

3. Replace the page number p in the logical address with the frame number
f .

As the offset d does not change, it is not replaced, and the frame number and
offset now comprise the physical address.

The page size (like the frame size) is defined by the hardware. The size
of a page is a power of 2, typically varying between 4 KB and 1 GB per page,
depending on the computer architecture. The selection of a power of 2 as a
page size makes the translation of a logical address into a page number and
page offset particularly easy. If the size of the logical address space is 2m, and a
page size is 2n bytes, then the high-orderm−n bits of a logical address designate
the page number, and the n low-order bits designate the page offset. Thus, the
logical address is as follows:

p d

page number page offset

m – n n

362 Chapter 9 Main Memory

page 0

page 1

page 2

page 3

logical
memory

page 1

page 3

page 0

page 2

physical
memory

page table

frame
number

1

4

3

7

0

1

2

3

0

1

2

3

4

5

6

7

Figure 9.9 Paging model of logical and physical memory.

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 9.10. Here, in the logical address, n = 2 and m = 4. Using a page size
of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the
programmer’s view of memory can be mapped into physical memory. Logical
address 0 is page 0, offset 0. Indexing into the page table, we find that page 0
is in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 × 4) +
0]. Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 × 4) +
3]. Logical address 4 is page 1, offset 0; according to the page table, page 1 is
mapped to frame 6. Thus, logical address 4 maps to physical address 24 [= (6
× 4) + 0]. Logical address 13 maps to physical address 9.

You may have noticed that paging itself is a form of dynamic relocation.
Every logical address is bound by the paging hardware to some physical
address. Using paging is similar to using a table of base (or relocation) registers,
one for each frame of memory.

When we use a paging scheme, we have no external fragmentation: any
free frame can be allocated to a process that needs it. However, we may have
some internal fragmentation. Notice that frames are allocated as units. If the
memory requirements of a process do not happen to coincidewith page bound-
aries, the last frame allocated may not be completely full. For example, if page
size is 2,048 bytes, a process of 72,766 bytes will need 35 pages plus 1,086 bytes.
It will be allocated 36 frames, resulting in internal fragmentation of 2,048 −
1,086 = 962 bytes. In the worst case, a process would need n pages plus 1 byte.
It would be allocated n + 1 frames, resulting in internal fragmentation of almost
an entire frame.

9.3 Paging 363

logical memory

physical memory

page table

i
j
k
l

m
n
o
p

a
b
c
d
e
f
g
h

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

0

4

8

12

16

20

24

28

1

2

3

5

6

1

2

Figure 9.10 Paging example for a 32-byte memory with 4-byte pages.

If process size is independent of page size, we expect internal fragmen-
tation to average one-half page per process. This consideration suggests that
small page sizes are desirable. However, overhead is involved in each page-
table entry, and this overhead is reduced as the size of the pages increases. Also,
disk I/O is more efficient when the amount of data being transferred is larger
(Chapter 11). Generally, page sizes have grown over time as processes, data
sets, and main memory have become larger. Today, pages are typically either
4 KB or 8 KB in size, and some systems support even larger page sizes. Some
CPUs and operating systems even support multiple page sizes. For instance, on
x86-64 systems, Windows 10 supports page sizes of 4 KB and 2 MB. Linux also
supports twopage sizes: a default page size (typically 4 KB) and an architecture-
dependent larger page size called huge pages.

Frequently, on a 32-bit CPU, each page-table entry is 4 bytes long, but that
size can vary as well. A 32-bit entry can point to one of 232 physical page
frames. If the frame size is 4 KB (212), then a system with 4-byte entries can
address 244 bytes (or 16 TB) of physical memory. We should note here that the
size of physical memory in a paged memory system is typically different from
the maximum logical size of a process. As we further explore paging, we will

364 Chapter 9 Main Memory

OBTAINING THE PAGE SIZE ON LINUX SYSTEMS

On a Linux system, the page size varies according to architecture, and there
are several ways of obtaining the page size. One approach is to use the system
call getpagesize(). Another strategy is to enter the following command on
the command line:

getconf PAGESIZE

Each of these techniques returns the page size as a number of bytes.

introduce other information that must be kept in the page-table entries. That
information reduces the number of bits available to address page frames. Thus,
a systemwith 32-bit page-table entries may address less physical memory than
the possible maximum.

When a process arrives in the system to be executed, its size, expressed
in pages, is examined. Each page of the process needs one frame. Thus, if the
process requires n pages, at least n frames must be available in memory. If n
frames are available, they are allocated to this arriving process. The first page
of the process is loaded into one of the allocated frames, and the frame number
is put in the page table for this process. The next page is loaded into another
frame, its frame number is put into the page table, and so on (Figure 9.11).

An important aspect of paging is the clear separation between the pro-
grammer’s view of memory and the actual physical memory. The programmer
views memory as one single space, containing only this one program. In fact,
the user program is scattered throughout physical memory, which also holds

(a)

free-frame list
14
13
18
20
15

13

14

15

16

17

18

19

20

21

page 0
page 1
page 2
page 3

new process

(b)

free-frame list
15

13 page 1

page 0

page 2

page 3

14

15

16

17

18

19

20

21

page 0
page 1
page 2
page 3

new process

new-process page table

140
1
2
3

13
18
20

Figure 9.11 Free frames (a) before allocation and (b) after allocation.

9.3 Paging 365

other programs. The difference between the programmer’s view of memory
and the actual physical memory is reconciled by the address-translation hard-
ware. The logical addresses are translated into physical addresses. This map-
ping is hidden from the programmer and is controlled by the operating system.
Notice that the user process by definition is unable to access memory it does
not own. It has no way of addressingmemory outside of its page table, and the
table includes only those pages that the process owns.

Since the operating system ismanaging physical memory, it must be aware
of the allocation details of physical memory—which frames are allocated,
which frames are available, how many total frames there are, and so on. This
information is generally kept in a single, system-wide data structure called
a frame table. The frame table has one entry for each physical page frame,
indicating whether the latter is free or allocated and, if it is allocated, to which
page of which process (or processes).

In addition, the operating system must be aware that user processes oper-
ate in user space, and all logical addressesmust bemapped to produce physical
addresses. If a user makes a system call (to do I/O, for example) and provides
an address as a parameter (a buffer, for instance), that addressmust bemapped
to produce the correct physical address. The operating systemmaintains a copy
of the page table for each process, just as it maintains a copy of the instruction
counter and register contents. This copy is used to translate logical addresses to
physical addresseswhenever the operating systemmust map a logical address
to a physical address manually. It is also used by the CPU dispatcher to define
the hardware page table when a process is to be allocated the CPU. Paging
therefore increases the context-switch time.

9.3.2 Hardware Support

As page tables are per-process data structures, a pointer to the page table
is stored with the other register values (like the instruction pointer) in the
process control block of each process.When the CPU scheduler selects a process
for execution, it must reload the user registers and the appropriate hardware
page-table values from the stored user page table.

The hardware implementation of the page table can be done in several
ways. In the simplest case, the page table is implemented as a set of dedicated
high-speed hardware registers,whichmakes the page-address translation very
efficient. However, this approach increases context-switch time, as each one of
these registers must be exchanged during a context switch.

The use of registers for the page table is satisfactory if the page table is rea-
sonably small (for example, 256 entries). Most contemporary CPUs, however,
support much larger page tables (for example, 220 entries). For these machines,
the use of fast registers to implement the page table is not feasible. Rather,
the page table is kept in main memory, and a page-table base register (PTBR)
points to the page table. Changing page tables requires changing only this one
register, substantially reducing context-switch time.

9.3.2.1 Translation Look-Aside Buffer

Although storing the page table in main memory can yield faster context
switches, it may also result in slower memory access times. Suppose we want
to access location i.We must first index into the page table, using the value in

366 Chapter 9 Main Memory

the PTBR offset by the page number for i. This task requires onememory access.
It provides us with the frame number, which is combined with the page offset
to produce the actual address.We can then access the desired place inmemory.
With this scheme, twomemory accesses are needed to access data (one for the
page-table entry and one for the actual data). Thus,memory access is slowedby
a factor of 2, a delay that is considered intolerable under most circumstances.

The standard solution to this problem is to use a special, small, fast-lookup
hardware cache called a translation look-aside buffer (TLB). The TLB is asso-
ciative, high-speed memory. Each entry in the TLB consists of two parts: a key
(or tag) and a value. When the associative memory is presented with an item,
the item is compared with all keys simultaneously. If the item is found, the cor-
responding value field is returned. The search is fast; a TLB lookup in modern
hardware is part of the instruction pipeline, essentially adding no performance
penalty. To be able to execute the search within a pipeline step, however, the
TLBmust be kept small. It is typically between 32 and 1,024 entries in size. Some
CPUs implement separate instruction and data address TLBs. That can double
the number of TLB entries available, because those lookups occur in different
pipeline steps. We can see in this development an example of the evolution of
CPU technology: systems have evolved fromhaving no TLBs to havingmultiple
levels of TLBs, just as they have multiple levels of caches.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by
the CPU, the MMU first checks if its page number is present in the TLB. If the
page number is found, its frame number is immediately available and is used
to access memory. As just mentioned, these steps are executed as part of the
instruction pipeline within the CPU, adding no performance penalty compared
with a system that does not implement paging.

If the page number is not in the TLB (known as a TLB miss), address
translation proceeds following the steps illustrated in Section 9.3.1, where a
memory reference to the page table must be made. When the frame number is
obtained, we can use it to access memory (Figure 9.12). In addition, we add the
page number and frame number to the TLB, so that they will be found quickly
on the next reference.

If the TLB is already full of entries, an existing entry must be selected
for replacement. Replacement policies range from least recently used (LRU)
through round-robin to random. Some CPUs allow the operating system to par-
ticipate in LRU entry replacement, while others handle the matter themselves.
Furthermore, some TLBs allow certain entries to be wired down, meaning that
they cannot be removed from the TLB. Typically, TLB entries for key kernel code
are wired down.

Some TLBs store address-space identifier (ASIDs) in each TLB entry. An
ASID uniquely identifies each process and is used to provide address-space
protection for that process.When the TLB attempts to resolve virtual page num-
bers, it ensures that the ASID for the currently running process matches the
ASID associated with the virtual page. If the ASIDs do not match, the attempt
is treated as a TLB miss. In addition to providing address-space protection, an
ASID allows the TLB to contain entries for several different processes simulta-
neously. If the TLB does not support separate ASIDs, then every time a new
page table is selected (for instance, with each context switch), the TLB must be
flushe (or erased) to ensure that the next executing process does not use the

9.3 Paging 367

page table

f

CPU

logical
address

p d

f d

physical
address

physical
memory

p

TLB miss

page
number

frame
number

TLB hit

TLB

Figure 9.12 Paging hardware with TLB.

wrong translation information. Otherwise, the TLB could include old entries
that contain valid virtual addresses but have incorrect or invalid physical
addresses left over from the previous process.

The percentage of times that the page number of interest is found in the
TLB is called the hit ratio. An 80-percent hit ratio, for example, means that
we find the desired page number in the TLB 80 percent of the time. If it takes
10 nanoseconds to access memory, then a mapped-memory access takes 10
nanoseconds when the page number is in the TLB. If we fail to find the page
number in the TLB then we must first access memory for the page table and
frame number (10 nanoseconds) and then access the desired byte in memory
(10 nanoseconds), for a total of 20 nanoseconds. (We are assuming that a page-
table lookup takes only one memory access, but it can take more, as we shall
see.) To find the effective memory-access time, we weight the case by its
probability:

effective access time = 0.80 × 10 + 0.20 × 20
= 12 nanoseconds

In this example, we suffer a 20-percent slowdown in average memory-access
time (from 10 to 12 nanoseconds). For a 99-percent hit ratio, which is much
more realistic, we have

effective access time = 0.99 × 10 + 0.01 × 20
= 10.1 nanoseconds

This increased hit rate produces only a 1 percent slowdown in access time.

368 Chapter 9 Main Memory

As noted earlier, CPUs todaymay providemultiple levels of TLBs. Calculat-
ing memory access times in modern CPUs is therefore much more complicated
than shown in the example above. For instance, the Intel Core i7 CPU has a
128-entry L1 instruction TLB and a 64-entry L1 data TLB. In the case of a miss at
L1, it takes the CPU six cycles to check for the entry in the L2 512-entry TLB. A
miss in L2 means that the CPU must either walk through the page-table entries
in memory to find the associated frame address, which can take hundreds of
cycles, or interrupt to the operating system to have it do the work.

A complete performance analysis of paging overhead in such a system
would require miss-rate information about each TLB tier. We can see from the
general information above, however, that hardware features can have a signif-
icant effect onmemory performance and that operating-system improvements
(such as paging) can result in and, in turn, be affected by hardware changes
(such as TLBs). We will further explore the impact of the hit ratio on the TLB in
Chapter 10.

TLBs are a hardware feature and thereforewould seem to be of little concern
to operating systems and their designers. But the designer needs to understand
the function and features of TLBs, which vary by hardware platform. For opti-
mal operation, an operating-system design for a given platform must imple-
ment paging according to the platform’s TLB design. Likewise, a change in
the TLB design (for example, between different generations of Intel CPUs) may
necessitate a change in the paging implementation of the operating systems
that use it.

9.3.3 Protection

Memory protection in a paged environment is accomplished by protection bits
associated with each frame. Normally, these bits are kept in the page table.

One bit can define a page to be read–write or read-only. Every reference
to memory goes through the page table to find the correct frame number. At
the same time that the physical address is being computed, the protection bits
can be checked to verify that no writes are being made to a read-only page. An
attempt to write to a read-only page causes a hardware trap to the operating
system (or memory-protection violation).

We can easily expand this approach to provide a finer level of protection.
We can create hardware to provide read-only, read–write, or execute-only
protection; or, by providing separate protection bits for each kind of access, we
can allow any combination of these accesses. Illegal attempts will be trapped
to the operating system.

One additional bit is generally attached to each entry in the page table: a
valid–invalid bit. When this bit is set to valid, the associated page is in the
process’s logical address space and is thus a legal (or valid) page. When the
bit is set to invalid, the page is not in the process’s logical address space. Illegal
addresses are trapped by use of the valid–invalid bit. The operating system
sets this bit for each page to allow or disallow access to the page.

Suppose, for example, that in a system with a 14-bit address space (0 to
16383), we have a program that should use only addresses 0 to 10468. Given
a page size of 2 KB, we have the situation shown in Figure 9.13. Addresses in
pages 0, 1, 2, 3, 4, and 5 are mapped normally through the page table. Any
attempt to generate an address in pages 6 or 7, however, will find that the

9.3 Paging 369

page 5

page 0

page 1

page 2

page 3

page 4

page 5

page n

•
•
•

00000

0

1

2

3

4

5

6

7

8

9

frame number

0
1
2
3
4
5
6
7

2
3
4
7
8
9
0
0

v
v
v
v
v
v
i
i

page table

valid–invalid bit

10,468

12,287

page 4

page 3

page 2

page 1

page 0

Figure 9.13 Valid (v) or invalid (i) bit in a page table.

valid–invalid bit is set to invalid, and the computer will trap to the operating
system (invalid page reference).

Notice that this scheme has created a problem. Because the program
extends only to address 10468, any reference beyond that address is illegal.
However, references to page 5 are classified as valid, so accesses to addresses
up to 12287 are valid. Only the addresses from 12288 to 16383 are invalid. This
problem is a result of the 2-KB page size and reflects the internal fragmentation
of paging.

Rarely does a process use all its address range. In fact, many processes
use only a small fraction of the address space available to them. It would be
wasteful in these cases to create a page table with entries for every page in
the address range. Most of this table would be unused but would take up
valuable memory space. Some systems provide hardware, in the form of a
page-table length register (PTLR), to indicate the size of the page table. This
value is checked against every logical address to verify that the address is in
the valid range for the process. Failure of this test causes an error trap to the
operating system.

9.3.4 Shared Pages

Anadvantage of paging is the possibility of sharing common code, a considera-
tion that is particularly important in an environment with multiple processes.
Consider the standard C library, which provides a portion of the system call
interface for many versions of UNIX and Linux. On a typical Linux system,
most user processes require the standard C library libc. One option is to have

370 Chapter 9 Main Memory

each process load its own copy of libc into its address space. If a system has
40 user processes, and the libc library is 2 MB, this would require 80 MB of
memory.

If the code is reentrant code, however, it can be shared, as shown in Figure
9.14. Here, we see three processes sharing the pages for the standard C library
libc. (Although the figure shows the libc library occupying four pages, in
reality, it would occupy more.) Reentrant code is non-self-modifying code: it
never changes during execution. Thus, two or more processes can execute the
same code at the same time. Each process has its own copy of registers and data
storage to hold the data for the process’s execution. The data for two different
processes will, of course, be different. Only one copy of the standard C library
need be kept in physicalmemory, and the page table for each user processmaps
onto the same physical copy of libc. Thus, to support 40 processes, we need
only one copy of the library, and the total space now required is 2 MB instead
of 80 MB—a significant saving!

In addition to run-time libraries such as libc, other heavily used programs
can also be shared—compilers, window systems, database systems, and so on.
The shared libraries discussed in Section 9.1.5 are typically implemented with
shared pages. To be sharable, the code must be reentrant. The read-only nature
of shared code should not be left to the correctness of the code; the operating
system should enforce this property.

page table
for P 1

process P 1

libc 1
0

1

9

5

6

4

3

2

7

 8

4

1

6

3
libc 2

libc 3

libc 4

...
...

page table
for P 2

process P 2

libc 1

4

1

6

3
libc 2

libc 3

libc 4

...
...

page table
for P 3

process P 3

libc 1

libc 1

4

1

6

3
libc 2

libc 2

libc 3

libc 3

libc 4

libc 4

...
...

physical memory

Figure 9.14 Sharing of standard C library in a paging environment.

9.4 Structure of the Page Table 371

The sharing of memory among processes on a system is similar to the
sharing of the address space of a task by threads, described in Chapter 4.
Furthermore, recall that in Chapter 3we described sharedmemory as amethod
of interprocess communication. Some operating systems implement shared
memory using shared pages.

Organizing memory according to pages provides numerous benefits in
addition to allowing several processes to share the same physical pages. We
cover several other benefits in Chapter 10.

9.4 Structure of the Page Table

In this section,we explore some of themost common techniques for structuring
the page table, including hierarchical paging, hashed page tables, and inverted
page tables.

9.4.1 Hierarchical Paging

Most modern computer systems support a large logical address space
(232 to 264). In such an environment, the page table itself becomes excessively
large. For example, consider a systemwith a 32-bit logical address space. If the
page size in such a system is 4 KB (212), then a page table may consist of over
1 million entries (220 = 232/212). Assuming that each entry consists of 4 bytes,
each process may need up to 4 MB of physical address space for the page table
alone. Clearly, we would not want to allocate the page table contiguously in
main memory. One simple solution to this problem is to divide the page table
into smaller pieces. We can accomplish this division in several ways.

One way is to use a two-level paging algorithm, in which the page table
itself is also paged (Figure 9.15). For example, consider again the system with
a 32-bit logical address space and a page size of 4 KB. A logical address is
divided into a page number consisting of 20 bits and a page offset consisting
of 12 bits. Because we page the page table, the page number is further divided
into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as
follows:

p1 p2 d

page number page offset

10 10 12

where p1 is an index into the outer page table and p2 is the displacement
within the page of the inner page table. The address-translationmethod for this
architecture is shown in Figure 9.16. Because address translation works from
the outer page table inward, this scheme is also known as a forward-mapped
page table.

For a systemwith a 64-bit logical address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, let’s suppose that the page
size in such a system is 4 KB (212). In this case, the page table consists of up
to 252 entries. If we use a two-level paging scheme, then the inner page tables
can conveniently be one page long, or contain 210 4-byte entries. The addresses
look like this:

372 Chapter 9 Main Memory

•
•
•

•
•
•

outer page
table

page of
page table

page table

memory

929

900

929

900

708

500

100

1

0

•
•
•

100

708

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

1

500

Figure 9.15 A two-level page-table scheme.

p1 p2 d

outer page inner page offset

42 10 12

The outer page table consists of 242 entries, or 244 bytes. The obvious way to
avoid such a large table is to divide the outer page table into smaller pieces.
(This approach is also used on some 32-bit processors for added flexibility and
efficiency.)

We can divide the outer page table in various ways. For example, we can
page the outer page table, giving us a three-level paging scheme. Suppose that
the outer page table ismade up of standard-size pages (210 entries, or 212 bytes).
In this case, a 64-bit address space is still daunting:

p1 p2 p3

2nd outer page outer page inner page

32 10 10

d

offset

12

The outer page table is still 234 bytes (16 GB) in size.
The next stepwould be a four-level paging scheme, where the second-level

outer page table itself is also paged, and so forth. The 64-bit UltraSPARC would
require seven levels of paging—a prohibitive number of memory accesses—

9.4 Structure of the Page Table 373

logical address

outer page
table

p1 p2

p1

page of
page table

p2

d

d

Figure 9.16 Address translation for a two-level 32-bit paging architecture.

to translate each logical address. You can see from this example why, for 64-bit
architectures, hierarchical page tables are generally considered inappropriate.

9.4.2 Hashed Page Tables

One approach for handling address spaces larger than 32 bits is to use a hashed
page table, with the hash value being the virtual page number. Each entry in
the hash table contains a linked list of elements that hash to the same location
(to handle collisions). Each element consists of three fields: (1) the virtual page
number, (2) the value of the mapped page frame, and (3) a pointer to the next
element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
with field 1 in the first element in the linked list. If there is a match, the
corresponding page frame (field 2) is used to form the desiredphysical address.
If there is no match, subsequent entries in the linked list are searched for a
matching virtual page number. This scheme is shown in Figure 9.17.

hash table

q s

logical address

physical
address

physical
memory

p d r d

p r
hash

function
• • •

Figure 9.17 Hashed page table.

374 Chapter 9 Main Memory

A variation of this scheme that is useful for 64-bit address spaces has
been proposed. This variation uses clustered page tables, which are similar
to hashed page tables except that each entry in the hash table refers to several
pages (such as 16) rather than a single page. Therefore, a single page-table
entry can store the mappings for multiple physical-page frames. Clustered
page tables are particularly useful for sparse address spaces, where memory
references are noncontiguous and scattered throughout the address space.

9.4.3 Inverted Page Tables

Usually, each process has an associated page table. The page table has one
entry for each page that the process is using (or one slot for each virtual
address, regardless of the latter’s validity). This table representation is a natural
one, since processes reference pages through the pages’ virtual addresses. The
operating system must then translate this reference into a physical memory
address. Since the table is sorted by virtual address, the operating system is able
to calculate where in the table the associated physical address entry is located
and to use that value directly. One of the drawbacks of this method is that each
page table may consist of millions of entries. These tables may consume large
amounts of physical memory just to keep track of how other physical memory
is being used.

To solve this problem, we can use an inverted page table. An inverted
page table has one entry for each real page (or frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory location,
with information about the process that owns the page. Thus, only one page
table is in the system, and it has only one entry for each page of physical
memory. Figure 9.18 shows the operation of an inverted page table. Compare
it with Figure 9.8, which depicts a standard page table in operation. Inverted
page tables often require that an address-space identifier (Section 9.3.2) be
stored in each entry of the page table, since the table usually contains several

page table

CPU

logical
address

physical
address

physical
memory

i

pid p

pid

search

p

d i d

Figure 9.18 Inverted page table.

9.4 Structure of the Page Table 375

different address spaces mapping physical memory. Storing the address-space
identifier ensures that a logical page for a particular process is mapped to the
corresponding physical page frame. Examples of systems using inverted page
tables include the 64-bit UltraSPARC and PowerPC.

To illustrate this method, we describe a simplified version of the inverted
page table used in the IBM RT. IBM was the first major company to use inverted
page tables, starting with the IBM System 38 and continuing through the
RS/6000 and the current IBM Power CPUs. For the IBM RT, each virtual address
in the system consists of a triple:

<process-id, page-number, offset>.

Each inverted page-table entry is a pair <process-id, page-number>where the
process-id assumes the role of the address-space identifier. When a memory
reference occurs, part of the virtual address, consisting of <process-id, page-
number>, is presented to the memory subsystem. The inverted page table
is then searched for a match. If a match is found—say, at entry i—then the
physical address <i, offset> is generated. If no match is found, then an illegal
address access has been attempted.

Although this scheme decreases the amount of memory needed to store
each page table, it increases the amount of time needed to search the tablewhen
a page reference occurs. Because the inverted page table is sorted by physical
address, but lookups occur on virtual addresses, the whole table might need
to be searched before a match is found. This search would take far too long.
To alleviate this problem, we use a hash table, as described in Section 9.4.2,
to limit the search to one—or at most a few—page-table entries. Of course,
each access to the hash table adds a memory reference to the procedure, so one
virtualmemory reference requires at least two realmemory reads—one for the
hash-table entry and one for the page table. (Recall that the TLB is searched first,
before the hash table is consulted, offering some performance improvement.)

One interesting issue with inverted page tables involves shared memory.
With standard paging, each process has its own page table, which allows
multiple virtual addresses to be mapped to the same physical address. This
method cannot be used with inverted page tables; because there is only one
virtual page entry for every physical page, one physical page cannot have two
(or more) shared virtual addresses. Therefore, with inverted page tables, only
one mapping of a virtual address to the shared physical address may occur at
any given time. A reference by another process sharing the memory will result
in a page fault and will replace the mapping with a different virtual address.

9.4.4 Oracle SPARC Solaris

Consider as a final example a modern 64-bit CPU and operating system that are
tightly integrated to provide low-overhead virtual memory. Solaris running
on the SPARC CPU is a fully 64-bit operating system and as such has to solve
the problem of virtual memory without using up all of its physical memory
by keeping multiple levels of page tables. Its approach is a bit complex but
solves the problem efficiently using hashed page tables. There are two hash
tables—one for the kernel and one for all user processes. Each maps memory
addresses from virtual to physical memory. Each hash-table entry represents
a contiguous area of mapped virtual memory, which is more efficient than

376 Chapter 9 Main Memory

having a separate hash-table entry for each page. Each entry has a base address
and a span indicating the number of pages the entry represents.

Virtual-to-physical translationwould take too long if each address required
searching through a hash table, so the CPU implements a TLB that holds transla-
tion table entries (TTEs) for fast hardware lookups. Acache of these TTEs resides
in a translation storage buffer (TSB), which includes an entry per recently
accessed page.When a virtual address reference occurs, the hardware searches
the TLB for a translation. If none is found, the hardware walks through the in-
memory TSB looking for the TTE that corresponds to the virtual address that
caused the lookup. This TLB walk functionality is found on many modern
CPUs. If a match is found in the TSB, the CPU copies the TSB entry into the TLB,
and the memory translation completes. If no match is found in the TSB, the
kernel is interrupted to search the hash table. The kernel then creates a TTE
from the appropriate hash table and stores it in the TSB for automatic loading
into the TLB by the CPU memory-management unit. Finally, the interrupt han-
dler returns control to the MMU, which completes the address translation and
retrieves the requested byte or word from main memory.

9.5 Swapping

Process instructions and the data they operate on must be in memory to be
executed. However, a process, or a portion of a process, can be swapped
temporarily out of memory to a backing store and then brought back into
memory for continued execution (Figure 9.19). Swapping makes it possible
for the total physical address space of all processes to exceed the real physical
memory of the system, thus increasing the degree of multiprogramming in a
system.

operating
system

swap out

swap in

user
space

main memory

backing store

process P2

process P1
1

2

Figure 9.19 Standard swapping of two processes using a disk as a backing store.

9.5 Swapping 377

9.5.1 Standard Swapping

Standard swapping involves moving entire processes between main memory
and a backing store. The backing store is commonly fast secondary storage.
It must be large enough to accommodate whatever parts of processes need to
be stored and retrieved, and it must provide direct access to these memory
images. When a process or part is swapped to the backing store, the data
structures associated with the process must be written to the backing store.
For a multithreaded process, all per-thread data structures must be swapped
as well. The operating system must also maintain metadata for processes that
have been swapped out, so they can be restored when they are swapped back
in to memory.

The advantage of standard swapping is that it allows physical memory to
be oversubscribed, so that the system can accommodate more processes than
there is actual physical memory to store them. Idle or mostly idle processes
are good candidates for swapping; any memory that has been allocated to
these inactive processes can then be dedicated to active processes. If an inactive
process that has been swapped out becomes active once again, it must then be
swapped back in. This is illustrated in Figure 9.19.

9.5.2 Swapping with Paging

Standard swappingwas used in traditional UNIX systems, but it is generally no
longer used in contemporary operating systems, because the amount of time
required to move entire processes between memory and the backing store is
prohibitive. (An exception to this is Solaris,which still uses standard swapping,
however only under dire circumstances when available memory is extremely
low.)

Most systems, including Linux andWindows, nowuse a variation of swap-
ping in which pages of a process—rather than an entire process—can be
swapped. This strategy still allows physical memory to be oversubscribed, but
does not incur the cost of swapping entire processes, as presumably only a
small number of pageswill be involved in swapping. In fact, the term swapping
now generally refers to standard swapping, and paging refers to swapping
with paging. A page out operation moves a page from memory to the backing
store; the reverse process is known as a page in. Swappingwith paging is illus-
trated in Figure 9.20 where a subset of pages for processes A and B are being
paged-out and paged-in respectively. As we shall see in Chapter 10, swapping
with paging works well in conjunction with virtual memory.

9.5.3 Swapping on Mobile Systems

Most operating systems for PCs and servers support swapping pages. In con-
trast, mobile systems typically do not support swapping in any form. Mobile
devices generally use flash memory rather than more spacious hard disks for
nonvolatile storage. The resulting space constraint is one reason why mobile
operating-systemdesigners avoid swapping. Other reasons include the limited
number of writes that flash memory can tolerate before it becomes unreliable
and the poor throughput between main memory and flash memory in these
devices.

378 Chapter 9 Main Memory

process
A

page out 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

page in
process

B

main
memory

backing store

a

b

c

d

e

b c e

f

g

h

i

j

f h j

bb

c

e

f

hh

jj

Figure 9.20 Swapping with paging.

Instead of using swapping, when free memory falls below a certain thresh-
old, Apple’s iOS asks applications to voluntarily relinquish allocated mem-
ory. Read-only data (such as code) are removed from main memory and later
reloaded from flash memory if necessary. Data that have been modified (such
as the stack) are never removed. However, any applications that fail to free up
sufficient memory may be terminated by the operating system.

Android adopts a strategy similar to that used by iOS. It may terminate a
process if insufficient free memory is available. However, before terminating a
process, Android writes its application state to flash memory so that it can be
quickly restarted.

Because of these restrictions, developers for mobile systemsmust carefully
allocate and release memory to ensure that their applications do not use too
much memory or suffer from memory leaks.

SYSTEM PERFORMANCE UNDER SWAPPING

Although swapping pages is more efficient than swapping entire processes,
when a system is undergoing any form of swapping, it is often a sign there are
more active processes than available physical memory. There are generally
two approaches for handling this situation: (1) terminate some processes, or
(2) get more physical memory!

9.6 Example: Intel 32- and 64-bit Architectures 379

9.6 Example: Intel 32- and 64-bit Architectures

The architecture of Intel chips has dominated the personal computer landscape
for decades. The 16-bit Intel 8086 appeared in the late 1970s and was soon
followed by another 16-bit chip—the Intel 8088—which was notable for being
the chip used in the original IBM PC. Intel later produced a series of 32-bit
chips—the IA-32—which included the family of 32-bit Pentium processors.
More recently, Intel has produced a series of 64-bit chips based on the x86-64
architecture. Currently, all the most popular PC operating systems run on Intel
chips, including Windows, macOS, and Linux (although Linux, of course, runs
on several other architectures as well). Notably, however, Intel’s dominance
has not spread to mobile systems, where the ARM architecture currently enjoys
considerable success (see Section 9.7).

In this section, we examine address translation for both IA-32 and x86-64
architectures. Before we proceed, however, it is important to note that because
Intel has released several versions—as well as variations—of its architectures
over the years, we cannot provide a complete description of the memory-
management structure of all its chips. Nor canwe provide all of the CPU details,
as that information is best left to books on computer architecture. Rather, we
present the major memory-management concepts of these Intel CPUs.

9.6.1 IA-32 Architecture

Memory management in IA-32 systems is divided into two components—
segmentation and paging—and works as follows: The CPU generates logical
addresses, which are given to the segmentation unit. The segmentation unit
produces a linear address for each logical address. The linear address is then
given to the paging unit, which in turn generates the physical address in main
memory. Thus, the segmentation and paging units form the equivalent of the
memory-management unit (MMU). This scheme is shown in Figure 9.21.

9.6.1.1 IA-32 Segmentation

The IA-32 architecture allows a segment to be as large as 4 GB, and the max-
imum number of segments per process is 16 K. The logical address space of
a process is divided into two partitions. The first partition consists of up to
8 K segments that are private to that process. The second partition consists
of up to 8 K segments that are shared among all the processes. Information
about the first partition is kept in the local descriptor table (LDT); information
about the second partition is kept in the global descriptor table (GDT). Each
entry in the LDT and GDT consists of an 8-byte segment descriptorwith detailed
information about a particular segment, including the base location and limit
of that segment.

CPU

logical
address segmentation

unit

linear
address paging

unit

physical
address physical

memory

Figure 9.21 Logical to physical address translation in IA-32.

380 Chapter 9 Main Memory

logical address selector

descriptor table

segment descriptor +

32-bit linear address

offset

Figure 9.22 IA-32 segmentation.

The logical address is a pair (selector, offset), where the selector is a 16-bit
number:

p

2

g

1

s

13

Here, s designates the segment number, g indicates whether the segment is
in the GDT or LDT, and p deals with protection. The offset is a 32-bit number
specifying the location of the byte within the segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It also has six 8-byte microprogram
registers to hold the corresponding descriptors from either the LDT or the GDT.
This cache lets the Pentium avoid having to read the descriptor from memory
for every memory reference.

The linear address on the IA-32 is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a linear address. First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This is shown in Figure 9.22. In
the following section, we discuss how the paging unit turns this linear address
into a physical address.

9.6.1.2 IA-32 Paging

The IA-32 architecture allows a page size of either 4 KB or 4 MB. For 4-KB pages,
IA-32 uses a two-level paging scheme in which the division of the 32-bit linear
address is as follows:

p1 p2 d

page number page offset

10 10 12

9.6 Example: Intel 32- and 64-bit Architectures 381

page directory

page directory

CR3
register

page

directory

page

table

4-KB

page

4-MB

page

page table

offset

offset

(linear address)

31 22 21 12 11 0

2131 22 0

Figure 9.23 Paging in the IA-32 architecture.

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 9.16. The IA-32 address translation is shown in more detail in
Figure 9.23. The 10 high-order bits reference an entry in the outermost page
table, which IA-32 terms the page directory. (The CR3 register points to the
page directory for the current process.) The page directory entry points to an
inner page table that is indexed by the contents of the innermost 10 bits in the
linear address. Finally, the low-order bits 0–11 refer to the offset in the 4-KB
page pointed to in the page table.

One entry in the page directory is the Page Size flag, which—if set—
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

To improve the efficiency of physical memory use, IA-32 page tables can
be swapped to disk. In this case, an invalid bit is used in the page directory
entry to indicate whether the table to which the entry is pointing is in memory
or on disk. If the table is on disk, the operating system can use the other 31
bits to specify the disk location of the table. The table can then be brought into
memory on demand.

As software developers began to discover the 4-GB memory limitations
of 32-bit architectures, Intel adopted a page address extension (PAE), which
allows 32-bit processors to access a physical address space larger than 4 GB. The
fundamental difference introduced by PAE support was that paging went from
a two-level scheme (as shown in Figure 9.23) to a three-level scheme, where
the top two bits refer to a page directory pointer table. Figure 9.24 illustrates
a PAE system with 4-KB pages. (PAE also supports 2-MB pages.)

PAE also increased the page-directory and page-table entries from 32 to 64
bits in size, which allowed the base address of page tables and page frames to

382 Chapter 9 Main Memory

31 30 29 21 20 12 11 0

page table offsetpage directory

4-KB

page

page

table

page directory

pointer table

CR3

register page

directory

Figure 9.24 Page address extensions.

extend from 20 to 24 bits. Combined with the 12-bit offset, adding PAE support
to IA-32 increased the address space to 36 bits, which supports up to 64 GB
of physical memory. It is important to note that operating system support
is required to use PAE. Both Linux and macOS support PAE. However, 32-bit
versions of Windows desktop operating systems still provide support for only
4 GB of physical memory, even if PAE is enabled.

9.6.2 x86-64

Intel has had an interesting history of developing 64-bit architectures. Its ini-
tial entry was the IA-64 (later named Itanium) architecture, but that architec-
ture was not widely adopted. Meanwhile, another chip manufacturer—AMD
— began developing a 64-bit architecture known as x86-64 that was based
on extending the existing IA-32 instruction set. The x86-64 supported much
larger logical and physical address spaces, as well as several other architec-
tural advances. Historically, AMD had often developed chips based on Intel’s
architecture, but now the roles were reversed as Intel adopted AMD’s x86-64
architecture. In discussing this architecture, rather than using the commercial
names AMD64 and Intel 64, we will use the more general term x86-64.

Support for a 64-bit address space yields an astonishing 264 bytes of
addressable memory—a number greater than 16 quintillion (or 16 exabytes).
However, even though 64-bit systems can potentially address this much mem-
ory, in practice far fewer than 64 bits are used for address representation in
current designs. The x86-64 architecture currently provides a 48-bit virtual
address with support for page sizes of 4 KB, 2 MB, or 1 GB using four levels
of paging hierarchy. The representation of the linear address appears in Figure
9.25. Because this addressing scheme can use PAE, virtual addresses are 48 bits
in size but support 52-bit physical addresses (4,096 terabytes).

unused

page map

level 4

page directory

pointer table

page

directory

page

table offset

6363 4748 39 38 30 29 21 20 12 11 0

Figure 9.25 x86-64 linear address.

9.7 Example: ARMv8 Architecture 383

9.7 Example: ARMv8 Architecture

Although Intel chips have dominated the personal computer market for more
than 30 years, chips for mobile devices such as smartphones and tablet com-
puters often instead run on ARM processors. Interestingly, whereas Intel both
designs and manufactures chips, ARM only designs them. It then licenses
its architectural designs to chip manufacturers. Apple has licensed the ARM
design for its iPhone and iPadmobile devices, andmost Android-based smart-
phones use ARM processors as well. In addition to mobile devices, ARM also
provides architecture designs for real-time embedded systems. Because of the
abundance of devices that run on the ARM architecture, over 100 billion ARM
processors have been produced, making it the most widely used architecture
when measured in the quantity of chips produced. In this section, we describe
the 64-bit ARMv8 architecture.

The ARMv8 has three different translation granules: 4 KB, 16 KB, and 64
KB. Each translation granule provides different page sizes, as well as larger
sections of contiguous memory, known as regions. The page and region sizes
for the different translation granules are shown below:

Translation Granule Size Page Size Region Size
4 KB 4 KB 2 MB, 1 GB
16 KB 16 KB 32 MB
64 KB 64 KB 512 MB

For 4-KB and 16-KB granules, up to four levels of paging may be used,
with up to three levels of paging for 64-KB granules. Figure 9.26 illustrates
the ARMv8 address structure for the 4-KB translation granule with up to four
levels of paging. (Notice that although ARMv8 is a 64-bit architecture, only 48
bits are currently used.) The four-level hierarchical paging structure for the
4-KB translation granule is illustrated in Figure 9.27. (The TTBR register is the
translation table base register and points to the level 0 table for the current
thread.)

If all four levels are used, the offset (bits 0–11 in Figure 9.26) refers to the
offset within a 4-KB page. However, notice that the table entries for level 1 and

64-BIT COMPUTING

History has taught us that even though memory capacities, CPU speeds, and
similar computer capabilities seem large enough to satisfy demand for the
foreseeable future, the growth of technology ultimately absorbs available
capacities, andwe find ourselves in need of additional memory or processing
power, often sooner thanwe think.Whatmight the future of technology bring
that would make a 64-bit address space seem too small?

384 Chapter 9 Main Memory

unused offset

6363 4748 39 38 30 29 21 20 12 11 0

level 0
index

level 1
index

level 2
index

level 3
index

Figure 9.26 ARM 4-KB translation granule.

level 2 may refer either to another table or to a 1-GB region (level-1 table) or
2-MB region (level-2 table). As an example, if the level-1 table refers to a 1-GB
region rather than a level-2 table, the low-order 30 bits (bits 0–29 in Figure 9.26)
are used as an offset into this 1-GB region. Similarly, if the level-2 table refers
to a 2-MB region rather than a level-3 table, the low-order 21 bits (bits 0–20 in
Figure 9.26) refer to the offset within this 2-MB region.

The ARM architecture also supports two levels of TLBs. At the inner level
are two micro TLBs—a TLB for data and another for instructions. The micro
TLB supports ASIDs as well. At the outer level is a single main TLB. Address
translation begins at the micro-TLB level. In the case of a miss, the main TLB is
then checked. If both TLBs yield misses, a page table walk must be performed
in hardware.

9.8 Summary

• Memory is central to the operation of a modern computer system and
consists of a large array of bytes, each with its own address.

• One way to allocate an address space to each process is through the use of
base and limit registers. The base register holds the smallest legal physical
memory address, and the limit specifies the size of the range.

level 0
index

level 0
table

TTBR
register

level 1
table

level 2
table

level 3
table

level 1
index

level 2
index

level 3
index offset

4-KB
page

1-GB
region

2-MB
region

Figure 9.27 ARM four-level hierarchical paging.

Practice Exercises 385

• Binding symbolic address references to actual physical addresses may
occur during (1) compile, (2) load, or (3) execution time.

• An address generated by the CPU is known as a logical address, which
the memory management unit (MMU) translates to a physical address in
memory.

• One approach to allocating memory is to allocate partitions of contiguous
memory of varying sizes. These partitionsmay be allocated based on three
possible strategies: (1) first fit, (2) best fit, and (3) worst fit.

• Modern operating systems use paging to manage memory. In this process,
physical memory is divided into fixed-sized blocks called frames and
logical memory into blocks of the same size called pages.

• When paging is used, a logical address is divided into two parts: a page
number and a page offset. The page number serves as an index into a per-
process page table that contains the frame in physical memory that holds
the page. The offset is the specific location in the frame being referenced.

• A translation look-aside buffer (TLB) is a hardware cache of the page table.
Each TLB entry contains a page number and its corresponding frame.

• Using a TLB in address translation for paging systems involves obtaining
the page number from the logical address and checking if the frame for the
page is in the TLB. If it is, the frame is obtained from the TLB. If the frame
is not present in the TLB, it must be retrieved from the page table.

• Hierarchical paging involves dividing a logical address intomultiple parts,
each referring to different levels of page tables. As addresses expand
beyond 32 bits, the number of hierarchical levels may become large. Two
strategies that address this problem are hashed page tables and inverted
page tables.

• Swapping allows the system to move pages belonging to a process to disk
to increase the degree of multiprogramming.

• The Intel 32-bit architecture has two levels of page tables and supports
either 4-KB or 4-MB page sizes. This architecture also supports page-
address extension, which allows 32-bit processors to access a physical
address space larger than 4 GB. The x86-64 and ARMv9 architectures are
64-bit architectures that use hierarchical paging.

Practice Exercises

9.1 Name two differences between logical and physical addresses.

9.2 Why are page sizes always powers of 2?

9.3 Consider a system in which a program can be separated into two parts:
code and data. The CPU knows whether it wants an instruction (instruc-
tion fetch) or data (data fetch or store). Therefore, two base–limit register
pairs are provided: one for instructions and one for data. The instruction

386 Chapter 9 Main Memory

base–limit register pair is automatically read-only, so programs can be
shared among different users. Discuss the advantages and disadvan-
tages of this scheme.

9.4 Consider a logical address space of 64 pages of 1,024 words each,
mapped onto a physical memory of 32 frames.

a. How many bits are there in the logical address?

b. How many bits are there in the physical address?

9.5 What is the effect of allowing two entries in a page table to point to the
same page frame in memory? Explain how this effect could be used to
decrease the amount of time needed to copy a large amount of memory
fromone place to another.What effect would updating some byte on one
page have on the other page?

9.6 Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB,
and 125 KB (in order), how would the first-fit, best-fit, and worst-fit
algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and
375 KB (in order)?

9.7 Assuming a 1-KB page size, what are the page numbers and offsets for
the following address references (provided as decimal numbers):

a. 3085

b. 42095

c. 215201

d. 650000

e. 2000001

9.8 The BTV operating system has a 21-bit virtual address, yet on certain
embedded devices, it has only a 16-bit physical address. It also has a
2-KB page size. How many entries are there in each of the following?

a. A conventional, single-level page table

b. An inverted page table

What is the maximum amount of physical memory in the BTV operating
system?

9.9 Consider a logical address space of 256 pages with a 4-KB page size,
mapped onto a physical memory of 64 frames.

a. How many bits are required in the logical address?

b. How many bits are required in the physical address?

9.10 Consider a computer systemwith a 32-bit logical address and 4-KB page
size. The system supports up to 512 MB of physical memory. Howmany
entries are there in each of the following?

a. A conventional, single-level page table

b. An inverted page table

Bibliography 387

Further Reading

The concept of paging can be credited to the designers of the Atlas system,
which has been described by [Kilburn et al. (1961)] and by [Howarth et al.
(1961)].

[Hennessy and Patterson (2012)] explain the hardware aspects of TLBs,
caches, andMMUs. [Jacob andMudge (2001)] describe techniques formanaging
the TLB. [Fang et al. (2001)] evaluate support for large pages.

PAE support forWindows systems.is discussed in http://msdn.microsoft.co
m/en-us/library/windows/hardware/gg487512.aspx An overview of the ARM
architecture is provided in http://www.arm.com/products/processors/cortex-
a/cortex-a9.php

Bibliography

[Fang et al. (2001)] Z. Fang, L. Zhang, J. B. Carter, W. C. Hsieh, and S. A. McKee,
“Reevaluating Online Superpage Promotion with Hardware Support”, Proceed-
ings of the International Symposium on High-Performance Computer Architecture,
Volume 50, Number 5 (2001).

[Hennessy and Patterson (2012)] J. Hennessy andD. Patterson, Computer Archi-
tecture: A Quantitative Approach, Fifth Edition, Morgan Kaufmann (2012).

[Howarth et al. (1961)] D. J. Howarth, R. B. Payne, and F. H. Sumner, “The
Manchester University Atlas Operating System, Part II: User’s Description”,
Computer Journal, Volume 4, Number 3 (1961), pages 226–229.

[Jacob and Mudge (2001)] B. Jacob and T. Mudge, “Uniprocessor Virtual Mem-
oryWithout TLBs”, IEEE Transactions onComputers, Volume 50,Number 5 (2001).

[Kilburn et al. (1961)] T. Kilburn, D. J. Howarth, R. B. Payne, and F. H. Sumner,
“The Manchester University Atlas Operating System, Part I: Internal Organiza-
tion”, Computer Journal, Volume 4, Number 3 (1961), pages 222–225.

http://comjnl.oxfordjournals.org/content/4/3/222.abstract
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://doi.ieeecomputersociety.org/10.1109/12.926161
http://dl.acm.org/citation.cfm?id=580550.876428
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487512.aspx
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://dl.acm.org/citation.cfm?id=580550.876428
http://dl.acm.org/citation.cfm?id=580550.876428
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://doi.ieeecomputersociety.org/10.1109/12.926161
http://doi.ieeecomputersociety.org/10.1109/12.926161
http://comjnl.oxfordjournals.org/content/4/3/222.abstract
http://comjnl.oxfordjournals.org/content/4/3/222.abstract
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487512.aspx
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487512.aspx

Exercises

Chapter 9 Exercises

9.11 Explain the difference between internal and external fragmentation.

9.12 Consider the following process for generating binaries. A compiler is
used to generate the object code for individual modules, and a linker is
used to combine multiple object modules into a single program binary.
Howdoes the linker change the binding of instructions anddata tomem-
ory addresses? What information needs to be passed from the compiler
to the linker to facilitate the memory-binding tasks of the linker?

9.13 Given six memory partitions of 100 MB, 170 MB, 40 MB, 205 MB, 300 MB,
and 185 MB (in order), how would the first-fit, best-fit, and worst-fit
algorithms place processes of size 200 MB, 15 MB, 185 MB, 75 MB, 175
MB, and 80 MB (in order)? Indicate which—if any—requests cannot be
satisfied. Comment on how efficiently each of the algorithms manages
memory.

9.14 Most systems allow a program to allocate more memory to its address
space during execution. Allocation of data in the heap segments of
programs is an example of such allocated memory. What is required to
support dynamic memory allocation in the following schemes?

a. Contiguous memory allocation

b. Paging

9.15 Compare thememory organization schemes of contiguousmemory allo-
cation and paging with respect to the following issues:

a. External fragmentation

b. Internal fragmentation

c. Ability to share code across processes

9.16 On a system with paging, a process cannot access memory that it does
not own. Why? How could the operating system allow access to addi-
tional memory? Why should it or should it not?

9.17 Explain why mobile operating systems such as iOS and Android do not
support swapping.

9.18 Although Android does not support swapping on its boot disk, it is
possible to set up a swap space using a separate SD nonvolatile memory
card. Why would Android disallow swapping on its boot disk yet allow
it on a secondary disk?

9.19 Explain why address-space identifiers (ASIDs) are used in TLBs.

9.20 Program binaries in many systems are typically structured as follows.
Code is stored starting with a small, fixed virtual address, such as 0. The
code segment is followed by the data segment, which is used for storing
the program variables. When the program starts executing, the stack is
allocated at the other end of the virtual address space and is allowed
to grow toward lower virtual addresses. What is the significance of this
structure for the following schemes?

EX-32

a. Contiguous memory allocation

b. Paging

9.21 Assuming a 1-KB page size, what are the page numbers and offsets for
the following address references (provided as decimal numbers)?

a. 21205

b. 164250

c. 121357

d. 16479315

e. 27253187

9.22 The MPV operating system is designed for embedded systems and has
a 24-bit virtual address, a 20-bit physical address, and a 4-KB page size.
How many entries are there in each of the following?

a. A conventional, single-level page table

b. An inverted page table

What is themaximum amount of physical memory in the MPV operating
system?

9.23 Consider a logical address space of 2,048 pages with a 4-KB page size,
mapped onto a physical memory of 512 frames.

a. How many bits are required in the logical address?

b. How many bits are required in the physical address?

9.24 Consider a computer systemwith a 32-bit logical address and 8-KB page
size. The system supports up to 1 GB of physical memory. How many
entries are there in each of the following?

a. A conventional, single-level page table

b. An inverted page table

9.25 Consider a paging system with the page table stored in memory.

a. If a memory reference takes 50 nanoseconds, how long does a
paged memory reference take?

b. If we add TLBs, and if 75 percent of all page-table references
are found in the TLBs, what is the effective memory reference
time? (Assume that finding a page-table entry in the TLBs takes 2
nanoseconds, if the entry is present.)

9.26 What is the purpose of paging the page tables?

9.27 Consider the IA-32 address-translation scheme shown in Figure 9.22.

a. Describe all the steps taken by the IA-32 in translating a logical
address into a physical address.

b. What are the advantages to the operating system of hardware that
provides such complicated memory translation?

EX-33

Exercises

c. Are there any disadvantages to this address-translation system? If
so, what are they? If not, why is this scheme not used by every
manufacturer?

EX-34

Programming Projects

Programming Problems

9.28 Assume that a system has a 32-bit virtual address with a 4-KB page size.
Write a C program that is passed a virtual address (in decimal) on the
command line and have it output the page number and offset for the
given address. As an example, your program would run as follows:

./addresses 19986

Your program would output:

The address 19986 contains:
page number = 4
offset = 3602

Writing this program will require using the appropriate data type to
store 32 bits. We encourage you to use unsigned data types as well.

Programming Projects

Contiguous Memory Allocation

In Section 9.2, we presented different algorithms for contiguous memory allo-
cation. This project will involve managing a contiguous region of memory of
sizeMAXwhere addresses may range from 0 ...MAX− 1. Your program must
respond to four different requests:

1. Request for a contiguous block of memory

2. Release of a contiguous block of memory

3. Compact unused holes of memory into one single block

4. Report the regions of free and allocated memory

Your program will be passed the initial amount of memory at startup. For
example, the following initializes the program with 1 MB (1,048,576 bytes) of
memory:

./allocator 1048576

Once your program has started, it will present the user with the following
prompt:

allocator>

It will then respond to the following commands: RQ (request), RL (release), C
(compact), STAT (status report), and X (exit).

A request for 40,000 bytes will appear as follows:

allocator>RQ P0 40000 W

P-48

Chapter 9 Main Memory

Similarly, a release will appear as:

allocator>RL P0

This command will release the memory that has been allocated to process P0.
The command for compaction is entered as:

allocator>C

This command will compact unused holes of memory into one region.
Finally, the STAT command for reporting the status of memory is entered

as:

allocator>STAT

Given this command, your programwill report the regions of memory that are
allocated and the regions that are unused. For example, one possible arrange-
ment of memory allocation would be as follows:

Addresses [0:315000] Process P1
Addresses [315001: 512500] Process P3
Addresses [512501:625575] Unused
Addresses [625575:725100] Process P6
Addresses [725001] . . .

Allocating Memory

Your program will allocate memory using one of the three approaches high-
lighted in Section 9.2.2, depending on the flag that is passed to the RQ com-
mand. The flags are:

• F—first fit

• B—best fit

• W—worst fit

This will require that your program keep track of the different holes repre-
senting available memory. When a request for memory arrives, it will allocate
the memory from one of the available holes based on the allocation strategy.
If there is insufficient memory to allocate to a request, it will output an error
message and reject the request.

Your program will also need to keep track of which region of memory
has been allocated to which process. This is necessary to support the STAT

The first parameter to the RQ command is the new process that requires the
memory, followed by the amount of memory being requested, and finally the
strategy. (In this situation, “W” refers to worst fit.)

command and is also needed when memory is released via the RL command,
as the process releasingmemory is passed to this command. If a partition being
released is adjacent to an existing hole, be sure to combine the two holes into a
single hole.

P-49

Bibliography

Compaction

If the user enters the C command, your program will compact the set of holes
into one larger hole. For example, if you have four separate holes of size 550
KB, 375 KB, 1,900 KB, and 4,500 KB, your programwill combine these four holes
into one large hole of size 7,325 KB.

There are several strategies for implementing compaction, one of which
is suggested in Section 9.2.3. Be sure to update the beginning address of any
processes that have been affected by compaction.

P-50

http://comjnl.oxfordjournals.org/content/4/3/222.abstract
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://doi.ieeecomputersociety.org/10.1109/12.926161
http://dl.acm.org/citation.cfm?id=580550.876428
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487512.aspx
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://dl.acm.org/citation.cfm?id=580550.876428
http://dl.acm.org/citation.cfm?id=580550.876428
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://doi.ieeecomputersociety.org/10.1109/12.926161
http://doi.ieeecomputersociety.org/10.1109/12.926161
http://comjnl.oxfordjournals.org/content/4/3/222.abstract
http://comjnl.oxfordjournals.org/content/4/3/222.abstract

10CHAPTER

Virtual
Memory

In Chapter 9, we discussed various memory-management strategies used in
computer systems. All these strategies have the same goal: to keep many
processes in memory simultaneously to allow multiprogramming. However,
they tend to require that an entire process be in memory before it can execute.

Virtual memory is a technique that allows the execution of processes that
are not completely inmemory. Onemajor advantage of this scheme is that pro-
grams can be larger than physical memory. Further, virtual memory abstracts
main memory into an extremely large, uniform array of storage, separating
logical memory as viewed by the programmer from physical memory. This
technique frees programmers from the concerns of memory-storage limita-
tions. Virtual memory also allows processes to share files and libraries, and
to implement shared memory. In addition, it provides an efficient mechanism
for process creation. Virtual memory is not easy to implement, however, and
may substantially decrease performance if it is used carelessly. In this chap-
ter, we provide a detailed overview of virtual memory, examine how it is
implemented, and explore its complexity and benefits.

CHAPTER OBJECTIVES

• Define virtual memory and describe its benefits.

• Illustrate how pages are loaded into memory using demand paging.

• Apply the FIFO, optimal, and LRU page-replacement algorithms.

• Describe the working set of a process, and explain how it is related to
program locality.

• Describe how Linux, Windows 10, and Solaris manage virtual memory.

• Design a virtual memory manager simulation in the C programming lan-
guage.

10.1 Background

The memory-management algorithms outlined in Chapter 9 are necessary
because of one basic requirement: the instructions being executed must be in

389

390 Chapter 10 Virtual Memory

physical memory. The first approach to meeting this requirement is to place
the entire logical address space in physical memory. Dynamic linking can help
to ease this restriction, but it generally requires special precautions and extra
work by the programmer.

The requirement that instructions must be in physical memory to be exe-
cuted seems both necessary and reasonable; but it is also unfortunate, since it
limits the size of a program to the size of physical memory. In fact, an exami-
nation of real programs shows us that, in many cases, the entire program is not
needed. For instance, consider the following:

• Programs often have code to handle unusual error conditions. Since these
errors seldom, if ever, occur in practice, this code is almost never executed.

• Arrays, lists, and tables are often allocated more memory than they actu-
ally need. An array may be declared 100 by 100 elements, even though it
is seldom larger than 10 by 10 elements.

• Certain options and features of a programmay be used rarely. For instance,
the routines on U.S. government computers that balance the budget have
not been used in many years.

Even in those cases where the entire program is needed, it may not all be
needed at the same time.

The ability to execute a program that is only partially in memory would
confer many benefits:

• A program would no longer be constrained by the amount of physical
memory that is available. Users would be able to write programs for an
extremely large virtual address space, simplifying the programming task.

• Because each program could take less physical memory, more programs
could be run at the same time,with a corresponding increase in CPUutiliza-
tion and throughput but with no increase in response time or turnaround
time.

• Less I/O would be needed to load or swap portions of programs into
memory, so each program would run faster.

Thus, running a program that is not entirely in memorywould benefit both the
system and its users.

Virtual memory involves the separation of logical memory as perceived
by developers from physical memory. This separation allows an extremely
large virtual memory to be provided for programmers when only a smaller
physical memory is available (Figure 10.1). Virtual memory makes the task of
programming much easier, because the programmer no longer needs to worry
about the amount of physical memory available; she can concentrate instead
on programming the problem that is to be solved.

The virtual address space of a process refers to the logical (or virtual) view
of how a process is stored in memory. Typically, this view is that a process
begins at a certain logical address—say, address 0—and exists in contiguous
memory, as shown in Figure 10.2. Recall from Chapter 9, though, that in fact
physical memory is organized in page frames and that the physical page
frames assigned to a process may not be contiguous. It is up to the memory-

10.1 Background 391

virtual
memory

memory
map

physical
memory

backing store

•
•
•

page 0

page 1

page 2

page v

Figure 10.1 Diagram showing virtual memory that is larger than physical memory.

management unit (MMU) to map logical pages to physical page frames in
memory.

Note in Figure 10.2 that we allow the heap to grow upward in memory as
it is used for dynamic memory allocation. Similarly, we allow for the stack to
grow downward inmemory through successive function calls. The large blank
space (or hole) between the heap and the stack is part of the virtual address
space but will require actual physical pages only if the heap or stack grows.
Virtual address spaces that include holes are known as sparse address spaces.
Using a sparse address space is beneficial because the holes can be filled as the
stack or heap segments grow or if we wish to dynamically link libraries (or
possibly other shared objects) during program execution.

text

0

max

data

heap

stack

Figure 10.2 Virtual address space of a process in memory.

392 Chapter 10 Virtual Memory

shared library

stack

shared
pages

text

data

heap

text

data

heap

shared library

stack

Figure 10.3 Shared library using virtual memory.

In addition to separating logical memory from physical memory, virtual
memory allows files and memory to be shared by two or more processes
through page sharing (Section 9.3.4). This leads to the following benefits:

• System libraries such as the standard C library can be shared by several
processes through mapping of the shared object into a virtual address
space. Although each process considers the libraries to be part of its vir-
tual address space, the actual pages where the libraries reside in physical
memory are shared by all the processes (Figure 10.3). Typically, a library is
mapped read-only into the space of each process that is linked with it.

• Similarly, processes can share memory. Recall from Chapter 3 that two
or more processes can communicate through the use of shared memory.
Virtualmemory allows one process to create a region ofmemory that it can
share with another process. Processes sharing this region consider it part
of their virtual address space, yet the actual physical pages of memory are
shared, much as is illustrated in Figure 10.3.

• Pages can be shared during process creation with the fork() system call,
thus speeding up process creation.

We further explore these—and other—benefits of virtual memory later in
this chapter. First, though, we discuss implementing virtual memory through
demand paging.

10.2 Demand Paging

Consider how an executable programmight be loaded from secondary storage
into memory. One option is to load the entire program in physical memory
at program execution time. However, a problem with this approach is that

10.2 Demand Paging 393

we may not initially need the entire program in memory. Suppose a program
starts with a list of available options from which the user is to select. Loading
the entire program into memory results in loading the executable code for all
options, regardless of whether or not an option is ultimately selected by the
user.

An alternative strategy is to load pages only as they are needed. This tech-
nique is known as demand paging and is commonly used in virtual memory
systems. With demand-paged virtual memory, pages are loaded only when
they are demanded during program execution. Pages that are never accessed
are thus never loaded into physical memory. Ademand-paging system is simi-
lar to a paging system with swapping (Section 9.5.2) where processes reside in
secondary memory (usually an HDD or NVM device). Demand paging explains
one of the primary benefits of virtual memory—by loading only the portions
of programs that are needed, memory is used more efficiently.

10.2.1 Basic Concepts

The general concept behind demand paging, as mentioned, is to load a page in
memory only when it is needed. As a result, while a process is executing, some
pageswill be inmemory, and somewill be in secondary storage. Thus, we need
some form of hardware support to distinguish between the two. The valid–
invalid bit scheme described in Section 9.3.3 can be used for this purpose. This

B

D

D E
F

H

logical
memory

valid–invalid
bitframe

page table

1
0 4

62
3
4
5 9
6
7

1

0

2

3

4

5

6

7

i
v

v
i
i
v
i
i

physical memory

backing store

A

A BC

C

F G HF

1

0

2

3

4

5

6

7

9

8

10

11

12

13

14

15

A

C

E

G

Figure 10.4 Page table when some pages are not in main memory.

394 Chapter 10 Virtual Memory

time, however, when the bit is set to “valid,” the associated page is both legal
and in memory. If the bit is set to “invalid,” the page either is not valid (that
is, not in the logical address space of the process) or is valid but is currently in
secondary storage. The page-table entry for a page that is brought intomemory
is set as usual, but the page-table entry for a page that is not currently in
memory is simply marked invalid. This situation is depicted in Figure 10.4.
(Notice that marking a page invalid will have no effect if the process never
attempts to access that page.)

But what happens if the process tries to access a page that was not brought
intomemory? Access to a pagemarked invalid causes a page fault. The paging
hardware, in translating the address through the page table, will notice that the
invalid bit is set, causing a trap to the operating system. This trap is the result
of the operating system’s failure to bring the desired page into memory. The
procedure for handling this page fault is straightforward (Figure 10.5):

1. We check an internal table (usually kept with the process control block)
for this process to determine whether the reference was a valid or an
invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid but
we have not yet brought in that page, we now page it in.

3. We find a free frame (by taking one from the free-frame list, for example).

load M

reference trap

i

page is on
backing store

operating
system

restart
instruction

reset page
table

page table

physical
memory

bring in
missing page

free frame

backing store

1

2

3

6

5 4

Figure 10.5 Steps in handling a page fault.

10.2 Demand Paging 395

4. We schedule a secondary storage operation to read the desired page into
the newly allocated frame.

5. When the storage read is complete,wemodify the internal table keptwith
the process and the page table to indicate that the page is now inmemory.

6. We restart the instruction that was interrupted by the trap. The process
can now access the page as though it had always been in memory.

In the extreme case, we can start executing a process with no pages in
memory. When the operating system sets the instruction pointer to the first
instruction of the process,which is on a non-memory-resident page, the process
immediately faults for the page. After this page is brought into memory, the
process continues to execute, faulting as necessary until every page that it
needs is in memory. At that point, it can execute with no more faults. This
scheme is pure demand paging: never bring a page into memory until it is
required.

Theoretically, some programs could access several new pages of memory
with each instruction execution (one page for the instruction and many for
data), possibly causing multiple page faults per instruction. This situation
would result in unacceptable system performance. Fortunately, analysis of
running processes shows that this behavior is exceedingly unlikely. Programs
tend to have locality of reference, described in Section 10.6.1, which results in
reasonable performance from demand paging.

The hardware to support demand paging is the same as the hardware for
paging and swapping:

• Page table. This table has the ability to mark an entry invalid through a
valid–invalid bit or a special value of protection bits.

• Secondary memory. This memory holds those pages that are not present
in main memory. The secondary memory is usually a high-speed disk or
NVM device. It is known as the swap device, and the section of storage
used for this purpose is known as swap space. Swap-space allocation is
discussed in Chapter 11.

A crucial requirement for demand paging is the ability to restart any
instruction after a page fault. Because we save the state (registers, condi-
tion code, instruction counter) of the interrupted process when the page fault
occurs, we must be able to restart the process in exactly the same place and
state, except that the desired page is now in memory and is accessible. In most
cases, this requirement is easy to meet. A page fault may occur at any memory
reference. If the page fault occurs on the instruction fetch, we can restart by
fetching the instruction again. If a page fault occurs while we are fetching an
operand, we must fetch and decode the instruction again and then fetch the
operand.

As a worst-case example, consider a three-address instruction such as ADD
the content of A to B, placing the result in C. These are the steps to execute this
instruction:

1. Fetch and decode the instruction (ADD).

2. Fetch A.

396 Chapter 10 Virtual Memory

3. Fetch B.

4. Add A and B.

5. Store the sum in C.

If we fault when we try to store in C (because C is in a page not currently
in memory), we will have to get the desired page, bring it in, correct the
page table, and restart the instruction. The restart will require fetching the
instruction again, decoding it again, fetching the two operands again, and
then adding again. However, there is not much repeated work (less than one
complete instruction), and the repetition is necessary only when a page fault
occurs.

The major difficulty arises when one instruction may modify several dif-
ferent locations. For example, consider the IBM System 360/370 MVC (move
character) instruction, which can move up to 256 bytes from one location to
another (possibly overlapping) location. If either block (source or destination)
straddles a page boundary, a page fault might occur after the move is par-
tially done. In addition, if the source and destination blocks overlap, the source
block may have been modified, in which case we cannot simply restart the
instruction.

This problem can be solved in two different ways. In one solution, the
microcode computes and attempts to access both ends of both blocks. If a page
fault is going to occur, it will happen at this step, before anything is modified.
The move can then take place; we know that no page fault can occur, since all
the relevant pages are in memory. The other solution uses temporary registers
to hold the values of overwritten locations. If there is a page fault, all the old
values arewritten back intomemory before the trap occurs. This action restores
memory to its state before the instruction was started, so that the instruction
can be repeated.

This is by no means the only architectural problem resulting from adding
paging to an existing architecture to allow demand paging, but it illustrates
some of the difficulties involved. Paging is added between the CPU and the
memory in a computer system. It should be entirely transparent to a process.
Thus, people often assume that paging can be added to any system. Although
this assumption is true for a non-demand-paging environment, where a page
fault represents a fatal error, it is not true where a page fault means only that
an additional page must be brought into memory and the process restarted.

10.2.2 Free-Frame List

When a page fault occurs, the operating system must bring the desired page
from secondary storage into main memory. To resolve page faults, most oper-
ating systems maintain a free-frame list, a pool of free frames for satisfying
such requests (Figure 10.6). (Free frames must also be allocated when the stack
or heap segments from a process expand.) Operating systems typically allo-

head 7 97 126 7515 ...

Figure 10.6 List of free frames.

10.2 Demand Paging 397

cate free frames using a technique known as zero-fill-on-deman . Zero-fill-
on-demand frames are “zeroed-out” before being allocated, thus erasing their
previous contents. (Consider the potential security implications of not clearing
out the contents of a frame before reassigning it.)

When a system starts up, all available memory is placed on the free-frame
list. As free frames are requested (for example, through demand paging), the
size of the free-frame list shrinks. At some point, the list either falls to zero or
falls below a certain threshold, at which point it must be repopulated.We cover
strategies for both of these situations in Section 10.4.

10.2.3 Performance of Demand Paging

Demand paging can significantly affect the performance of a computer system.
To see why, let’s compute the effective access time for a demand-paged mem-
ory. Assume the memory-access time, denoted ma, is 10 nanoseconds. As long
as we have no page faults, the effective access time is equal to the memory
access time. If, however, a page fault occurs, we must first read the relevant
page from secondary storage and then access the desired word.

Let p be the probability of a page fault (0 ≤ p ≤ 1). We would expect p to
be close to zero—that is, we would expect to have only a few page faults. The
effective access time is then

effective access time = (1 − p) × ma + p × page fault time.

To compute the effective access time, we must know how much time is
needed to service a page fault. A page fault causes the following sequence to
occur:

1. Trap to the operating system.

2. Save the registers and process state.

3. Determine that the interrupt was a page fault.

4. Check that the page referencewas legal, and determine the location of the
page in secondary storage.

5. Issue a read from the storage to a free frame:

a. Wait in a queue until the read request is serviced.

b. Wait for the device seek and/or latency time.

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU core to some other process.

7. Receive an interrupt from the storage I/O subsystem (I/O completed).

8. Save the registers and process state for the other process (if step 6 is
executed).

9. Determine that the interrupt was from the secondary storage device.

10. Correct the page table and other tables to show that the desired page is
now in memory.

11. Wait for the CPU core to be allocated to this process again.

398 Chapter 10 Virtual Memory

12. Restore the registers, process state, and new page table, and then resume
the interrupted instruction.

Not all of these steps are necessary in every case. For example,we are assuming
that, in step 6, the CPU is allocated to another process while the I/O occurs.
This arrangement allows multiprogramming to maintain CPU utilization but
requires additional time to resume the page-fault service routine when the I/O
transfer is complete.

In any case, there are threemajor task components of the page-fault service
time:

1. Service the page-fault interrupt.

2. Read in the page.

3. Restart the process.

The first and third tasks can be reduced, with careful coding, to several
hundred instructions. These tasks may take from 1 to 100 microseconds each.
Let’s consider the case of HDDs being used as the paging device. The page-
switch time will probably be close to 8 milliseconds. (A typical hard disk has
an average latency of 3 milliseconds, a seek of 5 milliseconds, and a transfer
time of 0.05 milliseconds. Thus, the total paging time is about 8 milliseconds,
including hardware and software time.) Remember also that we are looking at
only the device-service time. If a queue of processes is waiting for the device,
we have to add queuing time as we wait for the paging device to be free to
service our request, increasing even more the time to page in.

With an average page-fault service time of 8 milliseconds and a memory-
access time of 200 nanoseconds, the effective access time in nanoseconds is

effective access time = (1 − p) × (200) + p (8 milliseconds)
= (1 − p) × 200 + p × 8,000,000
= 200 + 7,999,800 × p.

We see, then, that the effective access time is directly proportional to the
page-fault rate. If one access out of 1,000 causes a page fault, the effective access
time is 8.2 microseconds. The computer will be slowed down by a factor of 40
because of demandpaging! Ifwewant performance degradation to be less than
10 percent, we need to keep the probability of page faults at the following level:

220 > 200 + 7,999,800 × p,
20 > 7,999,800 × p,
p < 0.0000025.

That is, to keep the slowdown due to paging at a reasonable level, we can allow
fewer that one memory access out of 399,990 to page-fault. In sum, it is impor-
tant to keep the page-fault rate low in a demand-paging system. Otherwise,
the effective access time increases, slowing process execution dramatically.

An additional aspect of demand paging is the handling and overall use of
swap space. I/O to swap space is generally faster than that to the file system. It
is faster because swap space is allocated inmuch larger blocks, and file lookups
and indirect allocation methods are not used (Chapter 11). One option for the

10.3 Copy-on-Write 399

system to gain better paging throughput is by copying an entire file image into
the swap space at process startup and then performing demand paging from
the swap space. The obvious disadvantage of this approach is the copying of
the file image at program start-up. A second option—and one practiced by
several operating systems, including Linux andWindows—is to demand-page
from the file system initially but to write the pages to swap space as they are
replaced. This approach will ensure that only needed pages are read from the
file system but that all subsequent paging is done from swap space.

Some systems attempt to limit the amount of swap space used through
demand paging of binary executable files. Demand pages for such files are
brought directly from the file system. However, when page replacement is
called for, these frames can simply be overwritten (because they are never
modified), and the pages can be read in from the file system again if needed.
Using this approach, the file system itself serves as the backing store. However,
swap space must still be used for pages not associated with a file (known as
anonymous memory); these pages include the stack and heap for a process.
This method appears to be a good compromise and is used in several systems,
including Linux and BSD UNIX.

As described in Section 9.5.3, mobile operating systems typically do not
support swapping. Instead, these systems demand-page from the file sys-
tem and reclaim read-only pages (such as code) from applications if memory
becomes constrained. Such data can be demand-paged from the file system if
it is later needed. Under iOS, anonymous memory pages are never reclaimed
from an application unless the application is terminated or explicitly releases
the memory. In Section 10.7, we cover compressed memory, a commonly used
alternative to swapping in mobile systems.

10.3 Copy-on-Write

In Section 10.2, we illustrated how a process can start quickly by demand-
paging in the page containing the first instruction. However, process creation
using the fork() system call may initially bypass the need for demand paging
by using a technique similar to page sharing (covered in Section 9.3.4). This
technique provides rapid process creation and minimizes the number of new
pages that must be allocated to the newly created process.

Recall that the fork() system call creates a child process that is a duplicate
of its parent. Traditionally, fork() worked by creating a copy of the parent’s
address space for the child, duplicating the pages belonging to the parent.
However, considering thatmany child processes invoke the exec() system call
immediately after creation, the copying of the parent’s address space may be
unnecessary. Instead, we can use a technique known as copy-on-write, which
works by allowing the parent and child processes initially to share the same
pages. These shared pages are marked as copy-on-write pages, meaning that
if either process writes to a shared page, a copy of the shared page is created.
Copy-on-write is illustrated in Figures 10.7 and 10.8, which show the contents
of the physical memory before and after process 1 modifies page C.

For example, assume that the child process attempts to modify a page
containing portions of the stack, with the pages set to be copy-on-write. The
operating system will obtain a frame from the free-frame list and create a copy

400 Chapter 10 Virtual Memory

process1

physical
memory

page A

page B

page C

process2

Figure 10.7 Before process 1 modifies page C.

of this page, mapping it to the address space of the child process. The child
process will then modify its copied page and not the page belonging to the
parent process. Obviously, when the copy-on-write technique is used, only the
pages that are modified by either process are copied; all unmodified pages
can be shared by the parent and child processes. Note, too, that only pages
that can be modified need be marked as copy-on-write. Pages that cannot
be modified (pages containing executable code) can be shared by the parent
and child. Copy-on-write is a common technique used by several operating
systems, including Windows, Linux, and macOS.

Several versions of UNIX (including Linux, macOS, and BSD UNIX) provide
a variation of the fork() system call—vfork() (for virtual memory fork)—
that operates differently from fork() with copy-on-write. With vfork(), the
parent process is suspended, and the child process uses the address space of
the parent. Because vfork() does not use copy-on-write, if the child process
changes any pages of the parent’s address space, the altered pages will be
visible to the parent once it resumes. Therefore, vfork() must be used with
caution to ensure that the child process does not modify the address space of
the parent. vfork() is intended to be usedwhen the child process calls exec()
immediately after creation. Because no copying of pages takes place, vfork()

process 1

physical
memory

page A

page B

page C

copy of page C

process 2

Figure 10.8 After process 1 modifies page C.

10.4 Page Replacement 401

is an extremely efficient method of process creation and is sometimes used to
implement UNIX command-line shell interfaces.

10.4 Page Replacement

In our earlier discussion of the page-fault rate, we assumed that each page
faults at most once, when it is first referenced. This representation is not strictly
accurate, however. If a process of ten pages actually uses only half of them, then
demand paging saves the I/O necessary to load the five pages that are never
used. We could also increase our degree of multiprogramming by running
twice as many processes. Thus, if we had forty frames, we could run eight
processes, rather than the four that could run if each required ten frames (five
of which were never used).

If we increase our degree of multiprogramming, we are over-allocating
memory. If we run six processes, each of which is ten pages in size but actually
uses only five pages, we have higher CPU utilization and throughput, with
ten frames to spare. It is possible, however, that each of these processes, for
a particular data set, may suddenly try to use all ten of its pages, resulting in a
need for sixty frames when only forty are available.

Further, consider that systemmemory is not usedonly for holding program
pages. Buffers for I/O also consume a considerable amount ofmemory. This use
can increase the strain on memory-placement algorithms. Deciding howmuch
memory to allocate to I/O and how much to program pages is a significant
challenge. Some systems allocate a fixed percentage of memory for I/O buffers,
whereas others allow both processes and the I/O subsystem to compete for all
systemmemory. Section 14.6 discusses the integrated relationship between I/O
buffers and virtual memory techniques.

Over-allocation of memory manifests itself as follows. While a process is
executing, a page fault occurs. The operating system determines where the
desired page is residing on secondary storage but then finds that there are
no free frames on the free-frame list; all memory is in use. This situation is
illustrated in Figure 10.9, where the fact that there are no free frames is depicted
by a question mark.

The operating system has several options at this point. It could terminate
the process. However, demand paging is the operating system’s attempt to
improve the computer system’s utilization and throughput. Users should not
be aware that their processes are running on a paged system—paging should
be logically transparent to the user. So this option is not the best choice.

The operating system could instead use standard swapping and swap
out a process, freeing all its frames and reducing the level of multiprogram-
ming. However, as discussed in Section 9.5, standard swapping is no longer
used by most operating systems due to the overhead of copying entire pro-
cesses between memory and swap space. Most operating systems now com-
bine swapping pageswith page replacement, a techniquewe describe in detail
in the remainder of this section.

10.4.1 Basic Page Replacement

Page replacement takes the following approach. If no frame is free, we find one
that is not currently being used and free it. We can free a frame by writing its

402 Chapter 10 Virtual Memory

Figure 10.9 Need for page replacement.

contents to swap space and changing the page table (and all other tables) to
indicate that the page is no longer in memory (Figure 10.10). We can now use
the freed frame to hold the page for which the process faulted. We modify the
page-fault service routine to include page replacement:

1. Find the location of the desired page on secondary storage.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select
a victim frame.

c. Write the victim frame to secondary storage (if necessary); change
the page and frame tables accordingly.

3. Read the desired page into the newly freed frame; change the page and
frame tables.

4. Continue the process from where the page fault occurred.

Notice that, if no frames are free, two page transfers (one for the page-out
and one for the page-in) are required. This situation effectively doubles the
page-fault service time and increases the effective access time accordingly.

We can reduce this overhead by using a modify bit (or dirty bit).When this
scheme is used, each page or frame has a modify bit associated with it in the
hardware. The modify bit for a page is set by the hardware whenever any byte
in the page is written into, indicating that the page has been modified. When
we select a page for replacement, we examine its modify bit. If the bit is set,

10.4 Page Replacement 403

valid–invalid bitframe

f

page table

victim

backing store

change
to invalid

page out
victim
page

page in
desired

page

reset page
table for

new page

physical
memory

2

4

1

3

f
0 i

v

Figure 10.10 Page replacement.

we know that the page has been modified since it was read in from secondary
storage. In this case, we must write the page to storage. If the modify bit is not
set, however, the page has not beenmodified since it was read into memory. In
this case, we need notwrite thememory page to storage: it is already there. This
technique also applies to read-only pages (for example, pages of binary code).
Such pages cannot be modified; thus, they may be discarded when desired.
This scheme can significantly reduce the time required to service a page fault,
since it reduces I/O time by one-half if the page has not been modified.

Page replacement is basic to demand paging. It completes the separation
between logical memory and physical memory.With this mechanism, an enor-
mous virtual memory can be provided for programmers on a smaller physical
memory. With no demand paging, logical addresses are mapped into physical
addresses, and the two sets of addresses can be different. All the pages of a
process still must be in physical memory, however. With demand paging, the
size of the logical address space is no longer constrained by physical memory.
If we have a process of twenty pages, we can execute it in ten frames simply by
using demand paging and using a replacement algorithm to find a free frame
whenever necessary. If a page that has been modified is to be replaced, its
contents are copied to secondary storage. A later reference to that page will
cause a page fault. At that time, the page will be brought back into memory,
perhaps replacing some other page in the process.

Wemust solve twomajor problems to implement demandpaging:wemust
develop a frame-allocation algorithm and a page-replacement algorithm.
That is, if we have multiple processes in memory, we must decide how many
frames to allocate to each process; and when page replacement is required,
we must select the frames that are to be replaced. Designing appropriate algo-
rithms to solve these problems is an important task, because secondary storage

404 Chapter 10 Virtual Memory

I/O is so expensive. Even slight improvements in demand-paging methods
yield large gains in system performance.

There are many different page-replacement algorithms. Every operating
system probably has its own replacement scheme. How do we select a par-
ticular replacement algorithm? In general, we want the one with the lowest
page-fault rate.

We evaluate an algorithm by running it on a particular string of memory
references and computing the number of page faults. The string of memory
references is called a reference string. We can generate reference strings arti-
ficially (by using a random-number generator, for example), or we can trace
a given system and record the address of each memory reference. The latter
choice produces a large number of data (on the order of 1 million addresses
per second). To reduce the number of data, we use two facts.

First, for a given page size (and the page size is generally fixed by the hard-
ware or system), we need to consider only the page number, rather than the
entire address. Second, if we have a reference to a page p, then any references
to page p that immediately follow will never cause a page fault. Page p will
be in memory after the first reference, so the immediately following references
will not fault.

For example, if we trace a particular process, wemight record the following
address sequence:

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,
0104, 0101, 0610, 0102, 0103, 0104, 0101, 0609, 0102, 0105

At 100 bytes per page, this sequence is reduced to the following reference
string:

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1

To determine the number of page faults for a particular reference string and
page-replacement algorithm, we also need to know the number of page frames
available. Obviously, as the number of frames available increases, the number
of page faults decreases. For the reference string considered previously, for
example, if we had three or more frames, we would have only three faults—
one fault for the first reference to each page. In contrast, with only one frame
available, we would have a replacement with every reference, resulting in
eleven faults. In general, we expect a curve such as that in Figure 10.11. As the
number of frames increases, the number of page faults drops to some minimal
level. Of course, adding physical memory increases the number of frames.

We next illustrate several page-replacement algorithms. In doing so, we
use the reference string

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a memory with three frames.

10.4.2 FIFO Page Replacement

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algo-
rithm. A FIFO replacement algorithm associates with each page the time when
that page was brought into memory. When a page must be replaced, the oldest
page is chosen. Notice that it is not strictly necessary to record the time when a

10.4 Page Replacement 405

n
u

m
b

e
r

o
f

p
a

g
e

 f
a

u
lt
s

16

14

12

10

8

6

4

2

1 2 3

number of frames

4 5 6

Figure 10.11 Graph of page faults versus number of frames.

page is brought in. We can create a FIFO queue to hold all pages in memory.We
replace the page at the head of the queue.When a page is brought intomemory,
we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty. The
first three references (7, 0, 1) cause page faults and are brought into these empty
frames. The next reference (2) replaces page 7, because page 7 was brought in
first. Since 0 is the next reference and 0 is already in memory, we have no fault
for this reference. The first reference to 3 results in replacement of page 0, since
it is now first in line. Because of this replacement, the next reference, to 0, will
fault. Page 1 is then replaced by page 0. This process continues as shown in
Figure 10.12. Every time a fault occurs, we show which pages are in our three
frames. There are fifteen faults altogether.

The FIFO page-replacement algorithm is easy to understand and program.
However, its performance is not always good. On the one hand, the page
replaced may be an initialization module that was used a long time ago and is
no longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we replace an active page with a new

7 7

0

7

0

1

page frames

reference string

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

7

1

2

7

0

2

7

0

1

0

1

3

0

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

1

2

Figure 10.12 FIFO page-replacement algorithm.

406 Chapter 10 Virtual Memory

n
u

m
b

e
r

o
f

p
a

g
e

 f
a

u
lt
s

16

14

12

10

8

6

4

2

1 2 3

number of frames

4 5 6 7

Figure 10.13 Page-fault curve for FIFO replacement on a reference string.

one, a fault occurs almost immediately to retrieve the active page. Some other
page must be replaced to bring the active page back into memory. Thus, a bad
replacement choice increases the page-fault rate and slows process execution.
It does not, however, cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-replacement
algorithm, consider the following reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Figure 10.13 shows the curve of page faults for this reference string versus the
number of available frames. Notice that the number of faults for four frames
(ten) is greater than the number of faults for three frames (nine)! This most
unexpected result is known as Belady’s anomaly: for some page-replacement
algorithms, the page-fault rate may increase as the number of allocated frames
increases. We would expect that giving more memory to a process would
improve its performance. In some early research, investigators noticed that this
assumption was not always true. Belady’s anomaly was discovered as a result.

10.4.3 Optimal Page Replacement

One result of the discovery of Belady’s anomaly was the search for an optimal
page-replacement algorithm—the algorithm that has the lowest page-fault
rate of all algorithms and will never suffer from Belady’s anomaly. Such an
algorithm does exist and has been called OPT or MIN. It is simply this:

Replace the page that will not be used for the longest period of time.

Use of this page-replacement algorithm guarantees the lowest possible page-
fault rate for a fixed number of frames.

For example, on our sample reference string, the optimal page-replacement
algorithmwould yield nine page faults, as shown in Figure 10.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because page 7 will not be used until reference 18, whereas

10.4 Page Replacement 407

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

7

0

1

2

0

1

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 10.14 Optimal page-replacement algorithm.

page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces
page 1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than
a FIFO algorithm, which results in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string.
(We encountered a similar situation with the SJF CPU-scheduling algorithm in
Section 5.3.2.) As a result, the optimal algorithm is usedmainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

10.4.4 LRU Page Replacement

If the optimal algorithm is not feasible, perhaps an approximation of the opti-
mal algorithm is possible. The key distinction between the FIFO and OPT algo-
rithms (other than looking backward versus forward in time) is that the FIFO
algorithm uses the time when a page was brought into memory, whereas the
OPT algorithm uses the timewhen a page is to be used. If we use the recent past
as an approximation of the near future, then we can replace the page that has
not been used for the longest period of time. This approach is the least recently
used (LRU) algorithm.

LRU replacement associates with each page the time of that page’s last use.
When a page must be replaced, LRU chooses the page that has not been used
for the longest period of time. We can think of this strategy as the optimal
page-replacement algorithm looking backward in time, rather than forward.
(Strangely, if we let SR be the reverse of a reference string S, then the page-fault
rate for the OPT algorithm on S is the same as the page-fault rate for the OPT
algorithm on SR. Similarly, the page-fault rate for the LRU algorithm on S is the
same as the page-fault rate for the LRU algorithm on SR.)

The result of applying LRU replacement to our example reference string is
shown in Figure 10.15. The LRU algorithm produces twelve faults. Notice that
the first five faults are the same as those for optimal replacement. When the
reference to page 4 occurs, however, LRU replacement sees that, of the three
frames in memory, page 2 was used least recently. Thus, the LRU algorithm
replaces page 2, not knowing that page 2 is about to be used.When it then faults

408 Chapter 10 Virtual Memory

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 10.15 LRU page-replacement algorithm.

for page 2, the LRU algorithm replaces page 3, since it is now the least recently
used of the three pages in memory. Despite these problems, LRU replacement
with twelve faults is much better than FIFO replacement with fifteen.

The LRU policy is often used as a page-replacement algorithm and is con-
sidered to be good. The major problem is how to implement LRU replacement.
An LRU page-replacement algorithm may require substantial hardware assis-
tance. The problem is to determine an order for the frames defined by the time
of last use. Two implementations are feasible:

• Counters. In the simplest case, we associate with each page-table entry a
time-of-use field and add to the CPU a logical clock or counter. The clock is
incremented for every memory reference. Whenever a reference to a page
is made, the contents of the clock register are copied to the time-of-use
field in the page-table entry for that page. In this way, we always have
the “time” of the last reference to each page. We replace the page with the
smallest time value. This scheme requires a search of the page table to find
the LRU page and a write to memory (to the time-of-use field in the page
table) for each memory access. The times must also be maintained when
page tables are changed (due to CPU scheduling). Overflow of the clock
must be considered.

• Stack. Another approach to implementing LRU replacement is to keep a
stack of page numbers. Whenever a page is referenced, it is removed from
the stack and put on the top. In this way, the most recently used page is
always at the top of the stack, and the least recently used page is always
at the bottom (Figure 10.16). Because entries must be removed from the
middle of the stack, it is best to implement this approach by using a doubly
linked list with a head pointer and a tail pointer. Removing a page and
putting it on the top of the stack then requires changing six pointers at
worst. Each update is a little more expensive, but there is no search for
a replacement; the tail pointer points to the bottom of the stack, which is
the LRU page. This approach is particularly appropriate for software or
microcode implementations of LRU replacement.

Like optimal replacement, LRU replacement does not suffer from Belady’s
anomaly. Both belong to a class of page-replacement algorithms, called stack
algorithms, that can never exhibit Belady’s anomaly. A stack algorithm is an
algorithm for which it can be shown that the set of pages in memory for n
frames is always a subset of the set of pages that would be in memory with n

10.4 Page Replacement 409

2

1

0

4

7

stack
before

a

7

2

1

4

0

stack
after

b

reference string

4 7 0 7 1 0 1 2 1 2 27

a b

1

Figure 10.16 Use of a stack to record the most recent page references.

+ 1 frames. For LRU replacement, the set of pages in memory would be the n
most recently referenced pages. If the number of frames is increased, these n
pages will still be the most recently referenced and so will still be in memory.

Note that neither implementation of LRU would be conceivable without
hardware assistance beyond the standard TLB registers. The updating of the
clock fields or stack must be done for every memory reference. If we were
to use an interrupt for every reference to allow software to update such data
structures, it would slow every memory reference by a factor of at least ten,
hence slowing every process by a factor of ten. Few systems could tolerate that
level of overhead for memory management.

10.4.5 LRU-Approximation Page Replacement

Not many computer systems provide sufficient hardware support for true LRU
page replacement. In fact, some systems provide no hardware support, and
other page-replacement algorithms (such as a FIFO algorithm) must be used.
Many systems provide some help, however, in the form of a reference bit. The
reference bit for a page is set by the hardware whenever that page is referenced
(either a read or a write to any byte in the page). Reference bits are associated
with each entry in the page table.

Initially, all bits are cleared (to 0) by the operating system. As a process
executes, the bit associated with each page referenced is set (to 1) by the
hardware. After some time,we can determinewhich pages have been used and
which have not been used by examining the reference bits, although we do not
know the order of use. This information is the basis formany page-replacement
algorithms that approximate LRU replacement.

10.4.5.1 Additional-Reference-Bits Algorithm

We can gain additional ordering information by recording the reference bits at
regular intervals. We can keep an 8-bit byte for each page in a table in memory.
At regular intervals (say, every 100 milliseconds), a timer interrupt transfers
control to the operating system. The operating system shifts the reference bit
for each page into the high-order bit of its 8-bit byte, shifting the other bits right

410 Chapter 10 Virtual Memory

by 1 bit and discarding the low-order bit. These 8-bit shift registers contain the
history of page use for the last eight time periods. If the shift register contains
00000000, for example, then the page has not been used for eight time periods.
A page that is used at least once in each period has a shift register value of
11111111. A page with a history register value of 11000100 has been used more
recently than one with a value of 01110111. If we interpret these 8-bit bytes as
unsigned integers, the page with the lowest number is the LRU page, and it can
be replaced.Notice that the numbers are not guaranteed to be unique, however.
We can either replace (swap out) all pages with the smallest value or use the
FIFO method to choose among them.

The number of bits of history included in the shift register can be varied,
of course, and is selected (depending on the hardware available) to make the
updating as fast as possible. In the extreme case, the number can be reduced to
zero, leaving only the reference bit itself. This algorithm is called the second-
chance page-replacement algorithm.

10.4.5.2 Second-Chance Algorithm

The basic algorithm of second-chance replacement is a FIFO replacement algo-
rithm. When a page has been selected, however, we inspect its reference bit. If
the value is 0, we proceed to replace this page; but if the reference bit is set to
1, we give the page a second chance and move on to select the next FIFO page.
When a page gets a second chance, its reference bit is cleared, and its arrival
time is reset to the current time. Thus, a page that is given a second chance
will not be replaced until all other pages have been replaced (or given second
chances). In addition, if a page is used often enough to keep its reference bit
set, it will never be replaced.

One way to implement the second-chance algorithm (sometimes referred
to as the clock algorithm) is as a circular queue. A pointer (that is, a hand on
the clock) indicates which page is to be replaced next. When a frame is needed,
the pointer advances until it finds a page with a 0 reference bit. As it advances,
it clears the reference bits (Figure 10.17). Once a victim page is found, the page
is replaced, and the new page is inserted in the circular queue in that position.
Notice that, in the worst case, when all bits are set, the pointer cycles through
the whole queue, giving each page a second chance. It clears all the reference
bits before selecting the next page for replacement. Second-chance replacement
degenerates to FIFO replacement if all bits are set.

10.4.5.3 Enhanced Second-Chance Algorithm

We can enhance the second-chance algorithm by considering the reference bit
and the modify bit (described in Section 10.4.1) as an ordered pair. With these
two bits, we have the following four possible classes:

1. (0, 0) neither recently used nor modified—best page to replace

2. (0, 1) not recently used butmodified—not quite as good, because the page
will need to be written out before replacement

3. (1, 0) recently used but clean—probably will be used again soon

10.4 Page Replacement 411

circular queue of pages

(a)

next
victim

0

reference
bits

pages

0

1

1

0

1

1

……

circular queue of pages

(b)

0

reference
bits

pages

0

0

0

0

1

1

……
Figure 10.17 Second-chance (clock) page-replacement algorithm.

4. (1, 1) recently used andmodified—probablywill be used again soon, and
the page will be need to be written out to secondary storage before it can
be replaced

Each page is in one of these four classes. When page replacement is called
for, we use the same scheme as in the clock algorithm; but instead of examining
whether the page to which we are pointing has the reference bit set to 1,
we examine the class to which that page belongs. We replace the first page
encountered in the lowest nonempty class. Notice that wemay have to scan the
circular queue several times before we find a page to be replaced. The major
difference between this algorithm and the simpler clock algorithm is that here
we give preference to those pages that have been modified in order to reduce
the number of I/Os required.

10.4.6 Counting-Based Page Replacement

There are many other algorithms that can be used for page replacement. For
example, we can keep a counter of the number of references that have been
made to each page and develop the following two schemes.

• The least frequently used (LFU) page-replacement algorithm requires that
the pagewith the smallest count be replaced. The reason for this selection is
that an actively used page should have a large reference count. A problem
arises, however, when a page is used heavily during the initial phase of

412 Chapter 10 Virtual Memory

a process but then is never used again. Since it was used heavily, it has
a large count and remains in memory even though it is no longer needed.
One solution is to shift the counts right by 1 bit at regular intervals, forming
an exponentially decaying average usage count.

• The most frequently used (MFU) page-replacement algorithm is based
on the argument that the page with the smallest count was probably just
brought in and has yet to be used.

As youmight expect, neither MFU nor LFU replacement is common. The imple-
mentation of these algorithms is expensive, and they do not approximate OPT
replacement well.

10.4.7 Page-Buffering Algorithms

Other procedures are often used in addition to a specific page-replacement
algorithm. For example, systems commonly keep a pool of free frames. When
a page fault occurs, a victim frame is chosen as before. However, the desired
page is read into a free frame from the pool before the victim iswritten out. This
procedure allows the process to restart as soon as possible, without waiting for
the victim page to bewritten out.When the victim is later written out, its frame
is added to the free-frame pool.

An expansion of this idea is to maintain a list of modified pages.Whenever
the pagingdevice is idle, amodifiedpage is selected and iswritten to secondary
storage. Its modify bit is then reset. This scheme increases the probability that
a page will be clean when it is selected for replacement and will not need to be
written out.

Another modification is to keep a pool of free frames but to remember
which pagewas in each frame. Since the frame contents are not modifiedwhen
a frame iswritten to secondary storage, the oldpage can be reuseddirectly from
the free-frame pool if it is needed before that frame is reused. No I/O is needed
in this case. When a page fault occurs, we first check whether the desired page
is in the free-frame pool. If it is not, we must select a free frame and read into
it.

Some versions of the UNIX system use this method in conjunction with
the second-chance algorithm. It can be a useful augmentation to any page-
replacement algorithm, to reduce the penalty incurred if thewrong victimpage
is selected. We describe these—and other—modifications in Section 10.5.3.

10.4.8 Applications and Page Replacement

In certain cases, applications accessing data through the operating system’s vir-
tual memory perform worse than if the operating system provided no buffer-
ing at all. A typical example is a database, which provides its own memory
management and I/O buffering. Applications like this understand their mem-
ory use and storage use better than does an operating system that is implement-
ing algorithms for general-purpose use. Furthermore, if the operating system
is buffering I/O and the application is doing so as well, then twice the memory
is being used for a set of I/O.

In another example, data warehouses frequently performmassive sequen-
tial storage reads, followed by computations and writes. The LRU algorithm

10.5 Allocation of Frames 413

would be removing old pages and preserving new ones, while the applica-
tion would more likely be reading older pages than newer ones (as it starts its
sequential reads again). Here, MFU would actually be more efficient than LRU.

Because of such problems, some operating systems give special programs
the ability to use a secondary storage partition as a large sequential array of
logical blocks, without any file-system data structures. This array is some-
times called the raw disk, and I/O to this array is termed raw I/O. Raw I/O
bypasses all the file-system services, such as file I/O demand paging, file
locking, prefetching, space allocation, file names, and directories. Note that
although certain applications are more efficient when implementing their own
special-purpose storage services on a raw partition, most applications perform
better when they use the regular file-system services.

10.5 Allocation of Frames

We turn next to the issue of allocation. How dowe allocate the fixed amount of
free memory among the various processes? If we have 93 free frames and two
processes, how many frames does each process get?

Consider a simple case of a system with 128 frames. The operating system
may take 35, leaving 93 frames for the user process. Under pure demand
paging, all 93 frames would initially be put on the free-frame list. When a user
process started execution, it would generate a sequence of page faults. The first
93 page faults would all get free frames from the free-frame list. When the
free-frame list was exhausted, a page-replacement algorithm would be used
to select one of the 93 in-memory pages to be replaced with the 94th, and so
on. When the process terminated, the 93 frames would once again be placed
on the free-frame list.

There are many variations on this simple strategy. We can require that the
operating system allocate all its buffer and table space from the free-frame list.
When this space is not in use by the operating system, it can be used to support
user paging.We can try to keep three free frames reserved on the free-frame list
at all times. Thus, when a page fault occurs, there is a free frame available to
page into. While the page swap is taking place, a replacement can be selected,
which is then written to the storage device as the user process continues to
execute. Other variants are also possible, but the basic strategy is clear: the
user process is allocated any free frame.

10.5.1 Minimum Number of Frames

Our strategies for the allocation of frames are constrained in various ways.
We cannot, for example, allocate more than the total number of available
frames (unless there is page sharing). Wemust also allocate at least a minimum
number of frames. Here, we look more closely at the latter requirement.

One reason for allocating at least a minimum number of frames involves
performance. Obviously, as the number of frames allocated to each process
decreases, the page-fault rate increases, slowing process execution. In addi-
tion, remember that, when a page fault occurs before an executing instruction
is complete, the instruction must be restarted. Consequently, we must have
enough frames to hold all the different pages that any single instruction can
reference.

414 Chapter 10 Virtual Memory

For example, consider a machine in which all memory-reference instruc-
tionsmay reference only onememory address. In this case, we need at least one
frame for the instruction and one frame for the memory reference. In addition,
if one-level indirect addressing is allowed (for example, a load instruction on
frame 16 can refer to an address on frame 0, which is an indirect reference to
frame 23), then paging requires at least three frames per process. (Think about
what might happen if a process had only two frames.)

The minimum number of frames is defined by the computer architecture.
For example, if the move instruction for a given architecture includes more
than one word for some addressing modes, the instruction itself may straddle
two frames. In addition, if each of its two operands may be indirect references,
a total of six frames are required. As another example, the move instruction
for Intel 32- and 64-bit architectures allows data to move only from register to
register and between registers and memory; it does not allow direct memory-
to-memory movement, thereby limiting the required minimum number of
frames for a process.

Whereas the minimum number of frames per process is defined by the
architecture, the maximum number is defined by the amount of available
physical memory. In between, we are still left with significant choice in frame
allocation.

10.5.2 Allocation Algorithms

The easiest way to split m frames among n processes is to give everyone an
equal share, m/n frames (ignoring frames needed by the operating system for
the moment). For instance, if there are 93 frames and 5 processes, each process
will get 18 frames. The 3 leftover frames can be used as a free-frame buffer pool.
This scheme is called equal allocation.

An alternative is to recognize that various processes will need differing
amounts of memory. Consider a system with a 1-KB frame size. If a small
student process of 10 KB and an interactive database of 127 KB are the only
two processes running in a system with 62 free frames, it does not make much
sense to give each process 31 frames. The student process does not need more
than 10 frames, so the other 21 are, strictly speaking, wasted.

To solve this problem, we can use proportional allocation, in which we
allocate available memory to each process according to its size. Let the size of
the virtual memory for process pi be si, and define

S =
∑

si.

Then, if the total number of available frames is m, we allocate ai frames to
process pi, where ai is approximately

ai = si/S × m.

Of course, we must adjust each ai to be an integer that is greater than the
minimum number of frames required by the instruction set, with a sum not
exceeding m.

With proportional allocation, we would split 62 frames between two pro-
cesses, one of 10 pages and one of 127 pages, by allocating 4 frames and 57
frames, respectively, since

10.5 Allocation of Frames 415

10/137 × 62 ≈ 4 and
127/137 × 62 ≈ 57.

In this way, both processes share the available frames according to their
“needs,” rather than equally.

In both equal and proportional allocation, of course, the allocation may
vary according to the multiprogramming level. If the multiprogramming level
is increased, each processwill lose some frames to provide thememory needed
for the new process. Conversely, if the multiprogramming level decreases, the
frames that were allocated to the departed process can be spread over the
remaining processes.

Notice that, with either equal or proportional allocation, a high-priority
process is treated the same as a low-priority process. By its definition, however,
we may want to give the high-priority process more memory to speed its
execution, to the detriment of low-priority processes. One solution is to use
a proportional allocation scheme wherein the ratio of frames depends not on
the relative sizes of processes but rather on the priorities of processes or on a
combination of size and priority.

10.5.3 Global versus Local Allocation

Another important factor in the way frames are allocated to the various pro-
cesses is page replacement. With multiple processes competing for frames, we
can classify page-replacement algorithms into two broad categories: global
replacement and local replacement. Global replacement allows a process to
select a replacement frame from the set of all frames, even if that frame is
currently allocated to some other process; that is, one process can take a frame
from another. Local replacement requires that each process select from only its
own set of allocated frames.

For example, consider an allocation scheme wherein we allow high-
priority processes to select frames from low-priority processes for replacement.
A process can select a replacement from among its own frames or the frames
of any lower-priority process. This approach allows a high-priority process to
increase its frame allocation at the expense of a low-priority process. Whereas
with a local replacement strategy, the number of frames allocated to a process
does not change, with global replacement, a process may happen to select
only frames allocated to other processes, thus increasing the number of frames
allocated to it (assuming that other processes do not choose its frames for
replacement).

One problem with a global replacement algorithm is that the set of pages
in memory for a process depends not only on the paging behavior of that pro-
cess, but also on the paging behavior of other processes. Therefore, the same
process may perform quite differently (for example, taking 0.5 seconds for one
execution and 4.3 seconds for the next execution) because of totally external
circumstances. Such is not the case with a local replacement algorithm. Under
local replacement, the set of pages in memory for a process is affected by the
paging behavior of only that process. Local replacement might hinder a pro-
cess, however, by not making available to it other, less used pages of memory.
Thus, global replacement generally results in greater system throughput. It is
therefore the more commonly used method.

416 Chapter 10 Virtual Memory

MAJOR ANDMINOR PAGE FAULTS

As described in Section 10.2.1, a page fault occurs when a page does not
have a valid mapping in the address space of a process. Operating systems
generally distinguish between two types of page faults: major and minor
faults. (Windows refers to major and minor faults as hard and soft faults,
respectively.) A major page fault occurs when a page is referenced and the
page is not in memory. Servicing a major page fault requires reading the
desired page from the backing store into a free frame and updating the page
table. Demand paging typically generates an initially high rate of major page
faults.

Minor page faults occur when a process does not have a logical mapping
to a page, yet that page is in memory. Minor faults can occur for one of two
reasons. First, a process may reference a shared library that is in memory, but
the process does not have a mapping to it in its page table. In this instance,
it is only necessary to update the page table to refer to the existing page in
memory. A second cause of minor faults occurs when a page is reclaimed
from a process and placed on the free-frame list, but the page has not yet
been zeroed out and allocated to another process. When this kind of fault
occurs, the frame is removed from the free-frame list and reassigned to the
process. Asmight be expected, resolving aminor page fault is typically much
less time consuming than resolving a major page fault.

You can observe the number of major and minor page faults in a Linux
system using the command ps -eo min flt,maj flt,cmd, which outputs
the number of minor and major page faults, as well as the command that
launched the process.An example output of this ps commandappears below:

MINFL MAJFL CMD
186509 32 /usr/lib/systemd/systemd-logind
76822 9 /usr/sbin/sshd -D
1937 0 vim 10.tex
699 14 /sbin/auditd -n

Here, it is interesting to note that, for most commands, the number of major
page faults is generally quite low,whereas the number ofminor faults ismuch
higher. This indicates that Linux processes likely take significant advantage
of shared libraries as, once a library is loaded in memory, subsequent page
faults are only minor faults.

Next, we focus on one possible strategy that we can use to implement a
global page-replacement policy. With this approach, we satisfy all memory
requests from the free-frame list, but rather than waiting for the list to drop to
zero before we begin selecting pages for replacement, we trigger page replace-
ment when the list falls below a certain threshold. This strategy attempts to
ensure there is always sufficient free memory to satisfy new requests.

Such a strategy is depicted in Figure 10.18. The strategy’s purpose is to
keep the amount of free memory above a minimum threshold. When it drops

10.5 Allocation of Frames 417

a c

b d

time

maximum
threshold

minimum
threshold

kernel resumes
reclaiming

pages

fr
ee

 m
em

or
y

kernel suspends
reclaiming

pages

Figure 10.18 Reclaiming pages.

below this threshold, a kernel routine is triggered that begins reclaiming pages
from all processes in the system (typically excluding the kernel). Such kernel
routines are often known as reapers, and they may apply any of the page-
replacement algorithms covered in Section 10.4. When the amount of free
memory reaches themaximum threshold, the reaper routine is suspended, only
to resume once free memory again falls below the minimum threshold.

In Figure 10.18, we see that at point a the amount of free memory drops
below the minimum threshold, and the kernel begins reclaiming pages and
adding them to the free-frame list. It continues until the maximum threshold is
reached (point b). Over time, there are additional requests for memory, and at
point c the amount of free memory again falls below the minimum threshold.
Page reclamation resumes, only to be suspended when the amount of free
memory reaches the maximum threshold (point d). This process continues as
long as the system is running.

As mentioned above, the kernel reaper routine may adopt any page-
replacement algorithm, but typically it uses some form of LRU approximation.
Consider what may happen, though, if the reaper routine is unable to maintain
the list of free frames below the minimum threshold. Under these circum-

418 Chapter 10 Virtual Memory

stances, the reaper routine may begin to reclaim pages more aggressively. For
example, perhaps it will suspend the second-chance algorithm and use pure
FIFO. Another, more extreme, example occurs in Linux; when the amount of
free memory falls to very low levels, a routine known as the out-of-memory
(OOM) killer selects a process to terminate, thereby freeing its memory. How
does Linux determine which process to terminate? Each process has what is
known as an OOM score, with a higher score increasing the likelihood that the
process could be terminated by the OOM killer routine. OOM scores are calcu-
lated according to the percentage of memory a process is using—the higher
the percentage, the higher the OOM score. (OOM scores can be viewed in the
/proc file system, where the score for a process with pid 2500 can be viewed
as /proc/2500/oom score.)

In general, not only can reaper routines vary how aggressively they reclaim
memory, but the values of the minimum and maximum thresholds can be
varied as well. These values can be set to default values, but some systems
may allow a system administrator to configure them based on the amount of
physical memory in the system.

10.5.4 Non-Uniform Memory Access

Thus far in our coverage of virtual memory, we have assumed that all main
memory is created equal—or at least that it is accessed equally. On non-
uniform memory access (NUMA) systems with multiple CPUs (Section 1.3.2),
that is not the case. On these systems, a given CPU can access some sections of
main memory faster than it can access others. These performance differences
are caused by how CPUs and memory are interconnected in the system. Such a
system is made up of multiple CPUs, each with its own local memory (Figure
10.19). The CPUs are organized using a shared system interconnect, and as
you might expect, a CPU can access its local memory faster than memory local
to another CPU. NUMA systems are without exception slower than systems in
which all accesses to main memory are treated equally. However, as described
in Section 1.3.2, NUMA systems can accommodate more CPUs and therefore
achieve greater levels of throughput and parallelism.

CPU0

memory0

CPU2 CPU3

CPU1

memory1

memory2 memory3

interconnect

Figure 10.19 NUMA multiprocessing architecture.

10.6 Thrashing 419

Managing which page frames are stored at which locations can signifi-
cantly affect performance in NUMA systems. If we treat memory as uniform
in such a system, CPUs may wait significantly longer for memory access than
if we modify memory allocation algorithms to take NUMA into account. We
described some of these modifications in Section 5.5.4. Their goal is to have
memory frames allocated “as close as possible” to the CPU onwhich the process
is running. (The definition of close is “with minimum latency,” which typically
means on the same system board as the CPU). Thus, when a process incurs a
page fault, a NUMA-aware virtual memory system will allocate that process a
frame as close as possible to the CPU on which the process is running.

To take NUMA into account, the scheduler must track the last CPU on
which each process ran. If the scheduler tries to schedule each process onto
its previous CPU, and the virtual memory system tries to allocate frames for
the process close to the CPU on which it is being scheduled, then improved
cache hits and decreased memory access times will result.

The picture is more complicated once threads are added. For example, a
process with many running threads may end up with those threads scheduled
onmany different system boards. How should the memory be allocated in this
case?

As we discussed in Section 5.7.1, Linux manages this situation by having
the kernel identify a hierarchy of scheduling domains. The Linux CFS scheduler
does not allow threads to migrate across different domains and thus incur
memory access penalties. Linux also has a separate free-frame list for each
NUMAnode, thereby ensuring that a thread will be allocated memory from the
node on which it is running. Solaris solves the problem similarly by creating
lgroups (for “locality groups”) in the kernel. Each lgroup gathers together
CPUs and memory, and each CPU in that group can access any memory in
the group within a defined latency interval. In addition, there is a hierarchy
of lgroups based on the amount of latency between the groups, similar to the
hierarchy of scheduling domains in Linux. Solaris tries to schedule all threads
of a process and allocate all memory of a process within an lgroup. If that is
not possible, it picks nearby lgroups for the rest of the resources needed. This
practiceminimizes overall memory latency andmaximizes CPU cache hit rates.

10.6 Thrashing

Consider what occurs if a process does not have “enough” frames—that is, it
does not have the minimum number of frames it needs to support pages in the
working set. The process will quickly page-fault. At this point, it must replace
some page. However, since all its pages are in active use, it must replace a page
that will be needed again right away. Consequently, it quickly faults again, and
again, and again, replacing pages that it must bring back in immediately.

This high paging activity is called thrashing. A process is thrashing if it
is spending more time paging than executing. As you might expect, thrashing
results in severe performance problems.

10.6.1 Cause of Thrashing

Consider the following scenario, which is based on the actual behavior of early
paging systems. The operating systemmonitors CPU utilization. If CPU utiliza-

420 Chapter 10 Virtual Memory

tion is too low, we increase the degree of multiprogramming by introducing
a new process to the system. A global page-replacement algorithm is used;
it replaces pages without regard to the process to which they belong. Now
suppose that a process enters a new phase in its execution and needs more
frames. It starts faulting and taking frames away from other processes. These
processes need those pages, however, and so they also fault, taking frames from
other processes. These faulting processes must use the paging device to swap
pages in and out. As they queue up for the paging device, the ready queue
empties. As processes wait for the paging device, CPU utilization decreases.

The CPU scheduler sees the decreasing CPU utilization and increases the
degree ofmultiprogramming as a result. The new process tries to get started by
taking frames from running processes, causing more page faults and a longer
queue for the paging device. As a result, CPU utilization drops even further,
and the CPU scheduler tries to increase the degree of multiprogramming even
more. Thrashing has occurred, and system throughput plunges. The page-
fault rate increases tremendously. As a result, the effectivememory-access time
increases. Nowork is getting done, because the processes are spending all their
time paging.

This phenomenon is illustrated in Figure 10.20, in which CPU utilization
is plotted against the degree of multiprogramming. As the degree of multi-
programming increases, CPU utilization also increases, although more slowly,
until a maximum is reached. If the degree of multiprogramming is increased
further, thrashing sets in, and CPU utilization drops sharply. At this point, to
increase CPU utilization and stop thrashing, we must decrease the degree of
multiprogramming.

We can limit the effects of thrashing by using a local replacement algo-
rithm (or priority replacement algorithm). Asmentioned earlier, local replace-
ment requires that each process select from only its own set of allocated frames.
Thus, if one process starts thrashing, it cannot steal frames from another pro-
cess and cause the latter to thrash as well. However, the problem is not entirely
solved. If processes are thrashing, they will be in the queue for the paging
device most of the time. The average service time for a page fault will increase

thrashing

degree of multiprogramming

CP
U

 u
til

iz
at

io
n

Figure 10.20 Thrashing.

10.6 Thrashing 421

because of the longer average queue for the paging device. Thus, the effective
access time will increase even for a process that is not thrashing.

To prevent thrashing, we must provide a process with as many frames as
it needs. But how do we know how many frames it “needs”? One strategy
starts by looking at howmany frames a process is actually using. This approach
defines the locality model of process execution.

The locality model states that, as a process executes, it moves from locality
to locality. A locality is a set of pages that are actively used together. A running
program is generally composed of several different localities, which may over-
lap. For example, when a function is called, it defines a new locality. In this

18

20

22

24

26

28

30

32

34

pa
ge

 n
um

be
rs

execution time
(a) (b)

Figure 10.21 Locality in a memory-reference pattern.

422 Chapter 10 Virtual Memory

page reference table

. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . .

Δ

t
1

WS(t
1
) = {1,2,5,6,7}

Δ

t
2

WS(t
2
) = {3,4}

Figure 10.22 Working-set model.

locality, memory references are made to the instructions of the function call, its
local variables, and a subset of the global variables. When we exit the function,
the process leaves this locality, since the local variables and instructions of the
function are no longer in active use. We may return to this locality later.

Figure 10.21 illustrates the concept of locality and how a process’s
locality changes over time. At time (a), the locality is the set of pages
{18, 19, 20, 21, 22, 23, 24, 29, 30, 33}. At time (b), the locality changes to
{18, 19, 20, 24, 25, 26, 27, 28, 29, 31, 32, 33}. Notice the overlap, as some pages
(for example, 18, 19, and 20) are part of both localities.

Thus, we see that localities are defined by the program structure and its
data structures. The locality model states that all programs will exhibit this
basic memory reference structure. Note that the locality model is the unstated
principle behind the caching discussions so far in this book. If accesses to any
types of data were random rather than patterned, caching would be useless.

Suppose we allocate enough frames to a process to accommodate its cur-
rent locality. It will fault for the pages in its locality until all these pages are
in memory; then, it will not fault again until it changes localities. If we do
not allocate enough frames to accommodate the size of the current locality,
the process will thrash, since it cannot keep in memory all the pages that it is
actively using.

10.6.2 Working-Set Model

The working-set model is based on the assumption of locality. This model
uses a parameter,Δ, to define the working-set window. The idea is to examine
the most recent Δ page references. The set of pages in the most recent Δ page
references is theworking set (Figure 10.22). If a page is in active use, it will be in
the working set. If it is no longer being used, it will drop from the working set
Δ time units after its last reference. Thus, the working set is an approximation
of the program’s locality.

For example, given the sequence of memory references shown in Figure
10.22, if Δ = 10 memory references, then the working set at time t1 is {1, 2, 5,
6, 7}. By time t2, the working set has changed to {3, 4}.

The accuracy of the working set depends on the selection of Δ. If Δ is too
small, it will not encompass the entire locality; if Δ is too large, it may overlap
several localities. In the extreme, if Δ is infinite, the working set is the set of
pages touched during the process execution.

The most important property of the working set, then, is its size. If we
compute the working-set size, WSSi, for each process in the system, we can
then consider that

10.6 Thrashing 423

D =
∑

WSSi,

whereD is the total demand for frames. Each process is actively using the pages
in its working set. Thus, process i needs WSSi frames. If the total demand is
greater than the total number of available frames (D >m), thrashing will occur,
because some processes will not have enough frames.

Once Δ has been selected, use of the working-set model is simple. The
operating system monitors the working set of each process and allocates to
that working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process’s pages are
written out (swapped), and its frames are reallocated to other processes. The
suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree of
multiprogramming as high as possible. Thus, it optimizes CPU utilization. The
difficulty with the working-set model is keeping track of the working set. The

WORKING SETS AND PAGE-FAULT RATES

There is a direct relationship between the working set of a process and its
page-fault rate. Typically, as shown in Figure 10.22, the working set of a
process changes over time as references to data and code sections move from
one locality to another. Assuming there is sufficient memory to store the
working set of a process (that is, the process is not thrashing), the page-fault
rate of the process will transition between peaks and valleys over time. This
general behavior is shown below:

1

0
time

working set

page
fault
rate

Apeak in the page-fault rate occurs whenwe begin demand-paging a new
locality. However, once the working set of this new locality is in memory, the
page-fault rate falls. When the processmoves to a newworking set, the page-
fault rate rises toward a peak once again, returning to a lower rate once the
new working set is loaded into memory. The span of time between the start
of one peak and the start of the next peak represents the transition from one
working set to another.

424 Chapter 10 Virtual Memory

working-set window is a moving window. At each memory reference, a new
reference appears at one end, and the oldest reference drops off the other end.
A page is in the working set if it is referenced anywhere in the working-set
window.

We can approximate the working-set model with a fixed-interval timer
interrupt and a reference bit. For example, assume that Δ equals 10,000 ref-
erences and that we can cause a timer interrupt every 5,000 references. When
we get a timer interrupt, we copy and clear the reference-bit values for each
page. Thus, if a page fault occurs, we can examine the current reference bit
and two in-memory bits to determine whether a page was used within the last
10,000 to 15,000 references. If it was used, at least one of these bits will be on.
If it has not been used, these bits will be off. Pages with at least one bit on will
be considered to be in the working set.

Note that this arrangement is not entirely accurate, because we cannot tell
where, within an interval of 5,000, a reference occurred. We can reduce the
uncertainty by increasing the number of history bits and the frequency of inter-
rupts (for example, 10 bits and interrupts every 1,000 references). However, the
cost to service these more frequent interrupts will be correspondingly higher.

10.6.3 Page-Fault Frequency

The working-set model is successful, and knowledge of the working set can
be useful for prepaging (Section 10.9.1), but it seems a clumsy way to control
thrashing. A strategy that uses the page-fault frequency (PFF) takes a more
direct approach.

The specific problem is how to prevent thrashing. Thrashing has a high
page-fault rate. Thus, we want to control the page-fault rate. When it is too
high, we know that the process needs more frames. Conversely, if the page-
fault rate is too low, then the process may have too many frames. We can
establish upper and lower bounds on the desired page-fault rate (Figure 10.23).
If the actual page-fault rate exceeds the upper limit, we allocate the process

number of frames

increase number
of frames

upper bound

lower bound

decrease number
of frames

p
a
g
e
-f

a
u
lt
 r

a
te

Figure 10.23 Page-fault frequency.

10.7 Memory Compression 425

another frame. If the page-fault rate falls below the lower limit, we remove a
frame from the process. Thus, we can directly measure and control the page-
fault rate to prevent thrashing.

Aswith theworking-set strategy, wemay have to swap out a process. If the
page-fault rate increases and no free frames are available, we must select some
process and swap it out to backing store. The freed frames are then distributed
to processes with high page-fault rates.

10.6.4 Current Practice

Practically speaking, thrashing and the resulting swapping have a disagreeably
high impact on performance. The current best practice in implementing a
computer system is to include enough physical memory, whenever possible,
to avoid thrashing and swapping. From smartphones through large servers,
providing enough memory to keep all working sets in memory concurrently,
except under extreme conditions, provides the best user experience.

10.7 Memory Compression

An alternative to paging is memory compression. Here, rather than paging
out modified frames to swap space, we compress several frames into a single
frame, enabling the system to reduce memory usage without resorting to
swapping pages.

In Figure 10.24, the free-frame list contains six frames. Assume that this
number of free frames falls below a certain threshold that triggers page replace-
ment. The replacement algorithm (say, an LRUapproximation algorithm) selects
four frames—15, 3, 35, and 26—to place on the free-frame list. It first places
these frames on amodified-frame list. Typically, the modified-frame list would
next be written to swap space, making the frames available to the free-frame
list. An alternative strategy is to compress a number of frames—say, three—
and store their compressed versions in a single page frame.

In Figure 10.25, frame 7 is removed from the free-frame list. Frames 15,
3, and 35 are compressed and stored in frame 7, which is then stored in the
list of compressed frames. The frames 15, 3, and 35 can now be moved to the
free-frame list. If one of the three compressed frames is later referenced, a page
fault occurs, and the compressed frame is decompressed, restoring the three
pages 15, 3, and 35 in memory.

head 7

head 3 35 2615

2 9 21 27

free-frame list

modified frame list

16

Figure 10.24 Free-frame list before compression.

426 Chapter 10 Virtual Memory

3

7

35head 2 16 159 21 27

head 26

free-frame list

modified frame list

head

compressed frame list

Figure 10.25 Free-frame list after compression

As we have noted, mobile systems generally do not support either stan-
dard swapping or swapping pages. Thus, memory compression is an integral
part of the memory-management strategy for most mobile operating systems,
including Android and iOS. In addition, both Windows 10 and macOS support
memory compression. For Windows 10, Microsoft developed the Universal
Windows Platform (UWP) architecture, which provides a common app plat-
form for devices that run Windows 10, including mobile devices. UWP apps
running on mobile devices are candidates for memory compression. macOS
first supported memory compression with Version 10.9 of the operating sys-
tem, first compressing LRU pages when free memory is short and then paging
if that doesn’t solve the problem. Performance tests indicate that memory com-
pression is faster than paging even to SSD secondary storage on laptop and
desktop macOS systems.

Although memory compression does require allocating free frames to
hold the compressed pages, a significant memory saving can be realized,
depending on the reductions achieved by the compression algorithm. (In the
example above, the three frames were reduced to one-third of their original
size.) As with any form of data compression, there is contention between the
speed of the compression algorithm and the amount of reduction that can be
achieved (known as the compression ratio). In general, higher compression
ratios (greater reductions) can be achieved by slower, more computationally
expensive algorithms. Most algorithms in use today balance these two factors,
achieving relatively high compression ratios using fast algorithms. In addition,
compression algorithms have improved by taking advantage of multiple com-
puting cores and performing compression in parallel. For example,Microsoft’s
Xpress and Apple’s WKdm compression algorithms are considered fast, and
they report compressing pages to 30 to 50 percent of their original size.

10.8 Allocating Kernel Memory

When a process running in user mode requests additional memory, pages are
allocated from the list of free page frames maintained by the kernel. This list
is typically populated using a page-replacement algorithm such as those dis-
cussed in Section 10.4 andmost likely contains free pages scattered throughout
physical memory, as explained earlier. Remember, too, that if a user process
requests a single byte of memory, internal fragmentation will result, as the
process will be granted an entire page frame.

10.8 Allocating Kernel Memory 427

Kernel memory is often allocated from a free-memory pool different from
the list used to satisfy ordinary user-mode processes. There are two primary
reasons for this:

1. The kernel requests memory for data structures of varying sizes, some of
which are less than a page in size.As a result, the kernelmust usememory
conservatively and attempt tominimizewaste due to fragmentation. This
is especially important because many operating systems do not subject
kernel code or data to the paging system.

2. Pages allocated to user-mode processes do not necessarily have to be in
contiguous physicalmemory.However, certain hardware devices interact
directly with physical memory—without the benefit of a virtual memory
interface—and consequentlymay requirememory residing in physically
contiguous pages.

In the following sections,we examine two strategies formanaging freememory
that is assigned to kernel processes: the “buddy system” and slab allocation.

10.8.1 Buddy System

The buddy system allocates memory from a fixed-size segment consisting of
physically contiguous pages. Memory is allocated from this segment using a
power-of-2 allocator, which satisfies requests in units sized as a power of 2
(4 KB, 8 KB, 16 KB, and so forth). A request in units not appropriately sized is
rounded up to the next highest power of 2. For example, a request for 11 KB is
satisfied with a 16-KB segment.

Let’s consider a simple example. Assume the size of a memory segment
is initially 256 KB and the kernel requests 21 KB of memory. The segment is
initially divided into two buddies—which we will call AL and AR—each 128
KB in size. One of these buddies is further divided into two 64-KB buddies—BL
and BR. However, the next-highest power of 2 from 21 KB is 32 KB so either BL
or BR is again divided into two 32-KB buddies,CL and CR. One of these buddies
is used to satisfy the 21-KB request. This scheme is illustrated in Figure 10.26,
where CL is the segment allocated to the 21-KB request.

An advantage of the buddy system is how quickly adjacent buddies can be
combined to form larger segments using a technique known as coalescing. In
Figure 10.26, for example, when the kernel releases the CL unit it was allocated,
the system can coalesce CL and CR into a 64-KB segment. This segment, BL, can
in turn be coalesced with its buddy BR to form a 128-KB segment. Ultimately,
we can end up with the original 256-KB segment.

The obvious drawback to the buddy system is that rounding up to the next
highest power of 2 is very likely to cause fragmentation within allocated seg-
ments. For example, a 33-KB request can only be satisfiedwith a 64-KB segment.
In fact, we cannot guarantee that less than 50 percent of the allocated unit will
be wasted due to internal fragmentation. In the following section, we explore
a memory allocation scheme where no space is lost due to fragmentation.

10.8.2 Slab Allocation

Asecond strategy for allocating kernel memory is known as slab allocation. A
slab is made up of one or more physically contiguous pages. A cache consists

428 Chapter 10 Virtual Memory

physically contiguous pages

256 KB

128 KB
A

L

64 KB
B

R

64 KB
B

L

32 KB
C

L

32 KB
C

R

128 KB
A

R

Figure 10.26 Buddy system allocation.

of one or more slabs. There is a single cache for each unique kernel data struc-
ture—for example, a separate cache for the data structure representing process
descriptors, a separate cache for file objects, a separate cache for semaphores,
and so forth. Each cache is populated with objects that are instantiations of the
kernel data structure the cache represents. For example, the cache represent-
ing semaphores stores instances of semaphore objects, the cache representing
process descriptors stores instances of process descriptor objects, and so forth.
The relationship among slabs, caches, and objects is shown in Figure 10.27. The
figure shows two kernel objects 3 KB in size and three objects 7 KB in size, each
stored in a separate cache.

3-KB
objects

7-KB
objects

kernel objects caches slabs

physically
contiguous
pages

Figure 10.27 Slab allocation.

10.8 Allocating Kernel Memory 429

The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects—which are initiallymarked as free—are
allocated to the cache. The number of objects in the cache depends on the size
of the associated slab. For example, a 12-KB slab (made up of three contiguous
4-KB pages) could store six 2-KB objects. Initially, all objects in the cache are
marked as free. When a new object for a kernel data structure is needed, the
allocator can assign any free object from the cache to satisfy the request. The
object assigned from the cache is marked as used.

Let’s consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux sys-
tems, a process descriptor is of the type struct task struct, which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the struct task struct object from its
cache. The cache will fulfill the request using a struct task struct object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

1. Full. All objects in the slab are marked as used.

2. Empty. All objects in the slab are marked as free.

3. Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exists, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical
pages and assigned to a cache; memory for the object is allocated from this
slab.

The slab allocator provides two main benefits:

1. No memory is wasted due to fragmentation. Fragmentation is not an
issue because each unique kernel data structure has an associated cache,
and each cache is made up of one or more slabs that are divided into
chunks the size of the objects being represented. Thus, when the kernel
requestsmemory for an object, the slab allocator returns the exact amount
of memory required to represent the object.

2. Memory requests can be satisfied quickly. The slab allocation scheme is
thus particularly effective for managing memory when objects are fre-
quently allocated and deallocated, as is often the case with requests from
the kernel. The act of allocating—and releasing—memory can be a time-
consuming process. However, objects are created in advance and thus can
be quickly allocated from the cache. Furthermore, when the kernel has
finished with an object and releases it, it is marked as free and returned
to its cache, thusmaking it immediately available for subsequent requests
from the kernel.

The slab allocator first appeared in the Solaris 2.4 kernel. Because of its
general-purpose nature, this allocator is now also used for certain user-mode
memory requests in Solaris. Linux originally used the buddy system; however,
beginning with Version 2.2, the Linux kernel adopted the slab allocator. Linux

430 Chapter 10 Virtual Memory

refers to its slab implementation as SLAB. Recent distributions of Linux include
two other kernel memory allocators—the SLOB and SLUB allocators.

The SLOB allocator is designed for systems with a limited amount of mem-
ory, such as embedded systems. SLOB (which stands for “simple list of blocks”)
maintains three lists of objects: small (for objects less than 256 bytes), medium
(for objects less than 1,024 bytes), and large (for all other objects less than the
size of a page). Memory requests are allocated from an object on the appropri-
ate list using a first-fit policy.

Beginning with Version 2.6.24, the SLUB allocator replaced SLAB as the
default allocator for the Linux kernel. SLUB reduced much of the overhead
required by the SLAB allocator. For instance, whereas SLAB stores certain meta-
data with each slab, SLUB stores these data in the page structure the Linux
kernel uses for each page. Additionally, SLUB does not include the per-CPU
queues that the SLAB allocator maintains for objects in each cache. For systems
with a large number of processors, the amount of memory allocated to these
queues is significant. Thus, SLUB provides better performance as the number
of processors on a system increases.

10.9 Other Considerations

The major decisions that we make for a paging system are the selections of
a replacement algorithm and an allocation policy, which we discussed earlier
in this chapter. There are many other considerations as well, and we discuss
several of them here.

10.9.1 Prepaging

An obvious property of pure demand paging is the large number of page faults
that occur when a process is started. This situation results from trying to get
the initial locality into memory. Prepaging is an attempt to prevent this high
level of initial paging. The strategy is to bring some—or all—of the pages that
will be needed into memory at one time.

In a system using the working-set model, for example, we could keep with
each process a list of the pages in its working set. If we must suspend a process
(due to a lack of free frames), we remember the working set for that process.
When the process is to be resumed (because I/O has finished or enough free
frames have become available), we automatically bring back into memory its
entire working set before restarting the process.

Prepaging may offer an advantage in some cases. The question is simply
whether the cost of using prepaging is less than the cost of servicing the
corresponding page faults. It may well be the case that many of the pages
brought back into memory by prepaging will not be used.

Assume that s pages are prepaged and a fraction α of these s pages is
actually used (0 ≤ α ≤ 1). The question is whether the cost of the s * α saved
page faults is greater or less than the cost of prepaging s * (1 − α) unnecessary
pages. If α is close to 0, prepaging loses; if α is close to 1, prepaging wins.

Note also that prepaging an executable program may be difficult, as it
may be unclear exactly what pages should be brought in. Prepaging a file
may be more predictable, since files are often accessed sequentially. The Linux

10.9 Other Considerations 431

readahead() system call prefetches the contents of a file into memory so that
subsequent accesses to the file will take place in main memory.

10.9.2 Page Size

The designers of an operating system for an existing machine seldom have
a choice concerning the page size. However, when new machines are being
designed, a decision regarding the best page size must be made. As you might
expect, there is no single best page size. Rather, there is a set of factors that
support various sizes. Page sizes are invariably powers of 2, generally ranging
from 4,096 (212) to 4,194,304 (222) bytes.

How dowe select a page size? One concern is the size of the page table. For
a given virtual memory space, decreasing the page size increases the number
of pages and hence the size of the page table. For a virtualmemory of 4MB (222),
for example, there would be 4,096 pages of 1,024 bytes but only 512 pages of
8,192 bytes. Because each active process must have its own copy of the page
table, a large page size is desirable.

Memory is better utilized with smaller pages, however. If a process is
allocatedmemory starting at location 00000 and continuing until it has asmuch
as it needs, it probably will not end exactly on a page boundary. Thus, a part
of the final page must be allocated (because pages are the units of allocation)
but will be unused (creating internal fragmentation). Assuming independence
of process size and page size, we can expect that, on the average, half of the
final page of each process will be wasted. This loss is only 256 bytes for a page
of 512 bytes but is 4,096 bytes for a page of 8,192 bytes. To minimize internal
fragmentation, then, we need a small page size.

Another problem is the time required to read or write a page. As you will
see in Section 11.1, when the storage device is an HDD, I/O time is composed of
seek, latency, and transfer times. Transfer time is proportional to the amount
transferred (that is, the page size)—a fact that would seem to argue for a small
page size. However, latency and seek time normally dwarf transfer time. At
a transfer rate of 50 MB per second, it takes only 0.01 milliseconds to transfer
512 bytes. Latency time, though, is perhaps 3 milliseconds, and seek time 5
milliseconds. Of the total I/O time (8.01 milliseconds), therefore, only about 0.1
percent is attributable to the actual transfer. Doubling the page size increases
I/O time to only 8.02 milliseconds. It takes 8.02 milliseconds to read a single
page of 1,024 bytes but 16.02 milliseconds to read the same amount as two
pages of 512 bytes each. Thus, a desire to minimize I/O time argues for a larger
page size.

With a smaller page size, though, total I/O should be reduced, since locality
will be improved. A smaller page size allows each page to match program
locality more accurately. For example, consider a process 200 KB in size, of
which only half (100 KB) is actually used in an execution. If we have only
one large page, we must bring in the entire page, a total of 200 KB transferred
and allocated. If instead we had pages of only 1 byte, then we could bring in
only the 100 KB that are actually used, resulting in only 100 KB transferred and
allocated. With a smaller page size, then, we have better resolution, allowing
us to isolate only the memory that is actually needed. With a larger page size,
we must allocate and transfer not only what is needed but also anything else

432 Chapter 10 Virtual Memory

that happens to be in the page, whether it is needed or not. Thus, a smaller
page size should result in less I/O and less total allocated memory.

But did you notice that with a page size of 1 byte, we would have a page
fault for each byte? A process of 200 KB that used only half of that memory
would generate only one page fault with a page size of 200 KB but 102,400 page
faults with a page size of 1 byte. Each page fault generates the large amount
of overhead needed for processing the interrupt, saving registers, replacing
a page, queuing for the paging device, and updating tables. To minimize the
number of page faults, we need to have a large page size.

Other factors must be considered as well (such as the relationship between
page size and sector size on the paging device). The problem has no best
answer. As we have seen, some factors (internal fragmentation, locality) argue
for a small page size, whereas others (table size, I/O time) argue for a large
page size. Nevertheless, the historical trend is toward larger page sizes, even
for mobile systems. Indeed, the first edition ofOperating System Concepts (1983)
used 4,096 bytes as the upper bound on page sizes, and this valuewas themost
common page size in 1990. Modern systems may now use much larger page
sizes, as you will see in the following section.

10.9.3 TLB Reach

In Chapter 9, we introduced the hit ratio of the TLB. Recall that the hit ratio
for the TLB refers to the percentage of virtual address translations that are
resolved in the TLB rather than the page table. Clearly, the hit ratio is related
to the number of entries in the TLB, and the way to increase the hit ratio is
by increasing the number of entries. This, however, does not come cheaply, as
the associative memory used to construct the TLB is both expensive and power
hungry.

Related to the hit ratio is a similar metric: the TLB reach. The TLB reach
refers to the amount of memory accessible from the TLB and is simply the
number of entries multiplied by the page size. Ideally, the working set for a
process is stored in the TLB. If it is not, the process will spend a considerable
amount of time resolving memory references in the page table rather than
the TLB. If we double the number of entries in the TLB, we double the TLB
reach. However, for some memory-intensive applications, this may still prove
insufficient for storing the working set.

Another approach for increasing the TLB reach is to either increase the size
of the page or provide multiple page sizes. If we increase the page size—say,
from 4 KB to 16 KB—we quadruple the TLB reach. However, this may lead to an
increase in fragmentation for some applications that do not require such a large
page size. Alternatively, most architectures provide support for more than one
page size, and an operating system can be configured to take advantage of this
support. For example, the default page size on Linux systems is 4 KB; however,
Linux also provides huge pages, a feature that designates a region of physical
memory where larger pages (for example, 2 MB) may be used.

Recall from Section 9.7 that the ARMv8 architecture provides support for
pages and regions of different sizes. Additionally, each TLB entry in the ARMv8
contains a contiguous bit. If this bit is set for a particular TLB entry, that entry
maps contiguous (adjacent) blocks of memory. Three possible arrangements of

10.9 Other Considerations 433

contiguous blocks can be mapped in a single TLB entry, thereby increasing the
TLB reach:

1. 64-KB TLB entry comprising 16 × 4 KB adjacent blocks.

2. 1-GB TLB entry comprising 32 × 32 MB adjacent blocks.

3. 2-MB TLB entry comprising either 32 × 64 KB adjacent blocks, or 128 × 16
KB adjacent blocks.

Providing support for multiple page sizes may require the operating sys-
tem—rather than hardware—tomanage the TLB. For example, one of the fields
in a TLB entry must indicate the size of the page frame corresponding to the
entry—or, in the case of ARM architectures, must indicate that the entry refers
to a contiguous block of memory. Managing the TLB in software and not hard-
ware comes at a cost in performance. However, the increased hit ratio and TLB
reach offset the performance costs.

10.9.4 Inverted Page Tables

Section 9.4.3 introduced the concept of the inverted page table. The purpose
of this form of page management is to reduce the amount of physical memory
needed to track virtual-to-physical address translations. We accomplish this
savings by creating a table that has one entry per page of physical memory,
indexed by the pair <process-id, page-number>.

Because they keep information about which virtual memory page is stored
in each physical frame, inverted page tables reduce the amount of physical
memory needed to store this information. However, the inverted page table
no longer contains complete information about the logical address space of a
process, and that information is required if a referenced page is not currently in
memory. Demand paging requires this information to process page faults. For
the information to be available, an external page table (one per process) must
be kept. Each such table looks like the traditional per-process page table and
contains information on where each virtual page is located.

But do external page tables negate the utility of inverted page tables? Since
these tables are referenced only when a page fault occurs, they do not need to
be available quickly. Instead, they are themselves paged in and out of memory
as necessary. Unfortunately, a page fault may now cause the virtual memory
manager to generate another page fault as it pages in the external page table it
needs to locate the virtual page on the backing store. This special case requires
careful handling in the kernel and a delay in the page-lookup processing.

10.9.5 Program Structure

Demand paging is designed to be transparent to the user program. In many
cases, the user is completely unaware of the paged nature of memory. In other
cases, however, system performance can be improved if the user (or compiler)
has an awareness of the underlying demand paging.

Let’s look at a contrived but informative example. Assume that pages are
128 words in size. Consider a C program whose function is to initialize to 0
each element of a 128-by-128 array. The following code is typical:

434 Chapter 10 Virtual Memory

int i, j;
int[128][128] data;

for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)

data[i][j] = 0;

Notice that the array is stored row major; that is, the array is stored
data[0][0], data[0][1], · · ·, data[0][127], data[1][0], data[1][1], · · ·,
data[127][127]. For pages of 128 words, each row takes one page. Thus, the
preceding code zeros one word in each page, then another word in each page,
and so on. If the operating system allocates fewer than 128 frames to the entire
program, then its execution will result in 128 × 128 = 16,384 page faults.

In contrast, suppose we change the code to

int i, j;
int[128][128] data;

for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)

data[i][j] = 0;

This code zeros all the words on one page before starting the next page,
reducing the number of page faults to 128.

Careful selection of data structures and programming structures can
increase locality and hence lower the page-fault rate and the number of
pages in the working set. For example, a stack has good locality, since access
is always made to the top. A hash table, in contrast, is designed to scatter
references, producing bad locality. Of course, locality of reference is just one
measure of the efficiency of the use of a data structure. Other heavily weighted
factors include search speed, total number of memory references, and total
number of pages touched.

At a later stage, the compiler and loader can have a significant effect on
paging. Separating code and data and generating reentrant code means that
code pages can be read-only and hence will never be modified. Clean pages
do not have to be paged out to be replaced. The loader can avoid placing
routines across page boundaries, keeping each routine completely in one page.
Routines that call each other many times can be packed into the same page.
This packaging is a variant of the bin-packing problem of operations research:
try to pack the variable-sized load segments into the fixed-sized pages so that
interpage references areminimized. Such an approach is particularly useful for
large page sizes.

10.9.6 I/O Interlock and Page Locking

When demand paging is used, we sometimes need to allow some of the pages
to be locked in memory. One such situation occurs when I/O is done to or from
user (virtual) memory. I/O is often implemented by a separate I/O processor.
For example, a controller for a USB storage device is generally given the number

10.9 Other Considerations 435

of bytes to transfer and a memory address for the buffer (Figure 10.28). When
the transfer is complete, the CPU is interrupted.

Wemust be sure the following sequence of events does not occur: Aprocess
issues an I/O request and is put in a queue for that I/O device. Meanwhile, the
CPU is given to other processes. These processes cause page faults, and one of
them, using a global replacement algorithm, replaces the page containing the
memory buffer for the waiting process. The pages are paged out. Some time
later, when the I/O request advances to the head of the device queue, the I/O
occurs to the specified address. However, this frame is now being used for a
different page belonging to another process.

There are two common solutions to this problem. One solution is never to
execute I/O to user memory. Instead, data are always copied between system
memory and user memory. I/O takes place only between system memory and
the I/O device. Thus, to write a block on tape, we first copy the block to
system memory and then write it to tape. This extra copying may result in
unacceptably high overhead.

Another solution is to allow pages to be locked into memory. Here, a lock
bit is associated with every frame. If the frame is locked, it cannot be selected
for replacement. Under this approach, to write a block to disk, we lock into
memory the pages containing the block. The system can then continue as usual.
Locked pages cannot be replaced. When the I/O is complete, the pages are
unlocked.

Lock bits are used in various situations. Frequently, some or all of the
operating-system kernel is locked into memory. Many operating systems can-
not tolerate a page fault caused by the kernel or by a specific kernel module,
including the one performing memory management. User processes may also
need to lock pages into memory. A database process may want to manage a
chunk of memory, for example, moving blocks between secondary storage and

buffer

disk drive

Figure 10.28 The reason why frames used for I/O must be in memory.

436 Chapter 10 Virtual Memory

memory itself because it has the best knowledge of how it is going to use its
data. Such pinning of pages in memory is fairly common, and most operating
systems have a system call allowing an application to request that a region
of its logical address space be pinned. Note that this feature could be abused
and could cause stress on the memory-management algorithms. Therefore, an
application frequently requires special privileges to make such a request.

Another use for a lock bit involves normal page replacement. Consider
the following sequence of events: A low-priority process faults. Selecting a
replacement frame, the paging system reads the necessary page into memory.
Ready to continue, the low-priority process enters the ready queue and waits
for the CPU. Since it is a low-priority process, it may not be selected by the
CPU scheduler for a time. While the low-priority process waits, a high-priority
process faults. Looking for a replacement, the paging system sees a page that
is in memory but has not been referenced or modified: it is the page that the
low-priority process just brought in. This page looks like a perfect replacement.
It is clean and will not need to be written out, and it apparently has not been
used for a long time.

Whether the high-priority process should be able to replace the low-
priority process is a policy decision. After all, we are simply delaying the
low-priority process for the benefit of the high-priority process. However, we
are wasting the effort spent to bring in the page for the low-priority process.
If we decide to prevent replacement of a newly brought-in page until it can be
used at least once, then we can use the lock bit to implement this mechanism.
When a page is selected for replacement, its lock bit is turned on. It remains on
until the faulting process is again dispatched.

Using a lock bit can be dangerous: the lock bit may get turned on but
never turned off. Should this situation occur (because of a bug in the operating
system, for example), the locked frame becomes unusable. For instance, Solaris
allows locking “hints,” but it is free to disregard these hints if the free-frame
pool becomes too small or if an individual process requests that toomanypages
be locked in memory.

10.10 Operating-System Examples

In this section, we describe how Linux, Windows and Solaris manage virtual
memory.

10.10.1 Linux

In Section 10.8.2, we discussed how Linux manages kernel memory using slab
allocation. We now cover how Linux manages virtual memory. Linux uses
demand paging, allocating pages from a list of free frames. In addition, it uses
a global page-replacement policy similar to the LRU-approximation clock algo-
rithm described in Section 10.4.5.2. To manage memory, Linux maintains two
types of page lists: an active list and an inactive list. The active list
contains the pages that are considered in use, while the inactive list con-
tains pages that have not recently been referenced and are eligible to be
reclaimed.

10.10 Operating-System Examples 437

rear
new
page

inactive_list

active_list

referenced

referenced

rear

front

front

Figure 10.29 The Linux active list and inactive list structures.

Each page has an accessed bit that is set whenever the page is referenced.
(The actual bits used to mark page access vary by architecture.) When a page
is first allocated, its accessed bit is set, and it is added to the rear of the
active list. Similarly, whenever a page in the active list is referenced,
its accessed bit is set, and the page moves to the rear of the list. Periodically,
the accessed bits for pages in the active list are reset. Over time, the least
recently used page will be at the front of the active list. From there, it may
migrate to the rear of the inactive list. If a page in the inactive list
is referenced, it moves back to the rear of the active list. This pattern is
illustrated in Figure 10.29.

The two lists are kept in relative balance, andwhen the active list grows
much larger than the inactive list, pages at the front of the active list
move to the inactive list, where they become eligible for reclamation. The
Linux kernel has a page-out daemon process kswapd that periodically awak-
ens and checks the amount of free memory in the system. If free memory
falls below a certain threshold, kswapd begins scanning pages in the inac-
tive list and reclaiming them for the free list. Linux virtual memory man-
agement is discussed in greater detail in Chapter 20.

10.10.2 Windows

Windows 10 supports 32- and 64-bit systems running on Intel (IA-32 and x86-
64) and ARM architectures. On 32-bit systems, the default virtual address space
of a process is 2 GB, although it can be extended to 3 GB. 32-bit systems support
4 GB of physical memory. On 64-bit systems, Windows 10 has a 128-TB vir-
tual address space and supports up to 24 TB of physical memory. (Versions of
Windows Server support up to 128 TB of physicalmemory.)Windows 10 imple-
ments most of the memory-management features described thus far, including
shared libraries, demand paging, copy-on-write, paging, and memory com-
pression.

438 Chapter 10 Virtual Memory

Windows 10 implements virtual memory using demand paging with clus-
tering, a strategy that recognizes locality of memory references and therefore
handles page faults by bringing in not only the faulting page but also several
pages immediately preceding and following the faulting page. The size of a
cluster varies by page type. For a data page, a cluster contains three pages(the
page before and the page after the faulting page); all other page faults have a
cluster size of seven.

A key component of virtual memory management in Windows 10 is
working-set management. When a process is created, it is assigned a working-
set minimum of 50 pages and a working-set maximum of 345 pages. The
working-set minimum is the minimum number of pages the process is guar-
anteed to have in memory; if sufficient memory is available, a process may be
assigned as many pages as its working-set maximum. Unless a process is con-
figured with hard working-set limits, these values may be ignored. A process
can grow beyond its working-set maximum if sufficient memory is available.
Similarly, the amount of memory allocated to a process can shrink below the
minimum in periods of high demand for memory.

Windows uses the LRU-approximation clock algorithm, as described in Sec-
tion 10.4.5.2, with a combination of local and global page-replacement policies.
The virtual memory manager maintains a list of free page frames. Associated
with this list is a threshold value that indicates whether sufficient free memory
is available. If a page fault occurs for a process that is below its working-
set maximum, the virtual memory manager allocates a page from the list of
free pages. If a process that is at its working-set maximum incurs a page fault
and sufficient memory is available, the process is allocated a free page, which
allows it to grow beyond its working-setmaximum. If the amount of freemem-
ory is insufficient, however, the kernel must select a page from the process’s
working set for replacement using a local LRU page-replacement policy.

When the amount of free memory falls below the threshold, the vir-
tual memory manager uses a global replacement tactic known as automatic
working-set trimming to restore the value to a level above the threshold.
Automatic working-set trimming works by evaluating the number of pages
allocated to processes. If a process has been allocated more pages than its
working-set minimum, the virtual memory manager removes pages from the
working set until either there is sufficient memory available or the process has
reached its working-set minimum. Larger processes that have been idle are
targeted before smaller, active processes. The trimming procedure continues
until there is sufficient free memory, even if it is necessary to remove pages
from a process already below its working set minimum. Windows performs
working-set trimming on both user-mode and system processes.

10.10.3 Solaris

In Solaris, when a thread incurs a page fault, the kernel assigns a page to
the faulting thread from the list of free pages it maintains. Therefore, it is
imperative that the kernel keep a sufficient amount of free memory available.
Associated with this list of free pages is a parameter—lotsfree—that repre-
sents a threshold to begin paging. The lotsfree parameter is typically set to
1∕64 the size of the physical memory. Four times per second, the kernel checks
whether the amount of free memory is less than lotsfree. If the number of

10.10 Operating-System Examples 439

free pages falls below lotsfree, a process known as a pageout starts up. The
pageout process is similar to the second-chance algorithm described in Section
10.4.5.2, except that it uses two hands while scanning pages, rather than one.

The pageout process works as follows: The front hand of the clock scans
all pages in memory, setting the reference bit to 0. Later, the back hand of the
clock examines the reference bit for the pages inmemory, appending each page
whose reference bit is still set to 0 to the free list and writing its contents to
secondary storage if it has been modified. Solaris also manages minor page
faults by allowing a process to reclaim a page from the free list if the page is
accessed before being reassigned to another process.

The pageout algorithm uses several parameters to control the rate at which
pages are scanned (known as the scanrate). The scanrate is expressed in
pages per second and ranges from slowscan to fastscan. When free memory
falls below lotsfree, scanning occurs at slowscan pages per second and
progresses to fastscan, depending on the amount of free memory available.
The default value of slowscan is 100 pages per second. Fastscan is typically
set to the value (total physical pages)/2 pages per second, with a maximum of
8,192 pages per second. This is shown in Figure 10.30 (with fastscan set to the
maximum).

The distance (in pages) between the hands of the clock is determined
by a system parameter, handspread. The amount of time between the front
hand’s clearing a bit and the back hand’s investigating its value depends on
the scanrate and the handspread. If scanrate is 100 pages per second and
handspread is 1,024 pages, 10 seconds can pass between the time a bit is set by
the front hand and the time it is checked by the back hand. However, because
of the demands placed on thememory system, a scanrate of several thousand
is not uncommon. This means that the amount of time between clearing and
investigating a bit is often a few seconds.

minfree

s
c
a
n
 r

a
te

100
slowscan

8192
fastscan

desfree

amount of free memory

lotsfree

Figure 10.30 Solaris page scanner.

440 Chapter 10 Virtual Memory

As mentioned above, the pageout process checks memory four times per
second. However, if free memory falls below the value of desfree (the desired
amount of free memory in the system), pageout will run a hundred times per
second with the intention of keeping at least desfree free memory available
(Figure 10.30). If the pageout process is unable to keep the amount of free
memory at desfree for a 30-second average, the kernel begins swapping
processes, thereby freeing all pages allocated to swapped processes. In general,
the kernel looks for processes that have been idle for long periods of time. If
the system is unable to maintain the amount of free memory at minfree, the
pageout process is called for every request for a new page.

The page-scanning algorithm skips pages belonging to libraries that are
being shared by several processes, even if they are eligible to be claimed by the
scanner. The algorithm also distinguishes between pages allocated to processes
and pages allocated to regular data files. This is known as priority paging and
is covered in Section 14.6.2.

10.11 Summary

• Virtual memory abstracts physical memory into an extremely large uni-
form array of storage.

• The benefits of virtual memory include the following: (1) a program can be
larger than physical memory, (2) a program does not need to be entirely in
memory, (3) processes can share memory, and (4) processes can be created
more efficiently.

• Demand paging is a technique whereby pages are loaded only when they
are demanded during program execution. Pages that are never demanded
are thus never loaded into memory.

• A page fault occurs when a page that is currently not in memory is
accessed. The page must be brought from the backing store into an avail-
able page frame in memory.

• Copy-on-write allows a child process to share the same address space as
its parent. If either the child or the parent process writes (modifies) a page,
a copy of the page is made.

• When available memory runs low, a page-replacement algorithm
selects an existing page in memory to replace with a new page. Page-
replacement algorithms include FIFO, optimal, and LRU. Pure LRU
algorithms are impractical to implement, and most systems instead use
LRU-approximation algorithms.

• Global page-replacement algorithms select a page from any process in the
system for replacement, while local page-replacement algorithms select a
page from the faulting process.

• Thrashing occurs when a system spendsmore time paging than executing.

• A locality represents a set of pages that are actively used together. As a
process executes, it moves from locality to locality. Aworking set is based
on locality and is defined as the set of pages currently in use by a process.

Practice Exercises 441

• Memory compression is a memory-management technique that com-
presses a number of pages into a single page. Compressed memory is an
alternative to paging and is used on mobile systems that do not support
paging.

• Kernelmemory is allocated differently than user-mode processes; it is allo-
cated in contiguous chunks of varying sizes. Two common techniques for
allocating kernel memory are (1) the buddy system and (2) slab allocation.

• TLB reach refers to the amount of memory accessible from the TLB and is
equal to the number of entries in the TLB multiplied by the page size. One
technique for increasing TLB reach is to increase the size of pages.

• Linux, Windows, and Solaris manage virtual memory similarly, using
demand paging and copy-on-write, among other features. Each system
also uses a variation of LRU approximation known as the clock algorithm.

Practice Exercises

10.1 Under what circumstances do page faults occur? Describe the actions
taken by the operating system when a page fault occurs.

10.2 Assume that you have a page-reference string for a process with m
frames (initially all empty). The page-reference string has length p, and
n distinct page numbers occur in it. Answer these questions for any
page-replacement algorithms:

a. What is a lower bound on the number of page faults?

b. What is an upper bound on the number of page faults?

10.3 Consider the following page-replacement algorithms. Rank these algo-
rithms on a five-point scale from “bad” to “perfect” according to their
page-fault rate. Separate those algorithms that suffer from Belady’s
anomaly from those that do not.

a. LRU replacement

b. FIFO replacement

c. Optimal replacement

d. Second-chance replacement

10.4 An operating system supports a paged virtual memory. The central
processor has a cycle time of 1 microsecond. It costs an additional 1
microsecond to access a page other than the current one. Pages have
1,000 words, and the paging device is a drum that rotates at 3,000
revolutions per minute and transfers 1 million words per second. The
following statistical measurements were obtained from the system:

• One percent of all instructions executed accessed a page other than
the current page.

• Of the instructions that accessed another page, 80 percent accessed
a page already in memory.

442 Chapter 10 Virtual Memory

• When a new page was required, the replaced page was modified
50 percent of the time.

Calculate the effective instruction time on this system, assuming that
the system is running one process only and that the processor is idle
during drum transfers.

10.5 Consider the page table for a system with 12-bit virtual and physical
addresses and 256-byte pages.

Page Page Frame

0

1

2

3

4

5

–

2

C

A

–

4

6 3

7 –

8 B

9 0

The list of free page frames isD, E, F (that is,D is at the head of the list,
E is second, and F is last). A dash for a page frame indicates that the
page is not in memory.

Convert the following virtual addresses to their equivalent physical
addresses in hexadecimal. All numbers are given in hexadecimal.

• 9EF

• 111

• 700

• 0FF

10.6 Discuss the hardware functions required to support demand paging.

10.7 Consider the two-dimensional array A:

int A[][] = new int[100][100];

where A[0][0] is at location 200 in a pagedmemory systemwith pages
of size 200. A small process that manipulates the matrix resides in page
0 (locations 0 to 199). Thus, every instruction fetch will be from page 0.
For three page frames, how many page faults are generated by the

following array-initialization loops? Use LRU replacement, and assume

Practice Exercises 443

that page frame 1 contains the process and the other two are initially
empty.

a. for (int j = 0; j < 100; j++)
for (int i = 0; i < 100; i++)

A[i][j] = 0;

b. for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++)

A[i][j] = 0;

10.8 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement
algorithms, assuming one, two, three, four, five, six, and seven frames?
Remember that all frames are initially empty, so your first unique pages
will cost one fault each.

• LRU replacement

• FIFO replacement

• Optimal replacement

10.9 Consider the following page reference string:

7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5, 4, 6, 2, 3, 0 , 1.

Assuming demand paging with three frames, how many page faults
would occur for the following replacement algorithms?

• LRU replacement

• FIFO replacement

• Optimal replacement

10.10 Suppose that you want to use a paging algorithm that requires a ref-
erence bit (such as second-chance replacement or working-set model),
but the hardware does not provide one. Sketch how you could simu-
late a reference bit even if one were not provided by the hardware, or
explain why it is not possible to do so. If it is possible, calculate what
the cost would be.

10.11 You have devised a new page-replacement algorithm that you think
may be optimal. In some contorted test cases, Belady’s anomaly occurs.
Is the new algorithm optimal? Explain your answer.

10.12 Segmentation is similar to paging but uses variable-sized “pages.”
Define two segment-replacement algorithms, one based on the FIFO
page-replacement scheme and the other on the LRU page-replacement
scheme. Remember that since segments are not the same size, the seg-
ment that is chosen for replacement may be too small to leave enough

444 Chapter 10 Virtual Memory

consecutive locations for the needed segment. Consider strategies for
systemswhere segments cannot be relocated and strategies for systems
where they can.

10.13 Consider a demand-paged computer systemwhere the degree ofmulti-
programming is currently fixed at four. The system was recently mea-
sured to determine utilization of the CPU and the paging disk. Three
alternative results are shown below. For each case, what is happening?
Can the degree of multiprogramming be increased to increase the CPU
utilization? Is the paging helping?

a. CPU utilization 13 percent; disk utilization 97 percent

b. CPU utilization 87 percent; disk utilization 3 percent

c. CPU utilization 13 percent; disk utilization 3 percent

10.14 We have an operating system for a machine that uses base and limit
registers, but we have modified the machine to provide a page table.
Can the page table be set up to simulate base and limit registers? How
can it be, or why can it not be?

Further Reading

The working-set model was developed by [Denning (1968)]. The
enhanced clock algorithm is discussed by [Carr and Hennessy (1981)].
[Russinovich et al. (2017)] describe how Windows implements vir-
tual memory and memory compression. Compressed memory in
Windows 10 is further discussed in http://www.makeuseof.com/
tag/ram-compression-improves-memory-responsiveness-windows-10.

[McDougall and Mauro (2007)] discuss virtual memory in Solaris. Virtual
memory techniques in Linux are described in [Love (2010)] and [Mauerer
(2008)]. FreeBSD is described in [McKusick et al. (2015)].

Bibliography

[Carr and Hennessy (1981)] W. R. Carr and J. L. Hennessy, “WSClock—A Sim-
ple and Effective Algorithm for Virtual Memory Management”, Proceedings of
the ACM Symposium on Operating Systems Principles (1981), pages 87–95.

[Denning (1968)] P. J. Denning, “TheWorking SetModel for ProgramBehavior”,
Communications of the ACM, Volume 11, Number 5 (1968), pages 323–333.

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[Mauerer (2008)] W. Mauerer, Professional Linux Kernel Architecture, John Wiley
and Sons (2008).

[McDougall and Mauro (2007)] R. McDougall and J. Mauro, Solaris Internals,
Second Edition, Prentice Hall (2007).

http://doi.acm.org/10.1145/363095.363141
http://doi.acm.org/10.1145/1067627.806596
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://www.makeuseof.com/tag/ram-compression-improves-memory-responsiveness-windows-10
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://doi.acm.org/10.1145/1067627.806596
http://doi.acm.org/10.1145/1067627.806596
http://doi.acm.org/10.1145/363095.363141
http://doi.acm.org/10.1145/363095.363141
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://www.makeuseof.com/tag/ram-compression-improves-memory-responsiveness-windows-10
http://www.makeuseof.com/tag/ram-compression-improves-memory-responsiveness-windows-10

Bibliography 445

[McKusick et al. (2015)] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Wat-
son,The Design and Implementation of the FreeBSDUNIXOperating System–Second
Edition, Pearson (2015).

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition

Chapter 10 Exercises

10.15 Assume that a program has just referenced an address in virtual mem-
ory. Describe a scenario in which each of the following can occur. (If no
such scenario can occur, explain why.)

• TLB miss with no page fault

• TLB miss with page fault

• TLB hit with no page fault

• TLB hit with page fault

10.16 Asimplified view of thread states is ready, running, and blocked, where
a thread is either ready and waiting to be scheduled, is running on the
processor, or is blocked (for example, waiting for I/O).

ready

blocked running

Assuming a thread is in the running state, answer the following ques-
tions, and explain your answers:

a. Will the thread change state if it incurs a page fault? If so, to what
state will it change?

b. Will the thread change state if it generates a TLB miss that is
resolved in the page table? If so, to what state will it change?

c. Will the thread change state if an address reference is resolved in
the page table? If so, to what state will it change?

10.17 Consider a system that uses pure demand paging.

a. When a process first starts execution, howwould you characterize
the page-fault rate?

b. Once the working set for a process is loaded into memory, how
would you characterize the page-fault rate?

c. Assume that a process changes its locality and the size of the new
working set is too large to be stored in available free memory.
Identify some options system designers could choose from to
handle this situation.

10.18 The following is a page table for a system with 12-bit virtual and
physical addresses and 256-byte pages. Free page frames are to be
allocated in the order 9, F, D. A dash for a page frame indicates that
the page is not in memory.

EX-35

Exercises

Page Page Frame

0

1

2

3

4

5

0 x 4

0 x B

0 x A

–

–

0 x 2

6

7

–

8 0 x C

0 x 0

9 0 x 1

Convert the following virtual addresses to their equivalent physical
addresses in hexadecimal. All numbers are given in hexadecimal. In the
case of a page fault, you must use one of the free frames to update the
page table and resolve the logical address to its corresponding physical
address.

• 0x2A1

• 0x4E6

• 0x94A

• 0x316

10.19 What is the copy-on-write feature, and under what circumstances is its
use beneficial? What hardware support is required to implement this
feature?

10.20 A certain computer provides its users with a virtual memory space of
232 bytes. The computer has 222 bytes of physical memory. The virtual
memory is implemented by paging, and the page size is 4,096 bytes.
A user process generates the virtual address 11123456. Explain how
the system establishes the corresponding physical location. Distinguish
between software and hardware operations.

10.21 Assume that we have a demand-paged memory. The page table is
held in registers. It takes 8 milliseconds to service a page fault if an
empty frame is available or if the replaced page is not modified and 20
milliseconds if the replaced page is modified. Memory-access time is
100 nanoseconds.

Assume that the page to be replaced is modified 70 percent of the
time. What is the maximum acceptable page-fault rate for an effective
access time of no more than 200 nanoseconds?

10.22 Consider the page table for a system with 16-bit virtual and physical
addresses and 4,096-byte pages.

EX-36

Page Page Frame Reference Bit

0

1

2

3

4

5

9

10

15

–

6

13

6

7

8

8 7

5

4

1

0

2

12

9

10

11

12

13

14

15

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

–

–

The reference bit for a page is set to 1 when the page has been ref-
erenced. Periodically, a thread zeroes out all values of the reference
bit. A dash for a page frame indicates that the page is not in memory.
The page-replacement algorithm is localized LRU, and all numbers are
provided in decimal.

a. Convert the following virtual addresses (in hexadecimal) to the
equivalent physical addresses. Youmayprovide answers in either
hexadecimal or decimal. Also set the reference bit for the appro-
priate entry in the page table.

• 0x621C

• 0xF0A3

• 0xBC1A

• 0x5BAA

• 0x0BA1

b. Using the above addresses as a guide, provide an example of a
logical address (in hexadecimal) that results in a page fault.

c. From what set of page frames will the LRU page-replacement
algorithm choose in resolving a page fault?

10.23 When a page fault occurs, the process requesting the page must block
while waiting for the page to be brought from disk into physical mem-
ory. Assume that there exists a process with five user-level threads and
that the mapping of user threads to kernel threads is many to one. If

EX-37

Exercises

one user thread incurs a page fault while accessing its stack, would the
other user threads belonging to the same process also be affected by the
page fault—that is, would they also have to wait for the faulting page
to be brought into memory? Explain.

10.24 Apply the (1) FIFO, (2) LRU, and (3) optimal (OPT) replacement algo-
rithms for the following page-reference strings:

• 2, 6, 9, 2, 4, 2, 1, 7, 3, 0, 5, 2, 1, 2, 9, 5, 7, 3, 8, 5

• 0, 6, 3, 0, 2, 6, 3, 5, 2, 4, 1, 3, 0, 6, 1, 4, 2, 3, 5, 7

• 3, 1, 4, 2, 5, 4, 1, 3, 5, 2, 0, 1, 1, 0, 2, 3, 4, 5, 0, 1

• 4, 2, 1, 7, 9, 8, 3, 5, 2, 6, 8, 1, 0, 7, 2, 4, 1, 3, 5, 8

• 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0

Indicate the number of page faults for each algorithm assuming
demand paging with three frames.

10.25 Assume that you are monitoring the rate at which the pointer in the
clock algorithm moves. (The pointer indicates the candidate page for
replacement.) What can you say about the system if you notice the
following behavior:

a. Pointer is moving fast.

b. Pointer is moving slow.

10.26 Discuss situations in which the least frequently used (LFU) page-
replacement algorithm generates fewer page faults than the least
recently used (LRU) page-replacement algorithm. Also discuss under
what circumstances the opposite holds.

10.27 Discuss situations in which the most frequently used (MFU) page-
replacement algorithm generates fewer page faults than the least
recently used (LRU) page-replacement algorithm. Also discuss under
what circumstances the opposite holds.

10.28 The KHIE (pronounced “k-hi”) operating system uses a FIFO replace-
ment algorithm for resident pages and a free-frame pool of recently
used pages. Assume that the free-frame pool is managed using the LRU
replacement policy. Answer the following questions:

a. If a page fault occurs and the page does not exist in the free-frame
pool, how is free space generated for the newly requested page?

b. If a page fault occurs and the page exists in the free-frame pool,
how are the resident page set and the free-frame pool managed
to make space for the requested page?

c. To what does the system degenerate if the number of resident
pages is set to one?

d. To what does the system degenerate if the number of pages in the
free-frame pool is zero?

EX-38

10.29 Consider a demand-paging system with the following time-measured
utilizations:

CPU utilization 20%
Paging disk 97.7%
Other I/O devices 5%

For each of the following, indicate whether it will (or is likely to)
improve CPU utilization. Explain your answers.

a. Install a faster CPU.

b. Install a bigger paging disk.

c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

e. Install more main memory.

f. Install a faster hard disk or multiple controllers with multiple
hard disks.

g. Add prepaging to the page-fetch algorithms.

h. Increase the page size.

10.30 Explainwhyminor page faults take less time to resolve thanmajor page
faults.

10.31 Explain why compressed memory is used in operating systems for
mobile devices.

10.32 Suppose that a machine provides instructions that can access mem-
ory locations using the one-level indirect addressing scheme. What
sequence of page faults is incurred when all of the pages of a program
are currently nonresident and the first instruction of the program is an
indirect memory-load operation? What happens when the operating
system is using a per-process frame allocation technique and only two
pages are allocated to this process?

10.33 Consider the page references:

EX-39

Exercises

18

20

22

24

26

28

30

32

34

pa
ge

 n
um

be
rs

m
em

or
y

ad
dr

es
s

execution time
(X)

What pages represent the locality at time (X)?

10.34 Suppose that your replacement policy (in a paged system) is to examine
each page regularly and to discard that page if it has not been used since
the last examination. What would you gain and what would you lose
by using this policy rather than LRU or second-chance replacement?

10.35 A page-replacement algorithm should minimize the number of page
faults. We can achieve this minimization by distributing heavily used
pages evenly over all of memory, rather than having them compete for
a small number of page frames. We can associate with each page frame
a counter of the number of pages associated with that frame. Then,

EX-40

to replace a page, we can search for the page frame with the smallest
counter.

a. Define a page-replacement algorithmusing this basic idea. Specif-
ically address these problems:

• What is the initial value of the counters?
• When are counters increased?
• When are counters decreased?
• How is the page to be replaced selected?

b. Howmany page faults occur for your algorithm for the following
reference string with four page frames?

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

c. What is the minimum number of page faults for an optimal page-
replacement strategy for the reference string in part b with four
page frames?

10.36 Consider a demand-paging system with a paging disk that has an
average access and transfer time of 20 milliseconds. Addresses are
translated through a page table in main memory, with an access time
of 1 microsecond per memory access. Thus, each memory reference
through the page table takes two accesses. To improve this time, we
have added an associative memory that reduces access time to one
memory reference if the page-table entry is in the associative memory.

Assume that 80 percent of the accesses are in the associativememory
and that, of those remaining, 10 percent (or 2 percent of the total) cause
page faults. What is the effective memory access time?

10.37 What is the cause of thrashing? How does the system detect thrashing?
Once it detects thrashing, what can the system do to eliminate this
problem?

10.38 Is it possible for a process to have two working sets, one representing
data and another representing code? Explain.

10.39 Consider the parameter Δ used to define the working-set window in
the working-set model. When Δ is set to a low value, what is the effect
on the page-fault frequency and the number of active (nonsuspended)
processes currently executing in the system?What is the effect when Δ
is set to a very high value?

10.40 In a 1,024-KB segment, memory is allocated using the buddy system.
Using Figure 10.26 as a guide, drawa tree illustratinghow the following
memory requests are allocated:

• Request 5-KB

• Request 135 KB.

• Request 14 KB.

• Request 3 KB.

EX-41

Exercises

• Request 12 KB.

Next, modify the tree for the following releases of memory. Perform
coalescing whenever possible:

• Release 3 KB.

• Release 5 KB.

• Release 14 KB.

• Release 12 KB.

10.41 Asystem provides support for user-level and kernel-level threads. The
mapping in this system is one to one (there is a corresponding kernel
thread for each user thread). Does a multithreaded process consist of
(a) a working set for the entire process or (b) a working set for each
thread? Explain

10.42 The slab-allocation algorithm uses a separate cache for each different
object type. Assuming there is one cache per object type, explain why
this scheme doesn’t scale well with multiple CPUs. What could be done
to address this scalability issue?

10.43 Consider a system that allocates pages of different sizes to its processes.
What are the advantages of such a paging scheme? What modifica-
tions to the virtual memory system would be needed to provide this
functionality?

EX-42

Programming Problems

Programming Problems

10.44 Write a program that implements the FIFO, LRU, and optimal (OPT)
page-replacement algorithms presented in Section 10.4. Have your pro-
gram initially generate a random page-reference string where page
numbers range from 0 to 9. Apply the random page-reference string to
each algorithm, and record the number of page faults incurred by each
algorithm. Pass the number of page frames to the program at startup.
You may implement this program in any programming language of
your choice. (You may find your implementation of either FIFO or LRU
to be helpful in the virtual memory manager programming project.)

Programming Projects

Designing a Virtual Memory Manager

This project consists of writing a program that translates logical to physical
addresses for a virtual address space of size 216 = 65,536 bytes. Your program
will read from a file containing logical addresses and, using a TLB and a page
table, will translate each logical address to its corresponding physical address
and output the value of the byte stored at the translated physical address.
Your learning goal is to use simulation to understand the steps involved in
translating logical to physical addresses. Thiswill include resolving page faults
using demand paging,managing a TLB, and implementing a page-replacement
algorithm.

Specific

Your program will read a file containing several 32-bit integer numbers that
represent logical addresses. However, you need only be concerned with 16-
bit addresses, so you must mask the rightmost 16 bits of each logical address.
These 16 bits are divided into (1) an 8-bit page number and (2) an 8-bit page
offset. Hence, the addresses are structured as shown as:

offset

078151631

page
number

Other specifics include the following:

• 28 entries in the page table

• Page size of 28 bytes

• 16 entries in the TLB

• Frame size of 28 bytes

• 256 frames

• Physical memory of 65,536 bytes (256 frames × 256-byte frame size)

P-51

Chapter 10 Virtual Memory

Additionally, your program need only be concerned with reading logical
addresses and translating them to their corresponding physical addresses. You
do not need to support writing to the logical address space.

Address Translation

Your programwill translate logical to physical addresses using a TLB and page
table as outlined in Section 9.3. First, the page number is extracted from the
logical address, and the TLB is consulted. In the case of a TLB hit, the frame
number is obtained from the TLB. In the case of a TLB miss, the page table
must be consulted. In the latter case, either the frame number is obtained from
the page table, or a page fault occurs. A visual representation of the address-
translation process is:

page

number

0

1

2

15

0

1

2

255

TLB

page

table

TLB hit

TLB miss

page 0

page 255

page 1

page 2

frame

number

.

.

.

.

.

.

.

.

0

1

2

255

physical

memory

frame 0

frame 255

frame 1

frame 2

.

.

.

.

page

number
offset

frame

number
offset

Handling Page Faults

Your programwill implement demand paging as described in Section 10.2. The
backing store is represented by the file BACKING STORE.bin, a binary file of
size 65,536 bytes. When a page fault occurs, you will read in a 256-byte page
from the file BACKING STORE and store it in an available page frame in physical
memory. For example, if a logical address with page number 15 resulted in a
page fault, your programwould read in page 15 from BACKING STORE (remem-
ber that pages begin at 0 and are 256 bytes in size) and store it in a page frame
in physical memory. Once this frame is stored (and the page table and TLB are
updated), subsequent accesses to page 15 will be resolved by either the TLB or
the page table.

P-52

Programming Projects

You will need to treat BACKING STORE.bin as a random-access file so that
you can randomly seek to certain positions of the file for reading. We suggest
using the standard C library functions for performing I/O, including fopen(),
fread(), fseek(), and fclose().

The size of physical memory is the same as the size of the virtual address
space—65,536 bytes—so you do not need to be concerned about page replace-
ments during a page fault. Later, we describe a modification to this project
using a smaller amount of physical memory; at that point, a page-replacement
strategy will be required.

Test File

We provide the file addresses.txt, which contains integer values represent-
ing logical addresses ranging from 0to65535 (the size of the virtual address
space). Your programwill open this file, read each logical address and translate
it to its corresponding physical address, and output the value of the signed byte
at the physical address.

How to Begin

First, write a simple program that extracts the page number and offset based
on:

offset

078151631

page
number

from the following integer numbers:

1, 256, 32768, 32769, 128, 65534, 33153

Perhaps the easiest way to do this is by using the operators for bit-masking and
bit-shifting. Once you can correctly establish the page number and offset from
an integer number, you are ready to begin.

Initially, we suggest that you bypass the TLB and use only a page table. You
can integrate the TLB once your page table is working properly. Remember,
address translation can work without a TLB; the TLB just makes it faster. When
you are ready to implement the TLB, recall that it has only sixteen entries, so
you will need to use a replacement strategy when you update a full TLB. You
may use either a FIFO or an LRU policy for updating your TLB.

How to Run Your Program

Your program should run as follows:

./a.out addresses.txt

Your programwill read in the file addresses.txt, which contains 1,000 logical
addresses ranging from 0 to 65535. Your program is to translate each logical
address to a physical address and determine the contents of the signed byte
stored at the correct physical address. (Recall that in the C language, the char
data type occupies a byte of storage, so we suggest using char values.)

P-53

Chapter 10 Virtual Memory

Your program is to output the following values:

1. The logical address being translated (the integer value being read from
addresses.txt).

2. The corresponding physical address (what your program translates the
logical address to).

3. The signed byte value stored in physical memory at the translated phys-
ical address.

We also provide the file correct.txt, which contains the correct output
values for the file addresses.txt. You should use this file to determine if your
program is correctly translating logical to physical addresses.

Statistics

After completion, your program is to report the following statistics:

1. Page-fault rate—The percentage of address references that resulted in
page faults.

2. TLB hit rate—The percentage of address references that were resolved in
the TLB.

Since the logical addresses in addresses.txt were generated randomly and
do not reflect any memory access locality, do not expect to have a high TLB hit
rate.

Page Replacement

Thus far, this project has assumed that physical memory is the same size as the
virtual address space. In practice, physical memory is typically much smaller
than a virtual address space. This phase of the project now assumes using
a smaller physical address space with 128 page frames rather than 256. This
change will require modifying your program so that it keeps track of free page
frames as well as implementing a page-replacement policy using either FIFO or
LRU (Section 10.4) to resolve page faults when there is no free memory.

P-54

http://doi.acm.org/10.1145/363095.363141
http://doi.acm.org/10.1145/1067627.806596
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://www.makeuseof.com/tag/ram-compression-improves-memory-responsiveness-windows-10
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://doi.acm.org/10.1145/1067627.806596
http://doi.acm.org/10.1145/1067627.806596
http://doi.acm.org/10.1145/363095.363141
http://doi.acm.org/10.1145/363095.363141

Part Five

Storage
Management

Computer systems must provide mass storage for permanently storing
files and data. Modern computers implementmass storage as secondary
storage, using both hard disks and nonvolatile memory devices.

Secondary storage devices vary in many aspects. Some transfer a
character at a time, and some a block of characters. Some can be
accessedonly sequentially, and others randomly. Some transfer data syn-
chronously, and others asynchronously. Some are dedicated, and some
shared. They can be read-only or read–write. And although they vary
greatly in speed, they are in many ways the slowest major component
of the computer.

Because of all this device variation, the operating system needs to
provide a wide range of functionality so that applications can control
all aspects of the devices. One key goal of an operating system’s I/O
subsystem is to provide the simplest interface possible to the rest of the
system. Because devices are a performance bottleneck, another key is
to optimize I/O for maximum concurrency.

11CHAPTER

Mass-Storage
Structure

In this chapter, we discuss how mass storage—the nonvolatile storage sys-
tem of a computer—is structured. The main mass-storage system in modern
computers is secondary storage, which is usually provided by hard disk drives
(HDD) and nonvolatilememory (NVM) devices. Some systems also have slower,
larger, tertiary storage, generally consisting of magnetic tape, optical disks, or
even cloud storage.

Because the most common and important storage devices in modern com-
puter systems are HDDs and NVM devices, the bulk of this chapter is devoted
to discussing these two types of storage. We first describe their physical struc-
ture.We then consider scheduling algorithms, which schedule the order of I/Os
to maximize performance. Next, we discuss device formatting and manage-
ment of boot blocks, damaged blocks, and swap space. Finally, we examine the
structure of RAID systems.

There are many types of mass storage, and we use the general term non-
volatile storage (NVS) or talk about storage “drives” when the discussion
includes all types. Particular devices, such as HDDs and NVM devices, are
specified as appropriate.

CHAPTER OBJECTIVES

• Describe the physical structures of various secondary storage devices and
the effect of a device’s structure on its uses.

• Explain the performance characteristics of mass-storage devices.

• Evaluate I/O scheduling algorithms.

• Discuss operating-system services provided for mass storage, including
RAID.

11.1 Overview of Mass-Storage Structure

The bulk of secondary storage for modern computers is provided by hard
disk drives (HDDs) and nonvolatile memory (NVM) devices. In this section,

449

450 Chapter 11 Mass-Storage Structure

track t

sector s

spindle

cylinder c

platter

arm

read-write
head

arm assembly

rotation

Figure 11.1 HDD moving-head disk mechanism.

we describe the basic mechanisms of these devices and explain how operat-
ing systems translate their physical properties to logical storage via address
mapping.

11.1.1 Hard Disk Drives

Conceptually, HDDs are relatively simple (Figure 11.1). Each disk platter has
a flat circular shape, like a CD. Common platter diameters range from 1.8 to
3.5 inches. The two surfaces of a platter are covered with a magnetic material.
We store information by recording it magnetically on the platters, and we read
information by detecting the magnetic pattern on the platters.

A read–write head “flies” just above each surface of every platter. The
heads are attached to a disk arm that moves all the heads as a unit. The surface
of a platter is logically divided into circular tracks, which are subdivided into
sectors. The set of tracks at a given arm position make up a cylinder. There
may be thousands of concentric cylinders in a disk drive, and each track may
contain hundreds of sectors. Each sector has a fixed size and is the smallest
unit of transfer. The sector size was commonly 512 bytes until around 2010.
At that point, many manufacturers start migrating to 4KB sectors. The storage
capacity of common disk drives is measured in gigabytes and terabytes. Adisk
drive with the cover removed is shown in Figure 11.2.

Adisk drivemotor spins it at high speed.Most drives rotate 60 to 250 times
per second, specified in terms of rotations per minute (RPM). Common drives
spin at 5,400, 7,200, 10,000, and 15,000 RPM. Some drives power down when
not in use and spin up upon receiving an I/O request. Rotation speed relates
to transfer rates. The transfer rate is the rate at which data flow between the
drive and the computer. Another performance aspect, the positioning time, or
random-access time, consists of two parts: the time necessary to move the disk
arm to the desired cylinder, called the seek time, and the time necessary for the

11.1 Overview of Mass-Storage Structure 451

Figure 11.2 A 3.5-inch HDD with cover removed.

desired sector to rotate to the disk head, called the rotational latency. Typical
disks can transfer tens to hundreds of megabytes of data per second, and they
have seek times and rotational latencies of several milliseconds. They increase
performance by having DRAM buffers in the drive controller.

The disk head flies on an extremely thin cushion (measured in microns) of
air or another gas, such as helium, and there is a danger that the headwill make
contact with the disk surface. Although the disk platters are coated with a thin
protective layer, the head will sometimes damage the magnetic surface. This
accident is called a head crash. A head crash normally cannot be repaired; the
entire disk must be replaced, and the data on the disk are lost unless they were
backed up to other storage or RAID protected. (RAID is discussed in Section
11.8.)

HDDs are sealed units, and some chassis that hold HDDs allow their
removal without shutting down the system or storage chassis. This is helpful
when a system needs more storage than can be connected at a given time or
when it is necessary to replace a bad drive with a working one. Other types of
storage media are also removable, including CDs, DVDs, and Blu-ray discs.

DISK TRANSFER RATES

As with many aspects of computing, published performance numbers for
disks are not the same as real-world performance numbers. Stated transfer
rates are always higher than effective transfer rates, for example. The transfer
rate may be the rate at which bits can be read from themagnetic media by the
disk head, but that is different from the rate at which blocks are delivered to
the operating system.

452 Chapter 11 Mass-Storage Structure

11.1.2 Nonvolatile Memory Devices

Nonvolatile memory (NVM) devices are growing in importance. Simply
described, NVM devices are electrical rather than mechanical. Most commonly,
such a device is composed of a controller and flash NAND die semiconductor
chips, which are used to store data. Other NVM technologies exist, like
DRAM with battery backing so it doesn’t lose its contents, as well as other
semiconductor technology like 3D XPoint, but they are far less common and
so are not discussed in this book.

11.1.2.1 Overview of Nonvolatile Memory Devices

Flash-memory-based NVM is frequently used in a disk-drive-like container, in
which case it is called a solid-state disk (SSD) (Figure 11.3). In other instances,
it takes the formof a USB drive (also known as a thumbdrive or flash drive) or a
DRAM stick. It is also surface-mounted onto motherboards as the main storage
in devices like smartphones. In all forms, it acts and can be treated in the same
way. Our discussion of NVM devices focuses on this technology.

NVM devices can bemore reliable than HDDs because they have nomoving
parts and can be faster because they have no seek time or rotational latency.
In addition, they consume less power. On the negative side, they are more
expensive permegabyte than traditional hard disks and have less capacity than
the larger hard disks. Over time, however, the capacity of NVM devices has
increased faster than HDD capacity, and their price has dropped more quickly,
so their use is increasing dramatically. In fact, SSDs and similar devices are
now used in some laptop computers to make them smaller, faster, and more
energy-efficient.

Because NVM devices can be much faster than hard disk drives, standard
bus interfaces can cause a major limit on throughput. Some NVM devices
are designed to connect directly to the system bus (PCIe, for example). This
technology is changing other traditional aspects of computer design as well.

Figure 11.3 A 3.5-inch SSD circuit board.

11.1 Overview of Mass-Storage Structure 453

Some systems use it as a direct replacement for disk drives, while others use
it as a new cache tier, moving data among magnetic disks, NVM, and main
memory to optimize performance.

NAND semiconductors have some characteristics that present their own
storage and reliability challenges. For example, they can be read and written
in a “page” increment (similar to a sector), but data cannot be overwritten—
rather, the NAND cells have to be erased first. The erasure, which occurs in
a “block” increment that is several pages in size, takes much more time than
a read (the fastest operation) or a write (slower than read, but much faster
than erase). Helping the situation is that NVM flash devices are composed
of many die, with many datapaths to each die, so operations can happen in
parallel (each using a datapath). NAND semiconductors also deteriorate with
every erase cycle, and after approximately 100,000 program-erase cycles (the
specific number varies depending on the medium), the cells no longer retain
data. Because of the write wear, and because there are no moving parts, NAND
NVM lifespan is not measured in years but in Drive Writes Per Day (DWPD).
That measure is how many times the drive capacity can be written per day
before the drive fails. For example, a 1 TB NAND drive with a 5 DWPD rating
is expected to have 5 TB per day written to it for the warranty period without
failure.

These limitations have led to several ameliorating algorithms. Fortunately,
they are usually implemented in the NVM device controller and are not of con-
cern to the operating system. The operating system simply reads and writes
logical blocks, and the device manages how that is done. (Logical blocks are
discussed inmore detail in Section 11.1.5.) However, NVM devices have perfor-
mance variations based on their operating algorithms, so a brief discussion of
what the controller does is warranted.

11.1.2.2 NAND Flash Controller Algorithms

Because NAND semiconductors cannot be overwritten once written, there are
usually pages containing invalid data. Consider a file-system block, written
once and then later written again. If no erase has occurred in the meantime,
the page first written has the old data, which are now invalid, and the second
page has the current, good version of the block. A NAND block containing
valid and invalid pages is shown in Figure 11.4. To track which logical blocks
contain valid data, the controller maintains a flas translation layer (FTL). This
table maps which physical pages contain currently valid logical blocks. It also

Figure 11.4 A NAND block with valid and invalid pages.

454 Chapter 11 Mass-Storage Structure

tracks physical block state—that is, which blocks contain only invalid pages
and therefore can be erased.

Now consider a full SSD with a pending write request. Because the SSD is
full, all pages have been written to, but there might be a block that contains
no valid data. In that case, the write could wait for the erase to occur, and
then the write could occur. But what if there are no free blocks? There still
could be some space available if individual pages are holding invalid data. In
that case, garbage collection could occur—good data could be copied to other
locations, freeing up blocks that could be erased and could then receive the
writes. However, where would the garbage collection store the good data? To
solve this problem and improve write performance, the NVM device uses over-
provisioning. The device sets aside a number of pages (frequently 20 percent of
the total) as an area always available to write to. Blocks that are totally invalid
by garbage collection, or write operations invalidating older versions of the
data, are erased and placed in the over-provisioning space if the device is full
or returned to the free pool.

The over-provisioning space can also help with wear leveling. If some
blocks are erased repeatedly, while others are not, the frequently erased blocks
will wear out faster than the others, and the entire device will have a shorter
lifespan than it would if all the blocks wore out concurrently. The controller
tries to avoid that by using various algorithms to place data on less-erased
blocks so that subsequent erases will happen on those blocks rather than on
the more erased blocks, leveling the wear across the entire device.

In terms of data protection, like HDDs, NVM devices provide error-
correcting codes, which are calculated and stored along with the data during
writing and read with the data to detect errors and correct them if possible.
(Error-correcting codes are discussed in Section 11.5.1.) If a page frequently
has correctible errors, the page might be marked as bad and not used in
subsequent writes. Generally, a single NVM device, like an HDD, can have
a catastrophic failure in which it corrupts or fails to reply to read or write
requests. To allow data to be recoverable in those instances, RAID protection is
used.

11.1.3 Volatile Memory

It might seem odd to discuss volatile memory in a chapter on mass-storage
structure, but it is justifiable because DRAM is frequently used as amass-storage
device. Specifically, RAM drives (which are known by many names, including
RAM disks) act like secondary storage but are created by device drivers that
carve out a section of the system’s DRAM and present it to the rest of the
system as it if were a storage device. These “drives” can be used as raw block
devices, but more commonly, file systems are created on them for standard file
operations.

Computers already have buffering and caching, so what is the purpose of
yet another use of DRAM for temporary data storage?After all, DRAM is volatile,
and data on a RAM drive does not survive a system crash, shutdown, or power
down. Caches and buffers are allocated by the programmer or operating sys-
tem, whereas RAM drives allow the user (as well as the programmer) to place

11.1 Overview of Mass-Storage Structure 455

MAGNETIC TAPES

Magnetic tape was used as an early secondary-storage medium. Although
it is nonvolatile and can hold large quantities of data, its access time is slow
compared with that of main memory and drives. In addition, random access
to magnetic tape is about a thousand times slower than random access to
HDDs and about a hundred thousand times slower than random access to
SSDs so tapes are not very useful for secondary storage. Tapes are used
mainly for backup, for storage of infrequently used information, and as a
medium for transferring information from one system to another.

A tape is kept in a spool and is wound or rewound past a read–write
head. Moving to the correct spot on a tape can take minutes, but once posi-
tioned, tape drives can read and write data at speeds comparable to HDDs.
Tape capacities vary greatly, depending on the particular kind of tape drive,
with current capacities exceeding several terabytes. Some tapes have built-in
compression that can more than double the effective storage. Tapes and their
drivers are usually categorized by width, including 4, 8, and 19 millimeters
and 1/4 and 1/2 inch. Some are named according to technology, such as LTO-6
(Figure 11.5) and SDLT.

Figure 11.5 An LTO-6 Tape drive with tape cartridge inserted.

data in memory for temporary safekeeping using standard file operations. In
fact, RAM drive functionality is useful enough that such drives are found in all
major operating systems. On Linux there is /dev/ram, onmacOS the diskutil
command creates them, Windows has them via third-party tools, and Solaris
and Linux create /tmp at boot time of type “tmpfs”, which is a RAM drive.

RAM drives are useful as high-speed temporary storage space. Although
NVM devices are fast, DRAM is much faster, and I/O operations to RAM drives
are the fastest way to create, read, write, and delete files and their contents.
Many programs use (or could benefit from using) RAM drives for storing
temporary files. For example, programs can share data easily by writing and
reading files from a RAMdrive. For another example, Linux at boot time creates
a temporary root file system (initrd) that allows other parts of the system
to have access to a root file system and its contents before the parts of the
operating system that understand storage devices are loaded.

456 Chapter 11 Mass-Storage Structure

11.1.4 Secondary Storage Connection Methods

A secondary storage device is attached to a computer by the system bus or an
I/O bus. Several kinds of buses are available, including advanced technology
attachment (ATA), serial ATA (SATA), eSATA, serial attached SCSI (SAS), uni-
versal serial bus (USB), and fibr channel (FC). The most common connection
method is SATA. Because NVM devices are much faster than HDDs, the industry
created a special, fast interface for NVM devices called NVM express (NVMe).
NVMe directly connects the device to the systemPCI bus, increasing throughput
and decreasing latency compared with other connection methods.

The data transfers on a bus are carried out by special electronic processors
called controllers (or host-bus adapters (HBA)). The host controller is the
controller at the computer end of the bus. A device controller is built into
each storage device. To perform a mass storage I/O operation, the computer
places a command into the host controller, typically using memory-mapped
I/O ports, as described in Section 12.2.1. The host controller then sends the
command via messages to the device controller, and the controller operates
the drive hardware to carry out the command. Device controllers usually have
a built-in cache. Data transfer at the drive happens between the cache and the
storage media, and data transfer to the host, at fast electronic speeds, occurs
between the cache host DRAM via DMA.

11.1.5 Address Mapping

Storage devices are addressed as large one-dimensional arrays of logical
blocks, where the logical block is the smallest unit of transfer. Each logical
block maps to a physical sector or semiconductor page. The one-dimensional
array of logical blocks is mapped onto the sectors or pages of the device. Sector
0 could be the first sector of the first track on the outermost cylinder on an HDD,
for example. The mapping proceeds in order through that track, then through
the rest of the tracks on that cylinder, and then through the rest of the cylinders,
from outermost to innermost. For NVM the mapping is from a tuple (finite
ordered list) of chip, block, and page to an array of logical blocks. A logical
block address (LBA) is easier for algorithms to use than a sector, cylinder, head
tuple or chip, block, page tuple.

By using this mapping on an HDD, we can—at least in theory—convert a
logical block number into an old-style disk address that consists of a cylinder
number, a track number within that cylinder, and a sector number within that
track. In practice, it is difficult to perform this translation, for three reasons.
First, most drives have some defective sectors, but the mapping hides this
by substituting spare sectors from elsewhere on the drive. The logical block
address stays sequential, but the physical sector location changes. Second, the
number of sectors per track is not a constant on some drives. Third, disk man-
ufacturers manage LBA to physical address mapping internally, so in current
drives there is little relationship between LBA and physical sectors. In spite
of these physical address vagaries, algorithms that deal with HDDs tend to
assume that logical addresses are relatively related to physical addresses. That
is, ascending logical addresses tend to mean ascending physical address.

Let’s look more closely at the second reason. On media that use constant
linear velocity (CLV), the density of bits per track is uniform. The farther a track
is from the center of the disk, the greater its length, so the more sectors it can

11.2 HDD Scheduling 457

hold. As we move from outer zones to inner zones, the number of sectors per
track decreases. Tracks in the outermost zone typically hold 40 percent more
sectors than do tracks in the innermost zone. The drive increases its rotation
speed as the headmoves from the outer to the inner tracks to keep the same rate
of data moving under the head. This method is used in CD-ROM and DVD-ROM
drives. Alternatively, the disk rotation speed can stay constant; in this case, the
density of bits decreases from inner tracks to outer tracks to keep the data rate
constant (and performance relatively the same no matter where data is on the
drive). This method is used in hard disks and is known as constant angular
velocity (CAV).

The number of sectors per track has been increasing as disk technology
improves, and the outer zone of a disk usually has several hundred sectors per
track. Similarly, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.

Note that there are more types of storage devices than are reasonable
to cover in an operating systems text. For example, there are “shingled
magnetic recording” hard drives with higher density but worse perfor-
mance than mainstream HDDs (see http://www.tomsitpro.com/articles/
shingled-magnetic-recoding-smr-101-basics,2-933.html). There are also
combination devices that include NVM and HDD technology, or volume
managers (see Section 11.5) that can knit together NVM and HDD devices into
a storage unit faster than HDD but lower cost than NVM. These devices have
different characteristics from the more common devices, and might need
different caching and scheduling algorithms to maximize performance.

11.2 HDD Scheduling

One of the responsibilities of the operating system is to use the hardware
efficiently. For HDDs,meeting this responsibility entailsminimizing access time
and maximizing data transfer bandwidth.

For HDDs and other mechanical storage devices that use platters, access
time has two major components, as mentioned in Section 11.1. The seek time
is the time for the device arm to move the heads to the cylinder containing the
desired sector, and the rotational latency is the additional time for the platter to
rotate the desired sector to the head. The device bandwidth is the total number
of bytes transferred, divided by the total time between the first request for
service and the completion of the last transfer. We can improve both the access
time and the bandwidth by managing the order in which storage I/O requests
are serviced.

Whenever a process needs I/O to or from the drive, it issues a system call
to the operating system. The request specifies several pieces of information:

• Whether this operation is input or output

• The open file handle indicating the file to operate on

• What the memory address for the transfer is

• The amount of data to transfer

http://www.tomsitpro.com/articles/shingled-magnetic-recoding-smr-101-basics,2-933.html
http://www.tomsitpro.com/articles/shingled-magnetic-recoding-smr-101-basics,2-933.html
http://www.tomsitpro.com/articles/shingled-magnetic-recoding-smr-101-basics,2-933.html

458 Chapter 11 Mass-Storage Structure

If the desired drive and controller are available, the request can be serviced
immediately. If the drive or controller is busy, any new requests for service will
be placed in the queue of pending requests for that drive. For a multiprogram-
ming system with many processes, the device queue may often have several
pending requests.

The existence of a queue of requests to a device that can have its perfor-
mance optimized by avoiding head seeks allows device drivers a chance to
improve performance via queue ordering.

In the past, HDD interfaces required that the host specify which track and
which head to use, and much effort was spent on disk scheduling algorithms.
Drives newer than the turn of the century not only do not expose these controls
to the host, but also map LBA to physical addresses under drive control. The
current goals of disk scheduling include fairness, timeliness, and optimiza-
tions, such as bunching reads or writes that appear in sequence, as drives
perform best with sequential I/O. Therefore some scheduling effort is still
useful. Any one of several disk-scheduling algorithms can be used, and we
discuss them next. Note that absolute knowledge of head location and phys-
ical block/cylinder locations is generally not possible on modern drives. But
as a rough approximation, algorithms can assume that increasing LBAs mean
increasing physical addresses, and LBAs close together equate to physical block
proximity.

11.2.1 FCFS Scheduling

The simplest form of disk scheduling is, of course, the first-come, first-served
(FCFS) algorithm (or FIFO). This algorithm is intrinsically fair, but it generally
does not provide the fastest service. Consider, for example, a disk queue with
requests for I/O to blocks on cylinders

98, 183, 37, 122, 14, 124, 65, 67,

in that order. If the disk head is initially at cylinder 53, it will first move from
53 to 98, then to 183, 37, 122, 14, 124, 65, and finally to 67, for a total head
movement of 640 cylinders. This schedule is diagrammed in Figure 11.6.

The wild swing from 122 to 14 and then back to 124 illustrates the problem
with this schedule. If the requests for cylinders 37 and 14 could be serviced
together, before or after the requests for 122 and 124, the total head movement
could be decreased substantially, and performance could be thereby improved.

11.2.2 SCAN Scheduling

In the SCAN algorithm, the disk arm starts at one end of the disk and moves
toward the other end, servicing requests as it reaches each cylinder, until it gets
to the other end of the disk. At the other end, the direction of head movement
is reversed, and servicing continues. The head continuously scans back and
forth across the disk. The SCAN algorithm is sometimes called the elevator
algorithm, since the disk arm behaves just like an elevator in a building, first
servicing all the requests going up and then reversing to service requests the
other way.

Let’s return to our example to illustrate. Before applying SCAN to schedule
the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know

11.2 HDD Scheduling 459

0 14 37 536567 98 122124 183 199

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

Figure 11.6 FCFS disk scheduling.

the direction of head movement in addition to the head’s current position.
Assuming that the disk arm is moving toward 0 and that the initial head
position is again 53, the head will next service 37 and then 14. At cylinder 0,
the arm will reverse and will move toward the other end of the disk, servicing
the requests at 65, 67, 98, 122, 124, and 183 (Figure 11.7). If a request arrives in
the queue just in front of the head, it will be serviced almost immediately; a
request arriving just behind the head will have to wait until the arm moves to
the end of the disk, reverses direction, and comes back.

Assuming a uniform distribution of requests for cylinders, consider the
density of requests when the head reaches one end and reverses direction. At
this point, relatively few requests are immediately in front of the head, since
these cylinders have recently been serviced. The heaviest density of requests
is at the other end of the disk. These requests have also waited the longest, so
why not go there first? That is the idea of the next algorithm.

0 14 37 536567 98 122124 183199

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

Figure 11.7 SCAN disk scheduling.

460 Chapter 11 Mass-Storage Structure

11.2.3 C-SCAN Scheduling

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide
a more uniformwait time. Like SCAN, C-SCANmoves the head from one end of
the disk to the other, servicing requests along the way. When the head reaches
the other end, however, it immediately returns to the beginning of the disk
without servicing any requests on the return trip.

Let’s return to our example to illustrate. Before applying C-SCAN to sched-
ule the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to
know the direction of head movement in which the requests are scheduled.
Assuming that the requests are scheduled when the disk arm is moving from
0 to 199 and that the initial head position is again 53, the request will be served
as depicted in Figure 11.8. The C-SCAN scheduling algorithm essentially treats
the cylinders as a circular list that wraps around from the final cylinder to the
first one.

11.2.4 Selection of a Disk-Scheduling Algorithm

There are many disk-scheduling algorithms not included in this coverage,
because they are rarely used. But how do operating system designers decide
which to implement, anddeployers chose the best to use? For any particular list
of requests, we can define an optimal order of retrieval, but the computation
needed to find an optimal schedule may not justify the savings over SCAN.
With any scheduling algorithm, however, performance depends heavily on the
number and types of requests. For instance, suppose that the queue usually
has just one outstanding request. Then, all scheduling algorithms behave the
same, because they have only one choice of where to move the disk head: they
all behave like FCFS scheduling.

SCAN and C-SCAN perform better for systems that place a heavy load on the
disk, because they are less likely to cause a starvation problem. There can still
be starvation though, which drove Linux to create the deadline scheduler. This
scheduler maintains separate read and write queues, and gives reads priority
because processes are more likely to block on read than write. The queues are

0 14 37 53 65 67 98 122124 183199

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

Figure 11.8 C-SCAN disk scheduling.

11.3 NVM Scheduling 461

sorted in LBAorder, essentially implementing C-SCAN. All I/O requests are sent
in a batch in this LBA order. Deadline keeps four queues: two read and two
write, one sorted by LBA and the other by FCFS. It checks after each batch to see
if there are requests in the FCFS queues older than a configured age (by default,
500 ms). If so, the LBA queue (read or write) containing that request is selected
for the next batch of I/O.

The deadline I/O scheduler is the default in the Linux RedHat 7 distribu-
tion, but RHEL 7 also includes two others. NOOP is preferred for CPU-bound sys-
tems using fast storage such as NVM devices, and the Completely Fair Queue-
ing scheduler (CFQ) is the default for SATAdrives. CFQ maintains three queues
(with insertion sort to keep them sorted in LBAorder): real time, best effort (the
default), and idle. Each has exclusive priority over the others, in that order,with
starvation possible. It uses historical data, anticipating if a process will likely
issue more I/O requests soon. If it so determines, it idles waiting for the new
I/O, ignoring other queued requests. This is to minimize seek time, assuming
locality of reference of storage I/O requests, per process. Details of these sched-
ulers can be found in https://access.redhat.com/site/documentation/en-US
/Red Hat Enterprise Linux/7/html/Performance Tuning Guide/index.html.

11.3 NVM Scheduling

The disk-scheduling algorithms just discussed apply to mechanical platter-
based storage like HDDs. They focus primarily on minimizing the amount of
disk head movement. NVM devices do not contain moving disk heads and
commonly use a simple FCFS policy. For example, the Linux NOOP scheduler
uses an FCFS policy but modifies it to merge adjacent requests. The observed
behavior of NVM devices indicates that the time required to service reads is
uniform but that, because of the properties of flash memory, write service time
is not uniform. Some SSD schedulers have exploited this property and merge
only adjacent write requests, servicing all read requests in FCFS order.

Aswe have seen, I/O can occur sequentially or randomly. Sequential access
is optimal for mechanical devices like HDD and tape because the data to be
read or written is near the read/write head. Random-access I/O, which is
measured in input/output operations per second (IOPS), causesHDDdisk head
movement. Naturally, random access I/O is much faster on NVM. An HDD can
produce hundreds of IOPS, while an SSD can produce hundreds of thousands
of IOPS.

NVM devices offer much less of an advantage for raw sequential through-
put, where HDD head seeks are minimized and reading and writing of data
to the media are emphasized. In those cases, for reads, performance for the
two types of devices can range from equivalent to an order of magnitude
advantage for NVM devices.Writing to NVM is slower than reading, decreasing
the advantage. Furthermore, while write performance for HDDs is consistent
throughout the life of the device, write performance for NVM devices varies
depending on how full the device is (recall the need for garbage collection and
over-provisioning) and how “worn” it is. An NVM device near its end of life
due to many erase cycles generally has much worse performance than a new
device.

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html

462 Chapter 11 Mass-Storage Structure

One way to improve the lifespan and performance of NVM devices over
time is to have the file system inform the device when files are deleted, so that
the device can erase the blocks those files were stored on. This approach is
discussed further in Section 14.5.6.

Let’s lookmore closely at the impact of garbage collection on performance.
Consider an NVM device under random read and write load. Assume that all
blocks have beenwritten to, but there is free space available. Garbage collection
must occur to reclaim space taken by invalid data. That means that a write
might cause a read of one or more pages, a write of the good data in those
pages to overprovisioning space, an erase of the all-invalid-data block, and the
placement of that block into overprovisioning space. In summary, one write
request eventually causes a page write (the data), one or more page reads
(by garbage collection), and one or more page writes (of good data from the
garbage-collected blocks). The creation of I/O requests not by applications
but by the NVM device doing garbage collection and space management is
called write amplificatio and can greatly impact the write performance of
the device. In the worst case, several extra I/Os are triggered with each write
request.

11.4 Error Detection and Correction

Error detection and correction are fundamental to many areas of computing,
including memory, networking, and storage. Error detection determines if a
problem has occurred — for example a bit in DRAM spontaneously changed
from a 0 to a 1, the contents of a network packet changed during transmission,
or a block of data changed between when it was written and when it was read.
By detecting the issue, the system can halt an operation before the error is
propagated, report the error to the user or administrator, or warn of a device
that might be starting to fail or has already failed.

Memory systems have long detected certain errors by using parity bits. In
this scenario, each byte in a memory system has a parity bit associated with
it that records whether the number of bits in the byte set to 1 is even (parity
= 0) or odd (parity = 1). If one of the bits in the byte is damaged (either a 1
becomes a 0, or a 0 becomes a 1), the parity of the byte changes and thus does
not match the stored parity. Similarly, if the stored parity bit is damaged, it
does not match the computed parity. Thus, all single-bit errors are detected by
the memory system. A double-bit-error might go undetected, however. Note
that parity is easily calculated by performing an XOR (for “eXclusive OR”) of
the bits. Also note that for every byte of memory, we now need an extra bit of
memory to store the parity.

Parity is one form of checksums, which use modular arithmetic to
compute, store, and compare values on fixed-length words. Another
error-detection method, common in networking, is a cyclic redundancy
check (CRCs), which uses a hash function to detect multiple-bit errors (see
http://www.mathpages.com/home/kmath458/kmath458.htm).

An error-correction code (ECC) not only detects the problem, but also
corrects it. The correction is done by using algorithms and extra amounts of
storage. The codes vary based on how much extra storage they need and how
many errors they can correct. For example, disks drives use per-sector ECC and

http://www.mathpages.com/home/kmath458/kmath458.htm
http://www.mathpages.com/home/kmath458/kmath458.htm

11.5 Storage Device Management 463

flash drives per-page ECC. When the controller writes a sector/page of data
during normal I/O, the ECC is writtenwith a value calculated from all the bytes
in the data beingwritten.When the sector/page is read, the ECC is recalculated
and compared with the stored value. If the stored and calculated numbers are
different, this mismatch indicates that the data have become corrupted and
that the storage media may be bad (Section 11.5.3). The ECC is error correcting
because it contains enough information, if only a few bits of data have been
corrupted, to enable the controller to identify which bits have changed and
calculate what their correct values should be. It then reports a recoverable soft
error. If too many changes occur, and the ECC cannot correct the error, a non-
correctable hard error is signaled. The controller automatically does the ECC
processing whenever a sector or page is read or written.

Error detection and correction are frequently differentiators between con-
sumer products and enterprise products. ECC is used in some systems for
DRAM error correction and data path protection, for example.

11.5 Storage Device Management

The operating system is responsible for several other aspects of storage device
management, too. Here, we discuss drive initialization, booting from a drive,
and bad-block recovery.

11.5.1 Drive Formatting, Partitions, and Volumes

Anew storage device is a blank slate: it is just a platter of a magnetic recording
material or a set of uninitialized semiconductor storage cells. Before a storage
device can store data, it must be divided into sectors that the controller can
read andwrite. NVMpagesmust be initialized and the FTL created. This process
is called low-level formatting, or physical formatting. Low-level formatting
fills the device with a special data structure for each storage location. The data
structure for a sector or page typically consists of a header, a data area, and a
trailer. The header and trailer contain information used by the controller, such
as a sector/page number and an error detection or correction code.

Most drives are low-level-formatted at the factory as a part of the manu-
facturing process. This formatting enables the manufacturer to test the device
and to initialize the mapping from logical block numbers to defect-free sectors
or pages on themedia. It is usually possible to choose among a few sector sizes,
such as 512 bytes and 4KB. Formatting a disk with a larger sector size means
that fewer sectors can fit on each track, but it also means that fewer headers
and trailers are written on each track and more space is available for user data.
Some operating systems can handle only one specific sector size.

Before it can use a drive to hold files, the operating system still needs to
record its own data structures on the device. It does so in three steps.

The first step is to partition the device into one or more groups of blocks
or pages. The operating system can treat each partition as though it were a
separate device. For instance, one partition can hold a file system containing a
copy of the operating system’s executable code, another the swap space, and
another a file system containing the user files. Some operating systems and
file systems perform the partitioning automatically when an entire device is to

464 Chapter 11 Mass-Storage Structure

be managed by the file system. The partition information is written in a fixed
format at a fixed location on the storage device. In Linux, the fdisk command
is used to manage partitions on storage devices. The device, when recognized
by the operating system, has its partition information read, and the operating
system then creates device entries for the partitions (in /dev in Linux). From
there, a configuration file, such as /etc/fstab, tells the operating system to
mount each partition containing a file system at a specified location and to use
mount options such as read-only. Mounting a file system is making the file
system available for use by the system and its users.

The second step is volume creation and management. Sometimes, this
step is implicit, as when a file system is placed directly within a partition.
That volume is then ready to be mounted and used. At other times, volume
creation andmanagement is explicit—for examplewhenmultiple partitions or
devices will be used together as a RAID set (see Section 11.8) with one or more
file systems spread across the devices. The Linux volume manager lvm2 can
provide these features, as can commercial third-party tools for Linux and other
operating systems. ZFS provides both volume management and a file system
integrated into one set of commands and features. (Note that “volume” can also
mean any mountable file system, even a file containing a file system such as a
CD image.)

The third step is logical formatting, or creation of a file system. In this
step, the operating system stores the initial file-system data structures onto the
device. These data structuresmay includemaps of free and allocated space and
an initial empty directory.

The partition information also indicates if a partition contains a bootable
file system (containing the operating system). The partition labeled for boot
is used to establish the root of the file system. Once it is mounted, device
links for all other devices and their partitions can be created. Generally, a
computer’s “file system” consists of all mounted volumes. OnWindows, these
are separately named via a letter (C:, D:, E:). On other systems, such as Linux,
at boot time the boot file system is mounted, and other file systems can be
mountedwithin that tree structure (as discussed in Section 13.3). OnWindows,
the file system interfacemakes it clear when a given device is being used, while
in Linux a single file access might traverse many devices before the requested
file in the requested file system (within a volume) is accessed. Figure 11.9
shows the Windows 7 Disk Management tool displaying three volumes (C:,
E:, and F:). Note that E: and F: are each in a partition of the “Disk 1” device
and that there is unallocated space on that device for more partitions (possibly
containing file systems).

To increase efficiency, most file systems group blocks together into larger
chunks, frequently called clusters. Device I/O is done via blocks, but file system
I/O is done via clusters, effectively assuring that I/O hasmore sequential-access
and fewer random-access characteristics. File systems try to group file contents
near its metadata as well, reducing HDD head seeks when operating on a file,
for example.

Some operating systems give special programs the ability to use a partition
as a large sequential array of logical blocks, without any file-system data
structures. This array is sometimes called the raw disk, and I/O to this array is
termed raw I/O. It can be used for swap space (see Section 11.6.2), for example,
and some database systems prefer raw I/O because it enables them to control

11.5 Storage Device Management 465

Figure 11.9 Windows 7 Disk Management tool showing devices, partitions, volumes,
and file systems.

the exact location where each database record is stored. Raw I/O bypasses all
the file-system services, such as the buffer cache, file locking, prefetching, space
allocation, file names, and directories. We can make certain applications more
efficient by allowing them to implement their own special-purpose storage
services on a raw partition, but most applications use a provided file system
rather than managing data themselves. Note that Linux generally does not
support raw I/O but can achieve similar access by using the DIRECT flag to
the open() system call.

11.5.2 Boot Block

For a computer to start running—for instance, when it is powered up or
rebooted—it must have an initial program to run. This initial bootstrap loader
tends to be simple. For most computers, the bootstrap is stored in NVM flash
memory firmware on the system motherboard and mapped to a known mem-
ory location. It can be updated by product manufacturers as needed, but also
can be written to by viruses, infecting the system. It initializes all aspects of
the system, from CPU registers to device controllers and the contents of main
memory.

This tiny bootstrap loader program is also smart enough to bring in a
full bootstrap program from secondary storage. The full bootstrap program
is stored in the “boot blocks” at a fixed location on the device. The default
Linux bootstrap loader is grub2 (https://www.gnu.org/software/grub/manual/
grub.html/). A device that has a boot partition is called a boot disk or system
disk.

The code in the bootstrap NVM instructs the storage controller to read the
boot blocks into memory (no device drivers are loaded at this point) and then
starts executing that code. The full bootstrap program is more sophisticated
than the bootstrap loader: it is able to load the entire operating system from a
non-fixed location on the device and to start the operating system running.

Let’s consider as an example the boot process in Windows. First, note that
Windows allows a drive to be divided into partitions, and one partition—
identified as the boot partition—contains the operating system and device
drivers. The Windows system places its boot code in the first logical block on
the hard disk or first page of the NVM device, which it terms the master boot

https://www.gnu.org/software/grub/manual/grub.html
https://www.gnu.org/software/grub/manual/grub.html/
https://www.gnu.org/software/grub/manual/grub.html/

466 Chapter 11 Mass-Storage Structure

MBR

partition 1

partition 2

partition 3

partition 4

boot
code

partition
table

boot partition

Figure 11.10 Booting from a storage device in Windows.

record, or MBR. Booting begins by running code that is resident in the system’s
firmware. This code directs the system to read the boot code from the MBR,
understanding just enough about the storage controller and storage device to
load a sector from it. In addition to containing boot code, the MBR contains a
table listing the partitions for the drive and a flag indicating which partition
the system is to be booted from, as illustrated in Figure 11.10. Once the system
identifies the boot partition, it reads the first sector/page from that partition
(called the boot sector), which directs it to the kernel. It then continues with the
remainder of the boot process, which includes loading the various subsystems
and system services.

11.5.3 Bad Blocks

Because disks have moving parts and small tolerances (recall that the disk
head flies just above the disk surface), they are prone to failure. Sometimes the
failure is complete; in this case, the disk needs to be replaced and its contents
restored from backup media to the new disk. More frequently, one or more
sectors become defective. Most disks even come from the factory with bad
blocks. Depending on the disk and controller in use, these blocks are handled
in a variety of ways.

On older disks, such as some disks with IDE controllers, bad blocks are
handled manually. One strategy is to scan the disk to find bad blocks while
the disk is being formatted. Any bad blocks that are discovered are flagged as
unusable so that the file system does not allocate them. If blocks go bad during
normal operation, a special program (such as the Linux badblocks command)
must be runmanually to search for the bad blocks and to lock them away. Data
that resided on the bad blocks usually are lost.

More sophisticated disks are smarter about bad-block recovery. The con-
troller maintains a list of bad blocks on the disk. The list is initialized during
the low-level formatting at the factory and is updated over the life of the disk.
Low-level formatting also sets aside spare sectors not visible to the operating
system. The controller can be told to replace each bad sector logically with one
of the spare sectors. This scheme is known as sector sparing or forwarding.

A typical bad-sector transaction might be as follows:

• The operating system tries to read logical block 87.

11.6 Swap-Space Management 467

• The controller calculates the ECC and finds that the sector is bad. It reports
this finding to the operating system as an I/O error.

• The device controller replaces the bad sector with a spare.

• After that, whenever the system requests logical block 87, the request is
translated into the replacement sector’s address by the controller.

Note that such a redirection by the controller could invalidate any opti-
mization by the operating system’s disk-scheduling algorithm! For this reason,
most disks are formatted to provide a few spare sectors in each cylinder and
a spare cylinder as well. When a bad block is remapped, the controller uses a
spare sector from the same cylinder, if possible.

As an alternative to sector sparing, some controllers can be instructed to
replace a bad block by sector slipping. Here is an example: Suppose that logical
block 17 becomes defective and the first available spare follows sector 202.
Sector slipping then remaps all the sectors from 17 to 202, moving them all
down one spot. That is, sector 202 is copied into the spare, then sector 201 into
202, then 200 into 201, and so on, until sector 18 is copied into sector 19. Slipping
the sectors in this way frees up the space of sector 18 so that sector 17 can be
mapped to it.

Recoverable soft errors may trigger a device activity in which a copy of the
block data is made and the block is spared or slipped. An unrecoverable hard
error, however, results in lost data. Whatever file was using that block must
be repaired (for instance, by restoration from a backup tape), and that requires
manual intervention.

NVM devices also have bits, bytes, and even pages that either are nonfunc-
tional at manufacturing time or go bad over time. Management of those faulty
areas is simpler than for HDDs because there is no seek time performance loss
to be avoided. Either multiple pages can be set aside and used as replacement
locations, or space from the over-provisioning area can be used (decreasing
the usable capacity of the over-provisioning area). Either way, the controller
maintains a table of bad pages and never sets those pages as available to write
to, so they are never accessed.

11.6 Swap-Space Management

Swappingwas first presented in Section 9.5, wherewe discussedmoving entire
processes between secondary storage andmainmemory. Swapping in that set-
ting occurs when the amount of physical memory reaches a critically low point
andprocesses aremoved frommemory to swap space to free availablememory.
In practice, very few modern operating systems implement swapping in this
fashion. Rather, systems now combine swapping with virtual memory tech-
niques (Chapter 10) and swap pages, not necessarily entire processes. In fact,
some systems now use the terms “swapping” and “paging” interchangeably,
reflecting the merging of these two concepts.

Swap-space management is another low-level task of the operating sys-
tem. Virtual memory uses secondary storage space as an extension of main
memory. Since drive access is much slower than memory access, using swap

468 Chapter 11 Mass-Storage Structure

space significantly decreases systemperformance. Themain goal for the design
and implementation of swap space is to provide the best throughput for the vir-
tual memory system. In this section, we discuss how swap space is used, where
swap space is located on storage devices, and how swap space is managed.

11.6.1 Swap-Space Use

Swap space is used in various ways by different operating systems, depending
on the memory-management algorithms in use. For instance, systems that
implement swapping may use swap space to hold an entire process image,
including the code and data segments. Paging systemsmay simply store pages
that have been pushed out of mainmemory. The amount of swap space needed
on a system can therefore vary froma fewmegabytes of disk space to gigabytes,
depending on the amount of physical memory, the amount of virtual memory
it is backing, and the way in which the virtual memory is used.

Note that it may be safer to overestimate than to underestimate the amount
of swap space required, because if a system runs out of swap space it may
be forced to abort processes or may crash entirely. Overestimation wastes
secondary storage space that could otherwise be used for files, but it does no
other harm. Some systems recommend the amount to be set aside for swap
space. Solaris, for example, suggests setting swap space equal to the amount
by which virtual memory exceeds pageable physical memory. In the past,
Linux has suggested setting swap space to double the amount of physical
memory. Today, the paging algorithms have changed, andmost Linux systems
use considerably less swap space.

Some operating systems—including Linux—allow the use of multiple
swap spaces, including both files and dedicated swap partitions. These swap
spaces are usually placed on separate storage devices so that the load placed
on the I/O system by paging and swapping can be spread over the system’s
I/O bandwidth.

11.6.2 Swap-Space Location

Aswap space can reside in one of two places: it can be carved out of the normal
file system, or it can be in a separate partition. If the swap space is simply a large
file within the file system, normal file-system routines can be used to create it,
name it, and allocate its space.

Alternatively, swap space can be created in a separate raw partition. No
file system or directory structure is placed in this space. Rather, a separate
swap-space storage manager is used to allocate and deallocate the blocks
from the raw partition. This manager uses algorithms optimized for speed
rather than for storage efficiency, because swap space is accessed much more
frequently than file systems, when it is used (recall that swap space is used for
swapping and paging). Internal fragmentation may increase, but this trade-
off is acceptable because the life of data in the swap space generally is much
shorter than that of files in the file system. Since swap space is reinitialized
at boot time, any fragmentation is short-lived. The raw-partition approach
creates a fixed amount of swap space during disk partitioning. Adding more
swap space requires either repartitioning the device (which involves moving

11.7 Storage Attachment 469

the other file-system partitions or destroying them and restoring them from
backup) or adding another swap space elsewhere.

Some operating systems are flexible and can swap both in raw partitions
and in file-system space. Linux is an example: the policy and implementa-
tion are separate, allowing the machine’s administrator to decide which type
of swapping to use. The trade-off is between the convenience of allocation
and management in the file system and the performance of swapping in raw
partitions.

11.6.3 Swap-Space Management: An Example

We can illustrate how swap space is used by following the evolution of swap-
ping and paging in various UNIX systems. The traditional UNIX kernel started
with an implementation of swapping that copied entire processes between
contiguous disk regions and memory. UNIX later evolved to a combination of
swapping and paging as paging hardware became available.

In Solaris 1 (SunOS), the designers changed standard UNIX methods to
improve efficiency and reflect technological developments. When a process
executes, text-segment pages containing code are brought in from the file
system, accessed in main memory, and thrown away if selected for pageout.
It is more efficient to reread a page from the file system than to write it to
swap space and then reread it from there. Swap space is only used as a backing
store for pages of anonymousmemory (memory not backed by any file), which
includes memory allocated for the stack, heap, and uninitialized data of a
process.

More changes were made in later versions of Solaris. The biggest change
is that Solaris now allocates swap space only when a page is forced out of
physical memory, rather than when the virtual memory page is first created.
This scheme gives better performance onmodern computers, which havemore
physical memory than older systems and tend to page less.

