
LIST OF EXPERIMENTS

NUMERICAL TECHNIQUES LAB

1. Study of Introduction to MATLAB

2. Study of basic matrix operations

3. To solve linear equation

4. Solution of Linear equations for Underdetermined and Overdetermined

cases.

5. Determination of Eigen values and Eigen vectors of a Square matrix.

6. Solution of Difference Equations.

7. Solution of Difference Equations using Euler Method.

8. Solution of differential equation using 4
th

 order Runge- Kutta method.

9. Determination of roots of a polynomial.

10. Determination of polynomial using method of Least Square Curve Fitting.

11. Determination of polynomial fit, analyzing residuals, exponential fit and

error bounds from the given data.

12. Determination of time response of an R-L-C circuit.

EXPERIMENT NO.1

OBJECTIVE: STUDY OF INTRODUCTION TO MATLAB

1. INTRODUCTION:

The name MATLAB stands for Matrix Laboratory. The basic building block of

MATLAB is the matrix. It is not confined to the solution of Matrix related

problems. With its inbuilt functions, it is an excellent tool for linear algebraic

computations, data analysis, signal processing, optimization, numerical solutions

of ordinary differential equations (ODE), quadrature, 2D & 3D, graphics and many

other types of scientific computation. Therefore, we can say:

MATLAB is a software package in high performance language for technical

computing. It integrates computation, visualization and programming in an easy to

use environment where problems and solutions are expressed in familiar

mathematical notation. Typical uses include:

 Math and computation

 Algorithm and development

 Data acquisition modeling

 Simulation and prototyping

 Data analysis, exploration, and visualization

 Scientific and engineering graphics

 Application development, including graphical user interface building.

2. BASICS:

2.1 MATLAB WINDOWS: There are three basic window which are as

follows:

1. MATLAB DESKTOP: This is the window which appears by

default when MATLAB is launched. It consists of :

 COMMAND WINDOW: This is the main window , where

command are written. It is characterized by MATLAB command

prompt (>>). The results also appear on this window(except

figures, which appear on figure window) which command is

written. Commands cannot be edited in this window.

 CURRENT DIRECTORY: This appears on the bottom left side

of MATLAB desktop. It is where all files are listed. With a

mouse right click, you can run M-files, rename, delete them etc

after selecting a file from here.

 WORKSPACE: This sub-window shows all the variables

generated so far and also shows their type and size.

 COMMAND HISTORY: All commands typed on the MATLAB

prompt are recorded here. Also commands can be selected from

here and create as M-file. Thus it remains records of MATLAB

functions run.

2. FIGURE WINDOW:

The output of all the commands written on the command window or

executed by writing in M-file, whose output is a graph , appears on

the window. The user can create as many figure windows as the

system memory allows. A figure window is showing sine curve is

shown in figure.

3. EDITOR WINDOW:

This is where we can write, create, edit and save programs in a file.

The file is known as M-file. To select editor window, go to file and

then select M-file. The programmes written on the file are first

saved and then run to get the results. To save and run the

programme, go to debug and select ‘save and run’. The result appear

on the command window. The figure appear on the figure window.

A editor window is shown as in figure:

2.2 LANGUAGES:

MATLAB is a high-level language that includes matrix-based data

structures, its own internal data types, an extensive catalog of functions

and scripts, the ability to import and export to many types of data files,

object-oriented programming capabilities, and interfaces to external

technologies such as COM, Java, program written in C and Fortran, and

serial port devices.

2.3 INPUT-OUTPUT:

MATLAB takes input from the screen and rushes output to the screen

i.e. it supports interactive computation. It can read input files and write

output files.

2.3.1 Data Type: There is no need to declare a data to be real or

complex. When a real number is entered as a variable, MATLAB

automatically sets the variable to be real. Fundamental data type is

the array.

2.3.2 Dimension: Dimension state is not required in the MATLAB. It is

automatic.

2.3.3 Case Sensitivity: It differentiates between lower and upper cases.

It is case sensitive.

2.3.4 Output Display: The output of every command appears on the

screen unless MATLAB is directed otherwise. A semi-colon(;)

suppress the output when used at the end of a command except for

the graphics.

 2.4 GETTING STARTED

2.4.1 STARTING MATLAB: On windows platform, start MATLAB

by double clicking the MATLAB shortcut icon on your Windows

desktop.

2.4.2 WRITING COMMAND: When you start MATLAB, the

MATLAB desktop appears containing tools for managing files,

variables, and applications associated with MATLAB. You can start

writing your command at the prompt appears on command Window.

You can also write command in M-file.

