
Data Structures
and Algorithms
in Java

SECOND EDITION

Adam Drozdek

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Data Structures
and Algorithms
in Java

SECOND EDITION

Adam Drozdek

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

Data Structures
and Algorithms
in Java

SECOND EDITION

Adam Drozdek

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Senior Acquisitions Editor: Amy Yarnevich
Product Manager: Alyssa Pratt
Editorial Assistant: Amanda Piantedosi
Senior Marketing Manager: Karen Sietz

Production Editor: Jennifer Harvey
Associate Product Manager: Mirella Misiaszek
Cover Design: Joel Sadagursky
Compositor: Pre-Press Company, Inc.

COPYRIGHT © 2005 Course Technology, a division of Thomson Learning, Inc.
Thomson Learning™ is a trademark used herein under license.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 BM 06 05 04 03 02

For more information, contact Course Technology,
25 Thomson Place, Boston, Massachusetts, 02210.
Or find us on the World Wide Web at: www.course.com

ALL RIGHTS RESERVED. No part of this work covered by the copyright hereon
may be reproduced or used in any form or by any means—graphic, electronic,
or mechanical, including photocopying, recording, taping, Web distribution, or
information storage and retrieval systems—without the written permission of
the publisher.

For permission to use material from this text or product, contact us by
Tel (800) 730-2214
Fax (800) 730-2215
www.thomsonrights.com

Disclaimer
Course Technology reserves the right to revise this publication and make changes
from time to time in its content without notice.

ISBN 0-534-49252-5

Data Structures and Algorithms in Java, Second Edition
by Adam Drozdek

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.course.com
http://www.thomsonrights.com

TO MY WIFE, BOGNA

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1 OBJECT-ORIENTED PROGRAMMING USING JAVA 1
1.1 Rudimentary Java 1

1.1.1 Variable Declarations 1
1.1.2 Operators 4
1.1.3 Decision Statements 5
1.1.4 Loops 6
1.1.5 Exception Handling 6

1.2 Object-Oriented Programming in Java 8
1.2.1 Encapsulation 8
1.2.2 Abstract Data Types 16
1.2.3 Inheritance 18
1.2.4 Polymorphism 21

1.3 Input and Output 24
1.3.1 Reading and Writing Bytes 26
1.3.2 Reading Lines 27
1.3.3 Reading Tokens: Words and Numbers 28
1.3.4 Reading and Writing Primitive Data Types 29
1.3.5 Reading and Writing Objects 29
1.3.6 Random Access File 30

1.4 Java and Pointers 31

1.5 Vectors in java.util 35

1.6 Data Structures and Object-Oriented Programming 42

1.7 Case Study: Random Access File 42

1.8 Exercises 51

1.9 Programming Assignments 53

Bibliography 55

Contents

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2 COMPLEXITY ANALYSIS 56
2.1 Computational and Asymptotic Complexity 56

2.2 Big-O Notation 57

2.3 Properties of Big-O Notation 59

2.4 Ω and Q Notations 61

2.5 Possible Problems 62

2.6 Examples of Complexities 62

2.7 Finding Asymptotic Complexity: Examples 64

2.8 The Best, Average, and Worst Cases 66

2.9 Amortized Complexity 69

2.10 NP-Completeness 73

2.11 Exercises 76

Bibliography 79

3 LINKED LISTS 80
3.1 Singly Linked Lists 80

3.1.1 Insertion 86
3.1.2 Deletion 88
3.1.3 Search 93

3.2 Doubly Linked Lists 95

3.3 Circular Lists 99

3.4 Skip Lists 101

3.5 Self-Organizing Lists 107

3.6 Sparse Tables 111

3.7 Lists in java.util 114
3.7.1 LinkedList 114
3.7.2 ArrayList 120

3.8 Concluding Remarks 123

3.9 Case Study: A Library 124

3.10 Exercises 134

3.11 Programming Assignments 136

Bibliography 139

vi ■ C o n t e n t s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4 STACKS AND QUEUES 140
4.1 Stacks 140

4.1.1 Stacks in java.util 148

4.2 Queues 149

4.3 Priority Queues 157

4.4 Case Study: Exiting a Maze 158

4.5 Exercises 164

4.6 Programming Assignments 166

Bibliography 168

5 RECURSION 169
5.1 Recursive Definitions 169

5.2 Method Calls and Recursion Implementation 172

5.3 Anatomy of a Recursive Call 174

5.4 Tail Recursion 178

5.5 Nontail Recursion 179

5.6 Indirect Recursion 185

5.7 Nested Recursion 187

5.8 Excessive Recursion 188

5.9 Backtracking 191

5.10 Concluding Remarks 198

5.11 Case Study: A Recursive Descent Interpreter 199

5.12 Exercises 207

5.13 Programming Assignments 210

Bibliography 212

6 BINARY TREES 214
6.1 Trees, Binary Trees, and Binary Search Trees 214

6.2 Implementing Binary Trees 219

6.3 Searching a Binary Search Tree 221

6.4 Tree Traversal 223
6.4.1 Breadth-First Traversal 224
6.4.2 Depth-First Traversal 225
6.4.3 Stackless Depth-First Traversal 231

C o n t e n t s ■ vii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6.5 Insertion 239

6.6 Deletion 242
6.6.1 Deletion by Merging 243
6.6.2 Deletion by Copying 246

6.7 Balancing a Tree 249
6.7.1 The DSW Algorithm 252
6.7.2 AVL Trees 255

6.8 Self-Adjusting Trees 260
6.8.1 Self-Restructuring Trees 261
6.8.2 Splaying 262

6.9 Heaps 267
6.9.1 Heaps as Priority Queues 269
6.9.2 Organizing Arrays as Heaps 272

6.10 Polish Notation and Expression Trees 275
6.10.1 Operations on Expression Trees 277

6.11 Case Study: Computing Word Frequencies 280

6.12 Exercises 289

6.13 Programming Assignments 292

Bibliography 296

7 MULTIWAY TREES 299
7.1 The Family of B-Trees 300

7.1.1 B-Trees 301
7.1.2 B*-Trees 312
7.1.3 B+-Trees 313
7.1.4 Prefix B+-Trees 316
7.1.5 Bit-Trees 319
7.1.6 R-Trees 320
7.1.7 2–4 Trees 323
7.1.8 Trees in java.util 338

7.2 Tries 349

7.3 Concluding Remarks 358

7.4 Case Study: Spell Checker 358

7.5 Exercises 369

7.6 Programming Assignments 370

Bibliography 374

viii ■ C o n t e n t s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8 GRAPHS 376
8.1 Graph Representation 377

8.2 Graph Traversals 379

8.3 Shortest Paths 383
8.3.1 All-to-All Shortest Path Problem 390

8.4 Cycle Detection 392
8.4.1 Union-Find Problem 393

8.5 Spanning Trees 395

8.6 Connectivity 399
8.6.1 Connectivity in Undirected Graphs 399
8.6.2 Connectivity in Directed Graphs 402

8.7 Topological Sort 405

8.8 Networks 407
8.8.1 Maximum Flows 407
8.8.2 Maximum Flows of Minimum Cost 417

8.9 Matching 421
8.9.1 Stable Matching Problem 426
8.9.2 Assignment Problem 428
8.9.3 Matching in Nonbipartite Graphs 430

8.10 Eulerian and Hamiltonian Graphs 432
8.10.1 Eulerian Graphs 432
8.10.2 Hamiltonian Graphs 436

8.11 Graph Coloring 442

8.12 NP-Complete Problems in Graph Theory 445
8.12.1 The Clique Problem 445
8.12.2 The 3-Colorability Problem 446
8.12.3 The Vertex Cover Problem 448
8.12.4 The Hamiltonian Cycle Problem 449

8.13 Case Study: Distinct Representatives 450

8.14 Exercises 460

8.15 Programming Assignments 464

Bibliography 466

C o n t e n t s ■ ix

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9 SORTING 469
9.1 Elementary Sorting Algorithms 470

9.1.1 Insertion Sort 470
9.1.2 Selection Sort 474
9.1.3 Bubble Sort 475

9.2 Decision Trees 477

9.3 Efficient Sorting Algorithms 481
9.3.1 Shell Sort 481
9.3.2 Heap Sort 484
9.3.3 Quicksort 488
9.3.4 Mergesort 494
9.3.5 Radix Sort 497

9.4 Sorting in java.util 502

9.5 Concluding Remarks 505

9.6 Case Study: Adding Polynomials 507

9.7 Exercises 515

9.8 Programming Assignments 516

Bibliography 517

10 HASHING 519
10.1 Hash Functions 520

10.1.1 Division 520
10.1.2 Folding 520
10.1.3 Mid-Square Function 521
10.1.4 Extraction 521
10.1.5 Radix Transformation 522

10.2 Collision Resolution 522
10.2.1 Open Addressing 522
10.2.2 Chaining 528
10.2.3 Bucket Addressing 530

10.3 Deletion 531

10.4 Perfect Hash Functions 532
10.4.1 Cichelli’s Method 533
10.4.2 The FHCD Algorithm 536

10.5 Hash Functions for Extendible Files 538
10.5.1 Extendible Hashing 539
10.5.2 Linear Hashing 541

x ■ C o n t e n t s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10.6 Hashing in java.util 544
10.6.1 HashMap 544
10.6.2 HashSet 547
10.6.3 HashTable 552

10.7 Case Study: Hashing with Buckets 557

10.8 Exercises 566

10.9 Programming Assignments 567

Bibliography 568

11 DATA COMPRESSION 570
11.1 Conditions for Data Compression 570

11.2 Huffman Coding 572
11.2.1 Adaptive Huffman Coding 581

11.3 Run-Length Encoding 586

11.4 Ziv-Lempel Code 587

11.5 Case Study: Huffman Method with Run-Length Encoding 590

11.6 Exercises 601

11.7 Programming Assignments 601

Bibliography 603

12 MEMORY MANAGEMENT 604
12.1 The Sequential-Fit Methods 605

12.2 The Nonsequential-Fit Methods 606
12.2.1 Buddy Systems 608

12.3 Garbage Collection 615
12.3.1 Mark-and-Sweep 616
12.3.2 Copying Methods 623
12.3.3 Incremental Garbage Collection 625

12.4 Concluding Remarks 633

12.5 Case Study: An In-Place Garbage Collector 634

12.6 Exercises 643

12.7 Programming Assignments 644

Bibliography 647

C o n t e n t s ■ xi

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

xii ■ C o n t e n t s

13 STRING MATCHING 649
13.1 Exact String Matching 649

13.1.1 Straightforward Algorithms 649
13.1.2 The Knuth-Morris-Pratt Algorithm 652
13.1.3 The Boyer-Moore Algorithm 660
13.1.4 Multiple Searches 670
13.1.5 Bit-Oriented Approach 672
13.1.6 Matching Sets of Words 676
13.1.7 Regular Expression Matching 682
13.1.8 Suffix Tries and Trees 686
13.1.9 Suffix Arrays 693

13.2 Approximate String Matching 694
13.2.1 String Similarity 695
13.2.2 String Matching with k Errors 701

13.3 Case Study: Longest Common Substring 704

13.4 Exercises 713

13.5 Programming Assignments 715

Bibliography 716

APPENDIXES

A Computing Big-O 718
A.1 Harmonic Series 718
A.2 Approximation of the Function lg(n!) 718
A.3 Big-O for Average Case of Quicksort 720
A.4 Average Path Length in a Random Binary Tree 722
A.5 The Number of Nodes in an AVL Tree 723

B NP-Completeness 724
B.1 Cook’s Theorem 724

Name Index 737

Subject Index 740

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The study of data structures, a fundamental component of a computer science educa-
tion, serves as the foundation upon which many other computer science fields are
built. Some knowledge of data structures is a must for students who wish to do work
in design, implementation, testing, or maintenance of virtually any software system.
The scope and presentation of material in Data Structures and Algorithms in Java pro-
vide students with the knowledge necessary to perform such work.

This book highlights three important aspects of data structures. First, a very
strong emphasis is placed on the connection between data structures and their algo-
rithms, including analyzing algorithms’ complexity. Second, data structures are pre-
sented in an object-oriented setting in accordance with the current design and
implementation paradigm. In particular, the information-hiding principle to advance
encapsulation and decomposition is stressed. Finally, an important component of the
book is data structure implementation, which leads to the choice of Java as the pro-
gramming language.

The Java language, an object-oriented descendant of C and C++, has gained pop-
ularity in industry and academia as an excellent programming language due to wide-
spread use of the Internet. Because of its consistent use of object-oriented features
and the security of the language, Java is also useful and natural for introducing data
structures. Currently, C++ is the primary language of choice for teaching data struc-
tures; however, because of the wide use of Java in application programming and the
object-oriented characteristics of the language, using Java to teach a data structures
and algorithms course, even on the introductory level, is well justified.

This book provides the material for a course that includes the topics listed under
CS2 and CS7 of the old ACM curriculum. It also meets the requirements for most of
the courses CA 202, CD 202, and CF 204 of the new ACM curriculum.

Most chapters include a case study that illustrates a complete context in which
certain algorithms and data structures can be used. These case studies were chosen
from different areas of computer science such as interpreters, symbolic computation,
and file processing, to indicate the wide range of applications to which topics under
discussion may apply.

Preface

xiii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

xiv ■ P r e f a c e

Brief examples of Java code are included throughout the book to illustrate the
practical importance of data structures. However, theoretical analysis is equally im-
portant. Thus, presentations of algorithms are integrated with analyses of efficiency.

Great care is taken in the presentation of recursion because even advanced students
have problems with it. Experience has shown that recursion can be explained best if the
run-time stack is taken into consideration. Changes to the stack are shown when tracing
a recursive function not only in the chapter on recursion, but also in other chapters. For
example, a surprisingly short method for tree traversal may remain a mystery if work
done by the system on the run-time stack is not included in the explanation. Standing
aloof from the system and retaining only a purely theoretical perspective when dis-
cussing data structures and algorithms are not necessarily helpful. This book also in-
cludes comprehensive chapters on data compression and memory management.

The thrust of this book is data structures, and other topics are treated here only as
much as necessary to ensure a proper understanding of this subject. Algorithms are
discussed from the perspective of data structures, so the reader will not find a com-
prehensive discussion of different kinds of algorithms and all the facets that a full
presentation of algorithms requires. However, as mentioned, recursion is covered in
depth. In addition, complexity analysis of algorithms is presented in some detail.

Chapters 1 and 3–8 present a number of different data structures and the algo-
rithms that operate on them. The efficiency of each algorithm is analyzed, and improve-
ments to the algorithm are suggested.

■ Chapter 1 presents the basic principles of object-oriented programming, an intro-
duction to dynamic memory allocation and the use of pointers, and a rudimentary
introduction to Java.

■ Chapter 2 describes some methods used to assess the efficiency of algorithms.

■ Chapter 3 contains an introduction to linked lists.

■ Chapter 4 presents stacks and queues and their applications.

■ Chapter 5 contains a detailed discussion of recursion. Different types of recursion are
discussed, and a recursive call is dissected.

■ Chapter 6 discusses binary trees, including implementation, traversal, and search.
This chapter also includes balanced trees.

■ Chapter 7 details more generalized trees such as tries, 2– 4 trees, and B-trees.

■ Chapter 8 presents graphs.

Chapters 9–12 show different applications of data structures introduced in the
previous chapters. They emphasize the data structure aspects of each topic under
consideration.

■ Chapter 9 analyzes sorting in detail, and several elementary and nonelementary
methods are presented.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

P r e f a c e ■ xv

■ Chapter 10 discusses hashing, one of the most important areas in searching. Various
techniques are presented with an emphasis on the utilization of data structures.

■ Chapter 11 discusses data compression algorithms and data structures.

■ Chapter 12 presents various techniques and data structures for memory
management.

■ Chapter 13 discusses many algorithms for exact and approximate string matching.

■ Appendix A discusses in greater detail big-O notation, introduced in Chapter 2.

■ Appendix B gives a proof of Cook’s theorem and illustrates it with an extended
example.

Each chapter contains a discussion of the material illustrated with appropriate
diagrams and tables. Except for Chapter 2, all chapters include a case study, which is
an extended example using the features discussed in that chapter. All case studies have
been tested using the Visual C++ compiler on a PC and the g++ compiler under
UNIX except the von Koch snowflake, which runs on a PC under Visual C++. At the
end of each chapter is a set of exercises of varying degrees of difficulty. Except for
Chapter 2, all chapters also include programming assignments and an up-to-date bib-
liography of relevant literature.

Chapters 1–6 (excluding Sections 2.9, 3.4, 6.4.3, 6.7, and 6.8) contain the core
material that forms the basis of any data structures course. These chapters should be
studied in sequence. The remaining six chapters can be read in any order. A one-
semester course could include Chapters 1–6, 9, and Sections 10.1 and 10.2. The entire
book could also be part of a two-semester sequence.

TEACHING TOOLS

Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this text-
book includes complete solutions to all text exercises.

Electronic Figure Files. All images from the text are available in bitmap format for use
in classroom presentations.

Source Code. The source code for the text example programs is available via the au-
thor’s Web site at http://www.mathes.dug.edu/drozdek/DSinJava.

It is also available for student download at course.com. All teaching tools, outlined
above, are available in the Instructor’s Resources section of course.com.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.mathes.dug.edu/drozdek/DSinJava

xvi ■ P r e f a c e

CHANGES IN THE SECOND EDITION

The new edition primarily extends the old edition by including material on new topics
that are currently not covered. The additions include

■ Pattern matching algorithms in the new Chapter 13

■ A discussion of NP-completeness in the form of a general introduction (Section 2.10),
examples of NP-complete problems (Section 8.12), and an outline of Cook’s theorem
(Appendix B)

■ New material on graphs (Sections 8.9.1, 8.10.1.1, 8.10.2.1, and 8.11)

■ A discussion of a deletion algorithm for vh-trees (Section 7.1.7)

■ An introduction to Java files (Sections 1.3.1–1.3.6)

Moreover, the tables that list methods from java.util packages have been updated.
There are also many small modifications and additions throughout the book.

ACKNOWLEDGMENTS

I would like to thank the following reviewers, whose comments and advice helped me
to improve this book:

James Ball, Indiana State University

Robin Dawes, Queen’s University

Julius Dichter, University of Bridgeport

However, the ultimate content is my responsibility, and I would appreciate
hearing from readers about any shortcomings or strengths. My email address is
drozdek@duq.edu.

Adam Drozdek

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

mailto:drozdek@duq.edu

This chapter introduces the reader to elementary Java. Java is an immense lan-
guage and programming environment, and it is impossible to touch upon all
Java-related issues within the confines of one chapter. This chapter introduces

only those aspects of Java that are necessary for understanding the Java code offered in
this book. The reader familiar with Java can skip this chapter.

1.1 RUDIMENTARY JAVA

A Java program is a sequence of statements that have to be formed in accordance with
the predefined syntax. A statement is the smallest executable unit in Java. Each state-
ment ends with a semicolon. Compound statements, or blocks, are marked by delim-
iting them with braces, { and }.

1.1.1 Variable Declarations
Each variable must be declared before it can be used in a program. It is declared by
specifying its type and its name. Variable names are strings of any length of letters,
digits, underscores, and dollar signs that begin with a letter, underscore, or dollar sign.
However, a letter is any Unicode letter (a character above 192), not just 1 of the 26 let-
ters in the English alphabet. Local variables must be initialized. Java is case sensitive,
so variable n is different from variable N.

A type of variable is either one of the eight built-in basic types, a built-in or user-
defined class type, or an array. Here are built-in types and their sizes:

1

Object-Oriented
Programming
Using Java

1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Type Size Range

boolean 1 bit true, false

char 16 bits Unicode characters

byte 8 bits [-128, 127]

short 16 bits [-32768, 32767]

int 32 bits [-2147483648, 2147483647]

long 64 bits [-9223372036854775808, 9223372036854775807]

float 32 bits [-3.4E38, 3.4E38]

double 64 bits [-1.7E308, 1.7E308]

Note that the sizes of the types are fixed, which is extremely important for portabil-
ity of programs. In C/C++, the size of integers and long integers is system depen-
dent. Unlike C/C++, boolean is not a numeric type, and no arithmetic operations
can be performed on boolean variables. But as in C/C++, characters are consid-
ered integers (in Java, they are unsigned integers) so that they can be operands of
arithmetic operations.

Integer operations are performed with 32-bit precision (for long integers, it is 64-
bit precision); therefore, operations on byte and short variables require a cast. For
example, the statements

byte a, b = 1, c = 2;
a = b + c;

give a compilation error, “incompatible type for =. Explicit cast is needed to convert
int to byte.” The addition b + c gives an integer value that must be cast to execute
the assignment to the byte variable a. To avoid the problem, the assignment should
be changed to

a = (byte) (b + c);

An overflow resulting from an arithmetic operation (unless it is division by zero)
is not indicated, so the programmer must be aware that, for two integers,

int i = 2147483647, j = i + 1;

the value of j is –2147483648.
Java does not provide modifiers signed and unsigned, but it has other modifiers.
An important difference between C/C++ and Java is characters that are 8 bits

long in C/C++ and 16 bits long in Java. With the usual 8-bit characters, only 256 dif-
ferent characters can be represented. To address the problem of representing charac-
ters of languages other than English, the set of available codes must be significantly
extended. The problem is not only with representing letters with diacritical marks
(e.g., Polish letter ń, Romanian letter ţ, or Danish letter ø), but also with non-Latin
characters such as Cyrillic, Greek, Japanese, Chinese, and so on. By allowing a charac-
ter variable to be of 2 bytes, the number of different characters represented now
equals 65,536.

2 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To assign a specific Unicode character to a character variable,“u” followed by four
hexadecimal digits can be used; for example,

char ch = '\u12ab';

However, high Unicode codes should be avoided, because as of now, few systems dis-
play them. Therefore, although the assignment to ch just given is legal, printing the
value of ch results in displaying a question mark.

Other ways of assigning literal characters to character variables is by using a char-
acter surrounded with single quotes,

ch = 'q';

and using a character escape sequence, such as

ch = '\n';

to assign an end-of-line character; other possibilities are: '\t' (tab), '\b' (back-
space), '\r' (carriage return), '\f' (formfeed), '\'' (single quote), '\"' (double
quote), and '\\' (backslash). Unlike C/C++, '\b' (bell) and '\v' (vertical tab) are
not included. Moreover, an octal escape sequence ‘\ddd ’ can be used, as in

ch = '\123'; // decimal 83, ASCII of 'S';

where ddd represents an octal number [0, 377].
Integer literals can be expressed as decimal numbers by any sequence of digits 0

through 9,

int i = 123;

as octal numbers by 0 followed by any sequence of digits 0 through 7,

int j = 0123; // decimal 83;

or as hexadecimal numbers by “0x” followed by any sequence of hexadecimal num-
bers 0 through 9 and A through F (lower- or uppercase),

int k = 0x123a; // decimal 4666;

Literal integers are considered 32 bits long; therefore, to convert them to 64-bit num-
bers, they should be followed by an “L”:

long p = 0x123aL;

Note that uppercase L should be used rather than lowercase l because the latter can be
easily confused with the number 1.

Floating-point numbers are any sequences of digits 0 through 9 before and
after a period; the sequences can be empty: 2., .2, 1.2. In addition, the number can
be followed by a letter e and a sequence of digits possibly preceded by a sign: 4.5e+6
(= 4.5 · 106 = 4500000.0), 102.055e–3 = 102.055 · 10–3 = .102055). Floating-point
literals are 64-bit numbers by default; therefore, the declaration and assignment

float x = 123.45;

S e c t i o n 1 . 1 R u d i m e n t a r y J a v a ■ 3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

result in a compilation error, “incompatible type for declaration. Explicit cast needed
to convert double to float,” which can be eliminated by appending the modifier f (or
F) at the end of the number,

float x = 123.45f;

A modifier d or D can be appended to double numbers, but this is not necessary.

1.1.2 Operators

Value assignments are executed with the assignment operator =, which can be used
one at a time or can be strung together with other assignment operators, as in

x = y = z = 1;

which means that all three variables are assigned the same value, number 1. Java uses
shorthand for cases when the same value is updated; for example,

x = x + 1;

can be shortened to

x += 1;

Java also uses autoincrement and autodecrement prefix and postfix operators, as in
++n, n++, --n, and n--, which are shorthands of assignments n = n + 1 and n =
n - 1, where n can be any number, including a floating-point number. The difference
between prefix and postfix operators is that, for the prefix operator, a variable is incre-
mented (or decremented) first and then an operation is performed in which the in-
crement takes place. For a postfix operator, autoincrement (or autodecrement) is the
last operation performed; for example, after executing assignments

x = 5;
y = 6 + ++x;

y equals 12, whereas after executing

x = 5;
y = 6 + x++;

y equals 11. In both cases, x equals 6 after the second statement is completely
executed.

Java allows performing operations on individual bits with bitwise operators: &
(bitwise and), | (bitwise or), ^ (bitwise xor), << (left shift), >> (right shift), >>> (zero
filled shift right), and ~ (bitwise complement). Shorthands &=, |=, ^=, <<=, >>=,
and >>>= are also possible. Except for the operator >>>, the other operators are also
in C/C++. The operator >> shifts out a specified number of rightmost (least signifi-
cant) bits and shifts in the same number of 0s for positive numbers and 1s for negative
numbers. For example, the value of m after the assignments

int n = -4;
int m = n >> 1;

4 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is –1 because –4 in n is a two-complement representation as the sequence of 32 bits 11
. . . 1100, which after shifting to the right by one bit gives in m the pattern 11 . . . 1110,
which is a two-complement representation of –2. To have 0s shifted in also for nega-
tive numbers, the operator >>> should be used,

int n = –4;
int m = n >>> 1;

in which case, the pattern 11 . . . 1100 in n is transformed into the pattern 01 . . .
1110 in m, which is the number 2147483646 (one less than the maximum value for an
integer).

1.1.3 Decision Statements

One decision statement is an if statement

if (condition)
do something;

[else do something else;]

in which the word if is followed by a condition surrounded by parentheses, by the
body of the if clause, which is a block of statements, and by an optional else clause,
which is the word else followed by a block of statements. A condition must return a
Boolean value (in C/C++, it can return any value). A condition is formed with rela-
tional operators <, <=, ==, !=, >=, > that take two arguments and return a Boolean
value, and with logical operators that take one (!) or two (&&, ||) Boolean arguments
and return a Boolean value.

An alternative to an if-else statement is the conditional operator of the form

condition ? do-if-true : do-if-false;

The conditional operator returns a value, whereas an if statement does not, so the
former can be used, for example, in assignments, as in

n = i <= 0 ? 10 : 20;

Another decision statement is a switch statement, which is a shorthand for
nested if statements. Its form is as follows:

switch (integer expression) {
case value1: block1; break;
.
case valueN: blockN; break;
default: default block;

}

The test expression following switch must be an integer expression so that any
expression of type byte, char, short, and int can be used. The value of the ex-
pression is compared to the values that follow the word case. If a match is found,
the block of statements following this value is executed, and upon encountering
break, the switch statement is exited. Note that if the word break is missing, then

S e c t i o n 1 . 1 R u d i m e n t a r y J a v a ■ 5

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

execution is continued for the block of the next case clause. After executing the
statement

switch (i) {
case 5 : x + 10; break;
case 6 : x = 20;
case 7 : x *= 2; break;
default : x = 30;

}

the value of x is 10 if i equals 5, 40 if i equals 6, it is doubled if i equals 7, and is 30
for any other value of i.

1.1.4 Loops

The first loop available in Java is the while loop:

while (condition)
do something;

The condition must be a Boolean expression.
The second loop is a do-while loop:

do
do something;

while (condition);

The loop continues until the Boolean condition is false.
The third loop is the for loop:

for (initialization; condition; increment)
do something;

The initialization part may also declare variables, and these variables exist only during
execution of the loop.

A loop can be exited before all the statements in its body are executed with an un-
labeled break statement. We have already seen a break statement used in the
switch statement. In the case of nested loops, when a break statement is encoun-
tered, the current loop is exited so that the outer loop can be continued. An unlabeled
continue statement causes the loop to skip the remainder of its body and begin the
next iteration.

1.1.5 Exception Handling

If an error is detected during execution of a Java program, Java throws an exception,
after which the program is terminated and an error message is displayed informing
the user which exception was raised (that is, what type of error occurred and where in
the program it happened). However, the user may handle the error in the program
should one occur, at least by making the program ignore it so that execution of the
program can continue. But if an exception is raised, a special course of action can be

6 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

undertaken and then the program can continue. Catching an error is possible by
using a try-catch mechanism.

A general format of the try-catch statement is

try {
do something;

} catch (exception-type exception-name) {
do something;

}

The number of catch clauses is not limited to one. There can be as many as needed,
each one for a particular exception.

In this statement, execution of the body of the try clause is tried, and if an excep-
tion occurs, control is transferred to the catch clause to execute its body. Then execu-
tion of the program continues with a statement following the try-catch statement,
unless it contains the throw clause, which causes an exit from the method.

Consider the following method:

public int f1(int[] a, int n) throws ArrayIndexOutOfBoundsException {
return n * a[n+2];

}

The throws clause in the heading of the method is a warning to the user of the
method that a particular exception can occur, and if not handled properly, the pro-
gram crashes. To prevent that from happening, the user may include the try-catch
statement in the caller of f1():

public void f2() {
int[] a = {1,2,3,4,5};
try {

for (int i = 0; i < a.length; i++)
System.out.print(f1(a,i) + " ");

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Exception caught in f2()");
throw e;

}
}

The catch clause prints a message, but it does not perform any fixing operation on
the array a, although it could. In this example, the catch clause also includes the
throw statement, although this is not very common. In this way, not only is the ex-
ception caught and handled in f2(), but also a caller of f2() is forced to handle it, as
in the method f3():

public void f3() {
try {

f2();
} catch (ArrayIndexOutOfBoundsException e) {

System.out.println("Exception caught in f3()");
}

}

S e c t i o n 1 . 1 R u d i m e n t a r y J a v a ■ 7

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

If the caller of f2() does not handle the exception, the program crashes, although the
exception was caught in f2(). The same fate meets a program if a caller of f1() does
not catch the exception:

public void f4() {
int[] a = {1,2,3,4,5};
for (int i = 0; i < a.length; i++)

System.out.print(f1(a,i) + " ");
}

Note that the behavior of the program in all these cases is the same (that is, han-
dling an exception, passing it to another method, or crashing the program) if the
throws clause is not included in the heading of f1() so that f1() could simply be:

public int f1(int[] a, int n) {
return n * a[n+2];

}

The throws clause is thus a very important signal for the user to a possible problem
that may occur when calling a particular method.

Not all types of exceptions can be ignored as the exception raised by f1() is
ignored by f4(). Most of the time, exceptions have to be handled in the program;
otherwise, the program does not compile. This, for instance, is the case with
IOException thrown by I/O methods; therefore, these methods are usually called
inside try-catch clauses.

1.2 OBJECT-ORIENTED PROGRAMMING IN JAVA

1.2.1 Encapsulation

Object-oriented programming (OOP) revolves around the concept of an object.
Objects, however, are created using a class definition. A class is a template in accor-
dance to which objects are created. A class is a piece of software that includes a
data specification and functions operating on these data and possibly on the data
belonging to other class instances. Functions defined in a class are called methods,
and variables used in a class are called class scope variables (to distinguish them
from variables local to method or blocks), data fields, or simply fields. This com-
bining of the data and related operations is called data encapsulation. An object is
an instance of a class, an entity created using a class definition.

In contradistinction to functions in languages that are non–object-oriented lan-
guages (OOL), objects make the connection between data and methods much tighter
and more meaningful. In non-OOLs, declarations of data and definitions of functions
could be interspersed throughout the entire program, and only the program documen-
tation indicates that there is a connection between them. In OOLs, a connection is es-
tablished right at the outset; in fact, the program is based on this connection. An object
encompasses related data and operations, and because there may be many objects used
in the same program, the objects communicate by exchanging messages, thereby re-

8 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

vealing to each other only as much, or rather as little, detail about their internal struc-
ture as necessary for adequate communication. Structuring programs in terms of ob-
jects allows us to accomplish several goals.

First, this strong coupling of data and operations can be used much better in
modeling a fragment of the world, which is emphasized especially by software engi-
neering. Not surprisingly, OOP has its roots in simulation; that is, in modeling real-
world events. The first OOL was Simula; it was developed in the 1960s in Norway.

Second, objects allow for easier error finding because operations are localized to
the confines of their objects. Even if side effects can occur, they are easier to trace.

Third, objects allow us to conceal certain details of their operations from other
objects so that these operations may not be adversely affected by other objects. This is
known as the information-hiding principle. In languages that are not object-oriented,
this principle can be found to some extent in the case of local variables, or as in Pascal,
in local functions and procedures, which can be used and accessed only by the func-
tion defining them. This is, however, a very tight hiding or no hiding at all. Sometimes
we may need to use (again, as in Pascal) a function f2 defined in f1 outside of f1, but
we cannot. Sometimes we may need to access some data local to f1 without exactly
knowing the structure of these data, but in non-OOLs, we cannot. Hence, some mod-
ification is needed, and it is accomplished in OOLs.

An object in OOL is like a watch. As users, we are interested in what the hands
show, but not in the inner workings of the watch. We are aware that there are gears and
springs inside the watch, but we usually know very little about why all these parts are in
a particular configuration. Because of that, we should not have access to this mechanism
so that we do not damage it, inadvertently or on purpose. Therefore, this mechanism is
hidden from us, we have no immediate access to it, and thereby the watch is protected
and works better than when its mechanism is open for everyone to see.

Hence, an object is like a black box whose behavior is very well defined, and we
use the object because we know what it does, not because we have an insight into how
it does it. This opacity of objects is extremely useful for maintaining them indepen-
dently of each other. If communication channels between the objects are well defined,
then changes made inside an object can affect other objects only as much as these
changes affect the communication channels. Knowing the kind of information sent
out and received by an object, the object can be replaced more easily by another object
more suitable in a particular situation: A new object can perform the same task differ-
ently but more quickly in a certain hardware environment. Hence, an object discloses
only as much as is needed for the user to utilize it. It has a public part that can be ac-
cessed by any user when the user sends a message matching any of the method names
revealed by the object. In this public part, the object displays to the user buttons that
can be pushed to invoke the object’s operations. The user knows only the names of
these operations and the expected behavior.

Information hiding tends to blur the dividing line between data and operations.
In Pascal-like languages, the distinction between data and functions/procedures is
clear and rigid. They are defined differently and their roles are very distinct. OOLs put
data and methods together, and to the user of the object, this distinction is much less
noticeable. To some extent, this is an incorporation of features of functional lan-
guages. LISP, one of the earliest programming languages, allows the user to treat data
and functions on a par, because the structure of both is the same.

S e c t i o n 1 . 2 O b j e c t - O r i e n t e d P r o g r a m m i n g i n J a v a ■ 9

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

We have already made a distinction between particular objects and object types
or classes. We write methods to be used with different variables, and by analogy, we do
not want to be forced to write as many object declarations as the number of objects
required by the program. Certain objects are of the same type and we would like only
to use a reference to a general object specification. For single variables, we make a dis-
tinction between type declaration and variable declaration. In the case of objects, a
distinction is made between a class declaration and its instantiation, which is an ob-
ject. Consider the following program:

class C {
public C() {

this("",1,0);
}
public C(String s) {

this(s,1,0);
}
public C(String s, int i) {

this(s,i,0);
}
public C(String s, int i, double d) {

dataField1 = new String(s);
dataField2 = i;
dataField3 = d;

}
public void method1() {

System.out.println(dataField1 + " " + dataField2 + " " + dataField3);
}
public void method2(int i) {

method2(i,"unknown");
}
public void method2(int i, String s) {

dataField2 = i;
System.out.println(i + " received from " + s);

}
private String dataField1;
private int dataField2;
private double dataField3;
public static void main (String args[]) {

C object1 = new C("object1",100,2000),
object2 = new C("object2"), object3 = new C();

object1.method2(123);
object1.method1();
object2.method2(123,"object2");

}
}

10 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The program contains a declaration of class C. Inside method main(), objects of class
type C are generated by declaring and instantiating them:

C object1 = new C("object1",100,2000),
object2 = new C("object2"), object3 = new C();

It is very important to see that object declarations do not create objects, so that
the two lines

C object1;
object1.method1();

result in a compilation error. The object variable object1 has to be assigned an ob-
ject, which can be done directly in declaration by initializing the variable with the op-
erator new,

C object1 = new C(. . .);

Message passing is equivalent to a function call in traditional languages. However,
to stress the fact that in OOLs the methods are relative to objects, this new term is
used. For example, the call to method1() with respect to object1,

object1.method1();

is to be seen as the message method1() sent to object1. Upon receiving the mes-
sage, the object invokes its method. Messages can acquire parameters so that

object1.method2(123);

is the message method2() with parameter 123 received by object1.

The lines containing these messages are in a method of the current object or an-
other object. Therefore, the receiver of the message is identifiable, but not necessarily
the sender. If object1 receives the message method1(), it does not know where the
message originated. It only responds to it by displaying the information method1()
encompasses. The same goes for method2(). Therefore, the sender may prefer send-
ing a message that also includes its identification, as in

object1.method2(123,"object1");

The declaration of class C contains the method main(), which, as in C/C++,
is the starting point for execution of programs. Unlike in C/C++, main() must be
included inside a class; it cannot be a stand-alone method. In this way, after class C is
stored in a file C.java, the file can be compiled with the instruction

javac C.java

and then the program can be run with

java C

S e c t i o n 1 . 2 O b j e c t - O r i e n t e d P r o g r a m m i n g i n J a v a ■ 11

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The javac instruction can be applied to any file containing Java code, but the java
instruction requires that the class with which it is invoked includes method main().

The example of class C shows only one class, but as we shall see throughout the book,
the number of classes is usually not limited to one; however, one of the classes must
include the method main() to make the program executable.

The signature of the method main() is always the same:

public static void main(String[] args)

It returns no value (void) and allows for taking command line arguments from
the interpreter by storing them in an array of strings. The public modifier belongs
to the category of access modifiers. Java uses four access modifiers (three plus one
unnamed), which are related to the concept of a package. A package is a collection of
classes that are located in one subdirectory. It is a counterpart of a C/C++ library.

Methods and fields declared public can be used by any other object.
The protected modifier means that a method or a field is accessible to derived

classes and in the package that includes the class that declares the method or the data
field.

The private modifier indicates methods and fields that can be used only by this
class.

A default modifier is no modifier at all, which indicates access to methods and
fields in the package that includes the class that declares the method or the data field.

Two more modifiers need to be listed. A final method of field cannot be
changed by derived classes (see Section 1.2.3, Inheritance). A method and field de-
clared static are the same for all instances (objects) of the class.

1.2.1.1 Class Methods and Class Variables

Static methods and variables are associated with the class itself; there is exactly one in-
stance of a static element even if there is no object of the particular class type. They
are called class methods and class variables (nonstatic variables and methods are called
instance variables and instance methods). The method main() must be declared as
static. Then, all methods and variables it uses directly must also be static (method
f() called by main() must be static, but not when it is called as obj.f()). Consider
this class:

class C2 {
public void f1() {

System.out.println("f1()");
}
static public void f2() {

System.out.println("f2()");
}

}

Because f1() is not a class method, the command

C2.f1(); // error;

12 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

causes a compilation error; thus, to execute the method, an object of class type C2 has
to be created, and then the method invoked, as in

C2 c = new C2();
c.f1();

or simply

(new C2()).f1();

On the other hand, because f2() is a class method, the command

C2.f2();

is sufficient because the method f2() does exist in class C2, even without creating an
object of class type C2; that is, a static method can be accessed through a class name,
although it can also be accessed through an object name. This is how methods in class
Math can be accessed, for example, Math.sqrt(123).

To see how class variables work, consider this class,

class C3 {
public static int n = 0;
public int m = 0;
public C3() {

n++; m++;
}
public void display() {

System.out.println(n + " " + m);
}

}

Execution of

C3 c1 = new C3();
c1.display();
C3 c2 = new C3();
c1.display();
c2.display();

prints numbers

1 1
2 1
2 1

Also, n and m can be accessed and modified from the outside, as in

C3.n = 10;
c1.m = 11;
c2.m = 12;

Note that the class name is used to access n and the object name to access m.

S e c t i o n 1 . 2 O b j e c t - O r i e n t e d P r o g r a m m i n g i n J a v a ■ 13

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1.2.1.2 Generic Classes

A very important aspect of OOP in Java is the possibility of declaring generic classes.
For example, if we need to declare a class that uses an array for storing some items,
then we may declare this class as

class IntClass {
int[] storage = new int[50];
..................

}

However, in this way, we limit the usability of this class to integers only; hence, if
a class is needed that performs the same operations as IntClass, but it operates on
double numbers, then a new declaration is needed, such as

class DoubleClass {
double[] storage = new double[50];
..................

}

If storage is to hold objects of a particular class, then another class must be de-
clared. It is much better to declare a generic class and decide during the run of the
program to which type of items it is referring. Java allows us to declare a class in this
way, and the declaration for the example is

class GenClass {
Object[] storage = new Object[50];
Object find(int n) {

return storage[n];
}
..................

}

Then the decision is made as to how to create two specific objects:

GenClass intObject = new GenClass();
GenClass doubleObject = new GenClass();

This generic class manifests itself in different forms depending on the way infor-
mation is stored in it or retrieved from it. To treat it as an object holding an array of
integers, the following way of accessing data can be used:

int k = ((Integer) intObject.find(n)).intValue();

To retrieve data from doubleObject, the return value has to be cast as Double. The
same cast can also be used for intObject so that objects respond differently in dif-
ferent situations. One generic declaration suffices for enabling such different forms.

14 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1.2.1.3 Arrays

Arrays are Java objects, but to the user, they are objects to a very limited extent. There
is no keyword with which all arrays are declared. They may be considered instances of
an understood array class. The lack of a keyword for all arrays also means that no sub-
classes can be created (see Section 1.2.3).

Arrays are declared with empty brackets after the name of the type or the name of
the array itself. These two declarations are equivalent:

int[] a;

and

int a[];

A declaration of a basic data type also creates an item of the specified type. As for
all objects, an array declaration does not create an array. An array can be created
with the operator new, and very often declaration and initialization are combined, as in

int[] a = new int[10];

This creates an array of 10 cells that are indexed with numbers 0 through 9; that is, the
first cell is a[0] and the last cell a[9]. An array can also be created by specifying the
value of its cells,

int[] b = {5, 4, 2, 1};

which creates a four-cell array of integers.
Unlike C/C++, it is impossible to access a cell that is out of bounds. An attempt to

do so, as with the assignment

a[10] = 5;

results in a run-time error ArrayIndexOutOfBoundsException. To avoid this, the
length of the array can be checked before performing an assignment with the variable
length associated with each array, a.length.

Note that for arrays, length is a variable, not a method, as is the case for strings;
therefore, a.length() would be an error.

Because arrays are objects, two array variables can refer to the same array:

int[] a1 = new int[3], a2 = a1;
a1[0] = 12;
System.out.println(a2[0]); // print 12

Arrays are passed to methods by reference; that is, changes performed in a method
that takes an array parameter affects the array permanently. For example, if a method
for doubling values in integer arrays is defined:

public void doubleArray(int[] a) {
for (int i = 0; i < a.length; i++)

a[i] += a[i];
}

S e c t i o n 1 . 2 O b j e c t - O r i e n t e d P r o g r a m m i n g i n J a v a ■ 15

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

then the following code

a1[1] = a1[2] = 13;
doubleArray(a1);
for (int i = 0; i < a1.length; i++)

System.out.print(a1[i] + " ");

results in printing numbers 24, 26, and 26.
In Java 1.2, the class Arrays is added with several useful methods to be applied

to arrays, in particular binarySearch(), equals(), fill(), and sort(). For ex-
ample, to sort an array, it is enough to import class java.util.Arrays and execute
one of the versions of the method sort, for example,

Arrays.sort(a);

1.2.1.4 Wrapper Classes

Except for basic data types, everything in Java is an object. For this reason, many classes
in the java.util package operate on items of type Object. To include basic data
types in this category so that the utility classes can also operate on them, the so-called
wrapper classes are introduced to provide object versions of basic data types. For ex-
ample, the Integer class is an object wrapper for the type int. The class provides sev-
eral methods. The Integer class includes the following methods: getInteger() to
convert a string into an Integer, parseInt() to convert a string into an int,

convert() to convert a string into a number when the radix is not known,
toString() to convert an integer into a string, and a sequence of methods to convert
an integer into other basic types: intValue(), longValue(), and so on.

1.2.2 Abstract Data Types
Before a program is written, the programmer should have a fairly good idea of how to
accomplish the task being implemented by the program. Hence, an outline of the pro-
gram containing its requirements should precede the coding process. The larger and
more complex the project, the more detailed the outline phase should be. The imple-
mentation details should be delayed to the later stages of the project. In particular, the
details of the particular data structures to be used in the implementation should not
be specified at the beginning.

From the start, it is important to specify each task in terms of input and output. At
the beginning stages, we should be more concerned with what the program should do,
not how it should or could be done. Behavior of the program is more important than the
gears of the mechanism accomplishing it. For example, if an item is needed to accomplish
some tasks, the item is specified in terms of operations performed on it rather than in
terms of its inner structure. These operations may act upon this item by modifying it,
searching for some details in it, or storing something in it. After these operations are
precisely specified, the implementation of the program may start. The implementation
decides which data structure should be used to make execution most efficient in terms of
time and space. An item specified in terms of operations is called an abstract data type. In
Java, an abstract data type can be part of a program in the form of an interface.

16 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Interfaces, successors of protocols in Objective-C, are similar to classes, but they
can contain only constants (final variables) and method prototypes or signatures; that
is, specifications of method names, types of parameters, and types of return values.
Declarations in an interface are public, and data are final even if they are not labeled.
Methods are thus not defined, and the task of defining methods is passed to a class
that implements an interface (that is, implements as public all the methods listed in the
interface). One class can implement more than one interface, the same interface can
be implemented by more than one class, and the classes implementing one interface
do not have to be related in any way to each other. Therefore, at the first stage of pro-
gram design, interfaces can be specified, and the specifics of implementation of their
methods are left until later for the implementation classes. And because an interface
can extend another interface, a top-down design can become part of the program in a
very natural way. This allows the program developer to concentrate first on big issues
when designing a program, but also allows a user of a particular implementation of
an interface to be certain that all the methods listed in the interface are implemented.
In this way, the user is assured that no method listed in the interface is left out in any
of the implementation classes, and all instances of implementation classes respond to
the same method calls.

The rigidity of interfaces is somewhat relaxed in abstract classes. A class declared
abstract can include defined methods; that is, not only method signatures, but also
method bodies. A method that is specified only by its signature must also be declared
as abstract. A class can make an abstract class specific by extending it. Here is an
example:

interface I {
void If1(int n);
final int m = 10;

}
class A implements I {

public void If1(int n) {
System.out.println("AIf1 " + n*m);

}
}
abstract class AC {

abstract void ACf1(int n);
void ACf2(int n) {

System.out.println("ACf2 " + n);
}

}
class B extends AC {

public void ACf1(int n) {
System.out.println("BACf1 " + n);

}
}

S e c t i o n 1 . 2 O b j e c t - O r i e n t e d P r o g r a m m i n g i n J a v a ■ 17

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1.2.3 Inheritance
OOLs allow for creating a hierarchy of classes so that objects do not have to be instan-
tiations of a single class. Before discussing the problem of inheritance, consider the
following class definitions:

package basePackage;

class BaseClass {

public BaseClass() {

}

public void f(String s) {

System.out.println("Method f() in BaseClass called from " + s);

h("BaseClass");

}

protected void g(String s) {

System.out.println("Method g() in BaseClass called from " + s);

}

private void h(String s) {

System.out.println("Method h() in BaseClass called from " + s);

}

void k(String s) {

System.out.println("Method k() in BaseClass called from " + s);

}

}

A file BaseClass.java is in a subdirectory basePackage. The directory in
which this subdirectory is located contains the file testInheritance.java,
which contains the following classes:

class Derived1Level1 extends BaseClass {

public void f(String s) {

System.out.println("Method f() in Derived1Level1 called from " + s);

g("Derived1Level1");

}

public void h(String s) {

System.out.println("Method h() in Derived1Level1 called from " + s);

}

void k(String s) {

System.out.println("Method k() in Derived1Level1 called from " + s);

}

}

class Derived2Level1 extends BaseClass {

public void f(String s) {

System.out.println("Method f() in Derived2Level1 called from " + s);

// h("Derived2Level1"); // h() has private access in basePackage.BaseClass.

18 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

// k("Derived2Level1"); // k() is not public in basePackage.BaseClass;

// cannot be accessed from outside package.

}

protected void g(String s) {

System.out.println("Method g() in Derived2Level1 called from " + s);

}

}

class DerivedLevel2 extends Derived1Level1 {

public void f(String s) {

System.out.println("Method f() in DerivedLevel2 called from " + s);

g("DerivedLevel2");

h("DerivedLevel2");

k("DerivedLevel2");

super.f("DerivedLevel2");

}

}

class TestInheritance {

void run() {

BaseClass bc = new BaseClass();

Derived1Level1 d1l1 = new Derived1Level1();

Derived2Level1 d2l1 = new Derived2Level1();

DerivedLevel2 dl2 = new DerivedLevel2();

bc.f("main(1)");

// bc.g("main(2)"); // g() has protected access in basePackage.BaseClass.

// bc.h("main(3)"); // h() has private access in basePackage.BaseClass.

// bc.k("main(4)"); // k() is not public in basePackage.BaseClass;

// cannot be accessed from outside package.

d1l1.f("main(5)");

// d1l1.g("main(6)"); // g() has protected access in basePackage.BaseClass.

d1l1.h("main(7)");

d1l1.k("main(8)");

d2l1.f("main(9)");

d2l1.g("main(10)");

// d2l1.h("main(11)"); // h() has private access in basePackage.BaseClass.

dl2.f("main(12)");

// dl2.g("main(13)"); // g() has protected access in basePackage.BaseClass.

dl2.h("main(14)");

}

public static void main(String args[]) {

(new TestInheritance()).run();

}

S e c t i o n 1 . 2 O b j e c t - O r i e n t e d P r o g r a m m i n g i n J a v a ■ 19

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The execution of this code generates the following output:

Method f() in BaseClass called from main(1)
Method h() in BaseClass called from BaseClass
Method f() in Derived1Level1 called from main(5)
Method g() in BaseClass called from Derived1Level1
Method h() in Derived1Level1 called from main(7)
Method k() in Derived1Level1 called from main(8)
Method f() in Derived2Level1 called from main(9)
Method g() in Derived2Level1 called from main(10)
Method f() in DerivedLevel2 called from main(12)
Method g() in BaseClass called from DerivedLevel2
Method h() in Derived1Level1 called from DerivedLevel2
Method k() in Derived1Level1 called from DerivedLevel2
Method f() in Derived1Level1 called from DerivedLevel2
Method g() in BaseClass called from Derived1Level1
Method h() in Derived1Level1 called from main(14)

The class BaseClass is called a base class or a superclass, and other classes
are called subclasses or derived classes because they are derived from the superclass in
that they can use the data fields and methods specified in BaseClass as protected,

public, or—when subclasses are in the same package as the base class—have no access
modifier. They inherit all these fields and methods from their base class so that they
do not have to repeat the same definitions. However, a derived class can override the de-
finition of a non-final method by introducing its own definition. In this way, both
the base class and the derived class have some measure of control over their methods.

The base class can decide which methods and data fields can be revealed to de-
rived classes so that the principle of information hiding holds not only with respect to
the user of the base class, but also to the derived classes. Moreover, the derived class
can decide which public and protected methods and data fields to retain and use and
which to modify. For example, both Derived1Level1 and Derived2Level1 rede-
fine method f() by giving their own versions of f(). However, the access to the
method with the same name in the parent class is still possible by preceding the
method name with the keyword super, as shown in the call of super.f() from f()
in DerivedLevel2.

A derived class can add new methods and fields of its own. Such a class can
become a base class for other classes that can be derived from it so that the inheritance
hierarchy can be deliberately extended. For example, the class Derived1Level1 is de-
rived from BaseClass, but at the same time, it is the base class for DerivedLevel2.

Protected methods or fields of the base class are accessible to derived classes.
They are also accessible to nonderived classes if these classes are in the same pack-
age as the class that defines the protected methods and fields. For this reason,
Derived1Level1 can call BaseClass’s protected method g(), but a call to this
method from run() in TestInheritance is rendered illegal.

However, run() can call method g(), declared protected in Derived2Level1,
because both Derived2Level1 and TestInheritance in which run() is defined
are in the same package.

20 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Methods and data fields with no access modifier can be accessed by any class in
the same package. For example, the method k() in BaseClass cannot be accessed
even in a derived class, Derived2Level1, because the derived class is in a different
package. But the method k() in Derived1Level1 can be accessed even in a non-
derived class, such as TestInheritance in run(), because both Derived1Level1
and TestInheritance are in the same package.

Unlike C++, which supports multiple inheritance, inheritance in Java has to be lim-
ited to one class only so that it is not possible to declare a new class with the declaration

class Derived2Level2 extends Derived1Level1, Derived2Level1 { ... }

In addition, a class declared final cannot be extended (the wrapper classes are
examples of final classes).

1.2.4 Polymorphism
Polymorphism refers to the ability of acquiring many forms. In the context of OOP,
this means that the same method name denotes many methods that are members of
different objects. This is accomplished by so-called dynamic binding, when the type of
a method to be executed can be delayed until run time. This is distinguished from
static binding, when the type of response is determined at compilation time, as in the
case of the IntObject and DoubleObject presented in Section 1.2.1. Both of these
objects are declared as objects whose storage fields hold data of type Object and not
integer or double. The conversion is performed dynamically, but outside the object it-
self. For dynamic binding, consider the following declarations:

class A {
public void process() {

System.out.println("Inside A");
}

}
class ExtA extends A {

public void process() {
System.out.println("Inside ExtA");

}
}

then the code

A object = new A();
object.process();
object = new ExtA();
object.process();

results in the output

Inside A
Inside ExtA

S e c t i o n 1 . 2 O b j e c t - O r i e n t e d P r o g r a m m i n g i n J a v a ■ 21

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This is due to dynamic binding: The system checks dynamically the type of object to
which a variable is currently referring and chooses the method appropriate for this
type. Thus, although the variable object is declared to be of type A, it is assigned in
the second assignment an object of type ExtA and executes the method process(),
which is defined in class ExtA, rather than the method by the same name defined in
class A.

This is also true for interfaces. For example, if the declarations

interface B {
void process();

}
class ImplB1 implements B {

public void process() {
System.out.println("Inside ImplB1");

}
}
class ImplB2 implements B {

public void process() {
System.out.println("Inside ImplB2");

}
}

are followed by the statements

B object = new ImplB1();
object.process();
object = new ImplB2();
object.process();

then the output is

Inside ImplB1
Inside ImplB2

notwithstanding the fact that object is of type B. The system recognizes that, for the
first call of process(), object refers to an object of type ImplB1, and in the second
call, it refers to an object of type ImplB2.

Polymorphism is thus a powerful tool in OOP. It is enough to send a standard
message to many different objects without specifying how the message will be fol-
lowed. There is no need to know of what type the objects are. The receiver is respon-
sible for interpreting the message and following it. The sender does not have to
modify the message depending on the type of receiver. There is no need for switch
or if-else statements. Also, new units can be added to a complex program without
the need of recompiling the entire program.

Dynamic binding allows for empowering the definition of GenClass. Assume
that the definition of this class also includes a method for finding a position of a par-
ticular piece of information. If the information is not found, –1 is returned. The defi-
nition is now

22 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

class GenClass {
Object[] storage = new Object[50];
int find(Object el) {

for (int i = 0; i < 50; i++)
if (storage[i] != null && storage[i].equals(el))

return i;
return -1;

}
void store(Object el) {

.
}
.

}

The method find() returns the correct result if wrappers of basic types are used—
Character(), Integer(), and so on—but what happens if we want to store non-
standard objects in an instance of GenClass? Consider the following declaration

class SomeInfo {
SomeInfo (int n) {

this.n = n;
}
private int n;

}

Now the problem is, what happens if for a declaration

GenClass object = new GenClass();

we execute:

object.store(new SomeInfo(17));
System.out.println(object.find(new SomeInfo(17)));

As it turns out, –1 is printed to indicate an unsuccessful search. The result is caused by
the method equals(). The system is using a built-in method for type Object that
returns true if references of the compared variables are the same, not the contents of
objects to which they refer. To overcome this limitation, the method equals() must
be redefined by overriding the standard definition by a new definition. Therefore, the
definition of SomeInfo is incomplete, and should be extended to

class SomeInfo {
SomeInfo (int n) {

this.n = n;
}
public boolean equals(Object si) {

return n == ((SomeInfo) si).n;
}
private int n;

}

S e c t i o n 1 . 2 O b j e c t - O r i e n t e d P r o g r a m m i n g i n J a v a ■ 23

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

With this new definition, find() returns the position of the object holding
number 17. The reason this works properly is that all classes are extensions of the class
Object. This extension is done implicitly by the system so that the declaration of
SomeInfo is really

class SomeInfo extends Object {
.

}

The qualifier extends Object is understood in the original definition and does
not have to be made explicit. In this way, the standard method equals() is overridden
by redefinition of this method in the class SomeInfo and by the power of dynamic
binding. When executing the call object.find(new SomeInfo(17)), the system
uses the method equals() defined in the class SomeInfo because an instance of this
class is an argument in the method call. Thus, inside find(), the local variable becomes
a reference to an object of type SomeInfo, although it is defined as a parameter of type
Object. The problem is, however, that such a quick adjustment can be done only for the
built-in methods for Object, in particular, equals() and toString(). Only slightly
more complicated is the case when we want to define a generic class that makes compar-
isons possible. A more realistic example of polymorphism is given in the case study.

1.3 INPUT AND OUTPUT

The java.io package provides several classes for reading and writing data. To use the
classes, the package has to be explicitly included with the statement

import java.io.*;

In this section, we briefly introduce classes for reading from a standard device
(keyboard), writing to a standard device (monitor), and processing I/O on files. There
are also a number of other classes that are particularly important for interacting with
the network, such as buffered, filtered, and piped streams.

To print anything on the screen, two statements are sufficient:

System.out.print(message);
System.out.println(message);

The two statements differ in that the second version outputs the end-of-line character
after printing a message. The message printed by the statement is a string. The string
can be composed of literal strings, string variables, and strings generated by the
method toString() for a particular object; all components of the print statement
are concatenated with the operator +. For example, having declared the class C:

class C {
int i = 10;
char a = 'A';
public String toString() {

return "(" + i + " " + a + ")";
}

}

24 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

and an object

C obj = new C();

a printing statement

System.out.println("The object: " + obj);

outputs

The object: (10 A)

Note that if toString() were not defined in C, the output would be

The object: C@1cc789

because class C is by default an extension of the class Object whose method
toString() prints the address of a particular object. Therefore, it is almost always
critical that toString() is redefined in a user class to have a more meaningful output
than an address.

Reading input is markedly more cumbersome. Data are read from standard input
with the input stream System.in. To that end, the method read() can be used, which
returns an integer. To read a line, the user must define a new method, for example,

public String readLine() {
int ch;
String s = "";
while (true) {

try {
ch = System.in.read();
if (ch == -1 || (char)ch == '\n') //end of file or end of line;

break;
else if ((char)ch != '\r') // ignore carriage return;

s = s + (char)ch;
} catch(IOException e) {
}

}
return s;

}

Because read() is defined as a method that throws an IOException, the excep-
tion has to be handled with the try-catch clause.

Note that ch must be an integer to detect the end of file (which is Ctrl-z entered
from the PC keyboard). The end-of-field marker is the number –1, and characters are
really unsigned integers. If ch were declared as a character, then the assignment state-
ment would have to be

ch = (char) System.in.read();

with which the end-of-line marker –1 would be stored as number 65535 in ch,

whereby the subcondition ch == –1 would be evaluated to false and the system
would wait for further input.

S e c t i o n 1 . 3 I n p u t a n d O u t p u t ■ 25

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Fortunately, the task can be accomplished differently by first declaring an input
stream with the declarations:

InputStreamReader cin = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(cin);

or with one declaration:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

and then a built-in method readLine() can be called to assign a value to a string s:

try {
s = br.readLine();

} catch(IOException e) {
}

To read a number, an input must be read as a string and then converted into a
number. For example, if input is in string s, then the conversion can be performed with

try {
i = Integer.parseInt(s.trim());

} catch (NumberFormatException e) {
System.out.println("Not a number");

}

Input can be simplified after javax.swing.JOptionPane is imported:

String s = JOptionPane.showInputDialog("Enter a number");
i = Integer.parseInt(s.trim());

To perform input and output on a file, a decision has to be made as to what type
of data are to be processed so that the proper type of file can be elected.

A binary file is processed as a sequence of bytes, a text file as a sequence of charac-
ters. Generally, text files are portable; binary files are not because the data in the file have
the same representation as data stored in main memory, and this representation varies
from one system to another. However, Java binary files are platform independent.

The java.io package includes many streams for performing I/O that are or-
ganized in a hierarchy. The InputStream and OutputStream classes are used for
processing binary files, and the Reader and Writer classes are for text files.

1.3.1 Reading and Writing Bytes
Consider a method that reads one byte at a time from an input file and writes it into
an output file and to the screen:

void readBytes1(String fInName, String fOutName) throws IOException {
FileInputStream fIn = new FileInputStream(fInName);
FileOutputStream fOut = new FileOutputStream(fOutName);
int i;
while ((i = fIn.read()) != -1) {

26 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

System.out.print((char)i + " "); // display characters;
// System.out.print(i + " "); // display ASCII values;

fOut.write(i);
}
fIn.close();
fOut.close();

}

An integer variable is used to read the input, and the end of file is indicated by –1.
To make reading and writing more efficient, input and output are buffered:

void readBytes2(String fInName, String fOutName) throws IOException {
BufferedInputStream fIn = new BufferedInputStream(

new FileInputStream(fInName));
BufferedOutputStream fOut = new BufferedOutputStream(

new FileOutputStream(fOutName));
int i;
while ((i = fIn.read()) != -1) {

System.out.print(i + " ");
fOut.write(i);

}
fIn.close();
fOut.close();

}

1.3.2 Reading Lines

To read one line at a time, the method readLine() from BufferedReader is used,
as in this example:

void readLines(String fInName, String fOutName) throws IOException {
BufferedReader fIn = new BufferedReader(

new FileReader(fInName));
PrintWriter fOut = new PrintWriter(new FileWriter(fOutName));
String s;
while ((s = fIn.readLine()) != null) {

System.out.println(s);
fOut.println(s);

}
fIn.close();
fOut.close();

}

The end of file is detected upon reading a null string (after reading an empty line,
the string s is not null, but is of length 0).

S e c t i o n 1 . 3 I n p u t a n d O u t p u t ■ 27

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1.3.3 Reading Tokens: Words and Numbers
A StreamTokenizer extracts from a text file various types of tokens including iden-
tifiers (sequences of letters and digits that begin with a letter or a byte from the range
'\u00A0' through '\u00FF') and numbers. It can also extract quoted strings and vari-
ous comment styles when the tokenizer is properly set up. The nextToken()
method skips space characters separating tokens and updates the tokenizer’s instance
variables: sval of type String, which contains the current token when it is a word;
nval of type double, which contains the current token when it is a number; and
ttype of type int, which contains the type of the current token. There are four types
of tokens: TT_EOF (end of file), TT_EOL (end of line), TT_WORD, and TT_NUMBER.
Here is an example:

void readTokens(String fInName) throws IOException {
StreamTokenizer fIn = new StreamTokenizer(

new BufferedReader(
new FileReader(fInName)));

fIn.nextToken();
String s;
while (fIn.ttype != StreamTokenizer.TT_EOF) {

if (fIn.ttype == StreamTokenizer.TT_WORD)
s = "word";

else if (fIn.ttype == StreamTokenizer.TT_NUMBER)
s = "number";

else s = "other";
System.out.println(s + ":\t" + fIn);
fIn.nextToken();

}
}

When a text file consists of words or numbers separated by blanks, then it may be
easier to extract each word or number by reading one line at a time and then applying
a string tokenizer, as in

void readTokens2(String fInName) throws IOException {
BufferedReader fIn = new BufferedReader(

new FileReader(fInName));
String s;
while ((s = fIn.readLine()) != null) {

java.util.StringTokenizer line = new java.util.StringTokenizer(s);
while (line.hasMoreTokens())

System.out.println(line.nextToken());
}
fIn.close();

}

Another example of applying a stream tokenizer can be found in Section 5.11.