Linux is similar to Solaris in that swap space is now used only for anony-
mous memory. Linux allows one or more swap areas to be established. A swap
area may be in either a swap file on a regular file system or a dedicated swap
partition. Each swap area consists of a series of 4-KB page slots, which are used
to hold swapped pages. Associated with each swap area is a swap map—an
array of integer counters, each corresponding to a page slot in the swap area.
If the value of a counter is 0, the corresponding page slot is available. Values
greater than 0 indicate that the page slot is occupied by a swapped page. The
value of the counter indicates the number of mappings to the swapped page.
For example, a value of 3 indicates that the swapped page is mapped to three
different processes (which can occur if the swapped page is storing a region of
memory shared by three processes). The data structures for swapping on Linux
systems are shown in Figure 11.11.

11.7 Storage Attachment

Computers access secondary storage in three ways: via host-attached storage,
network-attached storage, and cloud storage.

470 Chapter 11 Mass-Storage Structure

swap area
page
slot

swap partition
or swap file

swap map 1 0 3 0 1

Figure 11.11 The data structures for swapping on Linux systems.

11.7.1 Host-Attached Storage

Host-attached storage is storage accessed through local I/O ports. These ports
use several technologies, the most common being SATA, as mentioned earlier.
A typical system has one or a few SATA ports.

To allow a system to gain access to more storage, either an individual
storage device, a device in a chassis, or multiple drives in a chassis can be
connected via USB FireWire or Thunderbolt ports and cables.

High-end workstations and servers generally need more storage or need
to share storage, so use more sophisticated I/O architectures, such as fibr
channel (FC), a high-speed serial architecture that can operate over optical fiber
or over a four-conductor copper cable. Because of the large address space and
the switched nature of the communication, multiple hosts and storage devices
can attach to the fabric, allowing great flexibility in I/O communication.

A wide variety of storage devices are suitable for use as host-attached
storage. Among these are HDDs; NVM devices; CD, DVD, Blu-ray, and tape
drives; and storage-area networks (SANs) (discussed in Section 11.7.4). The
I/O commands that initiate data transfers to a host-attached storage device are
reads andwrites of logical data blocks directed to specifically identified storage
units (such as bus ID or target logical unit).

11.7.2 Network-Attached Storage

Network-attached storage (NAS) (Figure 11.12) provides access to storage
across a network.AnNAS device can be either a special-purpose storage system
or a general computer system that provides its storage to other hosts across
the network. Clients access network-attached storage via a remote-procedure-
call interface such as NFS for UNIX and Linux systems or CIFS for Windows
machines. The remote procedure calls (RPCs) are carried via TCP or UDP over
an IP network—usually the same local-area network (LAN) that carries all data
traffic to the clients. The network-attached storage unit is usually implemented
as a storage array with software that implements the RPC interface.

CIFS and NFS provide various locking features, allowing the sharing of files
betweenhosts accessing aNASwith those protocols. For example, a user logged
in tomultipleNAS clients can access her homedirectory fromall of those clients,
simultaneously.

11.7 Storage Attachment 471

NAS

client

NAS

client

clientLAN/WAN

Figure 11.12 Network-attached storage.

Network-attached storage provides a convenient way for all the computers
on a LAN to share a pool of storage with the same ease of naming and access
enjoyed with local host-attached storage. However, it tends to be less efficient
and have lower performance than some direct-attached storage options.

iSCSI is the latest network-attached storage protocol. In essence, it uses the
IP network protocol to carry the SCSI protocol. Thus, networks—rather than
SCSI cables—can be used as the interconnects between hosts and their storage.
As a result, hosts can treat their storage as if it were directly attached, even if
the storage is distant from the host. Whereas NFS and CIFS present a file system
and send parts of files across the network, iSCSI sends logical blocks across the
network and leaves it to the client to use the blocks directly or create a file
system with them.

11.7.3 Cloud Storage

Section 1.10.5 discussed cloud computing. One offering from cloud providers
is cloud storage. Similar to network-attached storage, cloud storage provides
access to storage across a network. Unlike NAS, the storage is accessed over the
Internet or another WAN to a remote data center that provides storage for a fee
(or even for free).

Another difference between NAS and cloud storage is how the storage is
accessed and presented to users. NAS is accessed as just another file system if
the CIFS orNFS protocols are used, or as a rawblock device if the iSCSI protocol is
used.Most operating systems have these protocols integrated and present NAS
storage in the sameway as other storage. In contrast, cloud storage is API based,
and programs use the APIs to access the storage. Amazon S3 is a leading cloud
storage offering. Dropbox is an example of a company that provides apps to
connect to the cloud storage that it provides. Other examples includeMicrosoft
OneDrive and Apple iCloud.

One reason that APIs are used instead of existing protocols is the latency
and failure scenarios of a WAN. NAS protocols were designed for use in LANs,
which have lower latency thanWANs and aremuch less likely to lose connectiv-
ity between the storage user and the storage device. If a LAN connection fails,
a system using NFS or CIFS might hang until it recovers. With cloud storage,
failures like that are more likely, so an application simply pauses access until
connectivity is restored.

472 Chapter 11 Mass-Storage Structure

LAN/WAN

storage
array

storage
array

data-processing
center

web content
provider

server
client

client

client
server

tape
library

SAN

Figure 11.13 Storage-area network.

11.7.4 Storage-Area Networks and Storage Arrays

One drawback of network-attached storage systems is that the storage I/O
operations consume bandwidth on the data network, thereby increasing the
latency of network communication. This problem can be particularly acute
in large client–server installations—the communication between servers and
clients competes for bandwidth with the communication among servers and
storage devices.

Astorage-area network (SAN) is a private network (using storage protocols
rather than networking protocols) connecting servers and storage units, as
shown in Figure 11.13. The power of a SAN lies in its flexibility. Multiple hosts
and multiple storage arrays can attach to the same SAN, and storage can be
dynamically allocated to hosts. The storage arrays can be RAID protected or
unprotected drives (Just a Bunch of Disks (JBOD)). A SAN switch allows or
prohibits access between the hosts and the storage. As one example, if a host is
running low on disk space, the SAN can be configured to allocate more storage
to that host. SANs make it possible for clusters of servers to share the same
storage and for storage arrays to include multiple direct host connections.
SANs typically have more ports—and cost more—than storage arrays. SAN
connectivity is over short distances and typically has no routing, so a NAS can
have many more connected hosts than a SAN.

A storage array is a purpose-built device (see Figure 11.14) that includes
SANports, networkports, or both. It also contains drives to store data and a con-
troller (or redundant set of controllers) to manage the storage and allow access
to the storage across the networks. The controllers are composed of CPUs,
memory, and software that implement the features of the array, which can
include network protocols, user interfaces, RAID protection, snapshots, repli-
cation, compression, deduplication, and encryption. Some of those functions
are discussed in Chapter 14.

Some storage arrays include SSDs. An array may contain only SSDs, result-
ing in maximum performance but smaller capacity, or may include a mix of
SSDs and HDDs, with the array software (or the administrator) selecting the
best medium for a given use or using the SSDs as a cache and HDDs as bulk
storage.

11.8 RAID Structure 473

Figure 11.14 A storage array.

FC is the most common SAN interconnect, although the simplicity of iSCSI
is increasing its use. Another SAN interconnect is InfiniBan (IB)—a special-
purpose bus architecture that provides hardware and software support for
high-speed interconnection networks for servers and storage units.

11.8 RAID Structure

Storage devices have continued to get smaller and cheaper, so it is now eco-
nomically feasible to attach many drives to a computer system. Having a
large number of drives in a system presents opportunities for improving the
rate at which data can be read or written, if the drives are operated in paral-
lel. Furthermore, this setup offers the potential for improving the reliability
of data storage, because redundant information can be stored on multiple
drives. Thus, failure of one drive does not lead to loss of data. A variety of
disk-organization techniques, collectively called redundant arrays of inde-
pendent disks (RAIDs), are commonly used to address the performance and
reliability issues.

In the past, RAIDs composed of small, cheap disks were viewed as a cost-
effective alternative to large, expensive disks. Today, RAIDs are used for their
higher reliability and higher data-transfer rate rather than for economic rea-
sons. Hence, the I in RAID,which once stood for “inexpensive,” now stands for
“independent.”

11.8.1 Improvement of Reliability via Redundancy

Let’s first consider the reliability of a RAID of HDDs. The chance that some disk
out of a set of N disks will fail is much greater than the chance that a specific
single disk will fail. Suppose that the mean time between failures (MTBF) of
a single disk is 100,000 hours. Then the MTBF of some disk in an array of 100

474 Chapter 11 Mass-Storage Structure

STRUCTURING RAID

RAID storage can be structured in a variety of ways. For example, a system
can have drives directly attached to its buses. In this case, the operating
system or system software can implement RAID functionality. Alternatively,
an intelligent host controller can control multiple attached devices and can
implement RAID on those devices in hardware. Finally, a storage array can
be used. A storage array, as just discussed, is a standalone unit with its own
controller, cache, anddrives. It is attached to the host via one ormore standard
controllers (for example, FC). This common setup allows an operating system
or software without RAID functionality to have RAID-protected storage.

disks will be 100,000/100 = 1,000 hours, or 41.66 days, which is not long at all!
If we store only one copy of the data, then each disk failure will result in loss of
a significant amount of data—and such a high rate of data loss is unacceptable.

The solution to the problem of reliability is to introduce redundancy; we
store extra information that is not normally needed but can be used in the event
of disk failure to rebuild the lost information. Thus, even if a disk fails, data are
not lost. RAID can be applied to NVM devices as well, although NVM devices
have no moving parts and therefore are less likely to fail than HDDs.

The simplest (but most expensive) approach to introducing redundancy is
to duplicate every drive. This technique is called mirroring. With mirroring, a
logical disk consists of two physical drives, and every write is carried out on
both drives. The result is called a mirrored volume. If one of the drives in the
volume fails, the data can be read from the other. Data will be lost only if the
second drive fails before the first failed drive is replaced.

The MTBF of a mirrored volume—where failure is the loss of data—
depends on two factors. One is the MTBF of the individual drives. The other
is the mean time to repair, which is the time it takes (on average) to replace a
failed drive and to restore the data on it. Suppose that the failures of the two
drives are independent; that is, the failure of one is not connected to the failure
of the other. Then, if the MTBF of a single drive is 100,000 hours and the mean
time to repair is 10 hours, themean time to data loss of amirrored drive system
is 100, 0002∕(2 ∗ 10) = 500 ∗ 106 hours, or 57,000 years!

You should be aware that we cannot really assume that drive failures will
be independent. Power failures and natural disasters, such as earthquakes,
fires, and floods, may result in damage to both drives at the same time. Also,
manufacturing defects in a batch of drives can cause correlated failures. As
drives age, the probability of failure grows, increasing the chance that a second
drive will fail while the first is being repaired. In spite of all these considera-
tions, however, mirrored-drive systems offer much higher reliability than do
single-drive systems.

Power failures are a particular source of concern, since they occur far more
frequently than do natural disasters. Even with mirroring of drives, if writes
are in progress to the same block in both drives, and power fails before both
blocks are fully written, the two blocks can be in an inconsistent state. One
solution to this problem is to write one copy first, then the next. Another is to
add a solid-state nonvolatile cache to the RAID array. This write-back cache is

11.8 RAID Structure 475

protected from data loss during power failures, so the write can be considered
complete at that point, assuming the cache has some kind of error protection
and correction, such as ECC or mirroring.

11.8.2 Improvement in Performance via Parallelism

Now let’s consider how parallel access to multiple drives improves perfor-
mance. With mirroring, the rate at which read requests can be handled is
doubled, since read requests can be sent to either drive (as long as both in a
pair are functional, as is almost always the case). The transfer rate of each read
is the same as in a single-drive system, but the number of reads per unit time
has doubled.

With multiple drives, we can improve the transfer rate as well (or instead)
by striping data across the drives. In its simplest form, data striping consists
of splitting the bits of each byte across multiple drives; such striping is called
bit-level striping. For example, if we have an array of eight drives, we write
bit i of each byte to drive i. The array of eight drives can be treated as a single
drive with sectors that are eight times the normal size and, more important,
have eight times the access rate. Every drive participates in every access (read
or write); so the number of accesses that can be processed per second is about
the same as on a single drive, but each access can read eight times asmany data
in the same time as on a single drive.

Bit-level striping can be generalized to include a number of drives that
either is a multiple of 8 or divides 8. For example, if we use an array of four
drives, bits i and 4+ i of each byte go to drive i. Further, striping need not occur
at the bit level. In block-level striping, for instance, blocks of a file are striped
across multiple drives; with n drives, block i of a file goes to drive (imod n)+1.
Other levels of striping, such as bytes of a sector or sectors of a block, also are
possible. Block-level striping is the only commonly available striping.

Parallelism in a storage system, as achieved through striping, has twomain
goals:

1. Increase the throughput of multiple small accesses (that is, page accesses)
by load balancing.

2. Reduce the response time of large accesses.

11.8.3 RAID Levels

Mirroring provides high reliability, but it is expensive. Striping provides high
data-transfer rates, but it does not improve reliability. Numerous schemes
to provide redundancy at lower cost by using disk striping combined with
“parity” bits (which we describe shortly) have been proposed. These schemes
have different cost–performance trade-offs and are classified according to
levels called RAID levels. We describe only the most common levels here;
Figure 11.15 shows them pictorially (in the figure, P indicates error-correcting
bits and C indicates a second copy of the data). In all cases depicted in the
figure, four drives’ worth of data are stored, and the extra drives are used to
store redundant information for failure recovery.

476 Chapter 11 Mass-Storage Structure

Figure 11.15 RAID levels.

• RAID level 0. RAID level 0 refers to drive arrays with striping at the level
of blocks but without any redundancy (such as mirroring or parity bits),
as shown in Figure 11.15(a).

• RAID level 1. RAID level 1 refers to drive mirroring. Figure 11.15(b) shows
a mirrored organization.

• RAID level 4. RAID level 4 is also known as memory-style error-correcting-
code (ECC) organization. ECC is also used in RAID 5 and 6.

The idea of ECC can be used directly in storage arrays via striping of
blocks across drives. For example, the first data block of a sequence of
writes can be stored in drive 1, the second block in drive 2, and so on until
the Nth block is stored in drive N; the error-correction calculation result
of those blocks is stored on drive N + 1. This scheme is shown in Figure
11.15(c), where the drive labeled P stores the error-correction block. If one
of the drives fails, the error-correction code recalculation detects that and

11.8 RAID Structure 477

prevents the data from being passed to the requesting process, throwing
an error.

RAID 4 can actually correct errors, even though there is only one ECC
block. It takes into account the fact that, unlike memory systems, drive
controllers can detect whether a sector has been read correctly, so a single
parity block can be used for error correction and detection. The idea is as
follows: If one of the sectors is damaged, we know exactly which sector it
is.We disregard the data in that sector and use the parity data to recalculate
the bad data. For every bit in the block, we can determine if it is a 1 or a 0
by computing the parity of the corresponding bits from sectors in the other
drives. If the parity of the remaining bits is equal to the stored parity, the
missing bit is 0; otherwise, it is 1.

A block read accesses only one drive, allowing other requests to be
processed by the other drives. The transfer rates for large reads are high,
since all the disks can be read in parallel. Large writes also have high
transfer rates, since the data and parity can be written in parallel.
Small independentwrites cannot be performed in parallel. An operating-

system write of data smaller than a block requires that the block be read,
modified with the new data, and written back. The parity block has to be
updated as well. This is known as the read-modify-write cycle. Thus, a
single write requires four drive accesses: two to read the two old blocks
and two to write the two new blocks.
WAFL (which we cover in Chapter 14) uses RAID level 4 because this RAID

level allows drives to be added to a RAID set seamlessly. If the added drives
are initializedwith blocks containing only zeros, then the parity value does
not change, and the RAID set is still correct.

RAID level 4 has two advantages over level 1 while providing equal
data protection. First, the storage overhead is reduced because only one
parity drive is needed for several regular drives, whereas one mirror drive
is needed for every drive in level 1. Second, since reads and writes of a
series of blocks are spread out over multiple drives with N-way striping
of data, the transfer rate for reading or writing a set of blocks is N times as
fast as with level 1.

A performance problem with RAID 4—and with all parity-based RAID
levels—is the expense of computing and writing the XOR parity. This
overhead can result in slower writes than with non-parity RAID arrays.
Modern general-purpose CPUs are very fast compared with drive I/O,
however, so the performance hit can be minimal. Also, many RAID storage
arrays or host bus-adapters include a hardware controller with dedicated
parity hardware. This controller offloads the parity computation from
the CPU to the array. The array has an NVRAM cache as well, to store
the blocks while the parity is computed and to buffer the writes from
the controller to the drives. Such buffering can avoid most read-modify-
write cycles by gathering data to be written into a full stripe and writing
to all drives in the stripe concurrently. This combination of hardware
acceleration and buffering can make parity RAID almost as fast as non-
parity RAID, frequently outperforming a non-caching non-parity RAID.

• RAID level 5. RAID level 5, or block-interleaved distributed parity, differs
from level 4 in that it spreads data and parity among allN+1 drives, rather

478 Chapter 11 Mass-Storage Structure

than storing data in N drives and parity in one drive. For each set of N
blocks, one of the drives stores the parity and the others store data. For
example, with an array of five drives, the parity for the nth block is stored
in drive (nmod 5) + 1. The nth blocks of the other four drives store actual
data for that block. This setup is shown in Figure 11.15(d), where the Ps
are distributed across all the drives. A parity block cannot store parity for
blocks in the same drive, because a drive failure would result in loss of
data as well as of parity, and hence the loss would not be recoverable. By
spreading the parity across all the drives in the set, RAID 5 avoids potential
overuse of a single parity drive, which can occur with RAID 4. RAID 5 is the
most common parity RAID.

• RAID level 6. RAID level 6, also called the P + Q redundancy scheme, is
much like RAID level 5 but stores extra redundant information to guard
against multiple drive failures. XOR parity cannot be used on both parity
blocks because theywould be identical andwould not providemore recov-
ery information. Instead of parity, error-correcting codes such as Galois
fiel math are used to calculate Q. In the scheme shown in Figure 11.15(e),
2 blocks of redundant data are stored for every 4 blocks of data—com-
paredwith 1 parity block in level 5—and the system can tolerate two drive
failures.

• Multidimensional RAID level 6. Some sophisticated storage arrays
amplify RAID level 6. Consider an array containing hundreds of drives.
Putting those drives in a RAID level 6 stripe would result in many data
drives and only two logical parity drives. Multidimensional RAID level 6
logically arranges drives into rows and columns (two ormore dimensional
arrays) and implements RAID level 6 both horizontally along the rows and
vertically down the columns. The system can recover from any failure
—or, indeed, multiple failures—by using parity blocks in any of these
locations. This RAID level is shown in Figure 11.15(f). For simplicity, the
figure shows the RAID parity on dedicated drives, but in reality the RAID
blocks are scattered throughout the rows and columns.

• RAID levels 0 + 1 and 1 + 0. RAID level 0 + 1 refers to a combination of RAID
levels 0 and 1. RAID 0 provides the performance, while RAID 1 provides
the reliability. Generally, this level provides better performance than RAID
5. It is common in environments where both performance and reliability
are important. Unfortunately, like RAID 1, it doubles the number of drives
needed for storage, so it is also relatively expensive. In RAID 0 + 1, a set of
drives are striped, and then the stripe is mirrored to another, equivalent
stripe.

Another RAID variation is RAID level 1 + 0, in which drives are mirrored
in pairs and then the resulting mirrored pairs are striped. This scheme has
some theoretical advantages over RAID 0 + 1. For example, if a single drive
fails in RAID 0 + 1, an entire stripe is inaccessible, leaving only the other
stripe. With a failure in RAID 1 + 0, a single drive is unavailable, but the
drive that mirrors it is still available, as are all the rest of the drives (Figure
11.16).

11.8 RAID Structure 479

x

x

mirror

a) RAID 0 1 1 with a single disk failure.

stripe

stripe

mirror

b) RAID 1 1 0 with a single disk failure.

stripe
mirror mirror mirror

Figure 11.16 RAID 0 + 1 and 1 + 0 with a single disk failure.

Numerous variations have been proposed to the basic RAID schemes described
here. As a result, some confusion may exist about the exact definitions of the
different RAID levels.

The implementation of RAID is another area of variation. Consider the
following layers at which RAID can be implemented.

• Volume-management software can implement RAIDwithin the kernel or at
the system software layer. In this case, the storage hardware can provide
minimal features and still be part of a full RAID solution.

• RAID can be implemented in the host bus-adapter (HBA) hardware. Only
the drives directly connected to the HBA can be part of a given RAID set.
This solution is low in cost but not very flexible.

• RAID can be implemented in the hardware of the storage array. The storage
array can create RAID sets of various levels and can even slice these sets
into smaller volumes, which are then presented to the operating system.
The operating system need only implement the file system on each of the
volumes. Arrays can have multiple connections available or can be part of
a SAN, allowing multiple hosts to take advantage of the array’s features.

• RAID can be implemented in the SAN interconnect layer by drive virtualiza-
tion devices. In this case, a device sits between the hosts and the storage. It

480 Chapter 11 Mass-Storage Structure

accepts commands from the servers and manages access to the storage.
It could provide mirroring, for example, by writing each block to two
separate storage devices.

Other features, such as snapshots and replication, can be implemented at
each of these levels as well. A snapshot is a view of the file system before the
last update took place. (Snapshots are coveredmore fully inChapter 14.)Repli-
cation involves the automatic duplication of writes between separate sites for
redundancy and disaster recovery. Replication can be synchronous or asyn-
chronous. In synchronous replication, each block must be written locally and
remotely before the write is considered complete, whereas in asynchronous
replication, the writes are grouped together and written periodically. Asyn-
chronous replication can result in data loss if the primary site fails, but it is
faster and has no distance limitations. Increasingly, replication is also used
within a data center or even within a host. As an alternative to RAID protec-
tion, replication protects against data loss and also increases read performance
(by allowing reads from each of the replica copies). It does of course use more
storage than most types of RAID.

The implementation of these features differs depending on the layer at
which RAID is implemented. For example, if RAID is implemented in software,
then each host may need to carry out and manage its own replication. If
replication is implemented in the storage array or in the SAN interconnect,
however, then whatever the host operating system or its features, the host’s
data can be replicated.

One other aspect of most RAID implementations is a hot spare drive or
drives. A hot spare is not used for data but is configured to be used as a
replacement in case of drive failure. For instance, a hot spare can be used to
rebuild a mirrored pair should one of the drives in the pair fail. In this way, the
RAID level can be reestablished automatically, without waiting for the failed
drive to be replaced. Allocating more than one hot spare allows more than one
failure to be repaired without human intervention.

11.8.4 Selecting a RAID Level

Given the many choices they have, how do system designers choose a RAID
level? One consideration is rebuild performance. If a drive fails, the time
needed to rebuild its data can be significant. This may be an important factor
if a continuous supply of data is required, as it is in high-performance or
interactive database systems. Furthermore, rebuild performance influences the
mean time between failures.

Rebuild performance varies with the RAID level used. Rebuilding is easiest
for RAID level 1, since data can be copied from another drive. For the other
levels, we need to access all the other drives in the array to rebuild data in a
failed drive. Rebuild times can be hours for RAID level 5 rebuilds of large drive
sets.

RAID level 0 is used in high-performance applications where data loss is
not critical. For example, in scientific computing where a data set is loaded
and explored, RAID level 0 works well because any drive failures would just
require a repair and reloading of the data from its source. RAID level 1 is
popular for applications that require high reliability with fast recovery. RAID

11.8 RAID Structure 481

THE InServ STORAGE ARRAY

Innovation, in an effort to provide better, faster, and less expensive solutions,
frequently blurs the lines that separated previous technologies. Consider the
InServ storage array from HP 3Par. Unlike most other storage arrays, InServ
does not require that a set of drives be configured at a specific RAID level.
Rather, each drive is broken into 256-MB “chunklets.” RAID is then applied at
the chunklet level. Adrive can thus participate in multiple and various RAID
levels as its chunklets are used for multiple volumes.

InServ also provides snapshots similar to those created by the WAFL file
system. The format of InServ snapshots can be read–write as well as read-
only, allowing multiple hosts to mount copies of a given file system without
needing their own copies of the entire file system. Any changes a host makes
in its own copy are copy-on-write and so are not reflected in the other copies.

A further innovation is utility storage. Some file systems do not expand
or shrink. On these systems, the original size is the only size, and any change
requires copying data. An administrator can configure InServ to provide a
host with a large amount of logical storage that initially occupies only a
small amount of physical storage. As the host starts using the storage, unused
drives are allocated to the host, up to the original logical level. The host thus
can believe that it has a large fixed storage space, create its file systems there,
and so on. Drives can be added to or removed from the file system by InServ
without the file system’s noticing the change. This feature can reduce the
number of drives needed by hosts, or at least delay the purchase of drives
until they are really needed.

0 + 1 and 1 + 0 are used where both performance and reliability are important
—for example, for small databases. Due to RAID 1’s high space overhead,
RAID 5 is often preferred for storing moderate volumes of data. RAID 6 and
multidimensional RAID 6 are themost common formats in storage arrays. They
offer good performance and protection without large space overhead.

RAID system designers and administrators of storage have to make several
other decisions as well. For example, how many drives should be in a given
RAID set? Howmany bits should be protected by each parity bit? If more drives
are in an array, data-transfer rates are higher, but the system is more expensive.
If more bits are protected by a parity bit, the space overhead due to parity bits
is lower, but the chance that a second drive will fail before the first failed drive
is repaired is greater, and that will result in data loss.

11.8.5 Extensions

The concepts of RAID have been generalized to other storage devices, including
arrays of tapes, and even to the broadcast of data over wireless systems. When
applied to arrays of tapes, RAID structures are able to recover data even if one
of the tapes in an array is damaged.When applied to broadcast of data, a block
of data is split into short units and is broadcast along with a parity unit. If one
of the units is not received for any reason, it can be reconstructed from the other

482 Chapter 11 Mass-Storage Structure

units. Commonly, tape-drive robots containing multiple tape drives will stripe
data across all the drives to increase throughput and decrease backup time.

11.8.6 Problems with RAID

Unfortunately, RAID does not always assure that data are available for the
operating system and its users. Apointer to a file could be wrong, for example,
or pointers within the file structure could be wrong. Incomplete writes (called
“torn writes”), if not properly recovered, could result in corrupt data. Some
other process could accidentally write over a file system’s structures, too. RAID
protects against physical media errors, but not other hardware and software
errors. A failure of the hardware RAID controller, or a bug in the software RAID
code, could result in total data loss. As large as is the landscape of software
and hardware bugs, that is how numerous are the potential perils for data on
a system.

The Solaris ZFS file system takes an innovative approach to solving these
problems through the use of checksums. ZFS maintains internal checksums
of all blocks, including data and metadata. These checksums are not kept
with the block that is being checksummed. Rather, they are stored with the
pointer to that block. (See Figure 11.17.) Consider an inode—a data structure
for storing file system metadata—with pointers to its data. Within the inode
is the checksum of each block of data. If there is a problem with the data,
the checksum will be incorrect, and the file system will know about it. If the
data are mirrored, and there is a block with a correct checksum and one with
an incorrect checksum, ZFS will automatically update the bad block with the
good one. Similarly, the directory entry that points to the inode has a check-
sum for the inode. Any problem in the inode is detected when the directory
is accessed. This checksumming takes places throughout all ZFS structures,
providing a much higher level of consistency, error detection, and error cor-

metadata block 1

address 1

checksum MB2 checksum

address 2

metadata block 2

address

checksum D1 checksum D2

data 1 data 2

address

Figure 11.17 ZFS checksums all metadata and data.

11.8 RAID Structure 483

rection than is found in RAID drive sets or standard file systems. The extra
overhead that is created by the checksum calculation and extra block read-
modify-write cycles is not noticeable because the overall performance of ZFS is
very fast. (A similar checksum feature is found in the Linux BTRFS file system.
See https://btrfs.wiki.kernel.org/index.php/Btrfs design.)

Another issue with most RAID implementations is lack of flexibility. Con-
sider a storage array with twenty drives divided into four sets of five drives.
Each set of five drives is a RAID level 5 set. As a result, there are four separate
volumes, each holding a file system. But what if one file system is too large
to fit on a five-drive RAID level 5 set? And what if another file system needs
very little space? If such factors are known ahead of time, then the drives and
volumes can be properly allocated. Very frequently, however, drive use and
requirements change over time.

Even if the storage array allowed the entire set of twenty drives to be
created as one large RAID set, other issues could arise. Several volumes of
various sizes could be built on the set. But some volume managers do not
allow us to change a volume’s size. In that case, wewould be left with the same
issue described above—mismatched file-system sizes. Some volumemanagers
allow size changes, but some file systems do not allow for file-system growth
or shrinkage. The volumes could change sizes, but the file systemswould need
to be recreated to take advantage of those changes.

ZFS combines file-system management and volume management into a
unit providing greater functionality than the traditional separation of those
functions allows. Drives, or partitions of drives, are gathered together via RAID
sets into pools of storage. A pool can hold one or more ZFS file systems. The
entire pool’s free space is available to all file systems within that pool. ZFS uses
the memory model of malloc() and free() to allocate and release storage
for each file system as blocks are used and freed within the file system. As
a result, there are no artificial limits on storage use and no need to relocate
file systems between volumes or resize volumes. ZFS provides quotas to limit
the size of a file system and reservations to assure that a file system can grow
by a specified amount, but those variables can be changed by the file-system
owner at any time. Other systems like Linux have volumemanagers that allow
the logical joining of multiple disks to create larger-than-disk volumes to hold
large file systems. Figure 11.18(a) depicts traditional volumes and file systems,
and Figure 11.18(b) shows the ZFS model.

11.8.7 Object Storage

General-purpose computers typically use file systems to store content for users.
Another approach to data storage is to start with a storage pool and place
objects in that pool. This approach differs from file systems in that there is
no way to navigate the pool and find those objects. Thus, rather than being
user-oriented, object storage is computer-oriented, designed to be used by
programs. A typical sequence is:

1. Create an object within the storage pool, and receive an object ID.

2. Access the object when needed via the object ID.

3. Delete the object via the object ID.

https://btrfs.wiki.kernel.org/index.php/Btrfs_design

484 Chapter 11 Mass-Storage Structure

FS

volume

ZFS ZFS

storage pool

ZFS

volume volume

FS FS

(a) Traditional volumes and file systems.

(b) ZFS and pooled storage.

Figure 11.18 Traditional volumes and file systems compared with the ZFS model.

Object storage management software, such as the Hadoop fil system
(HDFS) and Ceph, determines where to store the objects and manages object
protection. Typically, this occurs on commodity hardware rather than RAID
arrays. For example, HDFS can store N copies of an object on N different com-
puters. This approach can be lower in cost than storage arrays and can provide
fast access to that object (at least on thoseN systems). All systems in a Hadoop
cluster can access the object, but only systems that have a copy have fast access
via the copy. Computations on the data occur on those systems, with results
sent across the network, for example, only to the systems requesting them.
Other systems neednetwork connectivity to read andwrite to the object. There-
fore, object storage is usually used for bulk storage, not high-speed random
access. Object storage has the advantage of horizontal scalability. That is,
whereas a storage array has a fixed maximum capacity, to add capacity to an
object store, we simply add more computers with internal disks or attached
external disks and add them to the pool. Object storage pools can be petabytes
in size.

Another key feature of object storage is that each object is self-describing,
including description of its contents. In fact, object storage is also known as
content-addressable storage, because objects can be retrieved based on their
contents. There is no set format for the contents, so what the system stores is
unstructured data.

While object storage is not common on general-purpose computers, huge
amounts of data are stored in object stores, including Google’s Internet search
contents, Dropbox contents, Spotify’s songs, and Facebook photos. Cloud com-
puting (such as Amazon AWS) generally uses object stores (in Amazon S3) to
hold file systems as well as data objects for customer applications running on
cloud computers.

Practice Exercises 485

For the history of object stores see http://www.theregister.co.uk/2016/07/15
/the history boys cas and object storage map.

11.9 Summary

• Hard disk drives and nonvolatilememory devices are themajor secondary
storage I/O units on most computers. Modern secondary storage is struc-
tured as large one-dimensional arrays of logical blocks.

• Drives of either type may be attached to a computer system in one of three
ways: (1) through the local I/O ports on the host computer, (2) directly
connected to motherboards, or (3) through a communications network or
storage network connection.

• Requests for secondary storage I/O are generated by the file system and
by the virtual memory system. Each request specifies the address on the
device to be referenced in the form of a logical block number.

• Disk-scheduling algorithms can improve the effective bandwidth of HDDs,
the average response time, and the variance in response time. Algo-
rithms such as SCAN and C-SCAN are designed to make such improve-
ments through strategies for disk-queue ordering. Performance of disk-
scheduling algorithms can vary greatly on hard disks. In contrast, because
solid-state disks have no moving parts, performance varies little among
scheduling algorithms, and quite often a simple FCFS strategy is used.

• Data storage and transmission are complex and frequently result in errors.
Error detection attempts to spot such problems to alert the system for
corrective action and to avoid error propagation. Error correction can
detect and repair problems, depending on the amount of correction data
available and the amount of data that was corrupted.

• Storage devices are partitioned into one or more chunks of space. Each
partition can hold a volume or be part of a multidevice volume. File
systems are created in volumes.

• The operating system manages the storage device’s blocks. New devices
typically come pre-formatted. The device is partitioned, file systems are
created, and boot blocks are allocated to store the system’s bootstrap pro-
gram if the device will contain an operating system. Finally, when a block
or page is corrupted, the systemmust have a way to lock out that block or
to replace it logically with a spare.

• An efficient swap space is a key to good performance in some systems.
Some systems dedicate a raw partition to swap space, and others use a file
within the file system instead. Still other systems allow the user or system
administrator to make the decision by providing both options.

• Because of the amount of storage required on large systems, and because
storage devices fail in various ways, secondary storage devices are fre-
quently made redundant via RAID algorithms. These algorithms allow
more than one drive to be used for a given operation and allow continued

http://www.theregister.co.uk/2016/07/15/the_history_boys_cas_and_object_storage_map
http://www.theregister.co.uk/2016/07/15/the_history_boys_cas_and_object_storage_map

486 Chapter 11 Mass-Storage Structure

operation and even automatic recovery in the face of a drive failure. RAID
algorithms are organized into different levels; each level provides some
combination of reliability and high transfer rates.

• Object storage is used for big data problems such as indexing the Inter-
net and cloud photo storage. Objects are self-defining collections of data,
addressed by object ID rather than file name. Typically it uses replication
for data protection, computes based on the data on systems where a copy
of the data exists, and is horizontally scalable for vast capacity and easy
expansion.

Practice Exercises

11.1 Is disk scheduling, other than FCFS scheduling, useful in a single-user
environment? Explain your answer.

11.2 Explain why SSTF scheduling tends to favor middle cylinders over the
innermost and outermost cylinders.

11.3 Why is rotational latency usually not considered in disk scheduling?
How would you modify SSTF, SCAN, and C-SCAN to include latency
optimization?

11.4 Why is it important to balance file-system I/O among the disks and
controllers on a system in a multitasking environment?

11.5 What are the tradeoffs involved in rereading code pages from the file
system versus using swap space to store them?

11.6 Is there any way to implement truly stable storage? Explain your
answer.

11.7 It is sometimes said that tape is a sequential-access medium, whereas
a hard disk is a random-access medium. In fact, the suitability of a
storage device for random access depends on the transfer size. The
term streaming transfer rate denotes the rate for a data transfer that is
underway, excluding the effect of access latency. In contrast, the effec-
tive transfer rate is the ratio of total bytes to total seconds, including
overhead time such as access latency.

Suppose we have a computer with the following characteristics: the
level-2 cache has an access latency of 8 nanoseconds and a streaming
transfer rate of 800 megabytes per second, the main memory has an
access latency of 60 nanoseconds and a streaming transfer rate of 80
megabytes per second, the hard disk has an access latency of 15 mil-
liseconds and a streaming transfer rate of 5 megabytes per second, and
a tape drive has an access latency of 60 seconds and a streaming transfer
rate of 2 megabytes per second.

a. Random access causes the effective transfer rate of a device to
decrease, because no data are transferred during the access time.
For the disk described, what is the effective transfer rate if an

Further Reading 487

average access is followed by a streaming transfer of (1) 512 bytes,
(2) 8 kilobytes, (3) 1 megabyte, and (4) 16 megabytes?

b. The utilization of a device is the ratio of effective transfer rate to
streaming transfer rate. Calculate the utilization of the disk drive
for each of the four transfer sizes given in part a.

c. Suppose that a utilization of 25 percent (or higher) is considered
acceptable. Using the performance figures given, compute the
smallest transfer size for a disk that gives acceptable utilization.

d. Complete the following sentence: A disk is a random-
access device for transfers larger than bytes and is a
sequential-access device for smaller transfers.

e. Compute the minimum transfer sizes that give acceptable utiliza-
tion for cache, memory, and tape.

f. When is a tape a random-access device, and when is it a
sequential-access device?

11.8 Could a RAID level 1 organization achieve better performance for read
requests than a RAID level 0 organization (with nonredundant striping
of data)? If so, how?

11.9 Give three reasons to use HDDs as secondary storage.

11.10 Give three reasons to use NVM devices as secondary storage.

Further Reading

[Services (2012)] provides an overview of data storage in a variety of modern
computing environments. Discussions of redundant arrays of independent
disks (RAIDs) are presented by [Patterson et al. (1988)]. [Kim et al. (2009)]
discuss disk-scheduling algorithms for SSDs. Object-based storage is described
by [Mesnier et al. (2003)].

[Russinovich et al. (2017)], [McDougall and Mauro (2007)], and [Love
(2010)] discuss file-systemdetails inWindows, Solaris, and Linux, respectively.

Storage devices are continuously evolving, with goals of increasing perfor-
mance, increasing capacity, or both. For one direction in capacity improvement
seehttp://www.tomsitpro.com/articles/shingled-magnetic-recoding-smr-101-
basics,2-933.html).

RedHat (and other) Linux distributions have multiple, selectable disk
scheduling algorithms. For details seehttps://access.redhat.com/site/docume
ntation/en-US/Red Hat Enterprise Linux/7/html/Performance Tuning Guide/in
dex.html.

Learn more about the default Linux bootstrap loader at
https://www.gnu.org/software/grub/manual/grub.html/.

Arelatively newfile system, BTRFS, is detailed in https://btrfs.wiki.kernel.or
g/index.php/Btrfs design.

For the history of object stores see http://www.theregister.co.uk/2016/07/15
/the history boys cas and object storage map.

http://scholar.google.com/scholar?hl/en&q=EMC Education Services Information Storage and Management Storing Managing and Protecting Digital Information in Classic Virtualized and Cloud Environments
http://doi.acm.org/10.1145/50202.50214
http://doi.acm.org/10.1145/1629335.1629375
https://www.researchgate.net/publication/3199003_Object-based_storage
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://www.tomsitpro.com/articles/shingled-magnetic-recoding-smr-101-basics,2-933.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://www.gnu.org/software/grub/manual/grub.html
https://btrfs.wiki.kernel.org/index.php/Btrfs_design
http://www.theregister.co.uk/2016/07/15/the_history_boys_cas_and_object_storage_map
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://btrfs.wiki.kernel.org/index.php/Btrfs_design
http://www.theregister.co.uk/2016/07/15/the_history_boys_cas_and_object_storage_map

488 Chapter 11 Mass-Storage Structure

Bibliography

[Kim et al. (2009)] J. Kim, Y. Oh, E. Kim, J. C. D. Lee, and S. Noh, “Disk Sched-
ulers for Solid State Drivers”, Proceedings of the seventh ACM international confer-
ence on Embedded software (2009), pages 295–304.

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[McDougall and Mauro (2007)] R. McDougall and J. Mauro, Solaris Internals,
Second Edition, Prentice Hall (2007).

[Mesnier et al. (2003)] M. Mesnier, G. Ganger, and E. Ridel, “Object-based stor-
age”, IEEE Communications Magazine, Volume 41, Number 8 (2003), pages 84–99.

[Patterson et al. (1988)] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case
for Redundant Arrays of Inexpensive Disks (RAID)”, Proceedings of the ACM
SIGMOD International Conference on the Management of Data (1988), pages 109–
116.

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

[Services (2012)] E. E. Services, Information Storage and Management: Storing,
Managing, and Protecting Digital Information in Classic, Virtualized, and Cloud Envi-
ronments, Wiley (2012).

http://doi.acm.org/10.1145/1629335.1629375
http://doi.acm.org/10.1145/1629335.1629375
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
https://www.researchgate.net/publication/3199003_Object-based_storage
https://www.researchgate.net/publication/3199003_Object-based_storage
http://doi.acm.org/10.1145/50202.50214
http://doi.acm.org/10.1145/50202.50214
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=EMC Education Services Information Storage and Management Storing Managing and Protecting Digital Information in Classic Virtualized and Cloud Environments
http://scholar.google.com/scholar?hl/en&q=EMC Education Services Information Storage and Management Storing Managing and Protecting Digital Information in Classic Virtualized and Cloud Environments

Chapter 11 Exercises

11.11 None of the disk-scheduling disciplines, except FCFS, is truly fair (star-
vation may occur).

a. Explain why this assertion is true.

b. Describe a way to modify algorithms such as SCAN to ensure
fairness.

c. Explainwhy fairness is an important goal in amulti-user systems.

d. Give three or more examples of circumstances in which it is
important that the operating system be unfair in serving I/O
requests.

11.12 ExplainwhyNVMdevices often use an FCFS disk-scheduling algorithm.

11.13 Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4,999. The
drive is currently serving a request at cylinder 2,150, and the previous
request was at cylinder 1,805. The queue of pending requests, in FIFO
order, is:

2,069; 1,212; 2,296; 2,800; 544; 1,618; 356; 1,523; 4,965; 3,681

Starting from the current head position, what is the total distance (in
cylinders) that the disk arm moves to satisfy all the pending requests
for each of the following disk-scheduling algorithms?

a. FCFS

b. SCAN

c. C-SCAN

11.14 Elementary physics states that when an object is subjected to a constant
acceleration a, the relationship between distance d and time t is given
by d = 1

2
at2. Suppose that, during a seek, the disk in Exercise 11.14

accelerates the disk arm at a constant rate for the first half of the seek,
then decelerates the disk arm at the same rate for the second half of the
seek. Assume that the disk can perform a seek to an adjacent cylinder
in 1 millisecond and a full-stroke seek over all 5,000 cylinders in 18
milliseconds.

a. The distance of a seek is the number of cylinders over which the
head moves. Explain why the seek time is proportional to the
square root of the seek distance.

b. Write an equation for the seek time as a function of the seek
distance. This equation should be of the form t = x+y

√
L, where t

is the time in milliseconds and L is the seek distance in cylinders.

c. Calculate the total seek time for each of the schedules in Exercise
11.14. Determine which schedule is the fastest (has the smallest
total seek time).

EX-43

Exercises

d. The percentage speedup is the time saved divided by the original
time. What is the percentage speedup of the fastest schedule over
FCFS?

11.15 Suppose that the disk in Exercise 11.15 rotates at 7,200 RPM.

a. What is the average rotational latency of this disk drive?

b. What seek distance can be covered in the time that you found for
part a?

11.16 Compare and contrast HDDs and NVM devices.What are the best appli-
cations for each type?

11.17 Describe some advantages and disadvantages of using NVM devices as
a caching tier and as a disk-drive replacement compared with using
only HDDs.

11.18 Compare the performance of C-SCAN and SCAN scheduling, assum-
ing a uniform distribution of requests. Consider the average response
time (the time between the arrival of a request and the completion of
that request’s service), the variation in response time, and the effective
bandwidth. Howdoes performance depend on the relative sizes of seek
time and rotational latency?

11.19 Requests are not usually uniformly distributed. For example, we can
expect a cylinder containing the file-system metadata to be accessed
more frequently than a cylinder containing only files. Suppose you
know that 50 percent of the requests are for a small, fixed number of
cylinders.

a. Would any of the scheduling algorithms discussed in this chapter
be particularly good for this case? Explain your answer.

b. Propose a disk-scheduling algorithm that gives even better per-
formance by taking advantage of this “hot spot” on the disk.

11.20 Consider a RAID level 5 organization comprising five disks, with the
parity for sets of four blocks on four disks stored on the fifth disk. How
many blocks are accessed in order to perform the following?

a. Awrite of one block of data

b. Awrite of seven continuous blocks of data

11.21 Compare the throughput achieved by a RAID level 5 organization with
that achieved by a RAID level 1 organization for the following:

a. Read operations on single blocks

b. Read operations on multiple contiguous blocks

11.22 Compare the performance of write operations achieved by a RAID level
5 organization with that achieved by a RAID level 1 organization.

11.23 Assume that you have a mixed configuration comprising disks orga-
nized as RAID level 1 and RAID level 5 disks. Assume that the system
has flexibility in deciding which disk organization to use for storing a

EX-44

particular file. Which files should be stored in the RAID level 1 disks
and which in the RAID level 5 disks in order to optimize performance?

11.24 The reliability of a storage device is typically described in terms ofmean
time between failures (MTBF). Although this quantity is called a “time,”
the MTBF actually is measured in drive-hours per failure.

a. If a system contains 1,000 disk drives, each ofwhich has a 750,000-
hour MTBF, which of the following best describes how often a
drive failurewill occur in that disk farm: once per thousand years,
once per century, once per decade, once per year, once per month,
once per week, once per day, once per hour, once per minute, or
once per second?

b. Mortality statistics indicate that, on the average, a U.S. resident
has about 1 chance in 1,000 of dying between the ages of 20 and 21.
Deduce the MTBF hours for 20-year-olds. Convert this figure from
hours to years. What does this MTBF tell you about the expected
lifetime of a 20-year-old?

c. The manufacturer guarantees a 1-million-hour MTBF for a certain
model of disk drive. What can you conclude about the number of
years for which one of these drives is under warranty?

11.25 Discuss the relative advantages and disadvantages of sector sparing
and sector slipping.

11.26 Discuss the reasons why the operating system might require accurate
information on how blocks are stored on a disk. How could the operat-
ing system improve file-system performance with this knowledge?

EX-45

Chapter 11 Mass-Storage Structure

Programming Problems

11.27 Write a program that implements the following disk-scheduling algo-
rithms:

a. FCFS

b. SCAN

c. C-SCAN

Your program will service a disk with 5,000 cylinders numbered 0 to
4,999. The program will generate a random series of 1,000 cylinder
requests and service them according to each of the algorithms listed
above. The program will be passed the initial position of the disk head
(as a parameter on the command line) and report the total amount of
head movement required by each algorithm.

P-55

http://scholar.google.com/scholar?hl/en&q=EMC Education Services Information Storage and Management Storing Managing and Protecting Digital Information in Classic Virtualized and Cloud Environments
http://doi.acm.org/10.1145/50202.50214
http://doi.acm.org/10.1145/1629335.1629375
https://www.researchgate.net/publication/3199003_Object-based_storage
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://www.tomsitpro.com/articles/shingled-magnetic-recoding-smr-101-basics,2-933.html
https://access.redhat.com/site/ documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://www.gnu.org/software/grub/manual/grub.html
https://btrfs.wiki.kernel.org/index.php/Btrfs_design
http://www.theregister.co.uk/2016/07/15/the_history_boys_cas_and_object_storage_map

12CHAPTER

I/O Systems

The two main jobs of a computer are I/O and computing. In many cases, the
main job is I/O, and the computing or processing is merely incidental. For
instance, when we browse a web page or edit a file, our immediate interest
is to read or enter some information, not to compute an answer.

The role of the operating system in computer I/O is to manage and con-
trol I/O operations and I/O devices. Although related topics appear in other
chapters, here we bring together the pieces to paint a complete picture of
I/O. First, we describe the basics of I/O hardware, because the nature of the
hardware interface places constraints on the internal facilities of the operating
system. Next, we discuss the I/O services provided by the operating system
and the embodiment of these services in the application I/O interface. Then,
we explain how the operating system bridges the gap between the hardware
interface and the application interface. We also discuss the UNIX System V
STREAMS mechanism, which enables an application to assemble pipelines of
driver code dynamically. Finally, we discuss the performance aspects of I/O
and the principles of operating-system design that improve I/O performance.

CHAPTER OBJECTIVES

• Explore the structure of an operating system’s I/O subsystem.

• Discuss the principles and complexities of I/O hardware.

• Explain the performance aspects of I/O hardware and software.

12.1 Overview

The control of devices connected to the computer is a major concern of
operating-system designers. Because I/O devices vary so widely in their func-
tion and speed (consider a mouse, a hard disk, a flash drive, and a tape
robot), varied methods are needed to control them. These methods form the
I/O subsystem of the kernel, which separates the rest of the kernel from the
complexities of managing I/O devices.

489

490 Chapter 12 I/O Systems

I/O-device technology exhibits two conflicting trends. On the one hand, we
see increasing standardization of software and hardware interfaces. This trend
helps us to incorporate improved device generations into existing computers
and operating systems.On the other hand,we see an increasingly broad variety
of I/O devices. Some new devices are so unlike previous devices that it is
a challenge to incorporate them into our computers and operating systems.
This challenge is met by a combination of hardware and software techniques.
The basic I/O hardware elements, such as ports, buses, and device controllers,
accommodate a wide variety of I/O devices. To encapsulate the details and
oddities of different devices, the kernel of an operating system is structured
to use device-driver modules. The device drivers present a uniform device-
access interface to the I/O subsystem, much as system calls provide a standard
interface between the application and the operating system.

12.2 I/O Hardware

Computers operate a great many kinds of devices. Most fit into the general
categories of storage devices (disks, tapes), transmission devices (network con-
nections, Bluetooth), and human-interface devices (screen, keyboard, mouse,
audio in and out). Other devices are more specialized, such as those involved
in the steering of a jet. In these aircraft, a human gives input to the flight com-
puter via a joystick and foot pedals, and the computer sends output commands
that cause motors to move rudders and flaps and fuels to the engines. Despite
the incredible variety of I/O devices, though, we need only a few concepts to
understand how the devices are attached and how the software can control the
hardware.

A device communicates with a computer system by sending signals over
a cable or even through the air. The device communicates with the machine
via a connection point, or port—for example, a serial port. (The term PHY,
shorthand for the OSI model physical layer, is also used in reference to ports
but is more common in data-center nomenclature.) If devices share a common
set of wires, the connection is called a bus. Abus, like the PCI bus used in most
computers today, is a set of wires and a rigidly defined protocol that specifies
a set of messages that can be sent on the wires. In terms of the electronics, the
messages are conveyed by patterns of electrical voltages applied to the wires
with defined timings. When device A has a cable that plugs into device B, and
device B has a cable that plugs into device C, and device C plugs into a port on
the computer, this arrangement is called a daisy chain. A daisy chain usually
operates as a bus.

Buses are used widely in computer architecture and vary in their signal-
ing methods, speed, throughput, and connection methods. A typical PC bus
structure appears in Figure 12.1. In the figure, a PCIe bus (the common PC
system bus) connects the processor–memory subsystem to fast devices, and
an expansion bus connects relatively slow devices, such as the keyboard and
serial and USB ports. In the lower-left portion of the figure, four disks are
connected together on a serial-attached SCSI (SAS) bus plugged into an SAS
controller. PCIe is a flexible bus that sends data over one or more “lanes.” A
lane is composed of two signaling pairs, one pair for receiving data and the
other for transmitting. Each lane is therefore composed of four wires, and each

12.2 I/O Hardware 491

expansion bus

PCIe bus

disk disk

cache

memory

processor

bridge/memory
controller

monitor

SAS controller expansion bus
interface

graphics
controller

keyboard

USB
port

USB
port

disk disk

Figure 12.1 A typical PC bus structure.

lane is used as a full-duplex byte stream, transporting data packets in an eight-
bit byte format simultaneously in both directions. Physically, PCIe links may
contain 1, 2, 4, 8, 12, 16, or 32 lanes, as signified by an “x” prefix. A PCIe card or
connector that uses 8 lanes is designated x8, for example. In addition, PCIe has
gone through multiple “generations,” with more coming in the future. Thus,
for example, a card might be “PCIe gen3 x8”, which means it works with gen-
eration 3 of PCIe and uses 8 lanes. Such a device has maximum throughput of
8 gigabytes per second. Details about PCIe can be found at https://pcisig.com.

A controller is a collection of electronics that can operate a port, a bus, or
a device. A serial-port controller is a simple device controller. It is a single chip
(or portion of a chip) in the computer that controls the signals on the wires
of a serial port. By contrast, a fibr channel (FC) bus controller is not simple.
Because the FC protocol is complex and used in data centers rather than on
PCs, the FC bus controller is often implemented as a separate circuit board
—or a host bus adapter (HBA)—that connects to a bus in the computer. It
typically contains a processor, microcode, and some private memory to enable
it to process the FC protocol messages. Some devices have their own built-in
controllers. If you look at a disk drive, you will see a circuit board attached
to one side. This board is the disk controller. It implements the disk side of
the protocol for some kinds of connection—SAS and SATA, for instance. It has
microcode and a processor to do many tasks, such as bad-sector mapping,
prefetching, buffering, and caching.

12.2.1 Memory-Mapped I/O

Howdoes the processor give commands and data to a controller to accomplish
an I/O transfer? The short answer is that the controller has one ormore registers
for data and control signals. The processor communicates with the controller
by reading and writing bit patterns in these registers. One way in which
this communication can occur is through the use of special I/O instructions

https://pcisig.com

492 Chapter 12 I/O Systems

I/O address range (hexadecimal)

000–00F

020–021

040–043

200–20F

2F8–2FF

320–32F

378–37F

3D0–3DF

3F0–3F7

3F8–3FF

device

DMA controller

interrupt controller

timer

game controller

serial port (secondary)

hard-disk controller

parallel port

graphics controller

diskette-drive controller

serial port (primary)

Figure 12.2 Device I/O port locations on PCs (partial).

that specify the transfer of a byte or a word to an I/O port address. The I/O
instruction triggers bus lines to select the proper device and tomove bits into or
out of a device register. Alternatively, the device can support memory-mapped
I/O. In this case, the device-control registers are mapped into the address
space of the processor. The CPU executes I/O requests using the standard data-
transfer instructions to read and write the device-control registers at their
mapped locations in physical memory.

In the past, PCs often used I/O instructions to control some devices and
memory-mapped I/O to control others. Figure 12.2 shows the usual I/O port
addresses for PCs. The graphics controller has I/O ports for basic control
operations, but the controller has a large memory-mapped region to hold
screen contents. A thread sends output to the screen by writing data into
the memory-mapped region. The controller generates the screen image based
on the contents of this memory. This technique is simple to use. Moreover,
writing millions of bytes to the graphics memory is faster than issuing mil-
lions of I/O instructions. Therefore, over time, systems have moved toward
memory-mapped I/O. Today,most I/O is performedbydevice controllers using
memory-mapped I/O.

I/O device control typically consists of four registers, called the status,
control, data-in, and data-out registers.

• The data-in register is read by the host to get input.

• The data-out register is written by the host to send output.

• The status register contains bits that can be read by the host. These bits
indicate states, such as whether the current command has completed,
whether a byte is available to be read from the data-in register, andwhether
a device error has occurred.

• The control register can be written by the host to start a command or
to change the mode of a device. For instance, a certain bit in the control
register of a serial port chooses between full-duplex and half-duplex com-

12.2 I/O Hardware 493

munication, another bit enables parity checking, a third bit sets the word
length to 7 or 8 bits, and other bits select one of the speeds supported by
the serial port.

The data registers are typically 1 to 4 bytes in size. Some controllers have
FIFO chips that can hold several bytes of input or output data to expand the
capacity of the controller beyond the size of the data register. A FIFO chip can
hold a small burst of data until the device or host is able to receive those data.

12.2.2 Polling

The complete protocol for interaction between the host and a controller can
be intricate, but the basic handshaking notion is simple. We explain hand-
shaking with an example. Assume that 2 bits are used to coordinate the
producer–consumer relationship between the controller and the host. The con-
troller indicates its state through the busy bit in the status register. (Recall that
to set a bit means to write a 1 into the bit and to clear a bit means to write a
0 into it.) The controller sets the busy bit when it is busy working and clears
the busy bit when it is ready to accept the next command. The host signals its
wishes via the command-ready bit in the command register. The host sets the
command-ready bit when a command is available for the controller to execute.
For this example, the host writes output through a port, coordinating with the
controller by handshaking as follows.

1. The host repeatedly reads the busy bit until that bit becomes clear.

2. The host sets the write bit in the command register and writes a byte into
the data-out register.

3. The host sets the command-ready bit.

4. When the controller notices that the command-ready bit is set, it sets the
busy bit.

5. The controller reads the command register and sees the write command.
It reads the data-out register to get the byte and does the I/O to the
device.

6. The controller clears the command-ready bit, clears the error bit in the
status register to indicate that the device I/O succeeded, and clears the
busy bit to indicate that it is finished.

This loop is repeated for each byte.
In step 1, the host is busy-waiting or polling: it is in a loop, reading the

status register over and over until the busy bit becomes clear. If the controller
and device are fast, thismethod is a reasonable one. But if thewaitmay be long,
the host should probably switch to another task.How, then, does the host know
when the controller has become idle? For some devices, the host must service
the device quickly, or data will be lost. For instance, when data are streaming
in on a serial port or from a keyboard, the small buffer on the controller will
overflow and datawill be lost if the host waits too long before returning to read
the bytes.

494 Chapter 12 I/O Systems

In many computer architectures, three CPU-instruction cycles are sufficient
to poll a device: read a device register, logical-and to extract a status bit,
and branch if not zero. Clearly, the basic polling operation is efficient. But
polling becomes inefficient when it is attempted repeatedly yet rarely finds a
device ready for service, while other useful CPU processing remains undone. In
such instances, it may be more efficient to arrange for the hardware controller
to notify the CPU when the device becomes ready for service, rather than
to require the CPU to poll repeatedly for an I/O completion. The hardware
mechanism that enables a device to notify the CPU is called an interrupt.

12.2.3 Interrupts

The basic interrupt mechanism works as follows. The CPU hardware has a
wire called the interrupt-request line that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on
the interrupt-request line, the CPU performs a state save and jumps to the
interrupt-handler routine at a fixed address in memory. The interrupt han-
dler determines the cause of the interrupt, performs the necessary processing,
performs a state restore, and executes a return from interrupt instruction
to return the CPU to the execution state prior to the interrupt. We say that
the device controller raises an interrupt by asserting a signal on the interrupt
request line, the CPU catches the interrupt and dispatches it to the interrupt

device driver initiates I/O

CPU receiving interrupt,
transfers control to
interrupt handler

CPU resumes
processing of

interrupted task

CPU

1

I/O controller

CPU executing checks for
interrupts between instructions

5

interrupt handler
processes data,

returns from interrupt

initiates I/O

3

2

4

7

input ready, output
complete, or error

generates interrupt signal

6

Figure 12.3 Interrupt-driven I/O cycle.

12.2 I/O Hardware 495

Figure 12.4 Latency command on Mac OS X.

handler, and the handler clears the interrupt by servicing the device. Figure
12.3 summarizes the interrupt-driven I/O cycle.

We stress interrupt management in this chapter because even single-user
modern systems manage hundreds of interrupts per second and servers hun-
dreds of thousands per second. For example, Figure 12.4 shows the latency
command output on macOS, revealing that over ten seconds a quiet desktop
computer performed almost 23,000 interrupts.

The basic interruptmechanism just described enables the CPU to respond to
an asynchronous event, as when a device controller becomes ready for service.
In amodern operating system, however,we needmore sophisticated interrupt-
handling features.

1. We need the ability to defer interrupt handling during critical processing.

2. We need an efficient way to dispatch to the proper interrupt handler for
a device without first polling all the devices to see which one raised the
interrupt.

3. We need multilevel interrupts, so that the operating system can distin-
guish between high- and low-priority interrupts and can respond with
the appropriate degree of urgency when there are multiple concurrent
interrupts.

4. We need a way for an instruction to get the operating system’s atten-
tion directly (separately from I/O requests), for activities such as page
faults and errors such as division by zero. As we shall see, this task is
accomplished by “traps.”

In modern computer hardware, these features are provided by the CPU and by
the interrupt-controller hardware.

Most CPUs have two interrupt request lines. One is the nonmaskable
interrupt, which is reserved for events such as unrecoverable memory errors.
The second interrupt line is maskable: it can be turned off by the CPU before

496 Chapter 12 I/O Systems

the execution of critical instruction sequences thatmust not be interrupted. The
maskable interrupt is used by device controllers to request service.

The interrupt mechanism accepts an address—a number that selects a
specific interrupt-handling routine from a small set. In most architectures, this
address is an offset in a table called the interrupt vector. This vector contains
the memory addresses of specialized interrupt handlers. The purpose of a
vectored interrupt mechanism is to reduce the need for a single interrupt
handler to search all possible sources of interrupts to determine which one
needs service. In practice, however, computers have more devices (and, hence,
interrupt handlers) than they have address elements in the interrupt vector.
A common way to solve this problem is to use interrupt chaining, in which
each element in the interrupt vector points to the head of a list of interrupt
handlers. When an interrupt is raised, the handlers on the corresponding list
are called one by one, until one is found that can service the request. This
structure is a compromise between the overhead of a huge interrupt table and
the inefficiency of dispatching to a single interrupt handler.

Figure 12.5 illustrates the design of the interrupt vector for the Intel Pen-
tium processor. The events from 0 to 31, which are nonmaskable, are used
to signal various error conditions (which cause system crashes), page faults
(needing immediate action), and debugging requests (stopping normal opera-
tion and jumping to a debugger application). The events from 32 to 255, which
are maskable, are used for purposes such as device-generated interrupts.

descriptionvector number

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19–31

32–255

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow

bound range exception

invalid opcode

device not available

double fault

coprocessor segment overrun (reserved)

invalid task state segment

segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)

floating-point error

alignment check

machine check

(Intel reserved, do not use)

maskable interrupts

Figure 12.5 Intel Pentium processor event-vector table.

12.2 I/O Hardware 497

The interrupt mechanism also implements a system of interrupt priority
levels. These levels enable the CPU to defer the handling of low-priority inter-
rupts without masking all interrupts and make it possible for a high-priority
interrupt to preempt the execution of a low-priority interrupt.

Amodern operating system interacts with the interruptmechanism in sev-
eral ways. At boot time, the operating system probes the hardware buses to
determine what devices are present and installs the corresponding interrupt
handlers into the interrupt vector. During I/O, the various device controllers
raise interrupts when they are ready for service. These interrupts signify that
output has completed, or that input data are available, or that a failure has
been detected. The interrupt mechanism is also used to handle a wide variety
of exceptions, such as dividing by zero, accessing a protected or nonexis-
tent memory address, or attempting to execute a privileged instruction from
user mode. The events that trigger interrupts have a common property: they
are occurrences that induce the operating system to execute an urgent, self-
contained routine.

Because interrupt handing in many cases is time and resource constrained
and therefore complicated to implement, systems frequently split interrupt
management between a first-leve interrupt handler (FLIH) and a second-level
interrupt handler (SLIH). The FLIH performs the context switch, state storage,
and queuing of a handling operation, while the separately scheduled SLIH
performs the handling of the requested operation.

Operating systems have other good uses for interrupts as well. For exam-
ple, many operating systems use the interrupt mechanism for virtual memory
paging. A page fault is an exception that raises an interrupt. The interrupt
suspends the current process and jumps to the page-fault handler in the ker-
nel. This handler saves the state of the process, moves the process to the wait
queue, performs page-cache management, schedules an I/O operation to fetch
the page, schedules another process to resume execution, and then returns from
the interrupt.

Another example is found in the implementation of system calls. Usually, a
program uses library calls to issue system calls. The library routines check the
arguments given by the application, build a data structure to convey the argu-
ments to the kernel, and then execute a special instruction called a software
interrupt, or trap. This instruction has an operand that identifies the desired
kernel service.When a process executes the trap instruction, the interrupt hard-
ware saves the state of the user code, switches to kernel mode, and dispatches
to the kernel routine or thread that implements the requested service. The trap
is given a relatively low interrupt priority compared with those assigned to
device interrupts—executing a system call on behalf of an application is less
urgent than servicing a device controller before its FIFO queue overflows and
loses data.

Interrupts can also be used to manage the flow of control within the ker-
nel. For example, consider the case of the processing required to complete a
disk read. One step may copy data from kernel space to the user buffer. This
copying is time consuming but not urgent—it should not block other high-
priority interrupt handling. Another step is to start the next pending I/O for
that disk drive. This step has higher priority. If the disks are to be used effi-
ciently, we need to start the next I/O as soon as the previous one completes.
Consequently, a pair of interrupt handlers implements the kernel code that

498 Chapter 12 I/O Systems

completes a disk read. The high-priority handler records the I/O status, clears
the device interrupt, starts the next pending I/O, and raises a low-priority
interrupt to complete the work. Later, when the CPU is not occupied with high-
prioritywork, the low-priority interruptwill be dispatched. The corresponding
handler completes the user-level I/O by copying data from kernel buffers to the
application space and then calling the scheduler to place the application on the
ready queue.

A threaded kernel architecture is well suited to implement multiple inter-
rupt priorities and to enforce the precedence of interrupt handling over back-
ground processing in kernel and application routines. We illustrate this point
with the Solaris kernel. In Solaris, interrupt handlers are executed as kernel
threads. A range of high scheduling priorities is reserved for these threads.
These priorities give interrupt handlers precedence over application code and
kernel housekeeping and implement the priority relationships among inter-
rupt handlers. The priorities cause the Solaris thread scheduler to preempt low-
priority interrupt handlers in favor of higher-priority ones, and the threaded
implementation enablesmultiprocessor hardware to run several interrupt han-
dlers concurrently. We describe the interrupt architecture of Linux in Chapter
20, Windows10 in Chapter 21, and UNIX in Appendix C.

In summary, interrupts are used throughout modern operating systems to
handle asynchronous events and to trap to supervisor-mode routines in the
kernel. To enable the most urgent work to be done first, modern computers
use a system of interrupt priorities. Device controllers, hardware faults, and
system calls all raise interrupts to trigger kernel routines. Because interrupts
are used so heavily for time-sensitive processing, efficient interrupt handling
is required for good system performance. Interrupt-driven I/O is now much
more common than polling, with polling being used for high-throughput I/O.
Sometimes the two are used together. Some device drivers use interruptswhen
the I/O rate is low and switch to polling when the rate increases to the point
where polling is faster and more efficient.

12.2.4 Direct Memory Access

For a device that does large transfers, such as a disk drive, it seems waste-
ful to use an expensive general-purpose processor to watch status bits and
to feed data into a controller register one byte at a time—a process termed
programmed I/O (PIO). Computers avoid burdening the main CPU with PIO by
offloading some of this work to a special-purpose processor called a direct-
memory-access (DMA) controller. To initiate a DMA transfer, the host writes a
DMA command block into memory. This block contains a pointer to the source
of a transfer, a pointer to the destination of the transfer, and a count of the
number of bytes to be transferred. A command block can be more complex,
including a list of sources and destinations addresses that are not contiguous.
This scatter–gather method allows multiple transfers to be executed via a sin-
gle DMA command. The CPU writes the address of this command block to the
DMA controller, then goes on with other work. The DMA controller proceeds
to operate the memory bus directly, placing addresses on the bus to perform
transfers without the help of the main CPU. A simple DMA controller is a stan-
dard component in all modern computers, from smartphones to mainframes.

12.2 I/O Hardware 499

Note that it is most straightforward for the target address to be in kernel
address space. If it were in user space, the user could, for example, modify the
contents of that space during the transfer, losing some set of data. To get the
DMA-transferred data to the user space for thread access, however, a second
copy operation, this time from kernel memory to user memory, is needed. This
double buffering is inefficient. Over time, operating systems have moved to
using memory-mapping (see Section 12.2.1) to perform I/O transfers directly
between devices and user address space.

Handshaking between the DMA controller and the device controller is
performed via a pair of wires called DMA-request and DMA-acknowledge.
The device controller places a signal on the DMA-request wire when a word of
data is available for transfer. This signal causes the DMA controller to seize the
memory bus, place the desired address on thememory-addresswire, and place
a signal on the DMA-acknowledgewire.When the device controller receives the
DMA-acknowledge signal, it transfers theword of data tomemory and removes
the DMA-request signal.

When the entire transfer is finished, the DMA controller interrupts the CPU.
This process is depicted in Figure 12.6. When the DMA controller seizes the
memory bus, the CPU is momentarily prevented from accessing main mem-
ory, although it can still access data items in its caches. Although this cycle
stealing can slow down the CPU computation, offloading the data-transfer
work to a DMA controller generally improves the total system performance.
Some computer architectures use physical memory addresses for DMA, but

drive 1 drive 2

Figure 12.6 Steps in a DMA transfer.

500 Chapter 12 I/O Systems

others perform direct virtual memory access (DVMA), using virtual addresses
that undergo translation to physical addresses. DVMA can perform a transfer
between two memory-mapped devices without the intervention of the CPU or
the use of main memory.

On protected-mode kernels, the operating system generally prevents pro-
cesses from issuing device commands directly. This discipline protects data
from access-control violations and also protects the system from erroneous use
of device controllers, which could cause a system crash. Instead, the operat-
ing system exports functions that a sufficiently privileged process can use to
access low-level operations on the underlying hardware. On kernels without
memory protection, processes can access device controllers directly. This direct
access can be used to achieve high performance, since it can avoid kernel com-
munication, context switches, and layers of kernel software. Unfortunately, it
interferes with system security and stability. Common general-purpose oper-
ating systems protect memory and devices so that the system can try to guard
against erroneous or malicious applications.

12.2.5 I/O Hardware Summary

Although the hardware aspects of I/O are complex when considered at the
level of detail of electronics-hardware design, the concepts that we have just
described are sufficient to enable us to understand many I/O features of oper-
ating systems. Let’s review the main concepts:

• A bus

• A controller

• An I/O port and its registers

• The handshaking relationship between the host and a device controller

• The execution of this handshaking in a polling loop or via interrupts

• The offloading of this work to a DMA controller for large transfers

We gave a basic example of the handshaking that takes place between a
device controller and the host earlier in this section. In reality, the wide variety
of available devices poses a problem for operating-system implementers. Each
kind of device has its own set of capabilities, control-bit definitions, and pro-
tocols for interacting with the host—and they are all different. How can the
operating system be designed so that we can attach new devices to the com-
puter without rewriting the operating system? And when the devices vary so
widely, how can the operating system give a convenient, uniform I/O interface
to applications? We address those questions next.

12.3 Application I/O Interface

In this section, we discuss structuring techniques and interfaces for the oper-
ating system that enable I/O devices to be treated in a standard, uniform way.
We explain, for instance, how an application can open a file on a disk without

12.3 Application I/O Interface 501

kernel

ha
rd

w
ar

e
so

ft
w

ar
e

SAS
device
driver

keyboard
device
driver

mouse
device
driver

• • •

• • •

• • •

PCIe bus
device
driver

802.11
device
driver

USB
device
driver

SAS
device

controller

keyboard
device

controller

mouse
device

controller

PCIe bus
device

controller

802.11
device

controller

USB
device

controller

SAS
devices keyboard mouse PCIe bus

802.11
devices

USB
devices
(disks,
tapes,
drives)

kernel I/O subsystem

Figure 12.7 A kernel I/O structure.

knowing what kind of disk it is and how new disks and other devices can be
added to a computer without disruption of the operating system.

Like other complex software-engineering problems, the approach here
involves abstraction, encapsulation, and software layering. Specifically, we can
abstract away the detailed differences in I/O devices by identifying a few gen-
eral kinds. Each general kind is accessed through a standardized set of func-
tions—an interface. The differences are encapsulated in kernelmodules called
device drivers that internally are custom-tailored to specific devices but that
export one of the standard interfaces. Figure 12.7 illustrates how the I/O-related
portions of the kernel are structured in software layers.

The purpose of the device-driver layer is to hide the differences among
device controllers from the I/O subsystem of the kernel, much as the I/O sys-
tem calls encapsulate the behavior of devices in a few generic classes that hide
hardware differences from applications. Making the I/O subsystem indepen-
dent of the hardware simplifies the job of the operating-system developer. It
also benefits the hardware manufacturers. They either design new devices to
be compatible with an existing host controller interface (such as SATA), or they
write device drivers to interface the new hardware to popular operating sys-
tems. Thus, we can attach new peripherals to a computer without waiting for
the operating-system vendor to develop support code.

Unfortunately for device-hardware manufacturers, each type of operating
system has its own standards for the device-driver interface. A given device
may ship with multiple device drivers—for instance, drivers for Windows,
Linux, AIX, and macOS. Devices vary on many dimensions, as illustrated in
Figure 12.8.

502 Chapter 12 I/O Systems

aspect variation example

terminal
disk

modem
CD-ROM

tape
keyboard

tape
keyboard

CD-ROM
graphics controller
disk

data-transfer mode

access method

transfer schedule

sharing

I/O direction

character
block

sequential
random

synchronous
asynchronous

dedicated
sharable

read only
write only
read–write

latency
seek time
transfer rate
delay between operations

device speed

Figure 12.8 Characteristics of I/O devices.

• Character-stream or block. A character-stream device transfers bytes one
by one, whereas a block device transfers a block of bytes as a unit.

• Sequential or random access. A sequential device transfers data in a fixed
order determined by the device, whereas the user of a random-access
device can instruct the device to seek to any of the available data storage
locations.

• Synchronous or asynchronous. A synchronous device performs data
transfers with predictable response times, in coordination with other
aspects of the system. An asynchronous device exhibits irregular or
unpredictable response times not coordinated with other computer
events.

• Sharable or dedicated. A sharable device can be used concurrently by
several processes or threads; a dedicated device cannot.

• Speed of operation. Device speeds range from a few bytes per second to
gigabytes per second.

• Read–write, read only, write once. Some devices perform both input and
output, but others support only one data transfer direction. Some allow
data to be modified after write, but others can be written only once and
are read-only thereafter.

For the purpose of application access, many of these differences are hidden
by the operating system, and the devices are grouped into a few conventional
types. The resulting styles of device access have been found to be useful and
broadly applicable. Although the exact system callsmay differ across operating
systems, the device categories are fairly standard. The major access conven-

12.3 Application I/O Interface 503

tions include block I/O, character-stream I/O, memory-mapped file access, and
network sockets. Operating systems also provide special system calls to access
a few additional devices, such as a time-of-day clock and a timer. Some oper-
ating systems provide a set of system calls for graphical display, video, and
audio devices.

Most operating systems also have an escape (or back door) that transpar-
ently passes arbitrary commands from an application to a device driver. In
UNIX, this system call is ioctl() (for “I/O control”). The ioctl() system call
enables an application to access any functionality that can be implemented by
any device driver, without the need to invent a new system call. The ioctl()
system call has three arguments. The first is a device identifier that connects
the application to the driver by referring to a hardware devicemanaged by that
driver. The second is an integer that selects one of the commands implemented
in the driver. The third is a pointer to an arbitrary data structure in memory
that enables the application and driver to communicate any necessary control
information or data.

The device identifier in UNIX and Linux is a tuple of “major and minor”
device numbers. The major number is the device type, and the second is the
instance of that device. For example, consider these SSD devices on a system. If
one issues a command:

% ls -l /dev/sda*

then the following output

brw-rw---- 1 root disk 8, 0 Mar 16 09:18 /dev/sda
brw-rw---- 1 root disk 8, 1 Mar 16 09:18 /dev/sda1
brw-rw---- 1 root disk 8, 2 Mar 16 09:18 /dev/sda2
brw-rw---- 1 root disk 8, 3 Mar 16 09:18 /dev/sda3

shows that 8 is the major device number. The operating system uses that
information to route I/O requests to the appropriate device driver. The minor
numbers 0, 1, 2, and 3 indicate the instance of the device, allowing requests for
I/O to a device entry to select the exact device for the request.

12.3.1 Block and Character Devices

Theblock-device interface captures all the aspects necessary for accessing disk
drives and other block-oriented devices. The device is expected to understand
commands such as read() and write(). If it is a random-access device, it
is also expected to have a seek() command to specify which block to trans-
fer next. Applications normally access such a device through a file-system
interface. We can see that read(), write(), and seek() capture the essential
behaviors of block-storage devices, so that applications are insulated from the
low-level differences among those devices.

The operating system itself, as well as special applications such as
database-management systems, may prefer to access a block device as a
simple linear array of blocks. This mode of access is sometimes called raw I/O.
If the application performs its own buffering, then using a file system would
cause extra, unneeded buffering. Likewise, if an application provides its
own locking of blocks or regions, then any operating-system locking services
would be redundant at the least and contradictory at the worst. To avoid

504 Chapter 12 I/O Systems

these conflicts, raw-device access passes control of the device directly to the
application, letting the operating system step out of the way. Unfortunately, no
operating-system services are then performed on this device. A compromise
that is becoming common is for the operating system to allow a mode of
operation on a file that disables buffering and locking. In the UNIX world, this
is called direct I/O.

Memory-mapped file access can be layered on top of block-device drivers.
Rather than offering read and write operations, a memory-mapped interface
provides access to disk storage via an array of bytes in main memory. The
system call that maps a file into memory returns the virtual memory address
that contains a copy of the file. The actual data transfers are performed only
when needed to satisfy access to the memory image. Because the transfers
are handled by the same mechanism as that used for demand-paged virtual
memory access, memory-mapped I/O is efficient. Memory mapping is also
convenient for programmers—access to a memory-mapped file is as simple
as reading from and writing to memory. Operating systems that offer virtual
memory commonly use themapping interface for kernel services. For instance,
to execute a program, the operating system maps the executable into memory
and then transfers control to the entry address of the executable. The mapping
interface is also commonly used for kernel access to swap space on disk.

A keyboard is an example of a device that is accessed through a character-
stream interface. The basic system calls in this interface enable an application
to get() or put() one character. On top of this interface, libraries can be
built that offer line-at-a-time access, with buffering and editing services (for
example, when a user types a backspace, the preceding character is removed
from the input stream). This style of access is convenient for input devices such
as keyboards, mice, and modems that produce data for input “spontaneously”
—that is, at times that cannot necessarily be predicted by the application. This
access style is also good for output devices such as printers and audio boards,
which naturally fit the concept of a linear stream of bytes.

12.3.2 Network Devices

Because the performance and addressing characteristics of network I/O differ
significantly from those of disk I/O, most operating systems provide a network
I/O interface that is different from the read()–write()–seek() interface
used for disks. One interface available in many operating systems, including
UNIX and Windows, is the network socket interface.

Think of a wall socket for electricity: any electrical appliance can be
plugged in. By analogy, the system calls in the socket interface enable an
application to create a socket, to connect a local socket to a remote address
(which plugs this application into a socket created by another application), to
listen for any remote application to plug into the local socket, and to send
and receive packets over the connection. To support the implementation of
network servers, the socket interface also provides a function called select()
that manages a set of sockets. A call to select() returns information about
which sockets have a packet waiting to be received and which sockets have
room to accept a packet to be sent. The use of select() eliminates the polling
and busy waiting that would otherwise be necessary for network I/O. These
functions encapsulate the essential behaviors of networks, greatly facilitating

12.3 Application I/O Interface 505

the creation of distributed applications that can use any underlying network
hardware and protocol stack.

Many other approaches to interprocess communication and network com-
munication have been implemented. For instance, Windows provides one
interface to the network interface card and a second interface to the network
protocols. In UNIX, which has a long history as a proving ground for network
technology, we find half-duplex pipes, full-duplex FIFOs, full-duplex STREAMS,
message queues, and sockets. Information on UNIX networking is given in
Section C.9.

12.3.3 Clocks and Timers

Most computers have hardware clocks and timers that provide three basic
functions:

• Give the current time.

• Give the elapsed time.

• Set a timer to trigger operation X at time T.

These functions are used heavily by the operating system, as well as by time-
sensitive applications. Unfortunately, the system calls that implement these
functions are not standardized across operating systems.

The hardware to measure elapsed time and to trigger operations is called
a programmable interval timer. It can be set to wait a certain amount of time
and then generate an interrupt, and it can be set to do this once or to repeat
the process to generate periodic interrupts. The scheduler uses this mechanism
to generate an interrupt that will preempt a process at the end of its time
slice. The disk I/O subsystem uses it to invoke the periodic flushing of dirty
cache buffers to disk, and the network subsystem uses it to cancel operations
that are proceeding too slowly because of network congestion or failures. The
operating systemmay also provide an interface for user processes to use timers.
The operating system can support more timer requests than the number of
timer hardware channels by simulating virtual clocks. To do so, the kernel
(or the timer device driver) maintains a list of interrupts wanted by its own
routines and by user requests, sorted in earliest-time-first order. It sets the timer
for the earliest time.When the timer interrupts, the kernel signals the requester
and reloads the timer with the next earliest time.

Computers have clock hardware that is used for a variety of purposes.
Modern PCs include a high-performance event timer (HPET), which runs at
rates in the 10-megahertz range. It has several comparators that can be set
to trigger once or repeatedly when the value they hold matches that of the
HPET. The trigger generates an interrupt, and the operating system’s clock
management routines determine what the timer was for and what action to
take. The precision of triggers is limited by the resolution of the timer, together
with the overhead of maintaining virtual clocks. Furthermore, if the timer ticks
are used to maintain the system time-of-day clock, the system clock can drift.
Drift can be corrected via protocols designed for that purpose, such as NTP, the
network time protocol, which uses sophisticated latency calculations to keep
a computer’s clock accurate almost to atomic-clock levels. In most computers,

506 Chapter 12 I/O Systems

the hardware clock is constructed from a high-frequency counter. In some
computers, the value of this counter can be read from adevice register, inwhich
case the counter can be considered a high-resolution clock. Although this clock
does not generate interrupts, it offers accurate measurements of time intervals.

12.3.4 Nonblocking and Asynchronous I/O

Another aspect of the system-call interface relates to the choice between block-
ing I/O and nonblocking I/O. When an application issues a blocking system
call, the execution of the calling thread is suspended. The thread ismoved from
the operating system’s run queue to a wait queue. After the system call com-
pletes, the thread is moved back to the run queue, where it is eligible to resume
execution. When it resumes execution, it will receive the values returned by
the system call. The physical actions performed by I/O devices are generally
asynchronous—they take a varying or unpredictable amount of time. Nev-
ertheless, operating systems provide blocking system calls for the application
interface, because blocking application code is easier towrite than nonblocking
application code.

Some user-level processes need nonblocking I/O. One example is a user
interface that receives keyboard and mouse input while processing and dis-
playing data on the screen. Another example is a video application that reads
frames from a file on diskwhile simultaneously decompressing and displaying
the output on the display.

One way an application writer can overlap execution with I/O is to write
a multithreaded application. Some threads can perform blocking system calls,
while others continue executing. Some operating systems provide nonblocking
I/O system calls. Anonblocking call does not halt the execution of the thread for
an extended time. Instead, it returns quickly, with a return value that indicates
how many bytes were transferred.

An alternative to a nonblocking system call is an asynchronous system
call. An asynchronous call returns immediately, without waiting for the I/O to
complete. The thread continues to execute its code. The completion of the I/O
at some future time is communicated to the thread, either through the setting
of some variable in the address space of the thread or through the triggering
of a signal or software interrupt or a call-back routine that is executed outside
the linear control flow of the thread. The difference between nonblocking and
asynchronous system calls is that a nonblocking read() returns immediately
with whatever data are available—the full number of bytes requested, fewer,
or none at all. An asynchronous read() call requests a transfer that will be
performed in its entirety but will complete at some future time. These two I/O
methods are shown in Figure 12.9.

Asynchronous activities occur throughout modern operating systems. Fre-
quently, they are not exposed to users or applications but rather are contained
within the operating-system operation. Secondary storage device and network
I/O are useful examples. By default, when an application issues a network
send request or a storage device write request, the operating system notes
the request, buffers the I/O, and returns to the application. When possible,
to optimize overall system performance, the operating system completes the
request. If a system failure occurs in the interim, the application will lose any
“in-flight” requests. Therefore, operating systems usually put a limit on how

12.3 Application I/O Interface 507

Figure 12.9 Two I/O methods: (a) synchronous and (b) asynchronous.

long they will buffer a request. Some versions of UNIX flush their secondary
storage buffers every 30 seconds, for example, or each request is flushedwithin
30 seconds of its occurrence. Systems provide a way to allow applications to
request a flush of some buffers (like secondary storage buffers) so the data can
be forced to secondary storage without waiting for the buffer flush interval.
Data consistency within applications is maintained by the kernel, which reads
data from its buffers before issuing I/O requests to devices, ensuring that data
not yet written are nevertheless returned to a requesting reader. Note that mul-
tiple threads performing I/O to the same file might not receive consistent data,
depending on how the kernel implements its I/O. In this situation, the threads
may need to use locking protocols. Some I/O requests need to be performed
immediately, so I/O system calls usually have a way to indicate that a given
request, or I/O to a specific device, should be performed synchronously.

A good example of nonblocking behavior is the select() system call for
network sockets. This system call takes an argument that specifies a maxi-
mum waiting time. By setting it to 0, a thread can poll for network activity
without blocking. But using select() introduces extra overhead, because
the select() call only checks whether I/O is possible. For a data transfer,
select() must be followed by some kind of read() or write() command.
A variation on this approach, found in Mach, is a blocking multiple-read call.
It specifies desired reads for several devices in one system call and returns as
soon as any one of them completes.

12.3.5 Vectored I/O

Some operating systems provide another major variation of I/O via their appli-
cation interfaces. Vectored I/O allows one system call to perform multiple I/O
operations involving multiple locations. For example, the UNIX readv sys-
tem call accepts a vector of multiple buffers and either reads from a source
to that vector or writes from that vector to a destination. The same transfer

508 Chapter 12 I/O Systems

could be caused by several individual invocations of system calls, but this
scatter–gather method is useful for a variety of reasons.

Multiple separate buffers can have their contents transferred via one sys-
tem call, avoiding context-switching and system-call overhead. Without vec-
tored I/O, the data might first need to be transferred to a larger buffer in
the right order and then transmitted, which is inefficient. In addition, some
versions of scatter–gather provide atomicity, assuring that all the I/O is done
without interruption (and avoiding corruption of data if other threads are also
performing I/O involving those buffers). When possible, programmers make
use of scatter–gather I/O features to increase throughput and decrease system
overhead.

12.4 Kernel I/O Subsystem

Kernels provide many services related to I/O. Several services—scheduling,
buffering, caching, spooling, device reservation, and error handling—are pro-
vided by the kernel’s I/O subsystem and build on the hardware and device-
driver infrastructure. The I/O subsystem is also responsible for protecting itself
from errant processes and malicious users.

12.4.1 I/O Scheduling

To schedule a set of I/O requests means to determine a good order in which to
execute them. The order in which applications issue system calls rarely is the
best choice. Scheduling can improve overall system performance, can share
device access fairly among processes, and can reduce the average waiting time
for I/O to complete. Here is a simple example to illustrate. Suppose that a disk
arm is near the beginning of a disk and that three applications issue blocking
read calls to that disk. Application 1 requests a block near the end of the disk,
application 2 requests one near the beginning, and application 3 requests one
in themiddle of the disk. The operating system can reduce the distance that the
disk arm travels by serving the applications in the order 2, 3, 1. Rearranging
the order of service in this way is the essence of I/O scheduling.

Operating-system developers implement scheduling by maintaining a
wait queue of requests for each device. When an application issues a blocking
I/O system call, the request is placed on the queue for that device. The I/O
scheduler rearranges the order of the queue to improve the overall system effi-
ciency and the average response time experienced by applications. The operat-
ing systemmay also try to be fair, so that no one application receives especially
poor service, or it may give priority service for delay-sensitive requests. For
instance, requests from the virtual memory subsystem may take priority over
application requests. Several scheduling algorithms for disk I/O were detailed
in Section 11.2.

When a kernel supports asynchronous I/O, it must be able to keep track
of many I/O requests at the same time. For this purpose, the operating system
might attach the wait queue to a device-status table. The kernel manages this
table, which contains an entry for each I/O device, as shown in Figure 12.10.
Each table entry indicates the device’s type, address, and state (not functioning,

12.4 Kernel I/O Subsystem 509

device: keyboard
status: idle

device: laser printer
status: busy

device: mouse
status: idle

device: disk unit 1
status: idle

device: disk unit 2
status: busy

...

request for
laser printer
address: 38546
length: 1372

request for
disk unit 2

file: xxx
operation: read
address: 43046
length: 20000

request for
disk unit 2

file: yyy
operation: write
address: 03458
length: 500

Figure 12.10 Device-status table.

idle, or busy). If the device is busy with a request, the type of request and other
parameters will be stored in the table entry for that device.

Scheduling I/O operations is oneway inwhich the I/O subsystem improves
the efficiency of the computer. Another way is by using storage space in main
memory or elsewhere in the storage hierarchy via buffering, caching, and
spooling.

12.4.2 Buffering

Abuffer, of course, is amemory area that stores data being transferred between
two devices or between a device and an application. Buffering is done for three
reasons. One reason is to cope with a speed mismatch between the producer
and consumer of a data stream. Suppose, for example, that a file is being
received via Internet for storage on an SSD. The network speed may be a
thousand times slower than the drive. So a buffer is created in main memory
to accumulate the bytes received from the network. When an entire buffer of
data has arrived, the buffer can be written to the drive in a single operation.
Since the drivewrite is not instantaneous and the network interface still needs a
place to store additional incoming data, two buffers are used.After the network
fills the first buffer, the drive write is requested. The network then starts to fill
the second buffer while the first buffer is written to storage. By the time the
network has filled the second buffer, the drive write from the first one should
have completed, so the network can switch back to the first buffer while the
drive writes the second one. This double buffering decouples the producer of
data from the consumer, thus relaxing timing requirements between them. The
need for this decoupling is illustrated in Figure 12.11, which lists the enormous
differences in device speeds for typical computer hardware and interfaces.

A second use of buffering is to provide adaptations for devices that
have different data-transfer sizes. Such disparities are especially common in
computer networking, where buffers are used widely for fragmentation and

510 Chapter 12 I/O Systems

Figure 12.11 Common PC and data-center I/O device and interface speeds.

reassembly of messages. At the sending side, a large message is fragmented
into small network packets. The packets are sent over the network, and the
receiving side places them in a reassembly buffer to form an image of the source
data.

A third use of buffering is to support copy semantics for application I/O.
An example will clarify the meaning of “copy semantics.” Suppose that an
application has a buffer of data that it wishes to write to disk. It calls the
write() systemcall, providing a pointer to the buffer and an integer specifying
the number of bytes to write. After the system call returns, what happens
if the application changes the contents of the buffer? With copy semantics,
the version of the data written to disk is guaranteed to be the version at the
time of the application system call, independent of any subsequent changes
in the application’s buffer. A simple way in which the operating system can
guarantee copy semantics is for the write() system call to copy the application
data into a kernel buffer before returning control to the application. The disk
write is performed from the kernel buffer, so that subsequent changes to the
application buffer have no effect. Copying of data between kernel buffers and
application data space is common in operating systems, despite the overhead
that this operation introduces, because of the clean semantics. The same effect
can be obtained more efficiently by clever use of virtual memory mapping and
copy-on-write page protection.

12.4.3 Caching

A cache is a region of fast memory that holds copies of data. Access to the
cached copy is more efficient than access to the original. For instance, the
instructions of the currently running process are stored on disk, cached in
physicalmemory, and copied again in the CPU’s secondary andprimary caches.

12.4 Kernel I/O Subsystem 511

The difference between a buffer and a cache is that a buffer may hold the only
existing copy of a data item, whereas a cache, by definition, holds a copy on
faster storage of an item that resides elsewhere.

Caching and buffering are distinct functions, but sometimes a region of
memory can be used for both purposes. For instance, to preserve copy seman-
tics and to enable efficient scheduling of disk I/O, the operating system uses
buffers in main memory to hold disk data. These buffers are also used as a
cache, to improve the I/O efficiency for files that are shared by applications or
that are being written and reread rapidly. When the kernel receives a file I/O
request, the kernel first accesses the buffer cache to see whether that region
of the file is already available in main memory. If it is, a physical disk I/O
can be avoided or deferred. Also, disk writes are accumulated in the buffer
cache for several seconds, so that large transfers are gathered to allow efficient
write schedules. This strategy of delaying writes to improve I/O efficiency is
discussed, in the context of remote file access, in Section 19.8.

12.4.4 Spooling and Device Reservation

A spool is a buffer that holds output for a device, such as a printer, that cannot
accept interleaved data streams. Although a printer can serve only one job at a
time, several applicationsmaywish to print their output concurrently, without
having their output mixed together. The operating system solves this problem
by intercepting all output to the printer. Each application’s output is spooled
to a separate secondary storage file. When an application finishes printing, the
spooling system queues the corresponding spool file for output to the printer.
The spooling system copies the queued spool files to the printer one at a time. In
some operating systems, spooling is managed by a system daemon process. In
others, it is handled by an in-kernel thread. In either case, the operating system
provides a control interface that enables users and system administrators to
display the queue, remove unwanted jobs before those jobs print, suspend
printing while the printer is serviced, and so on.

Some devices, such as tape drives and printers, cannot usefully multiplex
the I/O requests of multiple concurrent applications. Spooling is one way
operating systems can coordinate concurrent output. Anotherway to dealwith
concurrent device access is to provide explicit facilities for coordination. Some
operating systems (including VMS) provide support for exclusive device access
by enabling a process to allocate an idle device and to deallocate that device
when it is no longer needed. Other operating systems enforce a limit of one
open file handle to such a device. Many operating systems provide functions
that enable processes to coordinate exclusive access among themselves. For
instance, Windows provides system calls to wait until a device object becomes
available. It also has a parameter to the OpenFile() system call that declares
the types of access to be permitted to other concurrent threads. On these
systems, it is up to the applications to avoid deadlock.

12.4.5 Error Handling

An operating system that uses protected memory can guard against many
kinds of hardware and application errors, so that a complete system failure
is not the usual result of each minor mechanical malfunction. Devices and I/O
transfers can fail inmanyways, either for transient reasons, as when a network

512 Chapter 12 I/O Systems

becomes overloaded, or for “permanent” reasons, as when a disk controller
becomes defective. Operating systems can often compensate effectively for
transient failures. For instance, a disk read() failure results in a read() retry,
and a network send() error results in a resend(), if the protocol so specifies.
Unfortunately, if an important component experiences a permanent failure, the
operating system is unlikely to recover.

As a general rule, an I/O system call will return one bit of information
about the status of the call, signifying either success or failure. In the UNIX
operating system, an additional integer variable named errno is used to return
an error code—one of about a hundred values—indicating the general nature
of the failure (for example, argument out of range, bad pointer, or file not
open). By contrast, some hardware can provide highly detailed error infor-
mation, although many current operating systems are not designed to convey
this information to the application. For instance, a failure of a SCSI device is
reported by the SCSI protocol in three levels of detail: a sense key that iden-
tifies the general nature of the failure, such as a hardware error or an illegal
request; an additional sense code that states the category of failure, such as a
bad command parameter or a self-test failure; and an additional sense-code
qualifie that gives even more detail, such as which command parameter was
in error or which hardware subsystem failed its self-test. Further, many SCSI
devices maintain internal pages of error-log information that can be requested
by the host—but seldom are.

12.4.6 I/O Protection

Errors are closely related to the issue of protection. A user process may acci-
dentally or purposely attempt to disrupt the normal operation of a system by
attempting to issue illegal I/O instructions. We can use various mechanisms to
ensure that such disruptions cannot take place in the system.

To prevent users from performing illegal I/O, we define all I/O instructions
to be privileged instructions. Thus, users cannot issue I/O instructions directly;
they must do it through the operating system. To do I/O, a user program
executes a system call to request that the operating system perform I/O on its
behalf (Figure 12.12). The operating system, executing inmonitormode, checks
that the request is valid and, if it is, does the I/O requested. The operating
system then returns to the user.

In addition, any memory-mapped and I/O port memory locations must
be protected from user access by the memory-protection system. Note that a
kernel cannot simply deny all user access. Most graphics games and video
editing and playback software need direct access to memory-mapped graphics
controller memory to speed the performance of the graphics, for example. The
kernel might in this case provide a locking mechanism to allow a section of
graphics memory (representing a window on screen) to be allocated to one
process at a time.

12.4.7 Kernel Data Structures

The kernel needs to keep state information about the use of I/O components. It
does so through a variety of in-kernel data structures, such as the open-file table

12.4 Kernel I/O Subsystem 513

Figure 12.12 Use of a system call to perform I/O.

structure discussed in Section 14.1. The kernel uses many similar structures to
track network connections, character-device communications, and other I/O
activities.

UNIX provides file-system access to a variety of entities, such as user files,
raw devices, and the address spaces of processes. Although each of these
entities supports a read() operation, the semantics differ. For instance, to
read a user file, the kernel needs to probe the buffer cache before deciding
whether to perform a disk I/O. To read a raw disk, the kernel needs to ensure
that the request size is a multiple of the disk sector size and is aligned on a
sector boundary. To read a process image, it is merely necessary to copy data
from memory. UNIX encapsulates these differences within a uniform structure
by using an object-oriented technique. The open-file record, shown in Figure
12.13, contains a dispatch table that holds pointers to the appropriate routines,
depending on the type of file.

Some operating systems use object-oriented methods even more exten-
sively. For instance, Windows uses a message-passing implementation for I/O.
An I/O request is converted into a message that is sent through the kernel to
the I/O manager and then to the device driver, each of which may change the
message contents. For output, the message contains the data to be written. For
input, the message contains a buffer to receive the data. The message-passing
approach can add overhead, by comparison with procedural techniques that
use shared data structures, but it simplifies the structure and design of the I/O
system and adds flexibility.

514 Chapter 12 I/O Systems

active-inode
table

network-
information

table

per-process
open-file table

user-process memory

system-wide open-file table

kernel memory

•
•
•

•
•
•

file-system record

inode pointer

pointer to read and write functions

pointer to select function

pointer to ioctl function

pointer to close function

networking (socket) record

pointer to network info

pointer to read and write functions

pointer to select function

pointer to ioctl function

pointer to close function

file descriptor

Figure 12.13 UNIX I/O kernel structure.

12.4.8 Power Management

Computers residing in data centers may seem far removed from issues of
power use, but as power costs increase and the world becomes increasingly
troubled about the long-term effects of greenhouse gas emissions, data cen-
ters have become a cause for concern and a target for increased efficiencies.
Electricity use generates heat, and computer components can fail due to high
temperatures, so cooling is part of the equation as well. Consider that cool-
ing a modern data center may use twice as much electricity as powering the
equipment does. Many approaches to data-center power optimization are in
use, ranging from interchanging data-center air without side air, chilling with
natural sources such as lake water, and solar panels.

Operating systems play a role in power use (and therefore heat gener-
ation and cooling). In cloud computing environments, processing loads can
be adjusted by monitoring and management tools to evacuate all user pro-
cesses from systems, idling those systems and powering them off until the
load requires their use. An operating system could analyze its load and, if suf-
ficiently low and hardware-enabled, power off components such as CPUsand
external I/O devices.

CPU cores can be suspended when the system load does not require them
and resumed when the load increases and more cores are needed to run the
queue of threads. Their state, of course, needs to be saved on suspend and
restored on resume. This feature is needed in servers because a data center full

12.4 Kernel I/O Subsystem 515

of servers can use vast amounts of electricity, and disabling unneeded cores
can decrease electricity (and cooling) needs.

In mobile computing, power management becomes a high-priority aspect
of the operating system.Minimizing power use and therefore maximizing bat-
tery life increases the usability of a device and helps it competewith alternative
devices. Today’s mobile devices offer the functionality of yesterday’s high-
end desktop, yet are powered by batteries and are small enough to fit in your
pocket. In order to provide satisfactory battery life, modern mobile operating
systems are designed from the ground up with power management as a key
feature. Let’s examine in detail three major features that enable the popular
Android mobile system to maximize battery life: power collapse, component-
level power management, and wakelocks.

Power collapse is the ability to put a device into a very deep sleep state.
The device uses only marginally more power than if it were fully powered off,
yet it is still able to respond to external stimuli, such as the user pressing a
button, at which time it quickly powers back on. Power collapse is achieved
by powering off many of the individual components within a device—such as
the screen, speakers, and I/O subsystem—so that they consume no power. The
operating system then places the CPU in its lowest sleep state. Amodern ARM
CPU might consume hundreds of milliwatts per core under typical load yet
only a handful of milliwatts in its lowest sleep state. In such a state, although
the CPU is idle, it can receive an interrupt, wake up, and resume its previous
activity very quickly. Thus, an idle Android phone in your pocket uses very
little power, but it can spring to life when it receives a phone call.

How is Android able to turn off the individual components of a phone?
How does it know when it is safe to power off the flash storage, and how
does it know to do that before powering down the overall I/O subsystem? The
answer is component-level powermanagement, which is an infrastructure that
understands the relationship between components and whether each compo-
nent is in use. To understand the relationship between components, Android
builds a device tree that represents the phone’s physical-device topology. For
example, in such a topology, flash and USB storage would be sub-nodes of the
I/O subsystem, which is a sub-node of the system bus, which in turn connects
to the CPU. To understand usage, each component is associated with its device
driver, and the driver tracks whether the component is in use—for example,
if there is I/O pending to flash or if an application has an open reference to
the audio subsystem. With this information, Android can manage the power
of the phone’s individual components: If a component is unused, it is turned
off. If all of the components on, say, the system bus are unused, the system bus
is turned off. And if all of the components in the entire device tree are unused,
the system may enter power collapse.

With these technologies, Android can aggressively manage its power con-
sumption. But a final piece of the solution ismissing: the ability for applications
to temporarily prevent the system from entering power collapse. Consider a
user playing a game, watching a video, or waiting for a web page to open.
In all of these cases, the application needs a way to keep the device awake,
at least temporarily. Wakelocks enable this functionality. Applications acquire
and release wakelocks as needed. While an application holds a wakelock, the
kernel will prevent the system from entering power collapse. For example,
while theAndroidMarket is updating an application, it will hold awakelock to

516 Chapter 12 I/O Systems

ensure that the system does not go to sleep until the update is complete. Once
complete, the Android Market will release the wakelock, allowing the system
to enter power collapse.

Power management in general is based on device management, which is
more complicated than we have so far portrayed it. At boot time, the firmware
systemanalyzes the systemhardware and creates a device tree in RAM. The ker-
nel then uses that device tree to load device drivers andmanage devices.Many
additional activities pertaining to devices must be managed, though, includ-
ing addition and subtraction of devices from a running system (“hot-plug”),
understanding and changing device states, and power management. Modern
general-purpose computers use another set of firmware code, advanced con-
figuratio and power interface (ACPI), to manage these aspects of hardware.
ACPI is an industry standard (http://www.acpi.info) with many features. It pro-
vides code that runs as routines callable by the kernel for device state discovery
and management, device error management, and power management. For
example, when the kernel needs to quiesce a device, it calls the device driver,
which calls the ACPI routines, which then talk to the device.

12.4.9 Kernel I/O Subsystem Summary

In summary, the I/O subsystem coordinates an extensive collection of services
that are available to applications and to other parts of the kernel. The I/O
subsystem supervises these procedures:

• Management of the name space for files and devices

• Access control to files and devices

• Operation control (for example, a modem cannot seek())

• File-system space allocation

• Device allocation

• Buffering, caching, and spooling

• I/O scheduling

• Device-status monitoring, error handling, and failure recovery

• Device-driver configuration and initialization

• Power management of I/O devices

The upper levels of the I/O subsystem access devices via the uniform
interface provided by the device drivers.

12.5 Transforming I/O Requests to Hardware
Operations

Earlier, we described the handshaking between a device driver and a device
controller, but we did not explain how the operating system connects an appli-
cation request to a set of network wires or to a specific disk sector. Consider,

http://www.acpi.info

12.5 Transforming I/O Requests to Hardware Operations 517

for example, reading a file from disk. The application refers to the data by a
file name. Within a disk, the file system maps from the file name through the
file-system directories to obtain the space allocation of the file. For instance, in
MS-DOS for FAT (a relatively simple operating and file system still used today
as a common interchange format), the name maps to a number that indicates
an entry in the file-access table, and that table entry tells which disk blocks
are allocated to the file. In UNIX, the name maps to an inode number, and the
corresponding inode contains the space-allocation information. But how is the
connection made from the file name to the disk controller (the hardware port
address or the memory-mapped controller registers)?

One method is that used by MS-DOS for FAT, mentioned above. The first
part of an MS-DOS file name, preceding the colon, is a string that identifies a
specific hardware device. For example, C: is the first part of every file name
on the primary hard disk. The fact that C: represents the primary hard disk
is built into the operating system; C: is mapped to a specific port address
through a device table. Because of the colon separator, the device name space is
separate from the file-system name space. This separationmakes it easy for the
operating system to associate extra functionalitywith eachdevice. For instance,
it is easy to invoke spooling on any files written to the printer.

If, instead, the device name space is incorporated in the regular file-system
name space, as it is in UNIX, the normal file-system name services are provided
automatically. If the file system provides ownership and access control to all
file names, then devices have owners and access control. Since files are stored
on devices, such an interface provides access to the I/O system at two levels.
Names can be used to access the devices themselves or to access the files stored
on the devices.

UNIX represents device names in the regular file-system name space.
Unlike anMS-DOS FAT file name,which has a colon separator, a UNIX path name
has no clear separation of the device portion. In fact, no part of the path name
is the name of a device. UNIX has a mount table that associates prefixes of path
names with specific device names. To resolve a path name, UNIX looks up the
name in themount table to find the longest matching prefix; the corresponding
entry in the mount table gives the device name. This device name also has the
formof a name in the file-systemname space.WhenUNIX looks up this name in
the file-systemdirectory structures, it finds not an inode number but a<major,
minor> device number. The major device number identifies a device driver
that should be called to handle I/O to this device. The minor device number
is passed to the device driver to index into a device table. The corresponding
device-table entry gives the port address or the memory-mapped address of
the device controller.

Modern operating systems gain significant flexibility from the multiple
stages of lookup tables in the path between a request and a physical device con-
troller. The mechanisms that pass requests between applications and drivers
are general. Thus, we can introduce new devices and drivers into a com-
puter without recompiling the kernel. In fact, some operating systems have
the ability to load device drivers on demand. At boot time, the system first
probes the hardware buses to determine what devices are present. It then
loads the necessary drivers, either immediately or when first required by an
I/O request. Devices added after boot can be detected by the error they cause
(interrupt-generatedwith no associated interrupt handler, for example), which

518 Chapter 12 I/O Systems

can prompt the kernel to inspect the device details and load an appropri-
ate device driver dynamically. Of course, dynamic loading (and unloading)
is more complicated than static loading, requiring more complex kernel algo-
rithms, device-structure locking, error handling, and so forth.

Wenext describe the typical life cycle of a blocking read request, as depicted
in Figure 12.14. The figure suggests that an I/O operation requires a greatmany
steps that together consume a tremendous number of CPU cycles.

1. Aprocess issues a blocking read() system call to a file descriptor of a file
that has been opened previously.

2. The system-call code in the kernel checks the parameters for correctness.
In the case of input, if the data are already available in the buffer cache,
the data are returned to the process, and the I/O request is completed.

3. Otherwise, a physical I/O must be performed. The process is removed
from the run queue and is placed on thewait queue for the device, and the
I/O request is scheduled. Eventually, the I/O subsystem sends the request
to the device driver. Depending on the operating system, the request is
sent via a subroutine call or an in-kernel message.

Figure 12.14 The life cycle of an I/O request.

12.6 STREAMS 519

4. The device driver allocates kernel buffer space to receive the data and
schedules the I/O. Eventually, the driver sends commands to the device
controller by writing into the device-control registers.

5. The device controller operates the device hardware to perform the data
transfer.

6. The driver may poll for status and data, or it may have set up a DMA
transfer into kernel memory. We assume that the transfer is managed
by a DMA controller, which generates an interrupt when the transfer
completes.

7. The correct interrupt handler receives the interrupt via the interrupt-
vector table, stores any necessary data, signals the device driver, and
returns from the interrupt.

8. The device driver receives the signal, determines which I/O request has
completed, determines the request’s status, and signals the kernel I/O
subsystem that the request has been completed.

9. The kernel transfers data or return codes to the address space of the
requesting process and moves the process from the wait queue back to
the ready queue.

10. Moving the process to the ready queue unblocks the process. When the
scheduler assigns the process to the CPU, the process resumes execution
at the completion of the system call.

12.6 STREAMS

UNIX System V (and many subsequent UNIX releases) has an interesting mech-
anism, called STREAMS, that enables an application to assemble pipelines of
driver code dynamically. Astream is a full-duplex connection between a device
driver and a user-level process. It consists of a stream head that interfaces with
the user process, a driver end that controls the device, and zero or more stream
modules between the stream head and the driver end. Each of these compo-
nents contains a pair of queues—a read queue and a write queue. Message
passing is used to transfer data between queues. The STREAMS structure is
shown in Figure 12.15.

Modules provide the functionality of STREAMS processing; they are pushed
onto a stream by use of the ioctl() system call. For example, a process can
open a USB device (like a keyboard) via a stream and can push on a module
to handle input editing. Because messages are exchanged between queues in
adjacent modules, a queue in one module may overflow an adjacent queue. To
prevent this from occurring, a queue may support flo control. Without flow
control, a queue accepts all messages and immediately sends them on to the
queue in the adjacent module without buffering them. A queue that supports
flow control buffers messages and does not accept messages without sufficient
buffer space. This process involves exchanges of control messages between
queues in adjacent modules.

520 Chapter 12 I/O Systems

user process

device

stream head

driver end

read queue write queue

STREAMS
modules

read queue

read queue

read queue

write queue

write queue

write queue

Figure 12.15 The STREAMS structure.

A user process writes data to a device using either the write() or
putmsg() system call. The write() system call writes raw data to the stream,
whereas putmsg() allows the user process to specify a message. Regardless
of the system call used by the user process, the stream head copies the data
into a message and delivers it to the queue for the next module in line. This
copying of messages continues until the message is copied to the driver end
and hence the device. Similarly, the user process reads data from the stream
head using either the read() or getmsg() system call. If read() is used, the
stream head gets a message from its adjacent queue and returns ordinary data
(an unstructured byte stream) to the process. If getmsg() is used, a message
is returned to the process.

STREAMS I/O is asynchronous (or nonblocking) except when the user pro-
cess communicates with the stream head. When writing to the stream, the user
process will block, assuming the next queue uses flow control, until there is
room to copy the message. Likewise, the user process will block when reading
from the stream until data are available.

As mentioned, the driver end—like the stream head and modules—has
a read and write queue. However, the driver end must respond to interrupts,
such as one triggered when a frame is ready to be read from a network. Unlike
the stream head, which may block if it is unable to copy a message to the
next queue in line, the driver end must handle all incoming data. Drivers
must support flow control as well. However, if a device’s buffer is full, the
device typically resorts to dropping incoming messages. Consider a network
card whose input buffer is full. The network card must simply drop further
messages until there is enough buffer space to store incoming messages.

12.7 Performance 521

The benefit of using STREAMS is that it provides a framework for amodular
and incremental approach to writing device drivers and network protocols.
Modules may be used by different streams and hence by different devices.
For example, a networking module may be used by both an Ethernet network
card and a 802.11 wireless network card. Furthermore, rather than treating
character-device I/O as an unstructured byte stream, STREAMS allows sup-
port for message boundaries and control information when communicating
betweenmodules.Most UNIX variants support STREAMS, and it is the preferred
method for writing protocols and device drivers. For example, System V UNIX
and Solaris implement the socket mechanism using STREAMS.

12.7 Performance

I/O is a major factor in system performance. It places heavy demands on
the CPU to execute device-driver code and to schedule processes fairly and
efficiently as they block and unblock. The resulting context switches stress
the CPU and its hardware caches. I/O also exposes any inefficiencies in the
interrupt-handling mechanisms in the kernel. In addition, I/O loads down the
memory bus during data copies between controllers and physical memory and
again during copies between kernel buffers and application data space. Coping
gracefully with all these demands is one of the major concerns of a computer
architect.

Althoughmodern computers can handlemany thousands of interrupts per
second, interrupt handling is a relatively expensive task. Each interrupt causes
the system to perform a state change, to execute the interrupt handler, and
then to restore state. Programmed I/O can be more efficient than interrupt-
driven I/O, if the number of cycles spent in busy waiting is not excessive. An
I/O completion typically unblocks a process, leading to the full overhead of a
context switch.

Network traffic can also cause a high context-switch rate. Consider, for
instance, a remote login from one machine to another. Each character typed
on the local machine must be transported to the remote machine. On the local
machine, the character is typed; a keyboard interrupt is generated; and the
character is passed through the interrupt handler to the device driver, to the
kernel, and then to the user process. The user process issues a network I/O
system call to send the character to the remote machine. The character then
flows into the local kernel, through the network layers that construct a network
packet, and into the network device driver. The network device driver transfers
the packet to the network controller, which sends the character and generates
an interrupt. The interrupt is passed back up through the kernel to cause the
network I/O system call to complete.

Now, the remote system’s network hardware receives the packet, and an
interrupt is generated. The character is unpacked from the network proto-
cols and is given to the appropriate network daemon. The network daemon
identifies which remote login session is involved and passes the packet to the
appropriate subdaemon for that session. Throughout this flow, there are con-
text switches and state switches (Figure 12.16). Usually, the receiver echoes the
character back to the sender; that approach doubles the work.

522 Chapter 12 I/O Systems

Figure 12.16 Intercomputer communications.

Some systems use separate front-end processors for terminal I/O to reduce
the interrupt burden on the main CPU. For instance, a terminal concentrator
can multiplex the traffic from hundreds of remote terminals into one port on a
large computer. An I/O channel is a dedicated, special-purpose CPU found in
mainframes and in other high-end systems. The job of a channel is to offload
I/Owork from themainCPU. The idea is that the channels keep the data flowing
smoothly, while the main CPU remains free to process the data. Like the device
controllers and DMA controllers found in smaller computers, a channel can
process more general and sophisticated programs, so channels can be tuned
for particular workloads.

We can employ several principles to improve the efficiency of I/O:

• Reduce the number of context switches.

• Reduce the number of times that data must be copied in memory while
passing between device and application.

• Reduce the frequency of interrupts by using large transfers, smart con-
trollers, and polling (if busy waiting can be minimized).

• Increase concurrency by using DMA-knowledgeable controllers or chan-
nels to offload simple data copying from the CPU.

• Move processing primitives into hardware, to allow their operation in
device controllers to be concurrent with CPU and bus operation.

• Balance CPU, memory subsystem, bus, and I/O performance, because an
overload in any one area will cause idleness in others.

I/O devices vary greatly in complexity. For instance, a mouse is simple. The
mousemovements and button clicks are converted into numeric values that are
passed from hardware, through the mouse device driver, to the application.
By contrast, the functionality provided by the Windows disk device driver is
complex. It not onlymanages individual disks but also implements RAID arrays

12.7 Performance 523

(Section 11.8). To do so, it converts an application’s read or write request into a
coordinated set of disk I/O operations. Moreover, it implements sophisticated
error-handling and data-recovery algorithms and takesmany steps to optimize
disk performance.

Where should the I/O functionality be implemented—in the device hard-
ware, in the device driver, or in application software? Sometimes we observe
the progression depicted in Figure 12.17.

• Initially, we implement experimental I/O algorithms at the application
level, because application code is flexible and application bugs are unlikely
to cause system crashes. Furthermore, by developing code at the applica-
tion level, we avoid the need to reboot or reload device drivers after every
change to the code. An application-level implementation can be inefficient,
however, because of the overhead of context switches and because the
application cannot take advantage of internal kernel data structures and
kernel functionality (such as efficient in-kernel messaging, threading, and
locking). The FUSE system interface, for example, allows file systems to be
written and run in user mode.

• When an application-level algorithm has demonstrated its worth, we may
reimplement it in the kernel. This can improve performance, but the devel-
opment effort is more challenging, because an operating-system kernel
is a large, complex software system. Moreover, an in-kernel implementa-
tion must be thoroughly debugged to avoid data corruption and system
crashes.

• The highest performance may be obtained through a specialized imple-
mentation in hardware, either in the device or in the controller. The disad-
vantages of a hardware implementation include the difficulty and expense
of making further improvements or of fixing bugs, the increased devel-

application code

kernel code

device-driver code

device-controller code (hardware)

device code (hardware)

new algorithm

in
c
re

a
s
e
d
 f
le

x
ib

ili
ty

in
c
re

a
s
e
d
 a

b
s
tr

a
c
ti
o
n

in
c
re

a
s
e
d
 d

e
v
e
lo

p
m

e
n
t
c
o
s
t

in
c
re

a
s
e
d
 e

ff
ic

ie
n
c
y

in
c
re

a
s
e
d
 t
im

e
 (

g
e
n
e
ra

ti
o
n
s
)

Figure 12.17 Device functionality progression.

524 Chapter 12 I/O Systems

Figure 12.18 I/O performance of storage (and network latency).

opment time (months rather than days), and the decreased flexibility. For
instance, a hardware RAID controller may not provide any means for the
kernel to influence the order or location of individual block reads and
writes, even if the kernel has special information about the workload that
would enable it to improve the I/O performance.

Over time, as with other aspects of computing, I/O devices have been
increasing in speed. Nonvolatile memory devices are growing in popularity
and in the variety of devices available. The speed of NVM devices varies from
high to extraordinary,with next-generationdevices nearing the speedof DRAM.
These developments are increasing pressure on I/O subsystems as well as
operating system algorithms to take advantage of the read/write speeds now
available. Figure 12.18 shows CPU and storage devices in two dimensions:
capacity and latency of I/O operations. Added to the figure is a representation
of networking latency to reveal the performance “tax” networking adds to I/O.

12.8 Summary

• The basic hardware elements involved in I/O are buses, device controllers,
and the devices themselves.

• Thework ofmoving data between devices andmainmemory is performed
by the CPU as programmed I/O or is offloaded to a DMA controller.

• The kernel module that controls a device is a device driver. The system-
call interface provided to applications is designed to handle several basic
categories of hardware, including block devices, character-stream devices,
memory-mapped files, network sockets, and programmed interval timers.
The system calls usually block the processes that issue them, but nonblock-
ing and asynchronous calls are used by the kernel itself and by applications
that must not sleep while waiting for an I/O operation to complete.

Practice Exercises 525

• The kernel’s I/O subsystem provides numerous services. Among these are
I/O scheduling, buffering, caching, spooling, device reservation, error han-
dling. Another service, name translation, makes the connections between
hardware devices and the symbolic file names used by applications. It
involves several levels of mapping that translate from character-string
names, to specific device drivers and device addresses, and then to phys-
ical addresses of I/O ports or bus controllers. This mapping may occur
within the file-systemname space, as it does inUNIX, or in a separate device
name space, as it does in MS-DOS.

• STREAMS is an implementation and methodology that provides a frame-
work for a modular and incremental approach to writing device drivers
and network protocols. Through STREAMS, drivers can be stacked, with
data passing through them sequentially and bidirectionally for processing.

• I/O system calls are costly in terms of CPU consumption because of the
many layers of software between a physical device and an application.
These layers imply overhead from several sources: context switching to
cross the kernel’s protection boundary, signal and interrupt handling to
service the I/O devices, and the load on the CPU and memory system to
copy data between kernel buffers and application space.

Practice Exercises

12.1 State three advantages of placing functionality in a device controller,
rather than in the kernel. State three disadvantages.

12.2 The example of handshaking in Section 12.2 used two bits: a busy bit
and a command-ready bit. Is it possible to implement this handshaking
with only one bit? If it is, describe the protocol. If it is not, explain why
one bit is insufficient.

12.3 Why might a system use interrupt-driven I/O to manage a single serial
port and polling I/O tomanage a front-end processor, such as a terminal
concentrator?

12.4 Polling for an I/O completion can waste a large number of CPU cycles
if the processor iterates a busy-waiting loop many times before the I/O
completes. But if the I/Odevice is ready for service, polling can bemuch
more efficient than catching and dispatching an interrupt. Describe a
hybrid strategy that combines polling, sleeping, and interrupts for I/O
device service. For each of these three strategies (pure polling, pure
interrupts, hybrid), describe a computing environment in which that
strategy is more efficient than either of the others.

12.5 How does DMA increase system concurrency? How does it complicate
hardware design?

12.6 Why is it important to scale up system-bus and device speeds as CPU
speed increases?

12.7 Distinguish between a driver end and a stream module in a STREAMS
operation.

526 Chapter 12 I/O Systems

Further Reading

[Hennessy and Patterson (2012)] describe multiprocessor systems and cache-
consistency issues. [Intel (2011)] is a good source of information for Intel pro-
cessors.

Details about PCIe can be found at https://pcisig.com. For more about ACPI
see http://www.acpi.info.

The use of FUSE for user-mode file systems can create performance prob-
lems. An analysis of those issues can be found in https://www.usenix.org
/conference/fast17/technical-sessions/presentation/vangoor.

Bibliography

[Hennessy and Patterson (2012)] J. Hennessy andD. Patterson, Computer Archi-
tecture: A Quantitative Approach, Fifth Edition, Morgan Kaufmann (2012).

[Intel (2011)] Intel 64 and IA-32 Architectures Software Developer’s Manual, Com-
bined Volumes: 1, 2A, 2B, 3A and 3B. Intel Corporation (2011).

http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://scholar.google.com/scholar?hl/en&q= Intel 64 and IA 32 Architectures Software Developers Manual Combined Volumes 1 2A 2B 3A and 3B
https://pcisig.com
http://www.acpi.info
https://www.usenix.org/conference/fast17/technical-sessions/presentation/vangoor
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://scholar.google.com/scholar?hl/en&q=J Hennessy and D Patterson Computer Architecture A Quantitative Approach FifthEdition
http://scholar.google.com/scholar?hl/en&q= Intel 64 and IA 32 Architectures Software Developers Manual Combined Volumes 1 2A 2B 3A and 3B
http://scholar.google.com/scholar?hl/en&q= Intel 64 and IA 32 Architectures Software Developers Manual Combined Volumes 1 2A 2B 3A and 3B
https://www.usenix.org/conference/fast17/technical-sessions/presentation/vangoor

Exercises

Chapter 12 Exercises

12.8 When multiple interrupts from different devices appear at about the
same time, a priority scheme could be used to determine the order in
which the interrupts would be serviced. Discuss what issues need to be
considered in assigning priorities to different interrupts.

12.9 What are the advantages and disadvantages of supporting memory-
mapped I/O to device-control registers?

12.10 Consider the following I/O scenarios on a single-user PC:

a. Amouse used with a graphical user interface

b. A tape drive on a multitasking operating system (with no device
preallocation available)

c. A disk drive containing user files

d. A graphics card with direct bus connection, accessible through
memory-mapped I/O

For each of these scenarios, would you design the operating system
to use buffering, spooling, caching, or a combination? Would you use
polled I/O or interrupt-driven I/O? Give reasons for your choices.

12.11 In most multiprogrammed systems, user programs access memory
through virtual addresses, while the operating system uses raw physi-
cal addresses to accessmemory.What are the implications of this design
for the initiation of I/O operations by the user program and their exe-
cution by the operating system?

12.12 What are the various kinds of performance overhead associated with
servicing an interrupt?

12.13 Describe three circumstances under which blocking I/O should be
used. Describe three circumstances under which nonblocking I/O
should be used. Why not just implement nonblocking I/O and have
processes busy-wait until their devices are ready?

12.14 Typically, at the completion of a device I/O, a single interrupt is raised
and appropriately handled by the host processor. In certain settings,
however, the code that is to be executed at the completion of the I/O
can be broken into two separate pieces. The first piece executes imme-
diately after the I/O completes and schedules a second interrupt for
the remaining piece of code to be executed at a later time. What is the
purpose of using this strategy in the design of interrupt handlers?

12.15 Some DMA controllers support direct virtual memory access, where
the targets of I/O operations are specified as virtual addresses and
a translation from virtual to physical address is performed during
the DMA. How does this design complicate the design of the DMA
controller? What are the advantages of providing such functionality?

12.16 UNIX coordinates the activities of the kernel I/O components bymanip-
ulating shared in-kernel data structures, whereasWindows uses object-

EX-46

oriented message passing between kernel I/O components. Discuss
three pros and three cons of each approach.

12.17 Write (in pseudocode) an implementation of virtual clocks, including
the queueing and management of timer requests for the kernel and
applications. Assume that the hardware provides three timer channels.

12.18 Discuss the advantages and disadvantages of guaranteeing reliable
transfer of data between modules in the STREAMS abstraction.

EX-47

Part Six

File System
A file is a collection of related information defined by its creator. Files are
mapped by the operating system onto physical mass-storage devices. A
file system describes how files are mapped onto physical devices, as well
as how they are accessed andmanipulated by both users and programs.

Accessing physical storage can often be slow, so file systems must
be designed for efficient access. Other requirements may be important
as well, including providing support for file sharing and remote access to
files.

13CHAPTER

File -System
Interface

For most users, the file system is the most visible aspect of a general-purpose
operating system. It provides the mechanism for on-line storage of and access
to both data and programs of the operating system and all the users of the
computer system. The file system consists of two distinct parts: a collection of
files, each storing related data, and a directory structure, which organizes and
provides information about all the files in the system. Most file systems live on
storage devices, which we described in Chapter 11 andwill continue to discuss
in the next chapter. In this chapter, we consider the various aspects of files and
the major directory structures. We also discuss the semantics of sharing files
among multiple processes, users, and computers. Finally, we discuss ways to
handle file protection, necessary when we have multiple users and want to
control who may access files and how files may be accessed.

CHAPTER OBJECTIVES

• Explain the function of file systems.

• Describe the interfaces to file systems.

• Discuss file-system design tradeoffs, including access methods, file shar-
ing, file locking, and directory structures.

• Explore file-system protection.

13.1 File Concept

Computers can store information on various storage media, such as NVM
devices, HDDs, magnetic tapes, and optical disks. So that the computer system
will be convenient to use, the operating system provides a uniform logical
view of stored information. The operating system abstracts from the physical
properties of its storage devices to define a logical storage unit, the fil . Files are
mapped by the operating system onto physical devices. These storage devices
are usually nonvolatile, so the contents are persistent between system reboots.

529

530 Chapter 13 File-System Interface

A file is a named collection of related information that is recorded on sec-
ondary storage. From a user’s perspective, a file is the smallest allotment of
logical secondary storage; that is, data cannot be written to secondary storage
unless they are within a file. Commonly, files represent programs (both source
and object forms) and data. Data files may be numeric, alphabetic, alphanu-
meric, or binary. Files may be free form, such as text files, or may be formatted
rigidly. In general, a file is a sequence of bits, bytes, lines, or records, the mean-
ing of which is defined by the file’s creator and user. The concept of a file is
thus extremely general.

Because files are the method users and applications use to store and
retrieve data, and because they are so general purpose, their use has stretched
beyond its original confines. For example, UNIX, Linux, and some other oper-
ating systems provide a proc file system that uses file-system interfaces to
provide access to system information (such as process details).

The information in a file is defined by its creator. Many different types of
information may be stored in a file—source or executable programs, numeric
or text data, photos, music, video, and so on. A file has a certain defined struc-
ture,which depends on its type.A text fil is a sequence of characters organized
into lines (and possibly pages). A source fil is a sequence of functions, each of
which is further organized as declarations followed by executable statements.
An executable fil is a series of code sections that the loader can bring into
memory and execute.

13.1.1 File Attributes

A file is named, for the convenience of its human users, and is referred to by
its name. A name is usually a string of characters, such as example.c. Some
systems differentiate between uppercase and lowercase characters in names,
whereas other systems do not. When a file is named, it becomes independent
of the process, the user, and even the system that created it. For instance, one
user might create the file example.c, and another user might edit that file
by specifying its name. The file’s owner might write the file to a USB drive,
send it as an e-mail attachment, or copy it across a network, and it could still
be called example.c on the destination system. Unless there is a sharing and
synchonization method, that second copy is now independent of the first and
can be changed separately.

A file’s attributes vary from one operating system to another but typically
consist of these:

• Name. The symbolic file name is the only information kept in human-
readable form.

• Identifie . This unique tag, usually a number, identifies the file within the
file system; it is the non-human-readable name for the file.

• Type. This information is needed for systems that support different types
of files.

• Location. This information is a pointer to a device and to the location of
the file on that device.

13.1 File Concept 531

• Size. The current size of the file (in bytes, words, or blocks) and possibly
the maximum allowed size are included in this attribute.

• Protection. Access-control information determines who can do reading,
writing, executing, and so on.

• Timestamps and user identificatio . This information may be kept for
creation, last modification, and last use. These data can be useful for pro-
tection, security, and usage monitoring.

Some newer file systems also support extended file attributes, including char-
acter encoding of the file and security features such as a file checksum. Figure
13.1 illustrates a fil info window on macOS that displays a file’s attributes.

The information about all files is kept in the directory structure, which
resides on the same device as the files themselves. Typically, a directory entry
consists of the file’s name and its unique identifier. The identifier in turn
locates the other file attributes. It may take more than a kilobyte to record
this information for each file. In a system with many files, the size of the
directory itselfmay bemegabytes or gigabytes. Because directoriesmustmatch
the volatility of the files, like files, they must be stored on the device and are
usually brought into memory piecemeal, as needed.

Figure 13.1 A file info window on macOS.

532 Chapter 13 File-System Interface

13.1.2 File Operations

Afile is an abstract data type. To define a file properly, we need to consider the
operations that can be performed on files. The operating system can provide
system calls to create, write, read, reposition, delete, and truncate files. Let’s
examine what the operating system must do to perform each of these seven
basic file operations. It should then be easy to see how other similar operations,
such as renaming a file, can be implemented.

• Creating a fil . Two steps are necessary to create a file. First, space in the
file systemmust be found for the file. We discuss how to allocate space for
the file in Chapter 14. Second, an entry for the new file must be made in a
directory.

• Opening a fil . Rather than have all file operations specify a file name,
causing the operating system to evaluate the name, check access permis-
sions, and so on, all operations except create and delete require a file
open() first. If successful, the open call returns a file handle that is used as
an argument in the other calls.

• Writing a fil . To write a file, we make a system call specifying both the
open file handle and the information to be written to the file. The system
must keep a write pointer to the location in the file where the next write
is to take place if it is sequential. The write pointer must be updated
whenever a write occurs.

• Reading a fil . To read from a file, we use a system call that specifies the
file handle and where (in memory) the next block of the file should be
put. Again, the system needs to keep a read pointer to the location in
the file where the next read is to take place, if sequential. Once the read
has taken place, the read pointer is updated. Because a process is usually
either reading from or writing to a file, the current operation location can
be kept as a per-process current-file-positio pointer. Both the read and
write operations use this same pointer, saving space and reducing system
complexity.

• Repositioning within a file. The current-file-position pointer of the open
file is repositioned to a given value. Repositioning within a file need not
involve any actual I/O. This file operation is also known as a file seek.

• Deleting a fil . To delete a file, we search the directory for the named file.
Having found the associated directory entry, we release all file space, so
that it can be reused by other files, and erase or mark as free the directory
entry. Note that some systems allow hard links—multiple names (direc-
tory entries) for the same file. In this case the actual file contents is not
deleted until the last link is deleted.

• Truncating a fil . The user may want to erase the contents of a file but
keep its attributes. Rather than forcing the user to delete the file and then
recreate it, this function allows all attributes to remain unchanged—except
for file length. The file can then be reset to length zero, and its file space
can be released.

13.1 File Concept 533

These seven basic operations comprise the minimal set of required file
operations. Other common operations include appending new information
to the end of an existing file and renaming an existing file. These primitive
operations can then be combined to perform other file operations. For instance,
we can create a copy of a file by creating a new file and then reading from the
old and writing to the new. We also want to have operations that allow a user
to get and set the various attributes of a file. For example, wemaywant to have
operations that allow a user to determine the status of a file, such as the file’s
length, and to set file attributes, such as the file’s owner.

As mentioned, most of the file operations mentioned involve searching the
directory for the entry associated with the named file. To avoid this constant
searching, many systems require that an open() system call be made before a
file is first used. The operating system keeps a table, called the open-fil table,
containing information about all open files. When a file operation is requested,
the file is specified via an index into this table, so no searching is required.
When the file is no longer being actively used, it is closed by the process, and
the operating system removes its entry from the open-file table, potentially
releasing locks. create() and delete() are system calls thatworkwith closed
rather than open files.

Some systems implicitly open a file when the first reference to it is made.
The file is automatically closed when the job or program that opened the
file terminates. Most systems, however, require that the programmer open a
file explicitly with the open() system call before that file can be used. The
open() operation takes a file name and searches the directory, copying the
directory entry into the open-file table. The open() call can also accept access-
mode information—create, read-only, read–write, append-only, and so on.
This mode is checked against the file’s permissions. If the request mode is
allowed, the file is opened for the process. The open() system call typically
returns a pointer to the entry in the open-file table. This pointer, not the actual
file name, is used in all I/O operations, avoiding any further searching and
simplifying the system-call interface.

The implementation of the open() and close() operations is more com-
plicated in an environment where several processes may open the file simulta-
neously. This may occur in a system where several different applications open
the same file at the same time. Typically, the operating system uses two levels
of internal tables: a per-process table and a system-wide table. The per-process
table tracks all files that a process has open. Stored in this table is information
regarding the process’s use of the file. For instance, the current file pointer for
each file is found here. Access rights to the file and accounting information can
also be included.

Each entry in the per-process table in turn points to a system-wide open-file
table. The system-wide table contains process-independent information, such
as the location of the file on disk, access dates, and file size. Once a file has been
opened by one process, the system-wide table includes an entry for the file.
When another process executes an open() call, a new entry is simply added
to the process’s open-file table pointing to the appropriate entry in the system-
wide table. Typically, the open-file table also has an open count associatedwith
each file to indicate how many processes have the file open. Each close()
decreases this open count, and when the open count reaches zero, the file is no
longer in use, and the file’s entry is removed from the open-file table.

534 Chapter 13 File-System Interface

FILE LOCKING IN JAVA

In the Java API, acquiring a lock requires first obtaining the FileChannel
for the file to be locked. The lock()method of the FileChannel is used to
acquire the lock. The API of the lock()method is

FileLock lock(long begin, long end, boolean shared)

where begin and end are the beginning and ending positions of the region
being locked. Setting shared to true is for shared locks; setting shared
to false acquires the lock exclusively. The lock is released by invoking the
release() of the FileLock returned by the lock() operation.

The program in Figure 13.2 illustrates file locking in Java. This program
acquires two locks on the file file.txt. The lock for the first half of the file
is an exclusive lock; the lock for the second half is a shared lock.

In summary, several pieces of information are associated with an open file.

• File pointer. On systems that do not include a file offset as part of the
read() and write() system calls, the system must track the last read–
write location as a current-file-position pointer. This pointer is unique to
each process operating on the file and thereforemust be kept separate from
the on-disk file attributes.

• File-open count. As files are closed, the operating system must reuse its
open-file table entries, or it could run out of space in the table. Multiple
processes may have opened a file, and the system must wait for the last
file to close before removing the open-file table entry. The file-open count
tracks the number of opens and closes and reaches zero on the last close.
The system can then remove the entry.

• Location of the fil . Most file operations require the system to read orwrite
data within the file. The information needed to locate the file (wherever it
is located, be it on mass storage, on a file server across the network, or on
a RAM drive) is kept in memory so that the system does not have to read it
from the directory structure for each operation.

• Access rights. Each process opens a file in an access mode. This informa-
tion is stored on the per-process table so the operating system can allow or
deny subsequent I/O requests.

Some operating systems provide facilities for locking an open file (or sec-
tions of a file). File locks allow one process to lock a file and prevent other
processes from gaining access to it. File locks are useful for files that are shared
by several processes—for example, a system log file that can be accessed and
modified by a number of processes in the system.

File locks provide functionality similar to reader–writer locks, covered in
Section 7.1.2. A shared lock is akin to a reader lock in that several processes can
acquire the lock concurrently. An exclusive lock behaves like awriter lock; only
one process at a time can acquire such a lock. It is important to note that not

13.1 File Concept 535

import java.io.*;
import java.nio.channels.*;

public class LockingExample {
public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;

public static void main(String args[]) throws IOException {
FileLock sharedLock = null;
FileLock exclusiveLock = null;

try {
RandomAccessFile raf = new RandomAccessFile("file.txt","rw");

// get the channel for the file
FileChannel ch = raf.getChannel();

// this locks the first half of the file - exclusive
exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);

/** Now modify the data . . . */

// release the lock
exclusiveLock.release();

// this locks the second half of the file - shared
sharedLock = ch.lock(raf.length()/2+1,raf.length(),SHARED);

/** Now read the data . . . */

// release the lock
sharedLock.release();

} catch (java.io.IOException ioe) {
System.err.println(ioe);

}
finally {
if (exclusiveLock != null)

exclusiveLock.release();
if (sharedLock != null)

sharedLock.release();
}

}
}

Figure 13.2 File-locking example in Java.

all operating systems provide both types of locks: some systems provide only
exclusive file locking.

Furthermore, operating systems may provide either mandatory or advi-
soryfile-lockingmechanisms.Withmandatory locking, once a process acquires
an exclusive lock, the operating system will prevent any other process from

536 Chapter 13 File-System Interface

accessing the locked file. For example, assume a process acquires an exclusive
lock on the file system.log. If we attempt to open system.log from another
process—for example, a text editor—the operating systemwill prevent access
until the exclusive lock is released.Alternatively, if the lock is advisory, then the
operating systemwill not prevent the text editor from acquiring access to sys-
tem.log. Rather, the text editormust bewritten so that itmanually acquires the
lock before accessing the file. In other words, if the locking scheme is manda-
tory, the operating system ensures locking integrity. For advisory locking, it
is up to software developers to ensure that locks are appropriately acquired
and released. As a general rule, Windows operating systems adopt mandatory
locking, and UNIX systems employ advisory locks.

The use of file locks requires the same precautions as ordinary process syn-
chronization. For example, programmers developing on systems with manda-
tory locking must be careful to hold exclusive file locks only while they are
accessing the file. Otherwise, they will prevent other processes from accessing
the file as well. Furthermore, some measures must be taken to ensure that two
ormore processes donot become involved in a deadlockwhile trying to acquire
file locks.

13.1.3 File Types

When we design a file system—indeed, an entire operating system—we
always consider whether the operating system should recognize and support
file types. If an operating system recognizes the type of a file, it can then operate
on the file in reasonable ways. For example, a common mistake occurs when a
user tries to output the binary-object form of a program. This attempt normally
produces garbage; however, the attempt can succeed if the operating system
has been told that the file is a binary-object program.

A common technique for implementing file types is to include the type
as part of the file name. The name is split into two parts—a name and an
extension, usually separated by a period (Figure 13.3). In this way, the user
and the operating system can tell from the name alone what the type of a file
is. Most operating systems allow users to specify a file name as a sequence
of characters followed by a period and terminated by an extension made
up of additional characters. Examples include resume.docx, server.c, and
ReaderThread.cpp.

The system uses the extension to indicate the type of the file and the type
of operations that can be done on that file. Only a file with a .com, .exe, or .sh
extension can be executed, for instance. The .com and .exe files are two forms
of binary executable files, whereas the .sh file is a shell script containing, in
ASCII format, commands to the operating system. Application programs also
use extensions to indicate file types in which they are interested. For example,
Java compilers expect source files to have a .java extension, and theMicrosoft
Word word processor expects its files to end with a .doc or .docx extension.
These extensions are not always required, so a user may specify a file without
the extension (to save typing), and the application will look for a file with
the given name and the extension it expects. Because these extensions are
not supported by the operating system, they can be considered “hints” to the
applications that operate on them.

Consider, too, the macOS operating system. In this system, each file has
a type, such as .app (for application). Each file also has a creator attribute

13.1 File Concept 537

file type usual extension function

ready-to-run machine-
language program

executable exe, com, bin
or none

compiled, machine
language, not linked

object obj, o

binary file containing
audio or A/V information

multimedia mpeg, mov, mp3,
mp4, avi

related files grouped into
one file, sometimes com-
pressed, for archiving
or storage

archive rar, zip, tar

ASCII or binary file in a
format for printing or
viewing

print or view gif, pdf, jpg

libraries of routines for
programmers

library lib, a, so, dll

various word-processor
formats

word processor
docx

commands to the command
interpreter

batch bat, sh

textual data, documentsmarkup xml, html, tex

source code in various
languages

source code c, cc, java, perl,
asm

xml, rtf,

Figure 13.3 Common file types.

containing the name of the program that created it. This attribute is set by
the operating system during the create() call, so its use is enforced and
supported by the system. For instance, a file produced by a word processor
has the word processor’s name as its creator. When the user opens that file, by
double-clicking themouse on the icon representing the file, the word processor
is invoked automatically, and the file is loaded, ready to be edited.

The UNIX system uses a magic number stored at the beginning of some
binary files to indicate the type of data in the file (for example, the format
of an image file). Likewise, it uses a text magic number at the start of text
files to indicate the type of file (which shell language a script is written in)
and so on. (For more details on magic numbers and other computer jargon,
see http://www.catb.org/esr/jargon/.) Not all files have magic numbers, so
system features cannot be based solely on this information. UNIX does not
record the name of the creating program, either. UNIX does allow file-name-
extension hints, but these extensions are neither enforced nor depended on by
the operating system; they are meant mostly to aid users in determining what
type of contents the file contains. Extensions can be used or ignored by a given
application, but that is up to the application’s programmer.

13.1.4 File Structure

File types also can be used to indicate the internal structure of the file. Source
and object files have structures that match the expectations of the programs
that read them. Further, certain files must conform to a required structure that

http://www.catb.org/esr/jargon/
http://www.catb.org/esr/jargon/

538 Chapter 13 File-System Interface

is understood by the operating system. For example, the operating system
requires that an executable file have a specific structure so that it can determine
where in memory to load the file and what the location of the first instruction
is. Some operating systems extend this idea into a set of system-supported
file structures, with sets of special operations for manipulating files with those
structures.

This point brings us to one of the disadvantages of having the operating
system support multiple file structures: it makes the operating system large
and cumbersome. If the operating systemdefines five different file structures, it
needs to contain the code to support these file structures. In addition, it may be
necessary to define every file as one of the file types supported by the operating
system. When new applications require information structured in ways not
supported by the operating system, severe problems may result.

For example, assume that a system supports two types of files: text files
(composed of ASCII characters separated by a carriage return and line feed)
and executable binary files. Now, if we (as users) want to define an encrypted
file to protect the contents from being read by unauthorized people, we may
find neither file type to be appropriate. The encrypted file is not ASCII text lines
but rather is (apparently) random bits. Although it may appear to be a binary
file, it is not executable. As a result, we may have to circumvent or misuse the
operating system’s file-type mechanism or abandon our encryption scheme.

Some operating systems impose (and support) a minimal number of file
structures. This approach has been adopted in UNIX, Windows, and others.
UNIX considers each file to be a sequence of 8-bit bytes; no interpretation of
these bits is made by the operating system. This scheme provides maximum
flexibility but little support. Each application program must include its own
code to interpret an input file as to the appropriate structure. However, all
operating systems must support at least one structure—that of an executable
file—so that the system is able to load and run programs.

13.1.5 Internal File Structure

Internally, locating an offset within a file can be complicated for the operating
system. Disk systems typically have a well-defined block size determined by
the size of a sector. All disk I/O is performed in units of one block (physical
record), and all blocks are the same size. It is unlikely that the physical record
size will exactly match the length of the desired logical record. Logical records
may even vary in length. Packing a number of logical records into physical
blocks is a common solution to this problem.

For example, the UNIX operating system defines all files to be simply
streams of bytes. Each byte is individually addressable by its offset from the
beginning (or end) of the file. In this case, the logical record size is 1 byte. The
file system automatically packs and unpacks bytes into physical disk blocks—
say, 512 bytes per block—as necessary.

The logical record size, physical block size, and packing technique deter-
mine how many logical records are in each physical block. The packing can be
done either by the user’s application program or by the operating system. In
either case, the file may be considered a sequence of blocks. All the basic I/O
functions operate in terms of blocks. The conversion from logical records to
physical blocks is a relatively simple software problem.

13.2 Access Methods 539

Because disk space is always allocated in blocks, some portion of the last
block of each file is generally wasted. If each blockwere 512 bytes, for example,
then a file of 1,949 bytes would be allocated four blocks (2,048 bytes); the last
99 bytes would be wasted. The waste incurred to keep everything in units
of blocks (instead of bytes) is internal fragmentation. All file systems suffer
from internal fragmentation; the larger the block size, the greater the internal
fragmentation.

13.2 Access Methods

Files store information. When it is used, this information must be accessed and
read into computer memory. The information in the file can be accessed in
several ways. Some systems provide only one access method for files. Others
(such as mainframe operating systems) support many access methods, and
choosing the right one for a particular application is a major design problem.

13.2.1 Sequential Access

The simplest access method is sequential access. Information in the file is
processed in order, one record after the other. This mode of access is by far
the most common; for example, editors and compilers usually access files in
this fashion.

Reads and writes make up the bulk of the operations on a file. A read
operation—read next()—reads the next portion of the file and automatically
advances a file pointer, which tracks the I/O location. Similarly, the write
operation—write next()—appends to the end of the file and advances to the
end of the newly written material (the new end of file). Such a file can be reset
to the beginning, and on some systems, a programmay be able to skip forward
or backward n records for some integer n—perhaps only for n = 1. Sequential
access, which is depicted in Figure 13.4, is based on a tape model of a file and
works as well on sequential-access devices as it does on random-access ones.

13.2.2 Direct Access

Another method is direct access (or relative access). Here, a file is made up
of fixed-length logical records that allow programs to read and write records
rapidly in no particular order. The direct-access method is based on a disk
model of a file, since disks allow random access to any file block. For direct
access, the file is viewed as a numbered sequence of blocks or records. Thus,

beginning end
current position

rewind
read or write

Figure 13.4 Sequential-access file.

540 Chapter 13 File-System Interface

we may read block 14, then read block 53, and then write block 7. There are no
restrictions on the order of reading or writing for a direct-access file.

Direct-access files are of great use for immediate access to large amounts
of information. Databases are often of this type. When a query concerning a
particular subject arrives, we compute which block contains the answer and
then read that block directly to provide the desired information.

As a simple example, on an airline-reservation system, we might store all
the information about a particular flight (for example, flight 713) in the block
identified by the flight number. Thus, the number of available seats for flight
713 is stored in block 713 of the reservation file. To store information about a
larger set, such as people, we might compute a hash function on the people’s
names or search a small in-memory index to determine a block to read and
search.

For the direct-access method, the file operations must be modified to
include the block number as a parameter. Thus, we have read(n), where
n is the block number, rather than read next(), and write(n) rather
than write next(). An alternative approach is to retain read next() and
write next() and to add an operation position file(n) where n is the
block number. Then, to effect a read(n), we would position file(n) and
then read next().

The block number provided by the user to the operating system is normally
a relative block number. A relative block number is an index relative to the
beginning of the file. Thus, the first relative block of the file is 0, the next is
1, and so on, even though the absolute disk address may be 14703 for the
first block and 3192 for the second. The use of relative block numbers allows
the operating system to decide where the file should be placed (called the
allocation problem, as we discuss in Chapter 14) and helps to prevent the user
from accessing portions of the file system that may not be part of her file. Some
systems start their relative block numbers at 0; others start at 1.

How, then, does the system satisfy a request for record N in a file? Assum-
ing we have a logical record length L, the request for record N is turned into
an I/O request for L bytes starting at location L ∗ (N) within the file (assuming
the first record is N = 0). Since logical records are of a fixed size, it is also easy
to read, write, or delete a record.

Not all operating systems support both sequential and direct access for
files. Some systems allow only sequential file access; others allow only direct
access. Some systems require that a file be defined as sequential or direct when
it is created. Such a file can be accessed only in a manner consistent with its
declaration. We can easily simulate sequential access on a direct-access file by
simply keeping a variable cp that defines our current position, as shown in
Figure 13.5. Simulating a direct-access file on a sequential-access file, however,
is extremely inefficient and clumsy.

13.2.3 Other Access Methods

Other access methods can be built on top of a direct-access method. These
methods generally involve the construction of an index for the file. The index,
like an index in the back of a book, contains pointers to the various blocks. To
find a record in the file, we first search the index and then use the pointer to
access the file directly and to find the desired record.

13.3 Directory Structure 541

sequential access

reset

read_next

write_next

cp 0;

read cp;
cp cp 1;

write cp;
cp cp 1;

implementation for direct access

Figure 13.5 Simulation of sequential access on a direct-access file.

For example, a retail-price filemight list the universal product codes (UPCs)
for items, with the associated prices. Each record consists of a 10-digit UPC and
a 6-digit price, for a 16-byte record. If our disk has 1,024 bytes per block, we
can store 64 records per block. A file of 120,000 records would occupy about
2,000 blocks (2 million bytes). By keeping the file sorted by UPC, we can define
an index consisting of the first UPC in each block. This index would have 2,000
entries of 10 digits each, or 20,000 bytes, and thus could be kept in memory. To
find the price of a particular item, we can make a binary search of the index.
From this search, we learn exactly which block contains the desired record and
access that block. This structure allows us to search a large file doing little I/O.

With large files, the index file itself may become too large to be kept in
memory. One solution is to create an index for the index file. The primary index
file contains pointers to secondary index files, which point to the actual data
items.

For example, IBM’s indexed sequential-access method (ISAM) uses a small
master index that points to disk blocks of a secondary index. The secondary
index blocks point to the actual file blocks. The file is kept sorted on a defined
key. To find a particular item,we first make a binary search of themaster index,
which provides the block number of the secondary index. This block is read
in, and again a binary search is used to find the block containing the desired
record. Finally, this block is searched sequentially. In this way, any record can
be located from its key by at most two direct-access reads. Figure 13.6 shows a
similar situation as implemented by OpenVMS index and relative files.

13.3 Directory Structure

The directory can be viewed as a symbol table that translates file names into
their file control blocks. If we take such a view, we see that the directory itself
can be organized in many ways. The organization must allow us to insert
entries, to delete entries, to search for a named entry, and to list all the entries
in the directory. In this section, we examine several schemes for defining the
logical structure of the directory system.

When considering a particular directory structure,we need to keep inmind
the operations that are to be performed on a directory:

• Search for a fil . We need to be able to search a directory structure to find
the entry for a particular file. Since files have symbolic names, and similar

542 Chapter 13 File-System Interface

index file relative file

Smith

last name

smith, john social-security age

logical record
number

Adams

Arthur

Asher

•
•
•

Figure 13.6 Example of index and relative files.

names may indicate a relationship among files, we may want to be able to
find all files whose names match a particular pattern.

• Create a fil . New files need to be created and added to the directory.

• Delete a file. When a file is no longer needed,wewant to be able to remove
it from the directory. Note a delete leaves a hole in the directory structure
and the file system may have a method to defragement the directory
structure.

• List a directory. We need to be able to list the files in a directory and the
contents of the directory entry for each file in the list.

• Rename a file. Because the name of a file represents its contents to its users,
we must be able to change the name when the contents or use of the file
changes. Renaming a file may also allow its position within the directory
structure to be changed.

• Traverse the file system. We may wish to access every directory and every
file within a directory structure. For reliability, it is a good idea to save the
contents and structure of the entire file system at regular intervals. Often,
we do this by copying all files tomagnetic tape, other secondary storage, or
across a network to another system or the cloud. This technique provides
a backup copy in case of system failure. In addition, if a file is no longer in
use, the file can be copied the backup target and the disk space of that file
released for reuse by another file.

In the following sections, we describe the most common schemes for defining
the logical structure of a directory.

13.3.1 Single-Level Directory

The simplest directory structure is the single-level directory. All files are con-
tained in the same directory, which is easy to support and understand (Figure
13.7).

13.3 Directory Structure 543

cat

files

directory bo a test data mail cont hex records

Figure 13.7 Single-level directory.

A single-level directory has significant limitations, however, when the
number of files increases or when the system has more than one user. Since all
files are in the same directory, they must have unique names. If two users call
their data file test.txt, then the unique-name rule is violated. For example,
in one programming class, 23 students called the program for their second
assignment prog2.c; another 11 called it assign2.c. Fortunately, most file
systems support file names of up to 255 characters, so it is relatively easy to
select unique file names.

Even a single user on a single-level directorymay find it difficult to remem-
ber the names of all the files as the number of files increases. It is not uncommon
for a user to have hundreds of files on one computer system and an equal
number of additional files on another system. Keeping track of so many files is
a daunting task.

13.3.2 Two-Level Directory

As we have seen, a single-level directory often leads to confusion of file names
among different users. The standard solution is to create a separate directory
for each user.

In the two-level directory structure, each user has his own user fil direc-
tory (UFD). The UFDs have similar structures, but each lists only the files of
a single user. When a user job starts or a user logs in, the system’s master
fil directory (MFD) is searched. The MFD is indexed by user name or account
number, and each entry points to the UFD for that user (Figure 13.8).

When a user refers to a particular file, only his own UFD is searched. Thus,
different users may have files with the same name, as long as all the file names
within each UFD are unique. To create a file for a user, the operating system
searches only that user’s UFD to ascertain whether another file of that name

cat bo a test x data aa

user 1 user 2 user 3 user 4

data a testuser file
directory

master file
directory

Figure 13.8 Two-level directory structure.

544 Chapter 13 File-System Interface

exists. To delete a file, the operating system confines its search to the local UFD;
thus, it cannot accidentally delete another user’s file that has the same name.

The user directories themselves must be created and deleted as necessary.
A special system program is run with the appropriate user name and account
information. The program creates a new UFD and adds an entry for it to the
MFD. The execution of this program might be restricted to system administra-
tors. The allocation of disk space for user directories can be handled with the
techniques discussed in Chapter 14 for files themselves.

Although the two-level directory structure solves the name-collision prob-
lem, it still has disadvantages. This structure effectively isolates one user from
another. Isolation is an advantage when the users are completely independent
but is a disadvantage when the users want to cooperate on some task and to
access one another’s files. Some systems simply do not allow local user files to
be accessed by other users.

If access is to be permitted, one user must have the ability to name a file
in another user’s directory. To name a particular file uniquely in a two-level
directory, we must give both the user name and the file name. A two-level
directory can be thought of as a tree, or an inverted tree, of height 2. The root
of the tree is the MFD. Its direct descendants are the UFDs. The descendants of
the UFDs are the files themselves. The files are the leaves of the tree. Specifying
a user name and a file name defines a path in the tree from the root (the MFD)
to a leaf (the specified file). Thus, a user name and a file name define a path
name. Every file in the system has a path name. To name a file uniquely, a user
must know the path name of the file desired.

For example, if user Awishes to access her own test file named test.txt,
she can simply refer to test.txt. To access the file named test.txt of user
B (with directory-entry name userb), however, she might have to refer to
/userb/test.txt. Every system has its own syntax for naming files in direc-
tories other than the user’s own.

Additional syntax is needed to specify the volume of a file. For instance,
in Windows a volume is specified by a letter followed by a colon. Thus, a
file specification might be C:∖userb∖test. Some systems go even further
and separate the volume, directory name, and file name parts of the speci-
fication. In OpenVMS, for instance, the file login.com might be specified as:
u:[sst.crissmeyer]login.com;1, where u is the name of the volume, sst
is the name of the directory, crissmeyer is the name of the subdirectory, and
1 is the version number. Other systems—such as UNIX and Linux—simply
treat the volume name as part of the directory name. The first name given
is that of the volume, and the rest is the directory and file. For instance,
/u/pgalvin/testmight specify volume u, directory pgalvin, and file test.

A special instance of this situation occurs with the system files. Programs
provided as part of the system—loaders, assemblers, compilers, utility rou-
tines, libraries, and so on—are generally defined as files.When the appropriate
commands are given to the operating system, these files are read by the loader
and executed. Many command interpreters simply treat such a command as
the name of a file to load and execute. In the directory system as we defined it
above, this file name would be searched for in the current UFD. One solution
would be to copy the system files into each UFD. However, copying all the
system files would waste an enormous amount of space. (If the system files

13.3 Directory Structure 545

require 5 MB, then supporting 12 users would require 5 × 12 = 60 MB just for
copies of the system files.)

The standard solution is to complicate the search procedure slightly. A
special user directory is defined to contain the system files (for example, user
0). Whenever a file name is given to be loaded, the operating system first
searches the local UFD. If the file is found, it is used. If it is not found, the system
automatically searches the special user directory that contains the system files.
The sequence of directories searched when a file is named is called the search
path. The search path can be extended to contain an unlimited list of directories
to search when a command name is given. This method is the one most used
in UNIX and Windows. Systems can also be designed so that each user has his
own search path.

13.3.3 Tree-Structured Directories

Once we have seen how to view a two-level directory as a two-level tree,
the natural generalization is to extend the directory structure to a tree of
arbitrary height (Figure 13.9). This generalization allows users to create their
own subdirectories and to organize their files accordingly. A tree is the most
common directory structure. The tree has a root directory, and every file in the
system has a unique path name.

A directory (or subdirectory) contains a set of files or subdirectories. In
many implementations, a directory is simply another file, but it is treated in
a special way. All directories have the same internal format. One bit in each
directory entry defines the entry as a file (0) or as a subdirectory (1). Special

list obj spell

find count hex reorderstat mail dist

root

spell bin programs

p e mail

reorder list findprog copy prt exp

last first

hex count

all

Figure 13.9 Tree-structured directory structure.

546 Chapter 13 File-System Interface

system calls are used to create and delete directories. In this case the operating
system (or the file system code) implements another file format, that of a
directory.

In normal use, each process has a current directory. The current directory
should containmost of the files that are of current interest to the process.When
reference is made to a file, the current directory is searched. If a file is needed
that is not in the current directory, then the user usually must either specify a
path name or change the current directory to be the directory holding that file.
To change directories, a system call could be provided that takes a directory
name as a parameter and uses it to redefine the current directory. Thus, the user
can change her current directory whenever she wants. Other systems leave it
to the application (say, a shell) to track and operate on a current directory, as
each process could have different current directories.

The initial current directory of a user’s login shell is designated when the
user job starts or the user logs in. The operating system searches the accounting
file (or some other predefined location) to find an entry for this user (for
accounting purposes). In the accounting file is a pointer to (or the name of)
the user’s initial directory. This pointer is copied to a local variable for this user
that specifies the user’s initial current directory. From that shell, other processes
can be spawned. The current directory of any subprocess is usually the current
directory of the parent when it was spawned.

Path names can be of two types: absolute and relative. In UNIX and Linux,
an absolute path name begins at the root (which is designated by an initial
“/”) and follows a path down to the specified file, giving the directory names
on the path. A relative path name defines a path from the current directory. For
example, in the tree-structuredfile systemof Figure 13.9, if the current directory
is /spell/mail, then the relative path name prt/first refers to the same file
as does the absolute path name /spell/mail/prt/first.

Allowing a user to define her own subdirectories permits her to impose
a structure on her files. This structure might result in separate directories for
files associated with different topics (for example, a subdirectory was created
to hold the text of this book) or different forms of information. For example, the
directory programsmay contain source programs; the directory binmay store
all the binaries. (As a side note, executable files were known in many systems
as “binaries” which led to them being stored in the bin directory.)

An interesting policy decision in a tree-structured directory concerns how
to handle the deletion of a directory. If a directory is empty, its entry in the
directory that contains it can simply be deleted. However, suppose the direc-
tory to be deleted is not empty but contains several files or subdirectories. One
of two approaches can be taken. Some systemswill not delete a directory unless
it is empty. Thus, to delete a directory, the user must first delete all the files
in that directory. If any subdirectories exist, this procedure must be applied
recursively to them, so that they can be deleted also. This approach can result
in a substantial amount of work. An alternative approach, such as that taken
by the UNIX rm command, is to provide an option: when a request is made
to delete a directory, all that directory’s files and subdirectories are also to be
deleted. Either approach is fairly easy to implement; the choice is one of policy.
The latter policy is more convenient, but it is also more dangerous, because an
entire directory structure can be removedwith one command. If that command

13.3 Directory Structure 547

is issued in error, a large number of files and directorieswill need to be restored
(assuming a backup exists).

With a tree-structured directory system, users can be allowed to access, in
addition to their files, the files of other users. For example, user B can access a
file of user Aby specifying its path name. User B can specify either an absolute
or a relative path name. Alternatively, user B can change her current directory
to be user A’s directory and access the file by its file name.

13.3.4 Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The files asso-
ciated with that project can be stored in a subdirectory, separating them from
other projects and files of the two programmers. But since both programmers
are equally responsible for the project, both want the subdirectory to be in their
own directories. In this situation, the common subdirectory should be shared.
A shared directory or file exists in the file system in two (or more) places at
once.

A tree structure prohibits the sharing of files or directories. An acyclic
graph—that is, a graph with no cycles—allows directories to share subdirec-
tories and files (Figure 13.10). The same file or subdirectory may be in two
different directories. The acyclic graph is a natural generalization of the tree-
structured directory scheme.

It is important to note that a shared file (or directory) is not the same as two
copies of the file. With two copies, each programmer can view the copy rather
than the original, but if one programmer changes the file, the changes will not
appear in the other’s copy. With a shared file, only one actual file exists, so any
changes made by one person are immediately visible to the other. Sharing is

list all w count words list

list rade w7

count

root

dict spell

Figure 13.10 Acyclic-graph directory structure.

548 Chapter 13 File-System Interface

particularly important for subdirectories; a new file created by one person will
automatically appear in all the shared subdirectories.

When people are working as a team, all the files they want to share can be
put into one directory. The home directory of each teammember could contain
this directory of shared files as a subdirectory. Even in the case of a single user,
the user’s file organization may require that some file be placed in different
subdirectories. For example, a program written for a particular project should
be both in the directory of all programs and in the directory for that project.

Shared files and subdirectories can be implemented in several ways. A
common way, exemplified by UNIX systems, is to create a new directory entry
called a link. A link is effectively a pointer to another file or subdirectory. For
example, a link may be implemented as an absolute or a relative path name.
When a reference to a file is made, we search the directory. If the directory
entry is marked as a link, then the name of the real file is included in the link
information. We resolve the link by using that path name to locate the real
file. Links are easily identified by their format in the directory entry (or by
having a special type on systems that support types) and are effectively indirect
pointers. The operating system ignores these links when traversing directory
trees to preserve the acyclic structure of the system.

Another common approach to implementing shared files is simply to
duplicate all information about them in both sharing directories. Thus, both
entries are identical and equal. Consider the difference between this approach
and the creation of a link. The link is clearly different from the original directory
entry; thus, the two are not equal. Duplicate directory entries, however, make
the original and the copy indistinguishable. A major problem with duplicate
directory entries is maintaining consistency when a file is modified.

An acyclic-graph directory structure is more flexible than a simple tree
structure, but it is also more complex. Several problems must be considered
carefully. A file may now have multiple absolute path names. Consequently,
distinct file names may refer to the same file. This situation is similar to the
aliasing problem for programming languages. If we are trying to traverse the
entire file system—to find a file, to accumulate statistics on all files, or to copy
all files to backup storage—this problem becomes significant, since we do not
want to traverse shared structures more than once.

Another problem involves deletion. When can the space allocated to a
shared file be deallocated and reused? One possibility is to remove the file
whenever anyone deletes it, but this action may leave dangling pointers to the
now-nonexistent file. Worse, if the remaining file pointers contain actual disk
addresses, and the space is subsequently reused for other files, these dangling
pointers may point into the middle of other files.

In a systemwhere sharing is implemented by symbolic links, this situation
is somewhat easier to handle. The deletion of a link need not affect the original
file; only the link is removed. If the file entry itself is deleted, the space for
the file is deallocated, leaving the links dangling. We can search for these links
and remove them as well, but unless a list of the associated links is kept with
each file, this search can be expensive. Alternatively, we can leave the links
until an attempt is made to use them. At that time, we can determine that the
file of the name given by the link does not exist and can fail to resolve the
link name; the access is treated just as with any other illegal file name. (In this
case, the system designer should consider carefully what to do when a file is

13.3 Directory Structure 549

deleted and another file of the same name is created, before a symbolic link to
the original file is used.) In the case of UNIX, symbolic links are left when a file
is deleted, and it is up to the user to realize that the original file is gone or has
been replaced. Microsoft Windows uses the same approach.

Another approach to deletion is to preserve the file until all references to
it are deleted. To implement this approach, we must have some mechanism
for determining that the last reference to the file has been deleted. We could
keep a list of all references to a file (directory entries or symbolic links). When
a link or a copy of the directory entry is established, a new entry is added to
the file-reference list. When a link or directory entry is deleted, we remove its
entry on the list. The file is deleted when its file-reference list is empty.

The trouble with this approach is the variable and potentially large size of
the file-reference list. However, we really do not need to keep the entire list
—we need to keep only a count of the number of references. Adding a new
link or directory entry increments the reference count. Deleting a link or entry
decrements the count. When the count is 0, the file can be deleted; there are no
remaining references to it. The UNIX operating system uses this approach for
nonsymbolic links (or hard links), keeping a reference count in the file infor-
mation block (or inode; see Section C.7.2). By effectively prohibiting multiple
references to directories, we maintain an acyclic-graph structure.

To avoid problems such as the ones just discussed, some systems simply
do not allow shared directories or links.

13.3.5 General Graph Directory

Aserious problem with using an acyclic-graph structure is ensuring that there
are no cycles. If we start with a two-level directory and allow users to create
subdirectories, a tree-structured directory results. It should be fairly easy to see
that simply adding new files and subdirectories to an existing tree-structured
directory preserves the tree-structured nature. However, when we add links,
the tree structure is destroyed, resulting in a simple graph structure (Figure
13.11).

The primary advantage of an acyclic graph is the relative simplicity of the
algorithms to traverse the graph and to determine when there are no more
references to a file. We want to avoid traversing shared sections of an acyclic
graph twice, mainly for performance reasons. If we have just searched a major
shared subdirectory for a particular file without finding it, we want to avoid
searching that subdirectory again; the second search would be a waste of time.

If cycles are allowed to exist in the directory, we likewise want to avoid
searching any component twice, for reasons of correctness as well as perfor-
mance.Apoorlydesignedalgorithmmight result in an infinite loop continually
searching through the cycle and never terminating. One solution is to limit
arbitrarily the number of directories that will be accessed during a search.

A similar problem exists when we are trying to determine when a file
can be deleted. With acyclic-graph directory structures, a value of 0 in the
reference count means that there are no more references to the file or directory,
and the file can be deleted. However, when cycles exist, the reference count
may not be 0 even when it is no longer possible to refer to a directory or file.
This anomaly results from the possibility of self-referencing (or a cycle) in the
directory structure. In this case, we generally need to use a garbage collection

550 Chapter 13 File-System Interface

text mail

avi count unhex hex

count book book mail unhex hyp

root

avi tc jim

Figure 13.11 General graph directory.

scheme to determine when the last reference has been deleted and the disk
space can be reallocated. Garbage collection involves traversing the entire file
system, marking everything that can be accessed. Then, a second pass collects
everything that is not marked onto a list of free space. (A similar marking
procedure can be used to ensure that a traversal or searchwill cover everything
in the file system once and only once.) Garbage collection for a disk-based file
system, however, is extremely time consuming and is thus seldom attempted.

Garbage collection is necessary only because of possible cycles in the graph.
Thus, an acyclic-graph structure ismuch easier toworkwith. The difficulty is to
avoid cycles as new links are added to the structure. How do we knowwhen a
new link will complete a cycle? There are algorithms to detect cycles in graphs;
however, they are computationally expensive, especially when the graph is on
disk storage. A simpler algorithm in the special case of directories and links
is to bypass links during directory traversal. Cycles are avoided, and no extra
overhead is incurred.

13.4 Protection

When information is stored in a computer system, we want to keep it safe
from physical damage (the issue of reliability) and improper access (the issue
of protection).

Reliability is generally provided by duplicate copies of files.Many comput-
ers have systems programs that automatically (or through computer-operator
intervention) copy disk files to tape at regular intervals (once per day or week
or month) to maintain a copy should a file system be accidentally destroyed.
File systems can be damaged by hardware problems (such as errors in reading
or writing), power surges or failures, head crashes, dirt, temperature extremes,

13.4 Protection 551

and vandalism. Files may be deleted accidentally. Bugs in the file-system soft-
ware can also cause file contents to be lost. Reliability was covered in more
detail in Chapter 11.

Protection can be provided in many ways. For a laptop system running
a modern operating system, we might provide protection by requiring a user
name and password authentication to access it, encrypting the secondary stor-
age so even someone opening the laptop and removing the drive would have
a difficult time accessing its data, and firewalling network access so that when
it is in use it is difficult to break in via its network connection. In multiuser
system, even valid access of the system needs more advanced mechanisms to
allow only valid access of the data.

13.4.1 Types of Access

The need to protect files is a direct result of the ability to access files. Systems
that do not permit access to the files of other users do not need protection. Thus,
we could provide complete protection by prohibiting access. Alternatively, we
could provide free access with no protection. Both approaches are too extreme
for general use. What is needed is controlled access.

Protection mechanisms provide controlled access by limiting the types of
file access that can be made. Access is permitted or denied depending on
several factors, one of which is the type of access requested. Several different
types of operations may be controlled:

• Read. Read from the file.

• Write. Write or rewrite the file.

• Execute. Load the file into memory and execute it.

• Append. Write new information at the end of the file.

• Delete. Delete the file and free its space for possible reuse.

• List. List the name and attributes of the file.

• Attribute change. Changing the attributes of the file.

Other operations, such as renaming, copying, and editing the file, may also
be controlled. For many systems, however, these higher-level functions may
be implemented by a system program that makes lower-level system calls.
Protection is provided at only the lower level. For instance, copying a file may
be implemented simply by a sequence of read requests. In this case, a user with
read access can also cause the file to be copied, printed, and so on.

Many protection mechanisms have been proposed. Each has advantages
and disadvantages and must be appropriate for its intended application. A
small computer system that is used by only a fewmembers of a research group,
for example, may not need the same types of protection as a large corporate
computer that is used for research, finance, and personnel operations. We
discuss some approaches to protection in the following sections and present
a more complete treatment in Chapter 17.

552 Chapter 13 File-System Interface

13.4.2 Access Control

Themost common approach to the protection problem is tomake access depen-
dent on the identity of the user. Different users may need different types of
access to a file or directory. The most general scheme to implement identity-
dependent access is to associate with each file and directory an access-control
list (ACL) specifying user names and the types of access allowed for each user.
When a user requests access to a particular file, the operating system checks
the access list associated with that file. If that user is listed for the requested
access, the access is allowed. Otherwise, a protection violation occurs, and the
user job is denied access to the file.

This approach has the advantage of enabling complex access methodolo-
gies. The main problem with access lists is their length. If we want to allow
everyone to read a file, we must list all users with read access. This technique
has two undesirable consequences:

• Constructing such a list may be a tedious and unrewarding task, especially
if we do not know in advance the list of users in the system.

• The directory entry, previously of fixed size, now must be of variable size,
resulting in more complicated space management.

These problems can be resolved by use of a condensed version of the access
list.

To condense the length of the access-control list, many systems recognize
three classifications of users in connection with each file:

• Owner. The user who created the file is the owner.

• Group. A set of users who are sharing the file and need similar access is a
group, or work group.

• Other. All other users in the system.

The most common recent approach is to combine access-control lists with
themore general (and easier to implement) owner, group, and universe access-
control scheme just described. For example, Solaris uses the three categories of
access by default but allows access-control lists to be added to specific files and
directories when more fine-grained access control is desired.

To illustrate, consider a person, Sara, who is writing a new book. She has
hired three graduate students (Jim, Dawn, and Jill) to helpwith the project. The
text of the book is kept in a file named book.tex. The protection associated
with this file is as follows:

• Sara should be able to invoke all operations on the file.

• Jim, Dawn, and Jill should be able only to read and write the file; they
should not be allowed to delete the file.

• All other users should be able to read, but not write, the file. (Sara is
interested in letting as many people as possible read the text so that she
can obtain feedback.)

13.4 Protection 553

PERMISSIONS IN AUNIX SYSTEM

In the UNIX system, directory protection and file protection are handled
similarly. Associated with each file and directory are three fields—owner,
group, and universe—each consisting of the three bits rwx, where r controls
read access, w controls write access, and x controls execution. Thus, a user can
list the content of a subdirectory only if the r bit is set in the appropriate field.
Similarly, a user can change his current directory to another current directory
(say, foo) only if the x bit associated with the foo subdirectory is set in the
appropriate field.

A sample directory listing from a UNIX environment is shown in below:

-rw-rw-r--
drwx------
drwxrwxr-x
drwxrwx---
-rw-r--r--
-rwxr-xr-x
drwx--x--x
drwx------
drwxrwxrwx

1 pbg
5 pbg
2 pbg
2 jwg
1 pbg
1 pbg
4 tag
3 pbg
3 pbg

staff
staff
staff
student
staff
staff
faculty
staff
staff

intro.ps
private/
doc/
student-proj/
program.c
program
lib/
mail/
test/

Sep 3 08:30
Jul 8 09.33
Jul 8 09:35
Aug 3 14:13
Feb 24 2017
Feb 24 2017
Jul 31 10:31
Aug 29 06:52
Jul 8 09:35

31200
512
512
512

9423
20471

512
1024

512

The first field describes the protection of the file or directory. A d as the first
character indicates a subdirectory. Also shown are the number of links to the
file, the owner’s name, the group’s name, the size of the file in bytes, the date
of last modification, and finally the file’s name (with optional extension).

To achieve such protection, we must create a new group—say, text—
with members Jim, Dawn, and Jill. The name of the group, text, must then
be associated with the file book.tex, and the access rights must be set in
accordance with the policy we have outlined.

Now consider a visitor to whom Sara would like to grant temporary access
to Chapter 1. The visitor cannot be added to the text group because thatwould
give him access to all chapters. Because a file can be in only one group, Sara
cannot add another group to Chapter 1. With the addition of access-control-
list functionality, though, the visitor can be added to the access control list of
Chapter 1.

For this scheme towork properly, permissions and access listsmust be con-
trolled tightly. This control can be accomplished in several ways. For example,
in the UNIX system, groups can be created and modified only by the manager
of the facility (or by any superuser). Thus, control is achieved through human
interaction. Access lists are discussed further in Section 17.6.2.

With themore limited protection classification, only three fields are needed
to define protection. Often, each field is a collection of bits, and each bit either
allows or prevents the access associated with it. For example, the UNIX system
defines three fields of three bits each—rwx, where r controls read access, w
controls write access, and x controls execution. A separate field is kept for the

554 Chapter 13 File-System Interface

file owner, for the file’s group, and for all other users. In this scheme, nine bits
per file are needed to record protection information. Thus, for our example, the
protection fields for the file book.tex are as follows: for the owner Sara, all bits
are set; for the group text, the r and w bits are set; and for the universe, only
the r bit is set.

One difficulty in combining approaches comes in the user interface. Users
must be able to tell when the optional ACL permissions are set on a file. In the
Solaris example, a “+” is appended to the regular permissions, as in:

19 -rw-r--r--+ 1 jim staff 130 May 25 22:13 file1

A separate set of commands, setfacl and getfacl, is used to manage the
ACLs.

Windows users typically manage access-control lists via the GUI. Figure
13.12 shows a file-permission window on Windows 7 NTFS file system. In this
example, user “guest” is specifically denied access to the file ListPanel.java.

Another difficulty is assigning precedence when permission and ACLs
conflict. For example, if Walter is in a file’s group, which has read permission,
but the file has an ACL granting Walter read and write permission, should a
write by Walter be granted or denied? Solaris and other operating systems
give ACLs precedence (as they are more fine-grained and are not assigned by
default). This follows the general rule that specificity should have priority.

13.4.3 Other Protection Approaches

Another approach to the protection problem is to associate a password with
each file. Just as access to the computer system is often controlled by a pass-
word, access to each file can be controlled in the same way. If the passwords
are chosen randomly and changed often, this scheme may be effective in lim-
iting access to a file. The use of passwords has a few disadvantages, however.
First, the number of passwords that a user needs to remember may become
large, making the scheme impractical. Second, if only one password is used for
all the files, then once it is discovered, all files are accessible; protection is on
an all-or-none basis. Some systems allow a user to associate a password with
a subdirectory, rather than with an individual file, to address this problem.
More commonly encryption of a partition or individual files provides strong
protection, but password management is key.

In a multilevel directory structure, we need to protect not only individual
files but also collections of files in subdirectories; that is, we need to provide
a mechanism for directory protection. The directory operations that must be
protected are somewhat different from the file operations. We want to control
the creation and deletion of files in a directory. In addition, we probably want
to control whether a user can determine the existence of a file in a directory.
Sometimes, knowledge of the existence and name of a file is significant in
itself. Thus, listing the contents of a directory must be a protected operation.
Similarly, if a path name refers to a file in a directory, the user must be allowed
access to both the directory and the file. In systems where files may have
numerous path names (such as acyclic and general graphs), a given user may
have different access rights to a particular file, depending on the path name
used.

13.5 Memory-Mapped Files 555

Figure 13.12 Windows 10 access-control list management.

13.5 Memory-Mapped Files

There is one other method of accessing files, and it is very commonly used.
Consider a sequential read of a file on disk using the standard system calls
open(), read(), and write(). Each file access requires a system call and disk
access. Alternatively, we can use the virtual memory techniques discussed in
Chapter 10 to treat file I/O as routine memory accesses. This approach, known
as memory mapping a file, allows a part of the virtual address space to be
logically associated with the file. As we shall see, this can lead to significant
performance increases.

13.5.1 Basic Mechanism

Memory mapping a file is accomplished by mapping a disk block to a page (or
pages) in memory. Initial access to the file proceeds through ordinary demand

556 Chapter 13 File-System Interface

paging, resulting in a page fault. However, a page-sized portion of the file is
read from the file system into a physical page (some systems may opt to read
in more than a page-sized chunk of memory at a time). Subsequent reads and
writes to the file are handled as routine memory accesses. Manipulating files
through memory rather than incurring the overhead of using the read() and
write() system calls simplifies and speeds up file access and usage.

Note that writes to the file mapped in memory are not necessarily imme-
diate (synchronous) writes to the file on secondary storage. Generally, systems
update the file based on changes to the memory image only when the file is
closed. Under memory pressure, systems will have any intermediate changes
to swap space to not lose them when freeing memory for other uses. When
the file is closed, all the memory-mapped data are written back to the file on
secondary storage and removed from the virtual memory of the process.

Some operating systems providememorymapping only through a specific
system call and use the standard system calls to perform all other file I/O.
However, some systems choose tomemory-map afile regardless ofwhether the
file was specified as memory-mapped. Let’s take Solaris as an example. If a file
is specified as memory-mapped (using the mmap() system call), Solaris maps
the file into the address space of the process. If a file is opened and accessed
using ordinary system calls, such as open(), read(), and write(), Solaris still
memory-maps the file; however, the file is mapped to the kernel address space.
Regardless of how the file is opened, then, Solaris treats all file I/O as memory-
mapped, allowing file access to take place via the efficient memory subsystem
and avoiding system call overhead caused by each traditional read() and
write().

Multiple processes may be allowed to map the same file concurrently, to
allow sharing of data. Writes by any of the processes modify the data in virtual
memory and can be seen by all others that map the same section of the file.
Given our earlier discussions of virtual memory, it should be clear how the
sharing of memory-mapped sections of memory is implemented: the virtual
memory map of each sharing process points to the same page of physical
memory—the page that holds a copy of the disk block. This memory sharing is
illustrated in Figure 13.13. Thememory-mapping system calls can also support
copy-on-write functionality, allowing processes to share a file in read-only
mode but to have their own copies of any data they modify. So that access
to the shared data is coordinated, the processes involved might use one of the
mechanisms for achieving mutual exclusion described in Chapter 6.

Quite often, shared memory is in fact implemented by memory mapping
files. Under this scenario, processes can communicate using shared mem-
ory by having the communicating processes memory-map the same file into
their virtual address spaces. The memory-mapped file serves as the region
of shared memory between the communicating processes (Figure 13.14). We
have already seen this in Section 3.5, where a POSIX shared-memory object
is created and each communicating process memory-maps the object into its
address space. In the following section, we discuss support in the Windows
API for shared memory using memory-mapped files.

13.5.2 Shared Memory in the Windows API

The general outline for creating a region of shared memory using memory-
mapped files in the Windows API involves first creating a fil mapping for the

13.5 Memory-Mapped Files 557

process A
virtual memory

1

1

1 2 3 4 5 6

2
3

3

4
5

5

4
2

6
6

1
2
3
4
5
6

process B
virtual memory

physical memory

disk file

Figure 13.13 Memory-mapped files.

file to bemapped and then establishing a view of themapped file in a process’s
virtual address space. A second process can then open and create a view of
the mapped file in its virtual address space. The mapped file represents the
shared-memory object that will enable communication to take place between
the processes.

We next illustrate these steps in more detail. In this example, a producer
process first creates a shared-memory object using the memory-mapping fea-
tures available in the Windows API. The producer then writes a message to
sharedmemory. After that, a consumer process opens amapping to the shared-
memory object and reads the message written by the consumer.

process1

memory-mapped
file

shared
memory

shared
memory

shared
memory

process2

Figure 13.14 Shared memory using memory-mapped I/O.

558 Chapter 13 File-System Interface

To establish a memory-mapped file, a process first opens the file to be
mapped with the CreateFile() function, which returns a HANDLE to the
opened file. The process then creates a mapping of this file HANDLE using the
CreateFileMapping() function. Once the file mapping is done, the process
establishes a view of the mapped file in its virtual address space with the
MapViewOfFile() function. The view of the mapped file represents the por-
tion of the file being mapped in the virtual address space of the process—the
entire file or only a portion of it may be mapped. This sequence in the program

#include <windows.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

HANDLE hFile, hMapFile;
LPVOID lpMapAddress;

hFile = CreateFile("temp.txt", /* file name */
GENERIC READ | GENERIC WRITE, /* read/write access */
0, /* no sharing of the file */
NULL, /* default security */
OPEN ALWAYS, /* open new or existing file */
FILE ATTRIBUTE NORMAL, /* routine file attributes */
NULL); /* no file template */

hMapFile = CreateFileMapping(hFile, /* file handle */
NULL, /* default security */
PAGE READWRITE, /* read/write access to mapped pages */
0, /* map entire file */
0,
TEXT("SharedObject")); /* named shared memory object */

lpMapAddress = MapViewOfFile(hMapFile, /* mapped object handle */
FILE MAP ALL ACCESS, /* read/write access */
0, /* mapped view of entire file */
0,
0);

/* write to shared memory */
sprintf(lpMapAddress,"Shared memory message");

UnmapViewOfFile(lpMapAddress);
CloseHandle(hFile);
CloseHandle(hMapFile);

}

Figure 13.15 Producer writing to shared memory using the Windows API.

13.5 Memory-Mapped Files 559

is shown in Figure 13.15. (We eliminate much of the error checking for code
brevity.)

The call to CreateFileMapping() creates a named shared-memory object
called SharedObject. The consumer process will communicate using this
shared-memory segment by creating a mapping to the same named object.
The producer then creates a view of the memory-mapped file in its virtual
address space. By passing the last three parameters the value 0, it indicates
that the mapped view is the entire file. It could instead have passed values
specifying an offset and size, thus creating a view containing only a subsection
of the file. (It is important to note that the entire mapping may not be loaded
into memorywhen the mapping is established. Rather, the mapped file may be
demand-paged, thus bringing pages into memory only as they are accessed.)
The MapViewOfFile() function returns a pointer to the shared-memory object;
any accesses to this memory location are thus accesses to the memory-mapped
file. In this instance, the producer process writes themessage “Shared memory
message” to shared memory.

A program illustrating how the consumer process establishes a view of
the named shared-memory object is shown in Figure 13.16. This program is

#include <windows.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

HANDLE hMapFile;
LPVOID lpMapAddress;

hMapFile = OpenFileMapping(FILE MAP ALL ACCESS, /* R/W access */
FALSE, /* no inheritance */
TEXT("SharedObject")); /* name of mapped file object */

lpMapAddress = MapViewOfFile(hMapFile, /* mapped object handle */
FILE MAP ALL ACCESS, /* read/write access */
0, /* mapped view of entire file */
0,
0);

/* read from shared memory */
printf("Read message %s", lpMapAddress);

UnmapViewOfFile(lpMapAddress);
CloseHandle(hMapFile);

}

Figure 13.16 Consumer reading from shared memory using the Windows API.

560 Chapter 13 File-System Interface

somewhat simpler than the one shown in Figure 13.15, as all that is necessary
is for the process to create a mapping to the existing named shared-memory
object. The consumer process must also create a view of the mapped file, just
as the producer process did in the program in Figure 13.15. The consumer then
reads from shared memory the message “Shared memory message” that was
written by the producer process.

Finally, both processes remove the view of the mapped file with a call to
UnmapViewOfFile(). We provide a programming exercise at the end of this
chapter using shared memory with memory mapping in the Windows API.

13.6 Summary

• A file is an abstract data type defined and implemented by the operating
system. It is a sequence of logical records. A logical record may be a byte,
a line (of fixed or variable length), or a more complex data item. The
operating system may specifically support various record types or may
leave that support to the application program.

• A major task for the operating system is to map the logical file concept
onto physical storage devices such as hard disk or NVM device. Since the
physical record size of the devicemay not be the same as the logical record
size, it may be necessary to order logical records into physical records.
Again, this task may be supported by the operating system or left for the
application program.

• Within a file system, it is useful to create directories to allow files to be
organized. A single-level directory in a multiuser system causes naming
problems, since each file must have a unique name. A two-level directory
solves this problem by creating a separate directory for each user’s files.
The directory lists the files by name and includes the file’s location on the
disk, length, type, owner, time of creation, time of last use, and so on.

• The natural generalization of a two-level directory is a tree-structured
directory. A tree-structured directory allows a user to create subdirectories
to organize files. Acyclic-graph directory structures enable users to share
subdirectories and files but complicate searching and deletion. A general
graph structure allows complete flexibility in the sharing of files and direc-
tories but sometimes requires garbage collection to recover unused disk
space.

• Remote file systems present challenges in reliability, performance, and
security. Distributed information systems maintain user, host, and access
information so that clients and servers can share state information to man-
age use and access.

• Since files are the main information-storage mechanism in most computer
systems, file protection is needed on multiuser systems. Access to files
can be controlled separately for each type of access—read, write, execute,
append, delete, list directory, and so on. File protection can be provided by
access lists, passwords, or other techniques.

Further Reading 561

Practice Exercises

13.1 Some systems automatically delete all user files when a user logs off or
a job terminates, unless the user explicitly requests that they be kept.
Other systems keep all files unless the user explicitly deletes them.
Discuss the relative merits of each approach.

13.2 Why do some systems keep track of the type of a file, while still others
leave it to the user and others simply do not implement multiple file
types? Which system is “better”?

13.3 Similarly, some systems support many types of structures for a file’s
data, while others simply support a stream of bytes. What are the
advantages and disadvantages of each approach?

13.4 Could you simulate a multilevel directory structure with a single-level
directory structure inwhich arbitrarily long names can be used? If your
answer is yes, explain how you can do so, and contrast this scheme
with themultilevel directory scheme. If your answer is no, explainwhat
prevents your simulation’s success. Howwould your answer change if
file names were limited to seven characters?

13.5 Explain the purpose of the open() and close() operations.

13.6 In some systems, a subdirectory can be read and written by an autho-
rized user, just as ordinary files can be.

a. Describe the protection problems that could arise.

b. Suggest a scheme for dealing with each of these protection prob-
lems.

13.7 Consider a system that supports 5,000 users. Suppose that you want to
allow 4,990 of these users to be able to access one file.

a. How would you specify this protection scheme in UNIX?

b. Can you suggest another protection scheme that can be usedmore
effectively for this purpose than the scheme provided by UNIX?

13.8 Researchers have suggested that, instead of having an access-control
list associated with each file (specifying which users can access the file,
and how), we should have a user control list associated with each user
(specifying which files a user can access, and how). Discuss the relative
merits of these two schemes.

Further Reading

Amultilevel directory structure was first implemented on the MULTICS system
([Organick (1972)]). Most operating systems now implement multilevel direc-
tory structures. These include Linux ([Love (2010)]), macOS ([Singh (2007)]),
Solaris ([McDougall and Mauro (2007)]), and all versions of Windows ([Russi-
novich et al. (2017)]).

http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=A Singh Mac OS X Internals A Systems Approach
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition

562 Chapter 13 File-System Interface

A general discussion of Solaris file systems is found in the Sun Sys-
tem Administration Guide: Devices and File Systems (http://docs.sun.com/app/
docs/doc/817-5093).

The network file system (NFS), designed by Sun Microsystems, allows
directory structures to be spread across networked computer systems. NFS
Version 4 is described in RFC3505 (http://www.ietf.org/rfc/rfc3530.txt).

Agreat source of themeanings of computer jargon is http://www.catb.org/
esr/jargon/.

Bibliography

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[McDougall and Mauro (2007)] R. McDougall and J. Mauro, Solaris Internals,
Second Edition, Prentice Hall (2007).

[Organick (1972)] E. I. Organick, The Multics System: An Examination of Its Struc-
ture, MIT Press (1972).

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

[Singh (2007)] A. Singh, Mac OS X Internals: A Systems Approach, Addison-
Wesley (2007).

http://www.ietf.org/rfc/rfc3530.txt
http://www.catb.org/esr/jargon/
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=R McDougall and J Mauro Solaris Internals SecondEdition
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=A Singh Mac OS X Internals A Systems Approach
http://scholar.google.com/scholar?hl/en&q=A Singh Mac OS X Internals A Systems Approach
http://docs.sun.com/app/docs/doc/817-5093
http://docs.sun.com/app/docs/doc/817-5093
http://www.ietf.org/rfc/rfc3530.txt
http://www.catb.org/esr/jargon/

Exercises

Chapter 13 Exercises

13.9 Consider a file system in which a file can be deleted and its disk space
reclaimedwhile links to that file still exist. What problemsmay occur if
a new file is created in the same storage area or with the same absolute
path name? How can these problems be avoided?

13.10 The open-file table is used to maintain information about files that are
currently open. Should the operating system maintain a separate table
for each user or maintain just one table that contains references to files
that are currently being accessed by all users? If the same file is being
accessed by two different programs or users, should there be separate
entries in the open-file table? Explain.

13.11 What are the advantages and disadvantages of providing mandatory
locks instead of advisory locks whose use is left to users’ discretion?

13.12 Provide examples of applications that typically access files according
to the following methods:

• Sequential

• Random

13.13 Some systems automatically open a filewhen it is referenced for the first
time and close the file when the job terminates. Discuss the advantages
and disadvantages of this scheme compared with the more traditional
one, where the user has to open and close the file explicitly.

13.14 If the operating system knew that a certain application was going
to access file data in a sequential manner, how could it exploit this
information to improve performance?

13.15 Give an example of an application that could benefit from operating-
system support for random access to indexed files.

13.16 Some systems provide file sharing by maintaining a single copy of a
file. Other systems maintain several copies, one for each of the users
sharing the file. Discuss the relative merits of each approach.

EX-48

14CHAPTER

File -System
Implementation

As we saw in Chapter 13, the file system provides the mechanism for on-
line storage and access to file contents, including data and programs. File
systems usually reside permanently on secondary storage, which is designed
to hold a large amount of data. This chapter is primarily concerned with issues
surrounding file storage and access on the most common secondary-storage
media, hard disk drives and nonvolatile memory devices. We explore ways
to structure file use, to allocate storage space, to recover freed space, to track
the locations of data, and to interface other parts of the operating system to
secondary storage. Performance issues are considered throughout the chapter.

A given general-purpose operating system provides several file systems.
Additionally,many operating systems allow administrators or users to add file
systems.Why somany? File systems vary inmany respects, including features,
performance, reliability, and design goals, and different file systemsmay serve
different purposes. For example, a temporary file system is used for fast storage
and retrieval of nonpersistent files, while the default secondary storage file
system (such as Linux ext4) sacrifices performance for reliability and features.
As we’ve seen throughout this study of operating systems, there are plenty of
choices and variations, making thorough coverage a challenge. In this chapter,
we concentrate on the common denominators.

CHAPTER OBJECTIVES

• Describe the details of implementing local file systems and directory struc-
tures.

• Discuss block allocation and free-block algorithms and trade-offs.

• Explore file system efficiency and performance issues.

• Look at recovery from file system failures.

• Describe the WAFL file system as a concrete example.

563

564 Chapter 14 File-System Implementation

14.1 File-System Structure

Disks provide most of the secondary storage on which file systems are main-
tained. Two characteristics make them convenient for this purpose:

1. A disk can be rewritten in place; it is possible to read a block from the
disk, modify the block, and write it back into the same block.

2. Adisk can access directly any block of information it contains. Thus, it is
simple to access any file either sequentially or randomly, and switching
from one file to another requires the drive moving the read–write heads
and waiting for the media to rotate.

Nonvolatile memory (NVM) devices are increasingly used for file storage
and thus as a location for file systems. They differ from hard disks in that they
cannot be rewritten in place and they have different performance characteris-
tics. We discuss disk and NVM-device structure in detail in Chapter 11.

To improve I/O efficiency, I/O transfers betweenmemory andmass storage
are performed in units of blocks. Each block on a hard disk drive has one or
more sectors. Depending on the disk drive, sector size is usually 512 bytes or
4,096 bytes. NVM devices usually have blocks of 4,096 bytes, and the transfer
methods used are similar to those used by disk drives.

File systems provide efficient and convenient access to the storage device
by allowing data to be stored, located, and retrieved easily. Afile system poses
two quite different design problems. The first problem is defining how the
file system should look to the user. This task involves defining a file and its
attributes, the operations allowed on a file, and the directory structure for
organizing files. The second problem is creating algorithms and data structures
to map the logical file system onto the physical secondary-storage devices.

The file system itself is generally composed of many different levels. The
structure shown in Figure 14.1 is an example of a layered design. Each level in
the design uses the features of lower levels to create new features for use by
higher levels.

The I/O control level consists of device drivers and interrupt handlers
to transfer information between the main memory and the disk system. A
device driver can be thought of as a translator. Its input consists of high-
level commands, such as “retrieve block 123.” Its output consists of low-level,
hardware-specific instructions that are used by the hardware controller, which
interfaces the I/O device to the rest of the system. The device driver usually
writes specific bit patterns to special locations in the I/O controller’s memory
to tell the controller which device location to act on and what actions to take.
The details of device drivers and the I/O infrastructure are covered in Chapter
12.

The basic file system (called the “block I/O subsystem” in Linux) needs
only to issue generic commands to the appropriate device driver to read and
write blocks on the storage device. It issues commands to the drive based
on logical block addresses. It is also concerned with I/O request scheduling.
This layer also manages the memory buffers and caches that hold various file-
system, directory, and data blocks. A block in the buffer is allocated before the
transfer of a mass storage block can occur. When the buffer is full, the buffer
manager must find more buffer memory or free up buffer space to allow a

14.1 File-System Structure 565

application programs

file-organization module

basic file system

I/O control

devices

logical file system

Figure 14.1 Layered file system.

requested I/O to complete. Caches are used to hold frequently used file-system
metadata to improve performance, so managing their contents is critical for
optimum system performance.

The file-organizatio module knows about files and their logical blocks.
Each file’s logical blocks are numbered from 0 (or 1) through N. The file-
organization module also includes the free-space manager, which tracks unal-
located blocks and provides these blocks to the file-organization module when
requested.

Finally, the logical file system manages metadata information. Metadata
includes all of the file-system structure except the actual data (or contents of
the files). The logical file system manages the directory structure to provide
the file-organization module with the information the latter needs, given a
symbolic file name. It maintains file structure via file-control blocks. A file
control block (FCB) (an inode in UNIX file systems) contains information about
the file, including ownership, permissions, and location of the file contents. The
logical file system is also responsible for protection, as discussed in Chapters
13 and 17.

When a layered structure is used for file-system implementation, duplica-
tion of code is minimized. The I/O control and sometimes the basic file-system
code can be used by multiple file systems. Each file system can then have its
own logical file-system and file-organizationmodules. Unfortunately, layering
can introducemore operating-systemoverhead,whichmay result in decreased
performance. The use of layering, including the decision about howmany lay-
ers to use andwhat each layer should do, is amajor challenge in designing new
systems.

Many file systems are in use today, and most operating systems support
more than one. For example, most CD-ROMs are written in the ISO 9660 for-
mat, a standard format agreed on by CD-ROM manufacturers. In addition to
removable-media file systems, each operating system has one or more disk-
based file systems. UNIX uses the UNIX fil system (UFS), which is based on the

566 Chapter 14 File-System Implementation

Berkeley Fast File System (FFS). Windows supports disk file-system formats of
FAT, FAT32, and NTFS (orWindows NT File System), as well as CD-ROM and DVD
file-system formats. Although Linux supports over 130 different file systems,
the standard Linux file system is known as the extended file system, with
the most common versions being ext3 and ext4. There are also distributed file
systems in which a file system on a server is mounted by one or more client
computers across a network.

File-system research continues to be an active area of operating-system
design and implementation. Google created its own file system to meet
the company’s specific storage and retrieval needs, which include high-
performance access from many clients across a very large number of disks.
Another interesting project is the FUSE file system, which provides flexibility in
file-system development and use by implementing and executing file systems
as user-level rather than kernel-level code. Using FUSE, a user can add a new
file system to a variety of operating systems and can use that file system to
manage her files.

14.2 File-System Operations

As was described in Section 13.1.2, operating systems implement open() and
close() systems calls for processes to request access to file contents. In this
section, we delve into the structures and operations used to implement file-
system operations.

14.2.1 Overview

Several on-storage and in-memory structures are used to implement a file
system. These structures vary depending on the operating system and the file
system, but some general principles apply.

On storage, the file system may contain information about how to boot
an operating system stored there, the total number of blocks, the number and
location of free blocks, the directory structure, and individual files. Many of
these structures are detailed throughout the remainder of this chapter. Here,
we describe them briefly:

• Aboot control block (per volume) can contain information needed by the
system to boot an operating system from that volume. If the disk does not
contain an operating system, this block can be empty. It is typically the
first block of a volume. In UFS, it is called the boot block. In NTFS, it is the
partition boot sector.

• Avolume control block (per volume) contains volume details, such as the
number of blocks in the volume, the size of the blocks, a free-block count
and free-block pointers, and a free-FCB count and FCB pointers. In UFS, this
is called a superblock. In NTFS, it is stored in the master fil table.

• A directory structure (per file system) is used to organize the files. In UFS,
this includes file names and associated inode numbers. In NTFS, it is stored
in the master file table.

14.2 File-System Operations 567

• Aper-file FCB containsmany details about the file. It has a unique identifier
number to allow association with a directory entry. In NTFS, this informa-
tion is actually stored within the master file table, which uses a relational
database structure, with a row per file.

The in-memory information is used for both file-system management and
performance improvement via caching. The data are loaded at mount time,
updated during file-system operations, and discarded at dismount. Several
types of structures may be included.

• An in-memory mount table contains information about each mounted
volume.

• An in-memory directory-structure cache holds the directory information
of recently accessed directories. (For directories at which volumes are
mounted, it can contain a pointer to the volume table.)

• The system-wide open-fil table contains a copy of the FCB of each open
file, as well as other information.

• The per-process open-fil table contains pointers to the appropriate
entries in the system-wide open-file table, as well as other information,
for all files the process has open.

• Buffers hold file-system blocks when they are being read from or written
to a file system.

To create a new file, a process calls the logical file system. The logical file
system knows the format of the directory structures. To create a new file, it
allocates a new FCB. (Alternatively, if the file-system implementation creates
all FCBs at file-system creation time, an FCB is allocated from the set of free
FCBs.) The system then reads the appropriate directory into memory, updates
it with the newfile name and FCB, andwrites it back to the file system.Atypical
FCB is shown in Figure 14.2.

Some operating systems, including UNIX, treat a directory exactly the same
as a file—one with a “type” field indicating that it is a directory. Other oper-

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Figure 14.2 A typical file-control block.

568 Chapter 14 File-System Implementation

ating systems, including Windows, implement separate system calls for files
and directories and treat directories as entities separate from files. Whatever
the larger structural issues, the logical file system can call the file-organization
module to map the directory I/O into storage block locations, which are passed
on to the basic file system and I/O control system.

14.2.2 Usage

Now that a file has been created, it can be used for I/O. First, though, it must
be opened. The open() call passes a file name to the logical file system. The
open() systemcall first searches the system-wide open-file table to see if the file
is already in use by another process. If it is, a per-process open-file table entry is
created pointing to the existing system-wide open-file table. This algorithm can
save substantial overhead. If the file is not already open, the directory structure
is searched for the given file name. Parts of the directory structure are usually
cached in memory to speed directory operations. Once the file is found, the
FCB is copied into a system-wide open-file table in memory. This table not only
stores the FCB but also tracks the number of processes that have the file open.

Next, an entry is made in the per-process open-file table, with a pointer
to the entry in the system-wide open-file table and some other fields. These
other fieldsmay include a pointer to the current location in the file (for the next
read() or write() operation) and the access mode in which the file is open.
The open() call returns a pointer to the appropriate entry in the per-process
file-system table. All file operations are then performed via this pointer. The
file name may not be part of the open-file table, as the system has no use for
it once the appropriate FCB is located on disk. It could be cached, though, to
save time on subsequent opens of the same file. The name given to the entry
varies. UNIX systems refer to it as a fil descriptor; Windows refers to it as a
fil handle.

When a process closes the file, the per-process table entry is removed, and
the system-wide entry’s open count is decremented. When all users that have
opened the file close it, any updatedmetadata are copied back to the disk-based
directory structure, and the system-wide open-file table entry is removed.

The caching aspects of file-system structures should not be overlooked.
Most systems keep all information about an open file, except for its actual data
blocks, inmemory. The BSD UNIX system is typical in its use of caches wherever
disk I/O can be saved. Its average cache hit rate of 85 percent shows that these
techniques are well worth implementing. The BSD UNIX system is described
fully in Appendix C.

The operating structures of a file-system implementation are summarized
in Figure 14.3.

14.3 Directory Implementation

The selection of directory-allocation and directory-management algorithms
significantly affects the efficiency, performance, and reliability of the file sys-
tem. In this section, we discuss the trade-offs involved in choosing one of these
algorithms.

14.3 Directory Implementation 569

directory structure

directory structure

open (file name)

kernel memoryuser space

index

(a)

file-control block

secondary storage

data blocks

per-process
open-file table

system-wide
open-file table

read (index)

kernel memoryuser space

(b)

file-control block

secondary storage

Figure 14.3 In-memory file-system structures. (a) File open. (b) File read.

14.3.1 Linear List

The simplest method of implementing a directory is to use a linear list of file
names with pointers to the data blocks. This method is simple to program
but time-consuming to execute. To create a new file, we must first search the
directory to be sure that no existing file has the same name. Then, we add a new
entry at the end of the directory. To delete a file, we search the directory for the
named file and then release the space allocated to it. To reuse the directory
entry, we can do one of several things. We can mark the entry as unused (by
assigning it a special name, such as an all-blank name, assigning it an invalid
inode number (such as 0), or by including a used–unused bit in each entry), or
we can attach it to a list of free directory entries. A third alternative is to copy
the last entry in the directory into the freed location and to decrease the length
of the directory. A linked list can also be used to decrease the time required to
delete a file.

The real disadvantage of a linear list of directory entries is that finding a
file requires a linear search. Directory information is used frequently, and users
will notice if access to it is slow. In fact, many operating systems implement
a software cache to store the most recently used directory information. A
cache hit avoids the need to constantly reread the information from secondary
storage. A sorted list allows a binary search and decreases the average search
time. However, the requirement that the list be kept sorted may complicate
creating and deleting files, since we may have to move substantial amounts of

570 Chapter 14 File-System Implementation

directory information to maintain a sorted directory. Amore sophisticated tree
data structure, such as a balanced tree, might help here. An advantage of the
sorted list is that a sorted directory listing can be produced without a separate
sort step.

14.3.2 Hash Table

Another data structure used for a file directory is a hash table. Here, a linear list
stores the directory entries, but a hashdata structure is also used. The hash table
takes a value computed from the file name and returns a pointer to the file name
in the linear list. Therefore, it can greatly decrease the directory search time.
Insertion and deletion are also fairly straightforward, although some provision
must be made for collisions—situations in which two file names hash to the
same location.

The major difficulties with a hash table are its generally fixed size and the
dependence of the hash function on that size. For example, assume that we
make a linear-probing hash table that holds 64 entries. The hash function con-
verts file names into integers from 0 to 63 (for instance, by using the remainder
of a division by 64). Ifwe later try to create a 65th file,wemust enlarge the direc-
tory hash table—say, to 128 entries. As a result, we need a new hash function
that must map file names to the range 0 to 127, and we must reorganize the
existing directory entries to reflect their new hash-function values.

Alternatively, we can use a chained-overflow hash table. Each hash entry
can be a linked list instead of an individual value, andwe can resolve collisions
by adding the new entry to the linked list. Lookups may be somewhat slowed,
because searching for a name might require stepping through a linked list of
colliding table entries. Still, this method is likely to be much faster than a linear
search through the entire directory.

14.4 Allocation Methods

The direct-access nature of secondary storage gives us flexibility in the imple-
mentation of files. In almost every case, many files are stored on the same
device. The main problem is how to allocate space to these files so that storage
space is utilized effectively and files can be accessed quickly. Threemajormeth-
ods of allocating secondary storage space are in wide use: contiguous, linked,
and indexed. Eachmethod has advantages and disadvantages. Although some
systems support all three, it is more common for a system to use one method
for all files within a file-system type.

14.4.1 Contiguous Allocation

Contiguous allocation requires that each file occupy a set of contiguous blocks
on the device.Device addresses define a linear ordering on the device.With this
ordering, assuming that only one job is accessing the device, accessing block b
+ 1 after block b normally requires no head movement. When head movement
is needed (from the last sector of one cylinder to the first sector of the next
cylinder), the head need only move from one track to the next. Thus, for HDDs,
the number of disk seeks required for accessing contiguously allocated files is

14.4 Allocation Methods 571

directory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

count

f

tr

mail

list

start

0

14

19

28

6

length

2

3

6

4

2

file

count

tr

mail

list

f

Figure 14.4 Contiguous allocation of disk space.

minimal (assuming blocks with close logical addresses are close physically), as
is seek time when a seek is finally needed.

Contiguous allocation of a file is defined by the address of the first block
and length (in block units) of the file. If the file is n blocks long and starts at
location b, then it occupies blocks b, b + 1, b + 2, ..., b + n − 1. The directory entry
for each file indicates the address of the starting block and the length of the area
allocated for this file (Figure 14.4). Contiguous allocation is easy to implement
but has limitations, and is therefore not used in modern file systems.

Accessing a file that has been allocated contiguously is easy. For sequential
access, the file system remembers the address of the last block referenced and,
when necessary, reads the next block. For direct access to block i of a file that
starts at block b, we can immediately access block b + i. Thus, both sequential
and direct access can be supported by contiguous allocation.

Contiguous allocation has some problems, however. One difficulty is find-
ing space for a new file. The system chosen to manage free space determines
how this task is accomplished; these management systems are discussed in
Section 14.5. Any management system can be used, but some are slower than
others.

The contiguous-allocation problem can be seen as a particular application
of the general dynamic storage-allocation problem discussed in Section 9.2,
which involves how to satisfy a request of size n from a list of free holes. First
fit and best fit are the most common strategies used to select a free hole from
the set of available holes. Simulations have shown that both first fit and best fit
are more efficient than worst fit in terms of both time and storage utilization.
Neither first fit nor best fit is clearly best in terms of storage utilization, but first
fit is generally faster.

All these algorithms suffer from the problemof external fragmentation. As
files are allocated and deleted, the free storage space is broken into little pieces.

572 Chapter 14 File-System Implementation

External fragmentation exists whenever free space is broken into chunks. It
becomes a problem when the largest contiguous chunk is insufficient for a
request; storage is fragmented into a number of holes, none of which is large
enough to store the data.Dependingon the total amount of disk storage and the
average file size, external fragmentation may be a minor or a major problem.

One strategy for preventing loss of significant amounts of storage space to
external fragmentation is to copy an entire file system onto another device.
The original device is then freed completely, creating one large contiguous
free space. We then copy the files back onto the original device by allocating
contiguous space from this one large hole. This scheme effectively compacts
all free space into one contiguous space, solving the fragmentation problem.
The cost of this compaction is time, however, and the cost can be particularly
high for large storage devices. Compacting these devices may take hours and
may be necessary on a weekly basis. Some systems require that this function
be done off-line, with the file system unmounted. During this down time,
normal system operation generally cannot be permitted, so such compaction is
avoided at all costs on production machines. Most modern systems that need
defragmentation can perform it on-line during normal system operations, but
the performance penalty can be substantial.

Another problem with contiguous allocation is determining how much
space is needed for a file. When the file is created, the total amount of space
it will need must be found and allocated. How does the creator (program or
person) know the size of the file to be created? In some cases, this determina-
tion may be fairly simple (copying an existing file, for example). In general,
however, the size of an output file may be difficult to estimate.

If we allocate too little space to a file, we may find that the file cannot
be extended. Especially with a best-fit allocation strategy, the space on both
sides of the file may be in use. Hence, we cannot make the file larger in place.
Two possibilities then exist. First, the user program can be terminated, with
an appropriate error message. The user must then allocate more space and
run the program again. These repeated runs may be costly. To prevent them,
the user will normally overestimate the amount of space needed, resulting in
considerable wasted space. The other possibility is to find a larger hole, copy
the contents of the file to the new space, and release the previous space. This
series of actions can be repeated as long as space exists, although it can be
time consuming. The user need never be informed explicitly about what is
happening, however; the systemcontinues despite the problem, althoughmore
and more slowly.

Even if the total amount of space needed for a file is known in advance,
preallocationmay be inefficient. Afile that will grow slowly over a long period
(months or years)must be allocated enough space for its final size, even though
much of that space will be unused for a long time. The file therefore has a large
amount of internal fragmentation.

To minimize these drawbacks, an operating system can use a modified
contiguous-allocation scheme. Here, a contiguous chunk of space is allocated
initially. Then, if that amount proves not to be large enough, another chunk of
contiguous space, known as an extent, is added. The location of a file’s blocks
is then recorded as a location and a block count, plus a link to the first block
of the next extent. On some systems, the owner of the file can set the extent
size, but this setting results in inefficiencies if the owner is incorrect. Internal

14.4 Allocation Methods 573

fragmentation can still be a problem if the extents are too large, and external
fragmentation can become a problem as extents of varying sizes are allocated
and deallocated. The commercial Symantec Veritas file system uses extents
to optimize performance. Veritas is a high-performance replacement for the
standard UNIX UFS.

14.4.2 Linked Allocation

Linked allocation solves all problems of contiguous allocation. With linked
allocation, each file is a linked list of storage blocks; the blocksmay be scattered
anywhere on the device. The directory contains a pointer to the first and last
blocks of the file. For example, a file of five blocks might start at block 9 and
continue at block 16, then block 1, then block 10, and finally block 25 (Figure
14.5). Each block contains a pointer to the next block. These pointers are not
made available to the user. Thus, if each block is 512 bytes in size, and a block
address (the pointer) requires 4 bytes, then the user sees blocks of 508 bytes.

To create a new file, we simply create a new entry in the directory. With
linked allocation, each directory entry has a pointer to the first block of the
file. This pointer is initialized to null (the end-of-list pointer value) to signify
an empty file. The size field is also set to 0. A write to the file causes the free-
space management system to find a free block, and this new block is written
to and is linked to the end of the file. To read a file, we simply read blocks by
following the pointers from block to block. There is no external fragmentation
with linked allocation, and any free block on the free-space list can be used to
satisfy a request. The size of a file need not be declared when the file is created.
A file can continue to grow as long as free blocks are available. Consequently,
it is never necessary to compact disk space.

Linked allocation does have disadvantages, however. The major problem
is that it can be used effectively only for sequential-access files. To find the ith

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

file
jeep

start
9

directory

end
25

Figure 14.5 Linked allocation of disk space.

574 Chapter 14 File-System Implementation

block of a file, wemust start at the beginning of that file and follow the pointers
until we get to the ith block. Each access to a pointer requires a storage device
read, and some require an HDD seek. Consequently, it is inefficient to support
a direct-access capability for linked-allocation files.

Another disadvantage is the space required for the pointers. If a pointer
requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being
used for pointers, rather than for information. Each file requires slightly more
space than it would otherwise.

The usual solution to this problem is to collect blocks into multiples, called
clusters, and to allocate clusters rather than blocks. For instance, the file system
may define a cluster as four blocks and operate on the secondary storage
device only in cluster units. Pointers then use a much smaller percentage of
the file’s space. This method allows the logical-to-physical block mapping to
remain simple but improves HDD throughput (because fewer disk-head seeks
are required) and decreases the space needed for block allocation and free-list
management. The cost of this approach is an increase in internal fragmentation,
because more space is wastedwhen a cluster is partially full than when a block
is partially full. Also random I/O performance suffers because a request for a
small amount of data transfers a large amount of data. Clusters can be used
to improve the disk-access time for many other algorithms as well, so they are
used in most file systems.

Yet another problem of linked allocation is reliability. Recall that the files
are linked together by pointers scattered all over the device, and consider what
would happen if a pointer was lost or damaged. Abug in the operating-system
software or a hardware failure might result in picking up the wrong pointer.
This error could in turn result in linking into the free-space list or into another
file. One partial solution is to use doubly linked lists, and another is to store
the file name and relative block number in each block. However, these schemes
require even more overhead for each file.

An important variation on linked allocation is the use of a file-allocatio
table (FAT). This simple but efficient method of disk-space allocation was used
by the MS-DOS operating system. A section of storage at the beginning of each
volume is set aside to contain the table. The table has one entry for each block
and is indexed by block number. The FAT is used in much the same way as
a linked list. The directory entry contains the block number of the first block
of the file. The table entry indexed by that block number contains the block
number of the next block in the file. This chain continues until it reaches the last
block, which has a special end-of-file value as the table entry. An unused block
is indicated by a table value of 0. Allocating a new block to a file is a simple
matter of finding the first 0-valued table entry and replacing the previous end-
of-file value with the address of the new block. The 0 is then replaced with the
end-of-file value. An illustrative example is the FAT structure shown in Figure
14.6 for a file consisting of disk blocks 217, 618, and 339.

The FAT allocation scheme can result in a significant number of disk head
seeks, unless the FAT is cached. The disk head must move to the start of the
volume to read the FAT and find the location of the block in question, then
move to the location of the block itself. In the worst case, both moves occur for
each of the blocks. A benefit is that random-access time is improved, because
the disk head can find the location of any block by reading the information in
the FAT.

14.4 Allocation Methods 575

• • •

directory entry

test 217

start blockname
0

217 618

339

618 339

number of disk blocks –1

FAT

Figure 14.6 File-allocation table.

14.4.3 Indexed Allocation

Linked allocation solves the external-fragmentation and size-declaration prob-
lems of contiguous allocation. However, in the absence of a FAT, linked alloca-
tion cannot support efficient direct access, since the pointers to the blocks are
scattered with the blocks themselves all over the disk and must be retrieved
in order. Indexed allocation solves this problem by bringing all the pointers
together into one location: the index block.

Each file has its own index block, which is an array of storage-block
addresses. The ith entry in the index block points to the ith block of the file.
The directory contains the address of the index block (Figure 14.7). To find and
read the ith block, we use the pointer in the ith index-block entry. This scheme
is similar to the paging scheme described in Section 9.3.

When the file is created, all pointers in the index block are set to null.
When the ith block is first written, a block is obtained from the free-space
manager, and its address is put in the ith index-block entry.

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the storage device can satisfy a
request for more space. Indexed allocation does suffer from wasted space,
however. The pointer overhead of the index block is generally greater than the
pointer overhead of linked allocation. Consider a common case in which we
have a file of only one or two blocks. With linked allocation, we lose the space
of only one pointer per block. With indexed allocation, an entire index block
must be allocated, even if only one or two pointers will be non-null.

This point raises the question of how large the index block should be. Every
file must have an index block, so we want the index block to be as small as

576 Chapter 14 File-System Implementation

directory

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

9
16
1

10
25
–1
–1
–1

file

jeep

index block

19

19

Figure 14.7 Indexed allocation of disk space.

possible. If the index block is too small, however, it will not be able to hold
enough pointers for a large file, and a mechanism will have to be available to
deal with this issue. Mechanisms for this purpose include the following:

• Linked scheme. An index block is normally one storage block. Thus, it can
be read and written directly by itself. To allow for large files, we can link
together several index blocks. For example, an index blockmight contain a
small header giving the name of the file and a set of the first 100 disk-block
addresses. The next address (the last word in the index block) is null (for
a small file) or is a pointer to another index block (for a large file).

• Multilevel index. Avariant of linked representationuses a first-level index
block to point to a set of second-level index blocks, which in turn point to
the file blocks. To access a block, the operating system uses the first-level
index to find a second-level index block and then uses that block to find the
desired data block. This approach could be continued to a third or fourth
level, depending on the desiredmaximumfile size.With 4,096-byte blocks,
we could store 1,024 four-byte pointers in an index block. Two levels of
indexes allow 1,048,576 data blocks and a file size of up to 4 GB.

• Combined scheme. Another alternative, used in UNIX-based file systems,
is to keep the first, say, 15 pointers of the index block in the file’s inode.
The first 12 of these pointers point to direct blocks; that is, they contain
addresses of blocks that contain data of the file. Thus, the data for small
files (of no more than 12 blocks) do not need a separate index block. If the
block size is 4 KB, then up to 48 KB of data can be accessed directly. The next
three pointers point to indirect blocks. The first points to a single indirect
block, which is an index block containing not data but the addresses of
blocks that do contain data. The second points to a double indirect block,
which contains the address of a block that contains the addresses of blocks
that contain pointers to the actual data blocks. The last pointer contains the
address of a triple indirect block. (A UNIX inode is shown in Figure 14.8.)

14.4 Allocation Methods 577

direct blocks

file
metadata

single indirect
blocks

double indirect
blocks

triple indirect
blocks

data

data

data

data

. . .

data

data

data

data

. . .

. . .

. . .
.

.

. . .

data

data

data

data

data

data

data

data

Figure 14.8 The UNIX inode.

Under this method, the number of blocks that can be allocated to a file
exceeds the amount of space addressable by the 4-byte file pointers used
by many operating systems. A 32-bit file pointer reaches only 232 bytes,
or 4 GB. Many UNIX and Linux implementations now support 64-bit file
pointers, which allows files and file systems to be several exbibytes in size.
The ZFS file system supports 128-bit file pointers.

Indexed-allocation schemes suffer from some of the same performance
problems as does linked allocation. Specifically, the index blocks can be cached
in memory, but the data blocks may be spread all over a volume.

14.4.4 Performance

The allocation methods that we have discussed vary in their storage efficiency
and data-block access times. Both are important criteria in selecting the proper
method or methods for an operating system to implement.

Before selecting an allocation method, we need to determine how the
systems will be used. A system with mostly sequential access should not use
the same method as a system with mostly random access.

For any type of access, contiguous allocation requires only one access to
get a block. Since we can easily keep the initial address of the file in memory,
we can calculate immediately the address of the ith block (or the next block)
and read it directly.

For linked allocation, we can also keep the address of the next block in
memory and read it directly. Thismethod is fine for sequential access; for direct
access, however, an access to the ith block might require i block reads. This

578 Chapter 14 File-System Implementation

problem indicates why linked allocation should not be used for an application
requiring direct access.

As a result, some systems support direct-access files by using contiguous
allocation and sequential-access files by using linked allocation. For these
systems, the type of access to bemademust be declaredwhen the file is created.
A file created for sequential access will be linked and cannot be used for direct
access. A file created for direct access will be contiguous and can support both
direct access and sequential access, but its maximum length must be declared
when it is created. In this case, the operating system must have appropriate
data structures and algorithms to support both allocationmethods. Files can be
converted from one type to another by the creation of a new file of the desired
type, into which the contents of the old file are copied. The old file may then
be deleted and the new file renamed.

Indexed allocation is more complex. If the index block is already in mem-
ory, then the access can be made directly. However, keeping the index block
in memory requires considerable space. If this memory space is not avail-
able, then we may have to read first the index block and then the desired
data block. For a two-level index, two index-block reads might be necessary.
For an extremely large file, accessing a block near the end of the file would
require reading in all the index blocks before the needed data block finally
could be read. Thus, the performance of indexed allocation depends on the
index structure, on the size of the file, and on the position of the block desired.

Some systems combine contiguous allocation with indexed allocation by
using contiguous allocation for small files (up to three or four blocks) and auto-
matically switching to an indexed allocation if the file grows large. Since most
files are small, and contiguous allocation is efficient for small files, average
performance can be quite good.

Many other optimizations are in use. Given the disparity between CPU
speed and disk speed, it is not unreasonable to add thousands of extra instruc-
tions to the operating system to save just a few disk-head movements. Fur-
thermore, this disparity is increasing over time, to the point where hundreds
of thousands of instructions could reasonably be used to optimize head move-
ments.

For NVM devices, there are no disk head seeks, so different algorithms
and optimizations are needed. Using an old algorithm that spends many CPU
cycles trying to avoid a nonexistent head movement would be very inefficient.
Existing file systems are being modified and new ones being created to attain
maximum performance from NVM storage devices. These developments aim
to reduce the instruction count and overall path between the storage device
and application access to the data.

14.5 Free-Space Management

Since storage space is limited, we need to reuse the space from deleted files
for new files, if possible. (Write-once optical disks allow only one write to any
given sector, and thus reuse is not physically possible.) To keep track of free
disk space, the system maintains a free-space list. The free-space list records
all free device blocks—those not allocated to some file or directory. To create a
file, we search the free-space list for the required amount of space and allocate

14.5 Free-Space Management 579

that space to the new file. This space is then removed from the free-space list.
When a file is deleted, its space is added to the free-space list. The free-space
list, despite its name, is not necessarily implemented as a list, as we discuss
next.

14.5.1 Bit Vector

Frequently, the free-space list is implemented as a bitmap or bit vector. Each
block is represented by 1 bit. If the block is free, the bit is 1; if the block is
allocated, the bit is 0.

For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17,
18, 25, 26, and 27 are free and the rest of the blocks are allocated. The free-space
bitmap would be

001111001111110001100000011100000 ...

The main advantage of this approach is its relative simplicity and its effi-
ciency in finding the first free block or n consecutive free blocks on the disk.
Indeed,many computers supply bit-manipulation instructions that can be used
effectively for that purpose. One technique for finding the first free block on
a system that uses a bit vector to allocate space is to sequentially check each
word in the bitmap to see whether that value is not 0, since a 0-valued word
contains only 0 bits and represents a set of allocated blocks. The first non-0
word is scanned for the first 1 bit, which is the location of the first free block.
The calculation of the block number is

(number of bits per word) × (number of 0-value words) + offset of first 1 bit.

