
i

ii

Introduction to DBMS:
Theory & Practicals

Author

Dr. Myneni Madhu Bala,

Professor, Department of Computer Science Engineering,
Institute of Aeronautical Engineering,
Medchal, Malkajgiri‐500043, Telangana

Reviewer

Dr. Sanjiva Shankar Dubey,

Professor, Birla Institute of Management Technology,
Greater Noida, Gautam Buddha Nagar‐201306, Uttar Pradesh

All India Council for Technical Education
Nelson Mandela Marg, Vasant Kunj,

New Delhi, 110070

iii

BOOK AUTHOR DETAILS

Dr. Myneni Madhu Bala, Professor, Department of Computer Science Engineering, Institute of
Aeronautical Engineering, Medchal, Malkajgiri-500043, Telangana

Email ID: baladandamudi@gmail.com

BOOK REVIEWER DETAILS

Dr. Sanjiva Shankar Dubey, Professor, Birla Institute of Management Technology, Greater
Noida, Gautam Buddha Nagar-201306, Uttar Pradesh

Email ID: ss.dubey@bimtech.ac.in

BOOK COORDINATOR (S) – English Version

1. Dr. Amit Kumar Srivastava, Director, Faculty Development Cell, All India Council for
Technical Education (AICTE), New Delhi, India
Email ID: director.fdc@aicte‐india.org

 Phone Number: 011-29581312

2. Mr. Sanjoy Das, Assistant Director, Faculty Development Cell, All India Council for
Technical Education (AICTE), New Delhi, India
Email ID: ad1fdc@aicte‐india.org
Phone Number: 011-29581339

December, 2022

© All India Council for Technical Education (AICTE)

ISBN : 978-81-960386-1-8

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or
any other means, without permission in writing from the All India Council for Technical
Education (AICTE).

Further information about All India Council for Technical Education (AICTE) courses may be
obtained from the Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070.

Printed and published by All India Council for Technical Education (AICTE), New Delhi.

Laser Typeset by:

Printed at:

Disclaimer: The website links provided by the author in this book are placed for informational,
educational & reference purpose only. The Publisher do not endorse these website links or the
views of the speaker / content of the said weblinks. In case of any dispute, all legal matters to be
settled under Delhi Jurisdiction, only.

iv

v

ACKNOWLEDGEMENT

The authors are grateful to the authorities of AICTE, particularly Prof. M. Jagadesh Kumar,
Chairman; Prof. M. P. Poonia, Vice-Chairman; Prof. Rajive Kumar, Member-Secretary
and Dr. Amit Kumar Srivastava, Director, Faculty Development Cell for their planning to
publish the books on Introductions to DBMS: Theory & Practicals. We sincerely
acknowledge the valuable contributions of the reviewer of the book Dr. Sanjiva Shankar
Dubey, Professor, Birla Institute of Management Technology for making it students’
friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors
who shared their opinion and thought to further develop the engineering education in our
country. Acknowledgements are due to the contributors and different workers in this field
whose published books, review articles, papers, photographs, footnotes, references and
other valuable information enriched us at the time of writing the book.

Myneni Madhu Bala

vi

PREFACE

The book titled “Introduction to DBMS: Theory and Practicals” is an outcome of the rich
experience of our teaching of computer science courses. The initiation of writing this book
is to expose database systems to the computer science students, the fundamentals of
dababase systems as well as enable them to get an insight of the subject. Keeping in mind
the purpose of wide coverage as well as to provide essential supplementary information,
we have included the topics recommended by AICTE, in a very systematic and orderly
manner throughout the book. Efforts have been made to explain the fundamental concepts
of the subject in the simplest possible way.

 During the process of preparation of the manuscript, we have considered the various
standard text books and accordingly we have developed sections like numerical problems,
case studies with solutions and practical sections etc. While preparing the different sections
emphasis has also been laid on definitions, syntaxes and semantics and also on
comprehensive synopsis of syntaxes and semantics and algorithms for a quick revision of
the core concepts. The book covers all types of medium and advanced level problems/case
studies and these have been presented in a very logical and systematic manner. The stages
of those case studies have been tested over many years of teaching to a wide variety of
students.

 Apart from illustrations and examples as required, we have enriched the book with
solved case studies in every unit for proper understanding of the related topics. It is
important to note that in each unit, we have included the relevant laboratory practical. In
addition, besides some essential information for the users under the heading “Know More”
we have clarified some essential basic information in the appendix and annexure section.

 As far as the present book is concerned, “Introduction to DBMS: Theory & Practicals”
is meant to provide a thorough grounding in database systems on the topics covered. This
part of the computer science book will prepare diploma students to apply the knowledge
of database systems to tackle 21st century and onward engineering challenges and address
the related stimulated questions. The subject matters are presented in a constructive manner
so that an computer science diploma prepares students to work in different sectors or in
national laboratories at the very forefront of technology.

vii

 We sincerely hope that the book will inspire the students to learn and discuss the ideas
behind basic principles of relational database management systems and will surely
contribute to the development of a solid foundation of the subject. We would be thankful
to all beneficial comments and suggestions which will contribute to the improvement of
the future editions of the book. It gives us immense pleasure to place this book in the hands
of the teachers and students. It was indeed a big pleasure to work on different aspects
covering in the book.

Myneni Madhu Bala

viii

OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to develop
an outcome based curriculum and incorporate an outcome based assessment in the
education system. By going through outcome based assessments, evaluators will be able to
evaluate whether the students have achieved the outlined standard, specific and measurable
outcomes. With the proper incorporation of outcome based education there will be a
definite commitment to achieve a minimum standard for all learners without giving up at
any level. At the end of the programme running with the aid of outcome based education,
a student will be able to arrive at the following outcomes:

Programme Outcomes (POs) are statements that describe what students are expected
to know and be able to do upon graduating from the program. These relate to the skills,
knowledge, analytical ability attitude and behaviour that students acquire through the
program. The POs essentially indicate what the students can do from subject-wise
knowledge acquired by them during the program. As such, POs define the professional
profile of an engineering diploma graduate.

National Board of Accreditation (NBA) has defined the following seven POs for an
Engineering diploma graduate:

PO1. Basic and Discipline specific knowledge: Apply knowledge of basic mathematics,
science and engineering fundamentals and engineering specialization to solve the
engineering problems.

PO2. Problem analysis: Identify and analyses well-defined engineering problems using
codified standard methods.

PO3. Design/ development of solutions: Design solutions for well-defined technical
problems and assist with the design of systems components or processes to meet
specified needs.

PO4. Engineering Tools, Experimentation and Testing: Apply modern engineering
tools and appropriate technique to conduct standard tests and measurements.

PO5. Engineering practices for society, sustainability and environment: Apply
appropriate technology in context of society, sustainability, environment and ethical
practices.

PO6. Project Management: Use engineering management principles individually, as a
team member or a leader to manage projects and effectively communicate about well-
defined engineering activities.

PO7. Life-long learning: Ability to analyse individual needs and engage in updating in
the context of technological changes.

ix

COURSE OUTCOMES

By the end of the course the students are expected to learn:

CO-1: How to design a database, database-based applications
CO-2: How to use a DBMS.
CO-3: The critical role of database system in designing several information system-based

software systems or applications.

Mapping of Course Outcomes with Programme Outcomes to be done according to
the matrix given below:

Course Outcomes

Expected Mapping with Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong

Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1 3 3 3 3 1 1 3

CO-2 3 2 2 2 1 1 3

CO-3 3 3 3 3 1 1 3

x

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) knowledge level and skill set of the
students should be enhanced. Teachers should take a major responsibility for the proper
implementation of OBE. Some of the responsibilities (not limited to) for the teachers in
OBE system may be as follows:

 Within reasonable constraint, they should manipulate time to the best advantage of
all students.

 They should assess the students only upon certain defined criterion without
considering any other potential ineligibility to discriminate them.

 They should try to grow the learning abilities of the students to a certain level before
they leave the institute.

 They should try to ensure that all the students are equipped with the quality
knowledge as well as competence after they finish their education.

 They should always encourage the students to develop their ultimate performance
capabilities.

 They should facilitate and encourage group work and team work to consolidate
newer approach.

 They should follow Blooms taxonomy in every part of the assessment.

xi

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the
responsibilities (not limited to) for the students in OBE system are as follows:

 Students should be well aware of each Unit Outcome (UO) before the start of a unit
in each and every course.

 Students should be well aware of each Course Outcome (CO) before the start of the
course.

 Students should be well aware of each Programme Outcome (PO) before the start
of the programme.

 Students should think critically and reasonably with proper reflection and action.
 Learning of the students should be connected and integrated with practical and real

life consequences.
 Students should be well aware of their competency at every level of OBE.

xii

ABBREVIATIONS AND SYMBOLS

List of Abbreviations

General Terms

Abbreviations Full form Abbreviations Full form
DB Database SQL Structured Query Language

 DBMS Database Management
Systems

OODB Object-Oriented Databases

DBA Database Administrators XML Extensible Markup
Language

ER Entity-Relationship EER Enhanced Entity-
Relationship

DML Data Manipulation
Language

TRC Tuple Relational Calculus

DDL Data Definition Language DRC Domain Relational Calculus
PC Personal Computer TCL Transaction Control

Language
ODBC Open Database Connectivity DCL Data Control Language
JDBC Java Database Connectivity IC Integrity Constraints
WWW World Wide Web FD Functional Dependencies

List of Symbols

Symbols Description

 ∨ OR
∧ AND
¬ NOT
∃ there exists
∀ for all

AXB Cartesian-Product Operation
⋈ natural-join

σ Sigma selection
Π Pi Projection
− difference
∪ Union

xiii

LIST OF FIGURES

Unit 1 Introduction

Fig. 1.1 : Levels of Data View 6

Fig. 1.2 : A Sample Database Data of a College Application 9

Fig. 1.3 : History of Database Systems 11

Fig. 1.4 : Illustration of Student Schema Diagram 15

Fig. 1.5 : Database States 16

Fig. 1.6 : Database Architecture 18

Fig. 1.7 : Centralized Architecture 21

Fig. 1.8 : Physical Structure of Client / Server Architecture 22

Fig. 1.9 : A 2-Tier Architecture 22

Fig. 1.10: A Three-Tier Architecture 23

Unit 2 Data Modeling

Fig. 2.1 : Illustration of various phases in database design 37

Fig. 2.2 : ER Diagram of Sample Industry Data Model 39

Fig. 2.3 : Two entities and their attributes with values 41

Fig. 2.4 : List of various types of attributes with appropriate examples 43

Fig. 2.5 : Example of composite attribute 44

Fig. 2.6 : Mapping Cardinalities 46

Fig. 2.7 : Summary of notations for ER Diagrams (Symbol – Meaning) 47

Fig. 2.8 : Illustration of Conceptual design of the library management system
using E-R diagram

50

Fig. 2.9 : A Concept of IS_A relationship in Enhanced E-R Model 51

Unit 3 Relational Model and Formal Query Languages

Fig. 3.1 : Basic structure of a relational model 64

Fig. 3.2 : Student relation with sample data of 5 tuples 66

Fig. 3.3 : Database instance of section table 67

Fig. 3.4 : Kinds of Constraints on relational databases 68

Fig. 3.5 : ER diagram of Industry database 70

Fig. 3.6 : Relational schemas identified from E-R diagram 71

Fig. 3.7 : E-R diagram of library management system (LMS) 72

xiv

Fig. 3.8 : Linear algebra- comparison operators 73

Fig. 3.9 : Relational algebra basic operations 74

Fig. 3.10: A sample Instructor relation instance 74

Fig. 3.11: Relations A and B with sample data, and AXB resultant relation
without projection and selection

76

Fig. 3.12: Cartesian-Product Operation AXB resultant relation with selection
and projection

76

Fig. 3.13: The result of natural-join: Employee ⋈ Department 77

Unit 4 Structured Query Language (SQL)

Fig. 4.1 : Structured Query Language components 90

Fig. 4.2 : Glossary of basic SQL commands 91

Fig. 4.3 : Data types in SQL 97

Fig. 4.4 : SQL data definition of the college database 103

Fig. 4.5 : SQL data definition of the library management system database 105

Fig. 4.6 : MySQL functions of string operations 108

Fig. 4.7 : MySQL functions of aggregate operations 110

Fig. 4.8 : General block structure of PL/SQL 117

Unit 5 Functional Dependencies and Normalization for Databases

Fig. 5.1: Schema Diagram of Sample Industry Database 147

Fig. 5.2 : Sample database state of Industry database 148

Fig. 5.3 : Demonstration of Division relation Normalization into 1NF 152

Fig. 5.4 : Illustration of 2NF Normalization of Employee_project relation 154

Fig. 5.5 : Illustration of 3NF Normalization of Employee_division relation 156

Fig. 5.6 : Synopsis of various normal forms (1NF to 3NF) – Test to be
performed– Normalization of schema of relations

156

Fig. 5.7 : Illustration of BCNF Normalization of teaches relation 158

Fig. 5.8 : Illustration of 4NF Normalization of Employee_details relation 159

Fig. 5.9 : Illustration of 5NF Normalization of Product supply relation 161

Fig. 5.10: Synopsis of Algorithms 166

xv

CONTENTS

 Foreword iv

 Acknowledgement v

 Preface vi

 Outcome Based Education viii

 Course Outcomes ix

 Guidelines for Teachers x

 Guidelines for Students xi

 Abbreviations and Symbols xii

 List of Figures xiii

Unit 1: Introduction 1-34

Unit specifics 1

Rationale 2

Pre-requisites 2

Unit outcomes 2

1.1 Database Fundamentals 3

1.1.1 Need and Importance of Database Systems 4

1.1.2 Data View 5

1.1.3 Example Database System of a College 7

 1.1.4 Database Design 10

1.1.5 Database System Evolution 10

1.1.6 Users of Databases 11

1.2 Concepts of a Database 13

1.2.1 A Data Model and Schema 14

1.2.2 Instances, Schema Constructs, State of Database 15

1.3 Architecture 16

1.3.1 Storage and Querying of Data 19

1.3.2 Database Architectures 20

1.3.3 Database Languages 23

1.4 Advantages of Database Systems in Real-Time Applications 25

 1.4.1 Database Applications with Network and Hierarchical Systems 25

Unit Summary 27

Exercises 29

xvi

Multiple Choice Questions 29

Short And Long Answer Type Questions 31

Numerical Problems 31

Practical 32

Know More 33

Commercial Db Systems 33

Free/Public Domain Database Systems 33

References and Suggested Readings 34

Unit 2: Data Modeling 35-61

Unit specifics 35

Rationale 36

Pre-requisites 36

Unit outcomes 36

2.1 Conceptual Modeling 37

2.2 An Example Database Application 38

2.3 ER Model Concepts 40

2.3.1 Entity 40

2.3.2 Attribute 41

2.3.3 Keys 43

2.3.4 Relationship Sets 44

2.3.5 Mapping cardinalities 45

2.3.6 Standard notations for ER Diagrams 46

2.3.7 Case study – Library Management System 47

2.4 Enhanced Entity Relationship (EER) Model concepts 49

2.4.1 Subtype or Subclass 50

2.4.2 Specialization, Generalization and Lattices 50

Unit Summary 52

Exercises 54

Multiple Choice Questions 54

Short And Long Answer Type Questions 56

Numerical Problems 58

Practical 59

Know More 60

Commercial Db Systems 60

Free/Public Domain Database Systems 60

References and Suggested Readings 60

xvii

Unit 3: Relational Model and Formal Query Languages 62-87

Unit specifics 62

Rationale 63

Pre-requisites 63

Unit outcomes 63

3.1 Relational Data Model 64

3.1.1. Relational Model Concepts 64

3.2. Relational Database Constraints 67

3.3. ER/EER to Relational Model Mapping 69

3.3.1. Case Study 1: The Conceptual Design of Industry database 69
3.3.2. Case Study 2: The Conceptual Design of the Library Management System
(LMS)

71

3.4. Relational Algebra 73

3.5. Relational Calculus 77

3.5.1. Tuple Relational Calculus (TRC) 78

3.5.2. Domain Relational Calculus (DRC) 78

Unit summary 80

Exercises 82

Multiple Choice Questions 82

Short And Long Answer Type Questions 84

Numerical Problems 84

Practical 86

Commercial Db Systems 87

Free/Public Domain Database Systems 87

References and Suggested Readings 87

Unit 4: Structured Query Language (SQL) 88-142

Unit specifics 88

Rationale 89

Pre-requisites 89

Unit outcomes 89

4.1 Structured Query Language (SQL-99) 90

4.2 Schema Definition 91

4.3 Constraints 94

4.3.1 Integrity Constraints 94

4.3.2. Domain Constraints 96

xviii

4.3.3. Data Types in SQL 97

4.3.4. Attribute Constraints and Defaults 100

4.3.5. Case Study – College Database 102

4.3.6. Case Study – Library Management System 104

4.4 Queries 105

4.4.1. Basic Structure of Query 105

4.4.2. Additional Basic Operations 107

4.5. Views 112

4.6. Security 114

4.7. Introduction to SQL Programming Techniques 115

4.7.1. Structure of Pl SQL Block 116

4.7.2. PL/SQL – Operators 118

4.7.3. Sequences 118

4.7.4. PL/SQL Control Structures 119

4.7.5. Cursors 121

4.7.6. Transactions 124

4.7.7. Procedures and Functions 125

4.7.8. Exceptions Handling 126

4.7.9. Triggers 128

Unit summary 132

Exercises 137

Multiple Choice Questions 137

Short And Long Answer Type Questions 139

Numerical Problems 140

Practical 141

Commercial Db Systems 142

Free/Public Domain Database Systems 142

References and Suggested Readings 142

Unit 5: Functional Dependencies and Normalization for Databases 143-178

Unit specifics 143

Rationale 144

Pre-requisites 144

Unit outcomes 145

5.1 Design Guidelines for Relational Schemas 146

5.2 Functional Dependency (FD) 149

5.3 Normalization of Relational Database Schemas 150

xix

 5.3.1 First Normal Form (1NF) 151

 5.3.2 Second Normal Form (2NF) 153

 5.3.3 Third Normal Form (3NF) 155

 5.3.4 Boyes Codd Normal Form (BCNF) 157

 5.3.5 Fourth Normal Form (4NF) 158

 5.3.6 Fifth Normal Form (5NF) 160

5.4 Relational Database Design Algorithms 161

 5.4.1 Closure Algorithm 161

 5.4.2 Minimal Cover Algorithm 161

 5.4.3 Finding Key of a Relation 162

 5.4.4 Testing for Nonadditive Join Property 162

 5.4.5 Synthesis on 3NF with Dependency Preservation and Nonadditive Join 163

 5.4.6 Decomposition into BCNF with Nonadditive Join Property 164

 5.4.7 Decomposition Into 4NF Relations with Nonadditive Join Property 165

5.5 Further Dependencies 166

5.5.1 Inclusion Dependencies 166

 5.5.2 Based on Arithmetic Functions and Procedures 167

Unit summary 168

Exercises 169

Multiple Choice Questions 169

Short and Long Answer Type Questions 173

Numerical Problems 175

Practicals 176

Know more 178

References and suggested readings 178

References For Further Learning 179

CO and PO Attainment Table 180

Index 181-184

1 Introduction to DBMS: Theory & Practicals

d

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

 Need and Importance of Database systems
 Example database system
 Database users
 Advantages of Database systems in real-time applications
 Evolutions of Database Applications
 Data Models, Data Schemas
 Data constructs, Instances, state of Database
 Database Architecture
 Database Languages

The practical applications of the topics are discussed for generating further curiosity and creativity
as well as to improve problem-solving capacity.

 Besides giving a large number of multiple-choice questions as well as questions of short and
long answer types marked in two categories following lower and higher order of Bloom’s
taxonomy, assignments through several numerical problems, a list of references, and suggested
readings are given in the unit so that one can go through them for practice. It is important to note
that for getting more information on various topics of interest some QR codes have been provided
in different sections which can be scanned for relevant supportive knowledge.

 After the related practical, based on the content, there is a “Know More” section. This section
has been carefully designed so that the supplementary information provided in this part becomes
beneficial for the users of the book. This section mainly highlights the initial activity, examples of
some interesting facts, analogy, history of the development of the subject focusing on the salient
observations and finding, timelines starting from the development of the concerned topics up to the
recent time, applications of the subject matter for our day-to-day real life or/and industrial
applications on a variety of aspects, case study related to environmental, sustainability, social and
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit.

1 INTRODUCTION

2 Introduction to DBMS: Theory & Practicals

RATIONALE

This Introduction unit on Database systems helps students to get a primary idea about the real-
time database applications, needs, and importance of relational database systems. It explains the
concepts, models, schemas, users, languages, and architectures of the database system. All these
basic aspects are relevant to starting the database system implementation. It then explains clearly
about database model, schema development, and architecture views. All these are discussed at
length to develop the database systems. Some related case studies are pointed out with an extension
to the data model and schema development, which can help further in getting a clear idea of the
concern topics on database systems.

 Databases are an important branch of computer science that essentially deals with information
and data and their effect on information retrieval. Database systems started their journey by
traditional data processing (file system) and storage and then explaining it in terms of relational
database management. This permits one to analyze the operations of many day-to-day transactions
around us. But at the same time, it covers the database interactions and interfaces of the web, XML,
and cloud. Its practical applications are related to the model, construction, and operation of
different types of database systems and tools.

PRE-REQUISITES

Mathematics: Calculus, Algebra (Class XII)
Computer Science: problem-solving with programming (Class XII)

UNIT OUTCOMES

The List of outcomes of this unit is as follows:

U1-O1: Relate the real-time systems with database systems

U1-O2: Realize the need and importance of database systems for storage, manipulation, and
retrieval of data.

U1-O3: Summarize the architectural views of the database system

U1-O4: Interpret the database system with schemas

U1-O5: Develop a database model with schema and languages for real-time system

Unit-1
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6
U1-O1 3 1 3 - - -
U1-O2 1 1 1 - - -
U1-O3 2 2 3 - - -
U1-O4 3 3 3 - - -
U1-O5 3 3 3 - - -

3 Introduction to DBMS: Theory & Practicals

1.1. DATABASE FUNDAMENTALS

Database systems play a significant role in modern civilization. In general, most of our

daily activities require interacting with a database system in some way. For example,

a bank transaction involves either depositing or withdrawing money; online

purchases of electronic goods like computers, laptops, toys, books, and mobile

phones through e-commerce sites like Flipkart and Amazon, hotel, rail, bus, or airline

bookings, and computerized library catalogue to look up a bibliographic item are all

activities that require to access a database through a computer program or a person.

The supermarket database that stores all inventory and sales transactions of grocery

products are frequently and automatically updated. The rising usage of computers has

a significant impact on databases and database technologies. Every sector that uses

computers, including business, electronic commerce, engineering, medical, genetics,

law, education, and library science, depends on it.

A database (DB) system is a collection of related data, which refers to well-known facts

that may be noted down and have underlying significance.

Examples include the names, numbers, and addresses of the employees and
students.

 A computer system and programs like Microsoft Access or Excel are used to process

and store this information on disk or an indexed address book.

 The following implicit characteristics apply to databases:

 Logically unified collection of information with inherent meaning

 Represents part of the real-world

 Created, constructed, and filled with information with a specific goal in mind.

 Along with the characteristics, it must have a target audience in mind as well as have

user-facing applications.

4 Introduction to DBMS: Theory & Practicals

1.1.1 NEED AND IMPORTANCE OF DATABASE SYSTEMS

The majority of the data saved and retrieved in traditional database systems is either textual

or numerical, and it is stored in a typical file-processing system that is supported by

a traditional operating system. The system uses flat files to hold permanent records,

and separate application programs are required to write to and read from the proper

files. Before the development of database management systems (DBMSs),

organizations could only save information digitally.

Traditional databases and file processing's limitations:

Accessing data: Once a specific application software is created for a task. Other tasks

cannot be done; they are not supported. For instance, the software is created to

retrieve a list of all students. It does not support collecting a list of students who have

successfully finished 22 credits. Because of this, traditional file processing

environments do not efficiently or easily support all necessary data retrievals.

Storing redundant data: Data redundancy occurs when the same information appears

several times in a typical file processing context. For instance, if a student majors

major mathematics and botany, the address and phone number of such student may

be found in a file that contains student records from both departments. Due to the

redundancy, storage and access costs are increased. Additionally, it can result in

inconsistent data. For instance, the records of another department may not reflect a

change in a contact number made in one department.

Data Isolation: In a typical file processing environment, all relevant data is dispersed

among numerous files in diverse formats. As a result, retrieving right data through

application programs is challenging.

Integrity issues: In a standard file processing environment, it is challenging to change or

add additional consistency restrictions to the application software that stores the data

5 Introduction to DBMS: Theory & Practicals

with them. When limitations contain several data items from various files, the issue

is exacerbated.

Concurrent access: A faster response time and allowing numerous users to update the

data at once are key to the system's overall performance. In a file processing context,

it is not feasible.