28 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1.3.4 Reading and Writing Primitive Data Types

The DataInputStream class provides methods for reading primitive data
types in binary format. The methods include readBoolean(), readByte(),
readShort(), readChar(), readInt(), readLong(), and readUTF() (to read
strings in Unicode Text Format).

void writePrimitives(String fOutName) throws IOException {
DataOutputStream fOut = new DataOutputStream(

new FileOutputStream(fOutName));
fOut.writeBoolean(5<6);
fOut.writeChar('A');
fOut.writeDouble(1.2);
fOut.writeFloat(3.4f);
fOut.writeShort(56);
fOut.writeInt(78);
fOut.writeLong(90);
fOut.writeByte('*');
fOut.writeUTF("abc");
fOut.close();

}
void readPrimitives(String fInName) throws IOException {

DataInputStream fIn = new DataInputStream(
new FileInputStream(fInName));

System.out.println(fIn.readBoolean() + " " +
fIn.readChar() + " " +
fIn.readDouble() + " " +
fIn.readFloat() + " " +
fIn.readShort() + " " +
fIn.readInt() + " " +
fIn.readLong() + " " +
fIn.readByte() + " " +
fIn.readUTF());

fIn.close();
}

The case study at the end of the chapter relies on the I/O for primitive data types.

1.3.5 Reading and Writing Objects
Objects can also be saved in a file if they are made persistent. An object becomes per-
sistent if its class type is stated to implement the Serializable interface, as in

class C implements Serializable {
int i;
char ch;
C(int j, char c) {

S e c t i o n 1 . 3 I n p u t a n d O u t p u t ■ 29

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

i = j; ch = c;
}
public String toString() {

return "("+ i + " " + ch +")";
}

}

Such a declaration is possible if all instance variables are also Serializable, which
is the case for class C, because in Java all basic data types, arrays, and many classes are
Serializable. Here is an example of writing and reading an object of class type C:

void writeObjects(String fOutName) throws IOException {
C c1 = new C(10,'A'), c2 = new C(20,'B');
ObjectOutputStream fOut = new ObjectOutputStream(

new FileOutputStream(fOutName));
fOut.writeObject(c1);
fOut.writeObject(c2);
fOut.close();

}
void readObjects(String fInName) throws IOException {

C c1 = new C(30,'C'), c2 = c1;
ObjectInputStream fIn = new ObjectInputStream(

new FileInputStream(fInName));
try {

c1 = (C)fIn.readObject();
c2 = (C)fIn.readObject();

} catch(ClassNotFoundException e) {
}
System.out.println(c1 + " " + c2);

}

1.3.6 Random Access Files
The files discussed thus far are processed sequentially: We read (write) one item at a
time and proceed toward the end of the file. To be able to both read and write in the
same file at any position in the file, a random access file should be used. A file is cre-
ated with the constructor

RandomAccessFile(name, mode);

The constructor opens a file with the specified name either for reading only or
for reading and writing. The mode is specified by either the letter w or the letters rw;
for instance,

RandomAccessFile = raf new RandomAccessFile("myFile", "rw");

We can move anywhere in the file, but to know that we are within the file, we can
use the method length() that returns the size of the file measured in bytes. The
method getFilePointer() returns the current position in the file. The method
seek(pos) moves the file pointer to the position specified by an integer pos.

30 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Reading is done by the method read(), which returns a byte as an integer;
by read(b), which fills entirely a byte array b; by read(b,off,len), which fills
len cells of the byte array b starting from cell off; and by readLine(), which
reads one line of input. Other reading methods return a value specified by their
names: readBoolean(), readByte(), readShort(), readChar(), readInt(),
readLong(), and readUTF(). All of these reading methods have corresponding
writing methods, for example, write(c), where c is an int, write(b), and
write(b,off,len), plus the method writeBytes(s) to write a string s as a se-
quence of bytes.

After file processing is finished, the file should be closed with the close()method:

raf.close();

Examples of the application of random access files can be found in the Case Study in
Section 1.7.

1.4 JAVA AND POINTERS

In this section, a problem of implementing Java objects is analyzed.
Although Java does not use explicit pointers and does not allow the programmer

to use them, object access is implemented in terms of pointers. An object occupies
some memory space starting from a certain memory location. A pointer to this object
is a variable that holds the address of the object, and this address is the starting posi-
tion of the object in memory. In many languages, pointer is a technical term for a type
of variable; therefore, the term is avoided in discussing Java programs and usually the
term reference is used instead.

Consider the following declarations:

class Node {
String name;
int age;

}

With declarations

Node p = null, q = new Node("Bill",20);

two reference variables are created, p and q. The variable p is initialized to null. The
pointer null does not point anywhere. It is not able to point to any object of any
type; therefore, null is compatible with and can be assigned to a reference variable of
any type. After execution of the assignment

p = null;

we may not say that p refers to null or points to null, but that p becomes null or p
is null. The variable p is created to be used in the future as a reference to an object, but
currently, it does not refer to any. The variable q is a reference to an object that is an in-
stance of class Node. Forced by the built-in method new, the operating system through
its memory manager allocates enough space for one unnamed object that can be

S e c t i o n 1 . 4 J a v a a n d P o i n t e r s ■ 31

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

accessed, for now, only through the reference variable q. This reference is a pointer to
the address of the memory chunk allocated for the object just created, as shown in Fig-
ure 1.1a. Figure 1.1a represents the logic of object reference, whose implementation
can vary from one system to another and is usually much more intricate than the sim-
ple logic presented in this figure. For example, in Sun’s implementation of Java,q refers
to a handle that is a pair of pointers: one to the method table of the object and its type
(which is a pointer to the class whose instance the object is) and the other to the
object’s data (Figure 1.1b). In Microsoft’s implementation, q refers to the object’s data,
and the type and method table are pointed to by a hidden field of the object q. For sim-
plicity, the subsequent illustrations use the form reflecting the logic of object reference,
as in Figure 1.1a.

Keeping in mind how object access is implemented in Java helps explain the re-
sults of reference comparisons in Java. Consider the following code:

p = new Node("Bill",20);
System.out.print(p == q);

The printing statement outputs false because we compare references to two differ-
ent objects; that is, we compare two different references (addresses), not the objects.
To compare the objects’ contents, their data fields have to be compared one by one
using a method defined just for this reason. If Node includes the method

public boolean equals(Node n) {
return name.equals(n.name) && age == n.age;

}

then the printing statement

System.out.print(p.equals(q));

32 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

FIGURE 1.1 Object reference variables p and q: (a) logic of reference of q to an object;
(b) implementation of this reference.

(a) (b)

p p

q q handle

methods

type

data

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

outputs true. (This can be accomplished much more elegantly in C++ by overload-
ing the equality operator ==; that is, by defining a method that allows for application
of this operator to instances of class Node.)

The realization that object variables are really references to objects helps explain
the need for caution with the use of the assignment operator. The intention of the
declarations

Node node1 = new Node("Roger",20), node2 = node1;

is to create object node1, assign values to the two fields in node1, and then create ob-
ject node2 and initialize its fields to the same values as in node1. These objects are to
be independent entities so that assigning values to one of them should not affect val-
ues in the other. However, after the assignments

node2.name = "Wendy";
node2.age = 30;

the printing statement

System.out.println(node1.name+" "+node1.age+" "+node2.name+" "+ node2.age);

generates the output

Wendy 30 Wendy 30

Both the ages and names in the two objects are the same. What happened? Be-
cause node1 and node2 are pointers, the declarations of node1 and node2 result in
the situation illustrated in Figure 1.2a. After the assignments to the two fields of
node1, the situation is as in Figure 1.2b. To prevent this from happening, we have to
create a new copy of the object referenced by node1 and then make node2 become a

S e c t i o n 1 . 4 J a v a a n d P o i n t e r s ■ 33

FIGURE 1.2 Illustrating the necessity of using the method clone().

(b)(a)

(c) (d)

node1
node2

node1

node2 node2

node1

node2
node1

R o g e r

R o g e r

R o g e r

R o g e r

W e n d y

W e n d y

2020

20

20 30

30

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

reference to this copy. This can be done by defining the method clone() marked in
the interface Cloneable. A new definition of Node is now:

class Node implements Cloneable {
String name;
int age;
Node(String n, int a) {

name = n; age = a;
}
Node() {

this("",0);
}
public Object clone() {

return new Node(name,age);
}
public boolean equals(Node n) {

return name.equals(n.name) && age == n.age;
}

}

With this definition, the declarations should be

Node node1 = new Node("Roger",20), node2 = (Node) node1.clone();

which results in the situation shown in Figure 1.2c, so that the two assignments

node2.name = "Wendy";
node2.age = 30;

affect only the second object (Figure 1.2d).
The Java pointers are screened from the programmer. There is no pointer type in

Java. The lack of an explicit pointer type is motivated by the desire to eliminate harm-
ful behavior of programs. First, it is not possible in Java to have a nonnull reference to a
nonexisting object. If a reference variable is not null, it always points to an object be-
cause the programmer cannot destroy an object referenced by a variable. An object can
be destroyed in Pascal through the use of the function dispose() and in C++
through delete. The reason for using dispose() or delete is the need to return to
the memory manager memory space occupied by an unneeded object. Directly after
execution of dispose() or delete, pointer variables hold addresses of objects al-
ready returned to the memory manager. If these variables are not set to null or to the
address of an object accessible from the program, the so-called dangling reference prob-
lem arises, which can lead to a program crash. In Java, the dangling reference problem
does not arise. If a reference variable p changes its reference from one object to another,
and the old object is not referenced by any other variable q, then the space occupied by
the object is reclaimed automatically by the operating system through garbage collec-
tion (see Chapter 12). There is no equivalent in Java of dispose() or delete. Un-
needed objects are simply abandoned and included in the pool of free memory cells
automatically by the garbage collector during execution of the user program.

34 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Another reason for not having explicit pointers in Java is a constant danger of
having a reference to a memory location that has nothing to do with the logic of the
program. This would be possible through the pointer arithmetic that is not allowed in
Java, where such assignments as

(p + q).ch = 'b';
(++p).n = 6;

are illegal.
Interestingly, although explicit pointers are absent in Java, Java relies on pointers

more heavily than C/C++. An object declaration is always a declaration of reference to
an object; therefore, an object declaration

Node p;

should be followed by initializing the variable p either by explicitly using a construc-
tor, as in

p = new Node();

or by assigning a value from an already initialized variable, as in

p = q;

Because an array is also an object, the declaration

int a[10];

is illegal; this declaration is considered an attempt to define a variable whose name is
a[10]. A declaration has to be followed with initialization, which is often combined
with the declaration, as in

int[] a = new int[10];

In this way, Java does not allow for variables that name objects directly. Thus, the
dot notation used to access fields of the object, as in p.name, is really an indirect ref-
erence to the field name because p is not the name of the object with field name, but a
reference to (address of) this object. Fortunately, the programmer does not have to be
very concerned about this distinction because it is all a matter of language implemen-
tation. But as mentioned, an understanding of these implementation details helps
explain the results of some operations, as illustrated earlier by the operator ==.

1.5 VECTORS IN java.util

A useful class in the java.util package is the class Vector although it is considered
today to be a legacy class. A vector is a data structure with a contiguous block of mem-
ory, just like an array. Because memory locations are contiguous, they can be ran-
domly accessed so that the access time of any element of the vector is constant.
Storage is managed automatically so that on an attempt to insert an element into a full
vector, a larger memory block is allocated for the vector, the vector elements are
copied to the new block, and the old block is released. Vector is thus a flexible array;
that is, an array whose size can be dynamically changed.

S e c t i o n 1 . 5 V e c t o r s i n java.util ■ 35

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The class hierarchy in the package java.util is as follows:

Object ⇒ AbstractCollection ⇒ AbstractList ⇒ Vector

Figure 1.3 lists alphabetically the methods of class Vector. Some of these methods
are inherited from AbstractList; others are from AbstractCollection.

Figure 1.3 lists most of the methods of the class. Only methods iterator()
and listIterator(), inherited from class AbstractList, and methods
finalize(), getClass(), notify(), notifyAll(), and wait(), inherited
from class Object, are not included.

36 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

FIGURE 1.3 An alphabetical list of member functions in the class java.util.Vector.

Method Operation

void add(Object ob) insert object ob at the end of the vector

void add(int pos, Object ob) insert object ob at position pos after shifting elements at

positions following pos by one position; throw

ArrayIndexOutOfBoundsException if pos is out

of range

boolean addAll(Collection c) add all the elements from the collection c to the end of the vector;

return true if c is not empty; throw

ArrayIndexOutOfBoundsException if pos is out of range and

NullPointerException if c is null

boolean addAll(int pos, add all the elements from the collection c at the position pos of

Collection c) the vector after shifting the objects following position pos; throw

ArrayIndexOutOfBoundsException if pos is out of range and

NullPointerException if c is null

void addElement(Object ob) insert object ob at the end of the vector; same as add(ob)

int capacity() return the number of objects that can be stored in the vector

void clear() remove all the objects from the vector

Object clone() return a clone of the vector

boolean contains(Object ob) return true if the vector contains the object ob

boolean containsAll return true if the vector contains all of the objects in the

(Collection c) collection c; throw NullPointerException if c is null

void copyInto(Object a[]) copy objects from the vector to the object array a; throw

IndexOutOfBoundsException if the array is not large enough to

accommodate all objects from the vector and

NullPointerException if a is null

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 . 5 V e c t o r s i n java.util ■ 37

FIGURE 1.3 (continued)

Object elementAt(int pos) return the object at position pos; throw

ArrayIndexOutOfBoundsException if pos is out of range; same

as get(pos)

Enumeration elements() return an Enumeration object that enumerates all the objects in the

vector

void ensureCapacity(int minCap) extend the size of the vector to accommodate at least minCap
objects; do nothing if the size of the vector exceeds the minimum capacity

minCap

boolean equals(Object v) return true if the current vector and object v contain equal objects in the

same order

Object firstElement() return the first element in the vector; throw

NoSuchElementException if the vector is empty

Object get(int pos) return the object at position pos; throw

ArrayIndexOutOfBoundsException if pos is out

of range

int hashCode() return the hash code for the vector

int indexOf(Object ob) return the position of the first occurrence of object ob in the vector;

return –1 if ob is not found

int indexOf(Object ob, return the position of the first occurrence of object ob in the

int pos) vector beginning the search at position pos; return –1 if ob is not found;

throw IndexOutOfRangeException if pos < 0

void insertElementAt(Object insert object ob at position pos after shifting elements at

ob, int pos) positions following pos by one position; throw

ArrayIndexOutOfBoundsException if pos is out of range; same

as add(ob,pos)

boolean isEmpty() return true if the vector contains no elements,false otherwise

Object lastElement() return the last element in the vector; throw

NoSuchElementException if the vector is empty

int lastIndexOf(Object ob) return the position of the last occurrence of object ob in the vector; return

–1 if ob is not found

int lastIndexOf(Object ob, return the position of the last occurrence of object ob in the

int pos) vector beginning the backward search at position pos; return –1 if ob is

not found; throw IndexOutOfRangeException if pos is greater

than or equal to the size of the vector

boolean remove(Object ob) remove the first occurrence of ob in the vector and return true if ob was

in the vector

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

38 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

FIGURE 1.3 (continued)

Object remove(int pos) remove the object at position pos; throw

ArrayIndexOutOfBoundsException if pos is out

of range

boolean remove from the vector all the objects contained in collection c;

removeAll(Collection c) return true if any element was removed; throw

NullPointerException if c is null

boolean removeElement(Object ob) remove from the vector the first occurrence of ob; return true
if an occurrence of ob was found; same as remove (ob)

void removeElementAt(int remove the object at position pos; throw

pos) ArrayIndexOutOfBoundsException if pos is out

of range

void removeAllElements() remove all the objects from the vector; same as clear()

void removeRange(int first, remove objects starting at position first and ending at

int last) last-1 and then shift all the succeeding objects to fill the hole (protected

method)

boolean retainAll(Collection c) remove from the vector all objects that are not in the collection c;

return true if any object was removed; throw

ArrayIndexOutOfBoundsException if pos is out

of range

Object set(int pos, assign object ob to position pos and return the object that

Object ob) occupied this position before the assignment; throw

ArrayIndexOutOfBoundsException if pos is out

of range

void setElementAt(Object ob, assign object ob to position pos; throw

int pos) ArrayIndexOutOfBoundsException if pos is out

of range

void setSize(int sz) set size of the vector to sz; if current size is greater than sz,

add new cells with null objects; if the current size is smaller

than sz, discard the overflowing objects; throw

ArrayIndexOutOfBoundsException if sz < 0

int size() return the number of object in the vector

List subList(int first, return the sublist of the list (not its copy) containing elements

int last) from first to last-1; throw

ArrayIndexOutOfBoundsException if either first or last is out

of range and IllegalArgumentException
if last < first

Object[] toArray() copy all objects from the vector to a newly created array and return the

array

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An application of these methods is illustrated in Figure 1.4. The contents of
affected vectors are shown as comments on the line in which the methods are called.
The contents of vectors are output with an implicit call to the method toString() in

System.out.println("v1 = " + v1);

but in the program in Figure 1.4, only one such line is shown.
To use the class Vector, the program has to include the import instruction

import java.util.Vector;

Vector v1 is declared empty, and then new elements are inserted with the method
addElement(). Adding a new element to a vector is usually fast unless the vector is
full and has to be copied to a new block. But if the vector has some unused cells, it can
accommodate a new element immediately in constant time.

The status of the vector can be tested with two methods: size(), which returns
the number of elements currently in the vector, and capacity(), which returns the
number of cells in the vector. If the vector’s capacity is greater than its size, then a new
element can be inserted at the end of the vector immediately. How frequently a vector
is filled and has to be copied depends on the interplay between these two parameters,
size and capacity, and the third parameter, capacity increment. By default, a new
empty vector has capacity 10, and its capacity is doubled every time its size reaches the
current capacity. For a large vector, this may lead to wasted space. For example, a full
vector containing 50,000 elements has 100,000 cells after a new element arrives, but

S e c t i o n 1 . 5 V e c t o r s i n java.util ■ 39

FIGURE 1.3 (continued)

Object[] toArray(Object a[]) copy all objects from the vector to the array a if a is large

enough or to a newly created array and return the array;

throw ArrayStoreException if type of a is not a

supertype of the type of every element in the vector and

NullPointerException if a is null

String toString() return a string representation of the vector that contains

the string representation of all the objects

void trimToSize() change the capacity of the vector to the number of objects currently stored

in it

Vector() construct an empty vector

Vector(Collection c) construct a vector with objects copied from collection c;

throw NullPointerException if c is null

Vector(int initCap) construct a vector with the specified initial capacity; throw

IllegalArgumentException if initCap < 0

Vector(int initCap, construct a vector with the specified initial capacity and capacity

int capIncr) increment

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

40 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

FIGURE 1.4 A program demonstrating the operation of vector member functions.

import java.io.*;
import java.util.Vector;

class testVectors {
public static void main(String a[]) {

Vector v1 = new Vector(); // v1 = [], size = 0, capacity = 10
for (int j = 1; j <= 5; j++)

v1.addElement(new Integer(j)); // v1 = [1, 2, 3, 4, 5], size = 5,
// capacity = 10

System.out.println("v1 = " + v1);
Integer i = new Integer(3);
System.out.println(v1.indexOf(i) + " " + v1.indexOf(i,4)); // 2 -1
System.out.println(v1.contains(i) + " " + v1.lastIndexOf(i)); // true 2
Vector v2 = new Vector(3,4); // v2 = [], size = 0, capacity = 3
for (int j = 4; j <= 8; j++)

v2.addElement(new Integer(j)); // v2 = [4, 5, 6, 7, 8], size = 5,
// capacity = 7

v2.ensureCapacity(9); // v2 = [4, 5, 6, 7, 8], size = 5,
// capacity = 11

Vector v3 = new Vector(2); // v3 = [], size = 0, capacity = 2
v3.setSize(4); // v3 = [null, null, null, null],

// size = cap = 4
v3.setElementAt(new Integer(9),1); // v3 = [null, null, null, 9]
v3.setElementAt(new Integer(5),3); // v3 = [null, 9, null, 5]
v3.insertElementAt(v3.elementAt(3),1); // v3 = [null, 5, 9, null, 5],

// size = 5, cap = 8
v3.ensureCapacity(9); // v3 = [null, 5, 9, null, 5],

// size = 5, cap = 16
v3.removeElement(new Integer(9)); // v3 = [null, 5, null, 5]
v3.removeElementAt(v3.size()-2); // v3 = [null, 5, 5]
java.util.Enumeration ev = v3.elements();
while (ev.hasMoreElements())

System.out.print(ev.nextElement() + " ");
System.out.println();
v3.removeElementAt(0); // v3 = [5, 5]
v3.addAll(v1); // v3 = [5, 5, 1, 2, 3, 4, 5]
v3.removeAll(v2); // v3 = [1, 2, 3] = v3 - v2
v3.addAll(2,v1); // v3 = [1, 2, 1, 2, 3, 4, 5, 3]
v3.retainAll(v2); // v3 = [4, 5] = intersection(v3,v2)
v1.subList(1,3).clear(); // v1 = [1, 4, 5]
Vector v4 = new Vector(), v5;
v4.addElement(new Node("Jill",23));
v5 = (Vector) v4.clone(); // v4 = [(Jill, 23)]
((Node)v5.firstElement()).age = 34; // v4 = v5 = [(Jill, 34)]

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the user may never include more elements than 50,001. In such a situation, the
method trimToSize() should be used to reduce the waste.

When the user is reasonably sure of the maximum number of elements inserted
in a vector, the method ensureCapacity() should be used to set capacity to the de-
sired number so that all insertions are immediate. Otherwise, the user may set the ca-
pacity increment to a certain value so that when the vector is full, it is not doubled but
increased by the capacity increment. Consider the declaration of vector v2:

Vector v2 = new Vector (3,4);

Initially, capacity is set to 3, and because the capacity increment equals 4, the capacity of
the vector after inserting the fourth element equals 7. With this capacity, the statement

v2.ensureCapacity(9);

raises the capacity to 11 because it uses the capacity increment. Because the capacity
increment for vector v3 is not specified in its declaration, then when its capacity
equals 8, the statement

v3.ensureCapacity(9);

causes the capacity to be doubled to 16.
The method ensureCapacity() affects only the capacity of the vector, not

its content. The method setSize() affects its content and possibly the capacity. For
example, the empty vector v2 of capacity 2 changes to v2 = [null, null, null,
null] after execution of

v2.setSize(4);

and its capacity equals 4.
The contents of v2 are potentially dangerous if a method is executed that expects

nonnull objects. For example, v2.toString() used in a printing statement raises
NullPointerException. (To print a vector safely, a loop should be used in which
v.elementAt(i) is printed.)

The method addElement() adds an element at the end of the vector. The inser-
tion of an element in any other position can be performed with insertElementAt().

This reflects the fact that adding a new element inside the vector is a complex opera-
tion because it requires that all the elements are moved by one position to make room
for the new element.

The method elements() puts vector elements in an object of Enumeration
type. The loop shown in the program works the same for any data structure that re-
turns an Enumeration object. In this way, data contained in different data structures
become comparable by, as it were, equalizing the data structures themselves by using
the common ground, the type Enumeration.

The method clone() should be used carefully. This method clones the array im-
plementing the vector, but not the objects in the array. After the method is finished,
the cloned vector includes references to the same objects as the vector from which it
was cloned. In Figure 1.4, vector v4 contains one object of type Node (as defined in
Section 1.4), and then vector v5, a clone of v4, references the very same object from
position 0. This is evident after the object is updated through reference v5; both v4
and v5 now reference the same updated object.

S e c t i o n 1 . 5 V e c t o r s i n java.util ■ 41

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1.6 DATA STRUCTURES AND OBJECT-ORIENTED PROGRAMMING

Although the computer operates on bits, we do not usually think in these terms; in
fact, we would not like to. Although an integer is a sequence of 32 bits, we prefer see-
ing an integer as an entity with its own individuality, which is reflected in operations
that can be performed on integers but not on variables of other types. As an integer
uses bits as its building blocks, so other objects can use integers as their atomic ele-
ments. Some data types are already built into a particular language, but some data
types can be, and need to be, defined by the user. New data types have a distinctive
structure, a new configuration of their elements, and this structure determines the be-
havior of objects of these new types. The task given to the data structures domain is to
explore such new structures and investigate their behavior in terms of time and space
requirements. Unlike the object-oriented approach, where we start with behavior and
then try to find the most suitable data type that allows for an efficient performance of
desirable operations, we now start with a data type specification with some data
structure and then look at what it can do, how it does it, and how efficiently. The data
structures field is designed for building tools to be incorporated in and used by pro-
grams and for finding data structures that can perform certain operations speedily
and without imposing too much burden on computer memory. This field is interested
in building classes by concentrating on the mechanics of these classes, on their gears
and cogs, which in most cases are not visible to the user of the classes. The data struc-
tures field investigates the operability of these classes and its improvement by modify-
ing the data structures to be found inside the classes, because it has direct access to
them. It sharpens tools and advises the user to what purposes they can be applied. Be-
cause of inheritance, the user can add some more operations to these classes and try
to squeeze from them more than the class designer did.

The data structures field performs best if done in the object-oriented fashion. In
this way, it can build the tools it intends without the danger that these tools will be in-
advertently misused in the application. By encapsulating the data structures into a
class and making public only what is necessary for proper usage of the class, the data
structures field can develop tools whose functioning is not compromised by unneces-
sary tampering.

1.7 CASE STUDY: RANDOM ACCESS FILE

From the perspective of the operating systems, files are collections of bytes, regardless
of their contents. From the user’s perspective, files are collections of words, numbers,
data sequences, records, and so on. If the user wants to access the fifth word in a text
file, a searching procedure goes sequentially through the file starting at position 0, and
checks all of the bytes along the way. It counts the number of sequences of blank char-
acters, and after it skips four such sequences (or five if a sequence of blanks begins the
file), it stops because it encounters the beginning of the fifth nonblank sequence or
the fifth word. This word can begin at any position of the file. It is impossible to go to
a particular position of any text file and be certain that this is a starting position of the
fifth word of the file. Ideally, we want to go directly to a certain position of the file and

42 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

be sure that the fifth word begins in it. The problem is caused by the lengths of the
preceding words and sequences of blanks. If we know that each word occupies the
same amount of space, then it is possible to go directly to the fifth word by going to
the position 4·length(word). But because words are of various lengths, this can be ac-
complished by assigning the same number of bytes to each word; if a word is shorter,
some padding characters are added to fill up the remaining space; if it is longer, then
the word is trimmed. In this way, a new organization is imposed on the file. The file is
now treated not merely as a collection of bytes, but as a collection of records; in our
example, each record consists of one word. If a request comes to access the fifth word,
the word can be directly accessed without looking at the preceding words. With the
new organization, we created a random access file.

A random access file allows for direct access of each record. The records usually
include more items than one word. The preceding example suggests one way of creat-
ing a random access file, namely, by using fixed-length records. Our task in this case
study is to write a generic program that generates a random access file for any type of
record. The workings of the program are illustrated for a file containing personal
records, each record consisting of five fields (social security number, name, city, year
of birth, and salary), and for a student file that stores student records. The latter
records have the same fields as personal records, plus information about academic
major. This allows us to illustrate inheritance.

In this case study, a generic random access file program inserts a new record into
a file, finds a record in the file, and modifies a record. The name of the file has to be
supplied by the user, and if the file is not found, it is created; otherwise, it is open for
reading and writing. The program is shown in Figure 1.5.

The program uses a class IOmethods and the interface DbObject. A user-
defined class that specifies one record in the database is the extension IOmethods of
an implementation of DbObject.

The class Database is generic so that it can operate on any random access file. Its
generic character relies on polymorphism. Consider the method find(), which de-
termines whether a record is in the file. It performs the search sequentially, comparing
each retrieved record tmp to the sought record d using the method equals() de-
fined for the particular class (or rather, redefined because the method is inherited
from the class Object from which any other class is derived). The object d is passed
in as a parameter to find(). But d must not be changed because its value is needed
for comparison. Therefore, another object is needed to read data from the file. This
object is created with the method copy(), which takes a one-cell array as a parameter
and assigns the reference to a copy of d created by new in copy() to the only cell of
the array. If parameter copy() were of type DbObject, not DbObject[], the refer-
ence would be discarded because the parameter would be passed by value. Now,
the array is also passed by value, but its cell is changed permanently. The cell tmp[0]
now contains a copy of d—in particular, its type—so that the system uses methods
of the particular class; for example, tmp[0].readFromFile() is taken from class
Personal if d is an object of this type, and from Student if d is a Student object.

The method find() uses to some extent the fact that the file is random by scru-
tinizing it record by record, not byte by byte. To be sure, the records are built out of
bytes and all the bytes belonging to a particular record have to be read, but only the
bytes required by the equality operator are participating in the comparison.

S e c t i o n 1 . 7 C a s e S t u d y : R a n d o m A c c e s s F i l e ■ 43

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

44 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

FIGURE 1.5 Listing of a program to manage random access files.

//************************* DbObject.java *************************

import java.io.*;

public interface DbObject {
public void writeToFile(RandomAccessFile out) throws IOException;
public void readFromFile(RandomAccessFile in) throws IOException;
public void readFromConsole() throws IOException;
public void writeLegibly() throws IOException;
public void readKey() throws IOException;
public void copy(DbObject[] db);
public int size();

}

//************************* Personal.java *************************

import java.io.*;

public class Personal extends IOmethods implements DbObject {
protected final int nameLen = 10, cityLen = 10;
protected String SSN, name, city;
protected int year;
protected long salary;
protected final int size = 9*2 + nameLen*2 + cityLen*2 + 4 + 8;
Personal() {
}
Personal(String ssn, String n, String c, int y, long s) {

SSN = ssn; name = n; city = c; year = y; salary = s;
}
public int size() {

return size;
}
public boolean equals(Object pr) {

return SSN.equals(((Personal)pr).SSN);
}
public void writeToFile(RandomAccessFile out) throws IOException {

writeString(SSN,out);
writeString(name,out);
writeString(city,out);
out.writeInt(year);
out.writeLong(salary);

}
public void writeLegibly() {

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 . 7 C a s e S t u d y : R a n d o m A c c e s s F i l e ■ 45

FIGURE 1.5 (continued)

System.out.print("SSN = " + SSN + ", name = " + name.trim()
+ ", city = " + city.trim() + ", year = " + year
+ ", salary = " + salary);

}
public void readFromFile(RandomAccessFile in) throws IOException {

SSN = readString(9,in);
name = readString(nameLen,in);
city = readString(cityLen,in);
year = in.readInt();
salary = in.readLong();

}
public void readKey() throws IOException {

System.out.print("Enter SSN: ");
SSN = readLine();

}
public void readFromConsole() throws IOException {

System.out.print("Enter SSN: ");
SSN = readLine();
System.out.print("Name: ");
name = readLine();
for (int i = name.length(); i < nameLen; i++)

name += ' ';
System.out.print("City: ");
city = readLine();
for (int i = city.length(); i < cityLen; i++)

city += ' ';
System.out.print("Birthyear: ");
year = Integer.valueOf(readLine().trim()).intValue();
System.out.print("Salary: ");
salary = Long.valueOf(readLine().trim()).longValue();

}
public void copy(DbObject[] d) {

d[0] = new Personal(SSN,name,city,year,salary);
}

}

//************************* Student.java *************************

import java.io.*;

public class Student extends Personal {
public int size() {

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

46 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

FIGURE 1.5 (continued)

return super.size() + majorLen*2;
}
protected String major;
protected final int majorLen = 10;
Student() {

super();
}
Student(String ssn, String n, String c, int y, long s, String m) {

super(ssn,n,c,y,s);
major = m;

}
public void writeToFile(RandomAccessFile out) throws IOException {

super.writeToFile(out);
writeString(major,out);

}
public void readFromFile(RandomAccessFile in) throws IOException {

super.readFromFile(in);
major = readString(majorLen,in);

}
public void readFromConsole() throws IOException {

super.readFromConsole();
System.out.print("Enter major: ");
major = readLine();
for (int i = major.length(); i < nameLen; i++)

major += ' ';
}
public void writeLegibly() {

super.writeLegibly();
System.out.print(", major = " + major.trim());

}
public void copy(DbObject[] d) {

d[0] = new Student(SSN,name,city,year,salary,major);
}

}

//************************* Database.java *************************

import java.io.*;

public class Database {
private RandomAccessFile database;
private String fName = new String();;

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 . 7 C a s e S t u d y : R a n d o m A c c e s s F i l e ■ 47

Continues

FIGURE 1.5 (continued)

private IOmethods io = new IOmethods();
Database() throws IOException {

System.out.print("File name: ");
fName = io.readLine();

}
private void add(DbObject d) throws IOException {

database = new RandomAccessFile(fName,"rw");
database.seek(database.length());
d.writeToFile(database);
database.close();

}
private void modify(DbObject d) throws IOException {

DbObject[] tmp = new DbObject[1];
d.copy(tmp);
database = new RandomAccessFile(fName,"rw");
while (database.getFilePointer() < database.length()) {

tmp[0].readFromFile(database);
if (tmp[0].equals(d)) {

tmp[0].readFromConsole();
database.seek(database.getFilePointer()-d.size());
tmp[0].writeToFile(database);
database.close();
return;

}
}
database.close();
System.out.println("The record to be modified is not in the

database");
}
private boolean find(DbObject d) throws IOException {

DbObject[] tmp = new DbObject[1];
d.copy(tmp);
database = new RandomAccessFile(fName,"r");
while (database.getFilePointer() < database.length()) {

tmp[0].readFromFile(database);
if (tmp[0].equals(d)) {

database.close();
return true;

}
}
database.close();

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

48 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

FIGURE 1.5 (continued)

return false;
}
private void printDb(DbObject d) throws IOException {

database = new RandomAccessFile(fName,"r");
while (database.getFilePointer() < database.length()) {

d.readFromFile(database);
d.writeLegibly();
System.out.println();

}
database.close();

}
public void run(DbObject rec) throws IOException {

String option;
System.out.println("1. Add 2. Find 3. Modify a record; 4. Exit");
System.out.print("Enter an option: ");
option = io.readLine();
while (true) {

if (option.charAt(0) == '1') {
rec.readFromConsole();
add(rec);

}
else if (option.charAt(0) == '2') {

rec.readKey();
System.out.print("The record is ");
if (find(rec) == false)

System.out.print("not ");
System.out.println("in the database");

}
else if (option.charAt(0) == '3') {

rec.readKey();
modify(rec);

}
else if (option.charAt(0) != '4')

System.out.println("Wrong option");
else return;
printDb(rec);
System.out.print("Enter an option: ");
option = io.readLine();

}
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The method modify() updates information stored in a particular record. The
record is first retrieved from the file, also using sequential search, and the new in-
formation is read from the user using the method readFromFile() defined for a
particular class. To store the updated record tmp[0] in the file, modify() forces
the file pointer database to go back to the beginning of the record tmp[0] that
has just been read; otherwise, the record following tmp[0] in the file would be
overwritten. The starting position of tmp can be determined immediately because
each record occupies the same number of bytes; therefore, it is enough to jump back
the number of bytes occupied by one record. This is accomplished by calling
database.seek(database.getFilePointer()-d.size()), where size()
must be defined for the particular class.

The generic Database class includes two more methods. Method add() places a
record at the end of file. Method printDb() prints the contents of the file.

To see the class Database in action, we have to define a specific class that speci-
fies the format of one record in a random access file. As an example, we define the
class Personal with five fields, SSN, name, city, year, and salary. The first three
fields are strings, but only SSN is always of the same size. To have slightly more flexi-
bility with the other two strings, two constants, nameLen and cityLen, are defined.

Storing data from one object requires particular care, which is the task of the
method writeToFile(). The SSN field is the simplest to handle. A social security num-
ber always includes nine digits; therefore, the output operator << can be used. However,
the lengths of names and cities vary from record to record, and yet the sections of a
record in the data file designated for these two fields should always have the same length.
To guarantee this, the method readFromConsole() adds trailing blanks to the strings.

Another problem is posed by the numerical fields, year and salary, particu-
larly the latter field. If salary is written to the file with the method printLong(),

then the salary 50,000 is written as a 5-byte-long string '50000', and the salary

S e c t i o n 1 . 7 C a s e S t u d y : R a n d o m A c c e s s F i l e ■ 49

FIGURE 1.5 (continued)

//************************ UseDatabase.java ************************

import java.io.*;

public class UseDatabase {
static public void main(String[]) throws IOException {

// (new Database()).run(new Personal());
(new Database()).run(new Student());

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

100,000 as a 6-byte-long string '100000', which violates the condition that each
record in the random access file should be of the same length. To avoid the problem,
the numbers are stored in binary form. For example, 50,000 is represented in the field
salary as a string of 32 bits, 00000000000000001100001101010000. We can now
treat this sequence of bits as representing not a long number, but a string of four char-
acters, 00000000, 00000000, 11000011, 01010000; that is, the characters whose ASCII
codes are, in decimal, numbers 0, 0, 195, and 80. In this way, regardless of the value of
salary, the value is always stored in 4 bytes. This is accomplished in Java with the
method writeLong().

This method of storing records in a data file poses a readability problem, par-
ticularly in the case of numbers. For example, 50,000 is stored as 4 bytes: two null
characters, a special character, and a capital P. For a human reader, it is far from obvi-
ous that these characters represent 50,000. Therefore, a special routine is needed
to output records in readable form. This is accomplished by using the method
writeLegibly(), which explains why this program uses two methods for reading
records and two for writing records: one is for maintaining data in a random access
file, and the other is for reading and writing data in readable form.

To test the flexibility of the Database class, another user class is defined, class
Student. This class is also used to show one more example of inheritance.

Class Student uses the same data fields as class Personal by being defined as a
class derived from Personal plus one more field, a string field major. Processing
input and output on objects of class type Student is very similar to that for class
Personal, but the additional field has to be accounted for. This is done by redefin-
ing methods from the base class and at the same time reusing them. Consider the
method writeToFile() for writing student records in a data file in fixed-length
format:

public void writeToFile(RandomAccessFile out) throws IOException{
super.writeToFile(out);
writeString(major,out);

}

The method uses the base class’s writeTofile() to initialize the five fields, SSN,

name, city, year, and salary, and initializes the field major. Note that a special
variable super must be used to indicate clearly that writeToFile() being defined
for class Student calls writeToFile() already defined in base class Personal.

However, class Student inherits without the modification method readKey() and
the method equals(), because the same key is used in both Personal and
Student objects to uniquely identify any record, namely, SSN.

50 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 . 8 E x e r c i s e s ■ 51

1.8 EXERCISES

1. What should be the type of constructors defined in classes?

2. Assume that classA includes a private variable k, a variable m with no modifier, a
private protected variable n, a protected variable p, and a public variable q.

Moreover, classB is derived from classA, classC is not derived from classA,

and all three classes are in the same package. In addition, classD is derived from
classA, classE is not derived from classA, and classA is in a different package
than classD and classE. Which of the five variables defined in classA can be used
by any of the four other classes?

3. What happens if the declaration of C:

class C {
void process1(char ch) {

System.out.println("Inside process1 in C " + ch);
}
void process2(char ch) {

System.out.println("Inside process2 in C " + ch);
}
void process3(char ch) {

System.out.println("Inside process3 in C " + ch);
process2(ch);

}
}

is followed by the following declaration of its extension:

class ExtC extends C {
void process1(int n) {

System.out.println("Inside process1 in ExtC " + n);
}
void process2(char ch) {

System.out.println("Inside process2 in ExtC " + ch);
}
void process4(int n) {

System.out.println("Inside process4 in Ext C " + n);
}

}

Which methods are invoked if the declaration of three objects

ExtC object1 = new ExtC();
C object2 = new ExtC(), object3 = new ExtC();

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

52 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

is followed by these statements; indicate any problems that these statements
may cause:

object1.process1(1000);
object1.process4(2000);
object2.process1(3000);
object2.process4(4000);
object3.process1('P');
object3.process2('Q');
object3.process3('R');

4. For the declaration of I1:

interface I1 {
int I1f1();
void I1f2(int i);

}

identify the errors.

a. in the declaration of the interface I2:

interface I2 extends I1 {
double I2f1();
void I2f2(int i);
int I1f1();
double I2f1() { return 10; }
private int AC1f4();
private int n = 10;

}

b. in the declaration of class CI1:

class CI1 implements I1 {
int I1f1() { }
void I1f2(int i) { }
int CI1f3() { }

}

c. and in the declaration of object c6:

I1 c6 = new I1();

5. Identify the errors:

a. abstract class AC1 {
int AC1f1() { }
void AC1f2(int i) { }
int AC1f3();

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 . 9 P r o g r a m m i n g A s s i g n m e n t s ■ 53

b. interface C6 extends CAC1 { . . . }

where CAC1 is a class.

c. class CAC1AC2 extends AC1, AC2 { . . . }

where AC1 and AC2 are two abstract classes.

d. AC1 c7 = new AC1();

where AC1 is an abstract class.

6. What happens if the class SomeInfo instead of the definition of equals() from
Section 1.2.4 uses the following definition of this method:

public boolean equals(SomeInfo si) {
return n == si.n;

}

1.9 PROGRAMMING ASSIGNMENTS

1. Write a Fraction class that defines adding, subtracting, multiplying, and dividing
fractions. Then write a method for reducing factors and methods for inputting and
outputting fractions.

2. Write a class Quaternion that defines the four basic operations of quaternions and
the two I/O operations. Quaternions, as defined in 1843 by William Hamilton and
published in his Lectures on Quaternions in 1853, are an extension of complex num-
bers. Quaternions are quadruples of real numbers, (a,b,c,d) = a + bi + cj + dk, where
1 = (1,0,0,0), i = (0,1,0,0), j = (0,0,1,0), and k = (0,0,0,1) and the following equations
hold:

i2 = j2 = k2 = –1

ij = k, jk = i, ki = j, ji = –k, kj = –i, ik = –j

(a + bi + cj + dk) + (p + qi + rj + sk)

= (a + p) + (b + q)i + (c + r)j + (d + s)k

(a + bi + cj + dk) · (p + qi + rj + sk)

= (ap – bq – cr – ds) + (aq + bp + cs – dr)i

+ (ar + cp + dq – bs)j + (as + dp + br – cq)k.

Use these equations in implementing a quaternion class.

3. Write a program to reconstruct a text from a concordance of words. This was a real
problem of reconstructing some unpublished texts of the Dead Sea Scrolls using
concordances. For example, here is William Wordsworth’s poem, Nature and the Poet,
and a concordance of words corresponding with the poem.

So pure the sky, so quiet was the air!
So like, so very like, was day to day!
Whene’er I look’d, thy image still was there;
It trembled, but it never pass’d away.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

54 ■ C h a p t e r 1 O b j e c t - O r i e n t e d P r o g r a m m i n g U s i n g J a v a

The 33-word concordance is as follows:

1:1 so quiet was the *air!
1:4 but it never pass’d *away.
1:4 It trembled, *but it never
1:2 was *day to day!
1:2 was day to *day!
1:3 thy *image still was there;
.
1:2 so very like, *was day
1:3 thy image still *was there;
1:3 *Whene’er I look’d,

In this concordance, each word is shown in context of up to five words, and the word
referred to on each line is preceded with an asterisk. For larger concordances, two
numbers have to be included, a number corresponding with a poem and a number of
the line where the words can be found. For example, assuming that 1 is the number of
Nature and the Poet, line “1:4 but it never pass’d *away.” means that the word “away” is
found in this poem in line 4. Note that punctuation marks are included in the context.

Write a program that loads a concordance from a file and creates a vector where each
cell is associated with one line of the concordance. Then, using a binary search, recon-
struct the text.

4. Modify the program from the case study by maintaining an order during insertion of
new records into the data file. This requires defining the method compareTo() in
Personal and in Student to be used in a modified method add() in Database.

The method finds a proper position for a record d, moves all the records in the file to
make room for d, and writes d into the file. With the new organization of the data file,
find() and modify() can also be modified. For example, find() stops sequential
search when it encounters a record greater than the record looked for (or reaches the
end of file). A more efficient strategy can use binary search, discussed in Section 2.7.

5. Write a program that maintains an order in the data file indirectly. Use a vector of file
position pointers (obtained through getFilePointer()) and keep the vector in
sorted order without changing the order of records in the file.

6. Modify the program from the case study to remove records from the data file. Define
method isNull() in classes Personal and Student to determine that a record is
null. Define also method writeNullToFile() in the two classes to overwrite a
record to be deleted by a null record. A null record can be defined as having a non-
numeric character (a tombstone) in the first position of the SSN field. Then define
method remove() in Database (very similar to modify()), which locates the
position of a record to be deleted and overwrites it with the null record. After a ses-
sion is finished, a Database method purge() destructor should be invoked which
copies nonnull records to a new data file, deletes the old data file, and renames the
new data file with the name of the old data file.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

B i b l i o g r a p h y ■ 55

BIBLIOGRAPHY

Object-Oriented Programming

Cardelli, Luca, and Wegner, Peter, “On Understanding Types, Data Abstraction, and Polymor-
phism,” Computing Surveys 17 (1985), 471–522.

Ege, Raimund K., Programming in an Object-Oriented Environment, San Diego: Academic
Press, 1992.

Khoshafian, Setrag, and Razmik, Abnous, Object Orientation: Concepts, Languages, Databases,
User Interfaces, New York: Wiley, 1995.

Meyer, Bertrand, Object-Oriented Software Construction, Upper Saddle River, NJ: Prentice Hall,
1997.

Java

Dunn, Douglas, Java Rules, Reading, MA: Addison-Wesley, 2002.

Gittleman, Art, Computing with Java, El Granada, CA: Scott/Jones, 2002.

Gosling, James, Joy, Bill, and Bracha, Silad, The Java Language Specification, Boston: Addison-
Wesley, 2000.

Naughton, Patrick, and Schildt, Herbert, Java 2: The Complete Reference, Berkeley, CA: Osborne
McGraw-Hill, 1999.

Weber, Joe (ed.), Using Java 2 Platform, Indianapolis: Que, 1999.

Weiss, Mark A., Data Structures and Problem Solving Using Java, Reading, MA: Addison-Wesley,
2001.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2.1 COMPUTATIONAL AND ASYMPTOTIC COMPLEXITY

The same problem can frequently be solved with algorithms that differ in efficiency.
The differences between the algorithms may be immaterial for processing a small
number of data items, but these differences grow with the amount of data. To com-
pare the efficiency of algorithms, a measure of the degree of difficulty of an algorithm
called computational complexity was developed by Juris Hartmanis and Richard E.
Stearns.

Computational complexity indicates how much effort is needed to apply an algo-
rithm or how costly it is. This cost can be measured in a variety of ways, and the par-
ticular context determines its meaning. This book concerns itself with the two
efficiency criteria: time and space. The factor of time is usually more important than
that of space, so efficiency considerations usually focus on the amount of time elapsed
when processing data. However, the most inefficient algorithm run on a Cray com-
puter can execute much faster than the most efficient algorithm run on a PC, so run
time is always system-dependent. For example, to compare 100 algorithms, all of
them would have to be run on the same machine. Furthermore, the results of run-
time tests depend on the language in which a given algorithm is written, even if the
tests are performed on the same machine. If programs are compiled, they execute
much faster than when they are interpreted. A program written in C or Ada may be 20
times faster than the same program encoded in BASIC or LISP.

To evaluate an algorithm’s efficiency, real-time units such as microseconds and
nanoseconds should not be used. Rather, logical units that express a relationship be-
tween the size n of a file or an array and the amount of time t required to process the
data should be used. If there is a linear relationship between the size n and time t—that
is, t1 = cn1—then an increase of data by a factor of 5 results in the increase of the execu-
tion time by the same factor; if n2 = 5n1, then t2 = 5t1. Similarly, if t1 = log2n, then dou-
bling n increases t by only one unit of time. Therefore, if t2 = log2(2n), then t2 = t1 + 1.

A function expressing the relationship between n and t is usually much more
complex, and calculating such a function is important only in regard to large bodies
of data; any terms that do not substantially change the function’s magnitude should

56

Complexity
Analysis2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

be eliminated from the function. The resulting function gives only an approximate
measure of efficiency of the original function. However, this approximation is suffi-
ciently close to the original, especially for a function that processes large quantities of
data. This measure of efficiency is called asymptotic complexity, and is used when dis-
regarding certain terms of a function to express the efficiency of an algorithm or
when calculating a function is difficult or impossible and only approximations can be
found. To illustrate the first case, consider the following example:

f (n) = n2 + 100n + log10n + 1,000 (2.1)

For small values of n, the last term, 1,000, is the largest. When n equals 10, the second
(100n) and last (1,000) terms are on equal footing with the other terms, making the
same contribution to the function value. When n reaches the value of 100, the first
and the second terms make the same contribution to the result. But when n becomes
larger than 100, the contribution of the second term becomes less significant. Hence,
for large values of n, due to the quadratic growth of the first term (n2), the value of the
function f depends mainly on the value of this first term, as Figure 2.1 demonstrates.
Other terms can be disregarded for large n.

S e c t i o n 2 . 2 B i g - O N o t a t i o n ■ 57

FIGURE 2.1 The growth rate of all terms of function f (n) = n2 + 100n + log10n + 1,000.

n f (n) n 2 100n log10n 1,000

Value Value % Value % Value % Value %

1 1,101 1 0.1 100 9.1 0 0.0 1,000 90.83

10 2,101 100 4.76 1,000 47.6 1 0.05 1,000 47.60

100 21,002 10,000 47.6 10,000 47.6 2 0.001 1,000 4.76

1,000 1,101,003 1,000,000 90.8 100,000 9.1 3 0.0003 1,000 0.09

10,000 101,001,004 100,000,000 99.0 1,000,000 0.99 4 0.0 1,000 0.001

100,000 10,010,001,005 10,000,000,000 99.9 10,000,000 0.099 5 0.0 1,000 0.00

2.2 BIG-O NOTATION

The most commonly used notation for specifying asymptotic complexity—that is, for
estimating the rate of function growth—is the big-O notation introduced in 1894 by
Paul Bachmann. Given two positive-valued functions f and g, consider the following
definition:

Definition 1: f (n) is O(g(n)) if there exist positive numbers c and N such that f (n) ≤
cg(n) for all n ≥ N.

This definition reads: f is big-O of g if there is a positive number c such that f is
not larger than cg for sufficiently large ns; that is, for all ns larger than some number

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

N. The relationship between f and g can be expressed by stating either that g(n) is
an upper bound on the value of f (n) or that, in the long run, f grows at most as fast
as g.

The problem with this definition is that, first, it states only that there must exist
certain c and N, but it does not give any hint of how to calculate these constants. Sec-
ond, it does not put any restrictions on these values and gives little guidance in situa-
tions when there are many candidates. In fact, there are usually infinitely many pairs
of cs and Ns that can be given for the same pair of functions f and g. For example, for

f (n) = 2n2 + 3n + 1 = O(n2) (2.2)

where g(n) = n2, candidate values for c and N are shown in Figure 2.2.

We obtain these values by solving the inequality:

2n2 + 3n + 1 ≤ cn2

or equivalently

2 + �
n
3

� + �
n
1
2

� ≤ c

for different ns. The first inequality results in substituting the quadratic function from
Equation 2.2 for f (n) in the definition of the big-O notation and n2 for g(n). Because
it is one inequality with two unknowns, different pairs of constants c and N for the
same function g(= n2) can be determined. To choose the best c and N, it should be de-
termined for which N a certain term in f becomes the largest and stays the largest. In
Equation 2.2, the only candidates for the largest term are 2n2 and 3n; these terms can
be compared using the inequality 2n2 > 3n that holds for n > 1. Thus, N = 2 and c ≥ 3�

3

4
�,

as Figure 2.2 indicates.
What is the practical significance of the pairs of constants just listed? All of them

are related to the same function g(n) = n2 and to the same f (n). For a fixed g, an infinite
number of pairs of cs and Ns can be identified. The point is that f and g grow at the
same rate. The definition states, however, that g is almost always greater than or equal
to f if it is multiplied by a constant c. “Almost always” means for all ns not less than a
constant N. The crux of the matter is that the value of c depends on which N is chosen,
and vice versa. For example, if 1 is chosen as the value of N—that is, if g is multiplied by
c so that cg(n) will not be less than f right away—then c has to be equal to 6 or greater. If
cg(n)is greater than or equal to f (n) starting from n = 2, then it is enough that c is equal
to 3.75. The constant c has to be at least 3�

1

9
� if cg(n) is not less than f (n) starting from

58 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

FIGURE 2.2 Different values of c and N for function f(n) = 2n2 + 3n + 1 = O(n2) calculated
according to the definition of big-O.

c ≥ 6 ≥ 3�
3
4

� ≥ 3�
1
9

� ≥ 2�
1
1

3
6
� ≥ 2�

1
2

6
5
� . . . → 2

N 1 2 3 4 5 . . . → ∞

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

n = 3. Figure 2.3 shows the graphs of the functions f and g. The function g is plotted
with different coefficients c. Also, N is always a point where the functions cg(n) and f
intersect each other.

The inherent imprecision of the big-O notation goes even further, because there
can be infinitely many functions g for a given function f. For example, the f from
Equation 2.2 is big-O not only of n2, but also of n3, n4, . . . , nk, . . . for any k ≥ 2. To
avoid this embarrassment of riches, the smallest function g is chosen, n2 in this case.

The approximation of function f can be refined using big-O notation only for the
part of the equation suppressing irrelevant information. For example, in Equation
2.1, the contribution of the third and last terms to the value of the function can be
omitted (see Equation 2.3).

f (n) = n2 + 100n + O(log10n) (2.3)

Similarly, the function f in Equation 2.2 can be approximated as

f (n) = 2n2 + O(n) (2.4)

2.3 PROPERTIES OF BIG-O NOTATION

Big-O notation has some helpful properties that can be used when estimating the effi-
ciency of algorithms.

Fact 1. (transitivity) If f (n) is O(g(n)) and g(n) is O(h(n)), then f (n) if O(h(n)).
(This can be rephrased as O(O(g(n))) is O(g(n)).)

S e c t i o n 2 . 3 P r o p e r t i e s o f B i g - O N o t a t i o n ■ 59

FIGURE 2.3 Comparison of functions for different values of c and N from Figure 2.2.

70

60

50

40

30

20

10

0 1 2 3 4 5

n2

f (n) � 2n2
 � 3n � 1

2

1
9

16
25

n22 13
16

n23

3
4 n23

6n2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Proof: According to the definition, f (n) is O(g(n)) if there exist positive numbers c1
and N1 such that f (n) ≤ c1g(n) for all n ≥ N1, and g(n) is O(h(n)) if there exist positive
numbers c2 and N2 such that g(n) ≤ c2h(n) for all n ≥ N2. Hence, c1g(n) ≤ c1c2h(n) for
n ≥ N where N is the larger of N1 and N2. If we take c = c1c2, then f (n) ≤ ch(n) for
n ≥ N, which means that f is O(h(n)).

Fact 2. If f (n) is O(h(n)) and g(n) is O(h(n)), then f (n) + g(n) is O(h(n)).

Proof: After setting c equal to c1 + c2, f (n) + g(n) ≤ ch(n).

Fact 3. The function ank is O(nk).

Proof: For the inequality ank ≤ cnk to hold, c ≥ a is necessary.

Fact 4. The function nk is O(nk+j) for any positive j.

Proof: The statement holds if c = N = 1.

It follows from all these facts that every polynomial is big-O of n raised to the
largest power, or

f (n) = akn
k + ak–1n

k–1 + · · · + a1n + a0 is O(nk)

It is also obvious that in the case of polynomials, f (n) is O(nk+j) for any positive j.
One of the most important functions in the evaluation of the efficiency of algo-

rithms is the logarithmic function. In fact, if it can be stated that the complexity of an
algorithm is on the order of the logarithmic function, the algorithm can be regarded
as very good. There are an infinite number of functions that can be considered better
than the logarithmic function, among which only a few, such as O(lg lg n) or O(1),
have practical bearing. Before we show an important fact about logarithmic func-
tions, let us state without proof:

Fact 5. If f (n) = cg(n), then f (n) is O(g(n)).

Fact 6. The function loga n is O(logb n) for any positive numbers a and b ≠ 1.

This correspondence holds between logarithmic functions. Fact 6 states that regard-
less of their bases, logarithmic functions are big-O of each other; that is, all these
functions have the same rate of growth.

Proof: Letting loga n = x and logb n = y, we have, by the definition of logarithm,
ax = n and by = n.

Taking ln of both sides results in

x ln a = ln n and y ln b = ln n

Thus
x ln a = y ln b,

ln a loga n = ln b logb n,

loga n = �
l
l
n
n

a
b

� logb n = c logb n

60 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

which proves that loga n and logb n are multiples of each other. By Fact 5, loga n is
O(logb n).

Because the base of the logarithm is irrelevant in the context of big-O notation,
we can always use just one base and Fact 6 can be written as

Fact 7. loga n is O(lg n) for any positive a ≠ 1, where lg n = log2 n.

2.4 Ω AND Θ NOTATIONS

Big-O notation refers to the upper bounds of functions. There is a symmetrical defi-
nition for a lower bound in the definition of big-Ω:

Definition 2: The function f (n) is Ω(g(n)) if there exist positive numbers c and N
such that f (n) ≥ cg(n) for all n ≥ N.

This definition reads: f is Ω (big-omega) of g if there is a positive number c such that f
is at least equal to cg for almost all ns. In other words, cg(n) is a lower bound on the
size of f (n), or, in the long run, f grows at least at the rate of g.

The only difference between this definition and the definition of big-O notation
is the direction of the inequality; one definition can be turned into the other by re-
placing “≥” with “≤.” There is an interconnection between these two notations ex-
pressed by the equivalence

f (n) is Ω(g(n)) iff g(n) is O(f (n))

Ω notation suffers from the same profusion problem as does big-O notation:
There is an unlimited number of choices for the constants c and N. For Equation 2.2,
we are looking for such a c, for which 2n2 + 3n + 1 ≥ cn2, which is true for any n ≥ 0, if
c ≤ 2, where 2 is the limit for c in Figure 2.2. Also, if f is an Ω of g and h ≤ g, then f is an
Ω of h; that is, if for f we can find one g such that f is an Ω of g, then we can find infi-
nitely many. For example, the function 2.2 is an Ω of n2 but also of n, n1/2, n1/3, n1/4, . . . ,
and also of lg n, lg lg n, . . . , and of many other functions. For practical purposes, only
the closest Ωs are the most interesting, (i.e., the largest lower bounds). This restriction
is made implicitly each time we choose an Ω of a function f.

There are an infinite number of possible lower bounds for the function f; that is,
there is an infinite set of gs such that f (n) is Ω(g(n)) as well as an unbounded num-
ber of possible upper bounds of f. This may be somewhat disquieting, so we restrict
our attention to the smallest upper bounds and the largest lower bounds. Note that
there is a common ground for big-O and Ω notations indicated by the equalities in
the definitions of these notations: Big-O is defined in terms of “≤” and Ω in terms of
“≥”; “=” is included in both inequalities. This suggests a way of restricting the sets of
possible lower and upper bounds. This restriction can be accomplished by the fol-
lowing definition of Θ (theta) notation:

Definition 3: f (n) is Θ(g(n)) if there exist positive numbers c1, c2, and N such that
c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ N.

S e c t i o n 2 . 4 Ω a n d Θ N o t a t i o n s ■ 61

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This definition reads: f has an order of magnitude g, f is on the order of g, or both
functions grow at the same rate in the long run. We see that f (n) is Θ(g(n)) if f (n) is
O(g(n)) and f (n) is Ω(g(n)).

The only function just listed that is both big-O and Ω of the function 2.2 is n2.
However, it is not the only choice, and there are still an infinite number of choices, be-
cause the functions 2n2, 3n2, 4n2, . . . are also Θ of function 2.2. But it is rather obvious
that the simplest, n2, will be chosen.

When applying any of these notations (big-O, Ω, and Θ), do not forget that they are
approximations that hide some detail that in many cases may be considered important.

2.5 POSSIBLE PROBLEMS

All the notations serve the purpose of comparing the efficiency of various algorithms
designed for solving the same problem. However, if only big-Os are used to represent
the efficiency of algorithms, then some of them may be rejected prematurely. The
problem is that in the definition of big-O notation, f is considered O(g(n)) if the in-
equality f (n) ≤ cg(n) holds in the long run for all natural numbers with a few excep-
tions. The number of ns violating this inequality is always finite. It is enough to meet
the condition of the definition. As Figure 2.2 indicates, this number of exceptions can
be reduced by choosing a sufficiently large c. However, this may be of little practical
significance if the constant c in f (n) ≤ cg(n) is prohibitively large, say 108, although the
function g taken by itself seems to be promising.

Consider that there are two algorithms to solve a certain problem and suppose
that the number of operations required by these algorithms is 108n and 10n2. The first
function is O(n) and the second is O(n2). Using just the big-O information, the sec-
ond algorithm is rejected because the number of steps grows too fast. It is true but,
again, in the long run, because for n ≤ 107, which is 10 million, the second algorithm
performs fewer operations than the first. Although 10 million is not an unheard-of
number of elements to be processed by an algorithm, in many cases the number is
much lower, and in these cases the second algorithm is preferable.

For these reasons, it may be desirable to use one more notation that includes con-
stants which are very large for practical reasons. Udi Manber proposes a double-O
(OO) notation to indicate such functions: f is OO(g(n)) if it is O(g(n)) and the con-
stant c is too large to have practical significance. Thus, 108n is OO(n). However, the
definition of “too large” depends on the particular application.

2.6 EXAMPLES OF COMPLEXITIES

Algorithms can be classified by their time or space complexities, and in this respect,
several classes of such algorithms can be distinguished, as Figure 2.4 illustrates. Their
growth is also displayed in Figure 2.5. For example, an algorithm is called constant if
its execution time remains the same for any number of elements; it is called quadratic
if its execution time is O(n2). For each of these classes, a number of operations is

62 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 2 . 6 E x a m p l e s o f C o m p l e x i t y ■ 63

FIGURE 2.4 Classes of algorithms and their execution times on a computer executing 1 million
operations per second (1 sec = 106 μsec = 103 msec).

Class Complexity Number of Operations and Execution Time (1 instr/μsec)

n 10 102 103

constant O(1) 1 1 μsec 1 1 μsec 1 1 μsec

logarithimic O(lg n) 3.32 3 μsec 6.64 7 μsec 9.97 10 μsec

linear O(n) 10 10 μsec 102 100 μsec 103 1 msec

O(n lg n) O(n lg n) 33.2 33 μsec 664 664 μsec 9970 10 msec

quadratic O(n2) 102 100 μsec 104 10 msec 106 1 sec

cubic O(n3) 103 1 msec 106 1 sec 109 16.7 min

exponential O(2n) 1024 10 msec 1030 3.17 * 1017 yrs 10301

n 104 105 106

constant O(1) 1 1 μsec 1 1 μsec 1 1 μsec

logarithmic O(lg n) 13.3 13 μsec 16.6 7 μsec 19.93 20 μsec

linear O(n) 104 10 msec 105 0.1 sec 106 1 sec

O(n lg n) O(n lg n) 133 � 103 133 msec 166 � 104 1.6 sec 199.3 � 105 20 sec

quadratic O(n2) 108 1.7 min 1010 16.7 min 1012 11.6 days

cubic O(n3) 1012 11.6 days 1015 31.7 yr 1018 31,709 yr

exponential O(2n) 103010 1030103 10301030

FIGURE 2.5 Typical functions applied in big-O estimates.