Again, we see hardware features driving software functionality. Unfortu-
nately, bit vectors are inefficient unless the entire vector is kept inmainmemory
(and is written to the device containing the file system occasionally for recov-
ery needs). Keeping it in main memory is possible for smaller devices but not
necessarily for larger ones. A 1.3-GB disk with 512-byte blocks would need a
bitmap of over 332 KB to track its free blocks, although clustering the blocks in
groups of four reduces this number to around 83 KB per disk. A 1-TB disk with
4-KB blocks would require 32 MB (240 / 212 = 228 bits = 225 bytes = 25 MB) to
store its bitmap. Given that disk size constantly increases, the problemwith bit
vectors will continue to escalate as well.

14.5.2 Linked List

Another approach to free-space management is to link together all the free
blocks, keeping a pointer to the first free block in a special location in the file
system and caching it in memory. This first block contains a pointer to the
next free block, and so on. Recall our earlier example (Section 14.5.1), in which
blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 were free and the
rest of the blocks were allocated. In this situation, we would keep a pointer to
block 2 as the first free block. Block 2 would contain a pointer to block 3, which
would point to block 4, which would point to block 5, which would point to
block 8, and so on (Figure 14.9). This scheme is not efficient; to traverse the
list, we must read each block, which requires substantial I/O time on HDDs.
Fortunately, however, traversing the free list is not a frequent action. Usually,

580 Chapter 14 File-System Implementation

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

free-space list head

Figure 14.9 Linked free-space list on disk.

the operating system simply needs a free block so that it can allocate that block
to a file, so the first block in the free list is used. The FAT method incorporates
free-block accounting into the allocation data structure. No separate method is
needed.

14.5.3 Grouping

A modification of the free-list approach stores the addresses of n free blocks
in the first free block. The first n−1 of these blocks are actually free. The last
block contains the addresses of another n free blocks, and so on. The addresses
of a large number of free blocks can now be found quickly, unlike the situation
when the standard linked-list approach is used.

14.5.4 Counting

Another approach takes advantage of the fact that, generally, several contigu-
ous blocks may be allocated or freed simultaneously, particularly when space
is allocated with the contiguous-allocation algorithm or through clustering.
Thus, rather than keeping a list of n free block addresses, we can keep the
address of the first free block and the number (n) of free contiguous blocks that
follow the first block. Each entry in the free-space list then consists of a device
address and a count. Although each entry requires more space than would a
simple disk address, the overall list is shorter, as long as the count is generally
greater than 1. Note that this method of tracking free space is similar to the
extent method of allocating blocks. These entries can be stored in a balanced
tree, rather than a linked list, for efficient lookup, insertion, and deletion.

14.5 Free-Space Management 581

14.5.5 Space Maps

Oracle’s ZFS file system (found in Solaris and some other operating systems)
was designed to encompass huge numbers of files, directories, and even file
systems (in ZFS, we can create file-system hierarchies). On these scales, meta-
data I/O can have a large performance impact. Consider, for example, that if
the free-space list is implemented as a bitmap, bitmaps must be modified both
when blocks are allocated and when they are freed. Freeing 1 GB of data on a
1-TB disk could cause thousands of blocks of bitmaps to be updated, because
those data blocks could be scattered over the entire disk. Clearly, the data
structures for such a system could be large and inefficient.

In its management of free space, ZFS uses a combination of techniques to
control the size of data structures and minimize the I/O needed to manage
those structures. First, ZFS creates metaslabs to divide the space on the device
into chunks of manageable size. A given volume may contain hundreds of
metaslabs. Each metaslab has an associated space map. ZFS uses the counting
algorithm to store information about free blocks. Rather than write counting
structures to disk, it uses log-structured file-system techniques to record them.
The space map is a log of all block activity (allocating and freeing), in time
order, in counting format. When ZFS decides to allocate or free space from a
metaslab, it loads the associated space map into memory in a balanced-tree
structure (for very efficient operation), indexed by offset, and replays the log
into that structure. The in-memory space map is then an accurate representa-
tion of the allocated and free space in themetaslab. ZFS also condenses themap
as much as possible by combining contiguous free blocks into a single entry.
Finally, the free-space list is updated on disk as part of the transaction-oriented
operations of ZFS. During the collection and sorting phase, block requests can
still occur, and ZFS satisfies these requests from the log. In essence, the log plus
the balanced tree is the free list.

14.5.6 TRIMing Unused Blocks

HDDs and other storage media that allow blocks to be overwritten for updates
need only the free list for managing free space. Blocks do not need to be treated
specially when freed. A freed block typically keeps its data (but without any
file pointers to the block) until the data are overwritten when the block is next
allocated.

Storage devices that do not allow overwrite, such as NVM flash-based
storage devices, suffer badly when these same algorithms are applied. Recall
from Section 11.1.2 that such devices must be erased before they can again
be written to, and that those erases must be made in large chunks (blocks,
composed of pages) and take a relatively long time compared with reads or
writes.

A new mechanism is needed to allow the file system to inform the storage
device that a page is free and can be considered for erasure (once the block con-
taining the page is entirely free). That mechanism varies based on the storage
controller. For ATA-attached drives, it is TRIM, while for NVMe-based storage, it
is the unallocate command. Whatever the specific controller command, this
mechanism keeps storage space available for writing. Without such a capabil-
ity, the storage device gets full and needs garbage collection and block erasure,
leading to decreases in storage I/Owrite performance (knownas “awrite cliff”).

582 Chapter 14 File-System Implementation

With the TRIM mechanism and similar capabilities, the garbage collection and
erase steps can occur before the device is nearly full, allowing the device to
provide more consistent performance.

14.6 Efficiency and Performance

Now that we have discussed various block-allocation and directory-
management options, we can further consider their effect on performance
and efficient storage use. Disks tend to represent a major bottleneck in system
performance, since they are the slowest main computer component. EvenNVM
devices are slow compared with CPU and main memory, so their performance
must be optimized as well. In this section, we discuss a variety of techniques
used to improve the efficiency and performance of secondary storage.

14.6.1 Efficiency

The efficient use of storage device space depends heavily on the allocation
and directory algorithms in use. For instance, UNIX inodes are preallocated
on a volume. Even an empty disk has a percentage of its space lost to inodes.
However, by preallocating the inodes and spreading them across the volume,
we improve the file system’s performance. This improved performance results
from the UNIX allocation and free-space algorithms, which try to keep a file’s
data blocks near that file’s inode block to reduce seek time.

As another example, let’s reconsider the clustering scheme discussed in
Section 14.4, which improves file-seek and file-transfer performance at the cost
of internal fragmentation. To reduce this fragmentation, BSD UNIX varies the
cluster size as a file grows. Large clusters are used where they can be filled,
and small clusters are used for small files and the last cluster of a file. This
system is described in Appendix C.

The types of data normally kept in a file’s directory (or inode) entry also
require consideration. Commonly, a “last write date” is recorded to supply
information to the user and to determine whether the file needs to be backed
up. Some systems also keep a “last access date,” so that a user can determine
when the file was last read. The result of keeping this information is that,
whenever the file is read, a field in the directory structure must be written to.
That means the block must be read into memory, a section changed, and the
block written back out to the device, because operations on secondary storage
occur only in block (or cluster) chunks. So any time a file is opened for reading,
its FCBmust be read andwritten aswell. This requirement can be inefficient for
frequently accessed files, so we must weigh its benefit against its performance
cost when designing a file system. Generally, every data item associated with
a file needs to be considered for its effect on efficiency and performance.

Consider, for instance, how efficiency is affected by the size of the pointers
used to access data. Most systems use either 32-bit or 64-bit pointers through-
out the operating system.Using 32-bit pointers limits the size of a file to 232, or 4
GB. Using 64-bit pointers allows very large file sizes, but 64-bit pointers require
more space to store. As a result, the allocation and free-space-management
methods (linked lists, indexes, and so on) use more storage space.

14.6 Efficienc and Performance 583

One of the difficulties in choosing a pointer size—or, indeed, any fixed allo-
cation size within an operating system—is planning for the effects of changing
technology. Consider that the IBM PC XT had a 10-MB hard drive and anMS-DOS
FAT file system that could support only 32 MB. (Each FAT entry was 12 bits,
pointing to an 8-KB cluster.) As disk capacities increased, larger disks had to
be split into 32-MB partitions, because the file system could not track blocks
beyond 32 MB. As hard disks with capacities of over 100 MB became common,
the disk data structures and algorithms in MS-DOS had to be modified to allow
larger file systems. (Each FAT entry was expanded to 16 bits and later to 32
bits.) The initial file-system decisions were made for efficiency reasons; how-
ever, with the advent of MS-DOS Version 4, millions of computer users were
inconveniencedwhen theyhad to switch to the new, larger file system. Solaris’s
ZFS file system uses 128-bit pointers, which theoretically should never need to
be extended. (Theminimummass of a device capable of storing 2128 bytes using
atomic-level storage would be about 272 trillion kilograms.)

As another example, consider the evolution of the Solaris operating sys-
tem. Originally, many data structures were of fixed length, allocated at system
startup. These structures included the process table and the open-file table.
When the process table became full, nomore processes could be created.When
the file table became full, no more files could be opened. The systemwould fail
to provide services to users. Table sizes could be increased only by recompiling
the kernel and rebooting the system. With later releases of Solaris, (as with
modernLinux kernels) almost all kernel structureswere allocated dynamically,
eliminating these artificial limits on system performance. Of course, the algo-
rithms that manipulate these tables are more complicated, and the operating
system is a little slower because it must dynamically allocate and deallocate
table entries; but that price is the usual one for more general functionality.

14.6.2 Performance

Even after the basic file-system algorithms have been selected, we can still
improve performance in several ways. Aswas discussed in Chapter 12, storage
device controllers include local memory to form an on-board cache that is large
enough to store entire tracks or blocks at a time. On an HDD, once a seek is
performed, the track is read into the disk cache starting at the sector under the
disk head (reducing latency time). The disk controller then transfers any sector
requests to the operating system. Once blocks make it from the disk controller
into main memory, the operating system may cache the blocks there.

Some systems maintain a separate section of main memory for a buffer
cache, where blocks are kept under the assumption that they will be used
again shortly. Other systems cache file data using a page cache. The page
cache uses virtual memory techniques to cache file data as pages rather than
as file-system-oriented blocks. Caching file data using virtual addresses is far
more efficient than caching through physical disk blocks, as accesses interface
with virtual memory rather than the file system. Several systems—including
Solaris, Linux, and Windows—use page caching to cache both process pages
and file data. This is known as unifie virtual memory.

Some versions of UNIX and Linux provide a unifie buffer cache. To
illustrate the benefits of the unified buffer cache, consider the two alternatives

584 Chapter 14 File-System Implementation

memory-mapped I/O
I/O using

read() and write()

page cache

buffer cache

file system

Figure 14.10 I/O without a unified buffer cache.

for opening and accessing a file. One approach is to use memory mapping
(Section 13.5); the second is to use the standard system calls read() and
write(). Without a unified buffer cache, we have a situation similar to Figure
14.10. Here, the read() and write() system calls go through the buffer cache.
The memory-mapping call, however, requires using two caches—the page
cache and the buffer cache. A memory mapping proceeds by reading in disk
blocks from the file system and storing them in the buffer cache. Because the
virtualmemory system does not interface with the buffer cache, the contents of
the file in the buffer cache must be copied into the page cache. This situation,
known as double caching, requires caching file-system data twice. Not only
does this waste memory but it also wastes significant CPU and I/O cycles due
to the extra datamovementwithin systemmemory. In addition, inconsistencies
between the two caches can result in corrupt files. In contrast, when a unified
buffer cache is provided, both memory mapping and the read() and write()
system calls use the same page cache. This has the benefit of avoiding double
caching, and it allows the virtual memory system to manage file-system data.
The unified buffer cache is shown in Figure 14.11.

Regardless of whether we are caching storage blocks or pages (or both),
least recently used (LRU) (Section 10.4.4) seems a reasonable general-purpose
algorithm for block or page replacement. However, the evolution of the Solaris
page-caching algorithms reveals the difficulty in choosing an algorithm. Solaris
allows processes and the page cache to share unused memory. Versions earlier
than Solaris 2.5.1 made no distinction between allocating pages to a process
and allocating them to the page cache. As a result, a system performing many
I/O operations used most of the available memory for caching pages. Because
of the high rates of I/O, the page scanner (Section 10.10.3) reclaimed pages
from processes—rather than from the page cache—when free memory ran
low. Solaris 2.6 and Solaris 7 optionally implemented priority paging, in which
the page scanner gave priority to process pages over the page cache. Solaris 8
applied a fixed limit to process pages and the file-system page cache, prevent-

14.6 Efficienc and Performance 585

memory-mapped I/O
I/O using

read() and write()

buffer cache

file system

Figure 14.11 I/O using a unified buffer cache.

ing either from forcing the other out of memory. Solaris 9 and 10 again changed
the algorithms to maximize memory use and minimize thrashing.

Another issue that can affect the performance of I/O is whether writes to
the file system occur synchronously or asynchronously. Synchronous writes
occur in the order in which the storage subsystem receives them, and the
writes are not buffered. Thus, the calling routine must wait for the data to
reach the drive before it can proceed. In an asynchronous write, the data
are stored in the cache, and control returns to the caller. Most writes are
asynchronous. However, metadata writes, among others, can be synchronous.
Operating systems frequently include a flag in the open system call to allow
a process to request that writes be performed synchronously. For example,
databases use this feature for atomic transactions, to assure that data reach
stable storage in the required order.

Some systems optimize their page cache by using different replacement
algorithms, depending on the access type of the file. Afile being read or written
sequentially should not have its pages replaced in LRU order, because the
most recently used page will be used last, or perhaps never again. Instead,
sequential access can be optimized by techniques known as free-behind and
read-ahead. Free-behind removes a page from the buffer as soon as the next
page is requested. The previous pages are not likely to be used again and
waste buffer space. With read-ahead, a requested page and several subsequent
pages are read and cached. These pages are likely to be requested after the
current page is processed. Retrieving these data from the disk in one transfer
and caching them saves a considerable amount of time. One might think that
a track cache on the controller would eliminate the need for read-ahead on a
multiprogrammed system.However, because of the high latency and overhead
involved inmakingmany small transfers from the track cache tomainmemory,
performing a read-ahead remains beneficial.

The page cache, the file system, and the device drivers have some interest-
ing interactions. When small amounts of data are written to a file, the pages
are buffered in the cache, and the storage device driver sorts its output queue
according to device address. These two actions allow a disk driver to minimize
disk-head seeks. Unless synchronous writes are required, a process writing to
disk simply writes into the cache, and the system asynchronously writes the

586 Chapter 14 File-System Implementation

data to disk when convenient. The user process sees very fast writes. When
data are read from a disk file, the block I/O system does some read-ahead;
however, writes are much more nearly asynchronous than are reads. Thus,
output to the disk through the file system is often faster than is input for small
transfers, counter to intuition. No matter how much buffering and caching is
available, large, continuous I/O can overrun the capacity and end up bottle-
necked on the device’s performance. Consider writing a large movie file to a
HDD. If the file is larger than the page cache (or the part of the page cache
available to the process) then the page cache will fill and all I/O will occur at
drive speed. Current HDDs read faster than they write, so in this instance the
performance aspects are reversed from smaller I/O performance.

14.7 Recovery

Files and directories are kept both inmainmemory and on the storage volume,
and care must be taken to ensure that a system failure does not result in loss of
data or in data inconsistency. A system crash can cause inconsistencies among
on-storage file-system data structures, such as directory structures, free-block
pointers, and free FCB pointers. Many file systems apply changes to these
structures in place. A typical operation, such as creating a file, can involve
many structural changeswithin the file systemon the disk.Directory structures
are modified, FCBs are allocated, data blocks are allocated, and the free counts
for all of these blocks are decreased. These changes can be interrupted by a
crash, and inconsistencies among the structures can result. For example, the
free FCB count might indicate that an FCB had been allocated, but the directory
structuremight not point to the FCB. Compounding this problem is the caching
that operating systems do to optimize I/O performance. Some changes may go
directly to storage, while others may be cached. If the cached changes do not
reach the storage device before a crash occurs, more corruption is possible.

In addition to crashes, bugs in file-system implementation, device con-
trollers, and even user applications can corrupt a file system. File systems have
varying methods to deal with corruption, depending on the file-system data
structures and algorithms. We deal with these issues next.

14.7.1 Consistency Checking

Whatever the cause of corruption, a file system must first detect the problems
and then correct them. For detection, a scan of all the metadata on each file
system can confirm or deny the consistency of the system. Unfortunately, this
scan can take minutes or hours and should occur every time the system boots.
Alternatively, a file system can record its state within the file-systemmetadata.
At the start of any metadata change, a status bit is set to indicate that the
metadata is in flux. If all updates to the metadata complete successfully, the file
system can clear that bit. If, however, the status bit remains set, a consistency
checker is run.

The consistency checker—a systems program such as fsck in UNIX—
compares the data in the directory structure and other metadata with the
state on storage and tries to fix any inconsistencies it finds. The allocation
and free-space-management algorithms dictate what types of problems the

14.7 Recovery 587

checker can find and how successful it will be in fixing them. For instance,
if linked allocation is used and there is a link from any block to its next
block, then the entire file can be reconstructed from the data blocks, and the
directory structure can be recreated. In contrast, the loss of a directory entry
on an indexed allocation system can be disastrous, because the data blocks
have no knowledge of one another. For this reason, some UNIX file systems
cache directory entries for reads, but any write that results in space allocation,
or other metadata changes, is done synchronously, before the corresponding
data blocks are written. Of course, problems can still occur if a synchronous
write is interrupted by a crash. Some NVM storage devices contain a battery or
supercapacitor to provide enough power, even during a power loss, to write
data from device buffers to the storage media so the data are not lost. But even
those precautions do not protect against corruption due to a crash.

14.7.2 Log-Structured File Systems

Computer scientists often find that algorithms and technologies originally
used in one area are equally useful in other areas. Such is the case with the
database log-based recovery algorithms. These logging algorithms have been
applied successfully to the problem of consistency checking. The resulting
implementations are known as log-based transaction-oriented (or journaling)
file systems.

Note that with the consistency-checking approach discussed in the pre-
ceding section, we essentially allow structures to break and repair them on
recovery. However, there are several problems with this approach. One is that
the inconsistency may be irreparable. The consistency check may not be able
to recover the structures, resulting in loss of files and even entire directories.
Consistency checking can require human intervention to resolve conflicts, and
that is inconvenient if no human is available. The system can remain unavail-
able until the human tells it how to proceed. Consistency checking also takes
system and clock time. To check terabytes of data, hours of clock time may be
required.

The solution to this problem is to apply log-based recovery techniques to
file-system metadata updates. Both NTFS and the Veritas file system use this
method, and it is included in recent versions of UFS on Solaris. In fact, it is now
common on many file systems including ext3, ext4, and ZFS.

Fundamentally, all metadata changes are written sequentially to a log.
Each set of operations for performing a specific task is a transaction. Once
the changes are written to this log, they are considered to be committed,
and the system call can return to the user process, allowing it to continue
execution. Meanwhile, these log entries are replayed across the actual file-
system structures. As the changes are made, a pointer is updated to indicate
which actions have completed and which are still incomplete. When an entire
committed transaction is completed, and entry is made in the log indicating
that. The log file is is actually a circular buffer. A circular buffer writes to the
end of its space and then continues at the beginning, overwriting older values
as it goes. We would not want the buffer to write over data that had not yet
been saved, so that scenario is avoided. The log may be in a separate section of
the file system or even on a separate storage device.

588 Chapter 14 File-System Implementation

If the system crashes, the log file will contain zero or more transactions.
Any transactions it containswere not completed to the file system, even though
theywere committed by the operating system, so theymust now be completed.
The transactions can be executed from the pointer until the work is complete
so that the file-system structures remain consistent. The only problem occurs
when a transactionwas aborted—that is, was not committed before the system
crashed. Any changes from such a transaction that were applied to the file
system must be undone, again preserving the consistency of the file system.
This recovery is all that is needed after a crash, eliminating any problems with
consistency checking.

A side benefit of using logging on disk metadata updates is that those
updates proceed much faster than when they are applied directly to the on-
disk data structures. The reason is found in the performance advantage of
sequential I/O over random I/O. The costly synchronous random metadata
writes are turned into much less costly synchronous sequential writes to the
log-structured file system’s logging area. Those changes, in turn, are replayed
asynchronously via random writes to the appropriate structures. The overall
result is a significant gain in performance of metadata-oriented operations,
such as file creation and deletion, on HDD storage.

14.7.3 Other Solutions

Another alternative to consistency checking is employed by Network Appli-
ance’s WAFL file system and the Solaris ZFS file system. These systems never
overwrite blocks with new data. Rather, a transaction writes all data andmeta-
data changes to new blocks. When the transaction is complete, the metadata
structures that pointed to the old versions of these blocks are updated to point
to the new blocks. The file system can then remove the old pointers and the
old blocks and make them available for reuse. If the old pointers and blocks
are kept, a snapshot is created; the snapshot is a view of the file system at a
specific point in time (before any updates after that time were applied). This
solution should require no consistency checking if the pointer update is done
atomically. WAFL does have a consistency checker, however, so some failure
scenarios can still cause metadata corruption. (See Section 14.8 for details of
the WAFL file system.)

ZFS takes an evenmore innovative approach to disk consistency. LikeWAFL,
it never overwrites blocks. However, ZFS goes further and provides checksum-
ming of all metadata and data blocks. This solution (when combined with
RAID) assures that data are always correct. ZFS therefore has no consistency
checker. (More details on ZFS are found in Section 11.8.6.)

14.7.4 Backup and Restore

Storage devices sometimes fail, and care must be taken to ensure that the data
lost in such a failure are not lost forever. To this end, system programs can be
used to back up data from one storage device to another, such as a magnetic
tape or other secondary storage device. Recovery from the loss of an individual
file, or of an entire device, may then be a matter of restoring the data from
backup.

To minimize the copying needed, we can use information from each file’s
directory entry. For instance, if the backup program knows when the last

14.8 Example: The WAFL File System 589

backup of a filewas done, and the file’s last write date in the directory indicates
that the file has not changed since that date, then the file does not need to be
copied again. A typical backup schedule may then be as follows:

• Day 1. Copy to a backupmediumall files from the file system. This is called
a full backup.

• Day 2. Copy to another medium all files changed since day 1. This is an
incremental backup.

• Day 3. Copy to another medium all files changed since day 2.

. . .

• Day N. Copy to another medium all files changed since dayN− 1. Then go
back to day 1.

The new cycle can have its backup written over the previous set or onto a new
set of backup media.

Using this method, we can restore an entire file system by starting restores
with the full backup and continuing through each of the incremental backups.
Of course, the larger the value ofN, the greater the number of media that must
be read for a complete restore. An added advantage of this backup cycle is that
we can restore any file accidentally deleted during the cycle by retrieving the
deleted file from the backup of the previous day.

The length of the cycle is a compromise between the amount of backup
needed and the number of days covered by a restore. To decrease the number
of tapes that must be read to do a restore, an option is to perform a full backup
and then each day back up all files that have changed since the full backup. In
this way, a restore can be done via the most recent incremental backup and the
full backup, with no other incremental backups needed. The trade-off is that
more files will be modified each day, so each successive incremental backup
involves more files and more backup media.

A user may notice that a particular file is missing or corrupted long after
the damage was done. For this reason, we usually plan to take a full backup
from time to time that will be saved “forever.” It is a good idea to store these
permanent backups far away from the regular backups to protect against
hazard, such as a fire that destroys the computer and all the backups too. In
the TV show “Mr. Robot,” hackers not only attacked the primary sources of
banks’ data but also their backup sites. Having multiple backup sites might
not be a bad idea if your data are important.

14.8 Example: The WAFL File System

Because secondary-storage I/O has such a huge impact on systemperformance,
file-system design and implementation command quite a lot of attention from
system designers. Some file systems are general purpose, in that they can
provide reasonable performance and functionality for a wide variety of file
sizes, file types, and I/O loads. Others are optimized for specific tasks in an
attempt to provide better performance in those areas than general-purpose

590 Chapter 14 File-System Implementation

file systems. The write-anywhere file layout (WAFL) from NetApp, Inc. is an
example of this sort of optimization. WAFL is a powerful, elegant file system
optimized for random writes.

WAFL is used exclusively on network file servers produced by NetApp and
is meant for use as a distributed file system. It can provide files to clients via
the NFS, CIFS, iSCSI, ftp, and http protocols, although it was designed just for
NFS and CIFS. When many clients use these protocols to talk to a file server,
the server may see a very large demand for random reads and an even larger
demand for random writes. The NFS and CIFS protocols cache data from read
operations, so writes are of the greatest concern to file-server creators.

WAFL is used on file servers that include an NVRAM cache for writes.
The WAFL designers took advantage of running on a specific architecture to
optimize the file system for random I/O, with a stable-storage cache in front.
Ease of use is one of the guiding principles of WAFL. Its creators also designed it
to include a new snapshot functionality that creates multiple read-only copies
of the file system at different points in time, as we shall see.

The file system is similar to the Berkeley Fast File System, with many
modifications. It is block-based and uses inodes to describe files. Each inode
contains 16 pointers to blocks (or indirect blocks) belonging to the file described
by the inode. Each file system has a root inode. All of themetadata lives in files.
All inodes are in one file, the free-block map in another, and the free-inode
map in a third, as shown in Figure 14.12. Because these are standard files, the
data blocks are not limited in location and can be placed anywhere. If a file
system is expanded by addition of disks, the lengths of the metadata files are
automatically expanded by the file system.

Thus, a WAFL file system is a tree of blocks with the root inode as its
base. To take a snapshot, WAFL creates a copy of the root inode. Any file or
metadata updates after that go to new blocks rather than overwriting their
existing blocks. The new root inode points to metadata and data changed as a
result of these writes. Meanwhile, the snapshot (the old root inode) still points
to the old blocks, which have not been updated. It therefore provides access to
the file system just as it was at the instant the snapshot was made—and takes
very little storage space to do so. In essence, the extra space occupied by a
snapshot consists of just the blocks that have been modified since the snapshot
was taken.

free block map free inode map file in the file system...

root inode

inode file

•••

•••

•••

Figure 14.12 The WAFL file layout.

14.8 Example: The WAFL File System 591

An important change frommore standard file systems is that the free-block
map has more than one bit per block. It is a bitmap with a bit set for each
snapshot that is using the block. When all snapshots that have been using the
block are deleted, the bitmap for that block is all zeros, and the block is free to
be reused. Used blocks are never overwritten, so writes are very fast, because
a write can occur at the free block nearest the current head location. There are
many other performance optimizations in WAFL as well.

Many snapshots can exist simultaneously, so one can be taken each hour
of the day and each day of the month, for example. A user with access to
these snapshots can access files as they were at any of the times the snapshots
were taken. The snapshot facility is also useful for backups, testing, versioning,
and so on. WAFL’s snapshot facility is very efficient in that it does not even
require that copy-on-write copies of each data block be taken before the block
is modified. Other file systems provide snapshots, but frequently with less
efficiency. WAFL snapshots are depicted in Figure 14.13.

Newer versions of WAFL actually allow read–write snapshots, known as
clones. Clones are also efficient, using the same techniques as shapshots. In
this case, a read-only snapshot captures the state of the file system, and a clone
refers back to that read-only snapshot. Any writes to the clone are stored in
new blocks, and the clone’s pointers are updated to refer to the new blocks.
The original snapshot is unmodified, still giving a view into the file system as

block A B C D E

root inode

(a) Before a snapshot.

block A B C D E

root inode

(b) After a snapshot, before any blocks change.

new snapshot

block A B C D D´E

root inode

(c) After block D has changed to D´.

new snapshot

Figure 14.13 Snapshots in WAFL.

592 Chapter 14 File-System Implementation

THE APPLE FILE SYSTEM

In 2017, Apple, Inc., released a new file system to replace its 30-year-old HFS+
file system. HFS+ had been stretched to add many new features, but as usual,
this process added complexity, along with lines of code, and made adding
more features more difficult. Starting from scratch on a blank page allows a
design to start with current technologies and methodologies and provide the
exact set of features needed.

Apple File System (APFS) is a good example of such a design. Its goal
is to run on all current Apple devices, from the Apple Watch through the
iPhone to the Mac computers. Creating a file system that works in watchOS,
I/Os, tvOS, andmacOS is certainly a challenge. APFS is feature-rich, including
64-bit pointers, clones for files and directories, snapshots, space sharing, fast
directory sizing, atomic safe-save primitives, copy-on-write design, encryp-
tion (single- and multi-key), and I/O coalescing. It understands NVM as well
as HDD storage.

Most of these features we’ve discussed, but there are a few new concepts
worth exploring. Space sharing is a ZFS-like feature in which storage is avail-
able as one or more large free spaces (containers) from which file systems
can draw allocations (allowing APFS-formatted volumes to grow and shrink).
Fast directory sizing provides quick used-space calculation and updating.
Atomic safe-save is a primitive (available via API, not via file-system com-
mands) that performs renames of files, bundles of files, and directories as
single atomic operations. I/O coalescing is an optimization for NVM devices
in which several small writes are gathered together into a large write to
optimize write performance.

Apple chose not to implement RAID as part of the new APFS, instead
depending on the existingApple RAID volumemechanism for software RAID.
APFS is also compatible with HFS+, allowing easy conversion for existing
deployments.

it was before the clone was updated. Clones can also be promoted to replace
the original file system; this involves throwing out all of the old pointers and
any associated old blocks. Clones are useful for testing and upgrades, as the
original version is left untouched and the clone deleted when the test is done
or if the upgrade fails.

Another feature that naturally results from theWAFLfile system implemen-
tation is replication, the duplication and synchronization of a set of data over a
network to another system. First, a snapshot of aWAFLfile system is duplicated
to another system. When another snapshot is taken on the source system, it
is relatively easy to update the remote system just by sending over all blocks
contained in the new snapshot. These blocks are the ones that have changed
between the times the two snapshotswere taken. The remote systemadds these
blocks to the file system and updates its pointers, and the new system then is a
duplicate of the source system as of the time of the second snapshot. Repeating
this processmaintains the remote systemas a nearly up-to-date copy of the first
system. Such replication is used for disaster recovery. Should the first system
be destroyed, most of its data are available for use on the remote system.

14.9 Summary 593

Finally, note that the ZFS file system supports similarly efficient snapshots,
clones, and replication, and those features are becoming more common in
various file systems as time goes by.

14.9 Summary

• Most file systems reside on secondary storage, which is designed to hold a
large amount of data permanently. The most common secondary-storage
medium is the disk, but the use of NVM devices is increasing.

• Storage devices are segmented into partitions to control media use and to
allowmultiple, possibly varying, file systems on a single device. These file
systems are mounted onto a logical file system architecture to make them
available for use.

• File systems are often implemented in a layered or modular structure.
The lower levels deal with the physical properties of storage devices and
communicatingwith them.Upper levels dealwith symbolic file names and
logical properties of files.

• The various files within a file system can be allocated space on the storage
device in three ways: through contiguous, linked, or indexed allocation.
Contiguous allocation can suffer from external fragmentation. Direct
access is very inefficient with linked allocation. Indexed allocation may
require substantial overhead for its index block. These algorithms can
be optimized in many ways. Contiguous space can be enlarged through
extents to increase flexibility and to decrease external fragmentation.
Indexed allocation can be done in clusters of multiple blocks to increase
throughput and to reduce the number of index entries needed. Indexing
in large clusters is similar to contiguous allocation with extents.

• Free-space allocation methods also influence the efficiency of disk-space
use, the performance of the file system, and the reliability of secondary
storage. The methods used include bit vectors and linked lists. Optimiza-
tions include grouping, counting, and the FAT, which places the linked list
in one contiguous area.

• Directory-management routines must consider efficiency, performance,
and reliability. A hash table is a commonly used method, as it is fast and
efficient. Unfortunately, damage to the table or a system crash can result in
inconsistency between the directory information and the disk’s contents.

• A consistency checker can be used to repair damaged file-system struc-
tures. Operating-system backup tools allow data to be copied to magnetic
tape or other storage devices, enabling the user to recover from data loss
or even entire device loss due to hardware failure, operating system bug,
or user error.

• Due to the fundamental role that file systems play in system operation,
their performance and reliability are crucial. Techniques such as log struc-
tures and caching help improve performance, while log structures and
RAID improve reliability. The WAFL file system is an example of optimiza-
tion of performance to match a specific I/O load.

594 Chapter 14 File-System Implementation

Practice Exercises

14.1 Consider a file currently consisting of 100 blocks. Assume that the
file-control block (and the index block, in the case of indexed alloca-
tion) is already in memory. Calculate how many disk I/O operations
are required for contiguous, linked, and indexed (single-level) alloca-
tion strategies, if, for one block, the following conditions hold. In the
contiguous-allocation case, assume that there is no room to grow at the
beginning but there is room to grow at the end. Also assume that the
block information to be added is stored in memory.

a. The block is added at the beginning.

b. The block is added in the middle.

c. The block is added at the end.

d. The block is removed from the beginning.

e. The block is removed from the middle.

f. The block is removed from the end.

14.2 Whymust the bit map for file allocation be kept onmass storage, rather
than in main memory?

14.3 Consider a system that supports the strategies of contiguous, linked,
and indexed allocation.What criteria should be used in decidingwhich
strategy is best utilized for a particular file?

14.4 One problem with contiguous allocation is that the user must preallo-
cate enough space for each file. If the file grows to be larger than the
space allocated for it, special actions must be taken. One solution to
this problem is to define a file structure consisting of an initial con-
tiguous area of a specified size. If this area is filled, the operating sys-
tem automatically defines an overflow area that is linked to the initial
contiguous area. If the overflow area is filled, another overflow area
is allocated. Compare this implementation of a file with the standard
contiguous and linked implementations.

14.5 How do caches help improve performance? Why do systems not use
more or larger caches if they are so useful?

14.6 Why is it advantageous to the user for an operating system to dynami-
cally allocate its internal tables?What are the penalties to the operating
system for doing so?

Further Reading

The internals of the BSD UNIX system are covered in full in [McKusick et al.
(2015)]. Details concerning file systems for Linux can be found in [Love (2010)].
The Google file system is described in [Ghemawat et al. (2003)]. FUSE can be
found at http://fuse.sourceforge.net.

http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://doi.acm.org/10.1145/945445.945450
http://fuse.sourceforge.net

Further Reading 595

Log-structured file organizations for enhancing both performance and con-
sistency are discussed in [Rosenblum and Ousterhout (1991)], [Seltzer et al.
(1993)], and [Seltzer et al. (1995)]. Log-structured designs for networked file
systems are proposed in [Hartman andOusterhout (1995)] and [Thekkath et al.
(1997)].

The ZFS source code for spacemaps can be found at http://src.opensolaris.o
rg/source/xref/onnv/onnv-gate/usr/src/uts/common/ fs/zfs/space map.c.

ZFS documentation can be found at http://www.opensolaris.org/os/commu
nity/ZFS/docs.

The NTFS file system is explained in [Solomon (1998)], the Ext3 file system
used in Linux is described in [Mauerer (2008)], and the WAFL file system is
covered in [Hitz et al. (1995)].

Bibliography

[Ghemawat et al. (2003)] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google File System”, Proceedings of the ACM Symposium on Operating Systems
Principles (2003).

[Hartman and Ousterhout (1995)] J. H. Hartman and J. K. Ousterhout, “The
Zebra Striped Network File System”, ACM Transactions on Computer Systems,
Volume 13, Number 3 (1995), pages 274–310.

[Hitz et al. (1995)] D. Hitz, J. Lau, and M. Malcolm, “File System Design for an
NFS File Server Appliance”, Technical report, NetApp (1995).

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[Mauerer (2008)] W. Mauerer, Professional Linux Kernel Architecture, John Wiley
and Sons (2008).

[McKusick et al. (2015)] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Wat-
son,The Design and Implementation of the FreeBSDUNIXOperating System–Second
Edition, Pearson (2015).

[Rosenblum and Ousterhout (1991)] M. Rosenblum and J. K. Ousterhout, “The
Design and Implementation of a Log-Structured File System”, Proceedings of the
ACM Symposium on Operating Systems Principles (1991), pages 1–15.

[Seltzer et al. (1993)] M. I. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin,
“An Implementation of a Log-Structured File System forUNIX”,USENIXWinter
(1993), pages 307–326.

[Seltzer et al. (1995)] M. I. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. N. Padmanabhan, “File System Logging Versus Clustering:
A Performance Comparison”, USENIX Winter (1995), pages 249–264.

[Solomon (1998)] D. A. Solomon, Inside Windows NT, Second Edition, Microsoft
Press (1998).

http://doi.acm.org/10.1145/121132.121137
http://dl.acm.org/citation.cfm?id=1267303.1267306
http://dl.acm.org/citation.cfm?id=1267411.1267432
http://doi.acm.org/10.1145/210126.210131
http://doi.acm.org/10.1145/268998.266694
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/space_map.c
http://www.opensolaris.org/os/community/ZFS/docs
http://scholar.google.com/scholar?hl/en&q=D A Solomon Inside Windows NT SecondEdition
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://www.netapp.com/tech_library/3002.html
http://doi.acm.org/10.1145/945445.945450
http://doi.acm.org/10.1145/945445.945450
http://doi.acm.org/10.1145/210126.210131
http://doi.acm.org/10.1145/210126.210131
http://www.netapp.com/tech_library/3002.html
http://www.netapp.com/tech_library/3002.html
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://doi.acm.org/10.1145/121132.121137
http://doi.acm.org/10.1145/121132.121137
http://dl.acm.org/citation.cfm?id=1267303.1267306
http://dl.acm.org/citation.cfm?id=1267303.1267306
http://dl.acm.org/citation.cfm?id=1267411.1267432
http://dl.acm.org/citation.cfm?id=1267411.1267432
http://scholar.google.com/scholar?hl/en&q=D A Solomon Inside Windows NT SecondEdition
http://scholar.google.com/scholar?hl/en&q=D A Solomon Inside Windows NT SecondEdition
http://www.opensolaris.org/os/community/ZFS/docs
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/space_map.c

596 Chapter 14 File-System Implementation

[Thekkath et al. (1997)] C. A. Thekkath, T. Mann, and E. K. Lee, “Frangipani:
A Scalable Distributed File System”, Symposium on Operating Systems Principles
(1997), pages 224–237.

http://doi.acm.org/10.1145/268998.266694
http://doi.acm.org/10.1145/268998.266694

Chapter 14 Exercises

14.7 Consider a file system that uses a modified contiguous-allocation
scheme with support for extents. A file is a collection of extents, with
each extent corresponding to a contiguous set of blocks. A key issue
in such systems is the degree of variability in the size of the extents.
What are the advantages and disadvantages of the following schemes?

a. All extents are of the same size, and the size is predetermined.

b. Extents can be of any size and are allocated dynamically.

c. Extents can be of a few fixed sizes, and these sizes are predeter-
mined.

14.8 Contrast the performance of the three techniques for allocating disk
blocks (contiguous, linked, and indexed) for both sequential and ran-
dom file access.

14.9 What are the advantages of the variant of linked allocation that uses a
FAT to chain together the blocks of a file?

14.10 Consider a system where free space is kept in a free-space list.

a. Suppose that the pointer to the free-space list is lost. Can the
system reconstruct the free-space list? Explain your answer.

b. Consider a file system similar to the one used by UNIX with
indexed allocation. How many disk I/O operations might be
required to read the contents of a small local file at /a/b/c?
Assume that none of the disk blocks is currently being cached.

c. Suggest a scheme to ensure that the pointer is never lost as a result
of memory failure.

14.11 Some file systems allow disk storage to be allocated at different levels
of granularity. For instance, a file system could allocate 4 KB of disk
space as a single 4-KB block or as eight 512-byte blocks. How could
we take advantage of this flexibility to improve performance? What
modifications would have to be made to the free-space management
scheme in order to support this feature?

14.12 Discuss how performance optimizations for file systemsmight result in
difficulties in maintaining the consistency of the systems in the event
of computer crashes.

14.13 Discuss the advantages and disadvantages of supporting links to files
that cross mount points (that is, the file link refers to a file that is stored
in a different volume).

14.14 Consider a file system on a disk that has both logical and physical
block sizes of 512 bytes. Assume that the information about each file
is already in memory. For each of the three allocation strategies (con-
tiguous, linked, and indexed), answer these questions:

EX-49

Exercises

a. How is the logical-to-physical address mapping accomplished
in this system? (For the indexed allocation, assume that a file is
always less than 512 blocks long.)

b. If we are currently at logical block 10 (the last block accessed was
block 10) and want to access logical block 4, how many physical
blocks must be read from the disk?

14.15 Consider a file system that uses inodes to represent files. Disk blocks
are 8 KB in size, and a pointer to a disk block requires 4 bytes. This file
system has 12 direct disk blocks, as well as single, double, and triple
indirect disk blocks. What is the maximum size of a file that can be
stored in this file system?

14.16 Fragmentation on a storage device can be eliminated through com-
paction. Typical disk devices do not have relocation or base registers
(such as those used when memory is to be compacted), so how can we
relocate files? Give three reasons why compacting and relocating files
are often avoided.

14.17 Explain why logging metadata updates ensures recovery of a file sys-
tem after a file-system crash.

14.18 Consider the following backup scheme:

• Day 1. Copy to a backup medium all files from the disk.

• Day 2. Copy to another medium all files changed since day 1.

• Day 3. Copy to another medium all files changed since day 1.

This differs from the schedule given in Section 14.7.4 by having all
subsequent backups copy all files modified since the first full backup.
What are the benefits of this system over the one in Section 14.7.4?
What are the drawbacks? Are restore operations made easier or more
difficult? Explain your answer.

14.19 Discuss the advantages and disadvantages of associating with remote
file systems (stored on file servers) a set of failure semantics different
from those associated with local file systems.

14.20 What are the implications of supporting UNIX consistency semantics
for shared access to files stored on remote file systems?

EX-50

15CHAPTER

File -System
Internals

As we saw in Chapter 13, the file system provides the mechanism for on-line
storage and access to file contents, including data and programs. This chapter is
primarily concernedwith the internal structures and operations of file systems.
We explore in detail ways to structure file use, to allocate storage space, to
recover freed space, to track the locations of data, and to interface other parts
of the operating system to secondary storage.

CHAPTER OBJECTIVES

• Delve into the details of file systems and their implementation.

• Explore booting and file sharing.

• Describe remote file systems, using NFS as an example.

15.1 File Systems

Certainly, no general-purpose computer stores just one file. There are typically
thousands, millions, even billions of files within a computer. Files are stored on
random-access storage devices, including hard disk drives, optical disks, and
nonvolatile memory devices.

As you have seen in the preceding chapters, a general-purpose computer
system can have multiple storage devices, and those devices can be sliced up
into partitions, which hold volumes, which in turn hold file systems. Depend-
ing on the volume manager, a volume may span multiple partitions as well.
Figure 15.1 shows a typical file-system organization.

Computer systems may also have varying numbers of file systems, and
the file systems may be of varying types. For example, a typical Solaris system
may have dozens of file systems of a dozen different types, as shown in the
file-system list in Figure 15.2.

In this book, we consider only general-purpose file systems. It is worth
noting, though, that there are many special-purpose file systems. Consider the
types of file systems in the Solaris example mentioned above:

597

598 Chapter 15 File-System Internals

Figure 15.1 A typical storage device organization.

• tmpfs—a “temporary” file system that is created in volatile main memory
and has its contents erased if the system reboots or crashes

• objfs—a “virtual” file system (essentially an interface to the kernel that
looks like a file system) that gives debuggers access to kernel symbols

• ctfs—a virtual file system that maintains “contract” information to man-
age which processes start when the system boots andmust continue to run
during operation

• lofs—a “loop back” file system that allows one file system to be accessed
in place of another one

• procfs—a virtual file system that presents information on all processes as
a file system

• ufs, zfs—general-purpose file systems

The file systems of computers, then, can be extensive. Even within a file
system, it is useful to segregate files into groups and manage and act on those
groups. This organization involves the use of directories (see Section 14.3).

15.2 File-System Mounting

Just as a file must be opened before it can be used, a file system must be
mounted before it can be available to processes on the system.More specifically,
the directory structure may be built out of multiple file-system-containing
volumes, which must be mounted to make them available within the file-
system name space.

Themount procedure is straightforward. The operating system is given the
name of the device and the mount point—the location within the file structure
where the file system is to be attached. Some operating systems require that a
file-system type be provided, while others inspect the structures of the device

15.2 File-System Mounting 599

/ ufs
/devices devfs
/dev dev
/system/contract ctfs
/proc proc
/etc/mnttab mntfs
/etc/svc/volatile tmpfs
/system/object objfs
/lib/libc.so.1 lofs
/dev/fd fd
/var ufs
/tmp tmpfs
/var/run tmpfs
/opt ufs
/zpbge zfs
/zpbge/backup zfs
/export/home zfs
/var/mail zfs
/var/spool/mqueue zfs
/zpbg zfs
/zpbg/zones zfs

Figure 15.2 Solaris file systems.

and determine the type of file system. Typically, a mount point is an empty
directory. For instance, on aUNIX system, a file system containing a user’s home
directories might be mounted as /home; then, to access the directory structure
within that file system, we could precede the directory names with /home, as
in /home/jane. Mounting that file system under /users would result in the
path name /users/jane, which we could use to reach the same directory.

Next, the operating system verifies that the device contains a valid file
system. It does so by asking the device driver to read the device directory
and verifying that the directory has the expected format. Finally, the operating
system notes in its directory structure that a file system is mounted at the
specified mount point. This scheme enables the operating system to traverse
its directory structure, switching among file systems, and even file systems of
varying types, as appropriate.

To illustrate file mounting, consider the file system depicted in Figure 15.3,
where the triangles represent subtrees of directories that are of interest. Figure
15.3(a) shows an existing file system,while Figure 15.3(b) shows anunmounted
volume residing on /device/dsk. At this point, only the files on the existing
file system can be accessed. Figure 15.4 shows the effects of mounting the
volume residing on /device/dsk over /users. If the volume is unmounted,
the file system is restored to the situation depicted in Figure 15.3.

Systems impose semantics to clarify functionality. For example, a system
may disallow a mount over a directory that contains files; or it may make the

600 Chapter 15 File-System Internals

users

/

bill fred

help

sue jane

prog
doc

(a) (b)

Figure 15.3 File system. (a) Existing system. (b) Unmounted volume.

mounted file system available at that directory and obscure the directory’s
existing files until the file system is unmounted, terminating the use of the file
system and allowing access to the original files in that directory. As another
example, a system may allow the same file system to be mounted repeatedly,
at different mount points; or it may only allow one mount per file system.

Consider the actions of the macOS operating system.Whenever the system
encounters a disk for the first time (either at boot time or while the system is
running), the macOS operating system searches for a file system on the device.
If it finds one, it automatically mounts the file system under the /Volumes
directory, adding a folder icon labeled with the name of the file system (as
stored in the device directory). The user is then able to click on the icon and
thus display the newly mounted file system.

The Microsoft Windows family of operating systems maintains an
extended two-level directory structure, with devices and volumes assigned
drive letters. Each volume has a general graph directory structure associated

/

users

sue jane

prog
doc

Figure 15.4 Volume mounted at /users.

15.3 Partitions and Mounting 601

with its drive letter. The path to a specific file takes the form drive-
letter:∖path∖to∖file. The more recent versions of Windows allow a file
system to be mounted anywhere in the directory tree, just as UNIX does.
Windows operating systems automatically discover all devices and mount
all located file systems at boot time. In some systems, like UNIX, the mount
commands are explicit. A system configuration file contains a list of devices
and mount points for automatic mounting at boot time, but other mounts may
be executed manually.

Issues concerning file system mounting are further discussed in Section
15.3 and in Section C.7.5.

15.3 Partitions and Mounting

The layout of a disk can have many variations, depending on the operating
system and volume management software. A disk can be sliced into multiple
partitions, or a volume can span multiple partitions on multiple disks. The
former layout is discussed here, while the latter, which is more appropriately
considered a form of RAID, is covered in Section 11.8.

Each partition can be either “raw,” containing no file system, or “cooked,”
containing a file system. Raw disk is used where no file system is appropriate.
UNIX swap space can use a raw partition, for example, since it uses its own
format on disk and does not use a file system. Likewise, some databases use
raw disk and format the data to suit their needs. Raw disk can also hold infor-
mation needed by disk RAID systems, such as bitmaps indicating which blocks
are mirrored and which have changed and need to be mirrored. Similarly, raw
disk can contain aminiature database holding RAID configuration information,
such as which disks are members of each RAID set. Raw disk use is discussed
in Section 11.5.1.

If a partition contains a file system that is bootable—that has a properly
installed and configured operating system—then the partition also needs boot
information, as described in Section 11.5.2. This information has its own format,
because at boot time the system does not have the file-system code loaded and
therefore cannot interpret the file-system format. Rather, boot information is
usually a sequential series of blocks loaded as an image intomemory. Execution
of the image starts at a predefined location, such as the first byte. This image,
the bootstrap loader, in turn knows enough about the file-system structure to
be able to find and load the kernel and start it executing.

The boot loader can contain more than the instructions for booting a spe-
cific operating system. For instance, many systems can be dual-booted, allow-
ing us to install multiple operating systems on a single system. How does
the system know which one to boot? A boot loader that understands multi-
ple file systems and multiple operating systems can occupy the boot space.
Once loaded, it can boot one of the operating systems available on the drive.
The drive can have multiple partitions, each containing a different type of file
system and a different operating system. Note that if the boot loader does not
understand a particular file-system format, an operating system stored on that
file system is not bootable. This is one of the reasons only some file systems are
supported as root file systems for any given operating system.

602 Chapter 15 File-System Internals

The root partition selected by the boot loader, which contains the
operating-system kernel and sometimes other system files, is mounted at
boot time. Other volumes can be automatically mounted at boot or manually
mounted later, depending on the operating system. As part of a successful
mount operation, the operating system verifies that the device contains a
valid file system. It does so by asking the device driver to read the device
directory and verifying that the directory has the expected format. If the
format is invalid, the partition must have its consistency checked and possibly
corrected, either with or without user intervention. Finally, the operating
system notes in its in-memory mount table that a file system is mounted,
along with the type of the file system. The details of this function depend on
the operating system.

Microsoft Windows–based systems mount each volume in a separate
name space, denoted by a letter and a colon, as mentioned earlier. To record
that a file system is mounted at F:, for example, the operating system places
a pointer to the file system in a field of the device structure corresponding to
F:. When a process specifies the driver letter, the operating system finds the
appropriate file-system pointer and traverses the directory structures on that
device to find the specified file or directory. Later versions of Windows can
mount a file system at any point within the existing directory structure.

On UNIX, file systems can be mounted at any directory. Mounting is imple-
mented by setting a flag in the in-memory copy of the inode for that directory.
The flag indicates that the directory is a mount point. A field then points to
an entry in the mount table, indicating which device is mounted there. The
mount table entry contains a pointer to the superblock of the file system on
that device. This scheme enables the operating system to traverse its directory
structure, switching seamlessly among file systems of varying types.

15.4 File Sharing

The ability to share files is very desirable for users who want to collaborate
and to reduce the effort required to achieve a computing goal. Therefore, user-
oriented operating systems must accommodate the need to share files in spite
of the inherent difficulties.

In this section, we examine more aspects of file sharing. We begin by
discussing general issues that arise when multiple users share files. Once
multiple users are allowed to share files, the challenge is to extend sharing to
multiple file systems, including remote file systems; we discuss that challenge
as well. Finally, we consider what to do about conflicting actions occurring on
shared files. For instance, if multiple users are writing to a file, should all the
writes be allowed to occur, or should the operating system protect the users’
actions from one another?

15.4.1 Multiple Users

When an operating system accommodates multiple users, the issues of file
sharing, file naming, and file protection become preeminent. Given a directory
structure that allows files to be shared by users, the system must mediate the
file sharing. The system can either allow a user to access the files of other users

15.5 Virtual File Systems 603

by default or require that a user specifically grant access to the files. These are
the issues of access control and protection, which are covered in Section 13.4.

To implement sharing and protection, the system must maintain more file
and directory attributes than are needed on a single-user system. Although
many approaches have been taken tomeet this requirement,most systemshave
evolved to use the concepts of file (or directory) owner (oruser) and group. The
owner is the user who can change attributes and grant access and who has the
most control over the file. The group attribute defines a subset of users who
can share access to the file. For example, the owner of a file on a UNIX system
can issue all operations on a file, while members of the file’s group can execute
one subset of those operations, and all other users can execute another subset
of operations. Exactly which operations can be executed by group members
and other users is definable by the file’s owner.

The owner and group IDs of a given file (or directory) are stored with the
other file attributes.When a user requests an operation on a file, the user ID can
be comparedwith the owner attribute to determine if the requesting user is the
owner of the file. Likewise, the group IDs can be compared. The result indicates
which permissions are applicable. The system then applies those permissions
to the requested operation and allows or denies it.

Many systems have multiple local file systems, including volumes of a
single disk or multiple volumes on multiple attached disks. In these cases,
the ID checking and permission matching are straightforward, once the file
systems aremounted. But consider an external disk that can bemoved between
systems. What if the IDs on the systems are different? Care must be taken to be
sure that IDsmatch between systemswhen devicesmove between them or that
file ownership is reset when such a move occurs. (For example, we can create
a new user ID and set all files on the portable disk to that ID, to be sure no files
are accidentally accessible to existing users.)

15.5 Virtual File Systems

Aswe’ve seen, modern operating systemsmust concurrently support multiple
types of file systems. But how does an operating system allow multiple types
of file systems to be integrated into a directory structure? And how can users
seamlessly move between file-system types as they navigate the file-system
space? We now discuss some of these implementation details.

An obvious but suboptimal method of implementing multiple types of file
systems is to write directory and file routines for each type. Instead, however,
most operating systems, includingUNIX, use object-oriented techniques to sim-
plify, organize, and modularize the implementation. The use of these methods
allows very dissimilar file-system types to be implemented within the same
structure, including network file systems, such as NFS. Users can access files
containedwithinmultiple file systems on the local drive or even on file systems
available across the network.

Data structures and procedures are used to isolate the basic system-call
functionality from the implementation details. Thus, the file-system imple-
mentation consists of three major layers, as depicted schematically in Figure
15.5. The first layer is the file-system interface, based on the open(), read(),
write(), and close() calls and on file descriptors.

604 Chapter 15 File-System Internals

local file system
type 1

disk

local file system
type 2

disk

remote file system
type 1

network

file-system interface

VFS interface

Figure 15.5 Schematic view of a virtual file system.

The second layer is called the virtual file system (VFS) layer. The VFS layer
serves two important functions:

1. It separates file-system-generic operations from their implementation by
defining a clean VFS interface. Several implementations for the VFS inter-
face may coexist on the same machine, allowing transparent access to
different types of file systems mounted locally.

2. It provides amechanism for uniquely representing afile throughout a net-
work. The VFS is based on a file-representation structure, called a vnode,
that contains a numerical designator for a network-wide unique file.
(UNIX inodes are unique within only a single file system.) This network-
wide uniqueness is required for support of network file systems. The
kernel maintains one vnode structure for each active node (file or direc-
tory).

Thus, the VFS distinguishes local files from remote ones, and local files are
further distinguished according to their file-system types.

The VFS activates file-system-specific operations to handle local requests
according to their file-system types and calls the NFS protocol procedures (or
other protocol procedures for other network file systems) for remote requests.
File handles are constructed from the relevant vnodes and are passed as argu-
ments to these procedures. The layer implementing the file-system type or the
remote-file-system protocol is the third layer of the architecture.

Let’s briefly examine the VFS architecture in Linux. The four main object
types defined by the Linux VFS are:

15.6 Remote File Systems 605

• The inode object, which represents an individual file

• The fil object, which represents an open file

• The superblock object, which represents an entire file system

• The dentry object, which represents an individual directory entry

For each of these four object types, the VFS defines a set of operations that
may be implemented. Every object of one of these types contains a pointer to
a function table. The function table lists the addresses of the actual functions
that implement the defined operations for that particular object. For example,
an abbreviated API for some of the operations for the file object includes:

• int open(. . .)—Open a file.

• int close(. . .)—Close an already-open file.

• ssize t read(. . .)—Read from a file.

• ssize t write(. . .)—Write to a file.

• int mmap(. . .)—Memory-map a file.

An implementation of the file object for a specific file type is required to imple-
ment each function specified in the definition of the file object. (The complete
definition of the file object is specified in the file struct file operations,
which is located in the file /usr/include/linux/fs.h.)

Thus, the VFS software layer can perform an operation on one of these
objects by calling the appropriate function from the object’s function table,
without having to know in advance exactly what kind of object it is dealing
with. The VFS does not know, or care, whether an inode represents a disk file,
a directory file, or a remote file. The appropriate function for that file’s read()
operation will always be at the same place in its function table, and the VFS
software layer will call that function without caring how the data are actually
read.

15.6 Remote File Systems

With the advent of networks (Chapter 19), communication among remote com-
puters became possible. Networking allows the sharing of resources spread
across a campus or even around the world. One obvious resource to share is
data in the form of files.

Through the evolution of network and file technology, remote file-sharing
methods have changed. The first implemented method involves manually
transferring files between machines via programs like ftp. The second major
method uses a distributed fil system (DFS), in which remote directories are
visible from a local machine. In some ways, the third method, the World Wide
Web, is a reversion to the first. A browser is needed to gain access to the
remote files, and separate operations (essentially a wrapper for ftp) are used
to transfer files. Increasingly, cloud computing (Section 1.10.5) is being used for
file sharing as well.

606 Chapter 15 File-System Internals

ftp is used for both anonymous and authenticated access. Anonymous
access allows a user to transfer files without having an account on the remote
system. The World Wide Web uses anonymous file exchange almost exclu-
sively. DFS involves a much tighter integration between the machine that is
accessing the remote files and the machine providing the files. This integration
adds complexity, as we describe in this section.

15.6.1 The Client–Server Model

Remote file systems allow a computer to mount one or more file systems from
one or more remote machines. In this case, the machine containing the files
is the server, and the machine seeking access to the files is the client. The
client–server relationship is common with networked machines. Generally,
the server declares that a resource is available to clients and specifies exactly
which resource (in this case, which files) and exactly which clients. A server
can serve multiple clients, and a client can use multiple servers, depending on
the implementation details of a given client–server facility.

The server usually specifies the available files on a volume or directory
level. Client identification is more difficult. A client can be specified by a net-
work name or other identifier, such as an IP address, but these can be spoofed,
or imitated. As a result of spoofing, an unauthorized client could be allowed
access to the server. More secure solutions include secure authentication of the
client via encrypted keys. Unfortunately, with security come many challenges,
including ensuring compatibility of the client and server (they must use the
same encryption algorithms) and security of key exchanges (intercepted keys
could again allow unauthorized access). Because of the difficulty of solving
these problems, unsecure authentication methods are most commonly used.

In the case of UNIX and its network file system (NFS), authentication takes
place via the client networking information, by default. In this scheme, the
user’s IDs on the client and server must match. If they do not, the server will
be unable to determine access rights to files. Consider the example of a user
who has an ID of 1000 on the client and 2000 on the server. A request from
the client to the server for a specific file will not be handled appropriately, as
the server will determine if user 1000 has access to the file rather than basing
the determination on the real user ID of 2000. Access is thus granted or denied
based on incorrect authentication information. The server must trust the client
to present the correct user ID. Note that the NFS protocols allowmany-to-many
relationships. That is, many servers can provide files to many clients. In fact,
a given machine can be both a server to some NFS clients and a client of other
NFS servers.

Once the remote file system is mounted, file operation requests are sent
on behalf of the user across the network to the server via the DFS protocol.
Typically, a file-open request is sent along with the ID of the requesting user.
The server then applies the standard access checks to determine if the user
has credentials to access the file in the mode requested. The request is either
allowed or denied. If it is allowed, a file handle is returned to the client appli-
cation, and the application then can perform read, write, and other operations
on the file. The client closes the file when access is completed. The operating
system may apply semantics similar to those for a local file-system mount or
may use different semantics.

15.6 Remote File Systems 607

15.6.2 Distributed Information Systems

Tomake client–server systems easier to manage, distributed information sys-
tems, also known as distributed naming services, provide unified access to the
information needed for remote computing. The domain name system (DNS)
provides host-name-to-network-address translations for the entire Internet.
Before DNS became widespread, files containing the same information were
sent via e-mail or ftp between all networked hosts. Obviously, this methodol-
ogy was not scalable! DNS is further discussed in Section 19.3.1.

Other distributed information systems provide user name/password/user
ID/group ID space for a distributed facility. UNIX systems have employed a
wide variety of distributed information methods. Sun Microsystems (now
part of Oracle Corporation) introduced yellow pages (since renamed network
information service, or NIS), and most of the industry adopted its use. It
centralizes storage of user names, host names, printer information, and the like.
Unfortunately, it uses unsecure authentication methods, including sending
user passwords unencrypted (in clear text) and identifying hosts by IP address.
Sun’s NIS+ was a much more secure replacement for NIS but was much more
complicated and was not widely adopted.

In the case of Microsoft’s common Internet file system (CIFS), network
information is used in conjunction with user authentication (user name and
password) to create a network login that the server uses to decide whether
to allow or deny access to a requested file system. For this authentication
to be valid, the user names must match from machine to machine (as with
NFS). Microsoft uses active directory as a distributed naming structure to
provide a single name space for users. Once established, the distributed
naming facility is used by all clients and servers to authenticate users
via Microsoft’s version of the Kerberos network authentication protocol
(https://web.mit.edu/kerberos/).

The industry is moving toward use of the lightweight directory-access
protocol (LDAP) as a secure distributed naming mechanism. In fact, active
directory is based on LDAP. Oracle Solaris and most other major operating
systems include LDAP and allow it to be employed for user authentication as
well as system-wide retrieval of information, such as availability of printers.
Conceivably, one distributed LDAP directory could be used by an organization
to store all user and resource information for all the organization’s computers.
The result would be secure single sign-on for users, who would enter their
authentication information once for access to all computers within the organi-
zation. It would also ease system-administration efforts by combining, in one
location, information that is currently scattered in various files on each system
or in different distributed information services.

15.6.3 Failure Modes

Local file systems can fail for a variety of reasons, including failure of the
drive containing the file system, corruption of the directory structure or other
disk-management information (collectively called metadata), disk-controller
failure, cable failure, and host-adapter failure. User or system-administrator
failure can also cause files to be lost or entire directories or volumes to be
deleted.Many of these failures will cause a host to crash and an error condition
to be displayed, and human interventionmay be required to repair the damage.

https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/

608 Chapter 15 File-System Internals

Remote file systems have even more failure modes. Because of the
complexity of network systems and the required interactions between remote
machines, many more problems can interfere with the proper operation of
remote file systems. In the case of networks, the network can be interrupted
between two hosts. Such interruptions can result from hardware failure, poor
hardware configuration, or networking implementation issues. Although
some networks have built-in resiliency, including multiple paths between
hosts, many do not. Any single failure can thus interrupt the flow of DFS
commands.

Consider a client in themidst of using a remote file system. It has files open
from the remote host; among other activities, it may be performing directory
lookups to open files, reading or writing data to files, and closing files. Now
consider a partitioning of the network, a crash of the server, or even a scheduled
shutdown of the server. Suddenly, the remote file system is no longer reachable.
This scenario is rather common, so it would not be appropriate for the client
system to act as it would if a local file system were lost. Rather, the system can
either terminate all operations to the lost server or delay operations until the
server is again reachable. These failure semantics are defined and implemented
as part of the remote-file-system protocol. Termination of all operations can
result in users’ losing data—and patience. Thus, most DFS protocols either
enforce or allow delaying of file-system operations to remote hosts, with the
hope that the remote host will become available again.

To implement this kind of recovery from failure, some kind of state infor-
mation may be maintained on both the client and the server. If both server and
client maintain knowledge of their current activities and open files, then they
can seamlessly recover from a failure. In the situation where the server crashes
but must recognize that it has remotely mounted exported file systems and
opened files, NFS Version 3 takes a simple approach, implementing a stateless
DFS. In essence, it assumes that a client request for a file read orwritewould not
have occurred unless the file system had been remotely mounted and the file
had been previously open. The NFS protocol carries all the information needed
to locate the appropriate file and perform the requested operation. Similarly,
it does not track which clients have the exported volumes mounted, again
assuming that if a request comes in, it must be legitimate. While this stateless
approach makes NFS resilient and rather easy to implement, it also makes it
unsecure. For example, forged read or write requests could be allowed by an
NFS server. These issues are addressed in the industry standard NFS Version
4, in which NFS is made stateful to improve its security, performance, and
functionality.

15.7 Consistency Semantics

Consistency semantics represent an important criterion for evaluating any file
system that supports file sharing. These semantics specify how multiple users
of a system are to access a shared file simultaneously. In particular, they specify
whenmodifications of data by one userwill be observable by other users. These
semantics are typically implemented as code with the file system.

Consistency semantics are directly related to the process synchronization
algorithms of Chapter 6. However, the complex algorithms of that chapter tend

15.7 Consistency Semantics 609

not to be implemented in the case of file I/O because of the great latencies and
slow transfer rates of disks and networks. For example, performing an atomic
transaction to a remote disk could involve several network communications,
several disk reads and writes, or both. Systems that attempt such a full set of
functionalities tend to performpoorly.Asuccessful implementationof complex
sharing semantics can be found in the Andrew file system.

For the following discussion, we assume that a series of file accesses (that
is, reads and writes) attempted by a user to the same file is always enclosed
between the open() and close() operations. The series of accesses between
the open() and close() operations makes up a fil session. To illustrate the
concept, we sketch several prominent examples of consistency semantics.

15.7.1 UNIX Semantics

The UNIX file system (Chapter 19) uses the following consistency semantics:

• Writes to an open file by a user are visible immediately to other users who
have this file open.

• One mode of sharing allows users to share the pointer of current location
into the file. Thus, the advancing of the pointer by one user affects all
sharing users. Here, a file has a single image that interleaves all accesses,
regardless of their origin.

In the UNIX semantics, a file is associated with a single physical image that
is accessed as an exclusive resource. Contention for this single image causes
delays in user processes.

15.7.2 Session Semantics

The Andrew file system (OpenAFS) uses the following consistency semantics:

• Writes to an open file by a user are not visible immediately to other users
that have the same file open.

• Once a file is closed, the changesmade to it are visible only in sessions start-
ing later. Already open instances of the file do not reflect these changes.

According to these semantics, a filemay be associated temporarilywith several
(possibly different) images at the same time. Consequently, multiple users are
allowed to perform both read and write accesses concurrently on their images
of the file, without delay. Almost no constraints are enforced on scheduling
accesses.

15.7.3 Immutable-Shared-Files Semantics

A unique approach is that of immutable shared files. Once a file is declared
as shared by its creator, it cannot be modified. An immutable file has two key
properties: its name may not be reused, and its contents may not be altered.
Thus, the name of an immutable file signifies that the contents of the file are
fixed. The implementation of these semantics in a distributed system (Chapter
19) is simple, because the sharing is disciplined (read-only).

610 Chapter 15 File-System Internals

15.8 NFS

Network file systems are commonplace. They are typically integrated with
the overall directory structure and interface of the client system. NFS is a
good example of a widely used, well implemented client–server network file
system. Here, we use it as an example to explore the implementation details of
network file systems.

NFS is both an implementation and a specification of a software system for
accessing remote files across LANs (or even WANs). NFS is part of ONC+, which
most UNIX vendors and some PC operating systems support. The implementa-
tion described here is part of the Solaris operating system, which is a modified
version of UNIX SVR4. It uses either the TCP or UDP/IP protocol (depending
on the interconnecting network). The specification and the implementation are
intertwined in our description of NFS. Whenever detail is needed, we refer to
the Solaris implementation; whenever the description is general, it applies to
the specification also.

There are multiple versions of NFS, with the latest being Version 4. Here,
we describe Version 3, which is the version most commonly deployed.

15.8.1 Overview

NFS views a set of interconnected workstations as a set of independent
machines with independent file systems. The goal is to allow some degree of
sharing among these file systems (on explicit request) in a transparent manner.
Sharing is based on a client–server relationship. Amachine may be, and often
is, both a client and a server. Sharing is allowed between any pair of machines.
To ensure machine independence, sharing of a remote file system affects only
the client machine and no other machine.

So that a remote directory will be accessible in a transparent manner from
a particular machine—say, fromM1—a client of that machine must first carry
out a mount operation. The semantics of the operation involve mounting a
remote directory over a directory of a local file system. Once the mount oper-
ation is completed, the mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the local directory. The
local directory becomes the name of the root of the newly mounted directory.
Specification of the remote directory as an argument for the mount operation
is not done transparently; the location (or host name) of the remote directory
has to be provided. However, from then on, users on machine M1 can access
files in the remote directory in a totally transparent manner.

To illustrate file mounting, consider the file system depicted in Figure 15.6,
where the triangles represent subtrees of directories that are of interest. The
figure shows three independent file systems of machines named U, S1, and
S2. At this point, on each machine, only the local files can be accessed. Figure
15.7(a) shows the effects of mounting S1:/usr/shared over U:/usr/local.
This figure depicts the view users on U have of their file system. After the
mount is complete, they can access any file within the dir1 directory using the
prefix /usr/local/dir1. The original directory /usr/local on that machine
is no longer visible.

Subject to access-rights accreditation, any file system, or any directory
within a file system, can be mounted remotely on top of any local directory.

15.8 NFS 611

local

usr

shared

dir1

usr

U: S1: S2:

dir2

usr

Figure 15.6 Three independent file systems.

Disklessworkstations can evenmount their own roots from servers. Cascading
mounts are also permitted in some NFS implementations. That is, a file system
can bemounted over another file system that is remotelymounted, not local. A
machine is affected by only those mounts that it has itself invoked. Mounting a
remote file systemdoes not give the client access to other file systems thatwere,
by chance, mounted over the former file system. Thus, the mount mechanism
does not exhibit a transitivity property.

In Figure 15.7(b), we illustrate cascading mounts. The figure shows the
result of mounting S2:/usr/dir2 over U:/usr/local/dir1, which is already
remotely mounted from S1. Users can access files within dir2 on U using the
prefix /usr/local/dir1. If a shared file system ismounted over a user’s home
directories on all machines in a network, the user can log into any workstation
and get his or her home environment. This property permits user mobility.

One of the design goals of NFS was to operate in a heterogeneous environ-
ment of different machines, operating systems, and network architectures. The

local

dir1 dir1

usr

U: U:

(a) (b)

local

usr

Figure 15.7 Mounting in NFS. (a) Mounts. (b) Cascading mounts.

612 Chapter 15 File-System Internals

NFS specification is independent of thesemedia. This independence is achieved
through the use of RPC primitives built on top of an external data representa-
tion (XDR) protocol used between two implementation-independent interfaces.
Hence, if the system’s heterogeneous machines and file systems are properly
interfaced to NFS, file systems of different types can be mounted both locally
and remotely.

The NFS specification distinguishes between the services provided by a
mount mechanism and the actual remote-file-access services. Accordingly, two
separate protocols are specified for these services: a mount protocol and a pro-
tocol for remote file accesses, the NFS protocol. The protocols are specified as
sets of RPCs. These RPCs are the building blocks used to implement transparent
remote file access.

15.8.2 The Mount Protocol

The mount protocol establishes the initial logical connection between a server
and a client. In Solaris, each machine has a server process, outside the kernel,
performing the protocol functions.

A mount operation includes the name of the remote directory to be
mounted and the name of the server machine storing it. The mount request
is mapped to the corresponding RPC and is forwarded to the mount server
running on the specific server machine. The server maintains an export
list that specifies local file systems that it exports for mounting, along with
names of machines that are permitted to mount them. (In Solaris, this list is the
/etc/dfs/dfstab, which can be edited only by a superuser.) The specification
can also include access rights, such as read only. To simplify the maintenance
of export lists and mount tables, a distributed naming scheme can be used to
hold this information and make it available to appropriate clients.

Recall that any directory within an exported file system can be mounted
remotely by an accredited machine. A component unit is such a directory.
When the server receives a mount request that conforms to its export list, it
returns to the client a file handle that serves as the key for further accesses to
files within the mounted file system. The file handle contains all the informa-
tion that the server needs to distinguish an individual file it stores. In UNIX
terms, the file handle consists of a file-system identifier and an inode number
to identify the exact mounted directory within the exported file system.

The server also maintains a list of the client machines and the correspond-
ing currently mounted directories. This list is used mainly for administrative
purposes—for instance, for notifying all clients that the server is going down.
Only through addition and deletion of entries in this list can the server state be
affected by the mount protocol.

Usually, a systemhas a staticmounting preconfiguration that is established
at boot time (/etc/vfstab in Solaris); however, this layout can bemodified. In
addition to the actual mount procedure, the mount protocol includes several
other procedures, such as unmount and return export list.

15.8.3 The NFS Protocol

The NFS protocol provides a set of RPCs for remote file operations. The proce-
dures support the following operations:

15.8 NFS 613

• Searching for a file within a directory

• Reading a set of directory entries

• Manipulating links and directories

• Accessing file attributes

• Reading and writing files

These procedures can be invoked only after a file handle for the remotely
mounted directory has been established.

The omission of open and close operations is intentional. A prominent
feature of NFS servers is that they are stateless. Servers do not maintain infor-
mation about their clients from one access to another. No parallels to UNIX’s
open-files table or file structures exist on the server side. Consequently, each
request has to provide a full set of arguments, including a unique file identifier
and an absolute offset inside the file for the appropriate operations. The result-
ing design is robust; no special measures need be taken to recover a server
after a crash. File operations must be idempotent for this purpose—that is,
the same operation performed multiple times must have the same effect as if
it had only been performed once. To achieve idempotence, every NFS request
has a sequence number, allowing the server to determine if a request has been
duplicated or if any are missing.

Maintaining the list of clients that we mentioned seems to violate the
statelessness of the server. However, this list is not essential for the correct
operation of the client or the server, and hence it does not need to be restored
after a server crash. Consequently, it may include inconsistent data and is
treated as only a hint.

A further implication of the stateless-server philosophy and a result of the
synchrony of an RPC is that modified data (including indirection and status
blocks) must be committed to the server’s disk before results are returned to
the client. That is, a client can cache write blocks, but when it flushes them
to the server, it assumes that they have reached the server’s disks. The server
must write all NFS data synchronously. Thus, a server crash and recovery will
be invisible to a client; all blocks that the server ismanaging for the clientwill be
intact. The resulting performance penalty can be large, because the advantages
of caching are lost. Performance can be increased by using storagewith its own
nonvolatile cache (usually battery-backed-up memory). The disk controller
acknowledges the disk write when the write is stored in the nonvolatile cache.
In essence, the host sees a very fast synchronous write. These blocks remain
intact even after a system crash and are written from this stable storage to disk
periodically.

A single NFS write procedure call is guaranteed to be atomic and is not
intermixed with other write calls to the same file. The NFS protocol, however,
does not provide concurrency-controlmechanisms.Awrite() systemcallmay
be broken down into several RPC writes, because each NFS write or read call
can contain up to 8 KB of data and UDP packets are limited to 1,500 bytes. As a
result, two users writing to the same remote file may get their data intermixed.
The claim is that, because lock management is inherently stateful, a service
outside the NFS should provide locking (and Solaris does). Users are advised
to coordinate access to shared files usingmechanisms outside the scope of NFS.

614 Chapter 15 File-System Internals

disk disk

system-calls interface

client server

other types of
file systems

UNIX file
system

UNIX file
system

NFS
client

RPC/XDR

network

RPC/XDR

NFS
server

VFS interface VFS interface

Figure 15.8 Schematic view of the NFS architecture.

NFS is integrated into the operating system via a VFS. As an illustration of
the architecture, let’s trace how an operation on an already-open remote file is
handled (follow the example in Figure 15.8). The client initiates the operation
with a regular system call. The operating-system layer maps this call to a VFS
operation on the appropriate vnode. The VFS layer identifies the file as a remote
one and invokes the appropriate NFS procedure. An RPC call is made to the
NFS service layer at the remote server. This call is reinjected to the VFS layer on
the remote system, which finds that it is local and invokes the appropriate file-
systemoperation. This path is retraced to return the result.An advantage of this
architecture is that the client and the server are identical; thus, a machine may
be a client, or a server, or both. The actual service on each server is performed
by kernel threads.

15.8.4 Path-Name Translation

Path-name translation in NFS involves the parsing of a path name such as
/usr/local/dir1/file.txt into separate directory entries, or components:
(1) usr, (2) local, and (3) dir1. Path-name translation is done by breaking
the path into component names and performing a separate NFS lookup call
for every pair of component name and directory vnode. Once a mount point
is crossed, every component lookup causes a separate RPC to the server. This
expensive path-name-traversal scheme is needed, since the layout of each
client’s logical name space is unique, dictated by the mounts the client has
performed. It would be much more efficient to hand a server a path name
and receive a target vnode once a mount point is encountered. At any point,
however, there might be another mount point for the particular client of which
the stateless server is unaware.

15.9 Summary 615

So that lookup is fast, a directory-name-lookup cache on the client side
holds the vnodes for remote directory names. This cache speeds up references
to files with the same initial path name. The directory cache is discarded when
attributes returned from the server do not match the attributes of the cached
vnode.

Recall that some implementations of NFS allow mounting a remote file
system on top of another already-mounted remote file system (a cascading
mount). When a client has a cascading mount, more than one server can be
involved in a path-name traversal. However, when a client does a lookup on
a directory on which the server has mounted a file system, the client sees the
underlying directory instead of the mounted directory.

15.8.5 Remote Operations

With the exception of opening and closing files, there is an almost one-to-one
correspondence between the regular UNIX system calls for file operations and
the NFS protocol RPCs. Thus, a remote file operation can be translated directly
to the corresponding RPC. Conceptually, NFS adheres to the remote-service
paradigm; but in practice, buffering and caching techniques are employed for
the sake of performance. No direct correspondence exists between a remote
operation and an RPC. Instead, file blocks and file attributes are fetched by
the RPCs and are cached locally. Future remote operations use the cached data,
subject to consistency constraints.

There are two caches: the file-attribute (inode-information) cache and the
file-blocks cache. When a file is opened, the kernel checks with the remote
server to determine whether to fetch or revalidate the cached attributes. The
cached file blocks are used only if the corresponding cached attributes are up
to date. The attribute cache is updated whenever new attributes arrive from
the server. Cached attributes are, by default, discarded after 60 seconds. Both
read-ahead and delayed-write techniques are used between the server and the
client. Clients do not free delayed-write blocks until the server confirms that
the data have been written to disk. Delayed-write is retained even when a file
is opened concurrently, in conflicting modes. Hence, UNIX semantics (Section
15.7.1) are not preserved.

Tuning the system for performance makes it difficult to characterize the
consistency semantics of NFS. New files created on a machine may not be
visible elsewhere for 30 seconds. Furthermore, writes to a file at one site may
or may not be visible at other sites that have this file open for reading. New
opens of a file observe only the changes that have already been flushed to the
server. Thus, NFS provides neither strict emulation of UNIX semantics nor the
session semantics of Andrew (Section 15.7.2). In spite of these drawbacks, the
utility and good performance of the mechanism make it the most widely used
multi-vendor-distributed system in operation.

15.9 Summary

• General-purpose operating systems provide many file-system types, from
special-purpose through general.

616 Chapter 15 File-System Internals

• Volumes containing file systems can be mounted into the computer’s file-
system space.

• Depending on the operating system, the file-system space is seamless
(mounted file systems integrated into the directory structure) or distinct
(each mounted file system having its own designation).

• At least one file system must be bootable for the system to be able to start
—that is, it must contain an operating system. The boot loader is run first;
it is a simple program that is able to find the kernel in the file system, load
it, and start its execution. Systems can containmultiple bootable partitions,
letting the administrator choose which to run at boot time.

• Most systems are multi-user and thus must provide a method for file shar-
ing and file protection. Frequently, files and directories include metadata,
such as owner, user, and group access permissions.

• Mass storage partitions are used either for raw block I/O or for file systems.
Each file system resides in a volume, which can be composed of one
partition or multiple partitions working together via a volume manager.

• To simplify implementation of multiple file systems, an operating system
can use a layered approach, with a virtual file-system interface making
access to possibly dissimilar file systems seamless.

• Remote file systems can be implemented simply by using a program such
as ftp or the web servers and clients in theWorldWideWeb, or with more
functionality via a client–server model. Mount requests and user IDs must
be authenticated to prevent unapproved access.

• Client–server facilities do not natively share information, but a distributed
information system such as DNS can be used to allow such sharing, pro-
viding a unified user name space, password management, and system
identification. For example, Microsoft CIFS uses active directory, which
employs a version of the Kerberos network authentication protocol to pro-
vide a full set of naming and authentication services among the computers
in a network.

• Once file sharing is possible, a consistency semantics model must be cho-
sen and implemented to moderate multiple concurrent access to the same
file. Semantics models include UNIX, session, and immutable-shared-files
semantics.

• NFS is an example of a remote file system, providing clients with seam-
less access to directories, files, and even entire file systems. A full-featured
remote file system includes a communication protocol with remote opera-
tions and path-name translation.

Practice Exercises

15.1 Explain how the VFS layer allows an operating system to support mul-
tiple types of file systems easily.

15.2 Why have more than one file system type on a given system?

Bibliography 617

15.3 On a Unix or Linux system that implements the procfs file system,
determine how to use the procfs interface to explore the process name
space. What aspects of processes can be viewed via this interface? How
would the same information be gathered on a system lacking the procfs
file system?

15.4 Why do some systems integrate mounted file systems into the root file
system naming structure, while others use a separate naming method
for mounted file systems?

15.5 Given a remote file access facility such as ftp, why were remote file
systems like NFS created?

Further Reading

The internals of the BSD UNIX system are covered in full in [McKusick et al.
(2015)]. Details concerning file systems for Linux can be found in [Love (2010)].

The network file system (NFS) is discussed in [Callaghan (2000)]. NFS Ver-
sion 4 is a standard described at http://www.ietf.org/rfc/rfc3530.txt. [Ouster-
hout (1991)] discusses the role of distributed state in networked file systems.
NFS and the UNIX file system (UFS) are described in [Mauro and McDougall
(2007)].

The Kerberos network authentication protocol is explored in
https://web.mit.edu/kerberos/.

Bibliography

[Callaghan (2000)] B. Callaghan, NFS Illustrated, Addison-Wesley (2000).

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[Mauro and McDougall (2007)] J. Mauro and R. McDougall, Solaris Internals:
Core Kernel Architecture, Prentice Hall (2007).

[McKusick et al. (2015)] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Wat-
son,The Design and Implementation of the FreeBSDUNIXOperating System–Second
Edition, Pearson (2015).

[Ousterhout (1991)] J. Ousterhout. “The Role of Distributed State”. In CMU
Computer Science: a 25th Anniversary Commemorative, R. F. Rashid, Ed., Addison-
Wesley (1991).

http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=B Callaghan NFS Illustrated
http://www.ietf.org/rfc/rfc3530.txt
http://scholar.google.com/scholar?hl/en&q=J Ousterhout The Role of Distributed State
http://scholar.google.com/scholar?hl/en&q=J Mauro and R McDougall Solaris Internals Core Kernel Architecture
https://web.mit.edu/kerberos/
http://scholar.google.com/scholar?hl/en&q=B Callaghan NFS Illustrated
http://scholar.google.com/scholar?hl/en&q=B Callaghan NFS Illustrated
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=J Mauro and R McDougall Solaris Internals Core Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=J Mauro and R McDougall Solaris Internals Core Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=J Ousterhout The Role of Distributed State
http://scholar.google.com/scholar?hl/en&q=J Ousterhout The Role of Distributed State

Chapter 15 Exercises

15.6 Assume that in a particular augmentation of a remote-file-access pro-
tocol, each client maintains a name cache that caches translations from
file names to corresponding file handles. What issues should we take
into account in implementing the name cache?

15.7 Given a mounted file system with write operations underway, and a
system crash or power loss, what must be done before the file system
is remounted if: (a) The file system is not log-structured? (b) The file
system is log-structured?

15.8 Why do operating systems mount the root file system automatically at
boot time?

15.9 Why do operating systems require file systems other than root to be
mounted?

EX-51

Part Seven

Security and
Protection

Security ensures the authentication of system users to protect the
integrity of the information stored in the system (both data and code),
as well as the physical resources of the computer system. The security
system prevents unauthorized access, malicious destruction or alteration
of data, and accidental introduction of inconsistency.

Protection mechanisms control access to a system by limiting the
types of file access permitted to users. In addition, protectionmust ensure
that only processes that have gained proper authorization from the oper-
ating system can operate on memory segments, the CPU, and other
resources.

Protection is provided by a mechanism that controls the access of
programs, processes, or users to the resources defined by a computer
system. This mechanism must provide a means for specifying the con-
trols to be imposed, together with a means of enforcing them.

16CHAPTER

Security

Both protection and security are vital to computer systems. We distinguish
between these two concepts in the following way: Security is a measure of con-
fidence that the integrity of a system and its data will be preserved. Protection
is the set of mechanisms that control the access of processes and users to the
resources defined by a computer system. We focus on security in this chapter
and address protection in Chapter 17.

Security involves guarding computer resources against unauthorized
access, malicious destruction or alteration, and accidental introduction of
inconsistency. Computer resources include the information stored in the
system (both data and code), as well as the CPU, memory, secondary storage,
tertiary storage, and networking that compose the computer facility. In this
chapter, we start by examining ways in which resources may be accidentally
or purposely misused.We then explore a key security enabler—cryptography.
Finally, we look at mechanisms to guard against or detect attacks.

CHAPTER OBJECTIVES

• Discuss security threats and attacks.

• Explain the fundamentals of encryption, authentication, and hashing.

• Examine the uses of cryptography in computing.

• Describe various countermeasures to security attacks.

16.1 The Security Problem

In many applications, ensuring the security of the computer system is worth
considerable effort. Large commercial systems containing payroll or other
financial data are inviting targets to thieves. Systems that contain data pertain-
ing to corporate operations may be of interest to unscrupulous competitors.
Furthermore, loss of such data, whether by accident or fraud, can seriously
impair the ability of the corporation to function. Even raw computing resources
are attractive to attackers for bitcoin mining, for sending spam, and as a source
from which to anonymously attack other systems.

621

622 Chapter 16 Security

In Chapter 17, we discuss mechanisms that the operating system can pro-
vide (with appropriate aid from the hardware) that allow users to protect their
resources, including programs and data. These mechanisms work well only as
long as the users conform to the intended use of and access to these resources.

We say that a system is secure if its resources are used and accessed
as intended under all circumstances. Unfortunately, total security cannot be
achieved. Nonetheless, we must have mechanisms to make security breaches
a rare occurrence, rather than the norm.

Security violations (or misuse) of the system can be categorized as inten-
tional (malicious) or accidental. It is easier to protect against accidental misuse
than against malicious misuse. For the most part, protection mechanisms are
the core of accident avoidance. The following list includes several forms of acci-
dental andmalicious security violations.Note that in our discussion of security,
we use the terms intruder, hacker, and attacker for those attempting to breach
security. In addition, a threat is the potential for a security violation, such as the
discovery of a vulnerability, whereas an attack is an attempt to break security.

• Breach of confidentialit . This type of violation involves unauthorized
reading of data (or theft of information). Typically, a breach of confiden-
tiality is the goal of an intruder. Capturing secret data from a system or
a data stream, such as credit-card information or identity information for
identity theft, or unreleasedmovies or scripts, can result directly in money
for the intruder and embarrassment for the hacked institution.

• Breach of integrity. This violation involves unauthorized modification
of data. Such attacks can, for example, result in passing of liability to
an innocent party or modification of the source code of an important
commercial or open-source application.

• Breach of availability. This violation involves unauthorized destruction of
data. Some attackers would rather wreak havoc and get status or bragging
rights than gain financially. Website defacement is a common example of
this type of security breach.

• Theft of service. This violation involves unauthorized use of resources.
For example, an intruder (or intrusion program) may install a daemon on
a system that acts as a file server.

• Denial of service. This violation involves preventing legitimate use of
the system. Denial-of-service (DOS) attacks are sometimes accidental. The
original Internet worm turned into a DOS attack when a bug failed to delay
its rapid spread. We discuss DOS attacks further in Section 16.3.2.

Attackers use several standard methods in their attempts to breach secu-
rity. Themost common ismasquerading, inwhich one participant in a commu-
nication pretends to be someone else (another host or another person). Bymas-
querading, attackers breach authentication, the correctness of identification;
they can then gain access that they would not normally be allowed. Another
common attack is to replay a captured exchange of data. A replay attack
consists of the malicious or fraudulent repeat of a valid data transmission.
Sometimes the replay comprises the entire attack—for example, in a repeat
of a request to transfer money. But frequently it is done along with message

16.1 The Security Problem 623

modificatio , in which the attacker changes data in a communication without
the sender’s knowledge. Consider the damage that could be done if a request
for authentication had a legitimate user’s information replaced with an unau-
thorized user’s. Yet another kind of attack is the man-in-the-middle attack,
in which an attacker sits in the data flow of a communication, masquerading
as the sender to the receiver, and vice versa. In a network communication, a
man-in-the-middle attack may be preceded by a session hijacking, in which
an active communication session is intercepted.

Another broad class of attacks is aimed at privilege escalation. Every
system assigns privileges to users, even if there is just one user and that user
is the administrator. Generally, the system includes several sets of privileges,
one for each user account and some for the system. Frequently, privileges are
also assigned to nonusers of the system (such as users from across the Internet
accessing a web page without logging in or anonymous users of services such
as file transfer). Even a sender of email to a remote system can be considered
to have privileges—the privilege of sending an email to a receiving user on
that system. Privilege escalation gives attackers more privileges than they are
supposed to have. For example, an email containing a script or macro that is
executed exceeds the email sender’s privileges. Masquerading and message
modification, mentioned above, are often done to escalate privileges. There are
many more examples, as this is a very common type of attack. Indeed, it is
difficult to detect and prevent all of the various attacks in this category.

As we have already suggested, absolute protection of the system from
malicious abuse is not possible, but the cost to the perpetrator can be made
sufficiently high to deter most intruders. In some cases, such as a denial-of-
service attack, it is preferable to prevent the attack but sufficient to detect it
so that countermeasures can be taken (such as up-stream filtering or adding
resources such that the attack is not denying services to legitimate users).

To protect a system, we must take security measures at four levels:

1. Physical. The site or sites containing the computer systems must be
physically secured against entry by intruders. Both the machine rooms
and the terminals or computers that have access to the target machines
must be secured, for example by limiting access to the building they
reside in, or locking them to the desk on which they sit.

2. Network. Most contemporary computer systems—from servers to
mobile devices to Internet of Things (IoT) devices—are networked.
Networking provides a means for the system to access external resources
but also provides a potential vector for unauthorized access to the system
itself.

Further, computer data in modern systems frequently travel over pri-
vate leased lines, shared lines like the Internet, wireless connections, and
dial-up lines. Intercepting these data can be just as harmful as breaking
into a computer, and interruption of communications can constitute a
remote denial-of-service attack, diminishing users’ use of and trust in the
system.

3. Operating system. The operating system and its built-in set of appli-
cations and services comprise a huge code base that may harbor many
vulnerabilities. Insecure default settings, misconfigurations, and security

624 Chapter 16 Security

bugs are only a few potential problems. Operating systems must thus be
kept up to date (via continuous patching) and “hardened”—configured
and modified to decrease the attack surface and avoid penetration. The
attack surface is the set of points at which an attacker can try to break
into the system.

4. Application. Third-party applications may also pose risks, especially
if they possess significant privileges. Some applications are inherently
malicious, but even benign applications may contain security bugs. Due
to the vast number of third-party applications and their disparate code
bases, it is virtually impossible to ensure that all such applications are
secure.

This four-layered security model is shown in Figure 16.1.
The four-layer model of security is like a chain made of links: a vulnerabil-

ity in any of its layers can lead to full system compromise. In that respect, the
old adage that security is only as strong as its weakest link holds true.

Another factor that cannot be overlooked is the human one. Authorization
must be performed carefully to ensure that only allowed, trusted users have
access to the system. Even authorized users, however, may be malicious or
may be “encouraged” to let others use their access—whetherwillingly orwhen
duped through social engineering, which uses deception to persuade people
to give up confidential information. One type of social-engineering attack is
phishing, in which a legitimate-looking e-mail or web page misleads a user
into entering confidential information. Sometimes, all it takes is a click of a
link on a browser page or in an email to inadvertently download a malicious
payload, compromising system security on the user’s computer. Usually that
PC is not the end target, but rather some more valuable resource. From that
compromised system, attacks on other systems on the LAN or other users
ensue.

So far, we’ve seen that all four factors in the four-level model, plus the
human factor, must be taken into account if security is to be maintained. Fur-
thermore, the system must provide protection (discussed in great detail in
Chapter 17) to allow the implementation of security features. Without the abil-
ity to authorize users and processes to control their access, and to log their
activities, it would be impossible for an operating system to implement secu-
rity measures or to run securely. Hardware protection features are needed to
support an overall protection scheme. For example, a systemwithout memory

Figure 16.1 The four-layered model of security.

16.2 Program Threats 625

protection cannot be secure. New hardware features are allowing systems to
be made more secure, as we shall discuss.

Unfortunately, little in security is straightforward. As intruders exploit
security vulnerabilities, security countermeasures are created and deployed.
This causes intruders to become more sophisticated in their attacks. For exam-
ple, spyware can provide a conduit for spam through innocent systems (we
discuss this practice in Section 16.2), which in turn can deliver phishing attacks
to other targets. This cat-and-mouse game is likely to continue, with more
security tools needed to block the escalating intruder techniques and activities.

In the remainder of this chapter, we address security at the network and
operating-system levels. Security at the application, physical and human lev-
els, although important, is for the most part beyond the scope of this text.
Security within the operating system and between operating systems is imple-
mented in several ways, ranging from passwords for authentication through
guarding against viruses to detecting intrusions. We start with an exploration
of security threats.

16.2 Program Threats

Processes, along with the kernel, are the only means of accomplishing work
on a computer. Therefore, writing a program that creates a breach of security,
or causing a normal process to change its behavior and create a breach, is a
common goal of attackers. In fact, evenmost nonprogram security events have
as their goal causing a program threat. For example, while it is useful to log in
to a system without authorization, it is quite a lot more useful to leave behind
a back-door daemon or Remote Access Tool (RAT) that provides information
or allows easy access even if the original exploit is blocked. In this section, we
describe common methods by which programs cause security breaches. Note
that there is considerable variation in the naming conventions for security holes
and that we use the most common or descriptive terms.

16.2.1 Malware

Malware is software designed to exploit, disable or damage computer systems.
There are many ways to perform such activities, and we explore the major
variations in this section.

Many systems have mechanisms for allowing programs written by a user
to be executed by other users. If these programs are executed in a domain that
provides the access rights of the executing user, the other users may misuse
these rights. A program that acts in a clandestine or malicious manner, rather
than simply performing its stated function, is called a Trojan horse. If the pro-
gram is executed in another domain, it can escalate privileges. As an example,
consider a mobile app that purports to provide some benign functionality—
say, a flashlight app—but that meanwhile surreptitiously accesses the user’s
contacts or messages and smuggles them to some remote server.

A classic variation of the Trojan horse is a “Trojan mule” program that
emulates a login program. An unsuspecting user starts to log in at a terminal,
computer, or web page and notices that she has apparently mistyped her

626 Chapter 16 Security

password. She tries again and is successful. What has happened is that her
authentication key and password have been stolen by the login emulator,
which was left running on the computer by the attacker or reached via a
bad URL. The emulator stored away the password, printed out a login error
message, and exited; the user was then provided with a genuine login prompt.
This type of attack can be defeated by having the operating system print a
usagemessage at the end of an interactive session, by requiring a nontrappable
key sequence to get to the login prompt, such as the control-alt-delete
combination used by all modern Windows operating systems, or by the user
ensuring the URL is the right, valid one.

Another variation on the Trojan horse is spyware. Spyware sometimes
accompanies a program that the user has chosen to install. Most frequently,
it comes along with freeware or shareware programs, but sometimes it is
included with commercial software. Spyware may download ads to display
on the user’s system, create pop-up browser windows when certain sites are
visited, or capture information from the user’s system and return it to a central
site. The installation of an innocuous-seeming program on a Windows system
could result in the loading of a spyware daemon. The spyware could contact a
central site, be given a message and a list of recipient addresses, and deliver a
spam message to those users from the Windows machine. This process would
continue until the user discovered the spyware. Frequently, the spyware is
not discovered. In 2010, it was estimated that 90 percent of spam was being
delivered by this method. This theft of service is not even considered a crime
in most countries!

A fairly recent and unwelcome development is a class of malware that
doesn’t steal information.Ransomware encrypts some or all of the information
on the target computer and renders it inaccessible to the owner. The informa-
tion itself has little value to the attacker but lots of value to the owner. The
idea is to force the owner to pay money (the ransom) to get the decryption key
needed to decrypt the data. As with other dealings with criminals, of course,
payment of the ransom does not guarantee return of access.

Trojans and other malware especially thrive in cases where there is a vio-
lation of the principle of least privilege. This commonly occurs when the
operating systemallows bydefaultmore privileges than a normal user needs or
when the user runs by default as an administrator (as was true in all Windows
operating systems up to Windows 7). In such cases, the operating system’s
own immune system—permissions and protections of various kinds—can-
not “kick in,” so the malware can persist and survive across reboot, as well as
extend its reach both locally and over the network.

Violating the principle of least privilege is a case of poor operating-system
design decision making. An operating system (and, indeed, software in gen-
eral) should allow fine-grained control of access and security, so that only the
privileges needed to perform a task are available during the task’s execution.
The control featuremust also be easy tomanage and understand. Inconvenient,
inadequate, and misunderstood security measures are bound to be circum-
vented, causing an overall weakening of the security they were designed to
implement.

In yet another form ofmalware, the designer of a program or system leaves
a hole in the software that only she is capable of using. This type of security
breach, a trap door (or back door), was shown in the movie War Games. For

16.2 Program Threats 627

THE PRINCIPLE OF LEAST PRIVILEGE

“The principle of least privilege. Every program and every privileged
user of the system should operate using the least amount of privilege
necessary to complete the job. The purpose of this principle is to reduce
the number of potential interactions among privileged programs to
the minimum necessary to operate correctly, so that one may develop
confidence that unintentional, unwanted, or improper uses of privilege
do not occur.”—Jerome H. Saltzer, describing a design principle of the
Multics operating system in 1974: https://pdfs.semanticscholar.org/
1c8d/06510ad449ad24fbdd164f8008cc730cab47.pdf.

instance, the code might check for a specific user ID or password, and it might
circumvent normal security procedures when it receives that ID or password.
Programmers have used the trap-door method to embezzle from banks by
including rounding errors in their code and having the occasional half-cent
credited to their accounts. This account crediting can add up to a large amount
of money, considering the number of transactions that a large bank executes.

A trap door may be set to operate only under a specific set of logic condi-
tions, in which case it is referred to as a logic bomb. Back doors of this type are
especially difficult to detect, as theymay remain dormant for a long time, possi-
bly years, before being detected—usually after the damage has been done. For
example, one network administrator had a destructive reconfiguration of his
company’s network execute when his program detected that he was no longer
employed at the company.

A clever trap door could be included in a compiler. The compiler could
generate standard object code as well as a trap door, regardless of the source
code being compiled. This activity is particularly nefarious, since a search of
the source code of the program will not reveal any problems. Only reverse
engineering of the code of the compiler itself would reveal this trap door. This
type of attack can also be performed by patching the compiler or compile-time
libraries after the fact. Indeed, in 2015, malware that targets Apple’s XCode
compiler suite (dubbed “XCodeGhost”) affected many software developers
who used compromised versions of XCode not downloaded directly from
Apple.

Trap doors pose a difficult problem because, to detect them, we have to
analyze all the source code for all components of a system. Given that soft-
ware systems may consist of millions of lines of code, this analysis is not
done frequently, and frequently it is not done at all! A software development
methodology that can help counter this type of security hole is code review.
In code review, the developer who wrote the code submits it to the code
base, and one or more developers review the code and approve it or pro-
vide comments. Once a defined set of reviewers approve the code (sometimes
after comments are addressed and the code is resubmitted and re-reviewed),
the code is admitted into the code base and then compiled, debugged, and
finally released for use. Many good software developers use development ver-
sion control systems that provide tools for code review—for example, git
(https://github.com/git/). Note, too, that there are automatic code-review and

https://pdfs.semanticscholar.org/1c8d/06510ad449ad24fbdd164f8008cc730cab47.pdf
https://github.com/git/
https://github.com/git/
https://pdfs.semanticscholar.org/1c8d/06510ad449ad24fbdd164f8008cc730cab47.pdf

628 Chapter 16 Security

#include <stdio.h>
#define BUFFER SIZE 0

int main(int argc, char *argv[])
{

int j = 0;
char buffer[BUFFER SIZE];
int k = 0;
if (argc < 2) {return -1;}

strcpy(buffer,argv[1]);
printf("K is %d, J is %d, buffer is %s∖n", j,k,buffer);
return 0;
}

}

Figure 16.2 C program with buffer-overflow condition.

code-scanning tools designed to find flaws, including security flaws, but gen-
erally good programmers are the best code reviewers.

For those not involved in developing the code, code review is useful for
finding and reporting flaws (or for finding and exploiting them). For most
software, source code is not available, making code review much harder for
nondevelopers.

16.2.2 Code Injection

Most software is not malicious, but it can nonetheless pose serious threats to
security due to a code-injection attack, in which executable code is added
or modified. Even otherwise benign software can harbor vulnerabilities that,
if exploited, allow an attacker to take over the program code, subverting its
existing code flow or entirely reprogramming it by supplying new code.

Code-injection attacks are nearly always the result of poor or insecure
programming paradigms, commonly in low-level languages such as C or
C++, which allow direct memory access through pointers. This direct mem-
ory access, coupled with the need to carefully decide on sizes of memory
buffers and take care not to exceed them, can lead to memory corruption when
memory buffers are not properly handled.

As an example, consider the simplest code-injection vector—a buffer over-
flow. The program in Figure 16.2 illustrates such an overflow,which occurs due
to an unbounded copy operation, the call to strcpy(). The function copies
with no regard to the buffer size in question, halting only when a NULL (∖0)
byte is encountered. If such a byte occurs before the BUFFER SIZE is reached,
the program behaves as expected. But the copy could easily exceed the buffer
size—what then?

The answer is that the outcome of an overflow depends largely on the
length of the overflow and the overflowing contents (Figure 16.3). It also varies
greatly with the code generated by the compiler, which may be optimized

16.2 Program Threats 629

Figure 16.3 The possible outcomes of buffer overflows.

in ways that affect the outcome: optimizations often involve adjustments to
memory layout (commonly, repositioning or padding variables).

1. If the overflow is very small (only a little more than BUFFER SIZE), there is
a good chance it will go entirely unnoticed. This is because the allocation
of BUFFER SIZE bytes will often be padded to an architecture-specified
boundary (commonly 8 or 16 bytes). Padding is unused memory, and
therefore an overflow into it, though technically out of bounds, has no
ill effect.

2. If the overflow exceeds the padding, the next automatic variable on the
stack will be overwritten with the overflowing contents. The outcome
here will depend on the exact positioning of the variable and on its
semantics (for example, if it is employed in a logical condition that can
then be subverted). If uncontrolled, this overflow could lead to a program
crash, as an unexpected value in a variable could lead to an uncorrectable
error.

3. If the overflow greatly exceeds the padding, all of the current function’s
stack frame is overwritten. At the very top of the frame is the function’s
return address, which is accessed when the function returns. The flow
of the program is subverted and can be redirected by the attacker to
another region of memory, including memory controlled by the attacker
(for example, the input buffer itself, or the stack or the heap). The injected
code is then executed, allowing the attacker to run arbitrary code as the
processes’ effective ID.

Note that a careful programmer could have performed bounds checking on
the size of argv[1] by using the strncpy() function rather than strcpy(),
replacing the line “strcpy(buffer, argv[1]);” with “strncpy(buffer,
argv[1], sizeof(buffer)-1);”. Unfortunately, good bounds checking is
the exception rather than the norm. strcpy() is one of a known class of vulner-
able functions, which include sprintf(), gets(), and other functions with no

630 Chapter 16 Security

regard to buffer sizes. But even size-aware variants can harbor vulnerabilities
when coupled with arithmetic operations over finite-length integers, which
may lead to an integer overflow.

At this point, the dangers inherent in a simple oversight in maintaining
a buffer should be clearly evident. Brian Kerningham and Dennis Ritchie (in
their book The C Programming Language) referred to the possible outcome
as “undefined behavior,” but perfectly predictable behavior can be coerced by
an attacker, as was first demonstrated by the Morris Worm (and documented
in RFC1135: https://tools.ietf.org/html/rfc1135). It was not until several years
later, however, that an article in issue 49 of Phrack magazine (“Smashing the
Stack for Fun and Profit” http://phrack.org/issues/49/14.html) introduced the
exploitation technique to the masses, unleashing a deluge of exploits.

To achieve code injection, there must first be injectable code. The attacker
first writes a short code segment such as the following:

void func (void) {

execvp(“/bin/sh”, “/bin/sh”, NULL); ;
}

Using the execvp() system call, this code segment creates a shell process. If the
program being attacked runs with root permissions, this newly created shell
will gain complete access to the system. Of course, the code segment can do
anything allowed by the privileges of the attacked process. The code segment is
next compiled into its assembly binary opcode form and then transformed into
a binary stream. The compiled form is often referred to as shellcode, due to its
classic function of spawning a shell, but the term has grown to encompass any
type of code, includingmore advanced code used to add newusers to a system,
reboot, or even connect over the network and wait for remote instructions
(called a “reverse shell”). A shellcode exploit is shown in Figure 16.4. Code
that is briefly used, only to redirect execution to some other location, is much
like a trampoline, “bouncing” code flow from one spot to another.

Figure 16.4 Trampoline to code execution when exploiting a buffer overflow.

https://tools.ietf.org/html/rfc1135
http://phrack.org/issues/49/14.html
https://tools.ietf.org/html/rfc1135

16.2 Program Threats 631

There are, in fact, shellcode compilers (the “MetaSploit” project being a
notable example), which also take care of such specifics as ensuring that the
code is compact and contains no NULL bytes (in case of exploitation via string
copy, which would terminate on NULLs). Such a compiler may even mask the
shellcode as alphanumeric characters.

If the attacker has managed to overwrite the return address (or any func-
tion pointer, such as that of a VTable), then all it takes (in the simple case) is
to redirect the address to point to the supplied shellcode, which is commonly
loaded as part of the user input, through an environment variable, or over
some file or network input. Assuming no mitigations exist (as described later),
this is enough for the shellcode to execute and the hacker to succeed in the
attack. Alignment considerations are often handled by adding a sequence of
NOP instructions before the shellcode. The result is known as a NOP-sled, as
it causes execution to “slide” down the NOP instructions until the payload is
encountered and executed.

This example of a buffer-overflow attack reveals that considerable knowl-
edge and programming skill are needed to recognize exploitable code and
then to exploit it. Unfortunately, it does not take great programmers to launch
security attacks. Rather, one hacker can determine the bug and then write an
exploit. Anyone with rudimentary computer skills and access to the exploit—
a so-called script kiddie—can then try to launch the attack at target systems.

The buffer-overflow attack is especially pernicious because it can be run
between systems and can travel over allowed communication channels. Such
attacks can occur within protocols that are expected to be used to communicate
with the target machine, and they can therefore be hard to detect and prevent.
They can even bypass the security added by firewalls (Section 16.6.6).

Note that buffer overflows are just one of several vectors which can be
manipulated for code injection. Overflows can also be exploited when they
occur in the heap. Using memory buffers after freeing them, as well as over-
freeing them (calling free() twice), can also lead to code injection.

16.2.3 Viruses and Worms

Another form of program threat is a virus. Avirus is a fragment of code embed-
ded in a legitimate program. Viruses are self-replicating and are designed to
“infect” other programs. They can wreak havoc in a system by modifying or
destroying files and causing system crashes and program malfunctions. As
with most penetration attacks (direct attacks on a system), viruses are very
specific to architectures, operating systems, and applications. Viruses are a par-
ticular problem for users of PCs. UNIX and other multiuser operating systems
generally are not susceptible to viruses because the executable programs are
protected from writing by the operating system. Even if a virus does infect
such a program, its powers usually are limited because other aspects of the
system are protected.

Viruses are usually borne via spam e-mail and phishing attacks. They can
also spread when users download viral programs from Internet file-sharing
services or exchange infected disks. Adistinction can bemade between viruses,
which require human activity, and worms, which use a network to replicate
without any help from humans.

632 Chapter 16 Security

For an example of how a virus “infects” a host, consider Microsoft Office
files. These files can contain macros (or Visual Basic programs) that programs
in the Office suite (Word, PowerPoint, and Excel) will execute automatically.
Because these programs run under the user’s own account, the macros can run
largely unconstrained (for example, deleting user files at will). The following
code sample shows how simple it is to write a Visual Basic macro that a worm
could use to format the hard drive of a Windows computer as soon as the file
containing the macro was opened:

Sub AutoOpen()
Dim oFS

Set oFS = CreateObject(”Scripting.FileSystemObject”)
vs = Shell(”c: command.com /k format c:”,vbHide)

End Sub

Commonly, the worm will also e-mail itself to others in the user’s contact list.
How do viruses work? Once a virus reaches a target machine, a program

known as a virus dropper inserts the virus into the system. The virus dropper
is usually a Trojan horse, executed for other reasons but installing the virus
as its core activity. Once installed, the virus may do any one of a number of
things. There are literally thousands of viruses, but they fall into several main
categories. Note that many viruses belong to more than one category.

• File. A standard file virus infects a system by appending itself to a file.
It changes the start of the program so that execution jumps to its code.
After it executes, it returns control to the program so that its execution is
not noticed. File viruses are sometimes known as parasitic viruses, as they
leave no full files behind and leave the host program still functional.

• Boot. A boot virus infects the boot sector of the system, executing every
time the system is booted and before the operating system is loaded. It
watches for other bootable media and infects them. These viruses are also
known as memory viruses, because they do not appear in the file system.
Figure 16.5 shows how a boot virus works. Boot viruses have also adapted
to infect firmware, such as network card PXE and Extensible Firmware
Interface (EFI) environments.

• Macro. Most viruses are written in a low-level language, such as assembly
or C. Macro viruses are written in a high-level language, such as Visual
Basic. These viruses are triggered when a program capable of executing
the macro is run. For example, a macro virus could be contained in a
spreadsheet file.

• Rootkit. Originally coined to describe back doors on UNIX systemsmeant
to provide easy root access, the term has since expanded to viruses and
malware that infiltrate the operating system itself. The result is complete
system compromise; no aspect of the system can be deemed trusted.When
malware infects the operating system, it can take over all of the system’s
functions, including those functions that would normally facilitate its own
detection.

16.2 Program Threats 633

whenever new
removable R/W disk
is installed, it infects

that as well

it has a logic bomb to
wreak havoc at a

certain date

virus replaces
original boot block

with itself

at system boot, virus
decreases physical

memory, hides in memory
above new limit

virus attaches to disk read-
write interrupt, monitors all

disk activity

it blocks any attempts of
other programs to write the

boot sector

virus copies boot
sector to unused

location X

Figure 16.5 A boot-sector computer virus.

• Source code. A source code virus looks for source code and modifies it to
include the virus and to help spread the virus.

• Polymorphic. A polymorphic virus changes each time it is installed to
avoid detection by antivirus software. The changes do not affect the virus’s
functionality but rather change the virus’s signature. A virus signature is
a pattern that can be used to identify a virus, typically a series of bytes that
make up the virus code.

• Encrypted. An encrypted virus includes decryption code along with the
encrypted virus, again to avoid detection. The virus first decrypts and then
executes.

• Stealth. This tricky virus attempts to avoid detection by modifying parts
of the system that could be used to detect it. For example, it could modify
the read system call so that if the file it has modified is read, the original
form of the code is returned rather than the infected code.

634 Chapter 16 Security

• Multipartite. Avirus of this type is able to infectmultiple parts of a system,
including boot sectors, memory, and files. This makes it difficult to detect
and contain.

• Armored. An armored virus is obfuscated—that is, written so as to be hard
for antivirus researchers to unravel and understand. It can also be com-
pressed to avoid detection and disinfection. In addition, virus droppers
and other full files that are part of a virus infestation are frequently hidden
via file attributes or unviewable file names.

This vast variety of viruses has continued to grow. For example, in 2004 a
widespread virus was detected. It exploited three separate bugs for its oper-
ation. This virus started by infecting hundreds of Windows servers (includ-
ing many trusted sites) running Microsoft Internet Information Server (IIS).
Any vulnerable Microsoft Explorer web browser visiting those sites received
a browser virus with any download. The browser virus installed several
back-door programs, including a keystroke logger, which records everything
entered on the keyboard (including passwords and credit-card numbers). It
also installed a daemon to allow unlimited remote access by an intruder and
another that allowed an intruder to route spam through the infected desktop
computer.

An active security-related debate within the computing community con-
cerns the existence of a monoculture, in which many systems run the same
hardware, operating system, and application software. This monoculture sup-
posedly consists of Microsoft products. One question is whether such a mono-
culture even exists today. Another question is whether, if it does, it increases
the threat of and damage caused by viruses and other security intrusions. Vul-
nerability information is bought and sold in places like the dark web (World
Wide Web systems reachable via unusual client configurations or methods).
The more systems an attack can affect, the more valuable the attack.

16.3 System and Network Threats

Program threats, by themselves, pose serious security risks. But those risks are
compounded by orders ofmagnitudewhen a system is connected to a network.
Worldwide connectivity makes the system vulnerable to worldwide attacks.

The more open an operating system is—the more services it has enabled
and the more functions it allows—the more likely it is that a bug is available
to exploit it. Increasingly, operating systems strive to be secure by default.
For example, Solaris 10 moved from a model in which many services (FTP,
telnet, and others) were enabled by default when the system was installed
to a model in which almost all services are disabled at installation time and
must specifically be enabled by system administrators. Such changes reduce
the system’s attack surface.

All hackers leave tracks behind them—whether via network traffic pat-
terns, unusual packet types, or othermeans. For that reason, hackers frequently
launch attacks from zombie systems—independent systems or devices that
have been compromised by hackers but that continue to serve their own-
ers while being used without the owners’ knowledge for nefarious purposes,

16.3 System and Network Threats 635

communication

communication

communicationcommunication

sender receiver

attacker

sender

attacker

receiver

attacker

Masquerading

Man-in-the-middle

Normal

sender

receiver

Figure 16.6 Standard security attacks.1

including denial-of-service attacks and spam relay. Zombiesmake hackers par-
ticularly difficult to track because they mask the original source of the attack
and the identity of the attacker. This is one ofmany reasons for securing “incon-
sequential” systems, not just systems containing “valuable” information or
services—lest they be turned into strongholds for hackers.

The widespread use of broadband and WiFi has only exacerbated the
difficulty in tracking down attackers: even a simple desktop machine, which
can often be easily compromised by malware, can become a valuable machine
if used for its bandwidth or network access. Wireless ethernet makes it easy
for attackers to launch attacks by joining a public network anonymously or
“WarDriving”—locating a private unprotected network to target.

16.3.1 Attacking Network Traffic

Networks are common and attractive targets, and hackers have many options
for mounting network attacks. As shown in Figure 16.6, an attacker can opt
to remain passive and intercept network traffic (an attack commonly referred
to as sniffin), often obtaining useful information about the types of sessions

1Lorelyn Medina/Shutterstock.

636 Chapter 16 Security

conducted between systems or the sessions’ content. Alternatively, an attacker
can take a more active role, either masquerading as one of the parties (referred
to as spoofin), or becoming a fully activeman-in-the-middle, intercepting and
possibly modifying transactions between two peers.

Next, we describe a common type of network attack, the denial-of-service
(DoS) attack. Note that it is possible to guard against attacks through such
means as encryption and authentication, which are discussed later in the chap-
ter. Internet protocols do not, however, support either encryption or authenti-
cation by default.

16.3.2 Denial of Service

As mentioned earlier, denial-of-service attacks are aimed not at gaining infor-
mation or stealing resources but rather at disrupting legitimate use of a sys-
tem or facility. Most such attacks involve target systems or facilities that the
attacker has not penetrated. Launching an attack that prevents legitimate use
is frequently easier than breaking into a system or facility.

Denial-of-service attacks are generally network based. They fall into two
categories. Attacks in the first category use so many facility resources that,
in essence, no useful work can be done. For example, a website click could
download a Java applet that proceeds to use all available CPU time or to pop
upwindows infinitely. The second category involves disrupting the network of
the facility. There have been several successful denial-of-service attacks of this
kind against major websites. Such attacks, which can last hours or days, have
caused partial or full failure of attempts to use the target facility. The attacks
are usually stopped at the network level until the operating systems can be
updated to reduce their vulnerability.

Generally, it is impossible to prevent denial-of-service attacks. The attacks
use the same mechanisms as normal operation. Even more difficult to prevent
and resolve are Distributed Denial-of-Service (DDoS) attacks. These attacks
are launched frommultiple sites at once, toward a common target, typically by
zombies. DDoS attacks have become more common and are sometimes asso-
ciated with blackmail attempts. A site comes under attack, and the attackers
offer to halt the attack in exchange for money.

Sometimes a site does not even know it is under attack. It can be difficult
to determine whether a system slowdown is an attack or just a surge in system
use. Consider that a successful advertising campaign that greatly increases
traffic to a site could be considered a DDoS.

There are other interesting aspects of DoS attacks. For example, if an
authentication algorithm locks an account for a period of time after several
incorrect attempts to access the account, then an attacker could cause all
authentication to be blocked by purposely making incorrect attempts to access
all accounts. Similarly, a firewall that automatically blocks certain kinds of traf-
fic could be induced to block that traffic when it should not. These examples
suggest that programmers and systems managers need to fully understand
the algorithms and technologies they are deploying. Finally, computer science
classes are notorious sources of accidental system DoS attacks. Consider the
first programming exercises in which students learn to create subprocesses
or threads. A common bug involves spawning subprocesses infinitely. The
system’s free memory and CPU resources don’t stand a chance.

16.4 Cryptography as a Security Tool 637

16.3.3 Port Scanning

Port scanning is not itself an attack but is a means for a hacker to detect a
system’s vulnerabilities to attack. (Security personnel also use port scanning
—for example, to detect services that are not needed or are not supposed to be
running.) Port scanning typically is automated, involving a tool that attempts
to create a TCP/IPconnection or send a UDP packet to a specific port or a range
of ports.

Port scanning is often part of a reconnaissance technique known as fin-
gerprinting, in which an attacker attempts to deduce the type of operating
system in use and its set of services in order to identify known vulnerabilities.
Many servers and clients make this easier by disclosing their exact version
number as part of network protocol headers (for example, HTTP’s “Server:”
and “User-Agent:” headers). Detailed analyses of idiosyncratic behaviors by
protocol handlers can also help the attacker figure out what operating system
the target is using—a necessary step for successful exploitation.

Network vulnerability scanners are sold as commercial products. There
are also tools that perform subsets of the functionality of a full scanner. For
example, nmap (from http://www.insecure.org/nmap/) is a very versatile open-
source utility for network exploration and security auditing. When pointed
at a target, it will determine what services are running, including application
names and versions. It can identify the host operating system. It can also
provide information about defenses, such as what firewalls are defending
the target. It does not exploit known bugs. Other tools, however (such as
Metasploit), pick up where the port scanners leave off and provide payload
construction facilities that can be used to test for vulnerabilities—or exploit
them by creating a specific payload that triggers the bug.

The seminal work on port-scanning techniques can be found in
http://phrack.org/issues/49/15.html. Techniques are constantly evolving,
as are measures to detect them (which form the basis for network intrusion
detection systems, discussed later).

16.4 Cryptography as a Security Tool

There are many defenses against computer attacks, running the gamut from
methodology to technology. The broadest tool available to system designers
and users is cryptography. In this section, we discuss cryptography and its
use in computer security. Note that the cryptography discussed here has been
simplified for educational purposes; readers are cautioned against using any
of the schemes described here in the real world. Good cryptography libraries
arewidely available andwouldmake a good basis for production applications.

In an isolated computer, the operating system can reliably determine the
sender and recipient of all interprocess communication, since it controls all
communication channels in the computer. In a network of computers, the
situation is quite different. A networked computer receives bits “from the
wire” with no immediate and reliable way of determining what machine or
application sent those bits. Similarly, the computer sends bits onto the network
with no way of knowing who might eventually receive them. Additionally,
when either sending or receiving, the system has no way of knowing if an
eavesdropper listened to the communication.

http://www.insecure.org/nmap/
http://phrack.org/issues/49/15.html

638 Chapter 16 Security

Commonly, network addresses are used to infer the potential senders and
receivers of network messages. Network packets arrive with a source address,
such as an IP address. And when a computer sends a message, it names the
intended receiver by specifying a destination address. However, for appli-
cations where security matters, we are asking for trouble if we assume that
the source or destination address of a packet reliably determines who sent or
received that packet. A rogue computer can send a message with a falsified
source address, and numerous computers other than the one specified by the
destination address can (and typically do) receive a packet. For example, all of
the routers on theway to the destinationwill receive the packet, too.How, then,
is an operating system to decidewhether to grant a requestwhen it cannot trust
the named source of the request? And how is it supposed to provide protection
for a request or data when it cannot determine who will receive the response
or message contents it sends over the network?

It is generally considered infeasible to build a network of any scale in
which the source and destination addresses of packets can be trusted in this
sense. Therefore, the only alternative is somehow to eliminate the need to
trust the network. This is the job of cryptography. Abstractly, cryptography is
used to constrain the potential senders and/or receivers of a message. Modern
cryptography is based on secrets called keys that are selectively distributed to
computers in a network and used to processmessages. Cryptography enables a
recipient of amessage to verify that themessagewas created by some computer
possessing a certain key. Similarly, a sender can encode its message so that
only a computer with a certain key can decode the message. Unlike network
addresses, however, keys are designed so that it is not computationally feasible
to derive them from themessages theywere used to generate or from any other
public information. Thus, they provide a much more trustworthy means of
constraining senders and receivers of messages.

Cryptography is a powerful tool, and the use of cryptography can cause
contention. Some countries ban its use in certain forms or limit how long the
keys can be. Others have ongoing debates about whether technology vendors
(such as smartphone vendors) must provide a back door to the included cryp-
tography, allowing law enforcement to bypass the privacy it provides. Many
observers argue, however, that back doors are an intentional securityweakness
that could be exploited by attackers or even misused by governments.

Finally, note that cryptography is a field of study unto itself, with large and
small complexities and subtleties. Here, we explore themost important aspects
of the parts of cryptography that pertain to operating systems.

16.4.1 Encryption

Because it solves a wide variety of communication security problems, encryp-
tion is used frequently inmany aspects ofmodern computing. It is used to send
messages securely across a network, as well as to protect database data, files,
and even entire disks from having their contents read by unauthorized entities.
An encryption algorithm enables the sender of a message to ensure that only
a computer possessing a certain key can read the message or to ensure that
the writer of data is the only reader of the data. Encryption of messages is an
ancient practice, of course, and there have been many encryption algorithms,

16.4 Cryptography as a Security Tool 639

dating back to ancient times. In this section, we describe important modern
encryption principles and algorithms.

An encryption algorithm consists of the following components:

• A set K of keys.

• A setM of messages.

• A set C of ciphertexts.

• An encrypting function E : K → (M → C). That is, for each k ∈ K, Ek is a
function for generating ciphertexts frommessages. Both E and Ek for any k
should be efficiently computable functions. Generally, Ek is a randomized
mapping from messages to ciphertexts.

• A decrypting function D : K → (C → M). That is, for each k ∈ K, Dk is a
function for generating messages from ciphertexts. Both D and Dk for any
k should be efficiently computable functions.

An encryption algorithm must provide this essential property: given a
ciphertext c ∈ C, a computer can compute m such that Ek(m) = c only
if it possesses k. Thus, a computer holding k can decrypt ciphertexts to the
plaintexts used to produce them, but a computer not holding k cannot decrypt
ciphertexts. Since ciphertexts are generally exposed (for example, sent on a
network), it is important that it be infeasible to derive k from the ciphertexts.

There are two main types of encryption algorithms: symmetric and asym-
metric. We discuss both types in the following sections.

16.4.1.1 Symmetric Encryption

In a symmetric encryption algorithm, the same key is used to encrypt and
to decrypt. Therefore, the secrecy of k must be protected. Figure 16.7 shows
an example of two users communicating securely via symmetric encryption
over an insecure channel. Note that the key exchange can take place directly
between the two parties or via a trusted third party (that is, a certificate author-
ity), as discussed in Section 16.4.1.4.

For the past several decades, the most commonly used symmetric encryp-
tion algorithm in the United States for civilian applications has been the data-
encryption standard (DES) cipher adopted by the National Institute of Stan-
dards and Technology (NIST). DES works by taking a 64-bit value and a 56-bit
key and performing a series of transformations that are based on substitution
and permutation operations. Because DES works on a block of bits at a time, is
known as a block cipher, and its transformations are typical of block ciphers.
With block ciphers, if the same key is used for encrypting an extended amount
of data, it becomes vulnerable to attack.

DES is now considered insecure for many applications because its keys can
be exhaustively searched with moderate computing resources. (Note, though,
that it is still frequently used.) Rather than giving up on DES, NIST created a
modification called triple DES, in which the DES algorithm is repeated three
times (two encryptions and one decryption) on the same plaintext using two
or three keys—for example, c = Ek3(Dk2(Ek1(m))). When three keys are used,
the effective key length is 168 bits.

640 Chapter 16 Security

key
exchange

message m

message m

encryption
algorithm

E

decryption
algorithm

D

write

encryption
key k

decryption
key k

read

in
s
e
c
u
re

c
h
a
n
n
e
l

p
la

in
te

x
t

c
ip

h
e
rte

x
t

c
 =

 E
k (m

)
p
la

in
te

x
t

m
 =

 D
k (c

)

attacker

Figure 16.7 A secure communication over an insecure medium.2

In 2001, NIST adopted a new block cipher, called the advanced encryption
standard (AES), to replace DES. AES (also known as Rijndael) has been standard-
ized in FIPS-197 (http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf). It
can use key lengths of 128, 192, or 256 bits and works on 128-bit blocks. Gen-
erally, the algorithm is compact and efficient.

Block ciphers are not necessarily secure encryption schemes. In particular,
they do not directly handle messages longer than their required block sizes.
An alternative is stream ciphers, which can be used to securely encrypt longer
messages.

A stream cipher is designed to encrypt and decrypt a stream of bytes or
bits rather than a block. This is useful when the length of a communication
would make a block cipher too slow. The key is input into a pseudo–random-
bit generator, which is an algorithm that attempts to produce random bits.
The output of the generator when fed a key is a keystream. A keystream is
an infinite set of bits that can be used to encrypt a plaintext stream through
an XOR operation. (XOR, for “exclusive OR” is an operation that compares two
input bits and generates one output bit. If the bits are the same, the result is 0.
If the bits are different, the result is 1.) AES-based cipher suites include stream
ciphers and are the most common today.

2Lorelyn Medina/Shutterstock.

hhttp://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

16.4 Cryptography as a Security Tool 641

16.4.1.2 Asymmetric Encryption

In an asymmetric encryption algorithm, there are different encryption and
decryption keys. An entity preparing to receive encrypted communication
creates two keys and makes one of them (called the public key) available to
anyonewhowants it. Any sender can use that key to encrypt a communication,
but only the key creator can decrypt the communication. This scheme, known
as public-key encryption, was a breakthrough in cryptography (first
described by Diffie and Hellman in https://www-ee.stanford.edu/ hell-
man/publications/24.pdf). No longer must a key be kept secret and delivered
securely. Instead, anyone can encrypt a message to the receiving entity, and no
matter who else is listening, only that entity can decrypt the message.

As an example of how public-key encryption works, we describe an algo-
rithm known as RSA, after its inventors, Rivest, Shamir, and Adleman. RSA is
the most widely used asymmetric encryption algorithm. (Asymmetric algo-
rithms based on elliptic curves are gaining ground, however, because the key
length of such an algorithm can be shorter for the same amount of crypto-
graphic strength.)

In RSA, ke is the public key, and kd is the private key. N is the product of
two large, randomly chosen prime numbers p and q (for example, p and q are
2048 bits each). It must be computationally infeasible to derive kd,N from ke,N, so
that ke need not be kept secret and can be widely disseminated. The encryption
algorithm is Eke,N(m) = mke mod N, where ke satisfies kekd mod (p− 1)(q− 1) = 1.
The decryption algorithm is then Dkd,N

(c) = ckd mod N.
An example using small values is shown in Figure 16.8. In this example, we

make p = 7 and q = 13.We then calculateN = 7 ∗ 13 = 91 and (p−1)(q−1) = 72.
Wenext select ke relativelyprime to 72 and< 72, yielding 5. Finally,we calculate
kd such that kekd mod 72 = 1, yielding 29.We now have our keys: the public key,
ke,N = 5, 91, and the private key, kd,N = 29, 91. Encrypting the message 69 with
the public key results in the message 62, which is then decoded by the receiver
via the private key.

The use of asymmetric encryption begins with the publication of the public
key of the destination. For bidirectional communication, the source also must
publish its public key. “Publication” can be as simple as handing over an
electronic copy of the key, or it can bemore complex. The private key (or “secret
key”) must be zealously guarded, as anyone holding that key can decrypt any
message created by the matching public key.

We should note that the seemingly small difference in key use between
asymmetric and symmetric cryptography is quite large in practice. Asymmet-
ric cryptography is much more computationally expensive to execute. It is
much faster for a computer to encode and decode ciphertext by using the usual
symmetric algorithms than by using asymmetric algorithms. Why, then, use
an asymmetric algorithm? In truth, these algorithms are not used for general-
purpose encryption of large amounts of data. However, they are used not only
for encryption of small amounts of data but also for authentication, confiden-
tiality, and key distribution, as we show in the following sections.

16.4.1.3 Authentication

We have seen that encryption offers a way of constraining the set of possible
receivers of a message. Constraining the set of potential senders of a message

https://www-ee.stanford.edu/hellman/publications/24.pdf
https://www-ee.stanford.edu/hellman/publications/24.pdf

642 Chapter 16 Security

message 69

69

695 mod 91

6229 mod 91

write

encryption
key k5,91

decryption
key k29,91

read

in
s
e
c
u
re

c
h
a
n
n
e
l

p
la

in
te

x
t

6
2

Figure 16.8 Encryption and decryption using RSA asymmetric cryptography.3

is called authentication. Authentication is thus complementary to encryption.
Authentication is also useful for proving that amessage has not beenmodified.
Next, we discuss authentication as a constraint on possible senders of a mes-
sage. Note that this sort of authentication is similar to but distinct from user
authentication, which we discuss in Section 16.5.

An authentication algorithm using symmetric keys consists of the follow-
ing components:

• A set K of keys.

• A setM of messages.

• A set A of authenticators.

• A function S : K → (M → A). That is, for each k ∈ K, Sk is a function for
generating authenticators from messages. Both S and Sk for any k should
be efficiently computable functions.

3Lorelyn Medina/Shutterstock.

16.4 Cryptography as a Security Tool 643

• A function V : K → (M × A → {true, false}). That is, for each k ∈ K, Vk
is a function for verifying authenticators on messages. Both V and Vk for
any k should be efficiently computable functions.

The critical property that an authentication algorithmmust possess is this:
for a message m, a computer can generate an authenticator a ∈ A such that
Vk(m, a) = true only if it possesses k. Thus, a computer holding k can generate
authenticators onmessages so that any computer possessing k can verify them.
However, a computer not holding k cannot generate authenticators on mes-
sages that can be verified using Vk. Since authenticators are generally exposed
(for example, sent on a network with the messages themselves), it must not be
feasible to derive k from the authenticators. Practically, if Vk(m, a) = true, then
we know that m has not been modified and that the sender of the message has
k. If we share kwith only one entity, then we know that the message originated
from k.

Just as there are two types of encryption algorithms, there are two main
varieties of authentication algorithms. The first step in understanding these
algorithms is to explore hash functions. A hash function H(m) creates a small,
fixed-sized block of data, known as a message digest or hash value, from a
message m. Hash functions work by taking a message, splitting it into blocks,
and processing the blocks to produce an n-bit hash. H must be collision resis-
tant—that is, it must be infeasible to find an m′ ≠ m such that H(m) = H(m′).
Now, if H(m) = H(m′), we know that m = m′—that is, we know that the
message has not been modified. Common message-digest functions include
MD5 (now considered insecure), which produces a 128-bit hash, and SHA-1,
which outputs a 160-bit hash. Message digests are useful for detecting changed
messages but are not useful as authenticators. For example, H(m) can be sent
along with a message; but if H is known, then someone could modify m to m′

and recompute H(m′), and the message modification would not be detected.
Therefore, we must authenticate H(m).

The firstmain type of authentication algorithmuses symmetric encryption.
In a message-authentication code (MAC), a cryptographic checksum is gener-
ated from the message using a secret key. A MAC provides a way to securely
authenticate short values. If we use it to authenticate H(m) for an H that is
collision resistant, thenwe obtain away to securely authenticate longmessages
by hashing them first. Note that k is needed to compute both Sk and Vk, so
anyone able to compute one can compute the other.

The second main type of authentication algorithm is a digital-signature
algorithm, and the authenticators thus produced are called digital signatures.
Digital signatures are very useful in that they enable anyone to verify the
authenticity of themessage. In a digital-signature algorithm, it is computation-
ally infeasible to derive ks from kv. Thus, kv is the public key, and ks is the private
key.

Consider as an example the RSA digital-signature algorithm. It is similar to
the RSAencryption algorithm, but the key use is reversed. The digital signature
of a message is derived by computing Sks(m) = H(m)ks mod N. The key ks again
is a pair ⟨d,N⟩, where N is the product of two large, randomly chosen prime

numbers p and q. The verification algorithm is then Vkv(m, a)
?
=akv mod N =

H(m)), where kv satisfies kvks mod (p − 1)(q − 1) = 1. Digital signatures (as is
the case with many aspects of cryptography) can be used on other entities

644 Chapter 16 Security

than messages. For example creators of programs can “sign their code” via
a digital signature to validate that the code has not been modified between
its publication and its installation on a computer. Code signing has become a
very common security improvement method on many systems.

Note that encryption and authentication may be used together or sepa-
rately. Sometimes, for instance, we want authentication but not confidentiality.
For example, a company could provide a software patch and could “sign” that
patch to prove that it came from the company and that it hasn’t beenmodified.

Authentication is a component of many aspects of security. For example,
digital signatures are the core of nonrepudiation, which supplies proof that an
entity performed an action. A typical example of nonrepudiation involves the
filling out of electronic forms as an alternative to the signing of paper contracts.
Nonrepudiation assures that a person filling out an electronic form cannot
deny that he did so.

16.4.1.4 Key Distribution

Certainly, a good part of the battle between cryptographers (those inventing
ciphers) and cryptanalysts (those trying to break them) involves keys. With
symmetric algorithms, both parties need the key, and no one else should have
it. The delivery of the symmetric key is a huge challenge. Sometimes it is
performed out-of-band. For example, if Walter wanted to communicate with
Rebecca securely, they could exchange a key via a paper document or a conver-
sation and then have the communication electronically. These methods do not
scale well, however. Also consider the key-management challenge. Suppose
Lucy wanted to communicate with N other users privately. Lucy would need
N keys and, for more security, would need to change those keys frequently.

These are the very reasons for efforts to create asymmetric key algorithms.
Not only can the keys be exchanged in public, but a given user, say Audra,
needs only one private key, no matter how many other people she wants to
communicate with. There is still the matter of managing a public key for each
recipient of the communication, but since public keys need not be secured,
simple storage can be used for that key ring.

Unfortunately, even the distribution of public keys requires some care.
Consider the man-in-the-middle attack shown in Figure 16.9. Here, the person
who wants to receive an encrypted message sends out his public key, but an
attacker also sends her “bad” public key (which matches her private key). The
person who wants to send the encrypted message knows no better and so uses
the bad key to encrypt the message. The attacker then happily decrypts it.

The problem is one of authentication—what we need is proof of who (or
what) owns a public key. One way to solve that problem involves the use
of digital certificates. A digital certificat is a public key digitally signed by
a trusted party. The trusted party receives proof of identification from some
entity and certifies that the public key belongs to that entity. But how do
we know we can trust the certifier? These certificat authorities have their
public keys includedwithinweb browsers (and other consumers of certificates)
before they are distributed. The certificate authorities can then vouch for other
authorities (digitally signing the public keys of these other authorities), and
so on, creating a web of trust. The certificates can be distributed in a standard

16.4 Cryptography as a Security Tool 645

message m

encryption
algorithm

E

decryption
algorithm

D

write

3. E
kbad (m

)

message m read

encryption
key kbad

decryption
key kd

decryption
algorithm

D

decryption
key kbad

2
. P

u
b
lic

ke
y

k
b

a
d

1
. P

u
b
lic

ke
y

k
e

attacker

Figure 16.9 A man-in-the-middle attack on asymmetric cryptography.4

X.509 digital certificate format that can be parsed by computer. This scheme is
used for secure web communication, as we discuss in Section 16.4.3.

16.4.2 Implementation of Cryptography

Network protocols are typically organized in layers, with each layer acting as
a client of the one below it. That is, when one protocol generates a message
to send to its protocol peer on another machine, it hands its message to the
protocol below it in the network-protocol stack for delivery to its peer on that
machine. For example, in an IP network, TCP (a transport-layer protocol) acts as
a client of IP (a network-layer protocol): TCP packets are passed down to IP for
delivery to the IP peer at the other end of the connection. IP encapsulates the TCP
packet in an IP packet, which it similarly passes down to the data-link layer to
be transmitted across the network to its peer on the destination computer. This
IP peer then delivers the TCP packet up to the TCP peer on that machine. Seven

4Lorelyn Medina/Shutterstock.

646 Chapter 16 Security

such layers are included in the OSI model, mentioned earlier and described in
detail in Section 19.3.2.

Cryptography can be inserted at almost any layer in network protocol
stacks. TLS (Section 16.4.3), for example, provides security at the transport
layer. Network-layer security generally has been standardized on IPSec, which
defines IP packet formats that allow the insertion of authenticators and the
encryption of packet contents. IPSec uses symmetric encryption and uses the
Internet Key Exchange (IKE) protocol for key exchange. IKE is based on public-
key encryption. IPSec has widely used as the basis for virtual private networks
(VPNs), in which all traffic between two IPSec endpoints is encrypted to make a
private network out of one that would otherwise be public. Numerous proto-
cols also have been developed for use by applications, such as PGP for encrypt-
ing e-mail; in this type of scheme, the applications themselves must be coded
to implement security.

Where is cryptographic protection best placed in a protocol stack? In gen-
eral, there is no definitive answer. On the one hand,more protocols benefit from
protections placed lower in the stack. For example, since IP packets encapsu-
late TCP packets, encryption of IP packets (using IPSec, for example) also hides
the contents of the encapsulated TCP packets. Similarly, authenticators on IP
packets detect the modification of contained TCP header information.

On the other hand, protection at lower layers in the protocol stack may
give insufficient protection to higher-layer protocols. For example, an appli-
cation server that accepts connections encrypted with IPSec might be able to
authenticate the client computers from which requests are received. However,
to authenticate a user at a client computer, the server may need to use an
application-level protocol—the usermay be required to type a password. Also
consider the problem of e-mail. E-mail delivered via the industry-standard
SMTP protocol is stored and forwarded, frequently multiple times, before it is
delivered. Each of these transmissions could go over a secure or an insecure
network. For e-mail to be secure, the e-mail message needs to be encrypted so
that its security is independent of the transports that carry it.

Unfortunately, like many tools, encryption can be used not only for “good”
but also for “evil.” The ransomware attacks described earlier, for example, are
based on encryption. As mentioned, the attackers encrypt information on the
target system and render it inaccessible to the owner. The idea is to force the
owner to pay a ransom to get the key needed to decrypt the data. Prevention of
such attacks takes the form of better system and network security and a well-
executed backup plan so that the contents of the files can be restored without
the key.

16.4.3 An Example: TLS

Transport Layer Security (TLS) is a cryptographic protocol that enables two
computers to communicate securely—that is, so that each can limit the sender
and receiver of messages to the other. It is perhaps the most commonly
used cryptographic protocol on the Internet today, since it is the standard
protocol by which web browsers communicate securely with web servers.
For completeness, we should note that TLS evolved from SSL (Secure Sock-
ets Layer), which was designed by Netscape. It is described in detail in
https://tools.ietf.org/html/rfc5246.

https://tools.ietf.org/html/rfc5246

16.4 Cryptography as a Security Tool 647

TLS is a complex protocolwithmany options.Here,we present only a single
variation of it. Even then, we describe it in a very simplified and abstract form,
so as to maintain focus on its use of cryptographic primitives. What we are
about to see is a complex dance in which asymmetric cryptography is used so
that a client and a server can establish a secure session key that can be used for
symmetric encryption of the session between the two—all of this while avoid-
ing man-in-the-middle and replay attacks. For added cryptographic strength,
the session keys are forgotten once a session is completed. Another communi-
cation between the two will require generation of new session keys.

The TLS protocol is initiated by a client c to communicate securely with a
server. Prior to the protocol’s use, the server s is assumed to have obtained a
certificate, denoted certs, from certification authority CA. This certificate is a
structure containing the following:

• Various attributes (attrs) of the server, such as its unique distinguished
name and its common (DNS) name

• The identity of a asymmetric encryption algorithm E() for the server

• The public key ke of this server

• Avalidity interval (interval) during which the certificate should be consid-
ered valid

• A digital signature a on the above information made by the CA—that is,
a = SkCA(⟨ attrs, Eke, interval ⟩)

In addition, prior to the protocol’s use, the client is presumed to have obtained
the public verification algorithm VkCA for CA. In the case of the web, the user’s
browser is shipped from its vendor containing the verification algorithms and
public keys of certain certification authorities. The user can delete these or add
others.

When c connects to s, it sends a 28-byte randomvaluenc to the server,which
responds with a random value ns of its own, plus its certificate certs. The client
verifies that VkCA(⟨ attrs, Eke, interval⟩, a) = true and that the current time is
in the validity interval interval. If both of these tests are satisfied, the server
has proved its identity. Then the client generates a random 46-byte premaster
secret pms and sends cpms = Eke(pms) to the server. The server recovers pms
= Dkd(cpms). Now both the client and the server are in possession of nc, ns,
and pms, and each can compute a shared 48-byte master secret ms = H(nc, ns,
pms). Only the server and client can compute ms, since only they know pms.
Moreover, the dependence of ms on nc and ns ensures that ms is a fresh value
—that is, a session key that has not been used in a previous communication.
At this point, the client and the server both compute the following keys from
the ms:

• A symmetric encryption key k𝖼𝗋𝗒𝗉𝗍cs for encrypting messages from the client
to the server

• Asymmetric encryption key k𝖼𝗋𝗒𝗉𝗍sc for encrypting messages from the server
to the client

• AMAC generation key k𝗆𝖺𝖼
cs for generating authenticators onmessages from

the client to the server

648 Chapter 16 Security

• AMAC generation key k𝗆𝖺𝖼
sc for generating authenticators onmessages from

the server to the client

To send a message m to the server, the client sends

c = Ek𝖼𝗋𝗒𝗉𝗍cs
(⟨m, Sk𝗆𝖺𝖼

cs
(m)⟩).

Upon receiving c, the server recovers

⟨m, a⟩ = Dk𝖼𝗋𝗒𝗉𝗍cs
(c)

and accepts m if Vk𝗆𝖺𝖼
cs
(m, a) = true. Similarly, to send a message m to the client,

the server sends

c = Ek𝖼𝗋𝗒𝗉𝗍sc
(⟨m, Sk𝗆𝖺𝖼

sc
(m)⟩)

and the client recovers

⟨m, a⟩ = Dk𝖼𝗋𝗒𝗉𝗍sc
(c)

and accepts m if Vk𝗆𝖺𝖼
sc
(m, a) = true.

This protocol enables the server to limit the recipients of its messages to the
client that generated pms and to limit the senders of the messages it accepts to
that same client. Similarly, the client can limit the recipients of the messages
it sends and the senders of the messages it accepts to the party that knows kd
(that is, the party that can decrypt cpms). In many applications, such as web
transactions, the client needs to verify the identity of the party that knows kd.
This is one purpose of the certificate certs. In particular, the attrs field contains
information that the client can use to determine the identity—for example, the
domain name—of the server with which it is communicating. For applications
in which the server also needs information about the client, TLS supports an
option by which a client can send a certificate to the server.

In addition to its use on the Internet, TLS is being used for a wide variety of
tasks. For example, we mentioned earlier that IPSec is widely used as the basis
for virtual private networks, or VPNs. IPSec VPNs now have a competitor in TLS
VPNs. IPSec is good for point-to-point encryption of traffic—say, between two
company offices. TLS VPNs are more flexible but not as efficient, so they might
be used between an individual employee working remotely and the corporate
office.

16.5 User Authentication

Our earlier discussion of authentication involves messages and sessions. But
what about users? If a system cannot authenticate a user, then authenticating
that amessage came from that user is pointless. Thus, amajor security problem
for operating systems is user authentication. The protection system depends
on the ability to identify the programs and processes currently executing,
which in turn depends on the ability to identify each user of the system. Users
normally identify themselves, but how do we determine whether a user’s
identity is authentic? Generally, user authentication is based on one or more
of three things: the user’s possession of something (a key or card), the user’s
knowledge of something (a user identifier and password), or an attribute of the
user (fingerprint, retina pattern, or signature).

16.5 User Authentication 649

16.5.1 Passwords

The most common approach to authenticating a user identity is the use of
passwords. When the user identifies herself by user ID or account name, she
is asked for a password. If the user-supplied password matches the password
stored in the system, the system assumes that the account is being accessed by
the owner of that account.

Passwords are often used to protect objects in the computer system, in
the absence of more complete protection schemes. They can be considered a
special case of either keys or capabilities. For instance, a password may be
associated with each resource (such as a file). Whenever a request is made to
use the resource, the passwordmust be given. If the password is correct, access
is granted. Different passwords may be associated with different access rights.
For example, different passwords may be used for reading files, appending
files, and updating files.

In practice, most systems require only one password for a user to gain
their full rights. Althoughmore passwords theoreticallywould bemore secure,
such systems tend not to be implemented due to the classic trade-off between
security and convenience. If security makes something inconvenient, then the
security is frequently bypassed or otherwise circumvented.

16.5.2 Password Vulnerabilities

Passwords are extremely common because they are easy to understand and
use. Unfortunately, passwords can often be guessed, accidentally exposed,
sniffed (read by an eavesdropper), or illegally transferred from an authorized
user to an unauthorized one, as we show next.

There are three common ways to guess a password. One way is for the
intruder (either human or program) to know the user or to have information
about the user. All too frequently, people use obvious information (such as the
names of their cats or spouses) as their passwords. Another way is to use brute
force, trying enumeration—or all possible combinations of valid password
characters (letters, numbers, and punctuation on some systems)—until the
password is found. Short passwords are especially vulnerable to this method.
For example, a four-character password provides only 10,000 variations. On
average, guessing 5,000 times would produce a correct hit. A program that
could try a password every millisecond would take only about 5 seconds to
guess a four-character password. Enumeration is less successfulwhere systems
allow longer passwords that include both uppercase and lowercase letters,
along with numbers and all punctuation characters. Of course, users must take
advantage of the large password space and must not, for example, use only
lowercase letters. The third, common method is dictionary attacks where all
words, word variations, and common passwords are tried.

In addition to being guessed, passwords can be exposed as a result of visual
or electronic monitoring. An intruder can look over the shoulder of a user
(shoulder surfin) when the user is logging in and can learn the password
easily by watching the keyboard. Alternatively, anyone with access to the
network on which a computer resides can seamlessly add a network monitor,
allowing him to sniff, or watch, all data being transferred on the network,
including user IDs and passwords. Encrypting the data stream containing the
password solves this problem. Even such a system could have passwords

650 Chapter 16 Security

stolen, however. For example, if a file is used to contain the passwords, it
could be copied for off-system analysis. Or consider a Trojan-horse program
installed on the system that captures every keystroke before sending it on to
the application. Another common method to grab passwords, specially debit
card passcodes, is installing physical devices where the codes are used and
recording what the user does, for example a “skimmer” at an ATM machine or
a device installed between the keyboard and the computer.

Exposure is a particularly severe problem if the password is written down
where it can be read or lost. Some systems force users to select hard-to-
remember or long passwords, or to change their password frequently, which
may cause a user to record the password or to reuse it. As a result, such sys-
tems provide much less security than systems that allow users to select easy
passwords!

The final type of password compromise, illegal transfer, is the result of
human nature. Most computer installations have a rule that forbids users to
share accounts. This rule is sometimes implemented for accounting reasons
but is often aimed at improving security. For instance, suppose one user ID is
shared by several users, and a security breach occurs from that user ID. It is
impossible to know who was using the ID at the time the break occurred or
even whether the user was an authorized one. With one user per user ID, any
user can be questioned directly about use of the account; in addition, the user
might notice something different about the account and detect the break-in.
Sometimes, users break account-sharing rules to help friends or to circum-
vent accounting, and this behavior can result in a system’s being accessed by
unauthorized users—possibly harmful ones.

Passwords can be either generated by the system or selected by a user.
System-generatedpasswordsmaybedifficult to remember, and thus usersmay
write them down. As mentioned, however, user-selected passwords are often
easy to guess (the user’s name or favorite car, for example). Some systems will
check a proposed password for ease of guessing or cracking before accepting
it. Some systems also age passwords, forcing users to change their passwords
at regular intervals (every three months, for instance). This method is not
foolproof either, because users can easily toggle between two passwords. The
solution, as implemented on some systems, is to record a password history for
each user. For instance, the system could record the last N passwords and not
allow their reuse.

Several variants on these simple password schemes can be used. For exam-
ple, the password can be changed more frequently. At the extreme, the pass-
word is changed from session to session. A new password is selected (either
by the system or by the user) at the end of each session, and that password
must be used for the next session. In such a case, even if a password is used by
an unauthorized person, that person can use it only once. When the legitimate
user tries to use a now-invalid password at the next session, he discovers the
security violation. Steps can then be taken to repair the breached security.

16.5.3 Securing Passwords

One problem with all these approaches is the difficulty of keeping the pass-
word secret within the computer. How can the system store a password
securely yet allow its use for authentication when the user presents her pass-

16.5 User Authentication 651

STRONG AND EASY TO REMEMBER PASSWORDS

It is extremely important to use strong (hard to guess and hard to shoulder
surf) passwords on critical systems like bank accounts. It is also important
to not use the same password on lots of systems, as one less important,
easily hacked system could reveal the password you use on more important
systems. A good technique is to generate your password by using the first
letter of each word of an easily remembered phrase using both upper and
lower characters with a number or punctuation mark thrown in for good
measure. For example, the phrase “My girlfriend’s name is Katherine” might
yield the password “Mgn.isK!”. The password is hard to crack but easy for the
user to remember. Amore secure system would allow more characters in its
passwords. Indeed, a systemmight also allow passwords to include the space
character, so that a user could create a passphrase which is easy to remember
but difficult to break.

word? The UNIX system uses secure hashing to avoid the necessity of keeping
its password list secret. Because the password is hashed rather than encrypted,
it is impossible for the system to decrypt the stored value and determine the
original password.

Hash functions are easy to compute, but hard (if not impossible) to invert.
That is, given a value x, it is easy to compute the hash function value f (x). Given
a function value f (x), however, it is impossible to compute x. This function
is used to encode all passwords. Only encoded passwords are stored. When
a user presents a password, it is hashed and compared against the stored
encoded password. Even if the stored encoded password is seen, it cannot be
decoded, so the password cannot be determined. Thus, the password file does
not need to be kept secret.

The drawback to this method is that the system no longer has control over
the passwords. Although the passwords are hashed, anyone with a copy of
the password file can run fast hash routines against it—hashing each word
in a dictionary, for instance, and comparing the results against the passwords.
If the user has selected a password that is also a word in the dictionary, the
password is cracked. On sufficiently fast computers, or even on clusters of
slow computers, such a comparison may take only a few hours. Furthermore,
because systems use well-known hashing algorithms, an attacker might keep
a cache of passwords that have been cracked previously.

For these reasons, systems include a “salt,” or recorded random number, in
the hashing algorithm. The salt value is added to the password to ensure that
if two plaintext passwords are the same, they result in different hash values.
In addition, the salt value makes hashing a dictionary ineffective, because
each dictionary term would need to be combined with each salt value for
comparison to the stored passwords. Newer versions of UNIX also store the
hashed password entries in a file readable only by the superuser. The programs
that compare the hash to the stored value run setuid to root, so they can read
this file, but other users cannot.

652 Chapter 16 Security

16.5.4 One-Time Passwords

To avoid the problems of password sniffing and shoulder surfing, a system can
use a set of paired passwords. When a session begins, the system randomly
selects and presents one part of a password pair; the usermust supply the other
part. In this system, the user is challenged and must respond with the correct
answer to that challenge.

This approach can be generalized to the use of an algorithm as a password.
In this scheme, the system and the user share a symmetric password. The
password pw is never transmitted over amedium that allows exposure. Rather,
the password is used as input to a function, alongwith a challenge ch presented
by the system. The user then computes the function H(pw, ch). The result of
this function is transmitted as the authenticator to the computer. Because the
computer also knows pw and ch, it can perform the same computation. If the
results match, the user is authenticated. The next time the user needs to be
authenticated, another ch is generated, and the same steps ensue. This time,
the authenticator is different. Such algorithmic passwords are not susceptible
to reuse. That is, a user can type in a password, and no entity intercepting that
passwordwill be able to reuse it. This one-time password system is one of only
a few ways to prevent improper authentication due to password exposure.

One-time password systems are implemented in various ways. Commer-
cial implementations use hardware calculators with a display or a display
and numeric keypad. These calculators generally take the shape of a credit
card, a key-chain dongle, or a USB device. Software running on computers or
smartphones provides the user with H(pw, ch); pw can be input by the user
or generated by the calculator in synchronization with the computer. Some-
times, pw is just a personal identificatio number (PIN). The output of any
of these systems shows the one-time password. A one-time password gener-
ator that requires input by the user involves two-factor authentication. Two
different types of components are needed in this case—for example, a one-
time password generator that generates the correct response only if the PIN is
valid. Two-factor authentication offers far better authentication protection than
single-factor authentication because it requires “something you have” as well
as “something you know.”

16.5.5 Biometrics

Yet another variation on the use of passwords for authentication involves the
use of biometricmeasures. Palm- or hand-readers are commonly used to secure
physical access—for example, access to a data center. These readers match
stored parameters against what is being read from hand-reader pads. The
parameters can include a temperature map, as well as finger length, finger
width, and line patterns. These devices are currently too large and expensive
to be used for normal computer authentication.

Fingerprint readers have become accurate and cost-effective. These devices
read finger ridge patterns and convert them into a sequence of numbers. Over
time, they can store a set of sequences to adjust for the location of the finger
on the reading pad and other factors. Software can then scan a finger on the
pad and compare its features with these stored sequences to determine if they
match. Of course, multiple users can have profiles stored, and the scanner can
differentiate among them. A very accurate two-factor authentication scheme

16.6 Implementing Security Defenses 653

can result from requiring a password as well as a user name and fingerprint
scan. If this information is encrypted in transit, the system can be very resistant
to spoofing or replay attack.

Multifactor authentication is better still. Consider how strong authentica-
tion can bewith a USB device that must be plugged into the system, a PIN, and a
fingerprint scan. Except for having to place one’s finger on a pad and plug the
USB into the system, this authentication method is no less convenient than that
using normal passwords. Recall, though, that strong authentication by itself is
not sufficient to guarantee the ID of the user. An authenticated session can still
be hijacked if it is not encrypted.

16.6 Implementing Security Defenses

Just as there are myriad threats to system and network security, there are many
security solutions. The solutions range from improved user education, through
technology, to writing better software. Most security professionals subscribe to
the theory of defense in depth, which states that more layers of defense are
better than fewer layers. Of course, this theory applies to any kind of security.
Consider the security of a house without a door lock, with a door lock, and
with a lock and an alarm. In this section, we look at the major methods, tools,
and techniques that can be used to improve resistance to threats. Note that
some security-improving techniques are more properly part of protection than
security and are covered in Chapter 17.

16.6.1 Security Policy

The first step toward improving the security of any aspect of computing is to
have a security policy. Policies vary widely but generally include a statement
of what is being secured. For example, a policy might state that all outside-
accessible applications must have a code review before being deployed, or that
users should not share their passwords, or that all connection points between a
company and the outside must have port scans run every six months. Without
a policy in place, it is impossible for users and administrators to know what
is permissible, what is required, and what is not allowed. The policy is a road
map to security, and if a site is trying to move from less secure to more secure,
it needs a map to know how to get there.

Once the security policy is in place, the people it affects should know it
well. It should be their guide. The policy should also be a living document
that is reviewed and updated periodically to ensure that it is still pertinent and
still followed.

16.6.2 Vulnerability Assessment

How can we determine whether a security policy has been correctly imple-
mented? The best way is to execute a vulnerability assessment. Such assess-
ments can cover broad ground, from social engineering through risk assess-
ment to port scans. Risk assessment, for example, attempts to value the assets
of the entity in question (a program, a management team, a system, or a facil-
ity) and determine the odds that a security incident will affect the entity and

654 Chapter 16 Security

decrease its value. When the odds of suffering a loss and the amount of the
potential loss are known, a value can be placed on trying to secure the entity.

The core activity of most vulnerability assessments is a penetration test,
in which the entity is scanned for known vulnerabilities. Because this book
is concerned with operating systems and the software that runs on them, we
concentrate on those aspects of vulnerability assessment.

Vulnerability scans typically are done at times when computer use is rela-
tively low, to minimize their impact. When appropriate, they are done on test
systems rather than production systems, because they can induce unhappy
behavior from the target systems or network devices.

A scan within an individual system can check a variety of aspects of the
system:

• Short or easy-to-guess passwords

• Unauthorized privileged programs, such as setuid programs

• Unauthorized programs in system directories

• Unexpectedly long-running processes

• Improper directory protections on user and system directories

• Improper protections on systemdata files, such as the passwordfile, device
files, or the operating-system kernel itself

• Dangerous entries in the program search path (for example, the Trojan
horse discussed in Section 16.2.1), such as the current directory and any
easily-written directories such as /tmp

• Changes to system programs detected with checksum values

• Unexpected or hidden network daemons

Any problems found by a security scan can be either fixed automatically or
reported to the managers of the system.

Networked computers are much more susceptible to security attacks
than are standalone systems. Rather than attacks from a known set of access
points, such as directly connected terminals, we face attacks from an unknown
and large set of access points—a potentially severe security problem. To a
lesser extent, systems connected to telephone lines via modems are also more
exposed.

In fact, the U.S. government considers a system to be only as secure as
its most far-reaching connection. For instance, a top-secret system may be
accessed only from within a building also considered top-secret. The system
loses its top-secret rating if any form of communication can occur outside that
environment. Some government facilities take extreme security precautions.
The connectors that plug a terminal into the secure computer are locked in a
safe in the office when the terminal is not in use. Apersonmust have proper ID
to gain access to the building and her office, must know a physical lock com-
bination, and must know authentication information for the computer itself to
gain access to the computer—an example of multifactor authentication.

Unfortunately for system administrators and computer-security profes-
sionals, it is frequently impossible to lock a machine in a room and disallow

16.6 Implementing Security Defenses 655

all remote access. For instance, the Internet currently connects billions of com-
puters and devices and has become a mission-critical, indispensable resource
for many companies and individuals. If you consider the Internet a club, then,
as in any club with millions of members, there are many good members and
some badmembers. The badmembers havemany tools they can use to attempt
to gain access to the interconnected computers.

Vulnerability scans can be applied to networks to address some of the
problems with network security. The scans search a network for ports that
respond to a request. If services are enabled that should not be, access to them
can be blocked, or they can be disabled. The scans then determine the details
of the application listening on that port and try to determine if it has any
knownvulnerabilities. Testing those vulnerabilities can determine if the system
is misconfigured or lacks needed patches.

Finally, though, consider the use of port scanners in the hands of an attacker
rather than someone trying to improve security. These tools could help attack-
ers find vulnerabilities to attack. (Fortunately, it is possible to detect port scans
through anomaly detection, as we discuss next.) It is a general challenge to
security that the same tools can be used for good and for harm. In fact, some
people advocate security through obscurity, stating that no tools should be
written to test security, because such tools can be used to find (and exploit)
security holes. Others believe that this approach to security is not a valid one,
pointing out, for example, that attackers could write their own tools. It seems
reasonable that security through obscurity be considered one of the layers of
security only so long as it is not the only layer. For example, a company could
publish its entire network configuration, but keeping that information secret
makes it harder for intruders to know what to attack. Even here, though, a
company assuming that such information will remain a secret has a false sense
of security.

16.6.3 Intrusion Prevention

Securing systems and facilities is intimately linked to intrusion detection
and prevention. Intrusion prevention, as its name suggests, strives to detect
attemptedor successful intrusions into computer systems and to initiate appro-
priate responses to the intrusions. Intrusion prevention encompasses a wide
array of techniques that vary on a number of axes, including the following:

• The time at which detection occurs. Detection can occur in real time (while
the intrusion is occurring) or after the fact.

• The types of inputs examined to detect intrusive activity. These may
include user-shell commands, process system calls, and network packet
headers or contents. Some forms of intrusion might be detected only by
correlating information from several such sources.

• The range of response capabilities. Simple forms of response include alert-
ing an administrator to the potential intrusion or somehow halting the
potentially intrusive activity—for example, killing a process engaged in
such activity. In a sophisticated form of response, a systemmight transpar-
ently divert an intruder’s activity to a honeypot—a false resource exposed

656 Chapter 16 Security

to the attacker. The resource appears real to the attacker and enables the
system to monitor and gain information about the attack.

These degrees of freedom in the design space for detecting intrusions have
yielded a wide range of solutions, known as intrusion-prevention systems
(IPS). IPSs act as self-modifying firewalls, passing traffic unless an intrusion
is detected (at which point that traffic is blocked).

But just what constitutes an intrusion? Defining a suitable specification
of intrusion turns out to be quite difficult, and thus automatic IPSs today
typically settle for one of two less ambitious approaches. In the first, called
signature-based detection, system input or network traffic is examined for
specific behavior patterns (or signatures) known to indicate attacks. A simple
example of signature-based detection is scanning network packets for the
string “/etc/passwd” targeted for a UNIX system. Another example is virus-
detection software,which scans binaries or network packets for known viruses.

The second approach, typically called anomaly detection, attempts
through various techniques to detect anomalous behavior within computer
systems. Of course, not all anomalous system activity indicates an intrusion,
but the presumption is that intrusions often induce anomalous behavior. An
example of anomaly detection is monitoring system calls of a daemon process
to detect whether the system-call behavior deviates from normal patterns,
possibly indicating that a buffer overflow has been exploited in the daemon
to corrupt its behavior. Another example is monitoring shell commands to
detect anomalous commands for a given user or detecting an anomalous login
time for a user, either of which may indicate that an attacker has succeeded in
gaining access to that user’s account.

Signature-based detection and anomaly detection can be viewed as two
sides of the same coin. Signature-based detection attempts to characterize dan-
gerous behaviors and to detect when one of these behaviors occurs, whereas
anomaly detection attempts to characterize normal (or nondangerous) behav-
iors and to detect when something other than these behaviors occurs.

These different approaches yield IPSs with very different properties, how-
ever. In particular, anomaly detection can find previouslyunknownmethods of
intrusion (so-called zero-day attacks). Signature-based detection, in contrast,
will identify only known attacks that can be codified in a recognizable pat-
tern. Thus, new attacks that were not contemplated when the signatures were
generated will evade signature-based detection. This problem is well known
to vendors of virus-detection software, who must release new signatures with
great frequency as new viruses are detected manually.

Anomalydetection is not necessarily superior to signature-baseddetection,
however. Indeed, a significant challenge for systems that attempt anomaly
detection is to benchmark “normal” system behavior accurately. If the sys-
tem has already been penetrated when it is benchmarked, then the intrusive
activity may be included in the “normal” benchmark. Even if the system is
benchmarked cleanly, without influence from intrusive behavior, the bench-
mark must give a fairly complete picture of normal behavior. Otherwise, the
number of false positives (false alarms) or, worse, false negatives (missed
intrusions) will be excessive.

To illustrate the impact of even a marginally high rate of false alarms,
consider an installation consisting of a hundred UNIXworkstations fromwhich

16.6 Implementing Security Defenses 657

security-relevant events are recorded for purposes of intrusion detection. A
small installation such as this could easily generate a million audit records per
day.Only one or twomight beworthy of an administrator’s investigation. Ifwe
suppose, optimistically, that each actual attack is reflected in ten audit records,
we can roughly compute the rate of occurrence of audit records reflecting truly
intrusive activity as follows:

2 intrusionsday ⋅ 10 records
intrusion

106 recordsday

= 0.00002.

Interpreting this as a “probability of occurrence of intrusive records,” we
denote it as P(I); that is, event I is the occurrence of a record reflecting truly
intrusive behavior. Since P(I) = 0.00002, we also know that P(¬I) = 1 − P(I) =
0.99998. Nowwe letA denote the raising of an alarm by an IDS. An accurate IDS
should maximize both P(I|A) and P(¬I|¬A)—that is, the probabilities that an
alarm indicates an intrusion and that no alarm indicates no intrusion. Focusing
on P(I|A) for the moment, we can compute it using Bayes’ theorem:

P(I|A) =
P(I) ⋅ P(A|I)

P(I) ⋅ P(A|I) + P(¬I) ⋅ P(A|¬I)

=
0.00002 ⋅ P(A|I)

0.00002 ⋅ P(A|I) + 0.99998 ⋅ P(A|¬I)

Now consider the impact of the false-alarm rate P(A|¬I) on P(I|A). Even
with a very good true-alarm rate of P(A|I) = 0.8, a seemingly good false-
alarm rate of P(A|¬I) = 0.0001 yields P(I|A) ≈ 0.14. That is, fewer than one
in every seven alarms indicates a real intrusion! In systems where a security
administrator investigates each alarm, a high rate of false alarms—called a
“Christmas tree effect”—is exceedingly wasteful and will quickly teach the
administrator to ignore alarms.

This example illustrates a general principle for IPSs: for usability, theymust
offer an extremely low false-alarm rate. Achieving a sufficiently low false-
alarm rate is an especially serious challenge for anomaly-detection systems,
as mentioned, because of the difficulties of adequately benchmarking normal
system behavior. However, research continues to improve anomaly-detection
techniques. Intrusion-detection software is evolving to implement signatures,
anomaly algorithms, and other algorithms and to combine the results to arrive
at a more accurate anomaly-detection rate.

16.6.4 Virus Protection

As we have seen, viruses can and do wreak havoc on systems. Protection from
viruses thus is an important security concern. Antivirus programs are often
used to provide this protection. Some of these programs are effective against
only particular known viruses. They work by searching all the programs on
a system for the specific pattern of instructions known to make up the virus.

658 Chapter 16 Security

When they find a known pattern, they remove the instructions, disinfecting
the program. Antivirus programs may have catalogs of thousands of viruses
for which they search.

Both viruses and antivirus software continue to become more sophisti-
cated. Some viruses modify themselves as they infect other software to avoid
the basic pattern-match approach of antivirus programs. Antivirus programs
in turn now look for families of patterns rather than a single pattern to iden-
tify a virus. In fact, some antivirus programs implement a variety of detection
algorithms. They can decompress compressedviruses before checking for a sig-
nature. Some also look for process anomalies. Aprocess opening an executable
file for writing is suspicious, for example, unless it is a compiler. Another pop-
ular technique is to run a program in a sandbox (Section 17.11.3), which is a
controlled or emulated section of the system. The antivirus software analyzes
the behavior of the code in the sandbox before letting it run unmonitored. Some
antivirus programs also put up a complete shield rather than just scanning files
within a file system. They search boot sectors, memory, inbound and outbound
e-mail, files as they are downloaded, files on removable devices or media, and
so on.

The best protection against computer viruses is prevention, or the prac-
tice of safe computing. Purchasing unopened software from vendors and
avoiding free or pirated copies from public sources or disk exchange offer the
safest route to preventing infection. However, even new copies of legitimate
software applications are not immune to virus infection: in a few cases, dis-
gruntled employees of a software company have infected the master copies
of software programs to do economic harm to the company. Likewise, hard-
ware devices can come from the factory pre-infected for your convenience. For
macro viruses, one defense is to exchange Microsoft Word documents in an
alternative file format called rich text format (RTF). Unlike the native Word
format, RTF does not include the capability to attach macros.

Another defense is to avoid opening any e-mail attachments from
unknown users. Unfortunately, history has shown that e-mail vulnerabilities
appear as fast as they are fixed. For example, in 2000, the love bug virus
became very widespread by traveling in e-mail messages that pretended to
be love notes sent by friends of the receivers. Once a receiver opened the
attached Visual Basic script, the virus propagated by sending itself to the
first addresses in the receiver’s e-mail contact list. Fortunately, except for
clogging e-mail systems and users’ inboxes, it was relatively harmless. It did,
however, effectively negate the defensive strategy of opening attachments
only from people known to the receiver. A more effective defense method is
to avoid opening any e-mail attachment that contains executable code. Some
companies now enforce this as policy by removing all incoming attachments
to e-mail messages.

Another safeguard, although it does not prevent infection, does permit
early detection. A user must begin by completely reformatting the hard disk,
especially the boot sector, which is often targeted for viral attack. Only secure
software is uploaded, and a signature of each program is taken via a secure
message-digest computation. The resulting file name and associated message-
digest list must then be kept free from unauthorized access. Periodically, or
each time a program is run, the operating system recomputes the signature

16.6 Implementing Security Defenses 659

and compares itwith the signature on the original list; any differences serve as a
warning of possible infection. This technique can be combinedwith others. For
example, a high-overhead antivirus scan, such as a sandbox, can be used; and
if a program passes the test, a signature can be created for it. If the signatures
match the next time the program is run, it does not need to be virus-scanned
again.

16.6.5 Auditing, Accounting, and Logging

Auditing, accounting, and logging can decrease system performance, but they
are useful in several areas, including security. Logging can be general or spe-
cific. All system-call executions can be logged for analysis of program behavior
(or misbehavior). More typically, suspicious events are logged. Authentica-
tion failures and authorization failures can tell us quite a lot about break-in
attempts.

Accounting is another potential tool in a security administrator’s kit. It
can be used to find performance changes, which in turn can reveal security
problems. One of the early UNIX computer break-ins was detected by Cliff Stoll
when he was examining accounting logs and spotted an anomaly.

16.6.6 Firewalling to Protect Systems and Networks

We turn next to the question of how a trusted computer can be connected safely
to an untrustworthy network. One solution is the use of a firewall to separate
trusted and untrusted systems. A firewal is a computer, appliance, process, or
router that sits between the trusted and the untrusted.Anetwork firewall limits
network access between the multiple security domains and monitors and logs
all connections. It can also limit connections based on source or destination
address, source or destination port, or direction of the connection. For instance,
web servers use HTTP to communicate with web browsers. Afirewall therefore
may allow only HTTP to pass from all hosts outside the firewall to the web
server within the firewall. The first worm, the Morris Internet worm, used the
finger protocol to break into computers, so finger would not be allowed to
pass, for example.

In fact, a network firewall can separate a network into multiple domains.
A common implementation has the Internet as the untrusted domain; a
semitrusted and semisecure network, called the demilitarized zone (DMZ),
as another domain; and a company’s computers as a third domain (Figure
16.10). Connections are allowed from the Internet to the DMZ computers and
from the company computers to the Internet but are not allowed from the
Internet or DMZ computers to the company computers. Optionally, controlled
communications may be allowed between the DMZ and one company
computer or more. For instance, a web server on the DMZ may need to query a
database server on the corporate network. With a firewall, however, access is
contained, and any DMZ systems that are broken into still are unable to access
the company computers.

Of course, a firewall itself must be secure and attack-proof. Otherwise,
its ability to secure connections can be compromised. Furthermore, firewalls
do not prevent attacks that tunnel, or travel within protocols or connections

660 Chapter 16 Security

Internet access from company’s
computers

company computers

DMZ access from Internet
firewall

DMZ

access between DMZ and
company’s computers

Internet

Figure 16.10 Domain separation via firewall.

that the firewall allows. A buffer-overflow attack to a web server will not be
stopped by the firewall, for example, because the HTTP connection is allowed;
it is the contents of the HTTP connection that house the attack. Likewise, denial-
of-service attacks can affect firewalls as much as any other machines. Another
vulnerability of firewalls is spoofing, in which an unauthorized host pretends
to be an authorized host bymeeting some authorization criterion. For example,
if a firewall rule allows a connection from a host and identifies that host by its
IP address, then another host could send packets using that same address and
be allowed through the firewall.

In addition to the most common network firewalls, there are other, newer
kinds of firewalls, eachwith its pros and cons. Apersonal firewal is a software
layer either included with the operating system or added as an application.
Rather than limiting communication between security domains, it limits com-
munication to (and possibly from) a given host. A user could add a personal
firewall to her PC so that a Trojan horse would be denied access to the net-
work to which the PC is connected, for example. An application proxy fire
wall understands the protocols that applications speak across the network. For
example, SMTP is used formail transfer. An application proxy accepts a connec-
tion just as an SMTP server would and then initiates a connection to the original
destination SMTP server. It can monitor the traffic as it forwards the message,
watching for and disabling illegal commands, attempts to exploit bugs, and
so on. Some firewalls are designed for one specific protocol. An XML firewal ,
for example, has the specific purpose of analyzing XML traffic and blocking
disallowed or malformed XML. System-call firewalls sit between applications
and the kernel, monitoring system-call execution. For example, in Solaris 10,
the “least privilege” feature implements a list of more than fifty system calls
that processes may or may not be allowed to make. A process that does not
need to spawn other processes can have that ability taken away, for instance.

16.6 Implementing Security Defenses 661

16.6.7 Other Solutions

In the ongoing battle between CPU designers, operating system implementers,
and hackers, one particular technique has been helpful to defend against code
injection. To mount a code-injection attack, hackers must be able to deduce the
exact address in memory of their target. Normally, this may not be difficult,
since memory layout tends to be predictable. An operating system technique
called Address Space Layout Randomization (ASLR) attempts to solve this
problemby randomizing address spaces—that is, putting address spaces, such
as the starting locations of the stack and heap, in unpredictable locations.
Address randomization, although not foolproof, makes exploitation consid-
erably more difficult. ASLR is a standard feature in many operating systems,
including Windows, Linux, and macOS.

In mobile operating systems such as iOS and Android, an approach often
adopted is to place the user data and the system files into two separate parti-
tions. The system partition is mounted read-only, whereas the data partition is
read–write. This approach has numerous advantages, not the least of which
is greater security: the system partition files cannot easily be tampered with,
bolstering system integrity. Android takes this a step further by using Linux’s
dm-verity mechanism to cryptographically hash the system partition and
detect any modifications.

16.6.8 Security Defenses Summarized

By applying appropriate layers of defense, we can keep systems safe from all
but the most persistent attackers. In summary, these layers may include the
following:

• Educate users about safe computing—don’t attach devices of unknown
origin to the computer, don’t share passwords, use strong passwords,
avoid falling for social engineering appeals, realize that an e-mail is not
necessarily a private communication, and so on

• Educate users about how to prevent phishing attacks—don’t click on e-
mail attachments or links fromunknown (or evenknown) senders; authen-
ticate (for example, via a phone call) that a request is legitimate.

• Use secure communication when possible.

• Physically protect computer hardware.

• Configure the operating system to minimize the attack surface; disable all
unused services.

• Configure system daemons, privileges applications, and services to be as
secure as possible.

• Use modern hardware and software, as they are likely to have up-to-date
security features.

• Keep systems and applications up to date and patched.

• Only run applications from trusted sources (such as those that are code
signed).

662 Chapter 16 Security

• Enable logging and auditing; review the logs periodically, or automate
alerts.

• Install and use antivirus software on systems susceptible to viruses, and
keep the software up to date.

• Use strong passwords and passphrases, and don’t record themwhere they
could be found.

• Use intrusion detection, firewalling, and other network-based protection
systems as appropriate.

• For important facilities, use periodic vulnerability assessments and other
testing methods to test security and response to incidents.

• Encryptmass-storage devices, and consider encrypting important individ-
ual files as well.

• Have a security policy for important systems and facilities, and keep it up
to date

16.7 An Example: Windows 10

Microsoft Windows 10 is a general-purpose operating system designed to sup-
port a variety of security features and methods. In this section, we examine
features that Windows 10 uses to perform security functions. For more infor-
mation and background on Windows, see Appendix B.

The Windows 10 security model is based on the notion of user accounts.
Windows 10 allows the creation of any number of user accounts, which can
be grouped in any manner. Access to system objects can then be permitted or
denied as desired. Users are identified to the system by a unique security ID.
When a user logs on, Windows 10 creates a security access token that includes
the security ID for the user, security IDs for any groups of which the user is
a member, and a list of any special privileges that the user has. Examples
of special privileges include backing up files and directories, shutting down
the computer, logging on interactively, and changing the system clock. Every
process that Windows 10 runs on behalf of a user will receive a copy of the
access token. The system uses the security IDs in the access token to permit or
deny access to system objects whenever the user, or a process on behalf of the
user, attempts to access the object. Authentication of a user account is typically
accomplished via a user name and password, although the modular design of
Windows 10 allows the development of custom authentication packages. For
example, a retinal (or eye) scanner might be used to verify that the user is who
she says she is.

Windows 10 uses the idea of a subject to ensure that programs run by a
user do not get greater access to the system than the user is authorized to have.
A subject is used to track and manage permissions for each program that a
user runs. It is composed of the user’s access token and the program acting
on behalf of the user. Since Windows 10 operates with a client–server model,
two classes of subjects are used to control access: simple subjects and server
subjects. An example of a simple subject is the typical application program
that a user executes after she logs on. The simple subject is assigned a security

16.7 An Example: Windows 10 663

context based on the security access token of the user. A server subject is a
process implemented as a protected server that uses the security context of the
client when acting on the client’s behalf.

As mentioned in Section 16.6.6, auditing is a useful security technique.
Windows 10 has built-in auditing that allows many common security threats
to be monitored. Examples include failure auditing for login and logoff events
to detect random password break-ins, success auditing for login and logoff
events to detect login activity at strange hours, success and failure write-access
auditing for executable files to track a virus outbreak, and success and failure
auditing for file access to detect access to sensitive files.

WindowsVista addedmandatory integrity control, whichworks by assign-
ing an integrity label to each securable object and subject. In order for a given
subject to have access to an object, it must have the access requested in the dis-
cretionary access-control list, and its integrity label must be equal to or higher
than that of the secured object (for the given operation). The integrity labels in
Windows 7 are: untrusted, low, medium, high, and system. In addition, three
access mask bits are permitted for integrity labels: NoReadUp, NoWriteUp,
and NoExecuteUp. NoWriteUp is automatically enforced, so a lower-integrity
subject cannot perform a write operation on a higher-integrity object. How-
ever, unless explicitly blocked by the security descriptor, it can perform read
or execute operations.

For securable objects without an explicit integrity label, a default label of
medium is assigned. The label for a given subject is assigned during logon. For
instance, a nonadministrative user will have an integrity label of medium. In
addition to integrity labels, Windows Vista also added User Account Control
(UAC), which represents an administrative account (not the built-in Admin-
istrators account) with two separate tokens. One, for normal usage, has the
built-in Administrators group disabled and has an integrity label of medium.
The other, for elevated usage, has the built-in Administrators group enabled
and an integrity label of high.

Security attributes of an object in Windows 10 are described by a security
descriptor. The security descriptor contains the security ID of the owner of the
object (who can change the access permissions), a group security ID used only
by the POSIX subsystem, a discretionary access-control list that identifies which
users or groups are allowed (and which are explicitly denied) access, and a
system access-control list that controls which auditing messages the system
will generate. Optionally, the system access-control list can set the integrity of
the object and identifywhich operations to block from lower-integrity subjects:
read, write (always enforced), or execute. For example, the security descriptor
of the file foo.bar might have owner gwen and this discretionary access-
control list:

• owner gwen—all access

• group cs—read–write access

• user maddie—no access

In addition, it might have a system access-control list that tells the system to
audit writes by everyone, along with an integrity label of medium that denies
read, write, and execute to lower-integrity subjects.

664 Chapter 16 Security

An access-control list is composed of access-control entries that contain
the security ID of the individual or group being granted access and an
access mask that defines all possible actions on the object, with a value of
AccessAllowedorAccessDenied for each action. Files inWindows 10mayhave
the following access types: ReadData, WriteData, AppendData, Execute,
ReadExtendedAttribute, WriteExtendedAttribute, ReadAttributes,
and WriteAttributes. We can see how this allows a fine degree of control
over access to objects.

Windows 10 classifies objects as either container objects or noncontainer
objects. Container objects, such as directories, can logically contain other
objects. By default, when an object is createdwithin a container object, the new
object inherits permissions from the parent object. Similarly, if the user copies a
file from one directory to a new directory, the filewill inherit the permissions of
the destination directory. Noncontainer objects inherit no other permissions.
Furthermore, if a permission is changed on a directory, the new permissions
do not automatically apply to existing files and subdirectories; the user may
explicitly apply them if he so desires.

The system administrator can use theWindows 10 PerformanceMonitor to
help her spot approaching problems. In general, Windows 10 does a good job
of providing features to help ensure a secure computing environment.Many of
these features are not enabled by default, however, which may be one reason
for themyriad security breaches onWindows 10 systems. Another reason is the
vast number of servicesWindows 10 starts at system boot time and the number
of applications that typically are installed on a Windows 10 system. For a real
multiuser environment, the system administrator should formulate a security
plan and implement it, using the features that Windows 10 provides and other
security tools.

One feature differentiating security in Windows 10 from earlier versions is
code signing. Some versions ofWindows 10 make it mandatory—applications
that are not properly signed by their authors will not execute—while other
versions make it optional or leave it to the administrator to determine what to
do with unsigned applications.

16.8 Summary

• Protection is an internal problem. Security, in contrast, must consider
both the computer system and the environment—people, buildings, busi-
nesses, valuable objects, and threats—within which the system is used.

• The data stored in the computer system must be protected from unautho-
rized access, malicious destruction or alteration, and accidental introduc-
tion of inconsistency. It is easier to protect against accidental loss of data
consistency than to protect against malicious access to the data. Absolute
protection of the information stored in a computer system from malicious
abuse is not possible; but the cost to the perpetrator can be made suffi-
ciently high to deter most, if not all, attempts to access that information
without proper authority.

• Several types of attacks can be launched against programs and against
individual computers or the masses. Stack- and buffer-overflow tech-

Further Reading 665

niques allow successful attackers to change their level of system access.
Viruses and malware require human interaction, while worms are self-
perpetuating, sometimes infecting thousands of computers. Denial-of-
service attacks prevent legitimate use of target systems.

• Encryption limits the domain of receivers of data, while authentication
limits the domain of senders. Encryption is used to provide confidential-
ity of data being stored or transferred. Symmetric encryption requires a
shared key, while asymmetric encryption provides a public key and a pri-
vate key. Authentication, when combined with hashing, can prove that
data have not been changed.

• User authentication methods are used to identify legitimate users of a
system. In addition to standard user-name and password protection, sev-
eral authentication methods are used. One-time passwords, for example,
change from session to session to avoid replay attacks. Two-factor authen-
tication requires two forms of authentication, such as a hardware calcula-
tor with an activation PIN, or one that presents a different response based
on the time. Multifactor authentication uses three or more forms. These
methods greatly decrease the chance of authentication forgery.

• Methods of preventing or detecting security incidents include an up-to-
date security policy, intrusion-detection systems, antivirus software, audit-
ing and logging of system events, system-call monitoring, code signing,
sandboxing, and firewalls.

Further Reading

Information about viruses and worms can be found at http://www.securelist.
com, as well as in [Ludwig (1998)] and [Ludwig (2002)]. Another website con-
taining up-to-date security information is http://www.eeye.com/resources/se
curity-center/research. Apaper on the dangers of a computermonoculture can
be found at http://cryptome.org/cyberinsecurity.htm.

The first paper discussing least privilege is a Multics overview:
https://pdfs.semanticscholar.org/1c8d/06510ad449ad24fbdd164f8008cc730
cab47.pdf).

For the original article that explored buffer overflow attacks, see
http://phrack.org/issues/49/14.html. For the development version control
system git, see https://github.com/git/.

[C. Kaufman (2002)] and [Stallings and Brown (2011)] explore the use
of cryptography in computer systems. Discussions concerning protection of
digital signatures are offered by [Akl (1983)], [Davies (1983)], [Denning (1983)],
and [Denning (1984)]. Complete cryptography information is presented in
[Schneier (1996)] and [Katz and Lindell (2008)].

Asymmetric key encryption is discussed at https://www-ee.stanford.edu/
hellman/publications/24.pdf). The TLS cryptographic protocol is described in
detail at https://tools.ietf.org/html/rfc5246. The nmap network scanning tool
is from http://www.insecure.org/nmap/. For more information on port scans

http://www.securelist.com
http://scholar.google.com/scholar?hl/en&q=M Ludwig The Giant Black Book of Computer Viruses SecondEdition
http://scholar.google.com/scholar?hl/en&q=M Ludwig The Little Black Book of Email Viruses
http://www.eeye.com/resources/security-center/research
http://www.ccianet.org/papers/cyberinsecurity.pdf
https://pdfs.semanticscholar.org/1c8d/06510ad449ad24fbdd164f8008cc730cab47.pdf
http://phrack.org/issues/49/14.html
https://github.com/git/
http://scholar.google.com/scholar?hl/en&q=C Kaufman R Perlman M Speciner Network Security Private Communication in a Public World SecondEdition
http://scholar.google.com/scholar?hl/en&q=W Stallings and L Brown Computer Security Principles and Practice SecondEdition
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1654294
http://dx.doi.org/10.1109/MC.1983.1654301
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01654296
http://doi.acm.org/10.1145/358027.358052
http://scholar.google.com/scholar?hl/en&q=B Schneier Applied Cryptography SecondEdition
http://scholar.google.com/scholar?hl/en&q=J Katz and Y Lindell Introduction to Modern Cryptography
https://www-ee.stanford.edu/hellman/publications/24.pdf
https://tools.ietf.org/html/rfc5246
http://www.insecure.org/nmap/
http://www.securelist.com
http://www.eeye.com/resources/security-center/research
https://www-ee.stanford.edu/hellman/publications/24.pdf

666 Chapter 16 Security

and how they are hidden, see http://phrack.org/issues/49/15.html. Nessus is a
commercial vulnerability scanner but can be used for free with limited targets:
https://www.tenable.com/products/nessus-home.

Bibliography

[Akl (1983)] S. G. Akl, “Digital Signatures: A Tutorial Survey”, Computer, Vol-
ume 16, Number 2 (1983), pages 15–24.

[C. Kaufman (2002)] M. S. C. Kaufman, R. Perlman, Network Security: Private
Communication in a Public World, Second Edition, Prentice Hall (2002).

[Davies (1983)] D.W. Davies, “Applying the RSADigital Signature to Electronic
Mail”, Computer, Volume 16, Number 2 (1983), pages 55–62.

[Denning (1983)] D. E. Denning, “Protecting Public Keys and Signature Keys”,
Computer, Volume 16, Number 2 (1983), pages 27–35.

[Denning (1984)] D. E. Denning, “Digital Signatures with RSA and Other Pub-
lic-Key Cryptosystems”, Communications of the ACM, Volume 27, Number 4
(1984), pages 388–392.

[Katz and Lindell (2008)] J. Katz and Y. Lindell, Introduction to Modern Cryptog-
raphy, Chapman & Hall/CRC Press (2008).

[Ludwig (1998)] M. Ludwig, The Giant Black Book of Computer Viruses, Second
Edition, American Eagle Publications (1998).

[Ludwig (2002)] M. Ludwig, The Little Black Book of Email Viruses, American
Eagle Publications (2002).

[Schneier (1996)] B. Schneier, Applied Cryptography, Second Edition, John Wiley
and Sons (1996).

[Stallings and Brown (2011)] W. Stallings and L. Brown, Computer Security:
Principles and Practice, Second Edition, Prentice Hall (2011).

http://phrack.org/issues/49/15.html
https://www.tenable.com/products/nessus-home
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1654294
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1654294
http://scholar.google.com/scholar?hl/en&q=C Kaufman R Perlman M Speciner Network Security Private Communication in a Public World SecondEdition
http://scholar.google.com/scholar?hl/en&q=C Kaufman R Perlman M Speciner Network Security Private Communication in a Public World SecondEdition
http://dx.doi.org/10.1109/MC.1983.1654301
http://dx.doi.org/10.1109/MC.1983.1654301
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01654296
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01654296
http://doi.acm.org/10.1145/358027.358052
http://doi.acm.org/10.1145/358027.358052
http://scholar.google.com/scholar?hl/en&q=J Katz and Y Lindell Introduction to Modern Cryptography
http://scholar.google.com/scholar?hl/en&q=J Katz and Y Lindell Introduction to Modern Cryptography
http://scholar.google.com/scholar?hl/en&q=M Ludwig The Giant Black Book of Computer Viruses SecondEdition
http://scholar.google.com/scholar?hl/en&q=M Ludwig The Giant Black Book of Computer Viruses SecondEdition
http://scholar.google.com/scholar?hl/en&q=M Ludwig The Little Black Book of Email Viruses
http://scholar.google.com/scholar?hl/en&q=M Ludwig The Little Black Book of Email Viruses
http://scholar.google.com/scholar?hl/en&q=B Schneier Applied Cryptography SecondEdition
http://scholar.google.com/scholar?hl/en&q=B Schneier Applied Cryptography SecondEdition
http://scholar.google.com/scholar?hl/en&q=W Stallings and L Brown Computer Security Principles and Practice SecondEdition
http://scholar.google.com/scholar?hl/en&q=W Stallings and L Brown Computer Security Principles and Practice SecondEdition

Exercises

Chapter 16 Exercises

16.1 Buffer-overflow attacks can be avoided by adopting a better program-
mingmethodology or byusing special hardware support. Discuss these
solutions.

16.2 Apassword may become known to other users in a variety of ways. Is
there a simple method for detecting that such an event has occurred?
Explain your answer.

16.3 What is the purpose of using a “salt” along with a user-provided pass-
word? Where should the salt be stored, and how should it be used?

16.4 The list of all passwords is kept in the operating system. Thus, if a user
manages to read this list, password protection is no longer provided.
Suggest a scheme that will avoid this problem. (Hint: Use different
internal and external representations.)

16.5 An experimental addition to UNIX allows a user to connect a watch-
dog program to a file. The watchdog is invoked whenever a program
requests access to the file. The watchdog then either grants or denies
access to the file. Discuss two pros and two cons of using watchdogs
for security.

16.6 Discuss a means by which managers of systems connected to the Inter-
net could design their systems to limit or eliminate the damage done
by worms. What are the drawbacks of making the change that you
suggest?

16.7 Make a list of six security concerns for a bank’s computer system. For
each item on your list, state whether this concern relates to physical,
human, or operating-system security.

16.8 What are two advantages of encrypting data stored in the computer
system?

16.9 What commonly used computer programs are prone to man-in-the-
middle attacks? Discuss solutions for preventing this form of attack.

16.10 Compare symmetric and asymmetric encryption schemes, and discuss
the circumstances under which a distributed system would use one or
the other.

16.11 Why doesn’t Dkd,N(Eke,N(m)) provide authentication of the sender? To
what uses can such an encryption be put?

16.12 Discuss how the asymmetric encryption algorithm can be used to
achieve the following goals.

a. Authentication: the receiver knows that only the sender could
have generated the message.

b. Secrecy: only the receiver can decrypt the message.

c. Authentication and secrecy: only the receiver can decrypt the
message, and the receiver knows that only the sender could have
generated the message.

EX-52

16.13 Consider a system that generates 10 million audit records per day.
Assume that, on average, there are 10 attacks per day on this system
and each attack is reflected in 20 records. If the intrusion-detection
system has a true-alarm rate of 0.6 and a false-alarm rate of 0.0005,
what percentage of alarms generated by the system corresponds to real
intrusions?

16.14 Mobile operating systems such as iOS and Android place the user data
and the system files into two separate partitions. Aside from security,
what is an advantage of that separation?

EX-53

17CHAPTER

Protection

In Chapter 16, we addressed security, which involves guarding computer
resources against unauthorized access, malicious destruction or alteration, and
accidental introduction of inconsistency. In this chapter, we turn to protection,
which involves controlling the access of processes and users to the resources
defined by a computer system.

The processes in an operating systemmust be protected from one another’s
activities. To provide this protection, we can use variousmechanisms to ensure
that only processes that have gained proper authorization from the operating
system can operate on the files, memory segments, CPU, networking, and other
resources of a system. These mechanisms must provide a means for specifying
the controls to be imposed, together with a means of enforcement.

CHAPTER OBJECTIVES

• Discuss the goals and principles of protection in a modern computer
system.

• Explain how protection domains, combined with an access matrix, are
used to specify the resources a process may access.

• Examine capability- and language-based protection systems.

• Describe how protection mechanisms can mitigate system attacks.

17.1 Goals of Protection

As computer systems have become more sophisticated and pervasive in their
applications, the need to protect their integrity has also grown. Protection was
originally conceived as an adjunct to multiprogramming operating systems,
so that untrustworthy users might safely share a common logical name space,
such as a directory of files, or a common physical name space, such as memory.
Modernprotection concepts have evolved to increase the reliability of any com-
plex system that makes use of shared resources and is connected to insecure
communications platforms such as the Internet.

667

668 Chapter 17 Protection

We need to provide protection for several reasons. The most obvious is the
need to prevent the mischievous, intentional violation of an access restriction
by a user. Ofmore general importance, however, is the need to ensure that each
process in a system uses system resources only in ways consistent with stated
policies. This requirement is an absolute one for a reliable system.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by a malfunctioning subsys-
tem. Also, an unprotected resource cannot defend against use (or misuse) by
an unauthorized or incompetent user. A protection-oriented system provides
means to distinguish between authorized and unauthorized usage.

The role of protection in a computer system is to provide a mechanism for
the enforcement of the policies governing resource use. These policies can be
established in a variety of ways. Some are fixed in the design of the system,
while others are formulated by the management of a system. Still others are
defined by individual users to protect resources they “own.” A protection
system, then, must have the flexibility to enforce a variety of policies.

Policies for resource use may vary by application, and they may change
over time. For these reasons, protection is no longer the concern solely of
the designer of an operating system. The application programmer needs to
use protection mechanisms as well, to guard resources created and supported
by an application subsystem against misuse. In this chapter, we describe the
protection mechanisms the operating system should provide, but application
designers can use them as well in designing their own protection software.

Note that mechanisms are distinct from policies. Mechanisms determine
how somethingwill be done; policies decidewhatwill be done. The separation
of policy and mechanism is important for flexibility. Policies are likely to
change from place to place or time to time. In the worst case, every change
in policy would require a change in the underlying mechanism. Using general
mechanisms enables us to avoid such a situation.

17.2 Principles of Protection

Frequently, a guiding principle can be used throughout a project, such as
the design of an operating system. Following this principle simplifies design
decisions and keeps the system consistent and easy to understand. Akey, time-
tested guiding principle for protection is the principle of least privilege. As
discussed in Chapter 16, this principle dictates that programs, users, and even
systems be given just enough privileges to perform their tasks.

Consider one of the tenets of UNIX—that a user should not run as root.
(In UNIX, only the root user can execute privileged commands.) Most users
innately respect that, fearing an accidental delete operation for which there is
no corresponding undelete. Because root is virtually omnipotent, the potential
for human error when a user acts as root is grave, and its consequences far
reaching.

Now consider that rather than human error, damage may result from
malicious attack. A virus launched by an accidental click on an attachment is
one example. Another is a buffer overflow or other code-injection attack that
is successfully carried out against a root-privileged process (or, in Windows,

17.3 Protection Rings 669

a process with administrator privileges). Either case could prove catastrophic
for the system.

Observing the principle of least privilege would give the system a chance
to mitigate the attack—if malicious code cannot obtain root privileges, there is
a chance that adequately defined permissions may block all, or at least some,
of the damaging operations. In this sense, permissions can act like an immune
system at the operating-system level.

The principle of least privilege takes many forms, which we examine in
more detail later in the chapter. Another important principle, often seen as a
derivative of the principle of least privilege, is compartmentalization. Com-
partmentalization is the process of protecting each individual system compo-
nent through the use of specific permissions and access restrictions. Then, if a
component is subverted, another line of defense will “kick in” and keep the
attacker from compromising the system any further. Compartmentalization
is implemented in many forms—from network demilitarized zones (DMZs)
through virtualization.

The careful use of access restrictions can help make a system more secure
and can also be beneficial in producing an audit trail, which tracks divergences
from allowed accesses. An audit trail is a hard record in the system logs. If
monitored closely, it can reveal early warnings of an attack or (if its integrity
is maintained despite an attack) provide clues as to which attack vectors were
used, as well as accurately assess the damage caused.

Perhaps most importantly, no single principle is a panacea for security
vulnerabilities. Defense in depth must be used: multiple layers of protection
should be applied one on top of the other (think of a castle with a garrison,
a wall, and a moat to protect it). At the same time, of course, attackers use
multiplemeans to bypass defense in depth, resulting in an ever-escalating arms
race.

17.3 Protection Rings

As we’ve seen, the main component of modern operating systems is the ker-
nel, which manages access to system resources and hardware. The kernel, by
definition, is a trusted and privileged component and therefore must run with
a higher level of privileges than user processes.

To carry out this privilege separation, hardware support is required.
Indeed, all modern hardware supports the notion of separate execution
levels, though implementations vary somewhat. A popular model of privilege
separation is that of protection rings. In this model, fashioned after Bell
–LaPadula (https://www.acsac.org/2005/papers/Bell.pdf), execution is
defined as a set of concentric rings, with ring i providing a subset of the
functionality of ring j for any j < i. The innermost ring, ring 0, thus provides
the full set of privileges. This pattern is shown in Figure 17.1.

When the system boots, it boots to the highest privilege level. Code at
that level performs necessary initialization before dropping to a less privileged
level. In order to return to a higher privilege level, code usually calls a special
instruction, sometimes referred to as a gate, which provides a portal between
rings. The syscall instruction (in Intel) is one example. Calling this instruction
shifts execution fromuser to kernelmode. Aswe have seen, executing a system

https://www.acsac.org/2005/papers/Bell.pdf
https://www.acsac.org/2005/papers/Bell.pdf

670 Chapter 17 Protection

ring 0

ring 1

ring N – 1• • •

Figure 17.1 Protection-ring structure.

call will always transfer execution to a predefined address, allowing the caller
to specify only arguments (including the systemcall number), and not arbitrary
kernel addresses. In this way, the integrity of the more privileged ring can
generally be assured.

Another way of ending up in amore privileged ring is on the occurrence of
a processor trap or an interrupt. When either occurs, execution is immediately
transferred into the higher-privilege ring. Once again, however, the execution
in the higher-privilege ring is predefined and restricted to a well-guarded code
path.

Intel architectures follow this model, placing user mode code in ring 3 and
kernel mode code in ring 0. The distinction is made by two bits in the special
EFLAGS register. Access to this register is not allowed in ring 3—thus prevent-
ing a malicious process from escalating privileges. With the advent of virtual-
ization, Intel defined an additional ring (-1) to allow for hypervisors, or virtual
machine managers, which create and run virtual machines. Hypervisors have
more capabilities than the kernels of the guest operating systems.

The ARMprocessor’s architecture initially allowed only USR and SVCmode,
for user and kernel (supervisor) mode, respectively. In ARMv7 processors, ARM
introducedTrustZone (TZ), which provided an additional ring. Thismost priv-
ileged execution environment also has exclusive access to hardware-backed
cryptographic features, such as the NFC Secure Element and an on-chip cryp-
tographic key, that make handling passwords and sensitive information more
secure. Even the kernel itself has no access to the on-chip key, and it can only
request encryption and decryption services from the TrustZone environment
(by means of a specialized instruction, Secure Monitor Call (SMC)), which is
only usable from kernel mode. As with system calls, the kernel has no ability
to directly execute to specific addresses in the TrustZone—only to pass argu-
ments via registers. Android uses TrustZone extensively as of Version 5.0, as
shown in Figure 17.2.

Correctly employing a trusted execution environment means that, if the
kernel is compromised, an attacker can’t simply retrieve the key from kernel
memory. Moving cryptographic services to a separate, trusted environment

17.4 Domain of Protection 671

Figure 17.2 Android uses of TrustZone.

also makes brute-force attacks less likely to succeed. (As described in Chapter
16, these attacks involve trying all possible combinations of valid password
characters until the password is found.) The various keys used by the system,
from the user’s password to the system’s own, are stored in the on-chip key,
which is only accessible in a trusted context. When a key—say, a password—
is entered, it is verified via a request to the TrustZone environment. If a key is
not known andmust be guessed, the TrustZone verifier can impose limitations
—by capping the number of verification attempts, for example.

In the 64-bit ARMv8 architecture, ARM extended its model to support four
levels, called “exception levels,” numbered EL0 through EL3. User mode runs
in EL0, and kernel mode in EL1. EL2 is reserved for hypervisors, and EL3 (the
most privileged) is reserved for the secure monitor (the TrustZone layer). Any
one of the exception levels allows running separate operating systems side by
side, as shown in Figure 17.3.

Note that the secure monitor runs at a higher execution level than general-
purpose kernels,whichmakes it the perfect place to deploy code thatwill check
the kernels’ integrity. This functionality is included in Samsung’s Realtime
Kernel Protection (RKP) for Android and Apple’s WatchTower (also known as
KPP, for Kernel Patch Protection) for iOS.

17.4 Domain of Protection

Rings of protection separate functions into domains and order them hierar-
chically. A generalization of rings is using domains without a hierarchy. A
computer system can be treated as a collection of processes and objects. By

672 Chapter 17 Protection

Figure 17.3 ARM architecture.

objects,we mean both hardware objects (such as the CPU, memory segments,
printers, disks, and tape drives) and software objects (such as files, programs,
and semaphores). Each object has a unique name that differentiates it from all
other objects in the system, and each can be accessed only throughwell-defined
and meaningful operations. Objects are essentially abstract data types.

The operations that are possible depend on the object. For example, on a
CPU, we can only execute. Memory words can be read and written, whereas
a DVD-ROM can only be read. Tape drives can be read, written, and rewound.
Data files can be created, opened, read, written, closed, and deleted; program
files can be read, written, executed, and deleted.

A process should be allowed to access only those objects for which it has
authorization. Furthermore, at any time, a process should be able to access
only those objects that it currently requires to complete its task. This second
requirement, the need-to-know principle, is useful in limiting the amount of
damage a faulty process or an attacker can cause in the system. For example,
when process p invokes procedure A(), the procedure should be allowed to
access only its own variables and the formal parameters passed to it; it should
not be able to access all the variables of process p. Similarly, consider the case in
which process p invokes a compiler to compile a particular file. The compiler
should not be able to access files arbitrarily but should have access only to a
well-defined subset of files (such as the source file, output object file, and so on)
related to the file to be compiled. Conversely, the compiler may have private
files used for accounting or optimization purposes that process p should not
be able to access.

In comparing need-to-know with least privilege, it may be easiest to think
of need-to-know as the policy and least privilege as the mechanism for achiev-
ing this policy. For example, in file permissions, need-to-know might dictate
that a user have read access but not write or execute access to a file. The
principle of least privilege would require that the operating system provide
a mechanism to allow read but not write or execute access.

17.4 Domain of Protection 673

17.4.1 Domain Structure

To facilitate the sort of scheme just described, a process may operate within a
protection domain, which specifies the resources that the process may access.
Each domain defines a set of objects and the types of operations that may be
invoked on each object. The ability to execute an operation on an object is
an access right. A domain is a collection of access rights, each of which is an
orderedpair<object-name, rights-set>. For example, if domainDhas the
access right <file F, {read,write}>, then a process executing in domain D
can both read and write file F. It cannot, however, perform any other operation
on that object.

Domains may share access rights. For example, in Figure 17.4, we have
three domains: D1, D2, and D3. The access right <O4, {print}> is shared by D2
and D3, implying that a process executing in either of these two domains can
print object O4. Note that a process must be executing in domain D1 to read
and write objectO1, while only processes in domainD3 may execute objectO1.

The association between a process and a domain may be either static, if
the set of resources available to the process is fixed throughout the process’s
lifetime, or dynamic. As might be expected, establishing dynamic protection
domains is more complicated than establishing static protection domains.

If the association between processes and domains is fixed, and we want to
adhere to the need-to-know principle, then a mechanism must be available to
change the content of a domain. The reason stems from the fact that a process
may execute in two different phases and may, for example, need read access
in one phase and write access in another. If a domain is static, we must define
the domain to include both read and write access. However, this arrangement
provides more rights than are needed in each of the two phases, since we have
read access in the phase where we need only write access, and vice versa. Thus,
the need-to-knowprinciple is violated.Wemust allow the contents of a domain
to be modified so that the domain always reflects the minimum necessary
access rights.

If the association is dynamic, a mechanism is available to allow domain
switching, enabling the process to switch from one domain to another.Wemay
also want to allow the content of a domain to be changed. If we cannot change
the content of a domain, we can provide the same effect by creating a new
domain with the changed content and switching to that new domain when we
want to change the domain content.

D1

< O3, {read, write} >
< O1, {read, write} >
< O2, {execute} >

< O1, {execute} >
< O3, {read} >< O2, {write} > < O4, {print} >

D2 D3

Figure 17.4 System with three protection domains.

674 Chapter 17 Protection

Adomain can be realized in a variety of ways:

• Each user may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the user. Domain switching occurs
when the user is changed—generally when one user logs out and another
user logs in.

• Each process may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the process. Domain switching occurs
when one process sends a message to another process and then waits for
a response.

• Each proceduremay be a domain. In this case, the set of objects that can be
accessed corresponds to the local variables defined within the procedure.
Domain switching occurs when a procedure call is made.

We discuss domain switching in greater detail in Section 17.5.
Consider the standard dual-mode (kernel–usermode)model of operating-

system execution. When a process is in kernel mode, it can execute privileged
instructions and thus gain complete control of the computer system. In con-
trast, when a process executes in user mode, it can invoke only nonprivileged
instructions. Consequently, it can execute only within its predefined memory
space. These two modes protect the operating system (executing in kernel
domain) from the user processes (executing in user domain). In a multipro-
grammed operating system, two protection domains are insufficient, since
users also want to be protected from one another. Therefore, a more elaborate
scheme is needed. We illustrate such a scheme by examining two influential
operating systems—UNIX and Android—to see how they implement these
concepts.

17.4.2 Example: UNIX

Asnoted earlier, in UNIX, the root user can execute privileged commands,while
other users cannot. Restricting certain operations to the root user can impair
other users in their everyday operations, however. Consider, for example, a
user who wants to change his password. Inevitably, this requires access to the
password database (commonly, /etc/shadow), which can only be accessed by
root. A similar challenge is encountered when setting a scheduled job (using
the at command)—doing so requires access to privileged directories that are
beyond the reach of a normal user.

The solution to this problem is the setuid bit. In UNIX, an owner identi-
fication and a domain bit, known as the setuid bit, are associated with each
file. The setuid bit may or may not be enabled. When the bit is enabled on
an executable file (through chmod +s), whoever executes the file temporarily
assumes the identity of the file owner. That means if a user manages to create a
file with the user ID “root” and the setuid bit enabled, anyone who gains access
to execute the file becomes user “root” for the duration of the process’s lifetime.

If that strikes you as alarming, it is with good reason. Because of their
potential power, setuid executable binaries are expected to be both sterile
(affecting only necessary files under specific constraints) and hermetic (for
example, tamperproof and impossible to subvert). Setuid programs need to

17.5 Access Matrix 675

be very carefully written to make these assurances. Returning to the example
of changing passwords, the passwd command is setuid-root and will indeed
modify the password database, but only if first presented with the user’s valid
password, and it will then restrict itself to editing the password of that user
and only that user.

Unfortunately, experience has repeatedly shown that few setuid binaries, if
any, fulfill both criteria successfully. Time and again, setuid binaries have been
subverted—some through race conditions and others through code injection
—yielding instant root access to attackers. Attackers are frequently successful
in achieving privilege escalation in this way.Methods of doing so are discussed
in Chapter 16. Limiting damage from bugs in setuid programs is discussed in
Section 17.8.

17.4.3 Example: Android Application IDs

In Android, distinct user IDs are provided on a per-application basis. When an
application is installed, the installd daemon assigns it a distinct user ID (UID)
and group ID (GID), along with a private data directory (/data/data/<app-
name>) whose ownership is granted to this UID/GID combination alone. In this
way, applications on the device enjoy the same level of protection provided
by UNIX systems to separate users. This is a quick and simple way to provide
isolation, security, and privacy. The mechanism is extended by modifying the
kernel to allow certain operations (such as networking sockets) only to mem-
bers of a particular GID (for example, AID INET, 3003). A further enhancement
by Android is to define certain UIDs as “isolated,” which prevents them from
initiating RPC requests to any but a bare minimum of services.

17.5 Access Matrix

The general model of protection can be viewed abstractly as a matrix, called
an access matrix. The rows of the access matrix represent domains, and the
columns represent objects. Each entry in the matrix consists of a set of access
rights. Because the column defines objects explicitly, we can omit the object
name from the access right. The entry access(i,j) defines the set of operations
that a process executing in domain Di can invoke on object Oj.

To illustrate these concepts, we consider the access matrix shown in Figure
17.5. There are four domains and four objects—three files (F1, F2, F3) and one
laser printer. A process executing in domain D1 can read files F1 and F3. A
process executing in domain D4 has the same privileges as one executing in
domain D1; but in addition, it can also write onto files F1 and F3. The laser
printer can be accessed only by a process executing in domain D2.

The access-matrix scheme provides uswith themechanism for specifying a
variety of policies. The mechanism consists of implementing the access matrix
and ensuring that the semantic properties we have outlined hold. More specif-
ically, we must ensure that a process executing in domain Di can access only
those objects specified in row i, and then only as allowed by the access-matrix
entries.

The access matrix can implement policy decisions concerning protection.
The policy decisions involvewhich rights should be included in the (i, j)th entry.

676 Chapter 17 Protection

object
printer

read

read execute

read
write

read
write

read

print

F1

D1

D2

D3

D4

F2 F3
domain

Figure 17.5 Access matrix.

We must also decide the domain in which each process executes. This last
policy is usually decided by the operating system.

The users normally decide the contents of the access-matrix entries. When
a user creates a new objectOj, the columnOj is added to the access matrix with
the appropriate initialization entries, as dictated by the creator. The user may
decide to enter some rights in some entries in column j and other rights in other
entries, as needed.

The access matrix provides an appropriate mechanism for defining and
implementing strict control for both static and dynamic association between
processes anddomains.Whenwe switch a process fromone domain to another,
we are executing an operation (switch) on an object (the domain). We can
control domain switching by including domains among the objects of the
access matrix. Similarly, when we change the content of the access matrix, we
are performing an operation on an object: the access matrix. Again, we can
control these changes by including the accessmatrix itself as an object. Actually,
since each entry in the access matrix can be modified individually, we must
consider each entry in the access matrix as an object to be protected. Now, we
need to consider only the operations possible on these new objects (domains
and the access matrix) and decide howwewant processes to be able to execute
these operations.

Processes should be able to switch from one domain to another. Switching
fromdomainDi to domainDj is allowed if and only if the access right switch∈
access(i, j). Thus, in Figure 17.6, a process executing in domain D2 can switch
to domain D3 or to domain D4. A process in domain D4 can switch to D1, and
one in domain D1 can switch to D2.

Allowing controlled change in the contents of the access-matrix entries
requires three additional operations: copy, owner, and control. We examine
these operations next.

The ability to copy an access right from one domain (or row) of the access
matrix to another is denoted by an asterisk (*) appended to the access right.
The copy right allows the access right to be copied only within the column
(that is, for the object) for which the right is defined. For example, in Figure
17.7(a), a process executing in domainD2 can copy the read operation into any
entry associated with file F2. Hence, the access matrix of Figure 17.7(a) can be
modified to the access matrix shown in Figure 17.7(b).

17.5 Access Matrix 677

laser

printer

read

read execute

read
write

read
write

read

print

switch

switch

switch switch

F1

D1

D1

D2

D2

D3

D3

D4

D4F2 F3

object

domain

Figure 17.6 Access matrix of Figure 17.5 with domains as objects.

This scheme has two additional variants:

1. Aright is copied from access(i, j) to access(k, j); it is then removed from
access(i, j). This action is a transfer of a right, rather than a copy.

2. Propagation of the copy right may be limited. That is, when the right
R∗ is copied from access(i, j) to access(k, j), only the right R (not R∗) is
created. A process executing in domain Dk cannot further copy the right
R.

A system may select only one of these three copy rights, or it may provide
all three by identifying them as separate rights: copy, transfer, and limited
copy.

object

read*

write*execute

execute execute

execute

F1

D1

D2

D3

F2 F3

domain

(a)

object

read*

write*execute

execute execute

execute read

F1

D1

D2

D3

F2 F3

domain

(b)

Figure 17.7 Access matrix with copy rights.

678 Chapter 17 Protection

We also need a mechanism to allow addition of new rights and removal of
some rights. The owner right controls these operations. If access(i, j) includes
the owner right, then a process executing in domain Di can add and remove
any right in any entry in column j. For example, in Figure 17.8(a), domain D1
is the owner of F1 and thus can add and delete any valid right in column F1.
Similarly, domain D2 is the owner of F2 and F3 and thus can add and remove
any valid right within these two columns. Thus, the access matrix of Figure
17.8(a) can be modified to the access matrix shown in Figure 17.8(b).

The copy and owner rights allow a process to change the entries in a
column. A mechanism is also needed to change the entries in a row. The
control right is applicable only to domain objects. If access(i, j) includes the
control right, then a process executing in domain Di can remove any access
right from row j. For example, suppose that, in Figure 17.6, we include the
control right in access(D2, D4). Then, a process executing in domain D2
could modify domain D4, as shown in Figure 17.9.

The copy and owner rights provide us with a mechanism to limit the prop-
agation of access rights. However, they do not give us the appropriate tools
for preventing the propagation (or disclosure) of information. The problem of
guaranteeing that no information initially held in an object canmigrate outside
of its execution environment is called the confinemen problem. This problem
is in general unsolvable (see the bibliographical notes at the end of the chapter).

object

read*
owner

write
owner

execute

read*
owner
write

execute

F1

D1

D2

D3

F2 F3

domain

(a)

object

owner
read*
write*

write
owner

execute

read*
owner
write

F1

D1

D2

D3

F2 F3

domain

(b)

writewrite

Figure 17.8 Access matrix with owner rights.

17.6 Implementation of the Access Matrix 679

laser

printer

read

read execute

write write

read

print

switch

switch

switch
switch
control

F1

D1

D1

D2

D2

D3

D3

D4

D4F2 F3

object

domain

Figure 17.9 Modified access matrix of Figure 17.6.

These operations on the domains and the access matrix are not in them-
selves important, but they illustrate the ability of the access-matrixmodel to let
us implement and control dynamic protection requirements. New objects and
new domains can be created dynamically and included in the access-matrix
model. However, we have shown only that the basic mechanism exists. System
designers andusersmustmake the policy decisions concerningwhich domains
are to have access to which objects in which ways.

17.6 Implementation of the Access Matrix

How can the access matrix be implemented effectively? In general, the matrix
will be sparse; that is, most of the entries will be empty. Although data-
structure techniques are available for representing sparsematrices, they are not
particularly useful for this application, because of the way in which the protec-
tion facility is used. Here, we first describe several methods of implementing
the access matrix and then compare the methods.

17.6.1 Global Table

The simplest implementation of the access matrix is a global table consisting
of a set of ordered triples <domain, object, rights-set>. Whenever an
operation M is executed on an object Oj within domain Di, the global table
is searched for a triple <Di, Oj, Rk>, with M ∈ Rk. If this triple is found, the
operation is allowed to continue; otherwise, an exception (or error) condition
is raised.

This implementation suffers from several drawbacks. The table is usually
large and thus cannot be kept in main memory, so additional I/O is needed.
Virtual memory techniques are often used for managing this table. In addition,
it is difficult to take advantage of special groupings of objects or domains.
For example, if everyone can read a particular object, this object must have
a separate entry in every domain.

17.6.2 Access Lists for Objects

Each column in the access matrix can be implemented as an access list for
one object, as described in Section 13.4.2. Obviously, the empty entries can be

680 Chapter 17 Protection

discarded. The resulting list for each object consists of ordered pairs <domain,
rights-set>, which define all domains with a nonempty set of access rights
for that object.

This approach can be extended easily to define a list plus a default set of
access rights. When an operationM on an objectOj is attempted in domainDi,
we search the access list for object Oj, looking for an entry <Di, Rk> withM ∈
Rk. If the entry is found, we allow the operation; if it is not, we check the default
set. IfM is in the default set, we allow the access. Otherwise, access is denied,
and an exception condition occurs. For efficiency, we may check the default set
first and then search the access list.

17.6.3 Capability Lists for Domains

Rather than associating the columns of the access matrix with the objects as
access lists, we can associate each row with its domain. A capability list for
a domain is a list of objects together with the operations allowed on those
objects. An object is often represented by its physical name or address, called
a capability. To execute operation M on object Oj, the process executes the
operationM, specifying the capability (or pointer) for objectOj as a parameter.
Simple possession of the capability means that access is allowed.

The capability list is associated with a domain, but it is never directly
accessible to a process executing in that domain. Rather, the capability list
is itself a protected object, maintained by the operating system and accessed
by the user only indirectly. Capability-based protection relies on the fact that
the capabilities are never allowed to migrate into any address space directly
accessible by a user process (where they could be modified). If all capabilities
are secure, the object they protect is also secure against unauthorized access.

Capabilities were originally proposed as a kind of secure pointer, to meet
the need for resource protection that was foreseen as multiprogrammed com-
puter systems came of age. The idea of an inherently protectedpointer provides
a foundation for protection that can be extended up to the application level.

To provide inherent protection,wemust distinguish capabilities fromother
kinds of objects, and theymust be interpreted by an abstract machine onwhich
higher-level programs run. Capabilities are usually distinguished from other
data in one of two ways:

• Each object has a tag to denote whether it is a capability or accessible
data. The tags themselvesmust not be directly accessible by an application
program. Hardware or firmware support may be used to enforce this
restriction. Although only one bit is necessary to distinguish between
capabilities and other objects, more bits are often used. This extension
allows all objects to be tagged with their types by the hardware. Thus,
the hardware can distinguish integers, floating-point numbers, pointers,
Booleans, characters, instructions, capabilities, and uninitialized values by
their tags.

• Alternatively, the address space associatedwith a program can be split into
twoparts. One part is accessible to the programand contains the program’s
normal data and instructions. The other part, containing the capability list,
is accessible only by the operating system. A segmented memory space is
useful to support this approach.

17.6 Implementation of the Access Matrix 681

Several capability-based protection systems have been developed; we describe
them briefly in Section 17.10. The Mach operating system also uses a version
of capability-based protection; it is described in Appendix D.

17.6.4 A Lock–Key Mechanism

The lock–key scheme is a compromise between access lists and capability lists.
Each object has a list of unique bit patterns called locks. Similarly, each domain
has a list of unique bit patterns called keys. A process executing in a domain
can access an object only if that domain has a key that matches one of the locks
of the object.

As with capability lists, the list of keys for a domain must be managed by
the operating systemon behalf of the domain.Users are not allowed to examine
or modify the list of keys (or locks) directly.

17.6.5 Comparison

As you might expect, choosing a technique for implementing an access matrix
involves various trade-offs. Using a global table is simple; however, the table
can be quite large and often cannot take advantage of special groupings of
objects or domains. Access lists correspond directly to the needs of users.
When a user creates an object, he can specify which domains can access the
object, as well as what operations are allowed. However, because access-right
information for a particular domain is not localized, determining the set of
access rights for each domain is difficult. In addition, every access to the object
must be checked, requiring a search of the access list. In a large system with
long access lists, this search can be time consuming.

Capability lists do not correspond directly to the needs of users, but they
are useful for localizing information for a given process. The process attempt-
ing accessmust present a capability for that access. Then, the protection system
needs only to verify that the capability is valid. Revocation of capabilities,
however, may be inefficient (Section 17.7).

The lock–key mechanism, as mentioned, is a compromise between access
lists and capability lists. The mechanism can be both effective and flexible,
depending on the length of the keys. The keys can be passed freely from
domain to domain. In addition, access privileges can be effectively revoked by
the simple technique of changing some of the locks associated with the object
(Section 17.7).

Most systems use a combination of access lists and capabilities. When a
process first tries to access an object, the access list is searched. If access is
denied, an exception condition occurs. Otherwise, a capability is created and
attached to the process. Additional references use the capability to demonstrate
swiftly that access is allowed. After the last access, the capability is destroyed.
This strategy was used in the MULTICS system and in the CAL system.

As an example of how such a strategy works, consider a file system in
which each file has an associated access list. When a process opens a file, the
directory structure is searched to find the file, access permission is checked, and
buffers are allocated. All this information is recorded in a new entry in a file
table associatedwith the process. The operation returns an index into this table
for the newly opened file. All operations on the file are made by specification
of the index into the file table. The entry in the file table then points to the file

682 Chapter 17 Protection

and its buffers. When the file is closed, the file-table entry is deleted. Since the
file table is maintained by the operating system, the user cannot accidentally
corrupt it. Thus, the user can access only those files that have been opened.
Since access is checked when the file is opened, protection is ensured. This
strategy is used in the UNIX system.

The right to access must still be checked on each access, and the file-table
entry has a capability only for the allowed operations. If a file is opened for
reading, then a capability for read access is placed in the file-table entry. If
an attempt is made to write onto the file, the system identifies this protection
violation by comparing the requested operation with the capability in the file-
table entry.

17.7 Revocation of Access Rights

In a dynamic protection system, we may sometimes need to revoke access
rights to objects shared by different users. Various questions about revocation
may arise:

• Immediate versus delayed. Does revocation occur immediately, or is it
delayed? If revocation is delayed, can we find out when it will take place?