1.1.2. DATA VIEW

A relational database is made up of a group of connected data items and several that let

users access and edit the data. A database system's goal is to give users an abstract

view of the data. In other words, the system hides some information about the data's

maintenance and storage.

Data Abstraction?

In real-time, the usability and popularity of a software system rely on the effective retrieval

of data. In all ways, many users are not computer proficient. Therefore, to make users'

interactions with the system simpler, developers hide the complexity from users at

several levels of abstraction.

All the data is not required by all database users. Users must therefore only access a portion

of the database. To make their engagement with the system simpler, there is a view

level of abstraction. For the same database, the system might offer a variety of views.

The link between the three levels of abstraction is depicted in Fig. 1.1. (Low to high).

Physical Level - How the data is

physically stored.

Logical Level - What data and

relationships among them are stored in

the database? This is referred to as

physical data independence. The

Database administrators (DBA) will Fig. 1.1 Levels of Data View

6 Introduction to DBMS: Theory & Practicals

decide what part of the information to

store in the database with the logical

level of abstraction.

View Level - describes a part of the entire

database.

A college organization, for instance, might have fields:

 faculty records - faculty_ID, Faculty_name, dept_name, and salary_amt.

 department records - department_id, department_name, location, and budget_amt

 course records – course_id, course_title, department_name, and credit_score

 student records – student_ID, student_name, department_name, and total_credits

Physical Level:

Faculty, department, course, and student records can be thought of as a block of successive

storage spaces on a physical level. Database administrators are concerned with the

particulars of data stored physically.

Logical Level:

Each record's type description and how these record types relate to one another are

explained at the logical level. At this level of abstraction, programming languages

are used by database managers and programmers.

Finally, system users perceive a collection of applications at the view level that hides the

specifics of the data kinds. A database user can view exactly required or everything

available (different views) that have been defined for the database. The different

levels of views provide security by restricting users from specific areas of the

database access by hiding the logical level of the information.

In the college office, for instance, assistants can view students (a portion of the

database), but they are restricted to access information regarding the salaries of faculty.

7 Introduction to DBMS: Theory & Practicals

1.1.3 EXAMPLE DATABASE SYSTEM OF A COLLEGE

 An example system would be a College database that would be used to

maintain information regarding major entities such as student, course, and grade

in a college. Initially, the database is set up with five files having identical data

records.

 STUDENT file contains information about each student;

 COURSE file contains information about each course;

 SECTION file contains information about all sections of a course;

 GRADEREPORT file contains information about student grades received in

different completed sections;

PRE REQUISITE file contains information about each course's prerequisites

8 Introduction to DBMS: Theory & Practicals

 In order to define this database, we must describe the data items that will be kept in

each record's structure shown in figure 1.2.

 STUDENT data contains information about the Roll_ number, student_ Name, Class

(like Firstyear / "1", Secondyear / "2"), Major course(“Mathematics” / "MATH" and

“Computer Science” / "CS").

COURSE data contains information about the course_ name, number of credits, offered

department.

For every data element contained within a record, a data type must also be specified.

GRADE REPORT data contains a Grade (a single character in the given set {"A," "B,"

"C," "D," "F," and "I,"} and name of student is a string (having alphabetic characters),

Roll number is an integer.

The values of a data item may alternatively be represented via a coding scheme.

The Class of a STUDENT (such as 1, 2, 3, 4, and 5 for freshmen, sophomore, junior,

senior, and graduate student, respectively.

We keep information in the relevant file to denote as student details, course details,

section, grade details, and pre requisites as a record in order to build the college

database. It should be noted that records in different files might be connected.

For instance, (in figure 1.2), in the GRADE REPORT file two records details are filled

with amit grades in one section are tied to the record for amit in the STUDENT file.

In the PREREQUISITE file, each entry is linked with two course records, one for the

course itself and the other for the prerequisite.

9 Introduction to DBMS: Theory & Practicals

Fig. 1.2. A sample database data of a college application

10 Introduction to DBMS: Theory & Practicals

1.1.4. DATABASE DESIGN

There are three stages to the database design process Conceptual, Logical, and Physical.

The requirement specification and analysis phase is the first step in designing a new

application for both an existing database and a brand-new database. To make it

simple to maintain, modify, and convert into a database implementation, these

specifications are recorded and turned into a conceptual design that can be

represented and edited using computerized tools. A Logical design of a system to be

represented is done through a commercial DBMS.

1.1.5. DATABASE SYSTEM EVOLUTION

Over time, methods for processing and storing data have changed. In the beginning, greater

emphasis was placed on data storage methods, such as relational databases in

Querying and updating are two aspects of database manipulation. The following are

some examples of queries:

 Get “Amit’s” transcript, which contains a list of all of his or her courses and

grades.

 List the prerequisites for the "Database" course;

 Display the student names, who acquired the section of the course given in even

2020 and their grades;

 Provide examples of changes, such as the following:

Create a new segment of the "Database" with a courses for this semester.

Change "Amit" class to sophomores. Enter "Amit" grade of "A" in the

"Database" section from previous sem.

11 Introduction to DBMS: Theory & Practicals

decentralized contexts and files on tapes and discs. Over time, data processing has

progressed beyond payroll management to data analysis. Fig. 1.3 depicts the

development of database systems from 1960 to 2000.

Fig. 1.3. History of Database systems

1.1.6. USERS OF DATABASES

A huge database with hundreds of users is designed, used, and maintained by numerous

people in large organizations.

Administrators of databases

The Database Administrator (DBA) is the authority of granting users access to the

database, organizing and controlling how it is used, and organizing necessary

hardware and software resources. Security lapses and slow system responses are a

few of the issues handled by the DBA.

12 Introduction to DBMS: Theory & Practicals

Designers of Database

The database designers are responsible to determine the data that will be stored in the

database and selecting the best structures for representing and store. Utmost all these

actions are carried out prior to the database's implementation and data loading.

All potential database users must be contacted for database designers to fully comprehend

their needs and develop a satisfactory design. They gain insights by interacting with

each possible user group and then create views of the database that provide for their

processing needs. The ultimate database design must be able to accommodate all user

groups' needs.

End Users:

The people involved in querying, updating, and producing reports from databases are

known as end users. There are various types of end users, including:

Casual end users - who infrequently and for various purposes - access the database. To

describe their requests, they use a simple database query language. They are

supervisors at medium or high levels or other infrequent browsers.

 Naïve/parametric Users - Their primary duty is to continuously update and query the

database using pre-programmed, thoroughly tested transactions, which are common.

These users carry out a variety of tasks:

1. Account balances are checked by bank tellers, who also post deposits and withdrawals.

2. Airlines, hotels, and car rental agencies all have reservation agents who can check

availability and book bookings.

To update a database with all received parcels, workers at receiving stations for shipping

businesses.

3. Engineers, scientists, business analysts, and other professionals with in-depth knowledge

of the DBMS's features are examples of sophisticated end users.

13 Introduction to DBMS: Theory & Practicals

Independent users - manage their databases by utilizing pre-built software packages that

offer simple menus or graphics-based user interfaces.

An illustration would be a user of a tax preparation program who keeps a variety

of personal financial information for program purposes.

Analysts and developers (Software Engineers)

They will identify the needs of users, particularly simple and parametric users to create

specifications for pre-packaged standard transactions that fullfil these requirements.

Application programmers convert these specifications into working programs, which

they subsequently test, debug, record, and maintain. To effectively carry out their

duties, these analysts and programmers—often referred to as software developers or

software engineers—should be knowledgeable about the full scope of DBMS

capabilities.

Designers and implementers of DBMS systems

They are concerned with creating a software package that includes the DBMS modules and

interfaces. It is composed of several parts, or modules, such as those that implement

the catalog, process query languages, process user interfaces, access, and buffer data,

manage concurrency, handle data recovery, and handle security.

Tool Developers:

The tool developers will create packages to simplify database modelling and design, and

for enhancing performance.

Operators and maintenance personnel:

The responsibility of operators and maintenance employees (system administration

personnel) is the effective functioning of the database system and maintenance of the

environment including hardware and software.

1.2. CONCEPTS OF A DATABASE

The essential terminology of database systems includes; schemas, instances, models.

14 Introduction to DBMS: Theory & Practicals

1.2.1. A DATA MODEL AND SCHEMA

A data model is a collection of interrelated concepts that are used to define the database

structure. It includes the related data type, relationship, and required constraints. It

provides data abstraction to access different levels of users at their chosen level.

Data Model Categories

The data models have been categorized according to the types of concepts used:

1. Conceptual / High Level

2. Physical / Low Level

3. Representational / implementation

1. Conceptual / High Level

All high-level concepts (users recognized data) are named as an ‘entity’, ‘attribute’, and

‘relationship’.

Entity - A concept or object is taken from the real world

Eg. an employee, a student in the database

Attribute – The specific characteristic of an entity

Eg. Employee_name, gross_salary are attributes of an employee

Relationship - an association between the existing entities

Eg. a relationship existed between an employee and a department can be defined

as works-for

An Entity-Relationship (ER) diagram illustrates the high-level conceptual data model.

2. Physical / Low Level

The low-level representation of data on physical storage (Eg. Magnetic disks) includes the

files related to record format, ordering, and access details.

15 Introduction to DBMS: Theory & Practicals

Eg. Indexing (Index term or keyword) used to access data

3. Implementation / Representational

The concepts are represented in an easily understandable way and hide storage details of

the disk for end users. It is a commonly used model in commercial database

management systems. The representational DB models are relational, legacy models

like hierarchical and network.

Schema:

The Schema is the representation of a database system, is stated throughout database

design, and is not expected to change repeatedly. A schema diagram will illustrate

the description of the database. Fig. 1.4 illustrate the database schema of student

details.

Fig. 1. 4. Illustration of Student Schema Diagram

1.2.2. INSTANCES, SCHEMA CONSTRUCTS, STATE OF DATABASE

Instances:

16 Introduction to DBMS: Theory & Practicals

The instances are present sets of incidents in the database, also termed the state of a

database or snapshot.

Shema Construct:

In any given state of the database, each schema construct is represented as a set of related

instances.

The Student_details schema construct is represented with a set of student records

as instances.

State of Database:

A database update with an insert, delete or change in data value in a record alters the state

of a database. It does not affect the database schema. In general, several database

states are raised to a specific database schema. The database states are listed as Initial,

Empty, Current, and Valid. Fig. 1.5 illustrates the various database states and

descriptions.

Fig. 1.5. Database states

1.3. ARCHITECTURE

The database architecture captures the many essential functional modules of a DB system

along with the associations existed between them. The database architecture

comprises essential components as illustrated in Fig. 1.6. It is significantly inclined

17 Introduction to DBMS: Theory & Practicals

by the computer system with the database system. The database system comprises of

majorly two functional components:

1. Storage Manager

2. Query Processor

Each component is again accommodated with multiple database tables. And multiple types

of users are connected through respective interfaces to the database system.

18 Introduction to DBMS: Theory & Practicals

Fig. 1.6. Database Architecture

19 Introduction to DBMS: Theory & Practicals

1.3.1. STORAGE AND QUERYING OF DATA

Disk storage: The database size is covered from

gigabytes to terabytes. The main memory

of computer systems cannot store ample

information; disk is used as alternate

storage. In query processing, the data

moves between disk and main memory

based on the requirement. This movement leads to slow processing. Hence, a system

must minimize the need to move data between disk and main memory.

Few Physical data structures (files) maintained in the disk are:

1. Data Files – stores the actual data items of the database.

2. Data Dictionary – maintains the metadata (i.e. the structure of the database).

3. Indices – all index terms are stored; it is used to fast access data items.

 Eg. Find the faculty data- with a specific faculty_ID, or all faculty_IDs.

The above tasks are completed by using an index of ID. Hashing technique is an alternative

to indexing; It is faster in few cases but not in all cases.

4. Statistical Data – All statistical parameters of the data, used by the query processor to

execute the query efficiently.

Storage Manager:

The storage manager acts as an interface in the middle of the disk storage (for low-level

data) and the application programs or queries submitted to the system. It holds the

accountability of interaction with the file manager; stores the raw data on the disk in

the file system of operating systems; translates the DML statements into file system

instructions. Therefore, the storage manager is accountable for the storage, retrieval,

and updates of data in the database.

Megabyte - 1024 Kilobytes or
1,048,576 Bytes

Gigabyte - 1000 megabytes (in
fact 1024) (1 billion bytes), and

Terabyte - 1 million megabytes
or (1 trillion bytes).

20 Introduction to DBMS: Theory & Practicals

The storage manager comprises of:

1. Authorization and integrity manager ensures the constraints of data integrity and the

access details of the authorized users.

2. Transaction manager ensures the database maintains in a consistent (correct) state in the

aspect of system failures, and concurrent transactions without raising conflicts.

3. File manager is accountable for the distribution of disk space and appropriate data

structure used to store on disk.

4. Buffer manager is accountable for fetching data from disk into main memory, and

allocation to cache memory.

Query Processor:

The query processor translates the Data Manipulation Language(DML) and Data

Definition Language(DDL) commands into a set of activities at the physical level of

the database. The components include:

1. DDL interpreter – It interprets DDL commands and results from records are stored in

the data dictionary.

2. DML compiler – It translates DML commands into low-level instructions which are

understood by query evaluation engine.

Usually, a query is translated into no. of substitute evaluation procedures. It performs query

optimization (i.e, the cost-effective evaluation among the changes).

3. Query evaluation engine – executes the DML compiler-generated low-level instructions.

4. DDL Interpreter – interprets the DDL Statements and recorded them as metadata.

1.3.2. DATABASE ARCHITECTURES

Database systems can be implemented in two ways centralized, another way as

client/server.

21 Introduction to DBMS: Theory & Practicals

The centralized architecture contains all hardware and software components (Application

programs, user interface programs, database software, and compilers) which are

available in one system (mainframe system) to process all functionalities of the

database, applications programs, and user interface functionalities. Fig. 1.7 illustrates

the components in a centralized architecture.

Fig. 1.7. Centralized Architecture

Client/server architectures emerged as DBMS systems gradually began to take advantage

of the user side’s computing capability. Most database system users often connect to

it over a network rather than being physically present at the database system’s

location. So it’s necessary to distinguish between client and server computers. Server

machines run database systems, while client machines are utilized for remote work.

A physical client/server architecture diagram is shown in Fig. 1.8. There are

essentially three physical structure scenarios; computers that would only be client

sites (for instance, workstations or PCs without discs or workstations or PCs with

discs that only have client software installed), workstations would function as both

clients and servers, workstations as dedicated servers.

22 Introduction to DBMS: Theory & Practicals

Fig. 1.8. Physical Structure of Client / Server Architecture

In this system, a client is a user machine that offers local processing and user interface

capabilities. When a client requests more capability, such as database access, a server

is connected via a communication network. A server is a computer system that

combines hardware and software that can offer client computers services like file

access, printing, archiving, or database access.

Applications for databases are usually divided into two or three components.

In a 2-tier paradigm, the application is located on the

client-side machine and uses query language

statements to access database system

capabilities on the server machine. For

establishing communication between the client

and server machines, application program

interface standards like ODBC and JDBC are

engaged. The structure of the 2-tier database is

shown in Fig. 1.9.

Fig. 1.9. A 2-tier Architecture

23 Introduction to DBMS: Theory & Practicals

The client machine serves as the front end

and does not directly interface with the

database in a three-tier architecture.

Instead, to access data, the client end

interacts with an application server,

which it subsequently does with a

database system. The application server

contains the business logic (which

actions to take and under what

circumstances) for the application. A

three-tier architecture in general is

shown in Fig. 1.10. It fits web

applications that operate on the World

Wide Web (WWW).

Fig. 1.10 A Three-tier Architecture

1.3.3. DATABASE LANGUAGES

Data definition language (DDL) is used to state the database schema and a data

manipulation language (DML) is used to execute database queries and updates. In

practice, the DDL and DML are not two separate languages; parts of a Structured

Query Language (SQL). SQL is covered in detail in chapter 4.

Data Definition Language:

A DDL is used by DBA and database designers to define schemas and constraints to

maintain consistency in the database. These are required only after one has done the

initial phase of finalizing the data design and implementation of the database in the

language of their choice.

Consider the scenario, where the college mandates that a department's account

balance never go negative.

24 Introduction to DBMS: Theory & Practicals

The DDL offers tools for defining such limitations. For every update, the DB system

checks these limitations. Various limitations are discussed further.

Database systems implement integrity constraints:

Domain Constraint: A domain value is linked with all attributes (Eg., integer, character,

date/time). These are the utmost basic form of integrity constraints. These are verified

by the DB system on the entry of a new record.

Referential Integrity: Referential integrity refers to the assurance of a value appearing in

one relation that also seems in a particular set of attributes in another relation.

For instance, each course's department name must be an existing object. More

specifically, the deptname in the department table must match the deptname in the

course record.

Assertions: The conditions that the database must satisfy all the time. The constraints such

as Domain, and referential integrity are considered as special forms of assertions.

Eg., “Every department must have at least five courses offered in every semester”

- articulated as an assertion.

Authorization: To implement data

abstraction, the users are differentiated

based on the diverse types of access they

are permitted. These differentiations are

expressed in terms of authorizations to the

most common users such as read, insert,

update and delete. The user access may

assign all, none, or a combination of these

types of authorization.

Authorizations:

Read - permits to read not
modification of data

Insert - allows insertions of
new records, but not
modification of existing
data

Update - allows
modifications but not
deletion of data

25 Introduction to DBMS: Theory & Practicals

Data Manipulation Language:

Users need to have a method for modifying the database once the database schemas are

put together and filled with data. Data retrieval, insertion, deletion, and

modification are typical manipulations. For these uses, the DBMS offers a

collection of operations or a language known as the data manipulation language

(DML).

The data dictionary contains the metadata i.e, data about data - contains the result of

the DDL. It is believed that the data dictionary is a unique kind of table that can

only be read and modified by the database system itself (not a regular user). The

data dictionary is consulted by the database system before reading or editing

actual data.

1.4. ADVANTAGES OF DATABASE SYSTEMS IN REAL-TIME
APPLICATIONS

Database applications are categorized according to real-time applications are:

1. Network and Hierarchical Systems

2. Fast response in relational databases

3. Object-oriented databases

4. XML databases

1.4.1. DATABASE APPLICATIONS WITH NETWORK AND HIERARCHICAL

SYSTEMS

The combination of abstract relationships along with the physical storage and storing

records on the disc was one of the key issues with early database systems. As a result,

these systems lacked adequate capabilities for program-data independence and data

abstraction. Early systems had the drawback of just offering programming language

26 Introduction to DBMS: Theory & Practicals

interfaces. Because new programs had to be built, tested, and debugged, adding

additional queries and transactions became time-consuming and expensive.

Relational databases' ability to abstract data and increase application flexibility

With the motto of separation between the actual storage from its conceptual illustration

and to establish a mathematical foundation for data representation and querying,

relational databases were first proposed. High-level query languages with

programming language interfaces were also made available by the relational data

architecture allowing significantly faster creation of new queries.

As with past systems, initially, relational database systems were designed for the same

applications and offered the flexibility to create new queries rapidly and rearrange

the database as needs evolved. In comparison to preceding systems, data abstraction

and program-data independence were therefore greatly enhanced. New indexing and

stored methods helped boost performance and enhance query processing and

optimization.

Object-Oriented Applications development with OODB

The development of OOP languages (the1980s) with the essentiality for storing and sharing

complex and structured objects directed the growth of OODBs (object-oriented

databases).

E-Commerce Applications with Exchange of Data on the Web Using XML

Due to the raise in E-Commerce application uses, web documents with HTML are

massively created and required to store on web servers for other clients’ access

through hyperlinks. The XML is used for interchanging data among various DBs and

web pages.

27 Introduction to DBMS: Theory & Practicals

UNIT SUMMARY

• A database management system(DBMS) is a collection of all interconnected files and
programs.
Traditional file processing limitations:
o Not efficient data Access
o Redundant data storage
o Data isolation
o Data integrity
o Concurrent access

• Data Abstraction is provided in three levels
o Physical level
o Logical Level
o View Level

• Database Design process is implemented in three phases
o Conceptual
o Logical and
o Physical

• Database users are categorised as
o Administrators
o Designers
o End Users (Casual end user, Naïve end user)
o System analysts and developers
o Designers and implementers of DBMS
o Tool developers
o Operational and maintenance personal

• Database Applications with
o Network and Hierarchical systems
o Relational databases
o OO applications with OODB
o E-commerce applications with XML

28 Introduction to DBMS: Theory & Practicals

• A data model is a gathering of interrelated concepts, used to define the structure of a
database. The structure includes the related data type, relationship, and the required
constraints. It provides data abstraction to access different levels of users at their
chosen level.

• Data model categories are

• Conceptual / High Level

• Physical / Low Level

• Representational / implementation

• The Schema is the depiction of a database system, is specified throughout database
design and not likely to change repeatedly.

• The instances are present set of incidents in the database, also termed as state of a
database or snapshot.

• A database update with an insert, delete or change of a data item in a record makes a
change in state of a database.

• The database system comprises of majorly two functional components:
1. Storage Manager(SM)
2. Query Processor(QP)

• The storage manager acts as an interface between the disk storage (low level data)
and the application programs or queries submitted to the system.

• The query processor translates the DML commands into set of actions at the physical
level of database.

• Database systems can be implemented in two ways as centralized, or client/server,
where one server and multiple client machines

• A data definition language (DDL) is used to specify the database schema and a data
manipulation language (DML) is used to execute database queries and updates.

• In practice, the DDL and DML are not two separate languages; parts of a Structured
Query Language (SQL).

29 Introduction to DBMS: Theory & Practicals

EXERCISES
Multiple Choice Questions

1 DML stands for
a. Data Manipulation language
b. Dependency maintenance link
c. Data Mining language
d. Data maintenance language

2 In database management systems (DBMS) usage, the part to understand is
a. Row
b. Record
c. Database
d. File

3 Categories of models in DBMS are
a. Object-based and Record-based
b. Object-based and Field-based
c. Object-based and Bit-based
d. Object-based and Table-based

4 The collection of fields is called
a. Fields
b. Records
c. Database
d. File Based

5 Which one is not a component of a relational database?
a. Entity
b. Attribute
c. Table
d. Hierarchy

6 To use DBMS, the important one to understand is
a. The physical schema
b. All substances that the system supports
c. One sub schema
d. Both (A) and (B)

7 The group of data items for storage is termed as
a. Record
b. Title
c. List
d. String

8

User authorization is the responsibility of the
a. Database administrator
b. Database Manager
c. Database user
d. Database owner

9 To retrieve data from DBMS is referred to as the

30 Introduction to DBMS: Theory & Practicals

a. DML
b. DDL
c. SQL
d. Database language

10 Updating a database means
a. Revising the file structure
b. Modifying or adding a record
c. Reorganizing the database
d. Modifying the database

11 Identify not a valid relational database
a. IMS
b. ORACLE
c. Sybase
d. UNIFY

12 Data about data is called
a. Directory
b. Record
c. Metadata
d. Data Bank

13 Data dictionary stores the details of
a. The data types of all fields of all files
b. The names of all fields in all files
c. Both of the above
d. None of above

14 Data is a collection of
a. raw facts and Fig.s
b. The Electronic representation of facts
c. Information
d. None

15 The founder of the relational database
a. EF Codd
b. kahate
c. James Gossling
d. Dennies Rithchie

16 DBMS are not intended to
a. Eliminate data redundancy
b. Manage files access
c. Maintain data integrity
d. Separate files

17 Indicate an early development of relational model developed by E.F. Codd of IBM?
a. R:base
b. DB2
c. DBase-II
d. IDMS

31 Introduction to DBMS: Theory & Practicals

18 Indicate noncomponent of a database
a. Indexes
b. Metadata
c. Reports
d. User data

Answers to MCQs:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A C A B D C A A C B D C A A A D B C

Short and Long Answer Type Questions

1. List major steps in creating a database for an enterprise.

2. Illustrate major database components with the schema diagram for your college would

maintain.

3. Imagine creating a video portal that is similar to YouTube. Think of the data in a system

for processing files. Describe how each of these elements relates to the storage of

actual video data as well as to the information that describes the video, such as the

title, the user who uploaded it, tags, and the users who watched it.

4. Differentiate a traditional file processing system and a DBMS.

5. Describe the five major functionalities of a database administrator (DBA)?

6. Summarize the database architectures viz. two-tier and three-tier. Suggest a suited

architecture for Web applications.

7. Identify three possible entities that could be utilized to store data in a social networking

system like Facebook.

8. Outline the different types of database end users and their main activities for each

Numerical Problems

1. Refer to Fig. 1.2. If the department name changed to ‘CSSE’ from ‘CS’ and the

corresponding course_number also needs to change. Identify the same columns in the

database that need to be updated according to changes.

32 Introduction to DBMS: Theory & Practicals

2. According to the above change, illustrate the schema diagram of restructured columns

in the COURSE, SECTION, and PREREQUISITE relations so that only one column

will need to be updated.