2.4.3 PRINTING GRAPHICS: The simplest way to get print out of

the graph is to type print command window after the graph appears in

the figure window. Alternatively activate the figure window and then

select print from the file menu.

2.4.4 QUITTING MATLAB: To end your MATLAB session, select

file >Exit MATLAB in the desktop or type quit in the command

window. You can run a script file named finish.m each time MATLAB

quits that, for example, executes function to save the workplace, or

display a quit confirmation dialog box.

3. ACCESSORIES

3.1 TOOLBOXES: MATLAB features a family of add-on-application-

specific solutions called toolboxes. Very important to most users of

MATLAB, toolboxes allow you to learn and apply specialized

technology. Toolboxes are comprehensive collections of MATLAB

environment to solve particular classes of problems. Areas in which

toolboxes are available include signal processing, control systems,

neural networks, fuzzy logic, wavelets, simulation, and many others.

There are 78 toolboxes available. Thus we can say MATLAB basically

works as a platform and for solving a particular problem, concerned

toolbox is required. Few of the toolboxes are as follows:

Communication toolbox

Control system toolbox

Curve fitting toolbox

Data acquisition toolbox

Filter design toolbox

Fuzzy logic toolbox

Instrument control toolbox

Optimization toolbox

Statistics toolbox

Symbolic maths toolbox, etc.

3.2 SIMULINK: Simulink is a software package that enables you to

model, simulate, and analyze systems whose outputs change over

time. Such system are often referred to as dynamic systems.

Simulink can be used to explore the behavior of a wide range of

real- world dynamic systems, including electrical circuits, shock

absorbers, braking systems, and many other electrical, mechanical,

and thermodynamic system. This section explains how Simulink

works.

Simulating a dynamic system is a two step process with Simulink.

First, a user creates a block diagram, using a block diagram

Simulink model editor that graphically depicts time dependent

mathematical relationship among the system’s inputs, states, and

outputs. The user then commands simulink to simulate the system

represented by the model from a specified start time to a specified

stop time.

EXPERIMENT NO. 2

OBJECTIVE: STUDY OF BASIC MATRIX OPERATIONS

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION QUANTITY

GIVEN NUMERICAL:

A= 3 2 1

 0 3 4

 -1 1 -1

B= 1 3 0

 2 6 4

 -1 0 2

Where A and B are two 3 X 3 matrix

COMMANDS:

>> A= [3 2 1; 0 3 4; -1 1 -1]

>> B= [1 3 0; 2 6 4; -1 0 2]

Sum: A+ B

Subtraction: A – B

Multiplication: A * B

Division: A/B or A\B

Inverse of A: inv(A)

RESULTS:

>> A + B % Sum up matrix A and B

ans:

 4 5 1

 2 9 8

 -2 1 1

>> A – B % Subtract matrix A and B

ans:

 2 -1 1

 -2 -3 0

 0 1 -3

>> A * B % Multiply matrix A and B

ans:

 6 21 10

 2 18 20

 2 3 2

>> A/B % Divides matrix A and B(take inverse of

B and multiply with A)

ans:

-2.1667 1.4167 -2.3333

 0 0.5000 1.0000

 2.1667 -0.9167 1.3333

>> A\B % Divides matrix A and B(take inverse of

A and multiply with B)

ans:

 0.2308 0.1154 -0.8462

 -0.1538 0.9231 1.2308

 0.6154 0.8077 0.0769

>> inv(A) % inverse of A

ans:

 0.2692 -0.1154 -0.1923

 0.1538 0.0769 0.4615

 -0.1154 0.1923 -0.3462

ADDITIONAL COMMANDS AND RESULTS:

>>a= magic(3) % gives 3 X 3 matrix whose sum from

any angle is same

ans:

 8 1 6

 3 5 7

 4 9 2

>>a= rand(3) % gives any 3 X 3 random matrix

ans:

 0.8147 0.9134 0.2785

 0.9058 0.6324 0.5469

 0.1270 0.0975 0.9575

>> a= ones(3) % gives 3X 3 matrix whose elements are

one

ans:

 1 1 1

 1 1 1

 1 1 1

>> b= 2*ones(3) % multiplication of 2 with ones(3)

ans:

 2 2 2

 2 2 2

 2 2 2

>> a+2 % summation of 2 with matrix A

ans:

>> a(2,2) % gives second row and second column

element of matrix A

ans:

 1

>>a(2:3, :) %gives second and third row of matrix

‘a’

ans:

 1 1 1

 1 1 1

>> a(:, 2:3) % gives second and third column of

matrix ‘a’

ans:

 1 1

 1 1

 1 1

>> a(2:3,1:2) %gives second and third row and first

and second column of matrix ‘a’

ans:

 1 1

 1 1

>>a(:,2) % gives second column of matrix ‘a’

ans:

 1

 1

 1

>>a(:,1:2)=[] %delete first and second column

ans:

 1

 1

 1

>>eye(3) %gives 3 X 3 matrix whose diagonal are

one

ans:

 1 0 0

 0 1 0

 0 0 1

>> diag(a) % gives diagonal element of matrix ‘a’

ans:

 1 0 0

 0 1 0

 0 0 1

>> b = a’ % gives inverse of matrix ‘a’

ans:

1 1 1

CONCLUSION:

We have studied various commands to solve the basic matrix operations.