20
n3 n2 nnlgn

lgn

1

10

0 10 20

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

shown along with the real time needed for executing them on a machine able to per-
form 1 million operations per second, or one operation per microsecond (μsec). The
table in Figure 2.4 indicates that some ill-designed algorithms, or algorithms whose
complexity cannot be improved, have no practical application on available comput-
ers. To process 1 million items with a quadratic algorithm, over 11 days are needed,
and for a cubic algorithm, thousands of years. Even if a computer can perform one
operation per nanosecond (1 billion operations per second), the quadratic algorithm
finishes in only 16.7 seconds, but the cubic algorithm requires over 31 years. Even a
1,000-fold improvement in execution speed has very little practical bearing for this al-
gorithm. Analyzing the complexity of algorithms is of extreme importance and can-
not be abandoned on account of the argument that we have entered an era when, at
relatively little cost, a computer on our desktop can execute millions of operations per
second. The importance of analyzing the complexity of algorithms, in any context but
in the context of data structures in particular, cannot be overstressed. The impressive
speed of computers is of limited use if the programs that run on them use inefficient
algorithms.

2.7 FINDING ASYMPTOTIC COMPLEXITY: EXAMPLES

Asymptotic bounds are used to estimate the efficiency of algorithms by assessing the
amount of time and memory needed to accomplish the task for which the algorithms
were designed. This section illustrates how this complexity can be determined.

In most cases, we are interested in time complexity, which usually measures the
number of assignments and comparisons performed during the execution of a pro-
gram. Chapter 9, which deals with sorting algorithms, considers both types of opera-
tions; this chapter considers only the number of assignment statements.

Begin with a simple loop to calculate the sum of numbers in an array:

for (i = sum = 0; i < n; i++)
sum += a[i];

First, two variables are initialized, then the for loop iterates n times, and during each
iteration, it executes two assignments, one of which updates sum and the other of
which updates i. Thus, there are 2 + 2n assignments for the complete run of this for
loop; its asymptotic complexity is O(n).

Complexity usually grows if nested loops are used, as in the following code,
which outputs the sums of all the subarrays that begin with position 0:

for (i = 0; i < n; i++) {
for (j = 1, sum = a[0]; j <= i; j++)

sum += a[j];
System.out.println ("sum for subarray 0 through "+i+" is" + sum);

}

Before the loops start, i is initialized. The outer loop is performed n times, exe-
cuting in each iteration an inner for loop, print statement, and assignment state-
ments for i, j, and sum. The inner loop is executed i times for each i ∈ {1, . . . , n – 1}

64 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

with two assignments in each iteration: one for sum and one for j. Therefore, there
are 1 + 3n + ∑ 2i = 1 + 3n + 2(1 + 2 + · · · + n – 1) = 1 + 3n + n(n – 1) = O(n) +
O(n2) = O(n2) assignments executed before the program is completed.

Algorithms with nested loops usually have a larger complexity than algorithms
with one loop, but it does not have to grow at all. For example, we may request print-
ing sums of numbers in the last five cells of the subarrays starting in position 0. We
adopt the foregoing code and transform it to

for (i = 4; i < n; i++) {
for (j = i-3, sum = a[i-4]; j <= i; j++)

sum += a[j];
System.out.println ("sum for subarray "+(i - 4)+" through "+i+" is"+ sum);

}

The outer loop is executed n – 4 times. For each i, the inner loop is executed only
four times: For each iteration of the outer loop, there are eight assignments in the
inner loop, and this number does not depend on the size of the array. With initializa-
tion of i, n – 4 autoincrements of i, and n – 4 initializations of j and sum, the pro-
gram makes 1 + 8 • (n – 4) = O(n) assignments.

Analysis of these two examples is relatively uncomplicated because the number of
times the loops executed did not depend on the ordering of the arrays. Computation
of asymptotic complexity is more involved if the number of iterations is not always
the same. This point can be illustrated with a loop used to determine the length of the
longest subarray with the numbers in increasing order. For example, in [1 8 1 2 5 0 11
12], it is three, the length of subarray [1 2 5]. The code is

for (i = 0, length = 1; i < n-1; i++) {
for (i1 = i2 = k = i; k < n-1 && a[k] < a[k+1]; k++, i2++);
if (length < i2 - i1 + 1)
length = i2 - i1 + 1;

System.out.println ("the length of the longest ordered subarray is" + length);
}

Notice that if all numbers in the array are in decreasing order, the outer loop is exe-
cuted n – 1 times, but in each iteration, the inner loop executes just one time. Thus, the
algorithm is O(n). The algorithm is least efficient if the numbers are in increasing order.
In this case, the outer for loop is executed n – 1 times, and the inner loop is executed
n – 1 – i times for each i ∈ {0, . . . , n – 2}. Thus, the algorithm is O(n2). In most cases, the
arrangement of data is less orderly, and measuring the efficiency in these cases is of great
importance. However, it is far from trivial to determine the efficiency in the average cases.

A last example used to determine the computational complexity is the binary
search algorithm, which is used to locate an element in an ordered array. If it is an
array of numbers and we try to locate number k, then the algorithm accesses the
middle element of the array first. If that element is equal to k, then the algorithm re-
turns its position; if not, the algorithm continues. In the second trial, only half of the
original array is considered: the first half if k is smaller than the middle element, and
the second otherwise. Now, the middle element of the chosen subarray is accessed and
compared to k. If it is the same, the algorithm completes successfully. Otherwise, the

n–1
i=1

S e c t i o n 2 . 7 F i n d i n g A s y m p t o t i c C o m p l e x i t y : E x a m p l e s ■ 65

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

subarray is divided into two halves, and if k is larger than this middle element, the first
half is discarded; otherwise, the first half is retained. This process of halving and com-
paring continues until k is found or the array can no longer be divided into two sub-
arrays. This relatively simple algorithm can be coded as follows:

int binarySearch(int[] arr, int key) {
int lo = 0, mid, hi = arr.length-1;
while (lo <= hi) {

mid = (lo + hi)/2;
if (key < arr[mid])

hi = mid - 1;
else if (arr[mid] < key)

lo = mid + 1;
else return mid; // success: return the index of

} // the cell occupied by key;
return -1; // failure: key is not in the array;

}

If key is in the middle of the array, the loop executes only one time. How many
times does the loop execute in the case where key is not in the array? First the algo-
rithm looks at the entire array of size n, then at one of its halves of size �

n
2

�, then at one
of the halves of this half, of size �

2
n
2
�, and so on, until the array is of size 1. Hence, we

have the sequence n, �
n
2

�, �
2
n
2

�, . . . , �
2
n
m�, and we want to know the value of m. But the last term

of this sequence �
2
n
m� equals 1, from which we have m = lg n. So the fact that k is not in

the array can be determined after lg n iterations of the loop.

2.8 THE BEST, AVERAGE, AND WORST CASES

The last two examples in the preceding section indicate the need for distinguishing at
least three cases for which the efficiency of algorithms has to be determined. The worst
case is when an algorithm requires a maximum number of steps, and the best case
is when the number of steps is the smallest. The average case falls between these ex-
tremes. In simple cases, the average complexity is established by considering possible
inputs to an algorithm, determining the number of steps performed by the algorithm
for each input, adding the number of steps for all the inputs, and dividing by the
number of inputs. This definition, however, assumes that the probability of occur-
rence of each input is the same, which is not always the case. To consider the probabil-
ity explicitly, the average complexity is defined as the average over the number of steps
executed when processing each input weighted by the probability of occurrence of
this input, or,

Cavg = ∑i p(inputi)steps(inputi)

This is the definition of expected value, which assumes that all the possibilities can be
determined and that the probability distribution is known, which simply determines
a probability of occurrence of each input, p(inputi). The probability function p satis-

66 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

fies two conditions: It is never negative, p(inputi) ≥ 0, and all probabilities add up to 1,
∑i p(inputi) = 1.

As an example, consider searching sequentially an unordered array to find a
number. The best case is when the number is found in the first cell. The worst case is
when the number is in the last cell or is not in the array at all. In this case, all the cells
are checked to determine this fact. And the average case? We may make the assump-
tion that there is an equal chance for the number to be found in any cell of the array;
that is, the probability distribution is uniform. In this case, there is a probability equal
to �

n
1

� that the number is in the first cell, a probability equal to �
n
1

� that it is in the second
cell, . . . , and finally, a probability equal to �

n
1

� that it is in the last, nth cell. This means
that the probability of finding the number after one try equals �

n
1

�, the probability of
having two tries equals �

n
1

�, . . . , and the probability of having n tries also equals �
n
1

�.
Therefore, we can average all these possible numbers of tries over the number of pos-
sibilities and conclude that it takes on the average

�
1 + 2 +

n
… + n
� = �

n +
2

1
�

steps to find a number. But if the probabilities differ, then the average case gives a dif-
ferent outcome. For example, if the probability of finding a number in the first cell
equals �

1
2

�, the probability of finding it in the second cell equals �
1
4

�, and the probability of
locating it in any of the remaining cells is the same and equal to

= �
4(n

1
� 2)
�

then, on the average, it takes

�
1
2

� + �
2
4

� + = 1 + = 1 + �
n +

8
3

�

steps to find a number, which is approximately four times better than �n +
2

1
� found pre-

viously for the uniform distribution. Note that the probabilities of accessing a partic-
ular cell have no impact on the best and worst cases.

The complexity for the three cases was relatively easy to determine for sequential
search, but usually it is not that straightforward. Particularly, the complexity of the aver-
age case can pose difficult computational problems. If the computation is very complex,
approximations are used, and that is where we find the big-O, Ω, and Θ notations most
useful.

As an example, consider the average case for binary search. Assume that the size
of the array is a power of 2 and that a number to be searched has an equal chance to be
in any of the cells of the array. Binary search can locate it either after one try in the
middle of the array, or after two tries in the middle of the first half of the array, or after
two tries in the middle of the second half, or after three tries in the middle of the first
quarter of the array, or . . . or after three tries in the middle of the fourth quarter, or
after four tries in the middle of the first eighth of the array, or . . . or after four tries in

n(n + 1)�6
8(n � 2)

3 + ... n
4(n � 2)

1 � �
1
2

� � �
1
4

�

��
n – 2

S e c t i o n 2 . 8 T h e B e s t , A v e r a g e , a n d W o r s t C a s e s ■ 67

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the middle of the eighth eighth of the array, or . . . or after try lg n in the first cell, or
after try lg n in the third cell, or . . . or, finally, after try lg n in the last cell. That is, the
number of all possible tries equals

which has to be divided by �
n
1

� to determine the average case complexity. What is this sum
equal to? We know that it is between 1 (the best case result) and lg n (the worst case) de-
termined in the preceding section. But is it closer to the best case—say, lg lg n—or to the
worst case—for instance, �

lg
2
n

�, or lg �
n
2

�? The sum does not lend itself to a simple conver-
sion into a closed form; therefore, its estimation should be used. Our conjecture is that
the sum is not less than the sum of powers of 2 in the specified range multiplied by a half
of lg n, that is,

The reason for this choice is that s2 is a power series multiplied by a constant fac-
tor, and thus, it can be presented in closed form very easily, namely,

which is Ω(n lg n). Because s2 is the lower bound for the sum s1 under scrutiny—that
is, s1 is Ω(s2)—then so is �

s
n
2

� the lower bound of the sought average case complexity
�
s
n
1
� —that is, �

s
n
1
� = Ω(�

s
n
2

�). Because �
s
n
2

� is Ω(lg n), so must be �
s
n
1
�. Because lg n is an as-

sessment of the complexity of the worst case, the average case’s complexity equals
Θ(lg n).

There is still one unresolved problem: Is s1 ≥ s2? To determine this, we conjecture
that the sum of each pair of terms positioned symmetrically with respect to the cen-
ter of the sum s1 is not less than the sum of the corresponding terms of s2. That is,

where j � �
lg

2
n

� � 1. The last inequality, which represents every other inequality, is trans-
formed into

2 1 2 2
2

2
2

2 2 2 1 2
2

2
2

2 1 2 2
2

2
2

0 1 0 1

1 2 1 2

1 1

⋅ + ≥ +

⋅ + − ≥ +

+ + − ≥ +

− −

− −

− − − −

lg lg

lg lg

lg lg

lg
lg lg

(lg)
lg lg

...

() (lg)
lg lg

..

n n

n n

j n j j n j

n
n n

n
n n

j n j
n n

s
n n n

ni

i

n n

2

0

1 1

2
2

2
1 2

2 1

2 1 2
1= = + −

−

⎛

⎝
⎜

⎞

⎠
⎟ = −

=

− −

∑lg lg lg
()

lg lg

s i
n

si

i

n
i

i

n

1

0

1

0

1

22 1
2

2= + ≥ =
=

−

=

−

∑ ∑()
lg

lg lg

1 1 2 2 4 3 8 4
2

2 1
0

1

⋅ + ⋅ + ⋅ + ⋅ + + = +
=

−

∑... lg ()
lg

n
n ii

i

n

68 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

and then into

(2.5)

All of these transformations are allowed because all the terms that moved from
one side of the conjectured inequality to another are nonnegative and thus do not
change the direction of inequality. Is the inequality true? Because j � �

lg
2
n
� � 1,

2lg n�1�2j ≥ 2, and the right-hand side of the inequality (2.5) is always less than 1, the
conjectured inequality is true.

This concludes our investigation of the average case for binary search. The algo-
rithm is relatively straightforward, but the process of finding the complexity for the
average case is rather grueling, even for uniform probability distributions. For more
complex algorithms, such calculations are significantly more challenging.

2.9 AMORTIZED COMPLEXITY

In many situations, data structures are subject to a sequence of operations rather
than one operation. In this sequence, one operation possibly performs certain modi-
fications that have an impact on the run time of the next operation in the sequence.
One way of assessing the worst case run time of the entire sequence is to add worst
case efficiencies for each operation. But this may result in an excessively large and
unrealistic bound on the actual run time. To be more realistic, amortized analysis
can be used to find the average complexity of a worst case sequence of operations. By
analyzing sequences of operations rather than isolated operations, amortized analy-
sis takes into account interdependence between operations and their results. For ex-
ample, if an array is sorted and only a very few new elements are added, then
re-sorting this array should be much faster than sorting it for the first time because,
after the new additions, the array is nearly sorted. Thus, it should be quicker to put
all elements in perfect order than in a completely disorganized array. Without taking
this correlation into account, the run time of the two sorting operations can be con-
sidered twice the worst case efficiency. Amortized analysis, on the other hand, de-
cides that the second sorting is hardly applied in the worst case situation so that the
combined complexity of the two sorting operations is much less than double the
worst case complexity. Consequently, the average for the worst case sequence of sort-
ing, a few insertions, and sorting again is lower according to amortized analysis than
according to worst case analysis, which disregards the fact that the second sorting is
applied to an array operated on already by a previous sorting.

It is important to stress that amortized analysis is analyzing sequences of opera-
tions, or if single operations are analyzed, it is done in view of their being part of the se-
quence. The cost of operations in the sequence may vary considerably, but how

2
1

1
11 2 2

2 2

lg
lg

lg lg

n j
n

n n

j

j j

− − ≥
− −

−
= −

−

2

2
2

2
11lg lg lgn j jn

j
n

j− − −
⎛
⎝⎜

⎞
⎠⎟

≥ − −
⎛
⎝⎜

⎞
⎠⎟

S e c t i o n 2 . 9 A m o r t i z e d C o m p l e x i t y ■ 69

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

frequently particular operations occur in the sequence is important. For example, for
the sequence of operations op1, op2, op3, . . . , the worst case analysis renders the compu-
tational complexity for the entire sequence equal to

C(op1, op2, op3, . . .) = Cworst(op1) + Cworst(op2) + Cworst(op3) + . . .

whereas the average complexity determines it to be

C(op1, op2, op3, . . .) = Cavg(op1) + Cavg(op2) + Cavg(op3) + . . .

Although specifying complexities for a sequence of operations, neither worst case
analysis nor average case analysis was looking at the position of a particular operation
in the sequence. These two analyses considered the operations as executed in isolation
and the sequence as a collection of isolated and independent operations. Amortized
analysis changes the perspective by looking at what happened up until a particular
point in the sequence of operations and then determines the complexity of a particu-
lar operation,

C(op1, op2, op3, . . .) = C(op1) + C(op2) + C(op3) + . . .

where C can be the worst, the average, the best case complexity, or very likely, a com-
plexity other than the three depending on what happened before. To find amortized
complexity in this way may be, however, too complicated. Therefore, another ap-
proach is used. The knowledge of the nature of particular processes and possible
changes of a data structure is used to determine the function C, which can be applied
to each operation of the sequence. The function is chosen in such a manner that it
considers quick operations as slower than they really are and time-consuming opera-
tions as quicker than they actually are. It is as though the cheap (quick) operations are
charged more time units to generate credit to be used for covering the cost of expen-
sive operations that are charged below their real cost. It is like letting the government
charge us more for income taxes than necessary so that at the end of the fiscal year the
overpayment can be received back and used to cover the expenses of something else.
The art of amortized analysis lies in finding an appropriate function C so that it over-
charges cheap operations sufficiently to cover expenses of undercharged operations.
The overall balance must be nonnegative. If a debt occurs, there must be a prospect of
paying it.

Consider the operation of adding a new element to the vector implemented as a
flexible array. The best case is when the size of the vector is less than its capacity be-
cause adding a new element amounts to putting it in the first available cell. The cost of
adding a new element is thus O(1). The worst case is when size equals capacity, in
which case there is no room for new elements. In this case, new space must be allo-
cated, the existing elements are copied to the new space, and only then can the new el-
ement be added to the vector. The cost of adding a new element is O(size(vector)). It is
clear that the latter situation is less frequent than the former, but this depends on an-
other parameter, capacity increment, which refers to how much the vector is increased
when overflow occurs. In the extreme case, it can be incremented by just one cell, so in
the sequence of m consecutive insertions, each insertion causes overflow and requires
O(size(vector)) time to finish. Clearly, this situation should be delayed. One solution is
to allocate, say, 1 million cells for the vector, which in most cases does not cause an

70 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

overflow, but the amount of space is excessively large and only a small percentage of
space allocated for the vector may be expected to be in actual use. Another solution to
the problem is to double the space allocated for the vector if overflow occurs. In this
case, the pessimistic O(size(vector)) performance of the insertion operation may be
expected to occur only infrequently. By using this estimate, it may be claimed that, in
the best case, the cost of inserting m items is O(m), but it is impossible to claim that,
in the worst case, it is O(m • size(vector)). Therefore, to see better what impact this per-
formance has on the sequence of operations, the amortized analysis should be used.

In amortized analysis, the question is asked: What is the expected efficiency of a
sequence of insertions? We know that the best case is O(1) and the worst case is
O(size(vector)), but also we know that the latter case occurs only occasionally and
leads to doubling the size of the vector. In this case, what is the expected efficiency of
one insertion in the series of insertions? Note that we are interested only in sequences
of insertions, excluding deletions and modifications, to have the worst case scenario.
The outcome of amortized analysis depends on the assumed amortized cost of one in-
sertion. It is clear that if

amCost(push(x)) = 1

where 1 represents the cost of one insertion, then we are not gaining anything from
this analysis because easy insertions are paying for themselves right away, and the in-
sertions causing overflow and thus copying have no credit to use to make up for their
high cost. Is

amCost(push(x)) = 2

a reasonable choice? Consider the table in Figure 2.6a. It shows the change in vector ca-
pacity and the cost of insertion when size grows from 0 to 18; that is, the table indicates
the changes in the vector during the sequence of 18 insertions into an initially empty
vector. For example, if there are four elements in the vector (size = 4), then before in-
serting the fifth element, the four elements are copied at the cost of four units and then
the new fifth element is inserted in the newly allocated space for the vector. Hence, the
cost of the fifth insertion is 4 + 1. But to execute this insertion, two units allocated for
the fifth insertion are available plus one unit left from the previous fourth insertion.
This means that this operation is two units short to pay for itself. Thus, in the Units
Left column, –2 is entered to indicate the debt of two units. The table indicates that the
debt decreases and becomes zero, one cheap insertion away from the next expensive
insertion. This means that the operations are almost constantly executed in the red,
and more important, if a sequence of operations finishes before the debt is paid off,
then the balance indicated by amortized analysis is negative, which is inadmissible in
the case of algorithm analysis. Therefore, the next best solution is to assume that

amCost(push(x)) = 3

The table in Figure 2.6b indicates that we are never in debt and that the choice of three
units for amortized cost is not excessive because right after an expensive insertion, the
accumulated units are almost depleted.

In this example, the choice of a constant function for amortized cost is ade-
quate, but usually it is not. Define as potential a function that assigns a number to a

S e c t i o n 2 . 9 A m o r t i z e d C o m p l e x i t y ■ 71

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

particular state of a data structure ds that is a subject of a sequence of operations.
The amortized cost is defined as a function

amCost(opi) = cost(opi) + potential(dsi) – potential(dsi–1)

which is the real cost of executing the operation opi plus the change in potential in the
data structure ds as a result of execution of opi. This definition holds for one single op-
eration of a sequence of m operations. If amortized costs for all the operations are
added, then the amortized cost for the sequence

amCost(op1,...,opm) =

m

î = 1

(cost(opi)+ potential(dsi) – potential(dsi–1))

=

m

î = 1

(cost(opi)+ potential(dsm) – potential(ds0)

72 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

FIGURE 2.6 Estimating the amortized cost.

(a) Amortized Units (b) Amortized Units
Size Capacity Cost Cost Left Size Capacity Cost Cost Left

0 0 0 0

1 1 2 0 + 1 1 1 1 3 0 + 1 2

2 2 2 1 + 1 1 2 2 3 1 + 1 3

3 4 2 2 + 1 0 3 4 3 2 + 1 3

4 4 2 1 1 4 4 3 1 5

5 8 2 4 + 1 –2 5 8 3 4 + 1 3

6 8 2 1 –1 6 8 3 1 5

7 8 2 1 0 7 8 3 1 7

8 8 2 1 1 8 8 3 1 9

9 16 2 8 + 1 –6 9 16 3 8 + 1 3

10 16 2 1 –5 10 16 3 1 5

: : : : : : : : : :

16 16 2 1 1 16 16 3 1 17

17 32 2 16 + 1 –14 17 32 3 16 + 1 3

18 32 2 1 –13 18 32 3 1 5

: : : : : : : : : :

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In most cases, the potential function is initially zero and is always nonnegative so
that amortized time is an upper bound of real time. This form of amortized cost is
used later in the book.

Amortized cost of including new elements in a vector can now be phrased in
terms of the potential function defined as

To see that the function works as intended, consider three cases. The first case is
when a cheap pushing follows cheap pushing (vector is not extended right before the
current push and is not extended as a consequence of the current push) and

amCost(pushi()) = 1 + 2sizei–1 + 2 – capacityi–1 – 2sizei–1 + capacityi = 3

because the capacity does not change, sizei = sizei–1 + 1, and the actual cost equals 1.
For expensive pushing following cheap pushing,

amCost(pushi()) = sizei–1 + 2 + 0 – 2sizei–1 + capacityi–1 = 3

because sizei–1 + 1 = capacityi–1 and the actual cost equals sizei + 1 = sizei-1 + 2, which
is the cost of copying the vector elements plus adding the new element. For cheap
pushing following expensive pushing,

amCost(pushi()) = 1 + 2sizei – capacityi – 0 = 3

because 2(sizei – 1) = capacityi and actual cost equals 1. Note that the fourth case, ex-
pensive pushing following expensive pushing, occurs only twice, when capacity
changes from zero to one and from one to zero. In both cases, amortized cost equals 3.

2.10 NP-COMPLETENESS

A deterministic algorithm is a uniquely defined (determined) sequence of steps for a
particular input; that is, given an input and a step during execution of the algorithm,
there is only one way to determine the next step that the algorithm can make. A non-
deterministic algorithm is an algorithm that can use a special operation that makes a
guess when a decision is to be made. Consider the nondeterministic version of binary
search.

If we try to locate number k in an unordered array of numbers, then the algo-
rithm first accesses the middle element m of the array. If m = k, then the algorithm re-
turns m’s position; if not, the algorithm makes a guess concerning which way to go to
continue: to the left of m or to its right. A similar decision is made at each stage: If
number k is not located, continue in one of the two halves of the currently scrutinized
subarray. It is easy to see that such a guessing very easily may lead us astray, so we need
to endow the machine with the power of making correct guesses. However, an imple-
mentation of this nondeterministic algorithm would have to try, in the worst case, all
the possibilities. One way to accomplish it is by requiring that the decision in each it-
eration is in reality this: if m ≠ k, then go both to the right and to the left of m. In this
way, a tree is created that represents the decisions made by the algorithm (Johnson &

potential(vectori) =
0 if sizei = capacityi (vector is full)

2sizei – capacityi otherwise

S e c t i o n 2 . 1 0 N P - C o m p l e t e n e s s ■ 73

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Papadimitriou p. 53). The algorithm solves the problem, if any of the branches allows
us to locate k in the array that includes k and if no branch leads to such a solution
when k is not in the array.

A decision problem has two answers, call them “yes” and “no.” A decision problem
is given by the set of all instances of the problem and the set of instances for which the
answer is “yes.” Many optimization problems do not belong to that category (“find the
minimum x for which . . .”) but in most cases they can be converted to decision prob-
lems (“is x, for which . . . , less than k?”).

Generally, a nondeterministic algorithm solves a decision problem if it answers it
in the affirmative and there is a path in the tree that leads to a yes answer, and it an-
swers it in the negative if there is no such path. A nondeterministic algorithm is con-
sidered polynomial if a number of steps leading to an affirmative answer in a decision
tree is O(nk), where n is the size of the problem instance.

Most of the algorithms analyzed in this book are polynomial-time algorithms; that
is, their running time in the worst case is O(nk) for some k. Problems that can be solved
with such algorithms are called tractable and the algorithms are considered efficient.

A problem belongs to the class of P problems if it can be solved in polynomial
time with a deterministic algorithm. A problem belongs to the class of NP problems if
it can be solved in polynomial time with a nondeterministic algorithm. P problems
are obviously tractable. NP problems are also tractable, but only when nondetermin-
istic algorithms are used.

Clearly, P � NP, because deterministic algorithms are those nondeterministic algo-
rithms that do not use nondeterministic decisions. It is also believed that P ≠ NP; that
is, there exist problems with nondeterministic polynomial algorithms that cannot
be solved with deterministic polynomial algorithms. This means that on determin-
istic Turing machines they are executed in nonpolynomial time and thus they are
intractable. The strongest argument in favor of this conviction is the existence of NP-
complete problems. But first we need to define the concept of reducibility of algorithms.

A problem P1 is reducible to another problem P2 if there is a way of encoding in-
stances x of P1 as instances y = r(x) of P2 using a reduction function r executed with a
reduction algorithm; that is, for each x, x is an instance of P1 iff y = r(x) is an instance
of P2. Note that reducibility is not a symmetric relation: P1 can be reducible to P2 but
not necessarily vice versa; that is, each instance x of P1 should have a counterpart y of
P2, but there may be instances y of P2 onto which no instances x of P1 are mapped with
the function r. Therefore, P2 can be considered a harder problem than P1.

The reason for the reduction is that if the value r(x) for any x can be found effi-
ciently (in polynomial time), then an efficient solution for y can be efficiently trans-
formed into an efficient solution of x. Also, if there is no efficient algorithm for x, then
there is no efficient solution for y.

A problem is called NP-complete if it is NP (it can be solved efficiently by a nonde-
terministic polynomial algorithm) and every NP problem can be polynomially re-
duced to this problem. Because reducibility is a transitive relation, we can also say that
an NP problem P1 is NP-complete if there is an NP-complete problem P2 that is poly-
nomially reducible to P1. In this way, all NP-complete problems are computationally
equivalent; that is, if an NP-complete problem can be solved with a deterministic poly-
nomial algorithm, then so can be all NP-complete problems, and thus P = NP. Also, if
any problem in NP is intractable, then all NP-complete problems are intractable.

74 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The reduction process uses an NP-complete problem to show that another problem is
also NP-complete. There must be, however, at least one problem directly proven to be NP-
complete by other means than reduction to make the reduction process possible. A prob-
lem that was shown by Stephen Cook to be in that category is the satisfiability problem.

The satisfiability problem concerns Boolean expressions in conjunctive normal
form (CNF). An expression is in CNF if it is a conjunction of alternatives where each
alternative involves Boolean variables and their negations, and each variable is either
true or false. For example,

(x ~ y ~ z) ` (w ~ x ~ ¬ y ~ z) ` (¬ w ~ ¬ y)

is in CNF. A Boolean expression is satisfiable if there exists an assignment of values
true and false that renders the entire expression true. For example, our expression is
satisfiable for x = false, y = false, and z = true. The satisfiability problem consists of de-
termining whether a Boolean expression is satisfiable (the value assignments do not
have to be given). The problem is NP, because assignments can be guessed and then
the expression tested for satisfiability in polynomial time.

Cook proves that the satisfiability problem is NP-complete by using a theoretical
concept of the Turing machine that can perform nondeterministic decisions (make
good guesses). Operations of that machine are then described in terms of Boolean ex-
pressions, and it is shown that the expression is satisfiable iff the Turing machine ter-
minates for a particular input (for the proof, see Appendix B).

To illustrate the reduction process, consider the three-satisfiability problem, which is
the satisfiability problem in the case when each alternative in a Boolean expression in
CNF includes only three different variables. We claim that the problem is NP-complete.
The problem is NP, because a guessed assignment of truth values to variables in a Boolean
expression can be verified in polynomial time. We show that the three-satisfiability prob-
lem is NP-complete by reducing it to the satisfiability problem. The reduction process in-
volves showing that an alternative with any number of Boolean variables can be
converted into a conjunction of alternatives, each alternative with three Boolean variables
only. This is done by introducing new variables. Consider an alternative

A = (p1 ~ p2 ~ . . . ~ pk)

for k ≥ 4 where pi[{xi, xi}. With new variables y1, . . . , yk-3, we transform A into

A' = (p1 ~ p2 ~ y1) ` (p3 ~ y1 ~ y2) ` (p4 ~ y2 ~ y3) `
(pk-2 ~ yk-4 ~ yk-3) ` (pk-1 ~ pk ~ yk-3)

If the alternative A is satisfiable, then at least one term pi is true, so the values of yj’s
can be so chosen that A' is true: if pi is true, then we set y1, . . . , yi-2 to true and the re-
maining yi-1, . . . , yk-3 to false. Conversely, if A' is satisfiable, then at least one pi must
be true, because if all pi’s are false, then the expression

A' = (false ~ false ~ y1) ` (false ~ ¬ y1 ~ y2) ` (false ~ y2 ~ y3) ` . . .
` (false ~ false ~ ¬ yk-3)

has the same truth value as the expression

(y1) ` (¬ y1 ~ y2) ` (¬ y2 ~ y3) ` . . . ` (¬ yk-3)

which cannot be true for any choice of values for yj’s, thus is not satisfiable.

S e c t i o n 2 . 1 0 N P - C o m p l e t e n e s s ■ 75

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

76 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

2.11 EXERCISES

1. Explain the meaning of the following expressions:

a. f (n) is O(1).

b. f (n) is �(1).

c. f (n) is nO(1).

2. Assuming that f1(n) is O(g1(n)) and f2(n) is O(g2(n)), prove the following statements:

a. f1(n) + f2(n) is O(max(g1(n),g2(n))).

b. If a number k can be determined such that for all n > k, g1(n) ≤ g2(n), then
O(g1(n)) + O(g2(n)) is O(g2(n)).

c. f1(n) * f2(n) is O(g1(n) * g2(n)) (rule of product).

d. O(cg(n)) is O(g(n)).

e. c is O(1).

3. Prove the following statements:

a. ∑n
i=1 i2 is O(n3) and more generally, ∑n

i=1 ik is O(nk+1).

b. ank/lg n is O(nk) but ank/lg n is not �(nk).

c. n1.1 + n lg n is �(n1.1).

d. 2n is O(n!) and n! is not O(2n).

e. 2n+a is O(2n).

f. 22n+a is not O(2n).

g. 2� lg� n� is O(na).

4. Make the same assumptions as in Exercise 2 and, by finding counterexamples, refute
the following statements:

a. f1(n) – f2(n) is O(g1(n) – g2(n)).

b. f1(n)/f2(n) is O(g1(n)/g2(n)).

5. Find functions f1 and f2 such that both f1(n) and f2(n) are O(g(n)), but f1(n) is not
O(f2).

6. Is it true that

a. if f (n) is �(g(n)), then 2f (n) is �(2g(n))?

b. f (n) + g(n) is �(min(f (n),g(n)))?

c. 2na is O(2n)?

7. The algorithm presented in this chapter for finding the length of the longest subarray
with the numbers in increasing order is inefficient, because there is no need to con-
tinue to search for another array if the length already found is greater than the length
of the subarray to be analyzed. Thus, if the entire array is already in order, we can
discontinue the search right away, converting the worst case into the best. The change
needed is in the outer loop, which now has one more test:

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

for (i = 0, length = 1; i < n-1 && length < n==i; i++)

What is the worst case now? Is the efficiency of the worst case still O(n2)?

8. Find the complexity of the function used to find the kth smallest integer in an un-
ordered array of integers

int selectkth(int a[], int k, int n) {
int i, j, mini, tmp;
for (i = 0; i < k; i++) {

mini = i;
for (j = i+1; j < n; j++)

if (a[j]<a[mini])
mini = j;

tmp = a[i];
a[i] = a[mini];
a[mini] = tmp;

}
return a[k-1];

}

9. Determine the complexity of the following implementations of the algorithms for
adding, multiplying, and transposing n × n matrices:

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[i][j] = b[i][j] + c[i][j];

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

for (k = a[i][j] = 0; k < n; k++)
a[i][j] += b[i][k] * c[k][j];

for (i = 0; i < n - 1; i++)
for (j = i+1; j < n; j++) {

tmp = a[i][j];
a[i][j] = a[j][i];
a[j][i] = tmp;

}

10. Find the computational complexity for the following four loops:

a. for (cnt1 = 0, i = 1; i <= n; i++)
for (j = 1; j <= n; j++)

cnt1++;

b. for (cnt2 = 0, i = 1; i <= n; i++)
for (j = 1; j <= i; j++)

cnt2++;

S e c t i o n 2 . 1 1 E x e r c i s e s ■ 77

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

c. for (cnt3 = 0, i = 1; i <= n; i *= 2)
for (j = 1; j <= n; j++)

cnt3++;

d. for (cnt4 = 0, i = 1; i <= n; i *= 2)
for (j = 1; j <= i; j++)

cnt4++;

11. Find the average case complexity of sequential search in an array if the probability of
accessing the last cell equals �

1
2

�, the probability of the next to last cell equals �
1
4

�, and the
probability of locating a number in any of the remaining cells is the same and equal
to �

4(n
1
� 2)
�.

12. Consider a process of incrementing a binary n-bit counter. An increment causes some
bits to be flipped: Some 0s are changed to 1s, and some 1s to 0s. In the best case,
counting involves only one bit switch; for example, when 000 is changed to 001,
sometimes all the bits are changed, as when incrementing 011 to 100.

Number Flipped Bits

000

001 1

010 2

011 1

100 3

101 1

110 2

111 1

Using worst case assessment, we may conclude that the cost of executing m = 2n – 1
increments is O(mn). Use amortized analysis to show that the cost of executing m
increments is O(m).

13. How can you convert a satisfiability problem into a three-satisfiability problem for an
instance when an alternative in a Boolean expression has two variables? One variable?

78 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

B i b l i o g r a p h y ■ 79

BIBLIOGRAPHY

Computational Complexity

Hartmanis, Juris, and Hopcroft, John E., “An Overview of the Theory of Computational Com-
plexity,” Journal of the ACM 18 (1971), 444–475.

Hartmanis, Juris, and Stearns, Richard E., “On the Computational Complexity of Algorithms,”
Transactions of the American Mathematical Society 117 (1965), 284–306.

Preparata, Franco P., “Computational Complexity,” in Pollack, S. V. (ed.), Studies in Computer
Science, Washington, DC: The Mathematical Association of America, 1982, 196–228.

Big-O, Ω, and Θ Notations

Brassard, G., “Crusade for a Better Notation,” SIGACT News 17 (1985), 60–64.

Knuth, Donald, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Reading,
MA: Addison-Wesley, 1998.

Knuth, Donald, “Big Omicron and Big Omega and Big Theta,” SIGACT News, April–June, 8
(1976), 18–24.

Vitanyi, P. M. B., and Meertens, L., “Big Omega versus the Wild Functions,” SIGACT News 16
(1985), 56–59.

OO Notation

Manber, Udi, Introduction to Algorithms: A Creative Approach, Reading, MA: Addison-Wesley,
1989.

Amortized Analysis

Heileman, Gregory L., Discrete Structures, Algorithms, and Object-Oriented Programming, New
York: McGraw-Hill, 1996, Chs. 10–11.

Tarjan, Robert E., “Amortized Computational Complexity,” SIAM Journal on Algebraic and
Discrete Methods 6 (1985), 306–318.

NP-Completeness

Cook, Stephen A., “The Complexity of Theorem-Proving Procedures,” Proceedings of the Third
Annual ACM Symposium on Theory of Computing, 1971, 151–158.

Garey, Michael R., and Johnson, David S., Computers and Intractability: A Guide to the Theory
of NP-Completeness, San Francisco: Freeman, 1979.

Johnson, D. S., and Papadimitriou, C. H.,“Computational Complexity,” in Lawler, E. L., Lenstra,
J. K., Rinnoy, Kan A. H. G., and Shmoys, D. B. (eds.), The Traveling Salesman Problem, New
York: Wiley, 1985, 37–85.

Karp, Richard M.,“Reducibility Among Combinatorial Problems,” in R. E. Miller and J. W.
Thatcher (eds.), Complexity of Computer Computations, New York: Plenum Press, 1972, 85–103.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A n array is a very useful data structure provided in programming languages.
However, it has at least two limitations: (1) changing the size of the array re-
quires creating a new array and then copying all data from the array with the

old size to the array with the new size and (2) the data in the array are next to each
other sequentially in memory, which means that inserting an item inside the array re-
quires shifting some other data in this array. This limitation can be overcome by using
linked structures. A linked structure is a collection of nodes storing data and links to
other nodes. In this way, nodes can be located anywhere in memory, and passing from
one node of the linked structure to another is accomplished by storing the
reference(s) to other node(s) in the structure. Although linked structures can be im-
plemented in a variety of ways, the most flexible implementation is by using a sepa-
rate object for each node.

3.1 SINGLY LINKED LISTS

If a node contains a data field that is a reference to another node, then many nodes
can be strung together using only one variable to access the entire sequence of nodes.
Such a sequence of nodes is the most frequently used implementation of a linked list,
which is a data structure composed of nodes, each node holding some information
and a reference to another node in the list. If a node has a link only to its successor in
this sequence, the list is called a singly linked list. An example of such a list is shown in
Figure 3.1. Note that only one variable p is used to access any node in the list. The last
node on the list can be recognized by the null reference field.

80

Linked
Lists3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Each node in the list in Figure 3.1 is an instance of the following class definition:

public class IntSLLNode {
public int info;
public IntSLLNode next;
public IntSLLNode(int i) {

this(i,null);
}
public IntSLLNode(int i, IntSLLNode n) {

info = i; next = n;
}

}

S e c t i o n 3 . 1 S i n g l y L i n k e d L i s t s ■ 81

FIGURE 3.1 A singly linked list.

p
10

p
10

p
10

p

\\

(d)(c)

10
p

\

(e)

10
P

8
\

\ \

\

(g) (h)

(i) (j)

10
p

8

(f)

(b)(a)

} p.info
} p.next

} p.next.info
} p.next.next

10 8
p

10 8
p

10 8 50
p

\ \

(k) (l)

10 8
p

10 8 50
\

50
p

} p.next.next.info
} p.next.next.next

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A node includes two data fields: info and next. The info field is used to store
information, and this field is important to the user. The next field is used to link to-
gether nodes to form a linked list. It is an auxiliary field used to maintain the linked
list. It is indispensable for implementation of the linked list, but less important (if at
all) from the user’s perspective. Note that IntSLLNode is defined in terms of itself
because one data field, next, is a reference to a node of the same type that is just being
defined. Objects that include such a data field are called self-referential objects.

The definition of a node also includes two constructors. The second constructor
takes two arguments, one to initialize the info field and another to initialize the next
field. The first constructor takes one argument and is defined in terms of the second
constructor. The reserved word this is used to refer to the current object, and this
word can appear anywhere this object can be used. Therefore, this(i,null) means
the same as IntSLLNode(i,null); that is, the first constructor invokes the second
constructor by having null as the value of the second argument. As the result of exe-
cuting the first constructor, the info field is initialized to i and the next field to null.

Now, let us create the linked list in Figure 3.1l. One way to create this three-node
linked list is to first generate the node containing number 10, then the node contain-
ing 8, and finally the node containing 50. Each node has to be initialized properly and
incorporated into the list. To see it, each step is illustrated in Figure 3.1 separately.

First, we execute the declaration and assignment

IntSLLNode p = new IntSLLNode(10);

which creates the first node on the list and makes the variable p a reference to this
node. This is done in four steps. In the first step, a new IntSLLNode is created (Figure
3.1a), in the second step, the info field of this node is set to 10 (Figure 3.1b), and in
the third step, the node’s next field is set to null (Figure 3.1c). The null reference is
marked with a slash in the reference field. Note that the slash in the next field is not
a slash character. The second and third steps—initialization of fields of the new
IntSLLNode—are performed by invoking the constructor IntSLLNode(10), which
in turn invokes the constructor IntSLLNode(10,null). The fourth step is making
p a reference to the newly created node (Figure 3.1d). This reference is the address of
the node, and it is shown as an arrow from the variable p to the new node.

The second node is created with the assignment

p.next = new IntSLLNode(8);

where p.next is the next field of the node pointed to by p (Figure 3.1d). As before,
four steps are executed:

1. A new node is created (Figure 3.1e).

2. The constructor assigns the number 8 to the info field of this node (Figure 3.1f).

3. The constructor assigns null to its next field (Figure 3.1g).

4. The new node is included in the list by making the next field of the first node a refer-
ence to the new node (Figure 3.1h).

The linked list is now extended by adding a third node with the assignment

p.next.next = new IntSLLNode(50);

82 ■ C h a p t e r 3 L i n k e d L i s t s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

where p.next.next is the next field of the second node. This cumbersome nota-
tion has to be used because the list is accessible only through the variable p.

In processing the third node, four steps are also executed: creating the node (Fig-
ure 3.1i), initializing its two fields (Figure 3.1j–k), and then incorporating the node in
the list (Figure 3.1l).

Our linked list example illustrates a certain inconvenience in using references:
The longer the linked list, the longer the chain of nexts to access the nodes at the end
of the list. In this example, p.next.next.next allows us to access the next field of
the 3rd node on the list. But what if it were the 103rd or, worse, the 1,003rd node on
the list? Typing 1,003 nexts, as in p.next . . . next, would be daunting. If we missed
one next in this chain, then a wrong assignment is made. Also, the flexibility of using
linked lists is diminished. Therefore, other ways of accessing nodes in linked lists are
needed. One way is always to keep two references to the linked list: one to the first
node and one to the last, as shown in Figure 3.2.

S e c t i o n 3 . 1 S i n g l y L i n k e d L i s t s ■ 83

FIGURE 3.2 An implementation of a singly linked list of integers.

//************************ IntSLLNode.java **************************
// a node in an integer singly linked list class

public class IntSLLNode {
public int info;
public IntSLLNode next;
public IntSLLNode(int i) {

this(i,null);
}
public IntSLLNode(int i, IntSLLNode n) {

info = i; next = n;
}

}

//************************ IntSLList.java **************************
// singly linked list class to store integers

public class IntSLList {
protected IntSLLNode head, tail;
public IntSLList() {

head = tail = null;
}
public boolean isEmpty() {

return head == null;
}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

84 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.2 (continued)

public void addToHead(int el) {
head = new IntSLLNode(el,head);
if (tail == null)

tail = head;
}
public void addToTail(int el) {

if (!isEmpty()) {
tail.next = new IntSLLNode(el);
tail = tail.next;

}
else head = tail = new IntSLLNode(el);

}
public int deleteFromHead() { // delete the head and return its info;

int el = head.info;
if (head == tail) // if only one node on the list;

head = tail = null;
else head = head.next;
return el;

}
public int deleteFromTail() { // delete the tail and return its info;

int el = tail.info;
if (head == tail) // if only one node on the list;

head = tail = null;
else { // if more than one node on the list,

IntSLLNode tmp; // find the predecessor of tail;
for (tmp = head; tmp.next != tail; tmp = tmp.next);
tail = tmp; // the predecessor of tail becomes tail;
tail.next = null;

}
return el;

}
public void printAll() {

for (IntSLLNode tmp = head; tmp != null; tmp = tmp.next)
System.out.print(tmp.info + " ");

}
public boolean isInList(int el) {

IntSLLNode tmp;
for (tmp = head; tmp != null && tmp.info != el; tmp = tmp.next);
return tmp != null;

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The singly linked list implementation in Figure 3.2 uses two classes: one class,
IntSLLNode, for nodes of the list, and another, IntSLList, for access to the list. The
class IntSLList defines two data fields, head and tail, which are references to the
first and the last nodes of a list. An example of a list is shown in Figure 3.3. The list is
declared with the statement

IntSLList list = new IntSLList();

S e c t i o n 3 . 1 S i n g l y L i n k e d L i s t s ■ 85

FIGURE 3.2 (continued)

public void delete(int el) { // delete the node with an element el;
if (!isEmpty())

if (head == tail && el == head.info) // if only one
head = tail = null; // node on the list;

else if (el == head.info) // if more than one node on the
head = head.next; // list; and el is in the head node;

else { // if more than one node in the list
IntSLLNode pred, tmp;// and el is in a non-head node;
for (pred = head, tmp = head.next;

tmp != null && tmp.info != el;
pred = pred.next, tmp = tmp.next);

if (tmp != null) { // if el was found;
pred.next = tmp.next;
if (tmp == tail) // if el is in the last node;

tail = pred;
}

}
}

}

FIGURE 3.3 A singly linked list of integers.

(a)
10 8 50head

tail

list

10 8

head tail

50

\

\
(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The first object in Figure 3.3a is not part of the list; it allows for having access to the
list. For simplicity, in subsequent figures, only nodes belonging to the list are shown,
the access node is omitted, and the head and tail fields are marked as in Figure 3.3b.

Besides the head and tail fields, the class IntSLList also defines methods
that allow us to manipulate the lists. We now look more closely at some basic opera-
tions on linked lists presented in Figure 3.2.

3.1.1 Insertion

Adding a node at the beginning of a linked list is performed in four steps.

1. An empty node is created. It is empty in the sense that the program performing inser-
tion does not assign any values to the fields of the node (Figure 3.4a).

2. The node’s info field is initialized to a particular integer (Figure 3.4b).

3. Because the node is being included at the front of the list, the next field becomes a
reference to the first node on the list; that is, the current value of head (Figure 3.4c).

4. The new node precedes all the nodes on the list, but this fact has to be reflected in the
value of head; otherwise, the new node is not accessible. Therefore, head is updated
to become the reference to the new node (Figure 3.4d).

The four steps are executed by the method addToHead() (Figure 3.2). The
method executes the first three steps indirectly by calling the constructor
Node(el,head). The last step is executed directly in the method by assigning the ad-
dress (reference) of the newly created node to head.

86 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.4 Inserting a new node at the beginning of a singly linked list.

(a)
5 8 3

(b)

head

5 8 3

head

6

\

(c)
5 8 3

head

6

(d)
5 8 3

head

6

\

\

\

tail

tail

tail

tail

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The method addToHead() singles out one special case, namely, inserting a new
node in an empty linked list. In an empty linked list, both head and tail are null;
therefore, both become references to the only node of the new list. When inserting in a
nonempty list, only head needs to be updated.

The process of adding a new node to the end of the list has five steps.

1. An empty node is created (Figure 3.5a).

2. The node’s info field is initialized to an integer el (Figure 3.5b).

3. Because the node is being included at the end of the list, the next field is set to null
(Figure 3.5c).

4. The node is now included in the list by making the next field of the last node of the
list a reference to the newly created node (Figure 3.5d).

5. The new node follows all the nodes of the list, but this fact has to be reflected in the
value of tail, which now becomes the reference to the new node (Figure 3.5e).

All these steps are executed in the if clause of the addToTail() method (Figure
3.2). The else clause of this method is executed only if the linked list is empty. If this
case were not included, the program would crash because in the if clause we make an
assignment to the next field of the node referred by tail. In the case of an empty
linked list, it is a reference to a nonexisting field of a nonexisting node, which leads to
raising the NullPointerException.

S e c t i o n 3 . 1 S i n g l y L i n k e d L i s t s ■ 87

FIGURE 3.5 Inserting a new node at the end of a singly linked list.

(a)
8 3

(b)

head

8 3 105

\

(c)
8 3 10

head
5

(d)
8 3 105

\

\

\

(e)
8 3 10

tail

5
\

head

head

head

5

\

tail

tail

tail

tail

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The process of inserting a new node at the beginning of the list is very similar to
the process of inserting a node at the end of the list. This is because the implementa-
tion of IntSLList uses two reference fields: head and tail. For this reason, both
addToHead() and addToTail() can be executed in constant time O(1); that is, re-
gardless of the number of nodes in the list, the number of operations performed by
these two methods does not exceed some constant number c. Note that because the
head reference allows us to have access to a linked list, the tail reference is not indis-
pensable; its only role is to have immediate access to the last node of the list. With this
access, a new node can be added easily at the end of the list. But as illustrated by a
linked list implementation of SLList in Figure 3.9 later in the chapter, the tail ref-
erence does not have to be used. In this case, adding a node at the end of the list is
more complicated because we first have to reach the last node in order to attach a new
node to it. This requires scanning the list and requires O(n) steps to finish; that is, it is
linearly proportional to the length of the list. The process of scanning lists is illus-
trated when discussing deletion of the last node.

3.1.2 Deletion

One deletion operation consists of deleting a node at the beginning of the list and re-
turning the value stored in it. This operation is implemented by the method delete-
FromHead(). In this operation the information from the first node is temporarily
stored in a local variable el, and then head is reset so what was the second node be-
comes the first node. In this way, the former first node is abandoned to be processed
later by the garbage collector (Figure 3.6). Note that the former first node still accesses
the linked list, but the node itself is inaccessible. Thus, it is considered nonexistent.
Because the head node is immediately accessible, deleteFromHead() takes constant
time O(1) to perform its task.

Unlike before, there are now two special cases to consider. One case is when we
attempt to remove a node from an empty linked list. If such an attempt is made, the
program crashes because of the NullPointerException, which we don’t want to
happen. The caller should also know that such an attempt was made to perform a cer-
tain action. After all, if the caller expects a number to be returned from the call to

88 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.6 Deleting a node from the beginning of a singly linked list.

(a)
5 8

(b)

head tail

5 8 36

head

6 3

\

\

tail

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

deleteFromHead() and no number can be returned, then the caller may be unable
to accomplish some other operations.

There are at least two ways of solving the problem. One solution is to use the
throws clause, as in

public int deleteFromHead() throws NullPointerException {
.

}

The throws clause is expected to have a matching try-catch clause in the caller (or
caller’s caller, etc.), which catches the exception, as in:

void f() {
.
try {

n = list.deleteFromHead();
} catch (NullPointerException npe) {

System.out.println("Empty list");
.

}

This solution gives the caller a control over the abnormal situation without mak-
ing it lethal to the program. The user is responsible for providing an exception han-
dler in the form of the try-catch clause, with the solution appropriate to the
particular case. If the clause is not provided, then the program crashes when the ex-
ception is thrown. The method f() may only print a message that a list is empty
when an attempt is made to delete a number from an empty list, another method g()
may assign a certain value for n in such a case, and yet another method h() may find
such a situation detrimental to the program and abort the program altogether.

The idea that the user is responsible for providing an action in the case of an ex-
ception is also presumed in the implementation given in Figure 3.2. The method as-
sumes that the list is not empty. To prevent the program from crashing, the method
isEmpty() is added to the IntSLList class, and the user should use it, as in:

if (!list.isEmpty())
n = list.deleteFromHead();

else do not remove;

Note that including a similar if statement in deleteFromHead() does not
solve the problem. Consider this code:

public int deleteFromHead() {
if (!isEmpty()) { // if nonempty list;

int el = head.info;
.
return el;

}
else return 0;

}

S e c t i o n 3 . 1 S i n g l y L i n k e d L i s t s ■ 89

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

If an if statement is added, then the else clause must also be added; otherwise, the
program does not compile because of “missing return statement.” But now, if 0 is re-
turned, the caller does not know whether the returned 0 is the sign of failure or if it is
a literal 0 retrieved from the list. To avoid any confusion, the caller must use an if
statement to test whether the list is empty before calling deleteFromHead(). In this
way, the test inside the method becomes redundant.

The second special case in deleteFromHead() is when the list has only one
node to be removed. In this case, the list becomes empty, which requires setting head
and tail to null.

The second deletion operation consists of deleting a node from the end of the
list, and it is implemented as a method deleteFromTail(). The problem is that
after removing a node, tail should refer to the new tail of the list; that is, tail has
to be moved backward by one node. But moving backward is impossible because
there is no direct link from the last node to its predecessor. Hence, this predecessor
has to be found by searching from the beginning of the list and stopping right before
tail. This is accomplished with a temporary variable tmp that scans the list within
the for loop. The variable tmp is initialized to the head of the list, and then in each
iteration of the loop, it is advanced to the next node. If the list is as in Figure 3.7a,

90 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.7 Deleting a node from the end of a singly linked list.

(a)

(b)

(c)

(d)

(e)

6 5 8 3
\

6 5 8 3
\

6 5 8 3
\

6 5 8 3
\

6 5 8 3
\\

head
tmp

head

head

head

head

tmp

tmp

tmp

tmp

tail

tail

tail

tail

tail

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

then tmp first refers to the head node holding number 6; after executing the assign-
ment tmp = tmp.next, tmp refers to the second node (Figure 3.7b). After the sec-
ond iteration and executing the same assignment, tmp refers to the third node
(Figure 3.7c). Because this node is also the next to last node, the loop is exited, after
which tail becomes the reference to the next to last node (Figure 3.7d), and then
the next field of this node is set to null (Figure 3.7e). After the last assignment, what
was the last node is now detached from the list and inaccessible from it. In due
course, this node is claimed by the garbage collector.

Note that in the for loop, a temporary variable was used to scan the list. If the
loop were simplified to

for (; head.next != tail; head = head.next);

then the list is scanned only once, and the access to the beginning of the list is lost be-
cause head was permanently updated to the next to last node, which is about to be-
come the last node. It is absolutely critical that, in cases such as this, a temporary
variable is used so that the access to the beginning of the list is kept intact.

In removing the last node, the two special cases are the same as in deleteFrom-
Head(). If the list is empty, then nothing can be removed, but what should be done in
this case is decided in the user program just as in the case of deleteFromHead().

The second case is when a single-node list becomes empty after removing its only
node, which also requires setting head and tail to null.

The most time-consuming part of deleteFromTail() is finding the next to
last node performed by the for loop. It is clear that the loop performs n – 1 iterations
in a list of n nodes, which is the main reason this method takes O(n) time to delete the
last node.

The two discussed deletion operations remove a node from the head or from the
tail (that is, always from the same position) and return the integer that happens to be
in the node being removed. A different approach is when we want to delete a node
that holds a particular integer regardless of the position of this node in the list. It may
be right at the beginning, at the end, or anywhere inside the list. Briefly, a node has to
be located first and then detached from the list by linking the predecessor of this node
directly to its successor. Because we do not know where the node may be, the process
of finding and deleting a node with a certain integer is much more complex than the
deletion operations discussed so far. The method delete() (Figure 3.2) is an imple-
mentation of this process.

A node is removed from inside a list by linking its predecessor to its successor. But
because the list has only forward links, the predecessor of a node is not reachable from
the node. One way to accomplish the task is to find the node to be removed, by first
scanning the list and then scanning it again to find its predecessor. Another way is pre-
sented in delete(), as shown in Figure 3.8. Assume that we want to delete a node
that holds the number 8. The method uses two reference variables, pred and tmp,
which are initialized in the for loop so that they point to the first and second nodes of
the list, respectively (Figure 3.8a). Because the node tmp has the number 5, the first it-
eration is executed in which both pred and tmp are advanced to the next nodes (Fig-
ure 3.8b). Because the condition of the for loop is now true (tmp points to the node
with 8), the loop is exited and an assignment pred.next = tmp.next is executed

S e c t i o n 3 . 1 S i n g l y L i n k e d L i s t s ■ 91

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(Figure 3.8c). This assignment effectively excludes the node with 8 from the list. Al-
though the node is still accessible from variable tmp, it will not be accessible after the
method delete() is exited because tmp is local to the method. Hence, it ceases to
exist after exiting this method. As before, the now inaccessible node with number 8
will be processed by the garbage collector.

The preceding paragraph discussed only one case. Here are the remaining cases:

1. An attempt to remove a node from an empty list, in which case the method is imme-
diately exited.

2. Deleting the only node from a one-node linked list: Both head and tail are set to
null.

3. Removing the first node of the list with at least two nodes, which requires updating
head.

4. Removing the last node of the list with at least two nodes, leading to the update of
tail.

5. An attempt to delete a node with a number that is not in the list: Do nothing.

It is clear that the best case for delete() is when the head node is to be deleted,
which takes O(1) time to accomplish. The worst case is when the last node needs to be
deleted, which reduces delete() to deleteFromTail() and to its O(n) perfor-
mance. What is the average case? It depends on how many iterations the for loop exe-
cutes. Assuming that any node on the list has an equal chance to be deleted, the loop
performs no iteration if it is the first node, one iteration if it is the second node, . . . ,
and finally n – 1 iterations if it is the last node. For a long sequence of deletions, one
deletion requires on the average

92 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.8 Deleting a node from a singly linked list.

(a)
5 8

(b)

head tail

5 8 36

(c)
5 8 3

head

head

6 3

tail

tail

6

\

\

\

pred

tmp

pred tmp

tmp

pred

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

That is, on the average, delete() executes O(n) steps to finish, just like in the
worst case.

3.1.3 Search

The insertion and deletion operations modify linked lists. The searching operation
scans an existing list to learn whether a number is in it. We implement this operation
with the Boolean method isInList(). The method uses a temporary variable tmp
to go through the list starting from the head node. The number stored in each node is
compared to the number being sought, and if the two numbers are equal, the loop is
exited; otherwise, tmp is updated to tmp.next so that the next node can be investi-
gated. After reaching the last node and executing the assignment tmp = tmp.next,

tmp becomes null, which is used as an indication that the number el is not in the list.
That is, if tmp is not null, the search was discontinued somewhere inside the list be-
cause el was found. That is why isInList() returns the result of comparison tmp
!= 0: If tmp is not null, el was found and true is returned. If tmp is null, the search
was unsuccessful and false is returned.

With reasoning very similar to that used to determine the efficiency of
delete(), isInList() takes O(1) time in the best case and O(n) in the worst and
average cases.

In the foregoing discussion, the operations on nodes have been stressed. How-
ever, a linked list is built for the sake of storing and processing information, not for
the sake of itself. Therefore, the approach used in this section is limited in that
the list can only store integers. If we wanted a linked list for float numbers or for
arrays of numbers, then a new class has to be declared with a new set of methods, all
of them resembling the ones discussed here. However, it is more advantageous to
declare such a class only once without deciding in advance what type of data will
be stored in it. One solution is to declare the info field as Object. This is an ade-
quate solution if the linked list is used for the type of storage and retrieval opera-
tions that are position oriented: insert at the beginning or retrieve from the end. But
for the method delete(), which first relies on finding a node with specific infor-
mation or for such operations as retrieving the largest element, inserting the infor-
mation in ascending order, or just finding a particular piece of information in the
list, the type Object does not allow us to do it for the reasons indicated in Section
1.4: Comparison amounts to comparing references to data, not the data themselves.
Hence, the desired comparison methods have to be defined each time a linked list
is accommodated to storing a particular data type. This way of defining generic
linked lists is shown in Figure 3.9. For the rest of the chapter, linked lists of integers
are used to simplify coding and to show clearly the linked list’s operations.

0 1 1 1

2

1
2+ + + − = = −
−

... ()
()

n

n n

n
n n

S e c t i o n 3 . 1 S i n g l y L i n k e d L i s t s ■ 93

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

94 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.9 Implementation of a generic singly linked list.

//*********************** SLLNode.java *******************************

public class SLLNode {
public Object info;
public SLLNode next;
public SLLNode() {

next = null;
}
public SLLNode(Object el) {

info = el; next = null;
}
public SLLNode(Object el, SLLNode ptr) {

info = el; next = ptr;
}

}

/*********************** SLList.java ***************************
* generic singly linked list class with head only
*/

public class SLList {
protected SLLNode head = null;
public SLList() {
}
public boolean isEmpty() {

return head == null;
}
public Object first() {

return head.info;
}
public void printAll(java.io.PrintStream out) {

for (SLLNode tmp = head; tmp != null; tmp = tmp.next)
out.print(tmp.info);

}
public void add(Object el) {

head = new SLLNode(el,head);
}
public Object find(Object el) {

SLLNode tmp = head;
for (; tmp != null && !el.equals(tmp.info); tmp = tmp.next);
if (tmp == null)

return null;
else return tmp.info;

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 2 D o u b l y L i n k e d L i s t s ■ 95

FIGURE 3.9 (continued)

public Object deleteHead() { // remove the head and return its info;
Object el = head.info;
head = head.next;
return el;

}
public void delete(Object el) { // find and remove el;

if (head != null) // if nonempty list;
if (el.equals(head.info)) // if head needs to be removed;

head = head.next;
else {

SLLNode pred = head, tmp = head.next;
for (; tmp != null && !(tmp.info.equals(el));

pred = pred.next, tmp = tmp.next);
if (tmp != null) // if found

pred.next = tmp.next;
}

}
}

3.2 DOUBLY LINKED LISTS

The method deleteFromTail() indicates a problem inherent to singly linked lists.
The nodes in such lists contain only references to the successors; therefore, there is no
immediate access to the predecessors. For this reason, deleteFromTail() was im-
plemented with a loop that allowed us to find the predecessor of tail. Although this
predecessor is, so to speak, within sight, it is out of reach. We have to scan the entire
list to stop right in front of tail to delete it. For long lists and for frequent executions
of deleteFromTail(), this may be an impediment to swift list processing. To avoid
this problem, the linked list is redefined so that each node in the list has two reference
fields, one to the successor and one to the predecessor. A list of this type is called a
doubly linked list, and is illustrated in Figure 3.10. An implementation of a doubly
linked list of integers is shown in Figure 3.11.

FIGURE 3.10 A doubly linked list.

6 5 8

tailhead

\
\

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

96 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.11 An implementation of a doubly linked list.