PRACTICAL

Analysis of Requirements

S Chand Publishing's proprietor offers a statement of his desires about: "My

consumers to be able to explore my collection of books and place orders through

Internet sources. I now only accept phone orders. Most of my callers are business

clients who tells about the ISBN number and the quantity of books. I then put

together a delivery it includes the books ordered. I want to ship the customer's

complete order, so if enough copies are not available on hand, and gets more

number of orders then it leads to delay the shipment until the fresh copies come.

I list all of my books in my catalogue. The catalogue includes the book details as

title of the book, ISBN number, author name, purchase and sales price, and

publication year. The majority of the clients are repeated customers, and have

available records containing names, addresses, and credit_card information.

Prior to using my website, brand-new clients must call me and create an account.

Customers should first identify themselves on my new website using their specific

customer identification number. Then, they ought to have access to my catalogue

and be able to make purchases online.

The requirements phase was accomplished so rapidly that DBGig consultants takes

weeks of discussions to get this done to analyze this information.

33 Introduction to DBMS: Theory & Practicals

KNOW MORE
Edgar F. Codd, the creator of relational databases defined 13 properties of
databases system that should possess in the year 1970 and developed further in a
1974 conference paper.

https://www.red-gate.com/simple-talk/databases/theory-and-design/codds-twelve-

rules/

Commercial DB systems:

 IBM DB2 - www.ibm.com/software/data/db2

 Oracle - www.oracle.com

 Microsoft SQL Server - www.microsoft.com/sql

 Sybase - www.sybase.com

 IBM Informix - www.ibm.com/software/data/informix

Free/public domain database systems:

 MySQL - www.mysql.com

 PostgreSQL - www.postgresql.org

34 Introduction to DBMS: Theory & Practicals

REFERENCES AND SUGGESTED READINGS

 Henry F Korth, Abraham Silberschatz, “Database system concepts”, sixth ed.,

McGraw-Hill International editions, Computer Science Series

 Elmasri, Navathe, “Fundamentals of Database Systems”, Elmasri, Navathe, Third ed,

Addison Wesley

 Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,

Tata McGraw Hill.

 C. J. Date, “An introduction to Database Systems”, Sixth ed., Narosa Publications

 Database management systems- NPTEL: https://nptel.ac.in/courses/106105175

Dynamic QR Code for Further Reading

Further Reading about – DBMS: Database Design
Process

Topics discussed:
1. Overview of the database design process
 a. Requirements Collection & Analysis.
 b. Functional Requirements.
 c. Conceptual Design.
 d. Logical Design/Data Model Mapping.
 e. Physical Design.
2. Weak Entity Types.
3. Symbols used in ER Diagram.
4. Sample Database Application (COMPANY).
5. Initial Conceptual Design of COMPANY

Database.
https://www.youtube.com/watch?v=7m6gXeMDaHc

35 Introduction to DBMS: Theory & Practicals

d

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

 Conceptual Modeling
 Example Database Application
 ER Model Concepts
 Data Modeling using the Entity-Relationship Model
 The Enhanced Entity-Relationship (EER) model

The practical applications of the topics are discussed for generating further curiosity and creativity
as well as to improve problem-solving capacity.

 Besides giving a large number of multiple choice questions as well as questions of short and
long answer types marked in two categories following lower and higher order of Bloom’s
taxonomy, assignments through several numerical problems, a list of references, and suggested
readings are given in the unit so that one can go through them for practice. It is important to note
that for getting more information on various topics of interest some QR codes have been provided
in different sections which can be scanned for relevant supportive knowledge.

 After the related practical, based on the content, there is a “Know More” section. This section
has been carefully designed so that the supplementary information provided in this part becomes
beneficial for the users of the book. This section mainly highlights the initial activity, examples of
some interesting facts, analogy, history of the development of the subject focusing on the salient
observations and finding, timelines starting from the development of the concerned topics up to the
recent time, applications of the subject matter for our day-to-day real life or/and industrial
applications on a variety of aspects, case study related to environmental, sustainability, social and
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit.

2 DATA MODELING

36 Introduction to DBMS: Theory & Practicals

RATIONALE

This Data Modeling unit in Database systems helps students to get a primary idea about the real-
time database applications, entity-relationship(ER) model, and extended entity-relationship model.
It explains the need for data modeling, concepts, ER model of a sample application, relationships,
and extended ER modelof the database system. All theseaspects are crucial for designing a
database system implementation. It then explains clearly elements of ER model, a real time
database model. All these are discussed at length to model the database systems. Some related case
studies are pointed out with an extension to the data model, which can help further in getting a
clear idea of the concern topics on database systems.

 Databases are an important branch of computer science that essentially deals with information
and data and their effect on information retrieval. Database system implementation needs as a
prerequisite step data modeling and it is termed relational database management. This permits one
to analyze the operations of many day-to-day transactions around us. Its practical applications are
related to the model, construction, and operation of different types of database systems and tools.

PRE-REQUISITES

Mathematics: Calculus, Algebra (Class XII)
Computer Science: problem-solving with programming (Class XII)

UNIT OUTCOMES

The List of outcomes of this unit is as follows:

U2-O1: Summarize the elements of E-R diagrams to visualize the system at conceptual level.

U2-O2: Make use of Entity Relationship (ER) diagrams to design a database system.

U2-O3: Illustrate conceptual design using an ER diagram to represent a real-time database
application.

U2-O4: Outline the enhanced entity-relationship (EER) diagramfeatures to implement the object-
oriented features

U2-O5: Develop a database model with the help of ER/EER diagrams of real-time system

Unit-2
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1-WeakCorrelation;2-Mediumcorrelation;3-StrongCorrelation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6
U2-O1 3 1 3 - - -
U2-O2 1 1 1 - - -
U2-O3 2 2 3 - - -
U2-O4 3 3 3 - - -

37 Introduction to DBMS: Theory & Practicals

U2-O5 3 3 3 - - -

2.1. CONCEPTUAL MODELING

In designing a database system, conceptual modeling plays a crucial role. After

requirement analysis, the design of the database system is implemented in three levels

conceptual, logical, and physical. The major phases in the database design process

are illustrated in Fig.2.1.

Fig. 2.1. Illustration of various phases in database design

Step 1: Requirement collection and analysis – database designers interview the prospective

users and document the data requirements.

Step 2: Conceptual schema –a concise description of the data requirements of the users and

details of entity types, relationships, and major constraints. The high-level user

38 Introduction to DBMS: Theory & Practicals

actions and queries observed during functional analysis can be specified either during

or after the conceptual schema design via the fundamental data model operations.

Step 3: Logical Design/Data modeling mapping - a commercial database management

system is used for an implementation data model such as a relational object-relational

database model. Hence, a High-level conceptual model is transformed into an

implementation model. Also called logical design or data model mapping.

Step 4: Physical design – It specifies the physical design parameters for the database files,

internal storage structures, file organizations, indexes, and access paths.

2.2. AN EXAMPLE DATABASE APPLICATION

To demonstrate the ideas of the ER model, a sample database named the Industry database

was used. Information on employees, departments, and projects can be found in this

database. Important things to remember are:

 The Industry has numerous divisions. Each division is identified specifically by

name, office location, and the person in charge of managing it.

 A division has several projects, each with its own name, number, and budget.

 Employee (EMP) has a name, unique identification number, residence, wage, and

birthdate. Although they are assigned to one division, employees might

participate in many initiatives. Additionally, each employee's start date and

immediate supervisor must be noted for each project.

 Need to maintain each employee's dependents history with dependent_name,

birthday, and relationship to the employee.

39 Introduction to DBMS: Theory & Practicals

Fig. 2.2. ER Diagram of Sample Industry Data Model

The ER diagram of the sample industry data model is illustrated in Fig. 2.1. This illustration

will be discussed as ER concepts in detail in further sections.

The major noting’s of the diagram are listed as:

Major Entities: Employee, Division, Project, Dependent

Relationships: Work_for, Manages, Controls, Work_on, Supervision, Relationship

Entity – Attributes:

Entity Attribute 1 Attribute 2 Attribute 3
Employee Emp_No Name Address
Division DIV_No DIV_Name Office_Loc
Project Proj_No P_Name Location
Dependent Name Gender DOB

40 Introduction to DBMS: Theory & Practicals

2.3. ER MODEL CONCEPTS

The ER model description includes entity types, attributes, relationships, and diagrammatic

representation.

2.3.1. ENTITY

The basic object that an ER model represents is an entity. It is a thing in the real world with

an independent existence. An entity’s existence is either a physical level (for example

person, car, employee, etc.) or a conceptual level (industry, course, college, job role,

etc.).

Example: each person in a college is an entity. faculty is uniquely identified with

faculty_id. And the student is identified with roll_no.

 Course entity is uniquely identified with course_id.

Entity Types: A set or a collection of entities that have the same attributes.

Entity Set: The collection of all entities of a particular entity type in the databaseat any

point of time is called an entity set.An entity set is a set of similar entities that share

the same properties, or attributes.

Example: Entity set faculty, is the set of all people, who are faculty at a given college.

The entity set student represents the set of all students in the university.

Weak Entity:

A weak entity can be identified uniquely only by considering the primary key of another

(owner) entity. It does not have a single key attribute and it participate in a one-to-

many relationship set (one owner, many weak entities). Weak entity set must have

total participation in this identifying relationship set.

Example: In a college database, a subject is a strong entity and a course_offering

can be modeled as a weak entity. The discriminator of course_offering would be

semester (including year) and section_number (if there is more than one section)

41 Introduction to DBMS: Theory & Practicals

If we model course_offering as a strong entity we would model course_number as an

attribute.

2.3.2. ATTRIBUTE

Each entity has a set of attributes that describe the properties of objects. For example, an

employee entity can describe with name, ID, age, department, location, contact no,

address, salary, and designation. The attribute values of the entity become a major

part of the database.

Each attribute has a set of allowable values called a domain, or valueset.

Example: Attribute Faculty may be described by the set {(ID, 101), (name, singh),
(deptname, sales), (salary, 45000)}

Fig. 2.3 illustrates the two entities (employee EMP1; Industry IND1). Employee entity has

a set of attributes EMP1(ID, NAME, ADDRESS, SALARY, DIVISION,

CONTACT, AGE) with values (101, Singh, 201, lalbar, highroad), and industry

IND1(Name, Head Quarters, CEO NAME) with Values(Reliance Industries,

Mumbai, Ambani).

Fig. 2.3. Two entities and their attributes with values

Types of Attributes:

The attributes of an entity are categorized based on values stored on it. They are

1. Simple – single unique valued attribute

2. Composite – more than one component

42 Introduction to DBMS: Theory & Practicals

3. Single valued – single value attribute

4. Multi-Valued – more than one valued attribute

5. Stored – is used to derive a value to the derived attribute.

6. Derived – derived from existing attribute

7. NULL Value - The null value indicates not applicable, missing, or not known

Fig. 2.4 illustrates different types of attributes along with appropriate examples.

Fig. 2.4. List of various types of attributes with appropriate examples

43 Introduction to DBMS: Theory & Practicals

Examples of different attributes

Faculty ID is a single valued attribute.

Faculty_contact is a multi-valued attribute, it holds zero, one, or more number of

phone numbers. Is represented in {value1, value2, value3}

Faculty_mentors is a derived attribute, is derived from the count of students

associated with mentor.

Faculty Name is a Composite attribute (Firstname, Middlename and Lastname) and

composite hierarchy attribute as address (street, city, state, pin_code) and

street (St_name, St_name, apartment_no) is represented in Fig. 2.5.

Fig. 2.5. Example of composite attribute

2.3.3. KEYS

A constraint on the entities of an entity type is the key or uniqueness constraint on

attributes. An entity has one or more attributes whose values are distinct in the entity

set. Such an attribute is called a key attribute, and its values can be used to identify

each entity uniquely.

44 Introduction to DBMS: Theory & Practicals

Value Sets (or Domains): Value Sets (Domains) of attributes of an entity type are

associated with a value set (or domain of values), which specifies the set of values

that may be assigned to that attribute for each individual entity.

The mathematical representation of an entity set E of an attribute A whose value set is V

can be defined as a function from E to the power set P(V) of V:

A : E → P(V)

The value set provides all possible values of an attribute.

For single-valued or multi-valued and NULL valued attribute is represented as power set

P(V).

single-valued attribute: A(e) is a single value set of the respective entity. Multy-valued

attribute: A(e) is a power set of entity e.

Example: The value set of Attribute Age of student is between 16 and 35 at entry-

level graduation

2.3.4. RELATIONSHIP SETS

A relationship is an association among several entities.

Example: A relationship of mentor: that associates faculty Roy with student srini.

The mathematical relation exists on two or more non-distinct entity sets, n≥2. If E1, E2, E3

are entity sets, then a relationship set R is a subset of

𝑒 , 𝑒 , 𝑒 … . 𝑒 |𝑒 ∈ 𝐸 , 𝑒 ∈ 𝐸 … . . 𝑒 ∈ 𝐸

Where 𝑒 , 𝑒 , 𝑒 … . 𝑒) is a relationship. The association between entity sets E1, E2, . . .,

En participate in the relationship set R.

Example: A relationship of enrolled: that depicts the relationship between a student

and his enrolled subject section. Here the two entities student and subject section are

in binary relationship set i.e advisor.

45 Introduction to DBMS: Theory & Practicals

Constraints: The E-R schema defines the set of constraints to which the database contents

must follow. This is represented in mapping cardinalities and constraints.

2.3.5. MAPPING CARDINALITIES

Mapping cardinalities will direct the total number of entities that a relationship set can be

used to link one entity to another. Although they can help with the description of

relationship sets that include more than two entity sets, mapping cardinalities are

most helpful when expressing binary relationship sets. The mapping cardinality of

binary relationship set R between entity sets A and B are given in Fig. 2.6.

Fig. 2.6. Mapping Cardinalities

46 Introduction to DBMS: Theory & Practicals

2.3.6. STANDARD NOTATIONS FOR ER DIAGRAMS

Fig. 2.7 summarizes the various components used in conceptual design using E-R

diagrams. The Entity Relationships (E-R) diagram components are:

1. Rectangle - represents entities.

2. Diamond – symbolize a relationships among entities, and are connected to the

Rectangles(entities) by lines with cardinality lables.

3. Ellipse - symbolize an attribute, and are linked to the entities or relationships.

4. Line – symbolize a link between an attribute to entity and entity to relationships.

The symbols used in E-R diagrams (rectangle, diamond and ellipse) are labelled with the

conceptual names identified as an entity, relationship set, and attribute respectively.

Fig. 2.7. Summary of notations for ER Diagrams (Symbol – Meaning)

47 Introduction to DBMS: Theory & Practicals

2.3.7. CASE STUDY – LIBRARY MANAGEMENT SYSTEM

The conceptual design of the library management system (LMS) in Entity- Relationship

model with E-R diagram is presented in the following steps:

Step 1: Recognize the strong entity set and week entity set

Step 2: Identify the related attributes to each entity

Step 3: Identify the relationship sets

Step 4: Detect the mapping cardinalities and participation of entities

An example system would be a Library Management System having the

following factors are taken into account while tracking readers in the

database:

A single point authentication system that consists of a login ID and password, the

system maintains the track of the staff logs.

The library staff updates the book collection with information on each title's ISBN,

price in Indian rupees, category types (general, innovations, story), edition

number, and unique author number.

A publisher has a publisher ID number, the booktitle, and the year it was published.

Member register by providing a member ID, MailId, member name (firstname and

lastname), contact number (multiple numbers are permitted), and contact

address. The library staff monitors the readers.

Books that have the issue and return date stamped can be considered as reserved

by readers. It can have a due date as well if it is not returned within the

allotted time frame.

48 Introduction to DBMS: Theory & Practicals

Step 1: Strong and Week
entity sets
Entity - 1: Book
Entity - 2: Member
Entity - 3: Publisher
Entity - 4: Authentication
Entity - 5: Staff

Step 2: Related attributes of each identified entity
Book: Book_Id, auther_no, ISBN_no, Title of the book,
edition_no, category_type, price.
ISBN_no is the Key attribute.

Member: Member_Id, Mail_Id, address, Contact_no,
Mem_name.
Mem_Name is a composite attribute of first_name and
last_name.
Contact_no is multi-valued attribute.
member_Id is the Key attribute for the member entity.

Publisher_details: Publisher_Id, YOP, name. Publisher_ID is
the Key attribute.

Authentication: Login_Id and PSW. Login_ID is a key attribute.

Report: Member_Id, Registration_no, Book_Id, Issue/Return
date.
Reg_no is the key attribute of report.

Lib_Staff: staff_id and Name.
staff_id is a key attribute.

Reserve/Return set : Resdate, Duedate, and Retdate.

Step 3: Relationship sets
between entities
R -1: Reserve: A reader can
reserve books.
R-2: publish: A Publisher can
publish books.
R - 3: track: staff track the
readers.
R – 4: maintain: multiple
reports and books
R – 5: provides: multiple logins
for staff.

Step 4: Constraints and participation

A member can reserve - N books but one book can be reserved
by one member. Hence the mapping cardinality is1:N.

A publisher will publish any number of books but a book is
published by only one publisher. Hence the mapping cardinality
is 1:N.

The staff track of readers. Here the mapping cardinality is M:N.

Staff maintains multiple reports and books. The mapping
cardinality is1:N.

Authentication - responsible for login to multiple staff. The
mapping cardinality is1:N.

The detailed conceptual design of the library management system in E-R diagram is

illustrated in Fig. 2.8.

49 Introduction to DBMS: Theory & Practicals

Fig. 2.8. Illustration of Conceptual design of the library management system using E-R

diagram

2.4. ENHANCED ENTITY RELATIONSHIP (EER) MODEL CONCEPTS

The Enhanced E-R model includes all E-R model concepts and the concepts of subclass

and super class and the related concepts of specialization and generalization. Another

concept included in the EER model is that of a category or union type, which is used

to represent a collection of objects (entities) that is the union of objects of different

entity types. Associated with these concepts is the important mechanism of attribute

and relationship inheritance.

50 Introduction to DBMS: Theory & Practicals

2.4.1. SUBTYPE OR SUBCLASS

A subtype or subclass of an entity type is also called IS-A (or IS-AN) relationship. For

example, the entity type EMPLOYEE describes the type i.e all attributes and

relationships of each employee entity also called a current set of EMPLOYEE entities

in the organization database.

For example, the entities that are members of the EMPLOYEE entity type with

distinguished employees as “Secretary, Manager, Technician, Engineer,

Salaried_Employee, dailywase_Employee”, and so on.

Here, EMPLOYEE entity type is super class and a group of distinguished entities isthe

subclass. This relation is called a superclass/subclass or super type/ sub type or IS-A

/ IS_AN relationship. EMPLOYEE/ SECRETARY and EMPLOYEE/

TECHNICIAN are two class/subclass relationships. The illustration of the example

case is shown in Fig. 2.9.

 Fig. 2.9. A Concept of IS_A relationship in Enhanced E-R Model

2.4.2. SPECIALIZATION, GENERALIZATION AND LATTICES

The process of designating subgroupings within an entity set is called specialization. The

specialization of employee allows distinguishing among employees based on roles as

51 Introduction to DBMS: Theory & Practicals

{technician, manager, secretary, engineer}, a employee entity is any of these types.

The commonality among all employees is referred as generalization.

In Fig. 2.9, the employee entity having attributes such as eno, name, and salary are common

among all entities. Hence this entity is a generalization. Whereas the entities daily

wase, salaries are specialized entities having a unique set of attributes along with

employee entity attributes.

52 Introduction to DBMS: Theory & Practicals

UNIT SUMMARY

The design of the database system is implemented in three levels:

o Conceptual
o Logical, and
o Physical.

The major phases in the database design process are:

o Requirement collection and analysis
o Conceptual schema
o Logical Design/Data modeling mapping
o Physical design

The ER model description includes terms like:

 Entity set
o Week entity and
o Strong entity

 Attributes
o Simple attribute
o Composite attribute
o Single valued attribute
o Multi-Valued attribute
o Stored attribute
o Derived attribute
o NULL Value

 Relationships
o One to one
o One to many
o Many to one
o Many to many

Diagrammatic representation – E-R Diagrams with standard components.

 Enhanced E-R Diagrams
o IS-A relationship
o Generalisation
o Specialization

53 Introduction to DBMS: Theory & Practicals

Conceptual Data Modeling using E-R Model

Consider the Insurance Plan Management System, a well-known and widespread

issue in the modern world. For this issue, the Software Requirements

Specifications (SRS) are as follows:

1. The Insurance Provider includes numerous branches, each of which has a

branchid, branch name, and/or address, location, contact information, fax, etc.

2. There are several staff members employed in each branch. For illustration,

there is a Manager, field agents, staff members who work in development,

secretarial assistants, etc. It keeps track of staff members' names, addresses,

positions, salaries, and dates of employment or birth.

3. In addition to full-time employees, there are part-time workers known as

insurance agents who are commission-based employees.

4. The insurance provider is required to keep policyholder information on file. the

policyholder address, tenure, maturity amount, policy number, and name

With the knowledge of E-R diagrams studied so far, Identify the entity types,

attributes related to entity and relationships.

54 Introduction to DBMS: Theory & Practicals

EXERCISES

Multiple Choice Questions
1 ……………..indicates the max. no. of entities existed in a relationship?

A. Greater Entity Count
B. Maximum cardinality
C. Entity Relationship Diagram
D. Minimum cardinality

2 ………….is an association among entities in an E-R model.
A. Record
B. Relationship
C. Field
D. Tuple

3 ……….. entity is a part of a one-to-many relationship.
A. Instance
B. Child
C. Parent
D. Subtype

4 ………entity is associated with the generalization of EER.

A. Archetype
B. Supertype
C. Subtype
D. Instance

5 A specialization relation of EERD may also known as………………...
A. Super-Sub
B. Sub-Super
C. Lower relation
D. Higher relation

6 ………….. indicates the min. no. of entities involved in a relationship.
A. Entity Relationship Diagram
B. Maximum_cardinality
C. Minimum_cardinality
D. Greater Entity Count

7 Mapping cardinality of relations in E-R diagram are describing about
A. composite
B. unary
C. simple
D. binary

8

In ERD illustrations, specialization is represented with

A. solid arrow

B. double arrow

55 Introduction to DBMS: Theory & Practicals

C. hallow arrow

D. dashed arrow
9 ………….relationship is existed between the week entity and the identified entity set.

A. dependency

B. existence

C. Identifying

D. dependency
10 ……………. is used to represent a strong entity in E-R diagram

A. rectangle

B. rhombus

C. oval

D. double-bordered rectangle
11 ……………..is used to represent a multivalued attribute in E-R diagram

A. oval

B. double lined rhombus

C. double lined oval

D. double-bordered rectangle
12 An employee works in the sales department. In this, works relationship exists with a

cardinality of

A. 1-1

B. 1-N

C. N-1

D. M-N
13 The mentor mentors the students in a college. In this, mentors relationship exists with a

cardinality of

A. 1-1

B. 1-N

C. N-1
D. M-N

14 A customer has a loan account. In this, has a relationship exists with

A. 1-1

B. 1-N

C. N-1
D. M-N

15 Contact information is ……………….type of attribute

56 Introduction to DBMS: Theory & Practicals

A. single
B. multi
C. NULL
D. derived

16 BMI value is ……………….type of attribute
A. single
B. multi
C. NULL

D. derived
17 Speed is ……………….type of attribute

A. single
B. multi
C. NULL

D. derived
18 In a student entity set, the undergraduate students are represented with…… relationship

A. IS-AN
B. generalization
C. entity set
D. specialization

Answers to MCQs:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B B A B A C A B C D C A B B B D D D

Short and Long Answer Type Questions

1. Distinguish strong-entity with weak-entity?

2. Illustrate the major E-R components used to represent the conceptual view of the

database system.

3. Imagine creating a video portal that is similar to YouTube. Think of the data in a system

for processing files. Describe how each of these elements relates to the storage of

actual video data as well as to the information that describes the video, such as the

title, the user who uploaded it, tags, and the users who watched it.

4. Construct an ER-Diagram for a hospital management system with a set of patients and

medical doctors. A patient log contains a history of tests conducted and consultations

made.

57 Introduction to DBMS: Theory & Practicals

5. Construct an E-R diagram for maintaining a track of the sports team based on interest.

Then a system should store the matches played, the scores in each match, the players

in each match and individual player statistics for each match. Summary statistics

should be modeled as derived attributes.

6. List the different types of attributes with significant examples.

7. Identify three possible entities and related attributes that could be utilized to maintain

the attributes of a social networking system like LinkedIn.

8. Outline the different types of data modeling techniques and their phases to develop a

database system.

9. Summarize the Enhanced Entity Relationship model concepts with cars example.

58 Introduction to DBMS: Theory & Practicals

Numerical Problems

1.It has been determined by Amazon.com to rearrange its database. Books, sales, and user

data are all stored. Amazon collects as much data as it can on user behaviour so that

it can analyse it and make site improvements. Here are a few prerequisites:

(a) Each user is assigned a special ID, name, password, and email address. Amazon

emails consumers on a regular basis, thus it's crucial to know if the user is okay with

being spammed and if their email address has been returning messages.