• Selective versus general. When an access right to an object is revoked,
does it affect all the users who have an access right to that object, or can
we specify a select group of users whose access rights should be revoked?

• Partial versus total. Can a subset of the rights associated with an object be
revoked, or must we revoke all access rights for this object?

• Temporary versus permanent. Can access be revoked permanently (that
is, the revoked access right will never again be available), or can access be
revoked and later be obtained again?

With an access-list scheme, revocation is easy. The access list is searched for
any access rights to be revoked, and they are deleted from the list. Revocation
is immediate and can be general or selective, total or partial, and permanent or
temporary.

Capabilities, however, present a much more difficult revocation problem,
as mentioned earlier. Since the capabilities are distributed throughout the sys-
tem, we must find them before we can revoke them. Schemes that implement
revocation for capabilities include the following:

• Reacquisition. Periodically, capabilities are deleted from each domain. If a
process wants to use a capability, it may find that that capability has been
deleted. The process may then try to reacquire the capability. If access has
been revoked, the process will not be able to reacquire the capability.

• Back-pointers. A list of pointers is maintained with each object, pointing
to all capabilities associated with that object. When revocation is required,
we can follow these pointers, changing the capabilities as necessary. This
scheme was adopted in the MULTICS system. It is quite general, but its
implementation is costly.

17.8 Role-Based Access Control 683

• Indirection. The capabilities point indirectly, not directly, to the objects.
Each capability points to a unique entry in a global table, which in turn
points to the object.We implement revocation by searching the global table
for the desired entry and deleting it. Then, when an access is attempted,
the capability is found to point to an illegal table entry. Table entries can
be reused for other capabilities without difficulty, since both the capability
and the table entry contain the unique name of the object. The object for a
capability and its table entry must match. This scheme was adopted in the
CAL system. It does not allow selective revocation.

• Keys. A key is a unique bit pattern that can be associated with a capability.
This key is defined when the capability is created, and it can be neither
modified nor inspected by the process that owns the capability. A master
key is associated with each object; it can be defined or replaced with
the set-key operation. When a capability is created, the current value
of the master key is associated with the capability. When the capability
is exercised, its key is compared with the master key. If the keys match,
the operation is allowed to continue; otherwise, an exception condition
is raised. Revocation replaces the master key with a new value via the
set-key operation, invalidating all previous capabilities for this object.

This scheme does not allow selective revocation, since only one master
key is associated with each object. If we associate a list of keys with each
object, then selective revocation can be implemented. Finally,we can group
all keys into one global table of keys. A capability is valid only if its
key matches some key in the global table. We implement revocation by
removing the matching key from the table. With this scheme, a key can
be associated with several objects, and several keys can be associated with
each object, providing maximum flexibility.

In key-based schemes, the operations of defining keys, inserting them
into lists, and deleting them from lists should not be available to all users.
In particular, it would be reasonable to allow only the owner of an object to
set the keys for that object. This choice, however, is a policy decision that
the protection system can implement but should not define.

17.8 Role-Based Access Control

In Section 13.4.2, we described how access controls can be used on files within
a file system. Each file and directory is assigned an owner, a group, or possibly
a list of users, and for each of those entities, access-control information is
assigned. A similar function can be added to other aspects of a computer
system. A good example of this is found in Solaris 10 and later versions.

The idea is to advance the protection available in the operating system by
explicitly adding the principle of least privilege via role-based access control
(RBAC). This facility revolves around privileges. A privilege is the right to
execute a system call or to use an option within that system call (such as
opening a file with write access). Privileges can be assigned to processes,
limiting them to exactly the access they need to perform their work. Privileges
and programs can also be assigned to roles. Users are assigned roles or can take
roles based on passwords assigned to the roles. In this way, a user can take a

684 Chapter 17 Protection

user 1

role 1

privileges 1

executes with role 1 privileges

privileges 2

process

Figure 17.10 Role-based access control in Solaris 10.

role that enables a privilege, allowing the user to run a program to accomplish
a specific task, as depicted in Figure 17.10. This implementation of privileges
decreases the security risk associated with superusers and setuid programs.

Notice that this facility is similar to the access matrix described in Section
17.5. This relationship is further explored in the exercises at the end of the
chapter.

17.9 Mandatory Access Control (MAC)

Operating systems have traditionally used discretionary access control (DAC)
as a means of restricting access to files and other system objects. With DAC,
access is controlled based on the identities of individual users or groups. In
UNIX-based system, DAC takes the form of file permissions (settable by chmod,
chown, and chgrp), whereas Windows (and some UNIX variants) allow finer
granularity by means of access-control lists (ACLs).

DACs, however, have proved insufficient over the years. A key weakness
lies in their discretionary nature, which allows the owner of a resource to set
or modify its permissions. Another weakness is the unlimited access allowed
for the administrator or root user. As we have seen, this design can leave the
system vulnerable to both accidental and malicious attacks and provides no
defense when hackers obtain root privileges.

The need arose, therefore, for a stronger form of protection, which was
introduced in the form of mandatory access control (MAC). MAC is enforced as
a system policy that even the root user cannot modify (unless the policy explic-
itly allows modifications or the system is rebooted, usually into an alternate
configuration). The restrictions imposed by MAC policy rules are more pow-
erful than the capabilities of the root user and can be used to make resources
inaccessible to anyone but their intended owners.

17.10 Capability-Based Systems 685

Modern operating systems all provide MAC along with DAC, although
implementations differ. Solaris was among the first to introduce MAC, which
was part of Trusted Solaris (2.5). FreeBSD made DAC part of its TrustedBSD
implementation (FreeBSD 5.0). The FreeBSD implementation was adopted by
Apple in macOS 10.5 and has served as the substrate over which most of the
security features of MAC and iOS are implemented. Linux’s MAC implemen-
tation is part of the SELinux project, which was devised by the NSA, and has
been integrated into most distributions. Microsoft Windows joined the trend
with Windows Vista’s Mandatory Integrity Control.

At the heart of MAC is the concept of labels. A label is an identifier (usually
a string) assigned to an object (files, devices, and the like). Labels may also
be applied to subjects (actors, such as processes). When a subject request to
perform operations on the objects. When such requests are to be served by the
operating system, it first performs checks defined in a policy, which dictates
whether or not a given label holding subject is allowed toperform the operation
on the labeled object.

As a brief example, consider a simple set of labels, ordered according to
level of privilege: “unclassified,” “secret,” and “top secret.”Auserwith “secret”
clearancewill be able to create similarly labeledprocesses,whichwill then have
access to “unclassified” and “secret” files, but not to “top secret” files. Neither
the user nor its processes would even be aware of the existence of “top secret”
files, since the operating system would filter them out of all file operations
(for example, they would not be displayed when listing directory contents).
User processes would similarly be protected themselves in this way, so that
an "unclassified" process would not be able to see or perform IPC requests to a
“secret” (or “top secret”) process. In thisway,MAC labels are an implementation
of the access matrix described earlier.

17.10 Capability-Based Systems

The concept of capability-based protection was introduced in the early 1970s.
Two early research systems were Hydra and CAP. Neither system was widely
used, but both provided interesting proving grounds for protection theories.
For more details on these systems, see Section A.14.1 and Section A.14.2. Here,
we consider two more contemporary approaches to capabilities.

17.10.1 Linux Capabilities

Linux uses capabilities to address the limitations of the UNIX model, which we
described earlier. The POSIX standards group introduced capabilities in POSIX
1003.1e. Although POSIX.1e was eventually withdrawn, Linux was quick to
adopt capabilities in Version 2.2 and has continued to add new developments.

In essence, Linux’s capabilities “slice up” the powers of root into distinct
areas, each represented by a bit in a bitmask, as shown in Figure 17.11. Fine-
grained control over privileged operations can be achieved by toggling bits in
the bitmask.

In practice, three bitmasks are used—denoting the capabilities permitted,
effective, and inheritable. Bitmasks can apply on a per-process or a per-thread
basis. Furthermore, once revoked, capabilities cannot be reacquired. The usual

686 Chapter 17 Protection

W

I C

Figure 17.11 Capabilities in POSIX.1e.

sequence of events is that a process or thread startswith the full set of permitted
capabilities and voluntarily decreases that set during execution. For example,
after opening a network port, a thread might remove that capability so that no
further ports can be opened.

You can probably see that capabilities are a direct implementation of the
principle of least privilege. As explained earlier, this tenet of security dictates
that an application or user must be given only those rights than are required
for its normal operation.

Android (which is based on Linux) also utilizes capabilities, which enable
system processes (notably, “system server”), to avoid root ownership, instead
selectively enabling only those operations required.

The Linux capabilities model is a great improvement over the traditional
UNIX model, but it still is inflexible. For one thing, using a bitmap with a bit
representing each capability makes it impossible to add capabilities dynami-
cally and requires recompiling the kernel to add more. In addition, the feature
applies only to kernel-enforced capabilities.

17.10.2 Darwin Entitlements

Apple’s system protection takes the form of entitlements. Entitlements are
declaratory permissions—XML property list stating which permissions are
claimed as necessary by the program (see Figure 17.12). When the process
attempts a privileged operation (in the figure, loading a kernel extension), its

17.11 Other Protection Improvement Methods 687

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>com.apple.private.kernel.get-kext-info
<true/>
<key>com.apple.rootless.kext-management
<true/>

</dict>
</plist>

Figure 17.12 Apple Darwin entitlements

entitlements are checked, and only if the needed entitlements are present is the
operation allowed.

To prevent programs from arbitrarily claiming an entitlement, Apple
embeds the entitlements in the code signature (explained in Section 17.11.4).
Once loaded, a process has no way of accessing its code signature. Other
processes (and the kernel) can easily query the signature, and in particular the
entitlements. Verifying an entitlement is therefore a simple string-matching
operation. In this way, only verifiable, authenticated apps may claim
entitlements. All system entitlements (com.apple.*) are further restricted to
Apple’s own binaries.

17.11 Other Protection Improvement Methods

As the battle to protect systems from accidental and malicious damage esca-
lates, operating-system designers are implementing more types of protection
mechanisms at more levels. This section surveys some important real-world
protection improvements.

17.11.1 System Integrity Protection

Apple introduced in macOS 10.11 a new protection mechanism called System
Integrity Protection (SIP). Darwin-based operating systems use SIP to restrict
access to system files and resources in such a way that even the root user
cannot tamper with them. SIP uses extended attributes on files to mark them as
restricted and further protects system binaries so that they cannot be debugged
or scrutinized, much less tampered with. Most importantly, only code-signed
kernel extensions are permitted, and SIP can further be configured to allowonly
code-signed binaries as well.

Under SIP, although root is still the most powerful user in the system, it can
do far less than before. The root user can still manage other users’ files, as well
as install and remove programs, but not in anyway that would replace ormod-
ify operating-system components. SIP is implemented as a global, inescapable

http://www.apple.com/DTDs/PropertyList-1.0.dtd

688 Chapter 17 Protection

screen on all processes, with the only exceptions allowed for system bina-
ries (for example, fsck, or kextload, as shown in Figure 17.12), which are
specifically entitled for operations for their designated purpose.

17.11.2 System-Call Filtering

Recall from Chapter 2 that monolithic systems place all of the functionality
of the kernel into a single file that runs in a single address space. Commonly,
general-purpose operating-system kernels are monolithic, and they are there-
fore implicitly trusted as secure. The trust boundary, therefore, rests between
kernel mode and user mode—at the system layer. We can reasonably assume
that any attempt to compromise the system’s integrity will be made from user
mode bymeans of a system call. For example, an attacker can try to gain access
by exploiting an unprotected system call.

It is therefore imperative to implement some form of system-call filtering.
To accomplish this, we can add code to the kernel to perform an inspection
at the system-call gate, restricting a caller to a subset of system calls deemed
safe or required for that caller’s function. Specific system-call profiles can be
constructed for individual processes. The Linuxmechanism SECCOMP-BPF does
just that, harnessing the Berkeley Packet Filter language to load a custom pro-
file through Linux’s proprietary prctl system call. This filtering is voluntary
but can be effectively enforced if called from within a run-time library when
it initializes or from within the loader itself before it transfers control to the
program’s entry point.

A second form of system-call filtering goes deeper still and inspects the
arguments of each system call. This form of protection is considered much
stronger, as even apparently benign system calls can harbor serious vulner-
abilities. This was the case with Linux’s fast mutex (futex) system call. A race
condition in its implementation led to an attacker-controlled kernel memory
overwrite and total system compromise. Mutexes are a fundamental compo-
nent of multitasking, and thus the system call itself could not be filtered out
entirely.

A challenge encountered with both approaches is keeping them as flexible
as possible while at the same time avoiding the need to rebuild the kernel
when changes or new filters are required—a common occurrence due to the
differing needs of different processes. Flexibility is especially important given
the unpredictable nature of vulnerabilities. New vulnerabilities are discovered
every day and may be immediately exploitable by attackers.

One approach to meeting this challenge is to decouple the filter implemen-
tation from the kernel itself. The kernel need only contain a set of callouts,
which can then be implemented in a specialized driver (Windows), kernel
module (Linux), or extension (Darwin). Because an external, modular com-
ponent provides the filtering logic, it can be updated independently of the
kernel. This component commonly makes use of a specialized profiling lan-
guage by including a built-in interpreter or parser. Thus, the profile itself can
be decoupled from the code, providing a human-readable, editable profile and
further simplifying updates. It is also possible for the filtering component to
call a trusted user-mode daemon process to assist with validation logic.

17.11 Other Protection Improvement Methods 689

17.11.3 Sandboxing

Sandboxing involves running processes in environments that limit what they
can do. In a basic system, a process runs with the credentials of the user that
started it and has access to all things that the user can access. If run with
system privileges such as root, the process can literally do anything on the
system. It is almost always the case that a process does not need full user or
system privileges. For example, does a word processor need to accept network
connections? Does a network service that provides the time of day need to
access files beyond a specific set?

The term sandboxing refers to the practice of enforcing strict limitations on
a process. Rather than give that process the full set of system calls its privileges
would allow, we impose an irremovable set of restrictions on the process in the
early stages of its startup—well before the execution of its main() function
and often as early as its creation with the fork system call. The process is then
rendered unable to perform any operations outside its allowed set. In this way,
it is possible to prevent the process from communicatingwith any other system
component, resulting in tight compartmentalization thatmitigates any damage
to the system even if the process is compromised.

There are numerous approaches to sandboxing. Java and .net, for example,
impose sandbox restrictions at the level of the virtual machine. Other systems
enforce sandboxing as part of their mandatory access control (MAC) policy. An
example is Android,which draws on an SELinux policy enhancedwith specific
labels for system properties and service endpoints.

Sandboxing may also be implemented as a combination of multiple mech-
anisms. Android has found SELinux useful but lacking, because it cannot effec-
tively restrict individual system calls. The latest Android versions (“Nougat”
and “O”) use an underlying Linuxmechanism called SECCOMP-BPF, mentioned
earlier, to apply system-call restrictions through the use of a specialized sys-
tem call. The C run-time library in Android (“Bionic”) calls this system call to
impose restrictions on all Android processes and third-party applications.

Among the major vendors, Apple was the first to implement sandboxing,
which appeared in macOS 10.5 (“Tiger”) as “Seatbelt”. Seatbelt was “opt-in”
rather than mandatory, allowing but not requiring applications to use it. The
Apple sandboxwas based on dynamic profileswritten in the Scheme language,
which provided the ability to control not just which operations were to be
allowed or blocked but also their arguments. This capability enabled Apple
to create different custom-fit profiles for each binary on the system, a practice
that continues to this day. Figure 17.13 depicts a profile example.

Apple’s sandboxing has evolved considerably since its inception. It is now
used in the iOS variants, where it serves (along with code signing) as the
chief protection against untrusted third-party code. In iOS, and starting with
macOS 10.8, the macOS sandbox is mandatory and is automatically enforced
for all Mac-store downloaded apps. More recently, as mentioned earlier, Apple
adopted the System Integrity Protection (SIP), used in macOS 10.11 and later.
SIP is, in effect, a system-wide “platform profile.” Apple enforces it starting at
system boot on all processes in the system. Only those processes that are enti-
tled can perform privileged operations, and those are code-signed by Apple
and therefore trusted.

690 Chapter 17 Protection

(version 1)
(deny default)
(allow file-chroot)
(allow file-read-metadata (literal "/var"))
(allow sysctl-read)
(allow mach-per-user-lookup)
(allow mach-lookup)

(global-name "com.apple.system.logger")

Figure 17.13 A sandbox profile of a MacOS daemon denying most operations.

17.11.4 Code Signing

At a fundamental level, how can a system “trust” a program or script? Gen-
erally, if the item came as part of the operating system, it should be trusted.
But what if the item is changed? If it’s changed by a system update, then again
it’s trustworthy, but otherwise it should not be executable or should require
special permission (from the user or administrator) before it is run. Tools from
third parties, commercial or otherwise, aremore difficult to judge. How canwe
be sure the tool wasn’t modified on its way from where it was created to our
systems?

Currently, code signing is the best tool in the protection arsenal for solving
these problems. Code signing is the digital signing of programs and executa-
bles to confirm that they have not been changed since the author created them.
It uses a cryptographic hash (Section 16.4.1.3) to test for integrity and authen-
ticity. Code signing is used for operating-system distributions, patches, and
third-party tools alike. Some operating systems, including iOS, Windows, and
macOS, refuse to run programs that fail their code-signing check. It can also
enhance system functionality in other ways. For example, Apple can disable
all programs written for a now-obsolete version of iOS by stopping its signing
of those programs when they are downloaded from the App Store.

17.12 Language-Based Protection

To the degree that protection is provided in computer systems, it is usually
achieved through an operating-system kernel, which acts as a security agent
to inspect and validate each attempt to access a protected resource. Since
comprehensive access validation may be a source of considerable overhead,
either we must give it hardware support to reduce the cost of each validation,
or we must allow the system designer to compromise the goals of protection.
Satisfying all these goals is difficult if the flexibility to implement protection
policies is restricted by the support mechanisms provided or if protection
environments are made larger than necessary to secure greater operational
efficiency.

As operating systems have becomemore complex, and particularly as they
have attempted to provide higher-level user interfaces, the goals of protection

17.12 Language-Based Protection 691

have become much more refined. The designers of protection systems have
drawn heavily on ideas that originated in programming languages and espe-
cially on the concepts of abstract data types and objects. Protection systems
are now concerned not only with the identity of a resource to which access
is attempted but also with the functional nature of that access. In the newest
protection systems, concern for the function to be invoked extends beyond a set
of system-defined functions, such as standard file-access methods, to include
functions that may be user-defined as well.

Policies for resource use may also vary, depending on the application,
and they may be subject to change over time. For these reasons, protection
can no longer be considered a matter of concern only to the designer of an
operating system. It should also be available as a tool for use by the application
designer, so that resources of an application subsystem can be guarded against
tampering or the influence of an error.

17.12.1 Compiler-Based Enforcement

At this point, programming languages enter the picture. Specifying the desired
control of access to a shared resource in a system is making a declarative
statement about the resource. This kind of statement can be integrated into
a language by an extension of its typing facility. When protection is declared
along with data typing, the designer of each subsystem can specify its require-
ments for protection, as well as its need for use of other resources in a system.
Such a specification should be given directly as a program is composed, and in
the language in which the program itself is stated. This approach has several
significant advantages:

1. Protection needs are simply declared, rather than programmed as a
sequence of calls on procedures of an operating system.

2. Protection requirements can be stated independently of the facilities pro-
vided by a particular operating system.

3. The means for enforcement need not be provided by the designer of a
subsystem.

4. A declarative notation is natural because access privileges are closely
related to the linguistic concept of data type.

A variety of techniques can be provided by a programming-language
implementation to enforce protection, but any of these must depend on some
degree of support from an underlying machine and its operating system. For
example, suppose a language is used to generate code to run on the Cambridge
CAP system (Section A.14.2). On this system, every storage reference made on
the underlying hardware occurs indirectly through a capability. This restriction
prevents any process from accessing a resource outside of its protection envi-
ronment at any time. However, a program may impose arbitrary restrictions
on how a resource can be used during execution of a particular code segment.
We can implement such restrictions most readily by using the software capa-
bilities provided by CAP. A language implementation might provide standard
protected procedures to interpret software capabilities that would realize the
protection policies that could be specified in the language. This scheme puts

692 Chapter 17 Protection

policy specification at the disposal of the programmers, while freeing them
from implementing its enforcement.

Even if a system does not provide a protection kernel as powerful as
those of Hydra (Section A.14.1) or CAP, mechanisms are still available for
implementing protection specifications given in a programming language. The
principal distinction is that the security of this protection will not be as great
as that supported by a protection kernel, because the mechanism must rely
on more assumptions about the operational state of the system. A compiler
can separate references for which it can certify that no protection violation
could occur from those for which a violation might be possible, and it can treat
them differently. The security provided by this form of protection rests on the
assumption that the code generated by the compiler will not be modified prior
to or during its execution.

What, then, are the relative merits of enforcement based solely on a kernel,
as opposed to enforcement provided largely by a compiler?

• Security. Enforcement by a kernel provides a greater degree of security
of the protection system itself than does the generation of protection-
checking code by a compiler. In a compiler-supported scheme, security
rests on correctness of the translator, on some underlying mechanism of
storage management that protects the segments from which compiled
code is executed, and, ultimately, on the security of files from which a
program is loaded. Some of these considerations also apply to a software-
supported protection kernel, but to a lesser degree, since the kernel may
reside in fixed physical storage segments and may be loaded only from
a designated file. With a tagged-capability system, in which all address
computation is performed either by hardware or by a fixedmicroprogram,
even greater security is possible. Hardware-supported protection is also
relatively immune to protection violations that might occur as a result of
either hardware or system software malfunction.

• Flexibility. There are limits to the flexibility of a protection kernel in imple-
menting a user-defined policy, although it may supply adequate facilities
for the system to provide enforcement of its own policies. With a pro-
gramming language, protection policy can be declared and enforcement
provided as needed by an implementation. If a language does not provide
sufficient flexibility, it can be extended or replaced with less disturbance
than would be caused by the modification of an operating-system kernel.

• Efficienc . The greatest efficiency is obtainedwhen enforcement of protec-
tion is supported directly by hardware (or microcode). Insofar as software
support is required, language-based enforcement has the advantage that
static access enforcement can be verified off-line at compile time. Also,
since an intelligent compiler can tailor the enforcementmechanism tomeet
the specified need, the fixed overhead of kernel calls can often be avoided.

In summary, the specification of protection in a programming language
allows the high-level description of policies for the allocation and use of
resources. A language implementation can provide software for protection
enforcement when automatic hardware-supported checking is unavailable. In

17.12 Language-Based Protection 693

addition, it can interpret protection specifications to generate calls onwhatever
protection system is provided by the hardware and the operating system.

One way of making protection available to the application program is
through the use of a software capability that could be used as an object of com-
putation. Inherent in this concept is the idea that certain program components
might have the privilege of creating or examining these software capabilities.
A capability-creating program would be able to execute a primitive operation
that would seal a data structure, rendering the latter’s contents inaccessible
to any program components that did not hold either the seal or the unseal
privilege. Such components might copy the data structure or pass its address
to other program components, but they could not gain access to its contents.
The reason for introducing such software capabilities is to bring a protection
mechanism into the programming language. The only problem with the con-
cept as proposed is that the use of the seal and unseal operations takes a
procedural approach to specifying protection. A nonprocedural or declarative
notation seems a preferableway tomake protection available to the application
programmer.

What is needed is a safe, dynamic access-control mechanism for distribut-
ing capabilities to system resources among user processes. To contribute to the
overall reliability of a system, the access-control mechanism should be safe to
use. To be useful in practice, it should also be reasonably efficient. This require-
ment has led to the development of a number of language constructs that allow
the programmer to declare various restrictions on the use of a specific man-
aged resource. (See the bibliographical notes for appropriate references.) These
constructs provide mechanisms for three functions:

1. Distributing capabilities safely and efficiently among customer processes.
In particular,mechanisms ensure that a user processwill use themanaged
resource only if it was granted a capability to that resource.

2. Specifying the type of operations that a particular process may invoke on
an allocated resource (for example, a reader of a file should be allowed
only to read the file, whereas a writer should be able both to read and
to write). It should not be necessary to grant the same set of rights to
every user process, and it should be impossible for a process to enlarge
its set of access rights, except with the authorization of the access-control
mechanism.

3. Specifying the order inwhich a particular processmay invoke the various
operations of a resource (for example, a file must be opened before it can
be read). It should be possible to give two processes different restrictions
on the order in which they can invoke the operations of the allocated
resource.

The incorporation of protection concepts into programming languages, as
a practical tool for system design, is in its infancy. Protectionwill likely become
a matter of greater concern to the designers of new systems with distributed
architectures and increasingly stringent requirements on data security. Then
the importance of suitable language notations in which to express protection
requirements will be recognized more widely.

694 Chapter 17 Protection

17.12.2 Run-Time-Based Enforcement—Protection in Java

Because Javawas designed to run in a distributed environment, the Java virtual
machine—or JVM—has many built-in protection mechanisms. Java programs
are composed of classes, each of which is a collection of data fields and func-
tions (called methods) that operate on those fields. The JVM loads a class in
response to a request to create instances (or objects) of that class. One of the
most novel and useful features of Java is its support for dynamically load-
ing untrusted classes over a network and for executing mutually distrusting
classes within the same JVM.

Because of these capabilities, protection is a paramount concern. Classes
running in the same JVMmay be from different sources andmay not be equally
trusted. As a result, enforcing protection at the granularity of the JVM process
is insufficient. Intuitively, whether a request to open a file should be allowed
will generally depend on which class has requested the open. The operating
system lacks this knowledge.

Thus, such protection decisions are handled within the JVM. When the JVM
loads a class, it assigns the class to a protection domain that gives the per-
missions of that class. The protection domain to which the class is assigned
depends on the URL fromwhich the classwas loaded and any digital signatures
on the class file. (Digital signatures are covered in Section 16.4.1.3.) A config-
urable policy file determines the permissions granted to the domain (and its
classes). For example, classes loaded from a trusted server might be placed in
a protection domain that allows them to access files in the user’s home direc-
tory, whereas classes loaded from an untrusted servermight have no file access
permissions at all.

It can be complicated for the JVM to determine what class is responsible
for a request to access a protected resource. Accesses are often performed
indirectly, through system libraries or other classes. For example, consider a
class that is not allowed to open network connections. It could call a system
library to request the load of the contents of a URL. The JVM must decide
whether or not to open a network connection for this request. But which
class should be used to determine if the connection should be allowed, the
application or the system library?

The philosophy adopted in Java is to require the library class to explicitly
permit a network connection. More generally, in order to access a protected
resource, somemethod in the calling sequence that resulted in the requestmust
explicitly assert the privilege to access the resource. By doing so, this method
takes responsibility for the request. Presumably, it will also performwhatever
checks are necessary to ensure the safety of the request. Of course, not every
method is allowed to assert a privilege; a method can assert a privilege only if
its class is in a protection domain that is itself allowed to exercise the privilege.

This implementation approach is called stack inspection. Every thread
in the JVM has an associated stack of its ongoing method invocations. When
a caller may not be trusted, a method executes an access request within a
doPrivileged block to perform the access to a protected resource directly or
indirectly. doPrivileged() is a static method in the AccessController class
that is passed a class with a run()method to invoke. When the doPrivileged
block is entered, the stack frame for this method is annotated to indicate this
fact. Then, the contents of the block are executed.When an access to a protected

17.12 Language-Based Protection 695

untrusted
applet

protection
domain:

socket
permission:

class:

none

gui:
 …
 get(url);
 open(addr);
 …

networking

any

open(Addr a):
 …
 checkPermission
 (a, connect);
 connect (a);
 …

get(URL u):
 …
 doPrivileged {
 open(‘proxy.lucent.com:80’);
 }
 <request u from proxy>
 …

*.lucent.com:80, connect

URL loader

Figure 17.14 Stack inspection.

resource is subsequently requested, either by this method or a method it calls,
a call to checkPermissions() is used to invoke stack inspection to determine
if the request should be allowed. The inspection examines stack frames on
the calling thread’s stack, starting from the most recently added frame and
working toward the oldest. If a stack frame is first found that has the doPriv-
ileged() annotation, then checkPermissions() returns immediately and
silently, allowing the access. If a stack frame is first found for which access is
disallowed based on the protection domain of the method’s class, then check-
Permissions() throws an AccessControlException. If the stack inspection
exhausts the stack without finding either type of frame, then whether access
is allowed depends on the implementation (some implementations of the JVM
may allow access, while other implementations may not).

Stack inspection is illustrated in Figure 17.14. Here, the gui() method of
a class in the untrusted applet protection domain performs two operations,
first a get() and then an open(). The former is an invocation of the get()
method of a class in the URL loader protection domain, which is permitted to
open() sessions to sites in the lucent.comdomain, in particular a proxy server
proxy.lucent.com for retrieving URLs. For this reason, the untrusted applet’s
get() invocation will succeed: the checkPermissions() call in the network-
ing library encounters the stack frame of the get()method, which performed
its open() in a doPrivileged block. However, the untrusted applet’s open()
invocation will result in an exception, because the checkPermissions() call
finds no doPrivileged annotation before encountering the stack frame of the
gui()method.

Of course, for stack inspection to work, a program must be unable to
modify the annotations on its own stack frame or to otherwise manipulate
stack inspection. This is one of the most important differences between Java
and many other languages (including C++). A Java program cannot directly
access memory; it can manipulate only an object for which it has a reference.
References cannot be forged, and manipulations are made only through well-
defined interfaces. Compliance is enforced through a sophisticated collection
of load-time and run-time checks. As a result, an object cannot manipulate its
run-time stack, because it cannot get a reference to the stack or other compo-
nents of the protection system.

696 Chapter 17 Protection

More generally, Java’s load-time and run-time checks enforce type safety of
Java classes. Type safety ensures that classes cannot treat integers as pointers,
write past the end of an array, or otherwise access memory in arbitrary ways.
Rather, a program can access an object only via the methods defined on that
object by its class. This is the foundation of Java protection, since it enables a
class to effectively encapsulate and protect its data and methods from other
classes loaded in the same JVM. For example, a variable can be defined as
private so that only the class that contains it can access it or protected so
that it can be accessed only by the class that contains it, subclasses of that class,
or classes in the same package. Type safety ensures that these restrictions can
be enforced.

17.13 Summary

• System protection features are guided by the principle of need-to-know
and implement mechanisms to enforce the principle of least privilege.

• Computer systems contain objects that must be protected from misuse.
Objects may be hardware (such as memory, CPU time, and I/O devices)
or software (such as files, programs, and semaphores).

• An access right is permission to perform an operation on an object. A
domain is a set of access rights. Processes execute in domains and may use
any of the access rights in the domain to access and manipulate objects.
During its lifetime, a process may be either bound to a protection domain
or allowed to switch from one domain to another.

• A common method of securing objects is to provide a series of protection
rings, each with more privileges than the last. ARM, for example, provides
four protection levels. The most privileged, TrustZone, is callable only
from kernel mode.

• The access matrix is a general model of protection that provides a mech-
anism for protection without imposing a particular protection policy on
the system or its users. The separation of policy and mechanism is an
important design property.

• The access matrix is sparse. It is normally implemented either as access
lists associated with each object or as capability lists associated with each
domain. We can include dynamic protection in the access-matrix model
by considering domains and the access matrix itself as objects. Revoca-
tion of access rights in a dynamic protection model is typically easier to
implement with an access-list scheme than with a capability list.

• Real systems are much more limited than the general model. Older UNIX
distributions are representative, providing discretionary access controls of
read, write, and execution protection separately for the owner, group, and
general public for each file. More modern systems are closer to the general
model, or at least provide a variety of protection features to protect the
system and its users.

• Solaris 10 and beyond, among other systems, implement the principle
of least privilege via role-based access control, a form of access matrix.

Bibliography 697

Another protection extension ismandatory access control, a formof system
policy enforcement.

• Capability-based systems offer finer-grained protection than oldermodels,
providing specific abilities to processes by “slicing up” the powers of root
into distinct areas. Other methods of improving protection include System
Integrity Protection, system-call filtering, sandboxing, and code signing.

• Language-based protection provides finer-grained arbitration of requests
and privileges than the operating system is able to provide. For example, a
single Java JVM can run several threads, each in a different protection class.
It enforces the resource requests through sophisticated stack inspection
and via the type safety of the language.

Further Reading

The concept of a capability evolved from Iliffe’s and Jodeit’s codewords, which
were implemented in the Rice University computer ([Iliffe and Jodeit (1962)]).
The term capabilitywas introduced by [Dennis and Horn (1966)].

The principle of separation of policy andmechanismwas advocated by the
designer of Hydra ([Levin et al. (1975)]).

The use of minimal operating-system support to enforce protection was
advocated by the Exokernel Project ([Ganger et al. (2002)], [Kaashoek et al.
(1997)]).

The access-matrix model of protection between domains and objects was
developed by [Lampson (1969)] and [Lampson (1971)]. [Popek (1974)] and
[Saltzer and Schroeder (1975)] provided excellent surveys on the subject of
protection.

The Posix capability standard and the way it was implemented in Linux is
described in https://www.usenix.org/legacy/event/usenix03/tech/freenix03/
full papers/gruenbacher/gruenbacher html/main.html

Details on POSIX.1e and its Linux implementation are provided in
https://www.usenix.org/legacy/event/usenix03/tech/freenix03/full papers/gr
uenbacher/gruenbacher html/main.html.

Bibliography

[Dennis and Horn (1966)] J. B. Dennis andE. C. V.Horn, “Programming Seman-
tics for Multiprogrammed Computations”, Communications of the ACM, Volume
9, Number 3 (1966), pages 143–155.

[Ganger et al. (2002)] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceno,
R. Hunt, and T. Pinckney, “Fast and Flexible Application-Level Networking on
Exokernel Systems”,ACMTransactions onComputer Systems, Volume 20,Number
1 (2002), pages 49–83.

[Iliffe and Jodeit (1962)] J. K. Iliffe and J. G. Jodeit, “ADynamic Storage Alloca-
tion System”, Computer Journal, Volume 5, Number 3 (1962), pages 200–209.

http://scholar.google.com/scholar?hl/en&q=J K Iliffe and J G Jodeit A Dynamic Storage Allocation System
http://doi.acm.org/10.1145/365230.365252
http://doi.acm.org/10.1145/800213.806531
http://doi.acm.org/10.1145/505452.505455
http://doi.acm.org/10.1145/268998.266644
http://doi.acm.org/10.1145/1478559.1478563
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.2649
http://scholar.google.com/scholar?hl/en&q=G J Popek Protection Structures
http://dx.doi.org/10.1109/PROC.1975.9939
https://www.usenix.org/legacy/event/usenix03/tech/freenix03/full_papers/gruenbacher/gruenbacher_html/main.html
https://www.usenix.org/legacy/event/usenix03/tech/freenix03/full_papers/gruenbacher/gruenbacher_html/main.html
http://doi.acm.org/10.1145/365230.365252
http://doi.acm.org/10.1145/365230.365252
http://doi.acm.org/10.1145/505452.505455
http://doi.acm.org/10.1145/505452.505455
http://scholar.google.com/scholar?hl/en&q=J K Iliffe and J G Jodeit A Dynamic Storage Allocation System
http://scholar.google.com/scholar?hl/en&q=J K Iliffe and J G Jodeit A Dynamic Storage Allocation System
https://www.usenix.org/legacy/event/usenix03/tech/freenix03/full_papers/gruenbacher/gruenbacher_html/main.html

698 Chapter 17 Protection

[Kaashoek et al. (1997)] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M.
Briceno, R.Hunt, D.Mazieres, T. Pinckney, R.Grimm, J. Jannotti, andK.Macken-
zie, “Application Performance and Flexibility on Exokernel Systems”, Proceed-
ings of the ACM Symposium on Operating Systems Principles (1997), pages 52–65.

[Lampson (1969)] B. W. Lampson, “Dynamic Protection Structures”, Proceedings
of the AFIPS Fall Joint Computer Conference (1969), pages 27–38.

[Lampson (1971)] B. W. Lampson, “Protection”, Proceedings of the Fifth Annual
Princeton Conference on Information Systems Science (1971), pages 437–443.

[Levin et al. (1975)] R. Levin, E. S. Cohen, W. M. Corwin, F. J. Pollack, and
W. A. Wulf, “Policy/Mechanism Separation in Hydra”, Proceedings of the ACM
Symposium on Operating Systems Principles (1975), pages 132–140.

[Popek (1974)] G. J. Popek, “Protection Structures”, Computer, Volume 7, Num-
ber 6 (1974), pages 22–33.

[Saltzer and Schroeder (1975)] J. H. Saltzer and M. D. Schroeder, “The Protec-
tion of Information in Computer Systems”, Proceedings of the IEEE (1975), pages
1278–1308.

http://doi.acm.org/10.1145/268998.266644
http://doi.acm.org/10.1145/268998.266644
http://doi.acm.org/10.1145/1478559.1478563
http://doi.acm.org/10.1145/1478559.1478563
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.2649
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.2649
http://doi.acm.org/10.1145/800213.806531
http://doi.acm.org/10.1145/800213.806531
http://scholar.google.com/scholar?hl/en&q=G J Popek Protection Structures
http://scholar.google.com/scholar?hl/en&q=G J Popek Protection Structures
http://dx.doi.org/10.1109/PROC.1975.9939
http://dx.doi.org/10.1109/PROC.1975.9939

Exercises

Chapter 17 Exercises

17.11 The access-control matrix can be used to determine whether a process
can switch from, say, domain A to domain B and enjoy the access
privileges of domain B. Is this approach equivalent to including the
access privileges of domain B in those of domain A?

17.12 Consider a computer system in which computer games can be played
by students only between 10 P.M. and 6 A.M., by faculty members
between 5 P.M. and 8 A.M., and by the computer center staff at all times.
Suggest a scheme for implementing this policy efficiently.

17.13 What hardware features does a computer system need for efficient
capability manipulation? Can these features be used for memory pro-
tection?

17.14 Discuss the strengths and weaknesses of implementing an access
matrix using access lists that are associated with objects.

17.15 Discuss the strengths and weaknesses of implementing an access
matrix using capabilities that are associated with domains.

17.16 Explainwhy a capability-based system provides greater flexibility than
a ring-protection scheme in enforcing protection policies.

17.17 What is the need-to-know principle? Why is it important for a protec-
tion system to adhere to this principle?

17.18 Discuss which of the following systems allow module designers to
enforce the need-to-know principle.

a. Ring-protection scheme

b. JVM’s stack-inspection scheme

17.19 Describe how the Java protection model would be compromised if a
Java programwere allowed to directly alter the annotations of its stack
frame.

17.20 How are the access-matrix facility and the role-based access-control
facility similar? How do they differ?

17.21 How does the principle of least privilege aid in the creation of protec-
tion systems?

17.22 How can systems that implement the principle of least privilege still
have protection failures that lead to security violations?

EX-54

Part Eight

Advanced Topics
Virtualization permeates all aspects of computing. Virtual machines are
one instance of this trend. Generally, with a virtual machine, guest operat-
ing systems and applications run in an environment that appears to them
to be native hardware. This environment behaves toward them as native
hardware would but also protects, manages, and limits them.

A distributed system is a collection of processors that do not share
memory or a clock. Instead, each processor has its own local memory,
and the processors communicate with one another through a local-area
or wide-area computer network. Computer networks allow disparate
computing devices to communicate by adopting standard communica-
tion protocols. Distributed systems offer several benefits: they give users
access to more of the resources maintained by the system, boost com-
putation speed, and improve data availability and reliability.

18CHAPTER

Virtual Machines

The term virtualization has many meanings, and aspects of virtualization
permeate all aspects of computing. Virtual machines are one instance of this
trend. Generally, with a virtual machine, guest operating systems and applica-
tions run in an environment that appears to them to be native hardware and
that behaves toward them as native hardware would but that also protects,
manages, and limits them.

This chapter delves into the uses, features, and implementation of virtual
machines. Virtual machines can be implemented in several ways, and this
chapter describes these options. One option is to add virtual machine support
to the kernel. Because that implementationmethod is themost pertinent to this
book, we explore itmost fully. Additionally, hardware features provided by the
CPU and even by I/O devices can support virtual machine implementation, so
we discuss how those features are used by the appropriate kernel modules.

CHAPTER OBJECTIVES

• Explore the history and benefits of virtual machines.

• Discuss the various virtual machine technologies.

• Describe the methods used to implement virtualization.

• Identify themost common hardware features that support virtualization and
explain how they are used by operating-system modules.

• Discuss current virtualization research areas.

18.1 Overview

The fundamental idea behind a virtual machine is to abstract the hardware
of a single computer (the CPU, memory, disk drives, network interface cards,
and so forth) into several different execution environments, thereby creating
the illusion that each separate environment is running on its own private
computer. This concept may seem similar to the layered approach of operating
system implementation (see Section 2.8.2), and in someways it is. In the case of

701

702 Chapter 18 Virtual Machines

virtualization, there is a layer that creates a virtual system on which operating
systems or applications can run.

Virtual machine implementations involve several components. At the base
is the host, the underlying hardware system that runs the virtual machines.
The virtual machine manager (VMM) (also known as a hypervisor) creates
and runs virtualmachines by providing an interface that is identical to the host
(except in the case of paravirtualization, discussed later). Each guest process is
providedwith a virtual copy of the host (Figure 18.1). Usually, the guest process
is in fact an operating system. A single physical machine can thus runmultiple
operating systems concurrently, each in its own virtual machine.

Take a moment to note that with virtualization, the definition of “operat-
ing system” once again blurs. For example, consider VMM software such as
VMware ESX. This virtualization software is installed on the hardware, runs
when the hardware boots, and provides services to applications. The services
include traditional ones, such as scheduling and memory management, along
with new types, such as migration of applications between systems. Further-
more, the applications are, in fact, guest operating systems. Is the VMware ESX
VMManoperating system that, in turn, runs other operating systems?Certainly
it acts like an operating system. For clarity, however,we call the component that
provides virtual environments a VMM.

The implementation of VMMs varies greatly. Options include the following:

• Hardware-based solutions that provide support for virtual machine cre-
ation and management via firmware. These VMMs, which are commonly
found inmainframe and large to midsized servers, are generally known as
type 0 hypervisors. IBM LPARs and Oracle LDOMs are examples.

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager

hardware

virtual machine

Figure 18.1 System models. (a) Nonvirtual machine. (b) Virtual machine.

18.2 History 703

INDIRECTION

“All problems in computer science can be solved by another level of indirec-
tion”—David Wheeler
“. . . except for the problem of too many layers of indirection.”—Kevlin
Henney

• Operating-system-like software built to provide virtualization, including
VMware ESX (mentioned above), Joyent SmartOS, and Citrix XenServer.
These VMMs are known as type 1 hypervisors.

• General-purpose operating systems that provide standard functions as
well as VMM functions, includingMicrosoftWindows ServerwithHyperV
and Red Hat Linux with the KVM feature. Because such systems have a
feature set similar to type 1 hypervisors, they are also known as type 1.

• Applications that run on standard operating systems but provide VMM
features to guest operating systems. These applications, which include
VMware Workstation and Fusion, Parallels Desktop, and Oracle Virtual-
Box, are type 2 hypervisors.

• Paravirtualization, a technique in which the guest operating system is
modified to work in cooperation with the VMM to optimize performance.

• Programming-environment virtualization, in which VMMs do not virtu-
alize real hardware but instead create an optimized virtual system. This
technique is used by Oracle Java and Microsoft.Net.

• Emulators that allow applications written for one hardware environment
to run on a very different hardware environment, such as a different type
of CPU.

• Application containment, which is not virtualization at all but rather
provides virtualization-like features by segregating applications from the
operating system. Oracle Solaris Zones, BSD Jails, and IBM AIX WPARs
“contain” applications, making them more secure and manageable.

The variety of virtualization techniques in use today is a testament to
the breadth, depth, and importance of virtualization in modern computing.
Virtualization is invaluable for data-center operations, efficient application
development, and software testing, among many other uses.

18.2 History

Virtual machines first appeared commercially on IBM mainframes in 1972.
Virtualization was provided by the IBM VM operating system. This system has
evolved and is still available. In addition, many of its original concepts are
found in other systems, making it worth exploring.

704 Chapter 18 Virtual Machines

IBM VM/370 divided a mainframe into multiple virtual machines, each
running its own operating system. A major difficulty with the VM approach
involved disk systems. Suppose that the physical machine had three disk
drives but wanted to support seven virtual machines. Clearly, it could not
allocate a disk drive to each virtual machine. The solution was to provide
virtual disks—termedminidisks in IBM’s VM operating system. Theminidisks
were identical to the system’s hard disks in all respects except size. The system
implemented each minidisk by allocating as many tracks on the physical disks
as the minidisk needed.

Once the virtual machines were created, users could run any of the oper-
ating systems or software packages that were available on the underlying
machine. For the IBM VM system, a user normally ran CMS—a single-user
interactive operating system.

For many years after IBM introduced this technology, virtualization
remained in its domain. Most systems could not support virtualization.
However, a formal definition of virtualization helped to establish system
requirements and a target for functionality. The virtualization requirements
called for:

• Fidelity. A VMM provides an environment for programs that is essentially
identical to the original machine.

• Performance. Programs running within that environment show only
minor performance decreases.

• Safety. The VMM is in complete control of system resources.

These requirements still guide virtualization efforts today.
By the late 1990s, Intel 80x86 CPUs had become common, fast, and rich

in features. Accordingly, developers launched multiple efforts to implement
virtualization on that platform. Both Xen and VMware created technologies,
still used today, to allow guest operating systems to run on the 80x86. Since
that time, virtualization has expanded to include all common CPUs, many
commercial and open-source tools, and many operating systems. For exam-
ple, the open-source VirtualBox project (http://www.virtualbox.org) provides
a program that runs on Intel x86 and AMD 64 CPUs and on Windows, Linux,
macOS, and Solaris host operating systems. Possible guest operating systems
include many versions of Windows, Linux, Solaris, and BSD, including even
MS-DOS and IBM OS/2.

18.3 Benefits and Features

Several advantagesmake virtualization attractive.Most of themare fundamen-
tally related to the ability to share the same hardware yet run several different
execution environments (that is, different operating systems) concurrently.

One important advantage of virtualization is that the host system is pro-
tected from the virtual machines, just as the virtual machines are protected
from each other. A virus inside a guest operating system might damage that
operating system but is unlikely to affect the host or the other guests. Because

http://www.virtualbox.org

18.3 Benefit and Features 705

each virtual machine is almost completely isolated from all other virtual
machines, there are almost no protection problems.

A potential disadvantage of isolation is that it can prevent sharing of
resources. Two approaches to providing sharing have been implemented. First,
it is possible to share a file-system volume and thus to share files. Second, it
is possible to define a network of virtual machines, each of which can send
information over the virtual communications network. The network is mod-
eled after physical communication networks but is implemented in software.
Of course, the VMM is free to allow any number of its guests to use physical
resources, such as a physical network connection (with sharing providedby the
VMM), in which case the allowed guests could communicate with each other
via the physical network.

One feature common to most virtualization implementations is the ability
to freeze, or suspend, a running virtual machine. Many operating systems
provide that basic feature for processes, but VMMs go one step further and
allow copies and snapshots to be made of the guest. The copy can be used
to create a new VM or to move a VM from one machine to another with its
current state intact. The guest can then resume where it was, as if on its original
machine, creating a clone. The snapshot records a point in time, and the guest
can be reset to that point if necessary (for example, if a change was made but
is no longer wanted). Often, VMMs allow many snapshots to be taken. For
example, snapshots might record a guest’s state every day for amonth, making
restoration to any of those snapshot states possible. These abilities are used to
good advantage in virtual environments.

Avirtual machine system is a perfect vehicle for operating-system research
and development. Normally, changing an operating system is a difficult task.
Operating systems are large and complex programs, and a change in one
part may cause obscure bugs to appear in some other part. The power of
the operating system makes changing it particularly dangerous. Because the
operating system executes in kernel mode, a wrong change in a pointer could
cause an error that would destroy the entire file system. Thus, it is necessary
to test all changes to the operating system carefully.

Of course, the operating system runs on and controls the entire machine,
so the system must be stopped and taken out of use while changes are made
and tested. This period is commonly called system-development time. Since
it makes the system unavailable to users, system-development time on shared
systems is often scheduled late at night or on weekends, when system load is
low.

A virtual-machine system can eliminate much of this latter problem. Sys-
tem programmers are given their own virtual machine, and system develop-
ment is done on the virtual machine instead of on a physical machine. Normal
system operation is disrupted only when a completed and tested change is
ready to be put into production.

Another advantage of virtual machines for developers is that multiple
operating systems can run concurrently on the developer’s workstation. This
virtualized workstation allows for rapid porting and testing of programs in
varying environments. In addition, multiple versions of a program can run,
each in its own isolated operating system,within one system. Similarly, quality-
assurance engineers can test their applications in multiple environments with-
out buying, powering, and maintaining a computer for each environment.

706 Chapter 18 Virtual Machines

A major advantage of virtual machines in production data-center use is
system consolidation, which involves taking two or more separate systems
and running them in virtual machines on one system. Such physical-to-virtual
conversions result in resource optimization, since many lightly used systems
can be combined to create one more heavily used system.

Consider, too, thatmanagement tools that are part of the VMMallow system
administrators to manage many more systems than they otherwise could.
A virtual environment might include 100 physical servers, each running 20
virtual servers. Without virtualization, 2,000 servers would require several
system administrators. With virtualization and its tools, the same work can be
managed by one or two administrators. One of the tools thatmake this possible
is templating, in which one standard virtual machine image, including an
installed and configured guest operating system and applications, is saved and
used as a source for multiple running VMs. Other features include managing
the patching of all guests, backing up and restoring the guests, andmonitoring
their resource use.

Virtualization can improve not only resource utilization but also resource
management. Some VMMs include a live migration feature that moves a run-
ning guest from one physical server to another without interrupting its opera-
tion or active network connections. If a server is overloaded, livemigration can
thus free resources on the source host while not disrupting the guest. Similarly,
when host hardware must be repaired or upgraded, guests can be migrated
to other servers, the evacuated host can be maintained, and then the guests
can be migrated back. This operation occurs without downtime and without
interruption to users.

Think about the possible effects of virtualization on how applications are
deployed. If a system can easily add, remove, and move a virtual machine,
then why install applications on that system directly? Instead, the application
could be preinstalled on a tuned and customized operating system in a vir-
tual machine. This method would offer several benefits for application devel-
opers. Application management would become easier, less tuning would be
required, and technical support of the application would be more straightfor-
ward. System administrators would find the environment easier to manage as
well. Installation would be simple, and redeploying the application to another
system would be much easier than the usual steps of uninstalling and rein-
stalling. For widespread adoption of this methodology to occur, though, the
format of virtual machines must be standardized so that any virtual machine
will run on any virtualization platform. The “Open Virtual Machine Format” is
an attempt to provide such standardization, and it could succeed in unifying
virtual machine formats.

Virtualization has laid the foundation for many other advances in com-
puter facility implementation, management, and monitoring. Cloud comput-
ing, for example, is made possible by virtualization in which resources such
as CPU, memory, and I/O are provided as services to customers using Internet
technologies. By using APIs, a program can tell a cloud computing facility to
create thousands of VMs, all running a specific guest operating system and
application, that others can access via the Internet. Many multiuser games,
photo-sharing sites, and other web services use this functionality.

In the area of desktop computing, virtualization is enabling desktop and
laptop computer users to connect remotely to virtual machines located in

18.4 Building Blocks 707

remote data centers and access their applications as if they were local. This
practice can increase security, because no data are stored on local disks at the
user’s site. The cost of the user’s computing resource may also decrease. The
user must have networking, CPU, and some memory, but all that these system
components need to do is display an image of the guest as its runs remotely (via
a protocol such as RDP). Thus, they need not be expensive, high-performance
components. Other uses of virtualization are sure to follow as it becomes more
prevalent and hardware support continues to improve.

18.4 Building Blocks

Although the virtual machine concept is useful, it is difficult to implement.
Much work is required to provide an exact duplicate of the underlying
machine. This is especially a challenge on dual-mode systems, where the
underlying machine has only user mode and kernel mode. In this section, we
examine the building blocks that are needed for efficient virtualization. Note
that these building blocks are not required by type 0 hypervisors, as discussed
in Section 18.5.2.

The ability to virtualize depends on the features provided by the CPU. If
the features are sufficient, then it is possible to write a VMM that provides
a guest environment. Otherwise, virtualization is impossible. VMMs use sev-
eral techniques to implement virtualization, including trap-and-emulate and
binary translation. We discuss each of these techniques in this section, along
with the hardware support needed to support virtualization.

As you read the section, keep in mind that an important concept found
in most virtualization options is the implementation of a virtual CPU (VCPU).
The VCPU does not execute code. Rather, it represents the state of the CPU as
the guest machine believes it to be. For each guest, the VMM maintains a VCPU
representing that guest’s current CPU state.When the guest is context-switched
onto a CPU by the VMM, information from the VCPU is used to load the right
context, much as a general-purpose operating system would use the PCB.

18.4.1 Trap-and-Emulate

On a typical dual-mode system, the virtual machine guest can execute only in
user mode (unless extra hardware support is provided). The kernel, of course,
runs in kernel mode, and it is not safe to allow user-level code to run in
kernel mode. Just as the physical machine has two modes, so must the virtual
machine. Consequently, wemust have a virtual user mode and a virtual kernel
mode, both of which run in physical user mode. Those actions that cause a
transfer from user mode to kernel mode on a real machine (such as a system
call, an interrupt, or an attempt to execute a privileged instruction) must also
cause a transfer from virtual user mode to virtual kernel mode in the virtual
machine.

How can such a transfer be accomplished? The procedure is as follows:
When the kernel in the guest attempts to execute a privileged instruction,
that is an error (because the system is in user mode) and causes a trap to the
VMM in the real machine. The VMM gains control and executes (or “emulates”)
the action that was attempted by the guest kernel on the part of the guest. It

708 Chapter 18 Virtual Machines

privileged instruction

operating
system

VCPU

VMM

VMM

guest

kernel mode

user mode

emulate action
return

trap

update

user processes

Figure 18.2 Trap-and-emulate virtualization implementation.

then returns control to the virtual machine. This is called the trap-and-emulate
method and is shown in Figure 18.2.

With privileged instructions, time becomes an issue. All nonprivileged
instructions run natively on the hardware, providing the same performance
for guests as native applications. Privileged instructions create extra overhead,
however, causing the guest to run more slowly than it would natively. In
addition, the CPU is being multiprogrammed among many virtual machines,
which can further slow down the virtual machines in unpredictable ways.

This problem has been approached in various ways. IBM VM, for exam-
ple, allows normal instructions for the virtual machines to execute directly
on the hardware. Only the privileged instructions (needed mainly for I/O)
must be emulated and hence execute more slowly. In general, with the evolu-
tion of hardware, the performance of trap-and-emulate functionality has been
improved, and cases in which it is needed have been reduced. For example,
many CPUs now have extra modes added to their standard dual-mode opera-
tion. The VCPU need not keep track of what mode the guest operating system is
in, because the physical CPU performs that function. In fact, some CPUs provide
guest CPU state management in hardware, so the VMM need not supply that
functionality, removing the extra overhead.

18.4.2 Binary Translation

Some CPUs do not have a clean separation of privileged and nonprivileged
instructions. Unfortunately for virtualization implementers, the Intel x86 CPU
line is one of them. No thought was given to running virtualization on the
x86 when it was designed. (In fact, the first CPU in the family—the Intel
4004, released in 1971—was designed to be the core of a calculator.) The chip
has maintained backward compatibility throughout its lifetime, preventing
changes that would have made virtualization easier through many genera-
tions.

18.4 Building Blocks 709

Let’s consider an example of the problem. The command popf loads the
flag register from the contents of the stack. If the CPU is in privileged mode, all
of the flags are replaced from the stack. If the CPU is in user mode, then only
some flags are replaced, and others are ignored. Because no trap is generated
if popf is executed in user mode, the trap-and-emulate procedure is rendered
useless. Other x86 instructions cause similar problems. For the purposes of this
discussion, we will call this set of instructions special instructions.As recently
as 1998, using the trap-and-emulatemethod to implement virtualization on the
x86 was considered impossible because of these special instructions.

This previously insurmountable problem was solved with the implemen-
tation of the binary translation technique. Binary translation is fairly simple in
concept but complex in implementation. The basic steps are as follows:

1. If the guest VCPU is in user mode, the guest can run its instructions
natively on a physical CPU.

2. If the guest VCPU is in kernel mode, then the guest believes that it is run-
ning in kernel mode. The VMM examines every instruction the guest exe-
cutes in virtual kernel mode by reading the next few instructions that the
guest is going to execute, based on the guest’s program counter. Instruc-
tions other than special instructions are run natively. Special instructions
are translated into a new set of instructions that perform the equivalent
task—for example, changing the flags in the VCPU.

Binary translation is shown in Figure 18.3. It is implemented by translation
code within the VMM. The code reads native binary instructions dynamically
from the guest, on demand, and generates native binary code that executes in
place of the original code.

user processes

special instruction

(VMM reads instructions)

operating
system

VCPU

VMM

VMM

guest

kernel mode

user mode

translate
execute translation

return

update

Figure 18.3 Binary translation virtualization implementation.

710 Chapter 18 Virtual Machines

The basic method of binary translation just described would execute
correctly but perform poorly. Fortunately, the vast majority of instructions
would execute natively. But how could performance be improved for the other
instructions? We can turn to a specific implementation of binary translation,
the VMware method, to see one way of improving performance. Here, caching
provides the solution. The replacement code for each instruction that needs
to be translated is cached. All later executions of that instruction run from the
translation cache and need not be translated again. If the cache is large enough,
this method can greatly improve performance.

Let’s consider another issue in virtualization: memory management,
specifically the page tables. How can the VMM keep page-table state both for
guests that believe they are managing the page tables and for the VMM itself?
A common method, used with both trap-and-emulate and binary translation,
is to use nested page tables (NPTs). Each guest operating system maintains
one or more page tables to translate from virtual to physical memory. The
VMM maintains NPTs to represent the guest’s page-table state, just as it creates
a VCPU to represent the guest’s CPU state. The VMM knows when the guest
tries to change its page table, and it makes the equivalent change in the NPT.
When the guest is on the CPU, the VMM puts the pointer to the appropriate
NPT into the appropriate CPU register to make that table the active page table.
If the guest needs to modify the page table (for example, fulfilling a page
fault), then that operation must be intercepted by the VMM and appropriate
changes made to the nested and system page tables. Unfortunately, the use of
NPTs can cause TLB misses to increase, and many other complexities need to
be addressed to achieve reasonable performance.

Although it might seem that the binary translation method creates large
amounts of overhead, it performed well enough to launch a new industry
aimed at virtualizing Intel x86-based systems. VMware tested the performance
impact of binary translation by booting one such system, Windows XP, and
immediately shutting it down while monitoring the elapsed time and the
number of translations produced by the binary translation method. The result
was 950,000 translations, taking 3 microseconds each, for a total increase of
3 seconds (about 5 percent) over native execution of Windows XP. To achieve
that result, developers used many performance improvements that we do not
discuss here. Formore information, consult the bibliographical notes at the end
of this chapter.

18.4.3 Hardware Assistance

Without some level of hardware support, virtualization would be impossible.
The more hardware support available within a system, the more feature-rich
and stable the virtual machines can be and the better they can perform. In the
Intel x86 CPU family, Intel added new virtualization support (the VT-x instruc-
tions) in successive generations beginning in 2005. Now, binary translation is
no longer needed.

In fact, all major general-purpose CPUs now provide extended hardware
support for virtualization. For example, AMD virtualization technology (AMD-
V) has appeared in several AMD processors starting in 2006. It defines two new
modes of operation—host and guest—thus moving from a dual-mode to a

18.4 Building Blocks 711

multimode processor. The VMM can enable host mode, define the characteris-
tics of each guest virtual machine, and then switch the system to guest mode,
passing control of the system to a guest operating system that is running in
the virtual machine. In guest mode, the virtualized operating system thinks it
is running on native hardware and sees whatever devices are included in the
host’s definition of the guest. If the guest tries to access a virtualized resource,
then control is passed to the VMM tomanage that interaction. The functionality
in Intel VT-x is similar, providing root and nonroot modes, equivalent to host
and guest modes. Both provide guest VCPU state data structures to load and
save guest CPU state automatically during guest context switches. In addition,
virtual machine control structures (VMCSs) are provided to manage guest
and host state, as well as various guest execution controls, exit controls, and
information about why guests exit back to the host. In the latter case, for exam-
ple, a nested page-table violation caused by an attempt to access unavailable
memory can result in the guest’s exit.

AMD and Intel have also addressed memory management in the virtual
environment. With AMD’s RVI and Intel’s EPT memory-management enhance-
ments, VMMs no longer need to implement software NPTs. In essence, these
CPUs implement nested page tables in hardware to allow the VMM to fully
control paging while the CPUs accelerate the translation from virtual to phys-
ical addresses. The NPTs add a new layer, one representing the guest’s view
of logical-to-physical address translation. The CPU page-table walking func-
tion (traversing the data structure to find the desired data) includes this new
layer as necessary, walking through the guest table to the VMM table to find the
physical address desired. A TLB miss results in a performance penalty, because
more tables (the guest and host page tables) must be traversed to complete
the lookup. Figure 18.4 shows the extra translation work performed by the
hardware to translate from a guest virtual address to a final physical address.

I/O is another area improved by hardware assistance. Consider that the
standard direct-memory-access (DMA) controller accepts a target memory
address and a source I/O device and transfers data between the two without
operating-system action. Without hardware assistance, a guest might try to
set up a DMA transfer that affects the memory of the VMM or other guests. In
CPUs that provide hardware-assisted DMA (such as Intel CPUs with VT-d), even
DMA has a level of indirection. First, the VMM sets up protection domains to
tell the CPU which physical memory belongs to each guest. Next, it assigns the
I/O devices to the protection domains, allowing them direct access to those
memory regions and only those regions. The hardware then transforms the
address in a DMA request issued by an I/O device to the host physical memory
address associated with the I/O. In this manner, DMA transfers are passed
through between a guest and a device without VMM interference.

Similarly, interrupts must be delivered to the appropriate guest and must
not be visible to other guests. By providing an interrupt remapping feature,
CPUs with virtualization hardware assistance automatically deliver an inter-
rupt destined for a guest to a core that is currently running a thread of that
guest. That way, the guest receives interrupts without any need for the VMM
to intercede in their delivery. Without interrupt remapping, malicious guests
could generate interrupts that could be used to gain control of the host system.
(See the bibliographical notes at the end of this chapter for more details.)

712 Chapter 18 Virtual Machines

VM
M

 n
es

te
d

pa
ge

 ta
bl

e
da

ta
 s

tr
uc

tu
re

PML4E

PDPTE

PDE

PTE

phy addr

host physical address

offsettabledirectorydirectory ptrPML4

guest virtual address

kernel paging data
structures

guest physical address

gu
es

t

1

2 3 4
5

1 1 2 2 3 3 4

54

Figure 18.4 Nested page tables.

ARM architectures, specifically ARM v8 (64-bit) take a slightly different
approach to hardware support of virtualization. They provide an entire excep-
tion level—EL2—which is even more privileged than that of the kernel (EL1).
This allows the running of a secluded hypervisor, with its own MMU access
and interrupt trapping. To allow for paravirtualization, a special instruction
(HVC) is added. It allows the hypervisor to be called from guest kernels. This
instruction can only be called from within kernel mode (EL1).

An interesting side effect of hardware-assisted virtualization is that it
allows for the creation of thin hypervisors. A good example is macOS’s hyper-
visor framework (“HyperVisor.framework”), which is an operating-system-
supplied library that allows the creation of virtual machines in a few lines of

18.5 Types of VMs and Their Implementations 713

code. The actual work is done via system calls, which have the kernel call the
privileged virtualization CPU instructions on behalf of the hypervisor process,
allowing management of virtual machines without the hypervisor needing to
load a kernel module of its own to execute those calls.

18.5 Types of VMs and Their Implementations

We’ve now looked at some of the techniques used to implement virtualization.
Next, we consider the major types of virtual machines, their implementation,
their functionality, and how they use the building blocks just described to
create a virtual environment. Of course, the hardware on which the virtual
machines are running can cause great variation in implementation methods.
Here, we discuss the implementations in general, with the understanding that
VMMs take advantage of hardware assistance where it is available.

18.5.1 The Virtual Machine Life Cycle

Let’s begin with the virtual machine life cycle. Whatever the hypervisor type,
at the time a virtual machine is created, its creator gives the VMM certain
parameters. These parameters usually include the number of CPUs, amount
of memory, networking details, and storage details that the VMMwill take into
account when creating the guest. For example, a user might want to create a
new guest with two virtual CPUs, 4 GB of memory, 10 GB of disk space, one
network interface that gets its IP address via DHCP, and access to the DVDdrive.

The VMM then creates the virtual machine with those parameters. In the
case of a type 0 hypervisor, the resources are usually dedicated. In this situa-
tion, if there are not two virtual CPUs available and unallocated, the creation
request in our example will fail. For other hypervisor types, the resources are
dedicated or virtualized, depending on the type. Certainly, an IP address can-
not be shared, but the virtual CPUs are usually multiplexed on the physical
CPUs as discussed in Section 18.6.1. Similarly, memory management usually
involves allocating more memory to guests than actually exists in physical
memory. This is more complicated and is described in Section 18.6.2.

Finally, when the virtual machine is no longer needed, it can be deleted.
When this happens, the VMM first frees up any used disk space and then
removes the configuration associated with the virtual machine, essentially
forgetting the virtual machine.

These steps are quite simple compared with building, configuring, run-
ning, and removing physical machines. Creating a virtual machine from an
existing one can be as easy as clicking the “clone” button and providing a new
name and IP address. This ease of creation can lead to virtual machine sprawl,
which occurs when there are so many virtual machines on a system that their
use, history, and state become confusing and difficult to track.

18.5.2 Type 0 Hypervisor

Type 0 hypervisors have existed for many years under many names, including
“partitions” and “domains.” They are a hardware feature, and that brings its
own positives and negatives. Operating systems need do nothing special to
take advantage of their features. The VMM itself is encoded in the firmware and

714 Chapter 18 Virtual Machines

guest 1 guest 2

CPUs
memory

CPUs
memory

hypervisor (in firmware) I/O

CPUs
memory

CPUs
memory

guest 3 guest 4

guest guest guest guest guest

Figure 18.5 Type 0 hypervisor.

loaded at boot time. In turn, it loads the guest images to run in each partition.
The feature set of a type 0 hypervisor tends to be smaller than those of the other
types because it is implemented in hardware. For example, a system might be
split into four virtual systems, each with dedicated CPUs, memory, and I/O
devices. Each guest believes that it has dedicated hardware because it does,
simplifying many implementation details.

I/O presents some difficulty, because it is not easy to dedicate I/O devices
to guests if there are not enough. What if a system has two Ethernet ports and
more than two guests, for example? Either all guests must get their own I/O
devices, or the system must provided I/O device sharing. In these cases, the
hypervisor manages shared access or grants all devices to a control partition.
In the control partition, a guest operating systemprovides services (such as net-
working) via daemons to other guests, and the hypervisor routes I/O requests
appropriately. Some type 0 hypervisors are even more sophisticated and can
move physical CPUs and memory between running guests. In these cases, the
guests are paravirtualized, aware of the virtualization and assisting in its exe-
cution. For example, a guest must watch for signals from the hardware or VMM
that a hardware change has occurred, probe its hardware devices to detect the
change, and add or subtract CPUs or memory from its available resources.

Because type 0 virtualization is very close to raw hardware execution, it
should be considered separately from the othermethods discussed here. Atype
0 hypervisor can run multiple guest operating systems (one in each hardware
partition). All of those guests, because they are running on raw hardware, can
in turn be VMMs. Essentially, each guest operating system in a type 0 hypervisor
is a native operating system with a subset of hardware made available to it.
Because of that, each can have its own guest operating systems (Figure 18.5).
Other types of hypervisors usually cannot provide this virtualization-within-
virtualization functionality.

18.5.3 Type 1 Hypervisor

Type 1 hypervisors are commonly found in company data centers and are, in a
sense, becoming “the data-center operating system.” They are special-purpose
operating systems that run natively on the hardware, but rather than providing

18.5 Types of VMs and Their Implementations 715

system calls and other interfaces for running programs, they create, run, and
manage guest operating systems. In addition to running on standard hard-
ware, they can run on type 0 hypervisors, but not on other type 1 hypervisors.
Whatever the platform, guests generally do not know they are running on
anything but the native hardware.

Type 1 hypervisors run in kernel mode, taking advantage of hardware pro-
tection.Where the host CPU allows, they usemultiplemodes to give guest oper-
ating systems their own control and improved performance. They implement
device drivers for the hardware they run on, since no other component could
do so. Because they are operating systems, theymust also provideCPU schedul-
ing, memory management, I/O management, protection, and even security.
Frequently, they provide APIs, but those APIs support applications in guests or
external applications that supply features like backups, monitoring, and secu-
rity. Many type 1 hypervisors are closed-source commercial offerings, such as
VMware ESX, while some are open source or hybrids of open and closed source,
such as Citrix XenServer and its open Xen counterpart.

By using type 1 hypervisors, data-center managers can control and man-
age the operating systems and applications in new and sophisticated ways.
An important benefit is the ability to consolidate more operating systems and
applications onto fewer systems. For example, rather than having ten systems
running at 10 percent utilization each, a data centermight have one serverman-
age the entire load. If utilization increases, guests and their applications can be
moved to less-loaded systems live,without interruption of service.Using snap-
shots and cloning, the system can save the states of guests and duplicate those
states—amuch easier task than restoring from backups or installing manually
or via scripts and tools. The price of this increased manageability is the cost
of the VMM (if it is a commercial product), the need to learn new management
tools and methods, and the increased complexity.

Another type of type 1 hypervisor includes various general-purpose oper-
ating systems with VMM functionality. Here, an operating system such as Red-
Hat Enterprise Linux, Windows, or Oracle Solaris performs its normal duties
as well as providing a VMM allowing other operating systems to run as guests.
Because of their extra duties, these hypervisors typically provide fewer virtual-
ization features than other type 1 hypervisors. Inmanyways, they treat a guest
operating system as just another process, but they provide special handling
when the guest tries to execute special instructions.

18.5.4 Type 2 Hypervisor

Type 2 hypervisors are less interesting to us as operating-system explorers,
because there is very little operating-system involvement in these application-
level virtual machine managers. This type of VMM is simply another process
run and managed by the host, and even the host does not know that virtual-
ization is happening within the VMM.

Type 2 hypervisors have limits not associatedwith some of the other types.
For example, a user needs administrative privileges to access many of the
hardware assistance features of modern CPUs. If the VMM is being run by a
standard user without additional privileges, the VMM cannot take advantage
of these features. Due to this limitation, aswell as the extra overhead of running

716 Chapter 18 Virtual Machines

request producer
shared pointer
updated by guest OS

request consumer
private pointer
in Xen

response producer
shared pointer
updated by
Xen

response consumer
private pointer
in guest OS

request queue - descriptors queued by the VM but not yet accepted by Xen

outstanding descriptors - descriptor slots awaiting a response from Xen

response queue - descriptors returned by Xen in response to serviced requests

unused descriptors

Figure 18.6 Xen I/O via shared circular buffer.1

a general-purpose operating system as well as guest operating systems, type 2
hypervisors tend to have poorer overall performance than type 0 or type 1.

As is often the case, the limitations of type 2 hypervisors also provide
some benefits. They run on a variety of general-purpose operating systems,
and running them requires no changes to the host operating system. A student
can use a type 2 hypervisor, for example, to test a non-native operating system
without replacing the native operating system. In fact, on an Apple laptop,
a student could have versions of Windows, Linux, Unix, and less common
operating systems all available for learning and experimentation.

18.5.5 Paravirtualization

As we’ve seen, paravirtualization works differently than the other types of
virtualization. Rather than try to trick a guest operating system into believing
it has a system to itself, paravirtualization presents the guest with a system
that is similar but not identical to the guest’s preferred system. The guest must
be modified to run on the paravirtualized virtual hardware. The gain for this
extra work is more efficient use of resources and a smaller virtualization layer.

The Xen VMM became the leader in paravirtulization by implementing
several techniques to optimize the performance of guests as well as of the host
system. For example, as mentioned earlier, some VMMs present virtual devices
to guests that appear to be real devices. Instead of taking that approach, the Xen
VMM presented clean and simple device abstractions that allow efficient I/O as
well as good I/O-related communication between the guest and the VMM. For

1Barham, Paul. “Xen and the Art of Virtualization”. SOSP ’03 Proceedings of the Nineteenth ACM
Symposium onOperating Systems Principles, p 164-177. c©2003 Association for ComputingMachinery,
Inc

18.5 Types of VMs and Their Implementations 717

each device used by each guest, there was a circular buffer shared by the guest
and the VMM via sharedmemory. Read andwrite data are placed in this buffer,
as shown in Figure 18.6.

For memory management, Xen did not implement nested page tables.
Rather, each guest had its own set of page tables, set to read-only. Xen required
the guest to use a specific mechanism, a hypercall from the guest to the hyper-
visor VMM, when a page-table change was needed. This meant that the guest
operating system’s kernel code must have been changed from the default code
to these Xen-specificmethods. To optimize performance, Xen allowed the guest
to queue up multiple page-table changes asynchronously via hypercalls and
then checked to ensure that the changes were complete before continuing
operation.

Xen allowed virtualization of x86 CPUs without the use of binary trans-
lation, instead requiring modifications in the guest operating systems like the
one described above. Over time, Xen has taken advantage of hardware features
supporting virtualization. As a result, it no longer requiresmodified guests and
essentially does not need the paravirtualization method. Paravirtualization is
still used in other solutions, however, such as type 0 hypervisors.

18.5.6 Programming-Environment Virtualization

Another kind of virtualization, based on a different execution model, is the
virtualization of programming environments. Here, a programming language
is designed to run within a custom-built virtualized environment. For exam-
ple, Oracle’s Java has many features that depend on its running in the Java
virtual machine (JVM), including specific methods for security and memory
management.

Ifwedefine virtualization as including only duplication of hardware, this is
not really virtualization at all. Butwe neednot limit ourselves to that definition.
Instead, we can define a virtual environment, based on APIs, that provides a set
of features we want to have available for a particular language and programs
written in that language. Java programs run within the JVM environment, and
the JVM is compiled to be a native program on systems on which it runs. This
arrangement means that Java programs are written once and then can run on
any system (including all of the major operating systems) on which a JVM is
available. The same can be said of interpreted languages, which run inside
programs that read each instruction and interpret it into native operations.

18.5.7 Emulation

Virtualization is probably the most common method for running applications
designed for one operating system on a different operating system, but on the
same CPU. This method works relatively efficiently because the applications
were compiled for the instruction set that the target system uses.

But what if an application or operating system needs to run on a different
CPU? Here, it is necessary to translate all of the source CPU’s instructions so
that they are turned into the equivalent instructions of the target CPU. Such an
environment is no longer virtualized but rather is fully emulated.

Emulation is useful when the host system has one system architecture
and the guest system was compiled for a different architecture. For example,

718 Chapter 18 Virtual Machines

suppose a company has replaced its outdated computer system with a new
system but would like to continue to run certain important programs that were
compiled for the old system. The programs could be run in an emulator that
translates each of the outdated system’s instructions into the native instruction
set of the new system. Emulation can increase the life of programs and allow
us to explore old architectures without having an actual old machine.

As may be expected, the major challenge of emulation is performance.
Instruction-set emulation may run an order of magnitude slower than native
instructions, because it may take ten instructions on the new system to read,
parse, and simulate an instruction from the old system. Thus, unless the new
machine is ten times faster than the old, the program running on the new
machine will run more slowly than it did on its native hardware. Another
challenge for emulator writers is that it is difficult to create a correct emulator
because, in essence, this task involves writing an entire CPU in software.

In spite of these challenges, emulation is very popular, particularly in
gaming circles. Many popular video games were written for platforms that are
no longer in production. Users who want to run those games frequently can
find an emulator of such a platform and then run the game unmodified within
the emulator. Modern systems are so much faster than old game consoles that
even the Apple iPhone has game emulators and games available to run within
them.

18.5.8 Application Containment

The goal of virtualization in some instances is to provide amethod to segregate
applications, manage their performance and resource use, and create an easy
way to start, stop, move, andmanage them. In such cases, perhaps full-fledged
virtualization is not needed. If the applications are all compiled for the same
operating system, thenwedo not need complete virtualization to provide these
features. We can instead use application containment.

Consider one example of application containment. Starting with version
10, Oracle Solaris has included containers, or zones, that create a virtual layer
between the operating system and the applications. In this system, only one
kernel is installed, and the hardware is not virtualized. Rather, the operating
system and its devices are virtualized, providing processes within a zone with
the impression that they are the only processes on the system. One or more
containers can be created, and each can have its own applications, network
stacks, network address and ports, user accounts, and so on. CPU and memory
resources can be divided among the zones and the system-wide processes.
Each zone, in fact, can run its own scheduler to optimize the performance of
its applications on the allotted resources. Figure 18.7 shows a Solaris 10 system
with two containers and the standard “global” user space.

Containers are much lighter weight than other virtualization methods.
That is, they use fewer system resources and are faster to instantiate and
destroy, more similar to processes than virtual machines. For this reason, they
are becoming more commonly used, especially in cloud computing. FreeBSD
was perhaps the first operating system to include a container-like feature
(called “jails”), and AIX has a similar feature. Linux added the LXC container
feature in 2014. It is now included in the common Linux distributions via

18.6 Virtualization and Operating-System Components 719

virtual platform
device management

zone 1

global zone

Solaris kernel

network addresses

zone 2

zone management

user programs
system programs
CPU resources

memory resources

user programs
system programs

network addresses
device access
CPU resources

memory resources

user programs
system programs

network addresses
device access
CPU resources

memory resources

device device…

Figure 18.7 Solaris 10 with two zones.

a flag in the clone() system call. (The source code for LXCis available at
https://linuxcontainers.org/lxc/downloads.)

Containers are also easy to automate and manage, leading to orchestration
tools like docker and Kubernetes. Orchestration tools are means of automat-
ing and coordinating systems and services. Their aim is to make it simple to
run entire suites of distributed applications, just as operating systems make
it simple to run a single program. These tools offer rapid deployment of
full applications, consisting of many processes within containers, and also
offer monitoring and other administration features. For more on docker, see
https://www.docker.com/what-docker. Information about Kubernetes can be
found at https://kubernetes.io/docs/concepts/overview/what-is-kubernetes.

18.6 Virtualization and Operating-System Components

Thus far, we have explored the building blocks of virtualization and the var-
ious types of virtualization. In this section, we take a deeper dive into the
operating-system aspects of virtualization, including how the VMM provides
core operating-system functions like scheduling, I/O, and memory manage-
ment. Here, we answer questions such as these: How do VMMs schedule CPU
use when guest operating systems believe they have dedicated CPUs? How
can memory management work when many guests require large amounts of
memory?

https://linuxcontainers.org/lxc/downloads
https://www.docker.com/what-docker
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes
https://linuxcontainers.org/lxc/downloads

720 Chapter 18 Virtual Machines

18.6.1 CPU Scheduling

A system with virtualization, even a single-CPU system, frequently acts like
a multiprocessor system. The virtualization software presents one or more
virtual CPUs to each of the virtual machines running on the system and then
schedules the use of the physical CPUs among the virtual machines.

The significant variations among virtualization technologies make it diffi-
cult to summarize the effect of virtualization on scheduling. First, let’s consider
the general case of VMM scheduling. The VMM has a number of physical CPUs
available and a number of threads to run on those CPUs. The threads can be
VMM threads or guest threads. Guests are configured with a certain number of
virtual CPUs at creation time, and that number can be adjusted throughout the
life of the VM.When there are enough CPUs to allocate the requested number to
each guest, the VMM can treat the CPUs as dedicated and schedule only a given
guest’s threads on that guest’s CPUs. In this situation, the guests act much like
native operating systems running on native CPUs.

Of course, in other situations, there may not be enough CPUs to go around.
The VMM itself needs some CPU cycles for guest management and I/O man-
agement and can steal cycles from the guests by scheduling its threads across
all of the system CPUs, but the impact of this action is relatively minor. More
difficult is the case of overcommitment, in which the guests are configured for
more CPUs than exist in the system. Here, a VMM can use standard scheduling
algorithms tomakeprogress on each threadbut can also add a fairness aspect to
those algorithms. For example, if there are six hardware CPUs and twelve guest-
allocated CPUs, the VMM can allocate CPU resources proportionally, giving each
guest half of the CPU resources it believes it has. The VMM can still present all
twelve virtual CPUs to the guests, but in mapping them onto physical CPUs, the
VMM can use its scheduler to distribute them appropriately.

Even given a scheduler that provides fairness, any guest operating-system
scheduling algorithm that assumes a certain amount of progress in a given
amount of time will most likely be negatively affected by virtualization. Con-
sider a time-sharing operating system that tries to allot 100milliseconds to each
time slice to give users a reasonable response time. Within a virtual machine,
this operating system receives only what CPU resources the virtualization sys-
tem gives it. A 100-millisecond time slice may take much more than 100 mil-
liseconds of virtual CPU time. Depending on how busy the system is, the time
slicemay take a second ormore, resulting in very poor response times for users
logged into that virtualmachine. The effect on a real-time operating system can
be even more serious.

The net outcomeof such scheduling is that individual virtualizedoperating
systems receive only a portion of the available CPU cycles, even though they
believe they are receiving all of the cycles and indeed are scheduling all of
the cycles. Commonly, the time-of-day clocks in virtual machines are incorrect
because timers take longer to trigger than they would on dedicated CPUs.
Virtualization can thus undo the scheduling-algorithm efforts of the operating
systems within virtual machines.

To correct for this, the VMMmakes an application available for each type of
operating system that the system administrator can install into the guests. This
application corrects clock drift and can have other functions, such as virtual
device management.

18.6 Virtualization and Operating-System Components 721

18.6.2 Memory Management

Efficient memory use in general-purpose operating systems is a major key to
performance. In virtualized environments, there aremore users ofmemory (the
guests and their applications, as well as the VMM), leading to more pressure on
memory use. Further adding to this pressure is the fact that VMMs typically
overcommit memory, so that the total memory allocated to guests exceeds
the amount that physically exists in the system. The extra need for efficient
memory use is not lost on the implementers of VMMs, who take extensive
measures to ensure the optimal use of memory.

For example, VMware ESX uses several methods of memory management.
Before memory optimization can occur, the VMM must establish how much
real memory each guest should use. To do that, the VMM first evaluates each
guest’s maximum memory size. General-purpose operating systems do not
expect the amount ofmemory in the system to change, so VMMsmustmaintain
the illusion that the guest has that amount ofmemory.Next, the VMMcomputes
a target real-memory allocation for each guest based on the configuredmemory
for that guest and other factors, such as overcommitment and system load. It
then uses the three low-levelmechanisms listed below to reclaimmemory from
the guests

1. Recall that a guest believes it controls memory allocation via its page-
table management, whereas in reality the VMM maintains a nested page
table that translates the guest page table to the real page table. The VMM
can use this extra level of indirection to optimize the guest’s use of mem-
ory without the guest’s knowledge or help. One approach is to provide
double paging. Here, the VMM has its own page-replacement algorithms
and loads pages into a backing store that the guest believes is physical
memory. Of course, the VMMknows less about the guest’s memory access
patterns than the guest does, so its paging is less efficient, creating per-
formance problems. VMMs do use this method when other methods are
not available or are not providing enough freememory. However, it is not
the preferred approach.

2. A common solution is for the VMM to install in each guest a pseudo–
device driver or kernel module that the VMM controls. (Apseudo–device
driveruses device-driver interfaces, appearing to the kernel to be a device
driver, but does not actually control a device. Rather, it is an easy way
to add kernel-mode code without directly modifying the kernel.) This
balloon memory manager communicates with the VMM and is told to
allocate or deallocate memory. If told to allocate, it allocates memory
and tells the operating system to pin the allocated pages into physical
memory. Recall that pinning locks a page into physical memory so that it
cannot be moved or paged out. To the guest, these pinned pages appear
to decrease the amount of physical memory it has available, creating
memory pressure. The guest then may free up other physical memory
to be sure it has enough free memory. Meanwhile, the VMM, knowing
that the pages pinned by the balloon process will never be used, removes
those physical pages from the guest and allocates them to another guest.
At the same time, the guest is using its own memory-management and
paging algorithms to manage the available memory, which is the most

722 Chapter 18 Virtual Machines

efficient option. If memory pressure within the entire system decreases,
the VMM will tell the balloon process within the guest to unpin and free
some or all of the memory, allowing the guest more pages for its use.

3. Another common method for reducing memory pressure is for the VMM
to determine if the same page has been loaded more than once. If this
is the case, the VMM reduces the number of copies of the page to one
and maps the other users of the page to that one copy. VMware, for
example, randomly samples guest memory and creates a hash for each
page sampled. That hash value is a “thumbprint” of the page. The hash
of every page examined is compared with other hashes stored in a hash
table. If there is amatch, the pages are compared byte by byte to see if they
really are identical. If they are, one page is freed, and its logical address
is mapped to the other’s physical address. This technique might seem
at first to be ineffective, but consider that guests run operating systems.
If multiple guests run the same operating system, then only one copy of
the active operating-system pages need be inmemory. Similarly, multiple
guests could be running the same set of applications, again a likely source
of memory sharing.

The overall effect of these mechanisms is to enable guests to behave and
performas if they had the full amount ofmemory requested, although in reality
they have less.

18.6.3 I/O

In the area of I/O, hypervisors have some leeway and can be less concerned
with how they represent the underlying hardware to their guests. Because
of the wide variation in I/O devices, operating systems are used to dealing
with varying and flexible I/Omechanisms. For example, an operating system’s
device-driver mechanism provides a uniform interface to the operating sys-
tem whatever the I/O device. Device-driver interfaces are designed to allow
third-party hardwaremanufacturers to provide device drivers connecting their
devices to the operating system. Usually, device drivers can be dynamically
loaded and unloaded. Virtualization takes advantage of this built-in flexibility
by providing specific virtualized devices to guest operating systems.

As described in Section 18.5, VMMs vary greatly in how they provide I/O
to their guests. I/O devices may be dedicated to guests, for example, or the
VMM may have device drivers onto which it maps guest I/O. The VMM may
also provide idealized device drivers to guests. In this case, the guest sees an
easy-to-control device, but in reality that simple device driver communicates to
the VMM, which sends the requests to a more complicated real device through
a more complex real device driver. I/O in virtual environments is complicated
and requires careful VMM design and implementation.

Consider the case of a hypervisor and hardware combination that allows
devices to be dedicated to a guest and allows the guest to access those devices
directly. Of course, a device dedicated to one guest is not available to any
other guests, but this direct access can still be useful in some circumstances.
The reason to allow direct access is to improve I/O performance. The less the
hypervisor has to do to enable I/O for its guests, the faster the I/O can occur.
With type 0 hypervisors that provide direct device access, guests can often

18.6 Virtualization and Operating-System Components 723

run at the same speed as native operating systems. When type 0 hypervisors
instead provide shared devices, performance may suffer.

With direct device access in type 1 and 2 hypervisors, performance can
be similar to that of native operating systems if certain hardware support
is present. The hardware needs to provide DMA pass-through with facilities
like VT-d, as well as direct interrupt delivery (interrupts going directly to the
guests). Given how frequently interrupts occur, it should be no surprise that
the guests on hardware without these features have worse performance than
if they were running natively.

In addition to direct access, VMMs provide shared access to devices. Con-
sider a disk drive towhichmultiple guests have access. The VMMmust provide
protection while the device is being shared, assuring that a guest can access
only the blocks specified in the guest’s configuration. In such instances, the
VMM must be part of every I/O, checking it for correctness as well as routing
the data to and from the appropriate devices and guests.

In the area of networking, VMMs also have work to do. General-purpose
operating systems typically have one Internet protocol (IP) address, although
they sometimes have more than one—for example, to connect to a manage-
ment network, backup network, and production network. With virtualization,
each guest needs at least one IP address, because that is the guest’s main mode
of communication. Therefore, a server running a VMM may have dozens of
addresses, and the VMM acts as a virtual switch to route the network packets
to the addressed guests.

The guests can be “directly” connected to the network by an IP address
that is seen by the broader network (this is known as bridging). Alternatively,
the VMM can provide a network address translation (NAT) address. The NAT
address is local to the server on which the guest is running, and the VMM
provides routing between the broader network and the guest. The VMM also
provides firewalling to guard connections between guests within the system
and between guests and external systems.

18.6.4 Storage Management

An important question in determining how virtualization works is this: If
multiple operating systems have been installed, what and where is the boot
disk?Clearly, virtualized environments need to approach storagemanagement
differently than do native operating systems. Even the standard multiboot
method of slicing the boot disk into partitions, installing a boot manager in one
partition, and installing each other operating system in another partition is not
sufficient, because partitioning has limits that would prevent it from working
for tens or hundreds of virtual machines.

Once again, the solution to this problemdepends on the type of hypervisor.
Type 0 hypervisors often allow root disk partitioning, partly because these
systems tend to run fewer guests than other systems. Alternatively, a disk
manager may be part of the control partition, and that disk manager may
provide disk space (including boot disks) to the other partitions.

Type 1 hypervisors store the guest root disk (and configuration informa-
tion) in one or more files in the file systems provided by the VMM. Type 2
hypervisors store the same information in the host operating system’s file sys-
tems. In essence, a disk image, containing all of the contents of the root disk

724 Chapter 18 Virtual Machines

of the guest, is contained in one file in the VMM. Aside from the potential per-
formance problems that causes, this is a clever solution, because it simplifies
copying andmoving guests. If the administrator wants a duplicate of the guest
(for testing, for example), she simply copies the associated disk image of the
guest and tells the VMM about the new copy. Booting the new virtual machine
brings up an identical guest. Moving a virtual machine from one system to
another that runs the same VMM is as simple as halting the guest, copying the
image to the other system, and starting the guest there.

Guests sometimes need more disk space than is available in their root
disk image. For example, a nonvirtualized database server might use several
file systems spread across many disks to store various parts of the database.
Virtualizing such a database usually involves creating several files and having
the VMM present those to the guest as disks. The guest then executes as usual,
with the VMM translating the disk I/O requests coming from the guest into file
I/O commands to the correct files.

Frequently, VMMs provide a mechanism to capture a physical system as
it is currently configured and convert it to a guest that the VMM can manage
and run. This physical-to-virtual (P-to-V) conversion reads the disk blocks of
the physical system’s disks and stores them in files on the VMM’s system or
on shared storage that the VMM can access. VMMs also provide a virtual-to-
physical (V-to-P) procedure for converting a guest to a physical system. This
procedure is sometimes needed for debugging: a problem could be caused by
the VMM or associated components, and the administrator could attempt to
solve the problemby removing virtualization from the problemvariables. V-to-
P conversion can take the files containing all of the guest data and generate disk
blocks on a physical disk, recreating the guest as a native operating system and
applications. Once the testing is concluded, the original system can be reused
for other purposes when the virtual machine returns to service, or the virtual
machine can be deleted and the original system can continue to run.

18.6.5 Live Migration

One feature not found in general-purpose operating systems but found in
type 0 and type 1 hypervisors is the live migration of a running guest from
one system to another. We mentioned this capability earlier. Here, we explore
the details of how live migration works and why VMMs can implement it
relatively easily while general-purpose operating systems, in spite of some
research attempts, cannot.

First, let’s consider how live migration works. A running guest on one
system is copied to another system running the same VMM. The copy occurs
with so little interruption of service that users logged in to the guest, as well
as network connections to the guest, continue without noticeable impact. This
rather astonishing ability is very powerful in resource management and hard-
ware administration. After all, compare it with the steps necessary without
virtualization: we must warn users, shut down the processes, possibly move
the binaries, and restart the processes on the new system. Only then can users
access the services again. With live migration, we can decrease the load on an
overloaded system or make hardware or system changes with no discernable
disruption for users.

18.6 Virtualization and Operating-System Components 725

Livemigration ismade possible by thewell-defined interface between each
guest and the VMM and the limited state the VMM maintains for the guest. The
VMM migrates a guest via the following steps:

1. The source VMM establishes a connection with the target VMM and con-
firms that it is allowed to send a guest.

2. The target creates a new guest by creating a new VCPU, new nested page
table, and other state storage.

3. The source sends all read-only memory pages to the target.

4. The source sends all read–write pages to the target, marking them as
clean.

5. The source repeats step 4, because during that step some pages were
probably modified by the guest and are now dirty. These pages need to
be sent again and marked again as clean.

6. When the cycle of steps 4 and 5 becomes very short, the source VMM
freezes the guest, sends the VCPU’s final state, other state details, and the
final dirty pages, and tells the target to start running the guest. Once the
target acknowledges that the guest is running, the source terminates the
guest.

This sequence is shown in Figure 18.8.
We conclude this discussion with a few interesting details and limitations

concerning live migration. First, for network connections to continue uninter-
rupted, the network infrastructure needs to understand that a MAC address—
the hardware networking address—can move between systems. Before virtu-
alization, this did not happen, as the MAC address was tied to physical hard-
ware. With virtualization, the MAC must be movable for existing networking
connections to continue without resetting. Modern network switches under-
stand this and route traffic wherever the MAC address is, even accommodating
a move.

guest target running

5 – send dirty pages (repeatedly)

4 – send R/W pages

3 – send R/O pages

1 – establish0 – running
guest source

VM
M

 s
ou

rc
e

7 – terminate
guest source

VM
M

 t
ar

ge
t

2 – create
guest target

6 – running
guest target

Figure 18.8 Live migration of a guest between two servers.

726 Chapter 18 Virtual Machines

Alimitation of livemigration is that no disk state is transferred. One reason
live migration is possible is that most of the guest’s state is maintained within
the guest—for example, open file tables, system-call state, kernel state, and
so on. Because disk I/O is much slower than memory access, however, and
used disk space is usually much larger than used memory, disks associated
with the guest cannot be moved as part of a live migration. Rather, the disk
must be remote to the guest, accessed over the network. In that case, disk
access state is maintained within the guest, and network connections are all
that matter to the VMM. The network connections are maintained during the
migration, so remote disk access continues. Typically, NFS, CIFS, or iSCSI is used
to store virtual machine images and any other storage a guest needs access
to. These network-based storage accesses simply continue when the network
connections are continued once the guest has been migrated.

Live migration makes it possible to manage data centers in entirely new
ways. For example, virtualizationmanagement tools canmonitor all the VMMs
in an environment and automatically balance resource use by moving guests
between the VMMs. These tools can also optimize the use of electricity and
cooling by migrating all guests off selected servers if other servers can handle
the load and powering down the selected servers entirely. If the load increases,
the tools can power up the servers and migrate guests back to them.

18.7 Examples

Despite the advantages of virtual machines, they received little attention for
a number of years after they were first developed. Today, however, virtual
machines are coming into greater use as a means of solving system compat-
ibility problems. In this section, we explore two popular contemporary virtual
machines: the VMwareWorkstation and the Java virtualmachine. These virtual
machines can typically run on top of operating systems of any of the design
types discussed in earlier chapters.

18.7.1 VMware

VMware Workstation is a popular commercial application that abstracts Intel
x86 and compatible hardware into isolated virtual machines. VMware Work-
station is a prime example of a Type 2 hypervisor. It runs as an application on a
host operating system such as Windows or Linux and allows this host system
to run several different guest operating systems concurrently as independent
virtual machines.

The architecture of such a system is shown in Figure 18.9. In this scenario,
Linux is running as the host operating system, and FreeBSD, Windows NT, and
Windows XP are running as guest operating systems. At the heart of VMware
is the virtualization layer, which abstracts the physical hardware into isolated
virtualmachines running as guest operating systems. Each virtualmachine has
its own virtual CPU, memory, disk drives, network interfaces, and so forth.

The physical disk that the guest owns and manages is really just a file
within the file system of the host operating system. To create an identical guest,
we can simply copy the file. Copying the file to another location protects the
guest against a disaster at the original site. Moving the file to another location

18.7 Examples 727

virtualization layer

host operating system
(Linux)

CPU memory

hardware

I/O devices

application application application application

guest operating
system

(free BSD)

virtual CPU
virtual memory
virtual devices

guest operating
system

(Windows NT)

virtual CPU
virtual memory
virtual devices

guest operating
system

(Windows XP)

virtual CPU
virtual memory
virtual devices

Figure 18.9 VMware Workstation architecture.

moves the guest system. Such capabilities, as explained earlier, can improve
the efficiency of system administration as well as system resource use.

18.7.2 The Java Virtual Machine

Java is a popular object-oriented programming language introduced by Sun
Microsystems in 1995. In addition to a language specification and a large
API library, Java provides a specification for a Java virtual machine, or JVM.
Java therefore is an example of programming-environment virtualization, as
discussed in Section 18.5.6.

Java objects are specified with the class construct; a Java program con-
sists of one or more classes. For each Java class, the compiler produces an
architecture-neutral bytecode output (.class) file that will run on any imple-
mentation of the JVM.

The JVM is a specification for an abstract computer. It consists of a class
loader and a Java interpreter that executes the architecture-neutral bytecodes,
as diagrammed in Figure 18.10. The class loader loads the compiled .class
files from both the Java program and the Java API for execution by the Java
interpreter. After a class is loaded, the verifier checks that the .class file is
valid Java bytecode and that it does not overflow or underflow the stack. It also
ensures that the bytecode does not perform pointer arithmetic, which could
provide illegal memory access. If the class passes verification, it is run by the
Java interpreter. The JVM also automatically manages memory by performing
garbage collection—the practice of reclaimingmemory from objects no longer
in use and returning it to the system. Much research focuses on garbage collec-
tion algorithms for increasing the performance of Java programs in the virtual
machine.

728 Chapter 18 Virtual Machines

host system
(Windows, Linux, etc.)

class loader

Java
interpreter

Java program
.class files

Java API
.class files

Figure 18.10 The Java virtual machine.

The JVM may be implemented in software on top of a host operating
system, such as Windows, Linux, or macOS, or as part of a web browser.
Alternatively, the JVM may be implemented in hardware on a chip specifically
designed to run Java programs. If the JVM is implemented in software, the
Java interpreter interprets the bytecode operations one at a time. A faster
software technique is to use a just-in-time (JIT) compiler. Here, the first time
a Java method is invoked, the bytecodes for the method are turned into native
machine language for the host system. These operations are then cached so that
subsequent invocations of a method are performed using the native machine
instructions, and the bytecode operations need not be interpreted all over
again. Running the JVM in hardware is potentially even faster. Here, a special
Java chip executes the Java bytecode operations as native code, thus bypassing
the need for either a software interpreter or a just-in-time compiler.

18.8 Virtualization Research

As mentioned earlier, machine virtualization has enjoyed growing popularity
in recent years as a means of solving system compatibility problems. Research
has expanded to cover many other uses of machine virtualization, including
support for microservices running on library operating systems and secure
partitioning of resources in embedded systems. Consequently, quite a lot of
interesting, active research is underway.

Frequently, in the context of cloud computing, the same application
is run on thousands of systems. To better manage those deployments,
they can be virtualized. But consider the execution stack in that case—the
application on top of a service-rich general-purpose operating system within
a virtual machine managed by a hypervisor. Projects like unikernels, built
on library operating systems, aim to improve efficiency and security in these
environments. Unikernels are specialized machine images, using one address
space, that shrink the attack surface and resource footprint of deployed
applications. In essence, they compile the application, the system libraries it
calls, and the kernel services it uses into a single binary that runs within a
virtual environment (or even on bare metal). While research into changing
how operating system kernels, hardware, and applications interact is not new
(see https://pdos.csail.mit.edu/6.828/2005/readings/engler95exokernel.pdf,

https://pdos.csail.mit.edu/6.828/2005/readings/engler95exokernel.pdf

18.9 Summary 729

for example), cloud computing and virtualization have created renewed
interest in the area. See http://unikernel.org for more details.

The virtualization instructions in modern CPUs have given rise to a new
branch of virtualization research focusing not onmore efficient use of hardware
but rather on better control of processes. Partitioning hypervisors partition the
existing machine physical resources amongst guests, thereby fully committing
rather than overcommitting machine resources. Partitioning hypervisors can
securely extend the features of an existing operating system via functionality
in another operating system (run in a separate guest VM domain), running on
a subset of machine physical resources. This avoids the tedium of writing an
entire operating system from scratch. For example, a Linux system that lacks
real-time capabilities for safety- and security-critical tasks can be extendedwith
a lightweight real-time operating system running in its own virtual machine.
Traditional hypervisors have higher overhead than running native tasks, so a
new type of hypervisor is needed.

Each task runs within a virtual machine, but the hypervisor only initializes
the system and starts the tasks and is not involved with continuing operation.
Each virtualmachine has its own allocated hardware and is free tomanage that
hardware without interference from the hypervisor. Because the hypervisor
does not interrupt task operations and is not called by the tasks, the tasks can
have real-time aspects and can be much more secure.

Within the class of partitioning hypervisors are the Quest-V, eVM,
Xtratum and Siemens Jailhouse projects. These are separation hypervisors
(see http://www.csl.sri.com/users/rushby/papers/sosp81.pdf) that use
virtualization to partition separate system components into a chip-level
distributed system. Secure shared memory channels are then implemented
using hardware extended page tables so that separate sandboxed guests
can communicate with one another. The targets of these projects are
areas such as robotics, self-driving cars, and the Internet of Things. See
https://www.cs.bu.edu/richwest/papers/west-tocs16.pdf for more details.

18.9 Summary

• Virtualization is a method for providing a guest with a duplicate of a
system’s underlying hardware. Multiple guests can run on a given system,
each believing that it is the native operating system and is in full control.

• Virtualization started as a method to allow IBM to segregate users and
provide themwith their own execution environments on IBMmainframes.
Since then, thanks to improvements in system and CPU performance and
innovative software techniques, virtualization has become a common fea-
ture in data centers and even on personal computers. Because of its pop-
ularity, CPU designers have added features to support virtualization. This
snowball effect is likely to continue, with virtualization and its hardware
support increasing over time.

• The virtual machine manager, or hypervisor, creates and runs the virtual
machine. Type 0 hypervisors are implemented in the hardware and require
modifications to the operating system to ensure proper operation. Some

http://unikernel.org
http://www.csl.sri.com/users/rushby/papers/sosp81.pdf
https://www.cs.bu.edu/richwest/papers/west-tocs16.pdf

730 Chapter 18 Virtual Machines

type 0 hypervisors offer an example of paravirtualization, in which the
operating system is aware of virtualization and assists in its execution.

• Type 1 hypervisors provide the environment and features needed to cre-
ate, run, and manage guest virtual machines. Each guest includes all of
the software typically associated with a full native system, including the
operating system, device drivers, applications, user accounts, and so on.

• Type 2 hypervisors are simply applications that run on other operating
systems, which do not know that virtualization is taking place. These
hypervisors do not have hardware or host support so must perform all
virtualization activities in the context of a process.

• Programming-environment virtualization is part of the design of a pro-
gramming language. The language specifies a containing application in
which programs run, and this application provides services to the pro-
grams.

• Emulation is used when a host system has one architecture and the guest
was compiled for a different architecture. Every instruction the guest
wants to execute must be translated from its instruction set to that of
the native hardware. Although this method involves some performance
penalty, it is balanced by the usefulness of being able to run old programs
on newer, incompatible hardware or run games designed for old consoles
on modern hardware.

• Implementing virtualization is challenging, especially when hardware
support is minimal. The more features provided by the system, the easier
virtualization is to implement and the better the performance of the guests.

• VMMs take advantage of whatever hardware support is available when
optimizing CPU scheduling, memory management, and I/O modules to
provide guests with optimum resource use while protecting the VMM from
the guests and the guests from one another.

• Current research is extending the uses of virtualization. Unikernels aim to
increase efficiency and decrease security attack surface by compiling an
application, its libraries, and the kernel resources the application needs
into one binary with one address space that runs within a virtual machine.
Partitioning hypervisors provide secure execution, real-time operation,
and other features traditionally only available to applications running on
dedicated hardware.

Further Reading

The original IBM virtual machine is described in [Meyer and Seawright (1970)].
[Popek and Goldberg (1974)] established the characteristics that help define
VMMs. Methods of implementing virtual machines are discussed in [Agesen
et al. (2010)].

Intel x86 hardware virtualization support is described in [Neiger et al.
(2006)]. AMD hardware virtualization support is described in a white paper
available at http://developer.amd.com/assets/NPT-WP-1%201-final-TM.pdf.

http://dx.doi.org/10.1147/sj.93.0199
http://scholar.google.com/scholar?hl/en&q=G J Popek and R P Goldberg Formal Requirements for Virtualizable Third Generation Architectures
http://scholar.google.com/scholar?hl/en&q=O Agesen and A Garthwaite and J Sheldon and P Subrahmanyam The Evolution of an x86 Virtual Machine Monitor
http://scholar.google.com/scholar?hl/en&q=G Neiger and A Santoni and F Leung and D Rodgers and R Uhlig Intel Virtualization Technology Hardware Support for Efficient Processor Virtualization
http://developer.amd.com/assets/NPT-WP-1%201-final-TM.pdf

Bibliography 731

Memory management in VMware is described in [Waldspurger (2002)].
[Gordon et al. (2012)] propose a solution to the problem of I/O overhead in
virtualized environments. Some protection challenges and attacks in virtual
environments are discussed in [Wojtczuk and Ruthkowska (2011)].

For earlywork on alternative kernel designs, see https://pdos.csail.mit.edu
/6.828/2005/readings/engler95exokernel.pdf. For more on unikernels, see
[West et al. (2016)] and http://unikernel.org. Partitioning hypervisors are dis-
cussed in http://ethdocs.org/en/latest/introduction/what-is-ethereum.html,
and https://lwn.net/Articles/578295 and [Madhavapeddy et al. (2013)]. Quest-
V, a separation hypervisor, is detailed in http://www.csl.sri.com/users/rushby/
papers/sosp81.pdf and https://www.cs.bu.edu/ richwest/papers/west-tocs16
.pdf.

The open-sourceVirtualBoxproject is available fromhttp://www.virtualbox
.org. The source code for LXC is available at https://linuxcontainers.org/lxc/dow
nloads.

For more on docker, see https://www.docker.com/what-docker. Informa-
tion aboutKubernetes can be found at https://kubernetes.io/docs/concepts/ov
erview/what-is-kubernetes.

Bibliography

[Agesen et al. (2010)] O. Agesen, A. Garthwaite, J. Sheldon, and P. Subrah-
manyam, “The Evolution of an x86 Virtual Machine Monitor”, Proceedings of the
ACM Symposium on Operating Systems Principles (2010), pages 3–18.

[Gordon et al. (2012)] A. Gordon, N. A. N. Har’El, M. Ben-Yehuda, A. Landau,
A. Schuster, andD. Tsafrir, “ELI: Bare-metal Performance for I/OVirtualization”,
Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (2012), pages 411–422.

[Madhavapeddy et al. (2013)] A.Madhavapeddy, R.Mirtier, C. Rotsos, D. Scott,
B. Singh, T.Gazagnaire, S. Smith, S.Hand, and J. Crowcroft, “Unikernels: Library
Operating Systems for the Cloud” (2013).

[Meyer and Seawright (1970)] R. A. Meyer and L. H. Seawright, “A Virtual
Machine Time-Sharing System”, IBM Systems Journal, Volume 9, Number 3
(1970), pages 199–218.

[Neiger et al. (2006)] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig,
“Intel Virtualization Technology: Hardware Support for Efficient Processor Vir-
tualization”, Intel Technology Journal, Volume 10, (2006).

[Popek and Goldberg (1974)] G. J. Popek and R. P. Goldberg, “Formal Require-
ments for Virtualizable Third Generation Architectures”, Communications of the
ACM, Volume 17, Number 7 (1974), pages 412–421.

[Waldspurger (2002)] C. Waldspurger, “Memory Resource Management in
VMware ESX Server”, Operating Systems Review, Volume 36, Number 4 (2002),
pages 181–194.

[West et al. (2016)] R. West, Y. Li, E. Missimer, and M. Danish, “A Virtualized
Separation Kernel for Mixed Criticality Systems”, Volume 34, (2016).

http://doi.acm.org/10.1145/844128.844146
http://doi.acm.org/10.1145/2150976.2151020
http://scholar.google.com/scholar?hl/en&q=R Wojtczuk and J Ruthkowska Following the White Rabbit Software Attacks Against Intel VT d Technology
https://pdos.csail.mit.edu/6.828/2005/readings/engler95exokernel.pdf
http://scholar.google.com/scholar?hl/en&q=R West and Y Li and E Missimer and M Danish A Virtualized Separation Kernel for Mixed Criticality Systems
http://unikernel.org
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
https://lwn.net/Articles/578295
http://scholar.google.com/scholar?hl/en&q=A Madhavapeddy and R Mirtier and C Rotsos and D Scott and B Singh and T Gazagnaire and S Smith and S Hand and J Crowcroft Unikernels Library Operating Systems for the Cloud
http://www.csl.sri.com/users/rushby/papers/sosp81.pdf
https://www.cs.bu.edu/richwest/papers/west-tocs16.pdf
http://www.virtualbox.org
https://linuxcontainers.org/lxc/downloads
https://www.docker.com/what-docker
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes
http://scholar.google.com/scholar?hl/en&q=O Agesen and A Garthwaite and J Sheldon and P Subrahmanyam The Evolution of an x86 Virtual Machine Monitor
http://scholar.google.com/scholar?hl/en&q=O Agesen and A Garthwaite and J Sheldon and P Subrahmanyam The Evolution of an x86 Virtual Machine Monitor
http://doi.acm.org/10.1145/2150976.2151020
http://doi.acm.org/10.1145/2150976.2151020
http://scholar.google.com/scholar?hl/en&q=A Madhavapeddy and R Mirtier and C Rotsos and D Scott and B Singh and T Gazagnaire and S Smith and S Hand and J Crowcroft Unikernels Library Operating Systems for the Cloud
http://scholar.google.com/scholar?hl/en&q=A Madhavapeddy and R Mirtier and C Rotsos and D Scott and B Singh and T Gazagnaire and S Smith and S Hand and J Crowcroft Unikernels Library Operating Systems for the Cloud
http://dx.doi.org/10.1147/sj.93.0199
http://dx.doi.org/10.1147/sj.93.0199
http://scholar.google.com/scholar?hl/en&q=G Neiger and A Santoni and F Leung and D Rodgers and R Uhlig Intel Virtualization Technology Hardware Support for Efficient Processor Virtualization
http://scholar.google.com/scholar?hl/en&q=G Neiger and A Santoni and F Leung and D Rodgers and R Uhlig Intel Virtualization Technology Hardware Support for Efficient Processor Virtualization
http://scholar.google.com/scholar?hl/en&q=G J Popek and R P Goldberg Formal Requirements for Virtualizable Third Generation Architectures
http://scholar.google.com/scholar?hl/en&q=G J Popek and R P Goldberg Formal Requirements for Virtualizable Third Generation Architectures
http://doi.acm.org/10.1145/844128.844146
http://doi.acm.org/10.1145/844128.844146
http://scholar.google.com/scholar?hl/en&q=R West and Y Li and E Missimer and M Danish A Virtualized Separation Kernel for Mixed Criticality Systems
http://scholar.google.com/scholar?hl/en&q=R West and Y Li and E Missimer and M Danish A Virtualized Separation Kernel for Mixed Criticality Systems
http://www.csl.sri.com/users/rushby/papers/sosp81.pdf
https://www.cs.bu.edu/richwest/papers/west-tocs16.pdf
http://www.virtualbox.org
https://linuxcontainers.org/lxc/downloads
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes
https://pdos.csail.mit.edu/6.828/2005/readings/engler95exokernel.pdf

732 Chapter 18 Virtual Machines

[Wojtczuk and Ruthkowska (2011)] R. Wojtczuk and J. Ruthkowska, “Follow-
ing the White Rabbit: Software Attacks Against Intel VT-d Technology”, The
Invisible Things Lab’s blog (2011).

http://scholar.google.com/scholar?hl/en&q=R Wojtczuk and J Ruthkowska Following the White Rabbit Software Attacks Against Intel VT d Technology
http://scholar.google.com/scholar?hl/en&q=R Wojtczuk and J Ruthkowska Following the White Rabbit Software Attacks Against Intel VT d Technology

Chapter 18 Exercises

18.1 Describe the three types of traditional hypervisors.

18.2 Describe four virtualization-like execution environments, and explain
how they differ from “true” virtualization.

18.3 Describe four benefits of virtualization.

18.4 Why are VMMs unable to implement trap-and-emulate-based virtual-
ization on some CPUs? Lacking the ability to trap and emulate, what
method can a VMM use to implement virtualization?

18.5 What hardware assistance for virtualization can be provided by mod-
ern CPUs?

18.6 Why is live migration possible in virtual environments but much less
possible for a native operating system?

EX-55

19CHAPTERNetworks and
Distributed
Systems

Updated by Sarah Diesburg

A distributed system is a collection of processors that do not share memory
or a clock. Instead, each node has its own local memory. The nodes communi-
cate with one another through various networks, such as high-speed buses.
Distributed systems are more relevant than ever, and you have almost cer-
tainly used some sort of distributed service. Applications of distributed sys-
tems range from providing transparent access to files inside an organization, to
large-scale cloud file and photo storage services, to business analysis of trends
on large data sets, to parallel processing of scientific data, andmore. In fact, the
most basic example of a distributed system is onewe are all likely very familiar
with—the Internet.

In this chapter, we discuss the general structure of distributed systems
and the networks that interconnect them. We also contrast the main differ-
ences in the types and roles of current distributed system designs. Finally, we
investigate some of the basic designs and design challenges of distributed file
systems.

CHAPTER OBJECTIVES

• Explain the advantages of networked and distributed systems.

• Provide a high-level overview of the networks that interconnect distributed
systems.

• Define the roles and types of distributed systems in use today.

• Discuss issues concerning the design of distributed file systems.

19.1 Advantages of Distributed Systems

A distributed system is a collection of loosely coupled nodes interconnected
by a communication network. From the point of view of a specific node in
a distributed system, the rest of the nodes and their respective resources are
remote, whereas its own resources are local.

733

734 Chapter 19 Networks and Distributed Systems

site C

resources

site B

client

communication

site A

server

network

Figure 19.1 A client-server distributed system.

The nodes in a distributed system may vary in size and function. They
may include small microprocessors, personal computers, and large general-
purpose computer systems. These processors are referred to by a number of
names, such as processors, sites, machines, and hosts, depending on the context
in which they are mentioned. We mainly use site to indicate the location of a
machine and node to refer to a specific system at a site. Nodes can exist in a
client–server configuration, a peer-to-peer configuration, or a hybrid of these. In
the common client-server configuration, one node at one site, the server, has a
resource that another node, the client (or user), would like to use. A general
structure of a client–server distributed system is shown in Figure 19.1. In a
peer-to-peer configuration, there are no servers or clients. Instead, the nodes
share equal responsibilities and can act as both clients and servers.

When several sites are connected to one another by a communication net-
work, users at the various sites have the opportunity to exchange information.
At a low level, messages are passed between systems, much as messages are
passed between processes in the single-computer message system discussed
in Section 3.4. Given message passing, all the higher-level functionality found
in standalone systems can be expanded to encompass the distributed system.
Such functions include file storage, execution of applications, and remote pro-
cedure calls (RPCs).

There are three major reasons for building distributed systems: resource
sharing, computational speedup, and reliability. In this section, we briefly
discuss each of them.

19.1.1 Resource Sharing

If a number of different sites (with different capabilities) are connected to one
another, then a user at one site may be able to use the resources available
at another. For example, a user at site A may query a database located at
site B. Meanwhile, a user at site B may access a file that resides at site A. In
general, resource sharing in a distributed system provides mechanisms for

19.2 Network Structure 735

sharing files at remote sites, processing information in a distributed database,
printing files at remote sites, using remote specialized hardware devices such
as a supercomputer or a graphics processing unit (GPU), and performing other
operations.

19.1.2 Computation Speedup

If a particular computation can be partitioned into subcomputations that can
run concurrently, then a distributed system allows us to distribute the sub-
computations among the various sites. The subcomputations can be run con-
currently and thus provide computation speedup. This is especially relevant
when doing large-scale processing of big data sets (such as analyzing large
amounts of customer data for trends). In addition, if a particular site is cur-
rently overloaded with requests, some of them can be moved or rerouted to
other, more lightly loaded sites. Thismovement of jobs is called load balancing
and is common among distributed system nodes and other services provided
on the Internet.

19.1.3 Reliability

If one site fails in a distributed system, the remaining sites can continue oper-
ating, giving the system better reliability. If the system is composed of multi-
ple large autonomous installations (that is, general-purpose computers), the
failure of one of them should not affect the rest. If, however, the system is
composed of diversified machines, each of which is responsible for some cru-
cial system function (such as the web server or the file system), then a single
failure may halt the operation of the whole system. In general, with enough
redundancy (in both hardware and data), the system can continue operation
even if some of its nodes have failed.

The failure of a node or site must be detected by the system, and appro-
priate action may be needed to recover from the failure. The system must no
longer use the services of that site. In addition, if the function of the failed site
can be taken over by another site, the system must ensure that the transfer of
function occurs correctly. Finally, when the failed site recovers or is repaired,
mechanisms must be available to integrate it back into the system smoothly.

19.2 Network Structure

To completely understand the roles and types of distributed systems in use
today,we need to understand the networks that interconnect them. This section
serves as a network primer to introduce basic networking concepts and chal-
lenges as they relate to distributed systems. The rest of the chapter specifically
discusses distributed systems.

There are basically two types of networks: local-area networks (LAN) and
wide-area networks (WAN). Themain difference between the two is the way in
which they are geographically distributed. Local-area networks are composed
of hosts distributed over small areas (such as a single building or a number
of adjacent buildings), whereas wide-area networks are composed of systems
distributed over a large area (such as the United States). These differences

736 Chapter 19 Networks and Distributed Systems

Router WAN Link

Wireless Access
 Point

WANLAN

Figure 19.2 Local-area network.

imply major variations in the speed and reliability of the communications
networks, and they are reflected in the distributed system design.

19.2.1 Local-Area Networks

Local-area networks emerged in the early 1970s as a substitute for large
mainframe computer systems. For many enterprises, it is more economi-
cal to have a number of small computers, each with its own self-contained
applications, than to have a single large system. Because each small com-
puter is likely to need a full complement of peripheral devices (such as disks
and printers), and because some form of data sharing is likely to occur in a
single enterprise, it was a natural step to connect these small systems into a
network.

LANs, as mentioned, are usually designed to cover a small geographical
area, and they are generally used in an office or home environment. All the
sites in such systems are close to one another, so the communication links tend
to have a higher speed and lower error rate than their counterparts inwide-area
networks.

A typical LAN may consist of a number of different computers (includ-
ing workstations, servers, laptops, tablets, and smartphones), various shared
peripheral devices (such as printers and storage arrays), and one or more
routers (specialized network communication processors) that provide access
to other networks (Figure 19.2). Ethernet and WiFi are commonly used to con-
struct LANs. Wireless access points connect devices to the LAN wirelessly, and
they may or may not be routers themselves.

Ethernet networks are generally found in businesses and organizations
in which computers and peripherals tend to be nonmobile. These networks
use coaxial, twisted pair, and/or fiber optic cables to send signals. An Ethernet
network has no central controller, because it is a multiaccess bus, so new hosts
can be added easily to the network. The Ethernet protocol is defined by the IEEE
802.3 standard. Typical Ethernet speeds using common twisted-pair cabling

19.2 Network Structure 737

can vary from 10 Mbps to over 10 Gbps, with other types of cabling reaching
speeds of 100 Gbps.

WiFi is now ubiquitous and either supplements traditional Ethernet net-
works or exists by itself. Specifically, WiFi allows us to construct a network
without using physical cables. Each host has awireless transmitter and receiver
that it uses to participate in the network. WiFi is defined by the IEEE 802.11
standard. Wireless networks are popular in homes and businesses, as well as
public areas such as libraries, Internet cafes, sports arenas, and even buses and
airplanes. WiFi speeds can vary from 11 Mbps to over 400 Mbps.

Both the IEEE 802.3 and 802.11 standards are constantly evolving. For the
latest information about various standards and speeds, see the references at the
end of the chapter.

19.2.2 Wide-Area Networks

Wide-area networks emerged in the late 1960s, mainly as an academic research
project to provide efficient communication among sites, allowing hardware
and software to be shared conveniently and economically by a wide commu-
nity of users. The first WAN to be designed and developed was the ARPANET.
Begun in 1968, the ARPANET has grown from a four-site experimental network
to a worldwide network of networks, the Internet (also known as the World
Wide Web), comprising millions of computer systems.

Sites in a WAN are physically distributed over a large geographical area.
Typical links are telephone lines, leased (dedicated data) lines, optical cable,
microwave links, radio waves, and satellite channels. These communication
links are controlled by routers (Figure 19.3) that are responsible for directing
traffic to other routers and networks and transferring information among the
various sites.

For example, the Internet WAN enables hosts at geographically separate
sites to communicate with one another. The host computers typically differ
from one another in speed, CPU type, operating system, and so on. Hosts are

router

communication
subsystem
(network)

H
H

H

user processes

network host

network host

host operating system

R

R

RR

H

Figure 19.3 Communication processors in a wide-area network.

738 Chapter 19 Networks and Distributed Systems

generally on LANs, which are, in turn, connected to the Internet via regional
networks. The regional networks are interlinked with routers to form the
worldwide network. Residences can connect to the Internet by either tele-
phone, cable, or specialized Internet service providers that install routers to
connect the residences to central services. Of course, there are other WANs
besides the Internet. Acompany, for example,might create its ownprivateWAN
for increased security, performance, or reliability.

WANs are generally slower than LANs, although backbone WAN connec-
tions that link major cities may have very fast transfer rates through fiber optic
cables. In fact, many backbone providers have fiber optic speeds of 40 Gbps
or 100 Gbps. (It is generally the links from local Internet Service Providers
(ISPs) to homes or businesses that slow things down.) However, WAN links are
being constantly updated to faster technologies as the demand for more speed
continues to grow.

Frequently, WANs and LANs interconnect, and it is difficult to tell where
one ends and the other starts. Consider the cellular phone data network. Cell
phones are used for both voice and data communications. Cell phones in a
given area connect via radio waves to a cell tower that contains receivers
and transmitters. This part of the network is similar to a LAN except that the
cell phones do not communicate with each other (unless two people talking
or exchanging data happen to be connected to the same tower). Rather, the
towers are connected to other towers and to hubs that connect the tower
communications to land lines or other communication media and route the
packets toward their destinations. This part of the network is more WAN-like.
Once the appropriate tower receives the packets, it uses its transmitters to send
them to the correct recipient.

19.3 Communication Structure

Now that we have discussed the physical aspects of networking, we turn to the
internal workings.

19.3.1 Naming and Name Resolution

The first issue in network communication involves the naming of the systems
in the network. For a process at site A to exchange information with a process
at site B, each must be able to specify the other. Within a computer system,
each process has a process identifier, and messages may be addressed with the
process identifier. Because networked systems share no memory, however, a
host within the system initially has no knowledge about the processes on other
hosts.

To solve this problem, processes on remote systems are generally identified
by the pair <host name, identifier>, where host name is a name unique within
the network and identifie is a process identifier or other unique number
within that host. Ahost name is usually an alphanumeric identifier, rather than
a number, to make it easier for users to specify. For instance, site Amight have
hosts named program, student, faculty, and cs.The host name program is certainly
easier to remember than the numeric host address 128.148.31.100.

19.3 Communication Structure 739

Names are convenient for humans to use, but computers prefer numbers
for speed and simplicity. For this reason, there must be amechanism to resolve
the host name into a host-id that describes the destination system to the net-
working hardware. This mechanism is similar to the name-to-address bind-
ing that occurs during program compilation, linking, loading, and execution
(Chapter 9). In the case of host names, two possibilities exist. First, every host
may have a data file containing the names and numeric addresses of all the
other hosts reachable on the network (similar to binding at compile time). The
problem with this model is that adding or removing a host from the network
requires updating the data files on all the hosts. In fact, in the early days of
the ARPANET there was a canonical host file that was copied to every system
periodically. As the network grew, however, this method became untenable.

The alternative is to distribute the information among systems on the
network. The network must then use a protocol to distribute and retrieve the
information. This scheme is like execution-time binding. The Internet uses a
domain-name system (DNS) for host-name resolution.

DNS specifies the naming structure of the hosts, as well as name-to-address
resolution. Hosts on the Internet are logically addressed with multipart names
known as IP addresses. The parts of an IP address progress from the most
specific to the most general, with periods separating the fields. For instance,
eric.cs.yale.edu refers to host eric in the Department of Computer Science at Yale
University within the top-level domain edu. (Other top-level domains include
com for commercial sites and org for organizations, as well as a domain for each
country connected to the network for systems specified by country rather than
organization type.) Generally, the system resolves addresses by examining the
host-name components in reverse order. Each component has a name server—
simply a process on a system—that accepts a name and returns the address of
the name server responsible for that name. As the final step, the name server
for the host in question is contacted, and a host-id is returned. For example,
a request made by a process on system A to communicate with eric.cs.yale.edu
would result in the following steps:

1. The system library or the kernel on systemA issues a request to the name
server for the edu domain, asking for the address of the name server
for yale.edu. The name server for the edu domain must be at a known
address, so that it can be queried.

2. The edu name server returns the address of the host on which the
yale.edu name server resides.

3. System A then queries the name server at this address and asks about
cs.yale.edu.

4. An address is returned. Now, finally, a request to that address for
eric.cs.yale.edu returns an Internet address host-id for that host (for
example, 128.148.31.100).

This protocol may seem inefficient, but individual hosts cache the IP addresses
they have already resolved to speed the process. (Of course, the contents of
these caches must be refreshed over time in case the name server is moved

740 Chapter 19 Networks and Distributed Systems

/**
* Usage: java DNSLookUp <IP name>
* i.e. java DNSLookUp www.wiley.com
*/

public class DNSLookUp {
public static void main(String[] args) {

InetAddress hostAddress;

try {
hostAddress = InetAddress.getByName(args[0]);
System.out.println(hostAddress.getHostAddress());

}
catch (UnknownHostException uhe) {

System.err.println("Unknown host: " + args[0]);
}

}
}

Figure 19.4 Java program illustrating a DNS lookup.

or its address changes.) In fact, the protocol is so important that it has been
optimized many times and has had many safeguards added. Consider what
would happen if the primary edu name server crashed. It is possible that
no edu hosts would be able to have their addresses resolved, making them
all unreachable! The solution is to use secondary, backup name servers that
duplicate the contents of the primary servers.

Before the domain-name service was introduced, all hosts on the Internet
needed to have copies of a file (mentioned above) that contained the names
and addresses of each host on the network. All changes to this file had to
be registered at one site (host SRI-NIC), and periodically all hosts had to copy
the updated file from SRI-NIC to be able to contact new systems or find hosts
whose addresses had changed. Under the domain-name service, each name-
server site is responsible for updating the host information for that domain.
For instance, any host changes at Yale University are the responsibility of the
name server for yale.edu and need not be reported anywhere else. DNS lookups
will automatically retrieve the updated information because they will contact
yale.edu directly. Domains may contain autonomous subdomains to further
distribute the responsibility for host-name and host-id changes.

Java provides the necessary API to design a program that maps IP names
to IP addresses. The program shown in Figure 19.4 is passed an IP name (such
as eric.cs.yale.edu) on the command line and either outputs the IP address of the
host or returns a message indicating that the host name could not be resolved.
An InetAddress is a Java class representing an IP name or address. The static
method getByName() belonging to the InetAddress class is passed a string
representation of an IP name, and it returns the corresponding InetAddress.
The program then invokes the getHostAddress() method, which internally
uses DNS to look up the IP address of the designated host.

http://www.wiley.com

19.3 Communication Structure 741

Generally, the operating system is responsible for accepting from its pro-
cesses a message destined for <host name, identifier> and for transferring that
message to the appropriate host. The kernel on the destination host is then
responsible for transferring themessage to the process named by the identifier.
This process is described in Section 19.3.4.

19.3.2 Communication Protocols

When we are designing a communication network, we must deal with the
inherent complexity of coordinating asynchronous operations communicating
in a potentially slow and error-prone environment. In addition, the systems
on the network must agree on a protocol or a set of protocols for determin-
ing host names, locating hosts on the network, establishing connections, and
so on. We can simplify the design problem (and related implementation) by
partitioning the problem into multiple layers. Each layer on one system com-
municates with the equivalent layer on other systems. Typically, each layer
has its own protocols, and communication takes place between peer layers
using a specific protocol. The protocols may be implemented in hardware or
software. For instance, Figure 19.5 shows the logical communications between
two computers, with the three lowest-level layers implemented in hardware.

The International Standards Organization created the Open Systems Inter-
connection (OSI) model for describing the various layers of networking. While
these layers are not implemented in practice, they are useful for understanding
how networking logically works, and we describe them below:

• Layer 1: Physical layer. The physical layer is responsible for handling both
the mechanical and the electrical details of the physical transmission of a
bit stream. At the physical layer, the communicating systems must agree
on the electrical representation of a binary 0 and 1, so that when data are
sent as a streamof electrical signals, the receiver is able to interpret the data

real systems environment

OSI environment

network environment

data network

computer A

application layer

presentation layer

session layer

transport layer

network layer

link layer

physical layer

computer B

A-L (7)

P-L (6)

S-L (5)

T-L (4)

N-L (3)

L-L (2)

P-L (1)

AP AP

Figure 19.5 Two computers communicating via the OSI network model.

742 Chapter 19 Networks and Distributed Systems

properly as binary data. This layer is implemented in the hardware of the
networking device. It is responsible for delivering bits.

• Layer 2: Data-link layer. The data-link layer is responsible for handling
frames, or fixed-length parts of packets, including any error detection and
recovery that occur in the physical layer. It sends frames between physical
addresses.

• Layer 3: Network layer. The network layer is responsible for breakingmes-
sages into packets, providing connections between logical addresses, and
routing packets in the communication network, including handling the
addresses of outgoing packets, decoding the addresses of incoming pack-
ets, and maintaining routing information for proper response to changing
load levels. Routers work at this layer.

• Layer 4: Transport layer. The transport layer is responsible for transfer of
messages between nodes, maintaining packet order, and controlling flow
to avoid congestion.

• Layer 5: Session layer. The session layer is responsible for implementing
sessions, or process-to-process communication protocols.

• Layer 6: Presentation layer. The presentation layer is responsible for
resolving the differences in formats among the various sites in the net-
work, including character conversions and half duplex–full duplexmodes
(character echoing).

• Layer 7: Application layer. The application layer is responsible for inter-
acting directly with users. This layer deals with file transfer, remote-login
protocols, and electronic mail, as well as with schemas for distributed
databases.

Figure 19.6 summarizes the OSI protocol stack—a set of cooperating pro-
tocols—showing the physical flow of data. As mentioned, logically each layer
of a protocol stack communicates with the equivalent layer on other systems.
But physically, a message starts at or above the application layer and is passed
through each lower level in turn. Each layer may modify the message and
include message-header data for the equivalent layer on the receiving side.
Ultimately, the message reaches the data-network layer and is transferred as
one or more packets (Figure 19.7). The data-link layer of the target system
receives these data, and the message is moved up through the protocol stack. It
is analyzed,modified, and strippedof headers as it progresses. It finally reaches
the application layer for use by the receiving process.

The OSI model formalizes some of the earlier work done in network proto-
cols but was developed in the late 1970s and is currently not inwidespread use.
Perhaps the most widely adopted protocol stack is the TCP/IP model (some-
times called the Internetmodel), which has been adopted by virtually all Internet
sites. The TCP/IP protocol stack has fewer layers than the OSI model. Theoreti-
cally, because it combines several functions in each layer, it is more difficult to
implement but more efficient than OSI networking. The relationship between
the OSI and TCP/IP models is shown in Figure 19.8.

The TCP/IP application layer identifies several protocols in widespread use
in the Internet, including HTTP, FTP, SSH, DNS, and SMTP. The transport layer

19.3 Communication Structure 743

data-communication network

end-to-end message transfer
(connection management, error control,

fragmentation, flow control)

physical connection to
network termination equipment

transport layer

network routing, addressing,
call setup and clearing

transfer-syntax negotiation
data-representation transformations

network-independent
message-interchange service

presentation layer

file transfer, access, and management;
document and message interchange,

job transfer and manipulation

syntax-independent message
interchange service

end-user application process

distributed information
services

application layer

dialog and synchronization
control for application entities session layer

network layer

link layer

physical layer

data-link control
(framing, data transparency, error control)

mechanical and electrical
network-interface connections

Figure 19.6 The OSI protocol stack.

identifies the unreliable, connectionless user datagram protocol (UDP) and the
reliable, connection-oriented transmission control protocol (TCP). The Inter-
net protocol (IP) is responsible for routing IP datagrams, or packets, through
the Internet. The TCP/IP model does not formally identify a link or physical
layer, allowing TCP/IP traffic to run across any physical network. In Section
19.3.3, we consider the TCP/IP model running over an Ethernet network.

Security should be a concern in the design and implementation of any
modern communication protocol. Both strong authentication and encryption
are needed for secure communication. Strong authentication ensures that the
sender and receiver of a communication are who or what they are supposed
to be. Encryption protects the contents of the communication from eavesdrop-
ping. Weak authentication and clear-text communication are still very com-
mon, however, for a variety of reasons. When most of the common protocols
were designed, security was frequently less important than performance, sim-

744 Chapter 19 Networks and Distributed Systems

data-link-layer header

network-layer header

transport-layer header

session-layer header

presentation layer

application layer

message

data-link-layer trailer

Figure 19.7 An OSI network message.

plicity, and efficiency. This legacy is still showing itself today, as adding security
to existing infrastructure is proving to be difficult and complex.

Strong authentication requires a multistep handshake protocol or authen-
tication devices, adding complexity to a protocol. As to the encryption require-
ment, modern CPUs can efficiently perform encryption, frequently including
cryptographic acceleration instructions so system performance is not compro-
mised. Long-distance communication can be made secure by authenticating

data link

transport

application
HTTP, DNS, Telnet

SMTP, FTP

not defined

not defined

not defined

OSI TCP/IP

not defined

IP

TCP-UDP

physical

network

session

presentation

Figure 19.8 The OSI and TCP/IP protocol stacks.

19.3 Communication Structure 745

the endpoints and encrypting the stream of packets in a virtual private net-
work, as discussed in Section 16.4.2. LAN communication remains unencrypted
at most sites, but protocols such as NFS Version 4, which includes strong native
authentication and encryption, should help improve even LAN security.

19.3.3 TCP/IP Example

Next,we address name resolution and examine its operationwith respect to the
TCP/IP protocol stack on the Internet. Then we consider the processing needed
to transfer a packet between hosts on different Ethernet networks. We base our
description on the IPV4 protocols, which are the type most commonly used
today.

In a TCP/IP network, every host has a name and an associated IP address (or
host-id). Both of these strings must be unique; and so that the name space can
bemanaged, they are segmented. As described earlier, the name is hierarchical,
describing the host name and then the organization with which the host is
associated. The host-id is split into a network number and a host number. The
proportion of the split varies, depending on the size of the network. Once the
Internet administrators assign a network number, the site with that number is
free to assign host-ids.

The sending system checks its routing tables to locate a router to send the
frame on itsway. This routing table is either configuredmanually by the system
administrator or is populated by one of several routing protocols, such as the
Border Gateway Protocol (BGP). The routers use the network part of the host-
id to transfer the packet from its source network to the destination network.
The destination system then receives the packet. The packet may be a complete
message, or itmay just be a component of amessage,withmore packets needed
before the message can be reassembled and passed to the TCP/UDP (transport)
layer for transmission to the destination process.

Within a network, how does a packet move from sender (host or router) to
receiver? Every Ethernet device has a unique byte number, called the medium
access control (MAC) address, assigned to it for addressing. Two devices on a
LAN communicate with each other only with this number. If a system needs
to send data to another system, the networking software generates an address
resolution protocol (ARP) packet containing the IP address of the destination
system. This packet is broadcast to all other systems on that Ethernet network.

A broadcast uses a special network address (usually, the maximum
address) to signal that all hosts should receive and process the packet. The
broadcast is not re-sent by routers in between different networks, so only
systems on the local network receive it. Only the system whose IP address
matches the IP address of the ARP request responds and sends back its MAC
address to the system that initiated the query. For efficiency, the host caches
the IP–MAC address pair in an internal table. The cache entries are aged, so
that an entry is eventually removed from the cache if an access to that system
is not required within a given time. In this way, hosts that are removed from
a network are eventually forgotten. For added performance, ARP entries for
heavily used hosts may be pinned in the ARP cache.

Once an Ethernet device has announced its host-id and address, commu-
nication can begin. A process may specify the name of a host with which to
communicate. Networking software takes that name and determines the IP
address of the target, using a DNS lookup or an entry in a local hosts file

746 Chapter 19 Networks and Distributed Systems

preamble—start of packet

start of frame delimiter

destination address

source address

length of data section

pad (optional)

frame checksum

bytes

7

1

2 or 6

2 or 6

2

each byte pattern 10101010

pattern 10101011

Ethernet address or broadcast

Ethernet address

length in bytes

message data

message must be > 63 bytes long

for error detection

0–1500

0–46

4

data

Figure 19.9 An Ethernet packet.

where translations can be manually stored. The message is passed from the
application layer, through the software layers, and to the hardware layer. At
the hardware layer, the packet has the Ethernet address at its start; a trailer
indicates the end of the packet and contains a checksum for detection of packet
damage (Figure 19.9). The packet is placed on the network by the Ethernet
device. The data section of the packet may contain some or all of the data of
the original message, but it may also contain some of the upper-level headers
that compose the message. In other words, all parts of the original message
must be sent from source to destination, and all headers above the 802.3 layer
(data-link layer) are included as data in the Ethernet packets.

If the destination is on the same local network as the source, the system
can look in its ARP cache, find the Ethernet address of the host, and place the
packet on the wire. The destination Ethernet device then sees its address in the
packet and reads in the packet, passing it up the protocol stack.

If the destination system is on a network different from that of the source,
the source system finds an appropriate router on its network and sends the
packet there. Routers then pass the packet along the WAN until it reaches its
destination network. The router that connects the destination network checks
its ARP cache, finds the Ethernet number of the destination, and sends the
packet to that host. Through all of these transfers, the data-link-layer header
may change as the Ethernet address of the next router in the chain is used, but
the other headers of the packet remain the same until the packet is received
and processed by the protocol stack and finally passed to the receiving process
by the kernel.

19.3.4 Transport Protocols UDP and TCP

Once a host with a specific IP address receives a packet, it must somehow pass
it to the correct waiting process. The transport protocols TCP and UDP identify
the receiving (and sending) processes through the use of a port number. Thus,

19.3 Communication Structure 747

a host with a single IP address can have multiple server processes running
and waiting for packets as long as each server process specifies a different
port number. By default, many common services usewell-known port numbers.
Some examples include FTP (21), SSH (22), SMTP (25), and HTTP (80). For exam-
ple, if youwish to connect to an “http”website through yourweb browser, your
browser will automatically attempt to connect to port 80 on the server by using
the number 80 as the port number in the TCP transport header. For an extensive
list of well-known ports, log into your favorite Linux or UNIXmachine and take
a look at the file /etc/services.

The transport layer can accomplish more than just connecting a network
packet to a running process. It can also, if desired, add reliability to a network
packet stream. To explain how, we next outline some general behavior of the
transport protocols UDP and TCP.

19.3.4.1 User Datagram Protocol

The transport protocol UDP is unreliable in that it is a bare-bones extension to
IP with the addition of a port number. In fact, the UDP header is very simple
and contains only four fields: source port number, destination port number,
length, and checksum. Packets may be sent quickly to a destination using UDP.
However, since there are no guarantees of delivery in the lower layers of the
network stack, packets may become lost. Packets can also arrive at the receiver
out of order. It is up to the application to figure out these error cases and to
adjust (or not adjust).

Figure 19.10 illustrates a common scenario involving loss of a packet
between a client and a server using the UDP protocol. Note that this protocol
is known as a connectionless protocol because there is no connection setup at
the beginning of the transmission to set up state—the client just starts sending
data. Similarly, there is no connection teardown.

The client begins by sending some sort of request for information to the
server. The server then responds by sending four datagrams, or packets, to
the client. Unfortunately, one of the packets is dropped by an overwhelmed
router. The client must either make do with only three packets or use logic
programmed into the application to request the missing packet. Thus, we

inital request
for data

time

client server

dropped packet!

server starts sending
data to client

XV

V V

Figure 19.10 Example of a UDP data transfer with dropped packet.

748 Chapter 19 Networks and Distributed Systems

need to use a different transport protocol if we want any additional reliability
guarantees to be handled by the network.

19.3.4.2 Transmission Control Protocol

TCP is a transport protocol that is both reliable and connection-oriented. In addi-
tion to specifying port numbers to identify sending and receiving processes on
different hosts, TCP provides an abstraction that allows a sending process on
one host to send an in-order, uninterrupted byte stream across the network to
a receiving process on another host. It accomplishes these things through the
following mechanisms:

• Whenever a host sends a packet, the receiver must send an acknowledg-
ment packet, or ACK, to notify the sender that the packet was received. If
the ACK is not received before a timer expires, the sender will send that
packet again.

• TCP introduces sequence numbers into the TCP header of every packet.
These numbers allow the receiver to (1) put packets in order before sending
data up to the requesting process and (2) be aware of packets missing from
the byte stream.

• TCP connections are initiated with a series of control packets between the
sender and the receiver (often called a three-way handshake) and closed
gracefully with control packets responsible for tearing down the connec-
tion. These control packets allow both the sender and the receiver to set up
and remove state.

Figure 19.11 demonstrates a possible exchange using TCP (with connection
setup and tear-down omitted). After the connection has been established, the
client sends a request packet to the server with the sequence number 904.
Unlike the server in the UDP example, the servermust then send an ACK packet
back to the client. Next, the server starts sending its own stream of data packets
starting with a different sequence number. The client sends an ACK packet for
each data packet it receives. Unfortunately, the data packet with the sequence
number 127 is lost, and no ACK packet is sent by the client. The sender times
out waiting for the ACK packet, so it must resend data packet 127. Later in
the connection, the server sends the data packet with the sequence number
128, but the ACK is lost. Since the server does not receive the ACK it must
resend data packet 128. The client then receives a duplicate packet. Because the
client knows that it previously received a packet with that sequence number,
it throws the duplicate away. However, it must send another ACK back to the
server to allow the server to continue.

In the actual TCP specification, an ACK isn’t required for each and every
packet. Instead, the receiver can send a cumulative ACK to ACK a series of
packets. The server can also send numerous data packets sequentially before
waiting for ACKs, to take advantage of network throughput.

TCP also helps regulate the flow of packets through mechanisms called
flow control and congestion control. Flow control involves preventing the sender
from overrunning the capacity of the receiver. For example, the receiver may

19.4 Network and Distributed Operating Systems 749

inital request
for data

time

client server

server starts sending
data to client

X

X

V

V V

Data, seq = 904

Data, seq = 126

Data, seq = 128

Data, seq = 128

Data, seq = 127

Data, seq = 127

ACK for 904

ACK for 126

ACK for 127

ACK for 128

ACK for 128

timeout waiting
for ACK
retransmit

timeout waiting
for ACK
retransmit

Figure 19.11 Example of a TCP data transfer with dropped packets.

have a slower connection or may have slower hardware components (like a
slower network card or processor). Flow-control state can be returned in the
ACK packets of the receiver to alert the sender to slow down or speed up.
Congestion control attempts to approximate the state of the networks (and
generally the routers) between the sender and the receiver. If a router becomes
overwhelmedwith packets, it will tend to drop them. Dropping packets results
in ACK timeouts, which results in more packets saturating the network. To
prevent this condition, the sendermonitors the connection for droppedpackets
by noticing how many packets are not acknowledged. If there are too many
dropped packets, the sender will slow down the rate at which it sends them.
This helps ensure that the TCP connection is being fair to other connections
happening at the same time.

By utilizing a reliable transport protocol like TCP, a distributed systemdoes
not need extra logic to deal with lost or out-of-order packets. However, TCP is
slower than UDP.

19.4 Network and Distributed Operating Systems

In this section, we describe the two general categories of network-oriented
operating systems: network operating systems and distributed operating sys-

750 Chapter 19 Networks and Distributed Systems

tems.Network operating systems are simpler to implement but generallymore
difficult for users to access and use than are distributed operating systems,
which provide more features.

19.4.1 Network Operating Systems

A network operating system provides an environment in which users can
access remote resources (implementing resource sharing) by either logging
in to the appropriate remote machine or transferring data from the remote
machine to their own machines. Currently, all general-purpose operating sys-
tems, and even embedded operating systems such as Android and iOS, are
network operating systems.

19.4.1.1 Remote Login

An important function of a network operating system is to allow users to
log in remotely. The Internet provides the ssh facility for this purpose. To
illustrate, suppose that a user at Westminster College wishes to compute on
kristen.cs.yale.edu, a computer located at Yale University. To do so, the
user must have a valid account on that machine. To log in remotely, the user
issues the command

ssh kristen.cs.yale.edu

This command results in the formation of an encrypted socket connection
between the local machine at Westminster College and the kris-
ten.cs.yale.edu computer. After this connection has been established,
the networking software creates a transparent, bidirectional link so that all
characters entered by the user are sent to a process on kristen.cs.yale.edu
and all the output from that process is sent back to the user. The process on
the remote machine asks the user for a login name and a password. Once the
correct information has been received, the process acts as a proxy for the user,
who can compute on the remote machine just as any local user can.

19.4.1.2 Remote File Transfer

Another major function of a network operating system is to provide a mech-
anism for remote fil transfer from one machine to another. In such an envi-
ronment, each computer maintains its own local file system. If a user at one
site (say, Kurt at albion.edu) wants to access a file owned by Becca located on
another computer (say, at colby.edu), then the file must be copied explicitly
from the computer at Colby in Maine to the computer at Albion in Michigan.
The communication is one-directional and individual, such that other users
at those sites wishing to transfer a file, say Sean at colby.edu to Karen at
albion.edu, must likewise issue a set of commands.

The Internet provides a mechanism for such a transfer with the file transfer
protocol (FTP) and themore private secure file transfer protocol (SFTP). Suppose
that user Carla at wesleyan.edu wants to copy a file that is owned by Owen
at kzoo.edu. The user must first invoke the sftp program by executing

sftp owen@kzoo.edu

mailto:owen@kzoo.edu

19.4 Network and Distributed Operating Systems 751

The program then asks the user for a login name and a password. Once the
correct information has been received, the user can use a series of commands
to upload files, download files, and navigate the remote file system structure.
Some of these commands are:

• get—Transfer a file from the remote machine to the local machine.

• put—Transfer a file from the local machine to the remote machine.

• ls or dir—List files in the current directory on the remote machine.

• cd—Change the current directory on the remote machine.

There are also various commands to change transfer modes (for binary or ASCII
files) and to determine connection status.

19.4.1.3 Cloud Storage

Basic cloud-based storage applications allow users to transfer files much as
with FTP. Users can upload files to a cloud server, download files to the local
computer, and share files with other cloud-service users via a web link or other
sharing mechanism through a graphical interface. Common examples include
Dropbox and Google Drive.

An important point about SSH, FTP, and cloud-based storage applications
is that they require the user to change paradigms. FTP, for example, requires
the user to know a command set entirely different from the normal operating-
system commands. With SSH, the user must know appropriate commands on
the remote system. For instance, a user on a Windows machine who connects
remotely to a UNIXmachinemust switch to UNIX commands for the duration of
the SSH session. (In networking, a session is a complete round of communica-
tion, frequently beginningwith a login to authenticate and endingwith a logoff
to terminate the communication.)With cloud-based storage applications, users
may have to log into the cloud service (usually through a web browser) or
native application and then use a series of graphical commands to upload,
download, or share files. Obviously, users would find it more convenient not to
be required to use a different set of commands. Distributed operating systems
are designed to address this problem.

19.4.2 Distributed Operating Systems

In a distributed operating system, users access remote resources in the same
way they access local resources. Data and process migration from one site to
another is under the control of the distributed operating system. Depending
on the goals of the system, it can implement data migration, computation
migration, process migration, or any combination thereof.

19.4.2.1 Data Migration

Suppose a user on site Awants to access data (such as a file) that reside at site
B. The system can transfer the data by one of two basic methods. One approach
to data migration is to transfer the entire file to site A. From that point on, all
access to the file is local. When the user no longer needs access to the file, a
copy of the file (if it has been modified) is sent back to site B. Even if only a

752 Chapter 19 Networks and Distributed Systems

modest change has been made to a large file, all the data must be transferred.
This mechanism can be thought of as an automated FTP system. This approach
was used in the Andrew file system, but it was found to be too inefficient.

The other approach is to transfer to site A only those portions of the file
that are actually necessary for the immediate task. If another portion is required
later, another transfer will take place. When the user no longer wants to access
the file, any part of it that has been modified must be sent back to site B. (Note
the similarity to demand paging.) Most modern distributed systems use this
approach.

Whichever method is used, data migration includes more than the mere
transfer of data from one site to another. The system must also perform var-
ious data translations if the two sites involved are not directly compatible
(for instance, if they use different character-code representations or represent
integers with a different number or order of bits).

19.4.2.2 Computation Migration

In some circumstances, we may want to transfer the computation, rather than
the data, across the system; this process is called computation migration. For
example, consider a job that needs to access various large files that reside at
different sites, to obtain a summary of those files. It would be more efficient to
access the files at the sites where they reside and return the desired results to
the site that initiated the computation. Generally, if the time to transfer the data
is longer than the time to execute the remote command, the remote command
should be used.

Such a computation can be carried out in different ways. Suppose that
process P wants to access a file at site A. Access to the file is carried out at site
A and could be initiated by an RPC. An RPC uses network protocols to execute
a routine on a remote system (Section 3.8.2). Process P invokes a predefined
procedure at site A. The procedure executes appropriately and then returns
the results to P.

Alternatively, process P can send amessage to site A. The operating system
at site A then creates a new process Q whose function is to carry out the
designated task. When process Q completes its execution, it sends the needed
result back to P via the message system. In this scheme, process P may execute
concurrently with process Q. In fact, it may have several processes running
concurrently on several sites.

Either method could be used to access several files (or chunks of files)
residing at various sites. One RPCmight result in the invocation of another RPC
or even in the transfer of messages to another site. Similarly, process Q could,
during the course of its execution, send amessage to another site, which in turn
would create another process. This process might either send a message back
to Q or repeat the cycle.

19.4.2.3 Process Migration

A logical extension of computation migration is process migration. When a
process is submitted for execution, it is not always executed at the site at which
it is initiated. The entire process, or parts of it,may be executed at different sites.
This scheme may be used for several reasons:

19.5 Design Issues in Distributed Systems 753

• Load balancing. The processes (or subprocesses)may be distributed across
the sites to even the workload.

• Computation speedup. If a single process can be divided into a number
of subprocesses that can run concurrently on different sites or nodes, then
the total process turnaround time can be reduced.

• Hardware preference. The process may have characteristics that make it
more suitable for execution on some specialized processor (such as matrix
inversion on a GPU) than on a microprocessor.

• Software preference. The process may require software that is available at
only a particular site, and either the software cannot be moved, or it is less
expensive to move the process.

• Data access. Just as in computationmigration, if the data being used in the
computation are numerous, it may be more efficient to have a process run
remotely (say, on a server that hosts a large database) than to transfer all
the data and run the process locally.

We use two complementary techniques to move processes in a computer
network. In the first, the system can attempt to hide the fact that the process has
migrated from the client. The client then need not code her program explicitly
to accomplish the migration. This method is usually employed for achieving
load balancing and computation speedup among homogeneous systems, as
they do not need user input to help them execute programs remotely.

The other approach is to allow (or require) the user to specify explicitly
how the process should migrate. This method is usually employed when the
process must be moved to satisfy a hardware or software preference.

You have probably realized that the World Wide Web has many aspects
of a distributed computing environment. Certainly it provides data migra-
tion (between a web server and a web client). It also provides computation
migration. For instance, a web client could trigger a database operation on a
web server. Finally, with Java, Javascript, and similar languages, it provides
a form of process migration: Java applets and Javascript scripts are sent from
the server to the client, where they are executed. A network operating system
providesmost of these features, but a distributed operating systemmakes them
seamless and easily accessible. The result is a powerful and easy-to-use facility
—one of the reasons for the huge growth of the World Wide Web.

19.5 Design Issues in Distributed Systems

The designers of a distributed systemmust take a number of design challenges
into account. The system should be robust so that it can withstand failures. The
system should also be transparent to users in terms of both file location and
user mobility. Finally, the system should be scalable to allow the addition of
more computation power, more storage, or more users. We briefly introduce
these issues here. In the next section, we put them in context when we describe
the designs of specific distributed file systems.

754 Chapter 19 Networks and Distributed Systems

19.5.1 Robustness

A distributed system may suffer from various types of hardware failure. The
failure of a link, a host, or a site and the loss of a message are the most common
types. To ensure that the system is robust, we must detect any of these failures,
reconfigure the system so that computation can continue, and recover when
the failure is repaired.

Asystem can be fault tolerant in that it can tolerate a certain level of failure
and continue to function normally. The degree of fault tolerance depends on
the design of the distributed system and the specific fault. Obviously, more
fault tolerance is better.

We use the term fault tolerance in a broad sense. Communication faults,
certain machine failures, storage-device crashes, and decays of storage media
should all be tolerated to some extent. A fault-tolerant system should continue
to function, perhaps in a degraded form, when faced with such failures. The
degradation can affect performance, functionality, or both. It should be pro-
portional, however, to the failures that caused it. A system that grinds to a halt
when only one of its components fails is certainly not fault tolerant.

Unfortunately, fault tolerance can be difficult and expensive to implement.
At the network layer, multiple redundant communication paths and network
devices such as switches and routers are needed to avoid a communication
failure. A storage failure can cause loss of the operating system, applications,
or data. Storage units can include redundant hardware components that auto-
matically take over from each other in case of failure. In addition, RAID systems
can ensure continued access to the data even in the event of one ormore storage
device failures (Section 11.8).

19.5.1.1 Failure Detection

In an environment with no shared memory, we generally cannot differentiate
among link failure, site failure, host failure, and message loss. We can usu-
ally detect only that one of these failures has occurred. Once a failure has
been detected, appropriate action must be taken. What action is appropriate
depends on the particular application.

To detect link and site failure, we use a heartbeat procedure. Suppose that
sites A and B have a direct physical link between them. At fixed intervals, the
sites send each other an I-am-upmessage. If site Adoes not receive thismessage
within a predetermined time period, it can assume that site B has failed, that
the link betweenAandB has failed, or that themessage fromBhas been lost. At
this point, site Ahas two choices. It can wait for another time period to receive
an I-am-upmessage from B, or it can send an Are-you-up?message to B.

If time goes by and site Astill has not received an I-am-upmessage, or if site
Ahas sent an Are-you-up?message and has not received a reply, the procedure
can be repeated. Again, the only conclusion that site A can draw safely is that
some type of failure has occurred.

Site A can try to differentiate between link failure and site failure by send-
ing an Are-you-up?message to B by another route (if one exists). If and when B
receives this message, it immediately replies positively. This positive reply tells
A that B is up and that the failure is in the direct link between them. Since we
do not know in advance how long it will take the message to travel fromAto B
and back, we must use a time-out scheme. At the time A sends the Are-you-up?

19.5 Design Issues in Distributed Systems 755

message, it specifies a time interval during which it is willing to wait for the
reply from B. If A receives the reply message within that time interval, then it
can safely conclude that B is up. If not, however (that is, if a time-out occurs),
then A may conclude only that one or more of the following situations has
occurred:

• Site B is down.

• The direct link (if one exists) from A to B is down.

• The alternative path from A to B is down.

• The message has been lost. (Although the use of a reliable transport pro-
tocol such as TCP should eliminate this concern.)

Site A cannot, however, determine which of these events has occurred.

19.5.1.2 Reconfiguratio

Suppose that site A has discovered, through the mechanism just described,
that a failure has occurred. It must then initiate a procedure that will allow
the system to reconfigure and to continue its normal mode of operation.

• If a direct link fromAto B has failed, this informationmust be broadcast to
every site in the system, so that the various routing tables can be updated
accordingly.

• If the system believes that a site has failed (because that site can no longer
be reached), then all sites in the system must be notified, so that they
will no longer attempt to use the services of the failed site. The failure
of a site that serves as a central coordinator for some activity (such as
deadlock detection) requires the election of a new coordinator. Note that,
if the site has not failed (that is, if it is up but cannot be reached), then
we may have the undesirable situation in which two sites serve as the
coordinator. When the network is partitioned, the two coordinators (each
for its own partition) may initiate conflicting actions. For example, if the
coordinators are responsible for implementing mutual exclusion, we may
have a situation in which two processes are executing simultaneously in
their critical sections.

19.5.1.3 Recovery from Failure

When a failed link or site is repaired, it must be integrated into the system
gracefully and smoothly.

• Suppose that a link between A and B has failed. When it is repaired, both
A and B must be notified. We can accomplish this notification by continu-
ously repeating the heartbeat procedure described in Section 19.5.1.1.

• Suppose that site B has failed. When it recovers, it must notify all other
sites that it is up again. Site B then may have to receive information from
the other sites to update its local tables. For example, it may need routing-
table information, a list of sites that are down, undelivered messages, a

756 Chapter 19 Networks and Distributed Systems

transaction log of unexecuted transactions, and mail. If the site has not
failed but simply cannot be reached, then it still needs this information.

19.5.2 Transparency

Making the multiple processors and storage devices in a distributed system
transparent to the users has been a key challenge to many designers. Ide-
ally, a distributed system should look to its users like a conventional, cen-
tralized system. The user interface of a transparent distributed system should
not distinguish between local and remote resources. That is, users should be
able to access remote resources as though these resources were local, and the
distributed system should be responsible for locating the resources and for
arranging for the appropriate interaction.

Another aspect of transparency is user mobility. It would be convenient to
allow users to log into any machine in the system rather than forcing them to
use a specific machine. A transparent distributed system facilitates user mobil-
ity by bringing over a user’s environment (for example, home directory) to
wherever he logs in. Protocols like LDAP provide an authentication system for
local, remote, and mobile users. Once the authentication is complete, facilities
like desktop virtualization allow users to see their desktop sessions at remote
facilities.

19.5.3 Scalability

Still another issue is scalability—the capability of a system to adapt to
increased service load. Systems have bounded resources and can become
completely saturated under increased load. For example, with respect to a file
system, saturation occurs either when a server’s CPU runs at a high utilization
rate or when disks’ I/O requests overwhelm the I/O subsystem. Scalability
is a relative property, but it can be measured accurately. A scalable system
reacts more gracefully to increased load than does a nonscalable one. First,
its performance degrades more moderately; and second, its resources reach
a saturated state later. Even perfect design however cannot accommodate
an ever-growing load. Adding new resources might solve the problem, but
it might generate additional indirect load on other resources (for example,
adding machines to a distributed system can clog the network and increase
service loads). Even worse, expanding the system can call for expensive
design modifications. A scalable system should have the potential to grow
without these problems. In a distributed system, the ability to scale up
gracefully is of special importance, since expanding a network by adding
new machines or interconnecting two networks is commonplace. In short, a
scalable design should withstand high service load, accommodate growth of
the user community, and allow simple integration of added resources.

Scalability is related to fault tolerance, discussed earlier. A heavily loaded
component can becomeparalyzed andbehave like a faulty component. In addi-
tion, shifting the load from a faulty component to that component’s backup
can saturate the latter. Generally, having spare resources is essential for ensur-
ing reliability as well as for handling peak loads gracefully. Thus, the multi-
ple resources in a distributed system represent an inherent advantage, giving
the system a greater potential for fault tolerance and scalability. However,

19.6 Distributed File Systems 757

inappropriate design can obscure this potential. Fault-tolerance and scalability
considerations call for a design demonstrating distribution of control and data.

Scalability can also be related to efficient storage schemes. For example,
many cloud storage providers use compression or deduplication to cut down
on the amount of storage used. Compression reduces the size of a file. For exam-
ple, a zip archive file can be generated out of a file (or files) by executing a zip
command, which runs a lossless compression algorithm over the data speci-
fied. (Lossless compression allows original data to be perfectly reconstructed
from compressed data.) The result is a file archive that is smaller than the
uncompressed file. To restore the file to its original state, a user runs some sort
of unzip command over the zip archive file. Deduplication seeks to lower data
storage requirements by removing redundant data. With this technology, only
one instance of data is stored across an entire system (even across data owned
by multiple users). Both compression and deduplication can be performed at
the file level or the block level, and they can be used together. These techniques
can be automatically built into a distributed system to compress information
without users explicitly issuing commands, thereby saving storage space and
possibly cutting down on network communication costs without adding user
complexity.

19.6 Distributed File Systems

Although the World Wide Web is the predominant distributed system in use
today, it is not the only one. Another important and popular use of distributed
computing is the distributed fil system, or DFS.

To explain the structure of a DFS, we need to define the terms service,
server, and client in the DFS context. A service is a software entity running on
one or more machines and providing a particular type of function to clients.
A server is the service software running on a single machine. A client is a
process that can invoke a service using a set of operations that form its client
interface. Sometimes a lower-level interface is defined for the actual cross-
machine interaction; it is the intermachine interface.

Using this terminology, we say that a file system provides file services to
clients. A client interface for a file service is formed by a set of primitive file
operations, such as create a file, delete a file, read from a file, and write to a file.
The primary hardware component that a file server controls is a set of local
secondary-storage devices (usually, hard disks or solid-state drives) on which
files are stored and from which they are retrieved according to the clients’
requests.

A DFS is a file system whose clients, servers, and storage devices are dis-
persed among themachines of a distributed system. Accordingly, service activ-
ity has to be carried out across the network. Instead of a single centralized
data repository, the system frequently has multiple and independent storage
devices. As you will see, the concrete configuration and implementation of a
DFS may vary from system to system. In some configurations, servers run on
dedicated machines. In others, a machine can be both a server and a client.

The distinctive features of a DFS are the multiplicity and autonomy of
clients and servers in the system. Ideally, though, a DFS should appear to its
clients to be a conventional, centralized file system. That is, the client interface

758 Chapter 19 Networks and Distributed Systems

of a DFS should not distinguish between local and remote files. It is up to the
DFS to locate the files and to arrange for the transport of the data. A transparent
DFS—like the transparent distributed systems mentioned earlier—facilitates
user mobility by bringing a user’s environment (for example, the user’s home
directory) to wherever the user logs in.

The most important performance measure of a DFS is the amount of time
needed to satisfy service requests. In conventional systems, this time consists
of storage-access time and a small amount of CPU-processing time. In a DFS,
however, a remote access has the additional overhead associated with the
distributed structure. This overhead includes the time to deliver the request
to a server, as well as the time to get the response across the network back
to the client. For each direction, in addition to the transfer of the information,
there is the CPU overhead of running the communication protocol software.
The performance of a DFS can be viewed as another dimension of the DFS’s
transparency. That is, the performance of an ideal DFS would be comparable to
that of a conventional file system.

The basic architecture of a DFS depends on its ultimate goals. Two widely
used architectural models we discuss here are the client–server model and the
cluster-based model. The main goal of a client–server architecture is to allow
transparent file sharing among one or more clients as if the files were stored
locally on the individual client machines. The distributed file systems NFS and
OpenAFS are prime examples. NFS is the most common UNIX-based DFS. It has
several versions, and here we refer to NFS Version 3 unless otherwise noted.

If many applications need to be run in parallel on large data sets with high
availability and scalability, the cluster-based model is more appropriate than
the client–server model. Two well-known examples are the Google file system
and the open-source HDFS, which runs as part of the Hadoop framework.

19.6.1 The Client–Server DFS Model

Figure 19.12 illustrates a simple DFS client–server model. The server stores
both files and metadata on attached storage. In some systems, more than one
server can be used to store different files. Clients are connected to the server
through a network and can request access to files in the DFS by contacting
the server through a well-known protocol such as NFS Version 3. The server

client

network

client

client

server

Figure 19.12 Client–server DFS model.

19.6 Distributed File Systems 759

is responsible for carrying out authentication, checking the requested file per-
missions, and, if warranted, delivering the file to the requesting client. When a
clientmakes changes to the file, the clientmust somehowdeliver those changes
to the server (which holds the master copy of the file). The client’s and the
server’s versions of the file should be kept consistent in a way that minimizes
network traffic and the server’s workload to the extent possible.

The network file system (NFS) protocol was originally developed by Sun
Microsystems as an open protocol, which encouraged early adoption across
different architectures and systems. From the beginning, the focus of NFS was
simple and fast crash recovery in the face of server failure. To implement this
goal, the NFS server was designed to be stateless; it does not keep track of
which client is accessing which file or of things such as open file descriptors
and file pointers. This means that, whenever a client issues a file operation
(say, to read a file), that operation has to be idempotent in the face of server
crashes. Idempotent describes an operation that can be issued more than once
yet return the same result. In the case of a read operation, the client keeps track
of the state (such as the file pointer) and can simply reissue the operation if
the server has crashed and come back online. You can readmore about the NFS
implementation in Section 15.8.

The Andrew fil system (OpenAFS) was created at Carnegie Mellon Uni-
versitywith a focus on scalability. Specifically, the researcherswanted to design
a protocol that would allow the server to support as many clients as possible.
Thismeantminimizing requests and traffic to the server.When a client requests
a file, the file’s contents are downloaded from the server and stored on the
client’s local storage. Updates to the file are sent to the server when the file is
closed, and new versions of the file are sent to the clientwhen the file is opened.
In comparison, NFS is quite chatty and will send block read and write requests
to the server as the file is being used by a client.

Both OpenAFS and NFS are meant to be used in addition to local file sys-
tems. In other words, youwould not format a hard drive partitionwith the NFS
file system. Instead, on the server, you would format the partition with a local
file system of your choosing, such as ext4, and export the shared directories via
the DFS. In the client, you would simply attach the exported directories to your
file-system tree. In this way, the DFS can be separated from responsibility for
the local file system and can concentrate on distributed tasks.

The DFS client–server model, by design, may suffer from a single point of
failure if the server crashes. Computer clustering can help resolve this problem
by using redundant components and clustering methods such that failures are
detected and failing over to working components continues server operations.
In addition, the server presents a bottleneck for all requests for both data and
metadata, which results in problems of scalability and bandwidth.

19.6.2 The Cluster-Based DFS Model

As the amount of data, I/Oworkload, and processing expands, so does the need
for a DFS to be fault-tolerant and scalable. Large bottlenecks cannot be tolerated,
and system component failures must be expected. Cluster-based architecture
was developed in part to meet these needs.

Figure 19.13 illustrates a sample cluster-based DFS model. This is the basic
model presented by the Google file system (GFS) and the Hadoop distributed

760 Chapter 19 Networks and Distributed Systems

client

network
client

data server

data server

data server

file chunk

file chunk

file chunk

file

metadata
server

Figure 19.13 An example of a cluster-based DFS model

fil system (HDFS). One or more clients are connected via a network to a
master metadata server and several data servers that house “chunks” (or por-
tions) of files. The metadata server keeps a mapping of which data servers
hold chunks of which files, as well as a traditional hierarchical mapping of
directories and files. Each file chunk is stored on a data server and is replicated
a certain number of times (for example, three times) to protect against compo-
nent failure and for faster access to the data (servers containing the replicated
chunks have fast access to those chunks).

To obtain access to a file, a client must first contact the metadata server.
The metadata server then returns to the client the identities of the data servers
that hold the requested file chunks. The client can then contact the closest data
server (or servers) to receive the file information. Different chunks of the file can
be read or written to in parallel if they are stored on different data servers, and
the metadata server may need to be contacted only once in the entire process.
This makes the metadata server less likely to be a performance bottleneck. The
metadata server is also responsible for redistributing and balancing the file
chunks among the data servers.

GFS was released in 2003 to support large distributed data-intensive appli-
cations. The design of GFS was influenced by four main observations:

• Hardware component failures are the norm rather than the exception and
should be routinely expected.

• Files stored on such a system are very large.

• Most files are changed by appending new data to the end of the file rather
than overwriting existing data.

• Redesigning the applications and file system API increases the system’s
flexibility.

Consistent with the fourth observation, GFS exports its own API and requires
applications to be programmed with this API.

19.7 DFS Naming and Transparency 761

Shortly after developing GFS, Google developed a modularized software
layer called MapReduce to sit on top of GFS. MapReduce allows developers
to carry out large-scale parallel computations more easily and utilizes the
benefits of the lower-layer file system. Later, HDFS and the Hadoop framework
(which includes stackable modules like MapReduce on top of HDFS) were
created based on Google’s work. Like GFS and MapReduce, Hadoop supports
the processing of large data sets in distributed computing environments. As
suggested earlier, the drive for such a framework occurred because traditional
systems could not scale to the capacity and performance needed by “big data”
projects (at least not at reasonable prices). Examples of big data projects include
crawling and analyzing social media, customer data, and large amounts of
scientific data points for trends.

19.7 DFS Naming and Transparency

Naming is a mapping between logical and physical objects. For instance, users
deal with logical data objects represented by file names, whereas the system
manipulates physical blocks of data stored on disk tracks. Usually, a user refers
to a file by a textual name. The latter is mapped to a lower-level numerical
identifier that in turn is mapped to disk blocks. This multilevel mapping
provides users with an abstraction of a file that hides the details of how and
where on the disk the file is stored.

In a transparent DFS, a new dimension is added to the abstraction: that of
hidingwhere in the network the file is located. In a conventional file system, the
range of the naming mapping is an address within a disk. In a DFS, this range
is expanded to include the specific machine on whose disk the file is stored.
Going one step further with the concept of treating files as abstractions leads
to the possibility of fil replication. Given a file name, the mapping returns a
set of the locations of this file’s replicas. In this abstraction, both the existence
of multiple copies and their locations are hidden.

19.7.1 Naming Structures

We need to differentiate two related notions regarding name mappings in a
DFS:

1. Location transparency. The name of a file does not reveal any hint of the
file’s physical storage location.

2. Location independence. The name of a file need not be changed when
the file’s physical storage location changes.

Both definitions relate to the level of naming discussed previously, since files
have different names at different levels (that is, user-level textual names and
system-level numerical identifiers). A location-independent naming scheme is
a dynamic mapping, since it can map the same file name to different locations
at two different times. Therefore, location independence is a stronger property
than location transparency.

In practice, most of the current DFSs provide a static, location-transparent
mapping for user-level names. Some support fil migration—that is, changing
the location of a file automatically, providing location independence. OpenAFS

762 Chapter 19 Networks and Distributed Systems

supports location independence and file mobility, for example. HDFS includes
file migration but does so without following POSIX standards, providing more
flexibility in implementation and interface. HDFS keeps track of the location
of data but hides this information from clients. This dynamic location trans-
parency allows the underlying mechanism to self-tune. In another example,
Amazon’s S3 cloud storage facility provides blocks of storage on demand via
APIs, placing the storage where it sees fit and moving the data as necessary to
meet performance, reliability, and capacity requirements.

A few aspects can further differentiate location independence and static
location transparency:

• Divorce of data from location, as exhibited by location independence, pro-
vides a better abstraction for files. A file name should denote the file’s
most significant attributes, which are its contents rather than its loca-
tion. Location-independent files can be viewed as logical data containers
that are not attached to a specific storage location. If only static location
transparency is supported, the file name still denotes a specific, although
hidden, set of physical disk blocks.

• Static location transparency provides users with a convenient way to share
data. Users can share remote files by simply naming the files in a location-
transparent manner, as though the files were local. Dropbox and other
cloud-based storage solutions work this way. Location independence pro-
motes sharing the storage space itself, aswell as the data objects.Whenfiles
can bemobilized, the overall, system-wide storage space looks like a single
virtual resource. A possible benefit is the ability to balance the utilization
of storage across the system.

• Location independence separates the naming hierarchy from the storage-
devices hierarchy and from the intercomputer structure. By contrast, if
static location transparency is used (although names are transparent),
we can easily expose the correspondence between component units and
machines. The machines are configured in a pattern similar to the naming
structure. This configuration may restrict the architecture of the system
unnecessarily and conflict with other considerations. A server in charge of
a root directory is an example of a structure that is dictated by the naming
hierarchy and contradicts decentralization guidelines.

Once the separation of name and location has been completed, clients
can access files residing on remote server systems. In fact, these clients may
be diskless and rely on servers to provide all files, including the operating-
system kernel. Special protocols are needed for the boot sequence, however.
Consider the problem of getting the kernel to a diskless workstation. The
diskless workstation has no kernel, so it cannot use the DFS code to retrieve
the kernel. Instead, a special boot protocol, stored in read-only memory (ROM)
on the client, is invoked. It enables networking and retrieves only one special
file (the kernel or boot code) from a fixed location. Once the kernel is copied
over the network and loaded, its DFS makes all the other operating-system files
available. The advantages of diskless clients are many, including lower cost
(because the client machines require no disks) and greater convenience (when
an operating-system upgrade occurs, only the server needs to be modified).

19.7 DFS Naming and Transparency 763

The disadvantages are the added complexity of the boot protocols and the
performance loss resulting from the use of a network rather than a local disk.

19.7.2 Naming Schemes

There are three main approaches to naming schemes in a DFS. In the simplest
approach, a file is identified by some combination of its host name and local
name, which guarantees a unique system-wide name. In Ibis, for instance, a
file is identified uniquely by the name host:local-name, where local-name is a
UNIX-like path. The Internet URL system also uses this approach. This naming
scheme is neither location transparent nor location independent. The DFS is
structured as a collection of isolated component units, each ofwhich is an entire
conventional file system. Component units remain isolated, although means
are provided to refer to remote files.We donot consider this scheme any further
here.

The second approach was popularized by NFS. NFS provides a means to
attach remote directories to local directories, thus giving the appearance of a
coherent directory tree. Early NFS versions allowed only previously mounted
remote directories to be accessed transparently. The advent of the automount
feature allowed mounts to be done on demand based on a table of mount
points and file-structure names. Components are integrated to support trans-
parent sharing, but this integration is limited and is not uniform, because
each machine may attach different remote directories to its tree. The resulting
structure is versatile.

We can achieve total integration of the component file systems by using
a third approach. Here, a single global name structure spans all the files in
the system. OpenAFS provides a single global namespace for the files and
directories it exports, allowing a similar user experience across different client
machines. Ideally, the composed file-system structure is the same as the struc-
ture of a conventional file system. In practice, however, the many special files
(for example, UNIX device files and machine-specific binary directories) make
this goal difficult to attain.

To evaluate naming structures, we look at their administrative complexity.
Themost complex andmost difficult-to-maintain structure is the NFS structure.
Because any remote directory can be attached anywhere on the local directory
tree, the resulting hierarchy can be highly unstructured. If a server becomes
unavailable, some arbitrary set of directories on different machines becomes
unavailable. In addition, a separate accreditation mechanism controls which
machine is allowed to attach which directory to its tree. Thus, a user might
be able to access a remote directory tree on one client but be denied access on
another client.

19.7.3 Implementation Techniques

Implementation of transparent naming requires a provision for the mapping
of a file name to the associated location. To keep this mapping manageable,
we must aggregate sets of files into component units and provide the mapping
on a component-unit basis rather than on a single-file basis. This aggregation
serves administrative purposes as well. UNIX-like systems use the hierarchical
directory tree to provide name-to-location mapping and to aggregate files
recursively into directories.

764 Chapter 19 Networks and Distributed Systems

To enhance the availability of the crucial mapping information, we can use
replication, local caching, or both. As we noted, location independence means
that the mapping changes over time. Hence, replicating the mapping makes
a simple yet consistent update of this information impossible. To overcome
this obstacle, we can introduce low-level, location-independent file identifiers.
(OpenAFS uses this approach.) Textual file names aremapped to lower-level file
identifiers that indicate to which component unit the file belongs. These iden-
tifiers are still location independent. They can be replicated and cached freely
without being invalidated by migration of component units. The inevitable
price is the need for a second level ofmapping,whichmaps component units to
locations and needs a simple yet consistent update mechanism. Implementing
UNIX-like directory trees using these low-level, location-independent identi-
fiers makes the whole hierarchy invariant under component-unit migration.
The only aspect that does change is the component-unit location mapping.

A common way to implement low-level identifiers is to use structured
names. These names are bit strings that usually have two parts. The first part
identifies the component unit to which the file belongs; the second part identi-
fies the particular filewithin the unit. Variantswithmore parts are possible. The
invariant of structured names, however, is that individual parts of the name
are unique at all times only within the context of the rest of the parts. We can
obtain uniqueness at all times by taking care not to reuse a name that is still in
use, by adding sufficiently more bits (this method is used in OpenAFS), or by
using a timestamp as one part of the name (as was done in Apollo Domain).
Another way to view this process is that we are taking a location-transparent
system, such as Ibis, and adding another level of abstraction to produce a
location-independent naming scheme.

19.8 Remote File Access

Next, let’s consider a user who requests access to a remote file. The server
storing the file has been located by the naming scheme, and now the actual
data transfer must take place.

One way to achieve this transfer is through a remote-service mechanism,
whereby requests for accesses are delivered to the server, the server machine
performs the accesses, and their results are forwarded back to the user. One of
the most common ways of implementing remote service is the RPC paradigm,
which we discussed in Chapter 3. A direct analogy exists between disk-access
methods in conventional file systems and the remote-service method in a DFS:
using the remote-service method is analogous to performing a disk access for
each access request.

To ensure reasonable performance of a remote-service mechanism, we can
use a form of caching. In conventional file systems, the rationale for caching is
to reduce disk I/O (thereby increasing performance), whereas in DFSs, the goal
is to reduce both network traffic and disk I/O. In the following discussion, we
describe the implementation of caching in a DFS and contrast it with the basic
remote-service paradigm.

19.8.1 Basic Caching Scheme

The concept of caching is simple. If the data needed to satisfy the access request
are not already cached, then a copy of the data is brought from the server to

19.8 Remote File Access 765

the client system. Accesses are performed on the cached copy. The idea is to
retain recently accessed disk blocks in the cache, so that repeated accesses to the
same information can be handled locally, without additional network traffic.
A replacement policy (for example, the least-recently-used algorithm) keeps
the cache size bounded. No direct correspondence exists between accesses and
traffic to the server. Files are still identified with one master copy residing at
the server machine, but copies (or parts) of the file are scattered in different
caches. When a cached copy is modified, the changes need to be reflected on
the master copy to preserve the relevant consistency semantics. The problem
of keeping the cached copies consistent with the master file is the cache-
consistency problem, which we discuss in Section 19.8.4. DFS caching could
just as easily be called network virtual memory. It acts similarly to demand-
paged virtual memory, except that the backing store usually is a remote server
rather than a local disk. NFS allows the swap space to be mounted remotely,
so it actually can implement virtual memory over a network, though with a
resulting performance penalty.

The granularity of the cached data in a DFS can vary from blocks of a file
to an entire file. Usually, more data are cached than are needed to satisfy a
single access, so that many accesses can be served by the cached data. This
procedure is much like disk read-ahead (Section 14.6.2). OpenAFS caches files
in large chunks (64 KB). The other systems discussed here support caching
of individual blocks driven by client demand. Increasing the caching unit
increases the hit ratio, but it also increases the miss penalty, because each miss
requires more data to be transferred. It increases the potential for consistency
problems aswell. Selecting the unit of caching involves considering parameters
such as the network transfer unit and the RPC protocol service unit (if an RPC
protocol is used). The network transfer unit (for Ethernet, a packet) is about
1.5 KB, so larger units of cached data need to be disassembled for delivery and
reassembled on reception.

Block size and total cache size are obviously of importance for block-
caching schemes. In UNIX-like systems, common block sizes are 4 KB and 8
KB. For large caches (over 1 MB), large block sizes (over 8 KB) are beneficial. For
smaller caches, large block sizes are less beneficial because they result in fewer
blocks in the cache and a lower hit ratio.

19.8.2 Cache Location

Where should the cached data be stored—on disk or in main memory? Disk
caches have one clear advantage over main-memory caches: they are reliable.
Modifications to cached data are lost in a crash if the cache is kept in volatile
memory. Moreover, if the cached data are kept on disk, they are still there
during recovery, and there is no need to fetch themagain.Main-memory caches
have several advantages of their own, however:

• Main-memory caches permit workstations to be diskless.

• Data can be accessedmore quickly from a cache inmainmemory than from
one on a disk.

• Technology is moving toward larger and less expensive memory. The
resulting performance speedup is predicted to outweigh the advantages
of disk caches.

766 Chapter 19 Networks and Distributed Systems

• The server caches (used to speed up disk I/O) will be in main memory
regardless of where user caches are located; if we usemain-memory caches
on the user machine, too, we can build a single caching mechanism for use
by both servers and users.

Many remote-access implementations can be thought of as hybrids of
caching and remote service. In NFS, for instance, the implementation is based
on remote service but is augmented with client- and server-side memory
caching for performance. Thus, to evaluate the twomethods, wemust evaluate
the degree to which either method is emphasized. The NFS protocol and most
implementations do not provide disk caching (but OpenAFS does).

19.8.3 Cache-Update Policy

The policy used to write modified data blocks back to the server’s master copy
has a critical effect on the system’s performance and reliability. The simplest
policy is to write data through to disk as soon as they are placed in any cache.
The advantage of a write-through policy is reliability: little information is
lost when a client system crashes. However, this policy requires each write
access to wait until the information is sent to the server, so it causes poor write
performance. Cachingwithwrite-through is equivalent to using remote service
for write accesses and exploiting caching only for read accesses.

An alternative is the delayed-write policy, also known as write-back
caching, where we delay updates to themaster copy. Modifications are written
to the cache and then are written through to the server at a later time. This
policy has two advantages over write-through. First, because writes are made
to the cache, write accesses complete much more quickly. Second, data may be
overwritten before they are written back, in which case only the last update
needs to be written at all. Unfortunately, delayed-write schemes introduce
reliability problems, since unwritten data are lost whenever a user machine
crashes.

Variations of the delayed-write policy differ in when modified data blocks
are flushed to the server. One alternative is to flush a block when it is about to
be ejected from the client’s cache. This option can result in good performance,
but some blocks can reside in the client’s cache a long time before they are
written back to the server. A compromise between this alternative and the
write-through policy is to scan the cache at regular intervals and to flush blocks
that have been modified since the most recent scan, just as UNIX scans its
local cache. NFS uses the policy for file data, but once a write is issued to the
server during a cache flush, the write must reach the server’s disk before it
is considered complete. NFS treats metadata (directory data and file-attribute
data) differently.Anymetadata changes are issued synchronously to the server.
Thus, file-structure loss and directory-structure corruption are avoided when
a client or the server crashes.

Yet another variation on delayed write is to write data back to the server
when the file is closed. This write-on-close policy is used in OpenAFS. In the
case of files that are open for short periods or are modified rarely, this policy
does not significantly reduce network traffic. In addition, the write-on-close
policy requires the closing process to delay while the file is written through,

19.9 Final Thoughts on Distributed File Systems 767

which reduces the performance advantages of delayedwrites. For files that are
open for long periods and are modified frequently, however, the performance
advantages of this policy over delayed write with more frequent flushing are
apparent.

19.8.4 Consistency

A client machine is sometimes faced with the problem of deciding whether a
locally cached copy of data is consistent with the master copy (and hence can
be used). If the client machine determines that its cached data are out of date,
it must cache an up-to-date copy of the data before allowing further accesses.
There are two approaches to verifying the validity of cached data:

1. Client-initiated approach. The client initiates a validity check in which
it contacts the server and checks whether the local data are consistent
with themaster copy. The frequency of the validity checking is the crux of
this approach and determines the resulting consistency semantics. It can
range from a check before every access to a check only on first access to
a file (on file open, basically). Every access coupled with a validity check
is delayed, compared with an access served immediately by the cache.
Alternatively, checks can be initiated at fixed time intervals. Depending
on its frequency, the validity check can load both the network and the
server.

2. Server-initiated approach. The server records, for each client, the files (or
parts of files) that it caches. When the server detects a potential inconsis-
tency, it must react. A potential for inconsistency occurs when two dif-
ferent clients in conflicting modes cache a file. If UNIX semantics (Section
15.7) is implemented, we can resolve the potential inconsistency by hav-
ing the server play an active role. The server must be notified whenever
a file is opened, and the intended mode (read or write) must be indicated
for every open. The server can then act when it detects that a file has
been opened simultaneously in conflicting modes by disabling caching
for that particular file. Actually, disabling caching results in switching to
a remote-service mode of operation.

In a cluster-based DFS, the cache-consistency issue is made more compli-
cated by the presence of a metadata server and several replicated file data
chunks across several data servers.Using our earlier examples of HDFS andGFS,
we can compare some differences. HDFS allows append-only write operations
(no randomwrites) and a single filewriter,while GFS does allow randomwrites
with concurrent writers. This greatly complicates write consistency guarantees
for GFS while simplifying them for HDFS.

19.9 Final Thoughts on Distributed File Systems

The line between DFS client–server and cluster-based architectures is blurring.
The NFS Version 4.1 specification includes a protocol for a parallel version of
NFS called pNFS, but as of this writing, adoption is slow.

768 Chapter 19 Networks and Distributed Systems

GFS, HDFS, and other large-scale DFSs export a non-POSIX API, so they
cannot transparently map directories to regular user machines as NFS and
OpenAFS do. Rather, for systems to access these DFSs, they need client code
installed. However, other software layers are rapidly being developed to allow
NFS to be mounted on top of such DFSs. This is attractive, as it would take
advantage of the scalability and other advantages of cluster-based DFSs while
still allowing native operating-system utilities and users to access files directly
on the DFS.

As of this writing, the open-source HDFS NFS Gateway supports NFS Ver-
sion 3 and works as a proxy between HDFS and the NFS server software.
Since HDFS currently does not support random writes, the HDFS NFS Gateway
also does not support this capability. That means a file must be deleted and
recreated from scratch even if only one byte is changed. Commercial organi-
zations and researchers are addressing this problem and building stackable
frameworks that allow stacking of a DFS, parallel computing modules (such as
MapReduce), distributed databases, and exported file volumes through NFS.

One other type of file system, less complex than a cluster-based DFS but
more complex than a client–server DFS, is a clustered file system (CFS) or
parallel file system (PFS). A CFS typically runs over a LAN. These systems are
important and widely used and thus deserve mention here, though we do
not cover them in detail. Common CFSs include Lustre and GPFS, although
there are many others. A CFS essentially treats N systems storing data and Y
systems accessing that data as a single client–server instance. Whereas NFS,
for example, has per-server naming, and two separate NFS servers generally
provide two different naming schemes, a CFS knits various storage contents
on various storage devices on various servers into a uniform, transparent
name space. GPFS has its own file-system structure, but Lustre uses existing
file systems such as ZFS for file storage and management. To learn more, see
http://lustre.org.

Distributed file systems are in common use today, providing file sharing
within LANs, within cluster environments, and across WANs. The complexity
of implementing such a system should not be underestimated, especially con-
sidering that the DFS must be operating-system independent for widespread
adoption and must provide availability and good performance in the presence
of long distances, commodity hardware failures, sometimes frail networking,
and ever-increasing users and workloads.

19.10 Summary

• A distributed system is a collection of processors that do not share mem-
ory or a clock. Instead, each processor has its own local memory, and the
processors communicate with one another through various communica-
tion lines, such as high-speed buses and the Internet. The processors in a
distributed system vary in size and function.

• Adistributed system provides the user with access to all system resources.
Access to a shared resource can be provided by data migration, compu-
tation migration, or process migration. The access can be specified by the
user or implicitly supplied by the operating system and applications.

http://lustre.org

Practice Exercises 769

• Protocol stacks, as specified by network layering models, add information
to a message to ensure that it reaches its destination.

• Anaming system (such as DNS)must be used to translate from a host name
to a network address, and another protocol (such as ARP) may be needed
to translate the network number to a network device address (an Ethernet
address, for instance).

• If systems are located on separate networks, routers are needed to pass
packets from source network to destination network.

• The transport protocols UDP and TCP direct packets to waiting processes
through the use of unique system-wide port numbers. In addition, the
TCP protocol allows the flow of packets to become a reliable, connection-
oriented byte stream.

• There are many challenges to overcome for a distributed system to work
correctly. Issues include naming of nodes and processes in the system,
fault tolerance, error recovery, and scalability. Scalability issues include
handling increased load, being fault tolerant, and using efficient storage
schemes, including the possibility of compression and/or deduplication.

• A DFS is a file-service system whose clients, servers, and storage devices
are dispersed among the sites of a distributed system. Accordingly, service
activity has to be carried out across the network; instead of a single cen-
tralized data repository, there are multiple independent storage devices.

• There are two main types of DFS models: the client–server model and
the cluster-based model. The client-server model allows transparent file
sharing among one or more clients. The cluster-based model distributes
the files among one ormore data servers and is built for large-scale parallel
data processing.

• Ideally, a DFS should look to its clients like a conventional, centralized
file system (although it may not conform exactly to traditional file-system
interfaces such as POSIX). Themultiplicity and dispersion of its servers and
storage devices should be transparent. A transparent DFS facilitates client
mobility by bringing the client’s environment to the site where the client
logs in.

• There are several approaches to naming schemes in a DFS. In the sim-
plest approach, files are named by some combination of their host name
and local name, which guarantees a unique system-wide name. Another
approach, popularized by NFS, provides a means to attach remote directo-
ries to local directories, thus giving the appearance of a coherent directory
tree.

• Requests to access a remote file are usually handled by two complemen-
tary methods. With remote service, requests for accesses are delivered to
the server. The server machine performs the accesses, and the results are
forwarded back to the client. With caching, if the data needed to satisfy the
access request are not already cached, then a copy of the data is brought
from the server to the client. Accesses are performed on the cached copy.
The problem of keeping the cached copies consistent with the master file
is the cache-consistency problem.

770 Chapter 19 Networks and Distributed Systems

Practice Exercises

19.1 Why would it be a bad idea for routers to pass broadcast packets
between networks? What would be the advantages of doing so?

19.2 Discuss the advantages and disadvantages of caching name transla-
tions for computers located in remote domains.

19.3 What are two formidable problems that designers must solve to imple-
ment a network system that has the quality of transparency?

19.4 To build a robust distributed system, you must know what kinds of
failures can occur.

a. List three possible types of failure in a distributed system.

b. Specify which of the entries in your list also are applicable to a
centralized system.

19.5 Is it always crucial to know that the message you have sent has arrived
at its destination safely? If your answer is “yes,” explain why. If your
answer is “no,” give appropriate examples.

19.6 A distributed system has two sites, A and B. Consider whether site A
can distinguish among the following:

a. B goes down.

b. The link between A and B goes down.

c. B is extremely overloaded, and its response time is 100 times
longer than normal.

What implications does your answer have for recovery in distributed
systems?

Further Reading

[Peterson and Davie (2012)] and [Kurose and Ross (2017)] provide general
overviews of computer networks. The Internet and its protocols are described
in [Comer (2000)]. Coverage of TCP/IP can be found in [Fall and Stevens (2011)]
and [Stevens (1995)]. UNIX network programming is described thoroughly in
[Steven et al. (2003)].

Ethernet and WiFi standards and speeds are evolving quickly. Current IEEE
802.3 Ethernet standards can be found at http://standards.ieee.org/about/get/
802/802.3.html. Current IEEE 802.11 Wireless LAN standards can be found at
http://standards.ieee.org/about/get/802/802.11.html.

Sun’s network file system (NFS) is described by [Callaghan (2000)]. Infor-
mation about OpenAFS is available from http://www.openafs.org.

Information on the Google file system can be found in [Ghe-
mawat et al. (2003)]. The Google MapReduce method is described in
http://research.google.com/archive/mapreduce.html. The Hadoop dis-
tributed file system is discussed in [K. Shvachko and Chansler (2010)], and the
Hadoop framework is discussed in http://hadoop.apache.org/.

To learn more about Lustre, see http://lustre.org.

http://scholar.google.com/scholar?hl/en&q=L L Peterson and B S Davie Computer Networks A Systems Approacm FifthEdition
http://scholar.google.com/scholar?hl/en&q=J Kurose and K Ross Computer NetworkingA Top Down Approach SeventhEdition
http://scholar.google.com/scholar?hl/en&q=D Comer Internetworking with TCPIP Volume I FourthEdition
http://scholar.google.com/scholar?hl/en&q=K Fall and R Stevens TCPIP Illustrated Volume 1 The Protocols SecondEdition
http://scholar.google.com/scholar?hl/en&q=R Stevens TCPIP Illustrated Volume 2 The Implementation
http://scholar.google.com/scholar?hl/en&q=R Steven and B Fenner and A Rudoff Unix Network Programming Volume 1 The Sockets Networking API ThirdEdition
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.11.html
http://scholar.google.com/scholar?hl/en&q=B Callaghan NFS Illustrated
http://www.openafs.org
http://doi.acm.org/10.1145/945445.945450
http://research.google.com/archive/mapreduce.html
http://dx.doi.org/10.1109/MSST.2010.5496972
http://hadoop.apache.org/
http://lustre.org
http://standards.ieee.org/about/get/802/802.3.html

Bibliography 771

Bibliography

[Callaghan (2000)] B. Callaghan, NFS Illustrated, Addison-Wesley (2000).

[Comer (2000)] D. Comer, Internetworking with TCP/IP, Volume I, Fourth Edition,
Prentice Hall (2000).

[Fall and Stevens (2011)] K. Fall and R. Stevens, TCP/IP Illustrated, Volume 1: The
Protocols, Second Edition, John Wiley and Sons (2011).

[Ghemawat et al. (2003)] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google File System”, Proceedings of the ACM Symposium on Operating Systems
Principles (2003).

[K. Shvachko and Chansler (2010)] S. R. K. Shvachko, H. Kuang and
R. Chansler, “The Hadoop Distributed File System” (2010).

[Kurose and Ross (2017)] J. Kurose and K. Ross, Computer Networking—A Top–
Down Approach, Seventh Edition, Addison-Wesley (2017).

[Peterson and Davie (2012)] L. L. Peterson and B. S. Davie, Computer Networks:
A Systems Approacm, Fifth Edition, Morgan Kaufmann (2012).

[Steven et al. (2003)] R. Steven, B. Fenner, andA. Rudoff,Unix Network Program-
ming, Volume 1: The Sockets Networking API, Third Edition, John Wiley and Sons
(2003).

[Stevens (1995)] R. Stevens, TCP/IP Illustrated, Volume 2: The Implementation,
Addison-Wesley (1995).

http://scholar.google.com/scholar?hl/en&q=B Callaghan NFS Illustrated
http://scholar.google.com/scholar?hl/en&q=B Callaghan NFS Illustrated
http://scholar.google.com/scholar?hl/en&q=D Comer Internetworking with TCPIP Volume I FourthEdition
http://scholar.google.com/scholar?hl/en&q=D Comer Internetworking with TCPIP Volume I FourthEdition
http://scholar.google.com/scholar?hl/en&q=K Fall and R Stevens TCPIP Illustrated Volume 1 The Protocols SecondEdition
http://scholar.google.com/scholar?hl/en&q=K Fall and R Stevens TCPIP Illustrated Volume 1 The Protocols SecondEdition
http://doi.acm.org/10.1145/945445.945450
http://doi.acm.org/10.1145/945445.945450
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://scholar.google.com/scholar?hl/en&q=J Kurose and K Ross Computer NetworkingA Top Down Approach SeventhEdition
http://scholar.google.com/scholar?hl/en&q=J Kurose and K Ross Computer NetworkingA Top Down Approach SeventhEdition
http://scholar.google.com/scholar?hl/en&q=L L Peterson and B S Davie Computer Networks A Systems Approacm FifthEdition
http://scholar.google.com/scholar?hl/en&q=L L Peterson and B S Davie Computer Networks A Systems Approacm FifthEdition
http://scholar.google.com/scholar?hl/en&q=R Steven and B Fenner and A Rudoff Unix Network Programming Volume 1 The Sockets Networking API ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Steven and B Fenner and A Rudoff Unix Network Programming Volume 1 The Sockets Networking API ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Stevens TCPIP Illustrated Volume 2 The Implementation
http://scholar.google.com/scholar?hl/en&q=R Stevens TCPIP Illustrated Volume 2 The Implementation

Exercises

Chapter 19 Exercises

19.7 What is the difference between computation migration and process
migration? Which is easier to implement, and why?

19.8 Even though the OSI model of networking specifies seven layers of
functionality, most computer systems use fewer layers to implement
a network. Why do they use fewer layers? What problems could the
use of fewer layers cause?

19.9 Explainwhy doubling the speed of the systems on an Ethernet segment
may result in decreased network performance when the UDP transport
protocol is used. What changes could help solve this problem?

19.10 What are the advantages of using dedicated hardware devices for
routers? What are the disadvantages of using these devices compared
with using general-purpose computers?

19.11 Inwhat ways is using a name server better than using static host tables?
What problems or complications are associated with name servers?
What methods could you use to decrease the amount of traffic name
servers generate to satisfy translation requests?

19.12 Name servers are organized in a hierarchical manner. What is the pur-
pose of using a hierarchical organization?

19.13 The lower layers of the OSI network model provide datagram service,
with no delivery guarantees for messages. A transport-layer protocol
such as TCP is used to provide reliability. Discuss the advantages and
disadvantages of supporting reliable message delivery at the lowest
possible layer.

19.14 Run the program shown in Figure 19.4 and determine the IP addresses
of the following host names:

• www.wiley.com

• www.cs.yale.edu

• www.apple.com

• www.westminstercollege.edu

• www.ietf.org

19.15 A DNS name can map to multiple servers, such as www.google.com.
However, if we run the program shown in Figure 19.4, we get only one
IP address. Modify the program to display all the server IP addresses
instead of just one.

19.16 The original HTTP protocol used TCP/IP as the underlying network
protocol. For each page, graphic, or applet, a separate TCP session was
constructed, used, and torn down. Because of the overhead of building
and destroying TCP/IP connections, performance problems resulted
from this implementation method. Would using UDP rather than TCP
be a good alternative?What other changes could you make to improve
HTTP performance?

EX-56

http://www.google.com
http://www.ietf.org
http://www.westminstercollege.edu
http://www.apple.com
http://www.cs.yale.edu
http://www.wiley.com

19.17 What are the advantages and the disadvantages of making the com-
puter network transparent to the user?

19.18 What are the benefits of a DFS compared with a file system in a central-
ized system?

19.19 For each of the following workloads, identify whether a cluster-based
or a client–server DFS model would handle the workload best. Explain
your answers.

• Hosting student files in a university lab.

• Processing data sent by the Hubble telescope.

• Sharing data with multiple devices from a home server.

19.20 Discuss whether OpenAFS and NFS provide the following: (a) location
transparency and (b) location independence.

19.21 Under what circumstances would a client prefer a location-
transparent DFS? Under what circumstances would she prefer a
location-independent DFS? Discuss the reasons for these preferences.

19.22 What aspects of a distributed system would you select for a system
running on a totally reliable network?

19.23 Compare and contrast the techniques of caching disk blocks locally, on
a client system, and remotely, on a server.

19.24 Which scheme would likely result in a greater space saving on a
multiuser DFS: file-level deduplication or block-level deduplication?
Explain your answer.

19.25 What types of extra metadata information would need to be stored in
a DFS that uses deduplication?

EX-57

Part Nine

Case Studies
We now integrate the concepts described earlier in this book by examin-
ing real operating systems. We cover two such systems in detail—Linux
and Windows 10.

We chose Linux for several reasons: it is popular, it is freely available,
and it represents a full-featured UNIX system. This gives a student of
operating systems an opportunity to read—and modify—real operating-
system source code.

With Windows 10, the student can examine a modern operating sys-
temwhosedesign and implementation are drastically different from those
of UNIX. This operating system from Microsoft is very popular as a desk-
top operating system, but it can also be used as an operating system for
mobile devices.Windows 10 has amodern design and features a look and
feel very different from earlier operating systems produced by Microsoft.

20CHAPTER

The Linux System

Updated by Robert Love

This chapter presents an in-depth examination of the Linux operating system.
By examining a complete, real system, we can see how the concepts we have
discussed relate both to one another and to practice.

Linux is a variant of UNIX that has gained popularity over the last several
decades, powering devices as small as mobile phones and as large as room-
filling supercomputers. In this chapter, we look at the history and development
of Linux and cover the user and programmer interfaces that Linux presents—
interfaces that owe a great deal to the UNIX tradition.We also discuss the design
and implementation of these interfaces. Linux is a rapidly evolving operating
system. This chapter describes developments through the Linux 4.12 kernel,
which was released in 2017.

CHAPTER OBJECTIVES

• Explore the history of the UNIX operating system from which Linux is
derived and the principles upon which Linux’s design is based.

• Examine the Linux process and thread models and illustrate how Linux
schedules threads and provides interprocess communication.

• Look at memory management in Linux.

• Explore how Linux implements file systems and manages I/O devices.

20.1 Linux History

Linux looks and feels much like any other UNIX system; indeed, UNIX compat-
ibility has been a major design goal of the Linux project. However, Linux is
much younger than most UNIX systems. Its development began in 1991, when
a Finnish university student, Linus Torvalds, began creating a small but self-
contained kernel for the 80386 processor, the first true 32-bit processor in Intel’s
range of PC-compatible CPUs.

775

776 Chapter 20 The Linux System

Early in its development, the Linux source code was made available free—
both at no cost and with minimal distributional restrictions—on the Internet.
As a result, Linux’s history has been one of collaboration by many developers
from all around the world, corresponding almost exclusively over the Internet.
From an initial kernel that partially implemented a small subset of the UNIX
system services, the Linux system has grown to include all of the functionality
expected of a modern UNIX system.

In its early days, Linux development revolved largely around the central
operating-system kernel—the core, privileged executive that manages all sys-
tem resources and interacts directly with the computer hardware. We need
much more than this kernel, of course, to produce a full operating system.
We thus need to make a distinction between the Linux kernel and a complete
Linux system. The Linux kernel is an original piece of software developed
from scratch by the Linux community. The Linux system, as we know it today,
includes a multitude of components, some written from scratch, others bor-
rowed from other development projects, and still others created in collabora-
tion with other teams.

The basic Linux system is a standard environment for applications anduser
programming, but it does not enforce any standard means of managing the
available functionality as a whole. As Linux has matured, a need has arisen
for another layer of functionality on top of the Linux system. This need has
been met by various Linux distributions. ALinux distribution includes all the
standard components of the Linux system, plus a set of administrative tools
to simplify the initial installation and subsequent upgrading of Linux and to
manage installation and removal of other packages on the system. A mod-
ern distribution also typically includes tools for management of file systems,
creation and management of user accounts, administration of networks, web
browsers, word processors, and so on.

20.1.1 The Linux Kernel

The first Linux kernel released to the public was version 0.01, dated May 14,
1991. It had no networking, ran only on 80386-compatible Intel processors
and PC hardware, and had extremely limited device-driver support. The vir-
tual memory subsystem was also fairly basic and included no support for
memory-mapped files; however, even this early incarnation supported shared
pages with copy-on-write and protected address spaces. The only file system
supported was the Minix file system, as the first Linux kernels were cross-
developed on a Minix platform.

The next milestone, Linux 1.0, was released onMarch 14, 1994. This release
culminated three years of rapid development of the Linux kernel. Perhaps the
single biggest new feature was networking: 1.0 included support for UNIX’s
standard TCP/IP networking protocols, as well as a BSD-compatible socket
interface for networking programming. Device-driver support was added for
running IP over Ethernet or (via the PPP or SLIP protocols) over serial lines or
modems.

The 1.0 kernel also included a new, much enhanced file systemwithout the
limitations of the original Minix file system, and it supported a range of SCSI
controllers for high-performance disk access. The developers extended the vir-

20.1 Linux History 777

tual memory subsystem to support paging to swap files andmemorymapping
of arbitrary files (but only read-only memory mapping was implemented in
1.0).

A range of extra hardware support was included in this release. Although
still restricted to the Intel PC platform, hardware support had grown to include
floppy-disk and CD-ROM devices, as well as sound cards, a range of mice, and
international keyboards. Floating-point emulation was provided in the kernel
for 80386 users who had no 80387 math coprocessor. System V UNIX-style
interprocess communication (IPC), including shared memory, semaphores,
and message queues, was implemented.

At this point, development started on the 1.1 kernel stream, but numerous
bug-fix patches were released subsequently for 1.0. A pattern was adopted as
the standard numbering convention for Linux kernels. Kernels with an odd
minor-version number, such as 1.1 or 2.5, are development kernels; even-
numbered minor-version numbers are stable production kernels. Updates
for the stable kernels are intended only as remedial versions, whereas the
development kernels may include newer and relatively untested functionality.
As we will see, this pattern remained in effect until version 3.

InMarch 1995, the 1.2 kernel was released. This release did not offer nearly
the same improvement in functionality as the 1.0 release, but it did support a
much wider variety of hardware, including the new PCI hardware bus archi-
tecture. Developers added another PC-specific feature—support for the 80386
CPU’s virtual 8086 mode—to allow emulation of the DOS operating system
for PC computers. They also updated the IP implementation with support
for accounting and firewalling. Simple support for dynamically loadable and
unloadable kernel modules was supplied as well.

The 1.2 kernel was the final PC-only Linux kernel. The source distribution
for Linux 1.2 included partially implemented support for SPARC, Alpha, and
MIPS CPUs, but full integration of these other architectures did not begin until
after the stable 1.2 kernel was released.

The Linux 1.2 release concentrated on wider hardware support and more
complete implementations of existing functionality. Much new functionality
was under development at the time, but integration of the new code into the
main kernel source code was deferred until after the stable 1.2 kernel was
released. As a result, the 1.3 development stream saw a great deal of new
functionality added to the kernel.

This work was released in June 1996 as Linux version 2.0. This release was
given a major version-number increment because of two major new capabili-
ties: support for multiple architectures, including a 64-bit native Alpha port,
and symmetric multiprocessing (SMP) support. Additionally, the memory-
management code was substantially improved to provide a unified cache
for file-system data independent of the caching of block devices. As a result
of this change, the kernel offered greatly increased file-system and virtual-
memory performance. For the first time, file-system caching was extended
to networked file systems, and writable memory-mapped regions were also
supported. Other major improvements included the addition of internal ker-
nel threads, a mechanism exposing dependencies between loadable modules,
support for the automatic loading of modules on demand, file-system quotas,
and POSIX-compatible real-time process-scheduling classes.

778 Chapter 20 The Linux System

Improvements continued with the release of Linux 2.2 in 1999. A port to
UltraSPARC systems was added. Networking was enhanced with more flexible
firewalling, improved routing and traffic management, and support for TCP
large window and selective acknowledgement. Acorn, Apple, and NT disks
could now be read, and NFS was enhanced with a new kernel-mode NFS
daemon. Signal handling, interrupts, and some I/O were locked at a finer level
than before to improve symmetric multiprocessor (SMP) performance.

Advances in the 2.4 and 2.6 releases of the kernel included increased
support for SMP systems, journaling file systems, and enhancements to the
memory-management and block I/O systems. The thread scheduler was mod-
ified in version 2.6, providing an efficient O(1) scheduling algorithm. In addi-
tion, the 2.6 kernel was preemptive, allowing a threads to be preempted even
while running in kernel mode.

Linux kernel version 3.0was released in July 2011. Themajor version bump
from 2 to 3 occurred to commemorate the twentieth anniversary of Linux.
New features include improved virtualization support, a new page write-back
facility, improvements to the memory-management system, and yet another
new thread scheduler—the Completely Fair Scheduler (CFS).

Linux kernel version 4.0 was released in April 2015. This time the major
version bump was entirely arbitrary; Linux kernel developers simply grew
tired of ever-larger minor versions. Today Linux kernel versions do not sig-
nify anything other than release ordering. The 4.0 kernel series provided sup-
port for new architectures, improved mobile functionality, and many iterative
improvements.We focus on this newest kernel in the remainder of this chapter.

20.1.2 The Linux System

As we noted earlier, the Linux kernel forms the core of the Linux project, but
other components make up a complete Linux operating system. Whereas the
Linux kernel is composed entirely of code written from scratch specifically
for the Linux project, much of the supporting software that makes up the
Linux system is not exclusive to Linux but is common to a number of UNIX-
like operating systems. In particular, Linux uses many tools developed as part
of Berkeley’s BSD operating system, MIT’s X Window System, and the Free
Software Foundation’s GNU project.

This sharing of tools has worked in both directions. The main system
libraries of Linux were originated by the GNU project, but the Linux commu-
nity greatly improved the libraries by addressing omissions, inefficiencies, and
bugs. Other components, such as the GNU C compiler (gcc), were already of
sufficiently high quality to be used directly in Linux. The network administra-
tion tools under Linux were derived from code first developed for 4.3 BSD, but
more recent BSD derivatives, such as FreeBSD, have borrowed code from Linux
in return. Examples of this sharing include the Intel floating-point-emulation
math library and the PC sound-hardware device drivers.

The Linux system as a whole is maintained by a loose network of develop-
ers collaborating over the Internet, with small groups or individuals having
responsibility for maintaining the integrity of specific components. A small
number of public Internet file-transfer-protocol (FTP) archive sites act as de
facto standard repositories for these components. The File System Hierarchy

20.1 Linux History 779

Standard document is also maintained by the Linux community as a means
of ensuring compatibility across the various system components. This stan-
dard specifies the overall layout of a standard Linux file system; it determines
underwhich directory names configuration files, libraries, systembinaries, and
run-time data files should be stored.

20.1.3 Linux Distributions

In theory, anybody can install a Linux system by fetching the latest revisions
of the necessary system components from the ftp sites and compiling them. In
Linux’s early days, this is precisely what a Linux user had to do. As Linux has
matured, however, various individuals and groups have attempted to make
this job less painful by providing standard, precompiled sets of packages for
easy installation.

These collections, or distributions, include much more than just the basic
Linux system. They typically include extra system-installation and manage-
ment utilities, as well as precompiled and ready-to-install packages of many of
the common UNIX tools, such as news servers, web browsers, text-processing
and editing tools, and even games.

The first distributions managed these packages by simply providing a
means of unpacking all the files into the appropriate places. One of the impor-
tant contributions of modern distributions, however, is advanced package
management. Today’s Linux distributions include a package-tracking database
that allows packages to be installed, upgraded, or removed painlessly.

The SLS distribution, dating back to the early days of Linux, was the first
collection of Linux packages that was recognizable as a complete distribu-
tion. Although it could be installed as a single entity, SLS lacked the package-
management tools now expected of Linux distributions. The Slackware dis-
tribution represented a great improvement in overall quality, even though it
also had poor package management. In fact, it is still one of the most widely
installed distributions in the Linux community.

Since Slackware’s release, many commercial and noncommercial Linux
distributions have become available.Red Hat andDebian are particularly pop-
ular distributions; the first comes from a commercial Linux support company
and the second from the free-software Linux community. Other commercially
supported versions of Linux include distributions from Canonical and SuSE,
and many others. There are too many Linux distributions in circulation for us
to list all of them here. The variety of distributions does not prevent Linux
distributions from being compatible, however. The RPM package file format is
used, or at least understood, by the majority of distributions, and commer-
cial applications distributed in this format can be installed and run on any
distribution that can accept RPM files.

20.1.4 Linux Licensing

The Linux kernel is distributed under version 2.0 of the GNU General Public
License (GPL), the terms of which are set out by the Free Software Foundation.
Linux is not public-domain software. Public domain implies that the authors
have waived copyright rights in the software, but copyright rights in Linux
code are still held by the code’s various authors. Linux is free software, how-

780 Chapter 20 The Linux System

ever, in the sense that people can copy it, modify it, use it in any manner they
want, and give away (or sell) their own copies.

The main implication of Linux’s licensing terms is that nobody using
Linux, or creating a derivative of Linux (a legitimate exercise), can distribute
the derivative without including the source code. Software released under the
GPL cannot be redistributed as a binary-only product. If you release software
that includes any components covered by the GPL, then, under the GPL, you
must make source code available alongside any binary distributions. (This
restriction does not prohibit making—or even selling—binary software distri-
butions, as long as anybodywho receives binaries is also given the opportunity
to get the originating source code for a reasonable distribution charge.)

20.2Design Principles

In its overall design, Linux resembles other traditional, nonmicrokernel UNIX
implementations. It is a multiuser, preemptively multitasking system with a
full set of UNIX-compatible tools. Linux’s file system adheres to traditional
UNIX semantics, and the standard UNIX networking model is fully imple-
mented. The internal details of Linux’s design have been influenced heavily
by the history of this operating system’s development.

Although Linux runs on a wide variety of platforms, it was originally
developed exclusively on PC architecture. A great deal of that early develop-
ment was carried out by individual enthusiasts rather than by well-funded
development or research facilities, so from the start Linux attempted to squeeze
as much functionality as possible from limited resources. Today, Linux can
run happily on a multiprocessor machine with hundreds of gigabytes of main
memory and many terabytes of disk space, but it is still capable of operating
usefully in under 16-MB of RAM.

As PCs became more powerful and as memory and hard disks became
cheaper, the original, minimalist Linux kernels grew to implement more UNIX
functionality. Speed and efficiency are still important design goals, but much
recent and current work on Linux has concentrated on a third major design
goal: standardization. One of the prices paid for the diversity of UNIX imple-
mentations currently available is that source code written for one may not
necessarily compile or run correctly on another. Even when the same system
calls are present on two different UNIX systems, they do not necessarily behave
in exactly the same way. The POSIX standards comprise a set of specifications
for different aspects of operating-system behavior. There are POSIX documents
for common operating-system functionality and for extensions such as pro-
cess threads and real-time operations. Linux is designed to comply with the
relevant POSIX documents, and at least two Linux distributions have achieved
official POSIX certification.

Because it gives standard interfaces to both the programmer and the user,
Linux presents few surprises to anybody familiar with UNIX. We do not detail
these interfaces here. The sections on the programmer interface (Section C.3)
and user interface (Section C.4) of BSD apply equally well to Linux. By default,
however, the Linux programming interface adheres to SVR4 UNIX semantics,
rather than to BSD behavior. Aseparate set of libraries is available to implement
BSD semantics in places where the two behaviors differ significantly.

20.2 Design Principles 781

Many other standards exist in the UNIX world, but full certification of
Linux with respect to these standards is sometimes slowed because certifica-
tion is often available only for a fee, and the expense involved in certifying an
operating system’s compliance with most standards is substantial. However,
supporting a wide base of applications is important for any operating system,
so implementation of standards is a major goal for Linux development, even
without formal certification. In addition to the basic POSIX standard, Linux
currently supports the POSIX threading extensions—Pthreads—and a subset
of the POSIX extensions for real-time process control.

20.2.1 Components of a Linux System

The Linux system is composed of three main bodies of code, in line with most
traditional UNIX implementations:

1. Kernel. The kernel is responsible for maintaining all the important
abstractions of the operating system, including such things as virtual
memory and processes.

2. System libraries. The system libraries define a standard set of functions
through which applications can interact with the kernel. These functions
implementmuch of the operating-system functionality that does not need
the full privileges of kernel code. Themost important system library is the
C library, known as libc. In addition to providing the standardC library,
libc implements the user mode side of the Linux system call interface,
as well as other critical system-level interfaces.

3. System utilities. The system utilities are programs that perform indi-
vidual, specialized management tasks. Some system utilities are invoked
just once to initialize and configure some aspect of the system. Others—
known as daemons in UNIX terminology—run permanently, handling
such tasks as responding to incoming network connections, accepting
logon requests from terminals, and updating log files.

Figure 20.1 illustrates the various components that make up a full Linux
system. The most important distinction here is between the kernel and every-
thing else. All the kernel code executes in the processor’s privileged mode

system shared libraries

Linux kernel

loadable kernel modules

system-
management

programs

user
processes

user
utility

programs
compilers

Figure 20.1 Components of the Linux system.

782 Chapter 20 The Linux System

with full access to all the physical resources of the computer. Linux refers to
this privileged mode as kernel mode. Under Linux, no user code is built into
the kernel. Any operating-system-support code that does not need to run in
kernel mode is placed into the system libraries and runs in user mode. Unlike
kernel mode, user mode has access only to a controlled subset of the system’s
resources.

Although various modern operating systems have adopted a message-
passing architecture for their kernel internals, Linux retains UNIX’s historical
model: the kernel is created as a single, monolithic binary. The main reason
is performance. Because all kernel code and data structures are kept in a sin-
gle address space, no context switches are necessary when a thread calls an
operating-system function or when a hardware interrupt is delivered. More-
over, the kernel can pass data and make requests between various subsystems
using relatively cheap C function invocation and not more complicated inter-
process communication (IPC). This single address space contains not only the
core scheduling and virtual memory code but all kernel code, including all
device drivers, file systems, and networking code.

Even though all the kernel components share this same melting pot, there
is still room for modularity. In the same way that user applications can load
shared libraries at run time to pull in a needed piece of code, so the Linux
kernel can load (and unload) modules dynamically at run time. The kernel
does not need to know in advance which modules may be loaded—they are
truly independent loadable components.

The Linux kernel forms the core of the Linux operating system. It provides
all the functionality necessary to manage processes and run threads, and it
provides system services to give arbitrated and protected access to hardware
resources. The kernel implements all the features required to qualify as an oper-
ating system.On its own, however, the operating systemprovidedby the Linux
kernel is not a complete UNIX system. It lacks much of the functionality and
behavior of UNIX, and the features that it does provide are not necessarily in
the format in which a UNIX application expects them to appear. The operating-
system interface visible to running applications is not maintained directly by
the kernel. Rather, applicationsmake calls to the system libraries, which in turn
call the operating-system services as necessary.

The system libraries provide many types of functionality. At the simplest
level, they allow applications to make system calls to the Linux kernel. Making
a system call involves transferring control from unprivileged user mode to
privileged kernel mode; the details of this transfer vary from architecture to
architecture. The libraries take care of collecting the system-call arguments and,
if necessary, arranging those arguments in the special form necessary to make
the system call.

The libraries may also provide more complex versions of the basic system
calls. For example, the C language’s buffered file-handling functions are all
implemented in the system libraries, providing more advanced control of file
I/O than the basic kernel system calls. The libraries also provide routines that
do not correspond to system calls at all, such as sorting algorithms, mathemat-
ical functions, and string-manipulation routines. All the functions necessary
to support the running of UNIX or POSIX applications are implemented in the
system libraries.

20.3 Kernel Modules 783

The Linux system includes a wide variety of user-mode programs—both
system utilities and user utilities. The system utilities include all the programs
necessary to initialize and then administer the system, such as those to set up
networking interfaces and to add and remove users from the system. User util-
ities are also necessary to the basic operation of the system but do not require
elevated privileges to run. They include simple file-management utilities such
as those to copy files, create directories, and edit text files. One of the most
important user utilities is the shell, the standard command-line interface on
UNIX systems. Linux supports many shells; the most common is the bourne-
again shell (bash).

20.3Kernel Modules

The Linux kernel has the ability to load and unload arbitrary sections of kernel
code ondemand. These loadable kernelmodules run in privilegedkernelmode
and as a consequence have full access to all the hardware capabilities of the
machine on which they run. In theory, there is no restriction on what a kernel
module is allowed to do. Among other things, a kernel module can implement
a device driver, a file system, or a networking protocol.

Kernel modules are convenient for several reasons. Linux’s source code is
free, so anybody wanting to write kernel code is able to compile a modified
kernel and to reboot into that new functionality. However, recompiling, relink-
ing, and reloading the entire kernel is a cumbersome cycle to undertake when
you are developing a new driver. If you use kernel modules, you do not have
to make a new kernel to test a new driver—the driver can be compiled on its
own and loaded into the already running kernel. Of course, once a new driver
is written, it can be distributed as amodule so that other users can benefit from
it without having to rebuild their kernels.

This latter point has another implication. Because it is covered by the
GPL license, the Linux kernel cannot be released with proprietary components
added to it unless those new components are also released under the GPL and
the source code for them is made available on demand. The kernel’s module
interface allows third parties towrite and distribute, on their own terms, device
drivers or file systems that could not be distributed under the GPL.

Kernel modules allow a Linux system to be set upwith a standardminimal
kernel, without any extra device drivers built in. Any device drivers that the
user needs can be either loaded explicitly by the system at startup or loaded
automatically by the system on demand and unloaded when not in use. For
example, a mouse driver can be loaded when a USB mouse is plugged into the
system and unloaded when the mouse is unplugged.

The module support under Linux has four components:

1. The module-management system allows modules to be loaded into
memory and to communicate with the rest of the kernel.

2. The module loader and unloader, which are user-mode utilities, work
with the module-management system to load a module into memory.

784 Chapter 20 The Linux System

3. The driver-registration system allows modules to tell the rest of the
kernel that a new driver has become available.

4. A conflict-resolutio mechanism allows different device drivers
to reserve hardware resources and to protect those resources from
accidental use by another driver.

20.3.1 Module Management

Loading a module requires more than just loading its binary contents into ker-
nel memory. The system must also make sure that any references the module
makes to kernel symbols or entry points are updated to point to the correct loca-
tions in the kernel’s address space. Linux deals with this reference updating by
splitting the job ofmodule loading into two separate sections: themanagement
of sections of module code in kernel memory and the handling of symbols that
modules are allowed to reference.

Linux maintains an internal symbol table in the kernel. This symbol table
does not contain the full set of symbols defined in the kernel during the latter’s
compilation; rather, a symbol must be explicitly exported. The set of exported
symbols constitutes a well-defined interface by which a module can interact
with the kernel.

Although exporting symbols from a kernel function requires an explicit
request by the programmer, no special effort is needed to import those symbols
into a module. A module writer just uses the standard external linking of the
C language. Any external symbols referenced by the module but not declared
by it are simply marked as unresolved in the final module binary produced by
the compiler. When a module is to be loaded into the kernel, a system utility
first scans the module for these unresolved references. All symbols that still
need to be resolved are looked up in the kernel’s symbol table, and the correct
addresses of those symbols in the currently running kernel are substituted into
the module’s code. Only then is the module passed to the kernel for loading. If
the system utility cannot resolve all references in the module by looking them
up in the kernel’s symbol table, then the module is rejected.

The loading of the module is performed in two stages. First, the module-
loader utility asks the kernel to reserve a continuous area of virtual kernel
memory for the module. The kernel returns the address of the memory allo-
cated, and the loader utility can use this address to relocate the module’s
machine code to the correct loading address. A second system call then passes
the module, plus any symbol table that the new module wants to export, to
the kernel. The module itself is now copied verbatim into the previously allo-
cated space, and the kernel’s symbol table is updated with the new symbols
for possible use by other modules not yet loaded.