/************************ IntDLLNode.java ***************************/

public class IntDLLNode {
public int info;
public IntDLLNode next, prev;
public IntDLLNode(int el) {

this(el,null,null);
}
public IntDLLNode(int el, IntDLLNode n, IntDLLNode p) {

info = el; next = n; prev = p;
}

}

/************************ IntDLList.java ***************************/

public class IntDLList {
private IntDLLNode head, tail;
public IntDLList() {

head = tail = null;
}
public boolean isEmpty() {

return head == null;
}
public void addToTail(int el) {

if (!isEmpty()) {
tail = new IntDLLNode(el,null,tail);
tail.prev.next = tail;

}
else head = tail = new IntDLLNode(el);

}
public int removeFromTail() {

int el = tail.info;
if (head == tail) // if only one node in the list;

head = tail = null;
else { // if more than one node in the list;

tail = tail.prev;
tail.next = null;

}
return el;

}
.

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Methods for processing doubly linked lists are slightly more complicated than
their singly linked counterparts because there is one more reference field to be main-
tained. Only two methods are discussed: a method to insert a node at the end of a
doubly linked list and a method to remove a node from the end (Figure 3.11).

To add a node to a list, the node has to be created, its fields properly initialized,
and then the node needs to be incorporated into the list. Inserting a node at the end of
a doubly linked list is illustrated in Figure 3.12. The process is performed in six steps:

1. A new node is created (Figure 3.12a), and then its three fields are initialized:

2. the info field to the number el being inserted (Figure 3.12b),

3. the next field to null (Figure 3.12c),

S e c t i o n 3 . 2 D o u b l y L i n k e d L i s t s ■ 97

FIGURE 3.12 Adding a new node at the end of a doubly linked list.

6 5 8

tailhead

\
\

(a)

6 5 8

tailhead

\
\

(b)
10

6 5 8

tailhead

\
\

(c)
10
\

6 5 8

tailhead

\
\

(d)
10
\

6 5 8

tailhead

\
\

(e)
10
\

6 5 8

tailhead

\

(f)
10
\

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. and the prev field to the value of tail so that this field points to the last node in the
list (Figure 3.12d). But now, the new node should become the last node; therefore,

5. tail is set to reference the new node (Figure 3.12e). But the new node is not yet
accessible from its predecessor; to rectify this,

6. the next field of the predecessor is set to reference the new node (Figure 3.12f).

A special case concerns the last step. It is assumed in this step that the newly cre-
ated node has a predecessor, so it accesses its prev field. It should be obvious that for
an empty linked list, the new node is the only node in the list and it has no predeces-
sor. In this case, both head and tail refer to this node, and the sixth step is now set-
ting head to refer to this node. Note that step four—setting the prev field to the
value of tail—is executed properly because for an initially empty list, tail is null.
Thus, null becomes the value of the prev field of the new node.

Deleting the last node from the doubly linked list is straightforward because there
is direct access from the last node to its predecessor, and no loop is needed to remove
the last node. When deleting a node from the list in Figure 3.13a, the temporary vari-
able el is set to the value in the last node, then tail is set to its predecessor (Figure
3.13b), and the last node is cut off from the list by setting the next field of the next to
last node to null. In this way, the next to last node becomes the last node, and the for-
merly last node is abandoned (Figure 3.13c). Although this node accesses the list, the
node is inaccessible from the list; hence, it will be claimed by the garbage collector.
The last step is returning the value stored in the removed node.

98 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.13 Deleting a node from the end of a doubly linked list.

6 5 8 10
\

head tail

6 5 8 10
\

head tail

6 5 8 10
\

head tail

\

\

\

\

(a)

(b)

(c)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An attempt to delete a node from an empty list may result in a program crash.
Therefore, the user has to check whether the list is not empty before attempting to
delete the last node. As with the singly linked list’s deleteFromHead(), the caller
should have an if statement

if (!list.isEmpty())
n = list.deleteFromTail();

else do not remove;

The second special case is the deletion of the only node from a single-node linked
list. In this case, both head and tail are set to null.

Because of the immediate accessibility of the last node, both addToTail() and
deleteFromTail() execute in constant time O(1).

Methods for operating at the beginning of the doubly linked list are easily ob-
tained from the two methods just discussed by changing head to tail and vice versa,
changing next to prev and vice versa, and exchanging the order of parameters when
executing new.

3.3 CIRCULAR LISTS

In some situations, a circular list is needed in which nodes form a ring: The list is finite
and each node has a successor. An example of such a situation is when several
processes are using the same resource for the same amount of time, and we have to as-
sure that each process has a fair share of the resource. Therefore, all processes—let
their numbers be 6, 5, 8, and 10, as in Figure 3.14—are put on a circular list accessible
through current. After one node in the list is accessed and the process number is re-
trieved from the node to activate this process, current moves to the next node so
that the next process can be activated the next time.

In an implementation of a circular singly linked list, we can use only one perma-
nent reference, tail, to the list even though operations on the list require access to
the tail and its successor, the head. To that end, a linear singly linked list as discussed
in Section 3.1 uses two permanent references, head and tail.

S e c t i o n 3 . 3 C i r c u l a r L i s t s ■ 99

FIGURE 3.14 A circular singly linked list.

6 5 8

current

10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 3.15a shows a sequence of insertions at the front of the circular list, and
Figure 3.15b illustrates insertions at the end of the list. As an example of a method
operating on such a list, we present a method to insert a node at the tail of a circular
singly linked list:

public void addToTail(int el) {
if (isEmpty()) {

tail = new IntSLLNode(el);
tail.next = tail;

}
else {

tail.next = new IntSLLNode(el,tail.next);
tail = tail.next;

}

The implementation just presented is not without its problems. A method for
deletion of the tail node requires a loop so that tail can be set to its predecessor
after deleting the node. This makes this method delete the tail node in O(n) time.

100 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.15 Inserting nodes at the front of a circular singly linked list (a) and at its end (b).

4 3 2 1

1

2

3

1

2 1

tail

tail

tail

tail

1 2 3 4

1

1

1

2

2 3

tail

tail

tail

tail

(a) (b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Moreover, processing data in the reverse order (printing, searching, etc.) is not very
efficient. To avoid the problem and still be able to insert and delete nodes at the
front and at the end of the list without using a loop, a doubly linked circular list can
be used. The list forms two rings: one going forward through next fields and one
going backward through prev fields. Figure 3.16 illustrates such a list accessible
through the last node. Deleting the node from the end of the list can be done easily
because there is direct access to the next to last node that needs to be updated in the
case of such a deletion. In this list, both insertion and deletion of the tail node can
be done in O(1) time.

S e c t i o n 3 . 4 S k i p L i s t s ■ 101

FIGURE 3.16 A circular doubly linked list.

tail

3.4 SKIP LISTS

Linked lists have one serious drawback: They require sequential scanning to locate a
searched-for element. The search starts from the beginning of the list and stops
when either a searched-for element is found or the end of the list is reached without
finding this element. Ordering elements on the list can speed up searching, but a se-
quential search is still required. Therefore, we may think about lists that allow for
skipping certain nodes to avoid sequential processing. A skip list is an interesting
variant of the ordered linked list that makes such a nonsequential search possible
(Pugh 1990).

In a skip list of n nodes, for each k and i such that 1 ≤ k ≤ ⎣lg n⎦ and 1 ≤ i ≤
⎣n/2k–1⎦ – 1, the node in position 2k–1 · i points to the node in position 2k–1 · (i + 1).
This means that every second node points to the node two positions ahead, every
fourth node points to the node four positions ahead, and so on, as shown in Figure
3.17a. This is accomplished by having different numbers of reference fields in nodes
on the list: Half of the nodes have just one reference field, one-fourth of the nodes
have two reference fields, one-eighth of the nodes have three reference fields, and so
on. The number of reference fields indicates the level of each node, and the number of
levels is maxLevel = ⎣lg n⎦ + 1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Searching for an element el consists of following the references on the highest
level until an element is found that finishes the search successfully. In the case of
reaching the end of the list or encountering an element key that is greater than el,
the search is restarted from the node preceding the one containing key, but this time
starting from a reference on a lower level than before. The search continues until el is
found, or the first-level references are followed to reach the end of the list or to find an
element greater than el. Here is a pseudocode for this algorithm:

find(element el)
p = the nonnull list on the highest level i;
while el not found and i ≥ 0

if p.key < el
p = a sublist that begins in the predecessor of p on level --i;

else if p.key > el
if p is the last node on level i

p = a nonnull sublist that begins in p on the highest level < i;
i = the number of the new level;

else p = p.next;

102 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.17 A skip list with (a) evenly and (b) unevenly spaced nodes of different levels;
(c) the skip list with reference nodes clearly shown.

7

5
7 17 31

22

\

8

10 35 \

\

\12 19

(a)

28 33

5
10 22

28

\

8 17
33

\

\

12 19

(b)

31 35 \

(c)

5 7

8
10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

For example, if we look for number 16 in the list in Figure 3.17b, then level four is
tried first, which is unsuccessful because the first node on this level has 28. Next, we
try the third-level sublist starting from the root: It first leads to 8 and then to 17.
Hence, we try the second-level sublist that originates in the node holding 8: It leads to
10 and then again to 17. The last try is by starting the first-level sublist, which begins
in node 10; this sublist’s first node has 12, the next number is 17, and because there is
no lower level, the search is pronounced unsuccessful. The path through which the list
passed during this searching process is indicated in Figure 3.17c with a dashed line.
Code for the searching method is given in Figure 3.18.

S e c t i o n 3 . 4 S k i p L i s t s ■ 103

FIGURE 3.18 An implementation of a skip list.

/*********************** IntSkipListNode.java *********************/

public class IntSkipListNode {
public int key;
public IntSkipListNode[] next;
IntSkipListNode(int i, int n) {

key = i;
next = new IntSkipListNode[n];
for (int j = 0; j < n; j++)

next[j] = null;
}

}

/************************* IntSkipList.java ***********************/

import java.util.Random;

public class IntSkipList {
private int maxLevel;
private IntSkipListNode[] root;
private int[] powers;
private Random rd = new Random();
IntSkipList() {

this(4);
}
IntSkipList (int i) {

maxLevel = i;
root = new IntSkipListNode[maxLevel];
powers = new int[maxLevel];
for (int j = 0; j < maxLevel; j++)

root[j] = null;
choosePowers();

}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

104 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.18 (continued)

public boolean isEmpty() {
return root[0] == null;

}
public void choosePowers() {

powers[maxLevel-1] = (2 << (maxLevel-1)) - 1; // 2^maxLevel - 1
for (int i = maxLevel - 2, j = 0; i >= 0; i--, j++)

powers[i] = powers[i+1] - (2 << j); // 2^(j+1)
}
public int chooseLevel() {

int i, r = Math.abs(rd.nextInt()) % powers[maxLevel-1] + 1;
for (i = 1; i < maxLevel; i++)

if (r < powers[i])
return i-1; // return a level < the highest level;

return i-1; // return the highest level;
}
// make sure (with isEmpty()) that skipListSearch() is called for a
// nonempty list;
public int skipListSearch (int key) {

int lvl;
IntSkipListNode prev, curr; // find the highest non-null
for (lvl = maxLevel-1; lvl >= 0 && root[lvl] == null; lvl--); // level;
prev = curr = root[lvl];
while (true) {

if (key == curr.key) // success if equal;
return curr.key;

else if (key < curr.key) { // if smaller, go down,
if (lvl == 0) // if possible,

return 0;
else if (curr == root[lvl]) // by one level

curr = root[--lvl]; // starting from the
else curr = prev.next[--lvl]; // predecessor which

} // can be the root;
else { // if greater,

prev = curr; // go to the next
if (curr.next[lvl] != null) // non-null node

curr = curr.next[lvl]; // on the same level
else { // or to a list on a lower level;

for (lvl--; lvl >= 0 && curr.next[lvl] == null; lvl--);
if (lvl >= 0)

curr = curr.next[lvl];
else return 0;

}
}

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Searching appears to be efficient; however, the design of skip lists can lead to
very inefficient insertion and deletion procedures. To insert a new element, all
nodes following the node just inserted have to be restructured; the number of ref-
erence fields and the value of references have to be changed. In order to retain
some of the advantages that skip lists offer with respect to searching and to avoid
problems with restructuring the lists when inserting and deleting nodes, the re-
quirement on the positions of nodes of different levels is now abandoned and only

S e c t i o n 3 . 4 S k i p L i s t s ■ 105

FIGURE 3.18 (continued)

public void skipListInsert (int key) {
IntSkipListNode[] curr = new IntSkipListNode[maxLevel];
IntSkipListNode[] prev = new IntSkipListNode[maxLevel];
IntSkipListNode newNode;
int lvl, i;
curr[maxLevel-1] = root[maxLevel-1];
prev[maxLevel-1] = null;
for (lvl = maxLevel - 1; lvl >= 0; lvl--) {

while (curr[lvl] != null && curr[lvl].key < key) { // go to the next
prev[lvl] = curr[lvl]; // if smaller;
curr[lvl] = curr[lvl].next[lvl];

}
if (curr[lvl] != null && curr[lvl].key == key) // don't include

return; // duplicates;
if (lvl > 0) // go one level down

if (prev[lvl] == null) { // if not the lowest
curr[lvl-1] = root[lvl-1];// level, using a link
prev[lvl-1] = null; // either from the root

}
else { // or from the predecessor;

curr[lvl-1] = prev[lvl].next[lvl-1];
prev[lvl-1] = prev[lvl];

}
}
lvl = chooseLevel(); // generate randomly level

// for newNode;
newNode = new IntSkipListNode(key,lvl+1);
for (i = 0; i <= lvl; i++) { // initialize next fields of

newNode.next[i] = curr[i]; // newNode and reset to newNode
if (prev[i] == null) // either fields of the root

root[i] = newNode; // or next fields of newNode's
else prev[i].next[i] = newNode;// predecessors;

}
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the requirement on the number of nodes of different levels is kept. For example,
the list in Figure 3.17a becomes the list in Figure 3.17b: Both lists have six nodes in
level one (with one reference field), three nodes in level two, two nodes in level
three, and one node in level four. The new list is searched exactly the same way as
the original list. Inserting does not require list restructuring, and nodes are gener-
ated so that the distribution of the nodes on different levels is kept adequate. How
can this be accomplished?

Assume that maxLevel = 4. For 15 elements, the required number of nodes on
level one is eight, on level two is four, on level three is two, and in level one is one. Each
time a node is inserted, a random number r between 1 and 15 is generated, and if r <
9, then a node of level one is inserted. If r < 13, a second-level node is inserted, if r <
15, it is a third-level node, and if r = 15, the node of level four is generated and in-
serted. If maxLevel = 5, then for 31 elements the correspondence between the value of
r and the level of node is as follows:

r Level of Node to Be Inserted

31 5

29–30 4

25–28 3

17–24 2

1–16 1

To determine such a correspondence between r and the level of node for any
maxLevel, the method choosePowers() initializes the array powers[] by putting
lower bounds on each range. For example, for maxLevel = 4, the array is [1 9 13 15];
for maxLevel = 5, it is [1 17 25 29 31]. chooseLevel() uses powers[] to deter-
mine the level of the node about to be inserted. Figure 3.18 contains the code for
choosePowers() and chooseLevel(). Note that the levels range between 0 and
maxLevel–1 (and not between 1 and maxLevel) so that the array indexes can be used
as levels. For example, the first level is level zero.

But we also have to address the question of implementing a node. The easiest
way is to make each node have maxLevel reference fields, but this is wasteful. We need
only as many reference fields per node as the level of the node requires. To accom-
plish this, the next field of each node is not a reference to the next node, but to an
array of reference(s) to the next node(s). The size of this array is determined by the
level of the node. The IntSkipListNode and SkipList classes are declared as in
Figure 3.18. In this way, the list in Figure 3.17b is really a list whose first four nodes
are shown in Figure 3.17c. Only now can an inserting procedure be implemented, as
in Figure 3.18.

How efficient are skip lists? In the ideal situation, which is exemplified by the list
in Figure 3.17a, the search time is O(lg n). In the worst situation, when all lists are
on the same level, the skip list turns into a regular singly linked list, and the search
time is O(n). However, the latter situation is unlikely to occur; in the random skip
list, the search time is of the same order as the best case; that is, O(lg n). This is
an improvement over the efficiency of searching regular linked lists. It also turns
out that skip lists fare extremely well in comparison with more sophisticated data

106 ■ C h a p t e r 3 L i n k e d L i s t s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 5 S e l f - O r g a n i z i n g L i s t s ■ 107

structures, such as self-adjusting trees or AVL trees (see Sections 6.7.2 and 6.8), and
therefore they are a viable alternative to these data structures (see also the table in
Figure 3.21).

3.5 SELF-ORGANIZING LISTS

The introduction of skip lists was motivated by the need to speed up the searching
process. Although singly and doubly linked lists require sequential search to locate an
element or to see that it is not in the list, we can improve the efficiency of the search by
dynamically organizing the list in a certain manner. This organization depends on the
configuration of data; thus, the stream of data requires reorganizing the nodes already
on the list. There are many different ways to organize the lists, and this section de-
scribes four of them:

1. Move-to-front method. After the desired element is located, put it at the beginning of
the list (Figure 3.19a).

2. Transpose method. After the desired element is located, swap it with its predecessor
unless it is at the head of the list (Figure 3.19b).

3. Count method. Order the list by the number of times elements are being accessed
(Figure 3.19c).

4. Ordering method. Order the list using certain criteria natural for the information
under scrutiny (Figure 3.19d).

In the first three methods, new information is stored in a node added to the end
of the list (Figure 3.19e); in the fourth method, new information is stored in a node
inserted somewhere in the list to maintain the order of the list (Figure 3.19f). An ex-
ample of searching for elements in a list organized by these different methods is
shown in Figure 3.20.

With the first three methods, we try to locate the elements most likely to be looked
for near the beginning of the list, most explicitly with the move-to-front method and
most cautiously with the transpose method. The ordering method already uses some
properties inherent to the information stored in the list. For example, if we are storing
nodes pertaining to people, then the list can be organized alphabetically by the name of
the person or the city or in ascending or descending order using, say, birthday or salary.
This is particularly advantageous when searching for information that is not in the list,
because the search can terminate without scanning the entire list. Searching all the
nodes of the list, however, is necessary in such cases using the other three methods. The
count method can be subsumed in the category of the ordering methods if frequency is
part of the information. In many cases, however, the count itself is an additional piece
of information required solely to maintain the list; hence, it may not be considered
“natural” to the information at hand.

Analyses of the efficiency of these methods customarily compare their efficiency to
that of optimal static ordering. With this ordering, all the data are already ordered by the
frequency of their occurrence in the body of data so that the list is used only for search-
ing, not for inserting new items. Therefore, this approach requires two passes through
the body of data, one to build the list and another to use the list for search alone.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To experimentally measure the efficiency of these methods, the number of all ac-
tual comparisons was compared to the maximum number of possible comparisons.
The latter number is calculated by adding the lengths of the list at the moment of pro-
cessing each element. For example, in the table in Figure 3.20, the body of data contains
14 letters, 5 of them being different, which means that 14 letters were processed. The
length of the list before processing each letter is recorded, and the result, 0 + 1 + 2 + 3 +
3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 5 = 46, is used to compare the number of all compar-

108 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.19 Accessing an element on a linked list and changes on the list depending on the
self-organization technique applied: (a) move-to-front method, (b) transpose method,
(c) count method, and (d) ordering method, in particular, alphabetical ordering,
which leads to no change. In the case when the desired element is not in the list,
(e) the first three methods add a new node with this element at the end of the list
and (f) the ordering method maintains an order on the list.

A B C D
\

DAccess D

(a)

move-to-front

A B C
\

A B C D
\

AAccess D

(b)

transpose

B D C
\

A B C D

\

AAccess D

(c)

count

D B C

\
3 1 1 1 3 2 1 1

A B C D
\

AAccess D

(d)

ordering

B C D
\

A B D
\

AAccess C

(e)

move-to-front,
transpose, count

B D C
\

A B D
\

AAccess C

(f)

ordering

B C D
\

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

isons made to this combined length. In this way, we know what percentage of the list
was scanned during the entire process. For all the list organizing methods except opti-
mal ordering, this combined length is the same; only the number of comparisons can
change. For example, when using the move-to-front technique for the data in the table
in Figure 3.20, 33 comparisons were made, which is 71.7% when compared to 46. The
latter number gives the worst possible case, the combined length of intermediate lists
every time all the nodes in the list are looked at. Plain search, with no reorganization,
required only 30 comparisons, which is 65.2%.

These samples are in agreement with theoretical analyses that indicate that
count and move-to-front methods are, in the long run, at most twice as costly as
the optimal static ordering; the transpose method approaches, in the long run, the
cost of the move-to-front method. In particular, with amortized analysis, it can be
established that the cost of accessing a list element with the move-to-front method is
at most twice the cost of accessing this element on the list that uses optimal static
ordering.

In a proof of this statement, the concept of inversion is used. For two lists con-
taining the same elements, an inversion is defined to be a pair of elements (x, y) such
that on one list x precedes y and on the other list y precedes x. For example, the list

S e c t i o n 3 . 5 S e l f - O r g a n i z i n g L i s t s ■ 109

FIGURE 3.20 Processing the stream of data, A C B C D A D A C A C C E E, by different methods of
organizing linked lists. Linked lists are presented in an abbreviated form; for example,
the transformation shown in Figure 3.19a is abbreviated as transforming list A B C D
into list D A B C.

Element Move-to-
Searched For Plain Front Transpose Count Ordering

A: A A A A A

C: A C A C A C A C A C

B: A C B A C B A C B A C B A B C

C: A C B C A B C A B C A B A B C

D: A C B D C A B D C A B D C A B D A B C D

A: A C B D A C B D A C B D C A B D A B C D

D: A C B D D A C B A C D B D C A B A B C D

A: A C B D A D C B A C D B A D C B A B C D

C: A C B D C A D B C A D B C A D B A B C D

A: A C B D A C D B A C D B A C D B A B C D

C: A C B D C A D B C A D B A C D B A B C D

C: A C B D C A D B C A D B C A D B A B C D

E: A C B D E C A D B E C A D B E C A D B E A B C D E

E: A C B D E E C A D B C A D E B C A E D B A B C D E

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(C, B, D, A) has four inversions with respect to list (A, B, C, D): (C, A), (B, A), (D, A),
and (C, B). Define the amortized cost to be the sum of actual cost and the difference
between the number of inversions before accessing an element and after accessing it,

amCost(x) = cost(x) + (inversionsBeforeAccess(x) – inversionsAfterAccess(x))

To assess this number, consider an optimal list OL = (A, B, C, D) and a move-to-
front list MTF = (C, B, D, A). The access of elements usually changes the balance of in-
versions. Let displaced(x) be the number of elements preceding x in MTF but following
x in OL. For example, displaced(A) = 3, displaced(B) = 1, displaced(C) = 0, and dis-
placed(D) = 0. If posMTF(x) is the current position of x in MTF, then posMTF(x) – 1 – dis-
placed(x) is the number of elements preceding x in both lists. It is easy to see that for D
this number equals 2, and for the remaining elements it is 0. Now, accessing an element
x and moving it to the front of MTF creates posMTF(x) – 1 – displaced(x) new inversions
and removes displaced(x) other inversions so that the amortized time to access x is

amCost(x) = posMTF(x) + posMTF(x) – 1 – displaced(x) – displaced(x) = 2(posMTF(x) – displaced(x)) – 1

where cost(x) = posMTF(x). Accessing A transforms MTF = (C, B, D, A) into (A, C, B, D)
and amCost(A) = 2(4 – 3) – 1 = 1. For B, the new list is (B, C, D, A) and amCost(B) = 2(2
– 1) – 1 = 1. For C, the list does not change and amCost(C) = 2(1 – 0) – 1 = 1. Finally, for
D, the new list is (D, C, B, A) and amCost(D) = 2(3 – 0) – 1 = 5. However, the number of
common elements preceding x on the two lists cannot exceed the number of all the ele-
ments preceding x on OL; therefore, posMTF(x) – 1 – displaced(x) ≤ posOL(x) – 1, so that

amCost(x) ≤ 2posOL(x) – 1

The amortized cost of accessing an element x in MTF is in excess of posOL(x) – 1 units
to its actual cost of access on OL. This excess is used to cover an additional cost of ac-
cessing elements in MTF for which posMTF(x) > posOL(x); that is, elements that re-
quire more accesses on MTF than on OL.

It is important to stress that the amortized costs of single operations are mean-
ingful in the context of sequences of operations. A cost of an isolated operation may
seldom equal its amortized cost; however, in a sufficiently long sequence of accesses,
each access on the average takes at most 2posOL(x) – 1 time.

Figure 3.21 contains sample runs of the self-organizing lists. The second and the
fourth columns of numbers refer to files containing programs, and the remaining
columns refer to files containing English text. There is a general tendency for all meth-
ods to improve their efficiency with the size of the file. The move-to-front and count
methods are almost the same in their efficiency, and both outperform the transpose,
plain, and ordering methods. The poor performance for smaller files is due to the fact
that all of the methods are busy including new words in the lists, which requires an ex-
haustive search of the lists. Later, the methods concentrate on organizing the lists to
reduce the number of searches. The table in Figure 3.21 also includes data for a skip
list. There is an overwhelming difference between the skip list’s efficiency compared to
the other methods. However, keep in mind that in the table in Figure 3.21, only com-
parisons of data are included, with no indication of the other operations needed for
execution of the analyzed methods. In particular, there is no indication of how many
references are used and relinked, which, when included, may make the difference be-
tween various methods less dramatic.

110 ■ C h a p t e r 3 L i n k e d L i s t s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

These sample runs show that for lists of modest size, the linked list suffices. With
the increase in the amount of data and in the frequency with which they have to be ac-
cessed, more sophisticated methods and data structures need to be used.

3.6 SPARSE TABLES

In many applications, the choice of a table seems to be the most natural one, but space
considerations may preclude this choice. This is particularly true if only a small frac-
tion of the table is actually used. A table of this type is called a sparse table because the
table is populated sparsely by data and most of its cells are empty. In this case, the
table can be replaced by a system of linked lists.

As an example, consider the problem of storing grades for all students in a univer-
sity for a certain semester. Assume that there are 8,000 students and 300 classes. A nat-
ural implementation is a two-dimensional array grades where student numbers are
indexes of the columns and class numbers are indexes of the rows (see Figure 3.22). An
association of student names and numbers is represented by the one-dimensional array
students and an association of class names and numbers by the array classes. The
names do not have to be ordered. If order is required, then another array can be used
where each array element is occupied by an object with two fields, name and number,1

or the original array can be sorted each time an order is required. This, however, leads to
the constant reorganization of grades, and is not recommended.

Each cell of grades stores a grade obtained by each student after finishing a class.
If signed grades such as A–, B+, or C+ are used, then two characters (that is, four bytes)
are required to store each grade. To reduce the table size by one-half, the array grade-
Codes in Figure 3.22c associates each grade with a codeword that requires only one byte
of storage.

S e c t i o n 3 . 6 S p a r s e Ta b l e s ■ 111

FIGURE 3.21 Measuring the efficiency of different methods using formula (number of data
comparisons)/(combined length) expressed in percentages.

Different Words/
All Words 156/347 149/423 609/1510 550/2847 1163/5866 2013/23065

Optimal 28.5 26.4 24.5 17.6 16.2 10.0

Plain 70.3 71.2 67.1 56.3 51.7 35.4

Move-to-Front 61.3 49.5 54.5 31.3 30.5 18.4

Transpose 68.8 69.5 66.1 53.3 49.4 32.9

Count 61.2 51.6 54.7 34.0 32.0 19.8

Alphabetical Order 50.9 45.6 48.0 55.7 50.4 50.0

Skip List 15.1 12.3 6.6 5.5 4.8 3.8

1This is called an index-inverted table.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The entire table (Figure 3.22d) occupies 8,000 students · 300 classes · 1 byte = 2.4
million bytes. This table is very large but is sparsely populated by grades. Assuming
that, on the average, students take four classes a semester, each column of the table has
only four cells occupied by grades, and the rest of the cells, 296 cells or 98.7%, are un-
occupied and wasted.

A better solution is to use two pairs of parallel two-dimensional arrays: In one,
classesTaken1 and classesTaken2 represent all the classes taken by every stu-
dent; in the other, studentsInClasses1 and studentsInClasses2 represent
all students participating in each class (Figure 3.23). Moreover, classesTaken1
contains class numbers, studentsInClasses1 contains student numbers, and

112 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.22 Arrays and sparse table used for storing student grades.

Crawford William404

Shelton Mary2

Weaver Henry1

Sheaver Geo

students

0

Lawson Earl405

Fulton Jenny5206

Craft Donald5207

Oates Key

(a)

5208

1

0

1

0

B–4

B

B+2

A–1

A

gradeCodes

0

C+5

C

C–7

D8

F

(c)

9

Advanced Writing30

Introduction to Microbiology1

Anatomy/ Physiology

classes

student

0

Chaucer31

Data Structures115

3

6

Cryptology116

Computer Ethics

(b)

117

1

5

2

4

0
3

404

7

4

405

(d)

5

5206

1

5207

5

5208

3

3

7999

0

30
31

115c
l
a
s
s

116
117

299

grades

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 6 S p a r s e Ta b l e s ■ 113

FIGURE 3.23 Two-dimensional arrays for storing student grades.

0 1 2 . . . 404 405 . . . 5206 5207 5208 . . . 7999

0

1

2

3

4

5

6

7

1

31

124

136

30 1

115

116

1

115

218

221

285

292

31

64

120

1

33

86

121

203

115

121

146

156

0

30

208

211

234

0 1 2 . . . 404 405 . . . 5206 5207 5208 . . . 7999

0

1

2

3

4

5

6

7

1

0

0

2

5 4

0

3

7

4

6

5

3

3

5

5

4

1

1

0

2

2

5

5

3

0

3

3

2

3

1

classesTaken1

classesTaken2

0 1 . . . 30 31 . . . 115 116 . . . 299

0

1

2

3.
.

249

5208 0

2

404

5206

1

5208

0

405

2

404

5207

2

studentsInClass1

0 1 . . . 30 31 . . . 115 116 . . . 299

0

1

2

3.
.

249

3 0

0

7

1

5

3

0

5

0

4

5

3

studentsInClass2

(a)

(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

classesTaken2 and studentsInClasses2 contain grades. We assume that a
student can take at most 8 classes and that there can be at most 250 students signed
up for a class. We need two pairs of arrays, because with one array only it is very
time-consuming to produce lists. For example, if only classesTaken1 and
classesTaken2 were used, then printing a list of all students taking a particular
class would very much require an exhaustive search of these two arrays.

Assume that short integers are used to store student and class numbers, which
occupy 2 bytes to store an integer. With this new structure, 3 bytes are needed for each
cell. Therefore, the tables classesTaken1 and classesTaken2 occupy 8,000 stu-
dents · 8 classes · 3 bytes = 192,000 bytes, and tables studentsInClasses1 and
studentsInClasses2 occupy 300 classes · 250 students · 3 bytes = 225,000 bytes,
and all the tables require a total of 417,000 bytes, less than one-fifth the number of
bytes required for the sparse table in Figure 3.22.

Although this is a much better implementation than before, it still suffers from a
wasteful use of space; seldom, if ever, will both arrays be full because most classes have
fewer than 250 students, and most students take fewer than 8 classes. This structure is
also inflexible: If a class can be taken by more than 250 students, a problem occurs that
has to be circumvented in an artificial way. One way is to create a nonexistent class that
holds students from the overflowing class. Another way is to recompile the program
with a new table size, which may not be practical at a future time. Another more flexi-
ble solution is needed.

Two one-dimensional arrays of linked lists can be used as in Figure 3.24. Each cell
of the array class is a reference to a linked list of students taking a class, and each cell
of the array student indicates a linked list of classes taken by a student. The linked
lists contain nodes of five fields: student number, class number, grade, a reference to
the next student, and a reference to the next class. Assuming that each reference re-
quires only 4 bytes and one node occupies 13 bytes, the entire structure can be stored
in 8,000 students · 4 classes (on the average) · 13 bytes = 416,000 bytes, which is ap-
proximately 17% of the space required for the first implementation and roughly the
same amount of space of the second. But now, no space is used unnecessarily, there is
no restriction imposed on the number of students per class, and the lists of students
taking a class can be printed immediately, even faster than in the first approach.

3.7 LISTS IN java.util

3.7.1 LinkedList

The LinkedList class in the java.util package is an implementation of various
operations on the nodes of a linked list. The LinkedList class implements a list as a
generic doubly linked list with references to the head and to the tail. An instance of
such a list that stores integers is presented in Figure 3.10.

The class hierarchy in the package java.util is as follows:

Object ⇒ AbstractCollection ⇒ AbstractList
⇒ AbstractSequentialList ⇒ LinkedList

114 ■ C h a p t e r 3 L i n k e d L i s t s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The methods included in the LinkedList class are represented in Figure 3.25,
but the methods finalize(), getClass(), notify(), notifyAll(), and
wait() inherited from class Object are not included.

The workings of most of the methods have already been illustrated in the case
of the class Vector (Figure 1.4 and the discussion of these methods in Section 1.5).

A demonstration of some of the linked list methods is presented in Figure 3.26.
New elements can be added at the beginning of the list with addFirst(), at the end

of the list with addLast(), and anywhere inside the list with add(). Elements can be re-
trieved from the list, without removing them from it, with getFirst(), getLast(),

and get(). Elements can also be removed permanently from the list with several removal
methods. An important issue is, however, to perform user-defined operations on individ-
ual elements of the list. For example, list elements can be printed with the method

S e c t i o n 3 . 7 L i s t s i n java.util ■ 115

FIGURE 3.24 Student grades implemented using linked lists.

0
student

c
l
a
s
s

2 2 404 405 5206 5207 5208

5208

3
0

0

1

30

31

5208

3
30

5206

1
1

405

4
31

404

7
1

2

4
1

1

3
30

0

1
1

0

0
31

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

116 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.25 An alphabetical list of methods in the class LinkedList including some inherited
methods.

Method Operation

boolean add(Object ob) Insert object ob at the end of the linked list.

void add(int pos, Object ob) Insert object ob at position pos after shifting elements
at positions following pos by one position; throw
IndexOutOfBoundsException if pos is out of range.

boolean addAll(Collection c) Add all the elements from the collection c to the end of the
linked list; return true if the linked list was modified; throw
NullPointerException if c is null.

boolean addAll(int pos, Add all the elements from the collection c at the position pos of
Collection) the linked list after shifting the objects following position pos;

throw IndexOutOfBoundsException if pos is out of
range, and NullPointerException if c is null.

void addFirst(Object ob) Insert object ob at the beginning of the linked list.

void addLast(Object ob) Insert object ob at the end of the linked list; same as add(ob).

void clear() Remove all the objects from the linked list.

Object clone() Return the copy of the linked list without cloning its elements.

boolean contains(Object ob) Return true if the linked list contains the object ob.

boolean containsAll Return true if the linked list contains all of the objects in the
(Collection c) collection c; throw NullPointerException if c is null

(inherited).

boolean equals(Object ob) Return true if the current linked list and object ob are equal
(inherited).

Object get(int pos) Return the object at position pos; throw
IndexOutOfBoundsException if pos is out of range.

Object getFirst() Return the first object in the linked list; throw
NoSuchElementException if the linked list is empty.

Object getLast() Return the first object in the linked list; throw
NoSuchElementException if the linked list is empty.

int hashCode() Return the hash code for the linked list (inherited).

int indexOf(Object ob) Return the position of the first occurrence of object ob in the
linked list; return –1 if ob is not found.

boolean isEmpty() Return true if the linked list contains no elements, false
otherwise (inherited).

Iterator iterator() Generate and return an iterator for the linked list (inherited).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 7 L i s t s i n java.util ■ 117

FIGURE 3.25 (continued)

int lastIndexOf(Object ob) Return the position of the last occurrence of object ob in the
linked list; return –1 if ob is not found.

LinkedList() Create an empty linked list.

LinkedList(Collection c) Create a linked list with copies of elements from collection c;
throw NullPointerException if c is null.

ListIterator listIterator() Generate and return a list iterator for the linked list initialized to
position 0 (inherited).

ListIterator Generate and return a list iterator for the linked list initialized to
listIterator(int n) position n; throw IndexOutOfBoundsException if n is out

of range.

boolean remove(Object ob) Remove the first occurrence of ob in the linked list and return
true if ob was in the linked list.

Object remove(int pos) Remove the object at position pos; throw
IndexOutOfBoundsException if pos is out of range.

boolean Remove from the linked list all the objects contained in
removeAll(Collection c) collection col; return true if any element was removed;

throw NullPointerException if c is null (inherited).

Object removeFirst() Remove and return the first object on the linked list; throw
NoSuchElementException if the linked list is empty.

Object removeLast() Remove and return the last object on the linked list; throw
NoSuchElementException if the linked list is empty.

void removeRange(int first, Remove from the linked list all the objects from position first
int last) to position last–1 (inherited).

boolean Remove from the linked list all objects that are not in the
retainAll(Collection c) collection c; return true if any object was removed; throw

NullPointerException if c is null (inherited).

Object set(int pos, Assign object ob to position pos and return the object that
Object ob) occupied this position before the assignment; throw

IndexOutOfBoundsException if pos is out of range.

int size() Return the number of objects in the linked list.

List subList(int first, Return the sublist of the linked list (not its copy)
int last) containing elements from first to last–1; throw

IndexOutOfBoundsException if either first or
last and IllegalArgumentException if last <
first (inherited).

Object[] toArray() Copy all objects from the linked list to a newly created array and
return the array.

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

118 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.25 (continued)

Object[] toArray(Object Copy all objects from the linked list to the array a if a is large
a[]) enough or to a newly created array and return the array; throw

ArrayStoreException if type of a is not a supertype
of the type of every element in the linked list and
NullPointerException if a is null.

String toString() Return a string representation of the linked list that contains the
string representation of all the objects.

FIGURE 3.26 A program demonstrating the operation of LinkedList methods.

import java.io.*;

import java.util.LinkedList;

class TestLinkedLists {

public static void main(String[] ar) {

LinkedList lst1 = new LinkedList(); // lst1 = []

lst1.addFirst(new Integer(4)); // lst1 = [4]

lst1.addFirst(new Integer(5)); // lst1 = [5, 4]

lst1.addLast(new Integer(6)); // lst1 = [5, 4, 6]

lst1.addLast(new Integer(5)); // lst1 = [5, 4, 6, 5]

System.out.println("lst1: " + lst1); // lst1 = [5, 4, 6, 5]

System.out.println(lst1.lastIndexOf(new Integer(5)));// 3

System.out.println(lst1.indexOf(new Integer(5))); // 0

System.out.println(lst1.indexOf(new Integer(7))); // -1

lst1.remove(new Integer(5)); // lst1 = [4, 6, 5]

LinkedList lst2 = new LinkedList(lst1); // lst2 = [4, 6, 5]

lst2.add(2,new Integer(8)); // lst2 = [4, 6, 8, 5]

lst2.remove(new Integer(5)); // lst2 = [4, 6, 8]

lst2.remove(1); // lst2 = [4, 8]

System.out.println(lst2.getFirst() + " " + lst2.getLast()); // 4 8

System.out.println(lst2.set(1,new Integer(7))); // 8, lst2 = [4, 7]

Integer[] a1, b = {new Integer(1), new Integer(2)}; // b = [1, 2]

for (int i = 0; i < b.length; i++)

System.out.print(b[i] + " ");

System.out.println();

a1 = (Integer[]) lst2.toArray(b); // a1 = b = [4, 7]

for (int i = 0; i < b.length; i++)

System.out.print(b[i] + " ");

System.out.println();

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

toString(), which prints the list by starting with the left bracket, prints elements of the
list in sequence in the way specified by their own version of toString() (whether a
built-in version or redefined by the user), separates all elements by commas, and ends
printing with the right bracket. For example, the list consisting of numbers 1, 2, and 3 is
printed as [1, 2, 3]. How can the output format be changed? One way is to redefine the
method toString(). But this approach works just for printing. How can we find the
largest element on the list? Or how can elements meeting certain conditions be counted?
Or how can they be updated? These problems can be solved by processing the first element
of the list and putting it at the end until all elements are processed.

Such a situation in the case of vectors uses the subscript operation: To access the
element at position 5 of vector v,we simply use the expression v[5]. A similar role for
linked lists is played by the method get(). But if we have two accesses in the row, say,
lst.get(5), lst.get(6), then the search for position 5 begins from the beginning
of the list for the first statement and again from the beginning of the list for the second
statement. Instead, a temporary array can be created with the method toArray(). But
this approach incurs unnecessary overhead in terms of space needed for the array and
time needed to create it. A better approach is to use an iterator.

Iterators are objects that allow for access of elements of particular collections.
The class Iterator defines three methods: next() to retrieve the next element of
the collection for which the iterator is defined, hasNext() to check whether any
elements are left for processing, and an optional remove() to remove from the

S e c t i o n 3 . 7 L i s t s i n java.util ■ 119

FIGURE 3.26 (continued)

a1 = (Integer[]) lst1.toArray(b); // a1 = [4, 6, 5], b = [4, 7]

for (int i = 0; i < b.length; i++)

System.out.print(b[i] + " ");

System.out.println();

for (int i = 0; i < a1.length; i++)

System.out.print(a1[i] + " ");

System.out.println();

Object[] a2 = lst1.toArray();

for (int i = 0; i < a2.length; i++) // a2 = [4, 6, 5]

System.out.print(a2[i] + " "); // 4 6 5

System.out.println();

for (int i = 0; i < lst1.size(); i++)

System.out.print(lst1.get(i) + " "); // 4 6 5

System.out.println();

for (java.util.Iterator it = lst1.iterator(); it.hasNext();)

System.out.print(it.next() + " "); // 4 6 5

System.out.println();

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

collection the most recently accessed element. An example of application of an it-
erator is given in Figures 3.26 and 3.31.

3.7.2 ArrayList

The ArrayList class is an array implementation of a list. For all practical purposes it is
an equavalent of the class Vector except that the methods in the Vector class are syn-
chronized, whereas methods in the ArrayList class are not. Like a vector, an array list
is a flexible array that is automatically extended when required by insertion operations.

The class hierarchy in the package java.util is as follows:

Object ⇒ AbstractCollection ⇒ AbstractList ⇒ LinkedList

A list of methods of the ArrayList class is given in Figure 3.27 and an example of
application of some methods is given in Figure 3.28.

120 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.27 An alphabetical list of methods in the class ArrayList.

Method Operation

boolean add(Object ob) Insert object ob at the end of the array list.

void add(int pos, Object ob) Insert object ob at position pos after shifting elements at
positions following pos by one position; throw
IndexOutOfBoundsException if pos is out of range.

boolean addAll(Collection c) Add all the elements from the collection c to the end of the
array list; return true if the array list was modified; throw
NullPointerException if c is null.

boolean addAll(int pos, Add all the elements from the collection c at the position pos of
Collection) the array list after shifting the objects following position pos;

throw IndexOutOfBoundsException if pos is out of
range and NullPointerException if c is null.

ArrayList() Create an empty array list.

ArrayList(Collection c) Create an array list with copies of elements from collection c;
throw NullPointerException if c is null.

ArrayList(int initCap) Create an empty array list with capacity initCap; throw
IllegalArgumentException if initCap < 0.

void clear() Remove all the objects from the array list.

Object clone() Return the copy of the array list without cloning its elements.

boolean contains(Object ob) Return true if the array list contains the object ob.

boolean containsAll Return true if the array list contains all of the objects in the
(Collection c) collection c; throw NullPointerException if c is null

(inherited).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 7 L i s t s i n java.util ■ 121

FIGURE 3.27 (continued)

void ensureCapacity(int cap) If necessary, increase the capacity of the array list to accommodate
at least cap elements.

boolean equals(Object ob) Return true if the current array list and object ob are equal
(inherited).

Object get(int pos) Return the object at position pos; throw
IndexOutOfBoundsException if pos is out of range.

int hashCode() Return the hash code for the array list (inherited).

int indexOf(Object ob) Return the position of the first occurrence of object ob in the
array list; return –1 if ob is not found.

boolean isEmpty() Return true if the array list contains no elements, false
otherwise.

Iterator iterator() Generate and return an iterator for the array list (inherited).

int lastIndexOf(Object ob) Return the position of the last occurrence of object ob in the
array list; return –1 if ob is not found.

ListIterator listIterator() Generate and return a list iterator for the array list initialized to
position 0 (inherited).

ListIterator Generate and return a list iterator for the array list initialized to
listIterator(int n) position n; throw IndexOutOfBoundsException if n is

out of range (inherited).

boolean remove(Object ob) Remove the first occurrence of ob in the array list and return
true if ob was in the array list (inherited).

Object remove(int pos) Remove the object at position pos; throw
IndexOutOfBoundsException if pos is out of range.

boolean Remove from the array list all the objects contained in collection
removeAll(Collection c) col; return true if any element was removed; throw

NullPointerException if c is null (inherited).

void removeRange(int first, Remove from the array list all the objects from position first to
int last) position last –1.

boolean Remove from the array list all objects that are not in the
retainAll(Collection c) collection c; return true if any object was removed; throw

NullPointerException if c is null (inherited).

Object set(int pos, Assign object ob to position pos and return the object that
Object ob) occupied this position before the assignment; throw

IndexOutOfBoundsException if pos is out of range.

int size() Return the number of objects in the array list.

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

122 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.27 (continued)

List subList(int first, Return the sublist of the array list (not its copy) containing
int last) elements from first to last –1; throw

IndexOutOfBoundsException if either first or last
and IllegalArgumentException if last < first
(inherited).

Object[] toArray() Copy all objects from the array list to a newly created array and
return the array.

Object[] toArray(Object a[]) Copy all objects from the array list to the array a if a is large
enough or to a newly created array and return the array;
throw ArrayStoreException if type of a is not a
supertype of the type of every element in the array list and
NullPointerException if a is null.

void trimToSize() Trim the capacity of this array list to the list’s current size.

String toString() Return a string representation of the array list that contains
the string representation of all the objects.

FIGURE 3.28 A program demonstrating the operation of ArrayList methods.

import java.io.*;
import java.util.*;

class TestArrayList {
public static void main(String[] ar) {

ArrayList lst1 = new ArrayList();
lst1.add(new Integer(4));
lst1.add(new Integer(5));
lst1.add(new Integer(6));
lst1.add(new Integer(4));
ArrayList lst2 = new ArrayList(4);
lst2.add(new Integer(3));
lst2.add(new Integer(4));
lst2.add(new Character('a'));
lst2.add(new Double(1.1));
System.out.println(lst1);
System.out.println(lst2);
lst1.removeAll(lst2);
// difference: [4, 5, 6, 4] and [3, 4, a, 1.1] ==> [5, 6]
System.out.println(lst1);

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 8 C o n c l u d i n g R e m a r k s ■ 123

FIGURE 3.28 (continued)

lst1.add(0,new Integer(4));
lst1.add(new Integer(4));
lst1.retainAll(lst2);
// intersection: [4, 5, 6, 4] and [3, 4, a, 1.1] ==> [4, 4]
System.out.println(lst1);
lst1.add(1,new Integer(5));
lst1.add(2,new Integer(6));
lst1.addAll(lst2);
// union:
// [4, 5, 6, 4] and [3, 4, a, 1.1] ==> [4, 5, 6, 4, 3, 4, a, 1.1]
System.out.println(lst1);
List lst3 = lst1.subList(2,5);
System.out.println(lst3); // [6, 4, 3]
lst1.set(3,new Integer(10)); // update lst1 and lst3
System.out.println(lst1); // [4, 5, 6, 10, 3, 4, a, 1.1]
System.out.println(lst3); // [6, 10, 3]
lst3.clear();
System.out.println(lst1); // [4, 5, 4, a, 1.1]
System.out.println(lst3); // []

}
}

3.8 CONCLUDING REMARKS

Linked lists have been introduced to overcome limitations of arrays by allowing dy-
namic allocation of necessary amounts of memory. Also, linked lists allow easy inser-
tion and deletion of information because such operations have a local impact on the
list. To insert a new element at the beginning of an array, all elements in the array have
to be shifted to make room for the new item; hence, insertion has a global impact on
the array. Deletion is the same. So should we always use linked lists instead of arrays?

Arrays have some advantages over linked lists, namely that they allow random ac-
cessing. To access the tenth node in a linked list, all nine preceding nodes have to be
passed. In the array, we can go to the tenth cell immediately. Therefore, if an immediate
access of any element is necessary, then an array is a better choice. This was the case with
binary search, and it will be the case with most sorting algorithms (see Chapter 9). But if
we are constantly accessing only some elements—the first, the second, the last, and the
like—and if changing the structure is the core of an algorithm, then using a linked list is
a better option. A good example is a queue, which is discussed in the next chapter.

Another advantage in the use of arrays is space. To hold items in arrays, the cells
have to be of the size of the items. In linked lists, we store one item per node, and the
node also includes at least one reference field; in doubly linked lists, the node contains

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

two reference fields. For large linked lists, a significant amount of memory is needed
to store the references. Therefore, if a problem does not require many shifts of data,
then having an oversized array may not be wasteful at all if its size is compared to the
amount of space needed for the linked structure storing the same data as the array.

3.9 CASE STUDY: A LIBRARY

This case study is a program that can be used in a small library to include new books
in the library, to check out books to people, and to return them.

As this program is a practice in the use of linked lists, almost everything is imple-
mented in terms of such lists. But to make the program more interesting, it uses
linked lists of linked lists that also contain cross-references (see Figure 3.29).

First, there could be a list including all authors of all books in the library. How-
ever, searching through such a list can be time-consuming, so the search can be sped
up by choosing at least one of the two following strategies:

■ The list can be ordered alphabetically, and the search can be interrupted if we
find the name, if we encounter an author’s name greater than the one we are
searching for, or if we reach the end of list.

■ We can use an array of references to the author structures indexed with letters;
each slot of the array points to the linked list of authors whose names start with
the same letter.

The best strategy is to combine both approaches. However, in this case study, only
the second approach is used, and the reader is urged to amplify the program by
adding the first approach. Note that the articles a, an, and the at the beginning of the
titles should be disregarded during the sorting operation.

The program uses an array catalog of all the authors of the books included in the
library and an array people of all the people who have used the library at least once.
Both arrays are indexed with letters so that, for instance, position catalog['F'] refers
to a linked list of all the authors whose names start with F.

Because we can have several books by the same author, one of the fields of the au-
thor node refers to the list of books by this author that can be found in the library.
Similarly, because each patron can check out several books, the patron node contains
a reference to the list of books currently checked out by this patron. This fact is indi-
cated by setting the patron field of the checked-out book to the node pertaining to
the patron who is taking the book out.

Books can be returned, and that fact should be reflected by removing the appro-
priate CheckedOutBook nodes from the list of the checked-out books of the patron
who returns them. The Patron field in the node related to the book that is being re-
turned has to be reset to null.

The program defines four classes: Author, Book, Patron, and CheckedOut-
Book. Java’s LinkedList class is used to define three more classes: AuthorList,

BookList, and PatronList. To use the LinkedList class to generate and process a
specific linked list, the generic methods need to be accommodated to a specific class. In
particular, because the way of comparing instances of the first four library classes and

124 ■ C h a p t e r 3 L i n k e d L i s t s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 9 C a s e S t u d y : A L i b r a r y ■ 125

FIGURE 3.29 Linked lists indicating library status.

Fielding Henry

'A'
'B'

catalog

'F' The History

\

\

Pasquin

Brown Jim

Fitzgerald Edward

\

Euphranor

\

Selected Works

\

Murdoch Iris

\

'M'

'Z'

people

Sartre

\

The Red and

Chapman Carl

Kowalski Stanislaus

\

\

\

\

\

\

'B'

'C'

'K'

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the way of displaying them vary from one class to another, each of the four classes in-
cludes a definition of the method equals() to override the generic definition used in
class Object. To display data, two classes override the generic method isString().

However, this allows us to print information extracted from one node of a linked list.
For two classes, however, a method is needed to print linked lists L1 of linked lists L2
(e.g., a list of patrons, each node of which refers to a linked list of checked-out books).
It is possible to convert for each node of L1 to string not only information contained di-
rectly in the node, but also all the information on the linked list accessed from the
node. This is a way of overriding the method toString() defined for LinkedList.

For some variety, the three classes derived from LinkedList define their own ver-
sions of the display() method. AuthorList displays the list of authors by first con-
verting the list into an array and then processing the array with the subscripting
operator.BookList uses the get() method to access the elements of the list of books.
Finally, PatronList uses an iterator to perform the same task. Note that BookList is
used generically to create two types of lists: a linked list of books in Author objects and
checked-out books in Patron objects.

The program allows the user to choose one of the five operations: adding a book
to the library, checking a book out, returning it, showing the current status of the li-
brary, and exiting the program. The operation is chosen after a menu is displayed and
a proper number is entered. The cycle of displaying the menu and executing an
elected operation ends with choosing the exit option. Here is an example of the status
for a situation shown in Figure 3.29.

Library has the following books:

Fielding Henry
* Pasquin - checked out to Chapman Carl
* The History of Tom Jones

Fitzgerald Edward
* Selected Works
* Euphranor - checked out to Brown Jim

Murdoch Iris
* The Red and the Green - checked out to Brown Jim
* Sartre
* The Bell

The following people are using the library:

Brown Jim has the following books
* Fitzgerald Edward, Euphranor
* Murdoch Iris, The Red and the Green

Chapman Carl has the following books
* Fielding Henry, Pasquin

Kowalski Stanislaus has no books

Note that the diagram in Figure 3.29 reflects only the logic of the use of the linked
lists and thus is significantly simplified. In a more realistic diagram, we need to take
into account the fact that object data fields do not hold objects but only references to

126 ■ C h a p t e r 3 L i n k e d L i s t s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

them. Also, each object that is an instance of the generic LinkedList class refers to a
linked list in which each node refers to an object. A fragment of Figure 3.29 is shown
in Figure 3.30 with implementation details shown more explicitly. The listing for the
library program is shown in Figure 3.31.

S e c t i o n 3 . 9 C a s e S t u d y : A L i b r a r y ■ 127

FIGURE 3.30 Fragment of structure from Figure 3.29 with all the objects used in the implementation.

'B'

catalog

'F'

people

'C'

Author

Patron

Patron

Author

Book Book

CheckedOutBookChapman Carl

Fielding Henry

Pasquin The History...

/

/\

\

\

\

\

\

\

\

AuthorList

String

BookList

BookList

String String

\

\

PatronList

PatronList

String

BookList

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

128 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.31 The library program.

//*************************** Library.java **************************
import java.io.*;
import java.util.LinkedList;

class Author {
public String name;
public BookList books = new BookList();
public Author() {
}
public boolean equals(Object node) {

return name.equals(((Author) node).name);
}
public void display() {

System.out.println(name);
books.display();

}
}

class Book {
public String title;
public Patron patron = null;
public Book() {
}
public boolean equals(Object node) {

return title.equals(((Book) node).title);
}
public String toString() {

return " * " + title +
(patron != null ? " - checked out to " + patron.name : "") +
"\n";

}
}

class CheckedOutBook {
public Author author = null;
public Book book = null;
public CheckedOutBook() {
}
public boolean equals(Object node) {

return book.title.equals(((CheckedOutBook) node).book.title) &&
author.name.equals(((CheckedOutBook) node).author.name);

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 9 C a s e S t u d y : A L i b r a r y ■ 129

FIGURE 3.31 (continued)

public String toString() {
return " * " + author.name + ", " + book.title + "\n";

}
}

class Patron {
public String name;
public BookList books = new BookList();
public Patron() {
}
public boolean equals(Object node) {

return name.equals(((Patron) node).name);
}
public void display() {

if (!books.isEmpty()) {
System.out.println(name + " has the following books:");
books.display();

}
else System.out.print(name + " has no books");

}
}

class AuthorList extends LinkedList {
public AuthorList() {

super();
}
public void display() {

Object[] authors = toArray();
for (int i = 0; i < authors.length; i++)

((Author)authors[i]).display();
}

}

class BookList extends LinkedList {
public BookList() {

super();
}
public void display() {

for (int i = 0; i < size(); i++)
System.out.print(get(i));

}
}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

130 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.31 (continued)

class PatronList extends LinkedList {
public PatronList() {

super();
}
public void display() {

for (java.util.Iterator it = iterator(); it.hasNext();)
((Patron)it.next()).display();

}
}

class Library {
private AuthorList[] catalog = new AuthorList[(int)('Z'+1)];
private PatronList[] people = new PatronList[(int)('Z'+1)];
private String input;
private BufferedReader buffer = new BufferedReader(

new InputStreamReader(System.in));
public Library() {

for (int i = 0; i <= (int) 'Z'; i++) {
catalog[i] = new AuthorList();
people[i] = new PatronList();

}
}
private String getString(String msg) {

System.out.print(msg + " ");
System.out.flush();
try {

input = buffer.readLine();
} catch(IOException io) {
}
return input.substring(0,1).toUpperCase() + input.substring(1);

}
private void status() {

System.out.println("Library has the following books:\n ");
for (int i = (int) 'A'; i <= (int) 'Z'; i++)

if (!catalog[i].isEmpty())
catalog[i].display();

System.out.println("\nThe following people are using the
"library:\n ");

for (int i = (int) 'A'; i <= (int) 'Z'; i++)
if (!people[i].isEmpty())

people[i].display();
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 9 C a s e S t u d y : A L i b r a r y ■ 131

FIGURE 3.31 (continued)

private void includeBook() {
Author newAuthor = new Author();
int oldAuthor;
Book newBook = new Book();
newAuthor.name = getString("Enter author’s name:");
newBook.title = getString("Enter the title of the book:");
oldAuthor = catalog[(int)

newAuthor.name.charAt(0)].indexOf(newAuthor);
if (oldAuthor == -1) {

newAuthor.books.add(newBook);
catalog[(int) newAuthor.name.charAt(0)].add(newAuthor);

}
else ((Author)catalog[(int)

newAuthor.name.charAt(0)].get(oldAuthor)).
books.add(newBook);

}
private void checkOutBook() {

Patron patron = new Patron(), patronRef; // = new Patron();
Author author = new Author(), authorRef = new Author();
Book book = new Book();
int patronIndex, bookIndex = -1, authorIndex = -1;
patron.name = getString("Enter patron’s name:");
while (authorIndex == -1) {

author.name = getString("Enter author’s name:");
authorIndex = catalog[(int)

author.name.charAt(0)].indexOf(author);
if (authorIndex == -1)

System.out.println("Misspelled author’s name");
}
while (bookIndex == -1) {

book.title = getString("Enter the title of the book:");
authorRef = (Author) catalog[(int)

author.name.charAt(0)].get(authorIndex);
bookIndex = authorRef.books.indexOf(book);
if (bookIndex == -1)

System.out.println("Misspelled title");
}
Book bookRef = (Book) authorRef.books.get(bookIndex);
CheckedOutBook bookToCheckOut = new CheckedOutBook();
bookToCheckOut.author = authorRef;
bookToCheckOut.book = bookRef;

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

132 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.31 (continued)

patronIndex = people[(int)
patron.name.charAt(0)].indexOf(patron);

if (patronIndex == -1) { // a new patron in the library;
patron.books.add(bookToCheckOut);
people[(int) patron.name.charAt(0)].add(patron);
bookRef.patron = (Patron) people[(int)

patron.name.charAt(0)].getFirst();
}
else {

patronRef = (Patron) people[(int)
patron.name.charAt(0)].get(patronIndex);

patronRef.books.add(bookToCheckOut);
bookRef.patron = patronRef;

}
}
private void returnBook() {

Patron patron = new Patron();
Book book = new Book();
Author author = new Author(), authorRef = new Author();
int patronIndex = -1, bookIndex = -1, authorIndex = -1;
while (patronIndex == -1) {

patron.name = getString("Enter patron’s name:");
patronIndex = people[(int)

patron.name.charAt(0)].indexOf(patron);
if (patronIndex == -1)

System.out.println("Patron’s name misspelled");
}
while (authorIndex == -1) {

author.name = getString("Enter author’s name:");
authorIndex = catalog[(int)

author.name.charAt(0)].indexOf(author);
if (authorIndex == -1)

System.out.println("Misspelled author’s name");
}
while (bookIndex == -1) {

book.title = getString("Enter the title of the book:");
authorRef = (Author) catalog[(int)

author.name.charAt(0)].get(authorIndex);
bookIndex = authorRef.books.indexOf(book);
if (bookIndex == -1)

System.out.println("Misspelled title");
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 9 C a s e S t u d y : A L i b r a r y ■ 133

FIGURE 3.31 (continued)

CheckedOutBook checkedOutBook = new CheckedOutBook();
checkedOutBook.author = authorRef;
checkedOutBook.book = (Book) authorRef.books.get(bookIndex);
((Book)authorRef.books.get(bookIndex)).patron = null;
((Patron)people[(int) patron.name.charAt(0)].get(patronIndex)).

books.remove(checkedOutBook);
}
public void run() {

while (true) {
char option = getString("\nEnter one of the following" +

"options:\n" +
"1. Include a book in the catalog\n" +
"2. Check out a book\n" +
"3. Return a book\n4. Status\n5." +
"Exit\n" +
"Your option:").charAt(0);

switch (option) {
case '1': includeBook(); break;
case '2': checkOutBook(); break;
case '3': returnBook(); break;
case '4': status(); break;
case '5': return;
default: System.out.println("Wrong option, try again.");

}
}

}
public static void main(String args[]) {

(new Library()).run();
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

134 ■ C h a p t e r 3 L i n k e d L i s t s

3.10 EXERCISES

1. Assume that a circular doubly linked list has been created, as in Figure 3.32. After
each of the following assignments, indicate changes made in the list by showing
which links have been modified. Process these assignments in sequence; that is, the
second assignment should make changes in the list modified by the first assignment,
and so on.

list.next.next.next = list.prev;
list.prev.prev.prev = list.next.next.next.prev;
list.next.next.next.prev = list.prev.prev.prev;
list.next = list.next.next;
list.next.prev.next = list.next.next.next;

2. How many nodes does the shortest linked list have? The longest linked list?

3. The linked list in Figure 3.1l was created in Section 3.2 with three assignments. Create
this list with only one assignment.

4. Merge two ordered singly linked lists of integers into one ordered list.

5. Delete an ith node on a linked list. Be sure that such a node exists.

6. Delete from list L1 nodes whose positions are to be found in an ordered list L2. For
instance, if L1 = (A B C D E) and L2 = (2 4 8), then the second and the fourth nodes
are to be deleted from list L1 (the eighth node does not exist), and after deletion,
L1 = (A C E).

7. Delete from list L1 nodes occupying positions indicated in ordered lists L2 and L3. For
instance, if L1 = (A B C D E), L2 = (2 4 8), and L3 = (2 5), then after deletion, L1 = (A C).

8. Delete from an ordered list L nodes occupying positions indicated in list L itself.
For instance, if L = (1 3 5 7 8), then after deletion, L = (1 7).

9. Suggest an array implementation of linked lists.

10. Write a method to check whether two singly linked lists have the same contents.

11. Write a method to reverse a singly linked list using only one pass through the list.

FIGURE 3.32 A circular doubly linked list.

1 2 5

list

3 4

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 3 . 1 0 E x e r c i s e s ■ 135

12. Write a method to insert a new node into a singly linked list (a) before and (b) after a
node referred by p in this list (possibly the first or the last). Do not use a loop in either
operation.

13. Attach a singly linked list to the end of another singly linked list.

14. Put numbers in a singly linked list in ascending order. Use this operation to find the
median in the list of numbers.

15. How can a singly linked list be implemented so that insertion requires no test for
whether head is null?

16. Insert a node exactly in the middle of a doubly linked list.

17. Write code for class IntCircularSLList for a circular singly linked list that in-
cludes equivalents of the methods listed in Figure 3.2.

18. Write code for class IntCircularDLList for a circular doubly linked list that in-
cludes equivalents of the methods listed in Figure 3.2.

19. How likely is the worst case for searching a skip list to occur?

20. Consider the move-to-front, transpose, count, and ordering methods.

a. In what case is a list maintained by these methods not changed?

b. In what case do these methods require an exhaustive search of lists for each
search, assuming that only elements in the list are searched for?