(b) Amazon keeps track of a user's most recent visit date so that it can show the user

a list of products that have been added to the site since his previous visit.

(c) Books are identified by their ISDN number, title, author, publisher, and 2.

According to the above change, illustrate the schema diagram of restructured

columns in the COURSE, SECTION, and PREREQUISITE relationsso that only one

column will need to be updated.

To model the above-mentioned data, create an E-R diagram. Recall to include constraints,

important attributes, etc. Mention all presumptions, all required logical assumptions.

59 Introduction to DBMS: Theory & Practicals

PRACTICAL

1. A bank wants to automate each transaction. It provides the subsequent account

types: Fixed Deposit(FD), Recurring Deposit(RD), and Savings Bank (SB)

The Bank also wants to monitor the loans granted to its clients. Determine the entities,

their properties, and any relationships among them.

Draw the ER diagram using any open source tool and make sure to provide all explicit

assumptions. Consider the following presumptions:

a. A customer is limited to having a single type of account. Joint accounts are not

permitted

b. Only when a consumer has at least one of the account kinds is a loan available.

2. To represent the requirements of a small computer business corporation,

create an entity-relationship diagram:

a. The company's workers assemble several computer models. Each employee's

employee number, name, address, phone number, job title, and salary are all kept on

file.

b. The model, specifications, name, and quantity of each machine are also kept on

file.

c. Each machine is made up of various components. The parts that are on hand must

be listed in an inventory. A record of each part's name, cost, and available quantity is

kept.

d. These components are purchased from a number of providers. The supplier's name,

address, and phone number must be kept on file.

Computers that have been assembled are sold.

60 Introduction to DBMS: Theory & Practicals

KNOW MORE

Drawing Entity Relationship (E‐R) diagram of Banking Management
system

https://www.youtube.com/watch?v=RVyCJXn--
jY&ab_channel=TechnonTechTV

.

Free/public domain online Entity Relationship model Tools:

 Visual paradigm - https://online.visual-paradigm.com/diagrams/features/erd-tool/

 Smart draw - https://www.smartdraw.com/entity-relationship-diagram/er-

diagram-tool.htm

 Lucid chart - https://www.lucidchart.com/pages/examples/er-diagram-tool

 Draw.io - https://drawio-app.com/entity-relationship-diagrams-with-draw-io/

REFERENCES AND SUGGESTED READINGS
 Henry F Korth, Abraham Silberschatz, “Database system concepts”, sixth ed.,

McGraw-Hill International editions, Computer Science Series

 Elmasri, Navathe,"Fundamentals of Database Systems", Elmasri, Navathe,Third ed,

Addison Wesley

 Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,

Tata McGraw Hill.

 C.J.Date, "An introduction to Database Systems", Sixth ed., NarosaPublications

 Database management systems- NPTEL: https://nptel.ac.in/courses/106105175

61 Introduction to DBMS: Theory & Practicals

Dynamic QR Code for Further Reading
Further Reading about –Tool demonstration to build ER model is

represented in draw.io

Topics discussed:

 Building entity sets and related attribute set

 Describing primary key and foreign key attributes of each entity

 Defining derived attributes based on requirement

 Identifying and modifying relationships existed among entity

 Altering cardinalities

 Defining weak entities

https://www.youtube.com/watch?v=lAtCySGDD48&ab_channel=Dr.D

anielSoper

62 Introduction to DBMS: Theory & Practicals

d

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

 Relational Data Model Concepts
 Relational Database Constraints
 Mapping of ER/EER diagrams to Relational Model
 Formal query languages - Relational Algebra and Calculus

The practical applications of the topics are discussed for generating further curiosity and creativity
as well as to improve problem-solving capacity.

 Besides giving a large number of multiple choice questions as well as questions of short and
long answer types marked in two categories following lower and higher order of Bloom’s
taxonomy, assignments through several numerical problems, a list of references, and suggested
readings are given in the unit so that one can go through them for practice. It is important to note
that for getting more information on various topics of interest some QR codes have been provided
in different sections which can be scanned for relevant supportive knowledge.

 After the related practical, based on the content, there is a “Know More” section. This section
has been carefully designed so that the supplementary information provided in this part becomes
beneficial for the users of the book. This section mainly highlights the initial activity, examples of
some interesting facts, analogy, history of the development of the subject focusing on the salient
observations and finding, timelines starting from the development of the concerned topics up to the
recent time, applications of the subject matter for our day-to-day real life or/and industrial
applications on a variety of aspects, case study related to environmental, sustainability, social and
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit.

3 RELATIONAL MODEL AND
FORMAL QUERY

63 Introduction to DBMS: Theory & Practicals

RATIONALE

This Relational modeling unit on Database systems helps students to get a basic idea of mapping
of conceptual design to logical design on the real-time database applications and mathematical
tools to perform query processing. It explains the logical design of the system using relational
modelling and formal query languages like relational algebra and calculus are declarative query
languages built on mathematical logic. All these basic mathematical functions are related tobuild
query strings in commercial databases using SQL. All these are discussed at length to develop the
database systems. Some related case studies are pointed out with an extension to the data model
and schema development, which can help further in getting a clear idea of the concern topics on
database systems.

 Databases are an important branch of computer science that essentially deals with information
and data and their effect on information retrieval. Structured query language (SQL) statements are
started their journey by mathematical functions using calculus and algebra and then explaining it
in terms of relational database management. This permits one to analyze the operations of many
day-to-day transactions around us. Its practical applications are related to the relationalmodel
construction and operation of different types of database systems and tools.

PRE-REQUISITES

Mathematics: Calculus, Algebra (Class XII)
Computer Science: problem-solving with programming (Class XII)

UNIT OUTCOMES

The List of outcomes of this unit is as follows:

U3-O1: Summarize the Relational modeling components to represent the system at a logical level.

U3-O2: Realize the need and importance of relational data model for implementation with
commercial database systems.

U3-O3: Illustrate logical design using relational representations of a real-time database
application

U3-O4: Interpret the database system with schemas in relational algebra and calculus

Unit-3
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1-WeakCorrelation;2-Mediumcorrelation;3-StrongCorrelation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6
U3-O1 3 1 3 - - -
U3-O2 1 1 1 - - -
U3-O3 2 2 3 - - -

64 Introduction to DBMS: Theory & Practicals

U3-O4 3 3 3 - - -

3.1. RELATIONAL DATA MODEL

The logical and view models are described with relational model. It provides the

conceptualizing of low-level details of data storage. The higher-level data model

discussed later in Chapter 2, entity-relationship(E-R)model is widely used for

database design. The relational data model is a basic model for commercial data

processing applications.

Fig. 3.1. Basic structure of a relational model

Fig. 3.1 illustrates the basic structure of a relational data model. The basic terminology

includes relation (table), Attribute (column), and the values of each attribute are

termed as tuples (row).

3.1.1. RELATIONAL MODEL CONCEPTS

Domain: A set of atomic values is termed a Domain. It is useful to interpret the value

by a specific name in the domain. Each domain is specified with name, data type

and design.

65 Introduction to DBMS: Theory & Practicals

Examples of Domains:

 AADHAAR Number – is a 12-digit number considered as a unique identity to all

residents of India.

PIN Number – a six digit number refers to “Postal Index Number (PIN)”, or PIN

code to the Indian postal code system used by India.

INDIA_contact number – a set of 10-digit number valid in India.

Student_age – an integer value between 15 to 60 admission in higher education

(preferably).

DEPT_name – The set of unique departmental codes is represented as CSE,ECE,

EEE.

Relation: A relation R is described with a set of Attributes.

A Relation schema is indicated as R (A1, A2, ……An) and the degree of relation as a

no. of attributes n of relation and is a set of m-tuples r = {t1, t2, ..., tm}. And a

tuple t is t is a list of m values t =<v1, v2, ..., vm>.

Example: Student Relation is described as

STUDENT (Student_name, RollNo, Contact_No, Address, gender, age, GPA)

The definition is elaborated with specific datatypes

STUDENT (Student_name: String, RollNo: Integer, Contact_No: Integer,

Address: String, gender: String, age: Integer, GPA: Real)

A relational database consists of set of tables(relations). Each table is constituted with

set columns and rows. Each column is Attribute. And Each row is a tuple or a

database record.

In relation student, first attribute is Student_name, the Second attribute is RollNo, etc

66 Introduction to DBMS: Theory & Practicals

Fig. 3.2. Student relation with sample data of 5 tuples

Fig. 3.2 illustrates a sample table of student details. It exists 8 attributes(columns) and

5 tuples (rows) of unique student details.

Database Schema - is the logical design of the database

Example: Schema of the department:

Department(Dept_name, location, budget)

Schema of the section:

Section(course_code, section_no, sem, year, room_no, location, time_slot)

Database Instance –Itis a snapshot of the data at a given instant in timein the database.

Sample instance of section table is shown in Fig. 3.3.

67 Introduction to DBMS: Theory & Practicals

Fig. 3.3 Database instance of section table

3.2. RELATIONAL DATABASE CONSTRAINTS

The restrictions or constraints on the database are derived from the rules of the specific

organization. The constraints are categorized into three main categories.

1. Implicit constraints

2. Explicit constraints

3. Semantic constraints

Implicit Constraints – inherent in the data model. Also called model-based

constraints.

Explicit Constraints – incorporated in the schema definition. Also called schema-

based constraints.

Semantic Constraints–these are not expressed at the schema level and are enforced

by the application-specific programs.

The schema-based constraints include domain, key constraints, null, and integrity

constraints (entity and referential).

68 Introduction to DBMS: Theory & Practicals

Fig. 3.4 lists the constraints in relational databases. These are implemented through

Data Definition Language (DDL) and data types. The constraints on relational

databases are implemented in four ways:

1. Domain level

2. Key level

3. Entity Integrity level

4. Referential integrity level

Super key- a set of one or more attributes whose values are guaranteed to identify tuples

in the relation uniquely.

Candidate key - a minimal set of superkey of a relation,

Primary key - One of the candidate keys of a relation

Fig. 3.4. Kinds of Constraints on relational databases

69 Introduction to DBMS: Theory & Practicals

3.3. ER/EER TO RELATIONAL MODEL MAPPING

Entity Relationship (E-R) model and Enhanced Entity Relationship (EER) model at

conceptual design is mapped with the relational model at the logical level in three

steps:

Step 1: Strong entities with simple and complex attributes

Step 2: Week entities

Step 3: Relationships

3.3.1. CASE STUDY: THE CONCEPTUAL DESIGN OF THE INDUSTRY

DATABASE

Case study 1: The conceptual design of the Industry database in Entity-

Relationship model with E-R diagram is presented in Fig. 3.5. Create a logical design

by mapping with E-R diagram.

Mapping of ER/EER model to relational model is demonstrated on the ER diagram of

Industry database.

70 Introduction to DBMS: Theory & Practicals

Fig. 3.5. ER diagram of Industry database.

Entities Sets with related attributes:

E1 – Employee (EMP_NO, Name, Address)

E2 – Dependent (Name, Gender, DOB)

E3 – Project (PROJ_NO, Location, P_Name

E4 – Division (DIV_NO, DIV_Name, Off_Loc)

Relationships sets

R1 – Supervision (Employee, Employee)

R2 – Relationship (Employee, Dependent)

R3 – Controls (Division, Project)

71 Introduction to DBMS: Theory & Practicals

R4 – Manages (Employee, Division)

Fig. 3.6. Relational schemas identified from E-R diagram

Entity sets are represented as relational schema are shown in Fig. 3.6.

Schemas derived from relationship sets:

Supervision (Emp_Id, Emp_Id)

Relationship (Emp_Id, Name)

Controls (DIV_No, Project_No)

Manages (Emp_Id, DIV_No)

3.3.2. CASE STUDY: THE CONCEPTUAL DESIGN OF THE INDUSTRY

DATABASE

Case study 2: The conceptual design of the library management system (LMS) in

Entity- Relationship model with E-R diagram is presented in Fig. 3.7. Create a logical

design by mapping with E-R diagram.

72 Introduction to DBMS: Theory & Practicals

Fig. 3.7. E-R diagram of library management system (LMS)

Entities Sets with related attributes:

E - 1: Books (Author_No, ISBN_No, Title, Edition, Price, Category)

Complex attributes

E - 2: Readers (Uer_ID, Name, First_Name, Last, Name, Phone_No,Address)

E - 3: Publisher (Year, YOP, Publisher_ID)

E - 4: Authentication (Login_Id, PSW)

E - 5: Staff (Staff_Id, Name)

Relationships sets

R - 1: Reserve (User_Id, Reserve date, ISBN_NO)

R - 2: Publish (.Publisher_ID, ISBN_NO)

R - 3: track (Staff_Id, User_Id)

73 Introduction to DBMS: Theory & Practicals

R - 4: maintain (Staff_ID, ISBN_NO)

R - 5: provides (Login_Id, Staff_Id).

3.4. RELATIONAL ALGEBRA

Relational algebra is a procedural query language. It defines a set of operations such as

addition, subtraction, or multiplication. Usually, algebraic operations on numbers

will take one or more numbers as input and return a number as output. The relational

algebra will take one or more relations as input and return a relation as output.

The operations in algebra are:

Fundamental operations – project, select, difference, union, Cartesian_product, and rename

Other operations - set intersection, natural join, and assignment.

Fig. 3.8. Linear algebra - comparison operators

Comparison Operators

(a) < Less than

(b) > Greater than

(c) = Equal to

(d) Not equal to

(e) Lessthan or equal to

(f) Greaterthan or equal to

(g) use boolean operator “not” to negate a condition.

74 Introduction to DBMS: Theory & Practicals

Fig. 3.9. Relational algebra basic operations

Fig. 3.10. A sample Instructor relation instance

Basic Operations

Selection Operation

Example:

Select the tuples of department name mathematics from the instructor relation

𝝈𝒅𝒆𝒑𝒕_𝒏𝒂𝒎𝒆 "𝒎𝒂𝒕𝒉𝒆𝒎𝒂𝒕𝒊𝒄𝒔" 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒐𝒓

Select the tuples of salary less than 3the 0000 from the instructor relation

𝝈𝑺𝒂𝒍𝒓𝒚 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒐𝒓

75 Introduction to DBMS: Theory & Practicals

Projection Operation

It is a unary operation. Works on single relation and that returns argument relation.

List all attributes ID, name, and salary from instructor relation.

𝝅 𝑰𝒅,𝒏𝒂𝒎𝒆,𝑺𝒂𝒍𝒂𝒓𝒚 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒐𝒓

Composition of operations

Retrieve the faculty names in computer science department in instructor relation

𝝅 𝒏𝒂𝒎𝒆 𝝈𝒅𝒆𝒑𝒕_𝒏𝒂𝒎𝒆 "𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒓 𝒔𝒄𝒊𝒆𝒏𝒄𝒆" 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒐𝒓

Union Operation

Retrieve the list of all courses taught in the even 2020 and odd 2021 semesters from

section relation

𝝅 𝒄𝒐𝒖𝒓𝒔𝒆𝒊𝒅 𝝈𝒔𝒆𝒎𝒆𝒔𝒕𝒆𝒓 even˄ 𝒚𝒆𝒂𝒓 𝟐𝟎𝟐𝟎 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 U

𝝅 𝒏𝒂𝒎𝒆 𝝈𝒔𝒆𝒎𝒆𝒔𝒕𝒆𝒓 "𝒐𝒅𝒅"˄ 𝒚𝒆𝒂𝒓 𝟐𝟎𝟐𝟐 𝑺𝒆𝒄𝒕𝒊𝒐𝒏

Set Difference

Binary operation. It takes input as two relations. denoted by −. It gives the tuples which

do not exist in the second relation and existed in the first relation.

The expression

r – s, gives an output relation having tuples in r not in s.

Example: Courses offered in even semester 2020 not in odd 2022.

𝝅 𝒄𝒐𝒖𝒓𝒔𝒆𝒊𝒅 𝝈𝒔𝒆𝒎𝒆𝒔𝒕𝒆𝒓 "𝒆𝒗𝒆𝒏" ˄ 𝒚𝒆𝒂𝒓 𝟐𝟎𝟐𝟎 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 -

𝝅 𝒏𝒂𝒎𝒆 𝝈𝒔𝒆𝒎𝒆𝒔𝒕𝒆𝒓 odd˄ 𝒚𝒆𝒂𝒓 𝟐𝟎𝟐𝟐 𝑺𝒆𝒄𝒕𝒊𝒐𝒏

Cartesian-Product Operation

The Cartesian product of relations r and s denoted as r× s. it used to combined at a from

two relations.

76 Introduction to DBMS: Theory & Practicals

Let A and B are two relations, then AXB will get the resultant relation as illustrated in

Fig. 3.11 and 3.12.

Fig. 3.11. Relations A and B with sample data, and AXB resultant relation without
projection and selection

Fig. 3.12. Cartesian-Product Operation AXB resultant relation with selection and
projection

77 Introduction to DBMS: Theory & Practicals

Natural-Join Operation

It is a binary algebraic operation. It is symbolized with ⋈. The natural-join operation

practices a Cartesian product of its two arguments and performs a selection by

checking equality on those attributes that appear in both relations, and finally

removes duplicate attributes.

Fig. 3.13. The result of natural-join: Employee ⋈ Department

3.5. RELATIONAL CALCULUS

Relational calculus is implemented at two levels such as tuple and domain. These are non-
procedural query languages.

78 Introduction to DBMS: Theory & Practicals

3.5.1. TUPLE RELATIONAL CALCULUS (TRC)

A general representation of a TRC query is {t |

P(t)}

Here, t - the set of tuples and P is apredicate

P(t) is true to generate all tuples in t.

P(t) conditions are

Logically combined with OR (∨), AND

(∧),NOT(¬).

Quantifiers:

∃ - “there exists”

∃ t ∈ r (Q(t)) - ‘there exists” a tuple t in relation r for predicate Q(t) is true.

∀ - “ for all”

∀ t ∈ r (Q(t)) - Q(t) is true “for all” tuples t in relation r.

Example: Use TRC to select the facultyID, name, deptname, salary of faculty

whose salary is more than 65,000/-.

{t | t ∈faculty∧t[salary] > 65000}

3.5.2. DOMAIN RELATIONAL CALCULUS (DRC)

Instead of using values for a complete tuple, the second type of relational calculus known

as domain relational calculus employs domain variables that take values from the

domain of an attribute. However, the domain relational calculus is intimately

connected to the TRC.

A general form in the DRC is

{< x1, x2, . . . , xn > | P(x1, x2, . . . , xn)}

79 Introduction to DBMS: Theory & Practicals

where x1, x2, . . . , xn represent domain variables. P signifies a formula of atoms, as was

the case in the tuple relational calculus. An atom in the domain relational calculus

has one of the following forms:

 < x1, x2,x3,x4 . . ….. , xn >∈ r, where r is a relation on n attributes and x1, x2, .

. . , xn are domain variables or constants.

 x OP y, where x and y are domains and OP is a operator

(<, ≤, =, _=, >, ≥).

 x OP c, where x is a domain, OP is a comparison operator, and c is a

constant.

Example: Get the facultyID, name, deptname, and salary of faculty whose salary

is more than 65000

<facultyID, fname, dept_name, and salary> domain attributes represented as <f,

fn,dt,s>

{< f, fn, dt, s > | < f, fn, dt, s >∈ faculty ∧ s > 65000}

Get all facultyIDs of faculty whose salary is more than 65000:

{< f > | ∃ f, d, s (< f, fn, dt, s >∈ faculty ∧ s > 65000)}

80 Introduction to DBMS: Theory & Practicals

UNIT SUMMARY

• The logical level design of the system provided in relational modeling. Further
this is helpful to the implementation at view level and physical level by using
application programming languages.

• The conceptual design of the database system is provided in E-R and EER
diagrams. Now this is mapped with relational model.

• In relational model:
All entities are represented with tables
Relationships are provided with

 Relational data model concepts:
o Domain
o Attribute
o Relation
o Database schema
o Database instance

 Database constraints:
o Implicit constraints
o Explicit constraints
o Semantic constraints

 The constraints on relational databases are implemented in four ways:
o Domain
o Key
o Entity Integrity
o Referential integrity

 Entity Relationship (E-R) model and Enhanced Entity Relationship (EER)
model at conceptual design is mapped with the relational model at the logical
level in three steps:
Step 1: The entity sets with simple and complex attributes
Step 2: Week entity sets
Step 3: Relationship sets

 Relational algebra is a procedural query language. It defines a set of operations
such as addition, subtraction, or multiplication.

81 Introduction to DBMS: Theory & Practicals

 The operations in relational algebra are:

Fundamental operations –project, select, union, Cartesian product, difference

and rename

Other operations - set intersection, natural join, and assignment.

 The fundamental operations are

σ Sigma [Selection]

Π Pi[Projection]

⋈ [Natural join]

X [Cartesian Product]

∪[Union]

 Relational calculus:Tuple and Domain

 The general representation of a query in the TRC is denoted as:{t | P(t)}

 A general form in the DRC is

{< x1, x2, . . . , xn > | P(x1, x2, . . . , xn)}

where x1, x2, . . . , xn represent domain variables. P denotes a formula

82 Introduction to DBMS: Theory & Practicals

EXERCISES

Multiple Choice Questions
1 DRC stands for

a. Data Relational concepts
b. Dependency Relational Calculus
c. Domain Relational Calculus
d. Domain Relational Concepts

2 In Relational Modeling, not related concept
e. domain
f. relation
g. entity
h. attribute

3 In logical design, the ER mapping of entity is
a. constraints
b. table
c. attribute
d. key attribute

4 The domain is not represented one of the following
a. Name
b. data type
c. Constraint
d. File

5 ……..is not a component of a relational database.
a. Entity
b. Hierarchy
c. Table
d. Attribute

6 Inthe usage of DBMS, the vital one is to understand
a. Physical schema
b. All substances that the system supports
c. One sub schema
d. Both (A) and (B)

7 ………….. is not an implicit constraint in relational databases
a. string
b. primary
c. integer
d. float

8

…………. is also called an explicit constraint in relational databases
a. primary key
b. referential integrity
c. schema based integrity
d. semantics

9 String is ……..type of constraint in relational databases
a. key constraint

83 Introduction to DBMS: Theory & Practicals

b. referential integrity
c. domain constraint
d. unique constraint

10 Semantic constraints are implemented through……
a. key constraints
b. data definition language
c. data manipulation language
d. application programming language

11 Projection is ……….type of operation in relational algebra
a. binary
b. unary
c. more relations
d. trinity

12 _______ produces the relation that has attributes of R1 and R2
a. Cartesian product
b. subtraction
c. Product
d. Intersection

13 Cartesian product in relational algebra is
a. Ternary
b. Binary
c. Unary
d. not

14 Predicate in relational calculus is constituted with……….
e. raw facts
f. quantifiers
g. logical operators
h. C&D

15 The tuple relational calculus is proposed by
e. EF Codd
f. kahate
g. James Gossling
h. Dennies Rithchie

16 In the relational modes, cardinality is termed as:
a. No. of tuple’s.
 b. No. of attribute’s.
 c. No. of table’s.
 d. No. of constraint’s

17 Relational calculus is a……………language
a. Procedural.
b. Non- Procedural
c. Data definition.
d. High level.

84 Introduction to DBMS: Theory & Practicals

18 A relational database developer, a row is termed as
a. attribute
b. table
c. tuple
d. criteria

Answers to MCQs:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C C C D B C B C C D B A B D A A B C

Short and Long Answer Type Questions

1. Summarise the steps in ER/EER model mapping in relational model.

2. Illustrate the basic structure of relational data model and label the all components.

3. Construct a logical design for a hospital management system with a set of patients and

medical doctors. A patient log containsa history of tests conducted and consultations

made.

4. List the different types of constraints with significant examples.

5. Identify three possible relations and related attributes that could be utilized to maintain

the attributes of a social networking system like LinkedIn.

6. Outline the relational algebra operations with specific examples.

7. Identify three possible relations that could be utilized to store data in a social networking

system like Facebook.

Numerical Problems

1.Build the subsequent queries in relational algebra, using the college schema.

a. List the offered courses in the Computer Science department having 4credits.

b. List the RollNos of enrolled students who were handled by afaculty name as Choudhary.

c. List the faculty having salary more than 50000.

2. Consider the employee database. Build queries in tuple relational calculus(TRC) and

domain relational calculus(DRC):

85 Introduction to DBMS: Theory & Practicals

a. Retrieve the employee names who are working for “DBS Bank”.

b. Retrieve the employee names and their residence cities who work for “DBS Bank”.

c. Retrieve the employee names, residence details of street addresses, and city who are

working for “DBS Bank” and earning more than 50000.

86 Introduction to DBMS: Theory & Practicals

PRACTICAL

KNOW MORE

https://www.red-gate.com/simple-talk/databases/theory-and-design/codds-twelve-

1. A bank wants to automate each transaction. It provides the subsequent account

types: Fixed Deposit(FD), Recurring Deposit(RD), and Savings Bank (SB)

The Bank also wants to monitor the loans granted to its clients. Identify the relations,

attributes, datatypes and constraints.