The final module-management component is the module requester. The
kernel defines a communication interface to which a module-management
program can connect. With this connection established, the kernel will inform
the management process whenever a process requests a device driver, file
system, or network service that is not currently loaded and will give the
manager the opportunity to load that service. The original service request will
complete once themodule is loaded. Themanager process regularly queries the
kernel to see whether a dynamically loaded module is still in use and unloads
that module when it is no longer actively needed.

20.3 Kernel Modules 785

20.3.2 Driver Registration

Once amodule is loaded, it remains nomore than an isolated region ofmemory
until it lets the rest of the kernel know what new functionality it provides.
The kernel maintains dynamic tables of all known drivers and provides a
set of routines to allow drivers to be added to or removed from these tables
at any time. The kernel makes sure that it calls a module’s startup routine
when that module is loaded and calls the module’s cleanup routine before
that module is unloaded. These routines are responsible for registering the
module’s functionality.

A module may register many types of functionality; it is not limited to
only one type. For example, a device driver might want to register two sep-
arate mechanisms for accessing the device. Registration tables include, among
others, the following items:

• Device drivers. These drivers include character devices (such as print-
ers, terminals, and mice), block devices (including all disk drives), and
network interface devices.

• File systems. The file system may be anything that implements Linux’s
virtual file system calling routines. It might implement a format for storing
files on a disk, but it might equally well be a network file system, such as
NFS, or a virtual file systemwhose contents are generated on demand, such
as Linux’s /proc file system.

• Network protocols. Amodulemay implement an entire networkingproto-
col, such as TCP, or simply a new set of packet-filtering rules for a network
firewall.

• Binary format. This format specifies a way of recognizing, loading, and
executing a new type of executable file.

In addition, a module can register a new set of entries in the sysctl and /proc
tables, to allow that module to be configured dynamically (Section 20.7.4).

20.3.3 Conflict Resolution

Commercial UNIX implementations are usually sold to run on a vendor’s own
hardware. One advantage of a single-supplier solution is that the software
vendor has a good idea about what hardware configurations are possible. PC
hardware, however, comes in a vast number of configurations, with large num-
bers of possible drivers for devices such as network cards and video display
adapters. The problem ofmanaging the hardware configuration becomesmore
severe when modular device drivers are supported, since the currently active
set of devices becomes dynamically variable.

Linux provides a central conflict-resolution mechanism to help arbitrate
access to certain hardware resources. Its aims are as follows:

• To prevent modules from clashing over access to hardware resources

• To prevent autoprobes—device-driver probes that auto-detect device con-
figuration—from interfering with existing device drivers

786 Chapter 20 The Linux System

• To resolve conflicts among multiple drivers trying to access the same
hardware—as, for example, when both the parallel printer driver and the
parallel line IP (PLIP) network driver try to talk to the parallel port

To these ends, the kernel maintains lists of allocated hardware resources.
The PC has a limited number of possible I/O ports (addresses in its hardware
I/O address space), interrupt lines, and DMAchannels. When any device driver
wants to access such a resource, it is expected to reserve the resource with the
kernel database first. This requirement incidentally allows the system admin-
istrator to determine exactly which resources have been allocated by which
driver at any given point.

A module is expected to use this mechanism to reserve in advance any
hardware resources that it expects to use. If the reservation is rejected because
the resource is not present or is already in use, then it is up to the module
to decide how to proceed. It may fail in its initialization attempt and request
that it be unloaded if it cannot continue, or it may carry on, using alternative
hardware resources.

20.4Process Management

A process is the basic context in which all user-requested activity is serviced
within the operating system. To be compatible with other UNIX systems, Linux
must use a process model similar to those of other versions of UNIX. Linux
operates differently from UNIX in a few key places, however. In this section,
we review the traditional UNIX process model (Section C.3.2) and introduce
Linux’s threading model.

20.4.1 The fork() and exec() Process Model

The basic principle of UNIX process management is to separate into two steps
two operations that are usually combined into one: the creation of a new
process and the running of a new program. A new process is created by the
fork() system call, and a new program is run after a call to exec(). These are
two distinctly separate functions. We can create a new process with fork()
without running a new program—the new subprocess simply continues to
execute exactly the same program, at exactly the same point, that the first
(parent) process was running. In the same way, running a new program does
not require that a new process be created first. Any process may call exec() at
any time. A new binary object is loaded into the process’s address space and
the new executable starts executing in the context of the existing process.

This model has the advantage of great simplicity. It is not necessary to
specify every detail of the environment of a newprogram in the system call that
runs that program. The new program simply runs in its existing environment.
If a parent process wishes to modify the environment in which a new program
is to be run, it can fork and then, still running the original executable in a child
process, make any system calls it requires to modify that child process before
finally executing the new program.

Under UNIX, then, a process encompasses all the information that the
operating system must maintain to track the context of a single execution of a

20.4 Process Management 787

single program. Under Linux, we can break down this context into a number of
specific sections. Broadly, process properties fall into three groups: the process
identity, environment, and context.

20.4.1.1 Process Identity

Aprocess identity consists mainly of the following items:

• Process ID (PID). Each process has a unique identifier. The PID is used to
specify the process to the operating system when an application makes a
system call to signal, modify, or wait for the process. Additional identifiers
associate the process with a process group (typically, a tree of processes
forked by a single user command) and login session.

• Credentials. Each processmust have an associated user ID and one ormore
group IDs (user groups are discussed in Section 13.4.2) that determine the
rights of a process to access system resources and files.

• Personality. Process personalities are not traditionally found on UNIX sys-
tems, but under Linux each process has an associated personality identifier
that can slightly modify the semantics of certain system calls. Personalities
are primarily used by emulation libraries to request that system calls be
compatible with certain varieties of UNIX.

• Namespace. Each process is associated with a specific view of the file-
system hierarchy, called its namespace. Most processes share a com-
mon namespace and thus operate on a shared file-system hierarchy. Pro-
cesses and their children can, however, have different namespaces, each
with a unique file-system hierarchy—their own root directory and set of
mounted file systems.

Most of these identifiers are under the limited control of the process itself. The
process group and session identifiers can be changed if the process wants to
start a new group or session. Its credentials can be changed, subject to appro-
priate security checks. However, the primary PID of a process is unchangeable
and uniquely identifies that process until termination.

20.4.1.2 Process Environment

A process’s environment is inherited from its parent and is composed of two
null-terminated vectors: the argument vector and the environment vector. The
argument vector simply lists the command-line arguments used to invoke the
running program; it conventionally starts with the name of the program itself.
The environment vector is a list of “NAME=VALUE” pairs that associates named
environment variables with arbitrary textual values. The environment is not
held in kernel memory but is stored in the process’s own user-mode address
space as the first datum at the top of the process’s stack.

The argument and environment vectors are not altered when a new pro-
cess is created. The new child process will inherit the environment of its par-
ent. However, a completely new environment is set up when a new program
is invoked. On calling exec(), a process must supply the environment for
the new program. The kernel passes these environment variables to the next

788 Chapter 20 The Linux System

program, replacing the process’s current environment. The kernel otherwise
leaves the environment and command-line vectors alone—their interpretation
is left entirely to the user-mode libraries and applications.

The passing of environment variables from one process to the next and the
inheriting of these variables by the children of a process provide flexible ways
to pass information to components of the user-mode system software. Various
important environment variables have conventional meanings to related parts
of the system software. For example, the TERM variable is set up to name the
type of terminal connected to a user’s login session. Many programs use this
variable to determine how to perform operations on the user’s display, such as
moving the cursor and scrolling a region of text. Programs with multilingual
support use the LANG variable to determine the language in which to display
system messages for programs that include multilingual support.

The environment-variablemechanism custom-tailors the operating system
on a per-process basis. Users can choose their own languages or select their
own editors independently of one another.

20.4.1.3 Process Context

The process identity and environment properties are usually set up when a
process is created and not changed until that process exits. A process may
choose to change some aspects of its identity if it needs to do so, or it may
alter its environment. In contrast, process context is the state of the running
program at any one time; it changes constantly. Process context includes the
following parts:

• Scheduling context. The most important part of the process context is its
scheduling context—the information that the scheduler needs to suspend
and restart the process. This information includes saved copies of all the
process’s registers. Floating-point registers are stored separately and are
restored only when needed. Thus, processes that do not use floating-point
arithmetic do not incur the overhead of saving that state. The scheduling
context also includes information about scheduling priority and about any
outstanding signals waiting to be delivered to the process. A key part
of the scheduling context is the process’s kernel stack, a separate area of
kernel memory reserved for use by kernel-mode code. Both system calls
and interrupts that occur while the process is executing will use this stack.

• Accounting. The kernel maintains accounting information about the
resources currently being consumed by each process and the total
resources consumed by the process in its entire lifetime so far.

• File table. The file table is an array of pointers to kernel file structures
representing open files. Whenmaking file-I/O system calls, processes refer
to files by an integer, known as a fil descriptor (fd), that the kernel uses
to index into this table.

• File-system context. Whereas the file table lists the existing open files, the
file-system context applies to requests to open new files. The file-system
context includes the process’s root directory, current working directory,
and namespace.

20.4 Process Management 789

• Signal-handler table. UNIX systems can deliver asynchronous signals to a
process in response to various external events. The signal-handler table
defines the action to take in response to a specific signal. Valid actions
include ignoring the signal, terminating the process, and invoking a rou-
tine in the process’s address space.

• Virtual memory context. The virtual memory context describes the full
contents of a process’s private address space; we discuss it in Section 20.6.

20.4.2 Processes and Threads

Linux provides the fork() system call, which duplicates a process without
loading a new executable image. Linux also provides the ability to create
threads via the clone() system call. Linux does not distinguish between pro-
cesses and threads, however. In fact, Linux generally uses the term task—
rather than process or thread—when referring to a flow of control within a
program. The clone() system call behaves identically to fork(), except that
it accepts as arguments a set of flags that dictate what resources are shared
between the parent and child (whereas a process created with fork() shares
no resources with its parent). The flags include:

flag meaning

CLONE_FS

CLONE_VM

CLONE_SIGHAND

CLONE_FILES

File-system information is shared.

The same memory space is shared.

Signal handlers are shared.

The set of open files is shared.

Thus, if clone() is passed the flags CLONE FS, CLONE VM, CLONE SIGHAND,
and CLONE FILES, the parent and child tasks will share the same file-system
information (such as the current working directory), the same memory space,
the same signal handlers, and the same set of open files. Using clone() in this
fashion is equivalent to creating a thread in other systems, since the parent task
shares most of its resources with its child task. If none of these flags is set when
clone() is invoked, however, the associated resources are not shared, resulting
in functionality similar to that of the fork() system call.

The lack of distinction between processes and threads is possible because
Linux does not hold a process’s entire context within the main process data
structure. Rather, it holds the context within independent subcontexts. Thus,
a process’s file-system context, file-descriptor table, signal-handler table, and
virtual memory context are held in separate data structures. The process data
structure simply contains pointers to these other structures, so any number of
processes can easily share a subcontext by pointing to the same subcontext and
incrementing a reference count.

The arguments to the clone() system call tell it which subcontexts to copy
and which to share. The new process is always given a new identity and a new
scheduling context—these are the essentials of a Linux process. According to
the arguments passed, however, the kernel may either create new subcontext
data structures initialized so as to be copies of the parent’s or set up the new
process to use the same subcontext data structures being used by the parent.

790 Chapter 20 The Linux System

The fork() system call is nothing more than a special case of clone() that
copies all subcontexts, sharing none.

20.5Scheduling

Scheduling is the job of allocating CPU time to different tasks within an operat-
ing system. Linux, like all UNIX systems, supports preemptive multitasking.
In such a system, the process scheduler decides which thread runs and when.
Making these decisions in a way that balances fairness and performance across
many differentworkloads is one of themore complicated challenges inmodern
operating systems.

Normally, we think of scheduling as the running and interrupting of user
threads, but another aspect of scheduling is also important in Linux: the run-
ning of the various kernel tasks. Kernel tasks encompass both tasks that are
requested by a running thread and tasks that execute internally on behalf of
the kernel itself, such as tasks spawned by Linux’s I/O subsystem.

20.5.1 Thread Scheduling

Linux has two separate process-scheduling algorithms. One is a time-sharing
algorithm for fair, preemptive scheduling among multiple threads. The other
is designed for real-time tasks, where absolute priorities are more important
than fairness.

The scheduling algorithm used for routine time-sharing tasks received a
major overhaul with version 2.6 of the kernel. Earlier versions ran a variation
of the traditional UNIX scheduling algorithm. This algorithm does not provide
adequate support for SMP systems, does not scalewell as the number of tasks on
the system grows, and does not maintain fairness among interactive tasks, par-
ticularly on systems such as desktops andmobile devices. The thread scheduler
was first overhauled with version 2.5 of the kernel. Version 2.5 implemented a
scheduling algorithm that selects which task to run in constant time—known
as O(1)—regardless of the number of tasks or processors in the system. The
new scheduler also provided increased support for SMP, including processor
affinity and load balancing. These changes, while improving scalability, did not
improve interactive performance or fairness—and, in fact, made these prob-
lems worse under certain workloads. Consequently, the thread scheduler was
overhauled a second time, with Linux kernel version 2.6. This version ushered
in the Completely Fair Scheduler (CFS).

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: a real-time range from 0 to 99 and a nice value
ranging from −20 to 19. Smaller nice values indicate higher priorities. Thus,
by increasing the nice value, you are decreasing your priority and being “nice”
to the rest of the system.

CFS is a significant departure from the traditional UNIX process scheduler.
In the latter, the core variables in the scheduling algorithm are priority and
time slice. The time slice is the length of time—the slice of the processor
—that a thread is afforded. Traditional UNIX systems give processes a fixed
time slice, perhaps with a boost or penalty for high- or low-priority processes,

20.5 Scheduling 791

respectively. A process may run for the length of its time slice, and higher-
priority processes run before lower-priority processes. It is a simple algorithm
that many non-UNIX systems employ. Such simplicity worked well for early
time-sharing systems but has proved incapable of delivering good interactive
performance and fairness on today’s modern desktops and mobile devices.

CFS introduced a new scheduling algorithm called fair scheduling that
eliminates time slices in the traditional sense. Instead of time slices, all threads
are allotted a proportion of the processor’s time. CFS calculates how long a
thread should run as a function of the total number of runnable threads. To
start, CFS says that if there areN runnable threads, then each should be afforded
1∕N of the processor’s time. CFS then adjusts this allotment by weighting each
thread’s allotment by its nice value. Threads with the default nice value have
a weight of 1—their priority is unchanged. Threads with a smaller nice value
(higher priority) receive a higher weight, while threads with a larger nice
value (lower priority) receive a lower weight. CFS then runs each thread for
a “time slice” proportional to the process’s weight divided by the total weight
of all runnable processes.

To calculate the actual length of time a thread runs, CFS relies on a config-
urable variable called target latency, which is the interval of time duringwhich
every runnable task should run at least once. For example, assume that the
target latency is 10 milliseconds. Further assume that we have two runnable
threads of the same priority. Each of these threads has the same weight and
therefore receives the same proportion of the processor’s time. In this case,
with a target latency of 10milliseconds, the first process runs for 5milliseconds,
then the other process runs for 5 milliseconds, then the first process runs for 5
milliseconds again, and so forth. If we have 10 runnable threads, then CFS will
run each for a millisecond before repeating.

But what if we had, say, 1,000 threads? Each thread would run for 1
microsecond if we followed the procedure just described. Due to switching
costs, scheduling threads for such short lengths of time is inefficient. CFS con-
sequently relies on a second configurable variable, the minimum granularity,
which is a minimum length of time any thread is allotted the processor. All
threads, regardless of the target latency, will run for at least the minimum
granularity. In this manner, CFS ensures that switching costs do not grow unac-
ceptably large when the number of runnable threads increases significantly. In
doing so, it violates its attempts at fairness. In the usual case, however, the num-
ber of runnable threads remains reasonable, and both fairness and switching
costs are maximized.

With the switch to fair scheduling, CFS behaves differently from traditional
UNIX process schedulers in several ways. Most notably, as we have seen, CFS
eliminates the concept of a static time slice. Instead, each thread receives a
proportion of the processor’s time. How long that allotment is depends on
how many other threads are runnable. This approach solves several problems
in mapping priorities to time slices inherent in preemptive, priority-based
scheduling algorithms. It is possible, of course, to solve these problems in other
ways without abandoning the classic UNIX scheduler. CFS, however, solves the
problemswith a simple algorithm that performs well on interactive workloads
such asmobile deviceswithout compromising throughput performance on the
largest of servers.

792 Chapter 20 The Linux System

20.5.2 Real-Time Scheduling

Linux’s real-time scheduling algorithm is significantly simpler than the fair
scheduling employed for standard time-sharing threads. Linux implements
the two real-time scheduling classes required by POSIX.1b: first-come, first-
served (FCFS) and round-robin (Section 5.3.1 and Section 5.3.3, respectively).
In both cases, each thread has a priority in addition to its scheduling class. The
scheduler always runs the thread with the highest priority. Among threads of
equal priority, it runs the thread that has been waiting longest. The only differ-
ence between FCFS and round-robin scheduling is that FCFS threads continue
to run until they either exit or block, whereas a round-robin thread will be
preempted after a while andwill be moved to the end of the scheduling queue,
so round-robin threads of equal priority will automatically time-share among
themselves.

Linux’s real-time scheduling is soft—rather than hard—real time. The
scheduler offers strict guarantees about the relative priorities of real-time
threads, but the kernel does not offer any guarantees about how quickly a real-
time thread will be scheduled once that thread becomes runnable. In contrast,
a hard real-time system can guarantee a minimum latency between when a
thread becomes runnable and when it actually runs.

20.5.3 Kernel Synchronization

The way the kernel schedules its own operations is fundamentally different
from the way it schedules threads. A request for kernel-mode execution can
occur in two ways. A running program may request an operating-system
service, either explicitly via a system call or implicitly—for example, when
a page fault occurs. Alternatively, a device controller may deliver a hardware
interrupt that causes the CPU to start executing a kernel-defined handler for
that interrupt.

The problem for the kernel is that all these tasks may try to access the same
internal data structures. If one kernel task is in the middle of accessing some
data structure when an interrupt service routine executes, then that service
routine cannot access ormodify the same datawithout risking data corruption.
This fact relates to the idea of critical sections—portions of code that access
shared data and thus must not be allowed to execute concurrently. As a result,
kernel synchronization involves much more than just thread scheduling. A
framework is required that allows kernel tasks to run without violating the
integrity of shared data.

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a
thread running in kernel mode could not be preempted—even if a higher-
priority thread became available to run. With version 2.6, the Linux kernel
became fully preemptive. Now, a task can be preempted when it is running
in the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader–
writer versions of these two locks) for locking in the kernel. On SMPmachines,
the fundamental lockingmechanism is a spinlock, and the kernel is designed so
that spinlocks are held for only short durations. On single-processormachines,
spinlocks are not appropriate for use and are replaced by enabling and dis-
abling kernel preemption. That is, rather than holding a spinlock, the task dis-

20.5 Scheduling 793

ables kernel preemption. When the task would otherwise release the spinlock,
it enables kernel preemption. This pattern is summarized below:

single processor multiple processors

Acquire spin lock.

Release spin lock.

Disable kernel preemption.

Enable kernel preemption.

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple kernel interfaces—preempt disable() and pre-
empt enable(). In addition, the kernel is not preemptible if a kernel-mode
task is holding a spinlock. To enforce this rule, each task in the system has
a thread-info structure that includes the field preempt count, which is a
counter indicating the number of locks being held by the task. The counter is
incrementedwhen a lock is acquired and decrementedwhen a lock is released.
If the value of preempt count for the task currently running is greater than
zero, it is not safe to preempt the kernel, as this task currently holds a lock. If
the count is zero, the kernel can safely be interrupted, assuming there are no
outstanding calls to preempt disable().

Spinlocks—along with the enabling and disabling of kernel preemption—
are used in the kernel only when the lock is held for short durations. When a
lock must be held for longer periods, semaphores are used.

The second protection technique used by Linux applies to critical sec-
tions that occur in interrupt service routines. The basic tool is the processor’s
interrupt-control hardware. By disabling interrupts (or using spinlocks) during
a critical section, the kernel guarantees that it can proceed without the risk of
concurrent access to shared data structures.

However, there is a penalty for disabling interrupts. On most hardware
architectures, interrupt enable and disable instructions are not cheap. More
importantly, as long as interrupts remain disabled, all I/O is suspended, and
any device waiting for servicing will have to wait until interrupts are reen-
abled; thus, performance degrades. To address this problem, the Linux kernel
uses a synchronization architecture that allows long critical sections to run for
their entire duration without having interrupts disabled. This ability is espe-
cially useful in the networking code. An interrupt in a network device driver
can signal the arrival of an entire network packet, which may result in a great
deal of code being executed to disassemble, route, and forward that packet
within the interrupt service routine.

Linux implements this architecture by separating interrupt service routines
into two sections: the top half and the bottom half. The top half is the standard
interrupt service routine that runs with recursive interrupts disabled. Inter-
rupts of the same number (or line) are disabled, but other interrupts may run.
The bottom half of a service routine is run, with all interrupts enabled, by
a miniature scheduler that ensures that bottom halves never interrupt them-
selves. The bottom-half scheduler is invoked automatically whenever an inter-
rupt service routine exits.

This separation means that the kernel can complete any complex process-
ing that has to be done in response to an interrupt without worrying about
being interrupted itself. If another interrupt occurs while a bottom half is exe-

794 Chapter 20 The Linux System

cuting, then that interrupt can request that the same bottom half execute, but
the execution will be deferred until the one currently running completes. Each
execution of the bottom half can be interrupted by a top half but can never be
interrupted by a similar bottom half.

The top-half/bottom-half architecture is completed by a mechanism for
disabling selected bottom halves while executing normal, foreground kernel
code. The kernel can code critical sections easily using this system. Interrupt
handlers can code their critical sections as bottom halves; and when the fore-
ground kernel wants to enter a critical section, it can disable any relevant
bottom halves to prevent any other critical sections from interrupting it. At
the end of the critical section, the kernel can reenable the bottom halves and
run any bottom-half tasks that have been queued by top-half interrupt service
routines during the critical section.

Figure 20.2 summarizes the various levels of interrupt protection within
the kernel. Each level may be interrupted by code running at a higher level but
will never be interrupted by code running at the same or a lower level. Except
for user-mode code, user threads can always be preempted by another thread
when a time-sharing scheduling interrupt occurs.

20.5.4 Symmetric Multiprocessing

The Linux 2.0 kernel was the first stable Linux kernel to support symmetric
multiprocessor (SMP) hardware, allowing separate threads to execute in par-
allel on separate processors. The original implementation of SMP imposed the
restriction that only one processor at a time could be executing kernel code.

In version 2.2 of the kernel, a single kernel spinlock (sometimes termed
BKL for “big kernel lock”) was created to allow multiple threads (running on
different processors) to be active in the kernel concurrently. However, the BKL
provided a very coarse level of locking granularity, resulting in poor scalability
to machines with many processors and threads. Later releases of the kernel
made the SMP implementation more scalable by splitting this single kernel
spinlock into multiple locks, each of which protects only a small subset of the
kernel’s data structures. Such spinlocks were described in Section 20.5.3.

The 3.0 and 4.0 kernels provided additional SMP enhancements, including
ever-finer locking, processor affinity, load-balancing algorithms, and support
for hundreds or even thousands of physical processors in a single system.

top-half interrupt handlers

bottom-half interrupt handlers

kernel-system service routines (preemptible)

user-mode programs (preemptible) in
c
re

a
s
in

g
 p

ri
o
ri
ty

Figure 20.2 Interrupt protection levels.

20.6 Memory Management 795

20.6Memory Management

Memory management under Linux has two components. The first deals with
allocating and freeing physical memory—pages, groups of pages, and small
blocks of RAM. The second handles virtual memory, which is memory-mapped
into the address space of running processes. In this section, we describe these
two components and then examine the mechanisms by which the loadable
components of a new program are brought into a process’s virtual memory
in response to an exec() system call.

20.6.1 Management of Physical Memory

Due to specific hardware constraints, Linux separates physical memory into
four different zones, or regions:

• ZONE DMA

• ZONE DMA32

• ZONE NORMAL

• ZONE HIGHMEM

These zones are architecture specific. For example, on the Intel x86-32
architecture, certain ISA (industry standard architecture) devices can only
access the lower 16-MB of physical memory using DMA. On these systems, the
first 16-MB of physical memory comprise ZONE DMA. On other systems, certain
devices can only access the first 4-GB of physical memory, despite supporting
64-bit addresses. On such systems, the first 4 GB of physical memory comprise
ZONE DMA32. ZONE HIGHMEM (for “high memory”) refers to physical memory
that is not mapped into the kernel address space. For example, on the 32-bit
Intel architecture (where 232 provides a 4-GB address space), the kernel is
mapped into the first 896 MB of the address space; the remaining memory
is referred to as high memory and is allocated from ZONE HIGHMEM. Finally,
ZONE NORMAL comprises everything else—the normal, regularly mapped
pages. Whether an architecture has a given zone depends on its constraints. A
modern, 64-bit architecture such as Intel x86-64 has a small 16-MB ZONE DMA
(for legacy devices) and all the rest of its memory in ZONE NORMAL, with no
“high memory”.

The relationship of zones and physical addresses on the Intel x86-32 archi-
tecture is shown in Figure 20.3. The kernel maintains a list of free pages for

zone physical memory

< 16 MB

16 .. 896 MB

> 896 MB

ZONE_DMA

ZONE_NORMAL

ZONE_HIGHMEM

Figure 20.3 Relationship of zones and physical addresses in Intel x86-32.

796 Chapter 20 The Linux System

each zone. When a request for physical memory arrives, the kernel satisfies the
request using the appropriate zone.

The primary physical-memory manager in the Linux kernel is the page
allocator. Each zone has its own allocator, which is responsible for allocating
and freeing all physical pages for the zone and is capable of allocating ranges
of physically contiguous pages on request. The allocator uses a buddy system
(Section 10.8.1) to keep track of available physical pages. In this scheme, adja-
cent units of allocatable memory are paired together (hence its name). Each
allocatable memory region has an adjacent partner or buddy. Whenever two
allocated partner regions are freed up, they are combined to form a larger
region—a buddy heap. That larger region also has a partner, with which it can
combine to form a still larger free region. Conversely, if a smallmemory request
cannot be satisfied by allocation of an existing small free region, then a larger
free regionwill be subdivided into two partners to satisfy the request. Separate
linked lists are used to record the free memory regions of each allowable size.
Under Linux, the smallest size allocatable under this mechanism is a single
physical page. Figure 20.4 shows an example of buddy-heap allocation. A 4-KB
region is being allocated, but the smallest available region is 16 KB. The region
is broken up recursively until a piece of the desired size is available.

Ultimately, all memory allocations in the Linux kernel are made either stat-
ically, by drivers that reserve a contiguous area of memory during system boot
time, or dynamically, by the page allocator. However, kernel functions do not
have to use the basic allocator to reservememory. Several specializedmemory-
management subsystems use the underlying page allocator to manage their
own pools of memory. The most important are the virtual memory system,
described in Section 20.6.2; the kmalloc() variable-length allocator; the slab
allocator, used for allocating memory for kernel data structures; and the page
cache, used for caching pages belonging to files.

Many components of the Linux operating system need to allocate entire
pages on request, but often smaller blocks of memory are required. The kernel
provides an additional allocator for arbitrary-sized requests, where the size
of a request is not known in advance and may be only a few bytes. Analo-
gous to the C language’s malloc() function, this kmalloc() service allocates
entire physical pages on demand but then splits them into smaller pieces. The

16 KB

8 KB

8 KB

8 KB

4 KB

4 KB

Figure 20.4 Splitting of memory in the buddy system.

20.6 Memory Management 797

3-KB
objects

7-KB
objects

kernel objects caches slabs

physically
contiguous
pages

Figure 20.5 Slab allocator in Linux.

kernel maintains lists of pages in use by the kmalloc() service. Allocating
memory involves determining the appropriate list and either taking the first
free piece available on the list or allocating a new page and splitting it up.
Memory regions claimed by the kmalloc() system are allocated permanently
until they are freed explicitly with a corresponding call to kfree(); the kmal-
loc() system cannot reallocate or reclaim these regions in response tomemory
shortages.

Another strategy adopted by Linux for allocating kernel memory is known
as slab allocation. A slab is used for allocating memory for kernel data struc-
tures and is made up of one or more physically contiguous pages. A cache
consists of one or more slabs. There is a single cache for each unique kernel
data structure—for example, a cache for the data structure representing pro-
cess descriptors, a cache for file objects, a cache for inodes, and so forth. Each
cache is populated with objects that are instantiations of the kernel data struc-
ture the cache represents. For example, the cache representing inodes stores
instances of inode structures, and the cache representing process descriptors
stores instances of process descriptor structures. The relationship among slabs,
caches, and objects is shown in Figure 20.5. The figure shows two kernel objects
3 KB in size and three objects 7 KB in size. These objects are stored in the
respective caches for 3-KB and 7-KB objects.

The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects are allocated to the cache. The number of
objects in the cache depends on the size of the associated slab. For example,
a 12-KB slab (made up of three contiguous 4-KB pages) could store six 2-KB
objects. Initially, all the objects in the cache are marked as free. When a new
object for a kernel data structure is needed, the allocator can assign any free
object from the cache to satisfy the request. The object assigned from the cache
is marked as used.

Let’s consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux sys-
tems, a process descriptor is of the type struct task struct, which requires

798 Chapter 20 The Linux System

approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the struct task struct object from its
cache. The cache will fulfill the request using a struct task struct object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

1. Full. All objects in the slab are marked as used.

2. Empty. All objects in the slab are marked as free.

3. Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exists, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical
pages and assigned to a cache; memory for the object is allocated from this
slab.

Two othermain subsystems in Linux do their ownmanagement of physical
pages: the page cache and the virtual memory system. These systems are
closely related to each other. The page cache is the kernel’s main cache for files
and is themainmechanism throughwhich I/O to block devices (Section 20.8.1)
is performed. File systems of all types, including the native Linux disk-based
file systems and the NFS networked file system, perform their I/O through
the page cache. The page cache stores entire pages of file contents and is not
limited to block devices. It can also cache networked data. The virtual memory
system manages the contents of each process’s virtual address space. These
two systems interact closely with each other because reading a page of data
into the page cache requires mapping pages in the page cache using the virtual
memory system. In the following section,we look at the virtualmemory system
in greater detail.

20.6.2 Virtual Memory

The Linux virtual memory system is responsible for maintaining the address
space accessible to each process. It creates pages of virtual memory on demand
and manages loading those pages from disk and swapping them back out to
disk as required. Under Linux, the virtual memory manager maintains two
separate views of a process’s address space: as a set of separate regions and as
a set of pages.

The first view of an address space is the logical view, describing instruc-
tions that the virtual memory system has received concerning the layout of the
address space. In this view, the address space consists of a set of nonoverlap-
ping regions, each region representing a continuous, page-aligned subset of the
address space. Each region is described internally by a single vm area struct
structure that defines the properties of the region, including the process’s read,
write, and execute permissions in the region as well as information about any
files associated with the region. The regions for each address space are linked
into a balanced binary tree to allow fast lookup of the region corresponding to
any virtual address.

The kernel also maintains a second, physical view of each address space.
This view is stored in the hardware page tables for the process. The page-
table entries identify the exact current location of each page of virtual memory,

20.6 Memory Management 799

whether it is on disk or in physical memory. The physical view is managed
by a set of routines, which are invoked from the kernel’s software-interrupt
handlers whenever a process tries to access a page that is not currently present
in the page tables. Each vm area struct in the address-space description
contains a field pointing to a table of functions that implement the key page-
management functionality for any given virtual memory region. All requests
to read or write an unavailable page are eventually dispatched to the appro-
priate handler in the function table for the vm area struct, so that the central
memory-management routines do not have to know the details of managing
each possible type of memory region.

20.6.2.1 Virtual Memory Regions

Linux implements several types of virtual memory regions. One property
that characterizes virtual memory is the backing store for the region, which
describes where the pages for the region come from. Most memory regions
are backed either by a file or by nothing. A region backed by nothing is the
simplest type of virtualmemory region. Such a region representsdemand-zero
memory: when a process tries to read a page in such a region, it is simply given
back a page of memory filled with zeros.

A region backed by a file acts as a viewport onto a section of that file.
Whenever the process tries to access a page within that region, the page table is
filled with the address of a page within the kernel’s page cache corresponding
to the appropriate offset in the file. The same page of physical memory is used
by both the page cache and the process’s page tables, so any changes made to
the file by the file system are immediately visible to any processes that have
mapped that file into their address space. Any number of processes can map
the same region of the same file, and they will all end up using the same page
of physical memory for the purpose.

A virtual memory region is also defined by its reaction to writes. The
mapping of a region into the process’s address space can be either private or
shared. If a process writes to a privatelymapped region, then the pager detects
that a copy-on-write is necessary to keep the changes local to the process. In
contrast, writes to a shared region result in updating of the object mapped into
that region, so that the change will be visible immediately to any other process
that is mapping that object.

20.6.2.2 Lifetime of a Virtual Address Space

The kernel creates a new virtual address space in two situations: when a
process runs a new program with the exec() system call and when a new
process is created by the fork() system call. The first case is easy. When a
new program is executed, the process is given a new, completely empty virtual
address space. It is up to the routines for loading the program to populate the
address space with virtual memory regions.

The second case, creating a new process with fork(), involves creating
a complete copy of the existing process’s virtual address space. The kernel
copies the parent process’s vm area struct descriptors, then creates a new
set of page tables for the child. The parent’s page tables are copied directly into
the child’s, and the reference count of each page covered is incremented. Thus,

800 Chapter 20 The Linux System

after the fork, the parent and child share the same physical pages of memory
in their address spaces.

Aspecial case occurswhen the copying operation reaches a virtualmemory
region that is mapped privately. Any pages to which the parent process has
written within such a region are private, and subsequent changes to these
pages by either the parent or the child must not update the page in the other
process’s address space. When the page-table entries for such regions are
copied, they are set to be read only and are marked for copy-on-write. As long
as neither process modifies these pages, the two processes share the same page
of physical memory. However, if either process tries to modify a copy-on-write
page, the reference count on the page is checked. If the page is still shared, then
the process copies the page’s contents to a brand-newpage of physicalmemory
and uses its copy instead. This mechanism ensures that private data pages are
shared between processes whenever possible and copies are made only when
absolutely necessary.

20.6.2.3 Swapping and Paging

An important task for a virtual memory system is to relocate pages of memory
from physical memory out to disk when that memory is needed. Early UNIX
systems performed this relocation by swapping out the contents of entire
processes at once, but modern versions of UNIX rely more on paging—the
movement of individual pages of virtual memory between physical memory
and disk. Linux does not implement whole-process swapping; it uses the
newer paging mechanism exclusively.

The paging system can be divided into two sections. First, the policy
algorithm decideswhich pages to write out to backing store andwhen to write
them. Second, the paging mechanism carries out the transfer and pages data
back into physical memory when they are needed again.

Linux’s pageout policy uses a modified version of the standard clock
(or second-chance) algorithm described in Section 10.4.5.2. Under Linux, a
multiple-pass clock is used, and every page has an age that is adjusted on
each pass of the clock. The age is more precisely a measure of the page’s
youthfulness, or how much activity the page has seen recently. Frequently
accessed pages will attain a higher age value, but the age of infrequently
accessed pages will drop toward zero with each pass. This age valuing allows
the pager to select pages to page out based on a least frequently used (LFU)
policy.

The paging mechanism supports paging both to dedicated swap devices
and partitions and to normal files, although swapping to a file is significantly
slower due to the extra overhead incurred by the file system. Blocks are allo-
cated from the swap devices according to a bitmap of used blocks, which is
maintained in physical memory at all times. The allocator uses a next-fit algo-
rithm to try to write out pages to continuous runs of secondary storage blocks
for improved performance. The allocator records the fact that a page has been
paged out to storage by using a feature of the page tables on modern proces-
sors: the page-table entry’s page-not-present bit is set, allowing the rest of the
page-table entry to be filled with an index identifying where the page has been
written.

20.6 Memory Management 801

20.6.2.4 Kernel Virtual Memory

Linux reserves for its own internal use a constant, architecture-dependent
region of the virtual address space of every process. The page-table entries that
map to these kernel pages are marked as protected, so that the pages are not
visible or modifiable when the processor is running in user mode. This kernel
virtualmemory area contains two regions. The first is a static area that contains
page-table references to every available physical page ofmemory in the system,
so that a simple translation from physical to virtual addresses occurs when
kernel code is run. The core of the kernel, along with all pages allocated by the
normal page allocator, resides in this region.

The remainder of the kernel’s reserved section of address space is not
reserved for any specific purpose. Page-table entries in this address range can
be modified by the kernel to point to any other areas of memory. The kernel
provides a pair of facilities that allow kernel code to use this virtual memory.
The vmalloc() function allocates an arbitrary number of physical pages of
memory that may not be physically contiguous into a single region of virtually
contiguous kernel memory. The vremap() function maps a sequence of virtual
addresses to point to an area of memory used by a device driver for memory-
mapped I/O.

20.6.3 Execution and Loading of User Programs

The Linux kernel’s execution of user programs is triggered by a call to the
exec() system call. This exec() call commands the kernel to run a new pro-
gramwithin the current process, completely overwriting the current execution
context with the initial context of the new program. The first job of this system
service is to verify that the calling process has permission rights to the file
being executed. Once that matter has been checked, the kernel invokes a loader
routine to start running the program. The loader does not necessarily load the
contents of the program file into physical memory, but it does at least set up
the mapping of the program into virtual memory.

There is no single routine in Linux for loading a new program. Instead,
Linux maintains a table of possible loader functions, and it gives each such
function the opportunity to try loading the given file when an exec() sys-
tem call is made. The initial reason for this loader table was that, between the
releases of the 1.0 and 1.2 kernels, the standard format for Linux’s binary files
was changed. Older Linux kernels understood the a.out format for binary files
—a relatively simple format common on older UNIX systems. Newer Linux
systems use the more modern ELF format, now supported by most current
UNIX implementations. ELF has a number of advantages over a.out, including
flexibility and extendability. New sections can be added to an ELF binary (for
example, to add extra debugging information) without causing the loader rou-
tines to become confused. By allowing registration of multiple loader routines,
Linux can easily support the ELF and a.out binary formats in a single running
system.

In Section 20.6.3.1 and Section 20.6.3.2, we concentrate exclusively on the
loading and running of ELF-format binaries. The procedure for loading a.out
binaries is simpler but similar in operation.

802 Chapter 20 The Linux System

20.6.3.1 Mapping of Programs into Memory

Under Linux, the binary loader does not load a binary file into physical mem-
ory. Rather, the pages of the binary file are mapped into regions of virtual
memory. Only when the program tries to access a given page will a page fault
result in the loading of that page into physical memory using demand paging.

It is the responsibility of the kernel’s binary loader to set up the initial
memory mapping. An ELF-format binary file consists of a header followed by
several page-aligned sections. The ELF loader works by reading the header and
mapping the sections of the file into separate regions of virtual memory.

Figure 20.6 shows the typical layout of memory regions set up by the ELF
loader. In a reserved region at one end of the address space sits the kernel,
in its own privileged region of virtual memory inaccessible to normal user-
mode programs. The rest of virtual memory is available to applications, which
can use the kernel’s memory-mapping functions to create regions that map a
portion of a file or that are available for application data.

The loader’s job is to set up the initial memory mapping to allow the
execution of the program to start. The regions that need to be initialized include
the stack and the program’s text and data regions.

The stack is created at the top of the user-mode virtual memory; it grows
downward toward lower-numbered addresses. It includes copies of the argu-
ments and environment variables given to the program in the exec() system
call. The other regions are created near the bottom end of virtual memory.
The sections of the binary file that contain program text or read-only data are
mapped into memory as a write-protected region. Writable initialized data are
mapped next; then any uninitialized data are mapped in as a private demand-
zero region.

kernel virtual memory memory invisible to user-mode code

stack

memory-mapped region

memory-mapped region

memory-mapped region

run-time data

uninitialized data

initialized data

program text

the ‘brk’ pointer

forbidden region

Figure 20.6 Memory layout for ELF programs.

20.7 File Systems 803

Directly beyond these fixed-sized regions is a variable-sized region that
programs can expand as needed to hold data allocated at run time. Each
process has a pointer, brk, that points to the current extent of this data region,
and processes can extend or contract their brk region with a single system call
—sbrk().

Once these mappings have been set up, the loader initializes the process’s
program-counter register with the starting point recorded in the ELF header,
and the process can be scheduled.

20.6.3.2 Static and Dynamic Linking

Once the program has been loaded and has started running, all the necessary
contents of the binary file have been loaded into the process’s virtual address
space. However, most programs also need to run functions from the system
libraries, and these library functions must also be loaded. In the simplest
case, the necessary library functions are embedded directly in the program’s
executable binary file. Such a program is statically linked to its libraries, and
statically linked executables can commence running as soon as they are loaded.

The main disadvantage of static linking is that every program generated
must contain copies of exactly the same common system library functions. It is
much more efficient, in terms of both physical memory and disk-space usage,
to load the system libraries into memory only once. Dynamic linking allows
that to happen.

Linux implements dynamic linking in user mode through a special linker
library. Every dynamically linked program contains a small, statically linked
function that is called when the program starts. This static function just maps
the link library into memory and runs the code that the function contains. The
link library determines the dynamic libraries required by the program and the
names of the variables and functions needed from those libraries by reading the
information contained in sections of the ELF binary. It then maps the libraries
into the middle of virtual memory and resolves the references to the symbols
contained in those libraries. It does not matter exactly where in memory these
shared libraries are mapped: they are compiled into position-independent
code (PIC), which can run at any address in memory.

20.7 File Systems

Linux retains UNIX’s standard file-system model. In UNIX, a file does not have
to be an object stored on disk or fetched over a network from a remote file
server. Rather, UNIX files can be anything capable of handling the input or
output of a stream of data. Device drivers can appear as files, and interprocess-
communication channels or network connections also look like files to the
user.

The Linux kernel handles all these types of files by hiding the implemen-
tation details of any single file type behind a layer of software, the virtual file
system (VFS). Here, we first cover the virtual file system and then discuss the
standard Linux file system—ext3.

804 Chapter 20 The Linux System

20.7.1 The Virtual File System

The Linux VFS is designed around object-oriented principles. It has two com-
ponents: a set of definitions that specify what file-system objects are allowed
to look like and a layer of software to manipulate the objects. The VFS defines
four main object types:

• An inode object represents an individual file.

• A fil object represents an open file.

• A superblock object represents an entire file system.

• A dentry object represents an individual directory entry.

For each of these four object types, the VFS defines a set of operations.
Every object of one of these types contains a pointer to a function table. The
function table lists the addresses of the actual functions that implement the
defined operations for that object. For example, an abbreviated API for some of
the file object’s operations includes:

• int open(. . .) — Open a file.

• ssize t read(. . .) — Read from a file.

• ssize t write(. . .) — Write to a file.

• int mmap(. . .) — Memory-map a file.

The complete definition of the file object is specified in the struct
file operations, which is located in the file /usr/include/linux/fs.h.
An implementation of the file object (for a specific file type) is required to
implement each function specified in the definition of the file object.

The VFS software layer can perform an operation on one of the file-system
objects by calling the appropriate function from the object’s function table,
without having to know in advance exactly what kind of object it is dealing
with. The VFS does not know, or care, whether an inode represents a networked
file, a disk file, a network socket, or a directory file. The appropriate function
for that file’s read() operation will always be at the same place in its function
table, and the VFS software layer will call that function without caring how the
data are actually read.

The inode and file objects are themechanisms used to access files. An inode
object is a data structure containing pointers to the disk blocks that contain the
actual file contents, and a file object represents a point of access to the data in
an open file. A thread cannot access an inode’s contents without first obtaining
a file object pointing to the inode. The file object keeps track of where in the file
the process is currently reading orwriting, to keep track of sequential file I/O. It
also remembers the permissions (for example, read or write) requested when
the file was opened and tracks the thread’s activity if necessary to perform
adaptive read-ahead, fetching file data into memory before the thread requests
the data, to improve performance.

File objects typically belong to a single process, but inode objects do not.
There is one file object for every instance of an open file, but always only a

20.7 File Systems 805

single inode object. Even when a file is no longer in use by any process, its
inode object may still be cached by the VFS to improve performance if the file
is used again in the near future. All cached file data are linked onto a list in the
file’s inode object. The inode also maintains standard information about each
file, such as the owner, size, and time most recently modified.

Directory files are dealt with slightly differently from other files. The UNIX
programming interface defines a number of operations on directories, such
as creating, deleting, and renaming a file in a directory. The system calls for
these directory operations do not require that the user open the files concerned,
unlike the case for reading or writing data. The VFS therefore defines these
directory operations in the inode object, rather than in the file object.

The superblock object represents a connected set of files that form a
self-contained file system. The operating-system kernel maintains a single
superblock object for each disk device mounted as a file system and for each
networked file system currently connected. The main responsibility of the
superblock object is to provide access to inodes. The VFS identifies every inode
by a unique file-system/inode number pair, and it finds the inode correspond-
ing to a particular inode number by asking the superblock object to return the
inode with that number.

Finally, a dentry object represents a directory entry, which may include the
name of a directory in the path name of a file (such as /usr) or the actual file
(such as stdio.h). For example, the file /usr/include/stdio.h contains the
directory entries (1) /, (2) usr, (3) include, and (4) stdio.h. Each of these
values is represented by a separate dentry object.

As an example of how dentry objects are used, consider the situ-
ation in which a thread wishes to open the file with the pathname
/usr/include/stdio.h using an editor. Because Linux treats directory
names as files, translating this path requires first obtaining the inode for the
root—/. The operating system must then read through this file to obtain
the inode for the file include. It must continue this thread until it obtains
the inode for the file stdio.h. Because path-name translation can be a
time-consuming task, Linux maintains a cache of dentry objects, which is
consulted during path-name translation. Obtaining the inode from the dentry
cache is considerably faster than having to read the on-disk file.

20.7.2 The Linux ext3 File System

The standard on-disk file system used by Linux is called ext3, for historical
reasons. Linux was originally programmed with a Minix-compatible file sys-
tem, to ease exchanging data with the Minix development system, but that file
systemwas severely restricted by 14-character file-name limits and amaximum
file-system size of 64-MB. The Minix file system was superseded by a new file
system, which was christened the extended file system (extfs). A later redesign
to improve performance and scalability and to add a few missing features led
to the second extended file system (ext2). Further development added journal-
ing capabilities, and the system was renamed the third extended file system
(ext3). Linux kernel developers then augmented ext3 with modern file-system
features such as extents. This new file system is called the fourth extended file
system (ext4). The rest of this section discusses ext3, however, since it remains

806 Chapter 20 The Linux System

the most-deployed Linux file system.Most of the discussion applies equally to
ext4.

Linux’s ext3 has much in common with the BSD Fast File System (FFS) (Sec-
tion C.7.7). It uses a similar mechanism for locating the data blocks belonging
to a specific file, storing data-block pointers in indirect blocks throughout the
file system with up to three levels of indirection. As in FFS, directory files are
stored on disk just like normal files, although their contents are interpreted
differently. Each block in a directory file consists of a linked list of entries. In
turn, each entry contains the length of the entry, the name of a file, and the
inode number of the inode to which that entry refers.

The main differences between ext3 and FFS lie in their disk-allocation
policies. In FFS, the disk is allocated to files in blocks of 8 KB. These blocks are
subdivided into fragments of 1 KB for storage of small files or partially filled
blocks at the ends of files. In contrast, ext3 does not use fragments at all but
performs all its allocations in smaller units. The default block size on ext3 varies
as a function of the total size of the file system. Supported block sizes are 1, 2,
4, and 8 KB.

To maintain high performance, the operating system must try to perform
I/O operations in large chunks whenever possible by clustering physically
adjacent I/O requests. Clustering reduces the per-request overhead incurred by
device drivers, disks, and disk-controller hardware. A block-sized I/O request
size is too small to maintain good performance, so ext3 uses allocation policies
designed to place logically adjacent blocks of a file into physically adjacent
blocks on disk, so that it can submit an I/O request for several disk blocks as a
single operation.

The ext3 allocation policy works as follows: As in FFS, an ext3 file system is
partitioned into multiple segments. In ext3, these are called block groups. FFS
uses the similar concept of cylinder groups, where each group corresponds
to a single cylinder of a physical disk. (Note that modern disk-drive technol-
ogy packs sectors onto the disk at different densities, and thus with different
cylinder sizes, depending on how far the disk head is from the center of the
disk. Therefore, fixed-sized cylinder groups do not necessarily correspond to
the disk’s geometry.)

When allocating a file, ext3 must first select the block group for that file.
For data blocks, it attempts to allocate the file to the block group to which the
file’s inode has been allocated. For inode allocations, it selects the block group
inwhich the file’s parent directory resides for nondirectory files. Directory files
are not kept together but rather are dispersed throughout the available block
groups. These policies are designednot only to keep related informationwithin
the same block group but also to spread out the disk load among the disk’s
block groups to reduce the fragmentation of any one area of the disk.

Within a block group, ext3 tries to keep allocations physically contiguous
if possible, reducing fragmentation if it can. It maintains a bitmap of all free
blocks in a block group. When allocating the first blocks for a new file, it
starts searching for a free block from the beginning of the block group. When
extending a file, it continues the search from the block most recently allocated
to the file. The search is performed in two stages. First, ext3 searches for an
entire free byte in the bitmap; if it fails to find one, it looks for any free bit.
The search for free bytes aims to allocate disk space in chunks of at least eight
blocks where possible.

20.7 File Systems 807

Once a free block has been identified, the search is extended backward until
an allocated block is encountered. When a free byte is found in the bitmap,
this backward extension prevents ext3 from leaving a hole between the most
recently allocated block in the previous nonzero byte and the zero byte found.
Once the next block to be allocated has been found by either bit or byte search,
ext3 extends the allocation forward for up to eight blocks and preallocates
these extra blocks to the file. This preallocation helps to reduce fragmentation
during interleaved writes to separate files and also reduces the CPU cost of
disk allocation by allocating multiple blocks simultaneously. The preallocated
blocks are returned to the free-space bitmap when the file is closed.

Figure 20.7 illustrates the allocation policies. Each row represents a
sequence of set and unset bits in an allocation bitmap, indicating used and
free blocks on disk. In the first case, if we can find any free blocks sufficiently
near the start of the search, then we allocate them no matter how fragmented
they may be. The fragmentation is partially compensated for by the fact that
the blocks are close together and can probably all be read without any disk
seeks. Furthermore, allocating them all to one file is better in the long run than
allocating isolated blocks to separate files once large free areas become scarce
on disk. In the second case, we have not immediately found a free block close
by, so we search forward for an entire free byte in the bitmap. If we allocated
that byte as a whole, we would end up creating a fragmented area of free
space between it and the allocation preceding it. Thus, before allocating, we
back up to make this allocation flush with the allocation preceding it, and then
we allocate forward to satisfy the default allocation of eight blocks.

allocating scattered free blocks

allocating continuous free blocks

block in use bit boundaryblock selected
by allocator

free block byte boundarybitmap search

Figure 20.7 ext3 block-allocation policies.

808 Chapter 20 The Linux System

20.7.3 Journaling

The ext3 file system supports a popular feature called journaling, whereby
modifications to the file system are written sequentially to a journal. A set of
operations that performs a specific task is a transaction. Once a transaction
is written to the journal, it is considered to be committed. Meanwhile, the
journal entries relating to the transaction are replayed across the actual file-
system structures. As the changes are made, a pointer is updated to indicate
which actions have completed and which are still incomplete. When an entire
committed transaction is completed, it is removed from the journal. The jour-
nal, which is actually a circular buffer, may be in a separate section of the file
system, or it may even be on a separate disk spindle. It is more efficient, but
more complex, to have it under separate read–write heads, thereby decreasing
head contention and seek times.

If the system crashes, some transactions may remain in the journal. Those
transactions were never completed to the file system even though they were
committed by the operating system, so theymust be completed once the system
recovers. The transactions can be executed from the pointer until the work is
complete, and the file-system structures remain consistent. The only problem
occurs when a transaction has been aborted—that is, it was not committed
before the system crashed. Any changes from those transactions that were
applied to the file system must be undone, again preserving the consistency
of the file system. This recovery is all that is needed after a crash, eliminating
all problems with consistency checking.

Journaling file systems may perform some operations faster than nonjour-
naling systems, as updates proceed much faster when they are applied to the
in-memory journal rather than directly to the on-disk data structures. The rea-
son for this improvement is found in the performance advantage of sequential
I/O over random I/O. Costly synchronous random writes to the file system
are turned into much less costly synchronous sequential writes to the file sys-
tem’s journal. Those changes, in turn, are replayed asynchronously via random
writes to the appropriate structures. The overall result is a significant gain in
performance of file-system metadata-oriented operations, such as file creation
and deletion. Due to this performance improvement, ext3 can be configured to
journal only metadata and not file data.

20.7.4 The Linux Proc File System

The flexibility of the Linux VFS enables us to implement a file system that
does not store data persistently at all but rather provides an interface to some
other functionality. The Linux /proc file system is an example of a file system
whose contents are not actually stored anywhere but are computed on demand
according to user file I/O requests.

A/proc file system is not unique to Linux. UNIX v8 introduced a /proc file
system and its use has been adopted and expanded into many other operating
systems. It is an efficient interface to the kernel’s process name space and helps
with debugging. Each subdirectory of the file system corresponded not to a
directory on any disk but rather to an active process on the current system. A
listing of the file system reveals one directory per process, with the directory

20.7 File Systems 809

name being the ASCII decimal representation of the process’s unique process
identifier (PID).

Linux implements such a /procfile systembut extends it greatly by adding
a number of extra directories and text files under the file system’s root direc-
tory. These new entries correspond to various statistics about the kernel and
the associated loaded drivers. The /proc file system provides a way for pro-
grams to access this information as plain text files; the standard UNIX user
environment provides powerful tools to process such files. For example, in
the past, the traditional UNIX ps command for listing the states of all running
processes has been implemented as a privileged process that reads the process
state directly from the kernel’s virtual memory. Under Linux, this command
is implemented as an entirely unprivileged program that simply parses and
formats the information from /proc.

The /proc file system must implement two things: a directory structure
and the file contents within. Because a UNIX file system is defined as a set of file
and directory inodes identified by their inode numbers, the /proc file system
must define a unique and persistent inode number for each directory and the
associated files. Once such a mapping exists, the file system can use this inode
number to identify just what operation is required when a user tries to read
from a particular file inode or to perform a lookup in a particular directory
inode. When data are read from one of these files, the /proc file system will
collect the appropriate information, format it into textual form, and place it into
the requesting process’s read buffer.

The mapping from inode number to information type splits the inode
number into two fields. In Linux, a PID is 16 bits in size, but an inode number
is 32 bits. The top 16 bits of the inode number are interpreted as a PID, and the
remaining bits define what type of information is being requested about that
process.

A PID of zero is not valid, so a zero PID field in the inode number is
taken to mean that this inode contains global—rather than process-specific—
information. Separate global files exist in /proc to report information such as
the kernel version, free memory, performance statistics, and drivers currently
running.

Not all the inode numbers in this range are reserved.The kernel can allocate
new /proc inode mappings dynamically, maintaining a bitmap of allocated
inode numbers. It also maintains a tree data structure of registered global
/proc file-system entries. Each entry contains the file’s inode number, file
name, and access permissions, along with the special functions used to gen-
erate the file’s contents. Drivers can register and deregister entries in this tree
at any time, and a special section of the tree—appearing under the /proc/sys
directory—is reserved for kernel variables. Files under this tree are managed
by a set of common handlers that allow both reading and writing of these vari-
ables, so a systemadministrator can tune the value of kernel parameters simply
by writing out the new desired values in ASCII decimal to the appropriate file.

To allow efficient access to these variables from within applications, the
/proc/sys subtree is made available through a special system call, sysctl(),
that reads and writes the same variables in binary, rather than in text, without
the overhead of the file system. sysctl() is not an extra facility; it simply reads
the /proc dynamic entry tree to identify the variables to which the application
is referring.

810 Chapter 20 The Linux System

file system
block

device file
character
device file

protocol
driver

line
discipline

TTY driver
I/O scheduler

SCSI manager

SCSI device
driver

block
device
driver

character
device
driver

network
socket

network
device
driver

user application

Figure 20.8 Device-driver block structure.

20.8 Input and Output

To the user, the I/O system in Linux looks much like that in any UNIX system.
That is, to the extent possible, all device drivers appear as normal files. Users
can open an access channel to a device in the same way they open any other
file—devices can appear as objects within the file system. The system admin-
istrator can create special files within a file system that contain references to a
specific device driver, and a user opening such a file will be able to read from
and write to the device referenced. By using the normal file-protection system,
which determines who can access which file, the administrator can set access
permissions for each device.

Linux splits all devices into three classes: block devices, character devices,
and network devices. Figure 20.8 illustrates the overall structure of the device-
driver system.

Block devices include all devices that allow random access to completely
independent, fixed-sized blocks of data, including hard disks and floppy disks,
CD-ROMs and Blu-ray discs, and flashmemory. Block devices are typically used
to store file systems, but direct access to a block device is also allowed so
that programs can create and repair the file system that the device contains.
Applications can also access these block devices directly if they wish. For
example, a database application may prefer to perform its own fine-tuned
layout of data onto a disk rather than using the general-purpose file system.

Character devices includemost other devices, such asmice and keyboards.
The fundamental difference between block and character devices is random
access—block devices are accessed randomly, while character devices are
accessed serially. For example, seeking to a certain position in a file might be
supported for a DVD but makes no sense for a pointing device such as amouse.

Network devices are dealt with differently from block and character
devices. Users cannot directly transfer data to network devices. Instead, they
must communicate indirectly by opening a connection to the kernel’s net-
working subsystem. We discuss the interface to network devices separately in
Section 20.10.

20.8.1 Block Devices

Block devices provide the main interface to all disk devices in a system. Perfor-
mance is particularly important for disks, and the block-device system must

20.8 Input and Output 811

provide functionality to ensure that disk access is as fast as possible. This
functionality is achieved through the scheduling of I/O operations.

In the context of block devices, a block represents the unit with which the
kernel performs I/O. When a block is read into memory, it is stored in a buffer.
The request manager is the layer of software that manages the reading and
writing of buffer contents to and from a block-device driver.

A separate list of requests is kept for each block-device driver. Tradition-
ally, these requests have been scheduled according to a unidirectional-elevator
(C-SCAN) algorithm that exploits the order in which requests are inserted in
and removed from the lists. The request lists are maintained in sorted order of
increasing starting-sector number. When a request is accepted for processing
by a block-device driver, it is not removed from the list. It is removed only after
the I/O is complete, at which point the driver continues with the next request
in the list, even if new requests have been inserted in the list before the active
request. As new I/O requests aremade, the requestmanager attempts to merge
requests in the lists.

Linux kernel version 2.6 introduced a new I/O scheduling algorithm.
Although a simple elevator algorithm remains available, the default I/O sched-
uler is now the Completely Fair Queueing (CFQ) scheduler. The CFQ I/O
scheduler is fundamentally different from elevator-based algorithms. Instead
of sorting requests into a list, CFQ maintains a set of lists—by default, one for
each process. Requests originating from a process go in that process’s list. For
example, if two processes are issuing I/O requests, CFQ will maintain two sep-
arate lists of requests, one for each process. The lists are maintained according
to the C-SCAN algorithm.

CFQ services the lists differently as well. Where a traditional C-SCAN algo-
rithm is indifferent to a specific process, CFQ services each process’s list round-
robin. It pulls a configurable number of requests (by default, four) from each
list before moving on to the next. This method results in fairness at the process
level—each process receives an equal fraction of the disk’s bandwidth. The
result is beneficial with interactive workloads where I/O latency is important.
In practice, however, CFQ performs well with most workloads.

20.8.2 Character Devices

A character-device driver can be almost any device driver that does not offer
random access to fixed blocks of data. Any character-device drivers registered
to the Linux kernel must also register a set of functions that implement the
file I/O operations that the driver can handle. The kernel performs almost no
preprocessing of a file read or write request to a character device. It simply
passes the request to the device in question and lets the device deal with the
request.

The main exception to this rule is the special subset of character-device
drivers that implement terminal devices. The kernel maintains a standard
interface to these drivers by means of a set of tty struct structures. Each of
these structures provides buffering and flow control on the data stream from
the terminal device and feeds those data to a line discipline.

A line discipline is an interpreter for the information from the terminal
device. The most common line discipline is the tty discipline, which glues the
terminal’s data stream onto the standard input and output streams of a user’s
running processes, allowing those processes to communicate directly with the

812 Chapter 20 The Linux System

user’s terminal. This job is complicated by the fact that several such processes
may be running simultaneously, and the tty line discipline is responsible for
attaching and detaching the terminal’s input and output from the various
processes connected to it as those processes are suspended or awakened by
the user.

Other line disciplines also are implemented that have nothing to do with
I/O to a user process. The PPP and SLIP networking protocols are ways of
encoding a networking connection over a terminal device such as a serial
line. These protocols are implemented under Linux as drivers that at one end
appear to the terminal system as line disciplines and at the other end appear
to the networking system as network-device drivers. After one of these line
disciplines has been enabled on a terminal device, any data appearing on that
terminal will be routed directly to the appropriate network-device driver.

20.9 Interprocess Communication

Linux provides a rich environment for processes to communicate with each
other. Communication may be just a matter of letting another process know
that some event has occurred, or it may involve transferring data from one
process to another.

20.9.1 Synchronization and Signals

The standard Linux mechanism for informing a process that an event has
occurred is the signal. Signals can be sent from any process to any other
process, with restrictions on signals sent to processes owned by another user.
However, a limited number of signals is available, and they cannot carry
information. Only the fact that a signal has occurred is available to a process.
Signals are not generated only by processes. The kernel also generates signals
internally. For example, it can send a signal to a server processwhen data arrive
on a network channel, to a parent process when a child terminates, or to a
waiting process when a timer expires.

Internally, the Linux kernel does not use signals to communicate with
processes running in kernel mode. If a kernel-mode process is expecting an
event to occur, it will not use signals to receive notification of that event.
Rather, communication about incoming asynchronous eventswithin the kernel
takes place through the use of scheduling states and wait queue structures.
These mechanisms allow kernel-mode processes to inform one another about
relevant events, and they also allow events to be generated by device drivers
or by the networking system.Whenever a processwants towait for some event
to complete, it places itself on a wait queue associated with that event and
tells the scheduler that it is no longer eligible for execution. Once the event has
completed, every process on the wait queue will be awakened. This procedure
allows multiple processes to wait for a single event. For example, if several
processes are trying to read a file from a disk, then they will all be awakened
once the data have been read into memory successfully.

Although signals have always been the main mechanism for commu-
nicating asynchronous events among processes, Linux also implements the
semaphore mechanism of System V UNIX. A process can wait on a semaphore
as easily as it can wait for a signal, but semaphores have two advantages: large

20.10 Network Structure 813

numbers of semaphores can be shared amongmultiple independent processes,
and operations on multiple semaphores can be performed atomically. Inter-
nally, the standard Linux wait queue mechanism synchronizes processes that
are communicating with semaphores.

20.9.2 Passing of Data among Processes

Linux offers several mechanisms for passing data among processes. The stan-
dard UNIX pipe mechanism allows a child process to inherit a communication
channel from its parent; data written to one end of the pipe can be read at the
other. Under Linux, pipes appear as just another type of inode to virtual file
system software, and each pipe has a pair of wait queues to synchronize the
reader and writer. UNIX also defines a set of networking facilities that can send
streams of data to both local and remote processes. Networking is covered in
Section 20.10.

Another process communications method, shared memory, offers an
extremely fast way to communicate large or small amounts of data. Any data
written by one process to a shared memory region can be read immediately
by any other process that has mapped that region into its address space.
The main disadvantage of shared memory is that, on its own, it offers no
synchronization. A process can neither ask the operating system whether a
piece of shared memory has been written to nor suspend execution until such
a write occurs. Shared memory becomes particularly powerful when used
in conjunction with another interprocess-communication mechanism that
provides the missing synchronization.

A shared-memory region in Linux is a persistent object that can be created
or deleted by processes. Such an object is treated as though it were a small,
independent address space. The Linux paging algorithms can elect to page
shared-memory pages out to disk, just as they can page out a process’s data
pages. The shared-memory object acts as a backing store for shared-memory
regions, just as a file can act as a backing store for a memory-mapped memory
region. When a file is mapped into a virtual address space region, then any
page faults that occur cause the appropriate page of the file to be mapped into
virtualmemory. Similarly, shared-memorymappings direct page faults tomap
in pages from a persistent shared-memory object. Also just as for files, shared-
memory objects remember their contents even if no processes are currently
mapping them into virtual memory.

20.10 Network Structure

Networking is a key area of functionality for Linux. Not only does Linux
support the standard Internet protocols used formost UNIX-to-UNIX communi-
cations, but it also implements a number of protocols native to other, non-UNIX
operating systems. In particular, since Linux was originally implemented pri-
marily on PCs, rather than on large workstations or on server-class systems,
it supports many of the protocols typically used on PC networks, such as
AppleTalk and IPX.

Internally, networking in the Linux kernel is implemented by three layers
of software:

814 Chapter 20 The Linux System

1. The socket interface

2. Protocol drivers

3. Network-device drivers

User applications perform all networking requests through the socket
interface. This interface is designed to look like the 4.3 BSD socket layer, so
that any programs designed to make use of Berkeley sockets will run on Linux
without any source-code changes. This interface is described in Section C.9.1.
The BSD socket interface is sufficiently general to represent network addresses
for a wide range of networking protocols. This single interface is used in Linux
to access not just those protocols implemented on standard BSD systems but all
the protocols supported by the system.

The next layer of software is the protocol stack, which is similar in orga-
nization to BSD’s own framework. Whenever any networking data arrive at
this layer, either from an application’s socket or from a network-device driver,
the data are expected to have been tagged with an identifier specifying which
network protocol they contain. Protocols can communicate with one another
if they desire; for example, within the Internet protocol set, separate protocols
manage routing, error reporting, and reliable retransmission of lost data.

The protocol layer may rewrite packets, create new packets, split
or reassemble packets into fragments, or simply discard incoming data.
Ultimately, once the protocol layer has finished processing a set of packets, it
passes them on, either upward to the socket interface if the data are destined
for a local connection or downward to a device driver if the data need to be
transmitted remotely. The protocol layer decides to which socket or device it
will send the packet.

All communication between the layers of the networking stack is per-
formed by passing single skbuff (socket buffer) structures. Each of these
structures contains a set of pointers into a single continuous area of memory,
representing a buffer inside which network packets can be constructed. The
valid data in a skbuff do not need to start at the beginning of the skbuff’s
buffer, and they do not need to run to the end. The networking code can add
data to or trim data from either end of the packet, as long as the result still fits
into the skbuff. This capacity is especially important on modernmicroproces-
sors, where improvements in CPU speed have far outstripped the performance
of main memory. The skbuff architecture allows flexibility in manipulating
packet headers and checksums while avoiding any unnecessary data copying.

The most important set of protocols in the Linux networking system is the
TCP/IP protocol suite. This suite comprises a number of separate protocols.
The IP protocol implements routing between different hosts anywhere on the
network. On top of the routing protocol are the UDP, TCP, and ICMP protocols.
The UDP protocol carries arbitrary individual datagrams between hosts. The
TCP protocol implements reliable connections between hosts with guaranteed
in-order delivery of packets and automatic retransmission of lost data. The
ICMP protocol carries various error and status messages between hosts.

Each packet (skbuff) arriving at the networking stack’s protocol software
is expected to be already tagged with an internal identifier indicating the
protocol to which the packet is relevant. Different networking-device drivers

20.10 Network Structure 815

encode the protocol type in differentways; thus, the protocol for incoming data
must be identified in the device driver. The device driver uses a hash table of
knownnetworking-protocol identifiers to look up the appropriate protocol and
passes the packet to that protocol. Newprotocols can be added to the hash table
as kernel-loadable modules.

Incoming IP packets are delivered to the IP driver. The job of this layer
is to perform routing. After deciding where the packet is to be sent, the IP
driver forwards the packet to the appropriate internal protocol driver to be
delivered locally or injects it back into a selected network-device-driver queue
to be forwarded to another host. It performs the routing decision using two
tables: the persistent forwarding information base (FIB) and a cache of recent
routing decisions. The FIB holds routing-configuration information and can
specify routes based either on a specific destination address or on a wildcard
representing multiple destinations. The FIB is organized as a set of hash tables
indexed by destination address; the tables representing themost specific routes
are always searched first. Successful lookups from this table are added to
the route-caching table, which caches routes only by specific destination. No
wildcards are stored in the cache, so lookups can be made quickly. An entry in
the route cache expires after a fixed period with no hits.

At various stages, the IP software passes packets to a separate section of
code for firewal management—selective filtering of packets according to arbi-
trary criteria, usually for security purposes. The firewall manager maintains a
number of separate firewal chains and allows a skbuff to be matched against
any chain. Chains are reserved for separate purposes: one is used for forwarded
packets, one for packets being input to this host, and one for data generated at
this host. Each chain is held as an ordered list of rules, where a rule specifies
one of a number of possible firewall-decision functions plus some arbitrary
data for matching purposes.

Two other functions performed by the IP driver are disassembly and
reassembly of large packets. If an outgoing packet is too large to be queued to
a device, it is simply split up into smaller fragments, which are all queued to
the driver. At the receiving host, these fragments must be reassembled. The IP
driver maintains an ipfrag object for each fragment awaiting reassembly and
an ipq for each datagram being assembled. Incoming fragments are matched
against each known ipq. If a match is found, the fragment is added to it; oth-
erwise, a new ipq is created. Once the final fragment has arrived for a ipq, a
completely new skbuff is constructed to hold the new packet, and this packet
is passed back into the IP driver.

Packets identified by the IP as destined for this host are passed on to one
of the other protocol drivers. The UDP and TCP protocols share a means of
associating packets with source and destination sockets: each connected pair
of sockets is uniquely identified by its source and destination addresses and
by the source and destination port numbers. The socket lists are linked to
hash tables keyed on these four address and port values for socket lookup on
incoming packets. The TCP protocol has to deal with unreliable connections, so
it maintains ordered lists of unacknowledged outgoing packets to retransmit
after a timeout and of incoming out-of-order packets to be presented to the
socket when the missing data have arrived.

816 Chapter 20 The Linux System

20.11 Security

Linux’s security model is closely related to typical UNIX security mechanisms.
The security concerns can be classified in two groups:

1. Authentication. Making sure that nobody can access the system without
first proving that she has entry rights

2. Access control. Providing a mechanism for checking whether a user has
the right to access a certain object and preventing access to objects as
required

20.11.1 Authentication

Authentication in UNIX has typically been performed through the use of a
publicly readable password file. Auser’s password is combinedwith a random
“salt” value, and the result is encoded with a one-way transformation function
and stored in the password file. The use of the one-way function means that
the original password cannot be deduced from the password file except by trial
and error. When a user presents a password to the system, the password is
recombined with the salt value stored in the password file and passed through
the same one-way transformation. If the result matches the contents of the
password file, then the password is accepted.

Historically, UNIX implementations of this mechanism have had several
drawbacks. Passwords were often limited to eight characters, and the number
of possible salt values was so low that an attacker could easily combine a
dictionary of commonly used passwords with every possible salt value and
have a good chance of matching one or more passwords in the password
file, gaining unauthorized access to any accounts compromised as a result.
Extensions to the password mechanism have been introduced that keep the
encrypted password secret in a file that is not publicly readable, that allow
longer passwords, or that use more secure methods of encoding the password.
Other authentication mechanisms have been introduced that limit the periods
during which a user is permitted to connect to the system. Also, mechanisms
exist to distribute authentication information to all the related systems in a
network.

Anewsecuritymechanismhas beendevelopedbyUNIX vendors to address
authentication problems. The pluggable authentication modules (PAM) sys-
tem is based on a shared library that can be used by any system component
that needs to authenticate users. An implementation of this system is available
under Linux. PAM allows authentication modules to be loaded on demand as
specified in a system-wide configuration file. If a new authentication mecha-
nism is added at a later date, it can be added to the configuration file, and all
system componentswill immediately be able to take advantage of it. PAMmod-
ules can specify authentication methods, account restrictions, session-setup
functions, and password-changing functions (so that, when users change their
passwords, all the necessary authentication mechanisms can be updated at
once).

20.11 Security 817

20.11.2 Access Control

Access control under UNIX systems, including Linux, is performed through the
use of unique numeric identifiers. Auser identifier (UID) identifies a single user
or a single set of access rights. Agroup identifier (GID) is an extra identifier that
can be used to identify rights belonging to more than one user.

Access control is applied to various objects in the system. Every file
available in the system is protected by the standard access-control mecha-
nism. In addition, other shared objects, such as shared-memory sections and
semaphores, employ the same access system.

Every object in a UNIX system under user and group access control has a
single UID and a single GID associated with it. User processes also have a single
UID, but they may have more than one GID. If a process’s UID matches the UID
of an object, then the process has user rights or owner rights to that object.
If the UIDs do not match but any GID of the process matches the object’s GID,
then group rights are conferred; otherwise, the process has world rights to the
object.

Linux performs access control by assigning objects a protection mask that
specifies which access modes—read, write, or execute—are to be granted to
processes with owner, group, or world access. Thus, the owner of an object
might have full read, write, and execute access to a file; other users in a certain
group might be given read access but denied write access; and everybody else
might be given no access at all.

The only exception is the privileged root UID. A process with this special
UID is granted automatic access to any object in the system, bypassing normal
access checks. Such processes are also granted permission to perform privi-
leged operations, such as reading any physical memory or opening reserved
network sockets. This mechanism allows the kernel to prevent normal users
from accessing these resources: most of the kernel’s key internal resources are
implicitly owned by the root UID.

Linux implements the standard UNIX setuidmechanism described in Sec-
tion C.3.2. This mechanism allows a program to run with privileges different
from those of the user running the program. For example, the lpr program
(which submits a job to a print queue) has access to the system’s print queues
even if the user running that program does not. The UNIX implementation of
setuid distinguishes between a process’s real and effective UID. The real
UID is that of the user running the program; the effective UID is that of the file’s
owner.

Under Linux, this mechanism is augmented in two ways. First, Linux
implements the POSIX specification’s saved user-id mechanism, which
allows a process to drop and reacquire its effective UID repeatedly. For security
reasons, a programmaywant to performmost of its operations in a safe mode,
waiving the privileges granted by its setuid status; but it maywish to perform
selected operations with all its privileges. Standard UNIX implementations
achieve this capacity only by swapping the real and effective UIDs. When this
is done, the previous effective UID is remembered, but the program’s real UID
does not always correspond to the UID of the user running the program. Saved
UIDs allow a process to set its effective UID to its real UID and then return to

818 Chapter 20 The Linux System

the previous value of its effective UID without having to modify the real UID
at any time.

The second enhancement provided by Linux is the addition of a process
characteristic that grants just a subset of the rights of the effective UID. The
fsuid and fsgid process properties are used when access rights are granted
to files. The appropriate property is set every time the effective UID or GID is
set. However, the fsuid and fsgid can be set independently of the effective ids,
allowing a process to access files on behalf of another user without taking on
the identity of that other user in any other way. Specifically, server processes
can use this mechanism to serve files to a certain user without becoming
vulnerable to being killed or suspended by that user.

Finally, Linux provides a mechanism for flexible passing of rights from
one program to another—a mechanism that has become common in modern
versions of UNIX. When a local network socket has been set up between any
two processes on the system, either of those processes may send to the other
process a file descriptor for one of its open files; the other process receives a
duplicate file descriptor for the same file. This mechanism allows a client to
pass access to a single file selectively to some server process without granting
that process any other privileges. For example, it is no longer necessary for a
print server to be able to read all the files of a user who submits a new print
job. The print client can simply pass the server file descriptors for any files to
be printed, denying the server access to any of the user’s other files.

20.12 Summary

• Linux is a modern, free operating system based on UNIX standards. It has
been designed to run efficiently and reliably on common PC hardware;
it also runs on a variety of other platforms, such as mobile phones. It
provides a programming interface and user interface compatible with
standard UNIX systems and can run a large number of UNIX applications,
including an increasing number of commercially supported applications.

• Linux has not evolved in a vacuum. A complete Linux system includes
many components that were developed independently of Linux. The core
Linux operating-system kernel is entirely original, but it allows much
existing free UNIX software to run, resulting in an entire UNIX-compatible
operating system free from proprietary code.

• The Linux kernel is implemented as a traditional monolithic kernel for
performance reasons, but it is modular enough in design to allow most
drivers to be dynamically loaded and unloaded at run time.

• Linux is a multiuser system, providing protection between processes and
running multiple processes according to a time-sharing scheduler. Newly
created processes can share selective parts of their execution environment
with their parent processes, allowing multithreaded programming.

• Interprocess communication is supported by both System V mechanisms
—message queues, semaphores, and shared memory—and BSD’s socket
interface. Multiple networking protocols can be accessed simultaneously
through the socket interface.

Further Reading 819

• Thememory-management system uses page sharing and copy-on-write to
minimize the duplication of data shared by different processes. Pages are
loaded on demand when they are first referenced and are paged back out
to backing store according to an LFU algorithm if physical memory needs
to be reclaimed.

• To the user, the file system appears as a hierarchical directory tree that
obeys UNIX semantics. Internally, Linux uses an abstraction layer to man-
age multiple file systems. Device-oriented, networked, and virtual file
systems are supported. Device-oriented file systems access disk storage
through a page cache that is unified with the virtual memory system.

Practice Exercises

20.1 Dynamically loadable kernel modules give flexibility when drivers are
added to a system, but do they have disadvantages too? Under what
circumstances would a kernel be compiled into a single binary file, and
when would it be better to keep it split into modules? Explain your
answer.

20.2 Multithreading is a commonly used programming technique. Describe
three different ways to implement threads, and compare these three
methods with the Linux clone()mechanism. When might using each
alternative mechanism be better or worse than using clones?

20.3 The Linux kernel does not allow paging out of kernel memory. What
effect does this restriction have on the kernel’s design? What are two
advantages and two disadvantages of this design decision?

20.4 Discuss three advantages of dynamic (shared) linkage of libraries com-
pared with static linkage. Describe two cases in which static linkage is
preferable.

20.5 Compare the use of networking sockets with the use of sharedmemory
as a mechanism for communicating data between processes on a single
computer. What are the advantages of each method? When might each
be preferred?

20.6 At one time, UNIX systems used disk-layout optimizations based on the
rotation position of disk data, but modern implementations, includ-
ing Linux, simply optimize for sequential data access. Why do they
do so? Of what hardware characteristics does sequential access take
advantage? Why is rotational optimization no longer so useful?

Further Reading

The Linux system is a product of the Internet; as a result, much of the avail-
able documentation on Linux is available in some form on the Internet. The
following key sites reference most of the useful information available:

820 Chapter 20 The Linux System

• The Linux Cross-Reference Page (LXR) (http://lxr.linux.no) maintains cur-
rent listings of the Linux kernel, browsable via the web and fully cross-
referenced.

• The Kernel Hackers’ Guide provides a helpful overview of the Linux kernel
components and internals and is located at http://tldp.org/LDP/tlk/tlk.html.

• The Linux Weekly News (LWN) (http://lwn.net) provides weekly Linux-
related news, including a very well researched subsection on Linux kernel
news.

Manymailing lists devoted to Linux are also available. Themost important
are maintained by a mailing-list manager that can be reached at the e-mail
address majordomo@vger.rutgers.edu. Send e-mail to this address with the
single line “help” in the mail’s body for information on how to access the list
server and to subscribe to any lists.

Finally, the Linux system itself can be obtained over the Internet. Com-
plete Linux distributions are available from the home sites of the compa-
nies concerned, and the Linux community also maintains archives of current
system components at several places on the Internet. The most important is
ftp://ftp.kernel.org/pub/linux.

In addition to investigating Internet resources, you can read about the
internals of the Linux kernel in [Mauerer (2008)] and [Love (2010)].

The /proc file system was introduced in
http://lucasvr.gobolinux.org/etc/Killian84-Procfs-USENIX.pdf, and expanded
in
http://https://www.usenix.org/sites/default/files/usenix winter91 faulkner.pdf.

Bibliography

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[Mauerer (2008)] W. Mauerer, Professional Linux Kernel Architecture, John Wiley
and Sons (2008).

http://lxr.linux.no
http://tldp.org/LDP/tlk/tlk.html
http://lwn.net
ftp://ftp.kernel.org/pub/linux
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://lucasvr.gobolinux.org/etc/Killian84-Procfs-USENIX.pdf
http://https://www.usenix.org/sites/default/files/usenix_winter91_faulkner.pdf
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=R Love Linux Kernel Development ThirdEdition
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
http://scholar.google.com/scholar?hl/en&q=W Mauerer Professional Linux Kernel Architecture
mailto:majordomo@vger.rutgers.edu

Exercises

Chapter 20 Exercises

20.7 What are the advantages and disadvantages of writing an operating
system in a high-level language, such as C?

20.8 Inwhat circumstances is the system-call sequence fork()exec()most
appropriate? When is vfork() preferable?

20.9 What socket type should be used to implement an intercomputer file-
transfer program? What type should be used for a program that peri-
odically tests to see whether another computer is up on the network?
Explain your answer.

20.10 Linux runs on a variety of hardware platforms. What steps must Linux
developers take to ensure that the system is portable to different pro-
cessors and memory-management architectures and to minimize the
amount of architecture-specific kernel code?

20.11 What are the advantages anddisadvantages ofmaking only someof the
symbols defined inside a kernel accessible to a loadable kernelmodule?

20.12 What are the primary goals of the conflict-resolution mechanism used
by the Linux kernel for loading kernel modules?

20.13 Discuss how the clone() operation supported by Linux is used to sup-
port both processes and threads.

20.14 Would you classify Linux threads as user-level threads or as kernel-
level threads? Support your answer with the appropriate arguments.

20.15 What extra costs are incurred in the creation and scheduling of a pro-
cess, compared with the cost of a cloned thread?

20.16 How does Linux’s Completely Fair Scheduler (CFS) provide improved
fairness over a traditional UNIX process scheduler?When is the fairness
guaranteed?

20.17 What are the two configurable variables of the Completely Fair Sched-
uler (CFS)? What are the pros and cons of setting each of them to very
small and very large values?

20.18 The Linux scheduler implements “soft” real-time scheduling.What fea-
tures necessary for certain real-time programming tasks are missing?
Howmight they be added to the kernel?What are the costs (downsides)
of such features?

20.19 Under what circumstances would a user process request an operation
that results in the allocation of a demand-zero memory region?

20.20 What scenarios would cause a page of memory to be mapped into
a user program’s address space with the copy-on-write attribute
enabled?

20.21 In Linux, shared libraries performmany operations central to the oper-
ating system. What is the advantage of keeping this functionality out
of the kernel? Are there any drawbacks? Explain your answer.

EX-58

20.22 What are the benefits of a journaling file system such as Linux’s ext3?
What are the costs? Why does ext3 provide the option to journal only
metadata?

20.23 The directory structure of a Linux operating system could include files
corresponding to several different file systems, including the Linux
/proc file system. Howmight the need to support different file-system
types affect the structure of the Linux kernel?

20.24 In what ways does the Linux setuid feature differ from the setuid
feature SVR4?

20.25 The Linux source code is freely and widely available over the Internet
and from CD-ROM vendors. What are three implications of this avail-
ability for the security of the Linux system?

EX-59

21CHAPTER

Windows 10

Updated by Alex Ionescu

The Microsoft Windows 10 operating system is a preemptive multitasking
client operating system for microprocessors implementing the Intel IA-32,
AMD64, ARM, and ARM64 instruction set architectures (ISAs). Microsoft’s corre-
sponding server operating system,Windows Server 2016, is based on the same
code as Windows 10 but supports only the 64-bit AMD64 ISAs. Windows 10
is the latest in a series of Microsoft operating systems based on its NT code,
which replaced the earlier systems based on Windows 95/98. In this chapter,
we discuss the key goals of Windows 10, the layered architecture of the system
that has made it so easy to use, the file system, the networking features, and
the programming interface.

CHAPTER OBJECTIVES

• Explore the principles underlying Windows 10’s design and the specific
components of the system.

• Provide a detailed discussion of the Windows 10 file system.

• Illustrate the networking protocols supported in Windows 10.

• Describe the interface available in Windows 10 to system and application
programmers.

• Describe the important algorithms implemented with Windows 10.

21.1 History

In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating
system, which was written in assembly language for single-processor Intel
80286 systems. In 1988, Microsoft decided to end the joint effort with IBM
and develop its own “new technology” (or NT) portable operating system to

821

822 Chapter 21 Windows 10

support both the OS/2 and POSIX application programming interfaces (APIs). In
October 1988, Dave Cutler, the architect of the DEC VAX/VMS operating system,
was hired and given the charter of buildingMicrosoft’s new operating system.

Originally, the team planned to use the OS/2 API as NT’s native environ-
ment, but during development, NT was changed to use a new 32-bit Windows
API (called Win32), based on the popular 16-bit API used in Windows 3.0. The
first versions of NT were Windows NT 3.1 and Windows NT 3.1 Advanced
Server. (At that time, 16-bit Windows was at Version 3.1.) Windows NT Ver-
sion 4.0 adopted the Windows 95 user interface and incorporated Internet
web-server andweb-browser software. In addition, user-interface routines and
all graphics code were moved into the kernel to improve performance (with
the side effect of decreased system reliability and significant loss of security).
Although previous versions of NT had been ported to other microprocessor
architectures (including a brief 64-bit port to Alpha AXP 64), the Windows
2000 version, released in February 2000, supported only IA-32-compatible pro-
cessors due to marketplace factors. Windows 2000 incorporated significant
changes. It added Active Directory (an X.500-based directory service), better
networking and laptop support, support for plug-and-play devices, a dis-
tributed file system, and support for more processors and more memory.

21.1.1 Windows XP, Vista, and 7

In October 2001, Windows XP was released as both an update to the Windows
2000 desktop operating system and a replacement forWindows 95/98. In April
2003, the server edition of Windows XP (called Windows Server 2003) became
available. Windows XP updated the graphical user interface (GUI) with a visual
design that took advantage of more recent hardware advances and many
new ease-of-use features. Numerous features were added to automatically
repair problems in applications and the operating system itself. Because of
these changes,Windows XP provided better networking and device experience
(including zero-configuration wireless, instant messaging, streaming media,
and digital photography/video). Windows Server 2003 provided dramatic
performance improvements for largemultiprocessors systems, aswell as better
reliability and security than earlier Windows operating systems.

The long-awaited update to Windows XP, called Windows Vista, was
released in January 2007, but it was not well received. Although Windows
Vista includedmany improvements that later continued intoWindows 7, these
improvements were overshadowed by Windows Vista’s perceived sluggish-
ness and compatibility problems. Microsoft responded to criticisms of Win-
dows Vista by improving its engineering processes and working more closely
with the makers of Windows hardware and applications.

The result was Windows 7, which was released in October 2009, along
with corresponding server edition called Windows Server 2008 R2. Among
the significant engineering changes was the increased use of event tracing
rather than counters or profiling to analyze system behavior. Tracing runs
constantly in the system, watching hundreds of scenarios execute. Scenarios
include process startup and exit, file copy, and web-page load, for example.
When one of these scenarios fails, or when it succeeds but does not perform
well, the traces can be analyzed to determine the cause.

21.1 History 823

21.1.2 Windows 8

Three years later, in October 2012—amid an industry-wide pivot toward
mobile computing and the world of apps—Microsoft released Windows 8,
which represented the most significant change to the operating system since
Windows XP. Windows 8 included a new user interface (named Metro) and a
new programming model API (named WinRT). It also included a new way of
managing applications (which ran under a new sandbox mechanism) through
a package system that exclusively supported the new Windows Store, a com-
petitor to the Apple App Store and the Android Store. Additionally, Windows
8 included a plethora of security, boot, and performance improvements. At the
same time, support for “subsystems,” a concept we’ll describe further later in
the chapter, was removed.

To support the new mobile world, Windows 8 was ported to the 32-bit
ARM ISA for the first time and included multiple changes to the power man-
agement and hardware extensibility features of the kernel (discussed later
in this chapter). Microsoft marketed two versions of this port. One version,
calledWindows RT, ran bothWindows Store–packaged applications and some
Microsoft-branded “classic” applications, such as Notepad, Internet Explorer,
and most importantly, Office. The other version, calledWindows Phone, could
only run Windows Store–packaged applications.

For the first time ever, Microsoft released its own branded mobile hard-
ware, under the “Surface” brand, which included the Surface RT, a tablet device
that exclusively ran the Windows RT operating system. A bit later, Microsoft
bought Nokia and began releasingMicrosoft-branded phones as well, running
Windows Phone.

Unfortunately,Windows 8was amarket failure, for several reasons. On the
one hand, Metro focused on a tablet-oriented interface that forced users accus-
tomed to olderWindows operating systems to completely change theway they
worked on their desktop computers. Windows 8, for example, replaced the
startmenuwith touchscreen features, replaced shortcuts with animated “tiles,”
and offered little or no keyboard input support. On the other hand, the dearth
of applications in the Windows Store, which was the only way to obtain apps
for Microsoft’s phone and tablet, led to the market failure of these devices as
well, causing the company to eventually phase out the Surface RT device and
write off the Nokia purchase.

Microsoft quickly sought to address many of these issues with the release
of Windows 8.1 in October 2013. This release addressed many of the usabil-
ity flaws of Windows 8 on nonmobile devices, bringing back more usability
through a traditional keyboard and mouse, and provided ways to avoid the
tile-based Metro interface. It also continued to improve on the many security,
performance, and reliability changes introduced in Windows 8. Although this
release was better received, the continued lack of applications in the Windows
Store was a problem for the operating system’s mobile market penetration,
while desktop and server application programmers felt abandoned due to a
lack of improvements in their area.

21.1.3 Windows 10

With the release of Windows 10 in July 2015 and its server companion,
Windows Server 2016, in October 2016, Microsoft shifted to a “Windows-

824 Chapter 21 Windows 10

as-a-Service” (WaaS) model (with included periodic functionality improve-
ments). Windows 10 receives monthly incremental improvements called “fea-
ture rollups,” as well as eight-month feature releases called “updates.” Addi-
tionally, each upcoming release is made available to the public through the
Windows Insider Program, or WIP, which releases versions on an almost
weekly basis. Like cloud services and websites such as Facebook and Google,
the new operating systemuses live telemetry (sending debug information back
to Microsoft) and tracing to dynamically enable and disable certain features
for A/B testing (comparing how version “A” executes compared to similar
version “B”), tries out new features while watching for compatibility issues,
and aggressively adds or removes support for modern or legacy hardware.
These dynamic configuration and testing features are what make this release
an “as-a-service” implementation.

Windows 10 reintroduced the start menu, restored keyboard support, and
deemphasized full-screen applications and live tiles. From the user’s perspec-
tive, these changes brought back the ease of use that users expected from
Windows-based desktop operating systems. Additionally, Metro (which was
renamed Modern) was redesigned so that Windows Store–packaged applica-
tions could be run on the regular desktop side by sidewith legacy applications.
Finally, a new mechanism called the Windows Desktop Bridge made it pos-
sible to place Win32 applications in the Windows Store, mitigating the lack of
applications written specifically for the newer systems. Meanwhile, Microsoft
added support for C++11, C++14, and C++17 in the Visual Studio product,
and many new APIs were added to the traditional Win32 programming API. A
related change inWindows 10was the release of theUnifiedWindows Platform
(UWP) architecture, which allows applications to be written in such a way that
they can execute on Windows for Desktop, Windows for IoT, XBOX One, Win-
dows Phone, and Windows 10 Mixed Reality (previously known as Windows
Holographic).

Windows 10 also replaced the concept of multiple subsystems, which had
been removed in Windows 8 (as mentioned earlier), with a new mechanism
called Pico Providers. This mechanism allows unmodified binaries belonging
to a different operating system to run natively onWindows 10. In the “Anniver-
sary Update” released in August 2016, this functionality was used to provide
theWindows Subsystem for Linux,which can be used to runLinux ELF binaries
in an entirely unmodified Ubuntu user-space environment.

In response to increased competitive pressures in the mobile and cloud-
computing worlds, Microsoft also made power, performance, and scalability
improvements inWindows 10, enabling it to run on a larger number of devices.
In fact, a version called Windows 10 IoT Edition is specifically designed for
environments such as the Raspberry Pi, while support for cloud-computing
technologies such as containerization is built in through Docker for Win-
dows. In Windows 10, the Microsoft Hyper-V virtualization technology is also
built in, providing additional security and native support for running virtual
machines. A special version of Windows Server, called Windows Server Nano,
was also released. This extremely low-overhead server operating system is
suited for containerized applications and other cloud-computing usages.

Windows 10 is a multiuser operating system, supporting simultaneous
access through distributed services or through multiple instances of the GUI

21.1 History 825

via Windows Terminal Services. The server editions of Windows 10 support
simultaneous terminal server sessions from Windows desktop systems. The
desktop editions of terminal server multiplex the keyboard, mouse, and mon-
itor between virtual terminal sessions for each logged-on user. This feature,
called fast user switching, allows users to preempt each other at the console of
a PC without having to log off and log on.

Let’s return briefly to developments in the Windows GUI. We noted earlier
that the GUI implementation moved into kernel mode in Windows NT 4.0 to
improve performance. Further performance gains weremadewith the creation
of a newuser-mode component inWindowsVista, called theDesktop Window
Manager (DWM). DWM provides theWindows interface look and feel on top of
the Windows DirectX graphic software. DirectX continues to run in the kernel,
as does the code (Win32k) implementing Windows’ windowing and graphics
model (User and GDI). Windows 7 made substantial changes to the DWM, sig-
nificantly reducing itsmemory footprint and improving its performance,while
Windows 10 made further improvements, especially in the areas of perfor-
mance and security. Furthermore, Windows DirectX 11 and 12 include GPGPU
mechanisms (general-purpose computing on GPU hardware) through Direct-
Compute, andmany parts ofWindows have beenupdated to take advantage of
this high-performance graphics model. Through a new rendering layer called
CoreUI, even legacy applications can now take advantage of DirectX-based
rendering (creation of the final screen contents).

Windows XP was the first version of Windows to ship a 64-bit version
(for the IA64 in 2003 and the AMD64 in 2005). Internally, the native NT file
system (NTFS) and many of the Win32 APIs have always used 64-bit integers
where appropriate. The major extension to 64-bit in Windows XP was meant
as support for large virtual addresses. In addition, 64-bit editions of Windows
support much larger physical memory, with the latest Windows Server 2016
release supporting up to 24 TB of RAM. By the time Windows 7 shipped,
the AMD64 ISA had become available on almost all CPUs from both Intel and
AMD. In addition, by that time, physical memory on client systems frequently
exceeded the 4-GB limit of the IA-32. As a result, the 64-bit version of Windows
10 is now almost exclusively installed on client systems, apart from IoT and
mobile systems. Because the AMD64 architecture supports high-fidelity IA-32
compatibility at the level of individual processes, 32- and 64-bit applications
can be freely mixed in a single system. Interestingly, a similar pattern is now
emerging on mobile systems. Apple iOS is the first mobile operating system
to support the ARM64 architecture, which is the 64-bit ISA extension of ARM
(also called AArch64). A futureWindows 10 releasewill also officially shipwith
an ARM64 port designed for a new class of hardware, with compatibility for
IA-32 architecture applications achieved through emulation and dynamic JIT
recompilation.

In the rest of our description ofWindows 10,we donot distinguish between
the client editions and the corresponding server editions. They are based on
the same core components and run the same binary files for the kernel and
most drivers. Similarly, althoughMicrosoft ships a variety of different editions
of each release to address different market price points, few of the differences
between editions are reflected in the core of the system. In this chapter,we focus
primarily on the core components of Windows 10.

826 Chapter 21 Windows 10

21.2 Design Principles

Microsoft’s design goals for Windows included security, reliability, compati-
bility, high performance, extensibility, portability, and international support.
Some additional goals, such as energy efficiency and dynamic device support,
have recently been added to this list. Next, we discuss each of these goals and
how each is achieved in Windows 10.

21.2.1 Security

Windows Vista and later security goals required more than just adherence to
the design standards that had enabled Windows NT 4.0 to receive a C2 secu-
rity classification from the U.S. government. (A C2 classification signifies a
moderate level of protection from defective software and malicious attacks.
Classifications were defined by the Department of Defense Trusted Com-
puter System Evaluation Criteria, also known as the Orange Book.) Extensive
code review and testing were combined with sophisticated automatic analysis
tools to identify and investigate potential defects that might represent security
vulnerabilities. Additionally, bug bounty participation programs allow exter-
nal researchers and security professionals to identify, and submit, previously
unknown security issues in Windows. In exchange, they receive monetary
payment as well as credit in monthly security rollups, which are released by
Microsoft to keep Windows 10 as secure as possible.

Windows traditionally based security on discretionary access controls. Sys-
tem objects, including files, registry keys, and kernel synchronization objects,
are protected by access-control lists (ACLs) (see Section 13.4.2). ACLs are vul-
nerable to user and programmer errors, however, as well as to the most com-
mon attacks on consumer systems, in which the user is tricked into running
code, often while browsing the Web. Windows Vista introduced a mechanism
called integrity levels that acts as a rudimentary capability system for con-
trolling access. Objects and processes are marked as having no, low, medium,
or high system integrity. The integrity level determines what rights the objects
and processes will have. For example, Windows does not allow a process to
modify an object with a higher integrity level (based on itsmandatory policy),
no matter what the setting of the ACL. Additionally, a process cannot read the
memory of a higher-integrity process, no matter the ACL.

Windows 10 further strengthened the security model by introducing a
combination of attribute-based access control (ABAC) and claim-based access
control (CABC). Both features are used to implement dynamic access control
(DAC) on server editions, aswell as to support the capability-based systemused
by Windows Store applications and by Modern and packaged applications.
With attributes and claims, system administrators need not rely on a user’s
name (or the group the user belongs to) as the only means that the security
system can use to filter access to objects such as files. Properties of the user
—such as, say, seniority in the organization, salary, and so on—can also be
considered. These properties are encoded as attributes,which are paired with
conditional access control entries in the ACL, such as “Seniority >= 10 Years.”

Windows uses encryption as part of common protocols such as those used
to communicate securely with websites. Encryption is also used to protect user
files stored on secondary storage. Windows 7 and later versions allow users to

21.2 Design Principles 827

easily encrypt entire volumes, aswell as removable storage devices such as USB
flash drives, with a feature called BitLocker. If a computer with an encrypted
volume is stolen, the thieves will need very sophisticated technology (such as
an electron microscope) to gain access to any of the computer’s files, and it
will be impossible for them to do so if the user has also configured an external
USB-based token (unless the USB token was also stolen).

These types of security features focus on user and data security, but they
are vulnerable to highly privileged programs that parse arbitrary content
and that can be tricked due to programming errors into executing malicious
code. Therefore, Windows also includes security measures often referred to
as “exploit mitigations.” These measures include wide-scope mitigations such
as address-space layout randomization (ASLR), Data Execution Prevention
(DEP),Control-Flow Guard (CFG), andArbitrary Code Guard (ACG), aswell as
narrow-scope (targeted)mitigations specific to various exploitation techniques
(which are outside the scope of this chapter).

Since 2001, chips from both Intel and AMD have allowed memory pages to
be marked so that they cannot contain executable instruction code. The Win-
dows DEP feature marks stacks and memory heaps (as well as all other data-
only allocations) so that they cannot be used to execute code. This prevents
attacks in which a program bug allows a buffer to overflow and then is tricked
into executing the contents of the buffer. Additionally, starting with Windows
8.1, all kernel data-only memory allocations have been marked similarly.

Because DEP prevents attacker-controlled data from being executed as
code, malicious developers moved on to code reuse attacks, in which exist-
ing executable code inside the program is reused in unexpected ways. (Only
certain parts of the code are executed, and the flow is redirected from one
instruction stream to another.) ASLR thwarts many forms of such attacks by
randomizing the location of executable (and data) regions of memory, making
it harder for code-reuse attacks to know where existing code is located. This
safeguard makes it likely that a system under attack by a remote attacker will
fail or crash.

No mitigation is perfect, however, and ASLR is no exception. For example,
it may be ineffective against local attacks (in which some application is tricked
into loading content from secondary storage, for example), as well as so-called
information leak attacks (in which a program is tricked into revealing part
of its address space). To address such problems, Windows 8.1 introduced a
technology called CFG, which was much improved in Windows 10. CFG works
with the compiler, the linker, the loader, and the memory manager to validate
the destination address of any indirect branch (such as a call or jump) against a
list of valid function prologues. If a program is tricked into redirecting control
flow elsewhere through such an instruction, it crashes.

If attackers cannot bring executable data into an attack, nor reuse existing
code, they may attempt to cause a program to allocate, on its own, executable
and writeable code, which can then be filled by the attacker. Alternatively,
the attackers might modify existing writeable data and mark it as executable
data. Windows 10’s ACG mitigation prohibits either of these operations. Once
executable code is loaded, it can never be modified again, and once data is
loaded, it can never be marked as executable.

Windows 10 has over thirty security mitigations in addition to those
described here. This set of security features has made traditional attacks more

828 Chapter 21 Windows 10

difficult, perhaps explaining in part why crimeware applications, such as
adware, credit card fraudware, and ransomware, have become so prevalent.
These types of attacks rely on users to willingly and manually cause harm
to their own computers (such as by double-clicking on applications against
warning, or inputting their credit card number in a fake banking page). No
operating system can be designed to militate against the gullibility and curios-
ity of human beings. Recently,Microsoft has startedworking directlywith chip
manufacturers, such as Intel, to build security mitigations directly into the ISA.
One such mitigation, for example, is Control-flo Enforcement Technology
(CET), which is a hardware implementation of CFG that also protects against
return-oriented-programming (ROP) attacks by using hardware shadow stacks.
A shadow stack contains the set of return addresses as stored when a routine
is called. The addresses are checked for a mismatch before the return is exe-
cuted. Amismatch means the stack has been compromised and action should
be taken.

Another important aspect of security is integrity. Windows offers several
digital signature facilities as part of its code integrity features. Windows uses
digital signatures to sign operating system binaries so that it can verify that
the files were produced byMicrosoft or another known company. In non-IA-32
versions of Windows, the code integrity module is activated at boot to ensure
that all the loaded modules in the kernel have valid signatures, assuring that
they have not been tampered with. Additionally, ARM versions of Windows 8
extend the code integrity module with user-mode code integrity checks, which
validate that all user programs have been signed by Microsoft or delivered
through the Windows Store. A special version of Windows 10 (Windows 10
S, mostly meant for the education market) provides similar signing checks on
all IA-32 and AMD64 systems. Digital signatures are also used as part of Code
Integrity Guard, which allows applications to defend themselves against load-
ing executable code from secondary storage that has not been appropriately
signed. For example, an attackermight replace third-party binarywith his own,
but the digital signature would fail, and Code Integrity Guard would not load
the binary into the processes’ address space.

Finally, enterprise versions of Windows 10 make it possible to opt in to a
new security feature called Device Guard. This mechanism allows organiza-
tions to customize the digital signing requirements of their computer systems,
as well as blacklist and whitelist individual signing certificates or even binary
hashes. For example, an organization could choose to allow only user-mode
programs signed by Microsoft, Google, or Adobe to launch on their enterprise
computers.

21.2.2 Reliability

Windows matured greatly as an operating system in its first ten years, leading
toWindows 2000. At the same time, its reliability increased due to such factors
as maturity in the source code, extensive stress testing of the system, improved
CPU architectures, and automatic detection of many serious errors in drivers
from both Microsoft and third parties. Windows has subsequently extended
the tools for achieving reliability to include automatic analysis of source code
for errors, tests to detect validation failures, and an application version of the

21.2 Design Principles 829

driver verifier that applies dynamic checking for many common user-mode
programming errors. Other improvements in reliability have resulted from
moving more code out of the kernel and into user-mode services. Windows
provides extensive support for writing drivers in user mode. System facilities
that were once in the kernel and are now in user mode include the renderer for
third-party fonts and much of the software stack for audio.

One of themost significant improvements in theWindows experience came
from adding memory diagnostics as an option at boot time. This addition is
especially valuable because so few consumer PCs have error-correcting mem-
ory. Bad RAM that lacks error correction and detection can change the data
it stores—a change undetected by the hardware. The result is frustratingly
erratic behavior in the system. The availability ofmemorydiagnostics canwarn
users of a RAMproblem.Windows 10 took this even further by introducing run-
time memory diagnostics. If a machine encounters a kernel-mode crash more
than five times in a row, and the crashes cannot be pinpointed to a specific cause
or component, the kernel will use idle periods tomovememory contents, flush
system caches, and write repeated memory-testing patterns in all memory—
all to preemptively discover if RAM is damaged. Users can then be informed of
any issues without the need to reboot into the memory diagnostics tool at boot
time.

Windows 7 also introduced a fault-tolerant memory heap. The heap learns
from application crashes and automatically adjustsmemory operations carried
out by an application that has crashed. Thismakes the applicationmore reliable
even if it contains common bugs such as using memory after freeing it or
accessing past the end of the allocation. Because such bugs can be exploited
by attackers, Windows 7 also includes a mitigation for developers to block this
feature and immediately crash any application with heap corruption. This is a
very practical representation of the dichotomy that exists between the needs of
security and the needs of user experience.

Achieving high reliability in Windows is particularly challenging because
almost two billion systems run Windows. Even reliability problems that affect
only a small percentage of these systems still impact tremendous numbers of
users. The complexity of the Windows ecosystem also adds to the challenges.
Millions of instances of applications, drivers, and other software are constantly
being downloaded and run on Windows systems. Of course, there is also a
constant stream of malware attacks. As Windows itself has become harder to
attack directly, exploits increasingly target popular applications.

To cope with these challenges, Microsoft is increasingly relying on com-
munications from customer machines to collect data from the ecosystem.
Machines are sampled to see how they are performing, what software they
are running, and what problems they are encountering. They automatically
send data to Microsoft when their software, their drivers, or the kernel itself
crashes or hangs. Features are measured to indicate how often they are used.
Legacy behavior (methods no longer recommended for use by Microsoft) is
sometimes disabled, and alerts are sent if attempts are made to use it again.
The result is that Microsoft is building an ever-improving picture of what is
happening in the Windows ecosystem that allows continuous improvements
through software updates as well as providing data to guide future releases of
Windows.

830 Chapter 21 Windows 10

21.2.3 Windows and Application Compatibility

As mentioned, Windows XP was both an update of Windows 2000 and a
replacement forWindows 95/98. Windows 2000 focused primarily on compat-
ibility for business applications. The requirements for Windows XP included
much higher compatibility with the consumer applications that ran on Win-
dows 95/98. Application compatibility is difficult to achieve, for several rea-
sons. For example, applications may check for a specific version of Windows,
may depend to some extent on the quirks of the implementation of APIs, or
may have latent application bugs that were masked in the previous system.
Applications may also have been compiled for a different instruction set or
have different expectations when run on today’s multi-gigahertz, multicore
systems.Windows 10 continues to focus on compatibility issues by implement-
ing several strategies to run applications despite incompatibilities.

Like Windows XP, Windows 10 has a compatibility layer, called the shim
engine, that sits between applications and the Win32 APIs. This engine can
make Windows 10 look (almost) bug-for-bug compatible with previous ver-
sions of Windows. Windows 10 ships with a shim database of over 6,500
entries, describing particular quirks and tweaks that must be made for older
applications. Furthermore, through the Application Compatibility Toolkit,
users and administrators can build their own shim databases. Windows 10’s
SwitchBranch mechanism allows developers to choose which Windows ver-
sion they’d like the Win32 API to emulate, including all the quirks and/or
bugs of a previous API. The Task Manager’s “Operating System Context” col-
umn shows what SwitchBranch operating-system version each application is
running under.

Windows 10, like earlier NT releases, maintains support for running many
16-bit applications using a thunking, or conversion, layer—called Windows-
on-Windows-32 (WoW32)—that translates 16-bit API calls into equivalent 32-
bit calls. Similarly, the 64-bit version of Windows 10 provides a thunking layer,
WoW64, that translates 32-bit API calls into native 64-bit calls. Finally, the
ARM64 version of Windows 10 provides a dynamic JIT recompiler, translating
IA-32 code, called WoWA64.

The originalWindows subsystemmodel allowsmultiple operating-system
personalities to be supported, as long as the applications are rebuilt as Portable
Executable (PE) applications with a Microsoft compiler such as Visual Stu-
dio and source code is available. As noted earlier, although the API designed
for Windows is the Win32API, some earlier editions of Windows supported a
POSIX subsystem. POSIX is a standard specification for UNIX that allows UNIX-
compatible software to be recompiled and run without modification on any
POSIX-compatible operating system. Unfortunately, as Linux has matured, it
has drifted farther and farther away from POSIX compatibility, and manymod-
ern Linux applications now rely on Linux-specific system calls and improve-
ments to glibc that are not standardized. Additionally, it becomes impractical
to ask users (or even enterprises) to recompile with Visual Studio every single
Linux application that they’d like to use. Indeed, compiler differences among
GCC, CLang, and Microsoft’s C/C++ compiler often make doing so impossi-
ble. Therefore, even though the subsystemmodel still exists at an architectural
level, the only subsystem onWindows going forwardwill be theWin32 subsys-
tem itself, and compatibility with other operating systems is achieved through
a new model that uses Pico Providers instead.

21.2 Design Principles 831

This significantly more powerful model extends the kernel via the ability
to forward, or proxy, every system call, exception, fault, thread creation and
termination, and process creation, along with a few other internal operations,
to a secondary external driver (the Pico Provider itself). This secondary driver
now becomes the owner of all such operations. While still usingWindows 10’s
scheduler and memory manager (similar to a microkernel), it can implement
its own ABI, system-call interface, executable file format parser, page fault
handling, caching, I/O model, security model, and more.

Windows 10 includes one such Pico Provider, called LxCore, that is amulti-
megabyte reimplementation of the Linux kernel. (Note that it is not Linux, and
it does not share any code with Linux.) This driver is used by the “Windows
Subsystem for Linux” feature, which can be used to load unmodified Linux
ELF binaries without the need for source code or recompilation as PE binaries.
Windows 10 users can run an unmodified Ubuntu user-mode file system (and,
more recently, OpenSUSE and CentOS), servicing it with the apt-get package
management command and running packages as normal. Note that the ker-
nel reimplementation is not complete—many system calls are missing, as is
access to most devices, since no Linux kernel drivers can load. Notably, while
networking is fully supported, as well as serial devices, no GUI/frame-buffer
access is possible.

As a final compatibility measure, Windows 8.1 and later versions also
include the Hyper-V for Client feature. This allows applications to get bug-
for-bug compatibilitywithWindows XP, Linux, and evenDOS by running these
operating systems inside a virtual machine.

21.2.4 Performance

Windows was designed to provide high performance on desktop systems
(which are largely constrained by I/O performance), server systems (where the
CPU is often the bottleneck), and large multithreaded and multiprocessor envi-
ronments (where locking performance and cache-line management are keys
to scalability). To satisfy performance requirements, NT used a variety of tech-
niques, such as asynchronous I/O, optimized protocols for networks, kernel-
based graphics rendering, and sophisticated caching of file-system data. The
memory-management and synchronization algorithms were designed with an
awareness of the performance considerations related to cache lines and multi-
processors.

Windows NT was designed for symmetrical multiprocessing (SMP); on a
multiprocessor computer, several threads can run at the same time, even in the
kernel. On each CPU, Windows NT uses priority-based preemptive scheduling
of threads. Except while executing in the dispatcher or at interrupt level,
threads in any process running in Windows can be preempted by higher-
priority threads. Thus, the system responds quickly (see Chapter 5).

Windows XP further improved performance by reducing the code-path
length in critical functions and implementing more scalable locking protocols,
such as queued spinlocks and pushlocks. (Pushlocks are like optimized spin-
locks with read–write lock features.) The new locking protocols helped reduce
systembus cycles and included lock-free lists and queues, atomic read–modify
–write operations (like interlocked increment), and other advanced syn-
chronization techniques. These changes were needed because Windows XP

832 Chapter 21 Windows 10

added support for simultaneous multithreading (SMT), as well as a massively
parallel pipelining technology that Intel had commercialized under the mar-
keting name Hyper Threading. Because of this new technology, average home
machines could appear to have two processors. A few years later, the introduc-
tion of multicore systems made multiprocessor systems the norm.

Next, Windows Server 2003, targeted toward large multiprocessor servers,
was released, using even better algorithms and making a shift toward per-
processor data structures, locks, and caches, as well as using page coloring and
supporting NUMA machines. (Page coloring is a performance optimization to
ensure that accesses to contiguous pages in virtual memory optimize use of
the processor cache.) Windows XP 64-bit Edition was based on the Windows
Server 2003 kernel so that early 64-bit adopters could take advantage of these
improvements.

By the timeWindows 7 was developed, several major changes had come to
computing. The number of CPUs and the amount of physical memory available
in the largestmultiprocessors had increased substantially, so quite a lot of effort
was put into further improving operating-system scalability.

The implementation of multiprocessing support in Windows NT used bit-
masks to represent collections of processors and to identify, for example, which
set of processors a particular thread could be scheduled on. These bitmasks
were defined as fitting within a single word of memory, limiting the number of
processors supportedwithin a system to 64 on a 64-bit systemand 32 on a 32-bit
system. Thus, Windows 7 added the concept of processor groups to represent
a collection of up to 64 processors. Multiple processor groups could be created,
accommodating a total of more than 64 processors. Note that Windows calls
a schedulable portion of a processor’s execution unit a logical processor, as
distinct from a physical processor or core. When we refer to a “processor” or
“CPU” in this chapter, we really mean a “logical processor” from Windows’s
point of view. Windows 7 supported up to four processor groups, for a total of
256 logical processors, while Windows 10 now supports up to 20 groups, with
a total of no more than 640 logical processors (therefore, not all groups can be
fully filled).

All these additional CPUs created a great deal of contention for the locks
used for scheduling CPUs andmemory.Windows 7 broke these locks apart. For
example, before Windows 7, a single lock was used by the Windows scheduler
to synchronize access to the queues containing threads waiting for events. In
Windows 7, each object has its own lock, allowing the queues to be accessed
concurrently. Similarly, the global object manager lock, the cache manager
VACB lock, and thememorymanager PFN lock formerly synchronized access to
large, global data structures. All were decomposed into more locks on smaller
data structures. Also, many execution paths in the scheduler were rewritten
to be lock-free. This change resulted in improved scalability performance for
Windows 7 even on systems with 256 logical CPUs.

Other changes were due to the increasing importance of support for par-
allel computing. For years, the computer industry has been dominated by
Moore’s Law (see Section 1.1.3), leading to higher densities of transistors that
manifest themselves as faster clock rates for each CPU. Moore’s Law contin-
ues to hold true, but limits have been reached that prevent CPU clock rates
from increasing further. Instead, transistors are being used to build more and
more CPUs into each chip. New programming models for achieving paral-

21.2 Design Principles 833

lel execution, such as Microsoft’s Concurrency RunTime (ConcRT) and Par-
allel Processing Library (PPL), as well as Intel’s Threading Building Blocks
(TBB), are being used to express parallelism in C++ programs. Additionally, a
vendor-neutral standard called OpenMP is supported by almost all compilers.
Although Moore’s Law has governed computing for forty years, it now seems
that Amdahl’s Law, which governs parallel computing (see Section 4.2), will
rule the future.

Finally, power considerations have complicated design decisions around
high-performance computing—especially in mobile systems, where battery
life might trump performance needs, but also in cloud/server environments,
where the cost of electricity might outweigh the need for the fastest possi-
ble computational result. Accordingly, Windows 10 now supports features
that may sometimes sacrifice raw performance for better power efficiency.
Examples include Core Parking, which puts an idle system into a sleep state,
and Heterogeneous Multi Processing (HMP), which allocates tasks efficiently
among cores.

To support task-based parallelism, the AMD64 ports ofWindows 7 and later
versions provide a new form of user-mode scheduling (UMS). UMS allows
programs to be decomposed into tasks, and the tasks are then scheduled on
the available CPUs by a scheduler that operates in user mode rather than in the
kernel.

The advent of multiple CPUs on the smallest computers is only part of
the shift taking place to parallel computing. Graphics processing units (GPUs)
accelerate the computational algorithms needed for graphics by using SIMD
architectures to execute a single instruction for multiple data at the same time.
This has given rise to the use of GPUs for general computing, not just graph-
ics. Operating-system support for software like OpenCL and CUDA is allow-
ing programs to take advantage of the GPUs. Windows supports the use of
GPUs through software in its DirectX graphics support. This software, called
DirectCompute, allows programs to specify computational kernels using the
“high-level shader language” programming model used by SIMD hardware.
The computational kernels run very quickly on the GPU and return their results
to themain computation running on the CPU. InWindows 10, the native graph-
ics stack and many new Windows applications make use of DirectCompute,
and new versions of Task Manager track GPU processor and memory usage,
with DirectX now having its own GPU thread scheduler and GPU memory
manager.

21.2.5 Extensibility

Extensibility refers to the capability of an operating system to keep up with
advances in computing technology. To facilitate change over time, the devel-
opers implemented Windows using a layered architecture. The lowest-level
kernel “executive” runs in kernel mode and provides the basic system services
and abstractions that support shared use of the system. On top of the execu-
tive, several services operate in usermode. Among themwere the environment
subsystems that emulated different operating systems, which are deprecated
today. Even in the kernel, Windows uses a layered architecture, with loadable
drivers in the I/O system, so new file systems, new kinds of I/O devices, and
new kinds of networking can be added while the system is running. Drivers

834 Chapter 21 Windows 10

window
manager

user mode

kernel mode

file system

I/O manager

csrss
session

manager
user

processesSCM

graphic
device
drivers

kernel

ntdll.dll

subsystem dlls

executive

hardware abstraction layer (HAL)

Hyper-V hypervisor

hardware

cache
manager

device
drivers

network
drivers

object
manager

security
reference
monitor

plug and
play

manager

process
manager

power
manager

configur-
ation

manager

HAL extensions

ALPC
memory
manager

wininit spooler svchostwinlogon

environment subsystems system processes services applications

Figure 21.1 Windows block diagram.

aren’t limited to providing I/O functionality, however. As we’ve seen, a Pico
Provider is also a type of loadable driver (as are most anti-malware drivers).
Through Pico Providers and the modular structure of the system, additional
operating system support can be addedwithout affecting the executive. Figure
Figure 21.1 shows the architecture of the Windows 10 kernel and subsystems.

Windows also uses a client–server model like the Mach operating system
and supports distributed processing through remote procedure calls (RPCs) as
defined by the Open Software Foundation. These RPCs take advantage of an
executive component, called the advanced local procedure call (ALPC), that
implements highly scalable communication between separate processes on a
local machine. A combination of TCP/IP packets and named pipes over the
SMB protocol is used for communication between processes across a network.
On top of RPC, Windows implements the Distributed Common Object Model
(DCOM) infrastructure, as well as the Windows Management Instrumentation
(WMI) and Windows Remote Management (WinRM) mechanism, all of which
can be used to rapidly extend the system with new services and management
capabilities.

21.2.6 Portability

An operating system is portable if it can be moved from one CPU architecture
to another with relatively few changes. Windows was designed to be portable.
Like the UNIX operating system, Windows is written primarily in C and C++.
There is relatively little architecture-specific source code and very little assem-

21.2 Design Principles 835

bly code. Porting Windows to a new architecture mostly affects the Windows
kernel, since the user-mode code in Windows is almost exclusively written
to be architecture independent. To port Windows, the kernel’s architecture-
specific code must be rewritten for the target CPU, and sometimes conditional
compilation is needed in other parts of the kernel because of changes in major
data structures, such as the page-table format. The entire Windows system
must then be recompiled for the new CPU instruction set.

Operating systems are sensitive not only to CPU architecture but also to CPU
support chips and hardware boot programs. The CPU and support chips are
collectively known as the chipset. These chipsets and the associated boot code
determine how interrupts are delivered, describe the physical characteristics of
each system, and provide interfaces to deeper aspects of the CPU architecture,
such as error recovery and power management. It would be burdensome to
have to port Windows to each type of support chip as well as to each CPU
architecture. Instead, Windows isolates most of the chipset-dependent code in
a dynamic link library (DLL), called the hardware-abstraction layer (HAL), that
is loaded with the kernel.

The Windows kernel depends on the HAL interfaces rather than on the
underlying chipset details. This allows the single set of a kernel and driver
binaries for a particular CPU to be used with different chipsets simply by load-
ing a different version of the HAL. Originally, to support themany architectures
that Windows ran on, and the many computer companies and designs in the
market, over 450 different HALs existed. Over time, the advent of standards
such as the Advanced Configuration and Power Interface (ACPI), the increas-
ing similarity of components available in the marketplace, and the merging of
computer manufacturers led to changes; today, the AMD64 port ofWindows 10
comeswith a single HAL. Interestingly, though, no such developments have yet
occurred in the market for mobile devices. Today, Windows supports a limited
number of ARM chipsets—andmust have the appropriate HAL code for each of
them. To avoid going back to amodel of multiple HALs, Windows 8 introduced
the concept of HAL Extensions, which are DLLs that are loaded dynamically by
the HAL based on the detected SoC (system on a chip) components, such as the
interrupt controller, timer manager, and DMA controller.

Over the years, Windows has been ported to a number of different CPU
architectures: Intel IA-32-compatible 32-bit CPUs, AMD64-compatible and IA64
64-bit CPUs, and DEC Alpha, DEC Alpha AXP64, MIPS, and PowerPC CPUs.
Most of these CPU architectures failed in the consumer desktop market. When
Windows 7 shipped, only the IA-32 and AMD64 architectures were supported
on client computers, along with AMD64 on servers. With Windows 8, 32-bit
ARM was added, and Windows 10 now supports ARM64 as well.

21.2.7 International Support

Windows was designed for international and multinational use. It provides
support for different locales via the national-language-support (NLS) API.
The NLS API provides specialized routines to format dates, time, and money
in accordance with national customs. String comparisons are specialized to
account for varying character sets. UNICODE is Windows’s native character
code, specifically in its UTL-16LE encoding format (which is different from

836 Chapter 21 Windows 10

Linux’s and the Web’s standard UTF-8). Windows supports ANSI characters
by converting them to UNICODE characters before manipulating them (8-bit
to 16-bit conversion).

System text strings are kept in resource tables inside files that can be
replaced to localize the system for different languages. Before Windows Vista,
Microsoft shipped these resource tables inside the DLLs themselves, which
meant that different executable binaries existed for each different version of
Windows and only one language was available at a single time.WithWindows
Vista’s multiple user interface (MUI) support, multiple locales can be used
concurrently, which is important to multilingual individuals and businesses.
This was achieved by moving all of the resource tables into separate .mui files
that live in the appropriate language directory alongside the .dll file, with
support in the loader to pick the appropriate file based on the currently selected
language.

21.2.8 Energy Efficiency

Increasing energy efficiency causes batteries to last longer for laptops and
Internet-only netbooks, saves significant operating costs for power and cooling
of data centers, and contributes to green initiatives aimed at lowering energy
consumption by businesses and consumers. For some time, Windows has
implemented several strategies for decreasing energy use. The CPUs aremoved
to lower power states—for example, by lowering clock frequency—whenever
possible. In addition, when a computer is not being actively used, Windows
may put the entire computer into a low-power state (sleep) ormay even save all
ofmemory to secondary storage and shut the computer off (hibernation).When
the user returns, the computer powers up and continues from its previous state,
so the user does not need to reboot and restart applications.

The longer a CPU can stay unused, the more energy can be saved. Because
computers are so much faster than human beings, a lot of energy can be saved
just while humans are thinking. The problem is that many programs are polled
to wait for activity, and software timers are frequently expiring, keeping the
CPU from staying idle long enough to save much energy.

Windows 7 extends CPU idle time by delivering clock-tick interrupts only
to logical CPU 0 and all other currently active CPUs (skipping idle ones) and by
coalescing eligible software timers into smaller numbers of events. On server
systems, it also “parks” entire CPUs when systems are not heavily loaded.
Additionally, timer expiration is not distributed, and a single CPU is typically
in charge of handling all software timer expirations. A thread that was run-
ning on, say, logical CPU 3 does not cause CPU 3 to wake up and service this
expiration if it is currently idle when another, nonsleeping CPU could handle it
instead.

While these measures helped, they were not enough to increase battery
life in mobile systems such as phones, which have a fraction of the battery
capacity of laptops.Windows 8 thus introduced a number of features to further
optimize battery life. First, the WinRT programming model does not allow for
precise timerswith a guaranteed expiration time. All timers registered through
the new API are candidates for coalescing, unlike Win32 timers, which had to
be manually opted in. Next, the concept of a dynamic tick was introduced, in

21.2 Design Principles 837

which CPU0 is no longer the clock owner, and the last-active CPU takes on this
responsibility.

More significantly, the entire Metro/Modern/UWP application model
delivered through the Windows Store includes a feature, the Process Lifetime
Manager (PLM), that automatically suspends all of the threads in a process
that has been idle for more than a few seconds. This not only mitigates the
constant polling behavior of many applications, but also removes the ability
for UWP applications to do their own background work (such as querying the
GPS location), forcing them to deal with a system of brokers that efficiently
coalesce audio, location, download, and other requests and can cache data
while the process is suspended.

Finally, using a new component called the Desktop Activity Moderator
(DAM), Windows 8 and later versions support a new type of system state
called Connected Standby. Imagine putting a computer to sleep—this action
takes several seconds, after which everything on the computer appears to
disappear, with all the hardware turning off. Pressing a button on the keyboard
wakes up the computer, which takes a few additional seconds, and everything
resumes. On a phone or tablet, however, putting the device to sleep is not
expected to take seconds—users want their screen to turn off immediately.
But if Windows merely turned off the screen, all programs would continue
running, and legacy Win32 applications, lacking a PLM and timer coalescing,
would continue to poll, perhaps even waking up the screen again. Battery life
would drain significantly.

Connected Standby addresses this problem by virtually freezing the com-
puterwhen the power button is pressed or the screen turns off—without really
putting the computer to sleep. The hardware clock is stopped, all processes and
services are suspended, and all timer expirations are delayed 30 minutes. The
net effect, even though the computer is still running, is that it runs in such a
almost-total state of idleness that the processor and peripherals can effectively
run in their lowest power state. Special hardware and firmware are required
to fully support this mode; for example, the Surface-branded tablet hardware
includes this capability.

21.2.9 Dynamic Device Support

Early in the history of the PC industry, computer configurations were fairly
static, although new devices might occasionally be plugged into the serial,
printer, or game ports on the back of a computer. The next steps toward
dynamic configuration of PCswere laptopdocks and PCMCIAcards. Using such
a device, a PC could quickly be connected to or disconnected from a full set
of peripherals. Contemporary PCs are designed to enable users to plug and
unplug a huge host of peripherals frequently.

Support for dynamic configuration of devices is continually evolving in
Windows. The system can automatically recognize devices when they are
plugged in and can find, install, and load the appropriate drivers—oftenwith-
out user intervention. When devices are unplugged, the drivers automatically
unload, and system execution continues without disrupting other software.
Additionally, Windows Update permits downloading of third-party drivers

838 Chapter 21 Windows 10

directly through Microsoft, avoiding the usage of installation DVDs or having
the user scour the manufacturer’s website.

Beyond peripherals, Windows Server also supports dynamic hot-add and
hot-replace of CPUs and RAM, as well as dynamic hot-remove of RAM. These
features allow the components to be added, replaced, or removed without
system interruption. While of limited use in physical servers, this technology
is key to dynamic scalability in cloud computing, especially in Infrastructure-
as-a-Service (IaaS) and cloud computing environments. In these scenarios,
a physical machine can be configured to support a limited number of its
processors based on a service fee, which can then be dynamically upgraded,
without requiring a reboot, through a compatible hypervisor such as Hyper-V
and a simple slider in the owner’s user interface.

21.3 System Components

The architecture of Windows is a layered system of modules operating at
specific privilege levels, as shown earlier in Figure 21.1. By default, these
privilege levels are first implemented by the processor (providing a “vertical”
privilege isolation between user mode and kernel mode). Windows 10 can also
use its Hyper-V hypervisor to provide an orthogonal (logically independent)
security model through Virtual Trust Levels (VTLs). When users enable this
feature, the system operates in a Virtual Secure Mode (VSM). In this mode,
the layered privileged system now has two implementations, one called the
Normal World, or VTL 0, and one called the Secure World, or VTL 1. Within
each of these worlds, we find a user mode and a kernel mode.

Let’s look at this structure in somewhat more detail.

• In theNormalWorld, in kernelmode are (1) the HALand its extensions and
(2) the kernel and its executive, which load drivers and DLL dependencies.
In user mode are a collection of system processes, the Win32 environment
subsystem, and various services.

• In the Secure World, if VSM is enabled, are a secure kernel and executive
(within which a secure micro-HAL is embedded). A collection of isolated
Trustlets (discussed later) run in secure user mode.

• Finally, the bottommost layer in Secure World runs in a special processor
mode (called, for example, VMX Root Mode on Intel processors), which
contains the Hyper-V hypervisor component, which uses hardware virtu-
alization to construct the Normal-to-Secure-World boundary. (The user-to-
kernel boundary is provided by the CPU natively.)

One of the chief advantages of this type of architecture is that interactions
between modules, and between privilege levels, are kept simple, and that iso-
lation needs and security needs are not necessarily conflated through privilege.
For example, a secure, protected component that stores passwords can itself be
unprivileged. In the past, operating-system designers chose to meet isolation
needs by making the secure component highly privileged, but this results in a
net loss for the security of the system when this component is compromised.

The remainder of this section describes these layers and subsystems.

21.3 System Components 839

21.3.1 Hyper-V Hypervisor

The hypervisor is the first component initialized on a systemwith VSM enabled,
which happens as soon as the user enables the Hyper-V component. It is
used both to provide hardware virtualization features for running separate
virtual machines and to provide the VTL boundary and related access to the
hardware’s Second Level Address Translation (SLAT) functionality (discussed
shortly). The hypervisor uses a CPU-specific virtualization extension, such as
AMD’s Pacifica (SVMX) or Intel’s Vanderpool (VT-x), to intercept any interrupt,
exception, memory access, instruction, port, or register access that it chooses
and deny, modify, or redirect the effect, source, or destination of the operation.
It also provides a hypercall interface, which enables it to communicate with
the kernel in VTL 0, the secure kernel in VTL 1, and all other running virtual
machine kernels and secure kernels.

21.3.2 Secure Kernel

The secure kernel acts as the kernel-mode environment of isolated (VTL 1) user-
mode Trustlet applications (applications that implement parts of theWindows
securitymodel). It provides the same system-call interface that the kernel does,
so that all interrupts, exceptions, and attempts to enter kernel mode from a
VTL 1 Trustlet result in entering the secure kernel instead. However, the secure
kernel is not involved in context switching, thread scheduling, memory man-
agement, interprocess-communication, or any of the other standard kernel
tasks. Additionally, no kernel-mode drivers are present in VTL 1. In an attempt
to reduce the attack surface of the Secure World, these complex implementa-
tions remain the responsibility of Normal World components. Thus, the secure
kernel acts as a type of “proxy kernel” that hands off the management of its
resources, paging, scheduling, and more, to the regular kernel services in VTL
0. This doesmake the SecureWorld vulnerable to denial-of-service attacks, but
that is a reasonable tradeoff of the security design, which values data privacy
and integrity over service guarantees.

In addition to forwarding system calls, the secure kernel’s other responsi-
bility is providing access to the hardware secrets, the trusted platformmodule
(TPM), and code integrity policies that were captured at boot. With this infor-
mation, Trustlets can encrypt and decrypt data with keys that the Normal
World cannot obtain and can sign and attest (co-sign by Microsoft) reports
with integrity tokens that cannot be faked or replicated outside of the Secure
World. Using a CPU feature called Second Level Address Translation (SLAT),
the secure kernel also provides the ability to allocate virtual memory in such a
way that the physical pages backing it cannot be seen at all from the Normal
World. Windows 10 uses these capabilities to provide additional protection of
enterprise credentials through a feature called Credential Guard.

Furthermore, when Device Guard (mentioned earlier) is activated, it takes
advantage of VTL 1 capabilities by moving all digital signature checking into
the secure kernel. This means that even if attacked through a software vulner-
ability, the normal kernel cannot be forced to load unsigned drivers, as the VTL
1 boundary would have to be breached for that to occur. On a Device Guard–
protected system, for a kernel-mode page in VTL 0 to be authorized for execu-
tion, the kernel must first ask permission from the secure kernel, and only the
secure kernel can grant this page executable access. More secure deployments

840 Chapter 21 Windows 10

(such as in embedded or high-risk systems) can require this level of signature
validation for user-mode pages as well.

Additionally, work is being done to allow special classes of hardware
devices, such as USB webcams and smartcard readers, to be directly managed
by user-mode drivers running in VTL 1 (using the UMDF framework described
later), allowing biometric data to be securely captured in VTL 1 without any
component in the Normal World being able to intercept it. Currently, the only
Trustlets allowed are those that provide the Microsoft-signed implementation
of Credential Guard and virtual-TPM support. Newer versions of Windows
10 will also support VSM Enclaves, which will allow validly signed (but not
necessarily Microsoft-signed) third-party code wishing to perform its own
cryptographic calculations to do so. Software enclaves will allow regular VTL
0 applications to “call into” an enclave, which will run executable code on top
of input data and return presumably encrypted output data.

Formore information on the secure kernel, see https://blogs.technet.micro
soft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-d
emystified/.

21.3.3 Hardware-Abstraction Layer

The HAL is the layer of software that hides hardware chipset differences
from upper levels of the operating system. The HAL exports a virtual hard-
ware interface that is used by the kernel dispatcher, the executive, and the
device drivers. Only a single version of each device driver is required for
each CPU architecture, no matter what support chips might be present. Device
drivers map devices and access them directly, but the chipset-specific details
of mapping memory, configuring I/O buses, setting up DMA, and coping with
motherboard-specific facilities are all provided by the HAL interfaces.

21.3.4 Kernel

The kernel layer of Windows has the following main responsibilities: thread
scheduling and context switching, low-level processor synchronization, inter-
rupt and exception handling, and switching between user mode and kernel
mode through the system-call interface. Additionally, the kernel layer imple-
ments the initial code that takes over from the boot loader, formalizing the tran-
sition into the Windows operating system. It also implements the initial code
that safely crashes the kernel in case of an unexpected exception, assertion, or
other inconsistency. The kernel ismostly implemented in the C language, using
assembly language onlywhen absolutely necessary to interfacewith the lowest
level of the hardware architecture and when direct register access is needed.

21.3.4.1 Dispatcher

The dispatcher provides the foundation for the executive and the subsystems.
Most of the dispatcher is never paged out of memory, and its execution is
never preempted. Its main responsibilities are thread scheduling and context
switching, implementation of synchronization primitives, timer management,
software interrupts (asynchronous and deferred procedure calls), interproces-
sor interrupts (IPIs) and exception dispatching. It also manages hardware and

https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/
https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/
https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/

21.3 System Components 841

software interrupt prioritization under the system of interrupt request levels
(IRQLs).

21.3.4.2 Switching Between User-Mode and Kernel-Mode Threads

What the programmer thinks of as a thread in traditional Windows is actually
a thread with two modes of execution: a user-mode thread (UT) and a kernel-
mode thread (KT). The thread has two stacks, one for UT execution and the
other for KT. A UT requests a system service by executing an instruction that
causes a trap to kernelmode. The kernel layer runs a trap handler that switches
UT stack to its KT sister and changes CPU mode to kernel. When thread in KT
mode has completed its kernel execution and is ready to switch back to the
corresponding UT, the kernel layer is called tomake the switch to the UT, which
continues its execution in user mode. The KT switch also happens when an
interrupt occurs.

Windows 7 modifies the behavior of the kernel layer to support user-
mode scheduling of the UTs. User-mode schedulers in Windows 7 support
cooperative scheduling. A UT can explicitly yield to another UT by calling
the user-mode scheduler; it is not necessary to enter the kernel. User-mode
scheduling is explained in more detail in Section 21.7.3.7.

In Windows, the dispatcher is not a separate thread running in the kernel.
Rather, the dispatcher code is executed by the KT component of a UT thread. A
thread goes into kernelmode in the same circumstances that, in other operating
systems, cause a kernel thread to be called. These same circumstances will
cause the KT to run through the dispatcher code after its other operations,
determining which thread to run next on the current core.

21.3.4.3 Threads

Like many other modern operating systems, Windows uses threads as the key
schedulable unit of executable code, with processes serving as containers of
threads. Therefore, each process must have at least one thread, and each thread
has its own scheduling state, including actual priority, processor affinity, and
CPU usage information.

There are eight possible thread states: initializing, ready, deferred-
ready, standby, running, waiting, transition, and terminated. ready
indicates that the thread iswaiting to execute,while deferred-ready indicates
that the thread has been selected to run on a specific processor but has not yet
been scheduled.Athread is runningwhen it is executing on a processor core. It
runs until it is preempted by a higher-priority thread, until it terminates, until
its allotted execution time (quantum) ends, or until it waits on a dispatcher
object, such as an event signaling I/O completion. If a thread is preempting
another thread on a different processor, it is placed in the standby state on
that processor, which means it is the next thread to run.

Preemption is instantaneous—the current thread does not get a chance to
finish its quantum. Therefore, the processor sends a software interrupt—in
this case, a deferred procedure call (DPC)—to signal to the other processor
that a thread is in the standby state and should be immediately picked up for
execution. Interestingly, a thread in the standby state can itself be preempted
if yet another processor finds an even higher-priority thread to run in this
processor. At that point, the new higher-priority thread will go to standby,

842 Chapter 21 Windows 10

and the previous thread will go to the ready state. A thread is in the waiting
state when it is waiting for a dispatcher object to be signaled. A thread is in
the transition state while it waits for resources necessary for execution; for
example, it may be waiting for its kernel stack to be paged in from secondary
storage. A thread enters the terminated state when it finishes execution, and a
thread begins in the initializing state as it is being created, before becoming
ready for the first time.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes: variable class and
static class. The variable class contains threads having priorities from 1 to 15,
and the static class contains threads with priorities ranging from 16 to 31. The
dispatcher uses a linked list for each scheduling priority; this set of lists is called
the dispatcher database. The database uses a bitmap to indicate the presence
of at least one entry in the list associated with the priority of the bit’s position.
Therefore, instead of having to traverse the set of lists from highest to lowest
until it finds a thread that is ready to run, the dispatcher can simply find the
list associated with the highest bit set.

Prior to Windows Server 2003, the dispatcher database was global,
resulting in heavy contention on large CPU systems. In Windows Server 2003
and later versions, the global database was broken apart into per-processor
databases, with per-processor locks. With this new model, a thread will only
be in the database of its ideal processor. It is thus guaranteed to have a
processor affinity that includes the processor on whose database it is located.
The dispatcher can now simply pick the first thread in the list associated with
the highest bit set and does not have to acquire a global lock. Dispatching
is therefore a constant-time operation, parallelizable across all CPUs on the
machine.

On a single-processor system, if no ready thread is found, the dispatcher
executes a special thread called the idle thread, whose role is to begin the
transition to one of the CPU’s initial sleep states. Priority class 0 is reserved for
the idle thread. On a multiprocessor system, before executing the idle thread,
the dispatcher looks at the dispatcher databases of other nearby processors,
taking caching topologies and NUMA node distances into consideration. This
operation requires acquiring the locks of other processor cores in order to safely
inspect their lists. If no thread can be stolen from a nearby core, the dispatcher
looks at the next nearest core, and so on. If no threads can be stolen at all, then
the processor executes the idle thread. Therefore, in a multiprocessor system,
each CPU will have its own idle thread.

Putting each thread on only the dispatcher database of its ideal processor
causes a locality problem. Imagine a CPU executing a thread at priority 2 in a
CPU-bound way, while another CPU is executing a thread at priority 18, also
CPU-bound. Then, a thread at priority 17 becomes ready. If the ideal processor
of this thread is the first CPU, the thread preempts the current running thread.
But if the ideal processor is the latter CPU, it goes into the ready queue instead,
waiting for its turn to run (which won’t happen until the priority 17 thread
gives up the CPU by terminating or entering a wait state).

Windows 7 introduced a load-balancer algorithm to address this situation,
but it was a heavy-handed and disruptive approach to the locality issue. Win-
dows 8 and later versions solved the problem in a more nuanced way. Instead
of a global database as in Windows XP and earlier versions, or a per-processor

21.3 System Components 843

database as in Windows Server 2003 and later versions, the newer Windows
versions combine these approaches to form a shared ready queue among a
group of some, but not all, processors. The number of CPUs that form one
shared group depends on the topology of the system, as well as on whether
it is a server or client system. The number is chosen to keep contention low
on very large processor systems, while avoiding locality (and thus latency and
contention) issues on smaller client systems. Additionally, processor affinities
are still respected, so that a processor in a given group is guaranteed that all
threads in the shared ready queue are appropriate—it never needs to “skip”
over a thread, keeping the algorithm constant time.

Windows has a timer expire every 15milliseconds to create a clock “tick” to
examine system states, update the time, and do other housekeeping. That tick
is received by the thread on every non-idle core. The interrupt handler (being
run by the thread, now in KT mode) determines if the thread’s quantum has
expired. When a thread’s time quantum runs out, the clock interrupt queues
a quantum-end DPC to the processor. Queuing the DPC results in a software
interruptwhen the processor returns to normal interrupt priority. The software
interrupt causes the thread to run dispatcher code in KTmode to reschedule the
processor to execute the next ready thread at the preempted thread’s priority
level in a round-robin fashion. If no other thread at this level is ready, a lower-
priority ready thread is not chosen, because a higher-priority ready thread
already exists—the one that exhausted its quantum in the first place. In this
situation, the quantum is simply restored to its default value, and the same
thread executes once again. Therefore, Windows always executes the highest-
priority ready thread.

When a variable-priority thread is awakened from a wait operation, the
dispatcher may boost its priority. The amount of the boost depends on the type
of wait associated with the thread. If the wait was due to I/O, then the boost
depends on the device for which the threadwaswaiting. For example, a thread
waiting for sound I/O would get a large priority increase, whereas a thread
waiting for a disk operation would get a moderate one. This strategy enables
I/O-bound threads to keep the I/O devices busy while permitting compute-
bound threads to use spare CPU cycles in the background.

Another type of boost is applied to threads waiting on mutex, semaphore,
or event synchronization objects. This boost is usually a hard-coded value
of one priority level, although kernel drivers have the option of making a
different change. (For example, the kernel-mode GUI code applies a boost of
two priority levels to all GUI threads waking up to process windowmessages.)
This strategy is used to reduce the latency between when a lock or other
notification mechanism is signaled and when the next waiter in line executes
in response to the state change.

In addition, the thread associated with the user’s active GUI window
receives a priority boost of two whenever it wakes up for any reason, on top
of any other existing boost, to enhance its response time. This strategy, called
the foreground priority separation boost, tends to give good response times to
interactive threads.

Finally,Windows Server 2003 added a lock-handoff boost for certain classes
of locks, such as critical sections. This boost is similar to themutex, semaphore,
and event boost, except that it tracks ownership. Instead of boosting thewaking
thread by a hard-coded value of one priority level, it boosts to one priority

844 Chapter 21 Windows 10

level above that of the current owner (the one releasing the lock). This helps in
situations where, for example, a thread at priority 12 is releasing a mutex, but
the waiting thread is at priority 8. If the waiting thread receives a boost only to
9, it will not be able to preempt the releasing thread. But if it receives a boost
to 13, it can preempt and instantly acquire the critical section.

Because threads may run with boosted priorities when they wake up from
waits, the priority of a thread is lowered at the end of every quantum as long
as the thread is above its base (initial) priority. This is done according to the
following rule: For I/O threads and threads boosted due to waking up because
of an event, mutex, or semaphore, one priority level is lost at quantum end.
For threads boosted due to the lock-handoff boost or the foreground priority
separation boost, the entire value of the boost is lost. Threads that have received
boosts of both types will obey both of these rules (losing one level of the
first boost, as well as the entirety of the second boost). Lowering the thread’s
priority makes sure that the boost is applied only for latency reduction and for
keeping I/O devices busy, not to give undue execution preference to compute-
bound threads.

21.3.4.4 Thread Scheduling

Scheduling occurs when a thread enters the ready or waiting state, when a
thread terminates, orwhen an application changes a thread’s processor affinity.
As we have seen throughout the text, a thread could become ready at any
time. If a higher-priority thread becomes readywhile a lower-priority thread is
running, the lower-priority thread is preempted immediately. This preemption
gives the higher-priority thread instant access to the CPU, without waiting on
the lower-priority thread’s quantum to complete.

It is the lower-priority thread itself, performing some event that caused it
to operate in the dispatcher, that wakes up the waiting thread and immedi-
ately context-switches to it while placing itself back in the ready state. This
model essentially distributes the scheduling logic throughout dozens of Win-
dows kernel functions and makes each currently running thread behave as
the scheduling entity. In contrast, other operating systems rely on an external
“scheduler thread” triggered periodically based on a timer. The advantage of
the Windows approach is latency reduction, with the cost of added overhead
inside every I/O and other state-changing operation, which causes the current
thread to perform scheduler work.

Windows is not a hard-real-time operating system, however, because it
does not guarantee that any thread, even the highest-priority one, will start to
executewithin a particular time limit or have a guaranteed period of execution.
Threads are blocked indefinitely while DPCs and interrupt service routines
(ISRs) are running (as further discussed below), and they can be preempted at
any time by a higher-priority thread or be forced to round-robin with another
thread of equal priority at quantum end.

Traditionally, the Windows scheduler uses sampling to measure CPU uti-
lization by threads. The system timer fires periodically, and the timer inter-
rupt handler takes note of what thread is currently scheduled and whether it
is executing in user or kernel mode when the interrupt occurred. This sam-
pling technique originally came about because either the CPU did not have a
high-resolution clock or the clock was too expensive or unreliable to access

21.3 System Components 845

frequently. Although efficient, sampling is inaccurate and leads to anomalies
such as charging the entire duration of the clock (15 milliseconds) to the cur-
rently running thread (or DPC or ISR). Therefore, the system ends up completely
ignoring some number of milliseconds—say, 14.999—that could have been
spent idle, running other threads, running other DPCs and ISRs, or a combi-
nation of all of these operations. Additionally, because quantum is measured
based on clock ticks, this causes the premature round-robin selection of a new
thread, even though the current thread may have run for only a fraction of the
quantum.

Starting with Windows Vista, execution time is also tracked using the
hardware timestamp counter (TSC) included in all processors since the Pen-
tium Pro. Using the TSC results in more accurate accounting of CPU usage (for
applications that use it—note that Task Manager does not) and also causes
the scheduler not to switch out threads before they have run for a full quan-
tum. Additionally, Windows 7 and later versions track, and charge, the TSC
to ISRsand DPCs, resulting in more accurate “Interrupt Time” measurements
as well (again, for tools that use this new measurement). Because all possible
execution time is now accounted for, it is possible to add it to idle time (which
is also tracked using the TSC) and accurately compute the exact number of
CPU cycles out of all possible CPU cycles in a given period (due to the fact
that modern processors have dynamically shifting frequencies), resulting in
cycle-accurate CPUusagemeasurements. Tools such asMicrosoft’s SysInternals
Process Explorer use this mechanism in their user interface.

21.3.4.5 Implementation of Synchronization Primitives

Windows uses a number of dispatcher objects to control dispatching and
synchronization in the system. Examples of these objects include the following:

• The event is used to record an event occurrence and to synchronize this
occurrencewith some action.Notification events signal allwaiting threads,
and synchronization events signal a single waiting thread.

• The mutex provides kernel-mode or user-mode mutual exclusion associ-
ated with the notion of ownership.

• The semaphore acts as a counter or gate to control the number of threads
that access a resource.

• The thread is the entity that is scheduled by the kernel dispatcher. It is
associated with a process, which encapsulates a virtual address space, list
of open resources, and more. The thread is signaled when the thread exits,
and the process, when the process exits (that is, when all of its threads have
exited).

• The timer is used to keep track of time and to signal timeouts when
operations take too long and need to be interrupted or when a periodic
activity needs to be scheduled. Just like events, timers can operate in
notification mode (signal all) or synchronization mode (signal one).

All of the dispatcher objects can be accessed from user mode via an open
operation that returns a handle. The user-mode code waits on handles to

846 Chapter 21 Windows 10

synchronize with other threads as well as with the operating system (see
Section 21.7.1).

21.3.4.6 Interrupt Request Levels (IRQLs)

Both hardware and software interrupts are prioritized and are serviced in
priority order. There are 16 interrupt request levels (IRQLs) on allWindows ISAs
except the legacy IA-32, which uses 32. The lowest level, IRQL 0, is called the
PASSIVE LEVEL and is the default level at which all threads execute, whether in
kernel or user mode. The next levels are the software interrupt levels for APCs
and DPCs. Levels 3 to 10 are used to represent hardware interrupts based on
selectionsmade by the PnPmanagerwith the help of the HAL and the PCI/ACPI
bus drivers. Finally, the uppermost levels are reserved for the clock interrupt
(used for quantum management) and IPI delivery. The last level, HIGH LEVEL,
blocks all maskable interrupts and is typically used when crashing the system
in a controlled manner.

The Windows IRQLs are defined in Figure 21.2.

21.3.4.7 Software Interrupts: Asynchronous and Deferred Procedure Calls

The dispatcher implements two types of software interrupts: asynchronous
procedure calls (APCs) and deferred procedure calls (DPCs, mentioned earlier).
APCs are used to suspend or resume existing threads, terminate threads, deliver
notifications that an asynchronous I/O has completed, and extract or modify
the contents of the CPU registers (the context) from a running thread. APCs are
queued to specific threads and allow the system to execute both system and
user code within a process’s context. User-mode execution of an APC cannot
occur at arbitrary times, but only when the thread is waiting and is marked
alertable. Kernel-mode execution of an APC, in contrast, instantaneously exe-
cutes in the context of a running thread because it is delivered as a software
interrupt running at IRQL 1 (APC LEVEL), which is higher than the default IRQL
0 (PASSIVE LEVEL). Additionally, even if a thread is waiting in kernel mode, the
wait can be broken by the APC and resumed once the APC completes execution.

interrupt levels types of interrupts

31

30

29

machine check or bus error

power fail

clock (used to keep track of time)

profile

traditional PC IRQ hardware interrupts

dispatch and deferred procedure call (DPC) (kernel)

asynchronous procedure call (APC)

passive

28

27

3–26

2

1

0

interprocessor notification (request another processor
to act; e.g., dispatch a process or update the TLB)

Figure 21.2 Windows x86 interrupt-request levels (IRLQs).

21.3 System Components 847

DPCs are used to postpone interrupt processing. After handling all urgent
device-interrupt processing, the ISR schedules the remaining processing by
queuing a DPC. The associated software interrupt runs at IRQL 2 (DPC LEVEL),
which is lower than all other hardware/I/O interrupt levels. Thus, DPCs do not
block other device ISRs. In addition to deferring device-interrupt processing,
the dispatcher uses DPCs to process timer expirations and to interrupt current
thread execution at the end of the scheduling quantum.

Because IRQL 2 is higher than 0 (PASSIVE) and 1 (APC), execution of DPCs
prevents standard threads from running on the current processor and also
keeps APCs from signaling the completion of I/O. Therefore, it is important
for DPC routines not to take an extended amount of time. As an alternative, the
executive maintains a pool of worker threads. DPCs can queue work items to
the worker threads, where they will be executed using normal thread schedul-
ing at IRQL 0. Because the dispatcher itself runs at IRQL 2, and because paging
operations require waiting on I/O (and that involves the dispatcher), DPC rou-
tines are restricted in that they cannot take page faults, call pageable system
services, or take any other action that might result in an attempt to wait for a
dispatcher object to be signaled. Unlike APCs, which are targeted to a thread,
DPC routines make no assumptions about what process context the processor
is executing, since they execute in the same context as the currently executing
thread, which was interrupted.

21.3.4.8 Exceptions, Interrupts, and IPIs

The kernel dispatcher also provides trap handling for exceptions and
interrupts generated by hardware or software. Windows defines several
architecture-independent exceptions, including:

• Integer or floating-point overflow

• Integer or floating-point divide by zero

• Illegal instruction

• Data misalignment

• Privileged instruction

• Access violation

• Paging file quota exceeded

• Debugger breakpoint

The trap handlers deal with the hardware-level exceptions (called traps) and
call the elaborate exception-handling code performed by the kernel’s exception
dispatcher. The exception dispatcher creates an exception record containing
the reason for the exception and finds an exception handler to deal with it.

When an exception occurs in kernelmode, the exception dispatcher simply
calls a routine to locate the exception handler. If no handler is found, a fatal
systemerror occurs and the user is leftwith the infamous “blue screen of death”
that signifies system failure. In Windows 10, this is now a friendlier “sad face
of sorrow” with a QR code, but the blue color remains.

848 Chapter 21 Windows 10

Exception handling is more complex for user-mode processes, because the
Windows error reporting (WER) service sets up an ALPC error port for every
process, on top of the Win32 environment subsystem, which sets up an ALPC
exception port for every process it creates. (For details on ports, see Section
21.3.5.4.) Furthermore, if a process is being debugged, it gets a debugger port.
If a debugger port is registered, the exception handler sends the exception to
the port. If the debugger port is not found or does not handle that exception, the
dispatcher attempts to find an appropriate exception handler. If none exists, it
contacts the default unhandled exception handler, which will notifyWER of the
process crash so that a crash dump can be generated and sent to Microsoft. If
there is a handler, but it refuses to handle the exception, the debugger is called
again to catch the error for debugging. If no debugger is running, a message is
sent to the process’s exceptionport to give the environment subsystema chance
to react to the exception. Finally, a message is sent to WER through the error
port, in the case where the unhandled exception handler may not have had a
chance to do so, and then the kernel simply terminates the process containing
the thread that caused the exception.

WER will typically send the information back to Microsoft for further anal-
ysis, unless the user has opted out or is using a local error-reporting server. In
some cases, Microsoft’s automated analysis may be able to recognize the error
immediately and suggest a fix or workaround.

The interrupt dispatcher in the kernel handles interrupts by calling either
an interrupt service routine (ISR) supplied by a device driver or a kernel trap-
handler routine. The interrupt is represented by an interrupt object that con-
tains all the information needed to handle the interrupt. Using an interrupt
object makes it easy to associate interrupt-service routines with an interrupt
without having to access the interrupt hardware directly.

Different processor architectures have different types and numbers of inter-
rupts. For portability, the interrupt dispatcher maps the hardware interrupts
into a standard set.

The kernel uses an interrupt-dispatch table to bind each interrupt level
to a service routine. In a multiprocessor computer, Windows keeps a separate
interrupt-dispatch table (IDT) for each processor core, and each processor’s
IRQL can be set independently to mask out interrupts. All interrupts that occur
at a level equal to or less than the IRQL of a processor are blocked until the
IRQL is lowered by a kernel-level thread or by an ISR returning from interrupt
processing.Windows takes advantage of this property and uses software inter-
rupts to deliver APCs and DPCs, to perform system functions such as synchro-
nizing threads with I/O completion, to start thread execution, and to handle
timers.

21.3.5 Executive

The Windows executive provides a set of services that all environment sub-
systems use. To give you a good basic overview, we discuss the following
services here: object manager, virtual memory manager, process manager,
advanced local procedure call facility, I/O manager, cache manager, security
reference monitor, plug-and-play and power managers, registry, and startup.
Note, though, that the Windows executive includes more than two dozen ser-
vices in total.

21.3 System Components 849

The executive is organized according to object-oriented design principles.
An object type in Windows is a system-defined data type that has a set of
attributes (data values) and a set of methods (for example, functions or opera-
tions) that help define its behavior. An object is an instance of an object type.
The executive performs its job by using a set of objects whose attributes store
the data and whose methods perform the activities.

21.3.5.1 Object Manager

For managing kernel-mode entities, Windows uses a generic set of interfaces
that are manipulated by user-mode programs. Windows calls these entities
objects, and the executive component that manipulates them is the object
manager. Examples of objects are files, registry keys, devices, ALPC ports,
drivers, mutexes, events, processes, and threads. As we saw earlier, some of
these, such as mutexes and processes, are dispatcher objects, which means
that threads can block in the dispatcher waiting for any of these objects to be
signaled. Additionally, most of the non-dispatcher objects include an internal
dispatcher object, which is signaled by the executive service controlling it. For
example, file objects have an event object embedded, which is signaled when
a file is modified.

User-mode and kernel-mode code can access these objects using an opaque
value called a handle, which is returned by many APIs. Each process has a
handle table containing entries that track the objects used by the process.
There is a “system process” (see Section 21.3.5.11) that has its own handle
table, which is protected from user code and is used when kernel-mode code
is manipulating handles. The handle tables in Windows are represented by a
tree structure, which can expand from holding 1,024 handles to holding over
16 million. In addition to using handles, kernel-mode code can also access an
object by using referenced pointer, which it must obtain by calling a special
API. When handles are used, they must eventually be closed, to avoid keeping
an active reference on the object. Similarly, when kernel code uses a referenced
pointer, it must use a special API to drop the reference.

A handle can be obtained by creating an object, by opening an existing
object, by receiving a duplicated handle, or by inheriting a handle fromaparent
process. To work around the issue that developers may forget to close their
handles, all of the open handles of a process are implicitly closed when it exits
or is terminated. However, since kernel handles belong to the system-wide
handle table, when a driver unloads, its handles are not automatically closed,
and this can lead to resource leaks on the system.

Since the object manager is the only entity that generates object handles,
it is the natural place to centralize calling the security reference monitor (SRM)
(see Section 21.3.5.7) to check security. When an attempt is made to open an
object, the object manager calls the SRM to check whether a process or thread
has the right to access the object. If the access check is successful, the resulting
rights (encoded as an access mask) are cached in the handle table. Therefore,
the opaque handle both represents the object in the kernel and identifies the
access that was granted to the object. This important optimization means that
whenever a file is written to (which could happen hundreds of times a second),
security checks are completely skipped, since the handle is already encoded as

850 Chapter 21 Windows 10

a “write” handle. Conversely, if a handle is a “read” handle, attempts to write
to the file would instantly fail, without requiring a security check.

The object manager also enforces quotas, such as the maximum amount of
memory a process may use, by charging a process for the memory occupied
by all its referenced objects and refusing to allocate more memory when the
accumulated charges exceed the process’s quota.

Because objects can be referenced through handles from user and kernel
mode, and referenced through pointers from kernel mode, the object manager
has to keep track of two counts for each object: the number of handles for the
object and the number of references. The handle count is the number of handles
that refer to the object in all of the handle tables (including the system handle
table). The reference count is the sum of all handles (which count as references)
plus all pointer references done by kernel-mode components. The count is
incremented whenever a new pointer is needed by the kernel or a driver and
decremented when the component is done with the pointer. The purpose of
these reference counts is to ensure that an object is not freed while it still has a
reference, but can still release some of its data (such as the name and security
descriptor) when all handles are closed (since kernel-mode components don’t
need this information).

The object manager maintains the Windows internal name space. In con-
trast to UNIX, which roots the system name space in the file system, Windows
uses an abstract object manager name space that is only visible in memory or
through specialized tools such as the debugger. Instead of file-system directo-
ries, the hierarchy is maintained by a special kind of object called a directory
object that contains a hash bucket of other objects (including other directory
objects). Note that some objects don’t have names (such as threads), and even
for other objects, whether an object has a name is up to its creator. For example,
a processwould only name amutex if itwanted other processes to find, acquire,
or inquire about the state of the mutex.

Because processes and threads are created without names, they are
referenced through a separate numerical identifier, such as a process ID
(PID) or thread (TID). The object manager also supports symbolic links
in the name space. As an example, DOS drive letters are implemented
using symbolic links; ∖Global??∖C: is a symbolic link to the device object
∖Device∖HarddiskVolumeN, representing a mounted file-system volume in the
∖Device directory.

Each object, as mentioned earlier, is an instance of an object type. The
object type specifies how instances are to be allocated, how data fields are to
be defined, and how the standard set of virtual functions used for all objects
are to be implemented. The standard functions implement operations such as
mapping names to objects, closing and deleting, and applying security checks.
Functions that are specific to a particular type of object are implemented by
system services designed to operate on that particular object type, not by the
methods specified in the object type.

The parse() function is the most interesting of the standard object func-
tions. It allows the implementation of an object to override the default naming
behavior of the object manager (which is to use the virtual object directo-
ries). This ability is useful for objects that have their own internal namespace,
especially when the namespace might need to be retained between boots. The

21.3 System Components 851

I/O manager (for file objects) and the configuration manager (for registry key
objects) are the most notable users of parse functions.

Returning to our Windows naming example, device objects used to rep-
resent file-system volumes provide a parse function. This allows a name like
∖Global??∖C:∖foo∖bar.doc to be interpreted as the file ∖foo∖bar.doc on the
volume represented by the device object HarddiskVolume2. We can illustrate
how naming, parse functions, objects, and handles work together by looking
at the steps to open the file in Windows:

1. An application requests that a file named C:∖foo∖bar.doc be opened.

2. The object manager finds the device object HarddiskVolume2, looks up
the parse procedure (for example, IopParseDevice) from the object’s
type, and invokes it with the file’s name relative to the root of the file
system.

3. IopParseDevice() looks up the file system that owns the volume Hard-
DiskVolume2 and then calls into the file system, which looks up how to
access ∖foo∖bar.doc on the volume, performing its own internal parsing
of the foo directory to find the bar.doc file. The file system then allocates
a file object and returns it to the I/O manager’s parse routine.

4. When the file system returns, the object manager allocates an entry for
the file object in the handle table for the current process and returns the
handle to the application.

If the file cannot successfully be opened, IopParseDevice returns an error
indication to the application.

21.3.5.2 Virtual Memory Manager

The executive component that manages the virtual address space, physical
memory allocation, and paging is the memory manager (MM). The design of
the MM assumes that the underlying hardware supports virtual-to-physical
mapping, a paging mechanism, and transparent cache coherence on multipro-
cessor systems, as well as allowing multiple page-table entries to map to the
same physical page frame. The MM in Windows uses a page-based manage-
ment scheme based on the page sizes supported by hardware (4 KB, 2 MB, and
1 GB). Pages of data allocated to a process that are not in physical memory
are either stored in the paging file on secondary storage or mapped directly
to a regular file on a local or remote file system. A page can also be marked
zero-fill-on-demand, which initializes the page with zeros before it is mapped,
thus erasing the previous contents.

On 32-bit processors such as IA-32 and ARM, each process has a 4-GB virtual
address space. By default, the upper 2 GB are mostly identical for all processes
and are used by Windows in kernel mode to access the operating-system code
and data structures. For 64-bit architectures such as the AMD64 architecture,
Windowsprovides a 256-TB per-process virtual address space, divided into two
128-TB regions for usermode and kernelmode. (These restrictions are based on
hardware limitations thatwill soon be lifted. Intel has announced that its future

852 Chapter 21 Windows 10

processors will support up to 128 PB of virtual address space, out of the 16 EB
theoretically available.)

The availability of the kernel’s code in each process’s address space is
important, and commonly found in many other operating systems as well.
Generally, virtual memory is used to map the kernel code into the address
space of each process. Then, when say a system call is executed or an interrupt
is received, the context switch to allow the current core to run that code is
lighter-weight than it would otherwise be without this mapping. Specificially,
nomemory-management registers need to be saved and restored, and the cache
does not get invalidated. The net result is much faster movement between user
and kernel code, compared to older architectures that keep kernel memory
separate and not available within the process address space.

The Windows MM uses a two-step process to allocate virtual memory. The
first step reserves one ormore pages of virtual addresses in the process’s virtual
address space. The second step commits the allocation by assigning virtual
memory space (physical memory or space in the paging files). Windows limits
the amount of virtual memory space a process consumes by enforcing a quota
on committedmemory.Aprocess de-commitsmemory that it is no longer using
to free up virtual memory space for use by other processes. The APIs used
to reserve virtual addresses and commit virtual memory take a handle on a
process object as a parameter. This allows one process to control the virtual
memory of another.

Windows implements shared memory by defining a section object. After
getting a handle to a section object, a processmaps thememory of the section to
a range of addresses, called a view. A process can establish a view of the entire
section or only the portion it needs. Windows allows sections to be mapped
not just into the current process but into any process for which the caller has a
handle.

Sections can be used in many ways. A section can be backed by secondary
storage either in the system-paging file or in a regular file (a memory-mapped
file). Asection can be based, meaning that it appears at the same virtual address
for all processes attempting to access it. Sections can also represent physical
memory, allowing a 32-bit process to access more physical memory than can
fit in its virtual address space. Finally, the memory protection of pages in the
section can be set to read only, read–write, read–write–execute, execute only,
no access, or copy-on-write.

Let’s look more closely at the last two of these protection settings:

• A no-access page raises an exception if accessed. The exception can be
used, for example, to check whether a faulty program iterates beyond
the end of an array or simply to detect that the program attempted to
access virtual addresses that are not committed to memory. User- and
kernel-mode stacks use no-access pages as guard pages to detect stack
overflows. Another use is to look for heap buffer overruns. Both the user-
modememory allocator and the special kernel allocator used by the device
verifier can be configured to map each allocation onto the end of a page,
followed by a no-access page to detect programming errors that access
beyond the end of an allocation.

21.3 System Components 853

• The copy-on-write mechanism enables the MM to use physical memory
more efficiently. When two processes want independent copies of data
from the same section object, the MM places a single shared copy into
virtual memory and activates the copy-on-write property for that region
of memory. If one of the processes tries to modify data in a copy-on-write
page, the MM makes a private copy of the page for the process.

The virtual address translation on most modern processors uses a multi-
level page table. For IA-32 (operating in Physical Address Extension, or PAE,
mode) and AMD64 processors, each process has a page directory that contains
512 page-directory entries (PDEs), each 8 bytes in size. Each PDE points to a
PTE table that contains 512 page-table entries (PTEs), each 8 bytes in size. Each
PTE points to a 4-KB page frame in physical memory. For a variety of reasons,
the hardware requires that the page directories or PTE tables at each level of a
multilevel page table occupy a single page. Thus, the number of PDEs or PTEs
that fit in a page determines howmany virtual addresses are translated by that
page. See Figure 21.3 for a diagram of this structure.

The structure described so far can be used to represent only 1 GB of virtual
address translation. For IA-32, a second page-directory level is needed, con-
taining only four entries, as shown in the diagram. On 64-bit processors, more
entries are needed. For AMD64, the processor can fill all the remaining entries
in the second page-directory level and thus obtain 512 GB of virtual address
space. Therefore, to support the 256 TB that are required, the processor needs
a third page-directory level (called the PML4), which also has 512 entries, each
pointing to the lower-level directory. As mentioned earlier, future processors
announced by Intel will support 128 PB, requiring a fourth page-directory level
(PML5). Thanks to this hierarchical mechanism, the total size of all page-table
pages needed to fully represent a 32-bit virtual address space for a process is

page table
entry 0

page
table 0

page table
entry 0

4 KB
page

4 KB
page

4 KB
page

4 KB
page

page
table 511

page table
entry 511

page table
entry 511

page
directory
entry 0

page
directory

0

page
directory
entry 0

page
directory

3

page
directory
entry 511

page
directory
entry 511

pointer 0 pointer 1 pointer 2 pointer 3

page directory pointer table

Figure 21.3 Page-table layout.

854 Chapter 21 Windows 10

PTR PTE indexPDE index page offset

31 0

Figure 21.4 Virtual-to-physical address translation on IA-32.

only 8MB. Additionally, theMMallocates pages of PDEs and PTEs as needed and
moves page-table pages to secondary storagewhen not in use, so that the actual
physical memory overhead of the paging structures for each process is usually
approximately 2 KB. The page-table pages are faulted back into memory when
referenced.

We next consider how virtual addresses are translated into physical
addresses on IA-32-compatible processors. A 2-bit value can represent the
values 0, 1, 2, 3. A 9-bit value can represent values from 0 to 511; a 12-bit value,
values from 0 to 4,095. Thus, a 12-bit value can select any byte within a 4-KB
page of memory. A 9-bit value can represent any of the 512 PDEs or PTEs in a
page directory or PTE-table page. As shown in Figure 21.4, translating a virtual
address pointer to a byte address in physical memory involves breaking the
32-bit pointer into four values, starting from the most significant bits:

• Two bits are used to index into the four PDEs at the top level of the page
table. The selected PDE will contain the physical page number for each of
the four page-directory pages that map 1 GB of the address space.

• Nine bits are used to select another PDE, this time from a second-level page
directory. This PDE will contain the physical page numbers of up to 512
PTE-table pages.

• Nine bits are used to select one of 512 PTEs from the selected PTE-table
page. The selected PTE will contain the physical page number for the byte
we are accessing.

• Twelve bits are used as the byte offset into the page. The physical address
of the byte we are accessing is constructed by appending the lowest 12 bits
of the virtual address to the end of the physical page number we found in
the selected PTE.

Note that the number of bits in a physical address may be different from
the number of bits in a virtual address. For example, when PAE is enabled
(the only mode supported by Windows 8 and later versions), the IA-32 MMU
is extended to the larger 64-bit PTE size, while the hardware supports 36-bit
physical addresses, granting access to up to 64 GB of RAM, even though a
single process can only map an address space up to 4 GB in size. Today, on
the AMD64 architecture, server versions of Windows support very, very large
physical addresses—more than we can possibly use or even buy (24 TB as of
the latest release). (Of course, at one time time 4 GB seemed optimistically large
for physical memory.)

21.3 System Components 855

To improve performance, the MM maps the page-directory and PTE-table
pages into the same contiguous region of virtual addresses in every process.
This self-map allows the MM to use the same pointer to access the current PDE
or PTE corresponding to a particular virtual address no matter what process is
running. The self-map for the IA-32 takes a contiguous 8-MB region of kernel
virtual address space; the AMD64 self-map occupies 512 GB. Although the self-
map occupies significant address space, it does not require any additional
virtual memory pages. It also allows the page table’s pages to be automatically
paged in and out of physical memory.

In the creation of a self-map, one of the PDEs in the top-level page directory
refers to the page-directory page itself, forming a “loop” in the page-table
translations. The virtual pages are accessed if the loop is not taken, the PTE-table
pages are accessed if the loop is taken once, the lowest-level page-directory
pages are accessed if the loop is taken twice, and so forth.

The additional levels of page directories used for 64-bit virtual memory are
translated in the same way except that the virtual address pointer is broken up
into even more values. For the AMD64, Windows uses four full levels, each of
which maps 512 pages, or 9 + 9 + 9 + 9 + 12 = 48 bits of virtual address.

To avoid the overhead of translating every virtual address by looking up
the PDE and PTE, processors use translation look-aside buffer (TLB) hardware,
which contains an associativememory cache formapping virtual pages to PTEs.
The TLB is part of thememory-management unit (MMU) within each processor.
The MMU needs to “walk” (navigate the data structures of) the page table in
memory only when a needed translation is missing from the TLB.

The PDEs and PTEs contain more than just physical page numbers. They
also have bits reserved for operating-system use and bits that control how the
hardware uses memory, such as whether hardware caching should be used for
each page. In addition, the entries specify what kinds of access are allowed for
both user and kernel modes.

APDE can also bemarked to say that it should function as a PTE rather than
a PDE. On a IA-32, the first 11 bits of the virtual address pointer select a PDE in
the first two levels of translation. If the selected PDE is marked to act as a PTE,
then the remaining 21 bits of the pointer are used as the offset of the byte. This
results in a 2-MB size for the page. Mixing and matching 4-KB and 2-MB page
sizeswithin the page table is easy for the operating systemand can significantly
improve the performance of some programs. The improvement results from
reducing how often the MMU needs to reload entries in the TLB, since one PDE
mapping 2 MB replaces 512 PTEs, each mapping 4 KB. Newer AMD64 hardware
even supports 1-GB pages, which operate in a similar fashion.

Managing physical memory so that 2-MB pages are available when needed
is difficult, as they may continually be broken up into 4-KB pages, causing
external fragmentation of memory. Also, the large pages can result in very
significant internal fragmentation. Because of these problems, it is typically
only Windows itself, along with large server applications, that use large pages
to improve the performance of the TLB. They are better suited to do so because
operating-systemand server applications start runningwhen the systemboots,
before memory has become fragmented.

Windows manages physical memory by associating each physical page
with one of seven states: free, zeroed, modified, standby, bad, transition, or
valid.

856 Chapter 21 Windows 10

• A free page is an available page that has stale or uninitialized content.

• A zeroed page is a free page that has been zeroed out and is ready for
immediate use to satisfy zero-on-demand faults.

• A modified page has been written by a process and must be sent to sec-
ondary storage before it is usable by another process.

• A standby page is a copy of information already stored on secondary
storage. Standby pages may be pages that were not modified, modified
pages that have already been written to secondary storage, or pages that
were prefetched because they were expected to be used soon.

• A bad page is unusable because a hardware error has been detected.

• A transition page is on its way from secondary storage to a page frame
allocated in physical memory.

• A valid page either is part of the working set of one or more processes and
is contained within these processes’ page tables, or is being used by the
system directly (such as to store the nonpaged pool).

While valid pages are contained in processes’ page tables, pages in other
states are kept in separate lists according to state type. Additionally, to improve
performance and protect against aggressive recycling of the standby pages,
Windows Vista and later versions implement eight prioritized standby lists.
The lists are constructed by linking the corresponding entries in the page frame
number (PFN) database, which includes an entry for each physical memory
page. The PFN entries also include information such as reference counts, locks,
and NUMA information. Note that the PFN database represents pages of phys-
ical memory, whereas the PTEs represent pages of virtual memory.

When the valid bit in a PTE is zero, hardware ignores all the other bits,
and the MM can define them for its own use. Invalid pages can have a number
of states represented by bits in the PTE. Page-file pages that have never been
faulted in are marked zero-on-demand. Pages mapped through section objects
encode a pointer to the appropriate section object. PTEs for pages that have
been written to the page file contain enough information to locate the page on
secondary storage, and so forth. The structure of the page-file PTE is shown in
Figure 21.5. The T, P, andV bits are all zero for this type of PTE. The PTE includes
5 bits for page protection, 32 bits for page-file offset, and 4 bits to select the
paging file. There are also 20 bits reserved for additional bookkeeping.

Windows uses a per-working-set, least recently used (LRU) replacement
policy to take pages fromprocesses as appropriate.When a process is started, it
is assigned a defaultminimumworking-set size, atwhich point theMM starts to
track the age of the pages in each working set. The working set of each process
is allowed to grow until the amount of remaining physical memory starts to
run low. Eventually, when the available memory runs critically low, the MM
trims the working set to remove older pages.

The age of a page depends not on how long it has been in memory but on
when it was last referenced. The MM makes this determination by periodically
passing through the working set of each process and incrementing the age for
pages that have not been marked in the PTE as referenced since the last pass.
When it becomes necessary to trim the working sets, the MM uses heuristics to

21.3 System Components 857

63

V

32

protT P page
file

31 0

page-file offset

Figure 21.5 Page-file page-table entry. The valid bit is zero.

decide howmuch to trim from each process and then removes the oldest pages
first.

Aprocess can have itsworking set trimmed evenwhenplenty ofmemory is
available, if it was given a hard limit on how much physical memory it could
use. In Windows 7 and later versions, the MM also trims processes that are
growing rapidly, even if memory is plentiful. This policy change significantly
improved the responsiveness of the system for other processes.

Windows tracks working sets not only for user-mode processes but also
for various kernel-mode regions, which include the file cache and the pageable
kernel heap. Pageable kernel and driver code and data have their ownworking
sets, as does each TS session. The distinct working sets allow the MM to use
different policies to trim the different categories of kernel memory.

The MM does not fault in only the page immediately needed. Research
shows that the memory referencing of a thread tends to have a locality prop-
erty. That is, when a page is used, it is likely that adjacent pages will be
referenced in the near future. (Think of iterating over an array or fetching
sequential instructions that form the executable code for a thread.) Because of
locality, when the MM faults in a page, it also faults in a few adjacent pages.
This prefetching tends to reduce the total number of page faults and allows
reads to be clustered to improve I/O performance.

In addition to managing committed memory, the MM manages each pro-
cess’s reserved memory, or virtual address space. Each process has an asso-
ciated tree that describes the ranges of virtual addresses in use and what the
uses are. This allows the MM to fault in page-table pages as needed. If the PTE
for a faulting address is uninitialized, the MM searches for the address in the
process’s tree of virtual address descriptors (VADs) and uses this information
to fill in the PTE and retrieve the page. In some cases, a PTE-table page may not
exist; such a pagemust be transparently allocated and initialized by the MM. In
other cases, the pagemay be shared as part of a section object, and the VADwill
contain a pointer to that section object. The section object contains information
on how to find the shared virtual page so that the PTE can be initialized to point
to it directly.

Starting with Vista, the Windows MM includes a component called Super-
Fetch. This component combines a user-mode service with specialized kernel-

858 Chapter 21 Windows 10

mode code, including a file-system filter, to monitor all paging operations on
the system. Each second, the service queries a trace of all such operations and
uses a variety of agents to monitor application launches, fast user switches,
standby/sleep/hibernate operations, and more as a means of understanding
the system’s usage patterns.With this information, it builds a statistical model,
usingMarkov chains, ofwhich applications the user is likely to launchwhen, in
combination with what other applications, and what portions of these appli-
cations will be used. For example, SuperFetch can train itself to understand
that the user launches Microsoft Outlook in the mornings mostly to read e-
mail but composes e-mails later, after lunch. It can also understand that once
Outlook is in the background, Visual Studio is likely to be launched next, and
that the text editor is going to be in high demand, with the compiler demanded
a little less frequently, the linker even less frequently, and the documentation
code hardly ever. With this data, SuperFetch will prepopulate the standby list,
making low-priority I/O reads from secondary storage at idle times to load
what it thinks the user is likely to do next (or another user, if it knows a fast
user switch is likely). Additionally, by using the eight prioritized standby lists
that Windows offers, each such prefetched paged can be cached at a level that
matches the statistical likelihood that it will be needed. Thus, unlikely-to-be-
demanded pages can cheaply and quickly be evicted by an unexpected need
for physical memory, while likely-to-be-demanded-soon pages can be kept in
place for longer. Indeed, SuperFetchmay even force the system to trimworking
sets of other processes before touching such cached pages.

SuperFetch’s monitoring does create considerable system overhead. On
mechanical (rotational) drives, which have seek times in the milliseconds, this
cost is balanced by the benefit of avoiding latencies and multisecond delays in
application launch times. On server systems, however, such monitoring is not
beneficial, given the randommultiuserworkloads and the fact that throughput
is more important than latency. Further, the combined latency improvements
and bandwidth on systems with fast, efficient nonvolatile memory, such as
SSDs, make the monitoring less beneficial for those systems as well. In such
situations, SuperFetch disables itself, freeing up a few spare CPU cycles.

Windows 10 brings another large improvement to the MM by introducing
a component called the compression store manager. This component creates
a compressed store of pages in the working set of the memory compression
process, which is a type of system process. When shareable pages go on the
standby list and available memory is low (or certain other internal algorithm
decisions are made), pages on the list will be compressed instead of evicted.
This can also happen to modified pages targeted for eviction to secondary
storage—both by reducing memory pressure, perhaps avoiding the write in
the first place, and by causing the written pages to be compressed, thus con-
suming less page file space and taking less I/O to page out. On today’s fast
multiprocessor systems, often with built-in hardware compression algorithms,
the small CPU penalty is highly preferable to the potential secondary storage
I/O cost.

21.3.5.3 Process Manager

The Windows process manager provides services for creating, deleting, inter-
rogating, and managing processes, threads, and jobs. It has no knowledge

21.3 System Components 859

about parent–child relationships or process hierarchies, although it can group
processes in jobs, and the latter can have hierarchies that must then be main-
tained. The process manager is also not involved in the scheduling of threads,
other than setting the priorities and affinities of the threads in their owner
processes. Additionally, through jobs, the process manager can effect various
changes in scheduling attributes (such as throttling ratios and quantum val-
ues) on threads. Thread scheduling proper, however, takes place in the kernel
dispatcher.

Each process contains one or more threads. Processes themselves can be
collected into larger units called job objects. The original use of job objects
was to place limits on CPU usage, working-set size, and processor affinities
that control multiple processes at once. Job objects were thus used to man-
age large data-center machines. In Windows XP and later versions, job objects
were extended to provide security-related features, and a number of third-
party applications such asGoogle Chrome began using jobs for this purpose. In
Windows 8, a massive architectural change allowed jobs to influence schedul-
ing through generic CPU throttling as well as per-user-session-aware fairness
throttling/balancing. In Windows 10, throttling support was extended to sec-
ondary storage I/O and network I/O as well. Additionally,Windows 8 allowed
job objects to nest, creating hierarchies of limits, ratios, and quotas that the
systemmust accurately compute. Additional security and powermanagement
features were given to job objects as well.

As a result, all Windows Store applications and all UWP application
processes run in jobs. The DAM, introduced earlier, implements Connected
Standby support using jobs. Finally, Windows 10’s support for Docker
Containers, a key part of its cloud offerings, uses job objects, which it calls
silos. Thus, jobs have gone from being an esoteric data-center resource
management feature to a core mechanism of the process manager for multiple
features.

Due to Windows’s layered architecture and the presence of environment
subsystems, process creation is quite complex. An example of process creation
in the Win32 environment under Windows 10 is as follows. Note that the
launching of UWP “Modern” Windows Store applications (which are called
packaged applications, or “AppX”) is significantlymore complex and involves
factors outside the scope of this discussion.

1. AWin32 application calls CreateProcess().

2. Anumber of parameter conversions and behavioral conversions are done
from the Win32 world to the NT world.

3. CreateProcess() then calls the NtCreateUserProcess() API in the
process manager of the NT executive to actually create the process and
its initial thread.

4. The process manager calls the object manager to create a process object
and returns the object handle toWin32. It then calls the memorymanager
to initialize the address space of the new process, its handle table, and
other key data structures, such as the process environment block (PEBL)
(which contains internal process management data).

860 Chapter 21 Windows 10

5. The process manager calls the object manager again to create a thread
object and returns the handle to Win32. It then calls the memory man-
ager to create the thread environment block (TEB) and the dispatcher
to initialize the scheduling attributes of the thread, setting its state to
initializing.

6. The process manager creates the initial thread startup context (which
will eventually point to the main() routine of the application), asks the
scheduler to mark the thread as ready, and then immediately suspends
it, putting it into a waiting state.

7. Amessage is sent to the Win32 subsystem to notify it that the process is
being created. The subsystemperforms additionalWin32-specificwork to
initialize the process, such as computing its shutdown level and drawing
the animated hourglass or “donut” mouse cursor.

8. Back in CreateProcess(), inside the parent process, the
ResumeThread() API is called to wake up the process’s initial thread.
Control returns to the parent.

9. Now, inside the initial thread of the new process, the user-mode link
loader takes control (inside ntdll.dll, which is automatically mapped
into all processes). It loads all the library dependencies (DLLs) of the appli-
cation, creates its initial heap, sets up exception handling and application
compatibility options, and eventually calls the main() function of the
application.

The Windows APIs for manipulating virtual memory and threads and for
duplicating handles take a process handle, so their subsystem and other ser-
vices, when notified of process creation, can perform operations on behalf of
the new process without having to execute directly in the new process’s con-
text.Windows also supports a UNIX fork() style of process creation. Anumber
of features—including process reflectio , which is used by theWindows error
reporting (WER) infrastructure during process crashes, as well as the Windows
subsystem for Linux’s implementation of the Linux fork() API—depend on
this capability.

The debugger support in the processmanager includes the APIs to suspend
and resume threads and to create threads that begin in suspended mode.
There are also process-manager APIs that get and set a thread’s register context
and access another process’s virtual memory. Threads can be created in the
current process; they can also be injected into another process. The debugger
makes use of thread injection to execute codewithin a process being debugged.
Unfortunately, the ability to allocate, manipulate, and inject both memory and
threads across processes is often misused by malicious programs.

While running in the executive, a thread can temporarily attach to a dif-
ferent process. Thread attach is used by kernel worker threads that need to
execute in the context of the process originating a work request. For example,
the MMmight use thread attach when it needs access to a process’s working set
or page tables, and the I/Omanagermight use it in updating the status variable
in a process for asynchronous I/O operations.

21.3 System Components 861

21.3.5.4 Facilities for Client–Server Computing

Like many other modern operating systems, Windows uses a client–server
model throughout, primarily as a layering mechanism, which allows putting
common functionality into a “service” (the equivalent of a daemon in UNIX
terms), as well as splitting out content-parsing code (such as a PDF reader or
Web browser) from system-action-capable code (such as the Web browser’s
capability to save a file on secondary storage or the PDF reader’s ability to
print out a document). For example, on a recent Windows 10 operating sys-
tem, opening the New York Times website with the Microsoft Edge browser
will likely result in 12 to 16 different processes in a complex organization of
“broker,” “renderer/parser,” “JITTer,” services, and clients.

The most basic such “server” on a Windows computer is the Win32 envi-
ronment subsystem, which is the server that implements the operating-system
personality of the Win32 API inherited from the Windows 95/98 days. Many
other services, such as user authentication, network facilities, printer spooling,
Web services, network file systems, and plug-and-play, are also implemented
using this model. To reduce the memory footprint, multiple services are often
collected into a few processes running the svchost.exe program. Each service
is loaded as a dynamic-link library (DLL),which implements the service by rely-
ing on user-mode thread-pool facilities to share threads and wait for messages
(see Section 21.3.5.3). Unfortunately, this pooling originally resulted in poor
user experience in troubleshooting and debugging runaway CPU usage and
memory leaks, and it weakened the overall security of each service. Therefore,
in recent versions of Windows 10, if the system has over 2 GB of RAM, each DLL
service runs in its own individual svchost.exe process.

In Windows, the recommended paradigm for implementing client–server
computing is to use RPCs to communicate requests, because of their inher-
ent security, serialization services, and extensibility features. The Win32 API
supports the Microsoft standard of the DCE-RPC protocol, called MS-RPC, as
described in Section 21.6.2.7.

RPC uses multiple transports (for example, named pipes and TCP/IP) that
can be used to implement RPCs between systems. When an RPC occurs only
between a client and a server on the local system, ALPC can be used as the
transport. Furthermore, because RPC is heavyweight and has multiple system-
level dependencies (including the WINXXIII environment subsystem itself),
many native Windows services, as well as the kernel, directly use ALPC, which
is not available (nor suitable) for third-party programmers.

ALPC is a message-passing mechanism similar to UNIX domain sockets
and Mach IPC. The server process publishes a globally visible connection-port
object. When a client wants services from the server, it opens a handle to the
server’s connection-port object and sends a connection request to the port. If
the server accepts the connection, then ALPC creates a pair of communication-
port objects, providing the client’s connect API with its handle to the pair, and
then providing the server’s accept API with the other handle to the pair.

At this point, messages can be sent across communication ports as either
datagrams, which behave like UDP and require no reply, or requests, which
must receive a reply. The client and server can then use either synchronous
messaging, in which one side is always blocking (waiting for a request or
expecting a reply), or asynchronous messaging, in which the thread-pool

862 Chapter 21 Windows 10

mechanism can be used to perform work whenever a request or reply is
received, without the need for a thread to block for a message. For servers
located in kernel mode, communication ports also support a callback mech-
anism, which allows an immediate switch to the kernel side (KT) of the user-
mode thread (UT), immediately executing the server’s handler routine.

When an ALPCmessage is sent, one of twomessage-passing techniques can
be chosen.

1. The first technique is suitable for small tomedium-sizedmessages (below
64 KB). In this case, the port’s kernel message queue is used as intermedi-
ate storage, and the messages are copied from one process, to the kernel,
to the other process. The disadvantage of this technique is the double
buffering, as well as the fact thatmessages remain in kernelmemory until
the intended receiver consumes them. If the receiver is highly contended
or currently unavailable, this may result in megabytes of kernel-mode
memory being locked up.

2. The second technique is for larger messages. In this case, a shared-
memory section object is created for the port. Messages sent through the
port’s message queue contain a “message attribute,” called a data view
attribute, that refers to the section object. The receiving side “exposes”
this attribute, resulting in a virtual address mapping of the section object
and a sharing of physical memory. This avoids the need to copy large
messages or to buffer them in kernel-mode memory. The sender places
data into the shared section, and the receiver sees them directly, as soon
as it consumes a message.

Many other possible ways of implementing client–server communication
exist, such as by using mailslots, pipes, sockets, section objects paired with
events, window messages, and more. Each one has its uses, benefits, and
disadvantages. RPC and ALPC remain the most fully featured, safe, secure, and
feature-rich mechanisms for such communication, however, and they are the
mechanisms used by the vast majority of Windows processes and services.

21.3.5.5 I/O Manager

The I/O manager is responsible for all device drivers on the system, as well as
for implementing and defining the communication model that allows drivers
to communicate with each other, with the kernel, and with user-mode clients
and consumers. Additionally, as in UNIX-based operating systems, I/O is
always targeted to a fil object, even if the device is not a file system. The I/O
manager in Windows allows device drivers to be “filtered” by other drivers,
creating a device stack through which I/O flows and which can be used to
modify, extend, or enhance the original request. Therefore, the I/O manager
always keeps track of which device drivers and filter drivers are loaded.

Due to the importance of file-system drivers, the I/O manager has special
support for them and implements interfaces for loading andmanaging file sys-
tems. It works with the MM to provide memory-mapped file I/O and controls
the Windows cache manager, which handles caching for the entire I/O sys-
tem. The I/Omanager is fundamentally asynchronous, providing synchronous
I/O by explicitly waiting for an I/O operation to complete. The I/O manager

21.3 System Components 863

provides several models of asynchronous I/O completion, including setting of
events, updating of a status variable in the calling process, delivery of APCs to
initiating threads, and use of I/O completion ports, which allow a single thread
to process I/O completions from many other threads. It also manages buffers
for I/O requests.

Device drivers are arranged in a list for each device (called a driver or
I/O stack). A driver is represented in the system as a driver object. Because
a single driver can operate on multiple devices, the drivers are represented in
the I/O stack by a device object, which contains a link to the driver object.
Additionally, nonhardware drivers can use device objects as a way to expose
different interfaces. As an example, there are TCP6, UDP6, UDP, TCP, RawIp, and
RawIp6 device objects owned by the TCP/IP driver object, even though these
don’t represent physical devices. Similarly, each volume on secondary storage
is its own device object, owned by the volume manager driver object.

Once a handle is opened to a device object, the I/Omanager always creates
a file object and returns a file handle instead of a device handle. It then converts
the requests it receives (such as create, read, and write) into a standard form
called an I/O request packet (IRP). It forwards the IRP to the first driver in the
targeted I/O stack for processing. After a driver processes the IRP, it calls the
I/O manager either to forward the IRP to the next driver in the stack or, if all
processing is finished, to complete the operation represented by the IRP.

The I/O request may be completed in a context different from the one in
which it was made. For example, if a driver is performing its part of an I/O
operation and is forced to block for an extended time, it may queue the IRP to
a worker thread to continue processing in the system context. In the original
thread, the driver returns a status indicating that the I/O request is pending
so that the thread can continue executing in parallel with the I/O operation.
An IRP may also be processed in interrupt-service routines and completed in
an arbitrary process context. Because some final processing may need to take
place in the context that initiated the I/O, the I/O manager uses an APC to do
final I/O-completion processing in the process context of the originating thread.

The I/O stack model is very flexible. As a driver stack is built, vari-
ous drivers have the opportunity to insert themselves into the stack as filte
drivers. Filter drivers can examine and potentially modify each I/O opera-
tion. Volume snapshotting (shadow copies) and disk encryption (BitLocker)
are two built-in examples of functionality implemented using filter drivers
that execute above the volume manager driver in the stack. File-system filter
drivers execute above the file system and have been used to implement func-
tionalities such as hierarchical storage management, single instancing of files
for remote boot, and dynamic format conversion. Third parties also use file-
systemfilter drivers to implement anti-malware tools. Due to the large number
of file-system filters, Windows Server 2003 and later versions now include a
filte manager component, which acts as the sole file-system filter and which
loads minifilter ordered by specific altitudes (relative priorities). This model
allows filters to transparently cache data and repeated queries without having
to know about each other’s requests. It also provides stricter load ordering.

Device drivers for Windows are written to the Windows Driver Model
(WDM) specification. This model lays out all the requirements for device
drivers, including how to layer filter drivers, share common code for han-

864 Chapter 21 Windows 10

dling power and plug-and-play requests, build correct cancellation logic, and
so forth.

Because of the richness of the WDM, writing a full WDM device driver for
each new hardware device can involve a great deal of work. In some cases,
the port/miniport model makes it unnecessary to do this for certain hardware
devices.Within a range of devices that require similar processing, such as audio
drivers, storage controllers, or Ethernet controllers, each instance of a device
shares a common driver for that class, called a port driver. The port driver
implements the standard operations for the class and then calls device-specific
routines in the device’s miniport driver to implement device-specific function-
ality. The physical-link layer of the network stack is implemented in this way,
with the ndis.sys port driver implementing much of the generic network
processing functionality and calling out to the network miniport drivers for
specific hardware commands related to sending and receiving network frames
(such as Ethernet).

Similarly, the WDM includes a class/miniclass model. Here, a certain class
of devices can be implemented in a generic way by a single class driver, with
callouts to a miniclass for specific hardware functionality. For example, the
Windows disk driver is a class driver, as are drivers for CD/DVDs and tape
drives. The keyboard and mouse driver are class drivers as well. These types
of devices don’t need a miniclass, but the battery class driver, for example,
does require a miniclass for each of the various external uninterruptible power
supplies (UPSs) sold by vendors.

Even with the port/miniport and class/miniclass model, significant
kernel-facing code must be written. And this model is not useful for custom
hardware or for logical (nonhardware) drivers. Starting with Windows 2000
Service Pack 4, kernel-mode drivers can be written using the Kernel-Mode
Driver Framework (KMDF), which provides a simplified programming
model for drivers on top of WDM. Another option is the User-Mode Driver
Framework (UMDF), which allows drivers to be written in user mode through
a reflecto driver in the kernel that forwards the requests through the kernel’s
I/O stack. These two frameworks make up the Windows Driver Foundation
model, which has reached Version 2.1 in Windows 10 and contains a fully
compatible API between KMDF and UMDF. It has been fully open-sourced on
GitHub.

Becausemanydriversdo not need to operate in kernelmode, and it is easier
to develop and deploy drivers in user mode, UMDF is strongly recommended
for new drivers. It also makes the system more reliable, because a failure in a
user-mode driver does not cause a kernel (system) crash.

21.3.5.6 Cache Manager

Inmany operating systems, caching is done by the block device system, usually
at the physical/block level. Instead, Windows provides a centralized caching
facility that operates at the logical/virtual file level. The cache manager works
closely with the MM to provide cache services for all components under the
control of the I/O manager. This means that the cache can operate on anything
from remote files on a network share to logical files on a customfile system. The
size of the cache changes dynamically according to how much free memory
is available in the system; it can grow as large as 2 TB on a 64-bit system.

21.3 System Components 865

The cache manager maintains a private working set rather than sharing the
system process’s working set, which allows trimming to page out cached files
more effectively. To build the cache, the cachemanagermemory-maps files into
kernel memory and then uses special interfaces to the MM to fault pages into
or trim them from this private working set, which lets it take advantage of
additional caching facilities provided by the memory manager.

The cache is divided into blocks of 256 KB. Each cache block can hold a
view (that is, a memory-mapped region) of a file. Each cache block is described
by a virtual address control block (VACB) that stores the virtual address and
file offset for the view, as well as the number of processes using the view.
The VACBs reside in arrays maintained by the cache manager, and there are
arrays for critical as well as low-priority cached data to improve performance
in situations of memory pressure.

When the I/O manager receives a file’s user-level read request, the I/O
manager sends an IRP to the I/O stack for the volume on which the file resides.
For files that are marked as cacheable, the file system calls the cache manager
to look up the requested data in its cached file views. The cache manager
calculates which entry of that file’s VACB index array corresponds to the byte
offset of the request. The entry either points to the view in the cache or is
invalid. If it is invalid, the cache manager allocates a cache block (and the
corresponding entry in the VACB array) andmaps the view into the cache block.
The cache manager then attempts to copy data from the mapped file to the
caller’s buffer. If the copy succeeds, the operation is completed.

If the copy fails, it does so because of a page fault, which causes the MM
to send a noncached read request to the I/O manager. The I/O manager sends
another request down the driver stack, this time requesting a paging operation,
which bypasses the cachemanager and reads the data from the file directly into
the page allocated for the cache manager. Upon completion, the VACB is set to
point at the page. The data, now in the cache, are copied to the caller’s buffer,
and the original I/O request is completed. Figure 21.6 shows an overview of
these operations.

When possible, for synchronous operations on cached files, I/O is handled
by the fast I/O mechanism. This mechanism parallels the normal IRP-based I/O

cache manager

VM manager

process

file system

disk driver

noncached I/O

I/O manager

data copy

cached I/O

page fault

I/O

Figure 21.6 File I/O.

866 Chapter 21 Windows 10

but calls into the driver stack directly rather than passing down an IRP, which
saves memory and time. Because no IRP is involved, the operation should
not block for an extended period of time and cannot be queued to a worker
thread. Therefore, when the operation reaches the file system and calls the
cachemanager, the operation fails if the information is not already in the cache.
The I/O manager then attempts the operation using the normal IRP path.

Akernel-level read operation is similar, except that the data can be accessed
directly from the cache rather than being copied to a buffer in user space.
To use file-system metadata (data structures that describe the file system),
the kernel uses the cache manager’s mapping interface to read the metadata.
To modify the metadata, the file system uses the cache manager’s pinning
interface. Pinning a page locks the page into a physical-memory page frame so
that the MM manager cannot move the page or page it out. After updating the
metadata, the file system asks the cachemanager to unpin the page. Amodified
page is marked dirty, and so the MM flushes the page to secondary storage.

To improve performance, the cache manager keeps a small history of read
requests and from this history attempts to predict future requests. If the cache
manager finds a pattern in the previous three requests, such as sequential
access forward or backward, it prefetches data into the cache before the next
request is submitted by the application. In this way, the application may find
its data already cached and not need to wait for secondary storage I/O.

The cache manager is also responsible for telling the MM to flush the
contents of the cache. The cache manager’s default behavior is write-back
caching: it accumulates writes for 4 to 5 seconds and then wakes up the cache-
writer thread. When write-through caching is needed, a process can set a flag
when opening the file, or can call an explicit cache-flush function.

A fast-writing process could potentially fill all the free cache pages before
the cache-writer thread had a chance to wake up and flush the pages to sec-
ondary storage. The cache writer prevents a process from flooding the system
in the following way. When the amount of free cache memory becomes low,
the cache manager temporarily blocks processes attempting to write data and
wakes the cache-writer thread to flush pages to secondary storage. If the fast-
writing process is actually a network redirector for a network file system,
blocking it for too long could cause network transfers to time out and be
retransmitted. This retransmission would waste network bandwidth. To pre-
vent such waste, network redirectors can instruct the cache manager to limit
the backlog of writes in the cache.

Because a network file system needs to move data between secondary
storage and the network interface, the cache manager also provides a DMA
interface to move the data directly. Moving data directly avoids the need to
copy data through an intermediate buffer.

21.3.5.7 Security Reference Monitor

Centralizing management of system entities in the object manager enables
Windows to use a uniform mechanism to perform run-time access validation
and audit checks for every user-accessible entity in the system. Additionally,
even entities not managed by the object manager may have access to the API
routines for performing security checks. Whenever a thread opens a handle to
a protected data structure (such as an object), the security reference monitor

21.3 System Components 867

(SRM) checks the effective security token and the object’s security descriptor,
which contains two access-control lists—the discretionary access control list
(DACL) and the system access control list (SACL)—to see whether the process
has the necessary access rights. The effective security token is typically the
token of the thread’s process, but it can also be the token of the thread itself, as
described below.

Each process has an associated security token. When the login process
(lsass.exe) authenticates a user, the security token is attached to the user’s
first process (userinit.exe) and copied for each of its child processes. The
token contains the security identity (SID) of the user, the SIDs of the groups the
user belongs to, the privileges the user has, the integrity level of the process, the
attributes and claims associatedwith the user, and any relevant capabilities. By
default, threads don’t have their own explicit tokens, causing them to share the
common token of the process. However, using a mechanism called imperson-
ation, a thread running in a processwith a security token belonging to one user
can set a thread-specific token belonging to another user to impersonate that
user. At this point, the effective token becomes the token of the thread, and all
operations, quotas, and limitations are subject to that user’s token. The thread
can later choose to “revert” to its old identity by removing the thread-specific
token, so that the effective token is once again that of the process.

This impersonation facility is fundamental to the client–server model,
where services must act on behalf of a variety of clients with different secu-
rity IDs. The right to impersonate a user is most often delivered as part of a
connection from a client process to a server process. Impersonation allows the
server to access system services as if itwere the client in order to access or create
objects and files on behalf of the client. The server process must be trustworthy
andmust be carefullywritten to be robust against attacks. Otherwise, one client
could take over a server process and then impersonate any user who made a
subsequent client request. Windows provides APIs to support impersonation
at the ALPC (and thus RPC and DCOM) layer, the named pipe layer, and the
Winsock layer.

The SRM is also responsible for manipulating the privileges in security
tokens. Special privileges are required for users to change the system time, load
a driver, or change firmware environment variables. Additionally, certain users
can have powerful privileges that override default access control rules. These
include users who must perform backup or restore operations on file systems
(allowing them to bypass read/write restrictions), debug processes (allowing
them to bypass security features), and so forth.

The integrity level of the code executing in a process is also represented by
a token. Integrity levels are a type of mandatory labeling mechanism, as men-
tioned earlier. By default, a process cannot modify an object with an integrity
level higher than that of the code executing in the process, whatever other per-
missions have been granted. In addition, it cannot read from another process
object at a higher integrity level. Objects can also protect themselves from read
access by manually changing the mandatory policy associated with their secu-
rity descriptor. Inside an object (such as a file or a process), the integrity level is
stored in the SACL, which distinguishes it from typical discretionary user and
group permissions, stored in the DACL.

Integrity levels were introduced to make it harder for code to take over
a system by attacking external-content-parsing software, like a browser or

868 Chapter 21 Windows 10

PDF reader, because such software is expected to run at a low integrity level.
For example, Microsoft Edge runs at “low integrity,” as do Adobe Reader
and Google Chrome. A regular application, such as Microsoft Word, runs at
“medium integrity.” Finally, you can expect an application run by an adminis-
trator or a setup program to run at “high integrity.”

Creating applications to run at lower integrity levels places a burden on the
developers to implement this security feature, because theymust create a client
–servermodel to support a broker and parser or renderer, asmentioned earlier.
In order to streamline this security model, Windows 8 introduced the Applica-
tion Container, often just called “AppContainer,” which is a special extension
of the token object. When running under an AppContainer, an application
automatically has its process token adjusted in the following ways:

1. The token’s integrity level is set to low. This means that the application
cannot write to or modify most objects (files, keys, processes) on the
system, nor can it read from any other process on the system.

2. All groups and the user SID are disabled (ignored) in the token. Let’s
say that the application was launched by user Anne, who belongs to the
World group. Any files accessible to Anne or World will be inaccessible
to this application.

3. All privileges except a handful are removed from the token. This prevents
powerful system calls or system-wide operations from being permitted.

4. A special AppContainer SID is added to the token, which corresponds to
the SHA-256 hash of the application’s package identifier. This is the only
valid security identifier in the token, so any object wishing to be directly
accessible to this application needs to explicitly give the AppContainer
SID read or write access.

5. Aset of capability SIDs are added to the token, based on the application’s
manifest file. When the application is first installed, these capabilities
are shown to the user, who must agree to them before the application
is deployed.

We can see that the AppContainer mechanism changes the security model
from a discretionary system where access to protected resources is defined
by users and groups to a mandatory system where each application has its
own unique security identity and access occurs on a per-application basis. This
separation of privileges and permissions is a great leap forward in security, but
it places a potential burden on resource access. Capabilities and brokers help
to alleviate this burden.

Capabilities are used by system brokers implemented by Windows to per-
form various actions on behalf of packaged applications. For example, assume
that Harold’s packaged application has no access to Harold’s file system, since
the Harold SID is disabled. In this situation, a broker might check for the Play
User Media capability and allow the music player process to read any MP3
files located in Harold’s My Music directory. Thus, Harold will not be forced
to mark all of his files with the AppContainer SID of his favorite media player
application, as long as the application has the Play User Media capability and
Harold agreed to it when he downloaded the application.

21.3 System Components 869

A final responsibility of the SRM is logging security audit events. The ISO
standard Common Criteria (the international successor to the Orange Book
standard developed by the United States Department of Defense) requires that
a secure system have the ability to detect and log all attempts to access system
resources so that it can more easily trace attempts at unauthorized access.
Because the SRM is responsible for making access checks, it generates most of
the audit records, which are then written by lsass.exe into the security-event
log.

21.3.5.8 Plug-and-Play Manager

The operating system uses the plug-and-play (PnP) manager to recognize and
adapt to changes in hardware configuration. PnP devices use standard pro-
tocols to identify themselves to the system. The PnP manager automatically
recognizes installed devices and detects changes in devices as the system oper-
ates. The manager also keeps track of hardware resources used by a device,
as well as potential resources that could be used, and takes care of loading
the appropriate drivers. This management of hardware resources—primarily
interrupts, DMA channels, and I/O memory ranges—has the goal of determin-
ing a hardware configuration in which all devices are able to operate success-
fully. The PnP manager and the Windows Driver Model see drivers as either
bus drivers, which detect and enumerate the devices on a bus (such as PCI or
USB), or function drivers, which implement the functionality of a particular
device on the bus.

The PnP manager handles dynamic reconfiguration as follows. First, it
gets a list of devices from each bus driver. It loads the drivers and sends an
add-device request to the appropriate driver for each device. Working in
tandem with special resource arbiters owned by the various bus drivers, the
PnP manager then figures out the optimal resource assignments and sends
a start-device request to each driver specifying the resource assignments
for the related devices. If a device needs to be reconfigured, the PnP manager
sends a query-stop request, which asks the driver whether the device can
be temporarily disabled. If the driver can disable the device, then all pending
operations are completed, and new operations are prevented from starting.
Finally, the PnP manager sends a stop request and can then reconfigure the
device with a new start-device request.

The PnP manager also supports other requests. For example, query-
remove, which operates similarly to query-stop, is employed when a user
is getting ready to eject a removable device, such as a USB storage device. The
surprise-remove request is used when a device fails or, more often, when a
user removes a device without telling the system to stop it first. Finally, the
remove request tells the driver to stop using a device permanently.

Many programs in the system are interested in the addition or removal
of devices, so the PnP manager supports notifications. Such a notification, for
example, gives the file manager the information it needs to update its list of
secondary storage volumeswhen a new storage device is attached or removed.

Installing devices can also result in starting new services on the system.
Previously, such services frequently set themselves up to run whenever the
system booted and continued to run even if the associated device was never
plugged into the system, because they had to be running in order to receive the

870 Chapter 21 Windows 10

PnP notification. Windows 7 introduced a service-trigger mechanism in the
service control manager (SCM) (services.exe), which manages the system
services. With this mechanism, services can register themselves to start only
when SCM receives a notification from the PnP manager that the device of
interest has been added to the system.

21.3.5.9 Power Manager

Windows works with the hardware to implement sophisticated strategies for
energy efficiency, as described in Section 21.2.8. The policies that drive these
strategies are implementedby thepower manager. The powermanager detects
current system conditions, such as the load on CPUs or I/O devices, and
improves energy efficiency by reducing the performance and responsiveness
of the system when need is low. The power manager can also put the entire
system into a very efficient sleep mode and can even write all the contents of
memory to secondary storage and turn off the power to allow the system to go
into hibernation.

The primary advantage of sleep is that the system can enter that state fairly
quickly, perhaps just a few seconds after the lid closes on a laptop. The return
from sleep is also fairly quick. The power is turned down to a low level on the
CPUs and I/O devices, but thememory continues to be powered enough that its
contents are not lost. As noted earlier, however, on mobile devices, these few
seconds still add up to an unreasonable user experience, so the powermanager
works with the Desktop ActivityModerator to kick off the Connected Standby
state as soon as the screen is turned off. Connected Standby virtually freezes
the computer but does not really put the computer to sleep.

Hibernation takes considerably longer to enter than sleep because the
entire contents of memory must be transferred to secondary storage before the
system is turned off. However, the fact that the system is, in fact, turned off
is a significant advantage. If there is a loss of power to the system, as when
the battery is swapped on a laptop or a desktop system is unplugged, the
saved system data will not be lost. Unlike shutdown, hibernation saves the
currently running system so a user can resumewhere she left off. Furthermore,
because hibernation does not require power, a system can remain in hiberna-
tion indefinitely. Therefore, this feature is extremely useful on desktops and
server systems, and it is also used on laptops when the battery hits a critical
level (because putting the system to sleep when the battery is lowmight result
in the loss of all data if the battery runs out of power while in the sleep state).

In Windows 7, the power manager also includes a processor power man-
ager (PPM), which specifically implements strategies such as core parking, CPU
throttling and boosting, and more. In addition, Windows 8 introduced the
power framework (PoFX), which works with function drivers to implement
specific functional power states. Thismeans that devices can expose their inter-
nal power management (clock speeds, current/power draws, and so forth) to
the system, which can then use the information for fine-grained control of the
devices. Thus, for example, instead of simply turning a device on or off, the
system can turn specific components on or off.

Like the PnP manager, the power manager provides notifications to the
rest of the system about changes in the power state. Some applications want to
know when the system is about to be shut down so they can start saving their

21.3 System Components 871

states to secondary storage, and, as mentioned earlier, the DAM needs to know
when the screen is turned off and on again.

21.3.5.10 Registry

Windows keeps much of its configuration information in internal repositories
of data, calledhives, that aremanaged by theWindows configurationmanager,
commonly known as the registry. The configuration manager is implemented
as a component of the executive.

There are separate hives for system information, each user’s preferences,
software information, security, and boot options. Additionally, as part of
the new application and security model introduced by AppContainers and
UWPModern/Metro packaged applications in Windows 8, each such applica-
tion has its own separate hive, called an application hive.

The registry represents the configuration state in each hive as a hierarchical
namespace of keys (directories), each of which can contain a set of arbitrarily
sized values. In the Win32 API, these values have a specific “type,” such as
UNICODE string, 32-bit integer, or untyped binary data, but the registry itself
treats all values the same, leaving it up to the higher API layers to infer a
structure based on type and size. Therefore, for example, nothing prevents a
“32-bit integer” from being a 999-byte UNICODE string.

In theory, new keys and values are created and initialized as new software
is installed, and then they are modified to reflect changes in the configuration
of that software. In practice, the registry is often used as a general-purpose
database, as an interprocess-communication mechanism, and for many other
such inventive purposes.

Restarting applications, or even the system, every time a configuration
change was made would be a nuisance. Instead, programs rely on various
kinds of notifications, such as those provided by the PnP and power man-
agers, to learn about changes in the system configuration. The registry also
supplies notifications; threads can register to be notified when changes are
made to some part of the registry. The threads can thus detect and adapt to
configuration changes recorded in the registry. Furthermore, registry keys are
objects managed by the object manager, and they expose an event object to the
dispatcher. This allows threads to put themselves in a waiting state associated
with the event, which the configuration manager will signal if the key (or any
of its values) is ever modified.

Whenever significant changes are made to the system, such as when
updates to the operating system or drivers are installed, there is a danger that
the configuration data may be corrupted (for example, if a working driver is
replaced by a nonworking driver or an application fails to install correctly and
leaves partial information in the registry). Windows creates a system restore
point before making such changes. The restore point contains a copy of the
hives before the change and can be used to return to this version of the hives
in order to get a corrupted system working again.

To improve the stability of the registry configuration, the registry also
implements a variety of “self-healing” algorithms, which can detect and fix
certain cases of registry corruption. Additionally, the registry internally uses
a two-phase commit transactional algorithm, which prevents corruption to
individual keys or values as they are being updated. While these mechanisms

872 Chapter 21 Windows 10

guarantee the integrity of small portions of the registry or individual keys and
values, they have not supplanted the system restore facility for recovering from
damage to the registry configuration caused by a failure during a software
installation.

21.3.5.11 Booting

The booting of a Windows PC begins when the hardware powers on and
firmware begins executing from ROM. In older machines, this firmware was
known as the BIOS, but more modern systems use UEFI (the Unified Extensible
Firmware Interface), which is faster, is more modern, and makes better use of
the facilities in contemporary processors. Additionally, UEFI includes a feature
called Secure Boot that provides integrity checks through digital signature
verification of all firmware and boot-time components. This digital signature
check guarantees that onlyMicrosoft’s boot-time components and the vendor’s
firmware are present at boot time, preventing any early third-party code from
loading.

The firmware runs power-on self-test (POST) diagnostics, identifies many
of the devices attached to the system and initializes them to a clean power-up
state, and then builds the description used by ACPI. Next, the firmware finds
the system boot device, loads the Windows boot manager program (boot-
mgfw.efi on UEFI systems), and begins executing it.

In a machine that has been hibernating, the winresume.efi program is
loaded next. It restores the running system from secondary storage, and the
system continues execution at the point it had reached right before hibernat-
ing. In a machine that has been shut down, bootmgfw.efi performs further
initialization of the system and then loads winload.efi. This program loads
hal.dll, the kernel (ntoskrnl.exe) and its dependencies, and any drivers
needed in booting, and the system hive. winload then transfers execution to
the kernel.

The procedure is somewhat different on Windows 10 systems where Vir-
tual Secure Mode is enabled (and the hypervisor is turned on). Here, win-
load.efiwill instead load hvloader.exe or hvloader.dll, which initializes
the hypervisor first. On Intel systems, this is hvix64.exe, while AMD systems
use hvax64.exe. The hypervisor then sets up VTL 1 (the SecureWorld) and VTL
0 (theNormalWorld) and returns to winload.efi, which now loads the secure
kernel (securekernel.exe) and its dependencies. Then the secure kernel’s
entry point is called, which initializes VTL 1, after which it returns back to the
loader at VTL 0, which resumes with the steps described above.

As the kernel initializes itself, it creates several processes. The idle process
serves as the container of all idle threads, so that system-wide CPU idle time
can easily be computed. The system process contains all of the internal kernel
worker threads and other system threads created by drivers for polling, house-
keeping, and other background work. The memory compression process, new
toWindows 10, has aworking set composed of compressed standbypages used
by the storemanager to alleviate system pressure and optimize paging. Finally,
if VSM is enabled, the secure system process represents the fact that the secure
kernel is loaded.

The first user-mode process, which is also created by the kernel, is ses-
sion manager subsystem (SMSS), which is similar to the init (initialization)

21.3 System Components 873

process in UNIX. SMSS performs further initialization of the system, includ-
ing establishing the paging files and creating the initial user sessions. Each
session represents a logged-on user, except for session 0, which is used to
run system-wide background processes, such as lsass and services. Each
session is given its own instance of an SMSS process, which exits once the ses-
sion is created. In each of these sessions, this ephemeral SMSS loads the Win32
environment subsystem (csrss.exe) and its driver (win32k.sys). Then, in
each session other than 0, SMSS runs the winlogon process, which launches
logonui. This process captures user credentials in order for lsass to log in a
user, then launch the userinit and explorer process, which implements the
Windows shell (start menu, desktop, tray icons, notification center, and so on).
The following list itemizes some of these aspects of booting:

• SMSS completes system initialization and then starts up one SMSS for ses-
sion 0 and one SMSS for the first login session (1).

• wininit runs in session 0 to initialize user mode and start lsass and
services.

• lsass, the security subsystem, implements facilities such as authentication
of users. If user credentials are protected by VSMthroughCredentialGuard,
then lsaiso and bioiso are also started as VTL 1 Trustlets by lsass.

• services contains the service control manager, or SCM, which supervises
all background activities in the system, including user-mode services. A
number of services will have registered to start when the system boots.
Others will be started only on demand or when triggered by an event such
as the arrival of a device.

• csrss is the Win32 environment subsystem process. It is started in every
session—mainly because it handles mouse and keyboard input, which
needs to be separated per user.

• winlogon is run in each Windows session other than session 0 to log on a
user by launching logonui, which presents the logon user interface.

Starting with Windows XP, the system optimizes the boot process by
prefetching pages from files on secondary storage based on previous boots of
the system. Disk access patterns at boot are also used to lay out system files on
disk to reduce the number of I/O operations required. Windows 7 reduced the
processes necessary to start the system by allowing services to start only when
needed, rather than at system start-up. Windows 8 further reduced boot time
by parallelizing all driver loads through a pool of worker threads in the PnP
subsystem and by supporting UEFI to make boot-time transitionmore efficient.
All of these approaches contributed to a dramatic reduction in system boot
time, but eventually little further improvement was possible.

To address boot-time concerns, especially on mobile systems, where RAM
and cores are limited, Windows 8 also introduced Hybrid Boot. This feature
combines hibernation with a simple logoff of the current user. When the user
shuts down the system, and all other applications and sessions have exited, the
system is returned to the logonui prompt and then is hibernated. When the
system is turned on again, it resumes very quickly to the logon screen, which

874 Chapter 21 Windows 10

gives drivers a chance to reinitialize devices and gives the appearance of a full
boot while work is still occurring.

21.4 Terminal Services and Fast User Switching

Windows supports a GUI-based console that interfaces with the user via key-
board, mouse, and display. Most systems also support audio and video. For
example, audio input is used byCortana,Windows’s voice-recognition and vir-
tual assistant software, which is powered bymachine learning. Cortana makes
the system more convenient and can also increase its accessibility for users
with motor disabilities. Windows 7 added support for multi-touch hardware,
allowing users to input data by touching the screen with one or more fingers.
Video-input capability is used both for accessibility and for security: Windows
Hello is a security feature in which advanced 3D heat-sensing, face-mapping
cameras and sensors can be used to uniquely identify the user without requir-
ing traditional credentials. In newer versions ofWindows 10, eye-motion sens-
ing hardware—in which mouse input is replaced by information on the posi-
tion and gaze of the eyeballs—can be used for accessibility. Other future input
experiences will likely evolve from Microsoft’s HoloLens augmented-reality
product.

The PC was, of course, envisioned as a personal computer—an inherently
single-user machine. For some time, however, Windows has supported the
sharing of a PC amongmultiple users. Each userwho is logged on using the GUI
has a session created to represent the GUI environment he will be using and to
contain all the processes necessary to run his applications. Windows allows
multiple sessions to exist at the same time on a single machine. However,
client versions of Windows support only a single console, consisting of all the
monitors, keyboards, and mice connected to the PC. Only one session can be
connected to the console at a time. From the logon screen displayed on the
console, users can create new sessions or attach to an existing session. This
allows multiple users to share a single PC without having to log off and on
between users. Microsoft calls this use of sessions fast user switching. macOS
has a similar feature.

A user on one PC can also create a new session or connect to an existing
session on another computer, which becomes a remote desktop. The terminal
services feature (TS) makes the connection through a protocol called Remote
Desktop Protocol (RDP). Users often employ this feature to connect to a session
on a work PC from a home PC. Remote desktops can also be used for remote
troubleshooting scenarios: a remote user can be invited to share a session
with the user logged on to the session on the console. The remote user can
watch the user’s actions and can even be given control of the desktop to
help resolve computing problems. This latter use of terminal services uses
the “mirroring” feature, where the alternative user is sharing the same session
instead of creating a separate one.

Many corporations use corporate systems maintained in data centers to
run all user sessions that access corporate resources, rather than allowing
users to access those resources from their PCs, by exclusively dedicating these
machines as terminal servers. Each server computer may handle hundreds of
remote-desktop sessions. This is a form of thin-client computing, in which

21.5 File System 875

individual computers rely on a server for many functions. Relying on data-
center terminal servers improves the reliability, manageability, and security of
corporate computing resources.

21.5 File System

The native file system in Windows is NTFS. It is used for all local volumes.
However, associatedUSB thumbdrives, flashmemory on cameras, and external
storage devicesmay be formattedwith the 32-bit FAT file system for portability.
FAT is a much older file-system format that is understood by many systems
besides Windows, such as the software running on cameras. A disadvantage
is that the FAT file system does not restrict file access to authorized users. The
only solution for securing data with FAT is to run an application to encrypt the
data before storing it on the file system.

In contrast, NTFS uses ACLs to control access to individual files and sup-
ports implicit encryption of individual files or entire volumes (usingWindows
BitLocker feature). NTFS implements many other features as well, including
data recovery, fault tolerance, very large files and file systems, multiple data
streams, UNICODE names, sparse files, journaling, volume shadow copies, and
file compression.

21.5.1 NTFS Internal Layout

The fundamental entity in NTFS is the volume. Avolume is created by theWin-
dows logical disk management utility and is based on a logical disk partition.
A volume may occupy a portion of a device or an entire device, or may span
several devices. The volume manager can protect the contents of the volume
with various levels of RAID.

NTFS does not deal with individual sectors of a storage device but instead
uses clusters as the units of storage allocation. The cluster size, which is a
power of 2, is configured when an NTFS file system is formatted. The default
cluster size is based on the volume size—4 KB for volumes larger than 2 GB.
Given the size of today’s storage devices, it may make sense to use cluster
sizes larger than theWindows defaults to achieve better performance, although
these performance gains will come at the expense of more internal fragmenta-
tion.

NTFS uses logical cluster numbers (LCNs) as storage addresses. It assigns
them by numbering clusters from the beginning of the device to the end. Using
this scheme, the system can calculate a physical storage offset (in bytes) by
multiplying the LCN by the cluster size.

A file in NTFS is not a simple byte stream as it is in UNIX; rather, it is a
structured object consisting of typed attributes. Each attribute of a file is an
independent byte stream that can be created, deleted, read, and written. Some
attribute types are standard for all files, including the file name (or names, if
the file has aliases, such as an MS-DOS short name), the creation time, and the
security descriptor that specifies the access control list. User data are stored in
data attributes.

Most traditional data files have an unnamed data attribute that contains all
the file’s data. However, additional data streams can be created with explicit
names. The IProp interfaces of the Component Object Model (discussed later

876 Chapter 21 Windows 10

in this chapter) use a named data stream to store properties on ordinary files,
including thumbnails of images. In general, attributes can be added as nec-
essary and are accessed using a file-name:attribute syntax. NTFS returns only
the size of the unnamed attribute in response to file-query operations, such as
when running the dir command.