PRE- EXPERIMENTAL QUESTION

Q1. What is a Matrix?

Q2. What is the dimension of a matrix?

Q3. What are the elements of a matrix?

Q4. What is a square matrix?

Q6. What are the basic matrix operations?

Q7. What is the Transpose of a matrix?

POST- EXPERIMENTAL QUESTION

Q8. What are the commands in MATLAB to solve the various basic matrix

operations?

EXPERIMENT NO. 3

OBJECTIVE: TO SOLVE LINEAR EQUATION

__

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION QUANTITY

 THEORY:

LINEAR EQUATION:

Solving a linear algebraic equation is easy in MATLAB. It is, perhaps, also the

most used computation in science and engineering. We will solve a set of linear

algebraic equations given below:

5x= 3y-2z+10

8y+4z= 3x+20

2x+4y-9z=9

PROCEDURE:

STEP 1: Rearrange equations: Write each equation with all unknown quantities on

the left hand side and all known quantities on the right hand side. Thus, for the

equations given above, rearrange them such that all terms involving x, y, and z are

on the left hand side of the equal sign:

5x-3y+2z = 10

-3x+8y+4z = 20

2x+4y-9z = 9

STEP 2: Write the equations in matrix form: To write the equation in the matrix

form [A]{x}={b} where {x} is the vector of unknowns, we have to arrange the

unknowns in matrix A and the constants on the right hand side of the equations in

vector b.

In this particular example, the unknown vector is

𝑥 = [
𝑥
𝑦
𝑧

],

The coefficient matrix is

A=[
5 − 3 2
−3 8 4
2 4 − 9

],

And the known constant vector is

𝑏 = [
10
20
9

].

Note that the columns of A are simply the coefficients of each unknown from all

the three equations.

STEP 3: Solve the matrix equation in MATLAB: Enter the matrix A and vector b,

and solve for vector x with x=A\b (note that the \ is different from the division /):

>> A= [5 -3 2; -3 8 4; 2 4 -9]; % enter matrix A

>> b=[
10
20
9

].; % enter column vector b

>> x= A\b % solve for x

x=

 3.4442 the \ is used to solve a linear system

 3.1982 of equations [A]{x}={b}.

 1.1868

>> c= A* x % check for solution

c=

 10.0000

 20.0000

 9.0000

Program: Write a program to solve linear equation

1 5x= 5y-8z

 9y+3z= x+6

10x+4y-z=7

>>A=[15 -5 8; -1 9 3;10 4 -1];

>> 𝑏 = [0

 6

 7]

>>x=A\b;

>> c=A*x

RESULT:

 x= 0.3688

 0.7764

 -0.2063

 c= 0.0000

 6.0000

 7.0000

CONCLUSION: Hence we solve the given linear equation with the help of

MATLAB.

EXPERIMENT NO. 4

OBJECTIVE: SOLUTION OF LINEAR EQUATIONS FOR UNDER

DETERMINED AND OVERDETERMINED CASES

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION QUANTITY

1. GIVEN NUMERICAL

i) Overdetermined : Under such conditions, number of equations are more

than the unknowns. Overdetermined systems of simultaneous linear

equations are often encountered in various kinds of curve fitting to

experimental data.

e.g.

x + 2y – z = 3

3x – y + 2z = 1

2x -2y +3z = 2

x- y + z = -1

ii) Underdetermined: Underdetermined linear systems involve more

unknowns than equations. When they are accompanied by additional

constraints, they are the purview of linear programming. By itself, the

backslash operator deals only with the unconstraint system. The solution

is never unique. MATLAB finds a basic solution, which has at most m

nonzero components, but even this may not be unique. The particular

solution actually computed is determined by the QR factorization with

column pivoting. The complete solution of the underdetermined system

can be characterized by adding an arbitrary vector from the null space,

which can be found using the null function with an option requesting a

“rational” basis Z = null (a, ‘r’). When the equations are expressed by a*

x = b.