21. In the discussion of self-organizing lists, only the number of comparisons was con-
sidered as the measure of different methods’ efficiency. This measure can, however, be
greatly affected by a particular implementation of the list. Discuss how the efficiency
of the move-to-front, transpose, count, and ordering methods are affected in the case
when the list is implemented as

a. an array

b. a singly linked list

c. a doubly linked list

22. For doubly linked lists, there are two variants of the move-to-front and transpose
methods (Matthews, Rotem, & Bretholz 1980). A move-to-end method moves an
element being accessed to the end from which the search started. For instance, if the
doubly linked list is a list of items A B C D and the search starts from the right end
to access node C, then the reorganized list is A B D C. If the search for C started from
the left end, the resulting list is C A B D.

The swapping technique transposes a node with its predecessor also with respect to
the end from which the search started (Ng & Oommen 1989). Assuming that only
elements of the list are in the data, what is the worst case for a move-to-end doubly
linked list when the search is made alternately from the left and from the right? For
a swapping list?

23. What is the maximum number of comparisons for optimal search for the 14 letters
shown in Figure 3.20?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

136 ■ C h a p t e r 3 L i n k e d L i s t s

24. Adapt the binary search to linked lists. How efficient can this search be?

25. In the second implementation of storing student grades, two pairs of two-dimensional
arrays are used: classesTaken1 and classesTaken2, and studentsInClasses1
and studentsInClasses2 (Figure 3.23). Why not use just two arrays,
classesTaken and studentsInClasses, of objects with two data fields?

3.11 PROGRAMMING ASSIGNMENTS

1. Farey fractions of level one are defined as sequence (,). This sequence is ex-

tended in level two to form a sequence (, ,), sequence (, , , ,) at

level three, sequence (, , , , , ,) at level four, so that at each level n,

a new fraction is inserted between two neighbor fractions and only if

c + d ≤ n. Write a program which for a number n entered by the user creates—by
constantly extending it—a linked list of fractions at level n and then displays them.

2. Write a simple airline ticket reservation program. The program should display a menu
with the following options: reserve a ticket, cancel a reservation, check whether a ticket
is reserved for a particular person, and display the passengers. The information is
maintained on an alphabetized linked list of names. In a simpler version of the pro-
gram, assume that tickets are reserved for only one flight. In a fuller version, place no
limit on the number of flights. Create a linked list of flights with each node including
a reference to a linked list of passengers.

3. Read Section 12.1 about sequential-fit methods. Implement the discussed methods
with linked lists and compare their efficiency.

4. Write a program to simulate managing files on disk. Define the disk as a one-
dimensional array disk of size numOfSectors*sizeOfSector, where
sizeOfSector indicates the number of characters stored in one sector. (For the
sake of debugging, make it a very small number.) A pool of available sectors is kept
in a linked list sectors of three field structures: two fields to indicate ranges of
available sectors and one next field. Files are kept in a linked list files of four
field structures: file name, the number of characters in the file, a reference to a
linked list of sectors where the contents of the file can be found, and the next field.

a. In the first part, implement methods to save and delete files. Saving files requires
claiming a sufficient number of sectors from pool, if available. The sectors may not
be contiguous, so the linked list assigned to the file may contain several nodes. Then
the contents of the file have to be written to the sectors assigned to the file. Deletion
of a file only requires removing the nodes corresponding with this file (one from
files and the rest from its own linked list of sectors) and transferring the sectors
assigned to this file back to pool. No changes are made in disk.

b
�
d

a
�
c

a + b
c + d

1
�
1

3
�
4

2
�
3

1
�
2

1
�
3

1
�
4

0
�
1

1
�
1

2
�
3

1
�
2

1
�
3

0
�
1

1
�
1

1
�
2

0
�
1

1
�
1

0
�
1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. File fragmentation slows down file retrieval. In the ideal situation, one cluster
of sectors is assigned to one file. However, after many operations with files, it may
not be possible. Extend the program to include a method together() to transfer
files to contiguous sectors; that is, to create a situation illustrated in Figure 3.33.
Fragmented files file1 and file2 occupy only one cluster of sectors after
together() is finished. However, particular care should be taken not to overwrite
sectors occupied by other files. For example, file1 requires eight sectors; five sec-
tors are free at the beginning of pool, but sectors 5 and 6 are occupied by file2.
Therefore, a file f occupying such sectors has to be located first by scanning files.
The contents of these sectors must be transferred to unoccupied positions, which
requires updating the sectors belonging to f in the linked list; only then can the re-
leased sectors be utilized. One way of accomplishing this is by copying from the area
into which one file is copied chunks of sectors of another file into an area of the disk
large enough to accommodate these chunks. In the example in Figure 3.33, contents
of file1 first are copied to sectors 0 through 4, and then copying is temporarily
suspended because sector 5 is occupied. Thus, contents of sectors 5 and 6 are moved
to sectors 12 and 14, and the copying of file1 is resumed.

5. Write a simple line editor. Keep the entire text on a linked list, one line in a separate
node. Start the program with entering EDIT file, after which a prompt appears
along with the line number. If the letter I is entered with a number n following it,
then insert the text to be followed before line n. If I is not followed by a number, then
insert the text before the current line. If D is entered with two numbers n and m, one
n, or no number following it, then delete lines n through m, line n, or the current line.
Do the same with the command L, which stands for listing lines. If A is entered, then
append the text to the existing lines. Entry E signifies exit and saving the text in a file.
Here is an example:

EDIT testfile
1> The first line
2>
3> And another line
4> I 3
3> The second line
4> One more line
5> L
1> The first line
2>
3> The second line
4> One more line
5> And another line // This is now line 5, not 3;
5> D 2 // line 5, since L was issued from line 5;
4> L // line 4, since one line was deleted;
1> The first line
2> The second line // this and the following lines
3> One more line // now have new numbers;
4> And another line
4> E

S e c t i o n 3 . 1 1 P r o g r a m m i n g A s s i g n m e n t s ■ 137

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

138 ■ C h a p t e r 3 L i n k e d L i s t s

FIGURE 3.33 Linked lists used to allocate disk sectors for files: (a) a pool of available sectors; two
files (b) before and (c) after putting them in contiguous sectors; the situation in sec-
tors of the disk (d) before and (e) after this operation.

0 7 2012

(a)

14
4 9 2312 16

23 10

files

pool

file 1
19 24

11 19 28
\

13 5
file 2

13

(b) (c)

17
6 13 18

\

23 0

files

file 1

7

13 8
file 2

12

\

\

222 222

0 1 2 3 4 5 6 7 8 9

111 111 222 222 2 111

10 11 12 13 14 15 16 17 18 19

111 111 111 111 11

20 21 22 23 24 25

(d)

26 27 28 29

111 111 111 111 111 111 111 11 222 222

0 1 2 3 4 5 6 7 8 9

222 222 2 222 222 222 2 111

10 11 12 13 14 15 16 17 18 19

111 111 111 111 11

20 21 22 23 24 25

(e)

26 27 28 29

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

B i b l i o g r a p h y ■ 139

6. Extend the case study program in this chapter to have it store all the information in
the file Library.dat at exit and initialize all the linked lists using this information
at the invocation of the program. Also, extend it by adding more error checking, such
as not allowing the same book to be checked out at the same time to more than one
patron or not including the same patron more than once in the library.

7. Test the efficiency of skip lists. In addition to the methods given in this chapter, im-
plement skipListDelete() and then compare the number of node accesses in
searching, deleting, and inserting for large numbers of elements. Compare this effi-
ciency with the efficiency of linked lists and ordered linked lists. Test your program
on a randomly generated order of operations to be executed on the elements. These
elements should be processed in random order. Then try your program on nonran-
dom samples.

BIBLIOGRAPHY

Bentley, Jon L., and McGeoch, Catherine C.,“Amortized Analyses of Self-Organizing Sequential
Search Heuristics,” Communications of the ACM 28 (1985), 404–411.

Foster, John M., List Processing, London: MacDonald, 1967.

Hansen, Wilfred J., “A Predecessor Algorithm for Ordered Lists,” Information Processing Letters
7 (1978), 137–138.

Hester, James H., and Hirschberg, Daniel S., “Self-Organizing Linear Search,” Computing Sur-
veys 17 (1985), 295–311.

Matthews, D., Rotem, D., and Bretholz, E., “Self-Organizing Doubly Linked Lists,” International
Journal of Computer Mathematics 8 (1980), 99-106.

Ng, D. T. H., and Oommen, B. J., “Generalizing Singly-Linked List Reorganizing Heuristics for
Doubly-Linked Lists,” in Kreczmar, A., and Mirkowska, G. (eds.), Mathematical Foundations of
Computer Science 1989, Berlin: Springer, 1989, 380–389.

Pugh, William, “Skip Lists: A Probabilistic Alternative to Balanced Trees,” Communications of
the ACM 33 (1990), 668–676.

Rivest, Ronald, “On Self-Organizing Sequential Search Heuristics,” Communications of the
ACM 19 (1976), No. 2, 63–67.

Sleator, Daniel D., and Tarjan, Robert E., “Amortized Efficiency of List Update and Paging
Rules,” Communications of the ACM 28 (1985), 202–208.

Wilkes, Maurice V., “Lists and Why They Are Useful,” Computer Journal 7 (1965), 278–281.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

140

Stacks and
Queues

A s the first chapter explained, abstract data types allow us to delay the specific
implementation of a data type until it is well understood what operations are
required to operate on the data. In fact, these operations determine which

implementation of the data type is most efficient in a particular situation. This situa-
tion is illustrated by two data types, stacks and queues, which are described by a list of
operations. Only after the list of the required operations is determined do we present
some possible implementations and compare them.

4.1 STACKS

A stack is a linear data structure that can be accessed only at one of its ends for storing
and retrieving data. Such a stack resembles a stack of trays in a cafeteria: New trays are
put on the top of the stack and taken off the top. The last tray put on the stack is the
first tray removed from the stack. For this reason, a stack is called an LIFO structure:
last in/first out.

A tray can be taken only if there are trays on the stack, and a tray can be added to
the stack only if there is enough room; that is, if the stack is not too high. Therefore, a
stack is defined in terms of operations that change its status and operations that check
this status. The operations are as follows:

■ clear()—Clear the stack.

■ isEmpty()—Check to see if the stack is empty.

■ push(el)—Put the element el on the top of the stack.

■ pop()—Take the topmost element from the stack.

■ topEl()—Return the topmost element in the stack without removing it.

A series of push and pop operations is shown in Figure 4.1. After pushing num-
ber 10 onto an empty stack, the stack contains only this number. After pushing 5 on
the stack, the number is placed on top of 10 so that, when the popping operation is

4

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

executed, 5 is removed from the stack, because it arrived after 10, and 10 is left on the
stack. After pushing 15 and then 7, the topmost element is 7, and this number is re-
moved when executing the popping operation, after which the stack contains 10 at the
bottom and 15 above it.

Generally, the stack is very useful in situations when data have to be stored and
then retrieved in reverse order. One application of the stack is in matching delimiters
in a program. This is an important example because delimiter matching is part of any
compiler: No program is considered correct if the delimiters are mismatched.

In Java programs, we have the following delimiters: parentheses “(” and “)”,
square brackets “[” and “]”, curly brackets “{” and “}”, and comment delimiters “/*”
and “*/”. Here are examples of Java statements that use delimiters properly:

a = b + (c – d) * (e – f);
g[10] = h[i[9]] + (j + k) * l;
while (m < (n[8] + o)) { p = 7; /* initialize p */ r = 6; }

These examples are statements in which mismatching occurs:

a = b + (c – d) * (e – f));
g[10] = h[i[9]] + j + k) * l;
while (m < (n[8] + o]) { p = 7; /* initialize p */ r = 6; }

A particular delimiter can be separated from its match by other delimiters; that is,
delimiters can be nested. Therefore, a particular delimiter is matched up only after all
the delimiters following it and preceding its match have been matched. For example,
in the condition of the loop

while (m < (n[8] + o))

the first opening parenthesis must be matched with the last closing parenthesis, but
this is done only after the second opening parenthesis is matched with the next to last
closing parenthesis; this, in turn, is done after the opening square bracket is matched
with the closing bracket.

The delimiter matching algorithm reads a character from a Java program and
stores it on a stack if it is an opening delimiter. If a closing delimiter is found, the
delimiter is compared to a delimiter popped off the stack. If they match, processing
continues; if not, processing discontinues by signaling an error. The processing of

S e c t i o n 4 . 1 S t a c k s ■ 141

FIGURE 4.1 A series of operations executed on a stack.

10
15
7

pop

10
15

push 7

10

push 15

10
5

pop

10

push 5push 10

10
15

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

142 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

the Java program ends successfully after the end of the program is reached and the
stack is empty. Here is the algorithm:

delimiterMaching(file)
read character ch from file;
while not end of file

if ch is ‘(’ , ‘[’, or ‘{’
push(ch);

else if ch is '/'
read the next character;
if this character is '*'

skip all characters until “*/” is found and report an error
if the end of file is reached before “*/” is encountered;

else ch = the character read in;
continue; // go to the beginning of the loop;

else if ch is ‘)’, ‘]’, or ‘}’
if ch and popped off delimiter do not match

failure;
// else ignore other characters;

read next character ch from file;
if stack is empty

success;
else failure;

Figure 4.2 shows the processing that occurs when applying this algorithm to the
statement

s=t[5]+u/(v*(w+y));

The first column in Figure 4.2 shows the contents of the stack at the end of the
loop before the next character is input from the program file. The first line shows the
initial situation in the file and on the stack. Variable ch is initialized to the first charac-
ter of the file, letter s, and in the first iteration of the loop, the character is simply ig-
nored. This situation is shown in the second row in Figure 4.2. Then the next character,
equal sign, is read. It is also ignored and so is the letter t. After reading the left bracket,
the bracket is pushed onto the stack so that the stack now has one element, the left
bracket. Reading digit 5 does not change the stack, but after the right bracket becomes
the value of ch, the topmost element is popped off the stack and compared with ch.

Because the popped off element (left bracket) matches ch (right bracket), the process-
ing of input continues. After reading and discarding the letter u, a slash is read and the
algorithm checks whether it is part of the comment delimiter by reading the next char-
acter, a left parenthesis. Because the character read in is not an asterisk, the slash is not a
beginning of a comment, so ch is set to left parenthesis. In the next iteration, this
parenthesis is pushed onto the stack and processing continues, as shown in Figure 4.2.
After reading the last character, a semicolon, the loop is exited and the stack is checked.
Because it is empty (no unmatched delimiters are left), success is pronounced.

As another example of stack application, consider adding very large num-
bers. The largest magnitude of integers is limited, so we are not able to add

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

18,274,364,583,929,273,748,459,595,684,373 and 8,129,498,165,026,350,236, because
integer variables cannot hold such large values, let alone their sum. The problem can
be solved if we treat these numbers as strings of numerals, store the numbers corre-
sponding to these numerals on two stacks, and then perform addition by popping
numbers from the stacks. The pseudocode for this algorithm is as follows:

S e c t i o n 4 . 1 S t a c k s ■ 143

FIGURE 4.2 Processing the statement s=t[5]+u/(v*(w+y)); with the algorithm
delimiterMatching().

Stack Nonblank Character Read Input Left

empty s = t[5] + u / (v * (w + y));

empty s = t[5] + u / (v * (w + y));

empty = t[5] + u / (v * (w + y));

empty t [5] + u / (v * (w + y));

■[[5] + u / (v * (w + y));

■[5] + u / (v * (w + y));

empty] + u / (v * (w + y));

empty + u / (v * (w + y));

empty u / (v * (w + y));

empty / (v * (w + y));

■((v * (w + y));

■(v * (w + y));

■(* (w + y));

■(

■((w + y));

■(

■(w +y));

■(

■(+ y));

■(

■(y));

■());

empty) ;

empty ;

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

addingLargeNumbers()
read the numerals of the first number and store the numbers corresponding to
them on one stack;
read the numerals of the second number and store the numbers corresponding
to them on another stack;

result = 0;
while at least one stack is not empty

pop a number from each nonempty stack and add them to result;
push the unit part on the result stack;
store carry in result;

push carry on the result stack if it is not zero;
pop numbers from the result stack and display them;

Figure 4.3 shows an example of the application of this algorithm. In this example,
numbers 592 and 3,784 are added.

1. First, numbers corresponding to digits composing the first number are pushed onto
operandStack1 and numbers corresponding to the digits of 3,784 are pushed onto
operandStack2. Note the order of digits on the stacks.

2. Numbers 2 and 4 are popped from the stacks, and the result, 6, is pushed onto
resultStack.

3. Numbers 9 and 8 are popped from the stacks, and the unit part of their sum, 7, is
pushed onto resultStack; the tens part of the result, 1, is retained as a carry in the
variable result for subsequent addition.

4. Numbers 5 and 7 are popped from the stacks, added to the carry, and the unit part of
the result, 3, is pushed onto resultStack, and the carry, 1, becomes a value of the
variable result.

5. One stack is empty, so a number is popped from the nonempty stack, added to carry,
and the result is stored on resultStack.

6. Both operand stacks are empty, so the numbers from resultStack are popped and
printed as the final result.

Another important example is a stack used by the Java Virtual Machine (JVM). Java’s
popularity and power lie in the portability of its programs. This is ensured by compiling
Java programs into bytecodes that are executable on a specific machine, the Java Virtual
Machine. JVM is distinct in that it has no hardware realization; there is no palpable JVM
with a JVM chip. It is an abstract construct; therefore, to execute a Java program, byte-
codes have to be interpreted on a particular platform. Thus, in this process, the command

javac MyJavaProgram.java

transforms each class and interface C included in MyJavaProgram into bytecodes
that are stored in C.class file, and then the command

java MyClass

transforms MyClass (that includes main()) into machine code executable on a par-
ticular computer. In this way, a particular system needs to have an interpreter to exe-
cute a stream of bytecodes received through the Internet.

144 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 4 . 1 S t a c k s ■ 145

What is interesting in the context of this chapter is that the JVM is stack based.
Each JVM thread has a private Java stack that contains frames for all currently active
methods (only one method in a thread can be currently active; other active methods
are suspended). A new frame is pushed every time a new method is invoked, and a
frame is popped every time a method completes its execution. Each frame includes an
array containing all local variables and an execution environment that includes, among
other things, a link to the frame of the caller and information for catching exceptions.

Interestingly, each frame also includes an operand stack, which is used by JVM in-
structions as a source of arguments and a repository of results. For instance, if bytecode
96, which is the instruction iload, is followed by a bytecode index, which is an index
into the array that in the current frame holds local variables, then iload loads, or
pushes, an integer value from the local variable in position index in the array onto the
operand stack. Another example is the instruction imul, whose bytecode equals 104. If
imul is encountered, then the two topmost elements, which must be integers, are
popped off the operand stack, multiplied, and the integer result is pushed onto the
stack. The interpreter is also responsible for passing the final value generated by the
current method to the operand stack of its caller.

FIGURE 4.3 An example of adding numbers 592 and 3,784 using stacks.

operand-
Stack1

2
9
5

9
5 5

operand-
Stack2

4
8
7
3

8
7
3

7
3

result-
Stack

6
7
6

3
7
6

4
3
7
6

3

+ + + +6 1 7 1 3 4

592
+ 3784

4376

2
+ 4

6

9
+ 8
17

1
5

+ 7
13

1
+ 3

4

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

146 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

Consider now implementation of our abstract stack data structure. We used push
and pop operations as though they were readily available, but they also have to be im-
plemented as methods operating on the stack.

A natural implementation for a stack is a flexible array. Figure 4.4 contains a
generic stack class definition that can be used to store any type of object. Also, a linked
list can be used for implementation of a stack (Figure 4.5).

Figure 4.6 shows the same sequence of push and pop operations as Figure 4.1
with the changes that take place in the stack implemented as an array list (Figure 4.6b)
and as a linked list (Figure 4.6c). The linked list implementation more closely matches
the abstract stack in that it includes only the elements that are on the stack because the

FIGURE 4.4 Array list implementation of a stack.

public class Stack {
private java.util.ArrayList pool = new java.util.ArrayList();
public Stack() {
}
public Stack(int n) {

pool.ensureCapacity(n);
}
public void clear() {

pool.clear();
}
public boolean isEmpty() {

return pool.isEmpty();
}
public Object topEl() {

if (isEmpty())
throw new java.util.EmptyStackException();

return pool.lastElement();
}
public Object pop() {

if (isEmpty())
throw new java.util.EmptyStackException();

return pool.remove(pool.size()-1);
}
public void push(Object el) {

pool.add(el);
}
public String toString() {

return pool.toString();
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 4 . 1 S t a c k s ■ 147

number of nodes in the list is the same as the number of stack elements. In the array
list implementation, the capacity of the stack can often surpass its size.

The array list implementation, like the linked list implementation, does not force
the programmer to make a commitment at the beginning of the program concerning
the size of the stack. If the size can be reasonably assessed in advance, then the pre-
dicted size can be used as a parameter for the stack constructor to create in advance an
array list of the specified capacity. In this way, an overhead is avoided to copy the array
list elements to a new larger location when pushing a new element to the stack for
which size equals capacity.

It is easy to see that in the array list and linked list implementations, popping and
pushing are executed in constant time O(1). However, in the array list implementa-
tion, pushing an element onto a full stack requires allocating more memory and
copies the elements from the existing array list to a new array list. Therefore, in the
worst case, pushing takes O(n) time to finish.

FIGURE 4.5 Implementing a stack as a linked list.

public class LLStack {
private java.util.LinkedList list = new java.util.LinkedList();
public LLStack() {
}
public void clear() {

list.clear();
}
public boolean isEmpty() {

return list.isEmpty();
}
public Object topEl() {

if (isEmpty())
throw new java.util.EmptyStackException();

return list.getLast();
}
public Object pop() {

if (isEmpty())
throw new java.util.EmptyStackException();

return list.removeLast();
}
public void push(Object el) {

list.addLast(el);
}
public String toString() {

return list.toString();
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

148 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

4.1.1 Stacks in java.util
A generic stack class implemented in the java.util package is an extension of class
Vector to which one constructor and five methods are added (Figure 4.7). A stack
can be created with this declaration and initialization:

java.util.Stack stack = new java.util.Stack();

Note that the return type of push() is not void, but Object: The object being
pushed is the return value of the method. To check the topmost element without re-
moving it from the stack, the method peek() has to be used. Both push() and
peek() return the original topmost element, not its copy, so that the update of the
topmost elements is possible using these methods. Having defined the class C with a
public double field d, the topmost object can be updated as follows:

((C)stack.push(new C())).d = 12.3;
((C)stack.peek()).d = 45.6;

The Java implementation of the stack is potentially fatal because this is really not a
stack, but a structure with stack-related methods. Class Stack is simply an extension
of class Vector; therefore, it inherits all vector-related methods. With the declaration
just given, it is possible to have such statements as:

stack.setElementAt(new Integer(5),1);
stack.removeElementAt(3);

which violate the integrity of the stack. A stack is a structure in which elements are
accessed at one end only, which is not true for the Stack class. For this reason, class

FIGURE 4.6 A series of operations executed on an abstract stack (a) and the stack implemented
with an array (b) and with a linked list (c).

7 15 10

head

\

(a)

push(10) push(5) pop push(15) push(7) pop

(b)

(c)

size pool
0 101

10

head

102

5

head

5

10 10
5

10
\
\ \

\

101

10

10

\
\

5

head

102

15

head

15

10
15

10

\

\

7
15

10

103
15

7

\

head

102

15

15

10
15

10

\

\

7

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

java.util.Stack is not used in this book. The integrity of the stack could be re-
tained and advantages of vectors utilized if a stack is implemented not as an exten-
sion of class Vector, but when it uses a vector as a data field, as suggested for an
array list field in Figure 4.4.

4.2 QUEUES

A queue is simply a waiting line that grows by adding elements to its end and shrinks
by taking elements from its front. Unlike a stack, a queue is a structure in which both
ends are used: one for adding new elements and one for removing them. Therefore,
the last element has to wait until all elements preceding it on the queue are removed.
A queue is an FIFO structure: first in/first out.

Queue operations are similar to stack operations. The following operations are
needed to properly manage a queue:

■ clear()—Clear the queue.

■ isEmpty()—Check to see if the queue is empty.

■ enqueue(el)—Put the element el at the end of the queue.

■ dequeue()—Take the first element from the queue.

■ firstEl()—Return the first element in the queue without removing it.

A series of enqueue and dequeue operations is shown in Figure 4.8. This time—
unlike for stacks—the changes have to be monitored both at the beginning of the
queue and at the end. The elements are enqueued on one end and dequeued from the
other. For example, after enqueuing 10 and then 5, the dequeue operation removes 10
from the queue (Figure 4.8).

S e c t i o n 4 . 2 Q u e u e s ■ 149

FIGURE 4.7 A list of methods in java.util.Stack; all methods from Vector are inherited.

Method Operation

boolean empty() Return true if the stack includes no element and false otherwise.

Object peek() Return the top element on the stack; throw EmptyStackException
for empty stack.

Object pop() Remove the top element of the stack and return it; throw
EmptyStackException for empty stack.

Object push(Object el) Insert el at the top of the stack and return it.

int search(Object el) Return the position of el on the stack (the first position is at the top; –1
in case of failure).

Stack() Create an empty stack.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

150 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

For an application of a queue, consider the following poem written by Lewis
Carroll:

Round the wondrous globe I wander wild,

Up and down-hill—Age succeeds to youth—

Toiling all in vain to find a child

Half so loving, half so dear as Ruth.

The poem is dedicated to Ruth Dymes, which is indicated not only by the last
word of the poem, but also by reading in sequence the first letter of each line, which
also spells Ruth. This type of poem is called an acrostic, and it is characterized by ini-
tial letters that form a word or phrase when taken in order. To see whether a poem is
an acrostic, we devise a simple algorithm that reads a poem, echoprints it, retrieves
and stores the first letter from each line on a queue, and after the poem is processed,
all the stored first letters are printed in order. Here is an algorithm:

acrosticIndicator()
while not finished

read a line of poem;
enqueue the first letter of the line;
output the line;

while queue is not empty
dequeue and print a letter;

There is a more significant example to follow, but first consider the problem of
implementation.

One possible queue implementation is an array, although this may not be the
best choice. Elements are added to the end of the queue, but they may be removed
from its beginning, thereby releasing array cells. These cells should not be wasted.
Therefore, they are utilized to enqueue new elements, whereby the end of the queue
may occur at the beginning of the array. This situation is better pictured as a circular
array as Figure 4.9c illustrates. The queue is full if the first element immediately pre-
cedes in the counterclockwise direction the last element. However, because a circular
array is implemented with a “normal” array, the queue is full if either the first ele-
ment is in the first cell and the last element is in the last cell (Figure 4.9a) or if the

FIGURE 4.8 A series of operations executed on a queue.

dequeue()
enqueue(7)

5

enqueue(15)

5 1510 510 15 75 15 7

dequeue()
enqueue(5)

enqueue(10)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 4 . 2 Q u e u e s ■ 151

first element is right after the last (Figure 4.9b). Similarly, enqueue() and dequeue()
have to consider the possibility of wrapping around the array when adding or re-
moving elements. For example, enqueue() can be viewed as operating on a circular
array (Figure 4.9c), but in reality, it is operating on a one-dimensional array. There-
fore, if the last element is in the last cell and if any cells are available at the beginning
of the array, a new element is placed there (Figure 4.9d). If the last element is in any
other position, then the new element is put after the last, space permitting (Figure
4.9e). These two situations must be distinguished when implementing a queue
viewed as a circular array (Figure 4.9f).

Figure 4.10 contains possible implementations of methods that operate on
queues. A more natural queue implementation is a doubly linked list (Figure 4.11).

FIGURE 4.9 (a–b) Two possible configurations in an array implementation of a queue when the
queue is full. (c) The same queue viewed as a circular array. (f) Enqueuing number 6
to a queue storing 2, 4, and 8. (d–e) The same queue seen as a one-dimensional array
with the last element (d) at the end of the array and (e) in the middle.

11

(a)

4

first

2 15 6 810

last

(d)

8

first

426

last

8

last

42

first

4

(b)

10

first

6 8 15 11
6 2

1510
11

(c)

8 4
2

last last first

4

8

2

last

enqueue(6)enqueue(6) enqueue(6)

first

4

8
6

(f)

2

last

first

4

(e)

last

62 8

first

first

2 84

last

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

152 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

FIGURE 4.10 Array implementation of a queue.

public class ArrayQueue {
private int first, last, size;
private Object[] storage;
public ArrayQueue() {

this(100);
}
public ArrayQueue(int n) {

size = n;
storage = new Object[size];
first = last = -1;

}
public boolean isFull() {

return first == 0 && last == size-1 || first == last + 1;
}
public boolean isEmpty() {

return first == -1;
}
public void enqueue(Object el) {

if (last == size-1 || last == -1) {
storage[0] = el;
last = 0;
if (first == -1)

first = 0;
}
else storage[++last] = el;

}
public Object dequeue() {

Object tmp = storage[first];
if (first == last)

last = first = -1;
else if (first == size-1)

first = 0;
else first++;
return tmp;

}
public void printAll() {

for (int i = 0; i < size; i++)
System.out.print(storage[i] + " ");

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 4 . 2 Q u e u e s ■ 153

In both suggested implementations, enqueuing and dequeuing can be executed in
constant time O(1). In the doubly linked list implementation, it can be done in O(1) time.

Figure 4.12 shows the same sequence of enqueue and dequeue operations as Fig-
ure 4.8 and indicates the changes in the queue implemented as an array (Figure 4.12b)
and as a linked list (Figure 4.12c). The linked list keeps only the numbers that the logic
of the queue operations indicated by Figure 4.12a requires. The array includes all the
numbers until it fills up, after which new numbers are included starting from the be-
ginning of the array.

Queues are frequently used on simulations to the extent that a well-developed and
mathematically sophisticated theory of queues exists, called queuing theory, in which
various scenarios are analyzed and models are built that use queues. In queuing
processes, there are a number of customers coming to servers to receive service. The
throughput of the server may be limited. Therefore, customers have to wait in queues
before they are served and spend some amount of time while they are being served. By
customers, we mean not only people, but also objects. For example, parts on an assem-
bly line in the process of being assembled into a machine, trucks waiting for service at a
weighing station on an interstate, or barges waiting for a sluice to be opened so they can

FIGURE 4.11 Linked list implementation of a queue.

public class Queue {
private java.util.LinkedList list = new java.util.LinkedList();
public Queue() {
}
public void clear() {

list.clear();
}
public boolean isEmpty() {

return list.isEmpty();
}
public Object firstEl() {

return list.getFirst();
}
public Object dequeue() {

return list.removeFirst();
}
public void enqueue(Object el) {

list.addLast(el);
}
public String toString() {

return list.toString();
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

154 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

pass through a channel also wait in queues. The most familiar examples are lines in
stores, post offices, or banks. The types of problems posed in simulations are: How
many servers are needed to avoid long queues? How large must the waiting space be to
put the entire queue in it? Is it cheaper to increase this space or to open one more server?

As an example, consider Bank One which, over a period of three months,
recorded the number of customers coming to the bank and the amount of time
needed to serve them. The table in Figure 4.13a shows the number of customers who
arrived during one-minute intervals throughout the day. For 15% of such intervals,
no customer arrived, for 20%, only one arrived, and so on. Six clerks were employed,
no lines were ever observed, and the bank management wanted to know whether six
clerks were too many. Would five suffice? Four? Maybe even three? Can lines be ex-
pected at any time? To answer these questions, a simulation program was written that
applied the recorded data and checked different scenarios.

The number of customers depends on the value of a randomly generated number
between 1 and 100. The table in Figure 4.13a identifies five ranges of numbers from 1
to 100, based on the percentages of one-minute intervals that had 0, 1, 2, 3, or 4 cus-
tomers. If the random number is 21, then the number of customers is 1; if the random
number is 90, then the number of customers is 4. This method simulates the rate of
customers arriving at Bank One.

In addition, analysis of the recorded observations indicates that no customer re-
quired 10-second or 20-second transactions, 10% required 30 seconds, and so on, as
indicated in Figure 4.13b. The table in 4.13b includes ranges for random numbers to
generate the length of a transaction in seconds.

FIGURE 4.12 A series of operations executed on an abstract queue (a) and the stack implemented
with an array (b) and with a linked list (c).

5 15 7

head

\

(a)

enqueue(10) enqueue(5) dequeue enqueue(15) enqueue(7) dequeue

(b)

(c)

first

last

storage
-1 100

10

head

100

10

head

5

10 10
5

5
\
\ \

\

101

5

5

\
\

5

head

101

5

head

15

5
15

15

\

\

7
15

5

101

15

7

\

head

102

15

5

15
7

7

\

\

15
3

7

5352110-1

tail tail tail tail tail tail

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 4.14 contains the code simulating customer arrival and transaction time at
Bank One. The program uses three arrays. arrivals[] records the percentages of
one-minute intervals depending on the number of the arrived customers. The array
service[] is used to store the distribution of time needed for service. The amount
of time is obtained by multiplying the index of a given array cell by 10. For example,
service[3] is equal to 10, which means that 10% of the time a customer required
3 · 10 seconds for service. The array clerks[] records the length of transaction time
in seconds.

For each minute (represented by the variable t), the number of arriving cus-
tomers is randomly chosen, and for each customer, the transaction time is also ran-
domly determined. The method option() generates a random number, finds the
range into which it falls, and then outputs the position, which is either the number of
customers or a tenth the number of seconds.

Executions of this program indicate that six and five clerks are too many. With
four clerks, service is performed smoothly; 20% of the time there is a short line of
waiting customers. However, three clerks are always busy and there is always a long
line of customers waiting. Bank management would certainly decide to employ four
clerks.

S e c t i o n 4 . 2 Q u e u e s ■ 155

FIGURE 4.13 Bank One example: (a) data for number of arrived customers per one-minute interval
and (b) transaction time in seconds per customer.

Amount of
Number of Percentage Time Needed
Customers of One-Minute for Service Percentage of
per Minute Intervals Range in Seconds Customers Range

0 15 1–150 0 0 —

1 20 16–350 10 0 —

2 25 36–600 20 0 —

3 10 61–700 30 10 1–100

4 30 71–100 40 5 11–150

(a) 50 10 16–250

60 10 26–350

70 0 —

80 15 36–500

90 25 51–750

100 10 76–850

110 15 86–100

(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

156 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

FIGURE 4.14 Bank One example: implementation code.

import java.util.Random;

class BankSimulation {

static Random rd = new Random();

static int Option(int percents[]) {

int i = 0, perc, choice = Math.abs(rd.nextInt()) % 100 + 1;

for (perc = percents[0]; perc < choice; perc += percents[i+1], i++);

return i;

}

public static void main(String args[]) {

int[] arrivals = {15,20,25,10,30};

int[] service = {0,0,0,10,5,10,10,0,15,25,10,15};

int[] clerks = {0,0,0,0};

int clerksSize = clerks.length;

int customers, t, i, numOfMinutes = 100, x;

double maxWait = 0.0, thereIsLine = 0.0, currWait = 0.0;

Queue simulQ = new Queue();

for (t = 1; t <= numOfMinutes; t++) {

System.out.print(" t = " + t);

for (i = 0; i < clerksSize; i++)// after each minute subtract

if (clerks[i] < 60) // at most 60 seconds from time

clerks[i] = 0; // left to service the current

else clerks[i] -= 60; // customer by clerk i;

customers = Option(arrivals);

for (i = 0; i < customers; i++) { // enqueue all new customers

x = Option(service)*10; // (or rather service time

simulQ.enqueue(new Integer(x)); // they require);

currWait += x;

}

// dequeue customers when clerks are available:

for (i = 0; i < clerksSize && !simulQ.isEmpty();)

if (clerks[i] < 60) {

x = ((Integer) simulQ.dequeue()).intValue();

// assign more than one customer

clerks[i] += x; // to a clerk if service time

currWait -= x; // is still below 60 sec;

}

else i++;

if (!simulQ.isEmpty()) {

thereIsLine++;

System.out.print(" wait = " + ((long)(currWait/6.0)) / 10.0);

if (maxWait < currWait)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 4 . 3 P r i o r i t y Q u e u e s ■ 157

FIGURE 4.14 (continued)

maxWait = currWait;

}

else System.out.print(" wait = 0;");

}

System.out.println("\nFor " + clerksSize + " clerks, there was a line "

+ thereIsLine/numOfMinutes*100.0 + "% of the time;\n"

+ "maximum wait time was " + maxWait/60.0 + " min.");

}

}

4.3 PRIORITY QUEUES

In many situations, simple queues are inadequate, as when first in/first out scheduling
has to be overruled using some priority criteria. In a post office example, a handi-
capped person may have priority over others. Therefore, when a clerk is available, a
handicapped person is served instead of someone from the front of the queue. On
roads with tollbooths, some vehicles may be put through immediately, even without
paying (police cars, ambulances, fire engines, and the like). In a sequence of processes,
process P2 may need to be executed before process P1 for the proper functioning of a
system, even though P1 was put on the queue of waiting processes before P2. In situa-
tions like these, a modified queue, or priority queue, is needed. In priority queues, ele-
ments are dequeued according to their priority and their current queue position.

The problem with a priority queue is in finding an efficient implementation
that allows relatively fast enqueuing and dequeuing. Because elements may arrive
randomly to the queue, there is no guarantee that the front elements will be the
most likely to be dequeued and that the elements put at the end will be the last can-
didates for dequeuing. The situation is complicated because a wide spectrum of
possible priority criteria can be used in different cases such as frequency of use,
birthday, salary, position, status, and others. It can also be the time of scheduled ex-
ecution on the queue of processes, which explains the convention used in priority
queue discussions in which higher priorities are associated with lower numbers in-
dicating priority.

Priority queues can be represented by two variations of linked lists. In one type of
linked list, all elements are entry ordered, and in another, order is maintained by
putting a new element in its proper position according to its priority. In both cases, the
total operational times are O(n) because, for an unordered list, adding an element is
immediate but searching is O(n), and in a sorted list, taking an element is immediate
but adding an element is O(n).

Another queue representation uses a short ordered list and an unordered list, and
a threshold priority is determined (Blackstone et al., 1981). The number of elements in

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

158 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

the sorted list depends on a threshold priority. This means that in some cases this list
can be empty and the threshold may change dynamically to have some elements in
this list. Another way is always having the same number of elements in the sorted list;
the number ��n is a good candidate. Enqueuing takes on the average O(��n) time and
dequeuing is immediate.

Another implementation of queues was proposed by J. O. Hendriksen (1977,
1983). It uses a simple linked list with an additional array of references to this list
to find a range of elements in the list in which a newly arrived element should be
included.

Experiments by Douglas W. Jones (1986) indicate that a linked list implementa-
tion, in spite of its O(n) efficiency, is best for 10 elements or less. The efficiency of the
two-list version depends greatly on the distribution of priorities, and it may be excel-
lent or as poor as that of the simple list implementation for large numbers of elements.
Hendriksen’s implementation, with its O(��n) complexity, operates consistently well
with queues of any size.

4.4 CASE STUDY: EXITING A MAZE

Consider the problem of a trapped mouse that tries to find its way to an exit in a
maze (Figure 4.15a). The mouse hopes to escape from the maze by systematically
trying all the routes. If it reaches a dead end, it retraces its steps to the last position
and begins at least one more untried path. For each position, the mouse can go in
one of four directions: right, left, down, up. Regardless of how close it is to the exit, it
always tries the open paths in this order, which may lead to some unnecessary de-
tours. By retaining information that allows for resuming the search after a dead end
is reached, the mouse uses a method called backtracking. This method is discussed
further in the next chapter.

The maze is implemented as a two-dimensional character array in which pas-
sages are marked with 0s, walls by 1s, exit position by the letter e, and the initial posi-

FIGURE 4.15 (a) A mouse in a maze; (b) two-dimensional character array representing this situation.

11111111111
10000010001
10100010101
e0100000101
10111110101
10101000101
10001010001
11111010001
101m1010001
10000010001
11111111111

(a) (b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 4 . 4 C a s e S t u d y : E x i t i n g a M a z e ■ 159

tion of the mouse by the letter m (Figure 4.15b). In this program, the maze problem
is slightly generalized by allowing the exit to be in any position of the maze (picture
the exit position as having an elevator that takes the mouse out of the trap) and al-
lowing passages to be on the borderline. To protect itself from falling off the array by
trying to continue its path when an open cell is reached on one of the borderlines,
the mouse also has to constantly check whether it is in such a borderline position or
not. To avoid it, the program automatically puts a frame of 1s around the maze en-
tered by the user.

The program uses two stacks: one to initialize the maze and another to imple-
ment backtracking.

The user enters a maze one line at a time. The maze entered by the user can have
any number of rows and any number of columns. The only assumption the program
makes is that all rows are of the same lengths and that it uses only these characters:
any number of 1s, any number of 0s, one e, and one m. The rows are pushed on the
stack mazeRows in the order they are entered after attaching one 1 at the beginning
and one 1 at the end. After all rows are entered, the size of the array store can be deter-
mined, and then the rows from the stack are transferred to the array.

A second stack, mazeStack, is used in the process of escaping the maze. To re-
member untried paths for subsequent tries, the positions of the untried neighbors of
the current position (if any) are stored on a stack and always in the same order, first
upper neighbor, then lower, then left, and finally right. After stacking the open av-
enues on the stack, the mouse takes the topmost position and tries to follow it by first
storing untried neighbors and then trying the topmost position and so forth, until it
reaches the exit or exhausts all possibilities and finds itself trapped. To avoid falling
into an infinite loop of trying paths that have already been investigated, each visited
position of the maze is marked with a period.

Here is a pseudocode of an algorithm for escaping a maze:

exitMaze()
initialize stack, exitCell, entryCell, currentCell = entryCell;
while currentCell is not exitCell

mark currentCell as visited;
push onto the stack the unvisited neighbors of currentCell;
if stack is empty

failure;
else pop off a cell from the stack and make it currentCell;

success;

The stack stores coordinates of positions of cells. This could be done, for in-
stance, by using two integer stacks for x and y coordinates. Another possibility is to
use one integer stack with both coordinates stored in one integer variable with the
help of the shifting operation. In the program in Figure 4.17, a class MazeCell is used
with two data fields, x and y, so that one mazeStack is used for storing MazeCell
objects.

Consider an example shown in Figure 4.16. The program actually prints out the
maze after each step made by the mouse.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

160 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

0. After the user enters the maze

1100
000e
00m1

the maze is immediately surrounded with a frame of 1s

111111
111001
1000e1
100m11
111111

entryCell and currentCell are initialized to (3 3) and exitCell to (2 4)
(Figure 4.16a).

1. Because currentCell is not equal to exitCell, all four neighbors of the current
cell (3 3) are tested, and only two of them are candidates for processing, namely,
(3 2) and (2 3); therefore, they are pushed onto the stack. The stack is checked to
see whether it contains any position, and because it is not empty, the topmost posi-
tion (3 2) becomes current (Figure 4.16b).

2. currentCell is still to equal to exitCell; therefore, the two viable options accessible
from (3 2) are pushed onto the stack, namely, positions (2 2) and (3 1). Note that
the position holding the mouse is not included in the stack. After the current position is
marked as visited, the situation in the maze is as in Figure 4.16c. Now, the topmost posi-
tion,(3 1), is popped off the stack, and it becomes the value of currentCell. The
process continues until the exit is reached, as shown step by step in Figure 4.16d–f.

FIGURE 4.16 An example of processing a maze.

111111
111001
1000e1
100m11
111111

stack:

currentCell:

maze:

(3 2)
(2 3)

(3 3) (3 2) (3 1) (2 1)

(3 1)
(2 2)
(2 3)

(2 1)
(2 2)
(2 3)

(2 2)
(2 2)
(2 3)

(2 3)
(2 2)
(2 3)

(1 3)
(2 2)
(2 3)

(2 4)
(1 3)
(2 2)
(2 3)

(2 2) (2 3) (2 4)

111111
111001
1000e1
10 .m11
111111

111111
111001
1 . 00e1
1 . .m11
111111

111111
111001
1 . . 0e1
1 . .m11
111111

111111
111001
1000e1
1 . .m11
111111

111111
111001
1 . . . e1
1 . .m11
111111

111111
111001
1 . . . e1
1 . .m11
111111

(a) (b) (c) (d) (e) (f) (g)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note that in step four (Figure 4.16d), the position (2 2) is pushed onto the
stack, although it is already there. However, this poses no danger, because when the
second instance of this position is popped from the stack, all the paths leading from
this position have already been investigated using the first instance of this position on
the stack. Note also that the mouse makes a detour, although there is a shorter path
from its initial position to the exit.

Figure 4.17 contains code implementing the maze exiting algorithm. The pro-
gram uses the stack defined in this chapter. If the user wants to use the stack from
java.util, the line

S e c t i o n 4 . 4 C a s e S t u d y : E x i t i n g a M a z e ■ 161

FIGURE 4.17 Listing of the program for maze processing.

//**************************** Maze.java ******************************

import java.io.*;

class MazeCell {

public int x, y;

public MazeCell() {

}

public MazeCell(int i, int j) {

x = i; y = j;

}

public boolean equals(MazeCell cell) {

return x == cell.x && y == cell.y;

}

}

class Maze {

private int rows = 0, cols = 0;

private char[][] store;

private MazeCell currentCell, exitCell = new MazeCell(), entryCell = new

MazeCell();

private final char exitMarker = 'e', entryMarker = 'm', visited = '.';

private final char passage = '0', wall = '1';

private Stack mazeStack = new Stack();

public Maze() {

int row = 0, col = 0;

Stack mazeRows = new Stack();

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader buffer = new BufferedReader(isr);

System.out.println("Enter a rectangular maze using the following "

+ "characters:\nm - entry\ne - exit\n1 - wall\n0 - passage\n"

+ "Enter one line at at time; end with Ctrl-z:");

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

FIGURE 4.17 (continued)

try {

String str = buffer.readLine();

while (str != null) {

row++;

cols = str.length();

str = "1" + str + "1"; // put 1s in the borderline cells;

mazeRows.push(str);

if (str.indexOf(exitMarker) != -1) {

exitCell.x = row;

exitCell.y = str.indexOf(exitMarker);

}

if (str.indexOf(entryMarker) != -1) {

entryCell.x = row;

entryCell.y = str.indexOf(entryMarker);

}

str = buffer.readLine();

}

} catch(IOException eof) {

}

rows = row;

store = new char[rows+2][]; // create a 1D array of char arrays;

store[0] = new char[cols+2]; // a borderline row;

for (; !mazeRows.isEmpty(); row--)

store[row] = ((String) mazeRows.pop()).toCharArray();

store[rows+1] = new char[cols+2]; // another borderline row;

for (col = 0; col <= cols+1; col++) {

store[0][col] = wall; // fill the borderline rows with 1s;

store[rows+1][col] = wall;

}

}

private void display(PrintStream out) {

for (int row = 0; row <= rows+1; row++)

out.println(store[row]);

out.println();

}

private void pushUnvisited(int row, int col) {

if (store[row][col] == passage || store[row][col] == exitMarker)

mazeStack.push(new MazeCell(row,col));

}

public void exitMaze(PrintStream out) {

currentCell = entryCell;

out.println();

162 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Stack stack = new Stack();

should be replaced by

java.util.Stack stack = new java.util.Stack();

No other changes need to be made, although according to Figure 4.7,
java.util.Stack() uses method empty(), but the program in Figure 4.17 uses
method isEmpty(). This occurs because the method isEmpty() is inherited by
java.util.Stack() from java.util.Vector().

S e c t i o n 4 . 4 C a s e S t u d y : E x i t i n g a M a z e ■ 163

FIGURE 4.17 (continued)

while (!currentCell.equals(exitCell)) {

int row = currentCell.x;

int col = currentCell.y;

display(System.out); // print a snapshot;

if (!currentCell.equals(entryCell))

store[row][col] = visited;

pushUnvisited(row-1,col);

pushUnvisited(row+1,col);

pushUnvisited(row,col-1);

pushUnvisited(row,col+1);

if (mazeStack.isEmpty()) {

display(out);

out.println("Failure");

return;

}

else currentCell = (MazeCell) mazeStack.pop();

}

display(out);

out.println("Success");

}

static public void main (String args[]) {

(new Maze()).exitMaze(System.out);

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

164 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

4.5 EXERCISES

1. Reverse the order of elements on stack S

a. using two additional stacks

b. using one additional queue

c. using one additional stack and some additional non-array variables

2. Put the elements on the stack S in ascending order using one additional stack and
some additional non-array variables.

3. Transfer elements from stack S1 to stack S2 so that the elements from S2 are in the
same order as on S1

a. using one additional stack

b. using no additional stack but only some additional non-array variables

4. A possible definition of a linked list–based stack can be given as follows:

public class LLStack2 extends LinkedList {
public Object pop() {

return removeLast();
}
public void push(Object el) {

add(el);
}
.
}

}

It appears to be simpler than the definition of LLStack in Figure 4.5. What is the
problem with the definition of LLStack2?

5. Using additional non-array variables, order all elements on a queue using also

a. two additional queues

b. one additional queue

6. In this chapter, two different implementations were developed for a stack: class
Stack and class LLStack. The names of methods in both classes suggest that the
same data structure is meant; however, a tighter connection between these two classes
can be established. Define an abstract base class for a stack and derive from it both
class Stack and class LLStack.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 4 . 5 E x e r c i s e s ■ 165

7. Define a stack in terms of a queue; that is, create a class

class StackQ {
Queue pool = new Queue();
.
public void push(Object el) {

pool.enqueue(el);
.

8. Define a queue in terms of a stack.

9. A generic queue class defined in terms of an array list:

public class QueueV
private java.util.ArrayList list = new java.util.ArrayList();
public Object dequeue() {
.

Is this a viable solution?

10. Modify the program from the case study to print out the path without dead ends and,
possibly, with detours. For example, for an input maze

1111111
1e00001
1110111
1000001
100m001
1111111

the program from the case study outputs the processed maze

1111111
1e....1
111.111
1.....1
1..m..1
1111111
Success

The modified program should, in addition, generate the path from the exit to the
mouse:

[1 1] [1 2] [1 3] [2 3] [3 3] [3 4] [3 5] [4 5] [4 4] [4 3]

which leaves out two dead ends, [1 4] [1 5] and [3 2] [3 1] [4 1] [4 2],

but retains a detour, [3 4] [3 5] [4 5] [4 4].

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

166 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

11. Modify the program from the previous exercise so that it prints the maze with the
path without dead ends; the path is indicated by dashes and vertical bars to show the
changes of direction of the path; for the input maze from the previous exercise, the
modified program should output

1111111
1e--..1
111|111
1..|--1
1..m-|1
1111111

4.6 PROGRAMMING ASSIGNMENTS

1. Write a program that determines whether an input string is a palindrome; that is, whether
it can be read the same way forward and backward. At each point, you can read only one
character of the input string; do not use an array to first store this string and then analyze
it (except, possibly, in a stack implementation). Consider using multiple stacks.

2. Write a program to convert a number from decimal notation to a number expressed
in a number system whose base (or radix) is a number between 2 and 9. The conver-
sion is performed by repetitious division by the base to which a number is being
converted and then taking the remainders of division in the reverse order. For exam-
ple, in converting to binary, number 6 requires three such divisions: 6/2 = 3 remain-
der 0, 3/2 = 1 remainder 1, and finally, 1/2 = 0 remainder 1. The remainders 0, 1, and
1 are put in the reverse order so that the binary equivalent of 6 is equal to 110.

Modify your program so that it can perform a conversion in the case when the base
is a number between 11 and 27. Number systems with bases greater than 10 require
more symbols. Therefore, use capital letters. For example, a hexadecimal system
requires 16 digits: 0, 1, . . ., 9, A, B, C, D, E, F. In this system, decimal number 26 is
equal to 1A in hexadecimal notation, because 26/16 = 1 remainder 10 (that is, A),
and 1/16 = 0 remainder 1.

3. Write a program that implements the algorithm delimiterMatching() from
Section 4.1.

4. Write a program that implements the algorithm addingLargeNumbers() from
Section 4.1.

5. Write a program to add any number of large integers. The problem can be approached
in at least two ways.

a. First, add two numbers and then repeatedly add the next number with the result
of the previous addition.

b. Create a vector of stacks and then use a generalized version of
addingLargeNumbers() to all stackes at the same time.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 4 . 6 P r o g r a m m i n g A s s i g n m e n t s ■ 167

6. Write a program to perform the four basic arithmetic operations, +, –, ·, and /, on very
large integers; the result of division should also be an integer. Apply these operations to
compute 12345, or the hundredth number in the sequence 1 * 2 + 3, 2 * 32 + 4, 3 * 43 +
5, Also apply them to compute the Gödel numbers of arithmetic expressions.

The Gödel numbering function GN first establishes a correspondence between
basic elements of language and numbers:

Symbol Gödel Number GN

= 1
+ 2
* 3
– 4
/ 5
(6
) 7
^ 8
0 9
S 10
xi 11 + 2 * i
Xi 12 + 2 * i

where S is the successor function. Then, for any formula F = s1s2 . . . sn:

GN(′s1s2 . . . sn′) = 2GN(s1) * 3GN(s2) * · · · * pn
GN(sn)

where pn is the nth prime. For example,

GN(1) = GN(S0) = 210 * 39

and

GN(′x1 + x3 = x4′) = 211+2 * 32 * 511+6 * 71 * 1111+8

In this way, every arithmetic expression can be assigned a unique number. This
method has been used by Gödel to prove theorems, known as Gödel’s theorems,
which are of extreme importance for the foundations of mathematics.

7. Write a program for adding very large floating-point numbers. Extend this program
to other arithmetic operations.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

168 ■ C h a p t e r 4 S t a c k s a n d Q u e u e s

BIBLIOGRAPHY

Queues

Sloyer, Clifford, Copes, Wayne, Sacco, William, and Starck, Robert, Queues: Will This Wait
Never End! Providence, RI: Janson, 1987.

Priority Queues

Blackstone, John H., Hogg, Gary L., and Phillips, Don T., “A Two-List Synchronization Proce-
dure for Discrete Event Simulation,” Communications of the ACM 24 (1981), 825–829.

Hendriksen, James O., “An Improved Events List Algorithm,” Proceedings of the 1977 Winter
Simulation Conference, Piscataway, NJ: IEEE, 1977, 547–557.

Hendriksen, James O., “Event List Management—A Tutorial,” Proceedings of the 1983 Winter
Simulation Conference, Piscataway, NJ: IEEE, 1983, 543–551.

Jones, Douglas W., “An Empirical Comparison of Priority-Queue and Event-Set Implementa-
tions,” Communications of the ACM 29 (1986), 300–311.

Java Virtual Machine

Joshi, Daniel I., Lemay, Laura, and Perkins, Charles L., Teach Yourself Java in Café in 21 Days,
Indianapolis, IN: Sams.net Publishing, 1996, Ch. 21.

Lindholm, Tim, and Yellin, Frank, The Java Virtual Machine Specification, Reading, MA:
Addison-Wesley, 1999.

Meyer, Jon, and Downing, Troy, Java Virtual Machine, Cambridge, MA: O’Reilly, 1997.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5.1 RECURSIVE DEFINITIONS

One of the basic rules for defining new objects or concepts is that the definition
should contain only such terms that have already been defined or that are obvious.
Therefore, an object that is defined in terms of itself is a serious violation of this
rule—a vicious circle. On the other hand, there are many programming concepts that
define themselves. As it turns out, formal restrictions imposed on definitions such as
existence and uniqueness are satisfied and no violation of the rules takes place. Such
definitions are called recursive definitions, and are used primarily to define infinite
sets. When defining such a set, giving a complete list of elements is impossible, and for
large finite sets, it is inefficient. Thus, a more efficient way has to be devised to deter-
mine if an object belongs to a set.

A recursive definition consists of two parts. In the first part, called the anchor or
the ground case, the basic elements that are the building blocks of all other elements of
the set are listed. In the second part, rules are given that allow for the construction of
new objects out of basic elements or objects that have already been constructed. These
rules are applied again and again to generate new objects. For example, to construct
the set of natural numbers, one basic element, 0, is singled out, and the operation of
incrementing by 1 is given as:

1. 0 ∈ N;

2. if n ∈ N, then (n + 1) ∈ N;

3. there are no other objects in the set N.

(More axioms are needed to ensure that only the set that we know as the natural num-
bers can be constructed by these rules.)

According to these rules, the set of natural numbers N consists of the following
items: 0, 0 + 1, 0 + 1 + 1, 0 + 1 + 1 + 1, and so on. Although the set N contains objects
(and only such objects) that we call natural numbers, the definition results in a some-
what unwieldy list of elements. Can you imagine doing arithmetic on large numbers

169

Recursion 5

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

using such a specification? Therefore, it is more convenient to use the following defi-
nition, which encompasses the whole range of Arabic numeric heritage:

1. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ∈ N;

2. if n ∈ N, then n0, n1, n2, n3, n4, n5, n6, n7, n8, n9 ∈ N;

3. these are the only natural numbers.

Then the set N includes all possible combinations of the basic building blocks 0
through 9.

Recursive definitions serve two purposes: generating new elements, as already in-
dicated, and testing whether an element belongs to a set. In the case of testing, the
problem is solved by reducing it to a simpler problem, and if the simpler problem is
still too complex it is reduced to an even simpler problem, and so on, until it is re-
duced to a problem indicated in the anchor. For instance, is 123 a natural number?
According to the second condition of the definition introducing the set N, 123 ∈ N if
12 ∈ N and the first condition already says that 3 ∈ N; but 12 ∈ N if 1 ∈ N and 2 ∈ N,
and they both belong to N.

The ability to decompose a problem into simpler subproblems of the same kind
is sometimes a real blessing, as we shall see in the discussion of quicksort in Section
9.3.3, or a curse, as we shall see shortly in this chapter.

Recursive definitions are frequently used to define functions and sequences of
numbers. For instance, the factorial function, !, can be defined in the following
manner:

if n = 0 (anchor)

if n > 0 (inductive step)

Using this definition, we can generate the sequence of numbers

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, . . .

which includes the factorials of the numbers 0, 1, 2, . . . , 10, . . .
Another example is the definition

if n = 0

if n > 0

which generates the sequence of rational numbers

1, 2, �
5
2

�, �
2
1

9
0
�, �

9
2

4
9

1
0

�, �
9
2

6
7

9
2

5
8

8
9

1
0

�, · · ·

Recursive definitions of sequences have one undesirable feature: To determine the
value of an element sn of a sequence, we first have to compute the values of some or all
of the previous elements, s1, . . ., sn–1. For example, calculating the value of 3! requires
us to first compute the values of 0!, 1!, and 2!. Computationally, this is undesirable be-
cause it forces us to make calculations in a roundabout way. Therefore, we want to

f n
f n

f n

()
()

()

=
− +

−

⎧
⎨
⎪

⎩⎪

1

1
1

1

n
n n

!
()!

=
⋅ −

⎧
⎨
⎩

1

1

170 ■ C h a p t e r 5 R e c u r s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

find an equivalent definition or formula that makes no references to other elements
of the sequence. Generally, finding such a formula is a difficult problem that cannot
always be solved. But the formula is preferable to a recursive definition because it
simplifies the computational process and allows us to find the answer for an integer n
without computing the values for integers 0, 1, . . . , n – 1. For example, a definition
of the sequence g,

if n = 0

if n > 0

can be converted into the simple formula

g(n) = 2n

In the foregoing discussion, recursive definitions have been dealt with only theo-
retically, as a definition used in mathematics. Naturally, our interest is in computer
science. One area where recursive definitions are used extensively is in the specifica-
tion of the grammars of programming languages. Every programming language
manual contains—either as an appendix or throughout the text—a specification of
all valid language elements. Grammar is specified either in terms of block diagrams
or in terms of the Backus-Naur form (BNF). For example, the syntactic definition of
a statement in the Java language can be presented in the block diagram form:

or in BNF:

<statement> ::= while (<expression>) <statement> |
if (<expression>) <statement> |
if (<expression>) <statement>else<statement> |
· · · .

The language element <statement> is defined recursively, in terms of itself. Such defi-
nitions naturally express the possibility of creating such syntactic constructs as nested
statements or expressions.

Recursive definitions are also used in programming. The good news is that virtu-
ally no effort is needed to make the transition from a recursive definition of a func-
tion to its implementation in Java. We simply make a translation from the formal
definition into Java syntax. Hence, for example, a Java equivalent of factorial is the
method

int factorial (int n) {
if (n == 0)

return 1;
else return n * factorial (n – 1);

}

statement expression statementwhile ()

expression statementif () statementelse

g n

g n
()

()
=

⋅ −
⎧
⎨
⎩

1

2 1

S e c t i o n 5 . 1 R e c u r s i v e D e f i n i t i o n s ■ 171

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The problem now seems to be more critical because it is far from clear how a
method calling itself can possibly work, let alone return the correct result. This chap-
ter shows that it is possible for such a method to work properly. Recursive definitions
on most computers are eventually implemented using a run-time stack, although the
whole work of implementing recursion is done by the operating system, and the
source code includes no indication of how it is performed. E. W. Dijkstra intro-
duced the idea of using a stack to implement recursion. To better understand recur-
sion and to see how it works, it is necessary to discuss the processing of method calls
and to look at operations carried out by the system at method invocation and
method exit.

5.2 METHOD CALLS AND RECURSION IMPLEMENTATION

What happens when a method is called? If the method has formal parameters, they
have to be initialized to the values passed as actual parameters. In addition, the system
has to know where to resume execution of the program after the method has finished.
The method can be called by other methods or by the main program (the method
main()). The information indicating where it has been called from has to be remem-
bered by the system. This could be done by storing the return address in main mem-
ory in a place set aside for return addresses, but we do not know in advance how much
space might be needed, and allocating too much space for that purpose alone is not
efficient.

For a method call, more information has to be stored than just a return address.
Therefore, dynamic allocation using the run-time stack is a much better solution.
It needs to be stressed that the run-time stack is maintained by a particular operat-
ing system. At the end of Section 4.1, a Java stack used by the Java Virtual Machine
was briefly described. Java stack and run-time stack are two different entities. They
are similar in that their role in processing method calls is basically the same; there-
fore, they store similar information that enables this processing, although they
store this information differently. The role of the interpreter java is to convert
information bytecodes in .class files so that the run-time stack takes over the
function of the Java stack, which is only an abstract construct. The subsequent
discussion is presented in terms of the run-time stack rather than the Java stack,
which in no way changes the logic of processing method calls, in particular, recur-
sive calls.

What information should be preserved when a method is called? First, auto-
matic (local) variables must be stored. If method f1(), which contains a declara-
tion of an automatic variable x, calls method f2(), which locally declares the
variable x, the system has to make a distinction between these two variables x. If
f2() uses a variable x, then its own x is meant; if f2() assigns a value to x, then x
belonging to f1() should be left unchanged. When f2() is finished, f1() can use
the value assigned to its private x before f2() was called. This is especially impor-
tant in the context of the present chapter, when f1() is the same as f2(), when a

172 ■ C h a p t e r 5 R e c u r s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

method calls itself recursively. How does the system make a distinction between
these two variables x?

The state of each method, including main(), is characterized by the contents of
all automatic variables, by the values of the method’s parameters, and by the return
address indicating where to restart its caller. The data area containing all this infor-
mation is called an activation record or a stack frame and is allocated on the run-time
stack. An activation record exists for as long as a method owning it is executing. This
record is a private pool of information for the method, a repository that stores all in-
formation necessary for its proper execution and how to return to where it was called
from. Activation records usually have a short lifespan because they are dynamically
allocated at method entry and deallocated upon exiting. Only the activation record
of main() outlives every other activation record.