Draw the relational schema diagramto provide all explicit constraints. Consider the

following presumptions:

a. A customer is limited to having a single type of account. Joint accounts are not

permitted

b. Only when a consumer has at least one of the account kinds is a loan available.

Use relational algebra for finding

a. account details of all fixed deposits

b. the account details of both fixed deposits and savings bank account

2. To represent the requirements of a small computer business corporation.

Relational model with appropriate domain constraints

Relation 1 - The company workers assemble several computer models. Each

employee's employee number, name, address, phone number, job title, and salary.

Relation 2 - The model, specifications, name, and quantity of each machine.

Relational instance - Each machine is made up of various components. The parts that

are on hand must be listed in an inventory. A record of each part's name, cost, and

available quantity is kept.

Relation 3 - These components are purchased from a number of providers. The

supplier's name, address, and phone number must be kept on file.

use domain relational calculus:

retrieve the computer details that have been assembled are sold.

87 Introduction to DBMS: Theory & Practicals

Commercial DB systems:

 IBM DB2 - www.ibm.com/software/data/db2

 Oracle - www.oracle.com

 Microsoft SQL Server - www.microsoft.com/sql

 Sybase - www.sybase.com

 IBM Informix - www.ibm.com/software/data/informix

Free/public domain database systems:

 MySQL - www.mysql.com

 PostgreSQL - www.postgresql.org

REFERENCES AND SUGGESTED READINGS
 Henry F Korth, Abraham Silberschatz, “Database system concepts”, sixth ed.,

McGraw-Hill International editions, Computer Science Series

 Elmasri, Navathe, "Fundamentals of Database Systems", Elmasri, Navathe, Third ed,

Addison Wesley

 Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,

Tata McGraw Hill.

 C. J. Date, "An introduction to Database Systems", Sixth ed., Narosa Publications

 Database management systems- NPTEL: https://nptel.ac.in/courses/106105175

Dynamic QR Code for Further Reading
Relational Data Model
Relational Algebra Basic Operators
Relational Algebra Composition of Operators
Relational Algebra Additional Operators
Relational Algebra Extended Relational Algebra

https://nptel.ac.in/courses/106104135

88 Introduction to DBMS: Theory & Practicals

d

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

 Structured Query Language (SQL-99)
 Schema definition
 Constraints, Queries, and Views
 Security; Introduction to SQL Programming Techniques

The practical applications of the topics are discussed for working in real-time database
environments such as commercial as well as open-source database management systems.

 Besides giving a large number of multiple choice questions as well as questions of short and
long answer types marked in two categories following the lower and higher order of Bloom’s
taxonomy, assignments through several numerical problems, a list of references, and suggested
readings are given in the unit so that one can go through them for practice. It is important to note
that for getting more information on various topics of interest some QR codes have been provided
in different sections which can be scanned for relevant supportive knowledge.

 After the related practical, based on the content, there is a “Know More” section. This section
has been carefully designed so that the supplementary information provided in this part becomes
beneficial for the users of the book. This section mainly highlights the initial activity, examples of
some interesting facts, analogy, history of the development of the subject focusing on the salient
observations and finding, timelines starting from the development of the concerned topics up to the
recent time, applications of the subject matter for our day-to-day real life or/and industrial
applications on a variety of aspects, case study related to environmental, sustainability, social and
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit.

4 STRUCTURED QUERY
LANGUAGE(SQL)

89 Introduction to DBMS: Theory & Practicals

RATIONALE

This structured query language unit on Database systems helps students to get knowledge on
programming constructs and commands of SQL and its real-time applications. It provides a
practical relational model using SQL standard for commercial relational DBMSs. It covers the
programming language of SQL with more advanced features of the SQL language for relational
databases including PL/SQL constructs. These constructs helps to users to create, retrieve and
manage database with security.

 SQL is an important aspect of commercial database systems that essentially deals with
information and data and their effect on information retrieval. Structured query language (SQL)
statements are started their journey by mathematical functions using calculus and algebra and then
explaining it in terms of relational database management. This permits one to analyze the
operations of many day-to-day transactions around us. Its practical applications are related to the
relational model construction and operation of different types of database systems and tools.

PRE-REQUISITES

Mathematics: Calculus, Algebra (Class XII)
Computer Science: problem-solving with programming (Class XII)

UNIT OUTCOMES

The List of outcomes of this unit is as follows:

U4-O1: Summarize query language constructs and constraints to build database system.

U4-O1: Apply integrity constraints to guard traits and build database system.

U4-O2: Build queries to create, manage and retrieve data from database systems using commercial
databases.

U4-O3: Create queries for efficient data retrieval by using SQL commands and clauses.

U4-O4: Use structured programming for providing security and authentication to the systems

Unit-4
Outcomes

EXPECTEDMAPPINGWITHSUBJECTOUTCOMES
(1-Weak Correlation;2-Medium correlation;3-Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6
U4-O1 3 1 3 - - -
U4-O2 1 1 1 - - -
U4-O3 2 2 3 - - -
U4-O4 3 3 3 - - -
U4-O5 3 3 3 - - -

90 Introduction to DBMS: Theory & Practicals

4.1. STRUCTURED QUERY

LANGUAGE (SQL-99)

SQL is a query language used to

define the structure of the data,

modify the data, and indicate

the security constraints. SQL is

expanded as a Structured Query

Language, also called SEQUEL

(Structured English QUEry

Language). Initially, it was

designed as an interface for the relational database system and implemented at IBM

Research as a commercial relational DBMS.

Fig. 4.1 illustrates the various components of SQL. It includes Data definition language

(DDL), transaction control language (TCL), and data manipulation language (DML),

and data control language (DCL) are used to state and alter the database schema, and

execute database queries, and update.

Fig. 4.1. Structured Query Language components

Fig. 4.2 shows the glossary of basic SQL commands.

91 Introduction to DBMS: Theory & Practicals

Fig. 4.2. Glossary of basic SQL commands

4.2. SCHEMA DEFINITION

The relational model terms such as relation, tuples, and attributes are termed in SQL as

terms table, rows, and columns respectively. The schema is recognized by a name; an

identifier to indicate the user account (owner of the schema); in addition to that domain

descriptors for each element in the schema. In general, the schema elements are table,

view, data type, constraint, domain, and constructs that describe the schema.

In SQL, the create table statement creates a new table in database.

CREATE - creates a new table/view

INSERT - inserts new data into a database

SELECT - extracts data from a database

UPDATE - updates data in a database

DELETE - deletes data from a database

ALTER - modifies the schema or view

DROP - deletes a table

RENAME – rename a table

COMMIT – buffer to a disk

ROLLBACK – rollback the changes made

GRANT – Assign privileges to users

REVOKE – remove the assigned privileges

The general structure of create table statement is:
create table r (C1 D1, C2 D2, ..., Cn Dn, IC1, ..., ICk);
****r -> relation C Column/Attribute D Domain IC Integrity

92 Introduction to DBMS: Theory & Practicals

 Example:

 In the schema of branch relation, 3 attributes – bname, location, and bud_amount; the

domains are a string of a maximum of 18 and 20 characters and numeric of a maximum

of 10 digits of the total in which 2 are decimals; integrity constraint is a primary key

attribute as bname. A semicolon indicates the end of the SQL statement.

In SQL, the insert into statement for inserting values to table in database.

A row inserted to table branch

 Example:

In SQL, the select statement for retrieving data values from table in database.

create a branch relation.

Crete table branch

(bname char(18),

location char(20),

bud amount numeric(10,2),

The general structure of insert into statement is:
Insert into r
values(V1, V2,V3,V4....Vn);
****r -> relation V Column/Attribute value

Insert branch details to branch table

insert into branch values (‘CSE, ‘AB block’, ‘653298653’);

The general structure of select statement is:
Select C1,C2,C3 from r where <condition>;
****r -> relation C Column/Attribute, condition is a predicate on columns

93 Introduction to DBMS: Theory & Practicals

 Example:

In SQL, the update statement for changing data values in a table in database.

SET clause is used to specify the change on attribute with new values.

 Example:

In SQL, the delete statement for deleting data values in a table in database.

 Example:

In SQL, the alter statement for modifying schema of table in database.

Extract all student details from table students

Select * from students:

Select rno, name, brach from students where branch=’CSE’;

The general structure of update statement is:
update r set C1=newvalue where <condition>;;
****r -> relation C Column/Attribute Condition a predicate on columns

update of student record rno 210 with new values marks 25 and contact no.

5555456790

update student SET smarks = 25, contact = 5555456790 WHERE Rno = 210;

The general structure of delete statement is:
Delete from r where <condition>;
****r -> relation Condition a predicate on columns

delete student Roi record

delete from student WHERE Sname = ‘Roi;

94 Introduction to DBMS: Theory & Practicals

 Example:

4.3. CONSTRAINTS
Constraints of the database are termed Integrity constraints, domain constraints, referential

constraints, and data constraints.

4.3.1. INTEGRITY CONSTRAINTS:

The integrity constraints(IC) will protect the database from being accidentally damaged

and ensure that the approved changes should not cause a data inconsistent.

 Example:

Integrity constraints include primary key, foreign key, and not null.

Primary Key: Is having the property of not null and unique. It assures, the relation does

not exist any tuples has a null value for a primary key attribute; and any two tuple

values have the same value for a primary key attribute. A multicolumn (attribute)

primary key is called a composite key.

The general structure of alter table statement is:
alter table r drop column C1 cascade;
****r -> relation C Column/Attribute CASCADE is chosen, all constraints
and views that reference the column are dropped automatically from the schema,
along with the column.

alter table student, branch drop column roomno cascade;

Roomno column has been deleted from tables student, and branch

Student registration number is unique to each.

The savings account balance should not be null.

Student age is not null.

95 Introduction to DBMS: Theory & Practicals

 Example:

Foreign key: It establishes the relationship among tables. The values of attributes should

assure any tuple in the relation must correspond to the values of the primary key

attribute of some tuple in another relation.

The foreign key should assure:

 If a similar value doesn't already exist in the primary key table, it rejects a value

update or insert.

 If a delete would violate a references constraint, it would be rejected.

 Must refer to a unique column or primary key in the primary key table.

 The reference must be to a table, not a view or cluster.

 The reference column(s) and the foreign key column(s) have the same data types.

 Example:

The general form of adding primary key (create table at the end of attribute list):
create table r (A1 D1, A2 D2, ..., An Dn, primary key (A1 , A2 ,..., An));

The dept attribute of the section relation should ensure not null and unique in all the

tuples in the relation department.

create table dept(dname varchar(12), primary key (dname));

The general form of adding primary key (create table at the end of attribute list):
create table r1 (A1 D1, A2 D2, ..., AnDn, foreign key (A1, A2,...,An)references r2);
***r2(A1, A2,...,An) is a already created relation and having values.

96 Introduction to DBMS: Theory & Practicals

Not null: It does not allow a null value for that attribute.

 Example:

4.3.2. DOMAIN CONSTRAINTS:

Domain constraints can be created along with attribute specification or using create a

domain. Once a new domain is created, then we can refer data type with the created

domain name.

Create Domain reg_type As Char(10);

Here onwards reg_type can be used as a data type with char of length 10. Attributes like

RNO, enrollmentID, reg_no data type are defined as reg_type.

 Example:

The dept attribute of the section relation should ensure the corresponding value

existed in any of the tuples in the relation department.

The dept attribute of the section relation should ensure not null and unique in all the

tuples in the relation department.

create table section(dept varchar(10), foreign key (dept) references department);

here department is existing relation having dept attribute as the primary key.

create table department(dept varchar(10), primary key (dept));

The Faculty_name attribute of the faculty relation has not null constraint.

It ensures that the faculty_name of an instructor cannot be a null value.

The general form of create domain is:
Create Domain New Type As data type(length);

97 Introduction to DBMS: Theory & Practicals

4.3.3. DATA TYPES IN SQL:

The data types of SQL include numeric, character, bit, Boolean, date, and time.

Fig. 4.3. Data types in SQL

Numerical data:

The specific data types include smallint, int, numeric, real, and float.

Integer or Int and smallint are a machine-dependent subsets of integers.

 Example:

A numeric is a fixed point number with specific precision.

Create an employee id data type with a name e_type of numeric data type of length 6

digit length. And use e_type for creating attributes of employeeid, mgr_id.

Crete domain e_type As numeric(6);

employeeid e_type;

mgr_id e_type;

phone_no integer;

988776434

No decimal part is included in the value.

98 Introduction to DBMS: Theory & Practicals

Denoted as numeric(p,d)

 Example:

Real and double precision are types of floating point numbers whose precision levels

depend on the machine.

Float(n) is a floating point number with n precision values.

String Data:

The specific data types to handle string type of data include char and varchar and CLOB

Char stores fixed-length type of strings.

 Example:

Varchar:

Varchar data type stores variable-length strings.

 Example:

salary numeric(10,2);

98765432.98

10000000000.34

The salary attribute defines with a maximum of 10 digits and two precision values.

Name char(10);

Name = Niya

It stores by appending 6 spaces to the name Niya.

Name varchar(10);

Name = Niya

It stores the name as Niya without any spaces(even though it is specified as a length of 10).

99 Introduction to DBMS: Theory & Practicals

CLOB (Character large objects): variable-length string data type. It is used to indicate

the string values with a lot of text, or documents. You can specify the maximum

CLOB length in kilobytes (K), megabytes (M), or gigabytes (G).

 Example:

Data and Time data:

The specific data types to handle date and time includes the date, time, and timestamp.

DATE: It has ten positions including DAY, MONTH, and YEAR.

The general representation: DD-MM-YYYY.

 Example:

Comparison of char and varchar data types:

Char(n) – stores n characters. It stores total 10 characters by appending with

spaces to the exact string.

If A=”Ani” and B=”Ani”

When doing string comparison (A=B) return false due to empty spaces.

Varchar(n) – stores maximum of n characters. It sores the exact characters

without appending any empty spaces.

If A=”Ani” and B=”Ani”

When doing string comparison (A=B) return true.

doc1 CLOB(30G) indicates a max. length of 30 gigabytes.

 DATE ‘2022-10-27’

100 Introduction to DBMS: Theory & Practicals

TIME: It has at least eight positions and includes HOUR, MINUTE, and SECOND. The

general form of representation: HH:MM:SS

 Example:

Timestamp: It includes both the DATE and TIME fields, along with a min. of six fractions

of seconds and an optional TIME ZONE.

 Example:

Other types of data:

Bitstring:

BIT(n) - A fixed length of a maximum number of bits n

BIT VARYING(n), a varying length of a max. no. of n bits.

 Example:

BLOB - BINARY LARGE OBJECT

It is a variable-length bitstring and used for large binary values such as image data.

Boolean:

In general, it holds the binary value TRUE or FALSE. In SQL, a tri value UNKNOWN,

TRUE and FALSE.

4.3.4. ATTRIBUTE CONSTRAINTS AND DEFAULTS

NOT NULL constraint: SQL allows NULL values to the attributes. A null value is not

equivalent to a value of zero. A column becomes a required column when its name is

 TIME ‘08:11:57’

 TIMESTAMP ‘2022-10-28 08:11:57.346312

 bstring BIT(5);

bstring = B ‘10101’ (the value should be preceded by the letter B)

101 Introduction to DBMS: Theory & Practicals

defined as not null. Any expression that contains a null value will also return null.

For instance, 30 times null results in null.

UNIQUE key constraint: used to make sure that each record's column of data has unique

information. More than one unique key may be present in a table.

 Example:

DEFAULT clause: used to define a value as a default value to the attribute.

 Example:

CHECK clause: used to restrict the specified constraint and default values to the attributes.

 The license number of the vehicle is unique.

Create table employee_details (customer_id numeric(8) primary key, employee_name

varchar(20) not null, employee_address varcher (25) not null, license_number

varchar (15) constraint unique);

 Create an employee schema with details of contact number, and marital status.

create table employee (employee_id number(5), employee_name varchar(20) not null,

contact_no varchar(10), marital_status char(1) default ‘M’ , primary key

(employee id));

102 Introduction to DBMS: Theory & Practicals

 Example:

4.3.5. CASE STUDY – COLLEGE DATABASE

 contact integer(10) not null;

Balance numeric(10,2)not null default 2000;

bnumber integer not null check (bnumber > 0 AND bnumber < 15);

check (DOJ <= DOL);

Create a table of an employee where the Employee_Id column should start with ‘M’ and the

city is one among the list as ‘Hyderabad, ‘Chennai, ‘Odisha, ‘Karnataka..

SQL> create table employee_details

(employee_id numeric(8) constraint ck_ecode check (employee_id like ‘M%),

employee_name varchar(20) not null,

City varchar(25) constraint ck_city check (the city in ‘Hyderabad, ‘Chennai, ‘Odisha,

‘Karnataka),

salary numeric(5), primary key (employee_id));

An example system would be a College database that would be used to

maintain information regarding major entities such as student, branch, course,

and grade in a college. Initially, the college database is set up with five tables

having identical data records.

 STUDENT file contains information about each student;

 COURSE file contains information about each course;

 SECTION file contains information about all sections of a course;

 BRANCH file contains information about individual departments in the college;

FACULTY_COURSEWORK file contains information about each faculty taught

courses.

103 Introduction to DBMS: Theory & Practicals

The table creation with appropriate integrity constraints of the college database is as

follows::::

Fig. 4.4. SQL data definition of the college database

Relation: Branch/department

create table branch(branch_name
varchar(10), Title varchar(15), location
varchar(5), budget numeric(10,2),
primary key(branch_name));

Relation: Subject

create table Subject(Subject_Id
varchar(7), title varchar(50),
branch_name varchar(20), credits
integer(2), primary key(Subject_Id),
foreign key (branch_name));

Relation: Faculty/Instructor

create table faculty (faculty_Id
integer(5), name varchar(15), salary
numeric (8,2),

primary key (faculty_Id), foreign key
(branch_ name) references branch);

Relation: Section

create table section (Subject_Id
varchar(7), Section_Id varchar(5),
semester varchar(6), year numeric(4,0),
building varchar(15), room_no
varchar(7), slot varchar(4), primary key
(Subject_Id, Section _Id, semester, year),
foreign key (Subject_Id) references
Subject);

Relation: Faculty_Subject work

create table faculty_teaches (faculty_Id
varchar(5), Subject_Id varchar(8),
section_Id varchar(8), semester
varchar(6), year numeric(4,0), primary
key (faculty_Id, Subject_Id, section_Id,
semester, year),

foreign key (Subject_Id, section_Id,
semester, year) references section,

foreign key (faculty Id) references

Relation: Student

create table student(Roll_No integer(6),
Student_name varchar(15), branch_name
varchar(10), Subject_Id varchar(8),
primary key(Roll_No), foreign
key(branch_name) references branch,
foreign key (Subject_Id) references
Subject);

104 Introduction to DBMS: Theory & Practicals

4.3.6. CASE STUDY – LIBRARY MANAGEMENT SYSTEM

The table creation with appropriate integrity constraints of a library management

system is as follows::::

An example system would be a Library Management System having the

following factors are taken into account while tracking readers in the database:

A single point authentication system that consists of a login ID and password, the

system maintains the track of the staff logs.

The library staff updates the book collection with information on each title's ISBN,

price in Indian rupees, category types (general, innovations, story), edition

number, and unique author number.

A publisher has a publisher ID number, the booktitle, and the year it was published.

Member register by providing a member ID, MailId, member name (firstname and

lastname), contact number (multiple numbers are permitted), and contact

address. The library staff monitor the readers.

Books that have the issue and return date stamped can be considered as reserved by

readers. It can have a due date as well if it is not returned within the allotted time

frame.

105 Introduction to DBMS: Theory & Practicals

Fig. 4.5. SQL data definition of the library management system database

4.4. QUERIES

4.4.1. BASIC STRUCTURE OF QUERY

The basic structure of SQL retrieval query is select-from-where block.

<attribute list> -> list of attribute names whose values

are to be retrieved by the query

<table list> list of the relation names required to process

the query.

<condition> A conditional phrase that identify the tuples to be retrieve by the query.

 Relation: Book

create table Book(Book_Id integer(5),
auther_no integer(5), ISBN_no
varchar(10), Title varchar(15),
edition_no integer(4), category_type
varchar(5), price numeric(10,2),
primary key(ISBN_no));

Relation: Member

create table member(member_Id
integer(5), mail_Id varchar(15), address
varchar(20), Contact_no integer(10),
Mem_name varchar(15), primary
key(member_id));

Relation: Publisher

create table Publisher_details
(Publisher_Id integer(5), YOP
integer(4), Book_title varchar(15),
primary key(Publisher_ID));

Relation: Authentication

create table Authentication (Login_Id
varchar(15), PSW varchar(15), primary
key(Login _ID));

Relation: Staff

create table Lib_Staff (staff_id
integer(7), Name varchar(15), primary
key(staff_id));

Relation: reserve/return

create table Reserve_Return(book_id
integer(5), member_id integer(5),
Resdate date, Duedate date, Retdate
date, foreign key(book_id) references
book, foreign key(member_id)
references member);

SELECT <attribute list>

FROM <table list>

WHERE <condition>;

106 Introduction to DBMS: Theory & Practicals

Natural Join: It operates on two tables and produces a table as the result. It considers the

pairs of tuples having both attributes in both tables with the same value.

Inner Join - returns the identical rows from both the tables.

Outer Join- performed in three ways - Left, Right, and Full outer joins

 Example:

Using Join: select-project-join

 Example:

 Select – project - condition

Query-0: Retrieve the DOB and residence of the student whose name is ‘Rai C.

Roy’.

Q-0: select DOB, residence from students where Firstname = ‘Rai’ and Middlename

= ‘C’ and Lastname = ‘Roy’;

Select - all attributes - condition

Q1: Retrieve the student details of who enrolled in CSE.

Q1: select * from students where branch=’CSE’;

Select - <multiple tables> - project

Q2. Retrieve the Emp_name and salary of all employees who work for the ‘sales’

department.

Q2: select Firstname, Lastname, Residence from employee, branch where Bname =

‘sales’;

All faculty, who teaches some Subject in the college, find their names and the

Subject_ IDs of all Subjects they taught.

select faculty_name, Subject_id from faculty, teach where faculty.ID= teach.ID;

107 Introduction to DBMS: Theory & Practicals

4.4.2. ADDITIONAL BASIC OPERATIONS

Rename:

Renaming of the attribute is performed using as a clause. The as clause can be used in both

the select and from clauses.

General representation:

Old column name as new column name

Column renaming:

All faculty in the college who taught some Subject, list their names and the Subject ID of

all Subjects they taught.

Table renaming: table name referred with alias name using as clause

select faculty_name, Subject_id from faculty natural join teach;

Without using join(Cartesian Product):

Retrieve the project_id, the managing dept_id, and the department head's name,

address, and DOB of every project located in ‘Delhi’.

Q3: select Pnumber, Dnum, Lname, Address, Bdate from project, department,

employee where D_num = D_no and Head_ID = ID and P_location = ‘Delhi’;

select facuty_name as Subject faculty, Subject_id from faculty, teach where

faculty.faculty_ID = teach.t_ID;

List the name of all faculty whose salary is more than at least one faculty in the CSE

department

select distinct F.faculty_name from Faculty as F, Faculty as CS where F.salary >

CS.salary and CS.dept name = ‘CSE’;

108 Introduction to DBMS: Theory & Practicals

STRING OPERATIONS

SQL provides various string-handling functions on character strings:

1. Concatenating (use symbol “||”)

2. extract sub-strings

3. Find the string length

4. Convert strings to uppercase (use upper(s) where s is a string) and lowercase (use

lower(s))

5. Remove spaces at the end of the string (using trim(s))

Fig. 4.6. MySQL functions of string operations

Pattern matching: It is performed on strings, using the operator like and two special

characters (% and _):

Percent (%): The % characters match any substring.

Underscore (_): The character match any character.

 Examples: Pattern string with special characters

109 Introduction to DBMS: Theory & Practicals

 Example: Pattern matching using like operator and string with special characters

SQL AGGREGATE OPERATORS

1. Count: It provides a tuple's count in that column. If a DISTINCT keyword is used then

it will return only the count of a unique tuple in the column. Otherwise, it will return

a count of all the tuples (including duplicates) count (*) indicates all the tuples of the

column.

2. SUM: It provides the sum of all the values in that column. If a DISTINCT keyword is

used then it will return the sum of all unique values in the columns.

3. AVG: It provides the average value of that column values. If a DISTINCT keyword is

used then it will return the average of distinct values only.

4. MAX: It provides the highest value of that column.

5. MIN: It provides the lowest value of that column.

’Intro%’ matches a string beginning with “Intro”.

’%put%’ matches a sub string “put” as a substring, for example, ’Intro. to Computer

Science’, and ’Computational Biology’.

’ --- ’ matches any string of exactly three characters.

’ ---%’ matches any string of at least three characters.

‘\’ escape character to match the special character in string

like ’xy\%zr%’ - ’\ ’ matches all strings beginning with “xy%zr”.

like ’xy\\z%’ escape ’\ ’ matches all strings beginning with “xy\z”.