It can be confirmed that a*Z is zero and that any vector x, where

x = b +Z*q

for any arbitrary vector q satisfies a*x = b.

e.g.

x + 2y – z = 3

3x – y + 2z = 1

2. COMMANDS:

The numerical given are expressed in matrix form i.e. ax = b and the

commands are as follows:

i) Overdetermined

>> a = [1 2 -1; 3 -1 2; 2 -2 3; 1 -1 1];

>> b = [3 ; 1; 2; -1];

>> x = a\b

ii) Underdetermined

>> a = [1 2 -1; 3 -1 2];

>> b = [3;1];

>> x = a\b

>> Z = null(a, ‘r’)

3. RESULTS:

i) Overdetermined

>> a = [1 2 -1; 3 -1 2; 2 -2 3; 1 -1 1];

 % write equations in matrix form

>> b = [3 ; 1; 2; -1];

>> x = a\b

 x= -1.0000

 4.0000

 4.0000

 >> a* x %this verifies.

 ans = 3.0000

 1.0000

 2.0000

 -1.0000

ii) Underdetermined

>> a = [1 2 -1; 3 -1 2]; % write equations in matrix form

>> b = [3;1];

>> x = a\b

 x = 0.7143

 1.1429

 0

>> a* x

ans=

 3

 1

4. CONCLUSION: Hence, we have found out the solution of

underdetermined and over determined cases and then verified again.

PRE-EXPERIMENTAL QUESTIONS

Q1.What do you mean by underdetermined system?

Q2. What do you mean by over determined system?

Q3.How do you solve linear equations of under determined system and over

determined system manually?

POST-EXPERIMENTAL QUESTIONS

Q4. What are the commands to solve linear equations of under determined

system and over determined system in MATLAB?

EXPERIMET NO. 5

OBJECTIVE: DETERMINATION OF EIGEN VALUES AND EIGEN

VECTORS OF A SQUARE MATRIX.

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION QUANTITY

 THEORY:

For an n x n matrix A, the real number λ is called an Eigen value of A if there

exists a nonzero vector x in Rn such that Ax =λ x. The vector x is called an

eigenvector belonging to λ . The equation Ax =λ x is equivalent to (A-λI) x = 0, so

all of the following are equivalent:

1.λ is an Eigen value of A.

2. (A-λI) x = 0 has a nontrivial solution.

3. A-λI is singular.

4. det(A-λI) = 0.

The eigenvectors for λ are the nonzero solutions x to (A-λI)x=0. These vectors

together with the 0 vector is called the eigen space corresponding to eigen value λ.

The expression det(A-λI) is a polynomial in λ of degree n, called the characteristic

polynomial. By property 4, the eigen values are the roots of the characteristic

equation det(A-λI) = 0.

 Determining eigen values and eigenvectors with MATLAB:

Method 1: In MATLAB we can find the characteristic polynomial of a matrix A by

entering poly(A). If A is an n x n matrix, poly(A) is a row vector with n+1 elements

that are the coefficients of the characteristic polynomial. The command roots(C)

computes the roots of the polynomial whose coefficients are the elements of the

vector C. Thus, roots (poly(A)) returns the eigen values of A in a column vector.

To find the eigenvectors corresponding to each eigenvalue found above, we need

to find the nonzero solutions x to (A-I)x = 0. One way of doing this in MATLAB is

to compute rref(A-I) and then use Gauss-Jordan elimination.

Finding the eigenvector and eigenvalues of a square matrix A.

The reduced form of echelon form for A-2I gives the general solution to(A-2I)x =0

as x=[
0
𝑟
𝑟

] = 𝑟 [
0
1
1

], the form for eigenvectors corresponding to λ = 2.

Similarly, the reduced echelon forms for A-1I and A-(-1)I allow us to determine

eigenvectors of the form s [
1
0
1

] for λ = 1, and t [
1

−1
1

] corresponding to λ = -1.

Method 2: Determining the eigenvalues and eigenvectors in MATLAB is to use

the eig function. For an nxn matrix A, eig(A) returns a n x1 column vector whose

elements are the eigenvalues of A. The command in the form

[𝑉 𝐷] = 𝑒𝑖𝑔(𝐴)

Computes both the eigenvalues and eigenvectors of A. V will be a matrix whose

columns are eigenvectors of A and D will be a diagonal matrix whose entries along

the diagonal are eigenvalues of A. The ith column of V, V(:, i), is the eigenvector

corresponding to the eigenvalue D(i,i). A sample session is shown for the matrix A

above.

 Finding the eigenvector and eigenvalues of a square matrix A.