An activation record usually contains the following information:

■ Values for all parameters to the method, location of the first cell if an array is
passed or a variable is passed by reference, and copies of all other data items.

■ Local (automatic) variables that can be stored elsewhere, in which case, the acti-
vation record contains only their descriptors and pointers to the locations where
they are stored.

■ The return address to resume control by the caller, the address of the caller’s
instruction immediately following the call.

■ A dynamic link, which is a pointer to the caller’s activation record.

■ The returned value for a method not declared as void. Because the size of the
activation record may vary from one call to another, the returned value is placed
right above the activation record of the caller.

As mentioned, if a method is called either by main() or by another method, then
its activation record is created on the run-time stack. The run-time stack always re-
flects the current state of the method. For example, suppose that main() calls method
f1(), f1() calls f2(), and f2() in turn calls f3(). If f3() is being executed, then
the state of the run-time stack is as shown in Figure 5.1. By the nature of the stack,
if the activation record for f3() is popped by moving the stack pointer right below
the return value of f3(), then f2() resumes execution and now has free access to the
private pool of information necessary for reactivation of its execution. On the other
hand, if f3() happens to call another method f4(), then the run-time stack in-
creases its height because the activation record for f4() is created on the stack and
the activity of f3() is suspended.

Creating an activation record whenever a method is called allows the system to
handle recursion properly. Recursion is calling a method that happens to have the
same name as the caller. Therefore, a recursive call is not literally a method calling it-
self, but rather an instantiation of a method calling another instantiation of the same
original. These invocations are represented internally by different activation records
and are thus differentiated by the system.

S e c t i o n 5 . 2 M e t h o d C a l l s a n d R e c u r s i o n I m p l e m e n t a t i o n ■ 173

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

174 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.1 Contents of the run-time stack when main() calls method f1(), f1() calls f2(),
and f2() calls f3().

Parameters and
local variables

Dynamic link

Return address

Return value

Parameters and
local variables

Dynamic link

Return address

Return value

Parameters and
local variables

Dynamic link

Return address

Return value

Activation
record

of main()

Activation
record

of f1()

Activation
record

of f2()

Activation
record

of f3()

5.3 ANATOMY OF A RECURSIVE CALL

The function that defines raising any number x to a nonnegative integer power n is a
good example of a recursive function. The most natural definition of this function is
given by:

if n = 0

if n > 0

A Java method for computing xn can be written directly from the definition of a
power:

/* 102 */ double power (double x, int n) {
/* 103 */ if (n == 0)
/* 104 */ return 1.0;

// else
/* 105 */ return x * power(x,n-1);

}

x
x x

n

n
=

⋅

⎧
⎨
⎪

⎩⎪
−

1
1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

What if we called the method with a negative n? To avoid this problem, we can add
another test in the method, such as if (n < 0), and return a special value, say, –1, or
print an error message, or we can make sure before power() is called that n ≥ 0.

Using this definition, the value of x4 can be computed in the following way:

x4 = x · x3 = x · (x · x2) = x · (x · (x · x1)) = x · (x · (x · (x · x0)))
= x · (x · (x · (x · 1))) = x · (x · (x · (x))) = x · (x · (x · x))

= x · (x · x · x) = x · x · x · x

The repetitive application of the inductive step eventually leads to the anchor,
which is the last step in the chain of recursive calls. The anchor produces 1 as a result
of raising x to the power of zero; the result is passed back to the previous recursive
call. Now, that call, whose execution has been pending, returns its result, x · 1 = x. The
third call, which has been waiting for this result, computes its own result, namely, x · x,
and returns it. Next, this number x · x is received by the second call, which multiplies it
by x and returns the result, x · x · x, to the first invocation of power(). This call
receives x · x · x, multiplies it by x, and returns the final result. In this way, each new
call increases the level of recursion, as follows:

call 1 x4 = x · x3 = x · x · x · x
call 2 x · x2 = x · x · x
call 3 x · x1 = x · x
call 4 x · x0 = x · 1 = x
call 5 1

or alternatively, as

call 1 power(x,4)
call 2 power(x,3)
call 3 power(x,2)
call 4 power(x,1)
call 5 power(x,0)
call 5 1
call 4 x
call 3 x · x
call 2 x · x · x
call 1 x · x · x · x

What does the system do as the method is being executed? As we already know,
the system keeps track of all calls on its run-time stack. Each line of code is assigned a
number by the system,1 and if a line is a method call, then its number is a return ad-
dress. The address is used by the system to remember where to resume execution after
the method has completed. For this example, assume that the lines in the method

S e c t i o n 5 . 3 A n a t o m y o f a R e c u r s i v e C a l l ■ 175

1This is not quite precise because the system uses machine code rather than source code to
execute programs. This means that one line of source program is usually implemented by
several machine instructions.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

power() are assigned the numbers 102 through 105 and that it is called inmain()
from the statement

static public void main(String args[]) {
{ ...

/* 136 */ y = power(5.6,2);
...

}

A trace of the recursive calls is relatively simple, as indicated by this diagram

call 1 power(5.6,2)
call 2 power(5.6,1)
call 3 power(5.6,0)
call 3 1
call 2 5.6
call 1 31.36

because most of the operations are performed on the run-time stack.
When the method is invoked for the first time, four items are pushed onto the

run-time stack: the return address 136, the actual parameters 5.6 and 2, and one loca-
tion reserved for the value returned by power(). Figure 5.2a represents this situation.
(In this and subsequent diagrams, SP is a stack pointer, AR is an activation record, and
question marks stand for locations reserved for the returned values. To distinguish
values from addresses, the latter are parenthesized, although addresses are numbers
exactly like method arguments.)

Now the method power() is executed. First, the value of the second argument, 2,
is checked, and power() tries to return the value of 5.6 · power(5.6,1) because
that argument is not 0. This cannot be done immediately because the system does not
know the value of power(5.6,1); it must be computed first. Therefore, power() is
called again with the arguments 5.6 and 1. But before this call is executed, the run-
time stack receives new items, and its contents are shown in Figure 5.2b.

Again, the second argument is checked to see if it is 0. Because it is equal to 1,
power() is called for the third time, this time with the arguments 5.6 and 0. Before
the method is executed, the system remembers the arguments and the return address
by putting them on the stack, not forgetting to allocate one cell for the result. Figure
5.2c contains the new contents of the stack.

Again, the question arises: Is the second argument equal to zero? Because it fi-
nally is, a concrete value—namely, 1.0—can be returned and placed on the stack, and
the method is finished without making any additional calls. At this point, there are
two pending calls on the run-time stack—the calls to power()—that have to be com-
pleted. How is this done? The system first eliminates the activation record of
power() that has just finished. This is performed logically by popping all its fields
(the result, two arguments, and the return address) off the stack. We say “logically”
because physically all these fields remain on the stack and only the SP is decremented
appropriately. This is important because we do not want the result to be destroyed
since it has not been used yet. Before and after completion of the last call of power(),
the stack looks the same, but the SP’s value is changed (see Figures 5.2d and 5.2e).

176 ■ C h a p t e r 5 R e c u r s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Now the second call to power() can complete because it waited for the result of
the call power(5.6,0). This result, 1.0, is multiplied by 5.6 and stored in the field
allocated for the result. After that, the system can pop the current activation record off
the stack by decrementing the SP, and it can finish the execution of the first call to
power() that needed the result for the second call. Figure 5.2f shows the contents of
the stack before changing the SP’s value, and Figure 5.2g shows the contents of the
stack after this change. At this moment, power() can finish its first call by multiplying
the result of its second call, 5.6, by its first argument, also 5.6. The system now returns
to the method that invoked power(), and the final value, 31.36, is assigned to y. Right
before the assignment is executed, the content of the stack looks like Figure 5.2h.

The method power() can be implemented differently, without using any recur-
sion, by using a loop:

double nonRecPower(double x, int n) {
double result = 1;
if (n > 0)
for (result = x; n > 1; --n)

result *= x;
return result;

}

S e c t i o n 5 . 3 A n a t o m y o f a R e c u r s i v e C a l l ■ 177

FIGURE 5.2 Changes to the run-time stack during execution of power(5.6,2).

:
y

:

← SP

Third call to
power()

Second call to
power()

First call to
power()

AR for
main()

2
5.6

(136)
?

(a)

:
y

:

← SP1
5.6

(105)
?

2
5.6

(136)
?

(b)

0
5.6

(105)
?

:
y

:

← SP

1
5.6

(105)
?

2
5.6

(136)
?

(c)

0
5.6

(105)
1.0

:
y

:

← SP

1
5.6

(105)
?

2
5.6

(136)
?

(d)

0
5.6

(105)
1.0

:
y

:

← SP1
5.6

(105)
?

2
5.6

(136)
?

(e)

:
y

:

← SP1
5.6

(105)
5.6

2
5.6

(136)
?

(f)

Key: SP
AR

?

:
y

:

← SP

1
5.6

(105)
5.6

2
5.6

(136)
?

(g)

:
y

:

← SP2
5.6

(136)
31.36

(h)

Stack pointer
Activation record
Location reserved
for returned value

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Do we gain anything by using recursion instead of a loop? The recursive version
seems to be more intuitive because it is similar to the original definition of the power
function. The definition is simply expressed in Java without losing the original struc-
ture of the definition. The recursive version increases program readability, improves
self-documentation, and simplifies coding. In our example, the code of the non-
recursive version is not substantially larger than in the recursive version, but for
most recursive implementations, the code is shorter than it is in the nonrecursive
implementations.

5.4 TAIL RECURSION

All recursive definitions contain a reference to a set or function being defined. There
are, however, a variety of ways such a reference can be implemented. This reference
can be done in a straightforward manner or in an intricate fashion, just once or many
times. There may be many possible levels of recursion or different levels of complex-
ity. In the following sections, some of these types are discussed, starting with the sim-
plest case, tail recursion.

Tail recursion is characterized by the use of only one recursive call at the very end
of a method implementation. In other words, when the call is made, there are no
statements left to be executed by the method; the recursive call is not only the last
statement but there are no earlier recursive calls, direct or indirect. For example, the
method tail() defined as

void tail (int i) {
if (i > 0) {
System.out.print (i + "");
tail(i-1);

}
}

is an example of a method with tail recursion, whereas the method nonTail() de-
fined as

void nonTail (int i) {
if (i > 0) {
nonTail(i-1);
System.out.print (i + "");
nonTail(i-1);

}
}

is not. Tail recursion is simply a glorified loop and can be easily replaced by one. In
this example, it is replaced by substituting a loop for the if statement and increment-
ing or decrementing the variable i in accordance with the level of recursion. In this
way, tail() can be expressed by an iterative method:

178 ■ C h a p t e r 5 R e c u r s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

void iterativeEquivalentOfTail (int i) {
for (; i > 0; i--)
System.out.print(i+ "");

}

Is there any advantage in using tail recursion over iteration? For languages such as
Java, there may be no compelling advantage, but in a language such as Prolog, which
has no explicit loop construct (loops are simulated by recursion), tail recursion ac-
quires a much greater weight. In languages endowed with a loop or its equivalents,
such as an if statement combined with a goto statement or labeled statement, tail
recursion should not be used.

5.5 NONTAIL RECURSION

Another problem that can be implemented in recursion is printing an input line in re-
verse order. Here is a simple recursive implementation:

/* 200 */ void reverse() {
/* 201 */ char ch = getChar();
/* 202 */ if (ch != '\n') {
/* 203 */ reverse();
/* 204 */ System.out.print(ch);

}
}

Where is the trick? It does not seem possible that the method does anything. But
it turns out that, by the power of recursion, it does exactly what it was designed for.
main() calls reverse() and the input is the string: “ABC.” First, an activation
record is created with cells for the variable ch and the return address. There is no need
to reserve a cell for a result, because no value is returned, which is indicated by using
void in front of the method’s name. A user-defined method getChar() reads in the
first character, “A.” Figure 5.3a shows the contents of the run-time stack right before
reverse() calls itself recursively for the first time.

The second character is read in and checked to see if it is the end-of-line character,
and if not,reverse() is called again. But in either case, the value of ch is pushed onto the
run-time stack along with the return address. Before reverse() is called for a third time
(the second time recursively), there are two more items on the stack (see Figure 5.3b).

Note that the method is called as many times as the number of characters contained
in the input string, including the end-of-line character. In our example, reverse() is
called four times, and the run-time stack during the last call is shown in Figure 5.3d.

On the fourth call, getChar() finds the end-of-line character and reverse()
executes no other statement. The system retrieves the return address from the activa-
tion record and discards this record by decrementing SP by the proper number of
bytes. Execution resumes from line 204, which is a print statement. Because the acti-
vation record of the third call is now active, the value of ch, the letter “C,” is output as

S e c t i o n 5 . 5 N o n t a i l R e c u r s i o n ■ 179

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the first character. Next, the activation record of the third call to reverse() is dis-
carded and now SP points to where “B” is stored. The second call is about to be fin-
ished, but first, “B” is assigned to ch and then the statement on line 204 is executed,
which results in printing “B” on the screen right after “C.” Finally, the activation
record of the first call to reverse() is reached. Then “A” is printed, and what can be
seen on the screen is the string “CBA.” The first call is finally finished and the program
continues execution in main().

Compare the recursive implementation with a nonrecursive version of the same
method:

void simpleIterativeReverse() {
String stack = new String();
int top = 0;
try { stack = buffer.readLine();
} catch (IOException io) {
}
for (top = stack.length() - 1; top >= 0; top--)

System.out.print(stack.charAt(top));
}

The method is quite short and, perhaps, a bit more cryptic than its recursive
counterpart. What is the difference then? Keep in mind that the brevity and rela-
tive simplicity of the second version are due mainly to the fact that we want to re-
verse a string or array of characters. This means that methods like length() and
readLine() from the standard Java library can be used. If we are not supplied
with such methods, then our iterative method has to be implemented differently:

void iterativeReverse() {
char[] stack = new char[80];
int top = 0;
stack[top] = getChar();

180 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.3 Changes on the run-time stack during the execution of reverse().

← SP

← SP

← SP

← SP

(b) (c) (d)(a)

(to main)
'A'

'B'

'C'

(204)

(204)

(204)
'\n'

(to main)
'A'

'B'

'C'

(204)

(204)

(to main)
'A'

'B'
(204)

(to main)
'A'

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

while (stack[top] != '\n')
stack[++top] = getChar();

for (top -= 1; top >= 0; top--)
System.out.print(stack[top]);

}

The while loop replaces getLine() and the autoincrement of variable top re-
places length(). The for loop is about the same as before. This discussion is not
purely theoretical because reversing an input line consisting of integers uses the same
implementation as iterativeReverse() after changing the data type of stack
from char to int and modifying the while loop.

Note that the variable name stack used for the array is not accidental. We are just
making explicit what is done implicitly by the system. Our stack takes over the run-
time stack’s duty. Its use is necessary here because one simple loop does not suffice, as
in the case of tail recursion. In addition, the statement System.out.print() from
the recursive version has to be accounted for. Note also that the variable stack is local
to the method iterativeReverse(). However, if it were a requirement to have a
stack object st, then this implementation can be written as

void nonRecursiveReverse() {
Stack st = new Stack();
char ch = getChar();
while (ch != '\n') {

st.push(new Character(ch));
ch = getChar();

}
while (!st.isEmpty())

System.out.print((Character) st.pop());
}

After comparing iterativeReverse() to nonRecursiveReverse(), we
can conclude that the first version is better because it is faster, no method calls are
made, and the method is self-sufficient, whereas nonRecursiveReverse() calls at
least one method during each loop iteration, slowing down execution.

One way or the other, the transformation of nontail recursion into iteration
usually involves the explicit handling of a stack. Furthermore, when converting a
method from a recursive into an iterative version, program clarity can be dimin-
ished and the brevity of program formulation lost. Iterative versions of recursive
Java methods are not as verbose as in other programming languages, so program
brevity may not be an issue.

To conclude this section, consider a construction of the von Koch snowflake.
The curve was constructed in 1904 by Swedish mathematician Helge von Koch as
an example of a continuous and nondifferentiable curve with an infinite length and
yet encompassing a finite area. Such a curve is a limit of an infinite sequence of
snowflakes, of which the first three are presented in Figure 5.4. As in real snowflakes,
two of these curves have six petals, but to facilitate the algorithm, it is treated as a
combination of three identical curves drawn in different angles and joined together.
One such curve is drawn in the following fashion:

S e c t i o n 5 . 5 N o n t a i l R e c u r s i o n ■ 181

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1. Divide an interval side into three even parts.

2. Move one-third of side in the direction specified by angle.

3. Turn to the right 60° (i.e., turn –60°) and go forward one-third of side.

4. Turn to the left 120° and proceed forward one-third of side.

5. Turn right 60° and again draw a line one-third of side long.

The result of these five steps is summarized in Figure 5.5. This line, however, be-
comes more jagged if every one of the four intervals became a miniature of the whole
curve; that is, if the process of drawing four lines were made for each of these side/3
long intervals. As a result, 16 intervals side/9 long would be drawn. The process may
be continued indefinitely—at least in theory. Computer graphics resolution prevents
us from going too far because if lines are smaller than the diameter of a pixel, we just
see one dot on the screen.

The five steps that instead of drawing one line of length side, draw four lines each
of length one-third of side form one cycle only. Each of these four lines can also be
compound lines drawn by the use of the described cycle. This is a situation in which
recursion is well suited, which is reflected by the following pseudocode:

182 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.4 Examples of von Koch snowflakes.

FIGURE 5.5 The process of drawing four sides of one segment of the von Koch snowflake.

–60º

–60º

120º

side/3

side

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

drawFourLines (side, level)
if (level = 0)

draw a line;
else
drawFourLines(side/3, level-1);
turn left 60°;
drawFourLines(side/3, level-1);
turn right 120°;
drawFourLines(side/3, level-1);
turn left 60°;
drawFourLines(side/3, level-1);

This pseudocode can be rendered almost without change into Java code. How-
ever, remember that a line drawn must not be of deliberate length, because the
snowflake drawn will not be a closed line. Therefore, the original line is divided into
three parts, each of which is divided into three parts also, level-1 times. Figure 5.6
contains the Java code for this example.

S e c t i o n 5 . 5 N o n t a i l R e c u r s i o n ■ 183

FIGURE 5.6 Recursive implementation of the von Koch snowflake.

import java.awt.*;
import java.awt.event.*;

public class vonKoch extends Frame implements ActionListener {
private TextField lvl, len;
vonKoch() {

super(“von Koch snowflake”);
Label lvlLbl = new Label(“level”);
lvl = new TextField(“4”,3);
Label lenLbl = new Label(“side”);
len = new TextField(“200”,3);
Button draw = new Button(“draw”);
lvl.addActionListener(this);
len.addActionListener(this);
draw.addActionListener(this);
setLayout(new FlowLayout());
add(lvlLbl);
add(lvl);
add(lenLbl);
add(len);
add(draw);
setSize(600,400);
setForeground(Color.white);

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

184 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.6 (continued)

setBackground(Color.red);
show();
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});

}
private double angle;
private Point currPt, pt = new Point();
private void right(double x) {

angle += x;
}
private void left (double x) {

angle -= x;
}
private void drawFourLines(double side, int level, Graphics g) {

if (level == 0) {
// arguments to sin() and cos() must be angles given in

radians,
// thus, the angles given in degrees must be multiplied by

PI/180;
pt.x = ((int)(Math.cos(angle*Math.PI/180)*side)) + currPt.x;
pt.y = ((int)(Math.sin(angle*Math.PI/180)*side)) + currPt.y;
g.drawLine(currPt.x, currPt.y, pt.x, pt.y);
currPt.x = pt.x;
currPt.y = pt.y;

}
else {

drawFourLines(side/3.0,level-1,g);
left (60);
drawFourLines(side/3.0,level-1,g);
right(120);
drawFourLines(side/3.0,level-1,g);
left (60);
drawFourLines(side/3.0,level-1,g);

}
}
public void actionPerformed(ActionEvent e) { // ActionListener

repaint();
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5.6 INDIRECT RECURSION

The preceding sections discussed only direct recursion, where a method f() called it-
self. However, f() can call itself indirectly via a chain of other calls. For example, f()
can call g(), and g() can call f(). This is the simplest case of indirect recursion.

The chain of intermediate calls can be of an arbitrary length, as in:

f() -> f1() -> f2() -> · · · -> fn() -> f()

There is also the situation when f() can call itself indirectly through different
chains. Thus, in addition to the chain just given, another chain might also be possible.
For instance

f() -> g1() -> g2() -> · · · -> gm() -> f()

This situation can be exemplified by three methods used for decoding informa-
tion. receive() stores the incoming information in a buffer, decode() converts it
into legible form, and store() stores it in a file. receive() fills the buffer and calls
decode(), which in turn, after finishing its job, submits the buffer with decoded in-
formation to store(). After store() accomplishes its tasks, it calls receive() to
intercept more encoded information using the same buffer. Therefore, we have the
chain of calls

receive() -> decode() -> store() -> receive() -> decode() -> · · ·

S e c t i o n 5 . 6 I n d i r e c t R e c u r s i o n ■ 185

FIGURE 5.6 (continued)

public void paint(Graphics g) {
int level = Integer.parseInt(lvl.getText().trim());
double side = Double.parseDouble(len.getText().trim());
currPt = new Point(200,150);
angle = 0;
for (int i = 1; i <= 3; i++) {

drawFourLines(side,level,g);
right(120);

}
}
static public void main(String[] a) {

new vonKoch();
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

which is finished when no new information arrives. These three methods work in the
following manner:

receive(buffer)
while buffer is not filled up

if information is still incoming
get a character and store it in buffer;

else exit();
decode(buffer);

decode(buffer)
decode information in buffer;
store(buffer);

store(buffer)
transfer information from buffer to file;
receive(buffer);

A more mathematically oriented example concerns formulas calculating the
trigonometric functions sine, cosine, and tangent:

As usual in the case of recursion, there has to be an anchor in order to avoid falling
into an infinite loop of recursive calls. In the case of sine, we can use the following ap-
proximation:

where small values of x give a better approximation. To compute the sine of a number x
such that its absolute value is greater than an assumed tolerance, we have to compute
sin (�

3
x

�) directly, sin (�
3
x

�) indirectly through tangent, and also indirectly, sin (�
6
x

�) through
tangent and cosine. If the absolute value of �

3
x

� is sufficiently small, which does not re-
quire other recursive calls, we can represent all the calls as a tree, as in Figure 5.7.

sin()x x
x≈ −

3

6

cos() sinx
x= −

⎛
⎝⎜

⎞
⎠⎟

1
2

tan()

sin()

cos()
x

x

x
=

sin() sin
tan

tan
x

x
x

x
=

⎛
⎝⎜

⎞
⎠⎟

⋅
− ()()
+ ()()3

3

1

2
3

2
3

186 ■ C h a p t e r 5 R e c u r s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 5 . 7 N e s t e d R e c u r s i o n ■ 187

FIGURE 5.7 A tree of recursive calls for sin (x).

sin x

x
3cos

x
6sin

x
3tanx

3sin

x
3sin x

3cos

x
6sin

x
3tan

x
3sin

5.7 NESTED RECURSION

A more complicated case of recursion is found in definitions in which a function is
not only defined in terms of itself, but also is used as one of the parameters. The fol-
lowing definition is an example of such a nesting:

if n = 0

if n > 4

if n ≤ 4

Function h has a solution for all n ≥ 0. This fact is obvious for all n > 4 and n = 0, but it
has to be proven for n = 1, 2, 3, and 4. Thus, h(2) = h(2 + h(4)) = h(2 + h(2 + h(8))) = 12.
(What are the values of h(n) for n = 1, 3, and 4?)

Another example of nested recursion is a very important function originally sug-
gested by Wilhelm Ackermann in 1928 and later modified by Rozsa Peter:

if n = 0

if n > 0, m = 0

otherwise

This function is interesting because of its remarkably rapid growth. It grows so
fast that it is guaranteed not to have a representation by a formula that uses arithmetic
operations such as addition, multiplication, and exponentiation. To illustrate the rate
of growth of the Ackermann function, we need only show that

A(3,m) = 2m+3 – 3

A(4,m) = 22••2
16

– 3

with a stack of m 2s in the exponent; A(4,1) = 2216 – 3 = 265536 – 3, which exceeds even
the number of atoms in the universe (which is 1080 according to current theories).

The definition translates very nicely into Java, but the task of expressing it in a
nonrecursive form is truly troublesome.

A n m

m

A n

A n A n m

(,) (,)

(, (,))

=
+

−
− −

⎧

⎨
⎪

⎩
⎪

1

1 1

1 1

h n n

h h n

()

(())

=
+

⎧

⎨
⎪

⎩
⎪

0

2 2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

188 ■ C h a p t e r 5 R e c u r s i o n

2Even if we try to compute the value of 5.6100,000 using an iterative algorithm, we are not com-
pletely free from a troublesome situation because the number is much too large to fit even a
variable of double length. Thus, although the program would not crash, the computed value
would be incorrect, which may be even more dangerous than a program crash.

5.8 EXCESSIVE RECURSION

Logical simplicity and readability are used as an argument supporting the use of re-
cursion. The price for using recursion is slowing down execution time and storing
on the run-time stack more things than required in a nonrecursive approach. If re-
cursion is too deep (for example, computing 5.6100,000), then we can run out of space
on the stack and our program terminates abnormally by raising an unrecoverable
StackOverflowError. But usually, the number of recursive calls is much smaller
than 100,000, so the danger of overflowing the stack may not be imminent.2 How-
ever, if some recursive function repeats the computations for some parameters, the
run time can be prohibitively long even for very simple cases.

Consider Fibonacci numbers. A sequence of Fibonacci numbers is defined as follows:

if n < 2

otherwise

The definition states that if the first two numbers are 0 and 1, then any number in the
sequence is the sum of its two predecessors. But these predecessors are in turn sums of
their predecessors, and so on, to the beginning of the sequence. The sequence pro-
duced by the definition is

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

How can this definition be implemented in Java? It takes almost term-by-term
translation to have a recursive version, which is

int Fib (int n) {
if (n < 2)
return n;

else return Fib(n-2) + Fib(n-1);
}

The method is simple and easy to understand but extremely inefficient. To see it,
compute Fib(6), the seventh number of the sequence, which is 8. Based on the defi-
nition, the computation runs as follows:

Fib(6) = Fib(4) + Fib(5)
= Fib(2) + Fib(3) + Fib(5)
= Fib(0)+Fib(1) + Fib(3) + Fib(5)
= 0 + 1 + Fib(3) + Fib(5)
= 1 + Fib(1)+ Fib(2) + Fib(5)
= 1 + Fib(1)+Fib(0)+Fib(1) + Fib(5)

etc.

Fib

Fib Fib
()

() ()
n

n

n n
=

− + −
⎧
⎨
⎩ 2 1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This is just the beginning of our calculation process, and even here there are cer-
tain shortcuts. All these calculations can be expressed more concisely in the form of the
tree shown in Figure 5.8. Tremendous inefficiency results because Fib() is called 25
times to determine the seventh element of the Fibonacci sequence. The source of this
inefficiency is the repetition of the same calculations because the system forgets what
has already been calculated. For example, Fib() is called eight times with parameter
n = 1 to decide that 1 can be returned. For each number of the sequence, the method
computes all its predecessors without taking into account that it suffices to do this only
once. To find Fib(6) = 8, it computes Fib(5), Fib(4), Fib(3), Fib(2), Fib(1),
and Fib(0) first. To determine these values, Fib(4), . . . , Fib(0) have to be com-
puted to know the value of Fib(5). Independently of this, the chain of computations
Fib(3), . . . , Fib(0) is executed to find Fib(4).

We can prove that the number of additions required to find Fib(n) using a re-
cursive definition is equal to Fib(n + 1) – 1. Counting two calls per one addition plus
the very first call means that Fib() is called 2 · Fib(n + 1) – 1 times to compute
Fib(n). This number can be exceedingly large for fairly small ns, as the table in Fig-
ure 5.9 indicates.

It takes almost a quarter of a million calls to find the twenty-sixth Fibonacci num-
ber, and nearly 3 million calls to determine the thirty-first! This is too heavy a price for
the simplicity of the recursive algorithm. As the number of calls and the run time grow
exponentially with n, the algorithm has to be abandoned except for very small numbers.

An iterative algorithm may be produced rather easily as follows:

int iterativeFib (int n) {
if (n < 2)

return n;
else {

int i = 2, tmp, current = 1, last = 0;

S e c t i o n 5 . 8 E x c e s s i v e R e c u r s i o n ■ 189

FIGURE 5.8 The tree of calls for Fib(6).

F(0) F(1)

F(2)

0 1

F(1)

1

F(1)

1

F(0)

0

F(2) F(3)

F(1)

1

F(1)

1

F(1)

1

F(1)

1

F(0)

0 F(0)

0

F(2)

F(1)

1

F(0)

0

F(2)

F(2) F(3) F(3) F(4)

F(4) F(5)

F(6)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

for (; i <= n; ++i) {
tmp = current;
current += last;
last = tmp;

}
return current;

}
}

For each n > 1, the method loops n – 1 times making three assignments per it-
eration and only one addition, disregarding the autoincrement of i (see Figure 5.10).

However, there is another, numerical method for computing Fib(n), using a for-
mula discovered by A. de Moivre:

where � = �
1
2

�(1 + ��5) and �̂ = 1 – � = �
1
2

�(1 – ��5) ≈ –0.618034. Because –1 < �̂ < 0, �̂n

becomes very small when n grows. Therefore, it can be omitted from the formula and

approximated to the nearest integer. This leads us to the third implementation for
computing a Fibonacci number:

long deMoivreFib (int n) {
return Math.round(Math.exp(n*Math.log(1.6180339897) - Math.log(2.2360679775)));
}

Try to justify this implementation using the definition of logarithm.

Fib()n
n

= φ
5

Fib()

ˆ
n

n n

= −φ φ
5

190 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.9 Number of addition operations and number of recursive calls to calculate Fibonacci
numbers.

n Fib(n+1) Number of Additions Number of Calls

6 13 12 25

10 89 88 177

15 987 986 1,973

20 10,946 10,945 21,891

25 121,393 121,392 242,785

30 1,346,269 1,346,268 2,692,537

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 5 . 9 B a c k t r a c k i n g ■ 191

FIGURE 5.10 Comparison of iterative and recursive algorithms for calculating Fibonacci numbers.

Assignments
n Number of Additions Iterative Algorithm Recursive Algorithm

06 05 15 0000025

10 09 27 0000177

15 14 42 0001,973

20 19 57 0021,891

25 24 72 0242,785

30 29 87 2,692,537

5.9 BACKTRACKING

In solving some problems, a situation arises where there are different ways leading
from a given position, none of them known to lead to a solution. After trying one
path unsuccessfully, we return to this crossroads and try to find a solution using an-
other path. However, we must ensure that such a return is possible and that all paths
can be tried. This technique is called backtracking, and it allows us to systematically
try all available avenues from a certain point after some of them lead to nowhere.
Using backtracking, we can always return to a position that offers other possibilities
for successfully solving the problem. This technique is used in artificial intelligence,
and one of the problems in which backtracking is very useful is the eight queens
problem.

The eight queens problem attempts to place eight queens on a chessboard in
such a way that no queen is attacking any other. The rules of chess say that a queen
can take another piece if it lies on the same row, on the same column, or on the
same diagonal as the queen (see Figure 5.11). To solve this problem, we try to put
the first queen on the board, then the second so that it cannot take the first, then the
third so that it is not in conflict with the two already placed, and so on, until all of
the queens are placed. What happens if, for instance, the sixth queen cannot be
placed in a nonconflicting position? We choose another position for the fifth queen
and try again with the sixth. If this does not work the fifth queen is moved again. If
all the possible positions for the fifth queen have been tried, the fourth queen is
moved and then the process restarts. This process requires a great deal of effort,
most of which is spent backtracking to the first crossroads offering some untried
avenues. In terms of code, however, the process is rather simple due to the power of
recursion, which is a natural implementation of backtracking. Pseudocode for this
backtracking algorithm is as follows (the last line pertains to backtracking):

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

putQueen(row)
for every position col on the same row
if position col is available

place the next queen in position col;
if (row < 8)
putQueen(row+1);

else success;
remove the queen from position col;

This algorithm finds all possible solutions without regard to the fact that some of
them are symmetrical.

The most natural approach for implementing this algorithm is to declare an
8 × 8 array board of 1s and 0s representing a chessboard. The array is initialized to
1s, and each time a queen is put in a position (r, c), board[r][c] is set to 0. Also, a
method must set to 0, as not available, all positions on row r, in column c, and on
both diagonals that cross each other in position (r, c). When backtracking, the same
positions (that is, positions on corresponding row, column, and diagonals) have to
be set back to 1, as again available. Because we can expect hundreds of attempts to
find available positions for queens, the setting and resetting process is the most
time-consuming part of the implementation; for each queen, between 22 and 28
positions have to be set and then reset, 15 for row and column, and between 7 and
13 for diagonals.

In this approach, the board is viewed from the perspective of the player who sees
the entire board along with all the pieces at the same time. However, if we focus solely
on the queens, we can consider the chessboard from their perspective. For the queens,
the board is not divided into squares, but into rows, columns, and diagonals. If a

192 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.11 The eight queens problem.

(b)(a)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

queen is placed on a single square, it resides not only on this square, but on the entire
row, column, and diagonal, treating them as its own temporary property. A different
data structure can be utilized to represent this.

To simplify the problem for the first solution, we use a 4 × 4 chessboard instead of
the regular 8 × 8 board. Later, we can make the rather obvious changes in the program
to accommodate a regular board.

Figure 5.12 contains the 4 × 4 chessboard. Notice that indexes in all fields in the
indicated left diagonal all add up to two, r + c = 2; this number is associated with this
diagonal. There are seven left diagonals, 0 through 6. Indexes in the fields of the indi-
cated right diagonal all have the same difference, r – c = –1, and this number is unique
among all right diagonals. Therefore, right diagonals are assigned numbers –3
through 3. The data structure used for all left diagonals is simply an array indexed by
numbers 0 through 6. For right diagonals, it is also an array, but it cannot be indexed
by negative numbers. Therefore, it is an array of seven cells, but to account for nega-
tive values obtained from the formula r – c, the same number is always added to it so
as not to cross the bounds of this array.

An analogous array is also needed for columns, but not for rows, because a queen
i is moved along row i and all queens < i have already been placed in rows < i. Figure
5.13 contains the code to implement these arrays. The program is short due to recur-
sion, which hides some of the goings-on from the user’s sight.

Figures 5.14 through 5.17 document the steps taken by putQueen() to place
four queens on the chessboard. Figure 5.14 contains the move number, queen num-
ber, and row and column number for each attempt to place a queen. Figure 5.15
contains the changes to the arrays positionInRow, column, leftDiagonal, and
rightDiagonal. Figure 5.16 shows the changes to the run-time stack during the
eight steps. All changes to the run-time stack are depicted by an activation record
for each iteration of the for loop, which mostly lead to a new invocation of
putQueen(). Each activation record stores a return address and the values of row
and col. Figure 5.17 illustrates the changes to the chessboard. A detailed description
of each step follows.

S e c t i o n 5 . 9 B a c k t r a c k i n g ■ 193

FIGURE 5.12 A 4 × 4 chessboard.

0, 0

1, 0

2, 0

3, 0Left Right

0, 1

1, 1

2, 1

3, 1

0, 2

1, 2

2, 2

3, 2

0, 3

1, 3

2, 3

3, 3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

194 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.13 Eight queens problem implementation.

import java.io.*;

class Queens {
final boolean available = true;
final int squares = 4, norm = squares - 1;
int[] positionInRow = new int[squares];
boolean[] column = new boolean[squares];
boolean[] leftDiagonal = new boolean[squares*2 - 1];
boolean[] rightDiagonal = new boolean[squares*2 - 1];
int howMany = 0;
Queens() {

for (int i = 0; i < squares; i++) {
positionInRow[i] = -1;
column[i] = available;

}
for (int i = 0; i < squares*2 - 1; i++)

leftDiagonal[i] = rightDiagonal[i] = available;
}
void PrintBoard(PrintStream out) {

.
}
void PutQueen(int row) {

for (int col = 0; col < squares; col++)
if (column[col] == available &&

leftDiagonal [row+col] == available &&
rightDiagonal[row-col+norm] == available) {
positionInRow[row] = col;
column[col] = !available;
leftDiagonal[row+col] = !available;
rightDiagonal[row-col+norm] = !available;
if (row < squares-1)

PutQueen(row+1);
else PrintBoard(System.out);
column[col] = available;
leftDiagonal[row+col] = available;
rightDiagonal[row-col+norm] = available;

}
}
static public void main(String args[]) {

Queens queens = new Queens();
queens.PutQueen(0);
System.out.println(queens.howMany + " solutions found.");

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

{1} We start by trying to put the first queen in the upper left corner (0, 0). Because it is
the very first move, the condition in the if statement is met, and the queen is placed
in this square. After the queen is placed, the column 0, the main right diagonal, and
the leftmost diagonal are marked as unavailable. In Figure 5.15, {1} is put underneath
cells reset to !available in this step.

{2} Since row<3, putQueen() calls itself with row+1, but before its execution, an activa-
tion record is created on the run-time stack (see Figure 5.16a). Now we check the
availability of a field on the second row (i.e., row==1). For col==0, column 0 is
guarded, for col==1, the main right diagonal is checked, and for col==2, all three
parts of the if statement condition are true. Therefore, the second queen is placed in

S e c t i o n 5 . 9 B a c k t r a c k i n g ■ 195

FIGURE 5.14 Steps leading to the first successful configuration of four queens as found by the
method putQueen().

Move Queen row col

{1} 1 0 0

{2} 2 1 2 failure

{3} 2 1 3

{4} 3 2 1 failure

{5} 1 0 1

{6} 2 1 3

{7} 3 2 0

{8} 4 3 2

FIGURE 5.15 Changes in the four arrays used by method putQueen().

positionInRow column leftDiagonal rightDiagonal row

(0 , 2 , ,) (!a , a , !a , a) (!a, a , a , !a , a , a , a) (a, a , !a , !a , a , a , a) 0 , 1

{1}{2} {1} {2} {1} {2} {2}{1} {1}{2}

(0 , 3 , 1 ,) (!a , !a , a , !a) (!a, a , a , !a , !a , a , a) (a, !a , a , !a , !a , a , a) 1 , 2

{1}{3}{4} {1} {4} {3} {1} {4}{3} {3} {1} {4} {3}{4}

(1 , 3 , 0 , 2) (!a , !a , !a , !a) (a, !a , !a , a , !a , !a , a) (a, !a , !a , a , !a , !a , a) 0 , 1 , 2 , 3

{5} {6} {7} {8} {7} {5} {8} {6} {5} {7} {6} {8} {6} {5} {8} {7} {5}{6}{7}{8}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

position (1, 2), and this fact is immediately reflected in the proper cells of all four
arrays. Again, row<3. putQueen() is called trying to locate the third queen in row 2.
After all the positions in this row, 0 through 3, are tested, no available position is
found, the for loop is exited without executing the body of the if statement, and this
call to putQueen() is complete. But this call was executed by putQueen() dealing
with the second row, to which control is now returned.

196 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.16 Changes on the run-time stack for the first successful completion of putQueen().

(b)

�3�

(**)
row � 0

col � 0

(*)
row � 1

col � 3

(*)
row � 2

col � 1

�1�

�4�

(a)

�2�

(**)
row � 0

col � 0

(*)
row � 1

col � 2

�1�

(c)

�6�

(**)
row � 0

col � 1

(*)
row � 1

col � 3

(*)
row � 2

col � 0

(*)
row � 3

col � 2

�5�

�7�

�8�

Key: **

*

Address in first activation record
allowing return to first caller of
putQueen()
Address inside putQueen()

FIGURE 5.17 Changes to the chessboard leading to the first successful configuration.

�1�

?

?

?

?

�2�

? ?

(a)

�1�

?

?

�4�

? ?

�3�

?

(b)

?

�7�

?

�5�

?

?

?

�8�

�6�

(c)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

{3} Values of col and row are restored and the execution of the second call of
putQueen() continues by resetting some fields in three arrays back to available,
and since col==2, the for loop can continue iteration. The test in the if statement
allows the second queen to be placed on the board, this time in position (1, 3).

{4} Afterward, putQueen() is called again with row==2, the third queen is put in (2, 1),
and after the next call to putQueen(), an attempt to place the fourth queen is
unsuccessful (see Figure 5.17b). No calls are made, the call from step {3} is resumed,
and the third queen is once again moved, but no position can be found for it. At the
same time, col becomes 3, and the for loop is finished.

{5} As a result, the first call of putQueen() resumes execution by placing the first queen
in position (0, 1).

{6–8} This time execution continues smoothly and we obtain a complete solution.

Figure 5.18 contains a trace of all calls leading to the first successful placement of
four queens on a 4 × 4 chessboard.

S e c t i o n 5 . 9 B a c k t r a c k i n g ■ 197

FIGURE 5.18 Trace of calls to putQueen() to place four queens.

putQueen(0);
col = 0;
putQueen(1);
col = 0;
col = 1;
col = 2;
putQueen(2)
col = 0;
col = 1;
col = 2;
col = 3;

col = 3;
putQueen(2);
col = 0;
col = 1;
putQueen(3);
col = 0;
col = 1;
col = 2;
col = 3;

col = 2;
col = 3;

col = 1;

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

198 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.18 (continued)

putQueen(1);
col = 0;
col = 1;
col = 2;
col = 3;
putQueen(2)
col = 0;
putQueen(3)
col = 0;
col = 1;
col = 2;
success;

5.10 CONCLUDING REMARKS

After looking at all these examples (and one more to follow), what can be said about
recursion as a programming tool? Like any other topic in data structures, it should be
used with good judgment. There are no general rules for when to use it and when not
to use it. Each particular problem decides. Recursion is usually less efficient than its it-
erative equivalent. But if a recursive program takes 100 milliseconds (ms) for execu-
tion, for example, and the iterative version only 10 ms, then although the latter is 10
times faster, the difference is hardly perceivable. If there is an advantage in the clarity,
readability, and simplicity of the code, the difference in the execution time between
these two versions can be disregarded. Recursion is often simpler than the iterative so-
lution and more consistent with the logic of the original algorithm. The factorial and
power methods are such examples, and we will see more interesting cases in chapters
to follow.

Although every recursive method can be converted into an iterative version, the
conversion is not always a trivial task. In particular, it may involve explicitly manipu-
lating a stack. That is where the time–space trade-off comes into play: Using iteration
often necessitates the introduction of a new data structure to implement a stack,
whereas recursion relieves the programmer of this task by handing it over to the sys-
tem. One way or the other, if nontail recursion is involved, very often a stack has to be
maintained by the programmer or by the system. But the programmer decides who
carries the load.

Two situations can be presented in which a nonrecursive implementation is
preferable even if recursion is a more natural solution. First, iteration should be used
in the so-called real-time systems where an immediate response is vital for proper
functioning of the program. For example, in military environments, in the space shut-
tle, or in certain types of scientific experiments, it may matter whether the response

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 5 . 1 1 C a s e S t u d y : A R e c u r s i v e D e s c e n t I n t e r p r e t e r ■ 199

time is 10 ms or 100 ms. Second, the programmer is encouraged to avoid recursion in
programs that are executed hundreds of times. The best example of this kind of pro-
gram is a compiler.

But these remarks should not be treated too stringently, because sometimes a re-
cursive version is faster than a nonrecursive implementation. Hardware may have
built-in stack operations that considerably speed up methods operating on the run-
time stack, such as recursive methods. Running a simple routine implemented recur-
sively and iteratively and comparing the two run times can help to decide if recursion
is advisable—in fact, recursion can execute faster than iteration. Such a test is espe-
cially important if tail recursion comes into play. However, when a stack cannot be
eliminated from the iterative version, the use of recursion is usually recommended,
because the execution time for both versions does not differ substantially—certainly
not by a factor of 10.

Recursion should be eliminated if some part of the work is unnecessarily re-
peated to compute the answer. The Fibonacci series computation is a good example
of such a situation. It shows that the ease of using recursion can sometimes be
deceptive, and this is where iteration can grapple effectively with run-time limita-
tions and inefficiencies. Whether a recursive implementation leads to unnecessary
repetitions may not be immediately apparent; therefore, drawing a tree of calls sim-
ilar to Figure 5.8 can be very helpful. This tree shows that Fib(n) is called many
times with the same argument n. A tree drawn for power or factorial methods is re-
duced to a linked list with no repetitions in it. If such a tree is very deep (that is, it
has many levels), then the program can endanger the run-time stack with an over-
flow. If the tree is shallow and bushy, with many nodes on the same level, then re-
cursion seems to be a good approach—but only if the number of repetitions is very
moderate.

5.11 CASE STUDY: A RECURSIVE DESCENT INTERPRETER

All programs written in any programming language have to be translated into a rep-
resentation that the computer system can execute. However, this is not a simple
process. Depending on the system and programming language, the process may con-
sist of translating one executable statement at a time and immediately executing it,
which is called interpretation, or translating the entire program first and then execut-
ing it, which is called compilation. Whichever strategy is used, the program should
not contain sentences or formulas that violate the formal specification of the pro-
gramming language in which the program is written. For example, if we want to as-
sign a value to a variable, we must put the variable first, then the equal sign, and then
a value after it.

Writing an interpreter is by no means a trivial task. As an example, this case study
is a sample interpreter for a limited programming language. Our language consists
only of assignment statements; it contains no declarations, if-else statements,
loops, methods, or the like. For this limited language, we would like to write a pro-
gram that accepts any input and

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

■ determines if it contains valid assignment statements (this process is known as
parsing); and simultaneously,

■ evaluates all expressions.

Our program is an interpreter in that it not only checks whether the assignment
statements are syntactically correct, but also executes the assignments.

The program is to work in the following way. If we enter the assignment statements

var1 = 5;
var2 = 3 + var1;
var3 = 44/2.5 * (var2 + var1);

then the system can be prompted for the value of each variable separately. For in-
stance, after entering

print var3

the system should respond by printing

var3 = 228.8

Evaluation of all variables stored so far may be requested by entering

status

and the following values should be printed in our example:

var1 = 5.0;
var2 = 8.0;
var3 = 228.8;

All current values are to be stored on idList and updated if necessary. Thus, if

var2 = var2 * 5;

is entered, then

print var2

should return

var2 = 40.0

The interpreter prints a message if any undefined identifier is used and if state-
ments and expressions do not conform to common grammatical rules such as un-
matched parentheses, two identifiers in a row, and so on.

The program can be written in a variety of ways, but to illustrate recursion, we
chose a method known as recursive descent. This consists of several mutually recursive
methods according to the diagrams in Figure 5.19.

These diagrams serve to define a statement and its parts. For example, a term is a
factor or a factor followed by either the multiplication symbol “*” or the division sym-
bol “/” and then another factor. A factor, in turn, is either an identifier, a number, an
expression enclosed in a pair of matching parentheses, or a negated factor. In this

200 ■ C h a p t e r 5 R e c u r s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

method, a statement is looked at in more and more detail. It is broken down into its
components, and if the components are compound, they are separated into their con-
stituent parts until the simplest language elements or tokens are found: numbers,
variable names, operators, and parentheses. Thus, the program recursively descends
from a global overview of the statement to more detailed elements.

The diagrams in Figure 5.19 indicate that recursive descent is a combination of
direct and indirect recursion. For example, a factor can be a factor preceded by a
minus, an expression can be a term, a term can be a factor, a factor can be an expres-
sion that, in turn, can be a term, until the level of identifiers or numbers is found.
Thus, an expression can be composed of expressions, a term of terms, and a factor of
factors.

How can the recursive descent interpreter be implemented? The simplest ap-
proach is to treat every word in the diagrams as a method name. For instance, term()

S e c t i o n 5 . 1 1 C a s e S t u d y : A R e c u r s i v e D e s c e n t I n t e r p r e t e r ■ 201

FIGURE 5.19 Diagrams of methods used by the recursive descent interpreter.

expression
statement

expression

factor

factor–

expression)

+

(

number

identifier

term

identifier =

–

term

*

factor

/

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is a method returning a double number. This method always calls factor()
first, and if the current token is either “*” or “/”, then term() calls factor() again.
Each time, the value already accumulated by term() is either multiplied or divided
by the value returned by the subsequent call of term() to factor(). Every call of
term() can invoke another call to term() indirectly through the chain term() ->
factor() -> expression() -> term(). Pseudocode for the method term()
looks like the following:

term()
f1 = factor();
while current token is either / or *

f2 = factor();
f1 = f1 * f2 or f1 / f2;

return f1;

The method expression() has exactly the same structure, and the pseudocode
for factor() is:

factor()
process all +s and – s preceding a factor;
if current token is an identifier

return value assigned to the identifier;
else if current token is a number

return the number;
else if current token is (

e = expression();
if current token is)

return e;

However, in the pseudocode, we assumed that only valid statements are entered
for evaluation. What happens if a mistake is made, such as entering two equal signs,
mistyping a variable name, or forgetting an operator? In the interpreter, parsing is
simply discontinued after printing an error message.

In the implementation, a stream tokenizer is used to divide input statements into
tokens: identifiers, numbers, operators, parentheses, and semicolons. However, in the
stream tokenizer, a word is a letter followed by zero or more letters or number con-
stituents. Because number constituents are digits, a period, and a minus, a string to-
kenizer would accept “x-12.34” as a word. To prevent that from happening, a period and
a minus are stripped of their numeric character with the method ordinaryChar().
Also, a dollar sign and an underscore are included with wordChars() among the
characters that can constitute a Java identifier. Because a period and a minus are de-
moted to the level of ordinary characters, the stream tokenizer recognizes as numbers
only sequences of digits. To deal with floating-point numbers, one number has to be
put together by the interpreter from two such sequences and a period between them,
which is done in factor().

Figure 5.20 contains the complete code for our interpreter.

202 ■ C h a p t e r 5 R e c u r s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 5 . 1 1 C a s e S t u d y : A R e c u r s i v e D e s c e n t I n t e r p r e t e r ■ 203

FIGURE 5.20 Implementation of a simple language interpreter.

import java.io.*;

class Id {
private String id;
public double value;
public Id(String s, double d) {

id = s; value = d;
}
public boolean equals(Object node) {

return id.equals(((Id)node).id);
}
public String toString() {

return id + " = " + value + "; ";
}

}

public class Interpreter {
private StreamTokenizer fIn = new StreamTokenizer(

new BufferedReader(
new InputStreamReader(System.in)));

private java.util.LinkedList idList = new java.util.LinkedList();
public Interpreter() {

fIn.wordChars('$','$');// include underscores and dollar signs as
fIn.wordChars('_','_');// word constituents; examples of identifiers:

// var1, x, _pqr123xyz, $aName;
fIn.ordinaryChar('/'); // by default, '/' is a comment character;
fIn.ordinaryChar('.'); // otherwise "n-123.45"
fIn.ordinaryChar('-'); // is considered a token;

}
private void issueError(String s) {

System.out.println(s);
Runtime.getRuntime().exit(-1);

}
private void addOrModify(String id, double e) {

Id tmp = new Id(new String(id),e);
int pos;
if ((pos = idList.indexOf(tmp)) != -1)

((Id)idList.get(pos)).value = e;
else idList.add(tmp);

}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

204 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.20 (continued)

private double findValue(String id) {
int pos;
if ((pos = idList.indexOf(new Id(id,0.0))) != -1)

return ((Id)idList.get(pos)).value;
else issueError("Unknown variable " + id);
return 0.0; // this statement is never reached;

}
private double factor() throws IOException {

double val, minus = 1.0;
fIn.nextToken();
while (fIn.ttype == '+' || fIn.ttype == '-') { // take all '+'s

if (fIn.ttype == '-') // and '-'s;
minus *= -1.0;

fIn.nextToken();
}
if (fIn.ttype == fIn.TT_NUMBER || fIn.ttype == '.') {

if (fIn.ttype == fIn.TT_NUMBER) { // factor can be a number:
val = fIn.nval; // 123, .123, 123., 12.3;
fIn.nextToken();

}
else val = 0;
if (fIn.ttype == '.') {

fIn.nextToken();
if (fIn.ttype == fIn.TT_NUMBER) {

String s = fIn.nval + "";
s = "." + s.substring(0,s.indexOf('.'));
val += Double.valueOf(s).doubleValue();

}
else fIn.pushBack();

}
else fIn.pushBack();

}
else if (fIn.ttype == '(') { // or a parenthesized

val = expression(); // expression,
if (fIn.ttype == ')')

fIn.nextToken();
else issueError("Right parenthesis is left out.");

}
else {

val = findValue(fIn.sval); // or an identifier;
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 5 . 1 1 C a s e S t u d y : A R e c u r s i v e D e s c e n t I n t e r p r e t e r ■ 205

FIGURE 5.20 (continued)

return minus*val;
}
private double term() throws IOException {

double f = factor();
while (true) {

fIn.nextToken();
switch (fIn.ttype) {

case '*' : f *= factor(); break;
case '/' : f /= factor(); break;
default : fIn.pushBack(); return f;

}
}

}
private double expression() throws IOException {

double t = term();
while (true) {

fIn.nextToken();
switch (fIn.ttype) {

case '+' : t += term(); break;
case '-' : t -= term(); break;
default : fIn.pushBack(); return t;

}
}

}
public void run() {

try {
System.out.println("The program processes statements in the "

+ "following format:\n"
+ "\t<id> = <expr>;\n\tprint <id>\n\tstatus\n\tend");

while (true) {
System.out.print("Enter a statement: ");
fIn.nextToken();
String str = fIn.sval;
if (str.toUpperCase().equals("STATUS")) {

java.util.Iterator it = idList.iterator();
while (it.hasNext())

System.out.println(it.next());
}
else if (str.toUpperCase().equals("PRINT")) {

fIn.nextToken();

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

206 ■ C h a p t e r 5 R e c u r s i o n

FIGURE 5.20 (continued)

str = fIn.sval;
System.out.println(str + " = " + findValue(str));

}
else if (str.toUpperCase().equals("END"))

return;
else {

fIn.nextToken();
if (fIn.ttype == '=') {

double e = expression();
fIn.nextToken();
if (fIn.ttype != ';')

issueError("There are some extras in the
statement.");

else addOrModify(str,e);
}
else issueError("'=' is missing.");

}
}

} catch (IOException e) {
e.printStackTrace();

}
}
public static void main(String args[]) {

(new Interpreter()).run();
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 5 . 1 2 E x e r c i s e s ■ 207

5.12 EXERCISES

1. The set of natural numbers N defined at the beginning of this chapter includes the
numbers 10, 11, . . . , 20, 21, . . . , and also the numbers 00, 000, 01, 001, Modify
this definition to allow only numbers with no leading zeros.

2. Write a recursive method that calculates and returns the length of a linked list.

3. What is the output for the following version of reverse():

void reverse() {
int ch = getChar();
if (ch != '\n')

reverse();
System.out.print(ch);

}

4. Write a recursive method that for a positive integer n prints odd numbers

a. between 1 and n

b. between n and 1

5. Write a recursive method that for a positive integer returns a string with commas in
the appropriate places, for example, putCommas(1234567) returns the string
“1,234,567.”

6. Write a recursive method to print a Syracuse sequence that begins with a number n0
and each element ni of the sequence is ni-1/2 if ni is even and 3n + 1 otherwise. The
sequence ends with 1.

7. Write a recursive method that uses only addition, subtraction, and comparison to
multiply two numbers.

8. Write a recursive method to compute the binomial coefficient according to the definition

if k = 0 or k = n

otherwise

9. Write a recursive method to add the first n terms of the series

. . .

10. Write a recursive method GCD(n,m) that returns the greatest common divisor of two
integers n and m according to the following definition:

if m ≤ n and n mod m = 0

if n < m

otherwise

GCD GCD

GCD

(,) (,)

(, mod)

n m

m

m n

m n m

=
⎧

⎨
⎪

⎩
⎪

1
1

2

1

3

1

4

1

5
+ − + −

n

k
n

k

n

k

⎛
⎝⎜

⎞
⎠⎟

= −
−

⎛
⎝⎜

⎞
⎠⎟

+
−⎛

⎝⎜
⎞
⎠⎟

⎧

⎨
⎪

⎩
⎪

1

1

1

1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

11. Give a recursive version of the following method:

void cubes (int n) {
for (int i = 1; i <=n; i++)

System.out.print (i * i * i + "");
}

12. An early application of recursion can be found in the seventeenth century in John
Napier’s method of finding logarithms. The method was as follows:

start with two numbers n, m and their logarithms logn, logm if they are
known;
while not done

for a geometric mean of two earlier numbers find a logarithm which is
an arithmetic mean of two earlier logarithms, that is, logk =
(logn+logm)/2 for k = �n�m�;
proceed recursively for pairs (n,�n�m�) and (�n�m�,m);

For example, the 10-based logarithms of 100 and 1,000 are numbers 2 and 3, the
geometric mean of 100 and 1,000 is 316.23, and the arithmetic mean of their loga-
rithms, 2 and 3, is 2.5. Thus, the logarithm of 316.23 equals 2.5. The process can be
continued: The geometric mean of 100 and 316.23 is 177.83, whose logarithm is equal
to (2 + 2.5)/2 = 2.25.

a. Write a recursive method logarithm() that outputs logarithms until the differ-
ence between adjacent logarithms is smaller than a certain small number.

b. Modify this method so that a new method logarithmOf() finds a logarithm of
a specific number x between 100 and 1,000. Stop processing if you reach a number
y such that y – x < 	 for some 	.

c. Add a method that calls logarithmOf() after determining between what powers
of 10 a number x falls so that it does not have to be a number between 100 and 1,000.

13. The algorithms for both versions of the power function given in this chapter are
rather simpleminded. Is it really necessary to make eight multiplications to compute
x8? It can be observed that x8 = (x4)2, x4 = (x2)2, and x2 = x · x; that is, only three multi-
plications are needed to find the value of x8. Using this observation, improve both
algorithms for computing xn. Hint: A special case is needed for odd exponents.

14. Execute by hand the methods tail() and nonTail() for the parameter values of 0,
2, and 4. Definitions of these methods are given in Section 5.4.

15. Check recursively if the following objects are palindromes:

a. a word

b. a sentence (ignoring blanks, lower- and uppercase differences, and punctuation
marks so that “Madam, I’m Adam” is accepted as a palindrome)

16. For a given character recursively,

a. Check if it is in a string.

b. Count all of its occurrences in a string.

c. Remove all of its occurrences from a string.

17. Write equivalents of the last three methods for substrings.

208 ■ C h a p t e r 5 R e c u r s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 5 . 1 2 E x e r c i s e s ■ 209

18. What changes would have to be made in the method presented in Figure 5.6 to draw
a line as in Figure 5.21? Try it, and experiment with other possibilities to generate
other curves.

19. Create a tree of calls for sin(x) assuming that only �
1
x
8
� (and smaller values) do not

trigger other calls.

20. Write recursive and nonrecursive methods to print out a nonnegative integer in bi-
nary. The methods should not use bitwise operations.

21. The nonrecursive version of the method for computing Fibonacci numbers uses
information accumulated during computation, whereas the recursive version does
not. However, it does not mean that no recursive implementation can be given that
can collect the same information as the nonrecursive counterpart. In fact, such an
implementation can be obtained directly from the nonrecursive version. What would
it be? Consider using two methods instead of one; one would do all the work, and the
other would only invoke it with the proper parameters.

22. The method putQueen() does not recognize that certain configurations are sym-
metric. Adapt method putQueen() for a full 8 × 8 chessboard, write the method
printBoard(), and run a program for solving the eight queens problem so that it
does not print symmetric solutions.

23. Finish the trace of execution of putQueen() shown in Figure 5.18.

24. Execute the following program by hand from the case study, using these two entries:

a. v = x + y*w - z

b. v = x * (y - w) --z

Indicate clearly which methods are called at which stage of parsing these sentences.

25. Extend our interpreter so that it can also process exponentiation, ^. Remember that
exponentiation has precedence over all other operations so that 2 – 3^4 * 5 is the
same as 2 – ((3^4) * 5). Notice also that exponentiation is a right-associative
operator (unlike addition and subtraction); that is, 2^3^4 is the same as 2^(3^4)
and not (2^3)^4.

FIGURE 5.21 Lines to be drawn with modified program in Figure 5.6.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

210 ■ C h a p t e r 5 R e c u r s i o n

26. In Java, the division operator, /, returns an integer result when it is applied to two
integers; for instance, 11/5 equals 2. However, in our interpreter, the result is 2.2.
Modify this interpreter so that division works the same way as in Java.

27. Our interpreter is unforgiving when a mistake is made by the user, because it finishes
execution if a problem is detected. For example, when the name of a variable is mistyped
when requesting its value, the program notifies the user and exits and destroys the list of
identifiers. Modify the program so that it continues execution after finding an error.

28. Write the shortest program you can that uses recursion.

5.13 PROGRAMMING ASSIGNMENTS

1. Compute the standard deviation
 for n values xk stored in an array data and for the
equal probabilities �

n
1

� associated with them. The standard deviation is defined as

where the variance, V, is defined by

and the mean, x̄ , by

Write recursive and iterative versions of both V and x̄ and compute the standard devi-
ation using both versions of the mean and variance. Run your program for n = 500,
1,000, 1,500, and 2,000 and compare the run times.

2. Write a program to do symbolic differentiation. Use the following formulas:

Rule 1: (fg)′ = fg′ + f ′g

Rule 2: (f + g)′ = f ′ + g′

Rule 3: ��
g
f
��′ = �

f ′g –
g2

fg′
�

Rule 4: (axn)′ = naxn–1

An example of application of these rules is given below with differentiation with re-
spect to x:

�5x3 � �
6

y
x

� – 10x2y � 100�′

= (5x3)′ + ��
6
y
x
��′ + (–10x2y)′ + (100)′ by Rule 2

= 15x2 + ��
6
y
x
��′ + (–10x2y)′ by Rule 4

= 15x2 + �
(6x)′y –

y2
(6x)y′
� + (–10x2y)′ by Rule 3

= 15x2 + �
6
y2
y
� + (–10x2y)′ by Rule 4

x 5
1

n
 Sk xk

V
n

x xk k=
−

−1

1
2Σ ()

 σ = V

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 5 . 1 3 P r o g r a m m i n g A s s i g n m e n t s ■ 211

= 15x2 + �
6
y2
y
� + (–10x2)y′ + (–10x2)′y by Rule 1

= 15x2 + �
6
y

� – 20xy by Rule 4

First, run your program for polynomials only, and then add formulas for derivatives
for trigonometric functions, logarithms, and so on, that extend the range of functions
handled by your program.

3. An n × n square consists of black and white cells arranged in a certain way. The prob-
lem is to determine the number of white areas and the number of white cells in each
area. For example, a regular 8 × 8 chessboard has 32 one-cell white areas; the square
in Figure 5.22a consists of 10 areas, 2 of them of 10 cells, and 8 of 2 cells; the square in
Figure 5.22b has 5 white areas of 1, 3, 21, 10, and 2 cells.

Write a program that, for a given n × n square, outputs the number of white areas
and their sizes. Use an (n + 2) × (n + 2) array with properly marked cells. Two addi-
tional rows and columns constitute a frame of black cells surrounding the entered
square to simplify your implementation. For instance, the square in Figure 5.22b is
stored as the square in Figure 5.22c.

Traverse the square row by row and, for the first unvisited cell encountered, in-
voke a method that processes one area. The secret is in using four recursive calls in this
method for each unvisited white cell and marking it with a special symbol as visited
(counted).

4. Write a program for pretty printing Java programs; that is, for printing programs
with consistent use of indentation, the number of spaces between tokens such as key
words, parentheses, brackets, operators, the number of blank lines between blocks
of code (classes, methods, etc.), aligning braces with key words, aligning else state-
ments with the corresponding if statements, and so on. The program takes as input
a Java file and prints code in this file according to the rules incorporated in the pretty
printing program. For example, the code

FIGURE 5.22 (a–b) Two n × n squares of black and white cells and (c) an (n + 2) × (n + 2) array
implementing square (b).