Every file inNTFS is described by one ormore records in an array stored in a
special file called the master file table (MFT). The size of a record is determined
when the file system is created; it ranges from 1 to 4 KB. Small attributes
are stored in the MFT record itself and are called resident attributes. Large
attributes, such as the unnamed bulk data, are called nonresident attributes
and are stored in one or more contiguous extents on the device. A pointer to
each extent is stored in the MFT record. For a small file, even the data attribute
may fit inside the MFT record. If a file has many attributes—or if it is highly
fragmented, so that many pointers are needed to point to all the fragments
—one record in the MFT might not be large enough. In this case, the file is
described by a record called the base fil record, which contains pointers to
overflow records that hold the additional pointers and attributes.

Each file in an NTFS volume has a unique ID called a fil reference. The file
reference is a 64-bit quantity that consists of a 48-bit file number and a 16-bit
sequence number. The file number is the record number (that is, the array slot)
in the MFT that describes the file. The sequence number is incremented every
time an MFT entry is reused. The sequence number enables NTFS to perform
internal consistency checks, such as catching a stale reference to a deleted file
after the MFT entry has been reused for a new file.

21.5.1.1 NTFS B+ Tree

As in UNIX, the NTFS namespace is organized as a hierarchy of directories. Each
directoryuses a data structure called aB+ tree to store an index of the file names
in that directory. In a B+ tree, the length of every path from the root of the tree to
a leaf is the same, and the cost of reorganizing the tree is eliminated. The index
root of a directory contains the top level of the B+ tree. For a large directory,
this top level contains pointers to disk extents that hold the remainder of the
tree. Each entry in the directory contains the name and file reference of the
file, as well as a copy of the update timestamp and file size taken from the
file’s resident attributes in the MFT. Copies of this information are stored in the
directory so that a directory listing can be efficiently generated. Because all the
file names, sizes, and update times are available from the directory itself, there
is no need to gather these attributes from the MFT entries for each of the files.

21.5.1.2 NTFS Metadata

The NTFS volume’s metadata are all stored in files. The first file is the MFT. The
second file, which is used during recovery if the MFT is damaged, contains a
copy of the first 16 entries of the MFT. The next few files are also special in
purpose. They include the following files:

• The log file records all metadata updates to the file system.

• The volume file contains the name of the volume, the version of NTFS that
formatted the volume, and a bit that tells whether the volume may have

21.5 File System 877

been corrupted and needs to be checked for consistency using the chkdsk
program.

• The attribute-definitio table indicates which attribute types are used in
the volume and what operations can be performed on each of them.

• The root directory is the top-level directory in the file-system hierarchy.

• The bitmap fil indicates which clusters on a volume are allocated to files
and which are free.

• The boot fil contains the startup code forWindows andmust be located at
a particular secondary storage device address so that it can be found easily
by a simple ROM bootstrap loader. The boot file also contains the physical
address of the MFT.

• The bad-cluster file keeps track of any bad areas on the volume; NTFS uses
this record for error recovery.

Keeping all the NTFS metadata in actual files has a useful property. As
discussed in Section 21.3.5.6, the cache manager caches file data. Since all
the NTFS metadata reside in files, these data can be cached using the same
mechanisms used for ordinary data.

21.5.2 Recovery

In many simple file systems, a power failure at the wrong time can damage
the file-system data structures so severely that the entire volume is scrambled.
Many UNIX file systems, including UFS but not ZFS, store redundant metadata
on the storage device, and they recover from crashes by using the fsck pro-
gram to check all the file-system data structures and restore them forcibly to
a consistent state. Restoring them often involves deleting damaged files and
freeing data clusters that had been written with user data but not properly
recorded in the file system’s metadata structures. This checking can be a slow
process and can result in the loss of significant amounts of data.

NTFS takes a different approach to file-system robustness. In NTFS, all file-
system data-structure updates are performed inside transactions. Before a data
structure is altered, the transaction writes a log record that contains redo and
undo information. After the data structure has been changed, the transaction
writes a commit record to the log to signify that the transaction succeeded.

After a crash, the system can restore the file-system data structures to
a consistent state by processing the log records, first redoing the operations
for committed transactions (to be sure their changes reached the file system
data structures) and then undoing the operations for transactions that did not
commit successfully before the crash. Periodically (usually every 5 seconds), a
checkpoint record is written to the log. The system does not need log records
prior to the checkpoint to recover from a crash. They can be discarded, so the
log file does not grow without bounds. The first time after system startup that
an NTFS volume is accessed, NTFS automatically performs file-system recovery.

This scheme does not guarantee that all the user-file contents are correct
after a crash. It ensures only that the file-system data structures (the metadata
files) are undamaged and reflect some consistent state that existed prior to the

878 Chapter 21 Windows 10

crash. It would be possible to extend the transaction scheme to cover user files,
and Microsoft took some steps to do this in Windows Vista.

The log is stored in the third metadata file at the beginning of the volume.
It is created with a fixed maximum size when the file system is formatted. It
has two sections: the logging area,which is a circular queue of log records, and
the restart area, which holds context information, such as the position in the
logging area where NTFS should start reading during a recovery. In fact, the
restart area holds two copies of its information, so recovery is still possible if
one copy is damaged during the crash.

The logging functionality is provided by the log-file service. In addition
to writing the log records and performing recovery actions, the log-file service
keeps track of the free space in the log file. If the free space gets too low, the log-
file service queues pending transactions, and NTFS halts all new I/O operations.
After the in-progress operations complete, NTFS calls the cache manager to
flush all data and then resets the log file and performs the queued transactions.

21.5.3 Security

The security of an NTFS volume is derived from the Windows object model.
Each NTFS file references a security descriptor, which specifies the owner of the
file, and an access-control list, which contains the access permissions granted
or denied to each user or group listed. Early versions of NTFS used a separate
security descriptor as an attribute of each file. Beginning with Windows 2000,
the security-descriptor attribute points to a shared copy, with a significant
savings in storage space and caching space; many, many files have identical
security descriptors.

In normal operation, NTFS does not enforce permissions on traversal of
directories in file path names. However, for compatibility with POSIX, these
checks can be enabled. The latter option is inherently more expensive, since
modern parsing of file path names uses prefix matching rather than directory-
by-directory parsing of path names. Prefix matching is an algorithm that looks
up strings in a cache and finds the entry with the longest match—for example,
an entry for ∖foo∖bar∖dirwould be a match for ∖foo∖bar∖dir2∖dir3∖myfile.
The prefix-matching cache allows path-name traversal to begin much deeper
in the tree, savingmany steps. Enforcing traversal checksmeans that the user’s
access must be checked at each directory level. For instance, a user might lack
permission to traverse ∖foo∖bar, so starting at the access for ∖foo∖bar∖dir
would be an error.

21.5.4 Compression

NTFS can perform data compression on individual files or on all data files
in a directory. To compress a file, NTFS divides the file’s data into compres-
sion units, which are blocks of 16 contiguous clusters. When a compression
unit is written, a data-compression algorithm is applied. If the result fits into
fewer than 16 clusters, the compressed version is stored. When reading, NTFS
can determine whether data have been compressed: if they have been, the
length of the stored compression unit is less than 16 clusters. To improve per-
formance when reading contiguous compression units, NTFS prefetches and
decompresses ahead of the application requests.

21.5 File System 879

For sparse files or files that contain mostly zeros, NTFS uses another tech-
nique to save space. Clusters that contain only zeros because they have never
been written are not actually allocated or stored on storage devices. Instead,
gaps are left in the sequence of virtual-cluster numbers stored in the MFT entry
for the file. When reading a file, if NTFS finds a gap in the virtual-cluster num-
bers, it just zero-fills that portion of the caller’s buffer. This technique is also
used by UNIX.

21.5.5 Mount Points, Symbolic Links, and Hard Links

Mount points are a form of symbolic link specific to directories on NTFS that
were introduced in Windows 2000. They provide a mechanism for organizing
storage volumes that is more flexible than the use of global names (like drive
letters). Amount point is implemented as a symbolic link with associated data
containing the true volumename.Ultimately,mount pointswill supplant drive
letters completely, but there will be a long transition due to the dependence of
many applications on the drive-letter scheme.

Windows Vista introduced support for a more general form of symbolic
links, similar to those found in UNIX. The links can be absolute or relative, can
point to objects that do not exist, and can point to both files and directories
even across volumes. NTFS also supports hard links, where a single file has an
entry in more than one directory of the same volume.

21.5.6 Change Journal

NTFS keeps a journal describing all changes that have been made to the file
system. User-mode services can receive notifications of changes to the journal
and then identify what files have changed by reading from the journal. The
search indexer service uses the change journal to identify files that need to be
re-indexed. The file-replication service uses it to identify files that need to be
replicated across the network.

21.5.7 Volume Shadow Copies

Windows implements the capability of bringing a volume to a known state and
then creating a shadow copy that can be used to back up a consistent view of
the volume. This technique is known as snapshots in some other file systems.
Making a shadow copy of a volume is a form of copy-on-write, where blocks
modified after the shadow copy is created are stored in their original form in
the copy. Achieving a consistent state for the volume requires the cooperation
of applications, since the system cannot know when the data used by the
application are in a stable state from which the application could be safely
restarted.

The server version of Windows uses shadow copies to efficiently maintain
old versions of files stored on file servers. This allows users to see documents
as they existed at earlier points in time. A user can thus recover files that were
accidentally deleted or simply look at a previous version of the file, all without
pulling out backup media.

880 Chapter 21 Windows 10

21.6 Networking

Windows supports both peer-to-peer and client–server networking. It also
has facilities for network management. The networking components in Win-
dows provide data transport, interprocess communication, file sharing across
a network, and the ability to send print jobs to remote printers.

21.6.1 Network Interfaces

To describe networking inWindows, we must first mention two of the internal
networking interfaces: the Network Device Interface specificatio (NDIS) and
theTransport Driver Interface (TDI). The NDIS interfacewas developed in 1989
byMicrosoft and 3Com to separate network adapters from transport protocols
so that either could be changed without affecting the other. NDIS resides at
the interface between the data-link and network layers in the ISO model and
enables many protocols to operate over many different network adapters. In
terms of the ISO model, the TDI is the interface between the transport layer
(layer 4) and the session layer (layer 5). This interface enables any session-layer
component to use any available transport mechanism. (Similar reasoning led
to the streams mechanism in UNIX.) The TDI supports both connection-based
and connectionless transport and has functions to send any type of data.

21.6.2 Protocols

Windows implements transport protocols as drivers. These drivers can be
loaded and unloaded from the system dynamically, although in practice the
system typically has to be rebooted after a change. Windows comes with
several networking protocols. Next, we discuss a number of these protocols.

21.6.2.1 Server Message Block

The Server Message Block (SMB) protocol was first introduced in MS-DOS
3.1. The system uses the protocol to send I/O requests over the network.
The SMB protocol has four message types. Session control messages are
commands that start and end a redirector connection to a shared resource at the
server. A redirector uses File messages to access files at the server. Printer
messages are used to send data to a remote print queue and to receive status
information from the queue, and Messagemessages are used to communicate
with another workstation. A version of the SMB protocol was published as
the Common Internet File System (CIFS) and is supported on a number of
operating systems.

21.6.2.2 Transmission Control Protocol/Internet Protocol

The transmission control protocol/Internet protocol (TCP/IP) suite that is used
on the Internet has become the de facto standard networking infrastructure.
Windows uses TCP/IP to connect to a wide variety of operating systems
and hardware platforms. The Windows TCP/IP package includes the simple
network-management protocol (SNMP), the dynamic host-configuration pro-
tocol (DHCP), and the older Windows Internet name service (WINS). Windows
Vista introduced a new implementation of TCP/IP that supports both IPv4
and IPv6 in the same network stack. This new implementation also supports

21.6 Networking 881

offloading of the network stack onto advanced hardware to achieve very high
performance for servers.

Windows provides a software firewall that limits the TCP ports that can be
used by programs for network communication. Network firewalls are com-
monly implemented in routers and are a very important security measure.
Having a firewall built into the operating system makes a hardware router
unnecessary, and it also providesmore integratedmanagement and easier use.

21.6.2.3 Point-to-Point Tunneling Protocol

The Point-to-Point Tunneling Protocol (PPTP) is a protocol provided by Win-
dows to communicate between remote-access servermodules running onWin-
dows server machines and other client systems that are connected over the
Internet. The remote-access servers can encrypt data sent over the connec-
tion, and they support multiprotocol virtual private networks (VPNs) on the
Internet.

21.6.2.4 HTTP Protocol

The HTTP protocol is used to get/put information using the WorldWideWeb.
Windows implements HTTP using a kernel-mode driver, so web servers can
operate with a low-overhead connection to the networking stack. HTTP is a
fairly general protocol that Windows makes available as a transport option for
implementing RPC.

21.6.2.5 Web-Distributed Authoring and Versioning Protocol

Web-distributed authoring and versioning (WebDAV) is an HTTP-based proto-
col for collaborative authoring across a network. Windows builds a WebDAV
redirector into the file system. Being built directly into the file system enables
WebDAV to work with other file-system features, such as encryption. Personal
files can then be stored securely in a public place. Because WebDAV uses HTTP,
which is a get/put protocol, Windows has to cache the files locally so pro-
grams can use read and write operations on parts of the files.

21.6.2.6 Named Pipes

Named pipes are a connection-oriented messaging mechanism. A process can
use named pipes to communicate with other processes on the same machine.
Since named pipes are accessed through the file-system interface, the security
mechanisms used for file objects also apply to named pipes. The SMB protocol
supports named pipes, so named pipes can also be used for communication
between processes on different systems.

The format of pipe names follows the Uniform Naming Convention
(UNC). A UNC name looks like a typical remote file name. The format is
∖∖server name∖share name∖x∖y∖z, where server name identifies a server
on the network; share name identifies any resource that is made available to
network users, such as directories, files, named pipes, and printers; and ∖x∖y∖z
is a normal file path name.

882 Chapter 21 Windows 10

21.6.2.7 Remote Procedure Calls

Remote procedure calls (RPCs), mentioned earlier, are client–server mecha-
nisms that enable an application on one machine to make a procedure call to
code on another machine. The client calls a local procedure—a stub routine—
which packs its arguments into a message and sends them across the network
to a particular server process. The client-side stub routine then blocks. Mean-
while, the server unpacks the message, calls the procedure, packs the return
results into a message, and sends them back to the client stub. The client stub
unblocks, receives the message, unpacks the results of the RPC, and returns
them to the caller. This packing of arguments is sometimes called marshaling.
The client stub code and the descriptors necessary to pack andunpack the argu-
ments for an RPC are compiled from a specification written in the Microsoft
Interface Definitio Language.

The Windows RPC mechanism follows the widely used distributed-
computing-environment standard for RPC messages, so programs written to
use Windows RPCs are highly portable. The RPC standard is detailed. It hides
many of the architectural differences among computers, such as the sizes
of binary numbers and the order of bytes and bits in computer words, by
specifying standard data formats for RPC messages.

21.6.2.8 Component Object Model

The Component Object Model (COM) is a mechanism for interprocess com-
munication that was developed for Windows. A COM object provides a well-
defined interface to manipulate the data in the object. For instance, COM is
the infrastructure used by Microsoft’s Object Linking and Embedding (OLE)
technology for inserting spreadsheets into Microsoft Word documents. Many
Windows services provide COM interfaces. In addition, a distributed extension
called DCOM can be used over a network utilizing RPC to provide a transparent
method of developing distributed applications.

21.6.3 Redirectors and Servers

In Windows, an application can use the Windows I/O API to access files from
a remote computer as though they were local, provided that the remote com-
puter is running a CIFS server such as those provided byWindows. A redirector
is the client-side object that forwards I/O requests to a remote system, where
they are satisfied by a server. For performance and security, the redirectors and
servers run in kernel mode.

In more detail, access to a remote file occurs as follows:

1. The application calls the I/Omanager to request that a file be openedwith
a file name in the standard UNC format.

2. The I/O manager builds an I/O request packet, as described in Section
21.3.5.5.

3. The I/O manager recognizes that the access is for a remote file and calls a
driver called a Multiple UNC Provider (MUP).

21.6 Networking 883

4. The MUP sends the I/O request packet asynchronously to all registered
redirectors.

5. A redirector that can satisfy the request responds to the MUP. To avoid
asking all the redirectors the same question in the future, the MUP uses a
cache to remember which redirector can handle this file.

6. The redirector sends the network request to the remote system.

7. The remote-system network drivers receive the request and pass it to the
server driver.

8. The server driver hands the request to the proper local file-system driver.

9. The proper device driver is called to access the data.

10. The results are returned to the server driver, which sends the data back
to the requesting redirector. The redirector then returns the data to the
calling application via the I/O manager.

Asimilar process occurs for applications that use theWin32 network API, rather
than the UNC services, except that a module called a multi-provider router is
used instead of a MUP.

For portability, redirectors and servers use the TDI API for network trans-
port. The requests themselves are expressed in a higher-level protocol, which
by default is the SMB protocol described in Section 21.6.2. The list of redirectors
is maintained in the system hive of the registry.

21.6.3.1 Distributed File System

UNC names are not always convenient, because multiple file servers may be
available to serve the same content and UNC names explicitly include the name
of the server. Windows supports a distributed file-syste (DFS) protocol that
allows a network administrator to serve up files from multiple servers using a
single distributed name space.

21.6.3.2 Folder Redirection and Client-Side Caching

To improve the PC experience for users who frequently switch among com-
puters, Windows allows administrators to give users roaming profile , which
keepusers’ preferences and other settings on servers.Folder redirection is then
used to automatically store a user’s documents and other files on a server.

This works well until one of the computers is no longer attached to the
network, as when a user takes a laptop onto an airplane. To give users off-line
access to their redirected files, Windows uses client-side caching (CSC). CSC
is also used when the computer is on-line to keep copies of the server files
on the local machine for better performance. The files are pushed up to the
server as they are changed. If the computer becomes disconnected, the files are
still available, and the update of the server is deferred until the next time the
computer is online.

884 Chapter 21 Windows 10

21.6.4 Domains

Many networked environments have natural groups of users, such as students
in a computer laboratory at school or employees in one department in a busi-
ness. Frequently, we want all the members of the group to be able to access
shared resources on their various computers in the group. Tomanage the global
access rights within such groups, Windows uses the concept of a domain. Pre-
viously, these domains had no relationship whatsoever to the domain-name
system (DNS) that maps Internet host names to IP addresses. Now, however,
they are closely related.

Specifically, a Windows domain is a group of Windows workstations and
servers that share a common security policy and user database. SinceWindows
uses the Kerberos protocol for trust and authentication, a Windows domain is
the same thing as a Kerberos realm. Windows uses a hierarchical approach
for establishing trust relationships between related domains. The trust rela-
tionships are based on DNS and allow transitive trusts that can flow up and
down the hierarchy. This approach reduces the number of trusts required for
n domains from n ∗ (n − 1) to O(n). The workstations in the domain trust
the domain controller to give correct information about the access rights of
each user (loaded into the user’s access token by lsaas). All users retain the
ability to restrict access to their own workstations, however, no matter what
any domain controller may say.

21.6.5 Active Directory

Active Directory is the Windows implementation of Lightweight Directory-
Access Protocol (LDAP) services. Active Directory stores the topology infor-
mation about the domain, keeps the domain-based user and group accounts
and passwords, and provides a domain-based store for Windows features that
need it, such as Windows group policy. Administrators use group policies to
establish uniform standards for desktop preferences and software. For many
corporate information-technology groups, uniformity drastically reduces the
cost of computing.

21.7 Programmer Interface

TheWin32 API is the fundamental interface to the capabilities ofWindows. This
section describes five main aspects of the Win32 API: access to kernel objects,
sharing of objects between processes, process management, interprocess com-
munication, and memory management.

21.7.1 Access to Kernel Objects

The Windows kernel provides many services that application programs can
use. Application programs obtain these services by manipulating kernel
objects. A process gains access to a kernel object named XXX by calling the
CreateXXX function to open a handle to an instance of XXX. This handle is
unique to the process. Depending on which object is being opened, if the
Create() function fails, it may return 0, or it may return a special constant
named INVALID HANDLE VALUE. A process can close any handle by calling the

21.7 Programmer Interface 885

SECURITY ATTRIBUTES sa;
sa.nlength = sizeof(sa);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;
HANDLE hSemaphore = CreateSemaphore(&sa, 1, 1, NULL);
WCHAR wszCommandline[MAX PATH];
StringCchPrintf(wszCommandLine, countof(wszCommandLine),

L"another process.exe %d", hSemaphore);
CreateProcess(L"another process.exe", wszCommandline,

NULL, NULL, TRUE, . . .);

Figure 21.7 Code enabling a child to share an object by inheriting a handle.

CloseHandle() function, and the system may delete the object if the count of
handles referencing the object in all processes drops to zero.

21.7.2 Sharing Objects Between Processes

Windows provides three ways to share objects between processes. The first
way is for a child process to inherit a handle to the object. When the parent
calls the CreateXXX function, the parent supplies a SECURITIES ATTRIBUTES
structure with the bInheritHandle field set to TRUE. This field creates an
inheritable handle. Next, the child process is created, passing a value of TRUE
to the CreateProcess() function’s bInheritHandle argument. Figure 21.7
shows a code sample that creates a semaphore handle inherited by a child
process.

Assuming the child process knows which handles are shared, the parent
and child can achieve interprocess communication through the shared objects.
In the example in Figure 21.7, the child process gets the value of the handle
from the first command-line argument and then shares the semaphore with
the parent process.

The second way to share objects is for one process to give the object a
name when the object is created and for the second process to open the name.
This method has two drawbacks: Windows does not provide a way to check
whether an object with the chosen name already exists, and the object name
space is global, without regard to the object type. For instance, two applications
may create and share a single object named “foo” when two distinct objects—
possibly of different types—were desired.

Named objects have the advantage that unrelated processes can readily
share them. The first process calls one of the CreateXXX functions and supplies
a name as a parameter. The second process gets a handle to share the object
by calling OpenXXX() (or CreateXXX) with the same name, as shown in the
example in Figure 21.8.

The thirdway to share objects is via the DuplicateHandle() function. This
method requires some other method of interprocess communication to pass
the duplicated handle. Given a handle to a process and the value of a handle
within that process, a second process can get a handle to the same object and
thus share it. An example of this method is shown in Figure 21.9.

886 Chapter 21 Windows 10

// Process A
. . .
HANDLE hSemaphore = CreateSemaphore(NULL, 1, 1, L"MySEM1");
. . .

// Process B
. . .
HANDLE hSemaphore = OpenSemaphore(SEMAPHORE ALL ACCESS,

FALSE, L"MySEM1");
. . .

Figure 21.8 Code for sharing an object by name lookup.

21.7.3 Process Management

InWindows, a process is a loaded instance of an application and a thread is an
executable unit of code that can be scheduled by the kernel dispatcher. Thus,
a process contains one or more threads. A process is created when a thread
in some other process calls the CreateProcess() API. This routine loads any
dynamic link libraries used by the process and creates an initial thread in the
process. Additional threads can be created by the CreateThread() function.

// Process A wants to give Process B access to a semaphore

// Process A

DWORD dwProcessBId; // must; from some IPC mechanism
HANDLE hSemaphore = CreateSemaphore(NULL, 1, 1, NULL);
HANDLE hProcess = OpenProcess(PROCESS DUP HANDLE, FALSE,

dwProcessBId);
HANDLE hSemaphoreCopy;
DuplicateHandle(GetCurrentProcess(), hSemaphore,

hProcess, &hSemaphoreCopy,
0, FALSE, DUPLICATE SAME ACCESS);

// send the value of the semaphore to Process B
// using a message or shared memory object
. . .

// Process B
HANDLE hSemaphore = // value of semaphore from message
// use hSemaphore to access the semaphore
. . .

Figure 21.9 Code for sharing an object by passing a handle.

21.7 Programmer Interface 887

Each thread is created with its own stack, which defaults to 1 MB unless
otherwise specified in an argument to CreateThread().

21.7.3.1 Scheduling Rule

Priorities in the Win32 environment are based on the native kernel (NT)
scheduling model, but not all priority values may be chosen. The Win32 API
uses six priority classes:

1. IDLE PRIORITY CLASS (NT priority level 4)

2. BELOW NORMAL PRIORITY CLASS (NT priority level 6)

3. NORMAL PRIORITY CLASS (NT priority level 8)

4. ABOVE NORMAL PRIORITY CLASS (NT priority level 10)

5. HIGH PRIORITY CLASS (NT priority level 13)

6. REALTIME PRIORITY CLASS (NT priority level 24)

Processes are typically members of the NORMAL PRIORITY CLASS unless the
parent of the process was of the IDLE PRIORITY CLASS or another class was
specified when CreateProcess was called. The priority class of a process is
the default for all threads that execute in the process. It can be changed with
the SetPriorityClass() function or by passing an argument to the start
command. Only userswith the increase scheduling priority privilege canmove
a process into the REALTIME PRIORITY CLASS. Administrators and power users
have this privilege by default.

When a user is switching between interactive processes and workloads,
the system needs to schedule the appropriate threads so as to provide good
responsiveness, which leads to a shorter quantums of execution. Yet, once the
user has chosen a particular process, a good amount of throughput from this
particular process is also expected. For this reason, Windows has a special
scheduling rule for processes not in the REALTIME PRIORITY CLASS. Windows
distinguishes between the process associated with the foreground window on
the screen and the other (background) processes. When a process moves into
the foreground, Windows increases the scheduling quantum for all its threads
by a factor of 3; CPU-bound threads in the foreground process will run three
times longer than similar threads in background processes. Because server
systems always operate with a much larger quantum than client systems—
a factor of 6—this behavior is not enabled for server systems. For both types of
systems, however, the scheduling parameters can be customized through the
appropriate system dialog or registry key.

21.7.3.2 Thread Priorities

A thread starts with an initial priority determined by its class. The priority
can be altered by the SetThreadPriority() function. This function takes an
argument that specifies a priority relative to the base priority of its class:

• THREAD PRIORITY LOWEST: base − 2

• THREAD PRIORITY BELOW NORMAL: base − 1

888 Chapter 21 Windows 10

• THREAD PRIORITY NORMAL: base + 0

• THREAD PRIORITY ABOVE NORMAL: base + 1

• THREAD PRIORITY HIGHEST: base + 2

Two other designations are also used to adjust the priority. Recall from
Section 21.3.4.3 that the kernel has two priority classes: 16–31 for the static
class and 1–15 for the variable class. THREAD PRIORITY IDLE sets the pri-
ority to 16 for static-priority threads and to 1 for variable-priority threads.
THREAD PRIORITY TIME CRITICAL sets the priority to 31 for real-time threads
and to 15 for variable-priority threads.

The kernel adjusts the priority of a variable class thread dynamically
depending on whether the thread is I/O bound or CPU bound. The Win32
API provides a method to disable this adjustment via SetProcessPriority-
Boost() and SetThreadPriorityBoost() functions.

21.7.3.3 Thread Suspend and Resume

A thread can be created in a suspended state or can be placed in a suspended
state later by use of the SuspendThread() function. Before a suspended thread
can be scheduled by the kernel dispatcher, it must be moved out of the sus-
pended state by use of the ResumeThread() function. Both functions set a
counter so that if a thread is suspended twice, it must be resumed twice before
it can run.

21.7.3.4 Thread Synchronization

To synchronize concurrent access to shared objects by threads, the kernel pro-
vides synchronization objects, such as semaphores andmutexes. These are dis-
patcher objects, as discussed in Section 21.3.4.3. Threads can also synchronize
with kernel services operating on kernel objects—such as threads, processes,
and files—because these are also dispatcher objects. Synchronization with ker-
nel dispatcher objects can be achieved by use of the WaitForSingleObject()
and WaitForMultipleObjects() functions; these functions wait for one or
more dispatcher objects to be signaled.

Another method of synchronization is available to threadswithin the same
process that want to execute code exclusively. TheWin32 critical section object
is a user-mode mutex object that can often be acquired and released without
entering the kernel. On a multiprocessor, a Win32 critical section will attempt
to spinwhile waiting for a critical section held by another thread to be released.
If the spinning takes too long, the acquiring thread will allocate a kernel mutex
and yield its CPU. Critical sections are particularly efficient because the kernel
mutex is allocated only when there is contention and then used only after
attempting to spin. Most mutexes in programs are never actually contended,
so the savings are significant.

Before using a critical section, some thread in the process must call
InitializeCriticalSection(). Each thread that wants to acquire the
mutex calls EnterCriticalSection() and then later calls LeaveCritical-
Section() to release themutex. There is also a TryEnterCriticalSection()
function, which attempts to acquire the mutex without blocking.

21.7 Programmer Interface 889

For programs that want user-mode reader–writer locks rather than
mutexes, Win32 supports slim reader–writer (SRW) locks. SRW locks have
APIs similar to those for critical sections, such as InitializeSRWLock,
AcquireSRWLockXXX, and ReleaseSRWLockXXX, where XXX is either
Exclusive or Shared, depending on whether the thread wants write
access or only read access to the object protected by the lock. The Win32 API
also supports condition variables, which can be used with either critical
sections or SRW locks.

21.7.3.5 Thread Pool

Repeatedly creating and deleting threads can be expensive for applications
and services that perform small amounts of work in each instantiation. The
Win32 thread pool provides user-mode programs with three services: a queue
to which work requests may be submitted (via the SubmitThreadpoolWork()
function), an API that can be used to bind callbacks towaitable handles (Regis-
terWaitForSingleObject()), and APIs to workwith timers (CreateThread-
poolTimer() and WaitForThreadpoolTimerCallbacks()) and to bind call-
backs to I/O completion queues (BindIoCompletionCallback()).

The goal of using a thread pool is to increase performance and reduce
memory footprint. Threads are relatively expensive, and each processor can be
executing only one thread at a time no matter howmany threads are available.
The thread pool attempts to reduce the number of runnable threads by slightly
delaying work requests (reusing each thread for many requests) while provid-
ing enough threads to effectively utilize the machine’s CPUs. The wait and I/O-
and timer-callback APIs allow the thread pool to further reduce the number
of threads in a process, using far fewer threads than would be necessary if
a process were to devote separate threads to servicing each waitable handle,
timer, or completion port.

21.7.3.6 Fibers

A fibe is user-mode code that is scheduled according to a user-defined
scheduling algorithm. Fibers are completely a user-mode facility; the kernel is
not aware that they exist. The fibermechanism usesWindows threads as if they
were CPUs to execute the fibers. Fibers are cooperatively scheduled, meaning
that they are never preempted but must explicitly yield the thread on which
they are running. When a fiber yields a thread, another fiber can be scheduled
on it by the run-time system (the programming language run-time code).

The system creates a fiber by calling either ConvertThreadToFiber()
or CreateFiber(). The primary difference between these functions is that
CreateFiber() does not begin executing the fiber that was created. To begin
execution, the application must call SwitchToFiber(). The application can
terminate a fiber by calling DeleteFiber().

Fibers are not recommended for threads that use Win32 APIs rather than
standardC-library functions because of potential incompatibilities.Win32 user-
mode threads have a thread-environment block (TEB) that contains numerous
per-threadfields used by theWin32APIs. Fibersmust share the TEB of the thread
on which they are running. This can lead to problems when a Win32 interface
puts state information into the TEB for one fiber and then the information is

890 Chapter 21 Windows 10

overwritten by a different fiber. Fibers are included in theWin32API to facilitate
the porting of legacy UNIX applications that were written for a user-mode
thread model such as Pthreads.

21.7.3.7 User-Mode Scheduling UMS and ConcRT

A new mechanism in Windows 7, user-mode scheduling (UMS), addressed
several limitations of fibers. As just noted, fibers are unreliable for executing
Win32 APIs because they do not have their own TEBs. When a thread running
a fiber blocks in the kernel, the user scheduler loses control of the CPU for a
time as the kernel dispatcher takes over scheduling. Problemsmay result when
fibers change the kernel state of a thread, such as the priority or impersonation
token, or when they start asynchronous I/O.

UMS provides an alternative model by recognizing that each Windows
thread is actually two threads: a kernel thread (KT) and a user thread (UT).
Each type of thread has its own stack and its own set of saved registers. The
KT and UT appear as a single thread to the programmer because UTs can
never block but must always enter the kernel, where an implicit switch to the
corresponding KT takes place. UMS uses each UT’s TEB to uniquely identify
the UT. When a UT enters the kernel, an explicit switch is made to the KT that
corresponds to the UT identified by the current TEB. The reason the kernel does
not know which UT is running is that UTs can invoke a user-mode scheduler,
as fibers do. But in UMS, the scheduler switches UTs, including switching the
TEBs.

When a UT enters the kernel, its KT may block. When this happens, the
kernel switches to a scheduling thread, which UMS calls a primary thread, and
uses this thread to reenter the user-mode scheduler so that it can pick another
UT to run. Eventually, a blocked KT will complete its operation and be ready to
return to user mode. Since UMS has already reentered the user-mode scheduler
to run a different UT, UMS queues the UT corresponding to the completed KT
to a completion list in user mode. When the user-mode scheduler is choosing
a new UT to switch to, it can examine the completion list and treat any UT on
the list as a candidate for scheduling. The key features of UMS are depicted in
Figure 21.10.

Unlike fibers, UMS is not intended to be used directly by programmers.
The details of writing user-mode schedulers can be very challenging, and UMS
does not include such a scheduler. Rather, the schedulers come from program-
ming language libraries that build on top of UMS. Microsoft Visual Studio
2010 shippedwith Concurrency Runtime (ConcRT), a concurrent programming
framework for C++. ConcRT provides a user-mode scheduler together with
facilities for decomposing programs into tasks,which can then be scheduled on
the available CPUs. ConcRT provides support for par for styles of constructs,
as well as rudimentary resource management and task synchronization primi-
tives. However, as of Visual Studio 2013, the UMS schedulingmode is no longer
available in ConcRT. Significant performance metrics showed that true parallel
programs that are well written do not spend a large amount of time context-
switching between their tasks. The benefits that UMS provided in this space did
not outweigh the complexity of maintaining a separate scheduler—in some
cases, even the default NT scheduler performed better.

21.7 Programmer Interface 891

NTOS executive

only primary thread runs in user-mode
trap code switches to parked KT
KT blocks primary returns to user-mode
KT unblocks and parks queue UT completion

thread parking

UT completion list

kernel
user

_

user-mode
scheduler

trap code
primary
thread

KT0

UT0

UT1 UT0

KT1 KT2

KT0 blocks

__
_

Figure 21.10 User-mode scheduling.

21.7.3.8 Winsock

Winsock is theWindows sockets API.Winsock is a session-layer interface that is
largely compatible with BSD sockets but has some addedWindows extensions.
It provides a standardized interface to many transport protocols that may
have different addressing schemes, so that any Winsock application can run
on anyWinsock-compliant protocol stack. Winsock underwent a major update
in Windows Vista to add tracing, IPv6 support, impersonation, new security
APIs, and many other features.

Winsock follows the Windows Open System Architecture (WOSA) model,
which provides a standard service provider interface (SPI) between applica-
tions and networking protocols. Applications can load and unload layered
protocols that build additional functionality, such as additional security, on
top of the transport protocol layers. Winsock supports asynchronous opera-
tions and notifications, reliable multicasting, secure sockets, and kernel mode
sockets. It also supports simpler usage models, like the WSAConnectByName()
function, which accepts the target as strings specifying the name or IP address
of the server and the service or port number of the destination port.

21.7.4 IPC Using Windows Messaging

Win32 applications handle interprocess communication in several ways.
The typical high-performance way is by using local RPCs or named pipes.
Another is by using shared kernel objects, such as named section objects, and a
synchronization object, such as an event. Yet another is by using the Windows
messaging facility—an approach that is particularly popular for Win32
GUI applications. One thread can send a message to another thread or to a
window by calling PostMessage(), PostThreadMessage(), SendMessage(),
SendThreadMessage(), or SendMessageCallback(). Posting a message and
sending a message differ in this way: The post routines are asynchronous; they

892 Chapter 21 Windows 10

return immediately, and the calling thread does not know when the message
is actually delivered. The send routines are synchronous; they block the caller
until the message has been delivered and processed.

In addition to sending a message, a thread can send data with the mes-
sage. Since processes have separate address spaces, the data must be copied.
The system copies data by calling SendMessage() to send a message of type
WM COPYDATA with a COPYDATASTRUCT data structure that contains the length
and address of the data to be transferred. When the message is sent, Windows
copies the data to a new block of memory and gives the virtual address of the
new block to the receiving process.

Every Win32 GUI thread has its own input queue from which it receives
messages. If a Win32 application does not call GetMessage() to handle events
on its input queue, the queue fills up; and after about five seconds, the task
manager marks the application as “Not Responding.” Note that message pass-
ing is subject to the integrity level mechanism introduced earlier. Thus, a pro-
cess may not send a message such as WM COPYDATA to a process with a higher
integrity level, unless a special Windows API is used to remove the protection
(ChangeWindowMessageFilterEx).

21.7.5 Memory Management

TheWin32 API provides several ways for an application to use memory: virtual
memory, memory-mapped files, heaps, thread-local storage, and AWE physical
memory.

21.7.5.1 Virtual Memory

An application calls VirtualAlloc() to reserve or commit virtual memory
and VirtualFree() to de-commit or release the memory. These functions
enable the application to specify the virtual address at which the memory is
allocated. (Otherwise, a random address is selected, which is recommended
for security reasons.) The functions operate on multiples of the memory page
size but, for historical reasons, always return memory allocated on a 64-KB
boundary. Examples of these functions appear in Figure 21.11. The Virtu-
alAllocEx() and VirtualFreeEx() functions can be used to allocate and free
memory in a separate process, while VirtualAllocExNuma() can be used to
leverage memory locality on NUMA systems.

21.7.5.2 Memory-Mapped Files

Another way for an application to use memory is by memory-mapping a file
into its address space. Memory mapping is also a convenient way for two
processes to share memory: both processes map the same file into their virtual
memory. Memory mapping is a multistage process, as you can see in the
example in Figure 21.12.

If a processwants tomap some address space just to share amemory region
with another process, no file is needed. The process calls CreateFileMap-
ping() with a file handle of 0xffffffff, a particular size, and (optionally) a
name. The resulting file-mapping object can be shared by inheritance, by name
lookup (if it was named), or by handle duplication.

21.7 Programmer Interface 893

// reserve 16 MB at the top of our address space
PVOID pBuf = VirtualAlloc(NULL, 0x1000000,

MEM RESERVE | MEM TOP DOWN, PAGE READWRITE);
// commit the upper 8 MB of the allocated space
VirtualAlloc((LPVOID)((DWORD PTR)pBuf + 0x800000), 0x800000,

MEM COMMIT, PAGE READWRITE);
// do something with the memory
. . .
// now decommit the memory
VirtualFree((LPVOID)((DWORD PTR)pBuf + 0x800000), 0x800000,

MEM DECOMMIT);
// release all of the allocated address space
VirtualFree(pBuf, 0, MEM RELEASE);

Figure 21.11 Code fragments for allocating virtual memory.

21.7.5.3 Heaps

Heaps provide a third way for applications to use memory, just as with mal-
loc() and free() in standard C or new() and delete() in C++. A heap in
the Win32 environment is a region of pre-committed address space. When a
Win32 process is initialized, it is created with a default heap. Since most Win32

// set the file mapping size to 8MB
DWORD dwSize = 0x800000;
// open the file or create it if it does not exist
HANDLE hFile = CreateFile(L"somefile.ext",

GENERIC READ | GENERIC WRITE,
FILE SHARE READ | FILE SHARE WRITE, NULL,
OPEN ALWAYS, FILE ATTRIBUTE NORMAL, NULL);

// create the file mapping
HANDLE hMap = CreateFileMapping(hFile,

PAGE READWRITE | SEC COMMIT, 0, dwSize, L"SHM 1");
// now get a view of the space mapped
PVOID pBuf = MapViewOfFile(hMap, FILE MAP ALL ACCESS,

0, 0, 0, dwSize);
// do something with the mapped file
. . .
// now unmap the file
UnmapViewOfFile(pBuf);
CloseHandle(hMap);
CloseHandle(hFile);

Figure 21.12 Code fragments for memory mapping of a file.

894 Chapter 21 Windows 10

applications are multithreaded, access to the heap is synchronized to protect
the heap’s space-allocation data structures from being damaged by concurrent
updates by multiple threads. The advantage of the heap is that it can be used
to make allocations as small as 1 byte, because the underlying memory pages
have already been committed. Unfortunately, heap memory cannot be shared
or marked as read-only, because all heap allocations share the same pages.
However, by using HeapCreate(), a programmer can create his or her own
heap, which can be marked as read-only with HeapProtect(), created as an
executable heap, or even allocated on a specific NUMA node.

Win32 provides several heap-management functions so that a process can
allocate and manage a private heap. These functions are HeapCreate(), Hea-
pAlloc(), HeapRealloc(), HeapSize(), HeapFree(), and HeapDestroy().
The Win32 API also provides the HeapLock() and HeapUnlock() functions to
enable a thread to gain exclusive access to a heap. Note that these functions
performonly synchronization; they do not truly “lock” pages againstmalicious
or buggy code that bypasses the heap layer.

The originalWin32 heapwas optimized for efficient use of space. This led to
significant problems with fragmentation of the address space for larger server
programs that ran for long periods of time. A new low-fragmentation heap
(LFH) design introduced in Windows XP greatly reduced the fragmentation
problem. The heap manager in Windows 7 and later versions automatically
turns on LFH as appropriate. Additionally, the heap is a primary target of
attackers using vulnerabilities such as double-free, use-after-free, and other
memory-corruption-related attacks. Each version of Windows, including Win-
dows 10, has added more randomness, entropy, and security mitigations to
prevent attackers from guessing the ordering, size, location, and content of
heap allocations.

21.7.5.4 Thread-Local Storage

Afourth way for applications to use memory is through a thread-local storage
(TLS) mechanism. Functions that rely on global or static data typically fail to
work properly in a multithreaded environment. For instance, the C run-time
function strtok() uses a static variable to keep track of its current position
while parsing a string. For two concurrent threads to execute strtok() cor-
rectly, they need separate current position variables. TLS provides a way to
maintain instances of variables that are global to the function being executed
but not shared with any other thread.

TLS provides both dynamic and static methods of creating thread-local
storage. The dynamicmethod is illustrated in Figure 21.13. The TLSmechanism
allocates global heap storage and attaches it to the thread environment block
(TEB) that Windows allocates to every user-mode thread. The TEB is readily
accessible by each thread and is used not just for TLS but for all the per-thread
state information in user mode.

21.7.5.5 AWE Memory

Afinalway for applications to usememory is through theAddress Windowing
Extension (AWE) functionality. This mechanism allows a developer to directly

21.8 Summary 895

// reserve a slot for a variable
DWORD dwVarIndex = T1sAlloc();
// make sure a slot was available
if (dwVarIndex == TLS OUT OF INDEXES)
return;
// set it to the value 10
T1sSetValue(dwVarIndex, (LPVOID)10);
// get the value
DWORD dwVar = (DWORD)(DWORD PTR)T1sGetValue(dwVarIndex);
// release the index
T1sFree(dwVarIndex);

Figure 21.13 Code for dynamic thread-local storage.

request free physical pages of RAM from the memorymanager (through Allo-
cateUserPhysicalPages()) and later commit virtual memory on top of the
physical pages using VirtualAlloc(). By requesting various regions of phys-
ical memory (including scatter-gather support), a user-mode application can
accessmore physicalmemory than virtual address space; this is useful on 32-bit
systems, which may have more than 4 GB of RAM). In addition, the application
can bypass the memory manager’s caching, paging, and coloring algorithms.
Similar to UMS, AWE may thus offer a way for certain applications to extract
additional performance or customization beyond what Windows offers by
default. SQL Server, for example, uses AWE memory.

To use a thread-local static variable, the application declares the variable
as follows to ensure that every thread has its own private copy:

declspec(thread) DWORD cur pos = 0;

21.8 Summary

• Microsoft designed Windows to be an extensible, portable operating sys-
tem—one able to take advantage of new techniques and hardware.

• Windows supports multiple operating environments and symmetric mul-
tiprocessing, including both 32-bit and 64-bit processors and NUMA com-
puters.

• The use of kernel objects to provide basic services, along with support for
client–server computing, enables Windows to support a wide variety of
application environments.

• Windows provides virtual memory, integrated caching, and preemptive
scheduling.

896 Chapter 21 Windows 10

• To protect user data and guarantee program integrity, Windows supports
elaborate security mechanisms and exploit mitigations and takes advan-
tage of hardware virtualization.

• Windows runs on a wide variety of computers, so users can choose and
upgrade hardware to match their budgets and performance requirements
without needing to alter the applications they run.

• By including internationalization features, Windows can run in a variety
of countries and many languages.

• Windows has sophisticated scheduling and memory-management algo-
rithms for performance and scalability.

• Recent versions of Windows have added power management and fast
sleep and wake features, and decreased resource use in several areas to
be more useful on mobile systems such as phones and tablets.

• The Windows volume manager and NTFS file system provide a sophisti-
cated set of features for desktop as well as server systems.

• The Win32 API programming environment is feature rich and expansive,
allowing programmers to use all of Windows’s features in their programs.

Practice Exercises

21.1 What type of operating system is Windows? Describe two of its major
features.

21.2 List the design goals of Windows. Describe two in detail.

21.3 Describe the booting process for a Windows system.

21.4 Describe the three main architectural layers of the Windows kernel.

21.5 What is the job of the object manager?

21.6 What types of services does the process manager provide?

21.7 What is a local procedure call?

21.8 What are the responsibilities of the I/O manager?

21.9 What types of networking does Windows support? How does Win-
dows implement transport protocols? Describe two networking pro-
tocols.

21.10 How is the NTFS namespace organized?

21.11 How does NTFS handle data structures? How does NTFS recover from
a system crash? What is guaranteed after a recovery takes place?

21.12 How does Windows allocate user memory?

21.13 Describe some of the ways inwhich an application can usememory via
the Win32 API.

Further Reading 897

Further Reading

[Russinovich et al. (2017)] give a deep overview of Windows 10 and consider-
able technical detail about system internals and components.

Bibliography

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition

Exercises

Chapter 21 Exercises

21.14 Under what circumstances would one use the deferred procedure calls
facility in Windows?

21.15 What is a handle, and how does a process obtain a handle?

21.16 Describe the management scheme of the virtual memory manager.
How does the VM manager improve performance?

21.17 Describe a useful application of the no-access page facility provided in
Windows.

21.18 Describe the three techniques used for communicating data in a local
procedure call. What settings are most conducive to the application of
the different message-passing techniques?

21.19 What manages caching in Windows? How is the cache managed?

21.20 How does the NTFS directory structure differ from the directory struc-
ture used in UNIX operating systems?

21.21 What is a process, and how is it managed in Windows?

21.22 What is the fiber abstraction provided byWindows? How does it differ
from the thread abstraction?

21.23 How does user-mode scheduling (UMS) in Windows 7 differ from
fibers? What are some trade-offs between fibers and UMS?

21.24 UMS considers a thread to have two parts, a UT and a KT. How might it
be useful to allow UTs to continue executing in parallel with their KTs?

21.25 What is the performance trade-off of allowing KTs and UTs to execute
on different processors?

21.26 Why does the self-map occupy large amounts of virtual address space
but no additional virtual memory?

21.27 How does the self-map make it easy for the VM manager to move the
page-table pages to and fromdisk?Where are the page-table pages kept
on disk?

21.28 When a Windows system hibernates, the system is powered off. Sup-
pose you changed the CPU or the amount of RAM on a hibernating
system. Do you think that would work? Why or why not?

21.29 Give an example showing how the use of a suspend count is helpful in
suspending and resuming threads in Windows.

EX-60

Part Ten

Appendices
Modern operating systems such as Linux, macOS, and Windows 10 have
been influenced by earlier systems, and here we discuss some of the
older and highly influential operating systems.

Some of these systems (such as the XDS-940 and the THE system)
were one-of-a-kind systems; others (such as OS/360) are widely used.
We briefly cover some of the older systems that are no longer in use.
We also provide comprehensive coverage of three additional systems:
Windows 7, FreeBSD, and Mach. Windows 7 remains a popular operating
system for many users. The FreeBSD system is another UNIX system.
However, whereas Linux combines features from several UNIX systems,
FreeBSD is based on the BSD model. FreeBSD source code, like Linux
source code, is freely available. Mach also provides compatibility with
BSD UNIX. What is especially interesting about BSD and Mach is that they
form the architecture of both iOS and macOS, two very popular modern
operating systems.

AAppendixInfluential
Operating
Systems

Now that you understand the fundamental concepts of operating systems (CPU
scheduling, memory management, processes, and so on), we are in a position
to examine how these concepts have been applied in several older and highly
influential operating systems. Some of them (such as the XDS-940 and the THE
system) were one-of-a-kind systems; others (such as OS/360) are widely used.
The order of presentation highlights the similarities and differences of the
systems; it is not strictly chronological or ordered by importance. The serious
student of operating systems should be familiar with all these systems.

In the bibliographical notes at the end of the chapter, we include references
to further reading about these early systems. The papers, written by the design-
ers of the systems, are important both for their technical content and for their
style and flavor.

CHAPTER OBJECTIVES

• Explain how operating-system features migrate over time from large com-
puter systems to smaller ones.

• Discuss the features of several historically important operating systems.

A.1 Feature Migration

One reason to study early architectures and operating systems is that a feature
that once ran only on huge systems may eventually make its way into very
small systems. Indeed, an examination of operating systems for mainframes
and microcomputers shows that many features once available only on main-
frames have been adopted for microcomputers. The same operating-system
concepts are thus appropriate for various classes of computers: mainframes,
minicomputers,microcomputers, andhandhelds. Tounderstandmodern oper-
ating systems, then, you need to recognize the theme of feature migration and
the long history of many operating-system features, as shown in Figure A.1.

Agood example of featuremigration startedwith theMultiplexed Informa-
tion and Computing Services (MULTICS) operating system. MULTICSwas devel-

1

2 Appendix A Influentia Operating Systems

mainframes

1950

no
software

no
software

multiprocessorbatch

compilers time
shared

distributed
systems

resident
monitors

fault tolerantnetworked

multiuser

no
software

compilers

no
software interactive

compilers

compilers

interactive

networked

time
sharedresident

monitors
fault tolerant

multiuser

networked
clustered

multiuser

multiprocessor

multiprocessor

1960 1970
MULTICS

1980 1990 2000

minicomputers

desktop computers

handheld computers

UNIX

UNIX

networked
UNIX

smart phones

2010

LINUX

multiprocessor

networked
interactive

LINUX

Figure A.1 Migration of operating-system concepts and features.

oped from 1965 to 1970 at the Massachusetts Institute of Technology (MIT) as a
computing utility. It ran on a large, complexmainframe computer (the GE-645).
Many of the ideas that were developed for MULTICS were subsequently used at
Bell Laboratories (one of the original partners in the development of MULTICS)
in the design of UNIX. The UNIX operating system was designed around 1970
for a PDP-11 minicomputer. Around 1980, the features of UNIX became the basis
for UNIX-like operating systems on microcomputers, and these features are
included in several more recent operating systems for microcomputers, such
as Microsoft Windows, Windows XP, and the macOS operating system. Linux
includes some of these same features, and they can now be found on PDAs.

A.2 Early Systems

We turn our attention now to a historical overview of early computer systems.
We should note that the history of computing starts far before “computers”
with looms and calculators. We begin our discussion, however, with the com-
puters of the twentieth century.

Before the 1940s, computing devices were designed and implemented to
perform specific, fixed tasks.Modifying one of those tasks required a great deal
of effort andmanual labor. All that changed in the 1940s whenAlan Turing and
John von Neumann (and colleagues), both separately and together, worked on
the idea of a more general-purpose stored program computer. Such a machine

A.2 Early Systems 3

has both a program store and a data store, where the program store provides
instructions about what to do to the data.

This fundamental computer concept quickly generated a number of
general-purpose computers, but much of the history of these machines is
blurred by time and the secrecy of their development during World War II. It
is likely that the first working stored-program general-purpose computer was
the Manchester Mark 1, which ran successfully in 1949. The first commercial
computer—the Ferranti Mark 1, which went on sale in 1951—was its
offspring.

Early computers were physically enormous machines run from consoles.
The programmer, who was also the operator of the computer system, would
write a programand thenwould operate it directly from the operator’s console.
First, the programwould be loadedmanually intomemory from the front panel
switches (one instruction at a time), from paper tape, or from punched cards.
Then the appropriate buttons would be pushed to set the starting address
and to start the execution of the program. As the program ran, the program-
mer/operator could monitor its execution by the display lights on the console.
If errors were discovered, the programmer could halt the program, examine
the contents of memory and registers, and debug the program directly from
the console. Output was printed or was punched onto paper tape or cards for
later printing.

A.2.1 Dedicated Computer Systems

As time went on, additional software and hardware were developed. Card
readers, line printers, and magnetic tape became commonplace. Assemblers,
loaders, and linkers were designed to ease the programming task. Libraries
of common functions were created. Common functions could then be copied
into a new program without having to be written again, providing software
reusability.

The routines that performed I/O were especially important. Each new I/O
device had its own characteristics, requiring careful programming. A special
subroutine called a device driver—was written for each I/O device. A device
driver knows how the buffers, flags, registers, control bits, and status bits for
a particular device should be used. Each type of device has its own driver.
A simple task, such as reading a character from a paper-tape reader, might
involve complex sequences of device-specific operations. Rather than writing
the necessary code every time, the device driver was simply used from the
library.

Later, compilers for FORTRAN, COBOL, and other languages appeared,mak-
ing the programming taskmuch easier but the operation of the computer more
complex. To prepare a FORTRAN program for execution, for example, the pro-
grammer would first need to load the FORTRAN compiler into the computer.
The compiler was normally kept on magnetic tape, so the proper tape would
need to be mounted on a tape drive. The program would be read through the
card reader and written onto another tape. The FORTRAN compiler produced
assembly-language output, which then had to be assembled. This procedure
required mounting another tape with the assembler. The output of the assem-
bler would need to be linked to supporting library routines. Finally, the binary
object form of the program would be ready to execute. It could be loaded into
memory and debugged from the console, as before.

4 Appendix A Influentia Operating Systems

A significant amount of setup time could be involved in the running of a
job. Each job consisted of many separate steps:

1. Loading the FORTRAN compiler tape

2. Running the compiler

3. Unloading the compiler tape

4. Loading the assembler tape

5. Running the assembler

6. Unloading the assembler tape

7. Loading the object program

8. Running the object program

If an error occurred during any step, the programmer/operator might have
to start over at the beginning. Each job step might involve the loading and
unloading of magnetic tapes, paper tapes, and punch cards.

The job setup timewas a real problem.While tapes were beingmounted or
the programmer was operating the console, the CPU sat idle. Remember that,
in the early days, few computers were available, and they were expensive. A
computer might have cost millions of dollars, not including the operational
costs of power, cooling, programmers, and so on. Thus, computer time was
extremely valuable, and owners wanted their computers to be used as much
as possible. They needed high utilization to get as much as they could from
their investments.

A.2.2 Shared Computer Systems

The solution was twofold. First, a professional computer operator was hired.
The programmer no longer operated the machine. As soon as one job was
finished, the operator could start the next. Since the operator had more experi-
ence with mounting tapes than a programmer, setup time was reduced. The
programmer provided whatever cards or tapes were needed, as well as a
short description of how the job was to be run. Of course, the operator could
not debug an incorrect program at the console, since the operator would not
understand the program. Therefore, in the case of program error, a dump of
memory and registers was taken, and the programmer had to debug from the
dump. Dumping the memory and registers allowed the operator to continue
immediately with the next job but left the programmer with the more difficult
debugging problem.

Second, jobs with similar needswere batched together and run through the
computer as a group to reduce setup time. For instance, suppose the operator
received one FORTRAN job, one COBOL job, and another FORTRAN job. If she ran
them in that order, she would have to set up for FORTRAN (load the compiler
tapes and so on), then set up for COBOL, and then set up for FORTRAN again. If
she ran the two FORTRAN programs as a batch, however, she could setup only
once for FORTRAN, saving operator time.

A.2 Early Systems 5

loader

job sequencing

control card
interpreter

user
program

area

monitor

Figure A.2 Memory layout for a resident monitor.

But there were still problems. For example, when a job stopped, the oper-
ator would have to notice that it had stopped (by observing the console),
determine why it stopped (normal or abnormal termination), dump memory
and register (if necessary), load the appropriate device with the next job, and
restart the computer. During this transition from one job to the next, the CPU
sat idle.

To overcome this idle time, people developed automatic job sequencing.
With this technique, the first rudimentary operating systems were created.
A small program, called a resident monitor, was created to transfer control
automatically from one job to the next (Figure A.2). The resident monitor is
always in memory (or resident).

When the computer was turned on, the resident monitor was invoked, and
it would transfer control to a program.When the program terminated, it would
return control to the resident monitor, which would then go on to the next
program. Thus, the resident monitor would automatically sequence from one
program to another and from one job to another.

But how would the resident monitor know which program to execute?
Previously, the operator had been given a short description of what programs
were to be run on what data. Control cards were introduced to provide this
information directly to the monitor. The idea is simple. In addition to the
program or data for a job, the programmer supplied control cards, which
contained directives to the resident monitor indicating what program to run.
For example, a normal user program might require one of three programs to
run: the FORTRAN compiler (FTN), the assembler (ASM), or the user’s program
(RUN). We could use a separate control card for each of these:

$FTN—Execute the FORTRAN compiler.
$ASM—Execute the assembler.
$RUN—Execute the user program.

These cards tell the resident monitor which program to run.

6 Appendix A Influentia Operating Systems

We can use two additional control cards to define the boundaries of each
job:

$JOB—First card of a job
$END—Final card of a job

These two cards might be useful in accounting for the machine resources used
by the programmer. Parameters can be used to define the job name, account
number to be charged, and so on. Other control cards can be defined for other
functions, such as asking the operator to load or unload a tape.

One problem with control cards is how to distinguish them from data or
program cards. The usual solution is to identify them by a special character or
pattern on the card. Several systems used the dollar-sign character ($) in the
first column to identify a control card. Others used a different code. IBM’s Job
Control Language (JCL) used slash marks (//) in the first two columns. Figure
A.3 shows a sample card-deck setup for a simple batch system.

A resident monitor thus has several identifiable parts:

• The control-card interpreter is responsible for reading and carrying out
the instructions on the cards at the point of execution.

• The loader is invoked by the control-card interpreter to load system pro-
grams and application programs into memory at intervals.

• The device drivers are used by both the control-card interpreter and the
loader for the system’s I/O devices. Often, the system and application
programs are linked to these same device drivers, providing continuity in
their operation, as well as saving memory space and programming time.

These batch systems work fairly well. The resident monitor provides auto-
matic job sequencing as indicated by the control cards. When a control card
indicates that a program is to be run, the monitor loads the program intomem-
ory and transfers control to it.When the program completes, it transfers control

$END

$RUN

data for program

$LOAD

$FTN

$JOB

program to be compiled

Figure A.3 Card deck for a simple batch system.

A.2 Early Systems 7

back to the monitor, which reads the next control card, loads the appropriate
program, and so on. This cycle is repeated until all control cards are interpreted
for the job. Then the monitor automatically continues with the next job.

The switch to batch systems with automatic job sequencing was made to
improve performance. The problem, quite simply, is that humans are consid-
erably slower than computers. Consequently, it is desirable to replace human
operation with operating-system software. Automatic job sequencing elimi-
nates the need for human setup time and job sequencing.

Even with this arrangement, however, the CPU is often idle. The problem
is the speed of the mechanical I/O devices, which are intrinsically slower
than electronic devices. Even a slow CPU works in the microsecond range,
with thousands of instructions executed per second. A fast card reader, in
contrast, might read 1,200 cards per minute (or 20 cards per second). Thus, the
difference in speed between the CPU and its I/O devices may be three orders of
magnitude ormore.Over time, of course, improvements in technology resulted
in faster I/O devices. Unfortunately, CPU speeds increased even faster, so that
the problem was not only unresolved but also exacerbated.

A.2.3 Overlapped I/O

One common solution to the I/O problem was to replace slow card readers
(input devices) and line printers (output devices) with magnetic-tape units.
Most computer systems in the late 1950s and early 1960s were batch systems
reading from card readers andwriting to line printers or card punches. The CPU
did not read directly from cards, however; instead, the cards were first copied
onto a magnetic tape via a separate device. When the tape was sufficiently full,
it was taken down and carried over to the computer. When a card was needed
for input to a program, the equivalent recordwas read from the tape. Similarly,
output was written to the tape, and the contents of the tape were printed later.
The card readers and line printers were operated off-line, rather than by the
main computer (Figure A.4).

An obvious advantage of off-line operation was that the main computer
was no longer constrained by the speed of the card readers and line printers
but was limited only by the speed of the much faster magnetic tape units.
The technique of using magnetic tape for all I/O could be applied with any

(b)

(a)

CPU

card reader

card reader

line printer

tape drives tape drives line printer

CPU

on-line

on-line

Figure A.4 Operation of I/O devices (a) on-line and (b) off-line.

8 Appendix A Influentia Operating Systems

similar equipment (such as card readers, card punches, plotters, paper tape,
and printers).

The real gain in off-line operation comes from the possibility of using
multiple reader-to-tape and tape-to-printer systems for one CPU. If the CPU
can process input twice as fast as the reader can read cards, then two readers
working simultaneously can produce enough tape to keep the CPU busy. There
is a disadvantage, too, however—a longer delay in getting a particular job run.
The job must first be read onto tape. Then it must wait until enough additional
jobs are readonto the tape to “fill” it. The tapemust then be rewound, unloaded,
hand-carried to the CPU, and mounted on a free tape drive. This process is not
unreasonable for batch systems, of course. Many similar jobs can be batched
onto a tape before it is taken to the computer.

Although off-line preparation of jobs continued for some time, it was
quickly replaced in most systems. Disk systems became widely available and
greatly improved on off-line operation. One problem with tape systems was
that the card reader could not write onto one end of the tape while the CPU
read from the other. The entire tape had to be written before it was rewound
and read, because tapes are by nature sequential-access devices. Disk systems
eliminated this problem by being random-access devices. Because the head is
moved from one area of the disk to another, it can switch rapidly from the area
on the disk being used by the card reader to store new cards to the position
needed by the CPU to read the “next” card.

In a disk system, cards are read directly from the card reader onto the disk.
The location of card images is recorded in a table kept by the operating system.
When a job is executed, the operating system satisfies its requests for card-
reader input by reading from the disk. Similarly, when the job requests the
printer to output a line, that line is copied into a system buffer and is written
to the disk. When the job is completed, the output is actually printed. This
form of processing is called spooling (Figure A.5); the name is an acronym for
simultaneous peripheral operation on-line. Spooling, in essence, uses the disk
as a huge buffer for reading as far ahead as possible on input devices and for
storing output files until the output devices are able to accept them.

CPU

card reader line printer

disk

I/O

on-line

Figure A.5 Spooling.

A.3 Atlas 9

Spooling is also used for processing data at remote sites. The CPU sends
the data via communication paths to a remote printer (or accepts an entire
input job from a remote card reader). The remote processing is done at its own
speed, with no CPU intervention. The CPU just needs to be notified when the
processing is completed, so that it can spool the next batch of data.

Spooling overlaps the I/O of one job with the computation of other jobs.
Even in a simple system, the spooler may be reading the input of one job while
printing the output of a different job. During this time, still another job (or other
jobs) may be executed, reading its “cards” from disk and “printing” its output
lines onto the disk.

Spooling has a direct beneficial effect on the performance of the system.
For the cost of some disk space and a few tables, the computation of one job
and the I/O of other jobs can take place at the same time. Thus, spooling can
keep both the CPU and the I/O devices working at much higher rates. Spooling
leads naturally to multiprogramming, which is the foundation of all modern
operating systems.

A.3 Atlas

The Atlas operating system was designed at the University of Manchester in
England in the late 1950s and early 1960s. Many of its basic features that were
novel at the time have become standard parts of modern operating systems.
Device drivers were a major part of the system. In addition, system calls were
added by a set of special instructions called extra codes.

Atlas was a batch operating system with spooling. Spooling allowed the
system to schedule jobs according to the availability of peripheral devices, such
as magnetic tape units, paper tape readers, paper tape punches, line printers,
card readers, and card punches.

The most remarkable feature of Atlas, however, was its memory manage-
ment. Core memory was new and expensive at the time. Many computers,
like the IBM 650, used a drum for primary memory. The Atlas system used a
drum for its main memory, but it had a small amount of core memory that was
used as a cache for the drum. Demand pagingwas used to transfer information
between core memory and the drum automatically.

The Atlas system used a British computer with 48-bit words. Addresses
were 24 bits but were encoded in decimal, which allowed 1 million words to
be addressed. At that time, this was an extremely large address space. The
physical memory for Atlas was a 98-KB-word drum and 16-KB words of core.
Memory was divided into 512-word pages, providing 32 frames in physical
memory. An associative memory of 32 registers implemented the mapping
from a virtual address to a physical address.

If a page fault occurred, a page-replacement algorithm was invoked. One
memory frame was always kept empty, so that a drum transfer could start
immediately. The page-replacement algorithm attempted to predict future
memory-accessing behavior based on past behavior. A reference bit for each
frame was set whenever the frame was accessed. The reference bits were read
into memory every 1,024 instructions, and the last 32 values of these bits were
retained. This history was used to define the time since the most recent ref-

10 Appendix A Influentia Operating Systems

erence (t1) and the interval between the last two references (t2). Pages were
chosen for replacement in the following order:

1. Any page with t1 > t2 + 1 is considered to be no longer in use and is
replaced.

2. If t1 ≤ t2 for all pages, then replace the page with the largest value for t2
− t1.

The page-replacement algorithm assumes that programs access memory in
loops. If the time between the last two references is t2, then another reference is
expected t2 time units later. If a reference does not occur (t1 > t2), it is assumed
that the page is no longer being used, and the page is replaced. If all pages
are still in use, then the page that will not be needed for the longest time is
replaced. The time to the next reference is expected to be t2 − t1.

A.4 XDS-940

The XDS-940 operating system was designed at the University of California at
Berkeley in the early 1960s. Like the Atlas system, it used paging for memory
management. Unlike theAtlas system, it was a time-shared system. The paging
was used only for relocation; it was not used for demand paging. The virtual
memory of any user processwasmade up of 16-KBwords,whereas the physical
memory was made up of 64-KB words. Each page was made up of 2-KB words.
The page table was kept in registers. Since physical memory was larger than
virtual memory, several user processes could be in memory at the same time.
The number of users could be increased by page sharing when the pages
contained read-only reentrant code. Processes were kept on a drum and were
swapped in and out of memory as necessary.

The XDS-940 system was constructed from a modified XDS-930. The mod-
ifications were typical of the changes made to a basic computer to allow an
operating system to be written properly. A user-monitor mode was added.
Certain instructions, such as I/O and halt, were defined to be privileged. An
attempt to execute a privileged instruction in user mode would trap to the
operating system.

A system-call instruction was added to the user-mode instruction set. This
instructionwas used to create new resources, such as files, allowing the operat-
ing system tomanage the physical resources. Files, for example, were allocated
in 256-word blocks on the drum. A bitmap was used to manage free drum
blocks. Each file had an index block with pointers to the actual data blocks.
Index blocks were chained together.

The XDS-940 system also provided system calls to allow processes to cre-
ate, start, suspend, and destroy subprocesses. A programmer could construct
a system of processes. Separate processes could share memory for communi-
cation and synchronization. Process creation defined a tree structure, where a
process is the root and its subprocesses are nodes below it in the tree. Each of
the subprocesses could, in turn, create more subprocesses.

A.6 RC 4000 11

A.5 THE

The THE operating system was designed at the Technische Hogeschool in
Eindhoven in the Netherlands in the mid-1960s. It was a batch system running
on a Dutch computer, the EL X8, with 32-KB of 27-bit words. The system was
mainly noted for its clean design, particularly its layer structure, and its use of
a set of concurrent processes employing semaphores for synchronization.

Unlike the processes in the XDS-940 system, the set of processes in the
THE system was static. The operating system itself was designed as a set of
cooperating processes. In addition, five user processeswere created that served
as the active agents to compile, execute, and print user programs. When one
job was finished, the process would return to the input queue to select another
job.

Apriority CPU-scheduling algorithmwas used. The priorities were recom-
puted every 2 seconds and were inversely proportional to the amount of CPU
timeused recently (in the last 8 to 10 seconds). This scheme gave higher priority
to I/O-bound processes and to new processes.

Memory management was limited by the lack of hardware support. How-
ever, since the system was limited and user programs could be written only in
Algol, a software paging scheme was used. The Algol compiler automatically
generated calls to system routines, which made sure the requested information
was in memory, swapping if necessary. The backing store was a 512-KB-word
drum. A 512-word page was used, with an LRU page-replacement strategy.

Another major concern of the THE system was deadlock control. The
banker’s algorithm was used to provide deadlock avoidance.

Closely related to the THE system is the Venus system. The Venus system
was also a layer-structureddesign, using semaphores to synchronize processes.
The lower levels of the design were implemented in microcode, however, pro-
viding amuch faster system. Paged-segmentedmemorywas used for memory
management. In addition, the system was designed as a time-sharing system
rather than a batch system.

A.6 RC 4000

The RC 4000 system, like the THE system, was notable primarily for its design
concepts. It was designed in the late 1960s for the Danish 4000 computer
by Regnecentralen, particularly by Brinch-Hansen. The objective was not to
design a batch system, or a time-sharing system, or any other specific system.
Rather, the goal was to create an operating-system nucleus, or kernel, onwhich
a complete operating system could be built. Thus, the system structure was
layered, and only the lower levels—comprising the kernel—were provided.

The kernel supported a collection of concurrent processes. A round-robin
CPU schedulerwas used. Although processes could sharememory, the primary
communication and synchronizationmechanismwas themessage system pro-
vided by the kernel. Processes could communicate with each other by exchang-
ing fixed-sized messages of eight words in length. All messages were stored in
buffers from a common buffer pool. When a message buffer was no longer
required, it was returned to the common pool.

12 Appendix A Influentia Operating Systems

A message queue was associated with each process. It contained all the
messages that had been sent to that process but had not yet been received.
Messages were removed from the queue in FIFO order. The system supported
four primitive operations, which were executed atomically:

• send-message (in receiver, in message, out buffer)

• wait-message (out sender, out message, out buffer)

• send-answer (out result, in message, in buffer)

• wait-answer (out result, out message, in buffer)

The last two operations allowed processes to exchange several messages at a
time.

These primitives required that a process service its message queue in FIFO
order and that it block itself while other processes were handling its messages.
To remove these restrictions, the developers provided two additional commu-
nication primitives that allowed a process to wait for the arrival of the next
message or to answer and service its queue in any order:

• wait-event (in previous-buffer, out next-buffer, out result)

• get-event (out buffer)

I/O devices were also treated as processes. The device drivers were code
that converted the device interrupts and registers into messages. Thus, a pro-
cess would write to a terminal by sending that terminal a message. The device
driver would receive the message and output the character to the terminal. An
input character would interrupt the system and transfer to a device driver. The
device driver would create a message from the input character and send it to a
waiting process.

A.7 CTSS

The Compatible Time-Sharing System (CTSS) was designed at MIT as an exper-
imental time-sharing system and first appeared in 1961. It was implemented
on an IBM 7090 and eventually supported up to 32 interactive users. The users
were providedwith a set of interactive commands that allowed them tomanip-
ulate files and to compile and run programs through a terminal.

The 7090 had a 32-KB memory made up of 36-bit words. The monitor used
5-KB words, leaving 27 KB for the users. User memory images were swapped
between memory and a fast drum. CPU scheduling employed a multilevel-
feedback-queue algorithm. The time quantum for level i was 2 ∗ i time units.
If a program did not finish its CPU burst in one time quantum, it was moved
down to the next level of the queue, giving it twice as much time. The program
at the highest level (with the shortest quantum) was run first. The initial level
of a programwas determined by its size, so that the time quantumwas at least
as long as the swap time.

CTSS was extremely successful and was in use as late as 1972. Although
it was limited, it succeeded in demonstrating that time sharing was a con-

A.9 IBM OS/360 13

venient and practical mode of computing. One result of CTSS was increased
development of time-sharing systems. Another result was the development of
MULTICS.

A.8 MULTICS

The MULTICS operating system was designed from 1965 to 1970 at MIT as a
natural extension of CTSS. CTSS and other early time-sharing systems were so
successful that they created an immediate desire to proceed quickly to bigger
and better systems. As larger computers became available, the designers of
CTSS set out to create a time-sharing utility. Computing service would be
provided like electrical power. Large computer systems would be connected
by telephone wires to terminals in offices and homes throughout a city. The
operating systemwould be a time-shared system running continuously with a
vast file system of shared programs and data.

MULTICS was designed by a team from MIT, GE (which later sold its com-
puter department to Honeywell), and Bell Laboratories (which dropped out of
the project in 1969). The basic GE 635 computer was modified to a new com-
puter system called the GE 645, mainly by the addition of paged-segmentation
memory hardware.

In MULTICS, a virtual address was composed of an 18-bit segment number
and a 16-bit word offset. The segments were then paged in 1-KB-word pages.
The second-chance page-replacement algorithm was used.

The segmented virtual address space wasmerged into the file system; each
segment was a file. Segments were addressed by the name of the file. The file
system itself was a multilevel tree structure, allowing users to create their own
subdirectory structures.

Like CTSS, MULTICS used a multilevel feedback queue for CPU scheduling.
Protection was accomplished through an access list associated with each file
and a set of protection rings for executing processes. The system, which was
written almost entirely in PL/1, comprised about 300,000 lines of code. It was
extended to a multiprocessor system, allowing a CPU to be taken out of service
for maintenance while the system continued running.

A.9 IBM OS/360

The longest line of operating-system development is undoubtedly that of IBM
computers. The early IBM computers, such as the IBM 7090 and the IBM 7094,
are prime examples of the development of common I/O subroutines, followed
by development of a residentmonitor, privileged instructions, memory protec-
tion, and simple batch processing. These systems were developed separately,
often at independent sites. As a result, IBM was faced with many different
computers, with different languages and different system software.

The IBM/360—which first appeared in the mid 1960s—was designed to
alter this situation. The IBM/360 was designed as a family of computers span-
ning the complete range from small business machines to large scientific
machines. Only one set of software would be needed for these systems, which
all used the same operating system: OS/360. This arrangement was intended to

14 Appendix A Influentia Operating Systems

reduce maintenance problems for IBM and to allow users to move programs
and applications freely from one IBM system to another.

Unfortunately, OS/360 tried to be all things to all people. As a result, it
did none of its tasks especially well. The file system included a type field
that defined the type of each file, and different file types were defined for
fixed-length and variable-length records and for blocked and unblocked files.
Contiguous allocationwas used, so the user had to guess the size of each output
file. The Job Control Language (JCL) added parameters for every possible
option, making it incomprehensible to the average user.

The memory-management routines were hampered by the architecture.
Although a base-register addressingmodewas used, the program could access
and modify the base register, so that absolute addresses were generated by the
CPU. This arrangement prevented dynamic relocation; the programwas bound
to physicalmemory at load time. Two separate versions of the operating system
were produced: OS/MFT used fixed regions and OS/MVT used variable regions.

The system was written in assembly language by thousands of program-
mers, resulting inmillions of lines of code. The operating system itself required
large amounts of memory for its code and tables. Operating-system overhead
often consumed one-half of the total CPU cycles. Over the years, new versions
were released to add new features and to fix errors. However, fixing one error
often caused another in some remote part of the system, so that the number of
known errors in the system remained fairly constant.

Virtual memory was added to OS/360 with the change to the IBM/370
architecture. The underlying hardware provided a segmented-paged virtual
memory. New versions of OS used this hardware in different ways. OS/VS1
created one large virtual address space and ran OS/MFT in that virtualmemory.
Thus, the operating system itself was paged, as well as user programs. OS/VS2
Release 1 ran OS/MVT in virtual memory. Finally, OS/VS2 Release 2, which is
now called MVS, provided each user with his own virtual memory.

MVS is still basically a batch operating system. The CTSS systemwas run on
an IBM 7094, but the developers at MIT decided that the address space of the
360, IBM’s successor to the 7094, was too small for MULTICS, so they switched
vendors. IBM then decided to create its own time-sharing system, TSS/360. Like
MULTICS, TSS/360 was supposed to be a large, time-shared utility. The basic 360
architecture was modified in the model 67 to provide virtual memory. Several
sites purchased the 360/67 in anticipation of TSS/360.

TSS/360 was delayed, however, so other time-sharing systems were devel-
oped as temporary systems until TSS/360 was available. A time-sharing option
(TSO) was added to OS/360. IBM’s Cambridge Scientific Center developed CMS
as a single-user system and CP/67 to provide a virtual machine to run it on.

When TSS/360 was eventually delivered, it was a failure. It was too large
and too slow. As a result, no site would switch from its temporary system to
TSS/360. Today, time sharing on IBM systems is largely provided either by TSO
under MVS or by CMS under CP/67 (renamed VM).

Neither TSS/360 nor MULTICS achieved commercial success. What went
wrong? Part of the problem was that these advanced systems were too large
and too complex to be understood. Another problem was the assumption that
computing power would be available from a large, remote source. Minicom-

A.11 CP/M and MS/DOS 15

puters came along and decreased the need for large monolithic systems. They
were followed by workstations and then personal computers, which put com-
puting power closer and closer to the end users.

A.10 TOPS-20

DEC created many influential computer systems during its history. Probably
the most famous operating system associated with DEC is VMS, a popular
business-oriented system that is still in use today as OpenVMS, a product of
Hewlett-Packard. But perhaps the most influential of DEC’s operating systems
was TOPS-20.

TOPS-20 started life as a research project at Bolt, Beranek, and Newman
(BBN) around 1970. BBN took the business-oriented DEC PDP-10 computer run-
ning TOPS-10, added a hardware memory-paging system to implement virtual
memory, and wrote a new operating system for that computer to take advan-
tage of the new hardware features. The result was TENEX, a general-purpose
time-sharing system. DEC then purchased the rights to TENEX and created a
new computer with a built-in hardware pager. The resulting system was the
DECSYSTEM-20 and the TOPS-20 operating system.

TOPS-20 had an advanced command-line interpreter that provided help as
needed to users. That, in combination with the power of the computer and
its reasonable price, made the DECSYSTEM-20 the most popular time-sharing
system of its time. In 1984, DEC stopped work on its line of 36-bit PDP-10
computers to concentrate on 32-bit VAX systems running VMS.

A.11 CP/M and MS/DOS

Early hobbyist computers were typically built from kits and ran a single pro-
gram at a time. The systems evolved into more advanced systems as computer
components improved. An early “standard” operating system for these com-
puters of the 1970s was CP/M, short for Control Program/Monitor, written by
Gary Kindall of Digital Research, Inc. CP/M ran primarily on the first “personal
computer” CPU, the 8-bit Intel 8080. CP/M originally supported only 64 KB of
memory and ran only one program at a time. Of course, it was text-based, with
a command interpreter. The command interpreter resembled those in other
operating systems of the time, such as the TOPS-10 from DEC.

When IBM entered the personal computer business, it decided to have Bill
Gates and company write a new operating system for its 16-bit CPU of choice
—the Intel 8086. This operating system, MS-DOS, was similar to CP/M but had
a richer set of built-in commands, again mostly modeled after TOPS-10. MS-DOS
became the most popular personal-computer operating system of its time,
starting in 1981 and continuing development until 2000. It supported 640 KB of
memory,with the ability to address “extended” and “expanded”memory to get
somewhat beyond that limit. It lacked fundamental current operating-system
features, however, especially protected memory.

16 Appendix A Influentia Operating Systems

A.12 Macintosh Operating System and Windows

With the advent of 16-bit CPUs, operating systems for personal computers
could become more advanced, feature rich, and usable. The Apple Macintosh
computer was arguably the first computer with a GUI designed for home users.
It was certainly the most successful for a while, starting at its launch in 1984.
It used a mouse for screen pointing and selecting and came with many utility
programs that took advantage of the newuser interface. Hard-disk driveswere
relatively expensive in 1984, so it came only with a 400-KB-capacity floppy
drive by default.

The original Mac OS ran only onApple computers and slowlywas eclipsed
by Microsoft Windows (starting with Version 1.0 in 1985), which was licensed
to run on many different computers from a multitude of companies. As micro-
processor CPUs evolved to 32-bit chips with advanced features, such as pro-
tected memory and context switching, these operating systems added features
that had previously been found only onmainframes andminicomputers. Over
time, personal computers became as powerful as those systems and more use-
ful for many purposes. Minicomputers died out, replaced by general- and
special-purpose “servers.” Although personal computers continue to increase
in capacity and performance, servers tend to stay ahead of them in amount of
memory, disk space, and number and speed of available CPUs. Today, servers
typically run in data centers or machine rooms, while personal computers sit
on or next to desks and talk to each other and servers across a network.

The desktop rivalry between Apple and Microsoft continues today, with
new versions of Windows and Mac OS trying to outdo each other in fea-
tures, usability, and application functionality. Other operating systems, such
as AmigaOS and OS/2, have appeared over time but have not been long-term
competitors to the two leading desktop operating systems. Meanwhile, Linux
in its many forms continues to gain in popularity among more technical users
—and evenwith nontechnical users on systems like the One Laptop per Child
(OLPC) children’s connected computer network (http://laptop.org/).

A.13 Mach

The Mach operating system traces its ancestry to the Accent operating sys-
tem developed at Carnegie Mellon University (CMU). Mach’s communication
system and philosophy are derived from Accent, but many other significant
portions of the system (for example, the virtual memory system and task and
thread management) were developed from scratch.

Work on Mach began in the mid 1980. The operating system was designed
with the following three critical goals in mind:

1. Emulate 4.3 BSD UNIX so that the executable files from a UNIX system can
run correctly under Mach.

2. Be a modern operating system that supports many memory models, as
well as parallel and distributed computing.

3. Have a kernel that is simpler and easier to modify than 4.3 BSD.

http://laptop.org/
http://laptop.org/

A.13 Mach 17

Mach’s development followed an evolutionary path from BSD UNIX sys-
tems.Mach codewas initially developed inside the 4.2 BSD kernel, with BSD ker-
nel components replaced by Mach components as the Mach components were
completed. The BSD components were updated to 4.3 BSD when that became
available. By 1986, the virtual memory and communication subsystems were
running on the DEC VAX computer family, including multiprocessor versions
of the VAX. Versions for the IBM RT/PC and for SUN 3 workstations followed
shortly. Then, 1987 saw the completion of the Encore Multimax and Sequent
Balance multiprocessor versions, including task and thread support, as well as
the first official releases of the system, Release 0 and Release 1.

Through Release 2, Mach provided compatibility with the corresponding
BSD systems by including much of BSD’s code in the kernel. The new features
and capabilities of Mach made the kernels in these releases larger than the cor-
responding BSD kernels.Mach 3moved the BSD code outside the kernel, leaving
a much smaller microkernel. This system implements only basic Mach fea-
tures in the kernel; all UNIX-specific code has been evicted to run in user-mode
servers. Excluding UNIX-specific code from the kernel allows the replacement
of BSD with another operating system or the simultaneous execution of multi-
ple operating-system interfaces on top of the microkernel. In addition to BSD,
user-mode implementations have beendeveloped forDOS, theMacintosh oper-
ating system, and OSF/1. This approach has similarities to the virtual machine
concept, but here the virtual machine is defined by software (the Mach kernel
interface), rather than by hardware. With Release 3.0, Mach became available
on a wide variety of systems, including single-processor SUN, Intel, IBM, and
DEC machines and multiprocessor DEC, Sequent, and Encore systems.

Mach was propelled to the forefront of industry attention when the Open
Software Foundation (OSF) announced in 1989 that it would use Mach 2.5 as
the basis for its new operating system, OSF/1. (Mach 2.5 was also the basis for
the operating system on the NeXT workstation, the brainchild of Steve Jobs of
Apple Computer fame.) The initial release of OSF/1 occurred a year later, and
this system competed with UNIX System V, Release 4, the operating system
of choice at that time among UNIX International (UI) members. OSF members
included key technological companies such as IBM, DEC, and HP. OSF has since
changed its direction, and only DEC UNIX is based on the Mach kernel.

Unlike UNIX, which was developed without regard for multiprocessing,
Mach incorporates multiprocessing support throughout. This support is also
exceedingly flexible, ranging from shared-memory systems to systemswith no
memory shared between processors. Mach uses lightweight processes, in the
form of multiple threads of execution within one task (or address space), to
support multiprocessing and parallel computation. Its extensive use of mes-
sages as the only communication method ensures that protection mechanisms
are complete and efficient. By integrating messages with the virtual memory
system,Mach also ensures that messages can be handled efficiently. Finally, by
having the virtualmemory system usemessages to communicate with the dae-
monsmanaging the backing store,Mach provides great flexibility in the design
and implementation of these memory-object-managing tasks. By providing
low-level, or primitive, system calls from which more complex functions can
be built,Mach reduces the size of the kernelwhile permitting operating-system
emulation at the user level, much like IBM’s virtual machine systems.

18 Appendix A Influentia Operating Systems

Today, the only remaining pure Mach implementation is in GNU HURD, a
little-used operating system. Mach still lives on, however, in XNU—the kernel
driving macOSand the iOSvariants. XNU—whose codebase Apple obtained
with the acquisition of NeXT and its NeXTSTEP operating system—is a Mach
core with a top layer of BSD APIs. Apple continues to support and maintain the
Mach APIs (still accessible through specialized system calls known as traps,
and via Mach Messages), and the kernel continues evolving with new features
to this day.

Some previous editions of Operating System Concepts included an entire
chapter on Mach. This chapter, as it appeared in the fourth edition, is available
on the web (http://www.os-book.com).

A.14 Capability-based Systems—Hydra and CAP

In this section, we survey two capability-based protection systems. These sys-
tems differ in their complexity and in the types of policies that can be imple-
mented on them. Neither system is widely used, but both provide interesting
proving grounds for protection theories.

A.14.1 Hydra

Hydra is a capability-based protection system that provides considerable flex-
ibility. The system implements a fixed set of possible access rights, including
such basic forms of access as the right to read, write, or execute a memory seg-
ment. In addition, a user (of the protection system) can declare other rights. The
interpretation of user-defined rights is performed solely by the user’s program,
but the system provides access protection for the use of these rights, as well
as for the use of system-defined rights. These facilities constitute a significant
development in protection technology.

Operations on objects are defined procedurally. The procedures that imple-
ment such operations are themselves a form of object, and they are accessed
indirectly by capabilities. The names of user-defined procedures must be iden-
tified to the protection system if it is to deal with objects of the user-defined
type. When the definition of an object is made known to Hydra, the names
of operations on the type become auxiliary rights. Auxiliary rights can be
described in a capability for an instance of the type. For a process to perform
an operation on a typed object, the capability it holds for that object must con-
tain the name of the operation being invoked among its auxiliary rights. This
restriction enables discrimination of access rights to be made on an instance-
by-instance and process-by-process basis.

Hydra also provides rights amplificatio . This scheme allows a procedure
to be certified as trustworthy to act on a formal parameter of a specified type
on behalf of any process that holds a right to execute the procedure. The rights
held by a trustworthy procedure are independent of, and may exceed, the
rights held by the calling process. However, such a procedure must not be
regarded as universally trustworthy (the procedure is not allowed to act on
other types, for instance), and the trustworthiness must not be extended to any
other procedures or program segments that might be executed by a process.

http://www.os-book.com
http://www.os-book.com

A.14 Capability-based Systems—Hydra and CAP 19

Amplification allows implementation procedures access to the representa-
tion variables of an abstract data type. If a process holds a capability to a typed
object A, for instance, this capability may include an auxiliary right to invoke
some operation P but does not include any of the so-called kernel rights, such
as read, write, or execute, on the segment that represents A. Such a capability
gives a process a means of indirect access (through the operation P) to the
representation of A, but only for specific purposes.

When a process invokes the operation P on an object A, however, the
capability for access to Amay be amplified as control passes to the code body
of P. This amplification may be necessary to allow P the right to access the
storage segment representingA so as to implement the operation that P defines
on the abstract data type. The code body of P may be allowed to read or to
write to the segment of A directly, even though the calling process cannot.
On return from P, the capability for A is restored to its original, unamplified
state. This case is a typical one in which the rights held by a process for access
to a protected segment must change dynamically, depending on the task to
be performed. The dynamic adjustment of rights is performed to guarantee
consistency of a programmer-defined abstraction. Amplification of rights can
be stated explicitly in the declaration of an abstract type to theHydra operating
system.

When a user passes an object as an argument to a procedure, we may need
to ensure that the procedure cannot modify the object. We can implement this
restriction readily by passing an access right that does not have the modifi-
cation (write) right. However, if amplification may occur, the right to modify
may be reinstated. Thus, the user-protection requirement can be circumvented.
In general, of course, a user may trust that a procedure performs its task cor-
rectly. This assumption is not always correct, however, because of hardware or
software errors. Hydra solves this problem by restricting amplifications.

The procedure-call mechanism of Hydra was designed as a direct solution
to the problem of mutually suspicious subsystems. This problem is defined as
follows. Suppose that a program can be invoked as a service by a number of
different users (for example, a sort routine, a compiler, a game). When users
invoke this service program, they take the risk that the program will malfunc-
tion and will either damage the given data or retain some access right to the
data to be used (without authority) later. Similarly, the service program may
have some private files (for accounting purposes, for example) that should not
be accessed directly by the calling user program. Hydra provides mechanisms
for directly dealing with this problem.

AHydra subsystem is built on top of its protection kernel and may require
protection of its own components. A subsystem interacts with the kernel
through calls on a set of kernel-defined primitives that define access rights to
resources defined by the subsystem. The subsystem designer can define poli-
cies for use of these resources by user processes, but the policies are enforced
by use of the standard access protection provided by the capability system.

Programmers can make direct use of the protection system after acquaint-
ing themselves with its features in the appropriate reference manual. Hydra
provides a large library of system-defined procedures that can be called by
user programs. Programmers can explicitly incorporate calls on these system
procedures into their program code or can use a program translator that has
been interfaced to Hydra.

20 Appendix A Influentia Operating Systems

A.14.2 Cambridge CAP System

A different approach to capability-based protection has been taken in the
design of the Cambridge CAP system. CAP’s capability system is simpler and
superficially less powerful than that of Hydra. However, closer examination
shows that it, too, can be used to provide secure protection of user-defined
objects. CAP has two kinds of capabilities. The ordinary kind is called a data
capability. It can be used to provide access to objects, but the only rights pro-
vided are the standard read, write, and execute of the individual storage seg-
ments associatedwith the object. Data capabilities are interpretedbymicrocode
in the CAP machine.

The second kind of capability is the so-called software capability, which is
protected, but not interpreted, by the CAPmicrocode. It is interpreted by a pro-
tected (that is, privileged) procedure, which may be written by an application
programmer as part of a subsystem. A particular kind of rights amplification
is associated with a protected procedure. When executing the code body of
such a procedure, a process temporarily acquires the right to read or write the
contents of a software capability itself. This specific kind of rights amplifica-
tion corresponds to an implementation of the seal and unseal primitives on
capabilities. Of course, this privilege is still subject to type verification to ensure
that only software capabilities for a specified abstract type are passed to any
such procedure. Universal trust is not placed in any code other than the CAP
machine’s microcode. (See the bibliographical notes at the end of the chapter
for references.)

The interpretation of a software capability is left completely to the sub-
system, through the protected procedures it contains. This scheme allows a
variety of protection policies to be implemented. Although programmers can
define their own protected procedures (any of which might be incorrect), the
security of the overall system cannot be compromised. The basic protection
system will not allow an unverified, user-defined, protected procedure access
to any storage segments (or capabilities) that do not belong to the protection
environment in which it resides. The most serious consequence of an insecure
protected procedure is a protection breakdown of the subsystem for which that
procedure has responsibility.

The designers of the CAP system have noted that the use of software
capabilities allowed them to realize considerable economies in formulating
and implementing protection policies commensurate with the requirements of
abstract resources. However, subsystem designers who want to make use of
this facility cannot simply study a reference manual, as is the case with Hydra.
Instead, they must learn the principles and techniques of protection, since the
system provides them with no library of procedures.

A.15 Other Systems

There are, of course, other operating systems, and most of them have interest-
ing properties. The MCP operating system for the Burroughs computer family
was the first to be written in a system programming language. It supported
segmentation and multiple CPUs. The SCOPE operating system for the CDC
6600 was also a multi-CPU system. The coordination and synchronization of
the multiple processes were surprisingly well designed.

Bibliography 21

History is littered with operating systems that suited a purpose for a time
(be it a long or a short time) and then, when faded, were replaced by operating
systems that hadmore features, supported newer hardware, were easier to use,
or were better marketed. We are sure this trend will continue in the future.

Further Reading

Looms and calculators are described in [Frah (2001)] and shown graphically in
[Frauenfelder (2005)].

The Manchester Mark 1 is discussed by [Rojas and Hashagen (2000)], and
its offspring, the Ferranti Mark 1, is described by [Ceruzzi (1998)].

[Kilburn et al. (1961)] and [Howarth et al. (1961)] examine the Atlas oper-
ating system.

The XDS-940 operating system is described by [Lichtenberger and Pirtle
(1965)].

The THE operating system is covered by [Dijkstra (1968)] and by [McKeag
and Wilson (1976)].

The Venus system is described by [Liskov (1972)].
[Brinch-Hansen (1970)] and [Brinch-Hansen (1973)] discuss the RC 4000

system.
The Compatible Time-Sharing System (CTSS) is presented by [Corbato et al.

(1962)].
The MULTICS operating system is described by [Corbato and Vyssotsky

(1965)] and [Organick (1972)].
[Mealy et al. (1966)] presented the IBM/360. [Lett and Konigsford (1968)]

cover TSS/360.
CP/67 is described by [Meyer and Seawright (1970)] and [Parmelee et al.

(1972)].
DEC VMS is discussed by [Kenah et al. (1988)], and TENEX is described by

[Bobrow et al. (1972)].
A description of the Apple Macintosh appears in [Apple (1987)]. For more

information on these operating systems and their history, see [Freiberger and
Swaine (2000)].

The Mach operating system and its ancestor, the Accent operating system,
are described by [Rashid and Robertson (1981)]. Mach’s communication
system is covered by [Rashid (1986)], [Tevanian et al. (1989)], and [Accetta
et al. (1986)]. The Mach scheduler is described in detail by [Tevanian
et al. (1987a)] and [Black (1990)]. An early version of the Mach shared-
memory and memory-mapping system is presented by [Tevanian et al.
(1987b)]. A good resource describing the Mach project can be found at
http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html.

[McKeag and Wilson (1976)] discuss the MCP operating system for the
Burroughs computer family as well as the SCOPE operating system for the CDC
6600.

The Hydra system was described by [Wulf et al. (1981)]. The CAP system
was described by [Needham and Walker (1977)]. [Organick (1972)] discussed
the MULTICS ring-protection system.

http://scholar.google.com/scholar?hl/en&q=Georges Frah The Universal History of Computing
http://scholar.google.com/scholar?hl/en&q=Mark Frauenfelder The ComputerAn Illustrated History
http://scholar.google.com/scholar?hl/en&q=Raul Rojas and Ulf Hashagen The First ComputersHistory and Architectures
http://scholar.google.com/scholar?hl/en&q=Paul E Ceruzzi A History of Modern Computing
http://comjnl.oxfordjournals.org/content/4/3/222.abstract
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://doi.acm.org/10.1145/1463891.1463955
http://doi.acm.org/10.1145/363095.363143
http://scholar.google.com/scholar?hl/en&q=R M McKeag and R Wilson Studies in Operating Systems
http://doi.acm.org/10.1145/361268.361272
http://doi.acm.org/10.1145/362258.362278
http://scholar.google.com/scholar?hl/en&q=P Brinch Hansen Operating System Principles
http://doi.acm.org/10.1145/1460833.1460871
http://doi.acm.org/10.1145/1463891.1463912
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure
http://dx.doi.org/10.1147/sj.51.0003
http://doi.ieeecomputersociety.org/10.1109/AFIPS.1968.175
http://dx.doi.org/10.1147/sj.93.0199
http://dx.doi.org/10.1147/sj.112.0099
http://scholar.google.com/scholar?hl/en&q=L J Kenah and R E Goldenberg and S F Bate VAXVMS Internals and Data Structures
http://doi.acm.org/10.1145/361268.361271
http://scholar.google.com/scholar?hl/en&q= Apple Technical Introduction to the Macintosh Family
http://scholar.google.com/scholar?hl/en&q=Paul Freiberger and Michael Swaine Fire in the ValleyThe Making of the Personal Computer
http://doi.acm.org/10.1145/800216.806593
http://dl.acm.org/citation.cfm?id=324493.325071
http://dl.acm.org/citation.cfm?id=77139.77171
http://dl.acm.org/citation.cfm?doid=30401.30404
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html
http://scholar.google.com/scholar?hl/en&q=R M McKeag and R Wilson Studies in Operating Systems
http://scholar.google.com/scholar?hl/en&q=W A Wulf and R Levin and S P Harbison HydraCmmp An Experimental Computer System
http://doi.acm.org/10.1145/800214.806541
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure

22 Appendix A Influentia Operating Systems

Bibliography

[Accetta et al. (1986)] M. Accetta, R. Baron, W. Bolosky, D. B. Golub, R. Rashid,
A. Tevanian, and M. Young, “Mach: ANew Kernel Foundation for UNIX Devel-
opment”, Proceedings of the Summer USENIX Conference (1986), pages 93–112.

[Apple (1987)] Apple Technical Introduction to the Macintosh Family. Addison-
Wesley (1987).

[Black (1990)] D. L. Black, “Scheduling Support for Concurrency and Paral-
lelism in the Mach Operating System”, IEEE Computer, Volume 23, Number 5
(1990), pages 35–43.

[Bobrow et al. (1972)] D.G. Bobrow, J. D. Burchfiel, D. L.Murphy, andR. S. Tom-
linson, “TENEX, a Paged Time Sharing System for the PDP-10”, Communications
of the ACM, Volume 15, Number 3 (1972).

[Brinch-Hansen (1970)] P. Brinch-Hansen, “The Nucleus of a Multiprogram-
ming System”, Communications of the ACM, Volume 13, Number 4 (1970), pages
238–241 and 250.

[Brinch-Hansen (1973)] P. Brinch-Hansen, Operating System Principles, Prentice
Hall (1973).

[Ceruzzi (1998)] P. E. Ceruzzi, AHistory of Modern Computing, MIT Press (1998).

[Corbato and Vyssotsky (1965)] F. J. Corbato and V. A. Vyssotsky, “Introduction
and Overview of the MULTICS System”, Proceedings of the AFIPS Fall Joint
Computer Conference (1965), pages 185–196.

[Corbato et al. (1962)] F. J. Corbato, M. Merwin-Daggett, and R. C. Daley, “An
Experimental Time-Sharing System”, Proceedings of the AFIPS Fall Joint Computer
Conference (1962), pages 335–344.

[Dijkstra (1968)] E. W. Dijkstra, “The Structure of the THE Multiprogramming
System”, Communications of the ACM, Volume 11, Number 5 (1968), pages 341–
346.

[Frah (2001)] G. Frah, The Universal History of Computing, John Wiley and Sons
(2001).

[Frauenfelder (2005)] M. Frauenfelder, The Computer—An Illustrated History,
Carlton Books (2005).

[Freiberger and Swaine (2000)] P. Freiberger andM. Swaine, Fire in the Valley—
The Making of the Personal Computer, McGraw-Hill (2000).

[Howarth et al. (1961)] D. J. Howarth, R. B. Payne, and F. H. Sumner, “The
Manchester University Atlas Operating System, Part II: User’s Description”,
Computer Journal, Volume 4, Number 3 (1961), pages 226–229.

[Kenah et al. (1988)] L. J. Kenah, R. E. Goldenberg, and S. F. Bate, VAX/VMS
Internals and Data Structures, Digital Press (1988).

[Kilburn et al. (1961)] T. Kilburn, D. J. Howarth, R. B. Payne, and F. H. Sumner,
“The Manchester University Atlas Operating System, Part I: Internal Organiza-
tion”, Computer Journal, Volume 4, Number 3 (1961), pages 222–225.

http://dl.acm.org/citation.cfm?doid=30401.30404
http://dl.acm.org/citation.cfm?doid=30401.30404
http://scholar.google.com/scholar?hl/en&q= Apple Technical Introduction to the Macintosh Family
http://scholar.google.com/scholar?hl/en&q= Apple Technical Introduction to the Macintosh Family
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://doi.acm.org/10.1145/361268.361271
http://doi.acm.org/10.1145/361268.361271
http://doi.acm.org/10.1145/362258.362278
http://doi.acm.org/10.1145/362258.362278
http://scholar.google.com/scholar?hl/en&q=P Brinch Hansen Operating System Principles
http://scholar.google.com/scholar?hl/en&q=P Brinch Hansen Operating System Principles
http://scholar.google.com/scholar?hl/en&q=Paul E Ceruzzi A History of Modern Computing
http://scholar.google.com/scholar?hl/en&q=Paul E Ceruzzi A History of Modern Computing
http://doi.acm.org/10.1145/1463891.1463912
http://doi.acm.org/10.1145/1463891.1463912
http://doi.acm.org/10.1145/1460833.1460871
http://doi.acm.org/10.1145/1460833.1460871
http://doi.acm.org/10.1145/363095.363143
http://doi.acm.org/10.1145/363095.363143
http://scholar.google.com/scholar?hl/en&q=Georges Frah The Universal History of Computing
http://scholar.google.com/scholar?hl/en&q=Georges Frah The Universal History of Computing
http://scholar.google.com/scholar?hl/en&q=Mark Frauenfelder The ComputerAn Illustrated History
http://scholar.google.com/scholar?hl/en&q=Mark Frauenfelder The ComputerAn Illustrated History
http://scholar.google.com/scholar?hl/en&q=Paul Freiberger and Michael Swaine Fire in the ValleyThe Making of the Personal Computer
http://scholar.google.com/scholar?hl/en&q=Paul Freiberger and Michael Swaine Fire in the ValleyThe Making of the Personal Computer
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://scholar.google.com/scholar?hl/en&q=L J Kenah and R E Goldenberg and S F Bate VAXVMS Internals and Data Structures
http://scholar.google.com/scholar?hl/en&q=L J Kenah and R E Goldenberg and S F Bate VAXVMS Internals and Data Structures
http://comjnl.oxfordjournals.org/content/4/3/222.abstract
http://comjnl.oxfordjournals.org/content/4/3/222.abstract

Bibliography 23

[Lett and Konigsford (1968)] A. L. Lett and W. L. Konigsford, “TSS/360: A
Time-Shared Operating System”, Proceedings of the AFIPS Fall Joint Computer
Conference (1968), pages 15–28.

[Lichtenberger and Pirtle (1965)] W. W. Lichtenberger and M. W. Pirtle, “A
Facility for Experimentation in Man-Machine Interaction”, Proceedings of the
AFIPS Fall Joint Computer Conference (1965), pages 589–598.

[Liskov (1972)] B. H. Liskov, “TheDesign of the VenusOperating System”,Com-
munications of the ACM, Volume 15, Number 3 (1972), pages 144–149.

[McKeag and Wilson (1976)] R. M. McKeag and R. Wilson, Studies in Operating
Systems, Academic Press (1976).

[Mealy et al. (1966)] G. H. Mealy, B. I. Witt, and W. A. Clark, “The Functional
Structure of OS/360”, IBM Systems Journal, Volume 5, Number 1 (1966), pages
3–11.

[Meyer and Seawright (1970)] R. A. Meyer and L. H. Seawright, “A Virtual
Machine Time-Sharing System”, IBM Systems Journal, Volume 9, Number 3
(1970), pages 199–218.

[Needham and Walker (1977)] R. M. Needham and R. D. H. Walker, “The Cam-
bridge CAP Computer and Its Protection System”, Proceedings of the Sixth Sym-
posium on Operating System Principles (1977), pages 1–10.

[Organick (1972)] E. I. Organick, The Multics System: An Examination of Its Struc-
ture, MIT Press (1972).

[Parmelee et al. (1972)] R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. Hat-
field, “Virtual Storage and Virtual Machine Concepts”, IBM Systems Journal,
Volume 11, Number 2 (1972), pages 99–130.

[Rashid (1986)] R. F. Rashid, “From RIG to Accent to Mach: The Evolution of a
Network Operating System”, Proceedings of the ACM/IEEE Computer Society, Fall
Joint Computer Conference (1986), pages 1128–1137.

[Rashid and Robertson (1981)] R. Rashid and G. Robertson, “Accent: A Com-
munication-Oriented Network Operating System Kernel”, Proceedings of the
ACM Symposium on Operating System Principles (1981), pages 64–75.

[Rojas and Hashagen (2000)] R. Rojas and U. Hashagen, The First Computers—
History and Architectures, MIT Press (2000).

[Tevanian et al. (1987a)] A. Tevanian, Jr., R. F. Rashid, D. B. Golub, D. L. Black,
E. Cooper, andM.W. Young, “Mach Threads and the Unix Kernel: The Battle for
Control”, Proceedings of the Summer USENIX Conference (1987).

[Tevanian et al. (1987b)] A. Tevanian, Jr., R. F. Rashid,M.W. Young, D. B. Golub,
M. R. Thompson, W. Bolosky, and R. Sanzi, “A UNIX Interface for Shared
Memory and Memory Mapped Files Under Mach”, Technical report, Carnegie-
Mellon University (1987).

[Tevanian et al. (1989)] A. Tevanian, Jr., and B. Smith, “Mach: The Model for
Future Unix”, Byte (1989).

http://doi.ieeecomputersociety.org/10.1109/AFIPS.1968.175
http://doi.ieeecomputersociety.org/10.1109/AFIPS.1968.175
http://doi.acm.org/10.1145/1463891.1463955
http://doi.acm.org/10.1145/1463891.1463955
http://doi.acm.org/10.1145/361268.361272
http://doi.acm.org/10.1145/361268.361272
http://scholar.google.com/scholar?hl/en&q=R M McKeag and R Wilson Studies in Operating Systems
http://scholar.google.com/scholar?hl/en&q=R M McKeag and R Wilson Studies in Operating Systems
http://dx.doi.org/10.1147/sj.51.0003
http://dx.doi.org/10.1147/sj.51.0003
http://dx.doi.org/10.1147/sj.93.0199
http://dx.doi.org/10.1147/sj.93.0199
http://doi.acm.org/10.1145/800214.806541
http://doi.acm.org/10.1145/800214.806541
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure
http://dx.doi.org/10.1147/sj.112.0099
http://dx.doi.org/10.1147/sj.112.0099
http://dl.acm.org/citation.cfm?id=324493.325071
http://dl.acm.org/citation.cfm?id=324493.325071
http://doi.acm.org/10.1145/800216.806593
http://doi.acm.org/10.1145/800216.806593
http://scholar.google.com/scholar?hl/en&q=Raul Rojas and Ulf Hashagen The First ComputersHistory and Architectures
http://scholar.google.com/scholar?hl/en&q=Raul Rojas and Ulf Hashagen The First ComputersHistory and Architectures
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://dl.acm.org/citation.cfm?id=77139.77171
http://dl.acm.org/citation.cfm?id=77139.77171

24 Appendix A Influentia Operating Systems

[Wulf et al. (1981)] W. A. Wulf, R. Levin, and S. P. Harbison, Hydra/C.mmp: An
Experimental Computer System, McGraw-Hill (1981).

http://scholar.google.com/scholar?hl/en&q=W A Wulf and R Levin and S P Harbison HydraCmmp An Experimental Computer System
http://scholar.google.com/scholar?hl/en&q=W A Wulf and R Levin and S P Harbison HydraCmmp An Experimental Computer System

BAppendix

Windows 7

Updated by Dave Probert

The Microsoft Windows 7 operating system is a 32-/64-bit preemptive mul-
titasking client operating system for microprocessors implementing the Intel
IA-32 and AMD64 instruction set architectures (ISAs).Microsoft’s corresponding
server operating system, Windows Server 2008 R2, is based on the same code
as Windows 7 but supports only the 64-bit AMD64 and IA64 (Itanium) ISAs.
Windows 7 is the latest in a series of Microsoft operating systems based on
its NT code, which replaced the earlier systems based on Windows 95/98. In
this appendix, we discuss the key goals of Windows 7, the layered architecture
of the system that has made it so easy to use, the file system, the networking
features, and the programming interface.

CHAPTER OBJECTIVES

• Explore the principles underlying Windows 7’s design and the specific
components of the system.

• Provide a detailed discussion of the Windows 7 file system.

• Illustrate the networking protocols supported in Windows 7.

• Describe the interface available in Windows 7 to system and application
programmers.

• Describe the important algorithms implemented with Windows 7.

B.1 History

In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating
system, which was written in assembly language for single-processor Intel
80286 systems. In 1988, Microsoft decided to end the joint effort with IBM
and develop its own “new technology” (or NT) portable operating system to
support both the OS/2 and POSIX application-programming interfaces (APIs). In

1

2 Appendix B Windows 7

October 1988, Dave Cutler, the architect of the DEC VAX/VMS operating system,
was hired and given the charter of buildingMicrosoft’s new operating system.

Originally, the team planned to use the OS/2 API as NT’s native environ-
ment, but during development, NT was changed to use a new 32-bit Windows
API (called Win32), based on the popular 16-bit API used in Windows 3.0. The
first versions of NT were Windows NT 3.1 and Windows NT 3.1 Advanced
Server. (At that time, 16-bit Windows was at Version 3.1.) Windows NT Ver-
sion 4.0 adopted the Windows 95 user interface and incorporated Internet
web-server andweb-browser software. In addition, user-interface routines and
all graphics code were moved into the kernel to improve performance, with
the side effect of decreased system reliability. Although previous versions of
NT had been ported to other microprocessor architectures, the Windows 2000
version, released in February 2000, supported only Intel (and compatible)
processors due to marketplace factors. Windows 2000 incorporated signifi-
cant changes. It added Active Directory (an X.500-based directory service),
better networking and laptop support, support for plug-and-play devices, a
distributed file system, and support for more processors and more memory.

In October 2001, Windows XP was released as both an update to the Win-
dows 2000 desktop operating system and a replacement for Windows 95/98.
In 2002, the server edition of Windows XP became available (called Windows
.Net Server). Windows XP updated the graphical user interface (GUI) with
a visual design that took advantage of more recent hardware advances and
many new ease-of-use features. Numerous features were added to automat-
ically repair problems in applications and the operating system itself. As a
result of these changes, Windows XP provided better networking and device
experience (including zero-configuration wireless, instant messaging, stream-
ing media, and digital photography/video), dramatic performance improve-
ments for both the desktop and largemultiprocessors, and better reliability and
security than earlier Windows operating systems.

The long-awaited update to Windows XP, called Windows Vista, was
released in November 2006, but it was not well received. Although Win-
dows Vista included many improvements that later showed up in Windows
7, these improvements were overshadowed by Windows Vista’s perceived
sluggishness and compatibility problems. Microsoft responded to criticisms
of Windows Vista by improving its engineering processes and working more
closelywith themakers ofWindows hardware and applications. The resultwas
Windows 7, which was released in October 2009, along with corresponding
server editions of Windows. Among the significant engineering changes is the
increased use of execution tracing rather than counters or profiling to analyze
system behavior. Tracing runs constantly in the system, watching hundreds of
scenarios execute. When one of these scenarios fails, or when it succeeds but
does not perform well, the traces can be analyzed to determine the cause.

Windows 7 uses a client–server architecture (like Mach) to implement two
operating-system personalities, Win32 and POSIX, with user-level processes
called subsystems. (At one time, Windows also supported an OS/2 subsystem,
but it was removed in Windows XP due to the demise of OS/2.) The subsystem
architecture allows enhancements to be made to one operating-system person-
ality without affecting the application compatibility of the other. Although the
POSIX subsystem continues to be available for Windows 7, the Win32 API has
become very popular, and the POSIX APIs are used by only a few sites. The sub-
system approach continues to be interesting to study from an operating-system

B.2 Design Principles 3

perspective, but machine-virtualization technologies are now becoming the
dominant way of running multiple operating systems on a single machine.

Windows 7 is a multiuser operating system, supporting simultaneous
access through distributed services or through multiple instances of the GUI
via the Windows terminal services. The server editions of Windows 7 support
simultaneous terminal server sessions from Windows desktop systems. The
desktop editions of terminal server multiplex the keyboard, mouse, and mon-
itor between virtual terminal sessions for each logged-on user. This feature,
called fast user switching, allows users to preempt each other at the console of
a PC without having to log off and log on.

We noted earlier that some GUI implementation moved into kernel mode
in Windows NT 4.0. It started to move into user mode again with Windows
Vista, which included the desktop window manager (DWM) as a user-mode
process. DWM implements the desktop compositing ofWindows, providing the
WindowsAero interface look on top of theWindows DirectX graphic software.
DirectX continues to run in the kernel, as does the code implementing Win-
dows’ previouswindowing and graphicsmodels (Win32k and GDI).Windows
7 made substantial changes to the DWM, significantly reducing its memory
footprint and improving its performance.

Windows XP was the first version of Windows to ship a 64-bit version (for
the IA64 in 2001 and the AMD64 in 2005). Internally, the native NT file system
(NTFS) and many of the Win32 APIs have always used 64-bit integers where
appropriate—so the major extension to 64-bit in Windows XP was support
for large virtual addresses. However, 64-bit editions of Windows also support
much larger physical memories. By the time Windows 7 shipped, the AMD64
ISAhad become available on almost all CPUs from both Intel andAMD. In addi-
tion, by that time, physical memories on client systems frequently exceeded
the 4-GB limit of the IA-32. As a result, the 64-bit version of Windows 7 is now
commonly installed on larger client systems. Because the AMD64 architecture
supports high-fidelity IA-32 compatibility at the level of individual processes,
32- and 64-bit applications can be freely mixed in a single system.

In the rest of our description ofWindows 7,wewill not distinguish between
the client editions of Windows 7 and the corresponding server editions. They
are based on the same core components and run the same binary files for
the kernel and most drivers. Similarly, although Microsoft ships a variety of
different editions of each release to address different market price points, few
of the differences between editions are reflected in the core of the system. In
this chapter, we focus primarily on the core components of Windows 7.

B.2 Design Principles

Microsoft’s design goals for Windows included security, reliability, Windows
and POSIX application compatibility, high performance, extensibility, portabil-
ity, and international support. Some additional goals, energy efficiency and
dynamic device support, have recently been added to this list. Next, we discuss
each of these goals and how it is achieved in Windows 7.

B.2.1 Security

Windows 7 security goals requiredmore than just adherence to the design stan-
dards that had enabled Windows NT 4.0 to receive a C2 security classification

4 Appendix B Windows 7

from the U.S. government. (A C2 classification signifies a moderate level of
protection from defective software and malicious attacks. Classifications were
defined by the Department of Defense Trusted Computer System Evaluation
Criteria, also known as the Orange Book.) Extensive code review and testing
were combined with sophisticated automatic analysis tools to identify and
investigate potential defects that might represent security vulnerabilities.

Windows bases security on discretionary access controls. System objects,
including files, registry settings, and kernel objects, are protected by access-
control lists (ACLs) (see Section 13.4.2). ACLs are vulnerable to user and pro-
grammer errors, however, as well as to the most common attacks on consumer
systems, in which the user is tricked into running code, often while browsing
the web. Windows 7 includes a mechanism called integrity levels that acts as
a rudimentary capability system for controlling access. Objects and processes
are marked as having low, medium, or high integrity. Windows does not allow
a process to modify an object with a higher integrity level, no matter what the
setting of the ACL.

Other security measures include address-space layout randomization
(ASLR), nonexecutable stacks and heaps, and encryption and digital signature
facilities. ASLR thwarts many forms of attack by preventing small amounts of
injected code from jumping easily to code that is already loaded in a process as
part of normal operation. This safeguard makes it likely that a system under
attack will fail or crash rather than let the attacking code take control.

Recent chips from both Intel and AMD are based on the AMD64 architec-
ture, which allows memory pages to be marked so that they cannot contain
executable instruction code. Windows tries to mark stacks and memory heaps
so that they cannot be used to execute code, thus preventing attacks in which
a program bug allows a buffer to overflow and then is tricked into executing
the contents of the buffer. This technique cannot be applied to all programs,
because some rely on modifying data and executing it. A column labeled “data
execution prevention” in the Windows task manager shows which processes
are marked to prevent these attacks.

Windows uses encryption as part of common protocols, such as those used
to communicate securely with websites. Encryption is also used to protect
user files stored on disk from prying eyes. Windows 7 allows users to easily
encrypt virtually awhole disk, aswell as removable storagedevices such asUSB
flash drives, with a feature called BitLocker. If a computer with an encrypted
disk is stolen, the thieves will need very sophisticated technology (such as an
electron microscope) to gain access to any of the computer’s files. Windows
uses digital signatures to sign operating system binaries so it can verify that the
files were produced byMicrosoft or another known company. In some editions
of Windows, a code integrity module is activated at boot to ensure that all the
loaded modules in the kernel have valid signatures, assuring that they have
not been tampered with by an off-line attack.

B.2.2 Reliability

Windows matured greatly as an operating system in its first ten years, leading
toWindows 2000. At the same time, its reliability increased due to such factors
as maturity in the source code, extensive stress testing of the system, improved
CPU architectures, and automatic detection of many serious errors in drivers
from both Microsoft and third parties. Windows has subsequently extended

B.2 Design Principles 5

the tools for achieving reliability to include automatic analysis of source code
for errors, tests that include providing invalid or unexpected input parameters
(known as fuzzing) to detect validation failures, and an application version of
the driver verifier that applies dynamic checking for an extensive set of com-
mon user-mode programming errors. Other improvements in reliability have
resulted frommovingmore code out of the kernel and into user-mode services.
Windows provides extensive support for writing drivers in user mode. System
facilities that were once in the kernel and are now in user mode include the
Desktop Window Manager and much of the software stack for audio.

One of themost significant improvements in theWindows experience came
from adding memory diagnostics as an option at boot time. This addition is
especially valuable because so few consumer PCs have error-correcting mem-
ory. When bad RAM starts to drop bits here and there, the result is frustratingly
erratic behavior in the system. The availability of memory diagnostics has
greatly reduced the stress levels of users with bad RAM.

Windows 7 introduced a fault-tolerantmemory heap. The heap learns from
application crashes and automatically inserts mitigations into future execution
of an application that has crashed. This makes the application more reliable
even if it contains common bugs such as using memory after freeing it or
accessing past the end of the allocation.

Achieving high reliability in Windows is particularly challenging because
almost one billion computers run Windows. Even reliability problems that
affect only a small percentage of users still impact tremendous numbers of
human beings. The complexity of the Windows ecosystem also adds to the
challenges.Millions of instances of applications, drivers, and other software are
being constantly downloaded and run on Windows systems. Of course, there
is also a constant stream of malware attacks. As Windows itself has become
harder to attack directly, exploits increasingly target popular applications.

To copewith these challenges,Microsoft is increasingly relying on commu-
nications from customer machines to collect large amounts of data from the
ecosystem. Machines can be sampled to see how they are performing, what
software they are running, and what problems they are encountering. Cus-
tomers can send data to Microsoft when systems or software crashes or hangs.
This constant stream of data from customer machines is collected very care-
fully, with the users’ consent and without invading privacy. The result is that
Microsoft is building an ever-improving picture of what is happening in the
Windows ecosystem that allows continuous improvements through software
updates, as well as providing data to guide future releases of Windows.

B.2.3 Windows and POSIX Application Compatibility

As mentioned, Windows XP was both an update of Windows 2000 and a
replacement forWindows 95/98.Windows 2000 focused primarily on compat-
ibility for business applications. The requirements for Windows XP included a
much greater compatibility with the consumer applications that ran on Win-
dows 95/98. Application compatibility is difficult to achieve because many
applications check for a particular version of Windows, may depend to some
extent on the quirks of the implementation of APIs, may have latent application
bugs that were masked in the previous system, and so forth. Applications may

6 Appendix B Windows 7

also have been compiled for a different instruction set. Windows 7 implements
several strategies to run applications despite incompatibilities.

Like Windows XP, Windows 7 has a compatibility layer that sits between
applications and the Win32 APIs. This layer makes Windows 7 look (almost)
bug-for-bug compatible with previous versions of Windows. Windows 7, like
earlier NT releases, maintains support for running many 16-bit applications
using a thunking, or conversion, layer that translates 16-bit API calls into
equivalent 32-bit calls. Similarly, the 64-bit version of Windows 7 provides a
thunking layer that translates 32-bit API calls into native 64-bit calls.

TheWindows subsystemmodel allows multiple operating-system person-
alities to be supported.As noted earlier, although theAPImost commonly used
with Windows is the Win32 API, some editions of Windows 7 support a POSIX
subsystem. POSIX is a standard specification for UNIX that allowsmost available
UNIX-compatible software to compile and run without modification.

As a final compatibility measure, several editions of Windows 7 provide a
virtual machine that runs Windows XP insideWindows 7. This allows applica-
tions to get bug-for-bug compatibility with Windows XP.

B.2.4 High Performance

Windows was designed to provide high performance on desktop systems
(which are largely constrained by I/O performance), server systems (where the
CPU is often the bottleneck), and large multithreaded andmultiprocessor envi-
ronments (where locking performance and cache-line management are keys
to scalability). To satisfy performance requirements, NT used a variety of tech-
niques, such as asynchronous I/O, optimized protocols for networks, kernel-
based graphics rendering, and sophisticated caching of file-system data. The
memory-management and synchronization algorithms were designed with an
awareness of the performance considerations related to cache lines and multi-
processors.

Windows NT was designed for symmetrical multiprocessing (SMP); on a
multiprocessor computer, several threads can run at the same time, even in the
kernel. On each CPU, Windows NT uses priority-based preemptive scheduling
of threads. Except while executing in the kernel dispatcher or at interrupt
level, threads in any process running inWindows can be preempted by higher-
priority threads. Thus, the system responds quickly (see Chapter 5).

The subsystems that constitute Windows NT communicate with one
another efficiently through a local procedure call (LPC) facility that provides
high-performance message passing. When a thread requests a synchronous
service from another process through an LPC, the servicing thread is marked
ready, and its priority is temporarily boosted to avoid the scheduling delays
that would occur if it had to wait for threads already in the queue.

Windows XP further improved performance by reducing the code-path
length in critical functions, using better algorithms and per-processor data
structures, using memory coloring for non-uniform memory access (NUMA)
machines, and implementing more scalable locking protocols, such as queued
spinlocks. The new locking protocols helped reduce system bus cycles and
included lock-free lists and queues, atomic read–modify–write operations
(like interlocked increment), and other advanced synchronization techniques.

B.2 Design Principles 7

By the time Windows 7 was developed, several major changes had come
to computing. Client/server computing had increased in importance, so
an advanced local procedure call (ALPC) facility was introduced to provide
higher performance and more reliability than LPC. The number of CPUs and
the amount of physical memory available in the largest multiprocessors
had increased substantially, so quite a lot of effort was put into improving
operating-system scalability.

The implementation of SMP in Windows NT used bitmasks to represent
collections of processors and to identify, for example, which set of processors a
particular thread could be scheduled on. These bitmaskswere defined as fitting
within a single word of memory, limiting the number of processors supported
within a system to 64. Windows 7 added the concept of processor groups to
represent arbitrary numbers of CPUs, thus accommodating more CPU cores.
The number of CPU cores within single systems has continued to increase not
only because of more cores but also because of cores that support more than
one logical thread of execution at a time.

All these additional CPUs created a great deal of contention for the locks
used for scheduling CPUs andmemory.Windows 7 broke these locks apart. For
example, before Windows 7, a single lock was used by theWindows scheduler
to synchronize access to the queues containing threads waiting for events. In
Windows 7, each object has its own lock, allowing the queues to be accessed
concurrently. Also, many execution paths in the scheduler were rewritten to be
lock-free. This change resulted in good scalability performance for Windows
even on systems with 256 hardware threads.

Other changes are due to the increasing importance of support for par-
allel computing. For years, the computer industry has been dominated by
Moore’s Law, leading to higher densities of transistors that manifest them-
selves as faster clock rates for each CPU. Moore’s Law continues to hold true,
but limits have been reached that prevent CPU clock rates from increasing
further. Instead, transistors are being used to build more and more CPUs into
each chip. New programmingmodels for achieving parallel execution, such as
Microsoft’s Concurrency RunTime (ConcRT) and Intel’s Threading Building
Blocks (TBB), are being used to express parallelism in C++ programs. Where
Moore’s Law has governed computing for forty years, it now seems that
Amdahl’s Law, which governs parallel computing, will rule the future.

To support task-based parallelism, Windows 7 provides a new form of
user-mode scheduling (UMS). UMS allows programs to be decomposed into
tasks, and the tasks are then scheduled on the available CPUs by a scheduler
that operates in user mode rather than in the kernel.

The advent of multiple CPUs on the smallest computers is only part of
the shift taking place to parallel computing. Graphics processing units (GPUs)
accelerate the computational algorithms needed for graphics by using SIMD
architectures to execute a single instruction for multiple data at the same
time. This has given rise to the use of GPUs for general computing, not just
graphics. Operating-system support for software like OpenCL and CUDA is
allowing programs to take advantage of the GPUs. Windows supports use of
GPUs through software in its DirectX graphics support. This software, called
DirectCompute, allows programs to specify computational kernels using the
same HLSL (high-level shader language) programmingmodel used to program
the SIMD hardware for graphics shaders. The computational kernels run very

8 Appendix B Windows 7

quickly on the GPU and return their results to the main computation running
on the CPU.

B.2.5 Extensibility

Extensibility refers to the capacity of an operating system to keep up with
advances in computing technology. To facilitate change over time, the devel-
opers implementedWindows using a layered architecture. TheWindows exec-
utive runs in kernel mode and provides the basic system services and abstrac-
tions that support shared use of the system. On top of the executive, several
server subsystems operate in usermode. Among them are environmental sub-
systems that emulate different operating systems. Thus, programs written for
the Win32 APIs and POSIX all run onWindows in the appropriate environment.
Because of the modular structure, additional environmental subsystems can
be added without affecting the executive. In addition, Windows uses loadable
drivers in the I/O system, so new file systems, new kinds of I/O devices, and
new kinds of networking can be added while the system is running. Windows
uses a client–server model like the Mach operating system and supports dis-
tributed processing by remote procedure calls (RPCs) as defined by the Open
Software Foundation.

B.2.6 Portability

An operating system is portable if it can be moved from one CPU architec-
ture to another with few changes. Windows was designed to be portable. Like
the UNIX operating system, Windows is written primarily in C and C++. The
architecture-specific source code is relatively small, and there is very little
use of assembly code. Porting Windows to a new architecture mostly affects
the Windows kernel, since the user-mode code in Windows is almost exclu-
sively written to be architecture independent. To port Windows, the kernel’s
architecture-specific code must be ported, and sometimes conditional compi-
lation is needed in other parts of the kernel because of changes in major data
structures, such as the page-table format. The entire Windows system must
then be recompiled for the new CPU instruction set.

Operating systems are sensitive not only to CPU architecture but also to
CPU support chips and hardware boot programs. The CPU and support chips
are collectively known as a chipset. These chipsets and the associated boot code
determine how interrupts are delivered, describe the physical characteristics of
each system, and provide interfaces to deeper aspects of the CPU architecture,
such as error recovery and power management. It would be burdensome to
have to port Windows to each type of support chip as well as to each CPU
architecture. Instead, Windows isolates most of the chipset-dependent code in
a dynamic link library (DLL), called the hardware-abstraction layer (HAL), that
is loaded with the kernel. The Windows kernel depends on the HAL interfaces
rather than on the underlying chipset details. This allows the single set of
kernel anddriver binaries for a particular CPU to be usedwith different chipsets
simply by loading a different version of the HAL.

Over the years, Windows has been ported to a number of different CPU
architectures: Intel IA-32-compatible 32-bit CPUs, AMD64-compatible and IA64
64-bit CPUs, the DEC Alpha, and the MIPS and PowerPC CPUs. Most of these
CPU architectures failed in the market. When Windows 7 shipped, only the IA-

B.2 Design Principles 9

32 and AMD64 architectures were supported on client computers, along with
AMD64 and IA64 on servers.

B.2.7 International Support

Windows was designed for international and multinational use. It provides
support for different locales via the national-language-support (NLS) API.
The NLS API provides specialized routines to format dates, time, and money
in accordance with national customs. String comparisons are specialized to
account for varying character sets. UNICODE is Windows’s native character
code. Windows supports ANSI characters by converting them to UNICODE
characters before manipulating them (8-bit to 16-bit conversion). System text
strings are kept in resource files that can be replaced to localize the system
for different languages. Multiple locales can be used concurrently, which is
important to multilingual individuals and businesses.

B.2.8 Energy Efficiency

Increasing energy efficiency for computers causes batteries to last longer for
laptops and netbooks, saves significant operating costs for power and cooling
of data centers, and contributes to green initiatives aimed at lowering energy
consumption by businesses and consumers. For some time, Windows has
implemented several strategies for decreasing energy use. The CPUs aremoved
to lower power states—for example, by lowering clock frequency—whenever
possible. In addition, when a computer is not being actively used, Windows
may put the entire computer into a low-power state (sleep) or may even save
all of memory to disk and shut the computer off (hibernation). When the user
returns, the computer powers up and continues from its previous state, so the
user does not need to reboot and restart applications.

Windows 7 added some new strategies for saving energy. The longer a CPU
can stay unused, themore energy can be saved. Because computers are somuch
faster than human beings, a lot of energy can be saved just while humans are
thinking. The problem is that too many programs are constantly polling to
see what is happening in the system. A swarm of software timers are firing,
keeping the CPU from staying idle long enough to savemuch energy.Windows
7 extends CPU idle time by skipping clock ticks, coalescing software timers into
smaller numbers of events, and “parking” entire CPUs when systems are not
heavily loaded.

B.2.9 Dynamic Device Support

Early in the history of the PC industry, computer configurations were fairly
static. Occasionally, new devices might be plugged into the serial, printer, or
game ports on the back of a computer, but that was it. The next steps toward
dynamic configuration of PCs were laptop docks and PCMIA cards. A PC could
suddenly be connected to or disconnected from a whole set of peripherals. In
a contemporary PC, the situation has completely changed. PCs are designed to
let users to plug and unplug a huge host of peripherals all the time; external
disks, thumb drives, cameras, and the like are constantly coming and going.

Support for dynamic configuration of devices is continually evolving in
Windows. The system can automatically recognize devices when they are

10 Appendix B Windows 7

OS/2
applications

OS/2
subsystem

Win16
applications

MS-DOS
applications

Win18
VDM

window
manager

user mode

file system

I/O manager

MS-DOS
VDM

Win32
subsystem

POSIX
subsystem

logon
process

security
subsystem

authentication
package

security account
manager database

Win32
applications

POSIX
applications

graphic
device
drivers

kernel

executive

hardware abstraction layer

hardware

cache
manager

device
drivers

network
drivers

object
manager

security
reference
monitor

process
manager

plug and
play

manager

virtual
memory
manager

local
procedure

call
facility

Figure B.1 Windows block diagram.

plugged in and can find, install, and load the appropriate drivers—oftenwith-
out user intervention. When devices are unplugged, the drivers automatically
unload, and system execution continues without disrupting other software.

B.3 System Components

The architecture of Windows is a layered system of modules, as shown in Fig-
ure B.1. The main layers are the HAL, the kernel, and the executive, all of which
run in kernelmode, and a collection of subsystems and services that run in user
mode. The user-mode subsystems fall into two categories: the environmental
subsystems, which emulate different operating systems, and the protection
subsystems, which provide security functions. One of the chief advantages of
this type of architecture is that interactions between modules are kept simple.
The remainder of this section describes these layers and subsystems.

B.3.1 Hardware-Abstraction Layer

The HAL is the layer of software that hides hardware chipset differences
from upper levels of the operating system. The HAL exports a virtual hard-
ware interface that is used by the kernel dispatcher, the executive, and the
device drivers. Only a single version of each device driver is required for

B.3 System Components 11

each CPU architecture, no matter what support chips might be present. Device
drivers map devices and access them directly, but the chipset-specific details
of mapping memory, configuring I/O buses, setting up DMA, and coping with
motherboard-specific facilities are all provided by the HAL interfaces.

B.3.2 Kernel

The kernel layer ofWindows has fourmain responsibilities: thread scheduling,
low-level processor synchronization, interrupt and exception handling, and
switching between user mode and kernel mode. The kernel is implemented
in the C language, using assembly language only where absolutely necessary
to interface with the lowest level of the hardware architecture.

The kernel is organized according to object-oriented design principles. An
object type inWindows is a system-defineddata type that has a set of attributes
(data values) and a set of methods (for example, functions or operations). An
object is an instance of an object type. The kernel performs its job by using a
set of kernel objects whose attributes store the kernel data and whose methods
perform the kernel activities.

B.3.2.1 Kernel Dispatcher

The kernel dispatcher provides the foundation for the executive and the sub-
systems. Most of the dispatcher is never paged out of memory, and its execu-
tion is never preempted. Its main responsibilities are thread scheduling and
context switching, implementation of synchronization primitives, timer man-
agement, software interrupts (asynchronous and deferred procedure calls),
and exception dispatching.

B.3.2.2 Threads and Scheduling

Like many other modern operating systems, Windows uses processes and
threads for executable code. Each process has one or more threads, and each
threadhas its own scheduling state, including actual priority, processor affinity,
and CPU usage information.

There are six possible thread states: ready, standby, running, waiting,
transition, and terminated. Ready indicates that the thread is waiting to
run. The highest-priority ready thread is moved to the standby state, which
means it is the next thread to run. In a multiprocessor system, each processor
keeps one thread in a standby state. A thread is running when it is executing
on a processor. It runs until it is preempted by a higher-priority thread, until
it terminates, until its allotted execution time (quantum) ends, or until it waits
on a dispatcher object, such as an event signaling I/O completion. A thread is
in the waiting state when it is waiting for a dispatcher object to be signaled.
A thread is in the transition state while it waits for resources necessary for
execution; for example, it may be waiting for its kernel stack to be swapped in
from disk. A thread enters the terminated state when it finishes execution.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes: variable class and real-
time class. The variable class contains threads having priorities from 1 to 15,
and the real-time class contains threads with priorities ranging from 16 to 31.

12 Appendix B Windows 7

The dispatcher uses a queue for each scheduling priority and traverses the set
of queues from highest to lowest until it finds a thread that is ready to run. If a
thread has a particular processor affinity but that processor is not available, the
dispatcher skips past it and continues looking for a ready thread that is willing
to run on the available processor. If no ready thread is found, the dispatcher
executes a special thread called the idle thread. Priority class 0 is reserved for
the idle thread.

When a thread’s time quantum runs out, the clock interrupt queues a
quantum-end deferred procedure call (DPC) to the processor. Queuing the
DPC results in a software interrupt when the processor returns to normal
interrupt priority. The software interrupt causes the dispatcher to reschedule
the processor to execute the next available thread at the preempted thread’s
priority level.

The priority of the preempted thread may be modified before it is placed
back on the dispatcher queues. If the preempted thread is in the variable-
priority class, its priority is lowered. The priority is never lowered below the
base priority. Lowering the thread’s priority tends to limit the CPU consump-
tion of compute-bound threads versus I/O-bound threads. When a variable-
priority thread is released from a wait operation, the dispatcher boosts the
priority. The amount of the boost depends on the device for which the thread
was waiting. For example, a thread waiting for keyboard I/O would get a large
priority increase, whereas a thread waiting for a disk operation would get a
moderate one. This strategy tends to give good response times to interactive
threads using amouse andwindows. It also enables I/O-bound threads to keep
the I/O devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. In addition, the thread associatedwith the user’s
active GUI window receives a priority boost to enhance its response time.

Scheduling occurs when a thread enters the ready or wait state, when a
thread terminates, or when an application changes a thread’s priority or pro-
cessor affinity. If a higher-priority thread becomes readywhile a lower-priority
thread is running, the lower-priority thread is preempted. This preemption
gives the higher-priority thread preferential access to the CPU. Windows is not
a hard real-time operating system, however, because it does not guarantee that
a real-time thread will start to execute within a particular time limit; threads
are blocked indefinitely while DPCs and interrupt service routines (ISRs) are
running (as discussed further below).

Traditionally, operating-system schedulers used sampling to measure CPU
utilization by threads. The system timer would fire periodically, and the timer
interrupt handler would take note of what threadwas currently scheduled and
whether it was executing in user or kernel mode when the interrupt occurred.
This sampling technique was necessary because either the CPU did not have
a high-resolution clock or the clock was too expensive or unreliable to access
frequently. Although efficient, sampling was inaccurate and led to anomalies
such as incorporating interrupt servicing time as thread time and dispatching
threads that had run for only a fraction of the quantum. StartingwithWindows
Vista, CPU time in Windows has been tracked using the hardware timestamp
counter (TSC) included in recent processors. Using the TSC results in more
accurate accounting of CPU usage, and the scheduler will not preempt threads
before they have run for a full quantum.

B.3 System Components 13

B.3.2.3 Implementation of Synchronization Primitives

Key operating-system data structures are managed as objects using common
facilities for allocation, reference counting, and security. Dispatcher objects
control dispatching and synchronization in the system. Examples of these
objects include the following:

• The event object is used to record an event occurrence and to synchronize
this occurrence with some action. Notification events signal all waiting
threads, and synchronization events signal a single waiting thread.

• The mutant provides kernel-mode or user-mode mutual exclusion associ-
ated with the notion of ownership.

• The mutex, available only in kernel mode, provides deadlock-free mutual
exclusion.

• The semaphore object acts as a counter or gate to control the number of
threads that access a resource.

• The thread object is the entity that is scheduled by the kernel dispatcher.
It is associated with a process object, which encapsulates a virtual address
space. The thread object is signaled when the thread exits, and the process
object, when the process exits.

• The timer object is used to keep track of time and to signal timeouts when
operations take too long and need to be interrupted or when a periodic
activity needs to be scheduled.

Many of the dispatcher objects are accessed from user mode via an open
operation that returns a handle. The user-mode code polls or waits on handles
to synchronize with other threads as well as with the operating system (see
Section B.7.1).

B.3.2.4 Software Interrupts: Asynchronous and Deferred Procedure Calls

The dispatcher implements two types of software interrupts: asynchronous
procedure calls (APCs) and deferred procedure calls (DPCs, mentioned earlier).
An asynchronous procedure call breaks into an executing thread and calls
a procedure. APCs are used to begin execution of new threads, suspend or
resume existing threads, terminate threads or processes, deliver notification
that an asynchronous I/O has completed, and extract the contents of the CPU
registers from a running thread. APCs are queued to specific threads and allow
the system to execute both system and user code within a process’s context.
User-mode execution of an APC cannot occur at arbitrary times, but only when
the thread is waiting in the kernel and marked alertable.

DPCsare used to postpone interrupt processing. After handling all urgent
device-interrupt processing, the ISR schedules the remaining processing by
queuing a DPC. The associated software interruptwill not occur until the CPU is
next at a priority lower than the priority of all I/O device interrupts but higher
than the priority at which threads run. Thus, DPCs do not block other device
ISRs. In addition to deferring device-interrupt processing, the dispatcher uses

14 Appendix B Windows 7

DPCs to process timer expirations and to preempt thread execution at the end
of the scheduling quantum.

Execution of DPCs prevents threads from being scheduled on the current
processor and also keeps APCs from signaling the completion of I/O. This is
done so that completion of DPC routines does not take an extended amount
of time. As an alternative, the dispatcher maintains a pool of worker threads.
ISRs and DPCs may queue work items to the worker threads where they will be
executed using normal thread scheduling. DPC routines are restricted so that
they cannot take page faults (be paged out of memory), call system services,
or take any other action that might result in an attempt to wait for a dispatcher
object to be signaled. Unlike APCs, DPC routines make no assumptions about
what process context the processor is executing.

B.3.2.5 Exceptions and Interrupts

The kernel dispatcher also provides trap handling for exceptions and
interrupts generated by hardware or software. Windows defines several
architecture-independent exceptions, including:

• Memory-access violation

• Integer overflow

• Floating-point overflow or underflow

• Integer divide by zero

• Floating-point divide by zero

• Illegal instruction

• Data misalignment

• Privileged instruction

• Page-read error

• Access violation

• Paging file quota exceeded

• Debugger breakpoint

• Debugger single step

The trap handlers deal with simple exceptions. Elaborate exception handling
is performed by the kernel’s exception dispatcher. The exception dispatcher
creates an exception record containing the reason for the exception and finds
an exception handler to deal with it.

When an exception occurs in kernelmode, the exception dispatcher simply
calls a routine to locate the exception handler. If no handler is found, a fatal
system error occurs, and the user is left with the infamous “blue screen of
death” that signifies system failure.

Exception handling is more complex for user-mode processes, because
an environmental subsystem (such as the POSIX system) sets up a debugger
port and an exception port for every process it creates. (For details on ports,

B.3 System Components 15

see Section B.3.3.4.) If a debugger port is registered, the exception handler
sends the exception to the port. If the debugger port is not found or does not
handle that exception, the dispatcher attempts to find an appropriate exception
handler. If no handler is found, the debugger is called again to catch the error
for debugging. If no debugger is running, a message is sent to the process’s
exception port to give the environmental subsystem a chance to translate the
exception. For example, the POSIX environment translates Windows exception
messages into POSIX signals before sending them to the thread that caused
the exception. Finally, if nothing else works, the kernel simply terminates the
process containing the thread that caused the exception.

WhenWindows fails to handle an exception, it may construct a description
of the error that occurred and request permission from the user to send the
information back to Microsoft for further analysis. In some cases, Microsoft’s
automated analysis may be able to recognize the error immediately and sug-
gest a fix or workaround.

The interrupt dispatcher in the kernel handles interrupts by calling either
an interrupt service routine (ISR) supplied by a device driver or a kernel trap-
handler routine. The interrupt is represented by an interrupt object that con-
tains all the information needed to handle the interrupt. Using an interrupt
object makes it easy to associate interrupt-service routines with an interrupt
without having to access the interrupt hardware directly.

Different processor architectures have different types and numbers of inter-
rupts. For portability, the interrupt dispatcher maps the hardware interrupts
into a standard set. The interrupts are prioritized and are serviced in prior-
ity order. There are 32 interrupt request levels (IRQLs) in Windows. Eight are
reserved for use by the kernel; the remaining 24 represent hardware interrupts
via theHAL(althoughmost IA-32 systemsuse only 16). TheWindows interrupts
are defined in Figure B.2.

The kernel uses an interrupt-dispatch table to bind each interrupt level
to a service routine. In a multiprocessor computer, Windows keeps a separate
interrupt-dispatch table (IDT) for each processor, and each processor’s IRQL can
be set independently to mask out interrupts. All interrupts that occur at a level
equal to or less than the IRQLof a processor are blocked until the IRQL is lowered

interrupt levels types of interrupts

31

30

29

machine check or bus error

power fail

clock (used to keep track of time)

profile

traditional PC IRQ hardware interrupts

dispatch and deferred procedure call (DPC) (kernel)

asynchronous procedure call (APC)

passive

28

27

3–26

2

1

0

interprocessor notification (request another processor
to act; e.g., dispatch a process or update the TLB)

Figure B.2 Windows interrupt-request levels.

16 Appendix B Windows 7

by a kernel-level thread or by an ISR returning from interrupt processing.
Windows takes advantage of this property and uses software interrupts to
deliver APCs and DPCs, to perform system functions such as synchronizing
threads with I/O completion, to start thread execution, and to handle timers.

B.3.2.6 Switching between User-Mode and Kernel-Mode Threads

What the programmer thinks of as a thread in traditional Windows is actually
two threads: a user-mode thread (UT) and a kernel-mode thread (KT). Each
has its own stack, register values, and execution context. A UT requests a
system service by executing an instruction that causes a trap to kernel mode.
The kernel layer runs a trap handler that switches between the UT and the
corresponding KT. When a KT has completed its kernel execution and is ready
to switch back to the corresponding UT, the kernel layer is called to make the
switch to the UT, which continues its execution in user mode.

Windows 7 modifies the behavior of the kernel layer to support user-
mode scheduling of the UTs. User-mode schedulers in Windows 7 support
cooperative scheduling. A UT can explicitly yield to another UT by calling
the user-mode scheduler; it is not necessary to enter the kernel. User-mode
scheduling is explained in more detail in Section B.7.3.7.

B.3.3 Executive

The Windows executive provides a set of services that all environmental sub-
systems use. The services are grouped as follows: object manager, virtual
memory manager, process manager, advanced local procedure call facility, I/O
manager, cachemanager, security referencemonitor, plug-and-play and power
managers, registry, and booting.

B.3.3.1 Object Manager

For managing kernel-mode entities, Windows uses a generic set of interfaces
that are manipulated by user-mode programs. Windows calls these entities
objects, and the executive component that manipulates them is the object
manager. Examples of objects are semaphores, mutexes, events, processes,
and threads; all these are dispatcher objects. Threads can block in the ker-
nel dispatcher waiting for any of these objects to be signaled. The process,
thread, and virtual memory APIs use process and thread handles to identify
the process or thread to be operated on. Other examples of objects include
files, sections, ports, and various internal I/O objects. File objects are used to
maintain the open state of files and devices. Sections are used to map files.
Local-communication endpoints are implemented as port objects.

User-mode code accesses these objects using an opaque value called a
handle, which is returned by many APIs. Each process has a handle table
containing entries that track the objects used by the process. The system pro-
cess, which contains the kernel, has its own handle table, which is protected
from user code. The handle tables in Windows are represented by a tree struc-
ture, which can expand from holding 1,024 handles to holding over 16 million.
Kernel-mode code can access an object by using either a handle or a referenced
pointer.

B.3 System Components 17

Aprocess gets a handle by creating an object, by opening an existing object,
by receiving a duplicated handle from another process, or by inheriting a
handle from the parent process. When a process exits, all its open handles are
implicitly closed. Since the object manager is the only entity that generates
object handles, it is the natural place to check security. The object manager
checks whether a process has the right to access an object when the process
tries to open the object. The object manager also enforces quotas, such as the
maximum amount of memory a process may use, by charging a process for the
memory occupied by all its referenced objects and refusing to allocate more
memory when the accumulated charges exceed the process’s quota.

The object manager keeps track of two counts for each object: the number
of handles for the object and the number of referenced pointers. The handle
count is the number of handles that refer to the object in the handle tables
of all processes, including the system process that contains the kernel. The
referenced pointer count is incremented whenever a new pointer is needed
by the kernel and decremented when the kernel is done with the pointer. The
purpose of these reference counts is to ensure that an object is not freed while
it is still referenced by either a handle or an internal kernel pointer.

The object manager maintains the Windows internal name space. In con-
trast to UNIX, which roots the system name space in the file system, Windows
uses an abstract name space and connects the file systems as devices. Whether
a Windows object has a name is up to its creator. Processes and threads are
created without names and referenced either by handle or through a separate
numerical identifier. Synchronization events usually have names, so that they
can be opened by unrelated processes. A name can be either permanent or
temporary. A permanent name represents an entity, such as a disk drive, that
remains even if no process is accessing it. A temporary name exists only while
a process holds a handle to the object. The object manager supports directories
and symbolic links in the name space. As an example, MS-DOS drive letters
are implemented using symbolic links; ∖Global??∖C: is a symbolic link to the
device object ∖Device∖HarddiskVolume2, representing a mounted file-system
volume in the ∖Device directory.

Each object, asmentioned earlier, is an instance of an object type. The object
type specifies how instances are to be allocated, how the data fields are to
be defined, and how the standard set of virtual functions used for all objects
are to be implemented. The standard functions implement operations such as
mapping names to objects, closing and deleting, and applying security checks.
Functions that are specific to a particular type of object are implemented by
system services designed to operate on that particular object type, not by the
methods specified in the object type.

The parse() function is the most interesting of the standard object func-
tions. It allows the implementation of an object. The file systems, the registry
configuration store, and GUI objects are the most notable users of parse func-
tions to extend the Windows name space.

Returning to our Windows naming example, device objects used to rep-
resent file-system volumes provide a parse function. This allows a name like
∖Global??∖C:∖foo∖bar.doc to be interpreted as the file ∖foo∖bar.doc on the
volume represented by the device object HarddiskVolume2. We can illustrate
how naming, parse functions, objects, and handles work together by looking
at the steps to open the file in Windows:

18 Appendix B Windows 7

1. An application requests that a file named C:∖foo∖bar.doc be opened.

2. The object manager finds the device object HarddiskVolume2, looks up
the parse procedure IopParseDevice from the object’s type, and invokes
it with the file’s name relative to the root of the file system.

3. IopParseDevice() allocates a file object and passes it to the file system,
which fills in the details of how to access C:∖foo∖bar.doc on the volume.

4. When the file system returns, IopParseDevice() allocates an entry for
the file object in the handle table for the current process and returns the
handle to the application.

If the file cannot successfully be opened, IopParseDevice() deletes the
file object it allocated and returns an error indication to the application.

B.3.3.2 Virtual Memory Manager

The executive component that manages the virtual address space, physi-
cal memory allocation, and paging is the virtual memory (VM) manager.
The design of the VM manager assumes that the underlying hardware sup-
ports virtual-to-physicalmapping, a pagingmechanism, and transparent cache
coherence on multiprocessor systems, as well as allowing multiple page-table
entries to map to the same physical page frame. The VM manager in Windows
uses a page-based management scheme with page sizes of 4 KB and 2 MB on
AMD64 and IA-32-compatible processors and 8 KB on the IA64. Pages of data
allocated to a process that are not in physical memory are either stored in the
paging file on disk or mapped directly to a regular file on a local or remote
file system. A page can also be marked zero-fill-on-demand, which initializes
the page with zeros before it is allocated, thus erasing the previous contents.

On IA-32 processors, each process has a 4-GB virtual address space. The
upper 2 GB are mostly identical for all processes and are used by Windows in
kernel mode to access the operating-system code and data structures. For the
AMD64 architecture, Windows provides a 8-TB virtual address space for user
mode out of the 16 EB supported by existing hardware for each process.

Key areas of the kernel-mode region that are not identical for all processes
are the self-map, hyperspace, and session space. The hardware references a
process’s page table using physical page-frame numbers, and the page table
self-map makes the contents of the process’s page table accessible using virtual
addresses. Hyperspace maps the current process’s working-set information
into the kernel-mode address space. Session space is used to share an instance
of the Win32 and other session-specific drivers among all the processes in
the same terminal-server (TS) session. Different TS sessions share different
instances of these drivers, yet they are mapped at the same virtual addresses.
The lower, user-mode region of virtual address space is specific to each process
and accessible by both user- and kernel-mode threads.

The Windows VM manager uses a two-step process to allocate virtual
memory. The first step reserves one or more pages of virtual addresses in the
process’s virtual address space. The second step commits the allocation by
assigning virtualmemory space (physicalmemory or space in the paging files).
Windows limits the amount of virtual memory space a process consumes by
enforcing a quota on committedmemory. Aprocess decommits memory that it

B.3 System Components 19

is no longer using to free up virtual memory space for use by other processes.
The APIs used to reserve virtual addresses and commit virtual memory take a
handle on a process object as a parameter. This allows one process to control the
virtual memory of another. Environmental subsystemsmanage the memory of
their client processes in this way.

Windows implements shared memory by defining a section object. After
getting a handle to a section object, a processmaps thememory of the section to
a range of addresses, called a view. A process can establish a view of the entire
section or only the portion it needs. Windows allows sections to be mapped
not just into the current process but into any process for which the caller has a
handle.

Sections can be used in many ways. A section can be backed by disk space
either in the system-paging file or in a regular file (a memory-mapped file). A
section can be based, meaning that it appears at the same virtual address for all
processes attempting to access it. Sections can also represent physical memory,
allowing a 32-bit process to access more physical memory than can fit in its
virtual address space. Finally, the memory protection of pages in the section
can be set to read-only, read-write, read-write-execute, execute-only, no access,
or copy-on-write.

Let’s look more closely at the last two of these protection settings:

• A no-access page raises an exception if accessed. The exception can be
used, for example, to check whether a faulty program iterates beyond
the end of an array or simply to detect that the program attempted to
access virtual addresses that are not committed to memory. User- and
kernel-mode stacks use no-access pages as guard pages to detect stack
overflows. Another use is to look for heap buffer overruns. Both the user-
modememory allocator and the special kernel allocator used by the device
verifier can be configured to map each allocation onto the end of a page,
followed by a no-access page to detect programming errors that access
beyond the end of an allocation.

• The copy-on-write mechanism enables the VM manager to use physical
memorymore efficiently.When two processes want independent copies of
data from the same section object, the VM manager places a single shared
copy into virtualmemory and activates the copy-on-write property for that
region of memory. If one of the processes tries to modify data in a copy-
on-write page, the VM manager makes a private copy of the page for the
process.

The virtual address translation in Windows uses a multilevel page table.
For IA-32 and AMD64 processors, each process has a page directory that con-
tains 512 page-directory entries (PDEs) 8 bytes in size. Each PDE points to a PTE
table that contains 512page-table entries (PTEs) 8 bytes in size. Each PTE points
to a 4-KB page frame in physicalmemory. For a variety of reasons, the hardware
requires that the page directories or PTE tables at each level of amultilevel page
table occupy a single page. Thus, the number of PDEs or PTEs that fit in a page
determine how many virtual addresses are translated by that page. See Figure
B.3 for a diagram of this structure.

The structure described so far can be used to represent only 1 GB of virtual
address translation. For IA-32, a second page-directory level is needed, con-

20 Appendix B Windows 7

page table
entry 0

page
table 0

page table
entry 0

4-KB
page

4-KB
page

4-KB
page

4-KB
page

page
table 511

page table
entry 511

page table
entry 511

page
directory
entry 0

page
directory

0

page
directory
entry 0

page
directory

3

page
directory
entry 511

page
directory
entry 511

pointer 0 pointer 1 pointer 2 pointer 3

page directory pointer table

Figure B.3 Page-table layout.

taining only four entries, as shown in the diagram. On 64-bit processors, more
levels are needed. For AMD64, Windows uses a total of four full levels. The
total size of all page-table pages needed to fully represent even a 32-bit virtual
address space for a process is 8 MB. The VM manager allocates pages of PDEs
and PTEs as needed and moves page-table pages to disk when not in use. The
page-table pages are faulted back into memory when referenced.

We next consider how virtual addresses are translated into physical
addresses on IA-32-compatible processors. A 2-bit value can represent the
values 0, 1, 2, 3. A 9-bit value can represent values from 0 to 511; a 12-bit value,
values from 0 to 4,095. Thus, a 12-bit value can select any byte within a 4-KB
page of memory. A 9-bit value can represent any of the 512 PDEs or PTEs in a
page directory or PTE-table page. As shown in Figure B.4, translating a virtual
address pointer to a byte address in physical memory involves breaking the
32-bit pointer into four values, starting from the most significant bits:

• Two bits are used to index into the four PDEs at the top level of the page
table. The selected PDE will contain the physical page number for each of
the four page-directory pages that map 1 GB of the address space.

PTR PTE indexPDE index page offset

31 0

Figure B.4 Virtual-to-physical address translation on IA-32.

B.3 System Components 21

• Nine bits are used to select another PDE, this time from a second-level page
directory. This PDE will contain the physical page numbers of up to 512
PTE-table pages.

• Nine bits are used to select one of 512 PTEs from the selected PTE-table
page. The selected PTE will contain the physical page number for the byte
we are accessing.

• Twelve bits are used as the byte offset into the page. The physical address
of the byte we are accessing is constructed by appending the lowest 12 bits
of the virtual address to the end of the physical page number we found in
the selected PTE.

The number of bits in a physical addressmay be different from the number
of bits in a virtual address. In the original IA-32 architecture, the PTE and PDE
were 32-bit structures that had room for only 20 bits of physical page number,
so the physical address size and the virtual address size were the same. Such
systems could address only 4 GB of physical memory. Later, the IA-32 was
extended to the larger 64-bit PTE size used today, and the hardware supported
24-bit physical addresses. These systems could support 64 GB and were used
on server systems. Today, all Windows servers are based on either the AMD64
or the IA64 and support very, very large physical addresses—more thanwe can
possibly use. (Of course, once upon a time 4 GB seemed optimistically large for
physical memory.)

To improve performance, the VM manager maps the page-directory and
PTE-table pages into the same contiguous region of virtual addresses in every
process. This self-map allows the VMmanager to use the same pointer to access
the current PDE or PTE corresponding to a particular virtual address no matter
what process is running. The self-map for the IA-32 takes a contiguous 8-MB
region of kernel virtual address space; the AMD64 self-map occupies 512 GB.
Although the self-map occupies significant address space, it does not require
any additional virtual memory pages. It also allows the page table’s pages to
be automatically paged in and out of physical memory.

In the creation of a self-map, one of the PDEs in the top-level page directory
refers to the page-directory page itself, forming a “loop” in the page-table
translations. The virtual pages are accessed if the loop is not taken, the PTE-table
pages are accessed if the loop is taken once, the lowest-level page-directory
pages are accessed if the loop is taken twice, and so forth.

The additional levels of page directories used for 64-bit virtual memory are
translated in the same way except that the virtual address pointer is broken up
into even more values. For the AMD64, Windows uses four full levels, each of
which maps 512 pages, or 9+9+9+9+12 = 48 bits of virtual address.

To avoid the overhead of translating every virtual address by looking up
the PDE and PTE, processors use translation look-aside buffer (TLB) hardware,
which contains an associativememory cache formapping virtual pages to PTEs.
The TLB is part of thememory-management unit (MMU) within each processor.
The MMU needs to “walk” (navigate the data structures of) the page table in
memory only when a needed translation is missing from the TLB.

The PDEs and PTEs contain more than just physical page numbers. They
also have bits reserved for operating-system use and bits that control how the
hardware uses memory, such as whether hardware caching should be used for

22 Appendix B Windows 7

each page. In addition, the entries specify what kinds of access are allowed for
both user and kernel modes.

APDE can also be marked to say that it should function as a PTE rather than
a PDE. On a IA-32, the first 11 bits of the virtual address pointer select a PDE in
the first two levels of translation. If the selected PDE is marked to act as a PTE,
then the remaining 21 bits of the pointer are used as the offset of the byte. This
results in a 2-MB size for the page. Mixing and matching 4-KB and 2-MB page
sizeswithin the page table is easy for the operating systemand can significantly
improve the performance of some programs by reducing how often the MMU
needs to reload entries in the TLB, since one PDE mapping 2 MB replaces 512
PTEs each mapping 4 KB.

Managing physical memory so that 2-MB pages are available when needed
is difficult, however, as they may continually be broken up into 4-KB pages,
causing external fragmentation of memory. Also, the large pages can result
in very significant internal fragmentation. Because of these problems, it is
typically only Windows itself, along with large server applications, that use
large pages to improve the performance of the TLB. They are better suited to
do so because operating-system and server applications start running when
the system boots, before memory has become fragmented.

Windows manages physical memory by associating each physical page
with one of seven states: free, zeroed, modified, standby, bad, transition, or
valid.

• A free page is a page that has no particular content.

• A zeroed page is a free page that has been zeroed out and is ready for
immediate use to satisfy zero-on-demand faults.

• Amodified page has beenwritten by a process andmust be sent to the disk
before it is allocated for another process.

• A standby page is a copy of information already stored on disk. Standby
pages may be pages that were not modified, modified pages that have
already been written to the disk, or pages that were prefetched because
they are expected to be used soon.

• A bad page is unusable because a hardware error has been detected.

• A transition page is on its way in from disk to a page frame allocated in
physical memory.

• A valid page is part of the working set of one or more processes and is
contained within these processes’ page tables.

While valid pages are contained in processes’ page tables, pages in other
states are kept in separate lists according to state type. The lists are constructed
by linking the corresponding entries in the page frame number (PFN) database,
which includes an entry for each physical memory page. The PFN entries also
include information such as reference counts, locks, and NUMA information.
Note that the PFN database represents pages of physical memory, whereas the
PTEs represent pages of virtual memory.

When the valid bit in a PTE is zero, hardware ignores all the other bits,
and the VMmanager can define them for its own use. Invalid pages can have a
number of states represented by bits in the PTE. Page-file pages that have never

B.3 System Components 23

63

V

32

protT P page
file

31 0

page file offset

Figure B.5 Page-file page-table entry. The valid bit is zero.

been faulted in are marked zero-on-demand. Pages mapped through section
objects encode a pointer to the appropriate section object. PTEs for pages that
have beenwritten to the page file contain enough information to locate the page
on disk, and so forth. The structure of the page-file PTE is shown in Figure B.5.
The T, P, and V bits are all zero for this type of PTE. The PTE includes 5 bits for
page protection, 32 bits for page-file offset, and 4 bits to select the paging file.
There are also 20 bits reserved for additional bookkeeping.

Windows uses a per-working-set, least-recently-used (LRU) replacement
policy to take pages from processes as appropriate. When a process is started,
it is assigned a default minimum working-set size. The working set of each
process is allowed to grow until the amount of remaining physical memory
starts to run low, at which point the VM manager starts to track the age of
the pages in each working set. Eventually, when the available memory runs
critically low, the VM manager trims the working set to remove older pages.

How old a page is depends not on how long it has been in memory but on
when it was last referenced. This is determined by periodically making a pass
through the working set of each process and incrementing the age for pages
that have not been marked in the PTE as referenced since the last pass. When it
becomes necessary to trim the working sets, the VMmanager uses heuristics to
decide howmuch to trim from each process and then removes the oldest pages
first.

A process can have its working set trimmed even when plenty of memory
is available, if it was given a hard limit on howmuch physical memory it could
use. In Windows 7, the VM manager will also trim processes that are growing
rapidly, even if memory is plentiful. This policy change significantly improves
the responsiveness of the system for other processes.

Windows tracks working sets not only for user-mode processes but also
for the system process, which includes all the pageable data structures and
code that run in kernel mode. Windows 7 created additional working sets for
the system process and associated them with particular categories of kernel
memory; the file cache, kernel heap, and kernel code now have their own
working sets. The distinct working sets allow the VM manager to use different
policies to trim the different categories of kernel memory.

24 Appendix B Windows 7

The VM manager does not fault in only the page immediately needed.
Research shows that the memory referencing of a thread tends to have a
locality property. That is, when a page is used, it is likely that adjacent pages
will be referenced in the near future. (Think of iterating over an array or
fetching sequential instructions that form the executable code for a thread.)
Because of locality, when the VM manager faults in a page, it also faults in a
few adjacent pages. This prefetching tends to reduce the total number of page
faults and allows reads to be clustered to improve I/O performance.

In addition to managing committed memory, the VM manager manages
each process’s reserved memory, or virtual address space. Each process has an
associated tree that describes the ranges of virtual addresses in use and what
the uses are. This allows the VMmanager to fault in page-table pages as needed.
If the PTE for a faulting address is uninitialized, the VM manager searches for
the address in the process’s tree of virtual address descriptors (VADs) and uses
this information to fill in the PTE and retrieve the page. In some cases, a PTE-
table page itself may not exist; such a pagemust be transparently allocated and
initialized by the VM manager. In other cases, the page may be shared as part
of a section object, and the VADwill contain a pointer to that section object. The
section object contains information on how to find the shared virtual page so
that the PTE can be initialized to point at it directly.

B.3.3.3 Process Manager

The Windows process manager provides services for creating, deleting, and
using processes, threads, and jobs. It has no knowledge about parent–child
relationships or process hierarchies; those refinements are left to the particular
environmental subsystem that owns the process. The process manager is also
not involved in the scheduling of processes, other than setting the priorities and
affinities in processes and threads when they are created. Thread scheduling
takes place in the kernel dispatcher.

Each process contains one or more threads. Processes themselves can be
collected into larger units called job objects. The use of job objects allows
limits to be placed on CPU usage, working-set size, and processor affinities
that control multiple processes at once. Job objects are used to manage large
data-center machines.

An example of process creation in the Win32 environment is as follows:

1. AWin32 application calls CreateProcess().

2. Amessage is sent to the Win32 subsystem to notify it that the process is
being created.

3. CreateProcess() in the original process then calls an API in the process
manager of the NT executive to actually create the process.

4. The process manager calls the object manager to create a process object
and returns the object handle to Win32.

5. Win32 calls the process manager again to create a thread for the process
and returns handles to the new process and thread.

The Windows APIs for manipulating virtual memory and threads and
for duplicating handles take a process handle, so subsystems can perform

B.3 System Components 25

operations on behalf of a new process without having to execute directly in
the new process’s context. Once a new process is created, the initial thread
is created, and an asynchronous procedure call is delivered to the thread
to prompt the start of execution at the user-mode image loader. The loader
is in ntdll.dll, which is a link library automatically mapped into every
newly created process. Windows also supports a UNIX fork() style of process
creation in order to support the POSIX environmental subsystem. Although the
Win32 environment calls the process manager directly from the client process,
POSIX uses the cross-process nature of the Windows APIs to create the new
process from within the subsystem process.

The process manager relies on the asynchronous procedure calls (APCs)
implemented by the kernel layer. APCs are used to initiate thread execution,
suspend and resume threads, access thread registers, terminate threads and
processes, and support debuggers.

The debugger support in the processmanager includes the APIs to suspend
and resume threads and to create threads that begin in suspendedmode. There
are also process-manager APIs that get and set a thread’s register context and
access another process’s virtual memory. Threads can be created in the current
process; they can also be injected into another process. The debugger makes
use of thread injection to execute code within a process being debugged.

While running in the executive, a thread can temporarily attach to a dif-
ferent process. Thread attach is used by kernel worker threads that need to
execute in the context of the process originating a work request. For example,
the VM manager might use thread attach when it needs access to a process’s
working set or page tables, and the I/O manager might use it in updating the
status variable in a process for asynchronous I/O operations.

The process manager also supports impersonation. Each thread has an
associated security token. When the login process authenticates a user, the
security token is attached to the user’s process and inherited by its child pro-
cesses. The token contains the security identity (SID) of the user, the SIDs of the
groups the user belongs to, the privileges the user has, and the integrity level
of the process. By default, all threads within a process share a common token,
representing the user and the application that started the process. However, a
thread running in a process with a security token belonging to one user can set
a thread-specific token belonging to another user to impersonate that user.

The impersonation facility is fundamental to the client–server RPC model,
where services must act on behalf of a variety of clients with different security
IDs. The right to impersonate a user is most often delivered as part of an RPC
connection from a client process to a server process. Impersonation allows the
server to access system services as if itwere the client in order to access or create
objects and files on behalf of the client. The server process must be trustworthy
andmust be carefullywritten to be robust against attacks. Otherwise, one client
could take over a server process and then impersonate any user who made a
subsequent client request.

B.3.3.4 Facilities for Client–Server Computing

The implementation of Windows uses a client–server model throughout. The
environmental subsystems are servers that implement particular operating-
system personalities. Many other services, such as user authentication, net-

26 Appendix B Windows 7

work facilities, printer spooling, web services, network file systems, and plug-
and-play, are also implemented using this model. To reduce the memory foot-
print, multiple services are often collected into a few processes running the
svchost.exe program. Each service is loaded as a dynamic-link library (DLL),
which implements the service by relying on the user-mode thread-pool facili-
ties to share threads and wait for messages (see Section B.3.3.3).

The normal implementation paradigm for client–server computing is to
use RPCs to communicate requests. TheWin32API supports a standard RPC pro-
tocol, as described in Section B.6.2.7. RPC usesmultiple transports (for example,
namedpipes and TCP/IP) and can be used to implement RPCs between systems.
When an RPC always occurs between a client and server on the local system,
the advanced local procedure call facility (ALPC) can be used as the transport.
At the lowest level of the system, in the implementation of the environmental
systems, and for services that must be available in the early stages of booting,
RPC is not available. Instead, native Windows services use ALPC directly.

ALPC is a message-passing mechanism. The server process publishes a
globally visible connection-port object. When a client wants services from a
subsystem or service, it opens a handle to the server’s connection-port object
and sends a connection request to the port. The server creates a channel and
returns a handle to the client. The channel consists of a pair of private com-
munication ports: one for client-to-server messages and the other for server-
to-client messages. Communication channels support a callback mechanism,
so the client and server can accept requests when they would normally be
expecting a reply.

When an ALPC channel is created, one of threemessage-passing techniques
is chosen.

1. The first technique is suitable for small tomediummessages (up to 63 KB).
In this case, the port’s message queue is used as intermediate storage, and
the messages are copied from one process to the other.

2. The second technique is for larger messages. In this case, a shared-
memory section object is created for the channel. Messages sent through
the port’s message queue contain a pointer and size information referring
to the section object. This avoids the need to copy large messages. The
sender places data into the shared section, and the receiver views them
directly.

3. The third technique uses APIs that read and write directly into a process’s
address space. ALPC provides functions and synchronization so that a
server can access the data in a client. This technique is normally used
by RPC to achieve higher performance for specific scenarios.

The Win32 windowmanager uses its own form of message passing, which
is independent of the executive ALPC facilities.When a client asks for a connec-
tion that uses window-manager messaging, the server sets up three objects: (1)
a dedicated server thread to handle requests, (2) a 64-KB shared section object,
and (3) an event-pair object. An event-pair object is a synchronization object
used by theWin32 subsystem to provide notificationwhen the client thread has
copied a message to the Win32 server, or vice versa. The section object is used
to pass the messages, and the event-pair object provides synchronization.

B.3 System Components 27

Window-manager messaging has several advantages:

• The section object eliminates message copying, since it represents a region
of shared memory.

• The event-pair object eliminates the overhead of using the port object to
pass messages containing pointers and lengths.

• The dedicated server thread eliminates the overhead of determiningwhich
client thread is calling the server, since there is one server thread per client
thread.

• The kernel gives scheduling preference to these dedicated server threads
to improve performance.

B.3.3.5 I/O Manager

The I/O manager is responsible for managing file systems, device drivers, and
network drivers. It keeps track of which device drivers, filter drivers, and file
systems are loaded, and it also manages buffers for I/O requests. It works
with the VM manager to provide memory-mapped file I/O and controls the
Windows cache manager, which handles caching for the entire I/O system. The
I/O manager is fundamentally asynchronous, providing synchronous I/O by
explicitly waiting for an I/O operation to complete. The I/O manager provides
several models of asynchronous I/O completion, including setting of events,
updating of a status variable in the calling process, deliveryof APCs to initiating
threads, and use of I/O completion ports,which allow a single thread to process
I/O completions from many other threads.

Device drivers are arranged in a list for each device (called a driver or
I/O stack). A driver is represented in the system as a driver object. Because
a single driver can operate on multiple devices, the drivers are represented in
the I/O stack by a device object, which contains a link to the driver object.
The I/O manager converts the requests it receives into a standard form called
an I/O request packet (IRP). It then forwards the IRP to the first driver in the
targeted I/O stack for processing. After a driver processes the IRP, it calls the
I/O manager either to forward the IRP to the next driver in the stack or, if all
processing is finished, to complete the operation represented by the IRP.

The I/O request may be completed in a context different from the one in
which it was made. For example, if a driver is performing its part of an I/O
operation and is forced to block for an extended time, it may queue the IRP to
a worker thread to continue processing in the system context. In the original
thread, the driver returns a status indicating that the I/O request is pending
so that the thread can continue executing in parallel with the I/O operation.
An IRP may also be processed in interrupt-service routines and completed in
an arbitrary process context. Because some final processing may need to take
place in the context that initiated the I/O, the I/O manager uses an APC to do
final I/O-completion processing in the process context of the originating thread.

The I/O stack model is very flexible. As a driver stack is built, vari-
ous drivers have the opportunity to insert themselves into the stack as filte
drivers. Filter drivers can examine and potentially modify each I/O operation.
Mount management, partition management, and disk striping and mirroring
are all examples of functionality implemented using filter drivers that execute

28 Appendix B Windows 7

beneath the file system in the stack. File-system filter drivers execute above
the file system and have been used to implement functionalities such as hier-
archical storage management, single instancing of files for remote boot, and
dynamic format conversion. Third parties also use file-system filter drivers to
implement virus detection.

Device drivers for Windows are written to the Windows Driver Model
(WDM) specification. This model lays out all the requirements for device
drivers, including how to layer filter drivers, share common code for han-
dling power and plug-and-play requests, build correct cancellation logic, and
so forth.

Because of the richness of the WDM, writing a full WDM device driver
for each new hardware device can involve a great deal of work. Fortunately,
the port/miniport model makes it unnecessary to do this. Within a class of
similar devices, such as audio drivers, SATA devices, or Ethernet controllers,
each instance of a device shares a common driver for that class, called a port
driver. The port driver implements the standard operations for the class and
then calls device-specific routines in the device’s miniport driver to imple-
ment device-specific functionality. The TCP/IP network stack is implemented
in this way, with the ndis.sys class driver implementingmuch of the network
driver functionality and calling out to the networkminiport drivers for specific
hardware.

Recent versions of Windows, including Windows 7, provide additional
simplifications for writing device drivers for hardware devices. Kernel-mode
drivers can now be written using the Kernel-Mode Driver Framework
(KMDF), which provides a simplified programming model for drivers on top
of WDM. Another option is the User-Mode Driver Framework (UMDF). Many
drivers do not need to operate in kernel mode, and it is easier to develop and
deploy drivers in user mode. It also makes the system more reliable, because
a failure in a user-mode driver does not cause a kernel-mode crash.

B.3.3.6 Cache Manager

In many operating systems, caching is done by the file system. Instead, Win-
dows provides a centralized caching facility. The cache manager works closely
with the VM manager to provide cache services for all components under the
control of the I/O manager. Caching in Windows is based on files rather than
raw blocks. The size of the cache changes dynamically according to howmuch
free memory is available in the system. The cache manager maintains a pri-
vate working set rather than sharing the system process’s working set. The
cache manager memory-maps files into kernel memory and then uses special
interfaces to the VMmanager to fault pages into or trim them from this private
working set.

The cache is divided into blocks of 256 KB. Each cache block can hold a view
(that is, a memory-mapped region) of a file. Each cache block is described by
a virtual address control block (VACB) that stores the virtual address and file
offset for the view, aswell as the number of processes using the view. The VACBs
reside in a single array maintained by the cache manager.

When the I/O manager receives a file’s user-level read request, the I/O
manager sends an IRP to the I/O stack for the volume on which the file resides.
For files that are marked as cacheable, the file system calls the cache manager

B.3 System Components 29

cache manager

VM manager

process

file system

disk driver

noncached I/O

I/O manager

data copy

cached I/O

page fault

I/O

Figure B.6 File I/O.

to look up the requested data in its cached file views. The cache manager
calculates which entry of that file’s VACB index array corresponds to the byte
offset of the request. The entry either points to the view in the cache or is
invalid. If it is invalid, the cache manager allocates a cache block (and the
corresponding entry in the VACB array) andmaps the view into the cache block.
The cache manager then attempts to copy data from the mapped file to the
caller’s buffer. If the copy succeeds, the operation is completed.

If the copy fails, it does so because of a page fault, which causes the
VM manager to send a noncached read request to the I/O manager. The I/O
manager sends another request down the driver stack, this time requesting
a paging operation, which bypasses the cache manager and reads the data
from the file directly into the page allocated for the cache manager. Upon
completion, the VACB is set to point at the page. The data, now in the cache, are
copied to the caller’s buffer, and the original I/O request is completed. Figure
B.6 shows an overview of these operations.

Akernel-level read operation is similar, except that the data can be accessed
directly from the cache rather than being copied to a buffer in user space.
To use file-system metadata (data structures that describe the file system),
the kernel uses the cache manager’s mapping interface to read the metadata.
To modify the metadata, the file system uses the cache manager’s pinning
interface. Pinning a page locks the page into a physical-memory page frame so
that the VM manager cannot move the page or page it out. After updating the
metadata, the file system asks the cachemanager to unpin the page. Amodified
page is marked dirty, and so the VM manager flushes the page to disk.

To improve performance, the cache manager keeps a small history of read
requests and from this history attempts to predict future requests. If the cache
manager finds a pattern in the previous three requests, such as sequential
access forward or backward, it prefetches data into the cache before the next
request is submitted by the application. In this way, the application may find
its data already cached and not need to wait for disk I/O.

The cache manager is also responsible for telling the VM manager to flush
the contents of the cache. The cache manager’s default behavior is write-back

30 Appendix B Windows 7

caching: it accumulates writes for 4 to 5 seconds and then wakes up the cache-
writer thread. When write-through caching is needed, a process can set a flag
when opening the file, or the process can call an explicit cache-flush function.

A fast-writing process could potentially fill all the free cache pages before
the cache-writer thread had a chance to wake up and flush the pages to disk.
The cache writer prevents a process from flooding the system in the following
way. When the amount of free cache memory becomes low, the cache manager
temporarily blocks processes attempting to write data and wakes the cache-
writer thread to flush pages to disk. If the fast-writing process is actually a
network redirector for a network file system, blocking it for too long could
cause network transfers to time out and be retransmitted. This retransmission
would waste network bandwidth. To prevent such waste, network redirectors
can instruct the cache manager to limit the backlog of writes in the cache.

Because a network file system needs to move data between a disk and the
network interface, the cache manager also provides a DMA interface to move
the data directly. Moving data directly avoids the need to copy data through
an intermediate buffer.

B.3.3.7 Security Reference Monitor

Centralizing management of system entities in the object manager enables
Windows to use a uniform mechanism to perform run-time access validation
and audit checks for every user-accessible entity in the system. Whenever a
process opens a handle to an object, the security reference monitor (SRM)
checks the process’s security token and the object’s access-control list to see
whether the process has the necessary access rights.

The SRM is also responsible for manipulating the privileges in security
tokens. Special privileges are required for users to perform backup or restore
operations on file systems, debug processes, and so forth. Tokens can also be
marked as being restricted in their privileges so that they cannot access objects
that are available to most users. Restricted tokens are used primarily to limit
the damage that can be done by execution of untrusted code.

The integrity level of the code executing in a process is also representedby a
token. Integrity levels are a type of capabilitymechanism, asmentioned earlier.
Aprocess cannotmodify an object with an integrity level higher than that of the
code executing in the process, whatever other permissions have been granted.
Integrity levels were introduced to make it harder for code that successfully
attacks outward-facing software, like Internet Explorer, to take over a system.

Another responsibility of the SRM is logging security audit events. The
Department of Defense’s Common Criteria (the 2005 successor to the Orange
Book) requires that a secure system have the ability to detect and log all
attempts to access system resources so that it can more easily trace attempts at
unauthorized access. Because the SRM is responsible for making access checks,
it generates most of the audit records in the security-event log.

B.3.3.8 Plug-and-Play Manager

The operating system uses the plug-and-play (PnP) manager to recognize and
adapt to changes in the hardware configuration. PnP devices use standard
protocols to identify themselves to the system. The PnPmanager automatically
recognizes installed devices and detects changes in devices as the system

B.3 System Components 31

operates. Themanager also keeps track of hardware resources used by a device,
as well as potential resources that could be used, and takes care of loading
the appropriate drivers. This management of hardware resources—primarily
interrupts and I/O memory ranges—has the goal of determining a hardware
configuration in which all devices are able to operate successfully.

The PnP manager handles dynamic reconfiguration as follows. First, it
gets a list of devices from each bus driver (for example, PCI or USB). It loads
the installed driver (after finding one, if necessary) and sends an add-device
request to the appropriate driver for each device. The PnPmanager thenfigures
out the optimal resource assignments and sends a start-device request to
each driver specifying the resource assignments for the device. If a device
needs to be reconfigured, the PnPmanager sends a query-stop request, which
asks the driver whether the device can be temporarily disabled. If the driver
can disable the device, then all pending operations are completed, and new
operations are prevented from starting. Finally, the PnPmanager sends a stop
request and can then reconfigure the devicewith a new start-device request.

The PnP manager also supports other requests. For example, query-
remove, which operates similarly to query-stop, is employed when a user
is getting ready to eject a removable device, such as a USB storage device. The
surprise-remove request is used when a device fails or, more likely, when a
user removes a device without telling the system to stop it first. Finally, the
remove request tells the driver to stop using a device permanently.

Many programs in the system are interested in the addition or removal
of devices, so the PnP manager supports notifications. Such a notification, for
example, gives GUI file menus the information they need to update their list
of disk volumes when a new storage device is attached or removed. Installing
devices often results in adding new services to the svchost.exe processes in
the system. These services frequently set themselves up to run whenever the
system boots and continue to run even if the original device is never plugged
into the system. Windows 7 introduced a service-trigger mechanism in the
service control manager (SCM), which manages the system services. With this
mechanism, services can register themselves to start only when SCM receives a
notification from the PnP manager that the device of interest has been added
to the system.

B.3.3.9 Power Manager

Windows works with the hardware to implement sophisticated strategies for
energy efficiency, as described in Section B.2.8. The policies that drive these
strategies are implementedby thepower manager. The powermanager detects
current system conditions, such as the load on CPUs or I/O devices, and
improves energy efficiency by reducing the performance and responsiveness of
the systemwhenneed is low. The powermanager can also put the entire system
into a very efficient sleepmode and can even write all the contents of memory
to disk and turn off the power to allow the system to go into hibernation.

The primary advantage of sleep is that the system can enter fairly quickly,
perhaps just a few seconds after the lid closes on a laptop. The return from
sleep is also fairly quick. The power is turned down low on the CPUs and I/O
devices, but the memory continues to be powered enough that its contents are
not lost.

32 Appendix B Windows 7

Hibernation takes considerably longer because the entire contents of mem-
ory must be transferred to disk before the system is turned off. However, the
fact that the system is, in fact, turned off is a significant advantage. If there
is a loss of power to the system, as when the battery is swapped on a lap-
top or a desktop system is unplugged, the saved system data will not be lost.
Unlike shutdown, hibernation saves the currently running system so a user can
resume where she left off, and because hibernation does not require power, a
system can remain in hibernation indefinitely.

Like the PnP manager, the power manager provides notifications to the
rest of the system about changes in the power state. Some applications want to
know when the system is about to be shut down so they can start saving their
states to disk.

B.3.3.10 Registry

Windows keeps much of its configuration information in internal databases,
called hives, that are managed by the Windows configuration manager, which
is commonly known as the registry. There are separate hives for system
information, default user preferences, software installation, security, and boot
options. Because the information in the system hive is required to boot the
system, the registry manager is implemented as a component of the executive.

The registry represents the configuration state in each hive as a hierarchical
namespace of keys (directories), each ofwhich can contain a set of typedvalues,
such as UNICODE string, ANSI string, integer, or untyped binary data. In theory,
new keys and values are created and initialized as new software is installed;
then they are modified to reflect changes in the configuration of that software.
In practice, the registry is often used as a general-purpose database, as an
interprocess-communication mechanism, and for many other such inventive
purposes.

Restarting applications, or even the system, every time a configuration
change was made would be a nuisance. Instead, programs rely on various
kinds of notifications, such as those provided by the PnP and powermanagers,
to learn about changes in the system configuration. The registry also supplies
notifications; it allows threads to register to be notified when changes are
made to some part of the registry. The threads can thus detect and adapt to
configuration changes recorded in the registry itself.

Whenever significant changes are made to the system, such as when
updates to the operating system or drivers are installed, there is a danger that
the configuration data may be corrupted (for example, if a working driver is
replaced by a nonworking driver or an application fails to install correctly and
leaves partial information in the registry). Windows creates a system restore
point before making such changes. The restore point contains a copy of the
hives before the change and can be used to return to this version of the hives
and thereby get a corrupted system working again.

To improve the stability of the registry configuration, Windows added a
transaction mechanism beginning with Windows Vista that can be used to
prevent the registry from being partially updated with a collection of related
configuration changes. Registry transactions can be part of more general trans-
actions administered by the kernel transaction manager (KTM), which can also

B.3 System Components 33

include file-system transactions. KTM transactions do not have the full seman-
tics found in normal database transactions, and they have not supplanted the
system restore facility for recovering fromdamage to the registry configuration
caused by software installation.

B.3.3.11 Booting

The booting of a Windows PC begins when the hardware powers on and
firmware begins executing from ROM. In older machines, this firmware was
known as the BIOS, but more modern systems use UEFI (the Unified Extensible
Firmware Interface), which is faster and more general and makes better use
of the facilities in contemporary processors. The firmware runs power-on self-
test (POST) diagnostics; identifies many of the devices attached to the system
and initializes them to a clean, power-up state; and then builds the description
used by the advanced configuratio and power interface (ACPI). Next, the
firmware finds the system disk, loads the Windows bootmgr program, and
begins executing it.

In a machine that has been hibernating, the winresume program is loaded
next. It restores the running system from disk, and the system continues execu-
tion at the point it had reached right before hibernating. In a machine that has
been shut down, the bootmgr performs further initialization of the system and
then loads winload. This program loads hal.dll, the kernel (ntoskrnl.exe),
any drivers needed in booting, and the system hive. winload then transfers
execution to the kernel.

The kernel initializes itself and creates two processes. The system pro-
cess contains all the internal kernel worker threads and never executes in
user mode. The first user-mode process created is SMSS, for session manager
subsystem, which is similar to the INIT (initialization) process in UNIX. SMSS
performs further initialization of the system, including establishing the paging
files, loading more device drivers, and managing the Windows sessions. Each
session is used to represent a logged-on user, except for session 0, which is
used to run system-wide background services, such as LSASS and SERVICES.
A session is anchored by an instance of the CSRSS process. Each session other
than 0 initially runs the WINLOGON process. This process logs on a user and
then launches the EXPLORER process, which implements the Windows GUI
experience. The following list itemizes some of these aspects of booting:

• SMSS completes system initialization and then starts up session 0 and the
first login session.

• WININIT runs in session 0 to initialize usermode and start LSASS, SERVICES,
and the local session manager, LSM.

• LSASS, the security subsystem, implements facilities such as authentication
of users.

• SERVICES contains the service control manager, or SCM, which supervises
all background activities in the system, including user-mode services. A
number of services will have registered to start when the system boots.
Others will be started only on demand or when triggered by an event such
as the arrival of a device.

34 Appendix B Windows 7

• CSRSS is the Win32 environmental subsystem process. It is started in every
session—unlike the POSIX subsystem, which is started only on demand
when a POSIX process is created.

• WINLOGON is run in each Windows session other than session 0 to log on
a user.

The system optimizes the boot process by prepaging from files on disk
based on previous boots of the system. Disk access patterns at boot are also
used to lay out system files on disk to reduce the number of I/O operations
required. The processes necessary to start the system are reduced by grouping
services into fewer processes. All of these approaches contribute to a dramatic
reduction in system boot time. Of course, system boot time is less important
than it once was because of the sleep and hibernation capabilities of Windows.

B.4 Terminal Services and Fast User Switching

Windows supports a GUI-based console that interfaces with the user via key-
board, mouse, and display. Most systems also support audio and video. Audio
input is used byWindows voice-recognition software; voice recognitionmakes
the system more convenient and increases its accessibility for users with dis-
abilities. Windows 7 added support for multi-touch hardware, allowing users
to input data by touching the screen and making gestures with one or more
fingers. Eventually, the video-input capability, which is currently used for com-
munication applications, is likely to be used for visually interpreting gestures,
as Microsoft has demonstrated for its Xbox 360 Kinect product. Other future
input experiences may evolve from Microsoft’s surface computer. Most often
installed at public venues, such as hotels and conference centers, the surface
computer is a table surface with special cameras underneath. It can track the
actions of multiple users at once and recognize objects that are placed on top.

The PC was, of course, envisioned as a personal computer—an inherently
single-user machine. ModernWindows, however, supports the sharing of a PC
among multiple users. Each user that is logged on using the GUI has a session
created to represent the GUI environment he will be using and to contain all the
processes created to run his applications. Windows allows multiple sessions to
exist at the same time on a single machine. However, Windows only supports
a single console, consisting of all the monitors, keyboards, and mice connected
to the PC. Only one session can be connected to the console at a time. From the
logon screen displayed on the console, users can create new sessions or attach
to an existing session that was previously created. This allows multiple users
to share a single PC without having to log off and on between users. Microsoft
calls this use of sessions fast user switching.

Users can also create new sessions, or connect to existing sessions, on one
PC from a session running on another Windows PC. The terminal server (TS)
connects one of the GUI windows in a user’s local session to the new or existing
session, called a remote desktop, on the remote computer. The most common
use of remote desktops is for users to connect to a session on their work PC
from their home PC.

Many corporations use corporate terminal-server systems maintained in
data centers to run all user sessions that access corporate resources, rather than

B.5 File System 35

allowing users to access those resources from the PCs in each user’s office. Each
server computer may handle many dozens of remote-desktop sessions. This
is a form of thin-client computing, in which individual computers rely on a
server for many functions. Relying on data-center terminal servers improves
reliability, manageability, and security of the corporate computing resources.

The TS is also used byWindows to implement remote assistance. A remote
user can be invited to share a session with the user logged on to the session on
the console. The remote user can watch the user’s actions and even be given
control of the desktop to help resolve computing problems.

B.5 File System

The native file system in Windows is NTFS. It is used for all local volumes.
However, associatedUSB thumbdrives, flashmemory on cameras, and external
disks may be formatted with the 32-bit FAT file system for portability. FAT is a
much older file-system format that is understood by many systems besides
Windows, such as the software running on cameras. A disadvantage is that
the FAT file system does not restrict file access to authorized users. The only
solution for securing data with FAT is to run an application to encrypt the data
before storing it on the file system.

In contrast, NTFS uses ACLs to control access to individual files and sup-
ports implicit encryption of individual files or entire volumes (usingWindows
BitLocker feature). NTFS implements many other features as well, including
data recovery, fault tolerance, very large files and file systems, multiple data
streams, UNICODE names, sparse files, journaling, volume shadow copies, and
file compression.

B.5.1 NTFS Internal Layout

The fundamental entity in NTFS is a volume. A volume is created by the Win-
dows logical disk management utility and is based on a logical disk partition.
Avolumemay occupy a portion of a disk or an entire disk, or may span several
disks.

NTFS does not deal with individual sectors of a disk but instead uses clus-
ters as the units of disk allocation. A cluster is a number of disk sectors that is
a power of 2. The cluster size is configured when an NTFS file system is format-
ted. The default cluster size is based on the volume size—4 KB for volumes
larger than 2 GB. Given the size of today’s disks, it may make sense to use
cluster sizes larger than the Windows defaults to achieve better performance,
although these performance gains will come at the expense of more internal
fragmentation.

NTFS uses logical cluster numbers (LCNs) as disk addresses. It assigns them
by numbering clusters from the beginning of the disk to the end. Using this
scheme, the system can calculate a physical disk offset (in bytes) bymultiplying
the LCN by the cluster size.

A file in NTFS is not a simple byte stream as it is in UNIX; rather, it is a
structured object consisting of typed attributes. Each attribute of a file is an
independent byte stream that can be created, deleted, read, and written. Some
attribute types are standard for all files, including the file name (or names, if
the file has aliases, such as an MS-DOS short name), the creation time, and the

36 Appendix B Windows 7

security descriptor that specifies the access control list. User data are stored in
data attributes.

Most traditional data files have an unnamed data attribute that contains
all the file’s data. However, additional data streams can be created with
explicit names. For instance, inMacintosh files stored on aWindows server, the
resource fork is a named data stream. The IProp interfaces of the Component
Object Model (COM) use a named data stream to store properties on ordinary
files, including thumbnails of images. In general, attributes may be added as
necessary and are accessed using a file-name:attribute syntax. NTFS returns
only the size of the unnamed attribute in response to file-query operations,
such as when running the dir command.

Every file inNTFS is described by one ormore records in an array stored in a
special file called the master file table (MFT). The size of a record is determined
when the file system is created; it ranges from 1 to 4 KB. Small attributes
are stored in the MFT record itself and are called resident attributes. Large
attributes, such as the unnamed bulk data, are called nonresident attributes
and are stored in one or more contiguous extents on the disk. A pointer to
each extent is stored in the MFT record. For a small file, even the data attribute
may fit inside the MFT record. If a file has many attributes—or if it is highly
fragmented, so that many pointers are needed to point to all the fragments
—one record in the MFT might not be large enough. In this case, the file is
described by a record called the base fil record, which contains pointers to
overflow records that hold the additional pointers and attributes.

Each file in an NTFS volume has a unique ID called a fil reference. The file
reference is a 64-bit quantity that consists of a 48-bit file number and a 16-bit
sequence number. The file number is the record number (that is, the array slot)
in the MFT that describes the file. The sequence number is incremented every
time an MFT entry is reused. The sequence number enables NTFS to perform
internal consistency checks, such as catching a stale reference to a deleted file
after the MFT entry has been reused for a new file.

B.5.1.1 NTFS B+ Tree

As in UNIX, the NTFS namespace is organized as a hierarchy of directories. Each
directoryuses a data structure called aB+ tree to store an index of the file names
in that directory. In a B+ tree, the length of every path from the root of the tree to
a leaf is the same, and the cost of reorganizing the tree is eliminated. The index
root of a directory contains the top level of the B+ tree. For a large directory,
this top level contains pointers to disk extents that hold the remainder of the
tree. Each entry in the directory contains the name and file reference of the
file, as well as a copy of the update timestamp and file size taken from the
file’s resident attributes in the MFT. Copies of this information are stored in the
directory so that a directory listing can be efficiently generated. Because all the
file names, sizes, and update times are available from the directory itself, there
is no need to gather these attributes from the MFT entries for each of the files.

B.5.1.2 NTFS Metadata

The NTFS volume’s metadata are all stored in files. The first file is the MFT. The
second file, which is used during recovery if the MFT is damaged, contains a

B.5 File System 37

copy of the first 16 entries of the MFT. The next few files are also special in
purpose. They include the files described below.

• The log file records all metadata updates to the file system.

• The volume file contains the name of the volume, the version of NTFS that
formatted the volume, and a bit that tells whether the volume may have
been corrupted and needs to be checked for consistency using the chkdsk
program.

• The attribute-definitio table indicates which attribute types are used in
the volume and what operations can be performed on each of them.

• The root directory is the top-level directory in the file-system hierarchy.

• The bitmap fil indicates which clusters on a volume are allocated to files
and which are free.

• The boot fil contains the startup code for Windows and must be located
at a particular disk address so that it can be found easily by a simple ROM
bootstrap loader. The boot file also contains the physical address of the
MFT.

• The bad-cluster file keeps track of any bad areas on the volume; NTFS uses
this record for error recovery.

Keeping all the NTFS metadata in actual files has a useful property. As dis-
cussed in Section B.3.3.6, the cache manager caches file data. Since all the NTFS
metadata reside in files, these data can be cached using the same mechanisms
used for ordinary data.

B.5.2 Recovery

In many simple file systems, a power failure at the wrong time can damage
the file-system data structures so severely that the entire volume is scrambled.
Many UNIX file systems, including UFS but not ZFS, store redundant metadata
on the disk, and they recover from crashes by using the fsck program to check
all the file-system data structures and restore them forcibly to a consistent
state. Restoring them often involves deleting damaged files and freeing data
clusters that had been written with user data but not properly recorded in the
file system’s metadata structures. This checking can be a slow process and can
cause the loss of significant amounts of data.

NTFS takes a different approach to file-system robustness. In NTFS, all file-
system data-structure updates are performed inside transactions. Before a data
structure is altered, the transaction writes a log record that contains redo and
undo information. After the data structure has been changed, the transaction
writes a commit record to the log to signify that the transaction succeeded.

After a crash, the system can restore the file-system data structures to
a consistent state by processing the log records, first redoing the operations
for committed transactions and then undoing the operations for transactions
that did not commit successfully before the crash. Periodically (usually every
5 seconds), a checkpoint record is written to the log. The system does not
need log records prior to the checkpoint to recover from a crash. They can be

38 Appendix B Windows 7

discarded, so the log file does not grow without bounds. The first time after
system startup that an NTFS volume is accessed, NTFS automatically performs
file-system recovery.

This scheme does not guarantee that all the user-file contents are correct
after a crash. It ensures only that the file-system data structures (the metadata
files) are undamaged and reflect some consistent state that existed prior to the
crash. It would be possible to extend the transaction scheme to cover user files,
and Microsoft took some steps to do this in Windows Vista.

The log is stored in the third metadata file at the beginning of the volume.
It is created with a fixed maximum size when the file system is formatted. It
has two sections: the logging area, which is a circular queue of log records, and
the restart area, which holds context information, such as the position in the
logging area where NTFS should start reading during a recovery. In fact, the
restart area holds two copies of its information, so recovery is still possible if
one copy is damaged during the crash.

The logging functionality is provided by the log-file service. In addition
to writing the log records and performing recovery actions, the log-file service
keeps track of the free space in the log file. If the free space gets too low, the log-
file service queues pending transactions, andNTFS halts all new I/O operations.
After the in-progress operations complete, NTFS calls the cache manager to
flush all data and then resets the log file and performs the queued transactions.

B.5.3 Security

The security of an NTFS volume is derived from the Windows object model.
Each NTFS file references a security descriptor, which specifies the owner of the
file, and an access-control list, which contains the access permissions granted
or denied to each user or group listed. Early versions of NTFS used a separate
security descriptor as an attribute of each file. Beginning with Windows 2000,
the security-descriptors attribute points to a shared copy, with a significant
savings in disk and caching space; many, many files have identical security
descriptors.

In normal operation, NTFS does not enforce permissions on traversal of
directories in file path names. However, for compatibility with POSIX, these
checks can be enabled. Traversal checks are inherently more expensive, since
modern parsing of file path names uses prefix matching rather than directory-
by-directory parsing of path names. Prefix matching is an algorithm that looks
up strings in a cache and finds the entry with the longest match—for example,
an entry for ∖foo∖bar∖dirwould be a match for ∖foo∖bar∖dir2∖dir3∖myfile.
The prefix-matching cache allows path-name traversal to begin much deeper
in the tree, savingmany steps. Enforcing traversal checksmeans that the user’s
access must be checked at each directory level. For instance, a user might lack
permission to traverse ∖foo∖bar, so starting at the access for ∖foo∖bar∖dir
would be an error.

B.5.4 Volume Management and Fault Tolerance

FtDisk is the fault-tolerant disk driver for Windows. When installed, it pro-
vides several ways to combine multiple disk drives into one logical volume so
as to improve performance, capacity, or reliability.

B.5 File System 39

LCNs 0–128000

LCNs 128001–783361

disk 1 (2.5 GB) disk 2 (2.5 GB)

disk C: (FAT) 2 GB

logical drive D: (NTFS) 3 GB

Figure B.7 Volume set on two drives.

B.5.4.1 Volume Sets and RAID Sets

One way to combine multiple disks is to concatenate them logically to form a
large logical volume, as shown in Figure B.7. In Windows, this logical volume,
called a volume set, can consist of up to 32 physical partitions. A volume set
that contains an NTFS volume can be extended without disturbance of the data
already stored in the file system. The bitmap metadata on the NTFS volume are
simply extended to cover the newly added space. NTFS continues to use the
same LCN mechanism that it uses for a single physical disk, and the FtDisk
driver supplies the mapping from a logical-volume offset to the offset on one
particular disk.

Another way to combine multiple physical partitions is to interleave their
blocks in round-robin fashion to form a stripe set. This scheme is also called
RAID level 0, or disk striping. (Formore on RAID (redundant arrays of inexpen-
sive disks), see Section 11.8.) FtDisk uses a stripe size of 64 KB. The first 64 KB
of the logical volume are stored in the first physical partition, the second 64 KB
in the second physical partition, and so on, until each partition has contributed
64 KB of space. Then, the allocation wraps around to the first disk, allocating
the second 64-KB block. A stripe set forms one large logical volume, but the
physical layout can improve the I/O bandwidth, because for a large I/O, all the
disks can transfer data in parallel. Windows also supports RAID level 5, stripe
set with parity, and RAID level 1, mirroring.

B.5.4.2 Sector Sparing and Cluster Remapping

To deal with disk sectors that go bad, FtDisk uses a hardware technique called
sector sparing, and NTFS uses a software technique called cluster remapping.
Sector sparing is a hardware capability provided by many disk drives. When
a disk drive is formatted, it creates a map from logical block numbers to good
sectors on the disk. It also leaves extra sectors unmapped, as spares. If a sector
fails, FtDisk instructs the disk drive to substitute a spare. Cluster remapping

40 Appendix B Windows 7

is a software technique performed by the file system. If a disk block goes
bad, NTFS substitutes a different, unallocated block by changing any affected
pointers in the MFT. NTFS also makes a note that the bad block should never be
allocated to any file.

When a disk block goes bad, the usual outcome is a data loss. But sector
sparing or cluster remapping can be combined with fault-tolerant volumes to
mask the failure of a disk block. If a read fails, the system reconstructs the
missing data by reading the mirror or by calculating the exclusive or parity
in a stripe set with parity. The reconstructed data are stored in a new location
that is obtained by sector sparing or cluster remapping.

B.5.5 Compression

NTFS can perform data compression on individual files or on all data files
in a directory. To compress a file, NTFS divides the file’s data into compres-
sion units, which are blocks of 16 contiguous clusters. When a compression
unit is written, a data-compression algorithm is applied. If the result fits into
fewer than 16 clusters, the compressed version is stored. When reading, NTFS
can determine whether data have been compressed: if they have been, the
length of the stored compression unit is less than 16 clusters. To improve per-
formance when reading contiguous compression units, NTFS prefetches and
decompresses ahead of the application requests.

For sparse files or files that contain mostly zeros, NTFS uses another tech-
nique to save space. Clusters that contain only zeros because they have never
been written are not actually allocated or stored on disk. Instead, gaps are left
in the sequence of virtual-cluster numbers stored in the MFT entry for the file.
When reading a file, if NTFS finds a gap in the virtual-cluster numbers, it just
zero-fills that portion of the caller’s buffer. This technique is also used by UNIX.

B.5.6 Mount Points, Symbolic Links, and Hard Links

Mount points are a form of symbolic link specific to directories on NTFS that
were introduced in Windows 2000. They provide a mechanism for organizing
disk volumes that is more flexible than the use of global names (like drive
letters). A mount point is implemented as a symbolic link with associated
data that contains the true volume name. Ultimately, mount points will sup-
plant drive letters completely, but there will be a long transition due to the
dependence of many applications on the drive-letter scheme.

Windows Vista introduced support for a more general form of symbolic
links, similar to those found in UNIX. The links can be absolute or relative, can
point to objects that do not exist, and can point to both files and directories
even across volumes. NTFS also supports hard links, where a single file has an
entry in more than one directory of the same volume.

B.5.7 Change Journal

NTFS keeps a journal describing all changes that have been made to the file
system. User-mode services can receive notifications of changes to the journal
and then identify what files have changed by reading from the journal. The
search indexer service uses the change journal to identify files that need to be

B.6 Networking 41

re-indexed. The file-replication service uses it to identify files that need to be
replicated across the network.

B.5.8 Volume Shadow Copies

Windows implements the capability of bringing a volume to a known state
and then creating a shadow copy that can be used to back up a consistent
view of the volume. This technique is known as snapshots in some other file
systems.Making a shadow copy of a volume is a form of copy-on-write, where
blocks modified after the shadow copy is created are stored in their original
form in the copy. To achieve a consistent state for the volume requires the
cooperation of applications, since the system cannot knowwhen the data used
by the application are in a stable state from which the application could be
safely restarted.

The server version of Windows uses shadow copies to efficiently maintain
old versions of files stored on file servers. This allows users to see documents
stored on file servers as they existed at earlier points in time. The user can use
this feature to recover files that were accidentally deleted or simply to look at
a previous version of the file, all without pulling out backup media.

B.6 Networking

Windows supports both peer-to-peer and client–server networking. It also
has facilities for network management. The networking components in Win-
dows provide data transport, interprocess communication, file sharing across
a network, and the ability to send print jobs to remote printers.

B.6.1 Network Interfaces

To describe networking inWindows, we must first mention two of the internal
networking interfaces: the network device interface specificatio (NDIS) and
the transport driver interface (TDI). The NDIS interface was developed in 1989
byMicrosoft and 3Com to separate network adapters from transport protocols
so that either could be changed without affecting the other. NDIS resides at
the interface between the data-link and network layers in the ISO model and
enables many protocols to operate over many different network adapters. In
terms of the ISO model, the TDI is the interface between the transport layer
(layer 4) and the session layer (layer 5). This interface enables any session-layer
component to use any available transport mechanism. (Similar reasoning led
to the streams mechanism in UNIX.) The TDI supports both connection-based
and connectionless transport and has functions to send any type of data.

B.6.2 Protocols

Windows implements transport protocols as drivers. These drivers can be
loaded and unloaded from the system dynamically, although in practice the
system typically has to be rebooted after a change. Windows comes with
several networking protocols. Next, we discuss a number of these protocols.

42 Appendix B Windows 7

B.6.2.1 Server-Message Block

The server-message-block (SMB) protocol was first introduced in MS-DOS 3.1.
The system uses the protocol to send I/O requests over the network. The SMB
protocol has four message types. Session control messages are commands
that start and end a redirector connection to a shared resource at the server. A
redirector uses File messages to access files at the server. Printer messages
are used to send data to a remote print queue and to receive status information
from the queue, and Messagemessages are used to communicate with another
workstation. A version of the SMB protocol was published as the common
Internet fil system (CIFS) and is supported on a number of operating systems.

B.6.2.2 Transmission Control Protocol/Internet Protocol

The transmission control protocol/Internet protocol (TCP/IP) suite that is used
on the Internet has become the de facto standard networking infrastructure.
Windows uses TCP/IP to connect to a wide variety of operating systems
and hardware platforms. The Windows TCP/IP package includes the simple
network-management protocol (SNM), the dynamic host-configuration proto-
col (DHCP), and the older Windows Internet name service (WINS). Windows
Vista introduced a new implementation of TCP/IP that supports both IPv4
and IPv6 in the same network stack. This new implementation also supports
offloading of the network stack onto advanced hardware, to achieve very high
performance for servers.

Windows provides a software firewall that limits the TCP ports that can be
used by programs for network communication. Network firewalls are com-
monly implemented in routers and are a very important security measure.
Having a firewall built into the operating system makes a hardware router
unnecessary, and it also providesmore integratedmanagement and easier use.

B.6.2.3 Point-to-Point Tunneling Protocol

The point-to-point tunneling protocol (PPTP) is a protocol provided by Win-
dows to communicate between remote-access servermodules running onWin-
dows server machines and other client systems that are connected over the
Internet. The remote-access servers can encrypt data sent over the connec-
tion, and they support multiprotocol virtual private networks (VPNs) over the
Internet.

B.6.2.4 HTTP Protocol

The HTTP protocol is used to get/put information using the World WideWeb.
Windows implements HTTP using a kernel-mode driver, so web servers can
operate with a low-overhead connection to the networking stack. HTTP is a
fairly general protocol that Windows makes available as a transport option for
implementing RPC.

B.6.2.5 Web-Distributed Authoring and Versioning Protocol

Web-distributed authoring and versioning (WebDAV) is an HTTP-based proto-
col for collaborative authoring across a network. Windows builds a WebDAV

B.6 Networking 43

redirector into the file system. Being built directly into the file system enables
WebDAV to work with other file-system features, such as encryption. Personal
files can then be stored securely in a public place. Because WebDAV uses HTTP,
which is a get/put protocol, Windows has to cache the files locally so pro-
grams can use read and write operations on parts of the files.

B.6.2.6 Named Pipes

Named pipes are a connection-oriented messaging mechanism. A process can
use named pipes to communicate with other processes on the same machine.
Since named pipes are accessed through the file-system interface, the security
mechanisms used for file objects also apply to named pipes. The SMB protocol
supports named pipes, so they can also be used for communication between
processes on different systems.

The format of pipe names follows the uniform naming convention
(UNC). A UNC name looks like a typical remote file name. The format is
∖∖server name∖share name∖x∖y∖z, where server name identifies a server
on the network; share name identifies any resource that is made available
to network users, such as directories, files, named pipes, and printers; and
∖x∖y∖z is a normal file path name.

B.6.2.7 Remote Procedure Calls

A remote procedure call (RPC) is a client–server mechanism that enables an
application on one machine to make a procedure call to code on another
machine. The client calls a local procedure—a stub routine—that packs its
arguments into a message and sends them across the network to a particular
server process. The client-side stub routine then blocks. Meanwhile, the server
unpacks the message, calls the procedure, packs the return results into a mes-
sage, and sends them back to the client stub. The client stub unblocks, receives
themessage, unpacks the results of the RPC, and returns them to the caller. This
packing of arguments is sometimes calledmarshaling. The client stub code and
the descriptors necessary to pack and unpack the arguments for an RPC are
compiled from a specification written in the Microsoft Interface Definitio
Language.

The Windows RPC mechanism follows the widely used distributed-
computing-environment standard for RPC messages, so programs written to
use Windows RPCs are highly portable. The RPC standard is detailed. It hides
many of the architectural differences among computers, such as the sizes
of binary numbers and the order of bytes and bits in computer words, by
specifying standard data formats for RPC messages.

B.6.2.8 Component Object Model

The component object model (COM) is a mechanism for interprocess commu-
nication that was developed for Windows. COM objects provide a well-defined
interface to manipulate the data in the object. For instance, COM is the infras-
tructure used by Microsoft’s object linking and embedding (OLE) technology
for inserting spreadsheets into Microsoft Word documents. Many Windows
services provide COM interfaces. Windows has a distributed extension called

44 Appendix B Windows 7

DCOM that can be used over a network utilizing RPC to provide a transparent
method of developing distributed applications.

B.6.3 Redirectors and Servers

In Windows, an application can use the Windows I/O API to access files from
a remote computer as though they were local, provided that the remote com-
puter is running a CIFS server such as those provided byWindows. A redirector
is the client-side object that forwards I/O requests to a remote system, where
they are satisfied by a server. For performance and security, the redirectors and
servers run in kernel mode.

In more detail, access to a remote file occurs as follows:

1. The application calls the I/Omanager to request that a file be openedwith
a file name in the standard UNC format.

2. The I/O manager builds an I/O request packet, as described in Section
B.3.3.5.

3. The I/O manager recognizes that the access is for a remote file and calls a
driver called a multiple universal-naming-convention provider (MUP).

4. The MUP sends the I/O request packet asynchronously to all registered
redirectors.

5. A redirector that can satisfy the request responds to the MUP. To avoid
asking all the redirectors the same question in the future, the MUP uses a
cache to remember which redirector can handle this file.

6. The redirector sends the network request to the remote system.

7. The remote-system network drivers receive the request and pass it to the
server driver.

8. The server driver hands the request to the proper local file-system driver.

9. The proper device driver is called to access the data.

10. The results are returned to the server driver, which sends the data back
to the requesting redirector. The redirector then returns the data to the
calling application via the I/O manager.

Asimilar process occurs for applications that use theWin32 network API, rather
than the UNC services, except that a module called a multi-provider router is
used instead of a MUP.

For portability, redirectors and servers use the TDI API for network trans-
port. The requests themselves are expressed in a higher-level protocol, which
by default is the SMB protocol described in Section B.6.2. The list of redirectors
is maintained in the system hive of the registry.

B.6.3.1 Distributed File System

UNC names are not always convenient, because multiple file servers may be
available to serve the same content and UNC names explicitly include the name

B.6 Networking 45

of the server. Windows supports a distributed file-syste (DFS) protocol that
allows a network administrator to serve up files from multiple servers using a
single distributed name space.

B.6.3.2 Folder Redirection and Client-Side Caching

To improve the PC experience for users who frequently switch among com-
puters, Windows allows administrators to give users roaming profile , which
keepusers’ preferences and other settings on servers.Folder redirection is then
used to automatically store a user’s documents and other files on a server.

This works well until one of the computers is no longer attached to the
network, as when a user takes a laptop onto an airplane. To give users off-line
access to their redirected files, Windows uses client-side caching (CSC). CSC
is also used when the computer is on-line to keep copies of the server files
on the local machine for better performance. The files are pushed up to the
server as they are changed. If the computer becomes disconnected, the files are
still available, and the update of the server is deferred until the next time the
computer is online.

B.6.4 Domains

Many networked environments have natural groups of users, such as students
in a computer laboratory at school or employees in one department in a busi-
ness. Frequently, we want all the members of the group to be able to access
shared resources on their various computers in the group. Tomanage the global
access rights within such groups, Windows uses the concept of a domain. Pre-
viously, these domains had no relationship whatsoever to the domain-name
system (DNS) that maps Internet host names to IP addresses. Now, however,
they are closely related.

Specifically, a Windows domain is a group of Windows workstations and
servers that share a common security policy and user database. SinceWindows
uses the Kerberos protocol for trust and authentication, a Windows domain is
the same thing as a Kerberos realm. Windows uses a hierarchical approach
for establishing trust relationships between related domains. The trust rela-
tionships are based on DNS and allow transitive trusts that can flow up and
down the hierarchy. This approach reduces the number of trusts required for
n domains from n ∗ (n − 1) to O(n). The workstations in the domain trust the
domain controller to give correct information about the access rights of each
user (loaded into the user’s access token by LSASS). All users retain the ability to
restrict access to their ownworkstations, however, nomatter what any domain
controller may say.

B.6.5 Active Directory

Active Directory is the Windows implementation of lightweight directory-
access protocol (LDAP) services. Active Directory stores the topology infor-
mation about the domain, keeps the domain-based user and group accounts
and passwords, and provides a domain-based store for Windows features that
need it, such as Windows group policy. Administrators use group policies to
establish uniform standards for desktop preferences and software. For many

46 Appendix B Windows 7

corporate information-technology groups, this uniformity drastically reduces
the cost of computing.

B.7 Programmer Interface

TheWin32 API is the fundamental interface to the capabilities ofWindows. This
section describes five main aspects of the Win32 API: access to kernel objects,
sharing of objects between processes, process management, interprocess com-
munication, and memory management.

B.7.1 Access to Kernel Objects

The Windows kernel provides many services that application programs can
use. Application programs obtain these services by manipulating kernel
objects. A process gains access to a kernel object named XXX by calling the
CreateXXX function to open a handle to an instance of XXX. This handle is
unique to the process. Depending on which object is being opened, if the
Create() function fails, it may return 0, or it may return a special constant
named INVALID HANDLE VALUE. A process can close any handle by calling the
CloseHandle() function, and the system may delete the object if the count of
handles referencing the object in all processes drops to zero.

B.7.2 Sharing Objects between Processes

Windows provides three ways to share objects between processes. The first
way is for a child process to inherit a handle to the object. When the parent
calls the CreateXXX function, the parent supplies a SECURITIES ATTRIBUTES
structure with the bInheritHandle field set to TRUE. This field creates an
inheritable handle. Next, the child process is created, passing a value of TRUE
to the CreateProcess() function’s bInheritHandle argument. Figure B.8
shows a code sample that creates a semaphore handle inherited by a child
process.

SECURITY ATTRIBUTES sa;
sa.nlength = sizeof(sa);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;
Handle a semaphore = CreateSemaphore(&sa, 1, 1, NULL);
char comand line[132];
ostrstream ostring(command line, sizeof(command line));
ostring << a semaphore << ends;
CreateProcess("another process.exe", command line,

NULL, NULL, TRUE, . . .);

Figure B.8 Code enabling a child to share an object by inheriting a handle.

B.7 Programmer Interface 47

// Process A
. . .
HANDLE a semaphore = CreateSemaphore(NULL, 1, 1, "MySEM1");
. . .

// Process B
. . .
HANDLE b semaphore = OpenSemaphore(SEMAPHORE ALL ACCESS,

FALSE, "MySEM1");
. . .

Figure B.9 Code for sharing an object by name lookup.

Assuming the child process knows which handles are shared, the parent
and child can achieve interprocess communication through the shared objects.
In the example in Figure B.8, the child process gets the value of the handle
from the first command-line argument and then shares the semaphore with
the parent process.

The second way to share objects is for one process to give the object a
name when the object is created and for the second process to open the name.
This method has two drawbacks: Windows does not provide a way to check
whether an object with the chosen name already exists, and the object name
space is global, without regard to the object type. For instance, two applications
may create and share a single object named “foo” when two distinct objects—
possibly of different types—were desired.

Named objects have the advantage that unrelated processes can readily
share them. The first process calls one of the CreateXXX functions and supplies
a name as a parameter. The second process gets a handle to share the object
by calling OpenXXX() (or CreateXXX) with the same name, as shown in the
example in Figure B.9.

The thirdway to share objects is via the DuplicateHandle() function. This
method requires some other method of interprocess communication to pass
the duplicated handle. Given a handle to a process and the value of a handle
within that process, a second process can get a handle to the same object and
thus share it. An example of this method is shown in Figure B.10.

B.7.3 Process Management

InWindows, a process is a loaded instance of an application and a thread is an
executable unit of code that can be scheduled by the kernel dispatcher. Thus,
a process contains one or more threads. A process is created when a thread
in some other process calls the CreateProcess() API. This routine loads any
dynamic link libraries used by the process and creates an initial thread in the
process. Additional threads can be created by the CreateThread() function.
Each thread is created with its own stack, which defaults to 1 MB unless
otherwise specified in an argument to CreateThread().

48 Appendix B Windows 7

// Process A wants to give Process B access to a semaphore

// Process A
HANDLE a semaphore = CreateSemaphore(NULL, 1, 1, NULL);
// send the value of the semaphore to Process B
// using a message or shared memory object
. . .

// Process B
HANDLE process a = OpenProcess(PROCESS ALL ACCESS, FALSE,

process id of A);
HANDLE b semaphore;
DuplicateHandle(process a, a semaphore,

GetCurrentProcess(), &b semaphore,
0, FALSE, DUPLICATE SAME ACCESS);

// use b semaphore to access the semaphore
. . .

Figure B.10 Code for sharing an object by passing a handle.

B.7.3.1 Scheduling Rule

Priorities in the Win32 environment are based on the native kernel (NT)
scheduling model, but not all priority values may be chosen. The Win32 API
uses four priority classes:

1. IDLE PRIORITY CLASS (NT priority level 4)

2. NORMAL PRIORITY CLASS (NT priority level 8)

3. HIGH PRIORITY CLASS (NT priority level 13)

4. REALTIME PRIORITY CLASS (NT priority level 24)

Processes are typically members of the NORMAL PRIORITY CLASS unless the
parent of the process was of the IDLE PRIORITY CLASS or another class was
specified when CreateProcess was called. The priority class of a process is
the default for all threads that execute in the process. It can be changed with
the SetPriorityClass() function or by passing an argument to the START
command. Only userswith the increase scheduling priority privilege canmove
a process into the REALTIME PRIORITY CLASS. Administrators and power users
have this privilege by default.

When a user is running an interactive process, the system needs to
schedule the process’s threads to provide good responsiveness. For this
reason, Windows has a special scheduling rule for processes in the NOR-
MAL PRIORITY CLASS. Windows distinguishes between the process associated
with the foreground window on the screen and the other (background)
processes. When a process moves into the foreground, Windows increases the
scheduling quantum for all its threads by a factor of 3; CPU-bound threads

B.7 Programmer Interface 49

in the foreground process will run three times longer than similar threads in
background processes.

B.7.3.2 Thread Priorities

A thread starts with an initial priority determined by its class. The priority
can be altered by the SetThreadPriority() function. This function takes an
argument that specifies a priority relative to the base priority of its class:

• THREAD PRIORITY LOWEST: base − 2

• THREAD PRIORITY BELOW NORMAL: base − 1

• THREAD PRIORITY NORMAL: base + 0

• THREAD PRIORITY ABOVE NORMAL: base + 1

• THREAD PRIORITY HIGHEST: base + 2

Two other designations are also used to adjust the priority. Recall from
Section B.3.2.2 that the kernel has two priority classes: 16–31 for the real-
time class and 1–15 for the variable class. THREAD PRIORITY IDLE sets the
priority to 16 for real-time threads and to 1 for variable-priority threads.
THREAD PRIORITY TIME CRITICAL sets the priority to 31 for real-time threads
and to 15 for variable-priority threads.

As discussed in Section B.3.2.2, the kernel adjusts the priority of a variable
class thread dynamically depending on whether the thread is I/O bound or
CPU bound. The Win32 API provides a method to disable this adjustment via
SetProcessPriorityBoost() and SetThreadPriorityBoost() functions.

B.7.3.3 Thread Suspend and Resume

A thread can be created in a suspended state or can be placed in a suspended
state later by use of the SuspendThread() function. Before a suspended thread
can be scheduled by the kernel dispatcher, it must be moved out of the sus-
pended state by use of the ResumeThread() function. Both functions set a
counter so that if a thread is suspended twice, it must be resumed twice before
it can run.

B.7.3.4 Thread Synchronization

To synchronize concurrent access to shared objects by threads, the kernel pro-
vides synchronization objects, such as semaphores and mutexes. These are
dispatcher objects, as discussed in Section B.3.2.2. Threads can also synchronize
with kernel services operating on kernel objects—such as threads, processes,
and files—because these are also dispatcher objects. Synchronization with ker-
nel dispatcher objects can be achieved by use of the WaitForSingleObject()
and WaitForMultipleObjects() functions; these functions wait for one or
more dispatcher objects to be signaled.

Another method of synchronization is available to threadswithin the same
process that want to execute code exclusively. TheWin32 critical section object
is a user-mode mutex object that can often be acquired and released without
entering the kernel. On a multiprocessor, a Win32 critical section will attempt
to spinwhile waiting for a critical section held by another thread to be released.

50 Appendix B Windows 7

If the spinning takes too long, the acquiring thread will allocate a kernel mutex
and yield its CPU. Critical sections are particularly efficient because the kernel
mutex is allocated only when there is contention and then used only after
attempting to spin. Most mutexes in programs are never actually contended,
so the savings are significant.

Before using a critical section, some thread in the process must call
InitializeCriticalSection(). Each thread that wants to acquire the
mutex calls EnterCriticalSection() and then later calls LeaveCritical-
Section() to release themutex. There is also a TryEnterCriticalSection()
function, which attempts to acquire the mutex without blocking.

For programs that want user-mode reader–writer locks rather than a
mutex, Win32 supports slim reader–writer (SRW) locks. SRW locks have
APIs similar to those for critical sections, such as InitializeSRWLock,
AcquireSRWLockXXX, and ReleaseSRWLockXXX, where XXX is either
Exclusive or Shared, depending on whether the thread wants write
access or just read access to the object protected by the lock. TheWin32 API also
supports condition variables, which can be used with either critical sections
or SRW locks.

B.7.3.5 Thread Pool

Repeatedly creating and deleting threads can be expensive for applications
and services that perform small amounts of work in each instantiation. The
Win32 thread pool provides user-mode programs with three services: a queue
to which work requests may be submitted (via the SubmitThreadpoolWork()
function), an API that can be used to bind callbacks towaitable handles (Regis-
terWaitForSingleObject()), and APIs to workwith timers (CreateThread-
poolTimer() and WaitForThreadpoolTimerCallbacks()) and to bind call-
backs to I/O completion queues (BindIoCompletionCallback()).