PROGRAM: Write a program to determine the eigen vector and eigen values

of A = [1 2 3; 4 5 6; 7 8 9]

>> A = [1 2 3; 4 5 6; 7 8 9]

>> eig(A)

>> [V D]=eig(A)

RESULT :

eig(A) =

 16.1168

 -1.1168

 -0.0000

V =

 -0.2320 -0.7858 0.4082

 -0.5253 -0.0868 -0.8165

 -0.8187 0.6123 0.4082

D =

 16.1168 0 0

 0 -1.1168 0

 0 0 -0.0000

CONCLUSION: Hence we have written program to determine eigenvectors and

eigen-values of a square matrix and the result has been found out.

PRE-EXPERIMENTAL QUESTIONS

Q1. What do you mean by eigen-values of a square matrix?

Q2. What do you mean by eigen-vectors of a square matrix?

Q3. How do you solve eigen-values and eigen-vectors of a square matrix

manually?

POST-EXPERIMENTAL QUESTIONS

Q4.How do you solve eigen-values and eigen-vectors of a square matrix in

MATLAB?

EXPERIMENT NO. 6

OBJECTIVE: TO DETERMINE SOLUTION OF DIFFERENCE EQUATIONS

__

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION QUANTITY

 THEORY:

DIFFERENTIAL EQUATIONS:

A differential equation is a mathematical equation for an unknown function of

one or several variables that relates the values of the function itself and

its derivatives of various orders. Differential equations play a prominent role

in engineering, physics, economics, and other disciplines.

GIVEN NUMERICAL:

The function ‘dsolve’ computes symbolic solutions to ordinary differential

equations. The equations are specified by symbolic expressions containing the

letter ‘D’ to denote differentiation. The symbols D2, D3,….DN, correspond to the

second, third,….,Nth derivative, respectively. Thus, D2y is 𝑑2/𝑑𝑡2. The dependent

variables are those preceded by D and the default independent variable is t. Note

that names of symbolic variables should not contain D. The key issues in this

example are the order of the equation and the initial conditions.

To solve the ordinary differential equation, simply type:

y = dsolve(‘D3y=y’, ‘y(0)=1’, ‘Dy(0)=-1’, ‘D2y(0)=pi’, ‘x’)

where D3y represents 𝑑3𝑦/𝑑𝑥3 and D2y(0) represents 𝑑2𝑦/𝑑𝑥2 at x = 0.

Examples

(i) dy/dt = -ay

(ii) dy/dt = -ay and y(0) =1

(iii) 𝑑2𝑦/𝑑𝑡2 = -−𝑎2 y and y(0)= 1, dy/dt(Π/a)=0

(iv) dy/dx = (xy - 𝑦2)/ 𝑥2

(v) dy/dx = tan(y/x) +y/x

COMMANDS:

(i)

>> y=dsolve(‘Dy=-a*y’) %write ODE in inverted comma

(ii)

 >> y=dsolve(‘Dy=-a*y’, ‘y(0)=1’) %write ODE in inverted comma

followed by initial condition, separated by comma

(iii)

 >> y=dsolve(‘D2y=-a^2*y’, ‘y(0)=1, Dy(pi/a)=0’)

 %write ODE in inverted comma followed

 by initial condition, separated by comma

Note: In all the above cases, the independent variable is ‘t’ by default.

(iv)

>> y = dsolve (‘Dy=(x*y –y^2)/ x^2’, ‘x’)

% define independent variable as ‘x’

(v)

>> y = dsolve (‘Dy=tan(y/x) + y/x)’, ‘x’)

RESULTS:

(i)

>> y=dsolve(‘Dy=-a*y’)

y =

C1/exp(a*t)

(ii)

>>y=dsolve(‘Dy=-a*y’, ‘y(0)=1’)

y=

exp(-a*t)

(iii)

>>y=dsolve(‘D2y=-a^2*y’, ‘y(0)=1, Dy(pi/a)=0’)

y=

cos(a*t)

(iv)

>> y = dsolve (‘Dy=(x*y –y^2)/ x^2’, ‘x’)

y=

-x/(C12 - log(x))

(v)

>> y = dsolve (‘Dy=tan(y/x) + (y/x)’, ‘x’)

y=

asin(x*C1)*x

PRE-EXPERIMENTAL QUESTIONS

Q1.What is a differential equation ?

Q2. Give examples of differential equations.

POST-EXPERIMENTAL QUESTIONS

Q3. What command is used to solve differential equations using

MATLAB? Explain with examples.