(a) (b) (c)
b

b
b
b
b
b
b
b
b
b

b

b
w
b
w
w
w
w
w
w

b

b
b
b
w
b
b
b
b
b

b

b
b
b
w
w
w
b
w
w

b

b
w
b
b
b
w
b
b
b

b

b
w
w
b
w
w
b
b
b

b

b
b
b
w
w
b
w
w
w

b

b
w
w
w
b
w
w
w
w

b

b
w
w
w
b
b
w
w
w

b

b
b
b
b
b
b
b
b
b

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

212 ■ C h a p t e r 5 R e c u r s i o n

if (n == 1) { n = 2 * m;
if (m < 10)
objectA.methodA (n,m-1); else objectA.methodA (n,m-2); } else n = 3 * m;

should be transformed into

if (n == 1) {
n = 2 * m;
if (m < 10)

objectA.methodA (n,m-1);
else objectA.methodA (n,m-2);

}
else n = 3 * m;

5. An excellent example of a program that can be greatly simplified by the use of recur-
sion is the Chapter 4 case study, escaping a maze. As already explained, in each maze
cell the mouse stores on the maze stack up to four cells neighboring the cell in which
it is currently located. The cells put on the stack are the ones that should be investi-
gated after reaching a dead end. It does the same for each visited cell. Write a program
that uses recursion to solve the maze problem. Use the following pseudocode:

exitCell(currentCell)
if currentCell is the exit

success;
else exitCell(the passage above currentCell);

exitCell(the passage below currentCell);
exitCell(the passage left to currentCell);
exitCell(the passage right to currentCell);

BIBLIOGRAPHY

Recursion and Applications of Recursion

Barron, David W., Recursive Techniques in Programming, New York: Elsevier, 1975.

Berlioux, Pierre, and Bizard, Philippe, Algorithms: The Construction, Proof, and Analysis of
Programs, New York: Wiley, 1986, Chs. 4–6.

Bird, Richard S., Programs and Machines, New York: Wiley, 1976.

Burge, William H., Recursive Programming Techniques, Reading, MA: Addison-Wesley, 1975.

Lorentz, Richard, Recursive Algorithms, Norwood, NJ: Ablex, 1994.

Roberts, Eric, Thinking Recursively, New York: Wiley, 1986.

Rohl, Jeffrey S., Recursion via Pascal, Cambridge: Cambridge University Press, 1984.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Transformations between Recursion and Iteration

Auslander, M. A., and Strong, H. R., “Systematic Recursion Removal,” Communications of the
ACM 21 (1978), 127–134.

Bird, R. S., “Notes on Recursion Elimination,” Communications of the ACM 20 (1977), 434–439.

Dijkstra, Edsger W., “Recursive Programming,” Numerische Mathematik 2 (1960), 312–318.

Algorithm to Solve the Eight Queens Problem

Wirth, Niklaus, Algorithms and Data Structures, Englewood Cliffs, NJ: Prentice Hall, 1986.

B i b l i o g r a p h y ■ 213

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

214

6
6.1 TREES, BINARY TREES, AND BINARY SEARCH TREES

Linked lists usually provide greater flexibility than arrays, but they are linear struc-
tures and it is difficult to use them to organize a hierarchical representation of ob-
jects. Although stacks and queues reflect some hierarchy, they are limited to only one
dimension. To overcome this limitation, we create a new data type called a tree that
consists of nodes and arcs. Unlike natural trees, these trees are depicted upside down
with the root at the top and the leaves (terminal nodes) at the bottom. The root is a
node that has no parent; it can have only child nodes. Leaves, on the other hand, have
no children, or rather, their children are null. A tree can be defined recursively as the
following:

1. An empty structure is an empty tree.

2. If t1, . . . , tk are disjointed trees, then the structure whose root has as its children the
roots of t1, . . . , tk is also a tree.

3. Only structures generated by rules 1 and 2 are trees.

Figure 6.1 contains examples of trees. Each node has to be reachable from the
root through a unique sequence of arcs, called a path. The number of arcs in a path is
called the length of the path. The level of a node is the length of the path from the root
to the node plus 1, which is the number of nodes in the path. The height of a non-
empty tree is the maximum level of a node in the tree. The empty tree is a legitimate
tree of height 0 (by definition), and a single node is a tree of height 1. This is the only
case in which a node is both the root and a leaf. The level of a node must be between 1
(the level of the root) and the height of the tree, which in the extreme case is the level
of the only leaf in a degenerate tree resembling a linked list.

Figure 6.2 contains an example of a tree that reflects the hierarchy of a university.
Other examples are genealogical trees, trees reflecting the grammatical structure of
sentences, and trees showing the taxonomic structure of organisms, plants, or charac-
ters. Virtually all areas of science make use of trees to represent hierarchical structures.

Binary Trees

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 1 Tr e e s , B i n a r y T r e e s , a n d B i n a r y S e a r c h T r e e s ■ 215

The definition of a tree does not impose any condition on the number of children
of a given node. This number can vary from 0 to any integer. In hierarchical trees, this
is a welcome property. For example, the university has only two branches, but each
campus can have a different number of departments. Such trees are used in database
management systems, especially in the hierarchical model. But representing hierarchies
is not the only reason for using trees. In fact, in the discussion to follow, that aspect of
trees is treated rather lightly, mainly in the discussion of expression trees. This chapter
focuses on tree operations that allow us to accelerate the search process.

FIGURE 6.1 Examples of trees.

(g)

(c)

(f)(e)(d)

(b)(a)
(a) is an empty tree

FIGURE 6.2 Hierarchical structure of a university shown as a tree.

Minoring
students

Majoring
students

Dept 2 Dept N

Professors

Dept 1Dept 1 Dept 2

Campus B

University

Dept M

Campus A

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Consider a linked list of n elements. To locate an element, the search has to start
from the beginning of the list, and the list must be scanned until the element is found
or the end of the list is reached. Even if the list is ordered, the search of the list always
has to start from the first node. Thus, if the list has 10,000 nodes and the information
in the last node is to be accessed, then all 9,999 of its predecessors have to be traversed,
an obvious inconvenience. If all the elements are stored in an orderly tree, a tree where
all elements are stored according to some predetermined criterion of ordering, the
number of tests can be reduced substantially even when the element to be located is
the one furthest away. For example, the linked list in Figure 6.3a can be transformed
into the tree in Figure 6.3b.

Was a reasonable criterion of ordering applied to construct this tree? To test
whether 31 is in the linked list, eight tests have to be performed. Can this number be
reduced further if the same elements are ordered from top to bottom and from left to
right in the tree? What would an algorithm be like that forces us to make three tests
only: one for the root, 2; one for its middle child, 12; and one for the only child of this
child, 31? The number 31 could be located on the same level as 12, or it could be a
child of 10. With this ordering of the tree, nothing really interesting is achieved in the
context of searching. (The heap discussed later in this chapter uses this approach.)
Consequently, a better criterion must be chosen.

Again, note that each node can have any number of children. In fact, there are algo-
rithms developed for trees with a deliberate number of children (see the next chapter),
but this chapter discusses only binary trees. A binary tree is a tree whose nodes have two
children (possibly empty), and each child is designated as either a left child or a right
child. For example, the trees in Figure 6.4 are binary trees, whereas the university tree in

216 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.3 Transforming (a) a linked list into (b) a tree.

312925201312102

(a)

2

12 1310

20 29 3125

(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 6.2 is not. An important characteristic of binary trees, which is used later in as-
sessing an expected efficiency of sorting algorithms, is the number of leaves.

As already defined, the level of a node is the number of arcs traversed from the
root to the node plus one. According to this definition, the root is at level 1, its imme-
diate children are at level 2, and so on. If all the nodes at all levels except the last had
two nonnull children, then there would be 1 = 20 node at level 1, 2 = 21 nodes at level
2, 4 = 22 nodes at level 3, and generally, 2i nodes at level i + 1. A tree satisfying this con-
dition is referred to as a complete binary tree. In this tree, all nonterminal nodes have
both their children, and all leaves are at the same level. Consequently, in all binary
trees, there are at most 2i nodes at level i + 1. In Chapter 9, we calculate the number of
leaves in a decision tree, which is a binary tree in which all nodes have either zero or
two nonempty children. Because leaves can be interspersed throughout a decision tree
and appear at each level except level 1, no generally applicable formula can be given to
calculate the number of nodes because it may vary from tree to tree. But the formula
can be approximated by noting first that

For all the nonempty binary trees whose nonterminal nodes have exactly
two nonempty children, the number of leaves m is greater than the number
of nonterminal nodes k and m = k + 1.

If a tree has only a root, this observation holds trivially. If it holds for a certain
tree, then after attaching two leaves to one of the already existing leaves, this leaf turns
into a nonterminal node, whereby m is decremented by 1 and k is incremented by 1.
However, because two new leaves have been grafted onto the tree, m is incremented by
2. After these two increments and one decrement, the equation (m – 1) + 2 = (k + 1) +
1 is obtained and m = k + 1, which is exactly the result aimed at (see Figure 6.5). It im-
plies that an i + 1-level complete decision tree has 2i leaves, and due to the preceding
observation, it also has 2i – 1 nonterminal nodes, which makes 2i + 2i – 1 = 2i+1 – 1
nodes in total (see also Figure 6.35).

In this chapter, the binary search trees, also called ordered binary trees, are of par-
ticular interest. A binary search tree has the following property: For each node n of the
tree, all values stored in its left subtree (the tree whose root is the left child) are less
than value v stored in n, and all values stored in the right subtree are greater than v.

S e c t i o n 6 . 1 Tr e e s , B i n a r y T r e e s , a n d B i n a r y S e a r c h T r e e s ■ 217

FIGURE 6.4 Examples of binary trees.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

For reasons to be discussed later, storing multiple copies of the same value in the same
tree is avoided. An attempt to do so can be treated as an error. The meanings of “less
than” or “greater than” depend on the type of values stored in the tree: It is “<” and
“>” for numerical values and alphabetical order in the case of strings. The trees in Fig-
ure 6.6 are binary search trees. Note that Figure 6.6c contains a tree with the same data
as the linked list in Figure 6.3a whose searching was to be optimized.

218 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.5 Adding a leaf to tree (a), preserving the relation of the number of leaves to the number
of nonterminal nodes (b).

(m – 1) + 2 leavesm leaves
(b)(a)

k nonterminal nodes k + 1 nonterminal nodes

FIGURE 6.6 Examples of binary search trees.

13collar

25

29

10color

2collier colour 312012

(c)(b)

K

PA

RN

(a)

caller

choler

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 2 I m p l e m e n t i n g B i n a r y T r e e s ■ 219

6.2 IMPLEMENTING BINARY TREES

Binary trees can be implemented in at least two ways: as arrays and as linked struc-
tures. To implement a tree as an array, a node is declared as an object with an informa-
tion field and two “reference” fields. These reference fields contain the indexes of the
array cells in which the left and right children are stored, if there are any. For example,
the tree from Figure 6.6c can be represented as the array in Figure 6.7. The root is al-
ways located in the first cell, cell 0, and –1 indicates a null child. In this representation,
the two children of node 13 are located in positions 4 and 2, and the right child of
node 31 is null.

However, this implementation may be inconvenient, even if the array is flexible—
that is, a vector or an array list. Locations of children must be known to insert a new
node, and these locations may need to be located sequentially. After deleting a node
form the tree, a hole in the array would have to be eliminated. This can be done either
by using a special marker for an unused cell, which may lead to populating the array
with many unused cells, or by moving elements by one position, which also requires
updating references to the elements that have been moved. Sometimes an array imple-
mentataion is convenient and desirable, and it will be used when discussing the heap
sort. But usually, another approach needs to be used.

In the new implementation, only trees of integers are discussed. The use of a
generic tree (that is, a tree for storing any type of data) is illustrated in the case study
at the end of this chapter.

In the new implementation, a node is an instance of a class composed of an infor-
mation field and two reference fields. This node is used and operated on by methods in
another class that pertains to the tree as a whole (see Figure 6.8).

FIGURE 6.7 Array representation of the tree in Figure 6.6c.

Index Info Left Right

0 13 4 2

1 31 6 –1

2 25 7 1

3 12 –1 –1

4 10 5 3

5 2 –1 –1

6 29 –1 –1

7 20 –1 –1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

220 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.8 Implementation of a generic binary search tree.

/************************ IntBSTNode.java **************************
* binary search tree of integers
*/

public class IntBSTNode {
protected int key;
protected IntBSTNode left, right;
public IntBSTNode() {

left = right = null;
}
public IntBSTNode(int el) {

this(el,null,null);
}
public IntBSTNode(int el, IntBSTNode lt, IntBSTNode rt) {

key = el; left = lt; right = rt;
}

}

/************************ IntBST.java **************************
* binary search tree of integers
*/

public class IntBST {
protected IntBSTNode root;
public IntBST() {

root = null;
}
protected void visit(IntBSTNode p) {

System.out.print(p.key + " ");
}
public IntBSTNode search(IntBSTNode p, int el) {

return search(p, root);
}
public IntBSTNode search(IntBSTNode p, int el) { . . . } // Figure 6.9
public void breadthFirst() { . . . } // Figure 6.10
public void preorder() {

preorder(root);
}
protected void preorder(IntBSTNode p) { . . . } // Figure 6.11
public void inorder() {

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6.3 SEARCHING A BINARY SEARCH TREE

An algorithm for locating an element in this tree is quite straightforward, as indicated by
its implementation in Figure 6.9. For every node, compare the key to be located with the
value stored in the node currently referred. If the key is less than the value, go to the left
subtree and try again. If it is greater than that value, try the right subtree. If it is the same,
obviously the search can be discontinued. The search is also aborted if there is no way to
go, indicating that the key is not in the tree. For example, to locate the number 31 in the
tree in Figure 6.6c, only three tests are performed. First, the tree is checked to see if the
number is in the root node. Next, because 31 is greater than 13, the root’s right child
containing the value 25 is tried. Finally, because 31 is again greater than the value of the
currently tested node, the right child is tried again, and the value 31 is found.

The worst case for this binary tree is when it is searched for the numbers 26, 27,
28, 29, or 30 because those searches each require four tests (why?). In the case of all
other integers, the number of tests is fewer than four. It can now be seen why an ele-
ment should only occur in a tree once. If it occurs more than once, then two ap-
proaches are possible. One approach locates the first occurrence of an element and
disregards the others. In this case, the tree contains redundant nodes that are never
used for their own sake; they are accessed only for testing. In the second approach, all
occurrences of an element may have to be located. Such a search always has to finish
with a leaf. For example, to locate all instances of 13 in the tree, the root node 13 has
to be tested, then its right child 25, and finally the node 20. The search proceeds along

S e c t i o n 6 . 3 S e a r c h i n g a B i n a r y S e a r c h T r e e ■ 221

FIGURE 6.8 (continued)

inorder(root);
}
protected void inorder(IntBSTNode p) { . . . } // Figure 6.11
public void postorder() {

postorder(root);
}
protected void postorder(IntBSTNode p) { . . . } // Figure 6.11
public void iterativePreorder() { . . . } // Figure 6.15
public void iterativeInorder() { . . . } // Figure 6.17
public void iterativePostorder() { . . . } // Figure 6.16
public void MorrisInorder() { . . . } // Figure 6.20
public void insert(int el) { . . . } // Figure 6.23
public void deleteByMerging(int el) { . . . } // Figure 6.29
public void deleteByCopying(int el) { . . . } // Figure 6.32
public void balance (int date[], int first, int last) // Section 6.7

.
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the worst-case scenario: when the leaf level has to be reached in expectation that some
more occurrences of the desired element can be encountered.

The complexity of searching is measured by the number of comparisons per-
formed during the searching process. This number depends on the number of nodes
encountered on the unique path leading from the root to the node being searched for.
Therefore, the complexity is the length of the path leading to this node plus 1. Com-
plexity depends on the shape of the tree and the position of the node in the tree.

The internal path length (IPL) is the sum of all path lengths of all nodes, which
is calculated by summing ∑(i – 1)li over all levels i, where li is the number of nodes
on level i. A depth of a node in the tree is determined by the path length. An average
depth, called an average path length, is given by the formula IPL/n, which depends
on the shape of the tree. In the worst case, when the tree turns into a linked list,
pathworst = �

n
1

�∑n
i=1(i – 1) = �n–

2
1

� = O(n), and a search can takes n time units.
The best case occurs when all leaves in the tree of height h are in at most two lev-

els, and only nodes in the next to last level can have one child. To simplify the compu-
tation, we approximate the average path length for such a tree, pathbest, by the average
path of a complete binary tree of the same height.

By looking at simple examples, we can determine that for the complete binary tree
of height h, IPL = ∑h–1

i=1 i2i. From this and from the fact that ∑h–1
i=12i = 2h – 2, we have

IPL = 2IPL – IPL = (h – 1)2h – �
h–1

i=1

2i = (h – 2)2h + 2

As has already been established, the number of nodes in the complete binary tree n =
2h – 1, so

pathbest = IPL/n = �(h – 2)2h + 2�/(2h – 1) ≈ h – 2

which is in accordance with the fact that, in this tree, one-half of the nodes are in the
leaf level with path length h – 1. Also, in this tree, the height h = lg(n + 1), so pathbest =
lg(n + 1) – 2; the average path length in a perfectly balanced tree is]lg(n + 1)g – 2 =
O(lg n) where]xg is the closest integer greater than x.

222 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.9 A function for searching a binary search tree.

public IntBSTNode search(IntBSTNode p, int el) {
while (p != null)

if (el == p.key)
return p;

else if (el < p.key)
p = p.left;

else p = p.right;
return null;

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The average case in an average tree is somewhere between �n–
2

1
� and lg(n + 1) – 2. Is

a search for a node in an average position in a tree of average shape closer to O(n) or
O(lg n)? First, the average shape of the tree has to be represented computationally.

The root of a binary tree can have an empty left subtree and a right subtree with
all n – 1 nodes. It also can have one node in the left subtree and n – 2 nodes in the
right, and so on. Finally, it can have an empty right subtree with all remaining nodes
in the left. The same reasoning can be applied to both subtrees of the root, to the sub-
trees of these subtrees, down to the leaves. The average internal path length is the aver-
age over all these differently shaped trees.

Assume that the tree contains nodes 1 through n. If i is the root, then its left sub-
tree has i – 1 nodes, and its right subtree has n – i nodes. If pathi–1 and pathn–i are aver-
age paths in these subtrees, then the average path of this tree is

pathn(i) = ((i – 1)(pathi–1 + 1) + (n – i)(pathn–i + 1))/n

Assuming that elements are coming randomly to the tree, the root of the tree can
be any number i, 1 ≤ i ≤ n. Therefore, the average path of an average tree is obtained
by averaging all values of pathn(i) over all values of i. This gives the formula

pathn = �
n
1

��
n

i=1

pathn(i) = �
n
1
2� �

n

i=1

((i – 1)(pathi–1 + 1) + (n – i)(pathn–i + 1))

= �
n
2
2� �

n–1

i=1

i(pathi + 1)

from which, and from path1 = 0, we obtain 2 ln n = 2 ln 2 lg n = 1.386 lg n as an approxi-
mation for pathn (see Section A.4 in Appendix A). This is an approximation for the aver-
age number of comparisons in an average tree. This number is O(lg n), which is closer to
the best case than to the worst case. This number also indicates that there is little room
for improvement, because pathbest/pathn ≈ .7215, and the average path length in the best
case is different by only 27.85% from the expected path length in the average case.
Searching in a binary tree is, therefore, very efficient in most cases, even without balanc-
ing the tree. However, this is true only for randomly created trees because, in highly un-
balanced and elongated trees whose shapes resemble linked lists, search time is O(n),
which is unacceptable considering that O(lg n) efficiency can be achieved.

6.4 TREE TRAVERSAL

Tree traversal is the process of visiting each node in the tree exactly one time. Traversal
may be interpreted as putting all nodes on one line or linearizing a tree.

The definition of traversal specifies only one condition—visiting each node only
one time—but it does not specify the order in which the nodes are visited. Hence, there
are as many tree traversals as there are permutations of nodes; for a tree with n nodes,
there are n! different traversals. Most of them, however, are rather chaotic and do not
indicate much regularity so that implementing such traversals lacks generality: For
each n, a separate set of traversal procedures must be implemented, and only a few of
them can be used for a different number of data. For example, two possible traversals
of the tree in Figure 6.6c that may be of some use are the sequence 2, 10, 12, 20, 13, 25,

S e c t i o n 6 . 4 Tr e e T r a v e r s a l ■ 223

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

29, 31 and the sequence 29, 31, 20, 12, 2, 25, 10, 13. The first sequence lists even num-
bers and then odd numbers in ascending order. The second sequence lists all nodes
from level to level right to left, starting from the lowest level up to the root. The se-
quence 13, 31, 12, 2, 10, 29, 20, 25 does not indicate any regularity in the order of num-
bers or in the order of the traversed nodes. It is just a random jumping from node to
node that in all likelihood is of no use. Nevertheless, all these sequences are the results
of three legitimate traversals out of 8! = 40,320. In the face of such an abundance of
traversals and the apparent uselessness of most of them, we would like to restrict our
attention to two classes only, namely, breadth-first and depth-first traversals.

6.4.1 Breadth-First Traversal
Breadth-first traversal is visiting each node starting from the lowest (or highest) level
and moving down (or up) level by level, visiting nodes on each level from left to right
(or from right to left). There are thus four possibilities, and one such possibility—a
top-down, left-to-right, breadth-first traversal of the tree in Figure 6.6c—results in
the sequence 13, 10, 25, 2, 12, 20, 31, 29.

Implementation of this kind of traversal is straightforward when a queue is used.
Consider a top-down, left-to-right, breadth-first traversal. After a node is visited, its
children, if any, are placed at the end of the queue, and the node at the beginning of
the queue is visited. Considering that for a node on level n, its children are on level n +
1, by placing these children at the end of the queue, they are visited after all nodes
from level n are visited. Thus, the restriction that all nodes on level n must be visited
before visiting any nodes on level n + 1 is accomplished.

An implementation of the corresponding method is shown in Figure 6.10.

224 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.10 Top-down, left-to-right, breadth-first traversal implementation.

public void breadthFirst() {
IntBSTNode p = root;
Queue queue = new Queue;
if (p != null) {

queue.enqueue(p);
while (!queue.isempty()) {

p = (IntBSTNode) queue.dequeue();
visit(p);
if (p.left != null)

queue.enqueue(p.left);
if (p.right != null)

queue.enqueue(p.right);
}

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6.4.2 Depth-First Traversal
Depth-first traversal proceeds as far as possible to the left (or right), then backs up until
the first crossroad, goes one step to the right (or left), and again as far as possible to the
left (or right). We repeat this process until all nodes are visited. This definition, how-
ever, does not clearly specify exactly when nodes are visited: before proceeding down
the tree or after backing up? There are some variations of the depth-first traversal.

There are three tasks of interest in this type of traversal:

V—Visiting a node

L—Traversing the left subtree

R—Traversing the right subtree

An orderly traversal takes place if these tasks are performed in the same order for each
node. The three tasks can themselves be ordered in 3! = 6 ways, so there are six possi-
ble ordered depth-first traversals:

VLR VRL

LVR RVL

LRV RLV

If the number of different orders still seems like a lot, it can be reduced to three
traversals where the move is always from left to right and attention is focused on the
first column. The three traversals are given these standard names:

VLR—Preorder tree traversal

LVR—Inorder tree traversal

LRV—Postorder tree traversal

Short and elegant methods can be implemented directly from the symbolic de-
scriptions of these three traversals, as shown in Figure 6.11.

These methods may seem too simplistic, but their real power lies in recursion, in
fact, double recursion. The real job is done by the system on the run-time stack. This
simplifies coding but lays a heavy burden upon the system. To better understand this
process, inorder tree traversal is discussed in some detail.

In inorder traversal, the left subtree of the current node is visited first, then the
node itself, and finally, the right subtree. All of this, obviously, holds if the tree is not
empty. Before analyzing the run-time stack, the output given by the inorder traversal
is determined by referring to Figure 6.12. The following steps correspond to the letters
in that figure:

S e c t i o n 6 . 4 Tr e e T r a v e r s a l ■ 225

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

226 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.11 Depth-first traversal implementation.

protected void preorder(IntBSTNode p) {
if (p != null) {

visit(p);
preorder(p.left);
preorder(p.right);

}
}
protected void inorder(IntBSTNode p) {

if (p != null) {
inorder(p.left);
visit(p);
inorder(p.right);

}
}
protected void postorder(IntBSTNode p) {

if (p != null) {
postorder(p.left);
postorder(p.right);
visit(p);

}
}

(a) Node 15 is the root on which inorder() is called for the first time. The method calls
itself for node 15’s left child, node 4.

(b) Node 4 is not null, so inorder() is called on node 1. Because node 1 is a leaf (that is,
both its subtrees are empty), invocations of inorder() on the subtrees do not result
in other recursive calls of inorder(), as the condition in the if statement is not
met. Thus, after immediate return from inorder() called for the empty left subtree,
node 1 is visited; afterwards a quick call to inorder() is executed for the null right
subtree of node 1. After resuming the call for node 4, node 4 is visited. Node 4 has a
null right subtree; hence, inorder() is called only to check that, and right after
resuming the call for node 15, node 15 is visited.

(c) Node 15 has a right subtree, so inorder() is called for node 20.

(d) inorder() is called for node 16, the node is visited, and then on its null left subtree,
which is followed by visiting node 16. After a quick call to inorder() on the null
right subtree of node 16 and return to the call on node 20, node 20 is also visited.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(e) inorder() is called on node 25, then on its empty left subtree, then node 25 is vis-
ited, and finally inorder() is called on node 25’s empty right subtree.

If the visit includes printing the value stored in a node, then the output is:

1 4 15 16 20 25

The key to the traversal is that the three tasks, L, V, and R, are performed for each
node separately. This means that the traversal of the right subtree of a node is held
pending until the first two tasks, L and V, are accomplished. If the latter two are fin-
ished, they can be crossed out as in Figure 6.13.

To present the way inorder() works, the behavior of the run-time stack is ob-
served. The numbers in comments in Figure 6.14 indicate return addresses shown on
the left-hand side of the code for inorder().

void inorder(IntBSTNode node) {
if (node != null) {

/* 1 */ inorder(node.left);
/* 2 */ visit(node);
/* 3 */ inorder(node.right);
/* 4 */ }

}

A rectangle with an up arrow and a number indicates the current value of node
pushed onto the stack. For example, ↑4 means that node refers to the node of the tree

S e c t i o n 6 . 4 Tr e e T r a v e r s a l ■ 227

FIGURE 6.12 Inorder tree traversal.

15

204

1 2516

(b)

15

204

1 2516

(e)

15

204

1 2516

(d)

15

204

1 2516

(c)

15

204

1 2516

(a)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

whose value is the number 4. Figure 6.14 shows the changes of the run-time stack
when inorder() is executed for the tree in Figure 6.12.

(a) Initially, the run-time stack is empty (or rather it is assumed that the stack is empty
by disregarding what has been stored on it before the first call to inorder()).

(b) Upon the first call, the return address of inorder() and the value of node, ↑15, are
pushed onto the run-time stack. The tree, referred to by node, is not empty, the con-
dition in the if statement is satisfied, and inorder() is called again with node 4.

(c) Before it is executed, the return address, (2), and current value of node, ↑4, are
pushed onto the stack. Because node is not null, inorder() is about to be invoked
for node’s left child, ↑1.

(d) First, the return address, (2), and the node’s value are stored on the stack.

(e) inorder() is called with node 1’s left child. The address (2) and the current value
of parameter node, null, are stored on the stack. Because node is null, inorder()
is exited immediately; upon exit, the activation record is removed from the stack.

228 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.13 Details of several of the first steps of inorder traversal.

15 LVR

204 LVRLVR

1LVR 25 LVR16LVR

15 LVR

204 LVRLVR

1 LVR

15 LVR

204 LVRLVR

1 LVR

15 LVR

204 LVRLVR

1 LVR

15

Output 1

LVR

204 LVRLVR

1 LVR

15 LVR

204 LVRLVR

1 LVR

15 LVR

204 LVRLVR

1

15

Output 4

LVR

204 LVR
LVR

1LVR LVR

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 4 Tr e e T r a v e r s a l ■ 229

FIGURE 6.14 Changes in the run-time stack during inorder traversal.

Pr
in

t 2
5

(c
al

le
r)

(v
)

↑1
5

↑2
0

↑2
5

(4
)

(4
)

(c
al

le
r)

(u
)

↑1
5

↑2
0

↑2
5

(4
)

(4
)

(2
)

nu
ll

(c
al

le
r)

(t
)

↑1
5

↑2
0

↑2
5

(4
)

(4
)

Pr
in

t 2
0

(c
al

le
r)

(s
)

↑1
5

↑2
0

(4
)

(c
al

le
r)

(r
)

↑1
5

↑2
0

↑1
6

(4
)

(2
)

(c
al

le
r)

(q
)

↑1
5

↑2
0

↑1
6

(4
)

(2
)

(4
)

nu
ll

Pr
in

t 1
6

(c
al

le
r)

(p
)

↑1
5

↑2
0

↑1
6

(4
)

(2
)

(c
al

le
r)

(w
)

↑1
5

↑2
0

↑2
5

(4
)

(4
)

(4
)

nu
ll

(c
al

le
r)

(x
)

↑1
5

↑2
0

↑2
5

(4
)

(4
)

(c
al

le
r)

(y
)

↑1
5

↑2
0

(4
)

(c
al

le
r)

(z
)

↑1
5

(a
a)

(c
al

le
r)

(n
)

↑1
5

↑2
0

↑1
6

(4
)

(2
)

(c
al

le
r)

(o
)

↑1
5

↑2
0

↑1
6

(4
)

(2
)

(2
)

nu
ll

Pr
in

t 4

(c
al

le
r)

(i
)

↑1
5

↑4 (2
)

Pr
in

t 1

(c
al

le
r)

(f
)

↑1
5

↑4↑1 (2
)

(2
)

(c
al

le
r)

(h
)

↑1
5

↑4↑1 (2
)

(2
)

(c
al

le
r)

↑1
5

↑4↑1 (2
)

(2
)

(4
)

nu
ll

(c
al

le
r)

↑1
5

↑4↑1 (2
)

(2
)

(2
)

nu
ll

(g
)

(e
)

(c
al

le
r)

(d
)

↑1
5

↑4↑1 (2
)

(2
)

(c
al

le
r)

(c
)

↑1
5

↑4 (2
)

(c
al

le
r)

(j
)

↑1
5

↑4 (2
)

(4
)

nu
ll

Pr
in

t 1
5

(c
al

le
r)

(l
)

↑1
5

(c
al

le
r)

(m
)

↑1
5

↑2
0

(4
)

(c
al

le
r)

(k
)

↑1
5

↑4 (2
)

(a
)

(c
al

le
r)

(b
)

↑1
5

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(f) The system goes now to its run-time stack, restores the value of the node, ↑1, executes
the statement under (2), and prints the number 1. Because node is not completely
processed, the value of node and address (2) are still on the stack.

(g) With the right child of node ↑1, the statement under (3) is executed, which is the
next call to inorder(). First, however, the address (4) and node’s current value,
null, are pushed onto the stack. Because node is null, inorder() is exited; upon exit,
the stack is updated.

(h) The system now restores the old value of the node, ↑1, and executes statement (4).

(i) Because this is inorder()’s exit, the system removes the current activation record
and refers again to the stack; restores the node’s value, ↑4; and resumes execution
from statement (2). This prints the number 4 and then calls inorder() for the
right child of node, which is null.

These steps are just the beginning. All of the steps are shown in Figure 6.14.
At this point, consider the problem of a nonrecursive implementation of the

three traversal algorithms. As indicated in Chapter 5, a recursive implementation has
a tendency to be less efficient than a nonrecursive counterpart. If two recursive calls
are used in a method, then the problem of possible inefficiency doubles. Can recur-
sion be eliminated from the implementation? The answer has to be positive because if
it is not eliminated in the source code, the system does it for us anyway. So the ques-
tion should be rephrased: Is it expedient to do so?

Look first at a nonrecursive version of the preorder tree traversal shown in Figure
6.15. The method iterativePreorder() is twice as large as preorder(), but it is

230 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.15 A nonrecursive implementation of preorder tree traversal.

public void iterativePreorder() {
IntBSTNode p = root;
Stack travStack = new Stack();
if (p != null) {

travStack.push(p);
while (!travStack.isEmpty()) {

p = (IntBSTNode) travStack.pop();
visit(p);
if (p.right != null)

travStack.push(p.right);
if (p.left != null) // left child pushed after right

travStack.push(p.left);// to be on the top of the
// stack;

}
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

still short and legible. However, it uses a stack heavily. Therefore, supporting methods
are necessary to process the stack, and the overall implementation is not so short. Al-
though two recursive calls are omitted, there are now up to four calls per iteration of
the while loop: up to two calls of push(), one call of pop(), and one call of
visit(). This can hardly be considered an improvement in efficiency.

In the recursive implementations of the three traversals, note that the only differ-
ence is in the order of the lines of code. For example, in preorder(), first a node is
visited, and then there are calls for the left and right subtrees. On the other hand, in
postorder(), visiting a node succeeds both calls. Can we so easily transform the
nonrecursive version of a left-to-right preorder traversal into a nonrecursive left-to-
right postorder traversal? Unfortunately, no. In iterativePreorder(), visiting
occurs before both children are pushed onto the stack. But this order does not
really matter. If the children are pushed first and then the node is visited—that is, if
visit(p) is placed after both calls to push()—the resulting implementation is still
a preorder traversal. What matters here is that visit() has to follow pop(), and the
latter has to precede both calls of push(). Therefore, nonrecursive implementations
of inorder and postorder traversals have to be developed independently.

A nonrecursive version of postorder traversal can be obtained rather easily if we
observe that the sequence generated by a left-to-right postorder traversal (an LRV
order) is the same as the reversed sequence generated by a right-to-left preorder tra-
versal (a VRL order). In this case, the implementation of iterativePreorder()
can be adopted to create iterativePostorder(). This means that two stacks have
to be used, one to visit each node in the reverse order after a right-to-left preorder tra-
versal is finished. It is, however, possible to develop a function for postorder traversal
that pushes onto the stack a node that has two descendants, once before traversing its
left subtree and once before traversing its right subtree. An auxiliary reference q is
used to distinguish between these two cases. Nodes with one descendant are pushed
only once, and leaves do not need to be pushed at all (Figure 6.16).

A nonrecursive inorder tree traversal is also a complicated matter. One possible
implementation is given in Figure 6.17. In this case, we can clearly see the power of
recursion: iterativeInorder() is almost unreadable, and without thorough ex-
planation, it is not easy to determine the purpose of this method. On the other hand,
recursive inorder() immediately demonstrates a purpose and logic. Therefore,
iterativeInorder() can be defended in one case only: if it is shown that there is a
substantial gain in execution time and that the method is called often in a program.
Otherwise, inorder() is preferable to its iterative counterpart.

6.4.3 Stackless Depth-First Traversal

Threaded Trees

The traversal methods analyzed in the preceding section were either recursive or non-
recursive, but both kinds used a stack either implicitly or explicitly to store information
about nodes whose processing has not been finished. In the case of recursive methods,
the run-time stack was utilized. In the case of nonrecursive variants, an explicitly

S e c t i o n 6 . 4 Tr e e T r a v e r s a l ■ 231

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

232 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.16 A nonrecursive implementation of postorder tree traversal.

public void iterativePostorder() {
BSTNode p = root, q = root;
Stack travStack = new Stack();
while (p != null) {

for (; p.left != null; p = p.left)
travStack.push(p);

while (p != null && (p.right == null || p.right == q)) {
visit(p);
q = p;
if (travStack.isEmpty())

return;
p = (BSTNode) travStack.pop();

}
travStack.push(p);
p = p.right;

}
}

FIGURE 6.17 A nonrecursive implementation of inorder tree traversal.

public void iterativeInorder() {
IntBSTNode p = root;
Stack travStack = new Stack();
while (p != null) {

while(p != null) { // stack the right child (if any)
if (p.right != null) // and the node itself when going

travStack.push(p.right); // to the left;
travStack.push(p);
p = p.left;

}
p = (IntBSTNode) travStack.pop();// pop a node with no left child
while (!travStack.isEmpty() && p.right == null) {// visit it and all

visit(p); // nodes with no right child;
p = (IntBSTNode) travStack.pop();

}
visit(p); // visit also the first node with
if (!travStack.isEmpty()) // a right child (if any);

p = (IntBSTNode) travStack.pop();
else p = null;

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

defined and user-maintained stack was used. The concern is that some additional time
has to be spent to maintain the stack, and some more space has to be set aside for the
stack itself. In the worst case, when the tree is unfavorably skewed, the stack may hold
information about almost every node of the tree, a serious concern for very large trees.

It is more efficient to incorporate the stack as part of the tree. This is done by in-
corporating threads in a given node. Threads are references to the predecessor and
successor of the node according to an inorder traversal, and trees whose nodes use
threads are called threaded trees. Four reference fields are needed for each node in the
tree, which again takes up valuable space.

The problem can be solved by overloading existing reference fields. In trees, left or right
references are references to children, but they can also be used as references to predecessors
and successors, thereby being overloaded with meaning. To distinguish these meanings, a
new data member has to be used to indicate the current meaning of the references.

Because a reference can refer to one node at a time, the left reference is either a
reference to the left child or to the predecessor. Analogously, the right reference refers
either to the right subtree or to the successor (Figure 6.18a).

Figure 6.18a suggests that references to both predecessors and successors have to
be maintained, which is not always the case. It may be sufficient to use only one
thread, as shown in the implementation of the inorder traversal of a threaded tree,
which requires only references to successors (Figure 6.18b).

The method is relatively simple. The dashed line in Figure 6.18b indicates the
order in which p accesses nodes in the tree. Note that only one variable, p, is needed to
traverse the tree. No stack is needed; therefore, space is saved. But is it really? As indi-
cated, nodes require a field indicating how the right reference is being used. In the im-
plementation of threadedInorder(), the Boolean field successor plays this role
as shown in Figure 6.19. Hence, successor requires only one bit of computer mem-
ory, insignificant in comparison to other fields. However, the Java Virtual Machine
does not use type Boolean, and Boolean variables are fields and represented as inte-
gers, which is 4 bytes (Boolean arrays are a slightly different matter). If so, the

S e c t i o n 6 . 4 Tr e e T r a v e r s a l ■ 233

FIGURE 6.18 (a) A threaded tree and (b) an inorder traversal’s path in a threaded tree with right
successors only.

(a) (b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

234 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.19 Implementation of the threaded tree and the inorder traversal of a threaded tree.

/******************** IntThreadedTreeNode.java **********************
* binary search threaded tree of integers
*/

class IntThreadedTreeNode {
protected int key;
protected boolean sucessor;
protected IntThreadedTreeNode left, right;
public IntThreadedTreeNode() {

left = right = null; sucessor = false;
}
public IntThreadedTreeNode(int el) {

this(el,null,null);
}
public IntThreadedTreeNode(int el, IntThreadedTreeNode lt,

IntThreadedTreeNode rt) {
key = el; left = lt; right = rt; sucessor = false;

}
}

/************************ IntThreadedTree.java **********************
* binary search threaded tree of integers
*/

public class IntThreadedTree {
private IntThreadedNode root;
public IntThreadedTree() {

root = null;
}
protected void visit(intThreadedTreeNode p) {

System.out.print(p.key + " ");
}
protected void threadedInorder() {

IntThreadedNode prev, p = root;
if (p != null) { // process only nonempty trees;

while (p.left != null) // go to the leftmost node;
p = p.left;

while (p != null) {
visit(p);
prev = p;

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

successor field needs at least 4 bytes, which defeats the argument about saving
space by using threaded trees.

Threaded trees can also be used for preorder and postorder traversals. In pre-
order traversal, the current node is visited first and then traversal continues with its
left descendant, if any, or right descendant, if any. If the current node is a leaf, threads
are used to go through the chain of its already visited inorder successors to restart tra-
versal with the right descendant of the last successor.

Postorder traversal is only slightly more complicated. First, a dummy node is cre-
ated that has the root as its left descendant. In the traversal process, a variable can be
used to check the type of the current action. If the action is left traversal and the cur-
rent node has a left descendant, then the descendant is traversed; otherwise, the action
is changed to right traversal. If the action is right traversal and the current node has a
right nonthread descendant, then the descendant is traversed and the action is
changed to left traversal; otherwise, the action changes to visiting a node. If the action
is visiting a node, then the current node is visited, and afterward, its postorder succes-
sor has to be found. If the current node’s parent is accessible through a thread (that is,
current node is parent’s left child), then traversal is set to continue with the right de-
scendant of the parent. If the current node has no right descendant, then it is the end
of the right-extended chain of nodes. First, the beginning of the chain is reached
through the thread of the current node, then the right references of nodes in the chain
are reversed, and finally, the chain is scanned backward, each node is visited, and then
right references are restored to their previous setting.

Traversal through Tree Transformation

The first set of traversal algorithms analyzed earlier in this chapter needed a stack to
retain some information necessary for successful processing. Threaded trees incor-
porated a stack as part of the tree at the cost of extending the nodes by one field to

S e c t i o n 6 . 4 Tr e e T r a v e r s a l ■ 235

FIGURE 6.19 (continued)

p = p.right; // go to the right node and only
if (p != null && !prev.sucessor)// if it is a descendant

while (p.left != null)// go to the leftmost node,
p = p.left; // otherwise visit the

// successor;
}

}
}
public void threadedInsert(int el) {

// Figure 6.24
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

make a distinction between the interpretation of the right reference as a reference to
the child or to the successor. Two such tag fields are needed if both successor and
predecessor are considered. However, it is possible to traverse a tree without using
any stack or threads. There are many such algorithms, all of them made possible by
making temporary changes in the tree during traversal. These changes consist of re-
assigning new values to some reference fields. However, the tree may temporarily
lose its tree structure, which needs to be restored before traversal is finished. The
technique is illustrated by an elegant algorithm devised by Joseph M. Morris ap-
plied to inorder traversal.

First, it is easy to notice that inorder traversal is very simple for degenerate trees,
in which no node has a left child (see Figure 6.1e). No left subtree has to be considered
for any node. Therefore, the usual three steps, LVR (visit left subtree, visit node, visit
right subtree), for each node in inorder traversal turn into two steps, VR. No informa-
tion needs to be retained about the current status of the node being processed before
traversing its left child, simply because there is no left child. Morris’s algorithm takes
into account this observation by temporarily transforming the tree so that the node
being processed has no left child; hence, this node can be visited and its right subtree
processed. The algorithm can be summarized as follows:

MorrisInorder()
while not finished
if node has no left descendant

visit it;
go to the right;

else make this node the right child of the rightmost node in its left descendant;
go to this left descendant;

This algorithm successfully traverses the tree, but only once, because it destroys
its original structure. Therefore, some information has to be retained to allow the tree
to restore its original form. This is achieved by retaining the left reference of the node
moved down its right subtree, as in the case of nodes 10 and 5 in Figure 6.21.

An implementation of the algorithm is shown in Figure 6.20, and the details of
the execution are illustrated in Figure 6.21. The following description is divided into
actions performed in consecutive iterations of the outer while loop:

1. Initially, p refers to the root, which has a left child. As a result, the inner while loop
takes tmp to node 7, which is the rightmost node of the left child of node 10, referred
by p (Figure 6.21a). Because no transformation has been done, tmp has no right child,
and in the inner if statement, the root, node 10, is made the right child of tmp. Node
10 retains its left reference to node 5, its original left child. Now, the tree is not a tree
anymore, because it contains a cycle (Figure 6.21b). This completes the first iteration.

2. Reference p refers to node 5, which also has a left child. First, tmp reaches the largest
node in this subtree, which is 3 (Figure 6.21c), and then the current root, node 5,

236 ■ C h a p t e r 6 B i n a r y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

becomes the right child of node 3 while retaining contact with node 3 through its left
reference (Figure 6.21d).

3. Because node 3, referred by p, has no left child, in the third iteration, this node is
visited, and p is reassigned to its right child, node 5 (Figure 6.21e).

4. Node 5 has a nonnull left reference, so tmp finds a temporary parent of node 5, which
is the same node currently referred to by tmp (Figure 6.21f). Next, node 5 is visited,
and configuration of the tree in Figure 6.21b is reestablished by setting the right refer-
ence of node 3 to null (Figure 6.21g).

5. Node 7, referred to now by p, is visited, and p moves down to its right child (6.21h).

6. tmp is updated to refer to the temporary parent of node 10 (Figure 6.21i). Next, node
10 is visited and then reestablished to its status of root by nullifying the right refer-
ence of node 7 (Figure 6.21j).

S e c t i o n 6 . 4 Tr e e T r a v e r s a l ■ 237

FIGURE 6.20 Implementation of the Morris algorithm for inorder traversal.

public void MorrisInorder() {
IntBSTNode p = root, tmp;
while (p != null)

if (p.left == null) {
visit(p);
p = p.right;

}
else {

tmp = p.left;
while (tmp.right != null && // go to the rightmost node of

tmp.right != p) // the left subtree or
tmp = tmp.right; // to the temporary parent of p;

if (tmp.right == null) {// if 'true' rightmost node was
tmp.right = p; // reached, make it a temporary
p = p.left; // parent of the current root,

}
else { // else a temporary parent has been

visit(p); // found; visit node p and then cut
tmp.right = null; // the right pointer of the current
p = p.right; // parent, whereby it ceases to be

} // a parent;
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Finally, node 20 is visited without further ado, because it has no left child, nor has its
position been altered.

This completes the execution of Morris’s algorithm. Notice that there are seven
iterations of the outer while loop for only five nodes in the tree in Figure 6.21. This is
due to the fact that there are two left children in the tree, so the number of extra itera-
tions depends on the number of left children in the entire tree. The algorithm per-
forms worse for trees with a large number of such children.

Preorder traversal is easily obtainable from inorder traversal by moving visit()
from the inner else clause to the inner if clause. In this way, a node is visited before
a tree transformation.

Postorder traversal can also be obtained from inorder traversal by first creating a
dummy node whose left descendant is the tree being processed and whose right descen-

238 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.21 Tree traversal with the Morris method.

5

3

20(d)

ptmp

tmp

7

10

73

5

(c)

p

10

20

tmp73

5

(b)

p

10

20

tmp

205

10

(a)

p

73

p205

10 tmp

73

5

3

20
(e)

p

tmp

7

10

5

3

20
(f)

p

tmp

7

10

5

20
(g)

ptmp 73

10

5

20
(h)

p

tmp 73

10

5

20
(i) (j)

p205

10 tmp

73

(k)

null
p

tmp73

10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

dant is null. Then this temporarily extended tree is the subject of traversal as in inorder
traversal except that in the inner else clause, after finding a temporary parent, nodes
between p.left (included) and p (excluded) extended to the right in a modified tree
are processed in the reverse order. To process them in constant time, the chain of nodes
is scanned down and right references are reversed to refer to parents of nodes. Then the
same chain is scanned upward, each node is visited, and the right references are restored
to their original setting.

How efficient are the traversal procedures discussed in this section? All of them
run in Θ(n) time, threaded implementation requires Θ(n) more space for threads
than nonthreaded binary search trees, and both recursive and iterative traversals re-
quire O(n) additional space (on the run-time stack or user-defined stack). Several
dozen runs on randomly generated trees of 5,000 nodes indicate that for preorder and
inorder traversal routines (recursive, iterative, Morris, and threaded), the difference in
the execution time is only on the order of 5–10%. Morris traversals have one undeni-
able advantage over other types of traversals: They do not require additional space.
Recursive traversals rely on the run-time stack, which can be overflowed when tra-
versing trees of large height. Iterative traversals also use a stack, and although the stack
can be overflowed as well, the problem is not as imminent as in the case of the run-
time stack. Threaded trees use nodes that are larger than the nodes used by non-
threaded trees, which usually should not pose a problem. But both iterative and
threaded implementations are much less intuitive than their recursive counterparts;
therefore, the clarity of implementation and comparable run time clearly favors, in
most situations, recursive implementations over other implementations.

6.5 INSERTION

Searching a binary tree does not modify the tree. It scans the tree in a predetermined
way to access some or all of the keys in the tree, but the tree itself remains undisturbed
after such an operation. Tree traversals can change the tree but they may also leave it
in the same condition. Whether or not the tree is modified depends on the actions
prescribed by visit(). There are certain operations that always make some system-
atic changes in the tree, such as adding nodes, deleting them, modifying elements,
merging trees, and balancing trees to reduce their height. This section deals only with
inserting a node into a binary search tree.

To insert a new node with key el, a tree node with a dead end has to be reached,
and the new node has to be attached to it. Such a tree node is found using the same
technique that tree searching used: The key el is compared to the key of a node cur-
rently being examined during a tree scan. If el is less than that key, the left child (if
any) of p is tried; otherwise, the right child (if any) is tested. If the child of p to be
tested is empty, the scanning is discontinued and the new node becomes this child.
The procedure is illustrated in Figure 6.22. Figure 6.23 contains an implementation of
the algorithm to insert a node.

In analyzing the problem of traversing binary trees, three approaches have been
presented: traversing with the help of a stack, traversing with the aid of threads, and
traversing through tree transformation. The first approach does not change the tree

S e c t i o n 6 . 5 I n s e r t i o n ■ 239

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

during the process. The third approach changes it, but restores it to the same condi-
tion as before it started. Only the second approach needs some preparatory opera-
tions on the tree to become feasible: It requires threads. These threads may be created
each time before the traversal procedure starts its task and removed each time it is fin-
ished. If the traversal is performed infrequently, this becomes a viable option. Another

240 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.22 Inserting nodes into binary search trees.

15

20

19

4

17

(f)

15

20

19

4

17

(e)

(c)

15

20

17

4

(d)

15
20

4
(b)

15
4

(a)

null
15

FIGURE 6.23 Implementation of the insertion algorithm.

public void insert(int el) {
IntBSTNode p = root, prev = null;
while (p != null) { // find a place for inserting new node;

prev = p;
if (p.key < el)

p = p.right;
else p = p.left;

}
if (root == null) // tree is empty;

root = new IntBSTNode(el);
else if (prev.key < el)

prev.right = new IntBSTNode(el);
else prev.left = new IntBSTNode(el);

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

approach is to maintain the threads in all operations on the tree when inserting a new
element in the binary search tree.

The method for inserting a node in a threaded tree is a simple extension of
insert() for regular binary search trees to adjust threads whenever applicable. This
method is for inorder tree traversal and it only takes care of successors, not predecessors.

A node with a right child has a successor some place in its right subtree. There-
fore, it does not need a successor thread. Such threads are needed to allow climbing
the tree, not going down it. A node with no right child has its successor somewhere
above it. Except for one node, all nodes with no right children will have threads to
their successors. If a node becomes the right child of another node, it inherits the suc-
cessor from its new parent. If a node becomes a left child of another node, this parent
becomes its successor. Figure 6.24 contains the implementation of this algorithm,
threadedInsert(). The first few insertions are shown in Figure 6.25.

S e c t i o n 6 . 5 I n s e r t i o n ■ 241

FIGURE 6.24 Implementation of the algorithm to insert nodes into a threaded tree.

public void threadedInsert(int el) {
IntThreadedNode newNode = new IntThreadedNode(el);
if (root == null) { // tree is empty

root = newNode;
return;

}
IntThreadedNode p = root, prev = null;
while (p != null) { // find a place to insert newNode;

prev = p;
if (el < p.key)

p = p.left;
else if (!p.hasSuccessor) // go to the right only if it is

p = p.right; // a descendant, not a successor;
else break; // don't follow successor link;

}
if (el < prev.key) { // if newNode is left child of

prev.left = newNode; // its parent, the parent
newNode.hasSuccessor = true;// also becomes its successor;
newNode.right = prev;

}
else if (prev.hasSuccessor) { // if parent of the newNode

newNode.hasSuccessor = true;// is not the rightmost node,
prev.hasSuccessor = false; // make parent's successor
newNode.right = prev.right; // newNode's successor,
prev.right = newNode;

}
else prev.right = newNode; // otherwise it has no successor;

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6.6 DELETION

Deleting a node is another operation necessary to maintain a binary search tree. The
level of complexity in performing the operation depends on the position of the node
to be deleted in the tree. It is by far more difficult to delete a node having two subtrees
than to delete a leaf; the complexity of the deletion algorithm is proportional to the
number of children the node has. There are three cases of deleting a node from the bi-
nary search tree:

1. The node is a leaf; it has no children. This is the easiest case to deal with. The appro-
priate reference of its parent is set to null and the space occupied by the deleted node
is later claimed by the garbage collector as in Figure 6.26.

242 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.25 Inserting nodes into a threaded tree.

15

20

19

4

17

15

204

17

15

20

17

4

19

15
20

4

15
4

null
15

FIGURE 6.26 Deleting a leaf.

1

15

20

Delete node

4

16 node 1

15

204

16 Free the space

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 6 D e l e t i o n ■ 243

2. The node has one child. This case is not complicated. The parent’s reference to the
node is reset to refer to the node’s child. In this way, the node’s children are lifted up
by one level and all great-great-. . . grandchildren lose one “great” from their kinship
designations. For example, the node containing 20 (see Figure 6.27) is deleted by
setting the right reference of its parent containing 15 to refer to 20’s only child,
which is 16.

3. The node has two children. In this case, no one-step operation can be performed
because the parent’s right or left reference cannot refer to both the node’s children
at the same time. This section discusses two different solutions to this problem.

6.6.1 Deletion by Merging

This solution makes one tree out of the two subtrees of the node and then attaches it
to the node’s parent. This technique is called deleting by merging. But how can we
merge these subtrees? By the nature of binary search trees, every key of the right sub-
tree is greater than every key of the left subtree, so the best thing to do is to find in the
left subtree the node with the greatest key and make it a parent of the right subtree.
Symmetrically, the node with the lowest key can be found in the right subtree and
made a parent of the left subtree.

The desired node is the rightmost node of the left subtree. It can be located by
moving along this subtree and taking right references until null is encountered. This
means that this node will not have a right child, and there is no danger of violating the
property of binary search trees in the original tree by setting that rightmost node’s
right reference to the right subtree. (The same could be done by setting the left refer-
ence of the leftmost node of the right subtree to the left subtree.) Figure 6.28 depicts
this operation. Figure 6.29 contains the implementation of the algorithm.

FIGURE 6.27 Deleting a node with one child.

1

15

20

Delete node

4

16

node

1

15

204

16

Free the space

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

244 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.29 Implementation of algorithm for deleting by merging.

public void deleteByMerging(int el) {
IntBSTNode tmp, node, p = root, prev = null;
while (p != null && p.key != el) { // find the node p

prev = p; // with element el;
if (p.key < el)

p = p.right;
else p = p.left;

}
node = p;
if (p != null && p.key == el) {

if (node.right == null) // node has no right child: its left
node = node.left; // child (if any) is attached to its

// parent;
else if (node.left == null) // node has no left child: its right

node = node.right; // child is attached to its parent;
else { // be ready for merging subtrees;

tmp = node.left; // 1. move left
while (tmp.right != null) // 2. and then right as far as

tmp = tmp.right; // possible;
tmp.right = // 3. establish the link between

node.right; // the rightmost node of the left
// subtree and the right subtree;

node = node.left; // 4.

FIGURE 6.28 Summary of deleting by merging.

Delete node

node

node.left node.right

Rightmost node
of the left subtree

Root

node.right

node.left

Root

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 6.30 shows each step of this operation. It shows what changes are made
when deleteByMerging() is executed. The numbers in this figure correspond to
numbers put in comments in the code in Figure 6.29.

The algorithm for deletion by merging may result in increasing the height of the
tree. In some cases, the new tree may be highly unbalanced, as Figure 6.31a illustrates.

S e c t i o n 6 . 6 D e l e t i o n ■ 245

FIGURE 6.29 (continued)

}
if (p == root)

root = node;
else if (prev.left == p)

prev.left = node;
else prev.right = node; // 5.

}
else if (root != null)

System.out.println("key " + el + " is not in the tree");
else System.out.println("the tree is empty");

}

FIGURE 6.30 Details of deleting by merging.

node

prev

prev

prev

prev

prev

prev

tmp

/*1*/

node node

/*2*/

node

/*4*/

node

/*5*/

node

/*3*/
tmp

tmp

tmp
tmp

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Sometimes the height may be reduced (see Figure 6.31b). This algorithm is not neces-
sarily inefficient, but it is certainly far from perfect. There is a need for an algorithm that
does not give the tree the chance to increase its height when deleting one of its nodes.

6.6.2 Deletion by Copying
Another solution, called deletion by copying, was proposed by Thomas Hibbard and
Donald Knuth. If the node has two children, the problem can be reduced to one of two
simple cases: The node is a leaf or the node has only one nonempty child. This can be
done by replacing the key being deleted with its immediate predecessor (or successor).
As already indicated in the discussion of deletion by merging, a key’s predecessor is the
key in the rightmost node in the left subtree (and analogically, its immediate successor
is the key in the leftmost node in the right subtree). First, the predecessor has to be lo-
cated. This is done, again, by moving one step to the left by first reaching the root of the
node’s left subtree and then moving as far to the right as possible. Next, the key of the
located node replaces the key to be deleted. And that is where one of two simple cases
comes into play. If the rightmost node is a leaf, the first case applies; however, if it has
one child, the second case is relevant. In this way, deletion by copying removes a key k1
by overwriting it by another key k2 and then removing the node that holds k2, whereas
deletion by merging consisted of removing a key k1 along with the node that holds it.

246 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.31 The height of a tree can be (a) extended or (b) reduced after deleting by merging.

15

3010

5 402011

12

10

305

4 40207

15

3010

4020

(a)

(b)

10

5 11

30

20 40

12

Delete node 15

Delete node 15

5

74

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An implementation of this algorithm is in Figure 6.32. A step-by-step trace is
shown in Figure 6.33, and the numbers under the diagrams refer to the numbers indi-
cated in comments included in the implementation of deleteByCopying().

This algorithm does not increase the height of the tree, but it still causes a prob-
lem if it is applied many times along with insertion. The algorithm is asymmetric; it

S e c t i o n 6 . 6 D e l e t i o n ■ 247

FIGURE 6.32 Implementation of an algorithm for deleting by copying.

public void deleteByCopying(int el) {
IntBSTNode node, p = root, prev = null;
while (p != null && p.key != el) { // find the node p

prev = p; // with element el;
if (p.key < el)

p = p.right;
else p = p.left;

}
node = p;
if (p != null && p == el) {

if (node.right == null) // node has no right child;
node = node.left;

else if (node.left == null) // no left child for node;
node = node.right;

else {
IntBSTNode tmp = node.left; // node has both children;
IntBSTNode previous = node; // 1.
while (tmp.right != null) { // 2. find the rightmost

previous = tmp; // position in the
tmp = tmp.right; // left subtree of node;

}
node.key = tmp.key; // 3. overwrite the reference

// of the key being deleted;
if (previous == node) // if node's left child's

previous.left = tmp.left; // right subtree is null;
else previous.right = tmp.left; // 4.

}
if (p == root)

root = node;
else if (prev.left == p)

prev.left = node;
else prev.right = node;

}
else if (root != null)

System.out.println("key " + el + " is not in the tree");
else System.out.println("the tree is empty");

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

always deletes the node of the immediate predecessor of the key in node, possibly re-
ducing the height of the left subtree and leaving the right subtree unaffected. There-
fore, the right subtree of node can grow after later insertions, and if the key in node is
again deleted, the height of the right tree remains the same. After many insertions and
deletions, the entire tree becomes right unbalanced, with the right tree bushier and
larger than the left subtree.

To circumvent this problem, a simple improvement can make the algorithm sym-
metrical. The algorithm can alternately delete the predecessor of the key in node from
the left subtree and delete its successor from the right subtree. The improvement is sig-
nificant. Simulations performed by Jeffrey Eppinger show that an expected internal path
length (IPL) for many insertions and asymmetric deletions is Θ(n lg3 n) for n nodes, and
when symmetric deletions are used, the expected IPL becomes Θ(n lg n). Theoretical re-
sults obtained by J. Culberson confirm these conclusions. According to Culberson, in-
sertions and asymmetric deletions give Θ(n��n) for the expected IPL and Θ(��n) for the
average search time (average path length), whereas symmetric deletions lead to Θ(lg n)
for the average search time, and as before, Θ(n lg n) for the average IPL.

These results may be of moderate importance for practical applications. Experi-
ments show that for a 2,048-node binary tree, only after 1.5 million insertions and
asymmetric deletions does the IPL become worse than in a randomly generated tree.

Theoretical results are only fragmentary because of the extraordinary complexity
of the problem. Arne Jonassen and Donald Knuth analyzed the problem of random

248 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.33 Deleting by copying.

tmp

/*1*/

node

previous

/*2*/

previoustmp

node

node

/*3*/

previoustmp

node

Copy key
from tmp
to node

/*4*/

previoustmp

node

/*5*/

previous

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

insertions and deletions for a tree of only three nodes, which required using Bessel
functions and bivariate integral equations, and the analysis turned out to rank among
“the more difficult of all exact analyses of algorithms that have been carried out to
date.” Therefore, the reliance on experimental results is not surprising.

6.7 BALANCING A TREE

At the beginning of this chapter, two arguments were presented in favor of trees: They
are well suited to represent the hierarchical structure of a certain domain, and the
search process is much faster using trees instead of linked lists. The second argument,
however, does not always hold. It all depends on what the tree looks like. Figure 6.34
shows three binary search trees. All of them store the same data, but obviously, the
tree in Figure 6.34a is the best and Figure 6.34c is the worst. In the worst case, three
tests are needed in the former and six tests are needed in the latter to locate an object.
The problem with the trees in Figures 6.34b and 6.34c is that they are somewhat un-
symmetrical, or lopsided; that is, objects in the tree are not distributed evenly to the
extent that the tree in Figure 6.34c practically turned into a linked list, although, for-
mally, it is still a tree. Such a situation does not arise in balanced trees.

A binary tree is height-balanced or simply balanced if the difference in height of
both subtrees of any node in the tree is either zero or one. For example, for node K in
Figure 6.34b, the difference between the heights of its subtrees being equal to one is
acceptable. But for node B this difference is three, which means that the entire tree is
unbalanced. For the same node B in 6.34c, the difference is the worst possible, namely,
five. Also, a tree is considered perfectly balanced if it is balanced and all leaves are to be
found on one level or two levels.

S e c t i o n 6 . 7 B a l a n c i n g a T r e e ■ 249

FIGURE 6.34 Different binary search trees with the same information.

R

K

PB

RMD

(c)(b)(a)

B

D

M

P

K

B

K

P

M R

D

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 6.35 shows how many nodes can be stored in binary trees of different
heights. Because each node can have two children, the number of nodes on a certain
level is double the number of parents residing on the previous level (except, of course,
the root). For example, if 10,000 elements are stored in a perfectly balanced tree, then
the tree is of height]lg(10,001)g =]13.289g = 14. In practical terms, this means that if
10,000 elements are stored in a perfectly balanced tree, then at most 14 nodes have to
be checked to locate a particular element. This is a substantial difference compared to
the 10,000 tests needed in a linked list (in the worst case). Therefore, it is worth the ef-
fort to build a balanced tree or modify an existing tree so that it is balanced.

There are a number of techniques to properly balance a binary tree. Some of
them consist of constantly restructuring the tree when elements arrive and lead to an
unbalanced tree. Some of them consist of reordering the data themselves and then
building a tree, if an ordering of the data guarantees that the resulting tree is balanced.
This section presents a simple technique of this kind.