The goal of using a threadpool is to increase performance and reducemem-
ory footprint. Threads are relatively expensive, and each processor can only
be executing one thread at a time no matter how many threads are available.
The thread pool attempts to reduce the number of runnable threads by slightly
delaying work requests (reusing each thread for many requests) while provid-
ing enough threads to effectively utilize the machine’s CPUs. The wait and I/O-
and timer-callback APIs allow the thread pool to further reduce the number
of threads in a process, using far fewer threads than would be necessary if
a process were to devote separate threads to servicing each waitable handle,
timer, or completion port.

B.7.3.6 Fibers

A fibe is user-mode code that is scheduled according to a user-defined
scheduling algorithm. Fibers are completely a user-mode facility; the kernel is
not aware that they exist. The fibermechanism usesWindows threads as if they
were CPUs to execute the fibers. Fibers are cooperatively scheduled, meaning
that they are never preempted but must explicitly yield the thread on which
they are running. When a fiber yields a thread, another fiber can be scheduled
on it by the run-time system (the programming language run-time code).

The system creates a fiber by calling either ConvertThreadToFiber()
or CreateFiber(). The primary difference between these functions is that

B.7 Programmer Interface 51

CreateFiber() does not begin executing the fiber that was created. To begin
execution, the application must call SwitchToFiber(). The application can
terminate a fiber by calling DeleteFiber().

Fibers are not recommended for threads that use Win32 APIs rather than
standardC-library functions because of potential incompatibilities.Win32 user-
mode threads have a thread-environment block (TEB) that contains numerous
per-threadfields used by theWin32APIs. Fibersmust share the TEB of the thread
on which they are running. This can lead to problems when a Win32 interface
puts state information into the TEB for one fiber and then the information is
overwritten by a different fiber. Fibers are included in theWin32API to facilitate
the porting of legacy UNIX applications that were written for a user-mode
thread model such as Pthreads.

B.7.3.7 User-Mode Scheduling (UMS) and ConcRT

A new mechanism in Windows 7, user-mode scheduling (UMS), addresses
several limitations of fibers. First, recall that fibers are unreliable for executing
Win32 APIs because they do not have their own TEBs. When a thread running
a fiber blocks in the kernel, the user scheduler loses control of the CPU for a
time as the kernel dispatcher takes over scheduling. Problemsmay result when
fibers change the kernel state of a thread, such as the priority or impersonation
token, or when they start asynchronous I/O.

UMS provides an alternative model by recognizing that each Windows
thread is actually two threads: a kernel thread (KT) and a user thread (UT).
Each type of thread has its own stack and its own set of saved registers. The
KT and UT appear as a single thread to the programmer because UTs can
never block but must always enter the kernel, where an implicit switch to the
corresponding KT takes place. UMS uses each UT’s TEB to uniquely identify
the UT. When a UT enters the kernel, an explicit switch is made to the KT that
corresponds to the UT identified by the current TEB. The reason the kernel does
not know which UT is running is that UTs can invoke a user-mode scheduler,
as fibers do. But in UMS, the scheduler switches UTs, including switching the
TEBs.

When a UT enters the kernel, its KT may block. When this happens, the
kernel switches to a scheduling thread, which UMS calls a primary, and uses
this thread to reenter the user-mode scheduler so that it can pick another UT
to run. Eventually, a blocked KT will complete its operation and be ready to
return to user mode. Since UMS has already reentered the user-mode scheduler
to run a different UT, UMS queues the UT corresponding to the completed KT
to a completion list in user mode. When the user-mode scheduler is choosing
a new UT to switch to, it can examine the completion list and treat any UT on
the list as a candidate for scheduling.

Unlike fibers, UMS is not intended to be used directly by the program-
mer. The details of writing user-mode schedulers can be very challenging, and
UMS does not include such a scheduler. Rather, the schedulers come from pro-
gramming language libraries that build on top of UMS. Microsoft Visual Studio
2010 shippedwith Concurrency Runtime (ConcRT), a concurrent programming
framework for C++. ConcRT provides a user-mode scheduler together with
facilities for decomposing programs into tasks, which can then be scheduled
on the available CPUs. ConcRT provides support for par for styles of con-

52 Appendix B Windows 7

NTOS executive

Only primary thread runs in user-mode
Trap code switches to parked KT
KT blocks = primary returns to user-mode
KT unblocks & parks = queue UT completion

thread parking

UT completion list

kernel
user

user-mode
scheduler

trap code
primary
thread

KT0

UT0

UT1 UT0

KT1 KT2

KT0 blocks

>
>

Figure B.11 User-mode scheduling.

structs, aswell as rudimentary resourcemanagement and task synchronization
primitives. The key features of UMS are depicted in Figure B.11.

B.7.3.8 Winsock

Winsock is the Windows sockets API. Winsock is a session-layer interface
that is largely compatible with UNIX sockets but has some added Windows
extensions. It provides a standardized interface to many transport protocols
that may have different addressing schemes, so that any Winsock application
can run on anyWinsock-compliant protocol stack.Winsock underwent amajor
update in Windows Vista to add tracing, IPv6 support, impersonation, new
security APIs and many other features.

Winsock follows the Windows Open System Architecture (WOSA) model,
which provides a standard service provider interface (SPI) between applica-
tions and networking protocols. Applications can load and unload layered
protocols that build additional functionality, such as additional security, on
top of the transport protocol layers. Winsock supports asynchronous opera-
tions and notifications, reliable multicasting, secure sockets, and kernel mode
sockets. There is also support for simpler usage models, like the WSAConnect-
ByName() function, which accepts the target as strings specifying the name or
IP address of the server and the service or port number of the destination port.

B.7.4 IPC Using Windows Messaging

Win32 applications handle interprocess communication in several ways. One
way is by using shared kernel objects. Another is by using the Windows
messaging facility, an approach that is particularly popular for Win32
GUI applications. One thread can send a message to another thread or to a
window by calling PostMessage(), PostThreadMessage(), SendMessage(),
SendThreadMessage(), or SendMessageCallback(). Posting a message and
sending a message differ in this way: the post routines are asynchronous, they
return immediately, and the calling thread does not know when the message

B.7 Programmer Interface 53

// allocate 16 MB at the top of our address space
void *buf = VirtualAlloc(0, 0x1000000, MEM RESERVE | MEM TOP DOWN,

PAGE READWRITE);
// commit the upper 8 MB of the allocated space
VirtualAlloc(buf + 0x800000, 0x800000, MEM COMMIT, PAGE READWRITE);
// do something with the memory
. . .
// now decommit the memory
VirtualFree(buf + 0x800000, 0x800000, MEM DECOMMIT);
// release all of the allocated address space
VirtualFree(buf, 0, MEM RELEASE);

Figure B.12 Code fragments for allocating virtual memory.

is actually delivered. The send routines are synchronous: they block the caller
until the message has been delivered and processed.

In addition to sending a message, a thread can send data with the mes-
sage. Since processes have separate address spaces, the data must be copied.
The system copies data by calling SendMessage() to send a message of type
WM COPYDATA with a COPYDATASTRUCT data structure that contains the length
and address of the data to be transferred. When the message is sent, Windows
copies the data to a new block of memory and gives the virtual address of the
new block to the receiving process.

Every Win32 thread has its own input queue from which it receives mes-
sages. If a Win32 application does not call GetMessage() to handle events on
its input queue, the queue fills up, and after about five seconds, the system
marks the application as “Not Responding”.

B.7.5 Memory Management

TheWin32 API provides several ways for an application to usememory: virtual
memory, memory-mapped files, heaps, and thread-local storage.

B.7.5.1 Virtual Memory

An application calls VirtualAlloc() to reserve or commit virtual memory
and VirtualFree() to decommit or release the memory. These functions
enable the application to specify the virtual address at which the memory is
allocated. They operate on multiples of the memory page size. Examples of
these functions appear in Figure B.12.

A process may lock some of its committed pages into physical memory by
calling VirtualLock(). The maximum number of pages a process can lock is
30, unless the process first calls SetProcessWorkingSetSize() to increase the
maximum working-set size.

B.7.5.2 Memory-Mapping Files

Another way for an application to use memory is by memory-mapping a file
into its address space. Memory mapping is also a convenient way for two

54 Appendix B Windows 7

// open the file or create it if it does not exist
HANDLE hfile = CreateFile("somefile", GENERIC READ | GENERIC WRITE,

FILE SHARE READ | FILE SHARE WRITE, NULL,
OPEN ALWAYS, FILE ATTRIBUTE NORMAL, NULL);

// create the file mapping 8 MB in size
HANDLE hmap = CreateFileMapping(hfile, PAGE READWRITE,

SEC COMMIT, 0, 0x800000, "SHM 1");
// now get a view of the space mapped
void *buf = MapViewOfFile(hmap, FILE MAP ALL ACCESS,

0, 0, 0, 0x800000);
// do something with the mapped file
. . .
// now unmap the file
UnMapViewOfFile(buf);
CloseHandle(hmap);
CloseHandle(hfile);

Figure B.13 Code fragments for memory mapping of a file.

processes to share memory: both processes map the same file into their virtual
memory. Memory mapping is a multistage process, as you can see in the
example in Figure B.13.

If a processwants tomap some address space just to share amemory region
with another process, no file is needed. The process calls CreateFileMap-
ping() with a file handle of 0xffffffff and a particular size. The resulting
file-mapping object can be shared by inheritance, by name lookup, or by handle
duplication.

B.7.5.3 Heaps

Heaps provide a third way for applications to use memory, just as with mal-
loc() and free() in standard C. A heap in the Win32 environment is a region
of reserved address space. When a Win32 process is initialized, it is created
with adefault heap. SincemostWin32 applications aremultithreaded, access to
the heap is synchronized to protect the heap’s space-allocation data structures
from being damaged by concurrent updates by multiple threads.

Win32 provides several heap-management functions so that a process can
allocate and manage a private heap. These functions are HeapCreate(), Hea-
pAlloc(), HeapRealloc(), HeapSize(), HeapFree(), and HeapDestroy().
The Win32 API also provides the HeapLock() and HeapUnlock() functions to
enable a thread to gain exclusive access to a heap. Unlike VirtualLock(),
these functions perform only synchronization; they do not lock pages into
physical memory.

The original Win32 heap was optimized for efficient use of space. This
led to significant problems with fragmentation of the address space for larger
server programs that ran for long periods of time. A new low-fragmentation
heap (LFH) design introduced in Windows XP greatly reduced the fragmen-

Summary 55

// reserve a slot for a variable
DWORD var index = T1sAlloc();
// set it to the value 10
T1sSetValue(var index, 10);
// get the value
int var T1sGetValue(var index);
// release the index
T1sFree(var index);

Figure B.14 Code for dynamic thread-local storage.

tation problem. The Windows 7 heap manager automatically turns on LFH as
appropriate.

B.7.5.4 Thread-Local Storage

Afourth way for applications to use memory is through a thread-local storage
(TLS) mechanism. Functions that rely on global or static data typically fail to
work properly in a multithreaded environment. For instance, the C run-time
function strtok() uses a static variable to keep track of its current position
while parsing a string. For two concurrent threads to execute strtok() cor-
rectly, they need separate current position variables. TLS provides a way to
maintain instances of variables that are global to the function being executed
but not shared with any other thread.

TLS provides both dynamic and static methods of creating thread-local
storage. The dynamic method is illustrated in Figure B.14. The TLS mechanism
allocates global heap storage and attaches it to the thread environment block
thatWindows allocates to every user-mode thread. The TEB is readily accessible
by each thread and is used not just for TLS but for all the per-thread state
information in user mode.

To use a thread-local static variable, the application declares the variable
as follows to ensure that every thread has its own private copy:

declspec(thread) DWORD cur pos = 0;

B.8 Summary

Microsoft designed Windows to be an extensible, portable operating system
—one able to take advantage of new techniques and hardware. Windows
supports multiple operating environments and symmetric multiprocessing,
including both 32-bit and 64-bit processors and NUMA computers. The use of
kernel objects to provide basic services, along with support for client–server
computing, enablesWindows to support awide variety of application environ-
ments.Windows provides virtualmemory, integrated caching, and preemptive
scheduling. It supports elaborate security mechanisms and includes interna-
tionalization features. Windows runs on a wide variety of computers, so users
can choose and upgrade hardware to match their budgets and performance
requirements without needing to alter the applications they run.

56 Appendix B Windows 7

Practice Exercises

B.1 What type of operating system is Windows? Describe two of its major
features.

B.2 List the design goals of Windows. Describe two in detail.

B.3 Describe the booting process for a Windows system.

B.4 Describe the three main architectural layers of the Windows kernel.

B.5 What is the job of the object manager?

B.6 What types of services does the process manager provide?

B.7 What is a local procedure call?

B.8 What are the responsibilities of the I/O manager?

B.9 What types of networking doesWindows support? HowdoesWindows
implement transport protocols? Describe two networking protocols.

B.10 How is the NTFS namespace organized?

B.11 How does NTFS handle data structures? How does NTFS recover from a
system crash? What is guaranteed after a recovery takes place?

B.12 How does Windows allocate user memory?

B.13 Describe some of the ways in which an application can use memory via
the Win32 API.

Further Reading

[Russinovich et al. (2017)] provides an overview of Windows 7 and consider-
able technical detail about system internals and components. [Brown (2000)]
presents details of the security architecture of Windows.

The Microsoft Developer Network Library (http://msdn.microsoft.com)
supplies a wealth of information on Windows and other Microsoft products,
including documentation of all the published APIs.

[Iseminger (2000)] provides a good reference on theWindowsActiveDirec-
tory. Detailed discussions of writing programs that use the Win32 API appear
in [Richter (1997)].

The source code for a 2005 WRK version of the Windows kernel, together
with a collection of slides and other CRK curriculummaterials, is available from
www.microsoft.com/WindowsAcademic for use by universities.

Bibliography

[Brown (2000)] K. Brown, Programming Windows Security, Addison-Wesley
(2000).

[Iseminger (2000)] D. Iseminger, Active Directory Services for Microsoft Windows
2000. Technical Reference, Microsoft Press (2000).

http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=K Brown Programming Windows Security
http://msdn.microsoft.com
http://scholar.google.com/scholar?hl/en&q=D Iseminger Active Directory Services for Microsoft Windows 2000 Technical Reference
http://scholar.google.com/scholar?hl/en&q=J Richter Advanced Windows
http://www.microsoft.com/WindowsAcademic
http://scholar.google.com/scholar?hl/en&q=K Brown Programming Windows Security
http://scholar.google.com/scholar?hl/en&q=K Brown Programming Windows Security
http://scholar.google.com/scholar?hl/en&q=D Iseminger Active Directory Services for Microsoft Windows 2000 Technical Reference
http://scholar.google.com/scholar?hl/en&q=D Iseminger Active Directory Services for Microsoft Windows 2000 Technical Reference

Bibliography 57

[Richter (1997)] J. Richter, Advanced Windows, Microsoft Press (1997).

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

http://scholar.google.com/scholar?hl/en&q=J Richter Advanced Windows
http://scholar.google.com/scholar?hl/en&q=J Richter Advanced Windows
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition

CAppendix

BSD UNIX

This chapter was firs written in 1991 and has been updated over time.

In Chapter 20, we presented an in-depth examination of the Linux operating
system. In this chapter, we examine another popular UNIX version—UnixBSD.
We start by presenting a brief history of the UNIX operating system. We then
describe the system’s user and programmer interfaces. Finally, we discuss the
internal data structures and algorithms used by the FreeBSD kernel to support
the user–programmer interface.

C.1 UNIX History

The first version of UNIX was developed in 1969 by Ken Thompson of the
Research Group at Bell Laboratories to use an otherwise idle PDP-7. Thomp-
son was soon joined by Dennis Ritchie and they, with other members of the
Research Group, produced the early versions of UNIX.

Ritchie had previously worked on the MULTICS project, and MULTICS had a
strong influence on the newer operating system. Even the name UNIX is a pun
onMULTICS. The basic organization of the file system, the idea of the command
interpreter (or the shell) as a user process, the use of a separate process for
each command, the original line-editing characters (# to erase the last character
and @ to erase the entire line), and numerous other features came directly
from MULTICS. Ideas from other operating systems, such as MIT’s CTSS and the
XDS-940 system, were also used.

Ritchie and Thompson worked quietly on UNIX for many years. They
moved it to a PDP-11/20 for a second version; for a third version, they rewrote
most of the operating system in the systems-programming language C, instead
of the previously used assembly language. C was developed at Bell Laborato-
ries to support UNIX. UNIX was also moved to larger PDP-11 models, such as
the 11/45 and 11/70. Multiprogramming and other enhancements were added
when it was rewritten in C and moved to systems (such as the 11/45) that had
hardware support for multiprogramming.

As UNIX developed, it became widely used within Bell Laboratories and
gradually spread to a few universities. The first version widely available out-

1

2 Appendix C BSD UNIX

side Bell Laboratories was Version 6, released in 1976. (The version number for
early UNIX systems corresponds to the edition number of the UNIX Program-
mer’s Manual that was current when the distribution was made; the code and
the manual were revised independently.)

In 1978, Version 7 was distributed. This UNIX system ran on the PDP-11/70
and the Interdata 8/32 and is the ancestor of most modern UNIX systems. In
particular, it was soon ported to other PDP-11 models and to the VAX com-
puter line. The version available on the VAX was known as 32V. Research has
continued since then.

C.1.1 UNIX Support Group

After the distribution of Version 7 in 1978, the UNIX Support Group (USG)
assumed administrative control and responsibility from the Research Group
for distributions of UNIX within AT&T, the parent organization for Bell Labora-
tories. UNIX was becoming a product, rather than simply a research tool. The
Research Group continued to develop their own versions of UNIX, however, to
support their internal computing. Version 8 included a facility called the stream
I/O system, which allows flexible configuration of kernel IPC modules. It also
contained RFS, a remote file system similar to Sun’s NFS. The current version is
Version 10, released in 1989 and available only within Bell Laboratories.

USG mainly provided support for UNIX within AT&T. The first external
distribution from USG was System III, in 1982. System III incorporated features
of Version 7 and 32V, as well as features of several UNIX systems developed
by groups other than Research. For example, features of UNIX/RT, a real-time
UNIX system, and numerous portions of the Programmer’s Work Bench (PWB)
software tools package were included in System III.

USG released System V in 1983; it is largely derived from System III.
The divestiture of the various Bell operating companies from AT&T left AT&T
in a position to market System V aggressively. USG was restructured as the
UNIX System Development Laboratory (USDL), which released UNIX System
V Release 2 (V.2) in 1984. UNIX System V Release 2, Version 4 (V.2.4) added a
new implementation of virtualmemorywith copy-on-write paging and shared
memory. USDL was in turn replaced by AT&T Information Systems (ATTIS),
which distributed System V Release 3 (V.3) in 1987. V.3 adapts the V8 imple-
mentation of the stream I/O system and makes it available as STREAMS. It also
includes RFS, the NFS-like remote file system mentioned earlier.

C.1.2 Berkeley Begins Development

The small size, modularity, and clean design of early UNIX systems led to UNIX-
based work at numerous other computer-science organizations, such as RAND,
BBN, the University of Illinois, Harvard, Purdue, and DEC. Themost influential
UNIX development group outside of Bell Laboratories and AT&T, however, has
been the University of California at Berkeley.

Bill Joy and Ozalp Babaoglu did the first Berkeley VAX UNIX work in 1978.
They added virtual memory, demand paging, and page replacement to 32V
to produce 3BSD UNIX. This version was the first to implement any of these
facilities on a UNIX system. The large virtual memory space of 3BSD allowed
the development of very large programs, such as Berkeley’s own Franz LISP.
The memory-management work convinced the Defense Advanced Research

C.1 UNIX History 3

Projects Agency (DARPA) to fund Berkeley for the development of a standard
UNIX system for government use; 4BSD UNIX was the result.

The 4 BSD work for DARPA was guided by a steering committee that
included many notable people from the UNIX and networking communities.
One of the goals of this project was to provide support for the DARPA Inter-
net networking protocols (TCP/IP). This support was provided in a general
manner. It is possible in 4.2 BSD to communicate uniformly among diverse
network facilities, including local-area networks (such as Ethernets and token
rings) andwide-area networks (such as NSFNET). This implementationwas the
most important reason for the current popularity of these protocols. Many ven-
dors of UNIX computer systems used it as the basis for their implementations,
and it was even used in other operating systems. It permitted the Internet to
grow from 60 connected networks in 1984 to more than 8,000 networks and an
estimated 10 million users in 1993.

In addition, Berkeley adaptedmany features from contemporary operating
systems to improve the design and implementation of UNIX. Many of the
terminal line-editing functions of the TENEX (TOPS-20) operating system were
provided by a new terminal driver. A new user interface (the C Shell), a new
text editor (ex/vi), compilers for Pascal and LISP, and many new systems
programswerewritten at Berkeley. For 4.2 BSD, certain efficiency improvements
were inspired by the VMS operating system.

UNIX software from Berkeleywas released in Berkeley Software Distribu-
tions (BSD). It is convenient to refer to the BerkeleyVAXUNIX systems following
3 BSD as 4 BSD, but there were actually several specific releases, most notably
4.1 BSD and 4.2 BSD; 4.2 BSD, first distributed in 1983, was the culmination of
the original Berkeley DARPA UNIX project. The equivalent version for PDP-11
systems was 2.9 BSD.

In 1986, 4.3 BSD was released. It was very similar to 4.2 BSD but included
numerous internal changes, such as bug fixes and performance improvements.
Some new facilities were also added, including support for the Xerox Network
System protocols.

The next version was 4.3 BSD Tahoe, released in 1988. It included improved
networking congestion control and TCP/IP performance. Disk configurations
were separated from the device drivers and read off the disks themselves.
Expanded time-zone support was also included. 4.3 BSD Tahoe was actually
developed on and for the CCI Tahoe system (Computer Console, Inc., Power
6 computer), rather than for the usual VAX base. The corresponding PDP-11
release was 2.10.1BSD; it was distributed by the USENIX association, which also
published the 4.3 BSD manuals. The 4.3.2 BSD Reno release saw the inclusion of
an implementation of ISO/OSI networking.

The last Berkeley release, 4.4 BSD, was finalized in June of 1993. It included
new X.25 networking support and POSIX standard compliance. It also had a
radically new file system organization, with a new virtual file system interface
and support for stackable file systems, allowing file systems to be layered on
top of each other for easy inclusion of new features. An implementation of
NFS was included in the release (Section 15.8), along with a new log-based file
system (see Chapter 11). The 4.4 BSD virtual memory system was derived from
Mach (described in Section A.13). Several other changes, such as enhanced
security and improved kernel structure, were also included. With the release
of version 4.4, Berkeley halted its research efforts.

4 Appendix C BSD UNIX

C.1.3 The Spread of UNIX

UNIX 4 BSD was the operating system of choice for the VAX from its initial
release (in 1979) until the release of Ultrix, DEC’s BSD implementation. Indeed,
4 BSD is still the best choice for many research and networking installations.
The current set of UNIX operating systems is not limited to those from Bell
Laboratories (which is currently owned by Lucent Technology) and Berkeley,
however. SunMicrosystems helped popularize the BSD flavor of UNIX by ship-
ping it on Sun workstations. As UNIX grew in popularity, it was moved to
many computers and computer systems. A wide variety of UNIX and UNIX-
like operating systems have been created. DEC supported its UNIX (Ultrix) on
its workstations and is replacing Ultrix with another UNIX-derived operating
system, OSF/1. Microsoft rewrote UNIX for the Intel 8088 family and called
it XENIX, and its Windows NT operating system was heavily influenced by
UNIX. IBM has UNIX (AIX) on its PCs, workstations, and mainframes. In fact,
UNIX is available on almost all general-purpose computers. It runs on personal
computers, workstations, minicomputers, mainframes, and supercomputers,
from Apple Macintosh IIs to Cray IIs. Because of its wide availability, it is used
in environments ranging from academic to military to manufacturing process
control. Most of these systems are based on Version 7, System III, 4.2 BSD, or
System V.

The wide popularity of UNIX with computer vendors has made UNIX the
most portable of operating systems, and users can expect a UNIX environment
independent of any specific computer manufacturer. But the large number of
implementations of the system has led to remarkable variation in the program-
ming and user interfaces distributed by the vendors. For true vendor indepen-
dence, application-program developers need consistent interfaces. Such inter-
faces would allow all “UNIX” applications to run on all UNIX systems, which is
certainly not the current situation. This issue has become important as UNIX has
become the preferred program-development platform for applications ranging
from databases to graphics and networking, and it has led to a strong market
demand for UNIX standards.

Several standardization projects have been undertaken. The first was the
/usr/group 1984 Standard, sponsored by the UniForum industry user’s group.
Since then, many official standards bodies have continued the effort, including
IEEE and ISO (the POSIX standard). The X/Open Group international consor-
tium completed XPG3, a Common Application Environment, which subsumes
the IEEE interface standard. Unfortunately, XPG3 is based on a draft of the
ANSI C standard rather than the final specification, and therefore needed to be
redone as XPG4. In 1989, the ANSI standards body standardized the C program-
ming language, producing an ANSI C specification that vendors were quick to
adopt.

As such projects continue, the flavors of UNIX will converge and lead
to one programming interface to UNIX, allowing UNIX to become even more
popular. In fact, two separate sets of powerful UNIX vendors are working on
this problem: The AT&T-guided UNIX International (UI) and the Open Software
Foundation (OSF) have both agreed to follow the POSIX standard. Recently,
many of the vendors involved in those two groups have agreed on further
standardization (the COSE agreement).

C.1 UNIX History 5

1969

1973

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

USG/USDL/ATTIS
DSG/USO/USL

Bell Labs
Research

Berkley
Software

Distributions

First Edition

Fifth Edition

Sixth Edition

3.0

3.0.1

4.0.1

5.0

5.2 System V

System III

PWB MERT CB UNIX

UNIX/RT

2.10BSD

2.9BSD
4.1cBSD

4.1aBSD

2.8BSD

2BSD

4.0BSD

3BSD

1BSD

32V

Solaris

Solaris 2

SunOS 4

SunOS 3

SunOS

Eighth
Edition

Ninth
Edition

Tenth
Edition

Plan 9

4.4BSD

4.3BSD
Reno

4.3BSD
Tahoe

4.3BSD

Seventh Edition

Chorus

Chorus
V3

System V
Release 3

System V
Release 2

XENIX

XENIX 3

XENIX 5

OSF/1

Mach

4.2BSD

4.1BSD

UNIX
System V
Release 4

VAX

PDP-11PDP-11

VAX

Figure C.1 History of UNIX versions up to 1993.

AT&T replaced its ATTIS group in 1989with the UNIX Software Organization
(USO), which shipped the first merged UNIX, System V Release 4. This system
combines features from System V, 4.3 BSD, and Sun’s SunOS, including long
file names, the Berkeley file system, virtual memory management, symbolic
links, multiple access groups, job control, and reliable signals; it also conforms
to the published POSIX standard, POSIX.1. After USO produced SVR4, it became
an independent AT&T subsidiary named Unix System Laboratories (USL); in
1993, it was purchased byNovell, Inc. Figure C.1 summarizes the relationships
among the various versions of UNIX.

6 Appendix C BSD UNIX

The UNIX system has grown from a personal project of two Bell Labora-
tories employees to an operating system defined by multinational standard-
ization bodies. At the same time, UNIX is an excellent vehicle for academic
study, and we believe it will remain an important part of operating-system
theory and practice. For example, the Tunis operating system, the Xinu oper-
ating system, and the Minix operating system are based on the concepts of
UNIX but were developed explicitly for classroom study. There is a plethora of
ongoing UNIX-related research systems, including Mach, Chorus, Comandos,
and Roisin. The original developers, Ritchie and Thompson, were honored in
1983 by theAssociation forComputingMachineryTuringAward for theirwork
on UNIX.

C.1.4 History of FreeBSD

The specific UNIX version used in this chapter is the Intel version of FreeBSD.
This system implements many interesting operating-system concepts, such as
demand paging with clustering, as well as networking. The FreeBSD project
began in early 1993 to produce a snapshot of 386 BSD to solve problems that
could not be resolvedusing the existing patchmechanism. 386 BSDwas derived
from 4.3 BSD-Lite (Net/2) and was released in June 1992 by William Jolitz.
FreeBSD (coined by David Greenman) 1.0 was released in December 1993, and
FreeBSD 1.1was released inMay 1994. Both versionswere based on 4.3 BSD-Lite.
Legal issues betweenUCB andNovell required that 4.3 BSD-Lite code no longer
be used, so the final 4.3 BSD-Lite releasewasmade in July 1994 (FreeBSD 1.1.5.1).

FreeBSD was then reinvented based on 4.4BSD-Lite code, which was incom-
plete. FreeBSD 2.0 was released in November 1994. Later releases included 2.0.5
in June 1995, 2.1.5 in August 1996, 2.1.7.1 in February 1997, 2.2.1 in April 1997,
2.2.8 in November 1998, 3.0 in October 1998, 3.1 in February 1999, 3.2 in May
1999, 3.3 in September 1999, 3.4 inDecember 1999, 3.5 in June 2000, 4.0 inMarch
2000, 4.1 in July 2000, and 4.2 in November 2000.

The goal of the FreeBSD project is to provide software that can be used for
any purpose with no strings attached. The idea is that the code will get the
widest possible use and provide the most benefit. At present, it runs primarily
on Intel platforms, althoughAlphaplatforms are supported.Work is underway
to port to other processor platforms as well.

C.2 Design Principles

UNIX was designed to be a time-sharing system. The standard user interface
(the shell) is simple and can be replaced by another, if desired. The file system
is a multilevel tree, which allows users to create their own subdirectories. Each
user data file is simply a sequence of bytes.

Disk files and I/O devices are treated as similarly as possible. Thus, device
dependencies and peculiarities are kept in the kernel asmuch as possible. Even
in the kernel, most of them are confined to the device drivers.

UNIX supports multiple processes. A process can easily create new pro-
cesses. CPU scheduling is a simple priority algorithm. FreeBSD uses demand

C.2 Design Principles 7

paging as a mechanism to support memory-management and CPU-scheduling
decisions. Swapping is used if a system is suffering from excess paging.

Because UNIX was originated by Thompson and Ritchie as a system for
their own convenience, it was small enough to understand. Most of the algo-
rithms were selected for simplicity, not for speed or sophistication. The intent
was to have the kernel and libraries provide a small set of facilities thatwas suf-
ficiently powerful to allow a person to build a more complex system if needed.
UNIX’s clean design has resulted in many imitations and modifications.

Although the designers of UNIX had a significant amount of knowledge
about other operating systems, UNIX had no elaborate design spelled out before
its implementation. This flexibility appears to have been one of the key factors
in the development of the system. Some design principles were involved,
however, even though they were not made explicit at the outset.

The UNIX system was designed by programmers for programmers. Thus,
it has always been interactive, and facilities for program development have
always been a high priority. Such facilities include the program make (which
can be used to check which of a collection of source files for a program need to
be compiled and then to do the compiling) and the Source Code Control System
(SCCS) (which is used to keep successive versions of files available without
having to store the entire contents of each step). The primary version-control
system used by UNIX is the Concurrent Versions System (CVS) due to the large
number of developers operating on and using the code.

The operating system is written mostly in C, which was developed to
support UNIX, since neither Thompson nor Ritchie enjoyed programming in
assembly language. The avoidance of assembly language was also necessary
because of the uncertainty about the machines on which UNIX would be run. It
has greatly simplified the problems ofmoving UNIX from one hardware system
to another.

From the beginning, UNIX development systems have had all the UNIX
sources available online, and the developers have used the systems under
development as their primary systems. This pattern of development has
greatly facilitated the discovery of deficiencies and their fixes, as well as
of new possibilities and their implementations. It has also encouraged the
plethora of UNIX variants existing today, but the benefits have outweighed the
disadvantages. If something is broken, it can be fixed at a local site; there is
no need to wait for the next release of the system. Such fixes, as well as new
facilities, may be incorporated into later distributions.

The size constraints of the PDP-11 (and earlier computers used for UNIX)
have forced a certain elegance.Where other systems have elaborate algorithms
for dealing with pathological conditions, UNIX just does a controlled crash
called panic. Instead of attempting to cure such conditions, UNIX tries to pre-
vent them. Where other systems would use brute force or macro-expansion,
UNIX mostly has had to develop more subtle, or at least simpler, approaches.

These early strengths of UNIX produced much of its popularity, which in
turn produced new demands that challenged those strengths. UNIX was used
for tasks such as networking, graphics, and real-time operation, which did
not always fit into its original text-oriented model. Thus, changes were made
to certain internal facilities, and new programming interfaces were added.
Supporting these new facilities and others—particularly window interfaces

8 Appendix C BSD UNIX

—required large amounts of code, radically increasing the size of the system.
For instance, both networking and windowing doubled the size of the system.
This pattern in turn pointed out the continued strength of UNIX—whenever a
new development occurred in the industry, UNIX could usually absorb it but
remain UNIX.

C.3 Programmer Interface

Like most operating systems, UNIX consists of two separable parts: the kernel
and the systems programs. We can view the UNIX operating system as being
layered, as shown in FigureC.2. Everything below the system-call interface and
above the physical hardware is the kernel. The kernel provides the file system,
CPU scheduling, memory management, and other operating-system functions
through system calls. Systems programs use the kernel-supported system calls
to provide useful functions, such as compilation and file manipulation.

System calls define the programmer interface to UNIX. The set of systems
programs commonly available defines the user interface. The programmer and
user interface define the context that the kernel must support.

Most systems programs are written in C, and the UNIX Programmer’s
Manual presents all system calls as C functions. Asystem programwritten in C
for FreeBSD on the Pentium can generally bemoved to anAlpha FreeBSD system
and simply recompiled, even though the two systems are quite different. The
details of system calls are known only to the compiler. This feature is a major
reason for the portability of UNIX programs.

System calls for UNIX can be roughly grouped into three categories: file
manipulation, process control, and information manipulation. In Chapter 2,
we listed a fourth category, device manipulation, but since devices in UNIX are
treated as (special) files, the same system calls support both files and devices
(although there is an extra system call for setting device parameters).

(the users)

shells and commands
compilers and interpreters

system libraries

system-call interface to the kernel

kernel interface to the hardware

file system
swapping block I/O

system
disk and tape drivers

CPU scheduling
page replacement
demand paging
virtual memory

signals terminal
handling

character I/O system
terminal drivers

device controllers
disks and tapes

memory controllers
physical memory

terminal controllers
terminals

Figure C.2 4.4BSD layer structure.

C.3 Programmer Interface 9

C.3.1 File Manipulation

A file in UNIX is a sequence of bytes. Different programs expect various levels
of structure, but the kernel does not impose a structure on files. For instance,
the convention for text files is lines of ASCII characters separated by a single
newline character (which is the linefeed character in ASCII), but the kernel
knows nothing of this convention.

Files are organized in tree-structured directories. Directories are them-
selves files that contain information on how to find other files. A path name
to a file is a text string that identifies a file by specifying a path through the
directory structure to the file. Syntactically, it consists of individual file-name
elements separated by the slash character. For example, in /usr/local/font, the
first slash indicates the root of the directory tree, called the root directory. The
next element, usr, is a subdirectory of the root, local is a subdirectory of usr, and
font is a file or directory in the directory local. Whether font is an ordinary file
or a directory cannot be determined from the path-name syntax.

The UNIX file system has both absolute path names and relative path
names. Absolute path names start at the root of the file system and are dis-
tinguished by a slash at the beginning of the path name; /usr/local/font is an
absolute path name. Relative path names start at the current directory, which
is an attribute of the process accessing the path name. Thus, local/font indicates a
file or directory named font in the directory local in the current directory, which
might or might not be /usr.

A file may be known by more than one name in one or more directories.
Such multiple names are known as links, and all links are treated equally by
the operating system. FreeBSD also supports symbolic links, which are files
containing the path name of another file. The two kinds of links are also known
as hard links and soft links. Soft (symbolic) links, unlike hard links, may point
to directories and may cross file-system boundaries.

The file name “.” in a directory is a hard link to the directory itself. The file
name “..” is a hard link to the parent directory. Thus, if the current directory is
/user/jlp/programs, then ../bin/wdf refers to /user/jlp/bin/wdf.

Hardware devices have names in the file system. These device special
files or special files are known to the kernel as device interfaces, but they are
nonetheless accessed by the user by much the same system calls as are other
files.

Figure C.3 shows a typical UNIX file system. The root (/) normally contains
a small number of directories as well as /kernel, the binary boot image of the
operating system; /dev contains the device special files, such as /dev/console,
/dev/lp0, /dev/mt0, and so on; and /bin contains the binaries of the essential
UNIX systems programs. Other binaries may be in /usr/bin (for applications
systems programs, such as text formatters), /usr/compat (for programs from
other operating systems, such as Linux), or /usr/local/bin (for systems programs
written at the local site). Library files—such as the C, Pascal, and FORTRAN
subroutine libraries—are kept in /lib (or /usr/lib or /usr/local/lib).

The files of users themselves are stored in a separate directory for each
user, typically in /usr. Thus, the user directory for carol would normally be in
/usr/carol. For a large system, these directories may be further grouped to ease
administration, creating a file structure with /usr/prof/avi and /usr/staff/carol.
Administrative files and programs, such as the password file, are kept in /etc.

10 Appendix C BSD UNIX

bin troff

spell

ucb man

telnet

local lib

bin

include

lib
troff

tmac

tmp

vmunix

dev

lib

user

etc

tmp

console

lp0

sh

csh

libc.a

usr

jlp

avi

passwd

group

init

bin

/

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

Figure C.3 Typical UNIX directory structure.

Temporary files can be put in /tmp, which is normally erased during system
boot, or in /usr/tmp.

Each of these directories may have considerably more structure. For exam-
ple, the font-description tables for the troff formatter for the Merganthaler 202

C.3 Programmer Interface 11

typesetter are kept in /usr/lib/troff/dev202. All the conventions concerning the
location of specific files and directories have been defined by programmers
and their programs. The operating-system kernel needs only /etc/init,which is
used to initialize terminal processes, to be operable.

System calls for basic file manipulation are creat(), open(), read(),
write(), close(), unlink(), and trunc(). The creat() system call, given
a path name, creates an empty file (or truncates an existing one). An existing
file is opened by the open() system call, which takes a path name and a mode
(such as read, write, or read–write) and returns a small integer, called a file
descriptor. The file descriptor may then be passed to a read() or write()
system call (along with a buffer address and the number of bytes to transfer) to
performdata transfers to or from the file. Afile is closedwhen its file descriptor
is passed to the close() system call. The trunc() call reduces the length of a
file to 0.

A file descriptor is an index into a small table of open files for this process.
Descriptors start at 0 and seldom get higher than 6 or 7 for typical programs,
depending on the maximum number of simultaneously open files.

Each read() or write() updates the current offset into the file, which is
associated with the file-table entry and is used to determine the position in
the file for the next read() or write(). The lseek() system call allows the
position to be reset explicitly. It also allows the creation of sparse files (fileswith
“holes” in them). The dup() and dup2() system calls can be used to produce
a new file descriptor that is a copy of an existing one. The fcntl() system
call can also do that and in addition can examine or set various parameters of
an open file. For example, it can make each succeeding write() to an open
file append to the end of that file. There is an additional system call, ioctl(),
for manipulating device parameters. It can set the baud rate of a serial port or
rewind a tape, for instance.

Information about the file (such as its size, protection modes, owner, and
so on) can be obtained by the stat() system call. Several system calls allow
some of this information to be changed: rename() (change file name), chmod()
(change the protection mode), and chown() (change the owner and group).
Many of these system calls have variants that apply to file descriptors instead
of file names. The link() system call makes a hard link for an existing file,
creating a new name for an existing file. A link is removed by the unlink(())
system call; if it is the last link, the file is deleted. The symlink() system call
makes a symbolic link.

Directories are made by the mkdir() system call and are deleted by
rmdir(). The current directory is changed by cd().

Although the standardfile calls (open() and others) can be used ondirecto-
ries, it is inadvisable to do so, since directories have an internal structure that
must be preserved. Instead, another set of system calls is provided to open
a directory, to step through each file entry within the directory, to close the
directory, and to perform other functions; these are opendir(), readdir(),
closedir(), and others.

C.3.2 Process Control

A process is a program in execution. Processes are identified by their process
identifier, which is an integer. A new process is created by the fork() system

12 Appendix C BSD UNIX

call. The new process consists of a copy of the address space of the original
process (the same program and the same variables with the same values). Both
processes (the parent and the child) continue execution at the instruction after
the fork() with one difference: the return code for the fork() is zero for the
new (child) process, whereas the (nonzero) process identifier of the child is
returned to the parent.

Typically, the execve() system call is used after a fork by one of the two
processes to replace that process’s virtual memory space with a new program.
The execve() system call loads a binary file into memory (destroying the
memory image of the program containing the execve() system call) and starts
its execution.

A process may terminate by using the exit() system call, and its parent
process may wait for that event by using the wait() system call. If the child
process crashes, the system simulates the exit() call. The wait() system call
provides the process ID of a terminated child so that the parent can tell which of
possibly many children terminated. A second system call, wait3(), is similar
to wait() but also allows the parent to collect performance statistics about the
child. Between the time the child exits and the time the parent completes one of
the wait() system calls, the child is defunct. Adefunct process can do nothing
but exists merely so that the parent can collect its status information. If the
parent process of a defunct process exits before a child, the defunct process is
inherited by the init process (which in turnwaits on it) and becomes a zombie
process. A typical use of these facilities is shown in Figure C.4.

The simplest form of communication between processes is by pipes. Apipe
may be created before the fork(), and its endpoints are then set up between
the fork() and the execve(). A pipe is essentially a queue of bytes between
two processes. The pipe is accessed by a file descriptor, like an ordinary file.
One process writes into the pipe, and the other reads from the pipe. The size
of the original pipe system was fixed by the system. With FreeBSD pipes are
implemented on top of the socket system, which has variable-sized buffers.
Reading from an empty pipe or writing into a full pipe causes the process to be
blocked until the state of the pipe changes. Special arrangements are needed
for a pipe to be placed between a parent and child (so only one is reading and
one is writing).

All user processes are descendants of one original process, called init
(which has process identifier 1). Each terminal port available for interactive use
has a getty process forked for it by init. The getty process initializes termi-
nal line parameters and waits for a user’s login name, which it passes through

shell process parent process shell process

child process zombie process

execve
program

program executes
exit

waitfork

Figure C.4 A shell forks a subprocess to execute a program.

C.3 Programmer Interface 13

an execve() as an argument to a login process. The login process collects
the user’s password, encrypts it, and compares the result to an encrypted
string taken from the file /etc/passwd. If the comparison is successful, the user is
allowed to log in. The login process executes a shell, or command interpreter,
after setting the numeric user identifier of the process to that of the user logging
in. (The shell and the user identifier are found in /etc/passwd by the user’s login
name.) It is with this shell that the user ordinarily communicates for the rest
of the login session. The shell itself forks subprocesses for the commands the
user tells it to execute.

The user identifier is usedby the kernel to determine the user’s permissions
for certain system calls, especially those involving file accesses. There is also
a group identifier, which is used to provide similar privileges to a collection
of users. In FreeBSD a process may be in several groups simultaneously. The
login process puts the shell in all the groups permitted to the user by the files
/etc/passwd and /etc/group.

Two user identifiers are used by the kernel: the effective user identifier and
the real user identifier. The effective user identifier is used to determine file
access permissions. If the file of a program being loaded by an execve() has
the setuid bit set in its inode, the effective user identifier of the process is set
to the user identifier of the owner of the file, whereas the real user identifier
is left as it was. This scheme allows certain processes to have more than
ordinary privileges while still being executable by ordinary users. The setuid
idea was patented by Dennis Ritchie (U.S. Patent 4,135,240) and is one of the
distinctive features of UNIX. A similar setgid bit exists for groups. A process
may determine its real and effective user identifier with the getuid() and
geteuid() calls, respectively. The getgid() and getegid() calls determine
the process’s real and effective group identifier, respectively. The rest of a
process’s groups may be found with the getgroups() system call.

C.3.3 Signals

Signals are a facility for handling exceptional conditions similar to software
interrupts. There are 20 different signals, each corresponding to a distinct
condition. A signal may be generated by a keyboard interrupt, by an error in
a process (such as a bad memory reference), or by a number of asynchronous
events (such as timers or job-control signals from the shell). Almost any signal
may also be generated by the kill() system call.

The interrupt signal, SIGINT, is used to stop a command before that com-
mand completes. It is usually produced by the ˆC character (ASCII 3). As of
4.2BSD, the important keyboard characters are defined by a table for each termi-
nal and can be redefined easily. The quit signal, SIGQUIT, is usually produced
by the ˆbs character (ASCII 28). The quit signal both stops the currently execut-
ing program and dumps its current memory image to a file named core in the
current directory. The core file can be used by debuggers. SIGILL is produced by
an illegal instruction and SIGSEGV by an attempt to address memory outside of
the legal virtual memory space of a process.

Arrangements can be made either for most signals to be ignored (to have
no effect) or for a routine in the user process (a signal handler) to be called. A
signal handler may safely do one of two things before returning from catching
a signal: call the exit() system call or modify a global variable. One signal

14 Appendix C BSD UNIX

(the kill signal, number 9, SIGKILL) cannot be ignored or caught by a signal
handler. SIGKILL is used, for example, to kill a runaway process that is ignoring
other signals such as SIGINT and SIGQUIT.

Signals can be lost. If another signal of the same kind is sent before a
previous signal has been accepted by the process to which it is directed, the
first signal will be overwritten, and only the last signal will be seen by the
process. In other words, a call to the signal handler tells a process that there
has been at least one occurrence of the signal. Also, there is no relative priority
among UNIX signals. If two different signals are sent to the same process at the
same time, we cannot know which one the process will receive first.

Signals were originally intended to deal with exceptional events. As is
true of most UNIX features, however, signal use has steadily expanded. 4.1BSD
introduced job control, which uses signals to start and stop subprocesses on
demand. This facility allows one shell to control multiple processes—starting,
stopping, and backgrounding them as the user wishes. The SIGWINCH signal,
invented by SunMicrosystems, is used for informing aprocess that thewindow
in which output is being displayed has changed size. Signals are also used to
deliver urgent data from network connections.

Users wanted more reliable signals and a bug fix in an inherent race condi-
tion in the old signal implementation. Thus, 4.2BSD brought with it a race-free,
reliable, separately implemented signal capability. It allows individual signals
to be blocked during critical sections, and it has a new system call to let a pro-
cess sleep until interrupted. It is similar to hardware-interrupt functionality.
This capability is now part of the POSIX standard.

C.3.4 Process Groups

Groups of related processes frequently cooperate to accomplish a common
task. For instance, processes may create, and communicate over, pipes. Such
a set of processes is termed a process group, or a job. Signals may be sent to
all processes in a group. A process usually inherits its process group from its
parent, but the setpgrp() system call allows a process to change its group.

Process groups are used by the C shell to control the operation of mul-
tiple jobs. Only one process group may use a terminal device for I/O at any
time. This foreground job has the attention of the user on that terminal, while
all other nonattached jobs (background jobs) perform their functions without
user interaction. Access to the terminal is controlled by process group signals.
Each job has a controlling terminal (again, inherited from its parent). If the
process group of the controlling terminal matches the group of a process, that
process is in the foreground and is allowed to perform I/O. If a nonmatching
(background) process attempts the same, a SIGTTIN or SIGTTOU signal is sent to
its process group. This signal usually causes the process group to freeze until
it is foregrounded by the user, at which point it receives a SIGCONT signal,
indicating that the process can perform the I/O. Similarly, a SIGSTOP may be
sent to the foreground process group to freeze it.

C.3.5 Information Manipulation

System calls exist to set and return both an interval timer (getitimer()/
setitimer()) and the current time (gettimeofday()/settimeofday()) in

C.4 User Interface 15

microseconds. In addition, processes can ask for their process identifier (get-
pid()), their group identifier (getgid()), the name of the machine on which
they are executing (gethostname()), and many other values.

C.3.6 Library Routines

The system-call interface to UNIX is supported and augmented by a large
collection of library routines and header files. The header files provide the
definition of complex data structures used in system calls. In addition, a large
library of functions provides additional program support.

For example, the UNIX I/O system calls provide for the reading andwriting
of blocks of bytes. Some applications may want to read and write only 1 byte
at a time. Although possible, that would require a system call for each byte—a
very high overhead. Instead, a set of standard library routines (the standard I/O
package accessed through the header file<stdio.h>) provides another interface,
which reads and writes several thousand bytes at a time using local buffers
and transfers between these buffers (in user memory) when I/O is desired.
Formatted I/O is also supported by the standard I/O package.

Additional library support is provided for mathematical functions, net-
work access, data conversion, and so on. The FreeBSD kernel supports over
300 system calls; the C program library has over 300 library functions. The
library functions eventually result in system calls where necessary (for exam-
ple, the getchar() library routine will result in a read() system call if the file
buffer is empty). However, the programmer generally does not need to distin-
guish between the basic set of kernel system calls and the additional functions
provided by library functions.

C.4 User Interface

Both the programmer and the user of a UNIX system deal mainly with the set
of systems programs that have been written and are available for execution.
These programs make the necessary system calls to support their function, but
the system calls themselves are contained within the program and do not need
to be obvious to the user.

The common systems programs can be grouped into several categories;
most of them are file or directory oriented. For example, the systems programs
to manipulate directories are mkdir to create a new directory, rmdir to remove
a directory, cd to change the current directory to another, and pwd to print the
absolute path name of the current (working) directory.

The ls program lists the names of the files in the current directory. Any of
28 options can ask that properties of the files be displayed also. For example,
the -l option asks for a long listing showing the file name, owner, protection,
date and time of creation, and size. The cp program creates a new file that is a
copy of an existing file. The mv programmoves a file from one place to another
in the directory tree. In most cases, this move simply requires a renaming of
the file. If necessary, however, the file is copied to the new location, and the old
copy is deleted. Afile is deleted by the rm program (which makes an unlink()
system call).

16 Appendix C BSD UNIX

To display a file on the terminal, a user can run cat. The cat program takes
a list of files and concatenates them, copying the result to the standard output,
commonly the terminal. On a high-speed cathode-ray tube (CRT) display, of
course, the file may speed by too fast to be read. The more program displays
the file one screen at a time, pausing until the user types a character to continue
to the next screen. The head program displays just the first few lines of a file;
tail shows the last few lines.

These are the basic systems programs widely used in UNIX. In addition,
there are a number of editors (ed, sed, emacs, vi, and so on), compilers (C,
python, FORTRAN, and so on), and text formatters (troff, TEX, scribe, and so
on). There are also programs for sorting (sort) and comparing files (cmp, diff),
looking for patterns (grep, awk), sending mail to other users (mail), and many
other activities.

C.4.1 Shells and Commands

Both user-written and systems programs are normally executed by a command
interpreter. The command interpreter in UNIX is a user process like any other.
As noted earlier, it is called a shell—because it surrounds the kernel of the
operating system. Users can write their own shells, and, in fact, several shells
are in general use. The Bourne shell, written by Steve Bourne, is probably the
most widely used—or, at least, the most widely available. The C shell, mostly
the work of Bill Joy, a founder of Sun Microsystems, is the most popular on
BSD systems. The Korn shell, by Dave Korn, has become popular because it
combines the features of the Bourne shell and the C shell.

The common shells share much of their command-language syntax. UNIX
is normally an interactive system. The shell indicates its readiness to accept
another command by typing a prompt, and the user types a command on a
single line. For instance, in the line

% ls -l

the percent sign is the usual C shell prompt, and the ls -l (typed by the user)
is the (long) list-directory command. Commands can take arguments, which
the user types after the command name on the same line, separated by white
space (spaces or tabs).

Although a few commands are built into the shells (such as cd), a typical
command is an executable binary object file. A list of several directories, the
search path, is kept by the shell. For each command, each of the directories
in the search path is searched, in order, for a file of the same name. If a file is
found, it is loaded and executed. The search path can be set by the user. The
directories /bin and /usr/bin are almost always in the search path, and a typical
search path on a FreeBSD system might be

(. /usr/avi/bin /usr/local/bin /bin /usr/bin)

The ls command’s object file is /bin/ls, and the shell itself is /bin/sh (the Bourne
shell) or /bin/csh (the C shell).

Execution of a command is done by a fork() system call followed by an
execve() of the object file. The shell usually then does a wait() to suspend

C.4 User Interface 17

its own execution until the command completes (Figure C.4). There is a simple
syntax (an ampersand [&] at the end of the command line) to indicate that
the shell should not wait for the completion of the command. A command left
running in thismannerwhile the shell continues to interpret further commands
is said to be a background command, or to be running in the background.
Processes for which the shell does wait are said to run in the foreground.

The C shell in FreeBSD systems provides a facility called job control (par-
tially implemented in the kernel), as mentioned previously. Job control allows
processes to be moved between the foreground and the background. The pro-
cesses can be stopped and restarted on various conditions, such as a back-
ground job wanting input from the user’s terminal. This scheme allows most
of the control of processes provided by windowing or layering interfaces but
requires no special hardware. Job control is also useful in window systems,
such as the X Window System developed at MIT. Each window is treated as
a terminal, allowing multiple processes to be in the foreground (one per win-
dow) at any one time. Of course, background processes may exist on any of
the windows. The Korn shell also supports job control, and job control (and
process groups) will likely be standard in future versions of UNIX.

C.4.2 Standard I/O

Processes can open files as they like, but most processes expect three file
descriptors (numbers 0, 1, and 2) to be openwhen they start. These file descrip-
tors are inherited across the fork() (and possibly the execve()) that created
the process. They are known as standard input (0), standard output (1), and
standard error (2). All three are frequently open to the user’s terminal. Thus,
the program can read what the user types by reading standard input, and the
program can send output to the user’s screen by writing to standard output.
The standard-error file descriptor is also open for writing and is used for error
output; standard output is used for ordinary output. Most programs can also
accept a file (rather than a terminal) for standard input and standard output.
The programdoes not carewhere its input is coming from andwhere its output
is going. This is one of the elegant design features of UNIX.

The common shells have a simple syntax for changing what files are open
for the standard I/O streams of a process. Changing a standard file is called
I/O redirection. The syntax for I/O redirection is shown in Figure C.5. In this

command meaning of command

% ls > filea direct output of ls to file filea

% pr < filea > fileb

% lpr < fileb

% % make program > & errs

input from filea and output to fileb

input from fileb

save both standard output and
standard error in a file

Figure C.5 Standard /io/ redirection.

18 Appendix C BSD UNIX

example, the ls command produces a listing of the names of files in the current
directory, the pr command formats that list into pages suitable for a printer, and
the lpr command spools the formatted output to a printer, such as /dev/lp0. The
subsequent command forces all output and all error messages to be redirected
to a file. Without the ampersand, error messages appear on the terminal.

C.4.3 Pipelines, Filters, and Shell Scripts

The first three commands of Figure C.5 could have been coalesced into the one
command

% ls | pr | lpr
Each vertical bar tells the shell to arrange for the output of the preceding
command to be passed as input to the following command. A pipe is used to
carry the data from one process to the other. One process writes into one end
of the pipe, and another process reads from the other end. In the example, the
write end of one pipe would be set up by the shell to be the standard output
of ls, and the read end of the pipe would be the standard input of pr. Another
pipe would be between pr and lpr.

Acommand such as pr that passes its standard input to its standard output,
performing some processing on it, is called a filter. Many UNIX commands can
be used as filters. Complicated functions can be pieced together as pipelines of
common commands. Also, common functions, such as output formatting, do
not need to be built into numerous commands, because the output of almost
any program can be piped through pr (or some other appropriate filter).

Both of the common UNIX shells are also programming languages, with
shell variables and the usual higher-level programming-language control con-
structs (loops, conditionals). The execution of a command is analogous to a
subroutine call. A file of shell commands, a shell script, can be executed like
any other command, with the appropriate shell being invoked automatically
to read it. Shell programming thus can be used to combine ordinary programs
conveniently for sophisticated applications without the need for any program-
ming in conventional languages.

This external user view is commonly thought of as the definition of UNIX,
yet it is the most easily changed definition. Writing a new shell with a quite
different syntax and semantics would greatly change the user view while not
changing the kernel or even the programmer interface. Several menu-driven
and iconic interfaces for UNIX exist, and the X Window System is rapidly
becoming a standard. The heart of UNIX is, of course, the kernel. This kernel is
much more difficult to change than is the user interface, because all programs
depend on the system calls that it provides to remain consistent. Of course,
new system calls can be added to increase functionality, but programs must
then be modified to use the new calls.

C.5 Process Management

A major design problem for operating systems is the representation of pro-
cesses. One substantial difference between UNIX and many other systems is
the ease with which multiple processes can be created andmanipulated. These

C.5 Process Management 19

processes are represented in UNIX by various control blocks. No system con-
trol blocks are accessible in the virtual address space of a user process; control
blocks associated with a process are stored in the kernel. The kernel uses the
information in these control blocks for process control and CPU scheduling.

C.5.1 Process Control Blocks

Themost basic data structure associatedwith processes is the process structure.
Aprocess structure contains everything that the system needs to know about a
process when the process is swapped out, such as its unique process identifier,
scheduling information (for example, the priority of the process), and pointers
to other control blocks. There is an array of process structures whose length is
defined at system-linking time. The process structures of ready processes are
kept linked together by the scheduler in a doubly linked list (the ready queue),
and there are pointers from each process structure to the process’s parent, to
its youngest living child, and to various other relatives of interest, such as a list
of processes sharing the same program code (text).

The virtual address space of a user process is divided into text (program
code), data, and stack segments. The data and stack segments are always in
the same address space, but theymay grow separately, and usually in opposite
directions. Most frequently, the stack grows down as the data grow up toward
it. The text segment is sometimes (as on an Intel 8086 with separate instruction
and data space) in an address space different from the data and stack, and it
is usually read-only. The debugger puts a text segment in read–write mode to
allow insertion of breakpoints.

Every process with sharable text (almost all, under FreeBSD) has a pointer
from its process structure to a text structure. The text structure records how
many processes are using the text segment, including a pointer into a list of
their process structures, and where the page table for the text segment can be
found on disk when it is swapped. The text structure itself is always resident
in main memory. An array of such structures is allocated at system link time.
The text, data, and stack segments for the processes may be swapped. When
the segments are swapped in, they are paged.

The page tables record information on the mapping from the process’s
virtual memory to physical memory. The process structure contains pointers
to the page table, for use when the process is resident in main memory, or
the address of the process on the swap device, when the process is swapped.
There is no special separate page table for a shared text segment; every process
sharing the text segment has entries for its pages in the process’s page table.

Information about the process needed only when the process is resident
(that is, not swapped out) is kept in the user structure (or u structure), rather
than in the process structure. This structure is mapped read-only into user
virtual address space, so user processes can read its contents. It is writable
by the kernel. The user structure contains a copy of the process control block,
or PCB, which is kept here for saving the process’s general registers, stack
pointer, program counter, and page-table base registers when the process is
not running. There is space to keep system-call parameters and return values.
All user and group identifiers associated with the process (not just the effective
user identifier kept in the process structure) are kept here. Signals, timers, and
quotas have data structures here. Of more obvious relevance to the ordinary

20 Appendix C BSD UNIX

user, the current directory and the table of open files are maintained in the
user structure.

Every process has both a user and a system mode. Most ordinary work is
done in user mode, but when a system call is made, it is performed in system
mode. The system and user phases of a process never execute simultaneously.
When a process is executing in system mode, a kernel stack for that process
is used, rather than the user stack belonging to that process. The kernel stack
for the process immediately follows the user structure. The kernel stack and
the user structure together compose the system data segment for the process.
The kernel has its own stack for use when it is not doing work on behalf of a
process (for instance, for interrupt handling).

Figure C.6 illustrates how the process structure is used to find the various
parts of a process.

The fork() system call allocates a new process structure (with a new
process identifier) for the child process and copies the user structure. There
is ordinarily no need for a new text structure, as the processes share their
text. The appropriate counters and lists are merely updated. A new page table
is constructed, and new main memory is allocated for the data and stack
segments of the child process. The copying of the user structure preserves open
file descriptors, user and group identifiers, signal handling, and most similar
properties of a process.

The vfork() system call does not copy the data and stack to the new
process; rather, the new process simply shares the page table of the old one.
A new user structure and a new process structure are still created. A common
use of this system call occurs when a shell executes a command and waits for
its completion. The parent process uses vfork() to produce the child process.
Because the child processwishes to use an execve() immediately to change its
virtual address space completely, there is no need for a complete copy of the

resident tables

swappable process image

user space

system data structure

process
structure

text
structure

user
structure

kernel
stack

stack

data

text

Figure C.6 Finding parts of a process using the process structure.

C.5 Process Management 21

parent process. Such data structures as are necessary for manipulating pipes
may be kept in registers between the vfork() and the execve(). Files may
be closed in one process without affecting the other process, since the kernel
data structures involved depend on the user structure, which is not shared. The
parent is suspendedwhen it calls vfork() until the child either calls execve()
or terminates, so that the parent will not change memory that the child needs.

When the parent process is large, vfork() can produce substantial savings
in system CPU time. However, it is a fairly dangerous system call, since any
memory change occurs in both processes until the execve() occurs. An alter-
native is to share all pages by duplicating the page table but tomark the entries
of both page tables as copy-on-write. The hardware protection bits are set to
trap any attempt to write in these shared pages. If such a trap occurs, a new
frame is allocated, and the shared page is copied to the new frame. The page
tables are adjusted to show that this page is no longer shared (and therefore no
longer needs to be write-protected), and execution can resume.

An execve() system call creates no new process or user structure. Rather,
the text and data of the process are replaced.Open files are preserved (although
there is a way to specify that certain file descriptors are to be closed on an
execve()). Most signal-handling properties are preserved, but arrangements
to call a specific user routine on a signal are canceled, for obvious reasons. The
process identifier and most other properties of the process are unchanged.

C.5.2 CPU Scheduling

CPU scheduling in UNIX is designed to benefit interactive processes. Processes
are given small CPU time slices by a priority algorithm that reduces to round-
robin scheduling for CPU-bound jobs.

Every process has a scheduling priority associated with it; larger numbers
indicate lower priority. Processes doing disk I/O or other important tasks have
priorities less than “pzero” and cannot be killed by signals. Ordinary user
processes have positive priorities and thus are less likely to be run than is any
system process, although user processes can set precedence over one another
through the nice command.

The more CPU time a process accumulates, the lower (more positive) its
priority becomes, and vice versa. This negative feedback in CPU scheduling
makes it difficult for a single process to take all the CPU time. Process aging is
employed to prevent starvation.

Older UNIX systems used a 1-second quantum for the round-robin schedul-
ing. FreeBSD reschedules processes every 0.1 second and recomputes priorities
every second. The round-robin scheduling is accomplished by the timeout
mechanism, which tells the clock interrupt driver to call a kernel subroutine
after a specified interval. The subroutine to be called in this case causes the
rescheduling and then resubmits a timeout to call itself again. The priority
recomputation is also timed by a subroutine that resubmits a timeout for itself.

There is no preemption of one process by another in the kernel. A process
may relinquish the CPU because it is waiting for I/O or because its time slice
has expired. When a process chooses to relinquish the CPU, it goes to sleep
on an event. The kernel primitive used for this purpose is called sleep()
(not to be confused with the user-level library routine of the same name).
Sleep() takes an argument that is, by convention, the address of a kernel data

22 Appendix C BSD UNIX

structure related to an event for which a process is waiting. When the event
occurs, the system process that knows about it calls wakeup()with the address
corresponding to the event, and all processes that had done a sleep on the same
address are put in the ready queue to be run.

For example, a process waiting for disk I/O to complete will sleep on the
address of the buffer header corresponding to the data being transferred.When
the interrupt routine for the disk driver notes that the transfer is complete, it
calls wakeup() on the buffer header. The interrupt uses the kernel stack for
whatever process happened to be running at the time, and the wakeup() is
done from that system process.

The process that actually does run is chosen by the scheduler. Sleep()
takes a second argument, which is the scheduling priority to be used for this
purpose. This priority argument, if less than “pzero,” also prevents the process
from being awakened prematurely by some exceptional event, such as a signal.

When a signal is generated, it is left pending until the system half of the
affected process next runs. This event usually happens soon, since the signal
normally causes the process to be awakened if the process has beenwaiting for
some other condition.

No memory is associated with events. The caller of the routine that does
a sleep() on an event must be prepared to deal with a premature return,
including the possibility that the reason for waiting has vanished.

Race conditions are involved in the event mechanism. If a process decides
(because of checking a flag in memory, for instance) to sleep on an event, and
the event occurs before the process can execute the primitive that does the
sleep() on the event, the process sleepingmay then sleep forever. We prevent
this situation by raising the hardware processor priority during the critical
section so that no interrupts can occur. Thus, only the process desiring the event
can run until it is sleeping. Hardware processor priority is used in this manner
to protect critical regions throughout the kernel and is the greatest obstacle to
porting UNIX to multiple-processor machines. However, this problem has not
prevented such porting from being done repeatedly.

Many processes, such as text editors, are I/O bound and are, in general,
scheduled mainly on the basis of waiting for I/O. Experience suggests that the
UNIX scheduler performs best with I/O-bound jobs, as can be observed when
several CPU-bound jobs, such as text formatters or language interpreters, are
running.

What has been referred to here asCPU scheduling corresponds closely to the
short-term scheduling of Chapter 3. However, the negative-feedback property
of the priority scheme provides some long-term scheduling in that it largely
determines the long-term job mix. Medium-term scheduling is done by the
swapping mechanism described in Section C.6.

C.6 Memory Management

Much of UNIX’s early development was done on a PDP-11. The PDP-11 has only
eight segments in its virtual address space, and the size of each is at most 8,192
bytes. The larger machines, such as the PDP-11/70, allow separate instruction
and address spaces, effectively doubling the address space and number of
segments, but this address space is still relatively small. In addition, the kernel

C.6 Memory Management 23

was even more severely constrained due to dedication of one data segment
to interrupt vectors, another to point at the per-process system data segment,
and yet another for the UNIBUS (system I/O bus) registers. Further, on the
smaller PDP-11s, total physicalmemorywas limited to 256 KB. The totalmemory
resourceswere insufficient to justify or support complexmemory-management
algorithms. Thus, UNIX swapped entire process memory images.

Berkeley introduced paging to UNIX with 3BSD. VAX 4.2BSD is a demand-
paged virtual memory system. Paging eliminates external fragmentation of
memory. (Internal fragmentation still occurs, but it is negligible with a reason-
ably small page size.) Because paging allows execution with only parts of each
process in memory, more jobs can be kept in main memory, and swapping can
be kept to a minimum. Demand paging is done in a straightforward manner.
When a process needs a page and the page is not there, a page fault to the kernel
occurs, a frame of main memory is allocated, and the proper disk page is read
into the frame.

There are a few optimizations. If the page needed is still in the page table
for the process but has beenmarked invalid by the page-replacement process, it
can be marked valid and used without any I/O transfer. Pages can similarly be
retrieved from the list of free frames. When most processes are started, many
of their pages are prepaged and are put on the free list for recovery by this
mechanism.Arrangements can also bemade for a process to have noprepaging
on startup. That is seldom done, however, because it results in more page-
fault overhead, being closer to pure demand paging. FreeBSD implements page
coloring with paging queues. The queues are arranged according to the size
of the processor’s L1 and L2 caches. When a new page needs to be allocated,
FreeBSD tries to get one that is optimally aligned for the cache. If the page
has to be fetched from disk, it must be locked in memory for the duration of
the transfer. This locking ensures that the page will not be selected for page
replacement. Once the page is fetched and mapped properly, it must remain
locked if raw physical I/O is being done on it.

The page-replacement algorithm is more interesting. 4.2BSD uses a modifi-
cation of the second-chance (clock) algorithm described in Section 10.4.5. The
map of all nonkernel main memory (the core map or cmap) is swept linearly
and repeatedly by a software clock hand. When the clock hand reaches a given
frame, if the frame is marked as being in use by some software condition (for
example, if physical I/O is in progress using it) or if the frame is already free,
the frame is left untouched, and the clock hand sweeps to the next frame.
Otherwise, the corresponding text or process page-table entry for this frame
is located. If the entry is already invalid, the frame is added to the free list.
Otherwise, the page-table entry is made invalid but reclaimable (that is, if it
has not been paged out by the next time it is wanted, it can just be made valid
again).

BSD Tahoe added support for systems that implement the reference bit.
On such systems, one pass of the clock hand turns the reference bit off, and a
second pass places those pageswhose reference bits remain off onto the free list
for replacement. Of course, if the page is dirty, it must first be written to disk
before being added to the free list. Pageouts are done in clusters to improve
performance.

There are checks to make sure that the number of valid data pages for a
process does not fall too low and to keep the paging device from being flooded

24 Appendix C BSD UNIX

with requests. There is also a mechanism by which a process can limit the
amount of main memory it uses.

The LRU clock-hand scheme is implemented in the pagedaemon, which is
process 2. (Remember that the swapper is process 0 and init is process 1.)
This process spends most of its time sleeping, but a check is done several
times per second (scheduled by a timeout) to see if action is necessary. If it
is, process 2 is awakened. Whenever the number of free frames falls below a
threshold, lotsfree, the pagedaemon is awakened. Thus, if there is always a
large amount of free memory, the pagedaemon imposes no load on the system,
because it never runs.

The sweep of the clock hand each time the pagedaemon process is awak-
ened (that is, the number of frames scanned, which is usually more than the
number paged out) is determined both by the number of frames lacking to
reach lotsfree and by the number of frames that the scheduler has deter-
mined are needed for various reasons (the more frames needed, the longer the
sweep). If the number of frames free rises to lotsfree before the expected
sweep is completed, the hand stops, and the pagedaemon process sleeps. The
parameters that control the range of the clock-hand sweep are determined at
system startup according to the amount of main memory, such that pagedae-
mon does not use more than 10 percent of all CPU time.

If the scheduler decides that the paging system is overloaded, processes
will be swapped out whole until the overload is relieved. This swapping
usually happens only if several conditions are met: load average is high; free
memory has fallen below a low limit, minfree; and the average memory
available over recent time is less than a desirable amount, desfree, where
lotsfree > desfree > minfree. In other words, only a chronic shortage
of memory with several processes trying to run will cause swapping, and
even then free memory has to be extremely low at the moment. (An excessive
paging rate or a need for memory by the kernel itself may also enter into the
calculations, in rare cases.) Processes may be swapped by the scheduler, of
course, for other reasons (such as simply because they have not run for a long
time).

The parameter lotsfree is usually one-quarter of the memory in the
map that the clock hand sweeps, and desfree and minfree are usually the
same across different systems but are limited to fractions of available mem-
ory. FreeBSD dynamically adjusts its paging queues so these virtual memory
parameters will rarely need to be adjusted. Minfree pages must be kept free
in order to supply any pages that might be needed at interrupt time.

Every process’s text segment is, by default, shared and read-only. This
scheme is practical with paging, because there is no external fragmentation,
and the swap space gained by sharing more than offsets the negligible amount
of overhead involved, as the kernel virtual space is large.

CPU scheduling, memory swapping, and paging interact. The lower the
priority of a process, the more likely that its pages will be paged out and
the more likely that it will be swapped in its entirety. The age preferences
in choosing processes to swap guard against thrashing, but paging does so
more effectively. Ideally, processes will not be swapped out unless they are
idle, because each process will need only a small working set of pages in main
memory at any one time, and the pagedaemon will reclaim unused pages for
use by other processes.

C.7 File System 25

The amount of memory the process will need is some fraction of that
process’s total virtual size—up to one-half if that process has been swapped
out for a long time.

C.7 File System

The UNIX file system supports two main objects: files and directories. Directo-
ries are just files with a special format, so the representation of a file is the basic
UNIX concept.

C.7.1 Blocks and Fragments

Most of the file system is taken up by data blocks, which contain whatever the
users have put in their files. Let’s consider how these data blocks are stored on
the disk.

The hardware disk sector is usually 512 bytes. A block size larger than
512 bytes is desirable for speed. However, because UNIX file systems usually
contain a very large number of small files, much larger blocks would cause
excessive internal fragmentation. That is why the earlier 4.1BSD file systemwas
limited to a 1,024-byte (1-KB) block. The 4.2BSD solution is to use two block sizes
for files that have no indirect blocks. All the blocks of a file are of a large size
(such as 8 KB) except the last. The last block is an appropriate multiple of a
smaller fragment size (for example, 1,024 KB) to fill out the file. Thus, a file of
size 18,000 bytes would have two 8-KB blocks and one 2-KB fragment (which
would not be filled completely).

The block and fragment sizes are set during file-system creation according
to the intended use of the file system. If many small files are expected, the
fragment size should be small; if repeated transfers of large files are expected,
the basic block size should be large. Implementation details force a maximum
block-to-fragment ratio of 8:1 and a minimum block size of 4 KB, so typical
choices are 4,096:512 for the former case and 8,192:1,024 for the latter.

Suppose data are written to a file in transfer sizes of 1-KB bytes, and the
block and fragment sizes of the file system are 4 KB and 512 bytes. The file
system will allocate a 1-KB fragment to contain the data from the first transfer.
The next transfer will cause a new 2-KB fragment to be allocated. The data from
the original fragment must be copied into this new fragment, followed by the
second 1-KB transfer. The allocation routines attempt to find the required space
on the disk immediately following the existing fragment so that no copying
is necessary. If they cannot do so, up to seven copies may be required before
the fragment becomes a block. Provisions have been made for programs to
discover the block size for a file so that transfers of that size can be made, to
avoid fragment recopying.

C.7.2 Inodes

Afile is represented by an inode, which is a record that stores most of the infor-
mation about a specific file on the disk. (See Figure C.7.) The name inode (pro-
nounced EYE node) is derived from “index node” and was originally spelled
“i-node”; the hyphen fell out of use over the years. The term is sometimes
spelled “I node.”

26 Appendix C BSD UNIX

direct blocks

data

data

data

data

data

data

data

data

data

data

•
•
••

•
•

•
•
•

•
•
•

•
•
•

•
•
•

mode

owners (2)

timestamps (3)

size block count

single indirect

double indirect

triple indirect

Figure C.7 The UNIX inode.

The inode contains the user and group identifiers of the file, the times of the
last file modification and access, a count of the number of hard links (directory
entries) to the file, and the type of the file (plain file, directory, symbolic link,
character device, block device, or socket). In addition, the inode contains 15
pointers to the disk blocks containing the data contents of the file. The first
12 of these pointers point to direct blocks. That is, they contain addresses of
blocks that contain data of the file. Thus, the data for small files (no more than
12 blocks) can be referenced immediately, because a copy of the inode is kept
in main memory while a file is open. If the block size is 4 KB, then up to 48 KB
of data can be accessed directly from the inode.

The next three pointers in the inode point to indirect blocks. If the file is
large enough to use indirect blocks, each of the indirect blocks is of the major
block size; the fragment size applies only to data blocks. The first indirect block
pointer is the address of a single indirect block. The single indirect block is an
index block containing not data but the addresses of blocks that do contain
data. Then, there is a double-indirect-block pointer, the address of a block that
contains the addresses of blocks that contain pointers to the actual data blocks.
The last pointer would contain the address of a triple indirect block; however,
there is no need for it.

The minimum block size for a file system in 4.2BSD is 4 KB, so files with as
many as 232 bytes will use only double, not triple, indirection. That is, since
each block pointer takes 4 bytes, we have 49,152 bytes accessible in direct
blocks, 4,194,304 bytes accessible by a single indirection, and 4,294,967,296
bytes reachable through double indirection, for a total of 4,299,210,752 bytes,
which is larger than 232 bytes. The number 232 is significant because the file
offset in the file structure in main memory is kept in a 32-bit word. Files
therefore cannot be larger than 232 bytes. Since file pointers are signed integers

C.7 File System 27

(for seeking backward and forward in a file), the actual maximum file size is
232−1 bytes. Two gigabytes is large enough for most purposes.

C.7.3 Directories

Plain files are not distinguished from directories at this level of implementa-
tion. Directory contents are kept in data blocks, and directories are represented
by an inode in the same way as plain files. Only the inode type field distin-
guishes betweenplain files anddirectories. Plain files are not assumed to have a
structure, whereas directories have a specific structure. In Version 7, file names
were limited to 14 characters, so directorieswere a list of 16-byte entries: 2 bytes
for an inode number and 14 bytes for a file name.

In FreeBSD file names are of variable length, up to 255 bytes, so directory
entries are also of variable length. Each entry contains first the length of the
entry, then the file name and the inode number. This variable-length entry
makes the directory management and search routines more complex, but it
allows users to choose much more meaningful names for their files and direc-
tories. The first two names in every directory are “.” and “..”. New directory
entries are added to the directory in the first space available, generally after
the existing files. A linear search is used.

The user refers to a file by a path name, whereas the file system uses the
inode as its definition of a file. Thus, the kernel has to map the supplied user
path name to an inode. The directories are used for this mapping.

First, a starting directory is determined. As mentioned earlier, if the first
character of the path name is “/,” the starting directory is the root directory.
If the path name starts with any character other than a slash, the starting
directory is the current directory of the current process. The starting directory
is checked for proper file type and access permissions, and an error is returned
if necessary. The inode of the starting directory is always available.

The next element of the path name, up to the next “/” or to the end of the
path name, is a file name. The starting directory is searched for this name, and
an error is returned if the name is not found. If the path name has yet another
element, the current inode must refer to a directory; an error is returned if it
does not or if access is denied. This directory is searched in the sameway as the
previous one. This process continues until the end of the path name is reached
and the desired inode is returned. This step-by-step process is needed because
at any directory a mount point (or symbolic link, as discussed below) may be
encountered, causing the translation to move to a different directory structure
for continuation.

Hard links are simply directory entries like any other. We handle symbolic
links for the most part by starting the search over with the path name taken
from the contents of the symbolic link. We prevent infinite loops by counting
the number of symbolic links encountered during a path-name search and
returning an error when a limit (eight) is exceeded.

Nondisk files (such as devices) do not have data blocks allocated on the
disk. The kernel notices these file types (as indicated in the inode) and calls
appropriate drivers to handle I/O for them.

Once the inode is found by, for instance, the open() system call, a file
structure is allocated to point to the inode. The file descriptor given to the
user refers to this file structure. FreeBSD has a directory name cache to hold

28 Appendix C BSD UNIX

user space

read (4, …)

system space disk space

data
blocks

inode
list

in-core
inode

list

tables of open
files

(per process)

file-structure
table

sync

•
•
•

Figure C.8 File-system control blocks.

recent directory-to-inode translations, which greatly increases file-system per-
formance.

C.7.4 Mapping a File Descriptor to an Inode

A system call that refers to an open file indicates the file by passing a file
descriptor as an argument. The file descriptor is used by the kernel to index
a table of open files for the current process. Each entry in the table contains
a pointer to a file structure. This file structure in turn points to the inode; see
Figure C.8. The open file table has a fixed length, which is settable only at boot
time. Therefore, there is a fixed limit on the number of concurrently open files
in a system.

The read() and write() system calls do not take a position in the file
as an argument. Rather, the kernel keeps a file offset, which is updated by an
appropriate amount after each read() or write() according to the number of
data actually transferred. The offset can be set directly by the lseek() system
call. If the file descriptor indexed an array of inode pointers instead of file
pointers, this offset would have to be kept in the inode. Because more than one
process may open the same file, and each such process needs its own offset for
the file, keeping the offset in the inode is inappropriate. Thus, the file structure
is used to contain the offset. File structures are inherited by the child process
after a fork(), so several processes may share the same offset location for a
file.

The inode structure pointed to by the file structure is an in-core copy of the
inode on the disk. The in-core inode has a few extra fields, such as a reference
count of howmany file structures are pointing at it, and the file structure has a
similar reference count for how many file descriptors refer to it. When a count
becomes zero, the entry is no longer needed andmay be reclaimed and reused.

C.7.5 Disk Structures

The file system that the user sees is supported by data on amass storage device
—usually, a disk. The user ordinarily knows of only one file system, but this
one logical file system may actually consist of several physical file systems,
each on a different device. Because device characteristics differ, each separate

C.7 File System 29

hardware device defines its ownphysical file system. In fact, we generallywant
to partition large physical devices, such as disks, into multiple logical devices.
Each logical device defines a physical file system. Figure C.9 illustrates how
a directory structure is partitioned into file systems, which are mapped onto
logical devices,which are partitions of physical devices. The sizes and locations
of these partitions were coded into device drivers in earlier systems, but they
are maintained on the disk by FreeBSD.

Partitioning a physical device into multiple file systems has several bene-
fits. Different file systems can support different uses. Althoughmost partitions
will be used by the file system, at least one will be needed as a swap area for
the virtual memory software. Reliability is improved, because software dam-
age is generally limited to only one file system. We can improve efficiency by
varying the file-system parameters (such as the block and fragment sizes) for
each partition. Also, having separate file systems prevents one program from
using all available space for a large file, because files cannot be split across file
systems. Finally, disk backups are done per partition, and it is faster to search
a backup tape for a file if the partition is smaller. Restoring the full partition
from tape is also faster.

The number of file systems on a drive varies according to the size of the
disk and the purpose of the computer system as a whole. One file system, the

logical file system file systems logical devices physical devices

root

swap

Figure C.9 Mapping of a logical file system to physical devices.

30 Appendix C BSD UNIX

root file system, is always available. Other file systemsmay bemounted—that
is, integrated into the directory hierarchy of the root file system.

A bit in the inode structure indicates that the inode has a file system
mounted on it. A reference to this file causes the mount table to be searched
to find the device number of the mounted device. The device number is used
to find the inode of the root directory of the mounted file system, and that
inode is used. Conversely, if a path-name element is “..” and the directory being
searched is the root directory of a file system that is mounted, the mount table
is searched to find the inode it is mounted on, and that inode is used.

Each file system is a separate system resource and represents a set of files.
The first sector on the logical device is the boot block, possibly containing a
primary bootstrap program, which may be used to call a secondary bootstrap
program residing in the next 7.5 KB. A system needs only one partition con-
taining boot-block data, but the system manager may install duplicates via
privileged programs, to allow booting when the primary copy is damaged.
The superblock contains static parameters of the file system. These parameters
include the total size of the file system, the block and fragment sizes of the data
blocks, and assorted parameters that affect allocation policies.

C.7.6 Implementations

The user interface to the file system is simple and well defined, allowing the
implementation of the file system itself to be changedwithout significant effect
on the user. The file system was changed between Version 6 and Version 7 of
3BSD, and again between Version 7 and 4BSD. For Version 7, the size of inodes
doubled, the maximum file and file-system sizes increased, and the details
of free-list handling and superblock information changed. At that time also,
seek() (with a 16-bit offset) became lseek() (with a 32-bit offset), to allow
specification of offsets in larger files, but fewother changeswere visible outside
the kernel.

In 4.0BSD, the size of blocks used in the file system was increased from 512
bytes to 1,024 bytes. Although this increased size produced increased internal
fragmentation on the disk, it doubled throughput, due mainly to the greater
number of data accessed on each disk transfer. This idea was later adopted by
System V, along with a number of other ideas, device drivers, and programs.

4.2BSD added the Berkeley Fast File System, which increased speed and
was accompanied by new features. Symbolic links required new system calls.
Long file names necessitated new directory system calls to traverse the now-
complex internal directory structure. Finally, truncate() calls were added.
The Fast File Systemwas a success and is now found in most implementations
of UNIX. Its performance is made possible by its layout and allocation policies,
which we discuss next. In Section 14.4.4, we discussed changes made in SunOS
to increase disk throughput further.

C.7.7 Layout and Allocation Policies

The kernel uses a<logical device number, inode number> pair to identify a file.
The logical device number defines the file system involved. The inodes in the
file system are numbered in sequence. In the Version 7 file system, all inodes
are in an array immediately following a single superblock at the beginning of

C.7 File System 31

the logical device,with the data blocks following the inodes. The inode number
is effectively just an index into this array.

With the Version 7 file system, a block of a file can be anywhere on the disk
between the end of the inode array and the end of the file system. Free blocks
are kept in a linked list in the superblock. Blocks are pushed onto the front of
the free list and are removed from the front as needed to serve new files or to
extend existing files. Thus, the blocks of a file may be arbitrarily far from both
the inode and one another. Furthermore, the more a file system of this kind is
used, the more disorganized the blocks in a file become. We can reverse this
process only by reinitializing and restoring the entire file system, which is not
a convenient task to perform. This process was described in Section 14.7.4.

Another difficulty is that the reliability of the file system is suspect. For
speed, the superblock of each mounted file system is kept in memory. Keeping
the superblock in memory allows the kernel to access a superblock quickly,
especially for using the free list. Every 30 seconds, the superblock is written
to the disk, to keep the in-core and disk copies synchronized (by the update
program, using the sync() system call). However, system bugs or hardware
failures may cause a system crash, which destroys the in-core superblock
between updates to the disk. Then, the free list on disk does not accurately
reflect the state of the disk. To reconstruct it, we must perform a lengthy
examination of all blocks in the file system. (This problem remains in the new
file system.)

The 4.2BSD file-system implementation is radically different from that of
Version 7. This reimplementation was done primarily to improve efficiency
and robustness, and most such changes are invisible outside the kernel. Other
changes introduced at the same time are visible at both the system-call and
the user levels; examples include symbolic links and long file names (up to
255 characters). Most of the changes required for these features were not in the
kernel, however, but in the programs that use them.

Space allocation is especially different. Themajor new concept in FreeBSD is
the cylinder group. The cylinder group was introduced to allow localization of
the blocks in a file. Each cylinder group occupies one ormore consecutive cylin-
ders of the disk, so that disk accesseswithin the cylinder group requireminimal
disk headmovement. Every cylinder group has a superblock, a cylinder block,
an array of inodes, and some data blocks (Figure C.10).

data blocks

superblock

cylinder block

inodes

data blocks

Figure C.10 4.3 BSD cylinder group.

32 Appendix C BSD UNIX

The superblocks in all cylinder groups are identical, so that a superblock
can be recovered from any one of them in the event of disk corruption. The
cylinder block contains dynamic parameters of the particular cylinder group.
These include a bit map of free data blocks and fragments and a bitmap of free
inodes. Statistics on recent progress of the allocation strategies are also kept
here.

The header information in a cylinder group (the superblock, the cylinder
block, and the inodes) is not always at the beginning of the group. If it were,
the header information for every cylinder group might be on the same disk
platter, and a single disk head crash could wipe out all of them. Therefore,
each cylinder group has its header information at a different offset from the
beginning of the group.

The directory-listing command ls commonly reads all the inodes of every
file in a directory, making it desirable for all such inodes to be close together
on the disk. For this reason, the inode for a file is usually allocated from
the cylinder group containing the inode of the file’s parent directory. Not
everything can be localized, however, so an inode for a new directory is put in
a different cylinder group from that of its parent directory. The cylinder group
chosen for such a new directory inode is that with the greatest number of
unused inodes.

To reduce disk head seeks involved in accessing the data blocks of a file,
we allocate blocks from the same cylinder group as often as possible. Because a
single file cannot be allowed to take up all the blocks in a cylinder group, a file
exceeding a certain size (such as 2 MB) has further block allocation redirected to
a different cylinder group; the new group is chosen from among those having
more than average free space. If the file continues to grow, allocation is again
redirected (at eachmegabyte) to yet another cylinder group. Thus, all the blocks
of a small file are likely to be in the same cylinder group, and the number of
long head seeks involved in accessing a large file is kept small.

There are two levels of disk-block-allocation routines. The global policy
routines select a desired disk block according to the considerations already
discussed. The local policy routines use the specific information recorded in
the cylinder blocks to choose a block near the one requested. If the requested
block is not in use, it is returned. Otherwise, the routine returns either the block
rotationally closest to the one requested in the same cylinder or a block in a
different cylinder but in the same cylinder group. If no more blocks are in
the cylinder group, a quadratic rehash is done among all the other cylinder
groups to find a block. If that fails, an exhaustive search is done. If enough free
space (typically 10 percent) is left in the file system, blocks are usually found
where desired, the quadratic rehash and exhaustive search are not used, and
performance of the file system does not degrade with use.

Because of the increased efficiency of the Fast File System, typical disks are
now utilized at 30 percent of their raw transfer capacity. This percentage is a
marked improvement over that realized with the Version 7 file system, which
used about 3 percent of the bandwidth.

BSD Tahoe introduced the Fat Fast File System, which allows the number
of inodes per cylinder group, the number of cylinders per cylinder group,
and the number of distinguished rotational positions to be set when the file
system is created. FreeBSD previously set these parameters according to the
disk hardware type.

C.8 I/O System 33

C.8 I/O System

One of the purposes of an operating system is to hide the peculiarities of
specific hardware devices from the user. For example, the file system presents a
simple, consistent storage facility (the file) independent of the underlying disk
hardware. In UNIX, the peculiarities of I/O devices are also hidden from the
bulk of the kernel itself by the I/O system. The I/O system consists of a buffer
caching system, general device-driver code, and drivers for specific hardware
devices. Only the device driver knows the peculiarities of a specific device. The
major parts of the I/O system are diagrammed in Figure C.11.

There are three main kinds of I/O in FreeBSD: block devices, character
devices, and the socket interface. The socket interface, together with its pro-
tocols and network interfaces, will be described in Section C.9.1.

Block devices include disks and tapes. Their distinguishing characteristic
is that they are directly addressable in a fixed block size—usually 512 bytes.
A block-device driver is required to isolate details of tracks, cylinders, and so
on from the rest of the kernel. Block devices are accessible directly through
appropriate device special files (such as /dev/rp0), but they are more commonly
accessed indirectly through the file system. In either case, transfers are buffered
through the block buffer cache, which has a profound effect on efficiency.

Character devices include terminals and line printers but also include
almost everything else (except network interfaces) that does not use the block
buffer cache. For instance, /dev/mem is an interface to physical main memory,
and /dev/null is a bottomless sink for data and an endless source of end-of-file
markers. Some devices, such as high-speed graphics interfaces, may have their
own buffers or may always do I/O directly into the user’s data space; because
they do not use the block buffer cache, they are classed as character devices.
Terminals and terminal-like devices use C-lists, which are buffers smaller than
those of the block buffer cache.

Block devices and character devices are the twomain device classes. Device
drivers are accessed by one of two arrays of entry points. One array is for
block devices; the other is for character devices. A device is distinguished by
a class (block or character) and a device number. The device number consists
of two parts. The major device number is used to index the array for character
or block devices to find entries into the appropriate device driver. The minor

the hardware

system-call interface to the kernel

socket

protocols

network
interface

plain file

file
system

block-device driver

cooked
block
interface

raw tty
interface

cooked TTY

line
discipline

character-device driver

raw
block
interface

Figure C.11 4.3 BSD kernel I/O structure.

34 Appendix C BSD UNIX

device number is interpreted by the device driver as, for example, a logical disk
partition or a terminal line.

Adevicedriver is connected to the rest of the kernel only by the entry points
recorded in the array for its class and by its use of common buffering systems.
This segregation is important for portability and for system configuration.

C.8.1 Block Buffer Cache

The block devices, as mentioned, use a block buffer cache. The buffer cache
consists of a number of buffer headers, each of which can point to a piece of
physical memory as well as to a device number and a block number on the
device. The buffer headers for blocks not currently in use are kept in several
linked lists, one for each of the following:

• Buffers recently used, linked in LRU order (the LRU list)

• Buffers not recently used or without valid contents (the AGE list)

• EMPTY buffers with no physical memory associated with them

The buffers in these lists are also hashed by device and block number for search
efficiency.

When a block is wanted from a device (a read), the cache is searched. If the
block is found, it is used, and no I/O transfer is necessary. If it is not found,
a buffer is chosen from the AGE list or, if that list is empty, the LRU list. Then
the device number and block number associated with it are updated, memory
is found for it if necessary, and the new data are transferred into it from the
device. If there are no empty buffers, the LRU buffer is written to its device (if
it is modified), and the buffer is reused.

On a write, if the block in question is already in the buffer cache, the new
data are put in the buffer (overwriting any previous data), the buffer header is
marked to indicate that the buffer has beenmodified, andno I/O is immediately
necessary. The data will be written when the buffer is needed for other data. If
the block is not found in the buffer cache, an empty buffer is chosen (as with
a read), and a transfer is done to this buffer. Writes are periodically forced
for dirty buffer blocks to minimize potential file-system inconsistencies after
a crash.

The number of data in a buffer in FreeBSD is variable, up to a maximum
over all file systems, usually 8 KB. The minimum size is the paging-cluster size,
usually 1,024 bytes. Buffers are page-cluster aligned, and any page cluster may
bemapped into only one buffer at a time, just as any disk blockmay bemapped
into only one buffer at a time. The EMPTY list holds buffer headers, which are
used if a physical memory block of 8 KB is split to holdmultiple, smaller blocks.
Headers are needed for these blocks and are retrieved from EMPTY.

The number of data in a buffer may grow as a user process writes more
data following those already in the buffer. When this increase occurs, a new
buffer large enough to hold all the data is allocated, and the original data are
copied into it, followed by the new data. If a buffer shrinks, a buffer is taken

C.8 I/O System 35

off the empty queue, excess pages are put in it, and that buffer is released to be
written to disk.

Some devices, such as magnetic tapes, require that blocks be written in a
certain order. Facilities are therefore provided to force a synchronous write of
buffers to these devices in the correct order. Directory blocks are also written
synchronously, to forestall crash inconsistencies. Consider the chaos that could
occur if many changes were made to a directory but the directory entries
themselves were not updated!

The size of the buffer cache can have a profound effect on the performance
of a system, because, if it is large enough, the percentage of cache hits can be
high and the number of actual I/O transfers low. FreeBSD optimizes the buffer
cache by continually adjusting the amount of memory used by programs and
the disk cache.

Some interesting interactions occur among the buffer cache, the file system,
and the disk drivers. When data are written to a disk file, they are buffered in
the cache, and the disk driver sorts its output queue according to disk address.
These two actions allow the disk driver to minimize disk head seeks and to
write data at times optimized for disk rotation. Unless synchronous writes
are required, a process writing to disk simply writes into the buffer cache,
and the system asynchronously writes the data to disk when convenient. The
user process sees very fast writes. When data are read from a disk file, the
block I/O system does some read-ahead; however, writes are much nearer to
asynchronous than are reads. Thus, output to the disk through the file system
is often faster than is input for large transfers, counter to intuition.

C.8.2 Raw Device Interfaces

Almost every block device also has a character interface, and these are called
raw device interfaces. Such an interface differs from the block interface in that
the block buffer cache is bypassed.

Each disk driver maintains a queue of pending transfers. Each record in
the queue specifies whether it is a read or a write and gives a main memory
address for the transfer (usually in 512-byte increments), a device address for
the transfer (usually the address of a disk sector), and a transfer size (in sectors).
It is simple to map the information from a block buffer to what is required for
this queue.

It is almost as simple to map a piece of main memory corresponding to
part of a user process’s virtual address space. This mapping is what a raw disk
interface, for instance, does. Unbuffered transfers directly to or from a user’s
virtual address space are thus allowed. The size of the transfer is limited by the
physical devices, some of which require an even number of bytes.

The kernel accomplishes transfers for swapping and paging simply by
putting the appropriate request on the queue for the appropriate device. No
special swapping or paging device driver is needed.

The 4.2BSD file-system implementation was actually written and largely
tested as a user process that used a raw disk interface, before the code was
moved into the kernel. In an interesting about-face, theMach operating system

36 Appendix C BSD UNIX

has no file system per se. File systems can be implemented as user-level tasks
(see Appendix D).

C.8.3 C-Lists

As mentioned, terminals and terminal-like devices use a character-buffering
system that keeps small blocks of characters (usually 28 bytes) in linked lists
called C-lists. Although all free character buffers are kept in a single free list,
most device drivers that use them limit the number of characters that may be
queued at one time for any given terminal line.

There are routines to enqueue and dequeue characters for such lists. A
write() system call to a terminal enqueues characters on a list for the device.
An initial transfer is started, and interrupts cause dequeuing of characters and
further transfers.

Input is similarly interrupt driven. Terminal drivers typically support two
input queues, however, and conversion from the first (raw queue) to the other
(canonical queue) is triggered when the interrupt routine puts an end-of-line
character on the raw queue. The process doing a read on the device is then
awakened, and its system phase does the conversion. The characters thus put
on the canonical queue are then available to be returned to the user process by
the read.

The device driver can bypass the canonical queue and return characters
directly from the raw queue. This mode of operation is known as raw mode.
Full-screen editors, as well as other programs that need to react to every
keystroke, use this mode.

C.9 Interprocess Communication

Although many tasks can be accomplished in isolated processes, many others
require interprocess communication. Isolated computing systems have long
served for many applications, but networking is increasingly important. Fur-
thermore, with the increasing use of personal workstations, resource sharing
is becoming more common. Interprocess communication has not traditionally
been one of UNIX’s strong points.

C.9.1 Sockets

The pipe (discussed in Section C.4.3) is the IPC mechanism most characteris-
tic of UNIX. A pipe permits a reliable unidirectional byte stream between two
processes. It is traditionally implemented as an ordinary file, with a few excep-
tions. It has no name in the file system, being created instead by the pipe()
system call. Its size is fixed, and when a process attempts to write to a full
pipe, the process is suspended. Once all data previously written into the pipe
have been read out, writing continues at the beginning of the file (pipes are not
true circular buffers). One benefit of the small size of pipes (usually 4,096 bytes)
is that pipe data are seldom actually written to disk; they usually are kept in
memory by the normal block buffer cache.

In FreeBSD pipes are implemented as a special case of the socket mecha-
nism. The socket mechanism provides a general interface not only to facilities
such as pipes, which are local to one machine, but also to networking facilities.

C.9 Interprocess Communication 37

Even on the same machine, a pipe can be used only by two processes related
through use of the fork() system call. The socket mechanism can be used by
unrelated processes.

A socket is an endpoint of communication. A socket in use usually has an
address bound to it. The nature of the address depends on the communication
domain of the socket. A characteristic property of a domain is that processes
communicating in the same domain use the same address format. A single
socket can communicate in only one domain.

The three domains currently implemented in FreeBSD are the UNIX domain
(AF UNIX), the Internet domain (AF INET), and the XEROX Network Services
(NS) domain (AF NS). The address format of the UNIX domain is that of an
ordinary file-system path name, such as /alpha/beta/gamma. Processes commu-
nicating in the Internet domain use DARPA Internet communications protocols
(such as TCP/IP) and Internet addresses, which consist of a 32-bit host number
and a 32-bit port number (representing a rendezvous point on the host).

There are several socket types, which represent classes of services. Each
type may or may not be implemented in any communication domain. If a type
is implemented in a given domain, it may be implemented by one or more
protocols, which may be selected by the user:

• Stream sockets. These sockets provide reliable, duplex, sequenced data
streams. No data are lost or duplicated in delivery, and there are no record
boundaries. This type is supported in the Internet domain by TCP. In the
UNIX domain, pipes are implemented as a pair of communicating stream
sockets.

• Sequenced packet sockets. These sockets provide data streams like those
of stream sockets, except that record boundaries are provided. This type is
used in the XEROX AF NS protocol.

• Datagram sockets. These sockets transfer messages of variable size in
either direction. There is no guarantee that such messages will arrive in
the same order they were sent, or that they will be unduplicated, or that
they will arrive at all, but the original message (or record) size is preserved
in any datagram that does arrive. This type is supported in the Internet
domain by UDP.

• Reliably delivered message sockets. These sockets transfer messages that
are guaranteed to arrive and that otherwise are like the messages trans-
ferred using datagram sockets. This type is currently unsupported.

• Raw sockets. These sockets allow direct access by processes to the proto-
cols that support the other socket types. The protocols accessible include
not only the uppermost ones but also lower-level protocols. For example,
in the Internet domain, it is possible to reach TCP, IP beneath that, or an
Ethernet protocol beneath that. This capability is useful for developing
new protocols.

A set of system calls is specific to the socket facility. The socket() system
call creates a socket. It takes as arguments specifications of the communication
domain, the socket type, and the protocol to be used to support that type. The
value returned by the call is a small integer called a socket descriptor, which

38 Appendix C BSD UNIX

occupies the same name space as file descriptors. The socket descriptor indexes
the array of open files in the u structure in the kernel and has a file structure
allocated for it. The FreeBSD file structure may point to a socket structure
instead of to an inode. In this case, certain socket information (such as the
socket’s type, its message count, and the data in its input and output queues)
is kept directly in the socket structure.

For another process to address a socket, the socket must have a name. A
name is bound to a socket by the bind() system call, which takes the socket
descriptor, a pointer to the name, and the length of the name as a byte string.
The contents and length of the byte string depend on the address format. The
connect() system call is used to initiate a connection. The arguments are
syntactically the same as those for bind(); the socket descriptor represents the
local socket, and the address is that of the foreign socket to which the attempt
to connect is made.

Many processes that communicate using the socket IPC follow the client–
server model. In this model, the server process provides a service to the client
process. When the service is available, the server process listens on a well-
known address, and the client process uses connect() to reach the server.

A server process uses socket() to create a socket and bind() to bind
the well-known address of its service to that socket. Then, it uses the lis-
ten() system call to tell the kernel that it is ready to accept connections from
clients and to specify howmany pending connections the kernel should queue
until the server can service them. Finally, the server uses the accept() sys-
tem call to accept individual connections. Both listen() and accept() take
as an argument the socket descriptor of the original socket. The system call
accept() returns a new socket descriptor corresponding to the new connec-
tion; the original socket descriptor is still open for further connections. The
server usually uses fork() to produce a new process after the accept() to
service the client while the original server process continues to listen for more
connections. There are also system calls for setting parameters of a connection
and for returning the address of the foreign socket after an accept().

When a connection for a socket type, such as a stream socket, is established,
the addresses of both endpoints are known, and no further addressing infor-
mation is needed to transfer data. The ordinary read() and write() system
calls may then be used to transfer data.

The simplest way to terminate a connection, and to destroy the associated
socket, is to use the close() system call on its socket descriptor. We may also
wish to terminate only one direction of communication of a duplex connection;
the shutdown() system call can be used for this purpose.

Some socket types, such as datagram sockets, do not support connections.
Instead, their sockets exchange datagrams thatmust be addressed individually.
The system calls sendto() and recvfrom() are used for such connections.
Both take as arguments a socket descriptor, a buffer pointer and length, and an
address-buffer pointer and length. The address buffer contains the appropriate
address for sendto() and is filled in with the address of the datagram just
received by recvfrom(). The number of data actually transferred is returned
by both system calls.

The select() system call can be used to multiplex data transfers on sev-
eral file descriptors and/or socket descriptors. It can even be used to allow one
server process to listen for client connections for many services and to fork()

C.9 Interprocess Communication 39

a process for each connection as the connection is made. The server does a
socket(), bind(), and listen() for each service and then does a select()
on all the socket descriptors.When select() indicates activity on a descriptor,
the server does an accept() on it and forks a process on the new descriptor
returned by accept(), leaving the parent process to do a select() again.

C.9.2 Network Support

Almost all current UNIX systems support the UUCP network facilities, which
aremostly used over dial-up telephone lines to support the UUCPmail network
and the USENET news network. These are, however, rudimentary networking
facilities; they do not support even remote login, much less remote proce-
dure calls or distributed file systems. These facilities are almost completely
implemented as user processes and are not part of the operating system itself.

FreeBSD supports the DARPA Internet protocols UDP, TCP, IP, and ICMP on a
wide range of Ethernet, token-ring, and ARPANET interfaces. The framework in
the kernel to support these protocols is intended to facilitate the implementa-
tion of further protocols, and all protocols are accessible via the socket interface.
Rob Gurwitz of BBN wrote the first version of the code as an add-on package
for 4.1BSD.

The International Standards Organization’s (ISO) Open System Intercon-
nection (OSI) Reference Model for networking prescribes seven layers of net-
work protocols and strictmethods of communication between them.An imple-
mentation of a protocol may communicate only with a peer entity speaking the
same protocol at the same layer or with the protocol–protocol interface of a
protocol in the layer immediately above or below in the same system. The ISO
networking model is implemented in FreeBSD Reno and 4.4BSD.

The FreeBSD networking implementation, and to a certain extent the socket
facility, is more oriented toward the ARPANET Reference Model (ARM). The
ARPANET in its original form served as a proof of concept for many network-
ing ideas, such as packet switching and protocol layering. The ARPANET was
retired in 1988 because the hardware that supported it was no longer state of
the art. Its successors, such as the NSFNET and the Internet, are even larger
and serve as communications utilities for researchers and test-beds for Internet
gateway research. The ARM predates the ISO model; the ISO model was in large
part inspired by the ARPANET research.

Although the ISO model is often interpreted as setting a limit of one pro-
tocol communicating per layer, the ARM allows several protocols in the same
layer. There are only four protocol layers in the ARM:

• Process/applications. This layer subsumes the application, presentation,
and session layers of the ISO model. Such user-level programs as the file-
transfer protocol (FTP) and Telnet (remote login) exist at this level.

• Host–host. This layer corresponds to ISO’s transport and the top part
of its network layers. Both the Transmission Control Protocol (TCP) and
the Internet Protocol (IP) are in this layer, with TCP on top of IP. TCP
corresponds to an ISO transport protocol, and IP performs the addressing
functions of the ISO network layer.

• Network interface.This layer spans the lower part of the ISO network layer
and the entire data-link layer. The protocols involved here depend on the

40 Appendix C BSD UNIX

physical network type. The ARPANET uses the IMP-Host protocols, whereas
an Ethernet uses Ethernet protocols.

• Network hardware. The ARM is primarily concerned with software, so
there is no explicit network hardware layer. However, any actual network
will have hardware corresponding to the ISO physical layer.

The networking framework in FreeBSD is more generalized than either the
ISO model or the ARM, although it is most closely related to the ARM (Figure
C.12).

User processes communicate with network protocols (and thus with other
processes on other machines) via the socket facility. This facility corresponds
to the ISO session layer, as it is responsible for setting up and controlling
communications.

Sockets are supported by protocols—possibly by several, layered one on
another. Aprotocol may provide services such as reliable delivery, suppression
of duplicate transmissions, flow control, and addressing, depending on the
socket type being supported and the services required by any higher protocols.

A protocol may communicate with another protocol or with the network
interface that is appropriate for the network hardware. There is little restriction
in the general framework on what protocols may communicate with what
other protocols or on how many protocols may be layered on top of one
another. The user process may, bymeans of the raw socket type, directly access
any layer of protocol from the uppermost used to support one of the other
socket types, such as streams, down to a raw network interface. This capability
is used by routing processes and also for new protocol development.

Most often, there is one network-interface driver per network controller
type. The network interface is responsible for handling characteristics specific
to the local network being addressed. This arrangement ensures that the proto-
cols using the interface do not need to be concerned with these characteristics.

The functions of the network interface depend largely on the network
hardware, which iswhatever is necessary for the network. Somenetworksmay

ISO
reference
model

ARPANET
reference
model

4.2BSD
layers

example
layering

process
applications

host–host

network
interface

network
hardware

protocol

network
interfaces

network
hardware

sockets

user programs
and libraries

Ethernet
driver

interlan
controller

sock_stream

telnet

TCP

IP

application

presentation

session transport

hardware

network
data link

Figure C.12 Network reference models and layering.

C.10 Summary 41

support reliable transmission at this level, but most do not. Some networks
provide broadcast addressing, but many do not.

The socket facility and the networking framework use a common set of
memory buffers, or mbufs. These are intermediate in size between the large
buffers used by the block I/O system and the C-lists used by character devices.
An mbuf is 128 bytes long; 112 bytes may be used for data, and the rest is used
for pointers to link thembuf into queues and for indicators of howmuch of the
data area is actually in use.

Data are ordinarily passed between layers—socket–protocol, protocol–
protocol, or protocol–network interface—in mbufs. The ability to pass the
buffers containing the data eliminates some data copying, but there is still
frequently a need to remove or add protocol headers. It is also convenient and
efficient for many purposes to be able to hold data that occupy an area the size
of the memory-management page. Thus, the data of anmbuf may reside not in
the mbuf itself but elsewhere in memory. There is an mbuf page table for this
purpose, as well as a pool of pages dedicated to mbuf use.

C.10 Summary

The early advantages of UNIX were that it was written in a high-level lan-
guage, was distributed in source form, and provided powerful operating-
system primitives on an inexpensive platform. These advantages led to UNIX’s
popularity at educational, research, and government institutions and eventu-
ally in the commercial world. This popularity produced many strains of UNIX
with varying and improved facilities.

UNIX provides a file system with tree-structured directories. The kernel
supports files as unstructured sequences of bytes. Direct access and sequential
access are supported through system calls and library routines.

Files are stored as an array of fixed-size data blocks with perhaps a trailing
fragment. The data blocks are found by pointers in the inode. Directory entries
point to inodes. Disk space is allocated from cylinder groups to minimize head
movement and to improve performance.

UNIX is a multiprogrammed system. Processes can easily create new pro-
cesses with the fork() system call. Processes can communicate with pipes or,
more generally, sockets. They may be grouped into jobs that may be controlled
with signals.

Processes are represented by two structures: the process structure and
the user structure. CPU scheduling is a priority algorithm with dynamically
computed priorities that reduces to round-robin scheduling in the extreme
case.

FreeBSD memory management uses swapping supported by paging. A
pagedaemon process uses a modified second-chance page-replacement algo-
rithm to keep enough free frames to support the executing processes.

Page and file I/O uses a block buffer cache tominimize the amount of actual
I/O. Terminal devices use a separate character-buffering system.

Networking support is one of the most important features in FreeBSD.
The socket concept provides the programming mechanism to access other
processes, even across a network. Sockets provide an interface to several sets
of protocols.

42 Appendix C BSD UNIX

Further Reading

[McKusick et al. (2015)] provides a good general discussion of FreeBSD. A
modern scheduler for FreeBSD is described in [Roberson (2003)]. Locking in
the Multithreaded FreeBSD Kernel is described in [Baldwin (2002)].

FreeBSD is described in The FreeBSD Handbook, which can be downloaded
from http://www.freebsd.org.

Bibliography

[Baldwin (2002)] J. Baldwin, “Locking in the Multithreaded FreeBSD Kernel”,
USENIX BSD (2002).

[McKusick et al. (2015)] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Wat-
son,The Design and Implementation of the FreeBSDUNIXOperating System–Second
Edition, Pearson (2015).

[Roberson (2003)] J. Roberson, “ULE: A Modern Scheduler For FreeBSD”, Pro-
ceedings of the USENIX BSDCon Conference (2003), pages 17–28.

http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://www.usenix.org/publications/library/proceedings/bsdcon03/tech/roberson.html
http://www.usenix.org/publications/library/proceedings/bsdcon02/baldwin.html
http://www.freebsd.org
http://www.usenix.org/publications/library/proceedings/bsdcon02/baldwin.html
http://www.usenix.org/publications/library/proceedings/bsdcon02/baldwin.html
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil and Robert N M Watson The Design and Implementation of the FreeBSD UNIX Operating SystemSecond Edition
http://www.usenix.org/publications/library/proceedings/bsdcon03/tech/roberson.html
http://www.usenix.org/publications/library/proceedings/bsdcon03/tech/roberson.html

DAppendixThe
Mach
System

This chapter was firs written in 1991 and has been updated over time but is
no longer modified

In this appendix we examine the Mach operating system. Mach is designed
to incorporate the many recent innovations in operating-system research to
produce a fully functional, technically advanced system. Unlike UNIX, which
was developed without regard for multiprocessing, Mach incorporates mul-
tiprocessing support throughout. This support is exceedingly flexible, accom-
modating shared-memory systems as well as systems with no memory shared
between processors. Mach is designed to run on computer systems ranging
fromone processor to thousands of processors. In addition, it is easily ported to
many varied computer architectures. A key goal of Mach is to be a distributed
system capable of functioning on heterogeneous hardware.

Although many experimental operating systems are being designed, built,
and used, Mach satisfies the needs of most users better than the others because
it offers full compatibility with UNIX 4.3 BSD. This compatibility also gives
us a unique opportunity to compare two functionally similar, but internally
dissimilar, operating systems. Mach and UNIX differ in their emphases, so our
Mach discussion does not exactly parallel our UNIX discussion. In addition,
we do not include a section on the user interface, because that component is
similar to the user interface in 4.3 BSD.As youwill see,Mach provides the ability
to layer emulation of other operating systems as well; other operating systems
can even run concurrently with Mach.

D.1 History of the Mach System

Mach traces its ancestry to the Accent operating system developed at Carnegie
Mellon University (CMU). Although Accent pioneered a number of novel
operating-system concepts, its utility was limited by its inability to execute
UNIX applications and its strong ties to a single hardware architecture, which
made it difficult to port. Mach’s communication system and philosophy
are derived from Accent, but many other significant portions of the system
(for example, the virtual memory system and the management of tasks and
threads) were developed from scratch. An important goal of the Mach effort
was support for multiprocessors.

1

2 Appendix D The Mach System

Mach’s development followed an evolutionary path from BSD UNIX sys-
tems.Mach codewas initially developed inside the 4.2BSD kernel, with BSD ker-
nel components replaced by Mach components as the Mach components were
completed. The BSD components were updated to 4.3 BSD when that became
available. By 1986, the virtual memory and communication subsystems were
running on the DEC VAX computer family, including multiprocessor versions
of the VAX. Versions for the IBM RT/PC and for Sun 3 workstations followed
shortly; 1987 saw the completion of the Encore Multimax and Sequent Balance
multiprocessor versions, including task and thread support, as well as the first
official releases of the system, Release 0 and Release 1.

Through Release 2, Mach provided compatibility with the corresponding
BSD systems by including much of BSD’s code in the kernel. The new features
and capabilities of Mach made the kernels in these releases larger than the
corresponding BSD kernels. Mach 3 (Figure D.1) moved the BSD code outside
of the kernel, leaving a much smaller microkernel. This system implements
only basic Mach features in the kernel; all UNIX-specific code has been evicted
to run in user-mode servers. Excluding UNIX-specific code from the kernel
allows replacement of BSD with another operating system or the simultaneous
execution of multiple operating-system interfaces on top of the microkernel.
In addition to BSD, user-mode implementations have been developed for DOS,
the Macintosh operating system, and OSF/1. This approach has similarities to
the virtual machine concept, but the virtual machine is defined by software
(the Mach kernel interface), rather than by hardware. With Release 3.0, Mach
became available on awide variety of systems, including single-processor Sun,
Intel, IBM, and DEC machines and multiprocessor DEC, Sequent, and Encore
systems.

Mach was propelled to the forefront of industry attention when the Open
Software Foundation (OSF) announced in 1989 that it would useMach 2.5 as the
basis for its new operating system, OSF/1. The release of OSF/1 occurred a year
later, and it now competes with UNIX SystemV, Release 4, the operating system
of choice among UNIX International (UI) members. OSF members include key
technological companies such as IBM, DEC, and HP. Mach 2.5 is also the basis
for the operating system on the NeXT workstation, the brainchild of Steve Jobs,
of Apple Computer fame. OSF is evaluating Mach 3 as the basis for a future

Mach

tasks and
threads

IPC virtual
memory

scheduling

4.3 BSD

OSF/1

HPUX

OS/2

database
system

Figure D.1 Mach 3 structure.

D.2 Design Principles 3

operating-system release, and research on Mach continues at CMU, OSF, and
elsewhere.

D.2 Design Principles

The Mach operating system was designed to provide basic mechanisms that
most current operating systems lack. The goal is to design an operating system
that is BSD-compatible and, in addition, excels in the following areas:

• Support for diverse architectures, including multiprocessors with varying
degrees of shared memory access: uniform memory access (UMA), non-
uniform memory access (NUMA), and no remote memory access (NORMA)

• Ability to function with varying intercomputer network speeds, from
wide-area networks to high-speed local-area networks and tightly coupled
multiprocessors

• Simplified kernel structure, with a small number of abstractions (in turn,
these abstractions are sufficiently general to allow other operating systems
to be implemented on top of Mach.)

• Distributed operation, providing network transparency to clients and an
object-oriented organization both internally and externally

• Integrated memory management and interprocess communication, to
provide efficient communication of large numbers of data as well as
communication-based memory management

• Heterogeneous system support, to make Mach widely available and inter-
operable among computer systems from multiple vendors

The designers of Mach have been heavily influenced by BSD (and by UNIX
in general), whose benefits include

• A simple programmer interface, with a good set of primitives and a con-
sistent set of interfaces to system facilities

• Easy portability to a wide class of single processors

• An extensive library of utilities and applications

• The ability to combine utilities easily via pipes

Of course, the designers also wanted to redress what they saw as the
drawbacks of BSD:

• Akernel that has become the repository ofmany redundant features—and
that consequently is difficult to manage and modify

• Original design goals that made it difficult to provide support for
multiprocessors, distributed systems, and shared program libraries (for
instance, because the kernel was designed for single processors, it has no
provisions for locking code or data that other processors might be using.)

4 Appendix D The Mach System

• Too many fundamental abstractions, providing too many similar, compet-
ing means with which to accomplish the same tasks

The development ofMach continues to be a huge undertaking. The benefits
of such a system are equally large, however. The operating system runs on
many existing single-processor and multiprocessor architectures, and it can
be easily ported to future ones. It makes research easier, because computer
scientists can add features via user-level code, instead of having to write their
own tailor-made operating system. Areas of experimentation include operat-
ing systems, databases, reliable distributed systems,multiprocessor languages,
security, and distributed artificial intelligence. In its current version, the Mach
system is usually as efficient as other major versions of UNIX when performing
similar tasks.

D.3 System Components

To achieve the design goals of Mach, the developers reduced the operating-
system functionality to a small set of basic abstractions, out of which all other
functionality can be derived. TheMach approach is to place as little as possible
within the kernel but to make what is there powerful enough that all other
features can be implemented at the user level.

Mach’s design philosophy is to have a simple, extensible kernel, concen-
trating on communication facilities. For instance, all requests to the kernel, and
all data movement among processes, are handled through one communication
mechanism. Mach is therefore able to provide system-wide protection to its
users by protecting the communication mechanism. Optimizing this one com-
munication path can result in significant performance gains, and it is simpler
than trying to optimize several paths. Mach is extensible, because many tradi-
tionally kernel-based functions can be implemented as user-level servers. For
instance, all pagers (including the default pager) can be implemented exter-
nally and called by the kernel for the user.

Mach is an example of an object-oriented system where the data and the
operations that manipulate that data are encapsulated into an abstract object.
Only the operations of the object are able to act on the entities defined in it. The
details of how these operations are implemented are hidden, as are the internal
data structures. Thus, a programmer can use an object only by invoking its
defined, exported operations. A programmer can change the internal opera-
tions without changing the interface definition, so changes and optimizations
do not affect other aspects of system operation. The object-oriented approach
supported by Mach allows objects to reside anywhere in a network of Mach
systems, transparent to the user. The port mechanism, discussed later in this
section, makes all of this possible.

Mach’s primitive abstractions are the heart of the systemand are as follows:

• A task is an execution environment that provides the basic unit of resource
allocation. It consists of a virtual address space and protected access to
system resources via ports, and it may contain one or more threads.

• A thread is the basic unit of execution andmust run in the context of a task
(which provides the address space). All threads within a task share the

D.3 System Components 5

task’s resources (ports, memory, and so on). There is no notion of a process
inMach. Rather, a traditional process is implemented as a taskwith a single
thread of control.

• A port is the basic object-reference mechanism in Mach and is imple-
mented as a kernel-protected communication channel. Communication is
accomplished by sending messages to ports; messages are queued at the
destination port if no thread is immediately ready to receive them. Ports
are protected by kernel-managed capabilities, or port rights. A task must
have a port right to send a message to a port. The programmer invokes an
operation on an object by sending a message to a port associated with that
object. The object being represented by a port receives the messages.

• A port set is a group of ports sharing a common message queue. A thread
can receive messages for a port set and thus service multiple ports. Each
receivedmessage identifies the individual port (within the set) fromwhich
it was received. The receiver can use this to identify the object referred to
by the message.

• A message is the basic method of communication between threads in
Mach. It is a typed collection of data objects. For each object, it may contain
the actual data or a pointer to out-of-line data. Port rights are passed in
messages; this is the only way to move them among tasks. (Passing a port
right in shared memory does not work, because the Mach kernel will not
permit the new task to use a right obtained in this manner.)

• A memory object is a source of memory. Tasks can access it by mapping
portions of an object (or the entire object) into their address spaces. The
object can be managed by a user-mode external memory manager. One
example is a file managed by a file server; however, a memory object can
be any object for which memory-mapped access makes sense. A mapped
buffer implementation of a UNIX pipe is another example.

Figure D.2 illustrates these abstractions, which we explain further in the
remainder of this chapter.

An unusual feature of Mach, and a key to the system’s efficiency, is the
blending of memory and interprocess-communication (IPC) features. Whereas
some other distributed systems (such as Solaris, with its NFS features) have
special-purpose extensions to the file system to extend it over a network, Mach
provides a general-purpose, extensible merger of memory andmessages at the
heart of its kernel. This feature not only allowsMach to be used for distributed
and parallel programming but also helps in the implementation of the kernel
itself.

Mach connects memory management and IPC by allowing each to be used
in the implementation of the other. Memory management is based on the use
of memory objects. A memory object is represented by a port (or ports), and
IPC messages are sent to this port to request operations (for example, pagein,
pageout) on the object. Because IPC is used, memory objects can reside on
remote systems and be accessed transparently. The kernel caches the contents
of memory objects in local memory. Conversely, memory-management tech-
niques are used in the implementation of message passing. Where possible,

6 Appendix D The Mach System

task

data region

text region

threads

program
counter

memory
object

message

port

port set

secondary storage

Figure D.2 Mach’s basic abstractions.

Mach passes messages by moving pointers to shared memory objects, rather
than by copying the objects themselves.

IPC tends to involve considerable system overhead. For intrasystem mes-
sages, it is generally less efficient than communication accomplished through
shared memory. Because Mach is a message-based kernel, message handling
must be carried out efficiently. Most of the inefficiency of message handling in
traditional operating systems is due to either the copying ofmessages from one
task to another (for intracomputer messages) or low network-transfer speed
(for intercomputer messages). To solve these problems, Mach uses virtual
memory remapping to transfer the contents of large messages. In other words,
the message transfer modifies the receiving task’s address space to include a
copy of the message contents. Virtual copy (or copy-on-write) techniques are
used to avoid or delay the actual copying of the data. This approach has several
advantages:

• Increased flexibility in memory management for user programs

• Greater generality, allowing the virtual copy approach to be used in tightly
and loosely coupled computers

• Improved performance over UNIX message passing

• Easier task migration (because ports are location independent, a task and
all its ports can be moved from one machine to another. All tasks that
previously communicated with the moved task can continue to do so
because they reference the task only by its ports and communicate via
messages to these ports.)

D.4 Process Management 7

In the sections that follow, we detail the operation of process management,
IPC, andmemorymanagement. Then, we discussMach’s chameleonlike ability
to support multiple operating-system interfaces.

D.4 Process Management

A task can be thought of as a traditional process that does not have an instruc-
tion pointer or a register set. A task contains a virtual address space, a set of
port rights, and accounting information. A task is a passive entity that does
nothing unless it has one or more threads executing in it.

D.4.1 Basic Structure

A task containing one thread is similar to a UNIX process. Just as a fork()
system call produces a new UNIX process, Mach creates a new task by using
fork(). The new task’s memory is a duplicate of the parent’s address space,
as dictated by the inheritance attributes of the parent’s memory. The new task
contains one thread, which is started at the same point as the creating fork()
call in the parent. Threads and tasks can also be suspended and resumed.

Threads are especially useful in server applications, which are common
in UNIX, since one task can have multiple threads to service multiple requests
to the task. Threads also allow efficient use of parallel computing resources.
Rather than having one process on each processor, with the corresponding per-
formance penalty and operating-system overhead, a task can have its threads
spread among parallel processors. Threads add efficiency to user-level pro-
grams as well. For instance, in UNIX, an entire process must wait when a
page fault occurs or when a system call is executed. In a task with multiple
threads, only the thread that causes the page fault or executes a system call
is delayed; all other threads continue executing. Because Mach has kernel-
supported threads (Chapter 4), the threads have some cost associated with
them. Theymust have supporting data structures in the kernel, andmore com-
plex kernel-scheduling algorithms must be provided. These algorithms and
thread states are discussed in Chapter 4.

At the user level, threads may be in one of two states:

• Running. The thread is either executing or waiting to be allocated a pro-
cessor. A thread is considered to be running even if it is blocked within the
kernel (waiting for a page fault to be satisfied, for instance).

• Suspended. The thread is neither executing on a processor nor waiting
to be allocated a processor. A thread can resume its execution only if it is
returned to the running state.

These two states are also associated with a task. An operation on a task
affects all threads in a task, so suspending a task involves suspending all the
threads in it. Task and thread suspensions are separate, independent mecha-
nisms, however, so resuming a thread in a suspended task does not resume
the task.

Mach provides primitives fromwhich thread-synchronization tools can be
built. This practice is consistent with Mach’s philosophy of providing mini-

8 Appendix D The Mach System

mum yet sufficient functionality in the kernel. The Mach IPC facility can be
used for synchronization, with processes exchanging messages at rendezvous
points. Thread-level synchronization is provided by calls to start and stop
threads at appropriate times. A suspend count is kept for each thread. This
count allows multiple suspend() calls to be executed on a thread, and only
when an equal number of resume() calls occur is the thread resumed. Unfor-
tunately, this feature has its own limitation. Because it is an error for a start()
call to be executed before a stop() call (the suspend count would become
negative), these routines cannot be used to synchronize shared data access.
However, wait() and signal() operations associated with semaphores, and
used for synchronization, can be implemented via the IPC calls. We discuss this
method in Section D.5.

D.4.2 The C Threads Package

Mach provides low-level but flexible routines instead of polished, large, and
more restrictive functions. Rather than making programmers work at this
low level, Mach provides many higher-level interfaces for programming in C
and other languages. For instance, the C threads package provides multiple
threads of control, shared variables, mutual exclusion for critical sections, and
condition variables for synchronization. In fact, C threads is one of the major
influences on the POSIX Pthreads standard, which many operating systems
support. As a result, there are strong similarities between the C threads and
Pthreads programming interfaces. The thread-control routines include calls to
perform these tasks:

• Create a new thread within a task, given a function to execute and param-
eters as input. The thread then executes concurrently with the creating
thread, which receives a thread identifier when the call returns.

• Destroy the calling thread, and return a value to the creating thread.

• Wait for a specific thread to terminate before allowing the calling thread
to continue. This call is a synchronization tool, much like the UNIX wait()
system calls.

• Yield use of a processor, signaling that the scheduler can run another
thread at this point. This call is also useful in the presence of a preemptive
scheduler, as it can be used to relinquish the CPU voluntarily before the
time quantum (or scheduling interval) expires if a thread has no use for
the CPU.

Mutual exclusion is achieved through the use of spinlocks, as discussed in
Chapter 6. The routines associated with mutual exclusion are these:

• The routine mutex alloc() dynamically creates a mutex variable.

• The routine mutex free() deallocates a dynamically created mutex vari-
able.

• The routine mutex lock() locks a mutex variable. The executing thread
loops in a spinlock until the lock is attained. A deadlock results if a thread
with a lock tries to lock the same mutex variable. Bounded waiting is

D.4 Process Management 9

not guaranteed by the C threads package. Rather, it is dependent on the
hardware instructions used to implement the mutex routines.

• The routine mutex unlock() unlocks a mutex variable, much like the
typical signal() operation of a semaphore.

General synchronization without busy waiting can be achieved through
the use of condition variables, which can be used to implement a monitor,
as described in Chapter 6. A condition variable is associated with a mutex
variable and reflects a Boolean state of that variable. The routines associated
with general synchronization are these:

• The routine condition alloc() dynamically allocates a condition vari-
able.

• The routine condition free() deletes a dynamically created condition
variable allocated as a result of condition alloc().

• The routine condition wait() unlocks the associated mutex variable
and blocks the thread until a condition signal() is executed on the
condition variable, indicating that the event being waited for may have
occurred. The mutex variable is then locked, and the thread continues.
A condition signal() does not guarantee that the condition still holds
when the unblocked thread finally returns from its condition wait()
call, so the awakened thread must loop, executing the condition wait()
routine until it is unblocked and the condition holds.

As an example of the C threads routines, consider the bounded-buffer
synchronization problem of Section 7.1.1. The producer and consumer are
represented as threads that access the common bounded-buffer pool. We use
a mutex variable to protect the buffer while it is being updated. Once we have
exclusive access to the buffer, we use condition variables to block the producer
thread if the buffer is full and to block the consumer thread if the buffer is
empty. As in Chapter 6, we assume that the buffer consists of n slots, each
capable of holding one item. The mutex semaphore provides mutual exclusion
for accesses to the buffer pool and is initialized to the value 1. The empty and
full semaphores count the number of empty and full buffers, respectively. The
semaphore empty is initialized to the value n; the semaphore full is initialized
to the value 0. The condition variable nonempty is true while the buffer has
items in it, and nonfull is true if the buffer has an empty slot. The first step
includes the allocation of the mutex and condition variables:

mutex alloc(mutex);
condition alloc(nonempty, nonfull);

The code for the producer thread is shown in Figure D.3, and the code for
the consumer thread is shown in Figure D.4. When the program terminates,
the mutex and condition variables need to be deallocated:

mutex free(mutex);
condition free(nonempty, nonfull);

10 Appendix D The Mach System

do {
. . .

// produce an item into nextp
. . .

mutex lock(mutex);
while(full)

condition wait(nonfull, mutex);
. . .

// add nextp to buffer
. . .

condition signal(nonempty);
mutex unlock(mutex);

} while(TRUE);

Figure D.3 The structure of the producer process.

D.4.3 The CPU Scheduler

The CPU scheduler for a thread-basedmultiprocessor operating system ismore
complex than its process-based relatives. There are generally more threads
in a multithreaded system than there are processes in a multitasking system.
Keeping track ofmultiple processors is also difficult and is a relatively new area
of research.Mach uses a simple policy to keep the scheduler manageable. Only
threads are scheduled, so no knowledge of tasks is needed in the scheduler. All
threads compete equally for resources, including time quanta.

Each thread has an associated priority number ranging from 0 through 127,
which is based on the exponential average of its usage of the CPU. That is, a
thread that recently used the CPU for a large amount of time has the lowest

do {
mutex lock(mutex);
while(empty)

condition wait(nonempty, mutex);
. . .

// remove an item from the buffe to nextc
. . .

condition signal(nonfull);
mutex unlock(mutex);

. . .
// consume the item in nextc

. . .
} until(FALSE);

Figure D.4 The structure of the consumer process.

D.4 Process Management 11

priority. Mach uses the priority to place the thread in one of 32 global run
queues. These queues are searched in priority order for waiting threads when
a processor becomes idle. Mach also keeps per-processor, or local, run queues.
A local run queue is used for threads that are bound to an individual processor.
For instance, a device driver for a device connected to an individual CPU must
run on only that CPU.

Instead of a central dispatcher that assigns threads to processors, each
processor consults the local and global run queues to select the appropriate
next thread to run. Threads in the local run queue have absolute priority over
those in the global queues, because it is assumed that they are performing some
chore for the kernel. The run queues—like most other objects in Mach—are
locked when they are modified to avoid simultaneous changes by multiple
processors. To speed dispatching of threads on the global run queue, Mach
maintains a list of idle processors.

Additional scheduling difficulties arise from the multiprocessor nature of
Mach. A fixed time quantum is not appropriate because, for instance, there
may be fewer runnable threads than there are available processors. It would
be wasteful to interrupt a thread with a context switch to the kernel when that
thread’s quantum runs out, only to have the thread be placed right back in
the running state. Thus, instead of using a fixed-length quantum, Mach varies
the size of the time quantum inversely with the total number of threads in the
system. It keeps the time quantum over the entire system constant, however.
For example, in a systemwith 10 processors, 11 threads, and a 100-millisecond
quantum, a context switch needs to occur on each processor only once per
second to maintain the desired quantum.

Of course, complications still exist. Even relinquishing the CPU while wait-
ing for a resource is more difficult than it is on traditional operating systems.
First, a thread must issue a call to alert the scheduler that the thread is about
to block. This alert avoids race conditions and deadlocks, which could occur
when the execution takes place in amultiprocessor environment. A second call
actually causes the thread to be moved off the run queue until the appropriate
event occurs. The scheduler uses many other internal thread states to control
thread execution.

D.4.4 Exception Handling

Mach was designed to provide a single, simple, consistent exception-handling
system, with support for standard as well as user-defined exceptions. To avoid
redundancy in the kernel, Mach uses kernel primitives whenever possible. For
instance, an exception handler is just another thread in the task in which the
exception occurs. Remote procedure call (RPC) messages are used to synchro-
nize the execution of the thread causing the exception (the victim) and that of
the handler and to communicate information about the exception between the
victim and handler. Mach exceptions are also used to emulate the BSD signal
package.

Disruptions to normal program execution come in two varieties: internally
generated exceptions and external interrupts. Interrupts are asynchronously
generated disruptions of a thread or task, whereas exceptions are caused by the
occurrence of unusual conditions during a thread’s execution. Mach’s general-
purpose exception facility is used for error detection and debugger support.

12 Appendix D The Mach System

This facility is also useful for other functions, such as taking a core dump of
a bad task, allowing tasks to handle their own errors (mostly arithmetic), and
emulating instructions not implemented in hardware.

Mach supports two different granularities of exception handling. Error
handling is supported by per-thread exception handling, whereas debuggers
use per-task handling. It makes little sense to try to debug only one thread or to
have exceptions frommultiple threads invokemultiple debuggers. Aside from
this distinction, the only difference between the two types of exceptions lies in
their inheritance fromaparent task. Task-wide exception-handling facilities are
passed from the parent to child tasks, so debuggers are able to manipulate an
entire tree of tasks. Error handlers are not inherited and default to no handler
at thread- and task-creation time. Finally, error handlers take precedence over
debuggers if the exceptions occur simultaneously. The reason for this approach
is that error handlers are normally part of the task and therefore should execute
normally even in the presence of a debugger.

Exception handling proceeds as follows:

• The victim thread causes notification of an exception’s occurrence via a
raise() RPC message sent to the handler.

• The victim then calls a routine to wait until the exception is handled.

• The handler receives notification of the exception, usually including infor-
mation about the exception, the thread, and the task causing the exception.

• The handler performs its function according to the type of exception. The
handler’s action involves clearing the exception, causing the victim to
resume, or terminating the victim thread.

To support the execution of BSD programs, Mach needs to support BSD-
style signals. Signals provide software-generated interrupts and exceptions.
Unfortunately, signals are of limited functionality in multithreaded operating
systems. The first problem is that, in UNIX, a signal’s handler must be a routine
in the process receiving the signal. If the signal is caused by a problem in the
process itself (for example, a division by 0), the problem cannot be remedied,
because a process has limited access to its own context. A second, more trou-
blesome aspect of signals is that they were designed for only single-threaded
programs. For instance, itmakes no sense for all threads in a task to get a signal,
but how can a signal be seen by only one thread?

Because the signal system must work correctly with multithreaded appli-
cations for Mach to run 4.3 BSD programs, signals could not be abandoned.
Producing a functionally correct signal package required several rewrites of
the code, however. A final problem with UNIX signals is that they can be lost.
This loss occurs when another signal of the same type occurs before the first is
handled. Mach exceptions are queued as a result of their RPC implementation.

Externally generated signals, including those sent from one BSD process to
another, are processed by the BSD server section of the Mach 2.5 kernel. Their
behavior is therefore the same as it is under BSD. Hardware exceptions are a
different matter, because BSD programs expect to receive hardware exceptions
as signals. Therefore, a hardware exception caused by a thread must arrive at
the thread as a signal. So that this result is produced, hardware exceptions are

D.5 Interprocess Communication 13

converted to exception RPCs. For tasks and threads that do not make explicit
use of theMach exception-handling facility, the destination of this RPC defaults
to an in-kernel task. This task has only one purpose: Its thread runs in a
continuous loop, receiving the exception RPCs. For each RPC, it converts the
exception into the appropriate signal,which is sent to the thread that caused the
hardware exception. It then completes the RPC, clearing the original exception
condition.With the completion of the RPC, the initiating thread reenters the run
state. It immediately sees the signal and executes its signal-handling code. In
this manner, all hardware exceptions begin in a uniform way—as exception
RPCs. Threads not designed to handle such exceptions, however, receive the
exceptions as they would on a standard BSD system—as signals. In Mach
3.0, the signal-handling code is moved entirely into a server, but the overall
structure and flow of control is similar to those of Mach 2.5.

D.5 Interprocess Communication

Most commercial operating systems, such as UNIX, provide communication
between processes and between hosts with fixed, global names (or Internet
addresses). There is no location independence of facilities, because any remote
system needing to use a facility must know the name of the system providing
that facility. Usually, data in the messages are untyped streams of bytes. Mach
simplifies this picture by sending messages between location-independent
ports. The messages contain typed data for ease of interpretation. All BSD
communication methods can be implemented with this simplified system.

The two components of Mach IPC are ports and messages. Almost every-
thing in Mach is an object, and all objects are addressed via their commu-
nication ports. Messages are sent to these ports to initiate operations on the
objects by the routines that implement the objects. By depending on only ports
and messages for all communication, Mach delivers location independence of
objects and security of communication. Data independence is provided by the
NetMsgServer task (Section D.5.3).

Mach ensures security by requiring that message senders and receivers
have rights. Aright consists of a port name and a capability—send or receive—
on that port, and is much like a capability in object-oriented systems. Only one
task may have receive rights to any given port, but many tasks may have send
rights. When an object is created, its creator also allocates a port to represent
the object and obtains the access rights to that port. Rights can be given out by
the creator of the object, including the kernel, and are passed in messages. If
the holder of a receive right sends that right in a message, the receiver of the
message gains the right, and the sender loses it. A task may allocate ports to
allow access to any objects it owns or for communication. The destruction of
either a port or the holder of the receive right causes the revocation of all rights
to that port, and the tasks holding send rights can be notified if desired.

D.5.1 Ports

Aport is implemented as a protected, bounded queue within the kernel of the
system on which the object resides. If a queue is full, a sender may abort the

14 Appendix D The Mach System

send,wait for a slot to become available in the queue, or have the kernel deliver
the message.

Several system calls provide the port with the following functionalities:

• Allocate a new port in a specified task and give the caller’s task all access
rights to the new port. The port name is returned.

• Deallocate a task’s access rights to a port. If the task holds the receive right,
the port is destroyed, and all other tasks with send rights are, potentially,
notified.

• Get the current status of a task’s port.

• Create a backup port, which is given the receive right for a port if the task
containing the receive right requests its deallocation or terminates.

When a task is created, the kernel creates several ports for it. The function
task self() returns the name of the port that represents the task in calls to the
kernel. For instance, to allocate a new port, a task calls port allocate()with
task self() as the name of the task that will own the port. Thread creation
results in a similar thread self() thread kernel port. This scheme is similar
to the standard process-ID concept found in UNIX. Another port is returned by
task notify(); this is the port towhich the kernel will send event-notification
messages (such as notifications of port terminations).

Ports can also be collected into port sets. This facility is useful if one thread
is to service requests coming in on multiple ports—for example, for multiple
objects. A port may be a member of no more than one port set at a time.
Furthermore, if a port is in a set, it may not be used directly to receivemessages.
Instead, messages will be routed to the port set’s queue. A port set may not be
passed in messages, unlike a port. Port sets are objects that serve a purpose
similar to the 4.3 BSD select() system call, but they are more efficient.

D.5.2 Messages

A message consists of a fixed-length header and a variable number of typed
data objects. The header contains the destination’s port name, the name of
the reply port to which return messages should be sent, and the length of the
message (Figure D.5). The data in the message (or in-line data) were limited
to less than 8 KB in Mach 2.5 systems, but Mach 3.0 has no limit. Each data
section may be a simple type (numbers or characters), port rights, or pointers
to out-of-line data. Each section has an associated type, so that the receiver can
unpack the data correctly even if it uses a byte ordering different from that
used by the sender. The kernel also inspects the message for certain types of
data. For instance, the kernel must process port information within a message,
either by translating the port name into an internal port data structure address
or by forwarding it for processing to the NetMsgServer (Section D.5.3).

The use of pointers in a message provides the means to transfer the entire
address space of a task in one single message. The kernel also must process
pointers to out-of-line data, since a pointer to data in the sender’s address
space would be invalid in the receiver’s—especially if the sender and receiver
reside on different systems. Generally, systems send messages by copying the
data from the sender to the receiver. Because this technique can be inefficient,
especially for large messages, Mach takes a different approach. The data refer-

D.5 Interprocess Communication 15

destination port
reply port
size/operation
pure typed data
port rights
out-of-line-data

message control

memory cache object memory cache object

port

message queue

port

messagemessage

• • •

Figure D.5 Mach messages.

enced by a pointer in a message being sent to a port on the same system are
not copied between the sender and the receiver. Instead, the address map of
the receiving task is modified to include a copy-on-write copy of the pages of
themessage. This operation ismuch faster than a data copy andmakesmessage
passing more efficient. In essence, message passing is implemented via virtual
memory management.

In Version 2.5, this operation was implemented in two phases. A pointer
to a region of memory caused the kernel to map that region into its own
space temporarily, setting the sender’s memory map to copy-on-write mode
to ensure that any modifications did not affect the original version of the
data. When a message was received at its destination, the kernel moved its
mapping to the receiver’s address space, using a newly allocated region of
virtual memory within that task.

In Version 3, this processwas simplified. The kernel creates a data structure
that would be a copy of the region if it were part of an addressmap. On receipt,
this data structure is added to the receiver’smap and becomes a copy accessible
to the receiver.

The newly allocated regions in a task do not need to be contiguous with
previous allocations, so Mach virtual memory is said to be sparse, consisting
of regions of data separated by unallocated addresses. A full message transfer
is shown in Figure D.6.

D.5.3 The NetMsgServer

For a message to be sent between computers, the message’s destination must
be located, and the message must be transmitted to the destination. UNIX tra-
ditionally leaves these mechanisms to the low-level network protocols, which
require the use of statically assigned communication endpoints (for example,

16 Appendix D The Mach System

send operation

B

P1

kernel mapA map B map

A

receive operation

B

P1

kernel mapA map B map

A

Figure D.6 Mach message transfer.

the port number for services based on TCP or UDP). One of Mach’s tenets is
that all objects within the system are location independent and that the loca-
tion is transparent to the user. This tenet requires Mach to provide location-
transparent naming and transport to extend IPC across multiple computers.

This naming and transport are performed by the Network Message Server
(NetMsgServer), a user-level, capability-based networking daemon that for-
wards messages between hosts. It also provides a primitive network-wide
name service that allows tasks to register ports for lookup by tasks on any other
computer in the network. Mach ports can be transferred only in messages, and
messagesmust be sent to ports. The primitive name service solves the problem
of transferring the first port. Subsequent IPC interactions are fully transparent,
because the NetMsgServer tracks all rights and out-of-line memory passed
in intercomputer messages and arranges for the appropriate transfers. The
NetMsgServers maintain among themselves a distributed database of port
rights that have been transferred between computers and of the ports to which
these rights correspond.

The kernel uses the NetMsgServer when a message needs to be sent to
a port that is not on the kernel’s computer. Mach’s kernel IPC is used to
transfer the message to the local NetMsgServer. The NetMsgServer then uses
whatever network protocols are appropriate to transfer the message to its peer
on the other computer. The notion of a NetMsgServer is protocol independent,
and NetMsgServers have been built to use various protocols. Of course, the
NetMsgServers involved in a transfer must agree on the protocol used. Finally,
the NetMsgServer on the destination computer uses that kernel’s IPC to send
the message to the correct destination task.

The ability to extend local IPC transparently across nodes is supported by
the use of proxy ports. When a send right is transferred from one computer to
another, the NetMsgServer on the destination computer creates a new port,
or proxy, to represent the original port at the destination. Messages sent to
this proxy are received by the NetMsgServer and are forwarded transparently

D.5 Interprocess Communication 17

to the original port. This procedure is one example of how NetMsgServers
cooperate to make a proxy indistinguishable from the original port.

Because Mach is designed to function in a network of heterogeneous sys-
tems, it must provide a way for systems to send data formatted in a way that is
understandable by both the sender and the receiver. Unfortunately, computers
differ in the formats they use to store various types of data. For instance, an
integer on one systemmight take 2 bytes to store, and the most significant byte
might be stored before the least significant one. Another systemmight reverse
this ordering. The NetMsgServer therefore uses the type information stored in
a message to translate the data from the sender’s to the receiver’s format. In
this way, all data are represented correctly when they reach their destination.

The NetMsgServer on a given computer accepts RPCs that add, look up,
and remove network ports from the NetMsgServer’s name service. As a secu-
rity precaution, a port value provided in an add request for a port must match
that in the remove request for a thread to ask for a port name to be removed
from the database.

As an example of theNetMsgServer’s operation, consider a thread on node
A sending a message to a port that happens to be in a task on node B. The
program simply sends a message to a port to which it has a send right. The
message is first passed to the kernel, which delivers it to its first recipient,
the NetMsgServer on node A. The NetMsgServer then contacts (through its
database information) the NetMsgServer on node B and sends the message.
The NetMsgServer on node B presents the message to the kernel with the
appropriate local port for node B. The kernel finally provides the message to
the receiving task when a thread in that task executes a msg receive() call.
This sequence of events is shown in Figure D.7.

Mach 3.0 provides an alternative to the NetMsgServer as part of its
improved support for NORMAmultiprocessors. The NORMA IPC subsystem of
Mach 3.0 implements functionality similar to the NetMsgServer directly in the

sender

kernel

system A

user
process

NetMsg-
server

receiver

kernel

system B

user
process

NetMsg-
server

Figure D.7 Network IPC forwarding by NetMsgServer.

18 Appendix D The Mach System

Mach kernel, providing much more efficient internode IPC for multicomputers
with fast interconnection hardware. For example, the time-consuming copying
of messages between the NetMsgServer and the kernel is eliminated. Use of
the NORMA IPC does not preclude use of the NetMsgServer; the NetMsgServer
can still be used to provide Mach IPC service over networks that link a NORMA
multiprocessor to other computers. In addition to the NORMA IPC, Mach 3.0
also provides support for memory management across a NORMA system and
enables a task in such a system to create child tasks on nodes other than its
own. These features support the implementation of a single-system-image
operating system on a NORMA multiprocessor. The multiprocessor behaves
like one large system rather than an assemblage of smaller systems (for both
users and applications).

D.5.4 Synchronization Through IPC

The IPC mechanism is extremely flexible and is used throughout Mach. For
example, it may be used for thread synchronization. A port may be used as a
synchronization variable and may have n messages sent to it for n resources.
Any thread wishing to use a resource executes a receive call on that port. The
threadwill receive amessage if the resource is available. Otherwise, it will wait
on the port until a message is available there. To return a resource after use, the
thread can send a message to the port. In this regard, receiving is equivalent to
the semaphore operation wait(), and sending is equivalent to signal(). This
method can be used for synchronizing semaphore operations among threads in
the same task, but it cannot be used for synchronization among tasks, because
only one task may have receive rights to a port. For more general-purpose
semaphores, a simple daemon can be written to implement the same method.

D.6 Memory Management

Given the object-oriented nature of Mach, it is not surprising that a principal
abstraction in Mach is the memory object. Memory objects are used to manage
secondary storage and generally represent files, pipes, or other data that are
mapped into virtual memory for reading and writing (Figure D.8). Memory
objectsmay be backed by user-levelmemorymanagers, which take the place of
the more traditional kernel-incorporated virtual memory pager found in other
operating systems. In contrast to the traditional approach of having the kernel
manage secondary storage, Mach treats secondary-storage objects (usually
files) as it does all other objects in the system. Each object has a port associated
with it and may be manipulated by messages sent to its port. Memory objects
—unlike the memory-management routines in monolithic, traditional kernels
—allow easy experimentation with new memory-manipulation algorithms.

D.6.1 Basic Structure

The virtual address space of a task is generally sparse, consisting ofmany holes
of unallocated space. For instance, a memory-mapped file is placed in some set
of addresses. Largemessages are also transferred as sharedmemory segments.
For each of these segments, a section of virtual memory address is used to
provide the threads with access to the message. As new items are mapped or

D.6 Memory Management 19

previous entry

address space
start/end

next entry

inheritance

protection
current/max

object

offset therein

map entry

text
initialized

data
uninitialized

data
stack

head tail

user
address
space

virtual memory
object

port for
secondary

storage

cached
 pages

Figure D.8 Mach virtual memory task address map.

removed from the address space, holes of unallocated memory appear in the
address space.

Mach makes no attempt to compress the address space, although a task
may fail (or crash) if it has no room for a requested region in its address space.
Given that address spaces are 4 GB or more, this limitation is not currently a
problem. However, maintaining a regular page table for a 4-GB address space
for each task, especially one with holes in it, would use excessive amounts of
memory (1 MB or more). The key to sparse address spaces is that page-table
space is used only for currently allocated regions.When a page fault occurs, the
kernel must check to see whether the page is in a valid region, rather than sim-
ply indexing into the page table and checking the entry. Although the resulting
lookup ismore complex, the benefits of reducedmemory-storage requirements
and simpler address-space maintenance make the approach worthwhile.

Mach also has system calls to support standard virtual memory function-
ality, including the allocation, deallocation, and copying of virtual memory.
When allocating a new virtual memory object, the thread may provide an
address for the object or may let the kernel choose the address. Physical mem-
ory is not allocated until pages in this object are accessed. The object’s backing
store is managed by the default pager (Section D.6.2). Virtual memory objects

20 Appendix D The Mach System

are also allocated automatically when a task receives a message containing
out-of-line data.

Associated system calls return information about a memory object in a
task’s address space, change the access protection of the object, and specify
how an object is to be passed to child tasks at the time of their creation (shared,
copy-on-write, or not present).

D.6.2 User-Level Memory Managers

A secondary-storage object is usually mapped into the virtual address space
of a task. Mach maintains a cache of memory-resident pages of all mapped
objects, as in other virtual memory implementations. However, a page fault
occurring when a thread accesses a nonresident page is executed as a message
to the object’s port. The concept that a memory object can be created and
serviced by nonkernel tasks (unlike threads, for instance, which are created
and maintained only by the kernel) is important. The end result is that, in the
traditional sense, memory can be paged by user-written memory managers.
When the object is destroyed, it is up to the memory manager to write back
any changed pages to secondary storage. No assumptions are made by Mach
about the content or importance of memory objects, so the memory objects are
independent of the kernel.

In several circumstances, user-level memory managers are insufficient.
For instance, a task allocating a new region of virtual memory might not
have a memory manager assigned to that region, since it does not represent a
secondary-storage object (butmust be paged), or amemorymanagermight fail
to perform pageout. Mach itself also needs a memory manager to take care of
its memory needs. For these cases, Mach provides a default memory manager.
The Mach 2.5 default memory manager uses the standard file system to store
data that must be written to disk, rather than requiring a separate swap space,
as in 4.3 BSD. In Mach 3.0 (and OSF/1), the default memory manager is capable
of using either files in a standard file system or dedicated disk partitions. The
default memorymanager has an interface similar to that of the user-level ones,
but with some extensions to support its role as the memory manager that can
be relied on to perform pageout when user-level managers fail to do so.

Pageout policy is implemented by an internal kernel thread, the pageout
daemon. Apaging algorithm based on FIFOwith second chance (Section 10.4.5)
is used to select pages for replacement. The selected pages are sent to the
appropriate manager (either user level or default) for actual pageout. A user-
level manager may be more intelligent than the default manager, and it may
implement a different paging algorithm suitable to the object it is backing (that
is, by selecting some other page and forcibly paging it out). If a user-level
manager fails to reduce the resident set of pages when asked to do so by the
kernel, the default memorymanager is invoked, and it pages out the user-level
manager to reduce the user-level manager’s resident set size. Should the user-
level manager recover from the problem that prevented it from performing its
own pageouts, it will touch these pages (causing the kernel to page them in
again) and can then page them out as it sees fit.

If a thread needs access to data in a memory object (for instance, a file),
it invokes the vm map() system call. Included in this system call is a port
that identifies the object and the memory manager that is responsible for the

D.6 Memory Management 21

region. The kernel executes calls on this port when data are to be read or
written in that region. An added complexity is that the kernel makes these calls
asynchronously, since it would not be reasonable for the kernel to be waiting
on a user-level thread. Unlike the situation with pageout, the kernel has no
recourse if its request is not satisfied by the external memory manager. The
kernel has no knowledge of the contents of an object or of how that object must
be manipulated.

Memory managers are responsible for the consistency of the contents of
a memory object mapped by tasks on different machines. (Tasks on a single
machine share a single copy of a mappedmemory object.) Consider a situation
in which tasks on two different machines attempt to modify the same page
of an object at the same time. It is up to the manager to decide whether these
modifications must be serialized. A conservative manager implementing strict
memory consistency would force the modifications to be serialized by grant-
ing write access to only one kernel at a time. A more sophisticated manager
could allow both accesses to proceed concurrently (for example, if themanager
knew that the two tasks were modifying distinct areas within the page and
that it could merge the modifications successfully at some future time). Most
external memory managers written for Mach (for example, those implement-
ing mapped files) do not implement logic for dealing with multiple kernels,
due to the complexity of such logic.

When the first vm map() call is made on a memory object, the kernel sends
a message to the memory manager port passed in the call, invoking the mem-
ory manager init() routine, which the memory manager must provide as
part of its support of a memory object. The two ports passed to the mem-
ory manager are a control port and a name port. The control port is used
by the memory manager to provide data to the kernel—for example, pages
to be made resident. Name ports are used throughout Mach. They do not
receive messages but are used simply as points of reference and comparison.
Finally, the memory object must respond to a memory manager init() call
with a memory object set attributes() call to indicate that it is ready to
accept requests. When all tasks with send rights to a memory object relinquish
those rights, the kernel deallocates the object’s ports, thus freeing the memory
manager and memory object for destruction.

Several kernel calls are needed to support external memorymanagers. The
vm map() call was just discussed. In addition, some commands get and set
attributes and provide page-level locking when it is required (for instance,
after a page fault has occurred but before the memory manager has returned
the appropriate data). Another call is used by the memory manager to pass a
page (or multiple pages, if read-ahead is being used) to the kernel in response
to a page fault. This call is necessary since the kernel invokes the memory
manager asynchronously. Finally, several calls allow the memory manager to
report errors to the kernel.

Thememorymanager itselfmust provide support for several calls so that it
can support an object. We have already discussed memory object init() and
others. When a thread causes a page fault on a memory object’s page, the ker-
nel sends a memory object data request() to the memory object’s port on
behalf of the faulting thread. The thread is placed in a wait state until the mem-
ory manager either returns the page in a memory object data provided()
call or returns an appropriate error to the kernel. Any of the pages that have

22 Appendix D The Mach System

been modified, or any “precious pages” that the kernel needs to remove from
resident memory (due to page aging, for instance), are sent to the memory
object via memory object data write(). Precious pages are pages that may
not have been modified but that cannot be discarded as they otherwise would
be because the memory manager no longer retains a copy. The memory man-
ager declares these pages to be precious and expects the kernel to return them
when they are removed frommemory. Precious pages save unnecessary dupli-
cation and copying of memory.

In the current version, Mach does not allow external memory managers
to affect the page-replacement algorithm directly. Mach does not export the
memory-access information that would be needed for an external task to select
the least recently used page, for instance. Methods of providing such informa-
tion are currently under investigation. An external memory manager is still
useful for a variety of reasons, however:

• It may reject the kernel’s replacement victim if it knows of a better candi-
date (for instance, MRU page replacement).

• It may monitor the memory object it is backing and request pages to be
paged out before the memory usage invokes Mach’s pageout daemon.

• It is especially important in maintaining consistency of secondary storage
for threads on multiple processors, as we show in Section D.6.3.

• It can control the order of operations on secondary storage to enforce
consistency constraints demanded by database management systems. For
example, in transaction logging, transactions must be written to a log file
on disk before they modify the database data.

• It can control mapped file access.

D.6.3 Shared Memory

Mach uses shared memory to reduce the complexity of various system facili-
ties, as well as to provide these features in an efficient manner. Sharedmemory
generally provides extremely fast interprocess communication, reduces over-
head in file management, and helps to support multiprocessing and database
management. Mach does not use shared memory for all these traditional
shared-memory roles, however. For instance, all threads in a task share that
task’s memory, so no formal shared-memory facility is needed within a task.
However, Machmust still provide traditional shared memory to support other
operating-system constructs, such as the UNIX fork() system call.

It is obviously difficult for tasks onmultiplemachines to sharememory and
to maintain data consistency. Mach does not try to solve this problem directly;
rather, it provides facilities to allow the problem to be solved. Mach supports
consistent shared memory only when the memory is shared by tasks running
on processors that sharememory. Aparent task is able to declarewhich regions
of memory are to be inherited by its children and which are to be readable
–writable. This scheme is different from copy-on-write inheritance, in which
each task maintains its own copy of any changed pages. A writable object is
addressed from each task’s address map, and all changes are made to the same
copy. The threads within the tasks are responsible for coordinating changes
to memory so that they do not interfere with one another (by writing to the

D.7 Programmer Interface 23

same location concurrently). This coordination can be done through normal
synchronization methods: critical sections or mutual-exclusion locks.

For the case of memory shared among separate machines, Mach allows the
use of external memory managers. If a set of unrelated tasks wishes to share a
section of memory, the tasks can use the same external memory manager and
access the same secondary-storage areas through it. The implementor of this
system would need to write the tasks and the external pager. This pager could
be as simple or as complicated as needed. A simple implementation would
allow no readers while a page was being written to. Any write attempt would
cause the pager to invalidate the page in all tasks currently accessing it. The
pager would then allow the write and would revalidate the readers with the
new version of the page. The readers would simply wait on a page fault until
the page again became available. Mach provides such a memory manager: the
Network Memory Server (NetMemServer). For multicomputers, the NORMA
configuration of Mach 3.0 provides similar support as a standard part of the
kernel. This XMM subsystem allows multicomputer systems to use external
memory managers that do not incorporate logic for dealing with multiple
kernels. The XMM subsystem is responsible for maintaining data consistency
among multiple kernels that share memory and makes these kernels appear
to be a single kernel to the memory manager. The XMM subsystem also imple-
ments virtual copy logic for the mapped objects that it manages. This virtual
copy logic includes both copy-on-reference amongmulticomputer kernels and
sophisticated copy-on-write optimizations.

D.7 Programmer Interface

Aprogrammer can work at several levels within Mach. There is, of course, the
system-call level, which, in Mach 2.5, is equivalent to the 4.3 BSD system-call
interface. Version 2.5 includes most of 4.3 BSD as one thread in the kernel. A
BSD system call traps to the kernel and is serviced by this thread on behalf
of the caller, much as standard BSD would handle it. The emulation is not
multithreaded, so it has limited efficiency.

Mach 3.0 has moved from the single-server model to support of multiple
servers. It has therefore become a true microkernel without the full features
normally found in a kernel. Rather, full functionality can be provided via emu-
lation libraries, servers, or a combination of the two. In keepingwith the defini-
tion of amicrokernel, the emulation libraries and servers run outside the kernel
at user level. In this way, multiple operating systems can run concurrently on
one Mach 3.0 kernel.

An emulation library is a set of routines that lives in a read-only part of a
program’s address space. Any operating-system calls the program makes are
translated into subroutine calls to the library. Single-user operating systems,
such as MS-DOS and the Macintosh operating system, have been implemented
solely as emulation libraries. For efficiency reasons, the emulation library lives
in the address space of the program needing its functionality; in theory, how-
ever, it could be a separate task.

More complex operating systems are emulated through the use of libraries
and one ormore servers. System calls that cannot be implemented in the library
are redirected to the appropriate server. Servers can be multithreaded for

24 Appendix D The Mach System

improved efficiency; BSD and OSF/1 are implemented as single multithreaded
servers. Systems can be decomposed into multiple servers for greater modu-
larity.

Functionally, a system call starts in a task and passes through the kernel
before being redirected, if appropriate, to the library in the task’s address space
or to a server. Although this extra transfer of control decreases the efficiency of
Mach, this decrease is balanced to some extent by the ability ofmultiple threads
to execute BSD-like code concurrently.

At the next higher programming level is the C threads package. This pack-
age is a run-time library that provides a C language interface to the basic Mach
threads primitives. It provides convenient access to these primitives, includ-
ing routines for the forking and joining of threads, mutual exclusion through
mutex variables (Section D.4.2), and synchronization through use of condi-
tion variables. Unfortunately, it is not appropriate for the C threads package
to be used between systems that share no memory (NORMA systems), since it
depends on shared memory to implement its constructs. There is currently no
equivalent of C threads for NORMAsystems. Other run-time libraries have been
written for Mach, including threads support for other languages.

Although the use of primitives makes Mach flexible, it also makes many
programming tasks repetitive. For instance, significant amounts of code are
associated with sending and receiving messages in each task that uses mes-
sages (which, in Mach, is most tasks). The designers of Mach therefore provide
an interface generator (or stub generator) calledMIG. MIG is essentially a com-
piler that takes as input a definition of the interface to be used (declarations of
variables, types, and procedures) and generates the RPC interface code needed
to send and receive the messages fitting this definition and to connect the
messages to the sending and receiving threads.

D.8 Summary

The Mach operating system is designed to incorporate the many recent inno-
vations in operating-system research to produce a fully functional, technically
advanced operating system.

TheMach operating systemwas designedwith three critical goals inmind:

• Emulate 4.3 BSD UNIX so that the executable files from a UNIX system can
run correctly under Mach.

• Have amodern operating system that supportsmanymemorymodels and
parallel and distributed computing.

• Design a kernel that is simpler and easier to modify than is 4.3 BSD.

As we have shown, Mach is well on its way to achieving these goals.
Mach 2.5 includes 4.3 BSD in its kernel, which provides the emulation

needed but enlarges the kernel. This 4.3 BSD code has been rewritten to provide
the same 4.3 functionality but to use the Mach primitives. This change allows
the 4.3 BSD support code to run in user space on a Mach 3.0 system.

Further Reading 25

Mach uses lightweight processes, in the form of multiple threads of exe-
cution within one task (or address space), to support multiprocessing and
parallel computation. Its extensive use of messages as the only communica-
tion method ensures that protection mechanisms are complete and efficient.
By integrating messages with the virtual memory system, Mach also ensures
that messages can be handled efficiently. Finally, by having the virtual memory
systemusemessages to communicate with the daemonsmanaging the backing
store,Mach provides great flexibility in the design and implementation of these
memory-object-managing tasks.

By providing low-level, or primitive, system calls from which more com-
plex functions can be built,Mach reduces the size of the kernelwhile permitting
operating-system emulation at the user level, much like IBM’s virtual machine
systems.

Further Reading

The Accent operating systemwas described by [Rashid and Robertson (1981)].
A historical overview of the progression from an even earlier system, RIG,
through Accent to Mach was given by [Rashid (1986)]. General discussions
concerning the Mach model were offered by [Tevanian et al. (1989)].

[Accetta et al. (1986)] presented an overviewof the original design ofMach.
The Mach scheduler was described in detail by [Tevanian et al. (1987a)] and
[Black (1990)]. An early version of the Mach shared memory and memory-
mapping system was presented [Tevanian et al. (1987b)].

Bibliography

[Accetta et al. (1986)] M. Accetta, R. Baron, W. Bolosky, D. B. Golub, R. Rashid,
A. Tevanian, and M. Young, “Mach: ANew Kernel Foundation for UNIX Devel-
opment”, Proceedings of the Summer USENIX Conference (1986), pages 93–112.

[Black (1990)] D. L. Black, “Scheduling Support for Concurrency and Paral-
lelism in the Mach Operating System”, IEEE Computer, Volume 23, Number 5
(1990), pages 35–43.

[Rashid (1986)] R. F. Rashid, “From RIG to Accent to Mach: The Evolution of a
Network Operating System”, Proceedings of the ACM/IEEE Computer Society, Fall
Joint Computer Conference (1986), pages 1128–1137.

[Rashid and Robertson (1981)] R. Rashid and G. Robertson, “Accent: A Com-
munication-Oriented Network Operating System Kernel”, Proceedings of the
ACM Symposium on Operating System Principles (1981), pages 64–75.

[Tevanian et al. (1987a)] A. Tevanian, Jr., R. F. Rashid, D. B. Golub, D. L. Black,
E. Cooper, andM.W. Young, “Mach Threads and the Unix Kernel: The Battle for
Control”, Proceedings of the Summer USENIX Conference (1987).

[Tevanian et al. (1987b)] A. Tevanian, Jr., R. F. Rashid,M.W. Young, D. B. Golub,
M. R. Thompson, W. Bolosky, and R. Sanzi, “A UNIX Interface for Shared

http://doi.acm.org/10.1145/800216.806593
http://dl.acm.org/citation.cfm?id=324493.325071
http://dl.acm.org/citation.cfm?id=77139.77171
http://dl.acm.org/citation.cfm?doid=30401.30404
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://dl.acm.org/citation.cfm?doid=30401.30404
http://dl.acm.org/citation.cfm?doid=30401.30404
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://dl.acm.org/citation.cfm?id=324493.325071
http://dl.acm.org/citation.cfm?id=324493.325071
http://doi.acm.org/10.1145/800216.806593
http://doi.acm.org/10.1145/800216.806593
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach

26 Appendix D The Mach System

Memory and Memory Mapped Files Under Mach”, Technical report, Carnegie-
Mellon University (1987).

[Tevanian et al. (1989)] A. Tevanian, Jr., and B. Smith, “Mach: The Model for
Future Unix”, Byte (1989).

http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://dl.acm.org/citation.cfm?id=77139.77171
http://dl.acm.org/citation.cfm?id=77139.77171

Credits

• Figure 1.14: From Hennesy and Patterson, Computer Architecture: A Quan-
titative Approach, Third Edition, c©2002, Morgan Kaufmann Publishers, Fig-
ure 5.3, p. 394. Reprinted with permission of the publisher.

• Figure 5.19: From Khanna/Sebree/Zolnowsky, “Realtime Scheduling in
SunOS 5.0,” Proceedings of Winter USENIX, January 1992, San Francisco,
California. Derived with permission of the authors.

• Figure 5.30 adapted with permission from Sun Microsystems, Inc.

• Figure 10.20: From IBM Systems Journal, Vol. 10, No. 3, c©1971, Interna-
tional Business Machines Corporation. Reprinted by permission of IBM
Corporation.

• Figure 12.5: Based on a table from Pentium Processor User’s Manual: Archi-
tecture and Programming Manual, Volume 3, c©1993.

• Figure 14.8: From Leffler/McKusick/Karels/Quarterman, The Design and
Implementation of the 4.3BSD UNIX Operating System, c©1989 by Addison-
Wesley Publishing Co., Inc., Reading, Massachusetts. Figure 7.6, p. 196.
Reprinted with permission of the publisher.

• Figures 19.5, 19.6, and 19.8: From Halsall, Data Communications, Computer
Networks, and Open Systems, Third Edition, c©1992, Addison-Wesley Pub-
lishing Co., Inc., Reading, Massachusetts. Figure 1.9, p. 14, Figure 1.10, p.
15, and Figure 1.11, p. 18. Reprinted with permission of the publisher.

963

Index

4-byte pages, 363, 364
32-byte memory, 363, 364
50-percent rule, 359
64-bit computing, 383

A

ABI (application binary interface), 78-79
aborting processes, 342
absolute code, 352
absolute path names, 546
abstract data type (ADT), 277-278
access, 539-541
anonymous, 605
controlling, 552-554
direct (relative), 539-541
effective access time, 397-398
kernel object, 884-885
lightweight directory-access protocol,

607, 884
memory, 15, 18, 19, 418-419, 498-500
process migration for, 753
and protection, 551
random-access devices, 502
random-access time, 450
read, 292
relative, 539-540
Remote Access Tool, 625
remote file, 764-767
security access tokens, 662
sequential, 539, 541
wireless access points, 736
write, 292

access control:
discretionary, 684
in Linux, 816-818
MAC address, 745

mandatory, 684-685
role-based, 683-684

access-control lists (ACLs), 552, 555, 826
accessed bits, 437
access mask, 849
access matrix, 675-685
defined, 675
implementation of, 679-682
and mandatory access control, 684-685
and revocation of access rights, 682- 683
and role-based access control, 683-684

access rights, 534, 673, 680, 682-683
accounting, 110, 659, 788
ACG (Arbitrary Code Guard), 827
acknowledgment packet, 748
ACLs, see access-control lists
ACPI (advanced configuratio and power

interface), 516
activation record, 107
active directory, 607, 884
acyclic graphs, 547
acyclic-graph directories, 547-549
additional-reference-bits algorithm,

409-410
additional sense code, 512
additional sense-code qualifie , 512
address(es):
defined, 496
linear, 380, 382
logical, 353, 379
MAC, 745
physical, 354, 379
trusted, 638
virtual, 354

address binding, 352-353
address mapping, 456-457
address resolution protocol (ARP), 745

965

966 Index

address space:
logical vs. physical, 353-355
virtual, 390, 391, 799-800

address-space identifier (ASIDs), 366
address-space layout randomization

(ASLR), 656, 827
Address Window Extension (AWE)

memory, 894-895
admission-control algorithms, 230
ADT (abstract data type), 277-278
advanced configuratio and power

interface (ACPI), 516
advanced encryption standard (AES), 640
advanced local procedure call (ALPC),

138, 834
advanced technology attachment (ATA)

buses, 456
advisory file-lockin mechanisms, 535
AES (advanced encryption standard), 640
affinit , processor, 225-226
age, page, 800
aging, 213
ahead-of-time (AOT) compilation, 89, 90
alertable threads, 846
allocation:

buddy-system, 427, 428
committing, 852
contiguous, 356-360, 570-573
equal, 414
frame, 413-419
free frames before and after, 364
global, 415-418
indexed, 575-577
kernel memory, 426-430
linked, 573-575
local, 415-418
over-, 401
proportional, 414-415
resource, 57
of secondary storage, 570-578
slab, 427-430, 797-798

Allocation (data structure), 335, 336, 339
allocation problem, 358, 540, 571
ALPC (advanced local procedure call),

138, 834
altitudes, 863
AMD64 architecture, 382
Amdahl’s Law, 164
AMD virtualization technology

(AMD-V), 710-711
amplification write, 462
analytic evaluation, 245
Andrew fil system (OpenAFS), 759
Android operating system, 89-91

process hierarchy, 122-123
protection domain, 675
RPC, 151-153
thread pools, 178
TrustZone, 670, 671

anomaly detection, 656
anonymous access, 605
anonymous memory, 399, 469
anonymous pipes, 141-145
AOT (ahead-of-time) compilation, 89, 90
APCs (asynchronous procedure calls),

189-190, 846
APFS (Apple File System), 592
API (application program interface),

63-66. See also specific types
appending files 551
Apple File System (APFS), 592
application binary interface (ABI), 78-79
application component, 151-152
Application Container, 868
application containment, 703, 718-719
application frameworks layer (macOS

and iOS), 87
application interface (I/O systems),

500-508
block and character devices, 503-504
clocks and timers, 505-506
network devices, 504-505
nonblocking and asynchronous I/O,

506-507
application layer (OSI model), 742
application programs (apps), 4, 75, 823

compatibility of, 830-831
disinfection of, 658
packaged, 859
security of, 624
specificity of, 77-79
system services, 75
user IDs for, 675

application program interface (API),
63-66. See also specific types

application proxy fire alls, 660
application state, 378
Aqua interface, 59, 87
Arbitrary Code Guard (ACG), 827
architecture(s), 15-21

AMD64, 382
ARMv8, 383-384, 671, 672
big.LITTLE, 226-227
clustered systems, 19-21
IA-32, 379-382
IA-64, 382
multiprocessing, 124
multiprocessor systems, 16-19

Index 967

NFS, 614
single-processor systems, 15-16
von Neumann, 12
x86-64, 382

Arduino, 70
argument vector, 787
armored viruses, 634
ARMv8 architecture, 383-384, 671, 672
ARP (address resolution protocol), 745
arrays:
redundant, see RAID [redundant arrays

of inexpensive disks]
storage, 472-473, 481

ASICs, 46
ASIDs (address-space identifiers) 366
ASLR (address-space layout

randomization), 656, 827
assignment edge, 323
asymmetric clustering, 19
asymmetric encryption, 641, 645
asymmetric encryption algorithm, 641
asymmetric multiprocessing, 220
asymmetry, in addressing, 129
asynchronous cancellation, 190
asynchronous devices, 502, 506-507
asynchronous message passing, 130
asynchronous procedure calls (APCs),

189-190, 846
asynchronous threading, 169
asynchronous writes, 585
ATA buses, 456
"at most once" functionality, 150
atomic instructions, 266, 269
atomic safe-save, 592
atomic variables, 269-270
attacks, 622
buffer-overflow, 628-631
code-injection, 628-631
code reuse, 827
denial-of-service, 622, 636
information leak, 827
man-in-the-middle, 623, 635, 645
replay, 622
with tunneling, 659-660
zero-day, 656

attackers, 622
attack surface, 624
attributes, 551, 826, 875-876
attribute-definitio table, 877
auditing, 659
audit trail, 669
augmented-reality applications, 42
authentication:
breaching of, 622

and encryption, 641-644
in Linux, 816
multifactor, 653
two-factor, 652
user, 648-653

automatic working-set trimming, 438
automount feature, 763
autoprobes, 785
availability, breach of, 622
Available (data structure), 334, 336, 338
AWE memory, 894-895

B

back door, 503, 626, 627, 638
background class, 186
background processes, 74-75, 115, 123,

215, 241
backing store, 376
back-pointers, 682
backups, 588-589
bad blocks, 466-467
bad-cluster file, 877
bad page, 856
balance, in multicore programming, 163
balanced binary search trees, 38
balloon memory manager, 721
bandwidth, 457
banker’s algorithm, 333-337
barriers, memory, 265-266
based sections, 852
base fil record, 876
base register, 351-352
bash (bourne-again shell), 58, 783
basic file systems, 564, 565
Bayes’ theorem, 657
BCC (BPF Compiler Collection), 98-100
Belady’s anomaly, 406
best-fi strategy, 358, 359
BGP (Border Gateway Protocol), 745
big cores, 226-227
big data, 22
big-endian, 150
big.LITTLE architecture, 226-227
binary format, 785
binary general tree, 38
binary search trees, 38, 39
binary semaphore, 273
binary translation, 708-710
binary trees, 38, 39
binders, 151
binding, 352
biometrics, 652-653
Bionic standard, 90

968 Index

BIOS, 94
bit(s):

accessed, 437
additional-reference-bits algorithm,

409-410
contiguous, 432-433
defined, 12
mode, 24
modify (dirty), 402
reference, 409
setuid, 674-675
64-bit computing, 383
valid-invalid, 368-369

bit-level striping, 475
BitLocker, 863
bitmaps (bit vectors), 38-39, 579, 877
BKL, running on, 794
blade servers, 18-19
block(s), 186

bad, 466-467
boot, 94, 464-466, 566
boot control, 566
defined, 564
direct, 576
disk, 40
file-control, 565, 567
index, 575-577
indirect, 576, 577
logical, 456
process control, 109-110
thread building, 186-188
thread environment, 889-890
TRIMing unused, 581-582
virtual address control, 865
volume control, 566

block ciphers, 639
block devices, 502-504, 810-811
block device interface, 503
block groups, 806
blocking, indefinite 213
blocking I/O, 506
blocking (synchronous) message passing,

130
block-interleaved distributed parity,

477-478
block-level striping, 475
block number, relative, 540
block started by symbol (bss) field 108
block synchronization, 305
body (value), 187
boot block, 94, 465-466, 566
boot control block, 566
boot disk (system disk), 465
boot file 877

booting, 86, 94-95, 863-864, 872-874
boot loaders, see bootstrap programs
boot partition, 465
boot sector, 466
bootstrap port, 136
bootstrap programs (boot loaders,

bootstrap loaders), 11, 70, 94, 465,
601

bootstrap server, 136
boot viruses, 632, 633
Border Gateway Protocol (BGP), 745
bottlenecks, 95
bottom half (interrupt service routines),

793-794
bounded buffer, 126
bounded-buffer problem, 290, 304
bounded capacity (of queue), 131-132
bounded waiting, 261
bourne-again shell (bash), 58, 783
BPF Compiler Collection (BCC), 98-100
breach of availability, 622
breach of confidentialit , 622
breach of integrity, 622
bridging, 723
broadcasting, 745
brokers, 837
browser process, 124
BSD UNIX, 49-50
bss (block started by symbol) field, 108
B+ tree (NTFS), 876
buddies, 427
buddy heap (Linux), 796
buddy system (Linux), 796
buddy-system allocation, 427, 428
buffers:

bounded and unbounded, 126
bounded-buffer problem, 290, 304
circular, 587, 716-717
defined, 509
translation look-aside, 365-368, 376, 384,

855
buffer cache, 583-585
buffering, 131-132, 412, 499, 509-510
buffer-overflo attacks, 628-631
bugs, 66
bug bounty programs, 826
bus(es), 7, 456

advanced technology attachment, 456
defined, 490-491
eSATA, 456
expansion, 490
fibre channel, 456
I/O, 456
PCIe, 490

Index 969

serial ATA, 456
serial-attached SCSI, 456, 490
universal serial, 456

busy waiting, 272, 493-494
byte, 11
bytecode, 727
byte stream, 748

C

caches, 583-586
buffer, 583-584
defined, 510
in Linux, 797, 798
location of, 765-766
as memory buffer, 350
page, 583, 798
and performance improvement, 583-586
policy for updating, 766-767
slabs in, 427, 428
unified buffer, 583-585

cache coherency, 32
cache-consistency problem, 765
cache management, 30-31
cache manager (Windows 10), 864-866
caching, 30-31, 510-511
basic scheme, 764-765
client-side, 883
double, 584
write-back, 766

cancellation, thread, 190-192
cancellation points, 191
Canonical, 779
capability(-ies), 680, 682-683, 685-686, 697
capability-based protection systems,

685-687
capability lists, 680-681
capability systems, 826
capacity, of queue, 131-132
cascading termination, 121
catching interrupts, 9, 494
CAV (constant angular velocity), 457
cd command, 751
central processing units, 18, 318. See also

entries beginning CPU
Ceph, 484
certificat authorities, 644
CET (Control-flo Enforcement

Technology), 828
CFG (Control-Flow Guard), 827
CFQ scheduler, 461, 811
CFS, see Completely Fair Scheduler
CFS (clustered file system), 768
challenging passwords, 652

change journal (Windows 10), 879
character devices (Linux), 810-812
character-stream devices, 502, 504
character-stream interface, 504
checksums, 462, 746
children, 38, 111
chip multithreading (CMT), 222, 223
chipsets, 835
Chrome, 124
CIFS (common Internet file system), 607,

880
ciphers, 639, 640
circular buffers, 587, 716-717
circularly linked lists, 37, 38
circular SCAN (C-SCAN) scheduling

algorithm, 460
circular-wait condition (deadlocks), 321,

328-330
claim edge, 333
classes (Java), 694
class loader, 727
cleanup handler, 191
clearing interrupts, 9, 494
CLI (command-line interface), 56
C library, see libc
client(s), 73
in client-server model, 606
defined, 757
diskless, 762
in distributed systems, 734
thin, 40

client-initiated approach to verifying
cached data, 767

client interface, 757
client-server DFS model, 758-759
client-server distributed system, 734
client-server model, 606, 758-759, 861-862
client-server systems, 42-43, 734
client-side caching (CSC), 883
client systems, 42
clocks, 505-506
clock algorithm, 410-411
clock owner, 837
clones, 591, 705
clone() system call, 195-196
closed-source operating systems, 46
closures, 174, 186
cloud computing, 44-45, 706
cloud storage, 471, 751
clusters, 19-21, 464, 574, 875
cluster-based DFS model, 758-760
clustered file system (CFS), 768
clustered page tables, 374
clustered systems, 19-21

970 Index

clustering, 19, 20, 438
CLV (constant linear velocity), 456-457
CMT (chip multithreading), 222, 223
coarse-grained multithreading, 222
coaxial cables, 736
Cocoa framework, 87
Cocoa Touch, 87
code:

absolute, 352
additional sense, 512
byte-, 727
error-correction, 462-463
injection of, 628-631
kernel, 261
message-authentication, 643
position-independent, 803
reentrant (pure), 370
relocatable, 353

code-injection attack, 628-631
code integrity module (Windows 10), 828
code reuse attacks, 827
code review, 627, 628
code signing, 644, 690
codewords, 697
COM (Component Object Model), 882
com (top-level domain), 739
combined scheme index block, 576
command interpreter, 58-59
command-line interface (CLI), 56
committing allocations, 852
Common Criteria, 869
common Internet file system (CIFS), 607,

880
common name, 647
communication(s):

direct, 128
indirect, 129
inter-computer, 522
interprocess, see interprocess

communication [IPC]
network, 738-749
communication protocols, 741-745
and naming/name resolution, 738-741
TCP/IP example, 745-746
UDP and TCP transport protocols,
746-749

as operating system service, 57
secure, with symmetric encryption, 639,

640
systems programs for, 74

communication links, 128
communication ports, 138
communication protocols, 741-745
communication system calls, 72-73

compaction, 360, 572
compare and swap() instruction, 267-269
compartmentalization, 669
compiler-based enforcement, 691-693
compile time, 352
Completely Fair Queuing (CFQ)

scheduler, 461, 811
Completely Fair Scheduler (CFS), 236,

237, 790
complex messages, 136
Component Object Model (COM), 882
compression, 425-426, 757, 858, 878-879
compression ratio, 426
compression units, 878
computational kernels, 833
computation migration, 752
computation speedup, 123, 735, 753
computer programs, see application

programs
computer system(s):

architecture of, 15-21
clustered systems, 19-21
multiprocessor systems, 16-19
single-processor systems, 15-16

distributed systems, 35-36
firewalling to protect, 659-660
I/O structure in, 14-15
operating system viewed by, 5
organization, 7-15
interrupts, 8-11
I/O structure, 14-15
storage structure, 11-14

process management in, 27-28
protection in, 33-34
real-time embedded systems, 45-46
secure, 622
security in, 33-34
storage in, 11-14
storage management in, 30, 32
threats to, 634-637

compute-servers system, 42-43
computing:

64-bit, 383
cloud, 44-45, 706
high-performance, 20
mobile, 41-42
peer-to-peer, 43-44
safe, 658
thin-client, 874-875
traditional, 40-41

computing environments, 40-46
client-server computing, 42-43
cloud computing, 44-45
mobile computing, 41-42

Index 971

peer-to-peer computing, 43-44
real-time embedded systems, 45-46
traditional, 40-41
virtualization, 34-35

concurrency, 163
Concurrency Runtime (ConcRT), 241-242,

890
concurrent dispatch queue, 185
conditional-wait construct, 281
condition variables, 278, 279, 302-303,

309-311, 889
confidentialit , breach of, 622
confinemen problem, 678
conflic phase (of dispatch latency), 229
conflict-resolutio mechanism (Linux),

784, 785
congestion control, 749
Connected Standby, 837
connectionless protocols, 747
connectionless (UDP) sockets, 147
connection-oriented protocols, 748
connection-oriented (TCP) sockets, 147
connection ports, 138
consistency, of distributed fil systems,

767
consistency checker, 586-587
consistency checking, 586-587
consistency semantics, 608-609
consolidation, 706
constant angular velocity (CAV), 457
constant linear velocity (CLV), 456-457
consumer process, 126-127, 290, 291,

559-560
containers, 592, 718, 719
container objects (Windows 10), 664
containment, application, 703, 718-719
contaminants, 344
contended locks, 271
content-addressable storage, 484
contention scope, 217-218
context (of process), 114
context (of thread), 194
context switches, 114-115, 204
contiguous allocation, 356-360, 570-573
contiguous bit, 432-433
Control-flo Enforcement Technology

(CET), 828
Control-Flow Guard (CFG), 827
controlled access, 552-554
controller(s), 456
defined, 491
device, 456
direct-memory-access, 498
fibre channel bus, 491

host, 456
control partitions, 714
control programs, 5
control register, 492
convenience, 1
convoy effect, 207
cooperating processes, 123, 257
cooperative scheduling, 202
coordination, among processes, 260
copy-on-write technique, 399-401, 853
copy rights, access matrix with, 677
copy semantics, 510
core(s), 15-16, 18
big and little, 226-227
dual-core design, 17, 18
multicore processors, 221-224
multicore programming, 162-166
multicore systems, 16-18
scheduling processes to run on, 199

core dump, 95-96
core frameworks (macOS and iOS), 87
CoreUI, 825
counts, 533, 534
counters, 96-97
LRU page replacement with, 408
program, 27, 106, 109
timestamp, 845

counting, 580
counting-based page replacement

algorithm, 411-412
counting semaphore, 273
C program, memory layout in, 108
CPUs (central processing units), 18, 318
CPU-bound processes, 112
CPU burst, 201
CPU-I/O burst cycle, 201
CPU registers, 110
CPU scheduler, 113-114, 201
CPU scheduling, 24, 199-251
about, 201
algorithms for, 205-217

evaluation of, 244-249
first-come, first-served scheduling of,
206-207

multilevel feedback-queue scheduling
of, 216-217

multilevel queue scheduling of,
214-216

priority scheduling of, 211-214
round-robin scheduling of, 209-211
shortest-job-first scheduling of,
207-209

criteria, 204-205
dispatcher, role of, 203-204

972 Index

and I/O-CPU burst cycle, 201
multi-processor scheduling, 220-227
approaches to, 220-221
heterogeneous multiprocessing,
226-227

and load balancing, 224-225
and multicore processors, 221-224
and processor affinity, 225-226

operating-system examples, 234-244
Linux scheduling, 234-239
Solaris scheduling, 242-244
Windows scheduling, 239-242

preemptive vs. nonpreemptive
scheduling, 202-203

real-time, 227-234
earliest-deadline-first scheduling,
232-233

and minimizing latency, 227-229
POSIX real-time scheduling, 233-234
priority-based scheduling, 229-230
proportional share scheduling, 233
rate-monotonic scheduling, 230-232

thread scheduling, 217-219
virtual machines, 720

CPU-scheduling information (PCBs), 110
CPU utilization, 204
crashes, 96
crash dumps, 96
CRCs (cyclic redundancy checks), 462
creation:

of files, 532, 542
of processes, 116-121

credentials, 787
critical sections, 260
critical-section object, 297, 888
critical-section problem, 260-270

Peterson’s solution to, 262-265
and semaphores, 272-276
and synchronization hardware, 265-270

cryptography, 637-648
defined, 638
and encryption, 638-645
asymmetric encryption, 641
authentication, 641-644
key distribution, 644-645
symmetric encryption, 639-640

implementation of, 645-646
TLS example of, 646-648

CSC (client-side caching), 883
C-SCAN scheduling, 460
C-SCAN scheduling algorithm, 460
C shell, 58
ctfs (fil system), 598
cumulative ACK, 748

current directory, 546
current-file-positio pointer, 532
cycle stealing, 499
cyclic redundancy checks (CRCs), 462
cylinder (hard disk drive), 450
cylinder groups, 806

D

d (page offset), 360
DAC (discretionary access control), 684
daemons, 22, 781
daemon processes, 690
daisy chain, 490
DAM (Desktop Activity Moderator), 837
dark web, 634
Darwin operating system, 85, 88, 687-688
data attributes, 875
databases, 341, 842, 856
data dependency, 164
data-encryption standard (DES), 639
Data Execution Prevention (DEP), 827
datagrams, 743
data-in register, 492
data-link layer, 742
data-link layer protocol, 645
data loss, mean time of, 474
data migration, 751-752
data-out register, 492
data parallelism, 165, 166
data passing, between processes, 813
data section (of process), 106
data splitting, 164
data striping, 475
data view attribute, 862
DCOM, 882
DDoS attacks, 636
deadline scheduler, 460, 461
deadlock(s), 283-284, 317-343

avoidance of, 326, 330-337
with banker’s algorithm, 333-337
with resource-allocation-graph

algorithm, 333
with safe-state algorithm, 331-333

characterization, 321-326
defined, 317
detection of, 337-341
methods for handling, 326-327
in multithreaded applications, 319-321
necessary conditions for, 321-323
prevention of, 326-330
recovery from, 341-343
system model for, 318-319

Index 973

system resource-allocation graphs for
describing, 321-323

Debian, 779
debuggers, 66
debugging, 95-100, 165
dedicated devices, 502
deduplication, 757
default access rights, 680
default heap, 893
default signal handlers, 189
defense in depth, 653, 669
deferred cancellation, 190
deferred procedure calls (DPCs), 841, 847
degree of multiprogramming, 112
delayed revocation, 682
delayed-write policy, 766
deleting files, 532, 542, 551
demand paging, 392-399, 430-436
basic mechanism, 393-396
defined, 393
free-frame list, 396-397
with inverted page tables, 433
and I/O interlock, 434-436
and page size, 431-432
and performance, 397-399
and prepaging, 430-431
and program structure, 433-434
pure, 395
and TLB reach, 432-433

demand-zero memory, 799
demilitarized zone (DMZ), 659
denial-of-service (DOS) attacks, 622, 636
dentry objects, 605, 804, 805
DEP (Data Execution Prevention), 827
DES (data-encryption standard), 639
design of operating systems, 79-80
distributed systems, 753-757
Linux, 780-783
Windows 10, 826-838
application compatibility, 830-831
dynamic device support, 837-838
energy efficiency, 836-837
extensibility, 833-834
international support, 835-836
performance, 831-833
portability, 838-839
reliability, 828-829
security, 826-828

desktop, 59
Desktop Activity Moderator (DAM), 837
Desktop Window Manager (DWM), 825
detection-algorithm usage (deadlock),

340-341
deterministic modeling, 245-247

development kernels (Linux), 777
device controllers, 456. See also I/O
device directory, see directory(-ies)
device drivers, 7, 490, 785
Device Guard, 828
device-management system calls, 71-72
device objects, 863
device reservation, 511
device stacks, 862
device-status table, 508-509
DFSs, see distributed fil systems
digital certificates 644
digital signatures, 643, 828
digital-signature algorithm, 643
dining-philosophers problem, 293-295
dir command, 751
direct access (files) 539-541
direct blocks, 576
direct communication, 128
Direct-Compute, 825
direct I/O, 504
direct memory access (DMA), 15, 498-500
direct-memory-access (DMA) controller,

498
directory(-ies), 541-550
active, 607, 884
acyclic-graph, 547-549
current, 546
fast sizing of, 592
file-system interface, 541-550
general graph, 549-550
implementation of, 568-570
lightweight directory-access protocol,

607
listing, 542
master file, 543
page, 381, 853
protecting, 554
root, 877
single-level, 542-543
tree-structured, 545-547
two-level, 543-545
user file, 543

directory object, 850
direct virtual memory access (DVMA),

500
dirty bits (modify bits), 402
discretionary access control (DAC), 684
disinfection, program, 658
disk(s). See also mass-storage structure;

RAID (redundant arrays of
inexpensive disks)

boot (system), 465
mini-, 704

974 Index

raw, 413, 464, 601
disk arm, 450
disk blocks, 40
disk image, 723-724
diskless clients, 762
Disk Management tool, 465
disk-scheduling algorithms, 460-461
dispatched process, 112
dispatchers, 203-204, 239, 840-841
dispatcher database, 842
dispatcher objects, 297, 845-846
dispatching interrupts, 9, 494
dispatch latency, 203, 228, 229
dispatch queue, 185
distinguished name, 647
Distributed Denial-of-Service (DDoS)

attacks, 636
distributed fil systems (DFSs), 605,

757-768
client-server model, 758-759
cluster-based model, 759-761
defined, 757
implementation techniques, 763-764
naming in, 761-764
remote file access in, 764-767
trends in, 767-768
Windows 10, 883

distributed information systems
(distributed naming services), 607

distributed lock manager (DLM), 21
distributed operating systems, 749-753
distributed systems, 35-36

advantages of, 733-735
defined, 733
design issues in, 753-757
distributed file systems, 757-768
client-server model, 758-759
cluster-based model, 759-761
defined, 757
implementation techniques, 763-764
naming in, 761-764
remote file access in, 764-767
trends in, 767-768

distributed operating systems, 749-753
distributions (GNU/Linux), 48
DLLs (dynamically linked libraries), 76,

355-356
DLM (distributed lock manager), 21
DMA (direct memory access), 15, 498-500
DMA-acknowledge, 499
DMA controller, 498
DMA-request, 499
DMZ (demilitarized zone), 659
DNS (domain-name system), 607, 739-740

dockers, 719
document(s):

File System Hierarchy Standard, 778-779
living, 653

domains:
capability lists for, 680-681
protection, 671-675, 711
public domain software, 779-780
scheduling, 238
security, 659
Windows 10, 884

domain-name system (DNS), 607, 739-740
domain switching, 673, 674
DOS attacks, 622, 636
double buffering, 499, 509
double caching, 584
double indirect blocks, 576
doubly linked lists, 37
down time, 572
DPCs (deferred procedure calls), 841, 847
DRAM (dynamic random-access

memory), 11
drive formatting, 463, 464
drive mirroring, 476
driver end (STREAM), 519
driver objects, 863
driver-registration system (Linux), 784,

785
Drive Writes Per Day (DWPD), 453
dropped packets:

TCP transfer with, 748, 749
UDP transfer with, 747-748

dual-booted systems, 601
dual-core design, 17, 18
dual-mode operation, 24-25
DVMA (direct virtual memory access),

500
DWM (Desktop Window Manager), 825
DWPD (Drive Writes Per Day), 453
dynamically linked libraries (DLLs), 76,

355-356
dynamic device support (Windows 10),

837-838
dynamic linking, 803
dynamic loading, 355
dynamic protection, 673
dynamic random-access memory

(DRAM), 11
dynamic storage-allocation problem, 358,

571
dynamic tick, 836-837

E

Index 975

earliest-deadline-firs (EDF) scheduling,
232-233

ease of use, 4, 822
easily remembered passwords, 651
eBPF tracing tool, 99, 100
ec2, 44
ECC (error-correction code), 462-463
economic benefits of multithreaded

processes, 162
EDF (earliest-deadline-first scheduling,

232-233
edu (top-level domain), 739
effective access time, 397-398
effective capabilities, 685
effective memory-access time, 367
effective transfer rates, 451, 486
effective UID, 34
efficienc , 1, 582-583, 692, 836-837
electrical storage systems, 14
elevator algorithm, see SCAN scheduling

algorithm
ELF (Executable and Linkable Format),

76-77, 801, 802
embedded computers, 5
empty processes, 123
empty slabs, 429, 798
emulation, 34, 717-718
emulators, 703
encapsulation (Java), 696
encrypted viruses, 633
encryption, 638-645
asymmetric, 641, 645
authentication, 641-644
defined, 638
key distribution, 644-645
public-key, 641
symmetric, 639-640

energy efficienc , 836-837
enhanced second-chance

page-replacement algorithm,
410-411

entitlements (Darwin), 686-687
entry section, 260
entry set, 303, 304, 307
environment:
computing, 40-46
kernel, 88
operating system as, 4
programming, 703, 717
run-time, 64-65
thread environment blocks, 889-890

environment vector, 787
equal allocation, 414
errors, 462-463, 467, 511-512

error-correcting organization, 476-477
error-correction code (ECC), 462-463
error detection, 57, 462
error handling, 511-512
eSATA buses, 456
escalate privileges, 34
escape (operating systems), 503
Ethernet packets, 745-746
events, 297
event latency, 227-228
event objects (Windows 10), 845
event tracing, 822
event-vector table, 11
eVM, 729
"exactly once" functionality, 150
exceptions, 22, 497, 847-848
exception dispatcher, 847
exclusive locks, 534
exec() system call, 188, 786-789
Executable and Linkable Format, see ELF
executable files 75, 107, 530
executing files, 551
execution of user programs, 801-803
execution time, 353
executive (Windows 10), 848-874
booting, 872-874
cache manager, 864-866
facilities for client-server computing,

861-862
I/O manager, 862-864
object manager, 849-851
plug-and-play manager, 869-870
power manager, 870-871
process manager, 858-860
registry, 871-872
security reference monitor, 866-869
virtual memory manager, 851-858

exit section, 260
exit() system call, 121-122
expansion bus, 490
exponential average, 208
export list, 612
ext2 (second extended file system), 805
ext3 (third extended file system), 805-807
ext4 (fourth extended file system), 805
extended file attributes, 531
extended file system (extfs), 566, 805
extensibility, of Windows 10, 833-834
extent (contiguous space), 572
external data representation (XDR), 150
external fragmentation, 359-360, 571-572
extfs (extended file system), 566, 805

F

976 Index

failure(s), 473, 474, 754-756
failure analysis, 95-96
failure modes (remote fil systems),

607-608
fairness parameter, 307
fair scheduling, 791
false negatives, 656
false positives, 656
fast directory sizing, 592
fast I/O mechanism, 865-866
fast-user switching, 825, 874-875
FAT (file-allocatio table), 574-575
fault, page, 394-395
fault tolerance, 19, 754
fault-tolerant systems, 754
FC (fibe channel), 470
FCB (file-contro block), 565, 567
FC buses, 456
FC bus controller, 491
FCFS scheduling, 458, 459
FCFS scheduling algorithm, 206-207, 458
fd (fil descriptor), 568, 788
fences, memory, 266
fibers 241, 889-890
fibe optic cables, 736
fibr channel (FC), 470
fibr channel (FC) buses, 456
fibr channel (FC) bus controller, 491
fidelit , 704
FIFO, 38
FIFO page replacement algorithm,

404-406
50-percent rule, 359
file(s) 29-30, 529-530. See also

directory(-ies); specific types
appending, 551
attributes of, 530-531
defined, 255, 527, 529
deleting, 532, 542, 551
executing, 551
internal structure of, 537-539
locking, 534-536
opening, 532
operations on, 532-536
paging, 851
reading, 532, 551
renaming, 542
searches for, 541, 542
truncating, 532
writing, 532, 551

file-allocatio table (FAT), 574-575
file-contro block (FCB), 565, 567
fil descriptor (fd), 568, 788
fil handle, 568

fil info window (macOS), 531
fil management, 74
file-managemen system calls, 71
fil mapping, 555, 557
fil migration, 761-762
fil modification 74
fil objects, 605, 804-805, 862
file-ope count, 534
file-organizatio module, 565
fil pointers, 534
fil reference, 876
fil replication, 761
file-serve system, 43
fil sessions, 608
fil sharing, 602-603
fil systems, 597-616

Andrew, 759
Apple, 592
basic, 564, 565
clustered, 768
common Internet, 607, 880
consistency semantics in, 608-609
defined, 564
distributed, see distributed fil systems

(DFSs)
extended, 566, 805
file sharing, 602-603
Google, 759-761
Hadoop, 484
Linux, 803-810
ext3 file system, 805-807
journaling, 808
/proc file system, 808-810
virtual, 804-805

log-based transaction-oriented, 587-588
logical, 565
mounting of, 598-602
network, 610-615
network file, 610-615, 759
operations, 566-568
parallel, 768
partitions in, 601-602
registration of, 785
remote, 605-608
Solaris, 482-484, 597, 599
special-purpose, 597-598
structure, 564-566
traversing, 542
traversing of, 542
UNIX, 565-566, 598
usage, 568
virtual, 603-605, 804-805
Windows 10, 875-879
write-anywhere file layout, 589-593

Index 977

ZFS, 482-484, 581, 588, 598
file-syste context, 788
File System Hierarchy Standard

document, 778-779
fil system implementation, 563-593
allocation methods, 570-578
contiguous allocation, 570-573
indexed allocation, 575-577
linked allocation, 573-575
performance, 577-578

directory implementation, 568-570
efficiency, 582-583
file-system operations, 566-568
file-system structure, 564-566
free-space management, 578-582
performance, 583-586
recovery, 586-589
WAFL example, 589-593

file-syste interface, 529-560
access methods, 539-541, 551-554
directory structure, 541-550
acyclic-graph directories, 547-549
general graph directory, 549-550
single-level directory, 542-543
tree-structured directories, 545-547
two-level directory, 543-545

file attributes, 530-531
and file concept, 529-530
file operations, 532-536
file structure, 537-539
file types, 536-537
memory-mapped files, 555-560
protection, 550-555

file-syste management, 29-30
file-syste manipulation (operating

system service), 56-57
fil table, 788
fil transfer, 750-751
fil viruses, 632
filte drivers, 863
filtering system-call, 688
filte management, 863
fine-graine multithreading, 222
Finish (data structure), 335, 339
fire alls, 41, 659-660
fire all chains, 815
fire all management, 815
firm are, 11, 12
first-come first-serve (FCFS) scheduling

algorithm, 206-207, 458
first-fit strategy, 358, 359
first-leve interrupt handler (FLIH), 496
firs readers, 291
flas translation layer (FTL), 453-454

flexibilit , of compiler-based
enforcement, 692

FLIH (first-leve interrupt handler), 496
flo control, 519, 748, 749
flushing 366
folder redirection, 883
folders, 59
foreground priority separation boost, 843
foreground processes, 115, 122, 215, 241
fork() and exec() process model (Linux),

786-789
fork-join model, 180-184
fork()system call, 118-119, 188, 786-789
formatting, 463, 464
forwarding, 466
forward-mapped page tables, 371
4-byte pages, 363, 364
four-layered model of security, 623-625
fourth extended file system (ext4), 805
fragments, packet, 815
fragmentation, 359-360, 571-572
frame(s), 360
in data-link layer, 742
free, 364, 396-397, 425-426
minimum number of, 413-414
page, 853
page faults vs., 404, 405
victim, 402

frame allocation, 413-419
allocation algorithms, 403, 414-415
equal, 414
global vs. local, 415-418
minimum number of frames, 413-414
non-uniform memory access, 418-419
proportional, 414-415

frame-allocation algorithm, 403, 414-415
frame table, 365
free-behind technique, 585
FreeBSD, 70, 71
free frames, allocation and, 364
free-frame list, 396-397, 425-426
free page, 856
Free Software Foundation (FSF), 48
free-space list, 578-579
free-space management, 578-582
fresh value, 647
front-end processors, 522
FSF (Free Software Foundation), 48
fsgid property, 818
fsuid property, 818
FTL (flas translation layer), 453-454
full backup, 589
full slabs, 429, 798

978 Index

functional programming languages,
313-314

G

Galois fiel math, 478
Gantt chart, 206
garbage collection, 454, 549, 550, 727
GB (gigabyte), 11
gcc (GNU C compiler), 778
GCD (Grand Central Dispatch), 185-186
GDT (global descriptor table), 379
general graph directories, 549-550
general revocation, 682
gestures, 60
get command, 751
GFS (Google file system), 759-761
gigabyte (GB), 11
git, 50
global allocation, 415-418
global descriptor table (GDT), 379
global dispatch queues, 185
global replacement, 415-418
global table, 679
GNOME desktop, 60
GNU C compiler (gcc), 778
GNU General Public License (GPL), 48
GNU/Linux, 48
Google Android, 42
Google file system (GFS), 759-761
GPFS, 768
GPL (GNU General Public License), 48
GPU (graphics processing unit), 735
graceful degradation, 19
Grand Central Dispatch (GCD), 185-186
granularity, minimum, 791
graphs, acyclic, 547
graphical user interfaces (GUIs), 56, 59-61
graphics processing unit (GPU), 735
green threads, 167
group (user class), 551
group identifiers 33-34
grouping, 580
group policies, 884
group rights (Linux), 817
GRUB, 94
guard pages, 852
guest (operating system), 34
guest processes, 702
GUIs (graphical user interfaces), 56, 59-61

H

hackers, 622

Hadoop, 22
Hadoop distributed fil system (HDFS),

759, 760
Hadoop fil system (HDFS), 484
HAL (hardware-abstraction layer), 835,

840
handles, 849
handle tables, 849
handling, signal, 188-189
handshake, three-way, 748
hard affinit , 225
hard-coding techniques, 129
hard disk drives (HDDs), 13

components of, 450-451
defined, 449
scheduling, 457-461

hard errors, 463, 467
hard limits, 438, 857
hard links, 532, 549, 879
hard page faults, 416
hard real-time systems, 227
hardware, 4

instructions, 266-269
I/O system, 490-500
direct memory access, 498-500
interrupts, 494-498
polling, 493-494

and main memory, 350-352
and memory management, 28
process migration and, 753
for relocation and limit registers, 357
for storing page tables, 365-368
synchronization, 265-270
transformation of requests to operations

by, 516-519
virtual machine, 710-713

hardware-abstraction layer (HAL), 835,
840

hardware objects, 672
hardware threads, 222
hardware transactional memory (HTM),

312
hard working-set limits, 438
hash collision, 39
hashed page tables, 373-374
hash functions, 38-39, 643
hash map, 39
hash tables, 570
hash value (message digest), 643
HBA (host bus adapter), 491
HDDs, see hard disk drives
HDFS (Hadoop distributed fil system),

759, 760
HDFS (Hadoop fil system), 484

Index 979

head crash, 451
heaps, 893-894
heap section (of process), 107
heartbeat procedure, 754-755
heterogeneous multiprocessing, 226-227
hibernation, 870
hierarchical paging, 371-373
high-availability service, 19
high contention, 271, 286
high memory, 795
high-performance computing, 20
high-performance event timer (HPET),

505
high priority, 212
hijacking, session, 623
hit ratio, 367, 432
hives, 871
hold-and-wait condition (deadlocks), 321,

327-328
holes, 358
HoloLens, 874
honeypot, 655-656
horizontal scalability, 484
host(s):
distributed system, 734
operating system, 35, 177
virtual machine, 702

host-attached storage, 470
host bus adapter (HBA), 491
host controller, 456
host-id, 739
host name, 73, 738
hot spare (drive), 480
hot-standby mode, 19, 20
HPET (high-performance event timer),

505
HTM (hardware transactional memory),

312
HTTP protocol, 881
huge pages, 363, 432
Hybrid Boot, 873-874
hybrid cloud, 44
hybrid operating systems, 86-91
hypercalls, 717
hypercall interface, 839
hyper-threading, 222, 832
Hyper-V for Client, 831
hyper-V hypervisor, 839
hypervisors, 670, 702
separation, 729
type 0, 702, 713-714
type 1, 703, 714-715
type 2, 703, 715-716

I

IA-32 architecture, 379-382
IA-64 architecture, 382
IaaS (infrastructure as a service), 44
IB (InfiniBand) 473
icons, 59
ideal processors, 242, 842
idempotent, 759
identifiers
address-space, 366
file, 530
group, 33-34
host names vs., 738
location-independent file, 764
process, 116
spoofed, 606
user, 33

idle process, 872
idle threads, 239, 842
IKE protocol, 646
image, disk, 723-724
immediate revocation, 682
immutable shared files, 609
immutable-shared-fil semantics, 609
imperative languages, 313
impersonation, 867
implementation:
CPU scheduling algorithm, 249
cryptography, 645-646
directory, 568-570
file system, see fil system

implementation
monitor, 280-281
of naming techniques, 763-764
of operating systems, 80-81
Pthread, 169, 170
of security defenses, 653-662

and accounting, 659
and auditing, 659
and firewalling, 659-660
and intrusion prevention, 655-657
levels of defenses, 661-662
and logging, 659
and security policy, 653
and virus protection, 657-659
and vulnerability assessment, 653-655

semaphore, 274-276
synchronization primitive, 845-846
virtual machine, 713-719

application containment, 718-719
emulation, 717-718
paravirtualization, 716-717

980 Index

programming-environment
virtualization, 717

type 0 hypervisors, 713-714
type 1 hypervisors, 714-715
type 2 hypervisors, 715-716
and virtual machine life cycle, 713

implicit threading, 176-188
fork join, 180-183
Grand Central Dispatch, 185-186
Intel thread building blocks, 186-188
OpenMP and, 183-185
thread pools and, 177-180

importance hierarchy (Android), 122
include file 40
increase scheduling priority privilege,

887
incremental backup, 589
indefinit blocking (starvation), 213, 343
independence, location, 762, 769
independent processes, 123
indexes, 540, 542, 576
index blocks, 575-577
indexed allocation, 575-577
index root, 876
indirect blocks, 576, 577
indirect communication, 129
indirection, 683, 703
InfiniBan (IB), 473
information leak attacks, 827
information-maintenance system calls, 72
information sharing, 123
infrastructure as a service (IaaS), 44
inheritable capabilities, 685
init process, 117
in-memory file-system structures, 568, 569
inode, 482, 565, 577
inode objects, 605, 804
input/output, see I/O
input/output operations per second

(IOPS), 461
insert() method, 305-307
InServ storage array, 481
instruction register, 12
integrity, 622, 687-688
integrity label (Windows 10), 663
integrity levels, 826
Intel processors, 379-382

event-vector table, 496
IA-32 architecture, 379-382
IA-64 architecture, 382
thread building blocks, 186-188

inter-computer communications, 522
interface(s). See also specific types

choice of, 60-62

defined, 501
speeds of, 510

interlock, I/O, 434-436
intermachine interface, 757
internal fragmentation, 359
international support (Windows 10),

835-836
Internet, 737
Internet Key Exchange (IKE), 646
Internet model, 742
Internet Protocol (IP), 743-746. See also

Transmission Control
Protocol/Internet Protocol (TCP/IP)

Internet Service Providers (ISPs), 737
interpreted languages, 717
interprocess communication (IPC),

123-153
in client-server systems, 145-153
remote procedure calls, 149-153
sockets, 146-149

in Linux, 777, 812-813
Mach example of, 135-138
in message-passing systems, 127-132
pipes in, 139-145
POSIX shared-memory example of,

132-135
in shared-memory systems, 125-127
Windows example of, 138-139

interrupt(s), 8-11, 494-498
defined, 494
in Linux, 794
maskable, 10, 495-496
nonmaskable, 10, 495
software (traps), 497
in Windows 10, 846-848

interrupt chaining, 10, 496
interrupt-controller hardware, 9, 495
interrupt-dispatch table (Windows 10),

848
interrupt-handler routine, 9, 494-495
interrupt latency, 228
interrupt objects, 848
interrupt priority levels, 10-11, 497
interrupt request levels (IRQLs), 841, 846
interrupt-request line, 9, 494
interrupt service routines (ISRs), 844
interrupt vector, 9, 496
intruders, 622
intrusion prevention, 655-657
intrusion-prevention systems (IPSs), 656
inverted page tables, 374-375, 433
involuntary context switches, 204
I/O (input/output):

fast mechanism for, 865-866

Index 981

raw, 464, 465
structure of, 14-15
in virtual machines, 722-723

I/O-bound processes, 112
I/O burst, 201
I/O bus, 456
I/O channel, 522
I/O control level (fil system), 564
I/O interlock, 434-436
I/O manager, 862-864
I/O operations, 56
IOPS (input/output operations per

second), 461
I/O request packet (IRP), 863
iOS operating system, 42, 87-89
I/O status information (PCBs), 110
I/O subsystem(s), 32-33
kernels in, 508-516
procedures supervised by, 516

I/O system(s), 489-525
application interface, 500-508
block and character devices, 503-504
clocks and timers, 505-506
network devices, 504-505
nonblocking and asynchronous I/O,

506-507
vectored I/O, 507-508

hardware, 490-500
direct memory access, 498-500
interrupts, 494-498
for memory-mapped I/O, 491-493
polling, 493-494
summary, 500

kernel subsystem, 508-516
buffering, 509-510
caching, 510-511
data structures, 512-514
error handling, 511-512
I/O scheduling, 508-509
power management, 514-516
procedures supervised by, 516
protection, 512
spooling and device reservation, 511

Linux, 810-812
overview, 489-490
STREAMS mechanism, 519-521
and system performance, 521-524
transformation of requests to hardware

operations, 516-519
IP (Internet Protocol), 743-746. See also

Transmission Control
Protocol/Internet Protocol (TCP/IP)

IPC, see interprocess communication
iPhone, 60

IPIs (Windows 10), 847-848
IPSec, 646
IPSs (intrusion-prevention systems), 656
IRP (I/O request packet), 863
IRQLs (interrupt request levels), 841, 846
iSCSI, 471
ISPs (Internet Service Providers), 737
ISRs (interrupt service routines), 844
Itanium, 382
iteration space, 187

J

Java:
DNS lookup in, 740
file locking in, 534, 535
fork-join in, 180-184
Lambda expressions in, 174
language-based protection in, 694-696
synchronization, 303-311

condition variables, 309-311
monitors, 303-307
reentrant locks, 307-308
semaphores, 308-309

thread dumps in, 339
thread pools in, 179-180

Java Executor interface, 175-176
Java threads, 173-176
Java Virtual Machine (JVM), 177, 717,

727-728
JBOD (Just a Bunch of Disks), 472
JIT compilers, 728
jobs, processes vs., 106
job objects, 859
job scheduling, 106
journaling, 587-588, 808
Just a Bunch of Disks (JBOD), 472
just-in-time (JIT) compilers, 728
JVM, see Java Virtual Machine

K

KB (kilobyte), 11
K Desktop Environment (KDE), 60
Kerberos network authentication

protocol, 607
kernel(s), 6, 7, 501, 508-516
buffering, 509-510
caching, 510-511
computational, 833
data structures, 36-40, 512-514
error handling, 511-512
I/O scheduling, 508-509
and I/O subsystems, 516

982 Index

Linux, 776-778, 781
nonpreemptive, 262
power management, 514-516
preemptive, 262
protection, 512
secure, 839-840
spooling and device reservation, 511
synchronization of, 295-299, 792-794
uni-, 728
Windows 10, 839-848

kernel abstractions, 89
kernel code, 261
kernel data structures, 36-40, 512-514
kernel environment, 88
kernel extensions (kexts), 89
kernel memory allocation, 426-430
kernel mode, 24, 25, 782
Kernel-Mode Driver Framework

(KMDF), 864
kernel-mode threads (KT), 841
kernel modules, 86, 783-786
kernel module management, 784
kernel object access (Windows 10),

884-885
kernel threads, 166, 217, 234
kernel virtual memory, 801
Kernighan’s Law, 98
kexts (kernel extensions), 89
keys:

for capabilities, 683
defined, 638
Internet Key Exchange, 646
in lock-key schemes, 681
master, 683
private, 641
public, 641
sense, 512
session, 647

key distribution, 644-645
key ring, 644
keystreams, 640
keystroke logger, 634
kilobyte (KB), 11
KMDF (Kernel-Mode Driver

Framework), 864
Korn shell, 58
KT (kernel-mode threads), 841
Kubernetes, 719

L

labels, for mandatory access control, 685
Lambda expressions, 174
languages, 313-314, 717

language-based protection systems,
690-696

compiler-based enforcement, 691-693
in Java, 694-696

LANs (local-area networks), 36, 735-737
large objects, 430
latency:

dispatch, 203, 228, 229
event, 227-228
interrupt, 228
in real-time systems, 227-229
rotational, 451
target, 236, 791

latency command, 494
layers (of network protocols), 645
layered approach (operating system

structure), 83-84
layered protocols, 891
LBA (logical block address), 456
LCNs (logical cluster numbers), 875
LDAP (lightweight directory-access

protocol), 607, 884
LDT (local descriptor table), 379
least-frequently used (LFU)

page-replacement algorithm,
411-412

least privilege, principle of, 626, 627,
668-669

least-recently-used (LRU) algorithm,
407-408

left child, 38
LFH design, 894
LFU page-replacement algorithm, 411-412
lgroups, 419
libc (C library), 63, 69, 370, 781
libraries:

C, 63, 69, 370, 781
Linux system, 781
shared, 356, 392
thread, 168-176
about, 168-169
Java, 173-176
Pthreads, 169-171
Windows, 171-173

library operating systems, 728
licensing, Linux, 779-780
life cycle:

I/O request, 518-519
virtual machine, 713

lifetime, virtual address space, 799-800
LIFO, 37-38
lightweight directory-access protocol

(LDAP), 607, 884
lightweight process (LWP), 193

Index 983

limit register, 351-352
linear addresses, 380, 382
linear lists (files) 569-570
line discipline, 811-812
link(s):
communication, 128
defined, 548
hard, 532, 549, 879
resolving, 548
symbolic, 879

linked allocation, 573-575
linked lists, 37, 38, 579-580
linked scheme index block, 576
linkers, 75, 76
linking, 355-356, 803, 882
Linux, 48, 775-819
capabilities in, 685-686
design principles for, 780-783
file systems, 803-810
ext3 file system, 805-807
journaling, 808
/proc file system, 808-810
virtual, 804-805

history of, 775-780
input and output, 810-812
interprocess communication, 812-813
kernel modules, 783-786
lockdep tool, 330
memory management, 795-803
execution and loading of user

programs, 801-803
physical memory, 795-798
virtual memory, 436-437, 798-801

network structure, 813-815
process management, 786-790
process representation in, 111
scheduling in, 234-239, 790-794
security model, 816-818
swap-space management in, 468-470
synchronization in, 296-298
system structure, 83
threads example, 195-196
tree of processes, 116
Windows subsystem for, 91

Linux distributions, 776, 779
Linux instance, 91
Linux kernel, 776-778, 781
Linux kernel data structures, 40
Linux system(s), 776
components of, 781-783
history of, 778-779
obtaining page size on, 364

Linux timers, 27
lists, 37

access, 679-680
access-control, 552, 555, 826
capability, 680-681
export, 612
free-frame, 396-397, 425-426
free-space, 578-579
linear, 569-570
linked, 37, 38, 579-580
user control, 561

listing directories, 542
listing file names and attributes, 551
little cores, 227
little-endian, 150
Little’s formula, 247
live CD, 48
live DVD, 48
livelock, 320-322
live migration (virtual machines), 706,

724-726
liveness, 283-284
living documents, 653
loadable kernel modules (LKMs), 86
load balancing, 224-225, 735, 753
loaders, 75-77, 695, 727, 783. See also

bootstrap programs
loading, 355, 801-803
load sharing, 220
load time, 353
local allocation, 415-418
local-area networks (LANs), 36, 735-737
local descriptor table (LDT), 379
locality model, 421
locality of reference, 395
locality property, 857
local-name, 763
local replacement, 415-418
local replacement algorithm, 420-421
location, file 530, 534
location independence, 761, 762
location-independent fil identifiers 764
location transparency, 761
locks, 681. See also deadlock(s)
advisory, 535
exclusive, 534
in Java API, 534, 535
mandatory, 535
mutex, 270-272, 299-300
nonrecursive, 299
Pushlocks, 831
reader-writer, 292-293
reentrant, 307-308
scope of, 305
shared, 534
for shared data, 70

984 Index

lock-free algorithms, 284
locking, page, 434-436
locking files, 534-536
lock-key scheme, 681
lofs (fil system), 598
log-based transaction-oriented fil

systems, 587-588
log files, 95, 876
log-fil service, 878
logging, 57, 659
logging area, 878
logical address, 353, 379
logical address space, 353-355
logical blocks, 456
logical block address (LBA), 456
logical cluster numbers (LCNs), 875
logical file system, 565
logical formatting, 464
logical memory, 24, 362. See also virtual

memory
logical processors, 832
logical records, 539
logic bomb, 627
login, remote, 750
loopback, 148
loosely coupled system, 83
loosely-coupled systems, 19
love bug virus, 658
low contention, 271
low-fragmentation heap (LFH) design,

894
low-level formatting (disks), 463
low priority, 212
LRU algorithm, 407-408
LRU-approximation page replacement

algorithm, 409-411
LRU page replacement, 407-409
ls command, 751
Lustre, 768
LWP (lightweight process), 193
LXC containers, 718, 719

M

MAC (mandatory access control), 684-685
MAC (message-authentication code), 643
MAC address, 745
Mach-O format, 77
Mach operating system, 84, 135-138
macOS operating system:

GUI, 61
as hybrid system, 87-89
latency command, 494
sandboxing in, 690-691

macro viruses, 632
magic number (files) 537
magnetic tapes, 455
mailboxes, 129-130
main memory, 349-385

and address binding, 352-353
ARMv8 architecture, 383-384
contiguous allocation of, 356-360
and dynamic linking, 355-356
and dynamic loading, 355
and hardware, 350-352
Intel 32 and 64-bit architectures, 379-382
and logical vs. physical address space,

353-355
paging for management of, 360-376
basic method, 360-365
hardware, 365-368
hashed page tables, 373-374
hierarchical paging, 371-373
inverted page tables, 374-375
and Oracle SPARC Solaris, 375-376
protection, 368-369
and shared pages, 369-371
swapping with, 377

shared libraries, 356
and swapping, 376-378

main queue, 185
main TLB, 384
major page faults, 416
malware, 625-628
MANs (metropolitan-area networks), 36
mandatory access control (MAC), 684-685
mandatory file-lockin mechanisms, 535
mandatory policy, 826
man-in-the-middle attack, 623, 635, 645
many-to-many multithreading model,

167-168
many-to-one multithreading model,

166-167
mapping, 39

address, 456-457
file, 555, 557
memory, 802-803

MapReduce system, 22, 761
marshaling, 150, 882
Mars Pathfinde , 285
maskable interrupts, 10, 495-496
masquerading, 622, 623, 635
mass-storage management, 30
mass-storage structure, 449-486

address mapping, 456-457
attachment of storage, 469-473
device management, 463-467
error detection and correction, 462-463

Index 985

hard disk drives, 450-451, 457-461
nonvolatile memory devices, 452-454,

461-462
overview, 449-450
RAID, 473-485
extensions, 481-482
for object storage, 483-485
performance improvement, 475
problems with, 482-483
RAID levels, 475-481
reliability improvement, 473-475

scheduling, 457-462
secondary storage connection methods,

456
swap-space management, 467-469
volatile memory, 454-455

master book record (MBR), 465, 466
master fil directory (MFD), 543
master fil table, 566
master key, 683
master secret (TLS), 647
matchmakers, 151
Max (data structure), 335
maximum number of resources,

declaration of, 330
MB (megabyte), 11
MBR (master book record), 465, 466
MD5 message digest, 643
mean time between failures (MTBF), 473,

474
mean time of data loss, 474
mean time to repair, 474
mechanical storage systems, 14
mechanisms, 80, 668. See also specific

mechanisms
medium access control (MAC) address,

745
medium objects, 430
megabyte (MB), 11
memory:
Address Window Extension, 894-895
anonymous, 399, 469
defined, 14
demand-zero, 799
direct memory access, 14, 498-500
direct virtual memory access, 500
high, 795
in-memory file-system structures,