110 Introduction to DBMS: Theory & Practicals

Fig. 4.7. MySQL functions of aggregate operations

SET OPERATIONS

SQL supports set operations over two relations to construct queries such as union, intersect,

and except.

Union

 Example:

List all subjects offered either in even 2009 or in odd 2010, or both.

(select Subject_id from section where semester = ’odd’ and year= 2021)
union
(select Subject_ id from section where semester = ’even’ and year= 2022);

111 Introduction to DBMS: Theory & Practicals

Intersect

 Example:

Except Operation

The except performs set difference. It outputs all rows from its first relation that does not

occur in the second relation.

 Example:

IN /NOT IN

in / not in constrains for performing the tests on the set along with select.

 Example:

>some / > all

SQL provides comparisons like >some, >=some, <some, <=some, =some, and <> some

 = some is identical to in and <> some is identical to not in.

 some is used to represent the phrase ‘greater than at least one’

List all Subjects taught in the odd 2021 as well as in even 2022.

(select Subject_id from section where semester = ’odd’ and year= 2021)
intersect
(select Subject_id from section where semester =’even’ and year= 2022);

List all Subjects taught in the odd 2021 but not in even 2022.

(select Subject_ id from section where semester = ’odd’ and year= 2021)
except
(select Subject_id from section where semester =’even’ and year= 2022);

List all Subjects offered in 2021 and 2022.

select Subject_ id from section where year in (‘2021’, 2022’);

List all Subjects not offered in 2021 and 2022.

select Subject_ id from section where year not in (‘2021’, 2022’);

112 Introduction to DBMS: Theory & Practicals

 >all is used to represent the ‘greater than all’

 SQL provides comparisons like <all, <=all, >all, >=all <>all, =all.

Complex Queries:
Complex queries are not possible to write in a single SQL block. Two ways to compose a

complex query in multiple SQL blocks.

Derived relations - SQL allows a sub-query expression to be used in the from clause.

 Example:

With clause - provides a temporary view and is available in a query.

Aggregation with Grouping

group by clause

 Example:

having clause – followed by group by clause to perform grouping by condition

4.5. VIEWS

SQL views provide a virtual table, which is dynamically constructed for a user-specific by

extracting data from base table(s). It is a custom-made representation of the data

Find the average salary of those branches where the average salary is greater than

65000/-

select B_name, avg (salary) from (select B_name, avg(salary) from faculty group
by B_name) as Branch_avg_sal (B_name,avg(salary)) where Avg_salary > 65000;

Find the maximum salary across all branches total salary at each branch.

select max (Tot_salary)
from (select B_name, sum(salary) from faculty group by B_name) as branch_total
(B_name, Tot_salary);

List the average salary in each department.

select dept_ name, avg (salary_amt) as avg_salary from faculty group by dept_
name;

113 Introduction to DBMS: Theory & Practicals

contained in one or more table(s) / view(s). It takes the output of a query and creates

a table; therefore, it is a stored query or a virtual table. It provides further security to

the tables by restricting access to the existing data from a table. It provides a

simplified query structure to the user and hides the data complexity.

Why views:

 To simplify queries

 Similar to the queried from a base table

 Gives extended data security

Create - view

 Example:

updating a view:

In general, views are readable. To perform data manipulation at views it should pass to the

respective table.

To make views updatable, they should meet the following criterion:

 Only one table may be used to generate it.

 The view needs to contain the table's primary key column.

 The select statement does not allow the use of aggregate functions.

 A Distinct, Group by, or Having clause should not be present in the select statement

used to create a view.

The general form to create a view:
create view view name as
select column name, column name from table name where column name =
expression list;

Create a view with attributes book_title, and author_name on Book relation

create view V_Book as select book_title, author_name from book;

114 Introduction to DBMS: Theory & Practicals

 Subqueries should not be utilized in the select statement used to create a view.

 It can't employ value expressions like total / 5 or constants, strings, or constants.

 Example:

4.6. SECURITY

Assigning a user's privileges to parts of the database is called authorization. Authorizations

on data may contain reading, inserting new data, updating data, and deleting data.

Granting or revoking

SQL data definition language (DDL) provides a set of commands like grant, revoke to

confer, and revoke privileges. The grant statement is used to confer authorization.

To revoke an authorization, SQL provides a revoke keyword.

The SQL provides the privileges of select, insert, update, and delete. The privilege type

‘all privileges’ can be used for all the allowable privileges.

 Example:

Retrieve data from view - List all the titles of books written by author ‘Sanjay.

select book_title from V_book where book_title = ‘Sanjay’;

Dropping a view - delete a view V_Book

Drop view V_Book

The general form of grant statement is:
grant <privileges list>
on <table or view >
to <user list>;

The general form of revoke statement is:
revoke <privileges list>
on <table or view >
to <user list>;

115 Introduction to DBMS: Theory & Practicals

4.7. INTRODUCTION TO SQL PROGRAMMING TECHNIQUES

The PL/SQL programming language as a procedural extension language for SQL was

developed by Oracle Corporation in the late 1980s available as an Oracle database.

PL/SQL offers a built-in, interpreted, and OS-independent programming

environment. And it can be called from the command-line SQL*Plus interface. It is

a fully portable, high-performance transaction processing language.

Features of PL/SQL programming:

 Close integration with SQL

 Thorough error checking.

 A wide variety of programming structures and data types.

 Supports object-oriented programming and structured programming through functions

and procedures.

Advantages of PL/SQL:

 SQL is the industry-standard database language, and PL/SQL and SQL are tightly

interconnected.

 Both static and dynamic SQL are supported by PL/SQL.

 DML operations and transaction control from PL/SQL blocks are supported using static

SQL. PL/SQL blocks can contain DDL statements when using Dynamic SQL.

Example: Give authorization to Mr. Roi and Head_est for an update on the salary attribute

of the salary_master relation:

grant update (salary) on salary_master to Roi, head_est;

remove update privilege from rai on salary master table

revoke update (salary) on salary_master to Roi, head_est;

116 Introduction to DBMS: Theory & Practicals

 PL/SQL enables batching of statements to be sent to the database. This lowers network

traffic and gives the applications exceptional performance.

 PL/SQL allows programmers to query, manipulate, and update data in a database, due

to this it increases programmers' productivity.

 Strong features like exception handling, encapsulation, data hiding, and object-oriented

data types in PL/SQL reduce design and debugging time.

 PL/SQL applications are completely portable.

 It offers a high level of security.

 Access to preconFig.d SQL packages is provided.

 It offers assistance in Object-Oriented Programming for creating Server Pages and Web

Applications.

4.7.1. STRUCTURE OF PL SQL BLOCK:
Block-based programming is used to structure the code in PL/SQL. An anonymous block

is one that lacks a name not saved in oracle database. It is the most basic PL/SQL

unit and helpful for building test units and is only used once. The declaration,

execution, and exception handling are three fundamental parts. The other sections

are optional; just the execution portion is required.

Declaration section - Used to specify variables, structures, and data types. Give names,

data types, and starting values when declaring variables.

The illustration of anonymous block syntax:
[DECLARE]
Declaration statements;
BEGIN
Execution statements;
[EXCEPTION]
Exception handling statements;
END;
/

117 Introduction to DBMS: Theory & Practicals

Execution section - Used to insert code or logic into block structures; at least one statement

is required. It starts with the term BEGIN. The execution portion contains both

procedural and SQL statements.

Exception section: Used to handle exceptions through either catch or handle.

 Example:

Named Block:
A named block is a specific kind of block that begins with the header section, which

identifies the block's name and kind. These come in two varieties: procedures and

functions.

Fig. 4.8. General block structure of PL/SQL

To create Pl/SQL block which inserts 2 records in the student table?

BEGIN

insert into student_details values(‘R104’,’Roi’, 21);

insert into student_details values(‘R105’,’Nitu’,18);

END;

IS

BEGIN

EXCEPTION

END;

Header

Declaration section

Exception section

118 Introduction to DBMS: Theory & Practicals

Header - Used for named blocks. Which are called by name, parameter list, and return

clause (for functions)

Generate output from - DBMS_OUTPUT is a built_in package that is used to display the

output, and debugging information, and send messages from PL/SQL blocks,

subprograms, packages, and triggers.

 Example:

4.7.2. PL/SQL – OPERATORS

The list of operators used in programming and their precedence is given in Table.

Arithmetic operators +,-,*,/,** (Exponentiation)

Relational operators = , !=, >, <, <=, >=

Comparison Operators LIKE, BETWEEN, IN

Logical Operators and, or, not

The precedence of operators goes as follows:
 =, <, >, <=, >=, <>, !=, ~=, ^=, IS NULL, LIKE, BETWEEN, IN.

4.7.3. SEQUENCES

A sequence is an object in Oracle that is used to generate a number sequence. This can be

useful when you need to create a unique number to act as a primary key.

Create Sequence:

Display a hello message using put_line
BEGIN
dbms_output.put_line(‘Hello’);
dbms_output.put_line(‘Welcome’);
END;

Output: Hello
World
Welcome

119 Introduction to DBMS: Theory & Practicals

 Example:

DROP sequence

 Example:

4.7.4. PL/SQL CONTROL STRUCTURES

Testing Conditions: IF and CASE Statements. There are three forms of IF statements:

IF-THEN; IF-THEN-ELSE, and IF-THEN-ELSIF

The structure to create a sequence is:
CREATE SEQUENCE seq_name
INVALUE value
 MAXVALUE value
 START WITH value

INCREMENT BY value
 CACHE value;

create a sequence strtas at 5 and ends at 199.
CREATE SEQUENCE five_seq
MINVALUE 5

MAXVALUE 199

START WITH 5

INCREMENT BY 1

CACHE 20;

DROP SEQUENCE sequence_name

DROP SEQUENCE five_seq;

120 Introduction to DBMS: Theory & Practicals

 Example:

LOOP- END LOOP – control statement

Demo of a simple IF-THEN Statement

DECLARE
performance NUMBER(8,2) := 1010
base NUMBER(8,2) := 10000;
increment NUMBER(6,2);
fid NUMBER(6) := 120;
BEGIN
IF performance > (base + 200) THEN
increment:= (sales - quota)/4;
UPDATE employees SET salary = salary + increment WHERE emp_id = fid_id;
END IF;
END;
/

A demo on case-when statement

DECLARE
gradepoint CHAR(1);
BEGIN
gradepoint := ‘B’;
CASE gradepoint
WHEN ‘A’ THEN DBMS_OUTPUT.PUT_LINE(‘Excellent’);
WHEN ‘B’ THEN DBMS_OUTPUT.PUT_LINE(‘Very fair’);
WHEN ‘C’ THEN DBMS_OUTPUT.PUT_LINE(‘fair);
WHEN ‘D’ THEN DBMS_OUTPUT.PUT_LINE(‘good’);
WHEN ‘F’ THEN DBMS_OUTPUT.PUT_LINE(‘fail’);
ELSE DBMS_OUTPUT.PUT_LINE(‘No grade’);
END CASE;
END;

The general form:
LOOP
sequence_of_statements
END LOOP;

121 Introduction to DBMS: Theory & Practicals

EXIT-WHEN

EXIT– unconditionally stops the iterations.

WHEN conditionally stop the loops.

FOR-LOOP
 Example:

4.7.5. CURSORS

A cursor is a pointer to the context area. A cursor holds the rows (one or more) returned

by a SQL statement. The set of rows the cursor holds is referred to as the active set.

There are two types of cursors “

• Implicit cursors
• Explicit cursors

Implicit cursors - automatically created by Oracle whenever an SQL statement is executed,

when there is no explicit cursor for the statement. Whenever a DML statement

(INSERT, UPDATE, and DELETE) is issued, an implicit cursor is associated with

this statement. For INSERT operations, the cursor holds the data that needs to be

inserted. For UPDATE and DELETE operations, the cursor identifies the rows that

would be affected. In PL/SQL, the most recent implicit cursor, always has attributes

such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT.

A demo on for loop
DECLARE
n NUMBER := 0;
BEGIN
FOR r IN 1..100 LOOP — generate a sequence of 100 terms
n := n + (r**2);

END LOOP;
DBMS_OUTPUT.PUT_LINE(‘sum of sequence : ‘ || n);

END;

122 Introduction to DBMS: Theory & Practicals

Attribute Returns

%FOUND TRUE if an INSERT, UPDATE, or DELETE statement affected
one or more rows or a SELECT statement returned one or more
rows.
Else FALSE

%NOTFOUND TRUE if an INSERT, UPDATE, or DELETE statement
affected no rows, or a SELECT statement returned no rows.

%ISOPEN FALSE for implicit cursors

%ROWCOUNT The number of rows affected by an INSERT, UPDATE, or
DELETE statement, or returned by a SELECT statement.

 Example:

Explicit Cursors:

Explicit cursors are programmer-defined cursors for gaining more control over the

context area. An explicit cursor should be defined in the declaration section of the

illustration of cursor, that will update the table and increase the salary of each
faculty by 5000 and use the SQL%ROWCOUNT attribute to determine the
number of rows affected.

DECLARE
no_row number(2);
BEGIN
UPDATE faculty
SET salary = salary + 5000;
IF sql%notfound THEN
dbms_output.put_line(‘no facylty selected’);
ELSIF sql%found THEN
no_row := sql%rowcount;
dbms_output.put_line(total_rows || ‘facylty selected’);
END IF;
END;
/

123 Introduction to DBMS: Theory & Practicals

PL/SQL Block. It is created on a SELECT Statement which returns more than one

row.

Working with an explicit cursor includes the following steps:

 Declaring the cursor for initializing the memory

 Opening the cursor for allocating the memory

 Fetching the cursor for retrieving the data

 Closing the cursor to release the allocated memory

Cursor operation Example

Declaration CURSOR c_student IS
SELECT rno, name, address FROM student;

Open OPEN c_student;

Fetch FETCH c_student INTO c_id, c_name, c_addr;

Close CLOSE c_student;

 Example

The general form of creating explicit cursor is:
CURSOR cursor_name IS select_statement;

illustration of explicit cursor

DECLARE
s_id students.id%type;
s_name students.No.ame%type;
s_addr students.address%type;

CURSOR c_ students is
SELECT id, name, address FROM students;
BEGIN
OPEN c_ students;
LOOP
FETCH c_ students into c_id, c_name, c_addr;
EXIT WHEN c students %notfound;

124 Introduction to DBMS: Theory & Practicals

4.7.6. TRANSACTIONS
A database transaction is an atomic unit of work that may consist of one or more related

SQL statements.

Transaction operation Description

COMMIT A transaction is made permanent by issuing the SQL
command
COMMIT.

ROLLBACK Changes made to the database without COMMIT could be
undone
using the ROLLBACK command.
ROLLBACK [TO SAVEPOINT < savepoint_name>];

SAVEPOINT Savepoints are sort of markers that help in splitting a long
transaction into smaller units by setting some checkpoints.
SAVEPOINT < savepoint_name >;

 Example:

Illustration of the transaction on emp table.
INSERT INTO EMP (EID,ENAME, AGE, E_ADDRESS, SALARY)
VALUES (12, ‘Roi, 39, ‘LP’, 19500);
INSERT INTO EMP (EID, ENAME, AGE, E_ADDRESS, SALARY)
VALUES (18, ‘Rini, 25, ‘Wall’, 55000);
SAVEPOINT save1;
UPDATE EMP
SET SALARY = SALARY + 10000;
ROLLBACK TO save1;
UPDATE EMP
SET SALARY = SALARY + 10000
WHERE ID = 18;
UPDATE EMP
SET SALARY = SALARY + 5000
WHERE ID = 12;
COMMIT;

*** ROLLBACK TO save1: rolls back all the changes up to the point, where you had
marked savepoint save1.

125 Introduction to DBMS: Theory & Practicals

SET AUTOCOMMIT ON;

When an environment variable is set on, then execute commit automatically after inserting,

updating, and deleting.

4.7.7. PROCEDURES AND FUNCTIONS

A subprogram is a program unit/ module that performs a specific task. PL/SQL

subprograms are named PL/SQL blocks that can be invoked with a set of parameters.

PL/SQL provides two kinds of subprograms

Functions - return a single value; mainly used to compute and return a value.

Procedures - do not return a value directly; mainly used to act.

Parameter mode Description

IN passes a value to the subprogram. It is a read-only parameter.

OUT returns a value to the calling program. It acts like a variable.

IN OUT passes an initial value to a subprogram and returns an updated
value to the caller. It can be assigned a value and the value can be
read.

The general form of creating a procedure:
CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
{IS | AS}
BEGIN
< procedure_body >

END procedure name;

126 Introduction to DBMS: Theory & Practicals

FUNCTIONS

 Example:

4.7.8. EXCEPTIONS HANDLING
An exception is an error condition during program execution. PL/SQL supports

programmers to catch such conditions using the EXCEPTION block in the program

and appropriate action is taken against the error condition. There are two types of

exceptions

The general form of creating a function:
CREATE [OR REPLACE] FUNCTION function_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])] RETURN
return_datatype
{IS | AS}
BEGIN
< function_body >

Illustration of creating a function.
CREATE OR REPLACE FUNCTION total faculty
RETURN number IS
total_faculty number(2) := 0;
BEGIN
SELECT count(*) into total_faculty
FROM faculty;
RETURN total_faculty;
END;
/

Illustration of calling a PL/SQL function.
DECLARE
cf number(2);
BEGIN
cf := total faculty();
dbms_output.put_line(‘Total no. of Faculty: ‘ || cf);
END;
/

127 Introduction to DBMS: Theory & Practicals

 System-defined exceptions
 User-defined exceptions

 Example:

The general form of handling exception handling:
DECLARE
<declarations section>
BEGIN
<executable command(s)>
EXCEPTION
<exception handling goes here >
WHEN exception1 THEN
exception1-handling-statements
WHEN exception2 THEN
exception2-handling-statements
WHEN exception3 THEN

exception3-handling-statements
WHEN others THEN
exception3-handling-statements

END;

END [function name];

128 Introduction to DBMS: Theory & Practicals

4.7.9. TRIGGERS

Triggers are stored programs, which are automatically executed or fired when some events

occur. Triggers are, written to be executed in response to any of the following events:

 database manipulation statement (DELETE, INSERT, or UPDATE)

 database definition statement (CREATE, ALTER, or DROP).

 database operation (SERVER ERROR, LOGON, LOGOFF, STARTUP, or

SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the event is

associated.

Benefits of Triggers:

 Triggers can be written for the following purposes “

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

 Auditing

Illustration of exception handling on employee table.
DECLARE
e_id employee.id%type := 8;
e_name employee.Name%type;
e_addr employee.address%type;
BEGIN
SELECT name, address INTO e_name, e_addr FROM employee WHERE id = e_id;
DBMS_OUTPUT.PUT_LINE (‘Name: ‘|| e_name);
DBMS_OUTPUT.PUT_LINE (‘Address: ‘ || e_addr);
EXCEPTION
WHEN no_data_found THEN
dbms_output.put_line(‘No such employee!’);
WHEN others THEN
dbms_output.put_line(‘Error!’);

END;

129 Introduction to DBMS: Theory & Practicals

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

130 Introduction to DBMS: Theory & Practicals

The general form of creating a trigger is:
CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name]
ON table_name
[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW]
WHEN (condition)
DECLARE
Declaration-statements
BEGIN
Executable-statements
EXCEPTION
Exception-handling-statements

END;

Where,
 CREATE [OR REPLACE] TRIGGER trigger_name “Creates or replaces an existing

trigger with the trigger_name.
 {BEFORE | AFTER | INSTEAD OF} “This specifies when the trigger will be executed.

The INSTEAD OF clause is used for creating a trigger on a view.
 {INSERT [OR] | UPDATE [OR] | DELETE} “This specifies the DML operation.
 [OF col_name] “This specifies the column name that will be updated.
 [ON table_name] “This specifies the name of the table associated with the trigger.
 [REFERENCING OLD AS o NEW AS n] “This allows you to refer to new and old

values for various DML statements, such as INSERT, UPDATE, and DELETE.
 [FOR EACH ROW] “This specifies a row-level trigger, i.e., the trigger will be executed

for each row being affected. Otherwise, the trigger will execute just once when the SQL
statement is executed, which is called a table-level trigger.

 WHEN (condition) “This provides a condition for rows for which the trigger would fire.
This clause is valid only for row-level triggers.

131 Introduction to DBMS: Theory & Practicals

 Example:

Illustration of the trigger on employee table
CREATE OR REPLACE TRIGGER alert_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON employee
FOR EACH ROW
WHEN (NEW.ID > 0)
DECLARE
salary_diff number;
BEGIN
salary_diff := :NEW.salary - :OLD.salary;
dbms_output.put_line(‘Old salary: ‘ || :OLD.salary);
dbms_output.put_line(‘New salary: ‘ || :NEW.salary);
dbms_output.put_line(‘Salary difference: ‘ || salary_diff);

END;

132 Introduction to DBMS: Theory & Practicals

UNIT SUMMARY

 STRUCTURED QUERY LANGUAGE (SQL-99)

 Glossary of basic SQL commands:

 CREATE - creates a new table/view

 INSERT - inserts new data into a database

 SELECT - extracts data from a database

 UPDATE - updates data in a database

 DELETE - deletes data from a database

 ALTER - modifies the schema or view

 DROP - deletes a table

 RENAME – rename a table

 COMMIT – buffer to a disk

 ROLLBACK – rollback the changes made

 GRANT – Assign privileges to users

 REVOKE – remove the assigned privileges

 INTEGRITY CONSTRAINTS:

The integrity constraints(IC) will protect the database from being accidentally

damaged by ensuring that approved changes to the database do not cause a

loss of data consistency.

 Primary Key: Is having the property of not null and unique.

 Foreign key: It establishes the relationship among tables.

 Not null: It does not allow a null value for that attribute.

 DOMAIN CONSTRAINTS:

Domain constraints can be created along with attribute specification or using

create a domain. Once a new domain is created, then we can refer data type

with the created domain name.

133 Introduction to DBMS: Theory & Practicals

 DATA TYPES IN SQL:

The data types of SQL include numeric, character, bit, Boolean, date, and time.

Numerical data: The specific data types include smallint, int, numeric, real, and

float.

String Data: The specific data types to handle fixed length strings include char

and varchar data types.

CLOB (Character large objects): variable-length string data type. It is used to

specify having large text values, such as documents.

Data and Time data: The specific data types to handle date and time includes the

date, time, and timestamp.

Timestamp: It includes the DATE and TIME fields, along with a minimum of six

decimal fractions of seconds and an optional WITH TIME ZONE qualifier.

Other types of data:

Bitstring: BIT(n) - A fixed length of a maximum number of bits n.

BLOB - BINARY LARGE OBJECT

It is a variable-length bitstring. It is used to store a large binary value such as

images.

Boolean: In SQL, a tri value UNKNOWN, TRUE and FALSE.

 ATTRIBUTE CONSTRAINTS AND DEFAULTS

NOT NULL constraint: SQL allows NULL values to the attributes.

UNIQUE key constraint: Used to ensure that the information in the column

for each record is unique. A table may have more than one unique key.

DEFAULT clause: used to define a value as a default value to the attribute.

CHECK clause: used to restrict the specified constraint and default values to

the

134 Introduction to DBMS: Theory & Practicals

SQL AGGREGATE OPERATORS

1. Count: It returns the count of a tuple in that column. If a DISTINCT keyword is

used then it will return only the count of a unique tuple in the column.

Otherwise, it will return a count of all the tuples (including duplicates) count

(*) indicates all the tuples of the column.

2. SUM: It returns the sum of all the values in that column. If a DISTINCT keyword

is used then it will return the sum of all unique values in the columns.

3. AVG: It returns the average value of that column values. If a DISTINCT keyword

is used then it will return the average of distinct values only.

4. MAX: It returns the highest value of that column.

5. MIN: It returns the lowest value of that column.

SET OPERATIONS - SQL supports set operations over two relations to construct

queries such as union, intersect, and except; IN /NOT IN and >some / > all.

Complex Queries:
Complex queries are not possible to write in a single SQL block. Two ways to

compose a complex query in multiple SQL blocks.

Derived relations - SQL allows a sub-query expression to be used in the from

clause.

With clause - provides a temporary view and is available in a query.

Aggregation with Groupingby using group by clause

135 Introduction to DBMS: Theory & Practicals

 VIEWS

SQL view is a virtual table, which is dynamically constructed for a user-specific by

extracting data from base table(s). operation on views are:

Create a view, updating a view, Selecting data from a view, and Dropping a view

 SECURITY

Assigning a user's privileges to parts of the database is called authorization.

Authorizations on data may include, reading, inserting new data, updating

data, and deleting data.

 Granting or revoking

SQL data definition language (DDL) provides a set of commands like grant, revoke

to confer, and revoke privileges. The grant statement is used to confer

authorization. To revoke an authorization, SQL provides a revoke keyword.

SQL provides the privileges of selecting, inserting, updating, and deleting.

SQL PROGRAMMING TECHNIQUES - The PL/SQL programming language

as a procedural extension language for SQL was developed by Oracle

Corporation in the late 1980s available as an Oracle database.