Q4. Write programs to solve :

i) dy/dx = -(𝑦2 − 𝑥2/2𝑥𝑦)

ii) dy/dx = (2y - x)/(2x -y)

iii) dy/dx = ytanx - 𝑦2 sec 𝑥

iv) dy/dx = 3 𝑒𝑥𝑦3 - y

v)
𝑑2𝑦

𝑑𝑡2 −
8𝑑𝑦

𝑑𝑥
+ 15𝑦 = 0

EXPERIMENT NO. 7

OBJECTIVE: SOLUTION OF DIFFERENTIAL EQUATION USING

EULER METHOD

__

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION QUANTITY

 THEORY:

Let’s consider a first-order differential equation:

 𝑦′(𝑡) + 𝑎𝑦(𝑡) = 𝑟 𝑤𝑖𝑡ℎ 𝑦(0) = 𝑦0 (1)

It has the following form of analytical solution

 𝑦(𝑡) = (𝑦0 −
𝑟

𝑎
)𝑒−𝑎𝑡 +

𝑟

𝑎
 (2)

Which can be obtained by using a conventional method or the Laplace transform

technique.

First of all, we have to replace the derivative 𝑦′ (t) =
𝑑𝑦

𝑑𝑡
 in the differential

equation by a numerical derivative , where the step size h is determined based on

the accuracy requirements and the computation time constraints. Euler’s method

approximates as

𝑦(𝑡 + ℎ) − 𝑦(𝑡)

ℎ
+ 𝑎𝑦(𝑡) = 𝑟

𝑦(𝑡 + ℎ) = (1 − 𝑎ℎ)𝑦(𝑡) + ℎ𝑟 𝑤𝑖𝑡ℎ 𝑦(0)

And solve this difference equation step-by-step with increasing t by h each time

from t = 0.

𝑦(ℎ) = (1 − 𝑎ℎ)𝑦(0) + ℎ𝑟 = (1 − 𝑎ℎ)𝑦0 + ℎ𝑟

𝑦(2ℎ) = (1 − 𝑎ℎ)𝑦(ℎ) + ℎ𝑟 = (1 − 𝑎ℎ)2 𝑦0 + (1 − 𝑎ℎ)ℎ𝑟 + ℎ𝑟

𝑦(3ℎ) = (1 − 𝑎ℎ)𝑦(2ℎ) + ℎ𝑟 = (1 − 𝑎ℎ)3 𝑦0 + ∑ (1 − 𝑎ℎ)𝑚 ℎ𝑟

2

𝑚=0

This is a numeric sequence {𝑦(𝑘ℎ)} which we call a numerical solution of Eqn.

(1).

To be specific, let the parameters and the initial value of Eqn.(1) be a = 1, r = 1,

and 𝑦0 = 0. Then the analytical solution of eqn.(2) becomes

𝑦(𝑡) = 1 − 𝑒−𝑎𝑡

PROGRAM:

% Euler method to solve a 1
st
 order differential equation of 𝒚(𝒕) = 𝟏 − 𝒆−𝒂𝒕 %

a = 1; r = 1; 𝑦_0 = 0 ; tf = 2;

t = [0:0.01:tf];

yt = 1-exp(-a *t);

plot (t, yt, ‘k’), hold on

klasts = [8 4 2]; hs = tf. /klasts;

y(1) = y_0;

for int = 1: 3

klast = klasts (int) ; h = hs(int) ; y(1) = y_0;

for k = 1: klast

 y(k+1) = (1-a*h)*y(k) + h* r ;

 plot ([k-1 k]*h, [y(k) y(k+1)], ‘b’ , k* h , y(k+1), ‘r’)

 if k< 4, pause ; end

 end

 end

RESULT & OBSERVATIONS:

2.GIVEN NUMERICAL:

dy/dx = (y - x)/(y + x)

COMMANDS:

>> b = 3; a = 0;m = 4; x = 0; y = 1;

>> h = (b-a)/m;

>>x = a:h:b;

>> for j = 1:m;

>> y(j+1)=y(j)+h*((y(j)-x(j))/ (y(j)+x(j)));

end

>>E = [x’ y’]

RESULTS:

E=[x’ y’]

E = 0 1.0000

 0.7500 1.7500

 1.5000 2.0500

 2.2500 2.1662

 3.0000 2.1520

CONCLUSION:

EXPERIMENT NO. 8

OBJECTIVE: SOLUTION OF DIFFERENTIAL EQUATIONS USING 4
th

ORDER RUNGE-KUTTA METHOD

__

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION QUANTITY

 THEORY:

The fourth-order Runge -Kutta (RK4) method having a truncation error of O(ℎ4) is

one of the most widely used methods for solving differential equations. Its

algorithm is described below:

 𝑦𝑘+1 = 𝑦𝑘 +
ℎ

6
(𝑓𝑘1 + 2𝑓𝑘2 + 2𝑓𝑘3 + 𝑓𝑘4) (1)