568,569
layout of, in C program, 108
layout of process in, 106
logical, 24, 362
main, see main memory
network virtual memory, 765

over-allocation of, 401
physical, 24, 362, 390, 391, 795-798
secondary, 395
semiconductor, 14
shared, 57, 73, 123, 125, 556-560
software transactional, 312
32-byte, 363, 364
transactional, 311-312
virtual, see virtual memory
volatile, 454-455

memory access:
direct, 15, 498-500
direct virtual, 500
effective memory-access time, 367
non-uniform, 18, 19, 418-419

memory-address register, 354
memory allocation, 358-359, 426-430
memory barriers, 265-266
memory compression, 425-426, 858
memory devices:
management of, 463-467
nonvolatile, 452-454

defined, 449
NAND flash controller algorithms for,
453-454

overview, 452-453
scheduling, 461-462

memory fences, 266
memory management, 28-29
in Linux, 795-803

execution and loading of user
programs, 801-803

physical memory, 795-798
virtual memory, 798-801

with virtual machines, 721-722
in Windows 10, 892-895

memory-management information
(PCBs), 110

memory-management unit (MMU), 354,
855

memory manager (MM), 851
memory-mapped files, 555-560, 892-893
memory-mapped I/O, 491-493
memory mapping (Linux), 802-803
memory model, 265-266
memory protection, 357, 368-369
memory stall, 221-222
memory-style error-correcting

organization, 476-477
memory transactions, 311
messages, 135
complex, 136
in distributed systems, 734
OSI network, 742, 744

986 Index

in Win32 API, 891
message-authentication code (MAC), 643
message digest (hash value), 643
message modification 622-623
message passing, 123, 125, 130
message-passing model, 57, 72-73, 127-132

buffering, 131-132
Mach example, 135-138
naming, 128-130
synchronization, 130-131

metadata, 607, 876
metaslabs, 581
methods (Java), 694
Metro, 823
metropolitan-area networks (MANs), 36
MFD (master fil directory), 543
MFU page-replacement algorithm, 412
microkernels, 84-86
Microsoft Interface Definitio Language

(MIDL), 150, 882
Microsoft Windows, see Windows

operating system (generally)
micro TLBs, 384
middleware, 6, 7
MIDL (Microsoft Interface Definitio

Language), 150, 882
migration:

computation, 752
data, 751-752
file, 761-762
process, 752-753
push and pull, 224
with virtual machines, 706, 724-726

minidisks, 704
minifilters 863
minimum granularity, 791
miniport driver, 864
minor page faults, 416
mirrored volume, 474
mirroring, 474, 476
MM (memory manager), 851
MMU (memory-management unit), 354,

855
mobile computing, 41-42
mobile systems, 115, 377-378
mode bits, 24
moderate contention, 285
Modern, 823
modifie page, 856
modify bits (dirty bits), 402
modularity, 123
modules:

file-organization, 565
kernel, 86, 783-786

pluggable authentication, 816
stream, 519

module loader, 783
module-management system, 783, 784
module unloader, 783
monitors, 276-282

dining-philosophers solution with,
295,296

implementation of, using semaphores,
280-281

in Java, 303-307
resumption of processes within, 281-282
security reference, 866-869
usage of, 277-280

monitor calls, see system calls
monitor type, 277
monoculture, 634
monolithic operating systems, 82-83
Moore’s Law, 5
most-frequently used (MFU)

page-replacement algorithm, 412
motherboard, 20
motivation, for multithreading, 160-161
mounting, 464, 598-602
mount points, 598, 879
mount protocol (NFS), 612
mount table, 517, 567
MTBF (mean time between failures), 473,

474
MUI support, 840
multicore processors, 221-224
multicore programming, 162-166
multicore systems, 16-18
multidimensional RAID level 6, 478
multifactor authentication, 653
multilevel feedback-queue scheduling

algorithm, 216-217
multilevel index, 576
multilevel queue scheduling algorithm,

214-216
multimode operation, 25-26
multipartite viruses, 634
Multiple UNC Provider (MUP), 882-883
multiple user interface (MUI) support,

840
multiprocessing, 16, 220, 226-227, 794
multiprocessors, 18, 220
multi-processor scheduling, 220-227

approaches to, 220-221
examples, 234-242
Linux, 234-239
Solaris, 242-244
Windows, 239-242

heterogeneous multiprocessing, 226-227

Index 987

and load balancing, 224-225
and multicore processors, 221-224
and processor affinity, 225-226

multiprocessor systems, 16-19
multiprogramming, 23, 112, 420
multi-provider router, 883
multitasking, 23, 115, 790
multithreaded processes, 160
benefits of, 162
deadlocks in, 319-321
and exec() system call, 188
and fork() system call, 188
models of, 166-168
motivation for, 160-161
and signal handling, 188-189

multithreading:
chip, 222, 223
coarse-grained, 222
fine-grained, 222
many-to-many, 167-168
many-to-one, 166-167
one-to-one, 167
simultaneous, 222

multi-touch hardware, 874
MUP (Multiple UNC Provider), 882-883
mutex locks, 270-272, 299-300
mutual exclusion (mutex), 260, 267, 268,

845
mutual-exclusion condition (deadlocks),

321, 327

N

names:
common and distinguished, 647
host, 73, 738
resolution of, 738-741

named condition variables, 309
named pipes, 143-145, 881-882
named semaphores, 300-301
named shared-memory object, 559
name server, 739
namespaces, 787
naming, 128-130
defined, 761
in distributed file systems, 761-764
distributed naming services, 607
domain name system, 607
file, 530
and network communication, 738-741
port, 135-136

naming schemes, 763
naming structures (DFS), 761-763

NAND flas controller algorithms,
453-454

NAS (network-attached storage), 470-471
NAT (network address translation), 723
national-language-support (NLS) API,

835
NDIS (Network Device Interface

specification) 880
Need (data structure), 335, 336
need-to-know principle, 672
nested page tables (NPTs), 710, 712
network(s):
communication structure, 738-749

communication protocols, 741-745
and naming/name resolution, 738-741
TCP/IP example, 745-746
UDP and TCP transport protocols,
746-749

defined, 36
firewalling to protect, 659-660
in Linux, 813-815
local-area, 36, 735-737
metropolitan-area, 36
network operating systems, 749-751
personal-area, 36
as resource types, 318
security in, 623
storage-area, 21, 470, 472
structure of, 735-738
threats to, 634-637
virtual private, 646, 881
wide-area, 36, 735, 737-738
wireless, 41, 736-737

network address translation (NAT), 723
network-attached storage (NAS), 470-471
network computers, 40
network devices, 504-505, 810
Network Device Interface specificatio

(NDIS), 880
network file system (NFS), 610-615, 759
network information service (NIS), 607
networking, 880-884
network interfaces (Windows 10), 880
network layer, 742
network-layer protocol, 645
network operating systems, 36, 749-751
network protocols, registration of, 785
network time protocol (NTP), 505
network virtual memory, 765
new state, 108
NFS (network file system), 610-615, 759
NFS protocol, 612-614
nice value, 236, 790
NIS (network information service), 607

988 Index

NLS API, 835
no-access page, 852
nonblocking I/O, 506-507
nonblocking message passing, 130
noncontainer objects (Windows 10), 664
nonmaskable interrupts, 10, 495
nonpreemptive kernels, 262
nonpreemptive scheduling, 202
nonrecursive locks, 299
nonrepudiation, 644
nonresident attributes, 876
nonsignaled state, 297
non-uniform memory access (NUMA), 18,

19, 418-419
nonvolatile memory (NVM) devices, 13,

14, 452-454
defined, 449
NAND flash controller algorithms for,

453-454
overview, 452-453
scheduling, 461-462

nonvolatile storage (NVS), 14, 449
NOOP scheduler, 461
no-preemption condition (deadlocks),

321, 328
Normal World, 838
notify() method, 305-307
Notify port, 135
NPTs (nested page tables), 710, 712
NTFS, 875-877
NTP (network time protocol), 505
NUMA, see non-uniform memory access
NUMA-aware algorithms, 225-226
NUMA mode, 238-239
NVM devices, see nonvolatile memory

devices
NVM express (NVMe), 456
NVS (nonvolatile storage), 14, 449

O

objects:
access lists for, 679-680
in cache, 428
container, 664
critical-section, 297, 888
defined, 672
dentry, 605, 804, 805
device, 863
directory, 850
dispatcher, 297, 845-846
driver, 863
event, 845
file, 605, 804-805, 862

hardware, 672
inode, 605, 804
interrupt, 848
job, 859
in Linux, 797, 804
named shared-memory, 559
noncontainer, 664
section, 139, 852
semaphore, 845
sharing, 885-886
small, medium, and large, 430
software, 672
superblock, 605, 804, 805
timer, 845
in Windows 10, 664, 845-846, 848, 849

Object Linking and Embedding (OLE),
882

object manager (Windows 10), 849-851
object storage, 483-485
object types, 849, 850
objfs (fil system), 598
off-line compaction of space, 572
OLE (Object Linking and Embedding),

882
one-time passwords, 652
one-to-one multithreading model, 167
on-line compaction of space, 572
OOM (out-of-memory) killers, 418
OpenAFS (Andrew fil system), 759
open count, 533
open-fil table, 533, 567
opening files, 532
OpenMP, 183-185, 312-313
open operating systems, 634
open-source operating systems, 46-51
Open Systems Interconnection (OSI)

model, 741-744
operating system(s):

application specificity to, 77-79
booting, 94-95
building, 92-93
closed-source, 46
computing environments, 40-46
CPU scheduling in, 234-244
Linux scheduling, 234-239
Solaris scheduling, 242-244
Windows scheduling, 239-242

debugging, 95-100
defined, 1, 3, 5-7
design goals for, 79-80
features of, 3
functioning of, 4-7
implementation of, 80-81
kernel data structures, 36-40

Index 989

linkers and loaders, 75-77
network, 36
open-source, 46-51
operations, 21-27
dual-mode and multimode, 24-26
multiprogramming and multitasking,

23-24
and timer, 26-27

reasons for studying, 6
as resource allocator, 5
resource management by, 27-32
security in, 623-624
services provided by, 55-58
structure, 81-91
hybrid systems, 86-91
layered approach, 83-84
microkernels, 84-86
modules, 86
monolithic, 82-83

study of, 50
system calls, 62-74
and API, 63-66
functioning of, 62-63
types of calls, 66-74

system services, 74-75
system’s view of, 5
threads in, 194-196
user interface with, 4-5, 58-62
virtualization components, 719-726
CPU scheduling, 720
I/O devices, 722-723
live migration, 724-726
memory management, 721-722

optimal page replacement, 406-407
optimal page replacement algorithm,

406-407
optimistic approach, 285
Oracle SPARC Solaris, 375-376
Orange Book, 826
ordinary pipes, 140-143
org (top-level domain), 739
orphan processes, 122
OS/2 operating system, 821-822
OSI model, 741-744
OSI network model, 741-744
OSI protocol stack, 742-744
other users (class), 551
out-of-band key delivery, 644
out-of-memory (OOM) killers, 418
over-allocation of memory, 401
overcommitment, 720
over-provisioning, 454
owners:
clock, 837

file, 603
as user class, 551

owner rights, 678, 817

P

p (page number), 360
PaaS (platform as a service), 44
packaged applications, 859
package systems, 823
PAE (page address extension), 381
pages. See also specific types
defined, 360
locking, 434-436
obtaining size of, 364

page address extension (PAE), 381
page allocator (Linux), 796
page-buffering algorithms, 412
page cache, 583, 798
page directory, 381, 853
page-directory entries (PDEs), 853
page directory pointer table, 381
page faults, 394-395, 405, 416
page-fault-frequency (PFF), 424-425
page-fault rate, 398, 423
page frames, 853
page-frame number (PFN) database, 856
page in, 377
page locking, 434-436
page number (p), 360
page offset (d), 360
page out, 377
pageout policy (Linux), 800
pageout process (Solaris), 439
page replacement, 401-413. See also frame

allocation
and application performance, 412-413
basic mechanism, 401-404
counting-based page replacement,

411-412
defined, 401
FIFO page replacement, 404-406
global vs. local, 415-418
LRU-approximation page replacement,

409-411
LRU page replacement, 407-409
optimal page replacement, 406-407
and page-buffering algorithms, 412

page replacement algorithm, 403
page size, 363, 364, 431-432
page slots, 469
page table(s), 361-378, 393
clustered, 374
defined, 361

990 Index

for demand paging, 395
forward-mapped, 371
hardware for storing, 365-368
hashed, 373-374
for hierarchical paging, 371-373
inverted, 374-375, 433
nested, 710, 712
Oracle SPARC Solaris, 375-376

page-table base register (PTBR), 365
page-table entries (PTEs), 853
page-table length register (PTLR), 369
paging, 360-376

basic method, 360-365
demand, 392-399, 430-436
basic mechanism, 393-396
defined, 393
free-frame list, 396-397
with inverted page tables, 433
and I/O interlock, 434-436
and page size, 431-432
and performance, 397-399
and prepaging, 430-431
and program structure, 433-434
pure, 395
and TLB reach, 432-433

hardware, 365-368
for hashed page tables, 373-374
hierarchical, 371-373
IA-32, 380-381
inverted, 374-375
in Linux, 800
and memory protection, 368-369
and Oracle SPARC Solaris, 375-376
priority, 440
and shared pages, 369-371
swapping with, 377, 378

paging files 851
paired passwords, 652
PAM (pluggable authentication

modules), 816
PAN (personal-area network), 36
parallel file system (PFS), 768
parallelism, 163, 165-166, 475
parallelization, 20
parallel regions, 183-184
paravirtualization, 703, 716-717
parent-child relationship, 140
parent process, 111
partial revocation, 682
partial slabs, 429, 798
partitions:

boot, 465
control, 714
file-system, 601-602

raw, 468
root, 601
storage device, 463-465
variable-partition schemes, 358

partition boot sector, 566
partitioning, device, 463-464
passphrases, 651
passwords, 554, 649-652
path names, 544, 546
path-name translation (NFS), 614-615
PB (petabyte), 12
PCBs (process control blocks), 109-110
PCIe bus, 490
PC motherboard, 20
PCS (process-contention scope), 217-218
PC systems, 874
PDEs (page-directory entries), 853
peer-to-peer computing, 43-44
peer-to-peer distributed systems, 734
PE (Portable Executable) format, 77
penetration test, 654
performance:

and allocation of secondary storage,
578-579

and demand paging, 397-399
and file system implementation, 583-586
and I/O system, 521-524
and page replacement, 412-413
RAID structure to improve, 475
under swapping, 378
virtualization requirement related to,

704
of Windows 10, 831-833

performance monitoring, 96-97
performance tuning, 95-97
periodic processes, 230
periodic task rate, 230
permanent revocation, 682
permissions, 553, 669
permitted capabilities, 685
per-process open-fil table, 567
per-process tools, 96, 97
personal-area network (PAN), 36
personal computer (PC) systems, 874
personal fire alls, 660
personal identificatio number (PIN), 652
personalities, 87, 787
pessimistic approach, 285
petabyte (PB), 12
Peterson’s solution, 262-265
PFF (page-fault-frequency), 424-425
PFN database, 856
PFS (parallel file system), 768
phishing, 624

Index 991

PHY (ports), 490
physical address, 354, 379
physical address space, 353-355
physical formatting, 463
physical layer, 741, 742
physical memory, 24, 362, 390, 391, 795-798
physical security, 623
physical-to-virtual (P-to-V) conversion,

724
PIC (position-independent code), 803
Pico process, 91
Pico Providers, 823
pid (process identifier) 116, 787
PIN (personal identificatio number), 652
pinning, 436, 866
PIO (programmed I/O), 498
pipes, 139-145
anonymous, 141-145
implementation considerations, 139-140
named, 143-145, 881-882
ordinary, 140-143
use of, 146

pipe mechanism, 813
platform as a service (PaaS), 44
platter (disks), 450
PLM (Process Lifetime Manager), 837
plug-and-play and (PnP) managers,

869-870
pluggable authentication modules

(PAM), 816
plug-in process, 124
PnP managers, 869-870
PoFX (power framework), 870
Point-to-Point Tunneling Protocol

(PPTP), 881
policy(-ies), 80
cache updating, 766-767
delayed-write, 766
group, 884
mandatory, 826
mechanisms vs., 668
pageout, 800
security, 653
write-on-close, 766-767
write-through, 766

policy algorithm (Linux), 800
polling, 493-494
polymorphic viruses, 633
pools, 177-180, 483, 889
pop, 66
ports, 78, 129, 490
connection and communication, 138
naming of, 135-136
in remote procedure calls, 150

well-known, 146
portability, 834-835
Portable Executable (PE) format, 77
portals, 40
port driver, 864
port number, 746-747
port rights, 135
port scanning, 637
position-independent code (PIC), 803
positioning time (disks), 450
POSIX:
interprocess communication example,

132-135
real-time scheduling, 232-234
synchronization examples, 299-303

POSIX 1e, 685, 686
possession (of capability), 680
POST (power-on self-test), 872
posting messages, 891
power framework (PoFX), 870
power management, 514-516
power manager (Windows 10), 870-871
power-of-2 allocator, 427
power-on self-test (POST), 872
power users, 60-61
PPTP (Point-to-Point Tunneling

Protocol), 881
P + Q redundancy scheme, 478
preemptive kernels, 262
preemptive multitasking, 790
preemptive scheduling, 202-203
premaster secret (TLS), 647
prepaging, 430-431
presentation layer, 742
primary thread, 890
principle of least privilege, 626, 627,

668-669
priority (field) 243
priority-based scheduling, 229-230
priority-inheritance protocol, 284
priority inversion, 284, 285
priority number, 281
priority paging, 440
priority replacement algorithm, 420-421
priority scheduling algorithm, 211-214
private cloud, 44
private dispatch queues, 185
private keys, 641
privileged instructions, 25
privileged mode, see kernel mode
privilege escalation, 623
privilege separation, 669
procedural languages, 313
procedures, as domains, 674

992 Index

process(es), 23, 105-154
aborting, 342
background, 74-75, 115, 123, 215, 241
browser, 124
communication between, see

interprocess communication
components of, 106-107
consumer, 126-127, 290, 291, 559-560
context of, 788-789
cooperating, 123, 257
coordination among, 260
daemon, 690
defined, 103, 105
dispatched, 112
as domains, 674
empty, 123
environment of, 787-788
foreground, 115, 122, 215, 241
guest, 702
idle, 872
independent, 123
init, 117
I/O- vs. CPU-bound, 112
job vs., 106
lightweight, 193
in Linux, 789-790
multithreaded, see multithreaded

processes; multithreading
operations on, 116-123
creation, 116-121
termination, 121-123

orphan, 122
parent, 111
passing data between, 813
periodic, 230
Pico, 91
plug-in, 124
producer, 126-127, 290, 558-559
renderer, 124
service, 123
sibling, 111
single-threaded, 160
state of, 107-109
system, 872
systemd, 117
threads performed by, 110
visible, 122
in Windows 10, 886
zombie, 122

process-contention scope (PCS), 217-218
process control blocks (PCBs), 109-110
process-control system calls, 66-71
process identifie (pid), 116, 787
process identity (Linux), 787

Process Lifetime Manager (PLM), 837
process management:

about, 27-28
in Linux, 786-790
Windows 10, 886-891

process manager (Windows 10), 858-860
process migration, 752-753
process name, 73
processors, 18

distributed system, 734
front-end, 522
ideal, 242, 842
Intel, 379-382
event-vector table, 496
IA-32 architecture, 379-382
IA-64 architecture, 382
thread building blocks, 186-188

logical, 832
multi-, 18, 220
multicore, 221-224

processor affinit , 225-226
processor groups, 832
process reflection 860
process representation (Linux), 111
process scheduler, 110-112
process scheduling, 110-115, 199, 234
process synchronization, 260. See also

synchronization tools
process termination, deadlock recovery

by, 342
/proc file system (Linux), 808-810
procfs (fil system), 598
producer process, 126-127, 290, 558-559
production kernels (Linux), 777
program counters, 27, 106, 109
program execution (operating system

service), 56
program loading and execution, 74
programmable interval timer, 505
programmed I/O (PIO), 498
programmer interface (Windows 10),

884-895
IPC with Windows messaging, 891-892
kernel object access, 884-885
memory management, 892-895
process management, 886-891
sharing objects between processes,

885-886
programming:

multi-, 23, 112, 420
multicore, 162-166

programming-environment
virtualization, 703, 717

programming languages, 313-314

Index 993

programming-language support, 74
program structure, for demand paging,

433-434
program threats, 625-634
code injection, 628-631
malware, 625-628
viruses, 631-634
worms, 631, 632

progress (requirement), 260
projects, 244
proportional allocation, 414-415
proportional share scheduling, 233
proprietary software, 46-47
protection, 667-698
access matrix model, 675-685
implementation, 679-682
mandatory access control, 684-685
and revocation of access rights,

682-683
role-based access control, 683-684

capability-based systems, 685-687
code signing, 690
in computer systems, 33-34
with contiguous memory allocation, 357
domain of, 671-675
file, 531
file-system interface, 550-555
goals of, 667-668
I/O, 512
language-based systems, 690-696
compiler-based enforcement, 691-693
in Java, 694-696

as operating system service, 57-58
in paged environment, 368-369
and principle of least privilege, 668-669
rings of, 669-671
sandboxing, 689-690
static vs. dynamic, 673
system-call filtering, 688
system integrity, 687-688
from viruses, 657-659

protection domains, 671-675, 711
protection mask (Linux), 817
protection rings, 25, 669-671
protection system calls, 73-74
pseudo-device driver, 721-722
PTBR (page-table base register), 365
PTEs (page-table entries), 853
PTE tables, 853
Pthreads, 169-171, 218-219
PTLR (page-table length register), 369
P-to-V conversion, 724
public cloud, 44
public domain software, 779-780

public keys, 641
public-key encryption, 641
pull migration, 224
pure code (reentrant), 370
pure demand paging, 395
pushing, 66, 519
Pushlocks, 831
push migration, 224
put command, 751

Q

Quest-V, 729
queue(s), 38
dispatch, 185
main, 185
ready, 112, 221, 843
scheduling, 112-113
wait, 112

queuing diagram, 112, 113
queuing-network analysis, 247

R

race condition, 259, 261
RAID (redundant arrays of inexpensive

disks), 473-485
extensions, 481-482
levels of, 475-481
for object storage, 483-485
performance improvement, 475
problems with, 482-483
reliability improvement, 473-475
structuring, 474

RAID level 0, 476
RAID level 0 + 1, 478-479
RAID level 1, 476
RAID level 1 + 0, 478-479
RAID level 4, 476-477
RAID level 5, 477-478
RAID level 6, 478
RAID levels, 475-481
common, 475-478
selecting, 480-481
variations in, 478-480

raising interrupts, 9, 494
RAM (random-access memory), 11
RAM drives, 454, 455
random-access devices, 502
random-access memory (RAM), 11
random-access time (disks), 450
range (value), 187
ransomware, 626
RAT (Remote Access Tool), 625

994 Index

rate-monotonic scheduling, 230-232
rate-monotonic scheduling algorithm,

230-232
raw disk, 413, 464, 601
raw I/O, 464, 465, 503-504
raw partitions, 468
RBAC (role-based access control), 683-684
RDP, 707
reacquisition, of capabilities, 682
read access, locks with, 292
read-ahead technique, 585
read-end (of pipe), 140
readers, 291, 292
readers-writers problem, 290-293
reader-writer locks, 292-293
reading files, 532, 551
read-modify-write cycle, 477
read only devices, 502
read pointer, 532
read-write devices, 502
ready queues, 112, 221, 843
ready state, 108, 109
real-time class, 239
real-time CPU scheduling, 227-234

earliest-deadline-first scheduling,
232-233

and minimizing latency, 227-229
POSIX real-time scheduling, 233-234
priority-based scheduling, 229-230
proportional share scheduling, 233
rate-monotonic scheduling, 230-232

real-time embedded systems, 45-46
real-time operating systems, 46
real-time range (Linux schedulers), 790
real-time scheduling (Linux), 792
reapers, 417-418
receives, blocking vs. nonblocking, 130
reconfiguration 755
records:

activation, 107
base file, 876
logical, 539
master boot, 465, 466

recovery:
from deadlock, 341-343
from failure, 755-756
and file system implementation, 586-589
Windows 10, 877-878

recovery mode, 95
red-black trees, 38, 40
Red Hat, 779
redirectors, 882-883
redundancy, 473-475

redundant arrays of inexpensive disks,
see RAID

reentrant code (pure code), 370
reentrant locks, 307-308
reference, locality of, 395
reference bits, 409
referenced pointer, 849
reference string, 404, 406
reflection process, 860
reflecto , 864
regions, 383
register(s):

base, 351-352
control, 492
CPU, 110
data-in, 492
data-out, 492
instruction, 12
limit, 351-352
memory-address, 354
page-table base, 365
page-table length, 369
relocation, 354
status, 492
translation table base, 383

registry, 74, 871-872
regression testing, 249
relative access, 539-540
relative block number, 540
relative path names, 546
release, of resources, 318
reliability:

of distributed systems, 735
RAID for improving, 473-475
of TCP, 748
of UDP, 747
of Windows 10, 828-829

relocatable code, 353
relocatable object file, 75
relocation, 75, 76
relocation register, 354
remainder section, 260
Remote Access Tool (RAT), 625
remote desktop, 874
remote fil access, 764-767
remote file-systems 605-608
remote fil transfer, 750-751
remote login, 750
remote operations (NFS), 615
remote procedure calls (RPCs), 149-153,

834
remote-service mechanism, 764
removable storage media, 451
remove() method, 305-307

Index 995

renaming files 542
renderer processes, 124
rendezvous, 131
repair, mean time to, 474
replacement, page, see page replacement
replay attacks, 622
replication, 480, 592-593
reply port, 135
repositioning (in files) 532
Request (data structure), 335-336, 339, 340
requests, for resources, 318
request consumer (circular buffer), 716
request edge, 323
request manager, 811
request producer (circular buffer), 716
resident attributes, 876
resolution:
address resolution protocol, 745
conflict, 784, 785
of links, 548
name, 738-741
and page size, 431-432

resource allocation (operating system
service), 57

resource-allocation graph, 323-326, 334,
338

resource-allocation-graph algorithm, 333
resource allocator, operating system as, 5
resource arbiters, 869
resource management, 27-32
resource preemption, deadlock recovery

by, 342-343
resource-request algorithm, 335
resource sharing, 162, 734-735
resource utilization, 4
responses (password), 652
response consumer (circular buffer), 716
response producer (circular buffer), 716
response time, 23, 205
responsibility, for run-time-based

enforcement, 694
responsiveness, multithreaded process,

162
restart area, 878
restore, state, 114
restore point, system, 871
restoring data, 588-589
resuming, 717, 888
return from sleep, 243
reverse engineering, 47
revocation of access rights, 682-683
RHEL 7, 461
rich text format (RTF), 658
right child, 38

rights:
access, 534, 673, 680, 682-683
copy, 677
group, 817
owner, 678, 817
port, 135
user, 817
world, 817

rings, protection, 669-671
risk assessment, 653-654
roaming profiles 883
robustness, distributed system, 754-756
roles, 683
role-based access control (RBAC), 683-684
rollback, 343
root directory, 877
rootkit viruses, 632
root partition, 601
rotational latency (disks), 451
rotations per minute (RPM), 450
round robin, 130
round-robin (RR) scheduling algorithm,

209-211
routers, 736
RPCs (remote procedure calls), 149-153,

834
RPM (rotations per minute), 450
RR scheduling algorithm, 209-211
RSA algorithm, 641, 642
RTE (run-time environment), 64-65
RTF (rich text format), 658
running state, 108, 109
running system, 94
run time, virtual, 236
run-time-based enforcement, 694-696
run-time environment (RTE), 64-65

S

SaaS (software as a service), 44
safe computing, 658
safe sequence, 331
safe state, 331-333
safety, as virtualization requirement, 704
safety algorithm, 335
sandbox, 124, 658
sandboxing, 689-690
SANs, see storage-area networks
SAS buses, 456, 490
SATA buses, 456
save, 114, 592
scalability, 162, 484, 756-757
SCAN scheduling, 458-459

996 Index

SCAN (elevator) scheduling algorithm,
458-459

scatter-gather method, 498, 508
schedulers:

CFQ, 461, 811
Completely Fair, 236, 237, 790
CPU, 113-114, 201
deadline, 460, 461
Linux, 790
NOOP, 461
process, 110-112

scheduler activation, 192-194
scheduling:

cooperative, 202
CPU, see CPU scheduling
C-SCAN, 460
earliest-deadline-first, 232-233
fair, 791
FCFS, 458, 459
HDD, 457-461
I/O, 508-509
job, 106
in Linux, 790-794
multi-processor, see multi-processor

scheduling
nonpreemptive, 202
NVM, 461-462
preemptive, 202-203
priority-based, 229-230
process, 110-115, 199, 234
proportional share, 233
rate-monotonic, 230-232
real-time, 792
SCAN, 458-459
selecting disk-scheduling algorithm,

460-461
shortest-remaining-time-first, 209
thread, 199, 790-791, 844-845
user-mode, 241, 833, 890-891
in Windows 10, 887

scheduling classes, 236
scheduling context, 788
scheduling domain, 238
scheduling information, CPU, 110
scheduling rules, 887
SCM (service control manager), 870
scope:

contention, 217-218
of lock, 305

script kiddies, 631
scripts, shell, 61, 536
SCS (system-contention scope), 218
searching, for files, 541, 542
search path, 545

secondary memory, 395
secondary storage, 13. See also disk(s)

allocation of, 570-578
contiguous allocation, 570-573
indexed allocation, 575-577
linked allocation, 573-575
and performance, 578-579

connection methods for, 456
second-chance page-replacement

algorithm (clock algorithm),
410-411

second extended file system (ext2), 805
second-level interrupt handler (SLIH),

496
second readers, 291
section objects, 139, 852
sectors, 450, 466, 566
sector slipping, 467
sector sparing, 466
Secure Boot, 872
secure by default, 634
secure kernel, 839-840
Secure Monitor Call (SMC), 670
secure shell, 116
secure system process, 872
secure systems, 622
Secure World, 838
security, 621-665. See also protection

of compiler-based enforcement, 692
in computer systems, 33-34
cryptography for, 637-648
and encryption, 638-645
implementation, 645-646
TLS example, 646-648

implementation of, 653-662
and accounting, 659
and auditing, 659
and firewalling, 659-660
and intrusion prevention, 655-657
levels of defenses, 661-662
and logging, 659
and security policy, 653
and virus protection, 657-659
and vulnerability assessment, 653-655

in Linux, 816-818
as operating system service, 57-58
as problem, 621-625
and program threats, 625-634
code injection, 628-631
malware, 625-628
viruses, 631-634
worms, 631, 632

and system/network threats, 634-637
user authentication for, 648-653

Index 997

in Windows 10, 662-664, 826-828, 878
security access tokens (Windows 10), 662
security context (Windows 10), 662-663
security descriptor (Windows 10), 663
security domains, 659
security ID (SID), 33, 867
security policy, 653
security reference monitor (SRM), 866-869
security-through-obscurity approach, 655
security tokens, 867
seek, file, 532
seek time (disks), 450
segmentation, IA-32, 379-380
selective revocation, 682
semantics, 510, 608-609
semaphore(s), 272-276
binary, 273
counting, 273
defined, 272
dining-philosophers solution with,

294-295
implementation, 274-276
in Java, 308-309
monitors using, 280-281
named, 300-301
POSIX examples, 300-302
unnamed, 300-302
usage of, 273-274

semaphore objects (Windows 10), 845
semiconductor memory, 14
sends, blocking vs. nonblocking, 130
sending messages, 891
sense key, 512
separation hypervisors, 729
sequence numbers, 748
sequential access (files) 539, 541
sequential devices, 502
serial ATA (SATA) buses, 456
serial-attached SCSI (SAS) buses, 456, 490
serial dispatch queue, 185
server(s), 73
blade, 18-19
bootstrap, 136
in client-server model, 606, 758-759,

861-862
defined, 757
in distributed systems, 734
file-server systems, 43
name, 739
and redirectors, 882-883

server-initiated approach to verifying
cached data, 767

Server Message Block (SMB), 880
server subject (Windows 10), 663

server systems, 42-43, 734, 874-875
service(s):
defined, 757
denial of, 622, 636
distributed naming, 607
high-availability, 19
infrastructure as, 44
log-file, 878
network information, 607
operating system, 55-58, 74-75, 115, 152
platform as, 44
software as, 44
theft of, 622

service control manager (SCM), 870
service processes, 123
service-trigger mechanism, 870
session(s), 751, 874
session 0, 873
session hijacking, 623
session key, 647
session layer, 742
session manager subsystem (SMSS),

872-873
session semantics, 609
sets:
entry, 303, 304, 307
hard working-set limits, 438
of holes, 358
SMT, 242
wait, 304, 307
working, 422-424, 438

setuid attribute, 34
setuid bit, 674-675
SHA-1 message digest, 643
shadow copies, 863
sharable devices, 502
shares, 244
shared directories, 547
shared files 609
shared libraries, 356, 392
shared lock, 534
shared memory, 123, 125, 556-560
shared-memory model, 57, 73, 125-127,

132-136
shared ready queue, 843
shared system interconnect, 18
sharing:
file, 602-603
information, 123
load, 220
and paging, 369-371
resource, 162, 734-735
space, 592

sharing objects, 885-886

998 Index

shells, 58, 116, 783
shell scripts, 61, 536
short duration locks, 272
shortest-job-firs (SJF) scheduling

algorithm, 207-209
shortest-next-CPU-burst algorithm, 207
shortest-remaining-time-firs scheduling,

209
shoulder surfing 649
sibling process, 111
SID (security ID), 33, 867
Siemens Jailhouse project, 729
signals, 188-189, 812-813
signal-and-continue method, 279
signal-and-wait method, 279
signaled state, 297
signal handlers, 188-189
signal-handler table, 789
signatures, 633, 643, 656, 828
signature-based detection, 656
silos, 859
SIMD, 833
simple messages, 136
simple subject (Windows 10), 662
simulations, 248-249
simultaneous multithreading, 222
single indirect blocks, 576
single-level directories, 542-543
single-processor systems, 15-16
single step (mode), 72
single-threaded processes, 160
single-user mode, 95
singly linked lists, 37
SIP (System Integrity Protection), 687-688
Siri, 5
sites, distributed system, 734
64-bit computing, 383
SJF scheduling algorithm, 207-209
sketch, 70
slabs, 427-429, 797-798
slab allocation, 427-430, 797-798
Slackware, 779
sleep, return from, 243
SLIH (second-level interrupt handler),

496
slim reader-writer (SRW) locks, 889
SLOB allocator, 430
SLUB allocator, 430
small objects, 430
SMB (Server Message Block), 880
SMC (Secure Monitor Call), 670
SMP, see symmetric multiprocessing
SMSS (session manager subsystem),

872-873

SMT sets, 242
snapshots, 480, 588, 705, 879
sniffing 635-636, 649-650
social engineering, 624
sockets, 146-149
socket interface, 504
soft affinit , 225
soft errors, 463
soft page faults, 416
soft real-time systems, 227
software:

process migration and, 753
proprietary, 46-47
public domain, 779-780

software as a service (SaaS), 44
software engineering, 80
software interrupts (traps), 497
software objects, 672
software transactional memory (STM),

312
Solaris, 51

file systems in, 482-484, 597, 599
Oracle SPARC, 375-376
scheduling example, 242-244
virtual memory in, 438-440
ZFS file system, 482-484, 581, 588, 598

Solaris 10:
role-based access control in, 683, 684
zones in, 718, 719

solid-state disks (SSDs), 452
source-code viruses, 633
source files 530
space maps, 581
space sharing, 592
SPARC, 375-376
sparseness, 374, 391
special instructions, 709
special-purpose fil systems, 597-598
specifications thread behavior, 169
speed of operations (I/O devices), 502
spinlocks, 272
split-screen, 115
spoofed identifiers 606
spoofing 636
spools, 511
spooling, 511
Springboard interface, 60, 87
spyware, 626
SRM (security reference monitor), 866-869
SRW (slim reader-writer) locks, 889
SSDs (solid-state disks), 452
stacks, 37-38, 66

device, 862
LRU page replacement with, 408

Index 999

OSI protocol, 742-744
stack algorithms, 408-409
stack inspection, 694, 695
stack section (of process), 107
stalling, 350
standard swapping, 377
standby page, 856
starvation (indefinit blocking), 213, 343
states:
application, 378
new, 108
nonsignaled vs. nonsignaled, 297
of processes, 107-109
ready, 108, 109
running, 108, 109
safe, 331-333
suspended, 705, 888
terminated, 109
unsafe, 332-334
waiting, 108, 109

state information, 608
stateless DFS, 608
state restore, 114
state save, 114
static linking, 355-356, 803
static protection, 673
status information, 74
status register, 492
stealth viruses, 633
STM (software transactional memory),

312
storage, 11-14. See also mass-storage

structure
cloud, 471, 751
content-addressable, 484
definitions and notations, 12
host-attached, 470
network-attached, 470-471
nonvolatile, 14, 449
object, 483-485
secondary, 13, 456, 570-578. See also

disk[s]
tertiary, 13
thread-local, 192, 894, 895
utility, 481
volatile, 11

storage-area networks (SANs), 21, 470, 472
storage array, 472-473, 481
storage attachment, 469-473
storage devices, organization of, 597, 598
storage device management, 463-467
storage management, 30, 32, 723
stream ciphers, 640
stream head, 519

streaming transfer rate, 486
stream modules, 519
STREAMS mechanism, 519-521
string, reference, 404, 406
strongly ordered model, 265
strong passwords, 651
stubs, 150
subjects (Windows 10), 662-663
subsets, stack algorithm, 408
subsystems, 75
SunOS, 51
superblock, 566
superblock objects, 605, 804, 805
supervisor mode, see kernel mode
SuSE, 779
suspended state, 705, 888
swap map, 469
swapping, 113-114, 376-378
in Linux, 800
on mobile systems, 377-378
with paging, 377, 378
standard, 377
system performance under, 378

swap space, 395, 468-469
swap-space management, 467-469
SwitchBranch mechanism, 830
switches, context, 114-115, 204
switching:
domain, 673, 674
fast-user, 825, 874-875

symbolic links, 879
symmetric clustering, 20
symmetric encryption, 639-640
symmetric encryption algorithm, 639
symmetric multiprocessing (SMP), 16,

220, 794
symmetry, in addressing, 129
synchronization, 130-131, 289-314
alternative approaches to, 311-314
block, 305
bounded-buffer problem, 290
dining-philosophers problem, 293-295
for interprocess communication, 812-813
in Java, 303-311

condition variables, 309-311
monitors, 303-307
reentrant locks, 307-308
semaphores, 308-309

kernel, 295-299, 792-794
in Linux, 130-131, 812-813
in message-passing model, 130-131
in POSIX, 299-303
process, 260. See also synchronization

tools

1000 Index

readers-writers problem, 290-293
thread, 888-889

synchronization primitives, 845-846
synchronization tools, 257-287

about, 257-260
critical-section problem, 260-270
hardware solution to, 265-270
Peterson’s solution to, 262-265

evaluation of, 284-286
and liveness, 283-284
monitors for, 276-282
resumption of processes within,
281-282

semaphores, implementation using,
280-281

usage, 277-280
mutex locks, 270-272
semaphores for, 272-276

synchronous devices, 502, 506, 507
synchronous message passing, 130
synchronous threading, 169
synchronous writes, 585
system administrators, 60
system build, 92
system calls (monitor calls), 22, 62-74

and API, 63-66
clone(), 195-196
for communication, 72-73
for device management, 71-72
exec(), 188
for file management, 71
fork(), 188
functioning of, 62-63
for information maintenance, 72
for I/O, 512, 513
for process control, 66-71
for protection, 73-74

system-call filtering, 688
system-call firewalls, 660
system-call interface, 65
system components (Windows 10),

838-874
executive, 848-874
hardware-abstraction layer, 840
hyper-V hypervisor, 839
kernel, 840-848
secure kernel, 839-840

system-contention scope (SCS), 218
system daemons, 22, 781
system-development time, 705
system disk, 465
systemd process, 117
system goals, 79
System Integrity Protection (SIP), 687-688

system libraries (Linux), 781
system mode, see kernel mode
system model, for deadlocks, 318-319
system processes, 872
system programs, 6
system resource-allocation graph, 323-326
system restore point, 871
system utilities, 74-75, 781
System V init, 117
system-wide open-fil table, 567
system-wide tools, 96, 97

T

table(s). See also page table(s)
attribute-definition, 877
device-status, 508-509
event-vector, 11
file, 788
file-allocation, 574-575
frame, 365
global, 679
global descriptor, 379
handle, 849
hash, 570
master file, 566
mount, 517, 567
open-file, 533, 567
page directory pointer, 381
per-process open-file, 567
PTE, 853
signal-handler, 789
system-wide open-file, 567

tags, 680
tapes, magnetic, 455
target latency, 236, 791
target thread, 190
tasks, 106, 135, 195, 234. See also user

programs (user tasks)
task control blocks, see process control

blocks
task identification for multicore

programming, 163
task parallelism, 165, 166
Task Self port, 135
TB (terabyte), 12
TBBs (thread building blocks), 186-188
TCP (transmission control protocol),

743-749
TCP/IP, see Transmission Control

Protocol/Internet Protocol
TCP sockets, 147
TDI (Transport Driver Interface), 880

Index 1001

TEBs (thread environment blocks),
889-890

templating, 706
temporary revocation, 682
terabyte (TB), 12
terminal concentrators, 522
terminal server systems, 874-875
terminated state, 109
termination, 121-123, 342
tertiary storage devices, 13
testing, multicore programming in, 165
text files 530
text section (of process), 106
theft of service, 622
thin-client computing, 874-875
thin clients, 40
third extended file system (ext3), 805-807
32-byte memory, 363, 364
thrashing, 419-425
cause of, 419-422
current practice, 425
and page-fault-frequency strategy,

424-425
and working-set model, 422-424

threads, 159-197. See also threading
alertable, 846
green, 167
hardware, 222
idle, 239, 842
Java, 173-176
kernel, 166, 217, 234
kernel-mode, 841
in Linux, 789-790
and multicore programming, 162-166
in operating systems, 194-196
and process model, 110
Pthreads, 169-171, 218-219
scheduling of, 199
target, 190
user, 166, 217
user-mode, 841
in Windows 10, 841-845, 886-889, 894

Thread attach, 860
thread building blocks (TBBs), 186-188
thread cancellation, 190-192
thread dumps, 339
thread environment blocks (TEBs),

889-890
threading:
asynchronous, 169
hyper-, 222, 832
implicit, 176-188
fork join, 180-183
Grand Central Dispatch, 185-186

Intel thread building blocks, 186-188
OpenMP and, 183-185
thread pools and, 177-180

issues:
fork() and excel() system calls, 188
scheduler activations, 192-194
signal handling, 188-190
thread cancellation, 190-192
thread-local storage, 192

multi-, 166-168, 222, 223
synchronous, 169

thread libraries, 168-176
about, 168-169
Java, 173-176
Pthreads, 169-171
Windows, 171-173

thread-local storage (TLS), 192, 894, 895
thread pools, 177-180, 889
thread scheduling, 199
in Linux, 790-791
in Windows 10, 844-845

threats, 622
program, 625-634

code injection, 628-631
malware, 625-628
viruses, 631-634
worms, 631, 632

system/network, 634-637
three-way handshake, 748
throughput, 204-205
thunking, 830
tightly coupled systems, 83
time:
compile, 352
down, 572
effective access, 397-398
effective memory-access, 367
execution, 353
load, 353
mean time between failures, 473, 474
mean time of data loss, 474
mean time to repair, 474
positioning, 450
random-access, 450
response, 23, 205
seek, 450
system-development, 705
turnaround, 205
virtual run, 236
waiting, 205

time quantum, 209-211, 243
time quantum expired, 243
timers, 26-27, 505-506
timer objects, 845

1002 Index

time slice, 209-211, 790-791
timestamps, 531
timestamp counters (TSCs), 845
TLB, see translation look-aside buffer
TLB miss, 366
TLB reach, 432-433
TLB walk, 376
TLS (thread-local storage), 192, 894, 895
TLS (Transport Layer Security), 646-648
tmpfs (fil system), 598
top half (interrupt service routines),

793-794
total revocation, 682
touch screens, 5
touch-screen interface, 56, 60
trace files, 248
tracing tools, 97-98
tracks, disk, 450
traditional computing, 40-41
traffic network, 635-636
transactions, 311, 587, 808
transactional memory, 311-312
transfer rates, 450, 451, 486
transition page, 856
translation:

binary, 708-710
flash translation layer, 453-454
network address, 723
path-name, 614-615

translation granules, 383
translation look-aside buffer (TLB),

365-368, 376, 384, 855
translation table base register, 383
transmission control protocol (TCP),

743-749
Transmission Control Protocol/Internet

Protocol (TCP/IP), 36, 743-746,
880-881

transparency, 756, 761
Transport Driver Interface (TDI), 880
transport layer, 742
transport-layer protocol (TCP), 645
Transport Layer Security (TLS), 646-648
traps, 22, 89, 497, 847
trap-and-emulate method, 707-708
trap doors, 626, 627
traversing fil system, 542
trees, 38, 39, 116
tree-structured directories, 545-547
TRIMing unused blocks, 581-582
trimming, automatic working-set, 438
triple DES, 639
triple indirect blocks, 576, 577
Trojan horses, 625-626

truncating files, 532
trusted addresses, 638
Trustlets, 838
TrustZone (TZ), 670, 671
TSCs (timestamp counters), 845
tunneling, attacks with, 659-660
turnaround time, 205
twisted pair cables, 736
two-factor authentication, 652
two-level directories, 543-545
two-level model, 168
two-level page-table scheme, 372-373
type 0 hypervisors, 702, 713-714
type 1 hypervisors, 703, 714-715
type 2 hypervisors, 703, 715-716
type safety (Java), 696
TZ (TrustZone), 670, 671

U

UDP (user datagram protocol), 743,
746-748

UDP sockets, 147
UEFI (Unifie Extensible Firmware

Interface), 94
UFD (user fil directory), 543
UFS (UNIX fil system), 565-566, 598
UI, see user interface
UMDF (User-Mode Driver Framework),

864
UMS, see user-mode scheduling
unbounded buffer, 126
unbounded capacity (of queue), 132
UNC (Uniform Naming Convention), 881
uncontended loads, 285
uncontended locks, 271
unifie buffer cache, 583-585
Unifie Extensible Firmware Interface

(UEFI), 94
unifie virtual memory, 583
Uniform Naming Convention (UNC), 881
unikernels, 728
universal serial buses (USBs), 456
Universal Windows Platform (UWP), 426
UNIX fil system (UFS), 565-566, 598
UNIX operating system:

consistency semantics, 609
inode, 577
I/O kernel structure in, 513, 514
permissions in, 553
protection domain in, 674-675
system calls, 68
system structure, 82

unloader, module, 783

Index 1003

unnamed data, 875
unnamed semaphores, 300-302
unsafe state, 332-334
unstructured data, 484
untrusted applet protection, 695
upcalls, 193
upcall handler, 193
updating policy, cache, 766-767
urgency value, 223
URL loader, 695
USB drive, 452
USBs (universal serial buses), 456
use, of resources, 318
users, 4-5, 603
as domains, 674
multiple, file sharing between, 602-603
other users (class), 551
power, 60-61

user accounts, 662
user authentication, 648-653
user control list, 561
user datagram protocol (UDP), 743,

746-748
user-define signal handlers, 189
user experience layer (macOS and iOS),

87
user fil directory (UFD), 543
user goals, 79
user IDs, 33, 531, 675
user-initiated class, 185-186
user-interactive class, 185
user interface (UI), 4-5, 56, 58-62
user mode, 24, 25, 782
User-Mode Driver Framework (UMDF),

864
user-mode scheduling (UMS), 241, 833,

890-891
user-mode threads (UT), 841
user programs (user tasks), 106, 353,

801-803
user rights (Linux), 817
user threads, 166, 217
UT (user-mode threads), 841
utility class, 186
utility storage, 481
UWP (Universal Windows Platform), 426

V

VACB (virtual address control block), 865
VADs (virtual address descriptors), 857
valid-invalid bit, 368-369
valid page, 856
variables:

atomic, 269-270
condition, 278, 279, 302-303, 309-311, 889

variable class, 239
variable-partition schemes, 358
variable timer, 26
VCPU (virtual CPU), 707
vectored I/O, 507-508
verifie , 98
version control system, 49
vfork() (virtual memory fork), 400
VFS (virtual file system), 804-805
VFS layer, 601
victim, for resource preemption, 343
victim frames, 402
views, 557, 852
virtual address, 354
virtual address control block (VACB), 865
virtual address descriptors (VADs), 857
virtual address space, 390, 391, 799-800
VirtualBox project, 704
virtual CPU (VCPU), 707
virtual file-systems, 603-605
virtual file system (VFS), 804-805
virtual file system (VFS) layer, 601
virtualization, 34-35
defined, 701
operating-system components for,

719-726
CPU scheduling, 720
I/O devices, 722-723
live migration, 724-726
memory management, 721-722
storage management, 723

para-, 703, 716-717
programming-environment, 703, 717
research, 728-729

virtual machines, 34, 701-730. See also
virtualization

benefits of, 704-707
building blocks, 707-713

binary translation, 708-710
hardware assistance, 710-713
trap-and-emulate method, 707-708

examples, 726-728
features of, 704-707
history of, 703-704
implementations, 713-719

application containment, 718-719
emulation, 717-718
paravirtualization, 716-717
programming-environment
virtualization, 717

type 0 hypervisors, 713-714
type 1 hypervisors, 714-715

1004 Index

type 2 hypervisors, 715-716
and virtual machine life cycle, 713

life cycle, 713
virtual machine control structures

(VMCSs), 711
virtual machine managers (VMMs), 25-26,

35, 702
virtual machine sprawl, 713
virtual memory, 24, 389-441

background on, 389-392
and copy-on-write technique, 399-401
demand paging for conserving, 392-399,

430-436
basic mechanism, 393-396
free-frame list, 396-397
with inverted page tables, 433
and I/O interlock, 434-436
and page size, 431-432
and performance, 397-399
and prepaging, 430-431
and program structure, 433-434
and TLB reach, 432-433

direct virtual memory access, 500
and frame allocation, 413-419
allocation algorithms, 414-415
global vs. local allocation, 415-418
minimum number of frames, 413-414
non-uniform memory access, 418-419

kernel, 801
and kernel memory allocation, 426-430
in Linux, 798-801
and memory compression, 425-426
network, 765
operating-system examples, 436-440
page replacement for conserving,

401-413
and application performance, 412-413
basic mechanism, 401-404
counting-based page replacement,
411-412

FIFO page replacement, 404-406
LRU-approximation page
replacement, 409-411

LRU page replacement, 407-409
optimal page replacement, 406-407
and page-buffering algorithms, 412

and thrashing, 419-425
cause, 419-422
current practice, 425
page-fault-frequency strategy, 424-425
working-set model, 422-424

unified, 583
in Win32 API, 892, 893

virtual memory context, 789

virtual memory fork, 400
virtual memory (VM) manager, 851-858
virtual memory regions, 799
virtual private networks (VPNs), 646, 881
virtual run time, 236
virtual to physical (V-to-P) conversion,

724
Virtual Trust Levels (VTLs), 838
virus dropper, 632
viruses, 631-634, 657-659
virus signatures, 633
visible processes, 122
VMCSs (virtual machine control

structures), 711
VM manager, 851-858
VMMs, see virtual machine managers
VMware, 704, 726-727
vnode, 604
voice over IP (VoIP), 44
voice recognition, 5
volatile memory, 454-455
volatile storage, 11
volume, 464-465, 474
volume control block, 566
volume file, 876-877
volume shadow copies, 879
voluntary context switches, 204
von Neumann architecture, 12
VPNs (virtual private networks), 646, 881
VSM Enclaves, 840
VTLs (Virtual Trust Levels), 838
V-to-P conversion, 724
VT-x instructions, 710
vulnerability assessment, 653-655

W

WAFL fil system, 589-593
wait-for graph, 337, 338
waiting, busy, 272
waiting state, 108, 109
waiting time, 205
wait() method, 305-307
wait queue, 112
wait set, 304, 307
wait() system call, 119, 121-122
WANs, see wide-area networks
weakly ordered model, 265
wear leveling, 454
Web-distributed authoring and

versioning (WebDAV), 881
well-known ports, 146
well-known port numbers, 747

Index 1005

wide-area networks (WANs), 36, 735,
737-738

WiFi (wireless) networks, 41, 736-737
Win32 API, 884-895
creating process, 119-120
IPC with Windows messaging, 891-892
kernel object access, 884-885
memory management, 892-895
process management, 886-891
shared memory, 556-560
sharing objects between processes,

885-886
Windows operating system (generally):
anonymous pipes, 141, 145
booting from storage device, 466
interprocess communication example,

138-139
scheduling example, 239-242
synchronization within kernels, 296-298
system calls, 68
threads, 194-195

Windows 7, 465, 822
Windows 8, 823
Windows 10, 821-896
access-control list management in, 555
design principles, 826-838
application compatibility, 830-831
dynamic device support, 837-838
energy efficiency, 836-837
extensibility, 833-834
international support, 835-836
performance, 831-833
portability of, 834-835
reliability, 828-829
security, 826-828

developments, 823-825
fast-user switching with, 874-875
file system, 875-879
history of, 821-825
networking, 880-884
programmer interface, 884-895
IPC with Windows messaging,

891-892
kernel object access, 884-885
memory management, 892-895
process management, 886-891
sharing objects between processes,

885-886
security in, 662-664
system components, 838-874
executive, 848-874
hardware-abstraction layer, 840
hyper-V hypervisor, 839
kernel, 840-848

secure kernel, 839-840
terminal services, 874-875
virtual memory in, 437-438

Windows Desktop Bridge, 823
Windows Driver Foundation, 864
Windows executive, 848-874
booting, 872-874
cache manager, 864-866
client-server computing, 861-862
I/O manager, 862-864
object manager, 849-851
plug-and-play manager, 869-870
power manager, 870-871
process manager, 858-860
registry, 871-872
security reference monitor, 866-869
virtual memory manager, 851-858

Windows group policy, 884
Windows messaging, 891-892
Windows Store, 823
Windows subsystem for Linux (WSL), 91
Windows Task Manager, 97
Windows thread library, 171-173
Windows Vista, 822
Windows XP, 822
WinRT, 823
Winsock, 891
wired down entries, 366
wireless access points, 736
wireless (WiFi) networks, 41, 736-737
word, 11
Work (data structure), 335, 339, 340
working sets, 422-424, 438
working-set maximum, 438
working-set minimum, 438
working-set model, 422-424
working-set window, 422
Workstation (VMWare), 726-727
work stealing algorithm, 182
world rights (Linux), 817
World Wide Web, 605, 737
worms, 631, 632
worst-fi strategy, 358, 359
writes, synchronous vs. asynchronous,

585
write access, locks with, 292
write amplification 462
write-anywhere file layout (WAFL) file

system, 589-593
write-back caching, 766
write-end (of pipe), 140
write once devices, 502
write-on-close policy, 766-767
write pointer, 532

1006 Index

writers, 291
write-through policy, 766
writing files, 532, 551
WSL (Windows subsystem for Linux), 91

X

x86-64 architecture, 382
XDR (external data representation), 150
Xen, 704, 716-717
XML firewalls, 660
Xtratum, 729

Y

yellow pages, 607

Z

zero capacity (of queue), 131
zero-day attacks, 656
zeroed page, 856
zero-fill-on-deman technique, 397
ZFS file system, 482-484, 581, 588, 598
zombie process, 122
zombie systems, 634, 635
zones, 718, 719, 795

G-1

50-percent rule A statistical fi nding that frag-
mentation may result in the loss of 50 percent of
space.

absolute code Code with bindings to absolute
memory addresses.

absolute path name A path name starting at the
top of the fi le system hierarchy.

abstract data type (ADT) A programming con-
struct that encapsulates data with a set of functions
to operate on that data that are independent of any
specifi c implementation of the ADT.

access matrix An abstract model of protection in
which each row represents a domain, each column
an object, and each entry a set of access rights.

access right The ability to execute an operation
on an object.

access-control list A list of user names allowed
to access a fi le.

acknowledgment packet In networking, a packet
sent in response to the successful receipt of a mes-
sage or packet.

activation record A record created when a func-
tion or subroutine is called; added to the stack by
the call and removed when the call returns. Con-
tains function parameters, local variables, and the
return address.

active directory (AD) The Windows distributed
information system, which is the Windows imple-
mentation of LDAP.

acyclic graph In directory structure implemen-
tation, a structure that contains no cycles (loops).

adaptive mutex A Solaris scheduling feature that
starts as a standard spinlock and, if the object is
locked and the lock is not held by a thread run-
ning on a CPU, blocks and sleeps until the lock is
released.

address space layout randomization (ASLR) An
operating system technique to avoid code-injection
attacks that place memory objects like the stack
and heap at unpredictable locations.

address windowing extension (AWE) A Win-
dows mechanism for memory allocation that
allows developers to directly request free pages of

RAM from the memory manager and later commit
virtual memory on top of those pages.

address-space identifi er A part of a TLB entry
that identifi es the process associated with that
entry and, if the requesting process doesn’t
match the ID, causes a TLB miss for address-
space protection.

address-space layout randomization (ASRL) A
Windows 7 feature that randomizes process mem-
ory addresses to avoid viruses that jump to specifi c
code locations to gain privileges.

admission control In real-time scheduling, a
practice whereby the scheduler may not allow a
process to start if it cannot guarantee that the task
will be serviced by its deadline.

advanced confi guration and power interface
(ACPI) Firmware common to PCs and servers
that manages certain aspects of hardware, includ-
ing power and device information.

advanced encryption standard (AES) The NIST
cipher designed to replace DES and triple DES.

advanced local procedure call (ALPC) In Win-
dows OS, a method used for communication
between two processes on the same machine.

advanced technology attachment (ATA) An older-
generation I/O bus.

advisory fi le-lock mechanism A fi le-locking
system in which the operating system does not
enforce locking and fi le access, leaving it to pro-
cesses to implement the details.

AFS (OpenAFS) A network fi le system designed
at Carnegie Mellon University with the goal of
enabling servers to support as many clients as
possible.

aging A solution to scheduling starvation that
involves gradually increasing the priority of
threads as they wait for CPU time.

ahead-of-time (AOT) compilation A feature of
the Android RunTime (ART) virtual machine envi-
ronment in which Java applications are compiled
to native machine code when they are installed on
a system (rather than just in time, when they are
executed).

G-2 Glossary

allocation problem The determination by the
operating system of where to store the blocks of a fi le.

Amazon Elastic Compute Cloud (ec2) An instance
of cloud computing implemented by Amazon.

AMD 64 A 64-bit CPU designed by Advanced
Micro Devices; part of a class of CPUs collectively
known as x86-64.

AMD-V AMD CPU virtualization technology.

analytic evaluation A means of comparing
scheduling-algorithm effectiveness by analyzing
an algorithm against a workload and assigning it
a score.

anomaly detection In intrusion detection, the
use of various techniques to detect anomalous
behavior that could be a sign of an attack.

anonymous access Remote access that allows a
user to transfer fi les without having an account on
the remote system.

anonymous memory Memory not associated
with a fi le. Pages not associated with a fi le, if dirty
and paged out, must not lose their contents and are
stored in swap space as anonymous memory.

Apple fi le system (APFS) The 2017 fi le system
from Apple that is the default on all modern Apple
devices; features a rich feature set, space sharing,
clones, snapshots, and copy-on-write design.

Apple iOS The mobile operating system created
by Apple Inc.

application component In Android, a basic build-
ing block that provides utility to an Android app.

application containment A virtualization-like
operating system feature that segregates applica-
tions from the operating system (examples include
Solaris Zones, BSD Jails, and IBM WPARs).

application frameworks layer In the layered
macOS and iOS operating system design, the layer
that that includes Cocoa and Cocoa Touch frame-
works, providing an API for Objective-C and Swift
programming languages.

application programming interface (API) A set
of commands, functions, and other tools that can
be used by a programmer in developing a program.

application program A program designed for
end-user execution, such as a word processor,
spreadsheet, compiler, or Web browser.

application proxy fi rewall A fi rewall that under-
stands protocols spoken by applications across a
network, accepts connections to a target, and cre-
ates connections to that target, limiting and fi xing
what is sent from the originator.

application state A software construct used for
data storage.

arbitrary code guard (ACG) A Windows 7
exploit-mitigation feature.

argument vector In Linux and UNIX, a list con-
taining the command-line arguments used to
invoke a process (and available to the process).

ASIC An application-specifi c integrated circuit
(hardware chip) that performs its tasks without an
operating system.

assignment edge In a system resource-allocation
graph, an edge (arrow) indicating a resource
assignment.

asymmetric clustering A confi guration in which
one machine in a cluster is in hot-standby mode
while the other is running applications.

asymmetric encryption algorithm A cipher algo-
rithm in which different keys are used for encryp-
tion and decryption.

asymmetric multiprocessing A simple multi-
processor scheduling algorithm in which only one
processor accesses the system data structures and
others run user threads, reducing the need for data
sharing. A boss processor controls the system; the
other processors either look to the boss for instruc-
tion or have predefi ned tasks.

asynchronous In I/O, a request that executes
while the caller continues execution.

asynchronous procedure call (APC) A facility
that enables a user thread to specify a function that
is to be called when the user thread receives notifi -
cation of a particular event.

asynchronous threading Threading in which
a parent creates a child thread and then resumes
execution, so that the parent and child execute con-
currently and independently of one another.

asynchronous write A write that is buffered
and written in arbitrary order, with the request-
ing thread continuing execution after the write is
requested.

atomic safe-save In APFS, a feature primitive
that performs fi le, bundle of fi les, and directory
renaming in single atomic operations.

atomic variable A programming language con-
struct that provides atomic operations on basic
data types such as integers and booleans.

atomically A computer activity (such as a CPU
instruction) that operates as one uninterruptable
unit.

attack An attempt to break a computer system’s
security.

attack surface The sum of the methods available
to attack a system (e.g., all of the network ports
that are open, plus physical access).

 Glossary G-3

attacker Someone attempting to breach a com-
puter system’s security.

attribute In the Windows NTFS fi le system, one
of the elements making up a fi le. Each fi le is seen as
a structured object consisting of typed attributes,
with each attribute an independent byte stream
that can be created, deleted, read, and written.

audit trail The collection of activities in a log for
monitoring or review.

authentication The process of correctly identify-
ing a person or device. In cryptography, constrain-
ing the set of potential senders of a message.

automatic working-set trimming In Windows, a
process whereby, if a threshold of minimum free
memory is reached, the number of working-set
frames is decreased for every process.

automount A network/distributed fi le system
feature in which fi le systems from remote servers
are automatically located and mounted as needed.

autoprobe In Linux, a device driver probe that
auto-detects device confi guration.

B+ tree A tree data structure in which every path
from the root of the tree to the leaf is the same length.

back door A daemon left behind after a success-
ful attack to allow continued access by the attacker.
In cryptography, a method of gaining access to
encrypted information without fi rst having the
secret keys. More generally, a method of passing
arbitrary commands or information when an inter-
face does not provide a standard method.

background Describes a process or thread that is
not currently interactive (has no interactive input
directed to it), such as one not currently being used
by a user. In the Grand Central Dispatch Apple OS
scheduler, the scheduling class representing tasks
that are not time sensitive and are not visible to
the user.

backing store The secondary storage area used
for process swapping.

backup In fi le systems, a copy or copies of the
fi le system or changes to the fi le system that can
be used to restore the fi le system if it is damaged
or destroyed.

bad block An unusable sector on an HDD.

balanced binary search tree A tree containing n
items that has, at most, lg n levels, thus ensuring
worst-case performance of O(lg n).

bandwidth The total amount of data transferred
divided by the total time between the fi rst request
for service and the completion of the last transfer.

banker’s algorithm A deadlock avoidance algo-
rithm, less effi cient than the resource-allocation graph

scheme but able to deal with multiple instances of
each resource type.

base fi le record In the Windows NTFS fi le sys-
tem, a descriptor of a large fi le containing pointers
to overfl ow records that hold additional pointers
and attributes.

base register A CPU register containing the start-
ing address of an address space. Together with the
limit register, it defi nes the logical address space.

basic fi le system A logical layer of the operating
system responsible for issuing generic commands
to the I/O control layer, such as “read block x,”
and also buffering and caching I/O.

batch interface A method for giving commands
to a computer in which commands are entered
into fi les, and the fi les are executed, without any
human interaction.

Bayes’ theorem A formula for determining con-
ditional probability—e.g., the probability of an
intrusion record detecting a real intrusion.

Belady’s anomaly An anomaly in frame-
allocation algorithms in which a page-fault rate
may increase as the number of allocated frames
increases.

best-fi t In memory allocation, selecting the
smallest hole large enough to satisfy the memory
request.

big data Extremely large sets of data; distributed
systems are well suited to working with big data.

big.LITTLE ARM processor implementation
of HMP in which high-performance big cores are
combined with energy effi cient LITTLE cores.

big-endian A system architecture in which the
most signifi cant byte in a sequence of bytes is stored
fi rst.

binary search tree A type of binary tree data
structure that requires an ordering between the
parent’s two children in which left child ⇐ right
child.

binary semaphore A semaphore of values 0 and
1 that limits access to one resource (acting similarly
to a mutex lock).

binary translation A virtualization method in
which, when a guest is running in virtual kernel
mode, every instruction is inspected by the virtual
machine manager, and instructions that would
behave differently in real kernel mode are trans-
lated into a set of new instructions that perform
the equivalent task; used to implement virtual-
ization on systems lacking hardware support for
virtualization.

binary tree A tree data structure in which a par-
ent may have at most two children.

G-4 Glossary

binder In Android RPC, a framework (system
component) for developing object-oriented OS ser-
vices and allowing them to communicate.

bind Tie together. For example, a compiler binds
a symbolic address to a relocatable address so the
routine or variable can be found during execution.

Bionic A type of standard C library used by
Android; it has a smaller memory footprint than
glibc and is more effi cient on slower (mobile)
CPUs.

BIOS Code stored in fi rmware and run at boot
time to start system operation.

bit The basic unit of computer storage. A bit can
contain one of two values, 0 or 1.

bit vector A string of n binary digits that can be
used to represent the status of n items. The availabil-
ity of each item is indicated by the value of a binary
digit: 0 means that the resource is available, while 1
indicates that it is unavailable (or vice-versa).

bit-level striping The splitting of data at the bit
level, with each bit in a byte or word stored on a
separate device.

bitmap A string of n binary digits that can be
used to represent the status of n items. The avail-
ability of each item is indicated by the value of a
binary digit: 0 means that the resource is available,
while 1 indicates that it is unavailable (or vice-
versa).

BKL In Linux kernel version 2.2, the “big kernel
lock” spinlock, which protected all kernel data
structures.

blade server A computer with multiple processor
boards, I/O boards, and networking boards placed
in the same chassis. The difference between these
and traditional multiprocessor systems is that each
blade-processor board boots independently and
runs its own operating system.

block A self-contained unit of work. The small-
est physical storage device storage unit, typically
512B or 4KB. In the Grand Central Dispatch Apple
OS scheduler, a language extension that allows
designation of a section of code that can be submit-
ted to dispatch queues.

block cipher A cipher that works on blocks of
data (rather than bits).

block device An I/O device that is randomly
accessible, with block-size chunks being the small-
est I/O unit.

block-device interface The interface for I/O to
block devices.

blocking In interprocess communication, a mode
of communication in which the sending process is

blocked until the message is received by the receiv-
ing process or by a mailbox and the receiver blocks
until a message is available. In I/O, a request that
does not return until the I/O completes.

block-level striping The splitting of data at the
block level, with each block stored on a separate
device.

boot block A block of code stored in a specifi c
location on disk with the instructions to boot the
kernel stored on that disk. The UFS boot control
block.

boot control block A storage block of data con-
taining information needed by the system to boot
from the volume containing the block.

boot disk A disk that has a boot partition and a
kernel to load to boot the system. A device that has
a boot partition and can store an operating system
for booting the computer.

boot partition A storage device partition con-
taining an executable operating system.

boot sector The fi rst sector of a Windows boot
device, containing the bootstrap code.

booting The procedure of starting a computer by
loading the kernel.

bootstrap The set of steps taken at computer
power-on to bring the system to full operation.

bootstrap loader The small program that loads
the kernel as part of the bootstrap procedure.

bootstrap port In Mach message passing, a pre-
defi ned port that allows a task to register a port it
has created.

bootstrap program The program that allows the
computer to start running by initializing hardware
and loading the kernel.

bootstrap server In Mach message passing, a
system-wide service for registering ports.

Border Gateway Protocol A network protocol
for determining network routes so that packets can
move from source to destination across a WAN.

bottleneck A performance-limiting aspect of
computing (e.g., poorly written code or a hard-
ware component that is not as fast as others in the
system).

bounded buffer A buffer with a fi xed size.

bounded waiting A practice that places limits on
the time a thread or process is forced to wait for
something.

Bourne-Again shell A common shell, or com-
mand interpreter.

BPF compiler collection (BCC) A rich toolkit for
tracing system activity on Linux for debugging
and performance-tuning purposes.

 Glossary G-5

bridging In networking, the connection of two
devices—e.g., a virtual-machine guest and the net-
work to which the host computer is connected.

broadcast In networking, the sending of one or
more packets to all devices on the local network.

browser A process that accepts input in the form
of a URL (Uniform Resource Locator), or web
address, and displays its contents on a screen.

buddies Pairs of equal size, used in the buddy
method of memory allocation.

buddy heap In Linux, the use of a power-of-two
allocator for the kernel heap.

buffer A memory area that stores data being
transferred (e.g., between two devices or between
a device and a process).

buffer cache In fi le I/O, a cache of blocks used to
decrease device I/O.

bug An error in computer software or hardware.

bus A communication system; e.g., within a
computer, a bus connects various components,
such as the CPU and I/O devices, allowing them
to transfer data and commands.

busy waiting A practice that allows a thread
or process to use CPU time continuously while
waiting for something. An I/O loop in which an
I/O thread continuously reads status information
while waiting for I/O to complete.

byte Eight bits.

bytecode A computer object code resulting from
compiling a program in a language (such as Java)
that runs on a virtual machine.

C library (libc) The standard UNIX/Linux sys-
tem API for programs written in the C program-
ming language.

cache A temporary copy of data stored in a
reserved memory area to improve performance. In
the slab allocator, a cache consists of two or more
slabs.

cache coherency The coordination of the con-
tents of caches such that an update to a value
stored in one cache is immediately refl ected in all
other caches that hold that value.

cache management The management of a cache’s
contents.

cache-consistency problem A challenge in cach-
ing in which the cached copies of data must be
kept consistent with the master copy of the data.

caching The use of temporary data storage areas
to improve performance.

cancellation point With deferred thread cancel-
lation, a point in the code at which it is safe to ter-
minate the thread.

Canonical A popular Linux distribution.

capability In protection, the representation of an
object in a capability list.

capability list In protection, a list of objects
together with the operations allowed on those
objects.

capability-based protection A protection facil-
ity in which the powers of root are divided into
specifi c abilities, each represented by a bit in a bit
mask that is used to allow or deny operations.

cascading termination A technique in which,
when a process is ended, all of its children are
ended as well.

Ceph A brand of object storage management
software.

certifi cate authority A trusted signer of digital
certifi cates.

character device An I/O device that has a char-
acter (byte) as its smallest I/O unit.

character-stream interface The interface for I/O
to character devices (like keyboards).

checksum The general term for an error detec-
tion and correction code.

children In a tree data structure, nodes con-
nected below another node.

chip multithreading (CMT) A CPU with multi-
ple cores, where each core supports multiple hard-
ware threads.

chipset The CPU and support chips that create a
computer and defi ne its architecture.

circular buffer A buffer that uses a fi xed amount
of storage and wraps writes from the end of the
buffer to the beginning when the buffer fi lls (so
that the buffer acts as if it’s circular in shape).

Circular SCAN (CSCAN) scheduling An HDD
I/O scheduling algorithm in which the disk head
moves from one end of the disk to the other
performing I/O as the head passes the desired
cylinders; the head then reverses direction and
continues.

claim edge In the deadlock resource-allocation-
graph algorithm, an edge indicating that a process
might claim a resource in the future.

class loader In Java, a helper component that
loads .class fi les for execution by the Java virtual
machine.

class In Java, a program component that is a col-
lection of data fi elds and functions (methods) that
operate on those fi elds.

clean-up handler A function that allows any
resources a thread has acquired to be released
before the thread is terminated.

G-6 Glossary

client A computer that uses services from other
computers (such as a web client). The source of a
communication.

client interface In distributed computing, a set
of services provided to a caller of services.

client system A computer that uses services from
other computers (such as a web client).

client-server model A mode of computing in
which a server provides services to one or more
clients. In distributed computing, a model in which
a computer acts as a resource server to other com-
puters that are clients of those resources.

client-side caching (CSC) In Windows, a cach-
ing method used to allow remote users to work
off-line and then consolidate their changes once
they are online.

clock In the second-chance page-replacement
algorithm, a circular queue that contains possible
victim frames. A frame is replaced only if it has not
been recently referenced.

clone In fi le systems, a snapshot that is read-
write and modifi able. In virtualization, a copy of a
guest that enables another instance of the guest to
run in a separate virtual machine.

CLOOK scheduling An HDD I/O scheduling
algorithm that modifi es CSCAN by stopping the
head after the fi nal request is completed (rather
than at the innermost or outermost cylinder).

closed-source An operating system or other
program available only in compiled binary code
format.

closure In functional programming languages,
a construct to provide a simple syntax for parallel
applications.

cloud computing A computing environment in
which hardware, software, or other resources are
made available to customers across a WAN, such
as the Internet, usually with APIs for management.
A type of computing that delivers computing, stor-
age, and even applications “as a service” across a
network.

cloud storage Storage accessed from a computer
over a network to a distant, shared resource data
center.

cluster In Windows storage, a power-of-2 num-
ber of disk sectors collected for I/O optimization.

cluster-based model In distributed computing, a
model of resource sharing where all systems are
equal users and providers of resources.

clustered fi le system (CFS) A fi le system that is
LAN-based and treats N systems storing data and
Y clients accessing the data as a single client-server

instance; more complex than a client-server DFS
but less complex than a cluster-based DFS. GPFS
and Lustre are examples.

clustered page table A page table similar to a
hashed page table, but a table entry refers to sev-
eral (a cluster of) pages.

clustered system A system that gathers together
multiple CPUs. Clustered systems differ from
multiprocessor systems in that they are composed
of two or more individual systems—or nodes—
joined together.

clustering In general, gathering N items
together. In virtual memory, paging in a group of
contiguous pages when a single page is requested
via a page fault.

cluster In fi le system block allocation, several
contiguous blocks.

coalescing In general, combining. In the buddy
memory allocation algorithm, freed memory in
adjacent buddies can be coalesced into larger
segments.

code integrity A Windows 7 module that checks
the digital signatures of kernel modules to be sure
they have not been tampered with by attackers.

code review A software development method in
which the developer submits code to other devel-
opers for review and approval.

code signing The use of a digital signature to
authenticate a program.

code-injection attack An attack that modifi es
otherwise well-behaved executable code.

command interpreter The operating system
component that interprets user commands and
causes actions based on them.

command-line interface (CLI) A method of giv-
ing commands to a computer based on a text input
device (such as a keyboard).

Common Criteria The international 2005 succes-
sor to the Orange Book standard developed by the
U.S. Department of Defense.

common Internet fi le system (CIFS) The Win-
dows network fi le system, now used on many
systems.

communication port In Windows OS, a port
used to send messages between two processes.

communications A category of system calls.

compaction The shuffl ing of storage to consoli-
date used space and leave one or more large holes
available for more effi cient allocation.

compartmentalization The process of protecting
each system component through the use of specifi c
permissions and access restrictions.

 Glossary G-7

Completely Fair Queuing (CFQ) In Linux, the
default I/O scheduler in kernel 2.6 and later versions.

Completely Fair Scheduler (CFS) In Linux, the
priority-based, preemptive scheduler included
with the 2.6 kernel.

component object model (COM) The Windows
mechanism for interprocess communication.

compression The use of algorithms to reduce the
amount of data stored or sent.

compression ratio In memory compression, a
measurement of the effectiveness of the compres-
sion (the ratio of the compressed space to the orig-
inal amount of uncompressed space).

compression unit In NTFS, a unit of 16 contigu-
ous clusters used in memory compression.

computation migration The use of a network to
allow a task to remotely request resources to speed
a computation.

computation speedup An increase in the amount
of CPU compute power.

computational kernel A Windows mechanism
for specifying tasks to run on GPUs.

compute-server system A server that provides an
interface to which a client can send a request for an
action (e.g., read data). In response, the server exe-
cutes the action and sends the results to the client.

Concurrency Runtime (ConcRT) A Microsoft
Windows concurrent programming framework for
C++ that is designed for task-based parallelism on
multicore processors.

condition variable A component of a monitor
lock; a container of threads waiting for a condition
to be true to enter the critical section.

conditional-wait A component of the monitor
construct that allows for waiting on a variable
with a priority number to indicate which process
should get the lock next.

confi nement problem The problem of guaran-
teeing that no information initially held in an object
can migrate outside of its execution environment.

confl ict phase During scheduling, the time the
dispatcher spends moving a thread off a CPU and
releasing resources held by lower-priority threads
that are needed by the higher-priority thread that
is about to be put onto the CPU.

confl ict-resolution mechanism In Linux, the
kernel module facility that allows different device
drivers to reserve hardware resources and to pro-
tect those resources from accidental use by other
drivers.

congestion control In networking, the attempt to
approximate the state of networks between send-
ers and receivers to avoid packet loss.

connection port In Windows OS, a communica-
tions port used to maintain connection between
two processes, published by a server process.

connectionless socket (UDP) In Java, a mode of
communication.

connection-oriented socket (TCP) In Java, a
mode of communication.

consistency checker A system program, such as
UNIX fsck, that reads fi le system metadata and
tries to correct any inconsistencies (such as a fi le’s
length being incorrectly recorded).

consolidation In virtualization, the practice of
running multiple guests per host, reducing the
number of physical servers needed for a given
workload.

constant angular velocity (CAV) A device-
recording method in which the medium spins at
a constant velocity and the bit density decreases
from inner to outer tracks.

constant linear velocity (CLV) A device-recording
method that keeps a constant density of bits
per track by varying the rotational speed of the
medium.

consumer A process role in which the process
consumes information produced by a producer
process.

container In application containment, a virtual
layer between the operating system and a process
in which the application runs, limiting its normal
access to system resources.

container object In Windows 10, a category of
objects that contain other objects (e.g., directories,
which contain fi les).

containers In APFS, large free spaces in storage
from which fi le systems can draw allocations.

containment A method for preventing deadlocks
by creation and lock management of a higher-
order resource that contains the locks of lower-
order resources.

contended A term describing the condition of a
lock when a thread blocks while trying to acquire it.

content addressable storage Another term for
object storage; so called because objects can be
retrieved based on their contents.

context When describing a process, the state of
its execution, including the contents of registers, its
program counter, and its memory context, includ-
ing its stack and heap.

context switch The switching of the CPU from
one process or thread to another; requires perform-
ing a state save of the current process or thread and
a state restore of the other.

G-8 Glossary

contiguous allocation A fi le-block allocation
method in which all blocks of the fi le are allocated
as a contiguous chunk on secondary storage.

contiguous bit In ARM v8 CPUs, a TLB bit indi-
cating that the TLB holds a mapping to contiguous
blocks of memory.

contiguous memory allocation A memory allo-
cation method in which each process is contained
in a single section of memory that is contiguous to
the section containing the next process.

control partition In type 0 virtualization, a vir-
tual hardware partition that provides services to
the other partitions (and has higher privileges).

control program A program that manages the
execution of user programs to prevent errors and
improper use of the computer. It is especially
concerned with the operation and control of I/O
devices.

control register A device I/O register where
commands are placed by the computer.

control-fl ow guard (CFG) A Windows 7 exploit-
mitigation feature.

controller A special processor that manages I/O
devices.

convoy effect A scheduling phenomenon in
which a number of threads wait for one thread to
get off a core, causing overall device and CPU uti-
lization to be suboptimal.

cooperating process A process that can affect or be
affected by other processes executing in the system.

cooperative A form of scheduling in which
threads voluntarily move from the running state.

coordination Ordering of the access to data by
multiple threads or processes.

copy protection The implementation of a mech-
anism to prevent the unauthorized copying of a
licensed work (e.g., media, programs, operating
systems).

copy semantics The meaning assigned to data
copying—e.g., whether a block write from a pro-
cess allows the data to be modifi ed after the write
has been requested.

copy-on-write Generally, the practice by which
any write causes the data to fi rst be copied and then
modifi ed, rather than overwritten. In virtual mem-
ory, on a write attempt to a shared page, the page
is fi rst copied, and the write is made to that copy.

core Within a CPU, the component that executes
instructions.

core dump A copy of the state of a process
written to disk when a process crashes; used for
debugging.

core frameworks In the layered macOS and iOS
operating system design, the layer that defi nes
frameworks that support graphics and media,
including QuickTime and OpenGL.

counting semaphore A semaphore that has a
value between 0 and N, to control access to a resource
with N instances.

CPU burst Scheduling process state in which the
process executes on CPU.

CPU scheduler Kernel routine that selects a
thread from the threads that are ready to execute
and allocates a core to that thread.

CPU scheduling The process by which the sys-
tem chooses which job will run next If several jobs
are ready to run at the same time.

CPU-bound process A process that spends more
time executing on CPU than it does performing
I/O.

crash Termination of execution due to a problem.
A failure in the kernel results in a system crash and
reboot, while a process failure results in a process
crash.

crash dump A copy of the state of the kernel
written to disk during a crash; used for debugging.

critical section A section of code responsible for
changing data that must only be executed by one
thread or process at a time to avoid a race condition.

critical-section object A user-mode mutex object
that can often be acquired and released without
kernel intervention; a Windows OS scheduling
feature.

cryptography A tool used to constrain the poten-
tial senders and/or receivers of a message (or
stored data).

current-fi le-position pointer A per-process
pointer to the location in a fi le to which the next
read or from which the next write will occur.

cycle A repeating loop.

cycle stealing The act of a device, such as a DMA
controller, using the bus and preventing the CPU
from using it temporarily.

cylinder On an HDD, the set of tracks under the
read-write heads on all platters in the device.

cylinder groups A sequential collection of storage
media (typically a group of cylinders) that are man-
aged as a single unit and subdivided into blocks.

daemon A service that is provided outside of the
kernel by system programs that are loaded into
memory at boot time and run continuously.

daisy chain In computer I/O, a connection
method involving connecting devices to each other
in a string (device A to B, B to C, C to D, etc.).

 Glossary G-9

dark web The part of the World Wide Web that is
not easy to reach (say, by search engines) and that
is sometimes used for bad behavior (such as sell-
ing information stolen in successful attacks).

Darwin The Apple code name for its open-
source kernel.

data execution prevention (DEP) A Windows 7
exploit-mitigation feature.

data migration The entire transfer of one or more
fi les from one site to another.

data parallelism A computing method that dis-
tributes subsets of the same data across multiple
cores and performs the same operation on each core.

data section The data part of a program or pro-
cess; it contains global variables.

data striping The splitting of data across multi-
ple devices.

data-encryption standard (DES) A cipher (algo-
rithm for doing encryption and decryption) pro-
vided by the U.S. National Institute of Standards
and Technology (NIST).

datagram A basic transfer unit on a packet-
switched network like the Internet protocol (i.e., a
network packet).

data-in register A device I/O register where data
is placed to be sent to the device.

data-out register A device I/O register where data
is placed by the device to be read by the computer.

DCOM The distributed computing extension to
object linking and embedding (OLE).

deadlock The state in which two processes or
threads are stuck waiting for an event that can only
be caused by one of the processes or threads.

deadlock avoidance An operating system method
in which processes inform the operating system
of which resources they will use during their life-
times so the system can approve or deny requests
to avoid deadlock.

deadlock prevention A set of methods intended
to ensure that at least one of the necessary condi-
tions for deadlock cannot hold.

deadlocked The state in which two processes or
threads are stuck waiting for an event that can only
be caused by one of the processes or threads.

Debian A popular Linux distribution.

debugger A system program designed to aid
programmers in fi nding and correcting errors.

debugging The activity of fi nding and removing
errors.

deduplication The removal of duplicate infor-
mation (bits, blocks, or fi les).

default heap The heap data structure created
when a Win32 process is initialized.

default signal handler The signal handler that
receives signals unless a user-defi ned signal han-
dler is provided by a process.

defense in depth The theory that more layers of
defense provide stronger defense than fewer layers.

deferred procedure call (DPC) In Windows
scheduling, a call initiated by the interrupt that
occurs when a time quantum expires, eventually
causing the expired thread to be moved off a core
and replaced with the next thread in the ready
queue.

degree of multiprogramming The number of
processes in memory.

delayed-write policy In caching, a policy
whereby data are fi rst written to a cache; later, the
cache writes the change to the master copy of the
data.

demand paging In memory management, bring-
ing in pages from storage as needed rather than,
e.g., in their entirety at process load time.

demand-zero memory In Linux, a virtual mem-
ory region backed by nothing; when a process tries
to read a page in such a region, it is given a page of
memory fi lled with zeros.

demilitarized zone In fi rewalling, a security
domain less trusted than some other security
domain (e.g., the domain containing a web server
compared to the domain containing the crucial
company database).

denial-of-service Preventing legitimate use of a
system.

dentry object The VFS representation of a directory.

desktop In a GUI, the standard workspace rep-
resented by the GUI on the screen, in which a user
executes tasks.

desktop activity moderator (DAM) A Windows 8
component that supports the system state “con-
nected standby” on mobile devices, freezing com-
puter activity but allowing rapid return to full
functionality.

desktop window manager A Windows Vista
user-mode component to manage GUI windows.

deterministic modeling A type of analytic eval-
uation that takes a particular predetermined work-
load and defi nes the performance of each algo-
rithm for that workload.

development kernel A kernel released for devel-
opers to use, rather than for production use.

device controller The I/O managing processor
within a device.

G-10 Glossary

device driver An operating system component
that provides uniform access to various devices
and manages I/O to those devices.

device manipulation A category of system calls.

device object In Windows, the object represent-
ing a device.

device queue The list of processes waiting for a
particular I/O device.

device-status table A kernel data structure for
tracking the status and queues of operations for
devices.

digital certifi cate A public key digitally signed
by a trusted party.

digital rights management The implementa-
tion of a mechanism to prevent the unauthorized
copying of a licensed work (e.g., media, programs,
operating systems).

digital signature The authenticator produced by
a digital-signature algorithm.

digital-signature algorithm A cryptographic
checksum calculated in asymmetric encryption;
used to authenticate a message.

dining-philosophers problem A classic syn-
chronization problem in which multiple operators
(philosophers) try to access multiple items (chop-
sticks) simultaneously.

direct access A fi le-access method in which
contents are read in random order, or at least not
sequentially.

direct blocks In UFS, blocks containing pointers
to data blocks.

direct communication In interprocess commu-
nication, a communication mode in which each
process that wants to communicate must explicitly
name the recipient or sender of the communication.

direct I/O Block I/O that bypasses operating-
system block features such as buffering and locking.

direct memory access (DMA) A resource-
conserving and performance-improving operation
for device controllers allowing devices to transfer
large amounts of data directly to and from main
memory.

direct virtual memory access (DVMA) DMA that
uses virtual addresses rather than physical mem-
ory addresses as transfer sources and destinations.

dirty bit An MMU bit used to indicate that a
frame has been modifi ed (and therefore must have
its contents saved before page replacement).

discretionary access control (DAC) Optional, as
opposed to mandatory, access control.

disinfecting In the context of computer viruses,
removing the components of a virus.

disk arm An HDD component that holds the read-
write head and moves over cylinders of platters.

disk image Generally, the contents of a disk
encapsulated in a fi le. In virtualization, a guest vir-
tual machine’s boot fi le system contents contained
in a disk image.

diskless A term describing systems that have no
local storage.

dispatch latency The amount of time the dis-
patcher takes to stop one thread and put another
thread onto the CPU.

dispatch queue An Apple OS feature for paral-
lelizing code; blocks are placed in the queue by
Grand Central Dispatcher (GCD) and removed to
be run by an available thread.

dispatched Selected by the process scheduler to
be executed next.

dispatcher The kernel routine that gives control
of a core to the thread selected by the scheduler.

dispatcher objects A Windows scheduler feature
that controls dispatching and synchronization.
Threads synchronize according to several different
mechanisms, including mutex locks, semaphores,
events, and timers.

distributed denial-of-service attack (DDoS) An
attack from multiple sources (frequently a botnet
of zombies) with the purpose of denying legiti-
mate use of the attacked resource.

distributed fi le system (DFS) A fi le system that
works across a network in which remote directo-
ries are visible from a local machine.

distributed information system A set of pro-
tocols providing unifi ed information needed for
remote computing.

distributed lock manager (DLM) A function
used by a clustered system to supply access con-
trol and locking to ensure that no confl icting oper-
ations occur.

distributed naming service A set of protocols
providing unifi ed information needed for remote
computing.

distributed system A collection of loosely cou-
pled nodes interconnected by a communication
network.

distribution A release of a version of an operat-
ing system.

docker An orchestration tool for containers.

domain switching The mechanism for switching
dynamic domains.

domain-name system (DNS) The Internet sys-
tem for resolving host names to host-ids, in which

 Glossary G-11

a distributed information system provides host-
name-to-network-address translations for the
Internet.

double buffering The copying of data twice
(e.g., from a device to the kernel and then from
the kernel to a process’s address space), or the
use of two buffers to decouple producers and
consumers.

double caching The problem in which the same
data might be in two different caches; solved by a
unifi ed buffer cache.

double indirect block In UFS, a block containing
pointers to a single indirect block, which points to
data blocks.

down time Generally, time during which a facil-
ity, system, or computing component are off-line
and unavailable.

driver end The interface between STREAMS and
the device being controlled.

driver object In Windows, the object represent-
ing a device driver.

driver-registration system In Linux, the kernel
module facility that tells the rest of the kernel that
a new driver is available.

DTrace A facility originally developed at Sun
Microsystems that dynamically adds probes to a
running system, both in user processes and in the
kernel, for state analysis, performance tuning, and
debugging.

dual-booted A term describing a computer that
can boot one of two or more installed operating
systems.

dynamic loading The loading of a process rou-
tine when it is called rather than when the process
is started.

dynamic random-access memory (DRAM) The
common version of RAM, which features high
read and write speeds.

dynamic storage-allocation The class of fi le-
block allocation methods that satisfy a request for
n blocks from a list of free holes available.

dynamic storage-allocation problem The prob-
lem of how to satisfy a request for size n of mem-
ory from a list of free holes.

dynamically linked libraries (DLLs) System
libraries that are linked to user programs when the
processes are run, with linking postponed until
execution time.

earliest-deadline-fi rst (EDF) A real-time sched-
uling algorithm in which the scheduler dynam-
ically assigns priorities according to completion
deadlines.

ease of use The amount of diffi culty and complex-
ity involved in using some aspect of computing.

EEPROM Electrically erasable programmable
read-only memory; a type of fi rmware.

effective access time The measured or statisti-
cally calculated time it takes to access something;
e.g., see effective memory-access time.

effective memory-access time The statistical or
real measure of how long it takes the CPU to read
or write to memory.

effective transfer rate The actual, measured
transfer rate of data between two devices (such as
a computer and a disk drive).

effective UID The UID the process is currently
using, which can be different from the login UID
due to, e.g., escalating privileges.

electrical storage Storage devices made from
electrical components, such as fl ash memory; one
form of nonvolatile storage.

ELF The UNIX standard format for relocatable
and executable fi les.

embedded computer A computer system within
some other, larger system (such as a car) that per-
forms specifi c, limited functions and has little or
no user interface.

emulation A methodology used to enable a pro-
cess to run when the compiled program’s original
(source) CPU type is different from the target CPU
type on which the program is to run.

emulator A program that allows applications
written for one hardware environment to run in a
different hardware environment, such as a differ-
ent type of CPU.

encapsulate In general, to enclose. In Java,
encapsulation gives a class the ability to protect its
data and methods from other classes loaded in the
same JVM.

encryption The use of cryptography to limit the
receivers of a message or access to data.

entry section The section of code within a pro-
cess that requests permission to enter its critical
section.

entry set In Java, the set of threads waiting to
enter a monitor.

environment vector In Linux and UNIX, a list
containing all of the environment variables of the
shell that invoked a process (and are available to
the process).

environmental subsystem In Windows, an oper-
ating environment that emulates a specifi c operat-
ing system by translating process API calls from
that operating system to Windows calls.

G-12 Glossary

equal allocation An allocation algorithm that
assigns equal amounts of a resource to all requestors.
In virtual memory, assigning an equal number of
frames to each process.

error-correcting code (ECC) A value calculated
from bytes of data and recalculated later to check
for changes in the data.

eSATA A type of I/O bus.

escalate privileges To gain extra permissions for
an activity, as when a user needs access to a device
that is restricted.

escape Generally, a method of passing arbitrary
commands or information when an interface does
not provide a standard method.

event latency The amount of time between when
an event occurs and when it is serviced.

event A Windows OS scheduling feature that is
similar to a condition variable.

eVM An example of a partitioning hypervisor.

exception A software-generated interrupt
caused either by an error (such as division by zero
or invalid memory access) or by a specifi c request
from a user program than an operating-system ser-
vice be performed.

exception dispatcher The Windows component
that processes exceptions.

exclusive lock A fi le lock similar to a writer lock
in that only one process at a time can obtain the
lock.

executable and linkable format (ELF) The UNIX
standard format for relocatable and executable
fi les.

executable fi le A fi le containing a program that
is ready to be loaded into memory and executed.

execution tracing A Windows method of moni-
toring process execution and recording details for
analysis and debugging.

exit section The section of code within a process
that cleanly exits the critical section.

expansion bus A computer bus for connecting
slow devices like keyboards.

exponential average A calculation used in sched-
uling to estimate the next CPU burst time based on
the previous burst times (with exponential decay
on older values).

export list The list of fi le systems available for
remote mounting from a server.

ext3 One of the most common types of Linux fi le
systems.

extended fi le attributes Extended metadata
about a fi le, including items such as character
encoding details, fi le checksums, etc.

extended fi le system The most common class of
Linux fi le systems, with ext3 and ext4 being the
most commonly used fi le system types.

extended fi le system (extfs) The most common
class of Linux fi le systems, with ext3 and ext4
being the most commonly used fi le system types.

extensibility The ability of an operating system
to accommodate advances in computing technol-
ogy via extensions (such as new kernel modules
and new device drivers).

extent A chunk of contiguous storage space
added to previously allocated space; a pointer is
used to link the spaces.

external data representation A system used
to resolve differences when data are exchanged
between big- and little-endian systems.

external fragmentation Fragmentation in which
available memory contains holes that together
have enough free space to satisfy a request but no
single hole is large enough to satisfy the request.
More generally, the fragmentation of an address
space into small, less usable chunks.

fair scheduling In the Completely Fair Sched-
uler, the scheduler algorithm that allots a pro-
portion of the processor’s time rather than time
slices.

false negatives Results indicating that some-
thing is not a match to what is being detected, even
though it is.

false positives Results indicating that something
is a match to what is being detected, even though
it isn’t.

fast directory sizing In APFS, a feature that
tracks and rapidly reports on directory sizes.

fast I/O mechanism In Windows, a high-speed
bypass of the standard I/O handling mechanism
in which the driver stack is called directly rather
than having an IRP sent and processed.

fault-tolerant system A system that can suffer a
failure of any single component and still continue
operation.

fi ber User-mode code that can be scheduled
according to a user-defi ned scheduling algorithm.

fi bre channel (FC) A type of storage I/O bus
used in data centers to connect computers to stor-
age arrays. A storage-attachment network.

fi le The smallest logical storage unit; a collection
of related information defi ned by its creator.

fi le attributes Metadata about a fi le, such as who
created it and when, fi le size, etc.

fi le descriptor (fd) UNIX open-fi le pointer, cre-
ated and returned to a process when it opens a fi le.

 Glossary G-13

fi le handle Windows name for the open-fi le fi le
descriptor.

fi le info window A GUI view of the fi le metadata.

fi le manipulation A category of system calls.

fi le mapping In Windows, the fi rst step in
memory-mapping a fi le.

fi le migration A fi le system feature in which a fi le’s
location is changed automatically by the system.

fi le object The VFS representation of an open fi le.

fi le reference In Windows NTFS, a unique fi le ID
that is the index of the fi le in the master fi le table
(much like a UNIX inode number).

fi le session The series of accesses between open()
and close() system calls that make up all the oper-
ations on a fi le by a process.

fi le system The system used to control data stor-
age and retrieval; provides effi cient and conve-
nient access to storage devices by allowing data to
be stored, located, and retrieved easily.

File System Hierarchy Standard A standard
document specifying the overall layout of the stan-
dard Linux fi le systems.

fi le-allocation table (FAT) A simple but effective
method of disk-space allocation used by MS-DOS.
A section of storage at the beginning of each vol-
ume is set aside to contain the table, which has one
entry per block, is indexed by block number, and
contains the number of the next block in the fi le.

fi le-control block (FCB) A per-fi le block that con-
tains all the metadata about a fi le, such as its access
permissions, access dates, and block locations.

fi le-organization module A logical layer of the
operating system responsible for fi les and for
translation of logical blocks to physical blocks.

fi le-server system A server that provides a
fi le-system interface where clients can create,
update, read, and delete fi les (e.g., a web server
that delivers fi les to clients running web browsers).

fi lter drivers In Windows, drivers allowed to
insert themselves into the I/O processing chain.

fi rewall A computer, appliance, process, or
network router that sits between trusted and
untrusted systems or devices. It protects a network
from security breaches by managing and blocking
certain types of communications.

fi rewall chains In Linux, an ordered list of
rules that specifi es one of a number of possible
fi rewall-decision functions plus matching compo-
nents. A confi guration of the fi rewall rules.

fi rmware Software stored in ROM or EEPROM
for booting the system and managing low level
hardware.

fi rst-come fi rst-served (FCFS) The simplest
scheduling algorithm. The thread that requests a
core fi rst is allocated the core fi rst.

fi rst-fi t In memory allocation, selecting the fi rst
hole large enough to satisfy a memory request.

fi rst-level interrupt handler In some operat-
ing systems, an interrupt handler responsible for
reception and queuing of interrupts; the inter-
rupts are actually handled at another level (by the
second-level handler).

fl ash translation layer (FTL) For nonvolatile
memory, a table that tracks currently valid blocks.

fl ow control Generally, a method to pause a
sender of I/O. In networking, a technique to limit
the rate of data fl ow (e.g., to avoid buffer overfl ow
and packet loss on a router).

fl ush Erasure of entries in, e.g., a TLB or other
cache to remove invalid data.

folder A fi le system component that allows users
to group fi les together.

folder redirection In Windows, for roaming
users, a method for automatically storing a user’s
documents and other fi les on a remote server.

foreground Describes a process or thread that
is interactive (has input directed to it), such as a
window currently selected as active or a terminal
window currently selected to receive input.

foreground process A process currently open
and appearing on the display, with keyboard or
other I/O device input directed to it.

fork-join A strategy for thread creation in which
the main parent thread creates (forks) one or more
child threads and then waits for the children to ter-
minate and join with it.

forward-mapped Describes a scheme for hier-
archical page tables in which address translation
starts at the outer page table and moves inward.

fourth extended fi le system (ext4) In Linux, a
current version of the extended fi le system, the
successor to ext3.

fragments In networking, parts of messages. A
message is split into fragments if it is too large to
fi t in one packet.

frame table In paged memory, the table con-
taining frame details, including which frames
are allocated, which are free, total frames in the
system, etc.

frame-allocation algorithm The operating-
system algorithm for allocating frames among all
demands for frames.

frames Fixed-sized blocks of physical memory.

G-14 Glossary

free operating system An operating system
released under a license that makes its source code
available and allows no-cost use, redistribution,
and modifi cation.

free-behind Sequential I/O performance opti-
mization that removes a page or block from a buf-
fer as soon as I/O to the next page is requested.

free-frame list A kernel-maintained data struc-
ture containing the list of currently available free
frames of physical memory.

free-space list In fi le-system block allocation, the
data structure tracking all free blocks in the fi le
system.

front-end processors Small computers that per-
form certain tasks in an overall system; used by
some systems to manage I/O and offl oad the
general-purpose CPU.

fsgid In Linux, an added process property that
allows fi le system access on behalf of another
group.

fsuid In Linux, an added process property that
allows fi le system access on behalf of another user.

full backup In fi le systems, a backup that
includes all of the contents of a fi le system.

functional language A programming language
that does not require states to be managed by pro-
grams written in that language (e.g., Erlang and
Scala).

fuzzing A technique that tests for proper input val-
idation (e.g., to avoid undetected buffer overruns).

Galois fi eld math An advanced error-correcting
calculation done in some forms of RAID.

Gantt chart A bar chart that can be used to illus-
trate a schedule.

garbage collection In general, recovery of space
containing no-longer-valid data.

general tree A tree data structure in which a par-
ent may have unlimited children.

gestures A user interface component in which
motions cause computer actions (e.g., “pinching”
the screen).

gigabyte (GB) 1,024^3 bytes.

git A version control system used for GNU/
Linux and other programs.

global replacement In virtual memory frame
allocation, allowing a process to select a replace-
ment frame from the set of all frames in the system,
not just those allocated to the process.

GNU C compiler (gcc) The standard C compiler
of the GNU project, used throughout the industry
on Linux and many other system.

GNU General Public License (GPL) A license
agreement that codifi es copylefting (allowing and
requiring open sourcing of the associated pro-
grams); a common license under which free soft-
ware is released.

GNU/Linux (aka Linux) An open-source operat-
ing system composed of components contributed
by the GNU foundation and Linus Torvalds, as
well as many others.

Google Android The mobile operating system
created by Google Inc.

Google fi le system (GFS) A cluster-based dis-
tributed fi le system designed and used by Google.

GPFS A common commercial clustered fi le sys-
tem by IBM.

graceful degradation The ability of a system to
continue providing service proportional to the
level of surviving hardware.

graphical user interface (GUI) A computer
interface comprising a window system with a
pointing device to direct I/O, choose from menus,
and make selections and, usually, a keyboard to
enter text.

graphics processing unit (GPU) A hardware
component, sometimes part of the CPU and some-
times a separate device, that provides graphics
computation and sometimes graphics output to a
display.

graphics shaders Processes that provide the
shading within graphics images.

group In fi le permissions, a collection of users
that have access to a fi le based on assigned access
rights.

group identifi er Similar to a user identifi er, but
used to identify a group of users to determine
access rights.

group rights In fi le permissions, the access rights
belonging to a user group.

GRUB A common open-source bootstrap loader
that allows selection of boot partitions and options
to be passed to the selected kernel.

guard pages In Windows, no-access-allowed
pages at the tops of the kernel-mode and user-
mode stacks that detect stack overfl ows.

guest In virtualization, an operating system run-
ning in a virtual environment (rather than natively
on the computer hardware).

hacker Someone attempting to breach computer
security.

Hadoop distributed fi le system (HDFS) A cluster-
based distributed fi le system used for big-data
projects.

 Glossary G-15

Hadoop fi le system An example of object stor-
age management software.

haiku A three-line poem in which the fi rst line
contains fi ve syllables, the second line contains
seven syllables, and the third line contains fi ve
syllables.

handle Generally, an opaque value that provides
access to an object or data structure; e.g., a fi le
handle is returned when a fi le is opened and is a
pointer to an entry in an open-fi le table.

handle table In Windows, a per-process handle
table containing entries that track (by their han-
dles) the objects used by the process.

hard affi nity The situation in which an operat-
ing system allows a process’s threads to run on the
same processor at all times (as opposed to being
moved to various processors).

hard disk drive (HDD) A secondary storage
device based on mechanical components, includ-
ing spinning magnetic media platters and moving
read-write heads.

hard error An unrecoverable error (possibly
resulting in data loss).

hard links File-system links in which a fi le has
two or more names pointing to the same inode.

hard real-time systems Systems in which a
thread must be serviced by its deadline; service
after the deadline has expired is the same as no
service at all.

hard working-set limit In Windows memory
management, the maximum amount of physical
memory that a process is allowed to use.

hardware The CPU, memory devices, input/
output (I/O) devices, and any other physical com-
ponents that are part of a computer.

hardware objects The CPU, memory devices,
input/output (I/O) devices, and any other phys-
ical components that are part of a computer

hardware threads Threads associated with the
processing core. A given CPU core may run mul-
tiple hardware threads to optimize core use—e.g.,
to avoid memory stalls by switching hardware
threads if the current thread causes a stall.

hardware transactional memory (HTM) A trans-
actional memory implementation using hardware
cache hierarchies and cache coherency protocols
to manage and resolve confl icts involving shared
data residing in separate processors’ caches.

hardware-abstraction layer (HAL) A kernel layer
that isolates chipset-specifi c hardware aspects from
general-purpose code.

hash function A function that takes data as its
input, performs a numeric operation on the data,

and returns a numeric value. Also, an algorithm
for creating a hash (a small, fi xed-size block of data
calculated from a larger data set, used to determine
if a message has been changed).

hash map A data structure that maps [key:value]
pairs using a hash function; a hash function can then
be applied to a key to obtain its matching value.

hash value The calculation resulting from a hash
function.

hashed page table A page table that is hashed
for faster access; the hash value is the virtual page
number.

head crash On an HDD, a mechanical problem
involving the read-write head touching a platter.

heap section The section of process memory that
is dynamically allocated during process run time;
it stores temporary variables.

heartbeat In computer clustering, a repeating
signal to determine the state of the members of the
cluster (e.g., to determine if a system is down).

heterogeneous multiprocessing (HMP) A fea-
ture of some mobile computing CPUs in which
cores vary in their clock speeds and power
management.

high-availability Describes a service that will
continue even if one or more systems in the cluster
fail.

high-performance computing A computing
facility designed for use with a large number of
resources to be used by software designed for par-
allel operation.

high-performance event timer A hardware
timer provided by some CPUs.

hit ratio The percentage of times a cache pro-
vides a valid lookup (used, e.g., as a measure of a
TLB’s effectiveness).

hives In Windows, an internal repository of data.

hole In variable partition memory allocation,
a contiguous section of unused memory. Also an
alternative rock band formed by Courtney Love.

honeypot A false resource exposed to attackers;
the resource appears real and enables the system
to monitor and gain information about the attack.

horizontal scalability The ability to scale capac-
ity not by expanding one item but by adding more
items.

host In virtualization, the location of the virtual
machine manager, which runs guest operating sys-
tems; generally, a computer.

host bus adapter (HBA) A device controller
installed in a host bus port to allow connection of
one or more devices to the host.

G-16 Glossary

host controller The I/O-managing processors
within a computer (e.g., inside a host bus adapter).

host name A human-readable name for a
computer.

host-attached storage Storage accessed through
local I/O ports (directly attached to a computer,
rather than across a network or SAN).

host-id In networking, the unique number iden-
tifying a system on a network.

hostname The alphanumeric name for a system
(such as becca.colby.edu).

hot spare An unused storage device ready to be
used to recover data (e.g., in a RAID set).

hot-standby mode A condition in which a com-
puter in a cluster does nothing but monitor the
active server. If that server fails, the hot-standby
host becomes the active server.

huge pages A feature that designates a region of
physical memory where especially large pages can
be used.

hybrid cloud A type of cloud computing that
includes both public and private cloud components.

hypercall In paravirtualization, a call from a
guest to the hypervisor to request a virtualization
service, such as a page table change.

hyper-threading Intel’s technology for assigning
multiple hardware threads to a single processing
core.

hypervisor The computer function that manages
the virtual machine; also called a virtual machine
manager (VMM).

I/O burst Scheduling process state in which the
CPU performs I/O.

I/O bus A physical connection of an I/O device
to a computer system.

I/O channel A dedicated, special-purpose CPU
found in large systems like mainframes for per-
forming I/O or offl oading the general-purpose
CPU.

I/O control A logical layer of the operating sys-
tem responsible for controlling I/O, consisting of
device drivers and interrupt handlers.

I/O manager In Windows, the system compo-
nent responsible for I/O.

I/O port A hardware connector allowing connec-
tion of an I/O device.

I/O request packet (IRP) In Windows, a data
structure to request fi le I/O that is sent from the
I/O manager to the appropriate device driver.

I/O subsystem The I/O devices and the part of
the kernel that manages I/O.

I/O-bound process A process that spends more
of its time doing I/O than doing computations

icons Images representing objects (such as fi les
or applications) that users can chose via the GUI.

idempotent Describes a function that, when
applied more than once, has the same result every
time.

identifi er Generally, a numeric tag for a device
or object. In networking, the unique host-id num-
ber identifying a system on a network.

idle process In Windows, a process that serves as
the container of all idle threads.

idle thread In some operating systems, a special
thread that runs on the CPU when no other thread
is ready to run.

immutable shared fi le In a remote fi le system,
a fi le that, once shared by its creator, cannot be
modifi ed.

imperative language Language for implement-
ing algorithms that are state-based (e.g., C, C++,
Java, and C#).

impersonation In Windows, the representation
of a thread by a token for security purposes.

implicit threading A programming model that
transfers the creation and management of thread-
ing from application developers to compilers and
run-time libraries.

incremental backup In fi le systems, a backup
that contains only some parts of a fi le system (the
parts that have changed since the last full and
incremental backups).

indefi nite blocking A situation in which one
or more processes or threads waits indefi nitely
within a semaphore.

index In fi le systems, an access method built
on top of direct access in which a fi le contains an
index with pointers to the contents of the fi le.

index block In indexed allocation, a block that
contains pointers to the blocks containing the fi le’s
data.

index root In NTFS, the part of the directory con-
taining the top level of the B+ tree.

indexed allocation In fi le-system block alloca-
tion, combining all block pointers in one or more
index blocks to address limits in linked allocation
and allow direct access to each block.

indirect block In UFS, a block containing point-
ers to direct blocks, which point to data blocks.

Infi niBand (IB) A high-speed network commu-
nications link.

infi nite blocking A scheduling risk in which a
thread that is ready to run is never put onto the

 Glossary G-17

CPU due to the scheduling algorithm; it is starved
for CPU time.

information maintenance A category of system
calls.

infrastructure as a service (IaaS) A type of com-
puting in which servers or storage are available
over the Internet (e.g, storage available for making
backup copies of production data).

inode In many fi le systems, a per-fi le data struc-
ture holding most of the metadata of the fi le. The
FCB in most UNIX fi le systems.

inode object The VFS representation of an indi-
vidual fi le.

input/output operations per second A measure
of random access I/O performance; the number of
inputs + outputs per second.

integrity label In Windows Vista and later ver-
sions, a mandatory access control component
assigned to each securable object and subject.

integrity levels A mechanism, introduced in
Windows Vista, that acts as a rudimentary capabil-
ity system for controlling access.

Intel 64 Intel 64 bit CPUs, part of a class of CPUs
collectively known as x86-64

interactive Describes a type of computing that
provides direct communication between the user
and the system.

intermachine interface In distributed comput-
ing, a set of low-level functions for cross-machine
interaction.

internal fragmentation Fragmentation that is
internal to a partition.

Internet A worldwide system of interconnected
computer networks.

Internet key exchange (IKE) A protocol that
uses public key encryption to allow secure sym-
metric key exchange for IPSec.

Internet protocol (IP) The low-level network-
ing protocol on which TCP and UDP are layered;
responsible for routing IP datagrams through net-
works such as the Internet.

Internet protocol security (IPSec) A network pro-
tocol suite providing authentication and symmetric-
key encryption of packets of network data.

Internet Service Providers (ISPs) Companies
that provide Internet access.

interpretation A methodology that allows a pro-
gram in computer language to be either executed
in its high-level form or translated to an interme-
diate form rather than being compiled to native
code.

interprocess communication (IPC) Communica-
tion between processes.

interrupt A hardware mechanism that enables
a device to notify the CPU that it needs attention.

interrupt address A variable provided along
with an interrupt signal to indicate the source of
the interrupt.

interrupt chaining A mechanism by which each
element in an interrupt vector points to the head of
a list of interrupt handlers, which are called indi-
vidually until one is found to service the interrupt
request.

Interrupt latency The period of time from the
arrival of an interrupt at the CPU to the start of the
routine that services the interrupt.

interrupt object The Windows representation of
an interrupt.

interrupt priority level Prioritization of inter-
rupts to indicate handling order.

interrupt request level (IRQL) A prioritization
method used in interrupt management.

interrupt service routine (ISR) An operating
system routine that is called when an interrupt sig-
nal is received.

interrupt vector An operating-system data struc-
ture indexed by interrupt address and pointing
to the interrupt handlers. A kernel memory data
structure that holds the addresses of the interrupt
service routines for the various devices.

interrupt-controller hardware Computer hard-
ware components for interrupt management.

interrupt-dispatch table The Windows term for
its interrupt vector.

interrupt-handler routine An operating system
routine that is called when an interrupt signal is
received.

interrupt-request line The hardware connection
to the CPU on which interrupts are signaled.

intruder Someone attempting to breach security.

intrusion prevention The attempt to detect
attempted and successful intrusions and properly
respond to them.

intrusion-prevention systems (IPS) Systems to
detect and prevent intrusions, usually in the form
of self-modifying fi rewalls.

inverted page table A page-table scheme that
has one entry for each real physical page frame in
memory; the entry maps to a logical page (virtual
address) value.

iSCSI The protocol used to communicate with
SCSI devices; used across a network for more dis-
tant access.

G-18 Glossary

Itanium Intel IA-64 CPU.

iteration space In Intel threading building
blocks, the range of elements that will be iterated.

Java virtual machine In programming-
environment virtualization, the process that
implements the Java language and allows execu-
tion of Java code.

job objects In Windows, data structures for
tracking collections of processes (e.g., to set CPU
usage limits).

job pool The location where jobs are kept on disk
while waiting for main memory to become available.

job scheduling The task of choosing which jobs
to load into memory and execute.

job A set of commands or processes executed by
a batch system.

journaling In a fi le system that features a write
transaction log, logging of write activities for
replay across actual fi le-system structures and con-
sistency protection.

journaling fi le system A fi le system that features
a write transaction log where all write activities are
logged for replay across actual fi le-system struc-
tures and consistency protection.

just-in-time (JIT) In Java virtual machine
implementations, describes a compiler that con-
verts bytecode to native CPU instructions the fi rst
time the bytecode is interpreted to speed later
execution.

Kerberos A network authentication protocol
invented at M.I.T. that forms the basis for the Mic-
rosoft network authentication protocol.

kernel The operating system component run-
ning on the computer at all times after system boot.

kernel abstractions Components provided with
the Mach microkernel to add functionality beyond
the microkernel, such as tasks, threads, memory
objects, and ports.

kernel environment In the layered macOS and
iOS operating system design, the Darwin layer
that includes the Mach microkernel and the BSD
UNIX kernel.

kernel extensions (kexts) Third-party com-
ponents added to the kernel (usually to support
third-party devices or services).

kernel mode A CPU mode in which all instruc-
tions are enabled. The kernel runs in this mode.
See also user mode.

kernel threads Threads running in kernel mode.

kernel-mode driver framework (KMDF) A
framework in Windows to facilitate the writing of
kernel-mode device drivers.

kernel-mode thread (KT) In Windows, the name
for the state of a thread when it is running in kernel
mode.

Kernighan’s Law “Debugging is twice as hard as
writing the code in the fi rst place. Therefore, if you
write the code as cleverly as possible, you are, by
defi nition, not smart enough to debug it.”

keys In the context of protection, unique bit pat-
terns held by domains corresponding with unique
bit patterns (locks) held by objects. Generally,
secrets used in cryptography.

keystream An infi nite set of bits used to encrypt
a plain-text stream through an XOR operation in a
stream cipher.

keystroke logger A program that captures key-
strokes entered by users.

kilobyte (KB) 1,024 bytes.

Kubernetes An orchestration tool for containers.

labels In mandatory access control, identifi ers
assigned to objects and/or subjects. The label is
checked by the operating system when an opera-
tion is requested to determine if it is allowed.

layered approach A kernel architecture in which
the operating system is separated into a number of
layers (levels); typically, the bottom layer (layer 0)
is the hardware, and the highest (layer N) is the
user interface.

lazy swapper A swapping method in which only
pages that are requested are brought from second-
ary storage into main memory.

least frequently used (LFU) In general, an algo-
rithm that selects the item that has been used least
frequently. In virtual memory, when access counts
are available, selecting the page with the lowest
count.

least privilege Design principle stating that
every program and every privileged user of the
system should operate using the least amount of
privilege necessary to complete the job.

least recently used (LRU) In general, an algo-
rithm that selects the item that has been used
least recently. In memory management, selecting
the page that has not been accessed in the longest
time.

lgroups In Solaris, locality groups located in the
kernel; each lgroup gathers together CPUs and
memory, and each CPU in that group can access
any memory in the group within a defi ned latency
interval. A method for dealing with NUMA.

library operating systems The applications that
run on unikernels, containing both the kernel and
the application code.

 Glossary G-19

lightweight directory-access protocol (LDAP) A
secure distributed naming service used through-
out the computer industry.

lightweight process (LWP) A virtual processor-
like data structure allowing a user thread to map
to a kernel thread.

limit register A CPU register that defi nes the
size of the range. Together with the base register, it
defi nes the logical address space.

line discipline In Linux, an interpreter for the
information from a terminal device.

link In fi le naming, a fi le that has no contents but
rather points to another fi le.

linked allocation A type of fi le-system block
allocation in which each fi le is a linked list of allo-
cated blocks containing the fi le’s contents. Blocks
may be scattered all over the storage device.

linked list A data structure in which items are
linked to one another.

linker A system service that combines relocat-
able object fi les into a single binary executable fi le.

Linux distribution A Linux system plus admin-
istrative tools to simplify the installation, upgrad-
ing, and management of the system.

Linux instance A set of Pico processes running in
Windows created by WSL containing an init pro-
cess and a bash shell (allowing executing of Linux
commands within Windows)

Linux kernel The operating-system kernel of a
Linux system.

Linux system The kernel, programs, and fi les
that comprise a complete, runnable Linux system.

list A data structure that presents a collection of
data values as a sequence.

little-endian A system architecture that stores
the least signifi cant byte fi rst in a sequence of bytes.

Little’s formula A scheduling equation (n = ? ×
W) that is particularly useful because it is valid for
any scheduling algorithm and arrival distribution.

live migration In virtualization, the movement
of a running guest between two separate physical
hosts.

LiveCD An operating system that can be booted
and run from a CD-ROM (or more generally from
any media) without being installed on a system’s
boot disk(s).

LiveDVD An operating system that can be
booted and run from a DVD (or more generally
from any media) without being installed on a sys-
tem’s boot disk(s).

livelock A condition in which a thread continu-
ously attempts an action that fails.

liveness A set of properties that a system must
satisfy to ensure that processes make progress
during their execution life cycle.

living document A document that is modifi ed
over time to keep it up to date.

load balancing The movement of jobs or net-
work packets between various components (say,
computers in a network) to distribute the load or
route around failures. Load balancing attempts to
keep the workload evenly distributed across all
processors in an SMP system.

load sharing The ability of a system with multi-
ple CPU cores to schedule threads on those cores.

loadable kernel module (LKM) A kernel
structure in which the kernel has a set of core
components and can link in additional services
via modules, either at boot time or during run
time.

loader A system service that loads a binary exe-
cutable fi le into memory, where it is eligible to run
on a CPU core.

local procedure call In Windows, a method used
for communication between two processes on the
same machine.

local replacement In virtual-memory frame allo-
cation, allowing a process to select a replacement
frame only from the set of all frames allocated to
the process.

local replacement algorithm A virtual-memory
page replacement algorithm that avoids thrash-
ing by not allowing a process to steal frames from
other processes.

local-area network (LAN) A network that con-
nects computers within a room, a building, or a
campus.

locality The tendency of processes to reference
memory in patterns rather than randomly.

locality model A model for page replacement
based on the working-set strategy.

locality of reference The tendency of processes
to reference memory in patterns rather than
randomly.

location independence In distributed comput-
ing, a feature in which the name of an object does
not need to be changed when the object’s physical
location changes.

location transparency In distributed computing,
a feature in which the name of an object does not
reveal its physical location.

lock A mechanism that restricts access by pro-
cesses or subroutines to ensure integrity of shared
data.

G-20 Glossary

locked In general, fi xed in place. In memory
management, pages can be locked into memory to
prevent them from being paged out.

lock-free An algorithm that provides protection
from race conditions without requiring the over-
head of locking.

locking Protecting critical sections, data struc-
tures, or objects though the use of code that coor-
dinates access.

lock-key scheme In protection, a compromise
between access lists and capability lists in which
each object has a unique bit pattern (a lock) and
each domain has a unique bit pattern (a key).

log fi le A fi le containing error or “logging” infor-
mation; used for debugging or understanding the
state or activities of the system.

log-based transaction-oriented fi le system A fi le
system that features a write transaction log where
all write activities are logged for replay across
actual fi le-system structures and consistency
protection.

logic bomb A remote-access tool designed to
operate only when a specifi c set of logical condi-
tions is met.

logical address Address generated by the CPU;
must be translated to a physical address before it
is used.

logical address space The set of all logical
addresses generated by a program.

logical blocks Logical addresses used to access
blocks on storage devices.

logical cluster numbers In Windows, the name
given to secondary storage physical addresses.

logical fi le system A logical layer of the oper-
ating system responsible for fi le and fi le-system
metadata management; maintains the FCBs.

logical formatting The creation of a fi le system
in a volume to ready it for use.

logical memory Memory as viewed by the user;
usually a large uniform array, not matching physi-
cal memory in virtual memory systems.

logical records File contents logically designated
as fi xed-length structured data.

LOOK An HDD I/O scheduling algorithm mod-
ifi cation of SCAN that stops the head after the last
request is complete (rather than at the innermost
or outermost cylinder).

loopback Communication in which a connection
is established back to the sender.

loosely coupled Describes a kernel design in
which the kernel is composed of components that
have specifi c and limited functions.

lottery scheduling A scheduling algorithm in
which “lottery tickets” are given to threads and a
lottery number is chosen at random to determine
the next thread to get CPU time.

low-fragmentation heap (LFH) An optimization
of the Windows default heap designed to decrease
fragmentation.

low-level formatting The initialization of a stor-
age medium in preparation for its use as a com-
puter storage device.

Lustre A common open-source clustered fi le
system.

LXC A Linux container technology.

Mach An operating system with microkernel
structure and threading; developed at Carnegie
Mellon University.

Mach-O The macOS format of executable fi les.

magic cookie A crude method of storing a text
string at the start of a text fi le to indicate the type
of text in the fi le.

magic number A crude method of storing a
number at the start of a fi le to indicate the type of
the data in the fi le.

magnetic tape A magnetic media storage device
consisting of magnetic tape spooled on reels and
passing over a read-write head. Used mostly for
backups.

main queue Apple OS per-process block queue.

main TLB ARM CPU outer-level TLB; checked
after the micro TLB lookup and before a miss
causes a page table walk.

mainframe The largest class of computers (along
with supercomputers), hosting hundreds of users
and many and/or large jobs.

major fault In virtual memory, a page fault that
can be resolved without having to page in data
from secondary storage.

malware Software designed to exploit, disable,
or damage computer systems.

mandatory access control (MAC) Access control
settings enforced in the form of system policy.

mandatory fi le-lock mechanism A fi le-locking
system in which the operating system enforces
locking and fi le access.

man-in-the-middle attack An attack in which
the attacker sits in the middle of the data fl ow of
a communication, masquerading as the sender to
the receiver and vice versa.

MapReduce A Google-created big data pro-
gramming model and implementation for parallel
processing across nodes in a distributed cluster.
A layer on top of the Google fi le system (GFS), it

 Glossary G-21

allows developers to carry out large-scale parallel
computations easily.

marshaling Packaging a communication into an
expected format for transmittal and reception.

maskable Describes an interrupt that can be
delayed or blocked (such as when the kernel is in
a critical section).

masquerading A practice in which a participant
in a communication pretends to be someone else
(another host or another person).

master boot record (MBR) Windows boot code,
stored in the fi rst sector of a boot partition.

master fi le directory (MFD) In two-level directory
implementation, the index pointing to each UFD.

master fi le table The NTFS volume control block.

master key In the lock-key protection scheme, a
key that is associated with each object and can be
defi ned or replaced with the set-key operation to
revoke or change access rights.

matchmaker A function that matches a caller to
a service being called (e.g., a remote procedure call
attempting to fi nd a server daemon).

mean time between failure (MTBF) The statis-
tical mean time that a device is expected to work
correctly before failing.

mean time to data loss The statistical mean of
the time until data is lost.

mean time to repair The statistical mean of the
time to repair a device (e.g., to get a replacement
and install it).

mechanical storage device A storage device
based on moving mechanical parts (such as HDDs,
optical disks, and magnetic tape); one form of
nonvolatile storage.

mechanism An operation that defi nes how
something will be done.

medium access control (MAC) address A
unique byte number assigned to every Ethernet
device allowing it to be located by packets sent
across a LAN.

megabyte (MB) 1,024^2 bytes.

memory Volatile storage within a computer system.

memory barriers Computer instructions that
force any changes in memory to be propagated to
all other processors in the system.

memory compression In memory management,
an alternative to paging involving compressing the
contents of frames to decrease the memory used.

memory compression process In Windows 10,
a process that maintains a working set of com-
pressed standby pages.

memory fences Computer instructions that force
any changes in memory to be propagated to all
other processors in the system.

memory manager (MM) The Windows name for
the component that manages memory.

memory mapping A fi le-access method in which
a fi le is mapped into the process memory space so
that standard memory access instructions read and
write the contents of the fi le; an alternative to the
use of read() and write() calls.

memory model Computer architecture mem-
ory guarantee, usually either strongly ordered or
weakly ordered.

memory resident Objects, such as pages, that are
in main memory and ready for threads to use or
execute.

memory stall An event that occurs when a thread
is on CPU and accesses memory content that is not
in the CPU’s cache. The thread’s execution stalls
while the memory content is fetched.

memory transaction A sequence of memory
read–write operations that are atomic.

memory-management unit (MMU) The hard-
ware component of a computer CPU or mother-
board that allows it to access memory.

memory-mapped fi le A fi le that is loaded into
physical memory via virtual memory methods,
allowing access by reading and writing to the
memory address occupied by the fi le.

memory-mapped I/O A device I/O method in
which device-control registers are mapped into the
address space of the processor.

message In networking, a communication, con-
tained in one or more packets, that includes source
and destination information to allow correct
delivery. In message-passing communications,
a packet of information with metadata about its
sender and receiver.

message digest The calculation resulting from a
hash function.

message passing In interprocess communi-
cation, a method of sharing data in which mes-
sages are sent and received by processes. Packets
of information in predefi ned formats are moved
between processes or between computers.

message-authentication code (MAC) A cryp-
tographic checksum calculated in symmetric
encryption; used to authenticate short values.

message-passing model A method of interprocess
communication in which messages are exchanged.

metadata A set of attributes of an object. In fi le
systems, e.g., all details of a fi le except the fi le’s
contents.

G-22 Glossary

metaslabs Chunks of blocks. In ZFS, a pool of stor-
age is split into metaslabs for easier management.

methods In Java, functions that act on objects
and data fi elds.

metropolitan-area network (MAN) A network
linking buildings within a city.

micro TLB ARM CPU inner-level TLBs, one for
instructions and one for data.

microkernel An operating-system structure that
removes all nonessential components from the
kernel and implements them as system and user-
level programs.

Microsoft interface defi nition language The
Microsoft text-based interface defi nition language;
used, e.g., to write client stub code and descriptors
for RPC.

middleware A set of software frameworks
that provide additional services to application
developers.

minicomputer A mid-sized computer, smaller
than a mainframe but larger (in resources and
users) than a workstation.

minidisks Virtual disks used in early IBM vir-
tual systems.

minimum granularity In the Completely Fair
Scheduler, a confi gurable variable representing the
minimum length of time any process is allocated
to the processor.

miniport driver In Windows I/O, the device-
specifi c driver.

minor fault In virtual memory, a page fault
resolved by executing an I/O to bring in the page
from secondary storage.

mirrored volume A volume in which two
devices are mirrored.

mirroring In storage, a type of RAID protection
in which two physical devices contain the same
content. If one device fails, the content can be read
from the other.

mobile computing A mode of computing involv-
ing small portable devices like smartphones and
tablet computers.

mode bit A CPU status bit used to indicate the
current mode: kernel (0) or user (1).

modify bit An MMU bit used to indicate that a
frame has been modifi ed (and therefore must have
its contents saved before page replacement).

module loader and unloader In Linux, user-mode
utilities that work with the module-management
system to load modules into the kernel.

module-management system In Linux, the facil-
ity that allows kernel modules to be loaded into

memory and to communicate with the rest of the
kernel.

monitor A high-level language synchroniza-
tion construct that protects variables from race
conditions.

monitor call A software-triggered interrupt
allowing a process to request a kernel service.

monoculture A community of computer systems
that are very similar to one another. This similarity
makes them easier to attack and thus represents a
threat to security.

monolithic In kernel architecture, describes a ker-
nel without structure (such as layers or modules).

Moore’s Law A law predicting that the number
of transistors on an integrated circuit would dou-
ble every eighteen months.

most frequently used (MFU) In general, an algo-
rithm that selects the item that has been used most
frequently. In virtual memory, when access counts
are available, selecting the page with the highest
count.

mount point The location within the fi le struc-
ture where a fi le system is attached.

mount protocol The protocol for mounting a fi le
system in a remote fi le system.

mount table An in-memory data structure con-
taining information about each mounted volume.
It tracks fi le systems and how they are accessed.

mounting Making a fi le system available for use
by logically attaching it to the root fi le system.

multicore Multiple processing cores within the
same CPU chip or within a single system.

multicore processor Multiple processing cores
within the same CPU chip.

multicore systems Systems that have two or more
hardware processors (CPU cores) in close commu-
nication, sharing the computer bus and sometimes
the clock, memory, and peripheral devices.

multifactor authentication Authentication based
on two or more sources of data, with more sources
generally providing stronger authentication.

multilevel feedback queue A scheduling algo-
rithm that allows a process to move between
queues.

multilevel queue A scheduling algorithm that
partitions the ready queue into several separate
queues.

multiple universal-naming-convention provider
(MUP) The component within Windows that
executes remote fi le accesses.

multiple user interface (MUI) A Windows
Vista feature that allows multiple user interfaces,

 Glossary G-23

possibly confi gured for different locales, to be
used concurrently.

multiprocessor Multiple processors within the
same CPU chip or within a single system.

multiprocessor systems Systems that have two
or more hardware processors (CPU cores) in close
communication, sharing the computer bus and
sometimes the clock, memory, and peripheral
devices.

multiprogramming A technique that increases
CPU utilization by organizing jobs (code and data)
so that the CPU always has a job to execute.

multitasking The concurrent performance of
multiple jobs. A CPU executes multiple jobs by
switching among them, but the switches occur
so frequently that users can interact with the
processes.

multithreaded A term describing a process or
program with multiple threads of control, allow-
ing multiple simultaneous execution points.

mutex lock A mutual exclusion lock; the sim-
plest software tool for assuring mutual exclusion.

mutual exclusion A property according to which
only one thread or process can be executing code
at once.

name server In the domain-name system, a host
or software that provides resolving services.

named pipes A connection-oriented messaging
mechanism—e.g., allowing processes to communi-
cate within a single computer system.

named semaphore A POSIX scheduling con-
struct that exists in the fi le system and can be
shared by unrelated processes.

named shared-memory object In Windows API,
a section of a memory-mapped fi le accessible by
name from multiple processes.

namespace In Linux, a process’s specifi c view of
the fi le system hierarchy.

naming In distributed computing, the mapping
between logical and physical objects.

national-language-support (NLS) A Windows
API providing support for localization (including
date, time, and money formats).

need-to-know principle The principle that only
those resources currently needed should be avail-
able to use at a given time.

nested page tables (NPTs) In virtualization, a
method used by the virtual machine manager to
maintain page-table state both for guests and for
the system.

network In the simplest terms, a communication
path between two or more systems.

network address translation In networking, the
mapping of one header address to another by mod-
ifying the network packets (e.g., allowing a host
to provide IP addresses to multiple guests while
presenting only one IP address to the connected
network).

network computer A limited computer that
understands only web-based computing.

network device interface specifi cation
(NDIS) An internal Windows networking inter-
face separating network adapters from transport
protocols.

network devices I/O devices that connect to a
network.

network fi le system (NFS) A common network
fi le system used by UNIX, Linux, and other operat-
ing systems to share fi les across a network.

network operating system A type of operating
system that provides features such as fi le sharing
across a network, along with a communication
scheme that allows different processes on differ-
ent computers to exchange messages. It provides
an environment in which users can access remote
resources by remote login or data transfer between
remote and local systems.

network time protocol A network protocol for
synchronizing system clocks.

network virtual memory A distributed comput-
ing feature similar to virtual memory but with the
backing store on a remote system.

network-attached storage (NAS) Storage accessed
from a computer over a network.

NFS protocol The protocol used for remote fi le
access, remote fi le system mounting, etc., by the
NFS fi le system.

nice value One of a range of values from ?20 to
+19, where a numerically lower value indicates a
higher relative scheduling priority.

NIS A distributed naming service that provides
username, password, hostname, and printer infor-
mation to a set of computers.

nonblocking A type of I/O request that allows
the initiating thread to continue while the I/O
operation executes. In interprocess communi-
cation, a communication mode in which the
sending process sends the message and resumes
operation and the receiver process retrieves
either a valid message or a null if no message is
available. In I/O, a request that returns whatever
data is currently available, even if it is less than
requested.

noncontainer objects In Windows 10, a category
of objects that cannot contain other objects.

G-24 Glossary

nonmaskable interrupt An interrupt that cannot
be delayed or blocked (such as an unrecoverable
memory error)

nonpreemptive Scheduling in which, once a core
has been allocated to a thread, the thread keeps the
core until it releases the core either by terminating
or by switching to the waiting state.

nonpreemptive kernels A type of kernel that
does not allow a process running in kernel mode
to be preempted; a kernel-mode process will run
until it exits kernel mode, blocks, or voluntarily
yields control of the CPU.

nonrepudiation Proof that an entity performed an
action (frequently performed by digital signatures).

non-uniform memory access (NUMA) An archi-
tecture aspect of many computer systems in which
the time to access memory varies based on which
core the thread is running on (e.g., a core interlink
is slower than accessing DIMMs directly attached
to core).

nonvolatile memory (NVM) Persistent storage
based on circuits and electric charges.

nonvolatile storage (NVS) Storage in which data
will not be lost in a power outage or similar event.

NOOP The Linux NVM scheduling algorithm,
fi rst come fi rst served but with adjacent requests
merged into fewer, larger I/O requests.

NUMA node One or more cores (e.g., cores
that share a cache) that are grouped together as a
scheduling entity for affi nity or other uses.

NVM express (NVMe) A high-speed I/O bus for
NVM storage.

NVRAM DRAM with battery or other backup
power, rendering it nonvolatile.

object An instance of a class or an instance of
a data structure. In Windows and generally, an
instance of an object type.

object linking and embedding (OLE) A Micro-
soft technology allowing services to provide func-
tions to components (e.g., for inserting spread-
sheets into Word documents).

object manager In Windows, the kernel (execu-
tive) component that manipulates objects.

object type In Windows, a system-defi ned data
type that has a set of attributes and methods that
help defi ne its behavior.

off-line Generally, a facility, system, or comput-
ing component that is unavailable. In fi le system
implementation, operations executing while the
fi le system is unavailable for use.

one-time password A password that is only
valid once.

on-line Generally, a facility, system, or comput-
ing component that is available. In fi le system
implementation, operations executing while the
fi le system is available for use.

open count The number of processes having an
open fi le.

open-fi le table An operating system data struc-
ture containing details of every fi le open within
the system.

open-source operating system An operating
system or other program available in source-code
format rather than as compiled binary code.

operating system A program that manages a
computer’s hardware, provides a basis for appli-
cation programs, and acts as an intermediary
between the computer user and the computer
hardware.

optimal page-replacement algorithm A theo-
retically optimal page replacement algorithm that
has the lowest page-fault rate of all algorithms and
never suffers from Belady’s anomaly.

Orange Book U.S. Department of Defense
Trusted Computer System Evaluation Criteria;
a method of classifying the security of a system
design.

orphan The child of a parent process that termi-
nates in a system that does not require a terminat-
ing parent to cause its children to be terminated.

OS/2 A PC operating system from the mid 1980s
co-developed by IBM and Microsoft to replace
MS-DOS; generally considered to be a failure.

OSI protocol stack A set of cooperating network
protocols that form a fully functional network. The
OSI model formalized some of the earlier work
done in network protocols but is currently not in
widespread use.

out-of-band In networking, a term describing
data delivered in a manner independent of the
main data stream (e.g., delivery of a symmetric key
in a paper document).

out-of-memory (OOM) killer In Linux, a routine
that executes when free memory is very low, termi-
nating processes to free memory.

over-allocating Generally, providing access to
more resources than are physically available. In
virtual memory, allocating more virtual memory
than there is physical memory to back it.

overcommitment In virtualization, providing
resources to guests that exceed available physical
resources.

over-provisioning In non-volatile memory,
space set aside for data writes that is not counted
in the device free space.

 Glossary G-25

owner In fi le permissions, the userid that owns
and controls access to a fi le.

owner rights In fi le permissions, the userid that
owns and controls access to a fi le.

page address extension (PAE) Intel IA-32 CPU
architecture hardware that allows 32-bit proces-
sors to access physical address space larger than
4GB.

page allocator The kernel routine responsible for
allocating frames of physical memory.

page cache In fi le I/O, a cache that uses virtual
memory techniques to cache fi le data as pages
rather than fi le-system-oriented blocks for
effi ciency.

page directory In Intel IA-32 CPU architecture,
the outermost page table.

page directory pointer table PAE pointer to page
tables.

page fault A fault resulting from a reference to a
non-memory-resident page of memory.

page frame A Windows virtual memory data
structure.

page frame number (PFN) In Windows, the
name of the indicator of the page frame address.

page number Part of a memory address gener-
ated by the CPU in a system using paged memory;
an index into the page table.

page offset Part of a memory address generated
by the CPU in a system using paged memory; the
offset of the location within the page of the word
being addressed.

page replacement In virtual memory, the selec-
tion of a frame of physical memory to be replaced
when a new page is allocated.

page slot In Linux swap-space management, a
part of the data structure tracking swap-space use.

page table In paged memory, a table containing
the base address of each frame of physical mem-
ory, indexed by the logical page number.

page-directory entry (PDE) A Windows virtual-
memory data structure.

page-fault frequency The frequency of page
faults.

page-fault rate A measure of how often a page
fault occurs per memory access attempt.

pageout policy Generally, an algorithm for
deciding which memory pages to page out. In
Linux, the virtual memory pageout policy uses a
modifi ed version of the second-chance algorithm.

pager The operating-system component that
handles paging.

page-replacement algorithm In memory man-
agement, the algorithm that chooses which victim
frame of physical memory will be replaced by a
needed new frame of data.

page A fi xed-sized block of logical memory.

page-table base register In paged memory, the
CPU register pointing to the in-memory page
table.

page-table entry (PTE) A Windows virtual
memory data structure.

page-table length register A CPU register indi-
cating the size of the page table.

paging A common memory management scheme
that avoids external fragmentation by splitting
physical memory into fi xed-sized frames and
logical memory into blocks of the same size called
pages.

paging fi le The Windows term for backing store.

paging mechanism In Linux, the kernel compo-
nent that carries out the transfer of pages back and
forth to backing store.

paired password In authentication, a challenge-
response set of secret keys, where only the correct
response to the challenge provides authentication.

parallel fi le system (PFS) A fi le system that is
LAN-based and treats N systems storing data and
Y clients accessing the data as a single client-server
instance; more complex than a client-server DFS
but less complex than a cluster-based DFS. GPFS
and Lustre are examples.

parallel regions Blocks of code that may run in
parallel.

parallel systems Systems that have two or more
hardware processors (CPU cores) in close commu-
nication, sharing the computer bus and sometimes
the clock, memory, and peripheral devices.

parallelization The process of dividing a pro-
gram into separate components that run in parallel
on individual cores in a computer or computers in
a cluster.

paravirtualization A technique in which a guest
operating system is modifi ed to work in coopera-
tion with a virtual machine manager.

parent In a tree data structure, a node that has
one or more nodes connected below it.

partition Logical segregation of storage space
into multiple area; e.g., on HDDs, creating several
groups of contiguous cylinders from the devices’
full set of cylinders.

partition boot sector The NTFS boot control block.

passphrase A longer, generally more secure
password composed of multiple words.

G-26 Glossary

password A secret key, usually used to authenti-
cate a user to a computer.

path name The fi le-system name for a fi le, which
contains all the mount-point and directory-entry
information needed to locate the fi le (e.g., “C:/
foo/bar.txt” and “/foo/bar.txt”)

path-name translation The parsing of a fi le name
into separate directory entries, or components.

PCIe bus A common computer I/O bus connect-
ing the CPU to I/O devices.

peer-to-peer (p2p) A mode of distributed com-
puting in which all nodes act as both clients of
other nodes and servers to other nodes.

penetration test The scanning of a target entity
to look for known vulnerabilities.

performance tuning The activity of improving
performance by removing bottlenecks.

periodic A type of real-time process that repeat-
edly moves at fi xed intervals between two modes:
needing CPU time and not needing CPU time.

permissions An entity’s access rights to an object
(e.g., a user’s access rights to a fi le).

per-process open-fi le table A kernel in-memory
per-process data structure containing pointers to
the system-wide open-fi le table, as well as other
information, for all fi les the process has open.

personal fi rewall A software layer, either part
of the operating system or added to a computer,
limiting communication to and from a given host.

personal identifi cation number A usually short
and not very secure password composed of some
combination of digits 0-9.

personal-area network (PAN) A network linking
devices within several feet of each other (e.g., on a
person).

petabyte (PB) 1,024^5 bytes.

Peterson’s solution A historically interesting
algorithm for implementing critical sections.

phishing A class of social engineering attacks in
which a legitimate-looking e-mail or website tricks
a user into breaching confi dentiality or enabling
privilege escalation.

PHY The physical hardware component that
connects to a network (implements layer 1 in the
OSI model).

physical address Actual location in physical
memory of code or data.

physical address space The set of all physical
addresses generated by a program.

physical formatting The initialization of a stor-
age medium in preparation for its use as a com-
puter storage device.

physical-to-virtual (P-to-V) In virtualization, the
conversion of a physical system’s operating sys-
tem and applications to a virtual machine.

Pico In WSL, a special Linux-enabling process
that translates Linux system calls to the LXCore
and LXSS services.

pinning In memory management, locking pages
into memory to prevent them from being paged out.

pipe A logical conduit allowing two processes to
communicate.

platform as a service (PaaS) A software stack
ready for application use via the Internet (e.g., a
database server).

platter An HDD component that has a magnetic
media layer for holding charges.

plug-and-play (PnP) manager In Windows, the
manager responsible for detecting and enumerat-
ing devices when the system is booting and adding
and removing devices when the system is running.

pluggable authentication module (PAM) A
shared library that can be used by any system com-
ponent to authenticate users.

plug-in An add-on functionality that expands
the primary functionality of a process (e.g., a web
browser plug-in that displays a type of content dif-
ferent from what the browser can natively handle).

point-to-point tunneling protocol (PPTP) A
protocol in Windows and other systems allowing
communication between remote-access server
modules and client systems connected across a
WAN.

policy A rule that defi nes what will be done.

policy algorithm In Linux, a part of the paging
system that decides which pages to write out to
backing store and when to write them.

polling An I/O loop in which an I/O thread con-
tinuously reads status information waiting for I/O
to complete.

pool In virtual memory, a group of free pages
kept available for rapid allocation (e.g., for copy-
on-write). In ZFS, drives, partitions, or RAID sets
that can contain one or more fi le systems.

pop The action of removing an item from a stack
data structure.

port A communication address; a system may
have one IP address for network connections but
many ports, each for a separate communication.
In computer I/O, a connection point for devices
to attach to computers. In software development,
to move code from its current platform to another
platform (e.g., between operating systems or
hardware systems). In the Mach OS, a mailbox for
communication.

 Glossary G-27

port driver In Windows I/O, the common driver
for a class of devices.

port number In TCP/IP and UDP/IP network-
ing, an address of a service on a system.

port set A collection of ports, as declared by a
task, that can be grouped together and treated as
one port for the purposes of the task.

portable An aspect of software that describes its
ease of transfer between CPU architectures and
computer systems.

portable executable (PE) The Windows format
for executable fi les.

portals Gateways between requestors and ser-
vices running on provider computers.

position-independent code (PIC) In Linux,
binary code compiled from shared libraries that
can be loaded anywhere in memory.

positioning time On an HDD, the time it takes the
read-write head to position over the desired track.

power manager In Windows, the component
that implements power management policies.

power users Users with unusually deep knowl-
edge of a system.

power-of-2 allocator In the buddy system, an
allocator that satisfi es memory requests, in units
sized as a power of 2, from a fi xed-sized segment
consisting of contiguous pages.

power-on self-test (POST) A fi rmware routine
run at system power-on that tests the system for
hardware issues, identifi es and initializes many of
the attached devices, and builds the description of
the devices used by the advanced confi guration
and power interface (ACPI).

preemptive A form of scheduling in which pro-
cesses or threads are involuntarily moved from the
running state (e.g., by a timer signaling the kernel
to allow the next thread to run).

preemptive kernel A type of kernel that allows
a process to be preempted while it is running in
kernel mode.

preemptive multitasking A model of multitask-
ing in which threads on cores may be preempted
by higher-priority threads before fi nishing their
scheduled time quanta.

prepaging In virtual memory, bringing pages
into memory before they are requested.

principle of least privilege A design principle
stating that every program and every privileged
user of the system should operate using the least
amount of privilege necessary to complete the job.

priority inversion A scheduling challenge aris-
ing when a higher-priority process needs to read

or modify kernel data that are currently being
accessed by a lower-priority process.

priority number A number indicating the posi-
tion of a process in a conditional-wait queue in a
monitor construct.

priority paging Prioritizing selection of victim
frames based on some criteria, such as avoiding
selection of shared library pages.

priority replacement algorithm A virtual mem-
ory page replacement algorithm that avoids
thrashing by not allowing a process to steal frames
from other processes.

priority-inheritance protocol A protocol for
solving priority inversion in which all processes
that are accessing resources needed by a higher-
priority process inherit that higher priority until
they are fi nished with the resources in question.

priority scheduling A scheduling algorithm in
which a priority is associated with each thread and
the free CPU core is allocated to the thread with
the highest priority.

private cloud Cloud computing run by a com-
pany for that company’s own use.

private key In an asymmetric encryption algo-
rithm, a key that must be kept private for use in
authenticating, encrypting, and decrypting.

privilege escalation The enabling of more priv-
ileges than an entity (process, system, person)
should have.

privileged instructions Instructions that can
execute only if the CPU is in in kernel mode.

privileged mode A CPU mode in which all
instructions are enabled. The kernel runs in this
mode. See also user mode.

proc fi le system (/proc) A pseudo fi le system
using fi le-system interfaces to provide access to a
system’s process name space.

procedural language A language that imple-
ments state-based algorithms (e.g., C, C++, Java,
and C#).

process A program loaded into memory and
executing.

process control A category of system calls.

process control block A per-process kernel data
structure containing many pieces of information
associated with the process.

process identifi er (pid) A unique value for each
process in the system that can be used as an index
to access various attributes of a process within the
kernel.

process lifetime management (PLM) A Win-
dows power-saving feature that suspends all

G-28 Glossary

threads within a process that has not been used for
a few seconds.

process migration The movement of a process
between computers.

process name A human-readable name for a
process.

process scheduler A scheduler that selects an
available process (possibly from a set of several
processes) for execution on a CPU.

process synchronization Coordination of access
to data by two or more threads or processes.

process-contention scope (PCS) A scheduling
scheme, used in systems implementing the many-
to-one and many-to-many threading models, in
which competition for the CPU takes place among
threads belonging to the same process.

processor affi nity A kernel scheduling method
in which a process has an affi nity for (prefers) the
processor on which it is currently running.

processor groups In Windows 7, processors
grouped together for management and scheduling.

producer A process role in which the process
produces information that is consumed by a con-
sumer process.

production kernels Kernels released for produc-
tion use (as opposed to development use).

profi ling Periodically sampling the instruction
pointer to determine which code is being executed;
used in debugging and performance tuning.

program counter A CPU register indicating the
main memory location of the next instruction to
load and execute.

programmable interval timer A hardware timer
provided by many CPUs.

programmed I/O (PIO) A method of transfer-
ring data between a CPU and a peripheral device
in which data are transferred one byte at a time.

programming-environment virtualization Vir-
tualization in which a virtual machine manager
does not virtualize real hardware but instead
creates an optimized virtual system (examples
include Oracle Java and Microsoft.Net).

project In Solaris scheduling, a group of pro-
cesses scheduled as a unit.

proportional allocation An allocation algorithm
that assigns a resource in proportion to some
aspect of the requestor. In virtual memory, the
assignment of page frames in proportion to the
size each process.

proportional share A scheduler that operates by
allocating T shares among all applications, ensur-
ing that each gets a specifi c portion of CPU time.

protection A category of system calls. Any mecha-
nism for controlling the access of processes or users
to the resources defi ned by a computer system.

protection domain In protection, a set of
resources that a process may access. In virtualiza-
tion, a virtual machine manager creates a protec-
tion domain for each guest to inform the CPU of
which physical memory pages belong to that guest.

protection mask In Linux and UNIX, a set of
bits assigned to an object specifying which access
modes (read, write, execute) are to be granted to
processes with owner, group, or world access
writes to the object.

protection rings A model of privilege separation
consisting of a series of rings, with each successive
ring representing greater execution privileges.

pseudo device driver In virtualization, a guest
device driver that does not directly control sys-
tem hardware but rather works with the virtual
machine manager to access the device.

PTE table A Windows virtual-memory data
structure.

Pthreads The POSIX standard (IEEE 1003.1c)
defi ning an API for thread creation and synchroni-
zation (a specifi cation for thread behavior, not an
implementation).

public cloud Cloud computing available via the
Internet to anyone willing to pay for the services
offered.

public domain The total absence of copyright
protection. Software in the public domain can be
used as desired by anyone, with no limits.

public key In asymmetric encryption algorithm,
a key that can be distributed for encrypting and
decrypting.

public key encryption A cipher algorithm in
which different keys are used for encryption and
decryption.

pull migration Migration that occurs when an
idle processor pulls a waiting thread from a busy
processor.

pure demand paging A demand paging scheme
wherein no page is brought into memory until it is
referenced.

push The action of placing a value on a stack
data structure.

push migration Migration in which a task peri-
odically checks the load on each processor and, if
it fi nds an imbalance, evenly distributes the load
by moving (or pushing) threads from overloaded
to idle or less busy processors.

Quest-V An example of a partitioning hypervisor.

 Glossary G-29

queue A sequentially ordered data structure that
uses the fi rst-in, fi rst-out (FIFO) principle; items
are removed from a queue in the order in which
they were inserted.

queueing-network analysis An area of comput-
ing study in which algorithms are analyzed for
various characteristics and effectiveness.

race condition A situation in which two threads
are concurrently trying to change the value of a
variable.

RAID levels The various types of RAID protection.

RAM drives Sections of a system’s DRAM pre-
sented to the rest of the system as if they were
secondary storage devices.

random-access memory (RAM) Rewritable
memory, also called main memory. Most programs
run from RAM, which is managed by the kernel.

ransomware A class of malware that disables
computer access (frequently by encrypting fi les or
the entire system) until a ransom is paid.

rate Generally, a measure of speed or frequency.
A periodic real-time process has a scheduling
rate of 1/p, where p is the length of its running
period.

rate-monotonic A scheduling algorithm that
schedules periodic tasks using a static priority pol-
icy with preemption.

raw partition A partition within a storage device
not containing a fi le system.

raw disk Direct access to a secondary storage
device as an array of blocks with no fi le system.

raw I/O Direct access to a secondary storage
device as an array of blocks with no fi le system.

read pointer The location in a fi le from which the
next read will occur.

read-ahead Sequential I/O performance optimi-
zation that reads and caches several subsequent
pages when a read of one page is requested.

readers-writers problem A synchronization
problem in which one or more processes or threads
write data while others only read data.

reader-writer lock A lock appropriate for access
to an item by two types of accessors, read-only and
read-write.

read-modify-write cycle The situation in which
a write of data smaller than a block requires the
entire block to be read, modifi ed, and written back.

read-only memory (ROM) A storage device
whose contents are not modifi able.

read-write (RW) Access that allows reading and
writing.

ready queue The set of processes ready and
waiting to execute.

real-time A term describing an execution envi-
ronment in which tasks are guaranteed to com-
plete within an agreed-to time.

real-time class A scheduling class that seg-
regates real-time threads from other threads to
schedule them separately and provide them with
their needed priority.

real-time operating systems (RTOS) Systems used
when rigid time requirements have been placed on
the operation of a processor or the fl ow of data; often
used as control devices in dedicated applications.

reapers In memory management, routines that
scan memory, freeing frames to maintain a mini-
mum level of available free memory.

recovery mode A system boot state providing
limited services and designed to enable the system
admin to repair system problems and debug sys-
tem startup.

Red Hat A popular Linux distribution.

red-black tree A tree containing n items and hav-
ing at most lg n levels, thus ensuring worst-case
performance of O(lg n).

redirector In Windows, a client-side object that
forwards I/O requests to a remote system.

redundant arrays of independent disks (RAID)
A disk organization technique in which two or
more storage devices work together, usually with
protection from device failure.

reentrant code Code that supports multiple con-
current threads (and can thus be shared).

reference bit An MMU bit indicating that a page
has been referenced.

reference string A trace of accesses to a resource.
In virtual memory, a list of pages accessed over a
period of time.

referenced pointer In Windows, a means by
which kernel-mode code can access objects; must
be obtained by calling a special API.

regions In ARM v8 CPUs, contiguous areas of
memory with separate privilege and access rules.

registry A fi le, set of fi les, or service used to store
and retrieve confi guration information. In Win-
dows, the manager of hives of data.

regressive round-robin A variation on round-
robin scheduling in which a thread that uses its
entire CPU scheduling quantum is given a longer
quantum and higher priority.

relative access A fi le-access method in which
contents are read in random order, or at least not
sequentially.

G-30 Glossary

relative block number An index relative to the
beginning of a fi le. The fi rst relative block of the
fi le is block 0, the next is block 1, and so on through
the end of the fi le.

relative path name A path name starting at a rel-
ative location (such as the current directory).

relocatable code Code with bindings to mem-
ory addresses that are changed at loading time to
refl ect where the code is located in main memory.

relocatable object fi le The output of a compiler
in which the contents can be loaded into any loca-
tion in physical memory.

relocation An activity associated with linking
and loading that assigns fi nal addresses to pro-
gram parts and adjusts code and data in the pro-
gram to match those addresses.

relocation register A CPU register whose value
is added to every logical address to create a phys-
ical address (for primitive memory management).

remainder section Whatever code remains to be
processed after the critical and exit sections.

remote access tool (RAT) A back-door daemon
left behind after a successful attack to allow con-
tinued access by the attacker.

remote desktop The representation of a desktop
session to another system across a network, for
remote access to the computer’s GUI.

remote desktop protocol (RDP) A network
protocol to allow remote access to a computer’s
display contents and keyboard and mouse input
devices.

remote fi le transfer A function of a network
operating system providing a means to transfer
fi les between network-attached computers.

remote procedure calls (RPCs) Procedure calls
sent across a network to execute on another com-
puter; commonly used in client-server computing.

remote-service mechanism A facility, imple-
mented by a feature such as RPC, in which clients
ask a remote system to perform a function for
them.

renderer A process that contains logic for render-
ing contents (such as web pages) onto a display.

rendezvous In interprocess communication, when
blocking mode is used, the meeting point at which
a send is picked up by a receive.

replay attack The malicious or fraudulent repeti-
tion of a valid transmission.

replication In fi le systems, the duplication and
synchronization of a set of data over a network to
another system. In storage, the automatic duplica-
tion of writes between separate sites.

request edge In a system resource-allocation
graph, an edge (arrow) indicating a resource request.

request manager In Linux, the kernel compo-
nent that manages the reading and writing of buf-
fer contents to and from a block-device driver.

resolve Generally, to translate from a symbolic
representation to a numeric one. In networking, to
translate from a host name to a host-id. With fi les,
to follow a link and fi nd the target fi le.

resource allocator An operating system or appli-
cation that determines how resources are to be
used.

resource manager The role of an operating sys-
tem in managing the computer’s resources.

resource sharing The ability for multiple users,
computers, etc., to access computing resources.

resource utilization The amount of a given
resource (hardware or software) that is being used.

response time The amount of time it takes the
system to respond to user action.

restore In fi le systems, the act of repairing or
recovering fi les or a fi le system from a backup.

resume In virtualization, the continuation of
execution after a guest’s suspension.

reverse engineering The procedure of convert-
ing a compiled binary fi le into a human-readable
format.

rich text format A fi le format developed by
Microsoft that includes formatting details but can
be used by various applications and operating
systems, enabling fi les to be transferred between
programs and systems.

risk assessment A systemic security analysis
that attempts to value the assets of the entity in
question and determine the odds that a security
incident will affect the entity.

roaming profi le In Windows, a collection of user
preferences and settings that are kept on a server
and allow a user’s environment to follow that user
from computer to computer.

role-based access control (RBAC) A method
of access control in which roles rather than users
have access rights; applies the principle of least
privilege to the protection of operating systems.

role In RBAC, a named set of privileges that can
be available to a user.

root partition The storage partition that con-
tains the kernel and the root fi le system; the one
mounted at boot.

rotational latency On an HDD, the time it takes
the read-write head, once over the desired cylin-
der, to access the desired track.

 Glossary G-31

round-robin (RR) A scheduling algorithm simi-
lar to FCFS scheduling, but with preemption added
to enable the system to switch between threads;
designed especially for time-sharing systems.

router A device or software that connects net-
works to each other (e.g., a home network to the
Internet).

RSA The most widely used public key cipher.

run queue The queue holding the threads that
are ready to run on a CPU.

running The state of the operating system after
boot when all kernel initialization has completed
and system services have started. In general, the
system state after booting and before crashing or
being shut down.

run-time environment (RTE) The full suite of
software needed to execute applications written in
a given programming language, including its com-
pilers, libraries, and loaders.

safe computing Human behavior aimed at
avoiding viruses and other security problems (e.g.,
by avoiding downloading pirated software).

safe sequence “In deadlock avoidance, a sequence
of processes <P1, P2, ..., Pn> in which, for each
Pi, the resource requests that Pi can make can be
satisfi ed by the currently available resources plus
the resources held by all Pj, with j < i.”

safe state In deadlock avoidance, a state in which
a system can allocate resources to each process in
some order and still avoid deadlock.

sandbox A contained environment (e.g., a virtual
machine).

sandboxing Restricting what an object can do by
placing it in a contained environment (e.g., run-
ning a process on a virtual machine).

SAS A common type of I/O bus.

scalability Generally, the ability of a facility
or service to increase capacity as needed by the
users (e.g., to add more cores when the load
increases).

SCAN algorithm An HDD I/O scheduling algo-
rithm in which the disk head moves from one
end of the disk to the other performing I/O as the
head passes the desired cylinders; the head then
reverses direction and repeats.

scatter-gather An I/O method in which multiple
sources or destinations of I/O are specifi ed in one
command structure.

scheduler The part of the operating system that
determines the next job to be done (e.g., the next
process to be executed).

scheduler activation A threading method in
which the kernel provides an application with a
set of LWPs, and the application can schedule user
threads onto an available virtual processor and
receive upcalls from the kernel to be informed of
certain events.

scheduling classes In Linux, classes on which
scheduling is based; each class is assigned a spe-
cifi c priority.

scheduling domain A set of CPU cores that can
be balanced against one another.

scope The time between when a lock is acquired
and when it is released.

script kiddie An attacker who did not design the
attack but instead is using an attack designed by a
more sophisticated attacker.

search path In some operating systems, the
sequence of directories searched for an executable
fi le when a command is executed.

second extended fi le system (ext2) In Linux, an
outdated version of the extended fi le system

secondary storage A storage system capable of
holding large amounts of data permanently; most
commonly, HDDs and NVM devices.

second-chance page-replacement algorithm A
FIFO page replacement algorithm in which, if the
reference bit is set, the bit is cleared and the page
is not replaced.

second-level interrupt handler In some oper-
ating systems, the interrupt handler that actu-
ally handles interrupts; reception and queueing
of interrupts are handled at another level (by the
fi rst-level handler).

section object The Windows data structure that
is used to implement shared memory.

sector forwarding The replacement of an unus-
able HDD sector with another sector at some other
location on the device.

sector slipping The renaming of sectors to avoid
using a bad sector.

sector sparing The replacement of an unusable
HDD sector with another sector at some other
location on the device.

sector On an HDD platter, a fi xed-size section of
a track.

secure The state of a system whose resources
are used and accessed as intended under all
circumstances.

secure by default Describes a system or com-
puter whose initial confi guration decreases its
attack surface.

G-32 Glossary

secure monitor call (SMC) An ARM processor
special instruction that can be used by the kernel
to request services from the TrustZone.

secure system process In Windows, the pro-
cess representing the fact that the secure kernel is
loaded.

security The defense of a system from external
and internal attacks. Such attacks include viruses
and worms, denial-of-service attacks, identity
theft, and theft of service.

security access token In Windows 10, a token
created when a user logs in that contains the
user’s security ID, the security IDs of the groups
the user belongs to, and a list of special privileges
the user has.

security context In Windows 10, a characteris-
tic, based on a user’s access token, that enables a
program run by the user to access what the user is
allowed to access.

security descriptor In Windows 10, a feature that
describes the security attributes of an object.

security domain The separation of systems and
devices into classes, with each class having similar
security needs.

security ID (SID) In Windows, a value used
to uniquely identify a user or group for security
purposes.

security policy A document describing the set of
things being secured, how they are to be secured,
and how users are to behave in matters relating to
security.

security reference monitor (SRM) A Windows
component that checks the effective security token
whenever a thread opens a handle to a protected
data structure.

security through obscurity A security layer in
which information is kept private or obscured in
the hope that it won’t be discovered and used by
attackers; an ineffective security method.

security token In Windows, a token associated
with each process containing the SIDs of the user
and the user’s groups, the user’s privileges, the
integrity level of the process, the attributes and
claims associated with the user, and any relevant
capabilities.

seek The operation of changing the current
fi le-position pointer.

seek time On an HDD, the time it takes the read-
write head to position over the desired cylinder.

semaphore An integer variable that, apart from
initialization, is accessed only through two stan-
dard atomic operations: wait() and signal().

semiconductor memory The various types of
memory constructed from semiconductors.

sense key In the SCSI protocol, information in
the status register indicating an error.

separation hypervisor An experimental system
that uses virtualization to partition separate sys-
tem components into a chip-level distributed com-
puting system.

sequence number In networking, a counter
assigned to packets to order their assembly after
delivery.

sequential access A fi le-access method in which
contents are read in order, from beginning to end.

serial-attached SCSI (SAS) A common type of
I/O bus.

server In general, any computer, no matter the
size, that provides resources to other computers.

server subject In Windows 10 security, a process
implemented as a protected server that uses the
security context of the client when acting on the
client’s behalf.

server system A system providing services to
other computers (e.g., a web server).

server-message-block (SMB) The Windows pro-
tocol for sending I/O requests over a network; a
version was published as the common internet fi le
system (CIFS).

service A software entity running on one or more
machines and providing a particular type of func-
tion to calling clients. In Android, an application
component with no user interface; it runs in the
background while executing long-running opera-
tions or performing work for remote processes.

service control manager (SCM) In Windows 7,
the component that manages services associated
with plug-and-play devices.

service-trigger A mechanism in Windows 7 that
allows plug-and-play device insertion to launch a
service.

session In networking, a complete round of com-
munication, frequently beginning with a login and
ending with a logoff to terminate communications.

session hijacking The interception of a commu-
nication.

session key The TLS symmetric key, used for a
web communication session, exchanged via asym-
metric cryptography.

SHA-1 An algorithm for creating a hash (a small,
fi xed-size block of data calculated from a larger
data set, used to determine if a message has been
changed).

 Glossary G-33

shared libraries Libraries that can be loaded into
memory once and used by many processes; used
in systems that support dynamic linking.

shared lock A fi le lock similar to a reader lock
in that several processes can obtain the lock
concurrently.

shared memory In interprocess communication,
a section of memory shared by multiple processes
and used for message passing.

shared system interconnect A bus connecting
CPUs to memory in such a way that all CPUs can
access all system memory; the basis for NUMA
systems.

shared-memory model An interprocess com-
munication method in which multiple processes
share memory and use that memory for message
passing.

shares A basis for making scheduling decisions.
The fair-share scheduling class uses CPU shares
instead of priorities to allocate CPU time.

shell One of the command interpreters on a sys-
tem with multiple command interpreters to choose
from.

shell script A fi le containing a set series of com-
mands (similar to a batch fi le) that are specifi c to
the shell being used.

shortest-job-fi rst (SJF) A scheduling algorithm
that associates with each thread the length of the
thread’s next CPU burst and schedules the shortest
fi rst.

shortest-remaining-time-fi rst (SJRF) A schedul-
ing algorithm that gives priority to the thread with
the shortest remaining time until completion.

shortest-seek-time-fi rst (SSTF) algorithm An
HDD I/O scheduling algorithm that sorts requests
by the amount of seek time required to accomplish
the request; the shortest time has the highest priority.

shoulder surfi ng Attempting to learn a pass-
word or other secret information by watching the
target user at the keyboard.

siblings In a tree data structure, child nodes of
the same parent.

Siemens Jailhouse An example of a partitioning
hypervisor.

signal In UNIX and other operating systems, a
means used to notify a process that an event has
occurred.

signature In intrusion detection, a pattern of
behavior associated with an attack.

simple subject In Windows 10 security, a sub-
ject that manages a user-initiated program’s
permissions.

simultaneous multithreading (SMT) The situa-
tion in which, in a CPU with multiple cores, each
core supports multiple hardware threads.

single indirect block In UFS, a block contain-
ing pointers to direct blocks, which point to data
blocks.

single instruction multiple data (SIMD) A form
of parallelism in which multiple compute elements
perform the same single instruction operating on
multiple data points.

single step A CPU mode in which a trap is exe-
cuted by the CPU after every instruction (to allow
examination of the system state after every instruc-
tion); useful in debugging.

single-threaded A process or program that has
only one thread of control (and so executes on only
one core at a time).

single-user mode A system boot state providing
limited services and designed to enable the system
admin to repair system problems and debug system
startup.

Siri The Apple voice-recognition system.

sketch An Arduino program.

slab A section of memory made up of one or
more contiguous pages; used in slab allocation.

slab allocation A memory allocation method
in which a slab of memory is allocated and split
into chunks that hold objects of a given size. As
the objects are freed, the chunks can coalesce into
larger chunks, eliminating fragmentation.

Slackware An early but still widely used Linux
distribution.

slim reader-write lock (SRW) A type of lock in
modern Windows OS that favors neither readers
nor writers.

small computer-systems interface (SCSI) One
type of interface between a system and its storage
(SCSI). See also ATA and SATA.

snapshot In fi le systems, a read-only view of
a fi le system at a particular point in time; later
changes do not affect the snapshot view.

sniff In network communication, to capture
information by recording data as it is transmitted.

sniffi ng An attack in which the attacker moni-
tors network traffi c to obtain useful information.

social engineering A practice in which an
attacker tricks someone into performing some task
for the attacker (such as sending the attacker confi -
dential information).

socket An endpoint for communication. An
interface for network I/O.

G-34 Glossary

soft affi nity An operating system’s policy of
attempting to keep a process running on the same
processor but not guaranteeing that it will do so.

soft error An error that is recoverable by retrying
the operation.

soft real-time systems Systems that provide no
guarantee as to when a critical real-time thread will
be scheduled; they guarantee only that the thread
will be given preference over noncritical threads

Software as a Service (SaaS) A type of comput-
ing in which one or more applications (such as
word processors or spreadsheets) are available as
a service via the Internet.

software engineering A fi eld of study and a career
involving writing software (i.e., programming.)

software interrupt A software-generated inter-
rupt; also called a trap. The interrupt can be caused
either by an error (e.g., division by zero or invalid
memory access) or by a specifi c request from a
user program that an operating-system service be
performed.

software objects The software components that
make up a computer or device (fi les, programs,
semaphores, etc.).

software transactional memory (STM) Transac-
tional memory implemented exclusively in soft-
ware; no special hardware is needed.

Solaris A UNIX derivative that is the main oper-
ating system of Sun Microsystems (now owned
by Oracle Corporation). There is an active open
source version called Illumos.

Solaris ZFS An advanced fi le system, fi rst
included as part of Solaris.

solid-state disk A disk-drive-like storage device
that uses fl ash-memory-based nonvolatile memory.

source fi le A fi le containing the source code of a
program.

space sharing A feature of APFS in which storage
is treated as a pool and space is shared among the
fi le systems created in that pool (much like ZFS).

SPARC A proprietary RISC CPU created by Sun
Microsystems and now owned by Oracle Corpora-
tion. There is an active open source version called
OpenSPARC.

sparse In memory management, a term describ-
ing a page table that has noncontiguous, scattered
entries. A sparse address space has many holes.

spinlock A locking mechanism that continuously
uses the CPU while waiting for access to the lock.

split-screen Running multiple foreground pro-
cesses (e.g., on an iPad) but splitting the screen
among the processes.

spoof The imitation of a legitimate identifi er
(such as an IP address) by an illegitimate user or
system.

spool A buffer that holds output for a device
(such as a printer) that cannot accept interleaved
data streams.

springboard The iOS touch-screen interface.

spyware A Trojan horse variation in which the
installed malware gathers information about a
person or organization.

stack A sequentially ordered data structure that
uses the last-in, fi rst-out (LIFO) principle for add-
ing and removing items; the last item placed onto
a stack is the fi rst item removed.

stack algorithm A class of page-replacement
algorithms that do not suffer from Belady’s anomaly.

stack inspection In Java, a protection procedure
in which a calling sequence is checked to ensure
that some caller in the sequence has been granted
access to the resource called.

stack section The section of process memory that
contains the stack; it contains activation records
and other temporary data.

stall A CPU state occurring when the CPU is
waiting for data from main memory and must
delay execution.

starvation The situation in which a process or
thread waits indefi nitely within a semaphore.
Also, a scheduling risk in which a thread that is
ready to run is never put onto the CPU due to the
scheduling algorithm; it is starved for CPU time.

state The condition of a process, including its
current activity as well as its associated memory
and disk contents.

state information In remote fi le systems, the
set of information pertaining to connections
and ongoing fi le operations (e.g., which fi les are
open).

state restore Copying a process’s context from its
saved location to the CPU registers in preparation
for continuing the process’s execution.

state save Copying a process’s context to save its
state in order to pause its execution in preparation
for putting another process on the CPU.

stateless In remote fi le systems, a protocol in
which state need not be maintained for proper
operation.

static linking Linking in which system libraries
are treated like other object modules and com-
bined by the loader into a binary program image.

status register A device I/O register in which
status is indicated.

 Glossary G-35

storage-area network (SAN) A local-area storage
network allowing multiple computers to connect
to one or more storage devices.

stream cipher A cipher that encrypts or decrypts
a stream of bits or bytes (rather than a block).

stream head The interface between STREAMS
and user processes.

stream modules In STREAMS, modules of func-
tionality loadable into a STREAM.

STREAMS A UNIX I/O feature allowing the
dynamic assembly of pipelines of driver code.

stub A small, temporary place-holder function
replaced by the full function once its expected
behavior is known.

subject In Windows 10 security, an entity used to
track and manage user permissions.

subsystem A subset of an operating system
responsible for a specifi c function (e.g., memory
management).

SunOS The predecessor of Solaris by Sun
Microsystems Inc.

superblock The UFS volume control block.

superblock object The VFS representation of the
entire fi le system.

supervisor mode A CPU mode in which all
instructions are enabled. The kernel runs in this
mode. See also user mode.

SuSE A popular Linux distribution.

suspend In virtualization, to freeze a guest
operating system and its applications to pause
execution.

swap map In Linux swap-space management, a
part of the data structure tracking swap-space use.

swap space Secondary storage backing-store
space used to store pages that are paged out of
memory.

swapped Moved between main memory and a
backing store. A process may be swapped out to
free main memory temporarily and then swapped
back in to continue execution.

swapping Moving a process between main
memory and a backing store. A process may be
swapped out to free main memory temporarily
and then swapped back in to continue execution.

swap-space management The low-level operating-
system task of managing space on secondary stor-
age for use in swapping and paging.

symmetric clustering A situation in which two
or more hosts are running applications and are
monitoring each other.

symmetric encryption algorithm A cryptogra-
phy algorithm in which the same keys are used to
encrypt and decrypt the message or data.

symmetric multiprocessing (SMP) Multipro-
cessing in which each processor performs all tasks,
including operating-system tasks and user pro-
cesses. Also, a multiprocessor scheduling method
in which each processor is self-scheduling and
may run kernel threads or user-level threads.

synchronous In interprocess communication,
a mode of communication in which the sending
process is blocked until the message is received
by the receiving process or by a mailbox and the
receiver blocks until a message is available. In
I/O, a request that does not return until the I/O
completes.

synchronous threading Threading in which a
parent thread creating one or more child threads
waits for them to terminate before it resumes.

synchronous writes Writes that are stored in the
order in which they were issued, are not buffered,
and have requesting threads wait for the writes to
complete before continuing.

system administrators Computer users that con-
fi gure, monitor, and manage systems.

system build Creation of an operating-system
build and confi guration for a specifi c computer
site.

system call Software-triggered interrupt allow-
ing a process to request a kernel service.

system call The primary interface between
processes and the operating system, providing a
means to invoke services made available by the
operating system.

system-call fi ltering An operating-system facil-
ity to limit which system calls can be executed by
a process.

system daemon A service that is provided out-
side the kernel by system programs that are loaded
into memory at boot time and run continuously.

system disk A storage device that has a boot par-
tition and can store an operating system and other
information for booting the computer.

system integrity protection (SIP) A feature of
macOS 10.11 and later versions that uses extended
fi le attributes to mark system fi les as restricted so
that even the root user cannot tamper with them.

system mode A CPU mode in which all instruc-
tions are enabled. The kernel runs in this mode.
See also user mode.

system process A service that is provided out-
side the kernel by system programs that are loaded
into memory at boot time and run continuously. In

G-36 Glossary

Windows, a process that serves as the container of
all internal kernel worker threads and other sys-
tem threads created by drivers for polling, house-
keeping, and other background work.

system program A program associated with the
operating system but not necessarily part of the
kernel.

system resource-allocation graph A directed
graph for precise description of deadlocks.

system restore point In Windows, a copy of the
system hives taken before any signifi cant change is
made to system confi guration.

system service A collection of applications
included with or added to an operating system
to provide services beyond those provided by the
kernel.

system utility A collection of applications
included with or added to an operating system to
provide services beyond what are provided by the
kernel.

system-call fi rewall A fi rewall within a com-
puter that limits the system calls a process can
trigger.

system-call interface An interface that serves
as the link to system calls made available by the
operating system and that is called by processes to
invoke system calls.

system-contention scope (SCS) A thread-
scheduling method in which kernel-level threads
are scheduled onto a CPU regardless of which pro-
cess they are associated with (and thus contend
with all other threads on the system for CPU time).

system-development time The time during
which an operating system is developed, before it
is made available in fi nal “release” form.

system-wide open-fi le table A kernel in-memory
data structure containing a copy of the FCB of each
open fi le, as well as other information.

target latency In the Completely Fair Scheduler,
a confi gurable variable which is the interval of
time during which every runnable task should run
at least once.

targeted latency An interval of time during
which every runnable thread should run at least
once.

task control block A per-process kernel data
structure containing many pieces of information
associated with the process.

task parallelism A computing method that dis-
tributes tasks (threads) across multiple comput-
ing cores, with each task is performing a unique
operation.

task A process, a thread activity, or, generally, a
unit of computation on a computer.

templating In virtualization, using one standard
virtual-machine image as a source for multiple vir-
tual machines.

terabyte (TB) 1,024^4 bytes.

terminal concentrator A type of front-end pro-
cessor for terminals.

tertiary storage A type of storage that is slower
and cheaper than main memory or secondary stor-
age; frequently magnetic tape or optical disk.

text fi le A type of fi le containing text (alphanu-
meric characters).

text section The executable code of a program or
process.

thin client A limited computer (terminal) used
for web-based computing.

third extended fi le system (ext3) In Linux, a cur-
rent version of the extended fi le system; the suc-
cessor to ext2.

thrashing Paging memory at a high rate. A sys-
tem thrashes when there is insuffi cient physical
memory to meet virtual memory demand.

thread A process control structure that is an
execution location. A process with a single thread
executes only one task at a time, while a multi-
threaded process can execute a task per thread.

thread cancellation Termination of a thread
before it has completed.

thread dump In Java, a snapshot of the state of
all threads in an application; a useful debugging
tool for deadlocks.

thread library A programming library that pro-
vides programmers with an API for creating and
managing threads.

thread pool A number of threads created at pro-
cess startup and placed in a pool, where they sit
and wait for work.

thread-environment block (TEB) In Win32, a
user-mode threads data structure that contains
numerous per-thread fi elds.

thread-local storage (TLS) Data available only to
a given thread.

threat The potential for a security violation.

throughput Generally, the amount of work done
over time. In scheduling, the number of threads
completed per unit time.

tightly coupled systems Systems with two or
more processors in close communication, sharing
the computer bus and sometimes the clock, mem-
ory, and peripheral devices.

 Glossary G-37

time quantum A small unit of time used by
scheduling algorithms as a basis for determining
when to preempt a thread from the CPU to allow
another to run.

time sharing A practice in which the CPU exe-
cutes multiple jobs by switching among them, but
the switches occur so frequently that the users can
interact with the processes.

time slice A small unit of time used by scheduling
algorithms as a basis for determining when to pre-
empt a thread from the CPU to allow another to run.

timer A hardware component that can be set to
interrupt the computer after a specifi ed period.

timestamp counter (TSC) In Windows Vista, a
counter that tracks execution time.

TLB miss A translation look-aside buffer lookup
that fails to provide the address translation because
it is not in the TLB.

TLB reach The amount of memory addressable
by the translation look-aside buffer.

TLB walk The steps involved in walking through
page-table structures to locate the needed transla-
tion and then copying that result into the TLB.

touch screen A touch-sensitive screen used as a
computer input device.

touch-screen interface A user interface in which
touching a screen allows the user to interact with
the computer.

trace tapes A tool used in the evaluation of
scheduling algorithms. Thread details are cap-
tured on real systems, and various algorithms are
analyzed to determine their effectiveness.

track On an HDD platter, the medium that is
under the read-write head during a rotation of the
platter.

transaction Generally, the execution of a set
of steps that make up one activity. In log-based
transaction-oriented fi le systems, a set of opera-
tions completed as part of a request (e.g., “write
this block to that fi le”).

transactional memory A type of memory sup-
porting memory transactions.

transfer rate The rate at which data fl ows.

translation granules Features of ARM v8 CPUs
that defi ne page sizes and regions.

translation look-aside buffer (TLB) A small,
fast-lookup hardware cache used in paged mem-
ory address translation to provide fast access to a
subset of memory addresses.

translation table base register ARM v8 CPU reg-
ister pointing to the level 0 (outer) page table for
the current thread.

transmission control protocol/Internet protocol
(TCP/IP) The most common network protocol;
it provides the fundamental architecture of the
Internet.

transparent In distributed computing, a term
describing the automatic sharing of resources so that
users do not know if a resource is local or remote.

transport driver interface (TDI) In Windows
networking, an interface that supports connect-
based and connectionless transports on top of the
transport layer.

transport layer security (TLS) A cryptographic
protocol that enables two computers to communi-
cate securely; the standard protocol by which web
browsers communicate to web servers.

trap A software interrupt. The interrupt can be
caused either by an error (e.g., division by zero or
invalid memory access) or by a specifi c request
from a user program that an operating-system ser-
vice be performed.

trap door A back-door daemon left behind after a
successful attack to allow continued access by the
attacker.

trap-and-emulate In virtualization, a method
used to implement virtualization on systems lack-
ing hardware support (such as CPU instructions)
for virtualization; any action that would cause the
guest to call the operating system is intercepted,
and the result is emulated.

tree A data structure that can be used to repre-
sent data hierarchically; data values in a tree struc-
ture are linked through parent–child relationships.

triple DES A modifi cation of DES that uses the
same algorithm three times and uses two or three
keys to make the encryption more diffi cult to
break.

triple indirect block In UFS, a block containing
pointers to double indirect blocks, which point to
single indirect blocks, which point to data blocks.

Trojan horse A program that acts in a clandes-
tine or malicious manner rather than simply per-
forming its stated function.

TrustZone (TZ) ARM processor implementation
of the most secure protection ring.

tunnel In computer communication, a container
of communications within another type of com-
munication (e.g., a VPN that allows web traffi c).

turnstile A Solaris scheduling feature using a
queue structure containing threads blocked on a
lock.

two-factor authentication Authentication based
on two separate sources of data (e.g., a brain provid-
ing a password and a fi nger providing a fi ngerprint).

G-38 Glossary

type 0 hypervisor A hardware-based virtual-
ization solution that provides support for virtual
machine creation and management via fi rmware
(e.g., IBM LPARs and Oracle LDOMs).

type 1 hypervisor Operating-system-like soft-
ware built to provide virtualization (e.g., VMware
ESX, Joyent SmartOS and Citrix Xenserver).

type 2 hypervisor An application that runs on
standard operating systems but provides virtual
machine management features to guest operating
systems (e.g., VMware workstation and fusion,
and Oracle Virtualbox)

type safety In Java, a feature that ensures that
classes cannot treat integers as pointers, write past
the end of an array, or otherwise access memory in
arbitrary ways.

unbounded buffer A buffer with no practical
limit on its memory size.

uncontended A term describing a lock that is
available when a thread attempts to acquire it.

unifi ed buffer cache In fi le I/O, a cache used for
both memory-mapped I/O and direct fi le I/O.

unifi ed extensible fi rmware interface (UEFI) The
modern replacement for BIOS containing a com-
plete boot manager.

unifi ed virtual memory In fi le I/O, the use of
page caching for all types of I/O (explicit fi le sys-
tem I/O and page fault I/O).

uniform memory access (UMA) Access to all main
memory by all processors, without performance dif-
ferences based on CPU or memory location.

uniform naming convention (UNC) A name
format that includes the system and its resources
(e.g.m \\server_name\share_name\x\y\z).

unikernels Specialized machine images that
contain both an operating system and applications
for effi cient execution and increased security.

universal serial bus (USB) A type of I/O bus.

universal Windows platform (UWP) Windows
10 architecture that provides a common app plat-
form for all devices that run it, including mobile
devices.

UNIX fi le system (UFS) An early UNIX fi le sys-
tems; uses inodes for FCB.

UnixBSD A UNIX derivative based on work done
at the University of California at Berkeley (UCB).

unnamed semaphore A POSIX scheduling con-
struct that can only be used by threads in the same
process.

unstructured data Data that are not in a fi xed
format (like a database record) but rather are free-
form (like a twitter.com tweet).

upcall A threading method in which the kernel
sends a signal to a process thread to communicate
an event.

upcall handler A function in a process that han-
dles upcalls.

USB drive Nonvolatile memory in the form of a
device that plugs into a USB port.

user The human using a computer, or the identi-
fi cation of the human to the computer.

user account In Windows 10, an account belong-
ing to a user (rather than a system account used by
the computer).

user authentication The identifi cation of a user
of a computer.

user datagram protocol (UDP) A communica-
tions protocol layered on IP that is connectionless,
is low latency, and does not guarantee delivery.

user experience layer In the layered macOS and
iOS operating system design, the layer that defi nes
the software interface that allows users to interact
with computing devices.

user fi le directory (UFD) In two-level directory
implementation, a per-user directory of fi les.

user identifi er (user ID) (UID) A unique numer-
ical user identifi er.

user interface (UI) A method by which a user
interacts with a computer.

user mode A CPU mode for executing user pro-
cesses in which some instructions are limited or
not allowed. See also kernel mode.

user programs User-level programs, as opposed
to system programs.

user rights Permissions granted to users.

user thread A thread running in user mode.

user-defi ned signal handler The signal handler
created by a process to provide non-default signal
handling.

user-initiated In the Grand Central Dispatch
Apple OS scheduler, the scheduling class repre-
senting tasks that interact with the user but need
longer processing times than user-interactive tasks.

user-interactive In the Grand Central Dispatch
Apple OS scheduler, the scheduling class repre-
senting tasks that interact with the user.

user-mode driver framework (UMDF) A frame-
work in Windows to facilitate the writing of user-
mode device drivers.

user-mode scheduling (UMS) A Microsoft Win-
dows 7 feature that allows applications to create
and manage threads independently of the kernel.
This feature supports task-based parallelism by

 Glossary G-39

decomposing processes into tasks, which are then
scheduled on available CPUs; it is used on AMD64
systems.

user-mode thread (UT) In Windows, the state of
a thread when it is running in user mode.

utility In the Grand Central Dispatch Apple OS
scheduler, the scheduling class representing tasks
that require a longer time to complete but do not
demand immediate results.

utility storage An inServ feature in which stor-
age space can be increased as needed.

valid-invalid A page-table bit indicating
whether a page-table entry points to a page within
the logical address space of that process.

variable-partition A simple memory-allocation
scheme in which each partition of memory con-
tains exactly one process.

vectored I/O An I/O method in which multiple
sources or destinations of I/O are specifi ed in one
command structure.

version control system Software that manages
software distributions by allowing contributors to
“push” changes into a repository and “pull” a ver-
sion of the software source-code tree to a system
(e.g., for compilation).

victim frame In virtual memory, the frame
selected by the page-replacement algorithm to be
replaced.

view In Windows, an address range mapped in
shared memory. Also, the second step in memory-
mapping a fi le, allowing a process to access the fi le
contents.

virtual address An address generated by the
CPU; must be translated to a physical address
before it is used.

virtual address control block (VACB) The data
structure in Windows that represents a cache block
in the unifi ed I/O cache.

virtual address descriptor (VAD) In Windows, a
per-process descriptor of a virtual address range,
kept in a tree data structure.

virtual address space The logical view of how a
process is stored in memory.

virtual CPU (VCPU) In virtualization, a virtual-
ized host CPU available to allocate to a guest oper-
ating system by the virtual machine manager.

virtual fi le system (VFS) The fi le-system imple-
mentation layer responsible for separating fi le-
system-generic operations and their implementation
and representing a fi le throughout a network

virtual machine (VM) The abstraction of hard-
ware allowing a virtual computer to execute on a

physical computer. Multiple virtual machines can
run on a single physical machine (and each can
have a different operating system).

virtual machine control structures (VMCSs)
Hardware features provided by CPUs that support
virtualization to track guest state.

virtual machine manager (VMM) The computer
function that manages the virtual machine; also
called a hypervisor.

virtual machine sprawl The situation in which
there are so many virtual machines on a system
that their use, history, and state become confusing
and diffi cult to track; caused by the ease of creating
virtual machines.

virtual memory A technique that allows the exe-
cution of a process that is not completely in memory.
Also, separation of computer memory address
space from physical into logical, allowing easier
programming and larger name space.

virtual memory fork The vfork() system call,
which forks a child process, suspends the parent,
and lets the child share the parent’s address space
for both read and write operations (changes are
visible to the parent).

virtual private network (VPN) An encrypted
tunnel between two systems, commonly using
IPSec, allowing secure remote access.

virtual run time A Linux scheduling aspect that
records how long each task has run by maintaining
the virtual run time of each task.

virtual trust level (VTL) A Windows 10 virtual-
ization feature using Hyper-V to add more secure
system modes.

virtualization A technology for abstracting the
hardware of a single computer into several differ-
ent execution environments, thereby creating the
illusion that each environment is running on its
own private computer.

virtual-to-physical (V-to-P) In virtualization, the
conversion of a virtual machine guest to a physical
system’s operating system and applications.

virus A fragment of code embedded in a legiti-
mate program that, when executed, can replicate
itself; may modify or destroy fi les and cause sys-
tem crashes and program malfunctions.

virus dropper The part of a virus that inserts the
virus into the system.

virus signature A pattern that can be used to
identify a virus within a system.

VMware Virtualization software company.

VMware Workstation A popular commercial
type 2 hypervisor for x86 Windows systems.

G-40 Glossary

vnode The virtual fi le system fi le representa-
tion structure, similar to the FCB for local fi les but
applied to remote fi les.

voice recognition A computer interface based
on spoken commands, which the computer parses
and turns into actions.

volatile Describes storage whose content can be
lost in a power outage or similar event.

volatile storage Storage whose content can be
lost in a power outage or similar event.

volume A container of storage; frequently, a device
containing a mountable fi le system (including a fi le
containing an image of the contents of a device).

volume control block A per-volume storage
block containing data describing the volume.

von Neumann architecture The structure of most
computers, in which both process instructions and
data are stored in the same main memory.

VT-x Intel x86 CPU virtualization-supporting
instructions.

wait queue In process scheduling, a queue hold-
ing processes waiting for an event to occur before
they need to be put on CPU.

wait set In Java, a set of threads, each waiting for
a condition that will allow it to continue.

wait-for graph In deadlock detection, a variant
of the resource-allocation graph with resource
nodes removed; indicates a deadlock if the graph
contains a cycle

wear leveling In nonvolatile memory, the effort
to select all NAND cells over time as write targets
to avoid premature media failure due to wearing
out a subset of cells.

wide-area network (WAN) A network that links
buildings, cities, or countries.

WiFi Wireless networking, consisting of devices
and protocols that allow devices to attach to a net-
work via radio waves rather than cables.

Win32 API The fundamental interface to the
capabilities of Windows.

Windows 10 A release of Microsoft Windows
from 2009.

Windows group policy In Windows, a policy
providing centralized management and confi gura-
tion of operating systems, applications, and user
settings in an Active Directory environment.

Windows Subsystem for Linux (WSL) A Win-
dows 10 component allowing native Linux appli-
cations (ELF binaries) to run on Windows.

Windows XP A widely popular version of Mic-
rosoft Windows released in 2001.

Winsock The Windows socket API (similar to
BSD sockets) for network communications.

wired down A term describing a TLB entry that
is locked into the TLB and not replaceable by the
usual replacement algorithm.

wireless network A communication network
composed of radio signals rather than physical
wires.

witness A lock order verifi er.

word A unit made up of one or more bytes. For
example, a computer that has 64-bit registers and
64-bit memory addressing typically has 64-bit
(8-byte) words.

working set The set of pages in the most recent
page references.

working-set maximum The maximum number
of frames allowed to a process in Windows.

working-set minimum The minimum number
of frames guaranteed to a process in Windows.

working-set model A model of memory access
based on tracking the set of most recently accessed
pages.

working-set window A limited set of most
recently accessed pages (a “window” view of the
entire set of accessed pages).

workstation A powerful personal computer (PC)
for engineering and other demanding workloads.

world rights A category of fi le access rights.

World Wide Web (WWW) The Internet; a
worldwide system of interconnected computer
networks.

WORM Write-once, read-many-times storage.

worm A program that spreads malware between
computers without intervention from humans.

worst-fi t In memory allocation, selecting the
largest hole available.

write amplifi cation The creation of I/O requests
not by applications but by NVM devices doing
garbage collection and space management, poten-
tially impacting the devices’ write performance.

write pointer The location in a fi le to which the
next write will occur.

write-anywhere fi le layout (WAFL) The fi le sys-
tem that is the heart of the NetApp, Inc., storage
appliances.

write-back caching In caching, a policy whereby
data are fi rst written to the cache; later, the cache
writes the change to the master copy of the data.

write-on-close policy In caching, a policy
whereby writes reside in the cache until the fi le is

 Glossary G-41

closed and are only then written back to the master
copy of the data.

write-through policy In caching, a policy
whereby writes are not cached but are written
through the cache to the master copy of the data.

x86-64 A class of 64-bit CPUs running an iden-
tical instruction set; the most common CPUs in
desktop and server systems.

Xen Virtualization software company.

XML fi rewall A fi rewall that examines and limits
XML traffi c.

Xtratum An example of a partitioning hypervisor.

yellow pages A distributed naming service that
provides username, password, hostname, and
printer information to a set of computers.

zero-day attacks Attacks that have not been seen
before and therefore cannot be detected via their
signatures.

zero-fi ll-on-demand The writing of zeros into
a page before it is made available to a process
(to keep any old data from being available to the
process).

ZFS Oracle fi le system, created by Sun Microsys-
tems, with modern algorithms and features and
few limits on fi le and device sizes.

zombie A process that has terminated but whose
parent has not yet called wait() to collect its state
and accounting information.

zombie systems Compromised systems that
are being used by attackers without the owners’
knowledge.

zones In application containment, a virtual layer
between the operating system and a process in
which the application runs, limiting its normal
access to system resources. In Linux, the four
regions of kernel memory.

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Preface
	Contents
	PART ONE OVERVIEW
	Chapter 1 Introduction
	1.1 What Operating Systems Do
	1.1.1 User View
	1.1.2 System View
	1.1.3 Defining Operating Systems

	1.2 Computer-System Organization
	1.2.1 Interrupts
	1.2.2 Storage Structure
	1.2.3 I/O Structure

	1.3 Computer-System Architecture
	1.3.1 Single-Processor Systems
	1.3.2 Multiprocessor Systems
	1.3.3 Clustered Systems

	1.4 Operating-System Operations
	1.4.1 Multiprogramming and Multitasking
	1.4.2 Dual-Mode and Multimode Operation
	1.4.3 Timer

	1.5 Resource Management
	1.5.1 Process Management
	1.5.2 Memory Management
	1.5.3 File-System Management
	1.5.4 Mass-Storage Management
	1.5.5 Cache Management
	1.5.6 I/O System Management

	1.6 Security and Protection
	1.7 Virtualization
	1.8 Distributed Systems
	1.9 Kernel Data Structures
	1.9.1 Lists, Stacks, and Queues
	1.9.2 Trees
	1.9.3 Hash Functions and Maps
	1.9.4 Bitmaps

	1.10 Computing Environments
	1.10.1 Traditional Computing
	1.10.2 Mobile Computing
	1.10.3 Client–Server Computing
	1.10.4 Peer-to-Peer Computing
	1.10.5 Cloud Computing
	1.10.6 Real-Time Embedded Systems

	1.11 Free and Open-Source Operating Systems
	1.11.1 History
	1.11.2 Free Operating Systems
	1.11.3 GNU/Linux
	1.11.4 BSD UNIX
	1.11.5 Solaris
	1.11.6 Open-Source Systems as Learning Tools

	1.12 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 1 Exercises

	Chapter 2 Operating-System Structures
	2.1 Operating-System Services
	2.2 User and Operating-System Interface
	2.2.1 Command Interpreters
	2.2.2 Graphical User Interface
	2.2.3 Touch-Screen Interface
	2.2.4 Choice of Interface

	2.3 System Calls
	2.3.1 Example
	2.3.2 Application Programming Interface
	2.3.3 Types of System Calls

	2.4 System Services
	2.5 Linkers and Loaders
	2.6 Why Applications Are Operating-System Specific
	2.7 Operating-System Design and Implementation
	2.7.1 Design Goals
	2.7.2 Mechanisms and Policies
	2.7.3 Implementation

	2.8 Operating-System Structure
	2.8.1 Monolithic Structure
	2.8.2 Layered Approach
	2.8.3 Microkernels
	2.8.4 Modules
	2.8.5 Hybrid Systems

	2.9 Building and Booting an Operating System
	2.9.1 Operating-System Generation
	2.9.2 System Boot

	2.10 Operating-System Debugging
	2.10.1 Failure Analysis
	2.10.2 Performance Monitoring and Tuning
	2.10.3 Tracing
	2.10.4 BCC

	2.11 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 2 Exercises
	Programming Problems
	Programming Projects

	PART TWO PROCESS MANAGEMENT
	Chapter 3 Processes
	3.1 Process Concept
	3.1.1 The Process
	3.1.2 Process State
	3.1.3 Process Control Block
	3.1.4 Threads

	3.2 Process Scheduling
	3.2.1 Scheduling Queues
	3.2.2 CPU Scheduling
	3.2.3 Context Switch

	3.3 Operations on Processes
	3.3.1 Process Creation
	3.3.2 Process Termination

	3.4 Interprocess Communication
	3.5 IPC in Shared-Memory Systems
	3.6 IPC in Message-Passing Systems
	3.6.1 Naming
	3.6.2 Synchronization
	3.6.3 Buffering

	3.7 Examples of IPC Systems
	3.7.1 POSIX Shared Memory
	3.7.2 Mach Message Passing
	3.7.3 Windows
	3.7.4 Pipes

	3.8 Communication in Client–Server Systems
	3.8.1 Sockets
	3.8.2 Remote Procedure Calls

	3.9 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 3 Exercises
	Programming Problems
	Programming Projects

	Chapter 4 Threads & Concurrency
	4.1 Overview
	4.1.1 Motivation
	4.1.2 Benefits

	4.2 Multicore Programming
	4.2.1 Programming Challenges
	4.2.2 Types of Parallelism

	4.3 Multithreading Models
	4.3.1 Many-to-One Model
	4.3.2 One-to-One Model
	4.3.3 Many-to-Many Model

	4.4 Thread Libraries
	4.4.1 Pthreads
	4.4.2 Windows Threads
	4.4.3 Java Threads

	4.5 Implicit Threading
	4.5.1 Thread Pools
	4.5.2 Fork Join
	4.5.3 OpenMP
	4.5.4 Grand Central Dispatch
	4.5.5 Intel Thread Building Blocks

	4.6 Threading Issues
	4.6.1 The fork() and exec() System Calls
	4.6.2 Signal Handling
	4.6.3 Thread Cancellation
	4.6.4 Thread-Local Storage
	4.6.5 Scheduler Activations

	4.7 Operating-System Examples
	4.7.1 Windows Threads
	4.7.2 Linux Threads

	4.8 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 4 Exercises
	Programming Problems
	Programming Projects

	Chapter 5 CPU Scheduling
	5.1 Basic Concepts
	5.1.1 CPU–I/O Burst Cycle
	5.1.2 CPU Scheduler
	5.1.3 Preemptive and Nonpreemptive Scheduling
	5.1.4 Dispatcher

	5.2 Scheduling Criteria
	5.3 Scheduling Algorithms
	5.3.1 First-Come, First-Served Scheduling
	5.3.2 Shortest-Job-First Scheduling
	5.3.3 Round-Robin Scheduling
	5.3.4 Priority Scheduling
	5.3.5 Multilevel Queue Scheduling
	5.3.6 Multilevel Feedback Queue Scheduling

	5.4 Thread Scheduling
	5.4.1 Contention Scope
	5.4.2 Pthread Scheduling

	5.5 Multi-Processor Scheduling
	5.5.1 Approaches to Multiple-Processor Scheduling
	5.5.2 Multicore Processors
	5.5.3 Load Balancing
	5.5.4 Processor Affinity
	5.5.5 Heterogeneous Multiprocessing

	5.6 Real-Time CPU Scheduling
	5.6.1 Minimizing Latency
	5.6.2 Priority-Based Scheduling
	5.6.3 Rate-Monotonic Scheduling
	5.6.4 Earliest-Deadline-First Scheduling
	5.6.5 Proportional Share Scheduling
	5.6.6 POSIX Real-Time Scheduling

	5.7 Operating-System Examples
	5.7.1 Example: Linux Scheduling
	5.7.2 Example: Windows Scheduling
	5.7.3 Example: Solaris Scheduling

	5.8 Algorithm Evaluation
	5.8.1 Deterministic Modeling
	5.8.2 Queueing Models
	5.8.3 Simulations
	5.8.4 Implementation

	5.9 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 5 Exercises
	Programming Projects

	PART THREE PROCESS SYNCHRONIZATION
	Chapter 6 Synchronization Tools
	6.1 Background
	6.2 The Critical-Section Problem
	6.3 Peterson’s Solution
	6.4 Hardware Support for Synchronization
	6.4.1 Memory Barriers
	6.4.2 Hardware Instructions
	6.4.3 Atomic Variables

	6.5 Mutex Locks
	6.6 Semaphores
	6.6.1 Semaphore Usage
	6.6.2 Semaphore Implementation

	6.7 Monitors
	6.7.1 Monitor Usage
	6.7.2 Implementing a Monitor Using Semaphores
	6.7.3 Resuming Processes within a Monitor

	6.8 Liveness
	6.8.1 Deadlock
	6.8.2 Priority Inversion

	6.9 Evaluation
	6.10 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 6 Exercises
	Programming Problems

	Chapter 7 Synchronization Examples
	7.1 Classic Problems of Synchronization
	7.1.1 The Bounded-Buffer Problem
	7.1.2 The Readers–Writers Problem
	7.1.3 The Dining-Philosophers Problem

	7.2 Synchronization within the Kernel
	7.2.1 Synchronization in Windows
	7.2.2 Synchronization in Linux

	7.3 POSIX Synchronization
	7.3.1 POSIX Mutex Locks
	7.3.2 POSIX Semaphores
	7.3.3 POSIX Condition Variables

	7.4 Synchronization in Java
	7.4.1 Java Monitors
	7.4.2 Reentrant Locks
	7.4.3 Semaphores
	7.4.4 Condition Variables

	7.5 Alternative Approaches
	7.5.1 Transactional Memory
	7.5.2 OpenMP
	7.5.3 Functional Programming Languages

	7.6 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 7 Exercises
	Programming Problems
	Programming Projects

	Chapter 8 Deadlocks
	8.1 System Model
	8.2 Deadlock in Multithreaded Applications
	8.2.1 Livelock

	8.3 Deadlock Characterization
	8.3.1 Necessary Conditions
	8.3.2 Resource-Allocation Graph

	8.4 Methods for Handling Deadlocks
	8.5 Deadlock Prevention
	8.5.1 Mutual Exclusion
	8.5.2 Hold and Wait
	8.5.3 No Preemption
	8.5.4 Circular Wait

	8.6 Deadlock Avoidance
	8.6.1 Safe State
	8.6.2 Resource-Allocation-Graph Algorithm
	8.6.3 Banker’s Algorithm

	8.7 Deadlock Detection
	8.7.1 Single Instance of Each Resource Type
	8.7.2 Several Instances of a Resource Type
	8.7.3 Detection-Algorithm Usage

	8.8 Recovery from Deadlock
	8.8.1 Process and Thread Termination
	8.8.2 Resource Preemption

	8.9 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 8 Exercises
	Programming Problems
	Programming Projects

	PART FOUR MEMORY MANAGEMENT
	Chapter 9 Main Memory
	9.1 Background
	9.1.1 Basic Hardware
	9.1.2 Address Binding
	9.1.3 Logical Versus Physical Address Space
	9.1.4 Dynamic Loading
	9.1.5 Dynamic Linking and Shared Libraries

	9.2 Contiguous Memory Allocation
	9.2.1 Memory Protection
	9.2.2 Memory Allocation
	9.2.3 Fragmentation

	9.3 Paging
	9.3.1 Basic Method
	9.3.2 Hardware Support
	9.3.3 Protection
	9.3.4 Shared Pages

	9.4 Structure of the Page Table
	9.4.1 Hierarchical Paging
	9.4.2 Hashed Page Tables
	9.4.3 Inverted Page Tables
	9.4.4 Oracle SPARC Solaris

	9.5 Swapping
	9.5.1 Standard Swapping
	9.5.2 Swapping with Paging
	9.5.3 Swapping on Mobile Systems

	9.6 Example: Intel 32- and 64-bit Architectures
	9.6.1 IA-32 Architecture
	9.6.2 x86-64

	9.7 Example: ARMv8 Architecture
	9.8 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 9 Exercises
	Programming Problems
	Programming Projects

	Chapter 10 Virtual Memory
	10.1 Background
	10.2 Demand Paging
	10.2.1 Basic Concepts
	10.2.2 Free-Frame List
	10.2.3 Performance of Demand Paging

	10.3 Copy-on-Write
	10.4 Page Replacement
	10.4.1 Basic Page Replacement
	10.4.2 FIFO Page Replacement
	10.4.3 Optimal Page Replacement
	10.4.4 LRU Page Replacement
	10.4.5 LRU-Approximation Page Replacement
	10.4.6 Counting-Based Page Replacement
	10.4.7 Page-Buffering Algorithms
	10.4.8 Applications and Page Replacement

	10.5 Allocation of Frames
	10.5.1 Minimum Number of Frames
	10.5.2 Allocation Algorithms
	10.5.3 Global versus Local Allocation
	10.5.4 Non-Uniform Memory Access

	10.6 Thrashing
	10.6.1 Cause of Thrashing
	10.6.2 Working-Set Model
	10.6.3 Page-Fault Frequency
	10.6.4 Current Practice

	10.7 Memory Compression
	10.8 Allocating Kernel Memory
	10.8.1 Buddy System
	10.8.2 Slab Allocation

	10.9 Other Considerations
	10.9.1 Prepaging
	10.9.2 Page Size
	10.9.3 TLB Reach
	10.9.4 Inverted Page Tables
	10.9.5 Program Structure
	10.9.6 I/O Interlock and Page Locking

	10.10 Operating-System Examples
	10.10.1 Linux
	10.10.2 Windows
	10.10.3 Solaris

	10.11 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 10 Exercises
	Programming Problems
	Programming Projects

	PART FIVE STORAGE MANAGEMENT
	Chapter 11 Mass-Storage Structure
	11.1 Overview of Mass-Storage Structure
	11.1.1 Hard Disk Drives
	11.1.2 Nonvolatile Memory Devices
	11.1.3 Volatile Memory
	11.1.4 Secondary Storage Connection Methods
	11.1.5 Address Mapping

	11.2 HDD Scheduling
	11.2.1 FCFS Scheduling
	11.2.2 SCAN Scheduling
	11.2.3 C-SCAN Scheduling
	11.2.4 Selection of a Disk-Scheduling Algorithm

	11.3 NVM Scheduling
	11.4 Error Detection and Correction
	11.5 Storage Device Management
	11.5.1 Drive Formatting, Partitions, and Volumes
	11.5.2 Boot Block
	11.5.3 Bad Blocks

	11.6 Swap-Space Management
	11.6.1 Swap-Space Use
	11.6.2 Swap-Space Location
	11.6.3 Swap-Space Management: An Example

	11.7 Storage Attachment
	11.7.1 Host-Attached Storage
	11.7.2 Network-Attached Storage
	11.7.3 Cloud Storage

	11.7.4 Storage-Area Networks and Storage Arrays
	11.8 RAID Structure
	11.8.1 Improvement of Reliability via Redundancy
	11.8.2 Improvement in Performance via Parallelism
	11.8.3 RAID Levels
	11.8.4 Selecting a RAID Level
	11.8.5 Extensions
	11.8.6 Problems with RAID
	11.8.7 Object Storage

	11.9 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 11 Exercises
	Programming Problems

	Chapter 12 I/O Systems
	12.1 Overview
	12.2 I/O Hardware
	12.2.1 Memory-Mapped I/O
	12.2.2 Polling
	12.2.3 Interrupts
	12.2.4 Direct Memory Access
	12.2.5 I/O Hardware Summary

	12.3 Application I/O Interface
	12.3.1 Block and Character Devices
	12.3.2 Network Devices
	12.3.3 Clocks and Timers
	12.3.4 Nonblocking and Asynchronous I/O
	12.3.5 Vectored I/O

	12.4 Kernel I/O Subsystem
	12.4.1 I/O Scheduling
	12.4.2 Buffering
	12.4.3 Caching
	12.4.4 Spooling and Device Reservation
	12.4.5 Error Handling
	12.4.6 I/O Protection
	12.4.7 Kernel Data Structures
	12.4.8 Power Management
	12.4.9 Kernel I/O Subsystem Summary

	12.5 Transforming I/O Requests to Hardware Operations
	12.6 STREAMS
	12.7 Performance
	12.8 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 12 Exercises

	PART SIX FILE SYSTEM
	Chapter 13 File-System Interface
	13.1 File Concept
	13.1.1 File Attributes
	13.1.2 File Operations
	13.1.3 File Types
	13.1.4 File Structure
	13.1.5 Internal File Structure

	13.2 Access Methods
	13.2.1 Sequential Access
	13.2.2 Direct Access
	13.2.3 Other Access Methods

	13.3 Directory Structure
	13.3.1 Single-Level Directory
	13.3.2 Two-Level Directory
	13.3.3 Tree-Structured Directories
	13.3.4 Acyclic-Graph Directories
	13.3.5 General Graph Directory

	13.4 Protection
	13.4.1 Types of Access
	13.4.2 Access Control
	13.4.3 Other Protection Approaches

	13.5 Memory-Mapped Files
	13.5.1 Basic Mechanism
	13.5.2 Shared Memory in the Windows API

	13.6 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 13 Exercises

	Chapter 14 File-System Implementation
	14.1 File-System Structure
	14.2 File-System Operations
	14.2.1 Overview
	14.2.2 Usage

	14.3 Directory Implementation
	14.3.1 Linear List
	14.3.2 Hash Table

	14.4 Allocation Methods
	14.4.1 Contiguous Allocation
	14.4.2 Linked Allocation
	14.4.3 Indexed Allocation
	14.4.4 Performance

	14.5 Free-Space Management
	14.5.1 Bit Vector
	14.5.2 Linked List
	14.5.3 Grouping
	14.5.4 Counting
	14.5.5 Space Maps
	14.5.6 TRIMing Unused Blocks

	14.6 Efficiency and Performance
	14.6.1 Efficiency
	14.6.2 Performance

	14.7 Recovery
	14.7.1 Consistency Checking
	14.7.2 Log-Structured File Systems
	14.7.3 Other Solutions
	14.7.4 Backup and Restore

	14.8 Example: The WAFL File System
	14.9 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 14 Exercises

	Chapter 15 File-System Internals
	15.1 File Systems
	15.2 File-System Mounting
	15.3 Partitions and Mounting
	15.4 File Sharing
	15.4.1 Multiple Users

	15.5 Virtual File Systems
	15.6 Remote File Systems
	15.6.1 The Client–Server Model
	15.6.2 Distributed Information Systems
	15.6.3 Failure Modes

	15.7 Consistency Semantics
	15.7.1 UNIX Semantics
	15.7.2 Session Semantics
	15.7.3 Immutable-Shared-Files Semantics

	15.8 NFS
	15.8.1 Overview
	15.8.2 The Mount Protocol
	15.8.3 The NFS Protocol
	15.8.4 Path-Name Translation
	15.8.5 Remote Operations

	15.9 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 15 Exercises

	PART SEVEN SECURITY AND PROTECTION
	Chapter 16 Security
	16.1 The Security Problem
	16.2 Program Threats
	16.2.1 Malware
	16.2.2 Code Injection
	16.2.3 Viruses and Worms

	16.3 System and Network Threats
	16.3.1 Attacking Network Traffic
	16.3.2 Denial of Service
	16.3.3 Port Scanning

	16.4 Cryptography as a Security Tool
	16.4.1 Encryption
	16.4.2 Implementation of Cryptography
	16.4.3 An Example: TLS

	16.5 User Authentication
	16.5.1 Passwords
	16.5.2 Password Vulnerabilities
	16.5.3 Securing Passwords
	16.5.4 One-Time Passwords
	16.5.5 Biometrics

	16.6 Implementing Security Defenses
	16.6.1 Security Policy
	16.6.2 Vulnerability Assessment
	16.6.3 Intrusion Prevention
	16.6.4 Virus Protection
	16.6.5 Auditing, Accounting, and Logging
	16.6.6 Firewalling to Protect Systems and Networks
	16.6.7 Other Solutions
	16.6.8 Security Defenses Summarized

	16.7 An Example: Windows 10
	16.8 Summary
	Further Reading
	Bibliography
	Chapter 16 Exercises

	Chapter 17 Protection
	17.1 Goals of Protection
	17.2 Principles of Protection
	17.3 Protection Rings
	17.4 Domain of Protection
	17.4.1 Domain Structure
	17.4.2 Example: UNIX
	17.4.3 Example: Android Application IDs

	17.5 Access Matrix
	17.6 Implementation of the Access Matrix
	17.6.1 Global Table
	17.6.2 Access Lists for Objects
	17.6.3 Capability Lists for Domains
	17.6.4 A Lock–Key Mechanism
	17.6.5 Comparison

	17.7 Revocation of Access Rights
	17.8 Role-Based Access Control
	17.9 Mandatory Access Control (MAC)
	17.10 Capability-Based Systems
	17.10.1 Linux Capabilities
	17.10.2 Darwin Entitlements

	17.11 Other Protection Improvement Methods
	17.11.1 System Integrity Protection
	17.11.2 System-Call Filtering
	17.11.3 Sandboxing
	17.11.4 Code Signing

	17.12 Language-Based Protection
	17.12.1 Compiler-Based Enforcement
	17.12.2 Run-Time-Based Enforcement—Protection in Java

	17.13 Summary
	Further Reading
	Bibliography
	Chapter 17 Exercises

	PART EIGHT ADVANCED TOPICS
	Chapter 18 Virtual Machines
	18.1 Overview
	18.2 History
	18.3 Benefits and Features
	18.4 Building Blocks
	18.4.1 Trap-and-Emulate
	18.4.2 Binary Translation
	18.4.3 Hardware Assistance

	18.5 Types of VMs and Their Implementations
	18.5.1 The Virtual Machine Life Cycle
	18.5.2 Type 0 Hypervisor
	18.5.3 Type 1 Hypervisor
	18.5.4 Type 2 Hypervisor
	18.5.5 Paravirtualization
	18.5.6 Programming-Environment Virtualization
	18.5.7 Emulation
	18.5.8 Application Containment

	18.6 Virtualization and Operating-System Components
	18.6.1 CPU Scheduling
	18.6.2 Memory Management
	18.6.3 I/O
	18.6.4 Storage Management
	18.6.5 Live Migration

	18.7 Examples
	18.7.1 VMware
	18.7.2 The Java Virtual Machine

	18.8 Virtualization Research
	18.9 Summary
	Further Reading
	Bibliography
	Chapter 18 Exercises

	Chapter 19 Networks and Distributed Systems
	19.1 Advantages of Distributed Systems
	19.1.1 Resource Sharing
	19.1.2 Computation Speedup
	19.1.3 Reliability

	19.2 Network Structure
	19.2.1 Local-Area Networks
	19.2.2 Wide-Area Networks

	19.3 Communication Structure
	19.3.1 Naming and Name Resolution
	19.3.2 Communication Protocols
	19.3.3 TCP/IP Example
	19.3.4 Transport Protocols UDP and TCP

	19.4 Network and Distributed Operating Systems
	19.4.1 Network Operating Systems
	19.4.2 Distributed Operating Systems

	19.5 Design Issues in Distributed Systems
	19.5.1 Robustness
	19.5.2 Transparency
	19.5.3 Scalability

	19.6 Distributed File Systems
	19.6.1 The Client–Server DFS Model
	19.6.2 The Cluster-Based DFS Model

	19.7 DFS Naming and Transparency
	19.7.1 Naming Structures
	19.7.2 Naming Schemes
	19.7.3 Implementation Techniques

	19.8 Remote File Access
	19.8.1 Basic Caching Scheme
	19.8.2 Cache Location
	19.8.3 Cache-Update Policy
	19.8.4 Consistency

	19.9 Final Thoughts on Distributed File Systems
	19.10 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 19 Exercises

	PART NINE CASE STUDIES
	Chapter 20 The Linux System
	20.1 Linux History
	20.1.1 The Linux Kernel
	20.1.2 The Linux System
	20.1.3 Linux Distributions
	20.1.4 Linux Licensing

	20.2 Design Principles
	20.2.1 Components of a Linux System

	20.3 Kernel Modules
	20.3.1 Module Management
	20.3.2 Driver Registration
	20.3.3 Conflict Resolution

	20.4 Process Management
	20.4.1 The fork() and exec() Process Model
	20.4.2 Processes and Threads

	20.5 Scheduling
	20.5.1 Thread Scheduling
	20.5.2 Real-Time Scheduling
	20.5.3 Kernel Synchronization
	20.5.4 Symmetric Multiprocessing

	20.6 Memory Management
	20.6.1 Management of Physical Memory
	20.6.2 Virtual Memory
	20.6.3 Execution and Loading of User Programs

	20.7 File Systems
	20.7.1 The Virtual File System
	20.7.2 The Linux ext3 File System
	20.7.3 Journaling
	20.7.4 The Linux Proc File System

	20.8 Input and Output
	20.8.1 Block Devices
	20.8.2 Character Devices

	20.9 Interprocess Communication
	20.9.1 Synchronization and Signals
	20.9.2 Passing of Data among Processes

	20.10 Network Structure
	20.11 Security
	20.11.1 Authentication
	20.11.2 Access Control

	20.12 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 20 Exercises

	Chapter 21 Windows
	21.1 History
	21.1.1 Windows XP, Vista, and 7
	21.1.2 Windows 8
	21.1.3 Windows 10

	21.2 Design Principles
	21.2.1 Security
	21.2.2 Reliability
	21.2.3 Windows and Application Compatibility
	21.2.4 Performance
	21.2.5 Extensibility
	21.2.6 Portability
	21.2.7 International Support
	21.2.8 Energy Efficiency
	21.2.9 Dynamic Device Support

	21.3 System Components
	21.3.1 Hyper-V Hypervisor
	21.3.2 Secure Kernel
	21.3.3 Hardware-Abstraction Layer
	21.3.4 Kernel
	21.3.5 Executive

	21.4 Terminal Services and Fast User Switching
	21.5 File System
	21.5.1 NTFS Internal Layout
	21.5.2 Recovery
	21.5.3 Security
	21.5.4 Compression
	21.5.5 Mount Points, Symbolic Links, and Hard Links
	21.5.6 Change Journal
	21.5.7 Volume Shadow Copies

	21.6 Networking
	21.6.1 Network Interfaces
	21.6.2 Protocols
	21.6.3 Redirectors and Servers
	21.6.4 Domains
	21.6.5 Active Directory

	21.7 Programmer Interface
	21.7.1 Access to Kernel Objects
	21.7.2 Sharing Objects Between Processes
	21.7.3 Process Management
	21.7.4 IPC Using Windows Messaging
	21.7.5 Memory Management

	21.8 Summary
	Practice Exercises
	Further Reading
	Bibliography
	Chapter 21 Exercises

	PART TEN APPENDICES
	Appendix A Influential Operating Systems
	A.1 Feature Migration
	A.2 Early Systems
	A.2.1 Dedicated Computer Systems
	A.2.2 Shared Computer Systems
	A.2.3 Overlapped I/O

	A.3 Atlas
	A.4 XDS-940
	A.5 THE
	A.6 RC 4000
	A.7 CTSS
	A.8 MULTICS
	A.9 IBM OS/360
	A.10 TOPS-20
	A.11 CP/M and MS/DOS
	A.12 Macintosh Operating System and Windows
	A.13 Mach
	A.14 Capability-based Systems—Hydra and CAP
	A.14.1 Hydra
	A.14.2 Cambridge CAP System

	A.15 Other Systems
	Further Reading
	Bibliography

	Appendix B Windows
	B.1 History
	B.2 Design Principles
	B.2.1 Security
	B.2.2 Reliability
	B.2.3 Windows and POSIX Application Compatibility
	B.2.4 High Performance
	B.2.5 Extensibility
	B.2.6 Portability
	B.2.7 International Support
	B.2.8 Energy Efficiency
	B.2.9 Dynamic Device Support

	B.3 System Components
	B.3.1 Hardware-Abstraction Layer
	B.3.2 Kernel
	B.3.3 Executive

	B.4 Terminal Services and Fast User Switching
	B.5 File System
	B.5.1 NTFS Internal Layout
	B.5.2 Recovery
	B.5.3 Security
	B.5.4 Volume Management and Fault Tolerance
	B.5.5 Compression
	B.5.6 Mount Points, Symbolic Links, and Hard Links
	B.5.7 Change Journal
	B.5.8 Volume Shadow Copies

	B.6 Networking
	B.6.1 Network Interfaces
	B.6.2 Protocols
	B.6.3 Redirectors and Servers
	B.6.4 Domains
	B.6.5 Active Directory

	B.7 Programmer Interface
	B.7.1 Access to Kernel Objects
	B.7.2 Sharing Objects between Processes
	B.7.3 Process Management
	B.7.4 IPC Using Windows Messaging
	B.7.5 Memory Management

	B.8 Summary
	Practice Exercises
	Further Reading
	Bibliography

	Appendix C BSD UNIX
	C.1 UNIX History
	C.1.1 UNIX Support Group
	C.1.2 Berkeley Begins Development
	C.1.3 The Spread of UNIX
	C.1.4 History of FreeBSD

	C.2 Design Principles
	C.3 Programmer Interface
	C.3.1 File Manipulation
	C.3.2 Process Control
	C.3.3 Signals
	C.3.4 Process Groups
	C.3.5 Information Manipulation
	C.3.6 Library Routines

	C.4 User Interface
	C.4.1 Shells and Commands
	C.4.2 Standard I/O
	C.4.3 Pipelines, Filters, and Shell Scripts

	C.5 Process Management
	C.5.1 Process Control Blocks
	C.5.2 CPU Scheduling

	C.6 Memory Management
	C.7 File System
	C.7.1 Blocks and Fragments
	C.7.2 Inodes
	C.7.3 Directories
	C.7.4 Mapping a File Descriptor to an Inode
	C.7.5 Disk Structures
	C.7.6 Implementations
	C.7.7 Layout and Allocation Policies

	C.8 I/O System
	C.8.1 Block Buffer Cache
	C.8.2 Raw Device Interfaces
	C.8.3 C-Lists

	C.9 Interprocess Communication
	C.9.1 Sockets
	C.9.2 Network Support

	C.10 Summary
	Further Reading
	Bibliography

	Appendix D The Mach System
	D.1 History of the Mach System
	D.2 Design Principles
	D.3 System Components
	D.4 Process Management
	D.4.1 Basic Structure
	D.4.2 The C Threads Package
	D.4.3 The CPU Scheduler
	D.4.4 Exception Handling

	D.5 Interprocess Communication
	D.5.1 Ports
	D.5.2 Messages
	D.5.3 The NetMsgServer
	D.5.4 Synchronization Through IPC

	D.6 Memory Management
	D.6.1 Basic Structure
	D.6.2 User-Level Memory Managers
	D.6.3 Shared Memory

	D.7 Programmer Interface
	D.8 Summary
	Further Reading
	Bibliography

	Credits
	Index
	Glossary
	EULA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2018-05-05T03:00:04+0000
	Preflight Ticket Signature