STRUCTURE OF PL SQL BLOCK- PL/SQL programming units organize the
code into blocks.

Declaration section - Used to define data types, structures, and variables. Declare

variables by giving names, data types, and initial values.

Execution section -Used to place the code or logic in block structure and it must

have at least one statement. Starts with BEGIN keyword.

Exception section - Used to handle exceptions through either catch or handle.

Named Block - A named Block is a type of block that starts with the header section

which specifies the name and the type of the block. There are two types of blocks;

Procedures and Functions

136 Introduction to DBMS: Theory & Practicals

 PL/SQL – OPERATORS

The list of operators used in programming - Arithmetic operators, Relational
operators, Comparison Operators, Logical Operators

 SEQUENCES

A sequence is an object in Oracle that is used to generate a number sequence. This

can be useful when you need to create a unique number to act as a primary key.

Operations are: Create Sequence and DROP sequence

 PL/SQL CONTROL STRUCTURES

Testing Conditions: IF and CASE Statements. There are three forms of IF

statements: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSIF

LOOP- END LOOP – control statement
EXIT-WHEN [EXIT– unconditionally stops the iterations.

WHEN conditionally stop the loops.] and FOR-LOOP

 CURSORS - A cursor is a pointer to the context area. A cursor holds the

rows (one or more) returned by a SQL statement. There are two types of

cursors Implicit cursors and Explicit cursors

 TRANSACTIONS - A database transaction is an atomic unit of work that

may consist of one or more related SQL statements.

 PROCEDURES AND FUNCTIONS - A subprogram is a program unit/

module that performs a specific task. PL/SQL subprograms are named PL/SQL

blocks that can be invoked with a set of parameters. PL/SQL provides two

kinds of subprograms

Functions - return a single value; mainly used to compute and return a value.

Procedures - do not return a value directly; mainly used to act.

 EXCEPTIONS HANDLING - System-defined exceptions and User-defined
exceptions

 TRIGGERS - Triggers can be defined on the table, view, schema, or database

with which the event is associated.

137 Introduction to DBMS: Theory & Practicals

EXERCISES

Multiple Choice Questions

1 SQL stands for

a. semantic query language

b. stored query language

c. structured query language

d. self query language

2commands are used to create a table, index, or view.

i. domain

j. create

k. DDL command

l. attribute

3 The supported by SQL are used to define domain constraints of
attributes.

a. data types

b. integrity constraints

c. column names

d. key attributes

4 The attribute holding the values as not null and unique, then it is termed as
.................. key attribute

a. REFERENTIAL

b. NOT NULL constraint

c. NULL

d. PRIMARY

5 The table having more than one attribute as the primary key, then it is termed
as……...

a. primary key

b. foreign key

c. composite key

138 Introduction to DBMS: Theory & Practicals

d. referential key

6 In the usage of the foreign key, the attribute should possess the property of
...................

a. primary key in referential table

b. not null in referential table

c. should possess same data type in both tables

d. ALL

7 The database system has several virtual schemas according to the level of
..........................

a. user interest

b. abstraction

c. concise view

d. none

8

............................... keyword is used to specify a condition

a. where

b. group

c. IN

d. from

9 keyword is used to perform grouping.

a. where

b. group BY

c. IN

d. from

10 The is used to insert rows or add a new row of data into the
existing table or view.

a. alter

b. insert

c. select

d. create

139 Introduction to DBMS: Theory & Practicals

11 The drop table command is used to delete of the table

a. delete rows

b. delete schema

c. delete both

d. delete constraints

12 _______ are used to handle events on database with updations

a. procedures

b. functions

c. tiggers

d. sequences

13 ________is used to generate the numbers in a pattern to maintain unique property of
an attribute.

a. sequence

b. order

c. function

d. trigger

14 INOUT parameter indicates……….

i. Input string
j. Output string
k. Input and output same
l. takes an input value and returns the output value

Answers to MCQs:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C B A D C D B A B B C C A D

Short and Long Answer Type Questions

1. Illustrate the basic structure of a SQL query.

2. List the basic SQL commands with examples used for creating and managing relations

3. Summarize the integrity constraints supported by SQL with examples

4. List SQL-supported set operations to perform join queries with specific examples.

140 Introduction to DBMS: Theory & Practicals

5. Outline the comparison and logical operators supported by SQLwith specific

examples.

6. Summarise the various security privileges of database.

7. Arrange the data (CSE, ECE, AERO, ME, IT) in chronological order to display the

results.

8. Explain various clauses used to perform grouping, and aggregation available in SQL.

9. How to modify the structure of the table or change the constraints of the existing table.

10. Write a query to find the distinct customers and loan amounts of the branches situated

in “Delhi” where the customers have taken the loans.

Numerical Problems

1. Build the subsequent queries in SQL, using the customer's schema.

a. List the offered products in the sore in electronics category items related to laptop.

b. List the customer names whose last name with Choudhary.

c. List the customers having income more than 60000.

2. Consider the employee database. Build queries using SQl and PL/SQL programming

a. Retrieve the employee names who are working for “DBS Bank” and staying in the city

‘hyderabad’.

b. Create a sequence of customer numbers with a pattern of category name and sequence

numbers. Example: ELEC001 starts for electronics category customers.

c. create a trigger to alert the updation in a salary and maintain a salary history table on

each update.

141 Introduction to DBMS: Theory & Practicals

PRACTICAL

Commercial DB systems:

 IBM DB2 - www.ibm.com/software/data/db2

1. A bank wants to automate each transaction. It provides the subsequent account

types: Fixed Deposit (FD), Recurring Deposit (RD), and Savings Bank (SB)

The Bank also wants to monitor the loans granted to its clients. Create the relations

with appropriate table names, attributes, datatypes and constraints.

Consider the following presumptions:

a. A customer is limited to having a single type of account. Joint accounts are not

permitted

b. Only when a consumer has at least one of the account kinds is a loan available.

Use SQL for retrieving

a. account details of all fixed deposits

b. the account details of both fixed deposits and savings bank account

2. To represent the requirements of a small computer business corporation.

Create, insert and retrieve the data by specifying domain constraints

Relation 1 - The company workers assemble several computer models. Each

employee's employee number, name, address, phone number, job title, and salary.

Relation 2 - The model, specifications, name, and quantity of each machine.

Relational instance - Each machine is made up of various components. The parts that

are on hand must be listed in an inventory. A record of each part's name, cost, and

available quantity is kept.

Relation 3 - These components are purchased from a number of providers. The

supplier's name, address, and phone number must be kept on file.

use SQL:

retrieve the computer details that have been assembled are sold.

142 Introduction to DBMS: Theory & Practicals

Commercial DB systems:

 IBM DB2 - www.ibm.com/software/data/db2

 Oracle - www.oracle.com

 Microsoft SQL Server - www.microsoft.com/sql

 Sybase - www.sybase.com

 IBM Informix - www.ibm.com/software/data/informix

Free/public domain database systems:

 MySQL - www.mysql.com

 PostgreSQL - www.postgresql.org

REFERENCES AND SUGGESTED READINGS
 Henry F Korth, Abraham Silberschatz, “Database system concepts”, sixth ed.,

McGraw-Hill International editions, Computer Science Series

 Elmasri, Navathe, "Fundamentals of Database Systems", Elmasri, Navathe, Third ed,

Addison Wesley

 Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,

Tata McGraw Hill.

 C. J. Date, "An introduction to Database Systems", Sixth ed., Narosa Publications

 Database management systems- NPTEL: https://nptel.ac.in/Subjects/106105175

Dynamic QR Code for Further Reading
Structured Query Language

Data definition using SQL

Basic SQL query block and subqueries

Correlated subqueries
https://nptel.ac.in/Subjects/106106220

143 Introduction to DBMS: Theory & Practicals

d

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

 Functional dependency in relational schemas
 Preserving database design quality with Normalization
 Database design algorithms
 Additional types of dependencies based on key constraint inclusions, Arithmetic

Functions and Procedures

The practical applications of the topics are discussed for generating further curiosity and creativity
as well as to improve problem-solving capacity.

 Besides giving a large number of multiple choice questions as well as questions of short and
long answer types marked in two categories following lower and higher order of Bloom’s
taxonomy, assignments through several numerical problems, a list of references, and suggested
readings are given in the unit so that one can go through them for practice. It is important to note
that for getting more information on various topics of interest some QR codes have been provided
in different sections which can be scanned for relevant supportive knowledge.

 After the related practical, based on the content, there is a “Know More” section. This section
has been carefully designed so that the supplementary information provided in this part becomes
beneficial for the users of the book. This section mainly highlights the initial activity, examples of
some interesting facts, analogy, history of the development of the subject focusing on the salient
observations and finding, timelines starting from the development of the concerned topics up to the
recent time, applications of the subject matter for our day-to-day real life or/and industrial
applications on a variety of aspects, case study related to environmental, sustainability, social and
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit.

5
FUNCTIONAL
DEPENDENCIES AND
NORMALIZATION FOR

144 Introduction to DBMS: Theory & Practicals

RATIONALE

The objective of relational database design is to develop a collection of relation schemas that
allows us to store information without redundancy while allowing facilitates its retrieval. The
relational database is made up of various schemas, each of which has a number of attributes. We
had assumed up until this point that attributes are organized into relational groups using the
database designer's common sense or by translating a conceptual data models like ER or
enhanced-ER (EER) models, into a database schema design. Using these models the identification
of entities, relationships, and associated attributes, and the mapping processes covered in Chapter
3 result in a logical combination of the attributes into relations. We still need a formal method,
though; to examine the grouping of attributes into a relation schema could be preferable to another.
In Chapters 3 focus on the database design, we did not create any appropriateness or goodness
metrics to assess the design's quality outside of the designer's intuition. In this chapter, we go
through some of the theory that has been created to assess the design quality of relational schemas,
or to quantify why one set of attribute groupings into relation schemas is preferable to another.
The quality of relational schemas can be discussed on two different levels. In the first, users'
interpretations of relation schemas and the significance of their properties are expressed at a
logical (or conceptual) level. Good relation schemas at this level allow users to accurately build
their queries by helping them comprehend the meaning of the data in the relations. The second
level refers to the physical storage (or implementation) of the base relation's tuples. The concept
of identification of functional dependencies, a formal constraint among attributes that serve as the
primary technique for formally evaluating the suitability of attribute groups into relation schemas,
is the focus of this chapter. We talk about normal forms and how normalizing works by employing
functional dependencies. A set of desirable constraints described by primary keys and functional
dependencies are used to define successive normal forms. The normalization process entails
conducting a succession of tests on relations to ensure that they satisfy these progressively
demanding specifications and, when necessary, decomposing the relations. Discuss normal
forms(from 1NF to 5NF) that can be used to analyze any design without the need for meticulous
examination and normalization. Covers extended topics like multivalued dependency and join
dependency.

 Databases are an important branch of computer science that essentially deals with information
and data and their effect on information retrieval. Database system implementation needs as a
prerequisite step in data modeling and it is termed relational database management. This permits
one to analyze the operations of many day-to-day transactions around us. Its practical applications
are related to the model, construction, and operation of different types of database systems and
tools.

PRE-REQUISITES

Mathematics: Calculus, Algebra (Class XII)
Computer Science: problem-solving with programming (Class XII)

145 Introduction to DBMS: Theory & Practicals

UNIT OUTCOMES

Further dependencies

The List of outcomes of this unit is as follows:

U5-O1: Identify the functional dependencies in databases.

U5-O2: Summarize the various normal forms in the normalization of databases.

U5-O3: Make use of normal forms to remove the dependencies in databases

U5-O4: Outline the database design algorithms.

Unit-
1Outcomes

EXPECTEDMAPPINGWITHCOURSEOUTCOMES
(1-WeakCorrelation;2-Mediumcorrelation;3-StrongCorrelation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6
U5-O1 2 2 3 - - -
U5-O2 2 2 2 - - -
U5-O3 3 3 3 - - -
U5-O4 3 3 3 - - -

146 Introduction to DBMS: Theory & Practicals

5.1. DESIGN GUIDELINES FOR RELATIONAL SCHEMAS

The relational schema design quality is measured by using four informal guidelines:

 In the schema definition, the attribute semantics are clear

 Minimizing the data redundancy

 Minimizing the NULL value data

 Not allowing the chance of generating erroneous data tuple(s)

The guiding principle to design relational schema with good quality:

1. Create a relational schema that is simple to interpret. A single relation should not have

properties from several entity types and relationship types. It makes sense intuitively

that a relation schema's meaning can be easily explained if it corresponds to just one

entity type or one type of relationship. Otherwise, semantic ambiguities may arise

and the relationship will be difficult to understand if it refers to a combination of

different entities and relationships.

2. Make that there are no insertion, deletion, or modification abnormalities when creating

the base relation schemas. Construct the processes without any sort of anomalies

while updating the database.

3. Avoiding attributes with NULL values in a base relation. If NULLs are inevitable, ensure

that in exceptional cases and do not affect the majority of the tuples in the relation.

4. Create relational schemas joined on equality condition on correctly related attribute pairs

(primary key, foreign key) in a way that ensures no erroneous tuple(s) are produced.

Keep away from combining on relation schemas with matching attributes that aren't

(foreign key, primary key) combinations, as doing so could result in erroneous tuples.

Example: A sample database named the Industry database was used.
Information of employees, departments, and projects can be found in this
database. A relational schema includes majorly:

147 Introduction to DBMS: Theory & Practicals

 Division: The Industry has numerous divisions. Each division is

identified specifically by name, office location, and the person in charge

of managing it.

 Project: A division has several projects, each with its own name,

number, and budget.

 Employee(EMP) has a name, unique identification number, residence,

wage, and birthdate. Although they are assigned to one division,

employees might participate in many initiatives. Additionally, each

employee's start date and immediate supervisor must be noted for each

project.

 Dependent: Need to maintain each employee's dependents history with

dependent_name, birthday, and relationship to the employee.

Division

Div_No Div_Name Office location Person in charge

Project

Proj_No Proj_Name Budget Div_No

Employee_Member

Emp_No Emp_Name Residence location wage DOB

Fig. 5.1. Schema Diagram of Sample Industry Database

Division

Div_No Div_Name Office location Person in charge_ID

01 sales Delhi 1001

148 Introduction to DBMS: Theory & Practicals

02 marketing Bangalore 1008

03 establishment Hyderabad 1019

Project

Proj_No Proj_Name Budget Div_No

P1001 Sale charts management 200000 01

P1002 recruitment 300000 03

P1003 Promotions 800000 01

P1004 Salaries 600000 03

P1005 Customer attractions 500000 02

Employee_Member

Emp_No Emp_Name Residence location wage DOB

1001 Singh Chhattisgarh 80000 1980-04-23

1002 Roi Delhi 34000 1997-05-28

1003 Patel Bangalore 59000 1990-09-26

1004 Nita Delhi 57000 1987-02-01

1008 Aswin Bangalore 90000 1978-06-21

1019 Vikas Hyderabad 60000 1983-04-15

Employee-Project

Emp_No Emp_Name Proj_No Proj_Name months_worked

1001 Singh P1001 Sale charts management 10

1002 Roi P1002 recruitment 4

1003 Patel P1001 Sale charts management 11

1001 Singh P1004 Salaries 10

1008 Aswin P1004 Salaries 12

1008 Aswin P1005 Customer attractions 8

Fig. 5.2. Sample database state of Industry database

149 Introduction to DBMS: Theory & Practicals

Fig. 5.2 explains a state of the schemas of industry database. The relational schema

guidelines are accommodated in the design of database.

In the schema definition, the attribute semantics are clear - All these schemas are

defined with clear semantics.

Minimising the redundant data in tuples – The goal of relational schema design is

minimising the space of storage with minimal no. of attributes grouped to the relation.

Storing join relation leads to the anomalies like insert, update and delete. Here all schemas

grouped with appropriate set of attributes, so no chances of anomalies.

Minimising the NULL values in tuples – with NULL value attributes, many problems

may rise like improper understanding on join operation, wastage of space, problem to

perform aggregation operations (count, sum, average), when join and select on condition

are performing, the results are unpredictable. All tuples are accommodated with relevant

values. Hence no NULL value issue existed.

Not allowing the chance of generating erroneous tuples – While performing join on non

key attribute tables, then leads to erroneous tuples. Here all tables are accommodated with

primary key attribute. Hence no design issue existed.

5.2. FUNCTIONAL DEPENDENCY(FD)

A functional dependency (FD) is a tool to detect and analyse the design issues existed the

schema design. It is a restriction between two or more sets of attributes in a database.

Definition: In a Relational schema, R= {C, C2, C3, ...Cn}; A functional dependency is

denoted as C1 → C3, between two attributes C1 and C3 are subset of relation R specify

that a check on possible tuples of a relation state r of R. Here condition is for any two tuples

t1 and t3 in r have t1[C1] = t3[C1], they must have same t1[C3] = t3[C3].

This means the values of C3 components is dependent or determined by, the component

C1.

150 Introduction to DBMS: Theory & Practicals

C1 → C3 [termed as C1 implies C3] means functional dependency between C1 and C3; or

in another way C3 is functionally dependent on C1

Example: Consider the relation schema Employee-Project shown in Fig. 5.2. from

the semantics of the attributes and the relation, the functional dependencies

identified are:

i. emp_no → Emp_name

ii. Proj_no → {Proj_name, Proj_location}

iii. { emp_no, Proj_no } → months_worked

The listed functional dependencies are identified due to…

(i) values of an employee’s unique identification emp_id determines the employee’s

name (Emp_name),

(ii) values of a project’s unique identification (Proj_no) determines the

projectsname (proj_name) and the office_location (Proj_location),

(iii) values of a set emp_no, Proj_no determines the project working duration of the

employee on currently associated project (months_worked).

5.3. NORMALIZATION OF RELATIONAL DATABASE SCHEMAS

The normalization of relations is analytical process through functional dependencies (FDs)

and primary key to define the desirable properties of schema like minimising the

redundancy and insertion, deletion and update anomalies. This is the process of

making design have good quality using normal form test.

It provides to the DB designers:

1. A framework to analyze a relational schema based on their key constraints and the

functional dependency existed among attributes.

151 Introduction to DBMS: Theory & Practicals

2. A sequence of tests called normal forms that may be run on specific schemas to

allow for any desired level of normalization of the relational database.

Normal form: Codd has proposed three normal forms, which are based on an

mathematical (analytical) tool called functional dependency among the attributes of

a relation. These are termed as first normal form(1NF), second normal form(2NF),

and third normal form(3NF). Later Boyce and Codd were proposed with a strong

definition of 3NF and termed as Boyce-Codd normal form (BCNF). Further two more

normal forms are proposed as a fourth normal form (4NF) based on the multivalued

dependencies and a fifth normal form(5NF) on join dependencies.

5.3.1. FIRST NORMAL FORM (1NF)

First normal form (1NF), which was designed to prevent attributes having values like

multi-valued, composite, and their combinations, is the formal specification of a

relation in the fundamental (flat) data model. It specifies that an attribute value must

be atomic (means simple, and indivisible) and each tuple have a single value of same

domain. As a result, 1NF prevents the attribute values from a set of multiple, a tuple,

or a combination of both. The attribute values of single atomic (or indivisible) are

permitted by 1NF.

Example: Consider the division schema shown in Fig. 5.3, whose primary key is

Div_No, and Office locations attribute. Assume that each division is accommodated

at multiple locations. The division schema sample state illustrates that not in 1NF

since Office locations attribute value is not in an atomic state, as exemplified by the

first and second tuples.

Office_locations attribute is having multi values, which is non aotomic. Hence,

Normalization of division schema to keep in 1NF with multiple techniques:

152 Introduction to DBMS: Theory & Practicals

 By forming the primary key in the combination of {Div_No, Office_locations}; the

drawback in this method is redundancy of data will create.

 If a max. no. of values (e.g.3) are known for the given attribute, then this attribute

Office_locations is replaced by three atomic attribute names: Div_loc1, Div_loc2,

and Div_loc3. The drawbacks of this method are

o NULL values are allowed to non existing locations.

o Expansion of locations leads to changes in structure of schema.

o Ordering among locations is also difficult while querying.

Division_schema

Div_No Div_Name Office_locations Person in charge_ID

 Sample state of Division

Div_No Div_Name Office_locations Person in charge_ID

01 sales {Delhi, Bangalore} 1001

02 marketing {Delhi, Hyderabad, Bangalore} 1008

03 establishment Delhi 1019

1NF form_division relation having redundancy

Div_No Div_Name Office_location Person in_charge_ID

01 sales Delhi 1001

01 sales Bangalore 1001

02 marketing Delhi 1008

02 marketing Hyderabad 1008

02 marketing Bangalore 1008

03 establishment Delhi 1019

Fig. 5.3. Demonstration of Division relation Normalization into 1NF

153 Introduction to DBMS: Theory & Practicals

5.3.2. SECOND NORMAL FORM (2NF)

Second normal form (2NF) is based on

the concept of full functional

dependency. A relation schema R is

in 2NF if every nonprime attribute

A in R is fully functionally

dependent on the primary key of R. It is not partially dependent on any key of R.

 In Fig. 5.2; in the employee_project

relation::

{emp_no, Proj_no} →

months_worked is a full

dependency

It holds emp_no → months_worked

and Proj_no → months_worked

{emp_no, Pnumber} → Emp_Name is partial

It holds emp_no → Emp_Name.

Example: Consider the

employee_project relation

shown in Fig. 5.4. The tests

for 2NF involve testing for

functional dependencies

(FD) whose left-hand side

attributes are part of the

primary key. (If a a single attribute primary key then the test not applicable.).

It consists of 3 functional dependencies.

FD1: {emp_no, Proj_no} → months_worked

Prime attribute vs non-prime attribute:

A prime attribute is member of candidate key
in a relation schema R.

A nonprime attribute is not a member of any
candidate key in relation schema R.

154 Introduction to DBMS: Theory & Practicals

FD2: {emp_no} → emp_name

FD3: Proj_no → {Project_name, Proj_Location}

The employee_project relation is in 1NF but not in 2NF. Due to,

 In FD2 the nonprime attribute Emp_name violates the 2NF because emp_name is

functionally determined by emp_name.

 In FD3 the Proj_name and Proj_location are violating the 2NF test because

Proj_name and Proj_location are functionally determined by Proj_no.

The solution to normalize into 2NF is, it can be second normalized or 2NF

normalized into a number of 2NF relations in which nonprime attributes are

associated only with the part of the primary key on which they are fully functionally

dependent. Hence the employee_project relation is decomposed into 3 relations

named as Emp_Proj1, Emp_Proj2, and Emp_Proj3.

Emp_Proj1: FD1: {emp_no, Proj_no} → months_worked

Emp_Proj2:FD2:Emp_no→ emp_name

Emp_Proj3:FD3: Proj_no → {Project_name, Proj_Location}

Fig. 5.4. Illustration of 2NF Normalization of Employee_project relation

155 Introduction to DBMS: Theory & Practicals

5.3.3. THIRD NORMAL FORM (3NF)

Third normal form (3NF) is based on the

concept of transitive dependency.

A relation schema R is in 3NF if it

satisfies 2NF and no nonprime

attribute of R is transitively

dependent on the primary key.

In 3NF - A nontrivial functional

dependency X → A holds in R, either

(a) X is a superkey of R, or

(b) A is a prime attribute of R.

An Alternative Definition:

 A relation schema R is in 3NF, if every nonprime attribute of R meets the following

conditions:

 It is fully functionally dependent on every key of R.

 It is non transitively dependent on every key of R.

Example: Consider the employee_division relation shown in Fig. 5.5. The tests for

3NF involve testing for transitive dependencies whose nonprime attribute is

transitively dependent on primary key. Here nonprime attribute personincharge_id

is transitively derived from employee_id through Div_no.

The dependency emp_no → personincharge_id is transitive through div_name. It

consists of 2 functional dependencies.

FD1: emp_no → {emp_name, DOB, Address, Div_no}

FD2: Div_no → {div_name, personincharge_id}

Emp_Division relation is in 2NF, since no partial dependencies on a key attribute

exists. However, Emp_Division is not in 3NF because of the transitive dependency of

156 Introduction to DBMS: Theory & Practicals

personincharge_id (also div_name) on emp_no via Div_no. Hence, the solution to

normalize to 3NF is Emp_Division relation is decomposing into two 3NF relation

schemas Emp_div1 and Emp_div2. Though this the transitive dependency can be

removed.

Fig. 5.5. Illustration of 3NF Normalization of Employee_division relation

Fig. 5.6. Synopsis of various normal forms – Test to be performed – Normalization of

schema of relations

157 Introduction to DBMS: Theory & Practicals

5.3.4. BOYES CODD NORMAL FORM (BCNF)

Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was

found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF;

however, a relation in 3NF is not necessarily in BCNF.

Def. A relation schema R is in BCNF if whenever a nontrivial functional dependency X

→ A holds in R, then X is a superkey of R.

Differences of BCNF and 3NF definitions: The clause (b) of 3NF, which allow functional

dependencies having the RHS as a prime attribute, is absent in BCNF. That makes

BCNF a stronger normal form compared to 3NF.