Where

 𝑓𝑘1 = 𝑓(𝑡𝑘 , 𝑦𝑘) (2)

 𝑓𝑘2 = 𝑓(𝑡𝑘 +
ℎ

2
, 𝑦𝑘 + 𝑓𝑘1

ℎ

2
) (3)

 𝑓𝑘3 = 𝑓(𝑡𝑘 +
ℎ

2
, 𝑦𝑘 + 𝑓𝑘2

ℎ

2
) (4)

 𝑓𝑘4 = 𝑓(𝑡𝑘 + ℎ, 𝑦𝑘 + 𝑓𝑘3ℎ) (5)

PROGRAM:

function [t, y] = ode_RK4(f , tspan , y0, N, varargin)

 % Runge- Kutta method to solve vector differential equation 𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡))

 % for tspan = [t0, tf] and with the initial value y0 and N time steps

if nargin < 4 | N<= 0, N = 100; end

if nargin < 3, y0 = 0; end

y(1, :) = y0(:)’ ; % make it a row vector

h = (tspan(2) – tspan(1)) / N ; t = tspan(1) + [0: N]’ * h ;

for k = 1: N

 f1 = h* feval (f , t(k), y(k, :) , varargin{:}); f1 = f1(:)’;

 f2 = h* feval (f , t(k) + h/2 , y(k, :) + f1/2 , varargin{:}); f2 = f2(:)’;

 f3 = h* feval (f , t(k) + h/2 , y(k, :) + f2/2 , varargin{:}); f3 = f3(:)’;

 f4 = h* feval (f , t(k) + h , y(k, :) + f3 , varargin{:}); f4 = f4(:)’;

 y(k + 1 , :) = y(k, :) + (f1 + 2*(f2 +f3) + f4)/6 ;

end

RESULT & DISCUSSIONS:

CONCLUSION:

EXPERIMENT NO. 9

OBJECTIVE: DETERMINATION OF ROOTS OF A POLYNOMIAL

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION QUANTITY

THEORY:

POLYNOMIAL:

Polynomials are functions that have the form

The coefficients are often real numbers and which is a

nonnegative integer, is the degree or order of the polynomial.

IN MATLAB:

 Polynomials are described by using a row vector of the coefficients of the

polynomial beginning with the highest power of x and inserting zeros for

“missing” terms:

 f= [9 -5 3 7]

 g= [6 -1 2]

ROOTS OF A POLYNOMIAL:

Roots of a polynomial

are the values of for which . For example, the roots

of are -1 and -2. There are n roots of a polynomial with

degree n.

The command “roots” determines the roots of a polynomial. The usage of the

function is:

r= roots (p)

where r is a column vector with the roots and p is a row vector with the

coefficients of the polynomial.

PROGRAM:

Find the roots of the polynomial

>> p = [3 15 0 -10 0 4 0]

>> roots(p)

RESULT:

 0

 -4.8613

 -0.6925 + 0.3093i

 -0.6925 - 0.3093i

 0.6232 + 0.2975i

 0.6232 - 0.2975i

CONCLUSION:

PRE-EXPERIMENTAL QUESTIONS:

1. What is a polynomial?

2. What do you mean by roots of a polynomial?

POST-EXPERIMENTAL QUESTIONS:

1. Which command is used to find the roots of a polynomial?

2. Solve the following equations:

i) 𝒙𝟒 − 𝟏𝟔𝒙𝟑 + 𝟖𝟔𝒙𝟐 − 𝟏𝟕𝟔𝒙 + 𝟏𝟎𝟓 = 𝟎

ii) 𝒙𝟒 − 𝟑𝒙𝟐 + 𝟒𝟐𝒙 − 𝟒𝟎 = 𝟎

iii) 𝒙𝟒 + 𝟏𝟐𝒙 − 𝟓 = 𝟎

EXPERIMENT NO. 10

OBJECTIVE: DETERMINATION OF POLYNOMIAL USING METHOD OF

LEAST SQUARE CURVE FITTING

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION QUANTITY

THEORY:

Curve fitting is a technique of finding an algebraic relationship that “best” (in least

squares sense) fits a given set of data. Unfortunately, there is no magical function

(in MATLAB or otherwise) that can give the relationship if we simply supply the

data. We have to have an idea of what kind of relationship might exist between the

input data and the output data. However, if we do not have the firm idea but have

data that we trust, MATLAB can help us in exploring the best possible fit.

MATLAB includes Basic Fitting in its Figure window’s Tools menu that lets us fit

a polynomial curve (upto 10
th
 order) to the data on the fly. It also gives us options

of displaying the residual at the data points and computing the norm of the

residuals. This can help in comparing different fits and then selecting the one that

best fits.