Example: Consider a relation teaches shown in Fig. 5.6 with the following

functional dependencies:

FD1: {Student, Course} → Instructor

FD2: Instructor → Course (with assumption of each instructor teaches one course)

The relation teaches is in 3NF but not satisfied the test of BCNF.

Hence, the solution to normalize to BCNF is teches relation is decomposing into two

BCNF relation schemas teachs1 and teaches2. Though this, the nontrivial

functional dependency is removed.

158 Introduction to DBMS: Theory & Practicals

Fig. 5.7. Illustration of BCNF Normalization of teaches relation

5.3.5. FOURTH NORMAL FORM (4NF)

Fourth normal form (4NF) is based on the concept of multivalued dependency. A relation

schema R is in 4NF with respect to a set of dependencies F (that includes functional

dependencies and multivalued dependencies) if, for every nontrivial multivalued

dependency X →→ Y in F+, X is a

superkey for R.

159 Introduction to DBMS: Theory & Practicals

The test conditions should satisfy and normalization:

 The relation is always in BCNF while it has no FDs.

 A relation that is not in 4NF due to a nontrivial MVD

must be decomposed to convert it into a set of relations in

4NF.

 The decomposition removes the redundancy caused

by the MVD.

Example, Consider the relation employee_details in Fig. 5.7, consists of no FDs but

has the MVD Emp_name →→ Proj_name | Dependent_name, hence the relation is

not in 4NF. Hence, the solution to normalize to 4NF is employee_details relation is

decomposing into two BCNF relation schemas Emp_Projects and emp_dependens.

Though this, the non trivial multivalued functional dependencies are removed.

The trivial MVD in Emp_Projects relation

Emp_Name →→ Proj_name and

The trivial MVD in emp_dependens relation

Ename →→ Dname.

Fig. 5.8. Illustration of 4NF Normalization of Employee_details relation

160 Introduction to DBMS: Theory & Practicals

5.3.6. FIFTH NORMAL FORM (5NF)

Fourth normal form (5NF) is based on the

concept of join dependency. A

relation schema R is in fifth normal

form (5NF) (or project-join normal

form (PJNF)) with respect to a set F

of functional, multivalued, and join

dependencies if, for every

nontrivial join dependency JD (R1,

R2, … , Rn) in F+ (i.e, implied by

F),every Ri is a superkey of R.

Example, Consider the relation

Product_supplies in Fig. 5.8, at any time a supplier_name s supplies a partner p, and a

project j uses part p, and the supplier_name s supplies at least one part to project j, then

supplier_name s will also be supplying part p to project j.

This constraint can be restated with a join dependency JD(R1, R2, R3) among the three

projections R1 (supplier_name, Partner_name), R2 (supplier_name, Project_name), and

R3 (Partner_name, Project_name) of SUPPLY.

161 Introduction to DBMS: Theory & Practicals

Fig. 5.9. Illustration of 5NF Normalization of Product supply relation

5.4. RELATIONAL DATABASE DESIGN ALGORITHMS

5.4.1. CLOSURE ALGORITHM

Algorithm 1: Determine A closure (A+) of functional dependency set F

Input: Set of Functional Dependencies (FDs)s called F on a relation schema R, and

a set of attributes A, is a subset of R.

A+ := A;

repeat

old A + := A +;

for each functional dependency Y → Z in F do

if A + � Y then A + := A + ∪ Z;

until (A + = old A +);

5.4.2. MINIMAL COVER ALGORITHM

Algorithm 2: Finding a Minimal Cover F for a Set of Functional Dependencies E

Input: A set of functional dependencies E.

162 Introduction to DBMS: Theory & Practicals

1. Set F := E.

2. Replace each functional dependency X → {A1, A2, … , An} in F by the n functional

dependencies X →A1, X →A2, … , X → An. (*This places the FDs in a canonical

form for subsequent testing*)

3. For each functional dependency X → A in F for each attribute B that is an element of X

if { {F ∪− {X → A} } { (X − {B}) → A} } is equivalent to F

then replace X → A with (X − {B}) → A in F.

(*This constitutes removal of an extraneous attribute B contained in the left hand side

X of a functional dependency X → A when possible*)

4. For each remaining functional dependency X → A in F

if {F − {X → A} } is equivalent to F,

then remove X → A from F.

(*This constitutes removal of a redundant functional dependency X → A from F

when possible*)

5.4.3. FINDING KEY OF A RELATION

Algorithm 3: Finding a Key K for R Given a Set F of Functional Dependencies

Input: A relation R and a set of functional dependencies F on the attributes of R.

1. Set K := R.

2. For each attribute A in K

{compute (K − A)+ with respect to F;

if (K − A)+ contains all the attributes in R, then set K := K − {A} };

5.4.4. TESTING FOR NON ADDITIVE JOIN PROPERTY

Algorithm 4: Testing for Non additive Join Property

163 Introduction to DBMS: Theory & Practicals

Input: A universal relation R, a decomposition D = {R1, R2, … , Rm} of R, and a set F of

functional dependencies.

1. Create an initial matrix S with one row i for each relation Ri in D, and one column j for

each attribute Aj in R.

2. Set S(i, j): = bij for all matrix entries. (*Each bij is a distinct symbol associated with

indices (i, j)*)

3. For each row i representing relation schema Ri

{for each column j representing attribute Aj

{if (relation Ri includes attribute Aj) then set S(i, j): = aj;};}; (*Each aj is a distinct symbol

associated with index (j)*)

4. Repeat the following loop until a complete loop execution results in no changes to S

{for each functional dependency X → Y in F

{for all rows in S that have the same symbols in the columns corresponding to attributes in

X

{make the symbols in each column that correspond to an attribute in Y be the same in all

these rows as follows: If any of the rows has an a symbol for the column, set the other

rows to that same a symbol in the column. If no a symbol exists for the attribute in

any of the rows, choose one of the b symbols that appears in one of the rows for the

attribute and set the other rows to that same b symbol in the column ;} ; } ;};

5. If a row is made up entirely of a symbols, then the decomposition has the non additive

join property; otherwise, it does not.

5.4.5. SYNTHESIS ON 3NF WITH DEPENDENCY PRESERVATION AND

NONADDITIVE JOIN

Algorithm 5: Relational Synthesis into 3NF with Dependency Preservation and

Nonadditive Join Property

164 Introduction to DBMS: Theory & Practicals

Input: A universal relation R and a set of functional dependencies F on the attributes of R.

1. Find a minimal cover G for F (use Algorithm 15.2).

2. For each left-hand-side X of a functional dependency that appears in G, create a relation

schema in D with attributes {X ∪ ∪ ∪ {A1} {A2} … {Ak} }, where X → A1, X →

A2, … , X → Ak are the only dependencies in G with X as lefthand side (X is the

key of this relation).

3. If none of the relation schemas in D contains a key of R, then create one more relation

schema in D that contains attributes that form a key of R. (Algorithm 15.2(a) may be

used to find a key.)

4. Eliminate redundant relations from the resulting set of relations in the relational database

schema. A relation R is considered redundant if R is a projection of another relation

S in the schema; alternately, R is subsumed by S.

5.4.6. DECOMPOSITION INTO BCNF WITH NONADDITIVE JOIN PROPERTY

Algorithm 6: Relational Decomposition into BCNF with Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on the attributes of R.

1. Set D := {R} ;

2. While there is a relation schema Q in D that is not in BCNF do

{

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X → Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q ∪− Y) and (X Y);

} ;

165 Introduction to DBMS: Theory & Practicals

5.4.7. DECOMPOSITION INTO 4NF RELATIONS WITH NONADDITIVE JOIN

PROPERTY

Algorithm 7: Relational Decomposition into 4NF Relations with Nonadditive Join

Property

Input: A relation R and a set containing functional dependencies and multivalued

dependencies F

1. Set D:= { R };

2. if A relational schema Q in D that is not in 4NF, do

 {choose a relation schema Q in D that is not in 4NF;

 find a nontrivial multi valued dependency: MVD X →→ Y in Q that violates 4NF;

 replace Q in D by two relation schemas (Q ∪− Y) and (X Y);

};

166 Introduction to DBMS: Theory & Practicals

Fig. 5.10. Synopsis of Algorithms

5.5. FURTHER DEPENDENCIES

5.5.1. INCLUSION DEPENDENCIES

Inclusion dependencies were defined in order to formalize two types of inter relational

constraints:

The foreign key (or referential integrity) constraint cannot be specified as a functional or

multivalued dependency because it relates attributes across relations.

The constraint between two relations that represent a class/subclass relationship (see

Chapters 4 and 9) also has no formal definition in terms of the functional,

multivalued, and join dependencies.

167 Introduction to DBMS: Theory & Practicals

Definition. An inclusion dependency R.X < S.Y between two sets of attributes - X of

relation schema R, and Y of relation schema S - specifies the constraint that, at any

specific time when r is a relation state of R and s is a relation state of S, we must have

πX(r(R)) ⊆ πY(s(S))

Here, it is not necessarily have to be a proper subset. Obviously, the sets of attributes on

which the inclusion dependency is specified -X of R and Y of S - must have the same

number of attributes. In addition, the domains for each pair of corresponding

attributes should be compatible.

5.5.2. BASED ON ARITHMETIC FUNCTIONS AND PROCEDURES

The attributes of a relation may be related via some arithmetic function or a more

complicated functional relationship. As long as a unique value of Y is associated with

every X, we can still consider that the FD X → Y exists.

Example: ORDER_Record (Order#, Item#, Quantity, Unit_price, Extended_price,

Discounted_price)

In this relation, (Quantity, Unit_price) → Extended_price

FD is existed by the formula Extended_price = Unit_price * Quantity

168 Introduction to DBMS: Theory & Practicals

UNIT SUMMARY

 Informal Design Guidelines for Relational Schemas

 Functional Dependency (FD)

 Full Functional Dependency

 Partial Functional Dependency

 Trivial Multi Value Dependency

 Normalization of relational database schemas

 First normal form (1NF)

 Second normal form (2NF)

 Third normal form (3NF)

 Boyes Codd normal form (BCNF)

 Fourth normal form (4NF)

 Fifth normal form (5NF)

 Relational database design algorithms

 Closure Algorithm

 Minimal cover algorithm

 Finding Key of a relation

 Testing for non-additive Join Property

 Synthesis on 3NF with Dependency Preservation and Nonadditive Join

 Decomposition into BCNF with Nonadditive Join Property

 Decomposition into 4NF Relations with Nonadditive Join Property

Further dependencies based key properties and functions

 Inclusion Dependencies

 Based on Arithmetic Functions and Procedures

169 Introduction to DBMS: Theory & Practicals

EXERCISES

Multiple Choice Questions
1 Identify a TRUE statement?

A. Every relation in 3NF is also in BCNF

B. A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent

on every key of R

C. Every relation in BCNF is also in 3NF

D. No relation can be in both BCNF and 3NF

2 Consider a relational table for student details with a single record for each registered

student having the set of Attributes.

1. Roll_ Numer: Unique registration number of each admitted student

2. AADHAAR_Id: A Unique identity number, unique at the national level for each citizen

3. Bank Acc_ Number: Unique account number in the bank. A student can have multiple

accounts or joint accounts. This attribute provisions the primary account number.

4. Name: Name of the student

5. Hostel_ Room: Room number of the hostel

Which one of the following option is INCORRECT?

A. Bank Acc_ Number is candidate key

B. Roll_ Number can be a primary key

C. AADHAAR_Id is candidate key if all students are from the same country

D. If S is a super key such that S∩ AADHAAR_Id is NULL then S∪ AADHAAR_Id is

also a super key

3 The normal form which satisfies multi valued dependencies and which is in BCNF

is

 A. 4 NF

 B. 3 NF

 C. 2 NF

 D. All of the mentioned

170 Introduction to DBMS: Theory & Practicals

4 Consider the following relational schema:

 Suppliers (sid: integer, sname: string, city: string, street: string)

 Parts (pid: integer, pname: string, color: string)

 Catalog(sid: integer, pid: integer, cost: real)

 (sid, pid are primary keys)

Assume that, in the suppliers relation above, each supplier and each street within a city

has a unique name, and (sname, city) forms a candidate key. No other functional

dependencies are implied other than those implied by primary and candidate keys. Which

one of the following is TRUE about the above schema?

 A. The schema is in BCNF

 B. The schema is in 3NF but not in BCNF

 C. The schema is in 2NF but not in 3NF

 D. The schema is not in 2NF

5 Consider the relation scheme R = {E, F, G, H, I, J, K, L, M, M} and the set of functional

dependencies {{E, F} -> {G}, {F} -> {I, J}, {E, H} -> {K, L}, K -> {M}, L -> {N} on R.

What is the key for R?

A.{E, F}

B.{E, F, H}

C.{E, F, H, K, L}

D.{E}

6 The maximum number of superkeys for the relation schema R(E,F,G,H) with E as the key

is

 A. 5

 B. 6

 C. 7

 D. 8

7 Which one of the following statements about normal forms is FALSE?

 A. BCNF is stricter than 3NF

 B. Lossless, dependency-preserving decomposi-tion into 3NF is always

171 Introduction to DBMS: Theory & Practicals

 possible

 C. Lossless, dependency-preserving decomposi-tion into BCNF is

 always possible

 D. Any relation with two attributes is in BCNF

8

 In the __________ normal form, a composite attribute is converted to individual

attributes.

A. First

B. Second

C. Third

D. Fourth

9 A table on the many side of a one to many or many to many relationship must:

 A. Be in Second Normal Form (2NF)

 B. Be in Third Normal Form (3NF)

 C. Have a single attribute key

 D. Have a composite key

10 Tables in second normal form (2NF):

 A. Eliminate all hidden dependencies

 B. Eliminate the possibility of a insertion anomalies

 C. Have a composite key

 D. Have all non key fields depend on the whole primary key

11 Which-one of the following statements about normal forms is FALSE?

 A. BCNF is stricter than 3 NF

 B. Lossless, dependency -preserving decomposition into 3 NF is always

 possible

 C. Loss less, dependency – preserving decomposition into BCNF is

 always possible

 D. Any relation with two attributes is BCNF

12 Functional Dependencies are the types of constraints that are based on______

 A. Key

172 Introduction to DBMS: Theory & Practicals

 B. Key revisited

 C. Superset key

 D. None of the mentioned

13 Which is a bottom-up approach to database design that design by examining the

relationship between attributes:

 A. Functional dependency

 B. Database modeling

 C. Normalization

 D. Decomposition

14 Which forms simplifies and ensures that there is minimal data aggregates and repetitive

groups:

 A. 1NF

 B. 2NF

 C. 3NF

 D. All of the mentioned

15 Which forms has a relation that possesses data about an individual entity:

 A. 2NF

 B. 3NF

 C. 4NF

 D. 5NF

16 Which forms are based on the concept of functional dependency:

 A. 1NF

 B. 2NF

 C. 3NF

 D. 4NF

17 Empdt1(empcode, name, street, city, state,pincode).

For any pincode, there is only one city and state. Also, for given street, city and state,

there is just one pincode. In normalization terms, empdt1 is a relation in

 A. 1 NF only

173 Introduction to DBMS: Theory & Practicals

 B. 2 NF and hence also in 1 NF

 C. 3NF and hence also in 2NF and 1NF

 D. BCNF and hence also in 3NF, 2NF and 1NF

18 A property which ensures that each functional dependency is represented in some

individual relational

 A. Loss less join

 B. Dependency preservation

 C. Both [a] and [b]

 D. None of the above

Answers to MCQs:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C A A A B D C A D A C A C C C C A C

Short and Long Answer Type Questions

1. Define functional dependency? Why are some functional dependencies trivial?

2. Discuss normalization?

3. Illustrate functional dependency with example?

4. Differentiate fully functional dependency with partial functional dependency?

5. Demonstrate transitive dependency? Give an example?

6. Imagine creating a video portal that is similar to YouTube. Think of the data in a system

for processing files. Describe how each of these elements relates to the storage of

actual video data as well as to the information that describes the video, such as the

title, the user who uploaded it, tags, and the users who watched it.

7. Illustrate a relational database design for a hospital management system with a set of

patients and medical doctors. A patient log contains a history of tests conducted and

consultations made.

174 Introduction to DBMS: Theory & Practicals

8. Design a relational database for maintaining a track of the sports team based on interest.

Then a system should store the matches played, the scores in each match, the players

in each match and individual player statistics for each match. Summary statistics

should be accommodated as derived attributes.

9. Summarise the different types of normal forms with significant examples.

10. Consider the following relational schemes for a library database:

Book (Title, Author, Catalog_no, Publisher, Year, Price)

Collection (Title, Author, Catalog_no)

the following are functional dependencies:

a. Title Author --> Catalog_no

b. Catalog_no --> Title Author Publisher Year

c. Publisher Title Year --> Price

d. Assume {Author, Title} is the key for both schemes. Apply the appropriate normal

form for Book and Cancellation?

11. Outline the different types of dependencies other than functional.

12. Write an algorithm for decomposition into 4NF Relations with Nonadditive Join

Property.

175 Introduction to DBMS: Theory & Practicals

Numerical Problems

1.It has been determined by Amazon.com to rearrange its database. Books, sales, and user

data are all stored. Amazon collects as much data as it can on user behaviour so that

it can analyse it and make site improvements. Here are a few prerequisites:

(a) Each user is assigned a special ID, name, password, and email address. Amazon

emails consumers on a regular basis, thus it's crucial to know if the user is okay with

being spammed and if their email address has been returning messages.

(b) Amazon keeps track of a user's most recent visit date so that it can show the user

a list of products that have been added to the site since his previous visit.

(c) Books are identified by their ISDN number, title, author, publisher, and 2.

According to the above change, illustrate the schema diagram of restructured

columns in the COURSE, SECTION, and PREREQUISITE relations so that only one

column will need to be updated.

Design a relational database schema for the above-mentioned data,

176 Introduction to DBMS: Theory & Practicals

PRACTICAL

1. A bank wants to automate each transaction. It provides the subsequent account

types: Fixed Deposit (FD), Recurring Deposit (RD), and Savings Bank (SB)

The Bank also wants to monitor the loans granted to its clients. Determine the entities,

their properties, and any relationships among them.

Design and create a relational schema using any open-source database systems

(MySQL) and make sure to provide all explicit assumptions. Consider the following

presumptions:

a. A customer is limited to having a single type of account. Joint accounts are not

permitted.

b. Only when a consumer has at least one of the account kinds is a loan available.

2. To represent the requirements of a small computer business corporation,

create an entity-relationship diagram:

a. The company's workers assemble several computer models. Each employee's

employee number, name, address, phone number, job title, and salary are all kept on

file.

b. The model, specifications, name, and quantity of each machine are also kept on

file.

c. Each machine is made up of various components. The parts that are on hand must

be listed in an inventory. A record of each part's name, cost, and available quantity is

kept.

d. These components are purchased from a number of providers. The supplier's name,

address, and phone number must be kept on file.

Computers that have been assembled are sold.

177 Introduction to DBMS: Theory & Practicals

178 Introduction to DBMS: Theory & Practicals

KNOW MORE

An effective Database design using Normalization

Consider the Insurance Plan Management System, a well-known and widespread issue

in the modern world. For this issue, the Software Requirements Specifications (SRS)

are as follows:

1. The Insurance Provider includes numerous branches, each of which has a branchid,

branch name, and/or address, location, contact information, fax, etc.

2. There are several staff members employed in each branch. For illustration, there is

a manager, field agents, staff members who work in development, secretarial

assistants, etc. It keeps track of staff members' names, addresses, positions,

salaries, and dates of employment or birth.

3. In addition to full-time employees, there are part-time workers known as insurance

agents who are commission-based employees.

4. The insurance provider is required to keep policyholder information on file. the

policyholder address, tenure, maturity amount, policy number, and name

With the knowledge of E-R diagrams studied so far, Identify the entity types,

attributes related to entity and relationships.

179 Introduction to DBMS: Theory & Practicals

Normal form illustration

 https://www.geeksforgeeks.org/normal-forms-in-dbms/

.

REFERENCES AND SUGGESTED READINGS
 Henry F Korth, Abraham Silberschatz, “Database system concepts”, sixth ed.,

McGraw-Hill International editions, Computer Science Series

 Elmasri, Navathe,"Fundamentals of Database Systems", Elmasri, Navathe,Third ed,

Addison Wesley

 Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,

Tata McGraw Hill.

 C.J.Date, "An introduction to Database Systems", Sixth ed., Narosa Publications

 Database management systems- NPTEL: https://nptel.ac.in/courses/106105175

Dynamic QR Code for Further Reading

Further Reading about –Normalization in

NPTEL

Topics discussed:

 Normalization theory

 1NF

 2NF

 3NF

 BCNF

 4NF

 5NF

https://nptel.ac.in/courses/106104135

180 Introduction to DBMS: Theory & Practicals

REFERENCES FOR FURTHER LEARNING
 Henry F Korth, Abraham Silberschatz, “Database system concepts”, sixth ed.,

McGraw-Hill International editions, Computer Science Series

 Elmasri, Navathe,"Fundamentals of Database Systems", Elmasri, Navathe,Third ed,

Addison Wesley

 Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,

Tata McGraw Hill.

 Database management systems- NPTEL: https://nptel.ac.in/courses/106105175

 Learning and certification: https://www.geeksforgeeks.org/dbms/

 MySQL learning and practice: https://www.w3schools.com/mysql/mysql_rdbms.asp

MySQL online compiler: https://onecompiler.com/mysql

181 Introduction to DBMS: Theory & Practicals

CO AND PO ATTAINMENT TABLE

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after
the completion of the course and a correlation can be made for the attainment of POs to analyze
the gap. After proper analysis of the gap in the attainment of POs necessary measures can be taken
to overcome the gaps.

 Table for CO and PO attainment

Course Outcomes

Expected Mapping with Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong

Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1 3 3 3 3 1 1 3

CO-2 3 2 2 2 1 1 3

CO-3 3 3 3 3 1 1 3

The data filled in the above table can be used for gap analysis.

182 Introduction to DBMS: Theory & Practicals

INDEX

A
 M

Abstraction 5 Mapping Cardinalities 45

Accessing Data 4 Multi Value Dependency 158

Administrators 11 Multi-Valued 41

Alter Table 94 N

Architecture 16 Naïve Users 12

Assertions 23 Natural-Join 77, 106

Attribute 41 Network And Hierarchical
Systems

25

Authorization 23 Normalization 150

B
 Null 41

BLOB - Binary Large Object 100 Numerical Data 97

Boyce-Codd Normal Form 157 O

C
 Object-Oriented Applications 25

Cartesian-Product Operation 75 P

Case Study 47, 69,
71,102,104

Physical 5

Check 101 PL/SQL Programming 115

Client/Server 20 Predicate 78

CLOB (Character Large
Objects)

99 Primary Key 94

183 Introduction to DBMS: Theory & Practicals

Closure 161 Procedures 125

Composite 41 Projection 75, 106

Conceptual 14 Q

Conceptual Modeling 37 Query 105

Concurrent Access 5 Query Processor 19

Constraints 45,94 R

Control Structures 119 Real-Time Applications 24

Crete Table 91 Redundant Data 4

Cursors 121 Referential Integrity 23

D
 Relation 65

Data And Time Data 99 Relational 25

Data Control Language 90 Relational Algebra 73

Data Definition Language 22 Relational Calculus 77

Data Manipulation Language 22 Relational Data Model 64

Data Model 14 Relationship 44

Data Types 97 Rename 107

Database 3 S

Default 101 Schema 15, 91

Derived 41 Second Normal Form 153

184 Introduction to DBMS: Theory & Practicals

Design 10 Security 114

Designers 11 Select 92

Domain 64 Selection 74,106

Domain Constraint 23,96 Semantic Constraints 67

Domain Relational Calculus 78 Sequences 118

E
 SET Clause 93

E-Commerce 26 SET Operations 75, 110

End Users 12 Single Valued 41

Enhanced Entity Relationship
(EER)

49 Specialization 51

Entity 40 SQL Commands 91

Entity Relationships (E-R)
Diagram

46 Storage Manager 18

Entity Types 40 Stored 41

Er Model 40 String Data 98

Exceptions 126 String Operations 108

Explicit Constraints 67 Structured Query Language 22

First Normal Form 151 Subtype 50

For All 78 T

Foreign Key 95 There Exists 78

Fourth Normal Form 158 Third Normal Form 155

185 Introduction to DBMS: Theory & Practicals

Fourth Normal Form 160 Transaction Control Language 90

Functional Dependency 149 Transactions 124

Functions 126 Triggers 128

G
 Tuple Relational Calculus 78

Generalization 51 U

I
 Union 75

Implicit Constraints 67 Unique 101

Insert Into 92 Update 93

Integrity 4, 94 V

IS-A Or Or IS-AN Relationship 50 Value Sets 44

Isolation 4 View 5

J
 Views 113

JOIN Dependency 160, 162 W

L Weak Entity 40

Lattices 51

Logical 5

186 Introduction to DBMS: Theory & Practicals