1. GIVEN NUMERICAL:

Fit a straight line y = a+ bx to the following data:

x: 1 2 3 4 5

y: 14 27 40 55 68

COMMANDS:

i) >>x = [1 2 3 4 5]; %write the elements with spacing

 >> y = [14 27 40 55 68];

 >> polyfit(x,y,1) %fits the data to linear equation

ii) >> x=[0 1 2 3 4];

>> y=[1 5 10 22 38];

>> polyfit(x,y,2) %fits the data to quadratic equation

>>plot(x, y)

>>title (‘curve fitting’)

RESULTS:

i) 13.6000 -0.0000

The constants a and b are 0 and 13.6 respectively.

Therefore, equation of the straight line is:

 y=13.6x

ii) 2.2143 0.2429 1.4286

The constants of quadratic equation y = a+bx+c𝑥2 are a = 2.2143, b =

0.2429 and c= 1.4286

Hence quadratic equation is:

y= 1.4286𝑥2 + 0.2429x + 2.2143

The graph of the quadratic equation is shown in fig.below.

2. Using MATLAB curve fitting toolbox:

Proceed as mentioned below:

i) Write down the given data on command window for two variables.

ii) Plot the curve for two variables

iii) Go to figure window

iv) Go to tools

v) Go to basic fitting

vi) Select linear or quadratic function or higher order, to which the given

data is to be fitted.

vii) You may also select ‘show equation’. On selection, the equation

appears on the figure window.

CONCLUSION:

PRE-EXPERIMENTAL QUESTIONS

Q1. What is Curve fitting?

POST-EXPERIMENTAL QUESTIONS

Q3. By the method of least squares, find the straight line that fits the following

data:

x: 1 2 3 4 5

y:14 27 40 55 68

Q4. Fit a parabola y=a𝑥2 +bx +c in least square sense to the data

x: 10 12 15 23 20

y:14 17 23 25 21

EXPERIMENT NO. 12

OBJECTIVE: DETERMINATION OF TIME RESPONSE OF AN R-L-C

CIRCUIT

APPARATUS/ SOFTWARE REQUIRED:

SR.NO APPARATUS/SOFTWARE SPECIFICATION

GIVEN NUMERICAL

An R-L-C circuit has R = 180 ohms, C = 1/280 farads, L = 20 henries and an

applied voltage E(t) = 10 sin t. Assuming that no charge is present but an initial

current of I ampere is flowing at t = 0 when the voltage is first applied, find q

and i =dq/dt at any time t. q is diven by the differential equation.

𝐿 𝑑2𝑞/𝑑𝑡2 + 𝑅
𝑑𝑞

𝑑𝑡
+

𝑞

𝑐
= 𝐸(𝑡)

COMMANDS:

>> syms q t % declare q, t as symbolic

>> q = dsolve(‘20*D2q +180*Dq +280*q = 10*sin(t)’, ‘q(0)=0’)

>> simplify(q) %simplify the result

>> pretty(q) %print in readable form

>> i=diff(q) %current(i) is differentiation of ‘q’ wrt ‘t’

>>pretty(i)

RESULTS:

 q=

exp(-2*t)*C2+exp(-7*t)*(-C2+9/500)-9/500*cos(t)+13/500*sin(t)

>> pretty(q)

 exp(-2 t) C2 + exp(-7 t) (-C2+
9

500
) -

9

500
 cos(t) +

13
500

 sin(t)

>> i=diff(q)

 i=

 -2*exp(-2*t)*C2 – 7*exp(-7*t)*(-C2 +9/500)+ 9/500*sin(t)+13/500 *cos(t)

 >> pretty(i)

 -2 exp(-2t) C2-7 exp(-7 t)(-C2 +9/500)+9/500 sin(t)+
13

500
 cos(t)

 CONCLUSION:

PRE-EXPERIMENTAL QUESTIONS:

Q1. What is an R-L-C circuit?

Q2. What do you mean by time response of a circuit?

POST-EXPERIMENTAL QUESTIONS:

Q3. For an electric circuit with circuit constants L, C, R the charge q on the plate

of the condenser is given by:

𝐿𝑑2𝑞/𝑑𝑡2+ Rdq/dt + q/C = 0. Find q at any time t.

Q4.A 10.3 farad capacitor is connected in series with 0.05 henry inductor and 10

ohm resistor. Initially the current in the circuit is zero and the charge on the

capacitor is also zero. If the emf is 50 sin 200t. Find the charge after a period t

seconds of closing the circuit.