The linked listlike tree of Figure 6.34c is the result of a particular stream of data.
Thus, if the data arrive in ascending or descending order, then the tree resembles a
linked list. The tree in Figure 6.34b is lopsided because the first element that arrived was
the letter B, which precedes almost all other letters, except A; the left subtree of B is guar-
anteed to have just one node. The tree in Figure 6.34a looks very good, because the root
contains an element near the middle of all the possible elements, and P is more or less in
the middle of K and Z. This leads us to an algorithm based on binary search technique.

When data arrive, store all of them in an array. After all the data arrive, sort the
array using one of the efficient algorithms discussed in Chapter 9. Now, designate for
the root the middle element in the array. The array now consists of two subarrays: one
between the beginning of the array and the element just chosen for the root and one
between the root and the end of the array. The left child of the root is taken from the
middle of the first subarray, its right child an element in the middle of the second sub-
array. In this way, building the level of the children of the root is finished. The next

250 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.35 Maximum number of nodes in binary trees of different heights.

1

Height Nodes at One Level Nodes at All Levels

2

3

4 23 = 8

210 = 1,024

213 = 8,192

2h – 1

15 = 24 – 1

2,047 = 211 – 1

16,383 = 214 – 1

n = 2h – 1

7 = 23 – 1

3 = 22 – 1

1 = 21 – 1

22 = 4

21 = 2

20 = 1

11

14

h

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

level, with children of children of the root, is constructed in the same fashion using
four subarrays and the middle elements from each of them.

In this description, first the root is inserted into an initially empty tree, then its
left child, then its right child, and so on level by level. An implementation of this algo-
rithm is greatly simplified if the order of insertion is changed: First insert the root,
then its left child, then the left child of this left child, and so on. This allows for using
the following simple recursive implementation:

void balance(int data[], int first, int last) {
if (first <= last) {

int middle = (first + last)/2;
insert(data[middle]);
balance(data,first,middle-1);
balance(data,middle+1,last);

}
}

An example of the application of balance() is shown in Figure 6.36. First,
number 4 is inserted (Figure 6.36a), then 1 (Figure 6.36b), then 0 and 2 (Figure
6.36c), and finally, 3, 6, 5, 7, 8, and 9 (Figure 6.36d).

S e c t i o n 6 . 7 B a l a n c i n g a T r e e ■ 251

FIGURE 6.36 Creating a binary search tree from an ordered array.

40 1 2 3 4 5 6 7 8(d)

71

0 852

3 6 9

4

1

0 2

4

4

1

9

0 1 2 3 4 5 6 7 8(c) 9

0 1 2 3 4 5 6 7 8(b) 9

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9
5 1 9 8 7 0 2 3 4 6Stream of data:

Array of sorted data:

8(a) 9

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This algorithm has one serious drawback: All data must be put in an array before
the tree can be created. They can be stored in the array directly from the input. In this
case, the algorithm may be unsuitable when the tree has to be used while the data to be
included in the tree are still coming. But the data can be transferred from an unbalanced
tree to the array using inorder traversal. The tree can now be deleted and re-created
using balance(). This, at least, does not require using any sorting algorithm to put
data in order.

6.7.1 The DSW Algorithm

The algorithm discussed in the previous section was somewhat inefficient in that it re-
quired an additional array that needed to be sorted before the construction of a per-
fectly balanced tree began. To avoid sorting, it required deconstructing the tree after
placing elements in the array using the inorder traversal, and then reconstructing the
tree, which is inefficient except for relatively small trees. There are, however, algo-
rithms that require little additional storage for intermediate variables and use no sort-
ing procedure. The very elegant DSW algorithm was devised by Colin Day and later
improved by Quentin F. Stout and Bette L. Warren.

The building block for tree transformations in this algorithm is the rotation.
There are two types of rotation, left and right, which are symmetrical to one another.
The right rotation of the node Ch about its parent Par is performed according to the
following algorithm:

rotateRight (Gr, Par, Ch)
if Par is not the root of the tree // i.e., if Gr is not null

grandparent Gr of child Ch becomes Ch’s parent;
right subtree of Ch becomes left subtree of Ch’s parent Par;
node Ch acquires Par as its right child;

The steps involved in this compound operation are shown in Figure 6.37. The
third step is the core of the rotation, when Par, the parent node of child Ch, becomes

252 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.37 Right rotation of child Ch about parent Par.

Gr

Par

RCh

P Q

Gr

Ch

ParP

Q R

(b)(a)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the child of Ch, when the roles of a parent and its child change. However, this ex-
change of roles cannot affect the principal property of the tree, namely, that it is a
search tree. The first and the second steps of rotateRight() are needed to ensure
that, after the rotation, the tree remains a search tree.

Basically, the DSW algorithm transfigures an arbitrary binary search tree into a
linked listlike tree called a backbone or vine. Then this elongated tree is transformed in
a series of passes into a perfectly balanced tree by repeatedly rotating every second
node of the backbone about its parent.

In the first phase, a backbone is created using the following routine:

createBackbone(root, n)
tmp = root;
while (tmp != null)
if tmp has a left child

rotate this child about tmp; // hence the left child
// becomes parent of tmp;

set tmp to the child that just became parent;
else set tmp to its right child;

This algorithm is illustrated in Figure 6.38. Note that a rotation requires knowl-
edge about the parent of tmp, so another reference has to be maintained when imple-
menting the algorithm.

In the best case, when the tree is already a backbone, the while loop is executed n
times and no rotation is performed. In the worst case, when the root does not have a
right child, the while loop executed 2n – 1 times with n – 1 rotations performed,

S e c t i o n 6 . 7 B a l a n c i n g a T r e e ■ 253

FIGURE 6.38 Transforming a binary search tree into a backbone.

10

5

40

(a)

tmp

20

15 30

25

23 28 40

(b)

tmp

20

10

5

15

30

25

23 28

30

(c)

tmp

20

10

5

15

25

23

28 40 30

(d)

tmp

23

15

10

5

20

25

28 40 30

(e) tmp

25

20

15

10

5

23

28

40

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

where n is the number of nodes in the tree; that is, the run time of the first phase is
O(n). In this case, for each node except the one with the smallest value, the left child of
tmp is rotated about tmp. After all rotations are finished, tmp refers to the root, and
after n iterations, it descends down the backbone to become null.

In the worst case, the while loop is executed 2n – 1 times with n – 1 rotations per-
formed where n is the number of nodes in the tree; the run time of the first phase is O(n).

In the second phase, the backbone is transformed into a tree, but this time, the
tree is perfectly balanced by having leaves only on two adjacent levels. In each pass
down the backbone, every second node down to a certain point is rotated about its
parent. The first pass may not reach the end of the backbone: It is used to account for
the difference between the number n of nodes in the current tree and the number
2⎣lg(n+1)⎦ – 1 of nodes in the closest complete binary tree where ⎣x⎦ is the closest integer
less than x. That is, the overflowing nodes are treated separately.

createPerfectTree(n)
m = 2⎣lg(n+1)⎦ -1;
make n-m rotations starting from the top of backbone;
while (m > 1)
m = m/2;
make m rotations starting from the top of backbone;

Figure 6.39 contains an example. The backbone in Figure 6.38e has nine nodes
and is preprocessed by one pass outside the loop to be transformed into the backbone
shown in Figure 6.39b. Now, two passes are executed. In each backbone, the nodes to

254 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.39 Transforming a backbone into a perfectly balanced tree.

(d)

20

10 23

30

28 40

5

15

5 15

(a) 40

30

25

28

20

15

10

5

23

(b) 40

30

25

28

23

10

20

25

(c)

10

5 15 23

28 40

20

25

30

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

be promoted by one level by left rotations are shown as squares; their parents, about
which they are rotated, are circles.

To compute the complexity of the tree building phase, observe that the number
of iterations performed by the while loop equals

(2lg(m+1)–1 – 1) + · · · + 15 + 7 + 3 + 1 = �
lg(m+1)–1

i=1

(2i – 1) = m – lg(m + 1)

The number of rotations can now be given by the formula

n – m + (m – lg(m + 1)) = n – lg(m + 1) = n – ⎣lg(n + 1)⎦

that is, the number of rotations is O(n). Because creating a backbone also required at
most O(n) rotations, the cost of global rebalancing with the DSW algorithm is opti-
mal in terms of time because it grows linearly with n and requires a very small and
fixed amount of additional storage.

6.7.2 AVL Trees
The previous two sections discussed algorithms that rebalanced the tree globally; each
and every node could have been involved in rebalancing either by moving data from
nodes or by reassigning new values to reference fields. Tree rebalancing, however, can
be performed locally if only a portion of the tree is affected when changes are required
after an element is inserted into or deleted from the tree. One classical method has
been proposed by Adel’son-Vel’skii and Landis, which is commemorated in the name
of the tree modified with this method: the AVL tree.

An AVL tree (originally called an admissible tree) is one in which the height of the
left and right subtrees of every node differ by at most one. For example, all the trees in
Figure 6.40 are AVL trees. Numbers in the nodes indicate the balance factors that are
the differences between the heights of the left and right subtrees. A balance factor is
the height of the right subtree minus the height of the left subtree. For an AVL tree, all

S e c t i o n 6 . 7 B a l a n c i n g a T r e e ■ 255

FIGURE 6.40 Examples of AVL trees.

+1

–1

0

–1

0 0+1

(c)

+1

–10

0

(b)

–1

0

(a)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

balance factors should be +1, 0, or –1. Notice that the definition of the AVL tree is the
same as the definition of the balanced tree. However, the concept of the AVL tree
always implicitly includes the techniques for balancing the tree. Moreover, unlike the
two methods previously discussed, the technique for balancing AVL trees does not
guarantee that the resulting tree is perfectly balanced.

The definition of an AVL tree indicates that the minimum number of nodes in a
tree is determined by the recurrence equation

AVLh = AVLh–1 + AVLh–2 + 1

where AVL0 = 0 and AVL1 = 1 are the initial conditions.1 This formula leads to the fol-
lowing bounds on the height h of an AVL tree depending on the number of nodes n
(see Appendix A.5):

lg(n + 1) ≤ h < 1.44lg(n + 2) – 0.328

Therefore, h is bounded by O(lg n); the worst case search requires O(lg n) com-
parisons. For a perfectly balanced binary tree of the same height, h =]lg(n + 1)g.
Therefore, the search time in the worst case in an AVL tree is 44% worse (it requires
44% more comparisons) than in the best case tree configuration. Empirical studies
indicate that the average number of searches is much closer to the best case than to the
worst and is equal to lgn + 0.25 for large n (Knuth 1998). Therefore, AVL trees are def-
initely worth studying.

If the balance factor of any node in an AVL tree becomes less than –1 or greater
than 1, the tree has to be balanced. An AVL tree can become out of balance in four situa-
tions, but only two of them need to be analyzed; the remaining two are symmetrical.
The first case, the result of inserting a node in the right subtree of the right child, is illus-
trated in Figure 6.41. The heights of the participating subtrees are indicated within these
subtrees. In the AVL tree in Figure 6.41a, a node is inserted somewhere in the right sub-
tree of Q (Figure 6.41b), which disturbs the balance of the tree P. In this case, the prob-

256 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.41 Balancing a tree after insertion of a node in the right subtree of node Q.

0

(c)

+2

h

Q P

P Q

h + 1

h + 2

+1

(b)

h h + 1

0

h h

+1

h

Q

P

0

(a)

h h

h + 1

1Numbers generated by this referrence formula are called Leonardo numbers.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

lem can be easily rectified by rotating node Q about its parent P (Figure 6.41c) so that
the balance factor of both P and Q becomes zero, which is even better than at the outset.

The second case, the result of inserting a node in the left subtree of the right
child, is more complex. A node is inserted into the tree in Figure 6.42a; the resulting
tree is shown in Figure 6.42b and in more detail in Figure 6.42c. Note that R’s balance
factor can also be –1. To bring the tree back into balance, a double rotation is per-
formed. The balance of the tree P is restored by rotating R about node Q (Figure
6.42d) and then by rotating R again, this time about node P (Figure 6.42e).

In these two cases, the tree P is considered a stand-alone tree. However, P can be
part of a larger AVL tree; it can be a child of some other node in the tree. If a node is
entered into the tree and the balance of P is disturbed and then restored, does extra
work need to be done to the predecessor(s) of P? Fortunately not. Note that the
heights of the trees in Figures 6.41c and 6.42e resulting from the rotations are the
same as the heights of the trees before insertion (Figures 6.41a and 6.42a) and are
equal to h + 2. This means that the balance factor of the parent of the new root (Q in
Figure 6.41c and R in Figure 6.42e) remains the same as it was before the insertion,
and the changes made to the subtree P are sufficient to restore the balance of the en-
tire AVL tree. The problem is in finding a node P for which the balance factor becomes
unacceptable after a node has been inserted into the tree.

This node can be detected by moving up toward the root of the tree from the po-
sition in which the new node has been inserted and by updating the balance factors of
the nodes encountered. Then, if a node with a ±1 balance factor is encountered, the
balance factor may be changed to ±2, and the first node whose balance factor is
changed in this way becomes the root P of a subtree for which the balance has to be
restored. Note that the balance factors do not have to be updated above this node be-
cause they remain the same.

In Figure 6.43a, a path is marked with one balance factor equal to +1. Insertion of
a new node at the end of this path results in an unbalanced tree (Figure 6.43b), and
the balance is restored by one left rotation (Figure 6.43c).

S e c t i o n 6 . 7 B a l a n c i n g a T r e e ■ 257

FIGURE 6.42 Balancing a tree after insertion of a node in the left subtree of node Q.

+2

h

Q

P

h + 1

–1

(b)

h

+2

h

Q

P

–1

(c)

h

R

h – 1

+1

h

+2

h

R

P

+2

(d)

Q

h – 1

0

hh

0

Q

R

0
P

–1

(e)

h – 1
hhh

+1

h

Q

P

0

(a)

h h

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

However, if the balance factors on the path from the newly inserted node to the
root of the tree are all zero, all of them have to be updated, but no rotation is needed
for any of the encountered nodes. In Figure 6.44a, the AVL tree has a path of all zero
balance factors. After a node has been appended to the end of this path (Figure 6.44b),
no changes are made in the tree except for updating the balance factors of all nodes
along this path.

Deletion may be more time-consuming than insertion. First, we can apply
deleteByCopying() to delete a node. This technique allows us to reduce the prob-
lem of deleting a node with two descendants to deleting a node with at most one de-
scendant.

After a node has been deleted from the tree, balance factors are updated from the
parent of the deleted node up to the root. For each node in this path whose balance fac-
tor becomes ±2, a single or double rotation has to be performed to restore the balance
of the tree. Importantly, the rebalancing does not stop after the first node P is found for

258 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.43 An example of inserting a new node (b) in an AVL tree (a), which requires one rotation
(c) to restore the height balance.

0

–10

(c)

0

0

P

Q

P

Q

Q

P

0

(a)

+1

0

+1

–1

(b)

+2 0

FIGURE 6.44 In an AVL tree (a) a new node is inserted (b) requiring no height adjustments.

–1

+1

–1

+1

0

(b)

0

0

0

0

(a)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

which the balance factor would become ±2, as is the case with insertion. This also
means that deletion leads to at most O(lg n) rotations, because in the worst case, every
node on the path from the deleted node to the root may require rebalancing.

Deletion of a node does not have to necessitate an immediate rotation because it may
improve the balance factor of its parent (by changing it from ±1 to 0), but it may also
worsen the balance factor for the grandparent (by changing it from ±1 to ±2).We illustrate
only those cases that require immediate rotation. There are four such cases (plus four sym-
metric cases). In each of these cases, we assume that the left child of node P is deleted.

In the first case, the tree in Figure 6.45a turns, after deleting a node, into the tree
in Figure 6.45b. The tree is rebalanced by rotating Q about P (Figure 6.45c). In the

S e c t i o n 6 . 7 B a l a n c i n g a T r e e ■ 259

FIGURE 6.45 Rebalancing an AVL tree after deleting a node.

+1

h

Q

P

0

(d)

hh

+2

Q

P

0

(e)

hh

+1

h

Q

P

–1

(g)

R

h – 1

–1

h – 1

h – 2

+2

Q

P

–1

(h)

R

h – 1

–1

h – 1

h – 2

h – 1

h – 2

h – 1

0

Q

R

+1
P

0

(i)

h – 1h – 1 h – 1

+1

h

Q

P

+1

(a)

h
h – 1

h – 1

+2

Q

P

+1

(b)

h
h – 1 h – 1

h – 1

0

P

Q

0

(c)

h
h – 1

–1

P

Q

+1

(f)

hh

+1

Q

P

–1

(j)

R

h – 2

+1

h – 1

h – 1

+2

Q

P

–1

(k)

R

h – 2

+1

h – 1

h – 1

h – 1
h

h – 2

0

Q

R

0
P

–1

(l)

h – 1h – 1 h – 1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

second case, P has a balance factor equal to +1, and its right subtree Q has a balance
factor equal to 0 (Figure 6.45d). After deleting a node in the left subtree of P (Figure
6.45e), the tree is rebalanced by the same rotation as in the first case (Figure 6.45f). In
this way, cases one and two can be processed together in an implementation after
checking that the balance factor of Q is +1 or 0. If Q is –1, we have two other cases,
which are more complex. In the third case, the left subtree R of Q has a balance factor
equal to –1 (Figure 6.45g). To rebalance the tree, first R is rotated about Q and then
about P (Figures 6.45h–i). The fourth case differs from the third in that R’s balance
factor equals +1 (Figure 6.45j), in which case the same two rotations are needed to
restore the balance factor of P (Figures 6.45k–l). Cases three and four can be proc-
essed together in a program processing AVL trees.

The previous analyses indicate that insertions and deletions require at most 1.44
lg(n + 2) searches. Also, insertion can require one single or one double rotation, and
deletion can require 1.44 lg(n + 2) rotations in the worst case. But as also indicated,
the average case requires lg(n) + .25 searches, which reduces the number of rotations
in case of deletion to this number. To be sure, insertion in the average case may lead to
one single/double rotation. Experiments also indicate that deletions in 78% of cases
require no rebalancing at all. On the other hand, only 53% of insertions do not bring
the tree out of balance (Karlton et al. 1976). Therefore, the more time-consuming
deletion occurs less frequently than the insertion operation, not markedly endanger-
ing the efficiency of rebalancing AVL trees.

AVL trees can be extended by allowing the difference in height Δ > 1 (Foster,
1973). Not unexpectedly, the worst-case height increases with Δ and

1.81 lg(n) – 0.71 if Δ = 2
h = �2.15 lg(n) – 1.13 if Δ = 3

As experiments indicate, the average number of visited nodes increases by one-half in
comparison to pure AVL trees (Δ = 1), but the amount of restructuring can be de-
creased by a factor of 10.

6.8 SELF-ADJUSTING TREES

The main concern in balancing trees is to keep them from becoming lopsided and, ide-
ally, to allow leaves to occur only at one or two levels. Therefore, if a newly arriving ele-
ment endangers the tree balance, the problem is immediately rectified by restructuring
the tree locally (the AVL method) or by re-creating the tree (the DSW method). How-
ever, we may question whether such a restructuring is always necessary. Binary search
trees are used to insert, retrieve, and delete elements quickly, and the speed of perform-
ing these operations is the issue, not the shape of the tree. Performance can be im-
proved by balancing the tree, but this is not the only method that can be used.

Another approach begins with the observation that not all elements are used with
the same frequency. For example, if an element on the tenth level of the tree is used only
infrequently, then the execution of the entire program is not greatly impaired by access-
ing this level. However, if the same element is constantly being accessed, then it makes a
big difference whether it is on the tenth level or close to the root. Therefore, the strategy in

260 ■ C h a p t e r 6 B i n a r y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

self-adjusting trees is to restructure trees by moving up the tree only those elements that
are used more often, creating a kind of “priority tree.” The frequency of accessing nodes
can be determined in a variety of ways. Each node can have a counter field that records
the number of times the element has been used for any operation. Then the tree can be
scanned to move the most frequently accessed elements toward the root. In a less sophis-
ticated approach, it is assumed that an element being accessed has a good chance of being
accessed again soon. Therefore, it is moved up the tree. No restructuring is performed for
new elements. This assumption may lead to promoting elements that are occasionally ac-
cessed, but the overall tendency is to move up elements with a high frequency of access,
and for the most part, these elements will populate the first few levels of the tree.

6.8.1 Self-Restructuring Trees

A strategy proposed by Brian Allen and Ian Munro and by James Bitner consists of
two possibilities:

1. Single rotation. Rotate a child about its parent if an element in a child is accessed,
unless it is the root (Figure 6.46a).

2. Moving to the root. Repeat the child–parent rotation until the element being accessed
is in the root (Figure 6.46b).

Using the single rotation strategy, frequently accessed elements are eventually
moved up close to the root so that later accesses are faster than previous ones. In the
move-to-the-root strategy, it is assumed that the element being accessed has a high
probability to be accessed again, so it percolates right away up to the root. Even if it is
not used in the next access, the element remains close to the root. These strategies,
however, do not work very well in unfavorable situations, when the binary tree is
elongated as in Figure 6.47. In this case, the shape of the tree improves slowly. Never-
theless, it has been determined that the cost of moving a node to the root converges
to the cost of accessing the node in an optimal tree times 2 ln 2; that is, it converges to

S e c t i o n 6 . 8 S e l f - A d j u s t i n g T r e e s ■ 261

FIGURE 6.46 Restructuring a tree by using (a) a single rotation or (b) moving to the root when
accessing node R.

D

(a)

P

Q

CR

A B

D

P

R

A Q

B C

D

(b)

P

Q

CR

A B

R

A P

Q D

B C

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(2 ln 2)lg n. The result holds for any probability distribution (that is, independently
of the probability that a particular request is issued). However, the average search
time when all requests are equally likely is, for the single rotation technique, equal to
�π�n�.

6.8.2 Splaying

A modification of the move-to-the-root strategy is called splaying, which applies sin-
gle rotations in pairs in an order depending on the links between the child, parent,
and grandparent (Sleator and Tarjan 1985). First, three cases are distinguished de-
pending on the relationship between a node R being accessed and its parent Q and
grandparent P (if any) nodes:

Case 1: Node R’s parent is the root.

Case 2: Homogeneous configuration. Node R is the left child of its parent Q, and
Q is the left child of its parent P, or R and Q are both right children.

262 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.47 (a–e) Moving element T to the root and then (e–i) moving element S to the root.

F

(a)

P

Q

ER

DS

CT

A B

F

(b)

P

Q

ER

DT

A S

R

D

B C

(c)

S

B C

R

D

(d)

S

B C

F

P

Q

ET

A E R

D

(e)

S

B C

Q

ER

C D

E

Q

F

P

T

A

T

A P

Q F

S

(f)

B R

C D

E

T

A P

Q F

B

(g)

T

A P

S F

Q

ER

C D

(h)

T

A S

B

F

P

Q

ER

C D

(i)

S

F

P

A B

T

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Case 3: Heterogeneous configuration. Node R is the right child of its parent Q,
and Q is the left child of its parent P, or R is the left child of Q, and Q
is the right child of P.

The algorithm to move a node R being accessed to the root of the tree is as follows:

splaying(P,Q,R)
while R is not the root
if R’s parent is the root

perform a singular splay, rotate R about its parent (Figure 6.48a);
else if R is in a homogeneous configuration with its predecessors

perform a homogeneous splay, first rotate Q about P
and then R about Q (Figure 6.48b);

else // if R is in a heterogeneous configuration
// with its predecessors
perform a heterogeneous splay, first rotate R about Q
and then about P (Figure 6.48c);

S e c t i o n 6 . 8 S e l f - A d j u s t i n g T r e e s ■ 263

FIGURE 6.48 Examples of splaying.

Q

A R

B C

R

A Q

B C

D

P

(b)
Case 2: Homogeneous configuration.

R

(a)
Case 1: Node R 's parent is the root.

A B

C

Q

C

R

A Q

B

D

P

Q

CR

A B

D Semisplay

P

C

Q

D

P

A B

R

C

R

D

P

A B

Q

Full splay

(c)
Case 3: Heterogeneous configuration.

R

CQ

A B

D

P

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The difference in restructuring a tree is illustrated in Figure 6.49, where the tree
from Figure 6.47a is used to access node T located at the fifth level. The shape of the
tree is immediately improved. Then, node R is accessed (Figure 6.49c) and the shape
of the tree becomes even better (Figure 6.49d).

Although splaying is a combination of two rotations except when next to the
root, these rotations are not always used in the bottom-up fashion, as in self-adjusting
trees. For the homogeneous case (left-left or right-right), first the parent and the
grandparent of the node being accessed are rotated, and only afterward are the node
and its parent rotated. This has the effect of moving an element to the root and flat-
tening the tree, which has a positive impact on the accesses to be made.

The number of rotations may seem excessive, and it certainly would be if an ac-
cessed element happened to be in a leaf every time. In the case of a leaf, the access time
is usually O(lg n), except for some initial accesses when the tree is not balanced. But
accessing elements close to the root may make the tree unbalanced. For example, in
the tree in Figure 6.49a, if the left child of the root is always accessed, then eventually,
the tree would also be elongated, this time extending to the right.

To establish the efficiency of accessing a node in a binary search tree that utilizes
the splaying technique, an amortized analysis will be used.

Consider a binary search tree t. Let nodes(x) be the number of nodes in the sub-
tree whose root is x, rank(x) = lg(nodes(x)), so that rank(root(t)) = lg(n), and po-
tential(t) = ∑x is a node of t rank(x). It is clear that nodes(x) + 1 ≤ nodes(parent(x));
therefore, rank(x) < rank(parent(x)). Let the amortized cost of accessing node x be de-
fined as the function

amCost(x) = cost(x) + potentials(t) – potential0(t)

where potentials(t) and potential0(t) are the potentials of the tree before access takes
place and after it is finished. It is very important to see that one rotation changes ranks
of only the node x being accessed, its parent, and its grandparent. This is the reason
for basing the definition of the amortized cost of accessing node x on the change in

264 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.49 Restructuring a tree with splaying (a–c) after accessing T and (c–d) then R.

F

(a)

P

Q

ER

DS

CT

A B

S

(b)

B R

C D

F

P

Q

ET

A ER

DC

(c)

F

P

A Q

T

B

S D P

FE

S

CB

(d)

R

Q

A

T

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the potential of the tree, which amounts to the change of ranks of the nodes involved
in splaying operations that promote x to the root. We can state now a lemma specify-
ing the amortized cost of one access.

Access lemma (Sleator and Tarjan 1985). For the amortized time to splay the tree t at
a node x,

amCost(x) < 3(lg(n) – rank(x)) + 1

The proof of this conjecture is divided into three parts, each dealing with the dif-
ferent case indicated in Figure 6.48. Let par(x) be a parent of x and gpar(x) a grand-
parent of x (in Figure 6.48, x = R, par(x) = Q, and gpar(x) = P).

Case 1: One rotation is performed. This can be only the last splaying step in the se-
quence of such steps that move node x to the root of the tree t, and if there are a total
of s splaying steps in the sequence, then the amortized cost of the last splaying step s is

amCosts(x) = costs(x) + potentials(t) – potentials–1(t)

= 1 + (ranks(x) – ranks–1(x)) + (ranks(par(x)) – ranks–1(par(x)))

where costs(x) = 1 represents the actual cost, the cost of the one splaying step (which in
this step is limited to one rotation); potentials–1(t) = ranks–1(x) + ranks–1(par(x)) + C
and potentials(t) = ranks(x) + ranks(par(x)) + C, because x and par(x) are the only
nodes whose ranks are modified. Now because ranks(x) = ranks–1(par(x))

amCosts(x) = 1 – ranks–1(x) + ranks(par(x))

and because ranks(par(x)) < ranks(x)

amCosts(x) < 1 – ranks–1(x) + ranks(x).

Case 2: Two rotations are performed during a homogeneous splay. As before, number
1 represents the actual cost of one splaying step.

amCosti(x) = 1 + (ranki(x) – ranki–1(x)) + (ranki(par(x)) – ranki–1(par(x))) +
(ranki(gpar(x)) – ranki–1(gpar(x)))

Because ranki(x) = ranki–1(gpar(x))

amCosti(x) = 1 – ranki–1(x) + ranki(par(x)) – ranki–1(par(x)) + ranki(gpar(x))

Because ranki(gpar(x)) < ranki(par(x)) < ranki(x)

amCosti(x) < 1 – ranki–1(x) – ranki–1(par(x)) + 2ranki(x)

and because ranki–1(x) < ranki–1(par(x)), that is, –ranki–1(par(x)) < –ranki–1(x)

amCosti(x) < 1 – 2ranki–1(x) + 2ranki(x).

To eliminate number 1, consider the inequality ranki–1(x) < ranki–1(gpar(x)); that is,
1 ≤ ranki–1(gpar(x)) –ranki–1(x). From this, we obtain

amCosti(x) < ranki–1(gpar(x)) – ranki–1(x) – 2ranki–1(x) + 2ranki(x)

amCosti(x) < ranki–1(gpar(x)) – 3ranki–1(x) + 2ranki(x)

S e c t i o n 6 . 8 S e l f - A d j u s t i n g T r e e s ■ 265

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

and because ranki(x) = ranki–1(gpar(x))

amCosti(x) < – 3ranki–1(x) + 3ranki(x)

Case 3: Two rotations are performed during a heterogeneous splay. The only differ-
ence in this proof is making the assumption that ranki(gpar(x)) < ranki(x) and
ranki(par(x)) < ranki(x) instead of ranki(gpar(x)) < ranki(par(x)) < ranki(x), which
renders the same result.

The total amortized cost of accessing a node x equals the sum of amortized costs
of all the splaying steps executed during this access. If the number of steps equals s,
then at most one (the last) step requires only one rotation (case 1) and thus

Because ranks(x) > ranks–1(x),

This indicates that the amortized cost of an access to a node in a tree that is restruc-
tured with the splaying technique equals O(lg n), which is the same as the worst case
in balanced trees. However, to make the comparison more adequate, we should com-
pare a sequence of m accesses to nodes rather than one access because, with the amor-
tize cost, one isolated access can still be on the order of O(n). The efficiency of a tree
that applies splaying is thus comparable to that of a balanced tree for a sequence of
accesses and equals O(m lg n). ❏

Splaying is a strategy focusing upon the elements rather than the shape of the
tree. It may perform well in situations in which some elements are used much more
frequently than others. If elements near the root are accessed with about the same fre-
quency as elements on the lowest levels, then splaying may not be the best choice. In
this case, a strategy that stresses balancing the tree rather than frequency is better; a
modification of the splaying method is a more viable option.

Semisplaying is a modification that requires only one rotation for a homogeneous
splay and continues splaying with the parent of the accessed node, not with the node
itself. It is illustrated in Figure 6.48b. After R is accessed, its parent Q is rotated about P
and splaying continues with Q, not with R. A rotation of R about Q is not performed,
as would be the case for splaying.

Figure 6.50 illustrates the advantages of semisplaying. The elongated tree from
Figure 6.49a becomes more balanced with semisplaying after accessing T (Figures
6.50a–c), and after T is accessed again, the tree in Figure 6.50d has basically the same

 = − + = − + =3 1 3 10 0(() ()) (lg ()) (lg)rank x rank x n rank x O ns

amCost x rank x rank x rank x rank xi i s s

i

s

() (() ()) (() ())< − + − +− −
=

−

∑3 3 11 1

1

1

< − + − +− −
=

−

∑3 11 1

1

1

(() ()) () ()rank x rank x rank x rank xi i s s

i

s

amCost x amCost x amCost x amCost xi

i

s

i s

i

s

() () () ()= = +
= =

−

∑ ∑
1 1

1

266 ■ C h a p t e r 6 B i n a r y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 9 H e a p s ■ 267

FIGURE 6.50 (a–c) Accessing T and restructuring the tree with semisplaying; (c–d) accessing T again.

F

(a)

P

Q

ER

F

P

Q

ES

DS

CT

A B

(c)(b)

C DB

R

A

T

S

C DB

R

A

T

P

Q

FE

(d)

T

BA

E FD

P

C

R

Q

S

number of levels as the tree in Figure 6.50c. (It may have one more level if E or F was a
subtree higher than any of subtrees A, B, C, or D.) For implementation of this tree
strategy, see the case study at the end of this chapter.

It is interesting that although the theoretical bounds obtained from self-organizing
trees compare favorably with the bounds for AVL trees and random binary search
trees—that is, with no balancing technique applied to it—experimental runs for trees of
various sizes and different ratios of accessing keys indicate that almost always the AVL
tree outperforms self-adjusting trees, and many times even a regular binary search tree
performs better than a self-organizing tree (Bell, Gupta 1993). At best, this result indi-
cates that computational complexity and amortized performance should not always be
considered as the only measures of algorithm performance.

6.9 HEAPS

A particular kind of binary tree, called a heap, has the following two properties:

1. The value of each node is greater than or equal to the values stored in each of its
children.

2. The tree is perfectly balanced, and the leaves in the last level are all in the leftmost
positions.

To be exact, these two properties define a max heap. If “greater” in the first prop-
erty is replaced with “less,” then the definition specifies a min heap. This means that
the root of a max heap contains the largest element, whereas the root of a min heap
contains the smallest. A tree has the heap property if each nonleaf has the first prop-
erty. Due to the second condition, the number of levels in the tree is O(lg n).

The trees in Figure 6.51a are all heaps; the trees in Figure 6.51b violate the first
property, and the trees in Figure 6.51c violate the second.

Interestingly, heaps can be implemented by arrays. For example, the array data =
[2 8 6 1 10 15 3 12 11] can represent the nonheap tree in Figure 6.52. The elements are

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

placed at sequential locations representing the nodes from top to bottom and in each
level from left to right. The second property reflects the fact that the array is packed,
with no gaps. Now, a heap can be defined as an array heap of length n in which

heap[i] ≥ heap[2 · i + 1], for 0 ≤ i < �
n –

2
1

�

and

heap[i] ≥ heap[2 · i + 2], for 0 ≤ i < �
n –

2
2

�

Elements in a heap are not perfectly ordered. We know only that the largest element
is in the root node and that, for each node, all its descendants are less than or equal to that

268 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.51 Examples of (a) heaps and (b–c) nonheaps.

10

78

2

15

6

63

21

10 12

(a)

10

72

8

6

15

63

12

10 21

(b) (c)

6

15

10

78

2 63

FIGURE 6.52 The array [2 8 6 1 10 15 3 12 11] seen as a tree.

2

68

315101

1112

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

node. But the relation between sibling nodes or, to continue the kinship terminology,
between uncle and nephew nodes is not determined. The order of the elements obeys
a linear line of descent, disregarding lateral lines. For this reason, all the trees in Figure
6.53 are legitimate heaps, although the heap in Figure 6.53b is ordered best.

6.9.1 Heaps as Priority Queues
A heap is an excellent way to implement a priority queue. Section 4.3 used linked lists
to implement priority queues, structures for which the complexity was expressed in
terms of O(n) or O(�n�). For large n, this may be too ineffective. On the other hand, a
heap is a perfectly balanced tree; hence, reaching a leaf requires O(lg n) searches. This
efficiency is very promising. Therefore, heaps can be used to implement priority
queues. To this end, however, two procedures have to be implemented to enqueue and
dequeue elements on a priority queue.

To enqueue an element, the element is added at the end of the heap as the last
leaf. Restoring the heap property in the case of enqueuing is achieved by moving from
the last leaf toward the root.

The algorithm for enqueuing is as follows:

heapEnqueue(el)
put el at the end of heap;
while el is not in the root and el > parent(el)

swap el with its parent;

For example, the number 15 is added to the heap in Figure 6.54a as the next leaf
(Figure 6.54b), which destroys the heap property of the tree. To restore this property,
15 has to be moved up the tree until it either ends up in the root or finds a parent that
is not less than 15. In this example, the latter case occurs, and 15 has to be moved only
twice without reaching the root.

Dequeuing an element from the heap consists of removing the root element from
the heap, because by the heap property it is the element with the greatest priority.
Then the last leaf is put in its place, and the heap property almost certainly has to be
restored, this time by moving from the root down the tree.

S e c t i o n 6 . 9 H e a p s ■ 269

FIGURE 6.53 Different heaps constructed with the same elements.

10

89

7 102

(b)

10

97

0 821

(c)

10

92

1 780

(a)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The algorithm for dequeuing is as follows:

heapDequeue()
extract the element from the root;
put the element from the last leaf in its place;
remove the last leaf;
// both subtrees of the root are heaps;
p = the root;
while p is not a leaf and p < any of its children

swap p with the larger child;

For example, 20 is dequeued from the heap in Figure 6.55a and 6 is put in its place
(Figure 6.55b). To restore the heap property, 6 is swapped first with its larger child,
number 15 (Figure 6.55c), and once again with the larger child, 14 (Figure 6.55d).

The last three lines of the dequeuing algorithm can be treated as a separate algo-
rithm that restores the heap property only if it has been violated by the root of the
tree. In this case, the root element is moved down the tree until it finds a proper posi-
tion. This algorithm, which is the key to the heap sort, is presented in one possible im-
plementation in Figure 6.56.

270 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.54 Enqueuing an element to a heap.

(b)

20

1510

8 14137

2 5 6 15

(a)

20

1510

8 14137

2 5 6

(d)

20

1515

8 141310

2 5 6 7

(c)

20

1510

8 141315

2 5 6 7

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 9 H e a p s ■ 271

FIGURE 6.55 Dequeuing an element from a heap.

dequeue

(b)

6

1510

8 14137

2 5

(a)

20

1510

8 14137

2 5 6

(d)

15

1410

8 6137

2 5

(c)

15

610

8 14137

2 5

FIGURE 6.56 Implementation of an algorithm to move the root element down a tree.

void moveDown(Object[] data, int first, int last) {
int largest = 2*first + 1;
while (largest <= last) {

if (largest < last && // first has two children (at 2*first+1 and
// 2*first+2)

((Comparable)data[largest]).compareTo(data[largest+1]) < 0)
largest++;

if (((Comparable)data[first]).compareTo(data[largest]) < 0) {
swap(data,first,largest); // if necessary, swap values
first = largest; // and move down;
largest = 2*first + 1;

}
else largest = last + 1;// to exit the loop: the heap property

} // isn't violated by data[first]
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6.9.2 Organizing Arrays as Heaps
Heaps can be implemented as arrays, and in that sense, each heap is an array, but all ar-
rays are not heaps. In some situations, however, most notably in heap sort (see Section
9.3.2), we need to convert an array into a heap (that is, reorganize the data in the array so
that the resulting organization represents a heap). There are several ways to do this, but
in light of the preceding section the simplest way is to start with an empty heap and se-
quentially include elements into a growing heap. This is a top-down method and it was
proposed by John Williams; it extends the heap by enqueuing new elements in the heap.

Figure 6.57 contains a complete example of the top-down method. First, the
number 2 is enqueued in the initially empty heap (6.57a). Next, 8 is enqueued by
putting it at the end of the current heap (6.57b) and then swapping with its parent
(6.57c). Enqueuing the third and fourth elements, 6 (6.57d) and then 1 (6.57e), neces-
sitates no swaps. Enqueuing the fifth element, 10, amounts to putting it at the end of
the heap (6.57f), then swapping it with its parent, 2 (6.57g), and then with its new
parent, 8 (6.57h) so that eventually 10 percolates up to the root of the heap. All re-
maining steps can be traced by the reader in Figure 6.57.

To check the complexity of the algorithm, observe that in the worst case, when a
newly added element has to be moved up to the root of the tree, ⎣lg k⎦ exchanges are
made in a heap of k nodes. Therefore, if n elements are enqueued, then in the worst case

�
n

k=1

⎣lg k⎦ ≤ �
n

k=1

lg k = lg 1 + · · · + lg n = lg(1 � 2 � · · · � n) = lg(n!) = O(n lg n)

exchanges are made during execution of the algorithm and the same number of com-
parisons. (For the fact that lg(n!) is O(n lg n), see Section A.2 in Appendix A.) It turns
out, however, that we can do better than that.

In another algorithm, developed by Robert Floyd, a heap is built bottom-up. In
this approach, small heaps are formed and repetitively merged into larger heaps in the
following way:

FloydAlgorithm(data[])
for i = index of the last nonleaf down to 0

restore the heap property for the tree whose root is data[i] by calling
moveDown(data,i,n-1);

Figure 6.58 contains an example of transforming the array data[] = [2 8 6 1 10
15 3 12 11] into a heap.

We start from the last nonleaf node, which is data[n/2-1], n being the array
size. If data[n/2-1] is less than one of its children, it is swapped with the larger
child. In the tree in Figure 6.58a, this is the case for data[3] = 1 and data[7] = 12.
After exchanging the elements, a new tree is created, shown in Figure 6.58b. Next the
element data[n/2-2] = data[2] = 6 is considered. Because it is smaller than its
child data[5] = 15, it is swapped with that child and the tree is transformed to that
in Figure 6.58c. Now data[n/2-3] = data[1] = 8 is considered. Because it is
smaller than one of its children, which is data[3] = 12, an interchange occurs, lead-
ing to the tree in Figure 6.58d. But now it can be noticed that the order established in
the subtree whose root was 12 (Figure 6.58c) has been somewhat disturbed because 8

272 ■ C h a p t e r 6 B i n a r y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 9 H e a p s ■ 273

FIGURE 6.57 Organizing an array as a heap with a top-down method.

15

11

12

10

15

10
12

8
3

6
2

1
11

15
12

10
8

2
6

3
1

11

(p
)

10

6
8

1
15

2

10
8

6
1

2
15

(i
)

8

6
10

1
2

8
10

6
1

2

(g
)

10

6
8

1
2

10
8

6
1

2

(h
)

8

6
2

1
10

8
2

6
1

10

(f
)

1

8

6
2

1 8
2

6
1

(e
)

6
8

8

6
2 8

2
6

(d
)

8

2 8
2

(c
)

2

8 2
8

(b
)

2

2

2 (a
)

15

10
12

11
3

6
2

1
8

15
12

10
11

2
6

3
1

8

(q
)15

10
8

1
3

6
2

12 15
8

10
1

2
6

3
12

(m
)

3

15

10
8

1
3

6
2

15
8

10
1

2
6

3

(l
)

15

10
8

1
6

2

15
8

10
1

2
6

(k
)

15

10
8

12
3

6
2

1

15
8

10
12

2
6

3
1

(n
)

15

10
12

8
3

6
2

1 15
12

10
8

2
6

3
1

(o
)

10

15
8

1
6

2

10
8

15
1

2
6

(j
)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is smaller than its new child 11. This simply means that it does not suffice to compare
a node’s value with its children’s, but a similar comparison needs to be done with
grandchildren’s, great-grandchildren’s, and so on until the node finds its proper posi-
tion. Taking this into consideration, the next swap is made, after which the tree in
Figure 6.58e is created. Only now is the element data[n/2-4] = data[0] = 2 com-
pared with its children, which leads to two swaps (Figure 6.58f).

274 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.58 Transforming the array [2 8 6 1 10 15 3 12 11] into a heap with a bottom-up method.

1

12 11

2 8 6 1 10 15 3 12 11

(a)

158

12 3610

1 11

2 8 15 12 10 6 3 1 11

(c)

6

12 315

1 11

2 8 6 12 10 15 3 1 11

(b)

1512

8 3610

1 11

2 12 15 8 10 6 3 1 11

(d)

15

212

11 3610

1 8

15 12 2 11 10 6 3 1 8

(f)

2

1512

11 3610

1 8

2 12 15 11 10 6 3 1 8

(e)

15

612

11 3210

1 8

15 12 6 11 10 2 3 1 8

(g)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Assume that the heap being created is a complete binary tree; that is, it includes n =
2k – 1 nodes for some k. To create the heap, moveDown() is called �

n+
2

1
� times, once for

each nonleaf. In the worst case,moveDown()moves data from the next to last level, con-
sisting of �

n+
4

1
� nodes, down by one level to the level of leaves by performing �

n+
4

1
� swaps.

Therefore, all nodes from this level make 1 · �n+
4
1

� moves. Data from the second to last
level, which has �

n+
8

1
� nodes, are moved two levels down to reach the level of the leaves.

Thus, nodes from this level perform 2 · �n+
8

1
� moves and so on up to the root. The root of

the tree as the tree becomes a heap is moved, again in the worst case, lg(n + 1) – 1 = lg �n+
2
1

�

levels down the tree to end up in one of the leaves. Because there is only one root, this
contributes lg �n+

2
1

� · 1 moves. The total number of movements can be given by this sum

which is O(n) because the series ∑∞
i=2�

2
i
i� converges to 1.5 and ∑∞

i=2�
2
1
i� converges to 0.5.

For an array that is not a complete binary tree, the complexity is all the more bounded

by O(n). The worst case for comparisons is twice this value, which is also O(n), be-

cause for each node in moveDown(), both children of the node are compared to each

other to choose the larger. That, in turn, is compared to the node. Therefore, for the

worst case, Williams’s method performs better than Floyd’s.
The performance for the average case is much more difficult to establish. It has

been found that Floyd’s heap construction algorithm requires, on average, 1.88n com-
parisons (Doberkat 1984; Knuth 1998), and the number of comparisons required by
Williams’s algorithm in this case is between 1.75n and 2.76n and the number of swaps
is 1.3n (Hayward and McDiarmid 1991; McDiarmid and Reed 1989). Thus, in the av-
erage case, the two algorithms perform at the same level.

6.10 POLISH NOTATION AND EXPRESSION TREES

One of the applications of binary trees is an unambiguous representation of arith-
metical, relational, or logical expressions. In the early 1920s, a Polish logician, Jan
⁄Lukasiewicz (pronounced: wook-a-sie-vich), invented a special notation for proposi-

tional logic that allows us to eliminate all parentheses from formulas. However,
⁄Lukasiewicz’s notation, called Polish notation, results in less readable formulas than

the parenthesized originals and it was not widely used. It proved useful after the emer-
gence of computers, however, especially for writing compilers and interpreters.

To maintain readability and prevent the ambiguity of formulas, extra symbols
such as parentheses have to be used. However, if avoiding ambiguity is the only goal,
then these symbols can be omitted at the cost of changing the order of symbols used
in the formulas. This is exactly what the compiler does. It rejects everything that is
not essential to retrieve the proper meaning of formulas, rejecting it as “syntactic
sugar.”

n
i n

i
i i

i

n

i

n + − = + −

=

+

=

+

∑∑ 1

2
1 1

1

22

1

2

1

() ()
lg()lg()

S e c t i o n 6 . 1 0 P o l i s h N o t a t i o n a n d E x p r e s s i o n T r e e s ■ 275

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

How does this notation work? Look first at the following example. What is the
value of this algebraic expression?

2 – 3 · 4 + 5

The result depends on the order in which the operations are performed. If we multi-
ply first and then subtract and add, the result is –5 as expected. If subtraction is done
first, then addition and multiplication, as in

(2 – 3) · (4 + 5)

the result is –9. But if we subtract after we multiply and add, as in

2 – (3 · 4 + 5)

then the result of evaluation is –15. If we see the first expression, then we know in
what order to evaluate it. But the computer does not know that, in such a case, multi-
plication has precedence over addition and subtraction. If we want to override the
precedence, then parentheses are needed.

Compilers need to generate assembly code in which one operation is executed at
a time and the result is retained for other operations. Therefore, all expressions have
to be broken down unambiguously into separate operations and put into their proper
order. That is where Polish notation is useful. It allows us to create an expression tree,
which imposes an order on the execution of operations. For example, the first expres-
sion, 2 – 3 · 4 + 5, which is the same as 2 – (3 · 4) + 5, is represented by the tree in
Figure 6.59a. The second and the third expressions correspond to the trees in Figures
6.59b and 6.59c. It is obvious now that in both Figure 6.59a and Figure 6.59c we have
to first multiply 3 by 4 to obtain 12. But 12 is subtracted from 2, according to the tree
in Figure 6.59a, and added to 5, according to Figure 6.59c. There is no ambiguity in-
volved in this tree representation. The final result can be computed only if intermedi-
ate results are calculated first.

276 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.59 Examples of three expression trees and results of their traversals.

*

+–

5432

–

+2

5*

43

+

5–

2 *

43

(a)

2 – 3 * 4 + 5

+ – 2 * 3 4 5Preorder
Inorder
Postorder

2 – 3 * 4 + 5
2 3 4 * – 5 +

(c)

– 2 + * 3 4 5
2 – 3 * 4 + 5
2 3 4 * 5 + –

(b)

* – 2 3 + 4 5
2 – 3 * 4 + 5
2 3 – 4 5 + *

(2 – 3) * (4 + 5) 2 – (3 * 4 + 5)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Notice also that trees do not use parentheses and yet no ambiguity arises. We can
maintain this parentheses-free situation if the expression tree is linearized (that is, if
the tree is transformed into an expression using a tree traversal method). The three
traversal methods relevant in this context are preorder, inorder, and postorder tree
traversals. Using these traversals, nine outputs are generated, as shown in Figure 6.59.
Interestingly, inorder traversal of all three trees results in the same output, which is the
initial expression that caused all the trouble. What it means is that inorder tree traver-
sal is not suitable for generating unambiguous output. But the other two traversals
are. They are different for different trees and are therefore useful for the purpose of
creating unambiguous expressions and sentences.

Because of the importance of these different conventions, special terminology
is used. Preorder traversal generates prefix notation, inorder traversal generates infix
notation, and postorder traversal generates postfix notation. Note that we are accus-
tomed to infix notation. In infix notation, an operator is surrounded by its two
operands. In prefix notation, the operator precedes the operands, and in postfix
notation, the operator follows the operands. Some programming languages are using
Polish notation. For example, Forth and PostScript use postfix notation. LISP and, to
a large degree, LOGO use prefix notation.

6.10.1 Operations on Expression Trees

Binary trees can be created in two different ways: top-down or bottom-up. In the im-
plementation of insertion, the first approach was used. This section applies the second
approach by creating expression trees bottom-up while scanning infix expressions
from left to right.

The most important part of this construction process is retaining the same prece-
dence of operations as in the expression being scanned, as exemplified in Figure 6.59.
If parentheses are not allowed, the task is simple, as parentheses allow for many levels
of nesting. Therefore, an algorithm should be powerful enough to process any num-
ber of nesting levels in an expression. A natural approach is a recursive implementa-
tion. We modify the recursive descent interpreter discussed in Chapter 5’s case study
and outline a recursive descent expression tree constructor.

As Figure 6.59 indicates, a node contains either an operator or an operand, the
latter being either an identifier or a number. To simplify the task, all of them can be
represented as strings in an instance of the class defined as

class ExprTreeNode {
String key;
ExprTreeNode left, right;
ExprTreeNode(String k) {

this(k,null,null);
}
ExprTreeNode(String k, ExprTreeNode pt1, ExprTreeNode pt2) {

key = new String(k); left = pt1; right = pt2;
}
.

}

S e c t i o n 6 . 1 0 P o l i s h N o t a t i o n a n d E x p r e s s i o n T r e e s ■ 277

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Expressions that are converted to trees use the same syntax as expressions in the
case study in Chapter 5. Therefore, the same syntax diagrams can be used. Using these
diagrams, a class ExprTree can be created in which methods for processing a factor
and term have the following pseudocode (a method for processing an expression has
the same structure as the method processing a term):

class ExprTree {
protected ExprTreeNode root;
ExprTreeNode factor() {

if (token is a number, id or operator)
return new ExprTreeNode(token);

else if (token is '(') {
ExprTreeNode p = expr();
if (token is ')')

return p;
else error;

}
}
ExprTreeNode term() {

String oper;
ExprTreeNode p1, p2;
p1 = factor();
while (token is '*' or '/') {

oper = token;
p2 = factor();
p1 = new ExprTreeNode(oper,p1,p2);

}
return p1;

}
.

}

The tree structure of expressions is very suitable for generating assembly code or
intermediate code in compilers, as shown in this pseudocode of a function from
ExprTree class:

void generateCode() {
generateCode(root);

}
String generateCode(ExprTreeNode p) {

if (p.key is a number or id)
return p.key;

else if (p.key.charAt(0) == '+') {
String result = newTemporaryVar();
output "+\t" + generateCode(p.left) +

"\t" + generateCode(p.right) + "\t" + result;

278 ■ C h a p t e r 6 B i n a r y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

return result;
}
.

}

With these methods, an expression

(var2 + n) * (var2 + var1)/5

is transformed into an expression tree shown in Figure 6.60, and from this tree,
generateCode() generates the following intermediate code:

add var2 n _tmp_3
add var2 var1 _tmp_4
mul _tmp_3 _tmp_4 _tmp_2
div _tmp_2 5 _tmp_1

Expression trees are also very convenient for performing other symbolic opera-
tions, such as differentiation. Rules for differentiation (given in the programming as-
signments in Chapter 5) are shown in the form of tree transformations in Figure 6.61
and in the following pseudocode:

differentiate(p,x) {
if (p == 0)

return 0;
if (p.key is the id x)

return new ExprTreeNode("1");
if (p.key is another id or a number)

return new ExprTreeNode("0");
if (p.key is '+' or '–')

return new ExprTreeNode(p.key,differentiate(p.left,x),
differentiate(p.right,x));

if (p.key is '*')
ExprTreeNode *q = new ExprTreeNode("+");
q.left = new ExprTreeNode("*",p.left,new ExprTreeNode(*p.right));

S e c t i o n 6 . 1 0 P o l i s h N o t a t i o n a n d E x p r e s s i o n T r e e s ■ 279

FIGURE 6.60 An expression tree.

var2

+ +

/

5

var1

*

var2 n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

q.left.right = differentiate(q.left.right,x);
q.right = new ExprTreeNode("*",new ExprTreeNode(*p.left),p.right);
q.right.left = differentiate(q.right.left,x);
return q;

.
}

Here p is a reference to the expression to be differentiated with respect to x.
The rule for division is left as an exercise.

6.11 CASE STUDY: COMPUTING WORD FREQUENCIES

One tool in establishing authorship of text in cases when the text is not signed, or it
is attributed to someone else, is using word frequencies. If it is known that an author
A wrote text T1 and the distribution of word frequencies in a text T2 under scrutiny
is very close to the frequencies in T1, then it is likely that T2 was written by author A.

Regardless of how reliable this method is for literary studies, our interest lies in
writing a program that scans a text file and computes the frequency of the occurrence
of words in this file. For the sake of simplification, punctuation marks are disregarded
and case sensitivity is disabled. Therefore, the word man’s is counted as two words,
man and s, although in fact it may be one word (for possessive) and not two words
(contraction for man is or man has). But contractions are counted separately; for ex-
ample, s from man’s is considered a separate word. Similarly, separators in the middle
of words such as hyphens cause portions of the same words to be considered separate
words. For example, pre-existence is split into pre and existence. Also, by disabling case

280 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.61 Tree transformations for differentiation of multiplication and division.

*

Right (Right)'Left

/

–

Right

(Left)'

/
P

Right

differentiate (p)

Left

+

**

Right(Left)'(Right)'Left

*

P

Right

differentiate (p)

Left

Right*

*

/

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

sensitivity, Good in the phrase Mr. Good is considered as another occurrence of the
word good. On the other hand, Good used in its normal sense at the beginning of a
sentence is properly included as another occurrence of good.

This program focuses not so much on linguistics as on building a self-adjusting
binary search tree using the semisplaying technique. If a word is encountered in the
file for the first time, it is inserted in the tree; otherwise, the semisplaying is started
from the node corresponding to this word.

Another concern is storing all predecessors when scanning the tree. It is achieved
by using a reference to the parent. In this way, from each node we can access any
predecessor of this node up to the root of the tree.

Figure 6.62 shows the structure of the tree using the content of a short file, and
Figure 6.63 contains the complete code. The program reads a word, which is any se-
quence of alphanumeric characters that starts with a letter (spaces, punctuation
marks, and the like are discarded) and checks whether the word is in the tree. If so, the
semisplaying technique is used to reorganize the tree and then the word’s frequency
count is incremented. Note that this movement toward the root is accomplished by
changing links of the nodes involved, not by physically transferring information from
one node to its parent and then to its grandparent and so on. If a word is not found in
the tree, it is inserted in the tree by creating a new leaf for it. After all words are
processed, an inorder tree traversal goes through the tree to count all the nodes and
add all frequency counts to print as the final result the number of words in the tree
and the number of words in the file.

S e c t i o n 6 . 1 1 C a s e S t u d y : C o m p u t i n g W o r d F r e q u e n c i e s ■ 281

FIGURE 6.62 Semisplay tree used for computing word frequencies.

YE
2

word
freq

MORE
2

YET
1

LAURELS
1

ONCE

The text processed to produce
this tree is the beginning of
John Milton's poem, Lycidas:

2

BROWN
1

MYRTLES
1

AND
1

O

Yet once more, o ye laurels,
 and once more
ye myrtles brown, .. .

1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

282 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.63 Implementation of word frequency computation.

/************************ BSTNode.java **************************
* node of a generic binary search tree
*/

public class BSTNode {
protected Comparable el;
protected BSTNode left, right;
public BSTNode() {

left = right = null;
}
public BSTNode(Comparable el) {

this(el,null,null);
}
public BSTNode(Comparable el, BSTNode lt, BSTNode rt) {

this.el = el; left = lt; right = rt;
}

}

/************************ BST.java **************************
* generic binary search tree
*/

public class BST {
protected BSTNode root = null;
public BST() {
}
public Comparable search(Comparable el) {

return search(root,el);
}
protected Comparable search(BSTNode p, Comparable el) {

while (p != null)
if (el.equals(p.el))

return p.el;
else if (el.compareTo(p.el) < 0)

p = p.left;
else p = p.right;

return null;
}
public void insert(Comparable el) {

BSTNode p = root, prev = null;
while (p != null) { // find a place for inserting new node;

prev = p;

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 1 1 C a s e S t u d y : C o m p u t i n g W o r d F r e q u e n c i e s ■ 283

FIGURE 6.63 (continued)

if (p.el.compareTo(el) < 0)
p = p.right;

else p = p.left;
}
if (root == null) // tree is empty;

root = new BSTNode(el);
else if (prev.el.compareTo(el) < 0)

prev.right = new BSTNode(el);
else prev.left = new BSTNode(el);

}
protected void visit(BSTNode p) {

System.out.print(p.el + " ");
}
public void inorder() {

inorder(root);
}
protected void inorder(BSTNode p) {

if (p != null) {
inorder(p.left);
visit(p);
inorder(p.right);

}
}
...

}

/************************** SplayTreeNode.java **********************
* node for generic splaying tree class
*/

public class SplayTreeNode extends BSTNode {
protected BSTNode parent;
public SplayTreeNode() {

left = right = parent = null;
}
public SplayTreeNode(Comparable el) {

this(el,null,null,null);
}
public SplayTreeNode(Comparable ob, SplayTreeNode lt,

SplayTreeNode rt, SplayTreeNode pr) {
el = ob; left = lt; right = rt; parent = pr;

}
}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

284 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.63 (continued)

/**************************** SplayTree.java ************************
* generic splaying tree class
*/

public class SplayTree extends BST {
public SplayTree() {

super();
}
private void continueRotation(BSTNode gr, BSTNode par,

BSTNode ch, BSTNode desc) {
if (gr != null) { // if par has a grandparent;

if (gr.right == ((SplayTreeNode)ch).parent)
gr.right = ch;

else gr.left = ch;
}
else root = ch;
if (desc != null)

((SplayTreeNode)desc).parent = par;
((SplayTreeNode)par).parent = ch;
((SplayTreeNode)ch).parent = gr;

}
private void rotateR(SplayTreeNode p) {

p.parent.left = p.right;
p.right = p.parent;
continueRotation(((SplayTreeNode)p.parent).parent,

p.right,p,p.right.left);
}
private void rotateL(SplayTreeNode p) {

p.parent.right = p.left;
p.left = p.parent;
continueRotation(((SplayTreeNode)p.parent).parent,

p.left,p,p.left.right);
}
private void semisplay(SplayTreeNode p) {

while (p != root) {
if (((SplayTreeNode)p.parent).parent == null) // if p's
parent is

if (p.parent.left == p) // the root;
rotateR(p);

else rotateL(p);
else if (p.parent.left == p) // if p is a left child;

if (((SplayTreeNode)p.parent).parent.left == p.parent) {

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 1 1 C a s e S t u d y : C o m p u t i n g W o r d F r e q u e n c i e s ■ 285

FIGURE 6.63 (continued)

rotateR((SplayTreeNode)p.parent);
p = (SplayTreeNode)p.parent;

}
else {

rotateR((SplayTreeNode)p); // rotate p and its
parent;
rotateL((SplayTreeNode)p); // rotate p and its new
parent;

}
else // if p is a right child;

if (((SplayTreeNode)p.parent).parent.right == p.parent) {
rotateL((SplayTreeNode)p.parent);
p = (SplayTreeNode)p.parent;

}
else {

rotateL(p); // rotate p and its parent;
rotateR(p); // rotate p and its new

} // parent;
if (root == null) // update the root;

root = p;
}

}
}

/*********************** WordSplaying.java ***********************/

import java.io.*;

class Word implements Comparable {
private String word = "";
public int freq = 1;
public Word() {
}
public Word(String s) {

word = s;
}
public boolean equals(Object el) {

return word.equals(((Word)el).word);
}
public int compareTo(Object el) {

return word.compareTo(((Word)el).word);

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

286 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.63 (continued)

}
public String toString() {

return word + ": " + freq + " ";
}

}

class WordSplay extends SplayTree {
private int differentWords, // counter of different words in text

// file;
wordCnt; // counter of all words in the same file;

public WordSplay() {
differentWords = wordCnt = 0;

}
protected void visit(BSTNode p) {

differentWords++;
wordCnt += ((Word)p.el).freq;

}
public void run(InputStream fIn, String fileName) {

int ch = 1;
Word p;
try {

while (ch > -1) {
while (true)

if (ch > -1 && !Character.isLetter((char)ch)) // skip
ch = fIn.read(); // nonletters;

else break;
if (ch == -1)

break;
String s = "";
while (ch > -1 && Character.isLetter((char)ch)) {

s += Character.toUpperCase((char)ch);
ch = fIn.read();

}
if ((p = (Word)search(new Word(s))) == null)

insert(new Word(s));
else ((Word)p).freq++;

}
} catch (IOException io) {

System.err.println("A problem with input");
}
inorder();
System.out.println("\n\nFile " + fileName

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This program also illustrates the use of a generic binary search tree. Because scan-
ning this tree requires using comparison and the meaning of comparison varies from
one data type to another, when defining a tree, the comparison has to be used in a
generic way, and only when creating a specific tree is the generic comparison overrid-
den by a definition pertaining to the data type for which the tree was created. This
is accomplished by declaring the element inserted in a generic tree to be of type
Compatible; therefore, a generic tree node BSTNode is defined in terms of

S e c t i o n 6 . 1 1 C a s e S t u d y : C o m p u t i n g W o r d F r e q u e n c i e s ■ 287

FIGURE 6.63 (continued)

+ " contains " + wordCnt + " words among which "
+ differentWords + " are different\n");

}
}

class WordSplaying {
static public void main(String args[]) {

String fileName = "";
InputStream fIn;
BufferedReader buffer = new BufferedReader(

new InputStreamReader(System.in));
try {

if (args.length == 0) {
System.out.print("Enter a file name: ");
fileName = buffer.readLine();
fIn = new FileInputStream(fileName);

}
else {

fIn = new FileInputStream(args[0]);
fileName = args[0];

}
(new WordSplay()).run(fIn,fileName);
fIn.close();

} catch(IOException io) {
System.err.println("Cannot open " + fileName);

}
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

288 ■ C h a p t e r 6 B i n a r y T r e e s

Comparable, and only then a generic binary search tree class BST is defined using
BSTNode. Only now are the methods in the BST class defined with a generic
compareTo() method from Comparable. Figure 6.63 shows search() and
insert() methods, both using compareTo(). Next, a generic SplayTree class is
defined as an extension of BST, and then a specific splaying tree, WordTree, is defined
in terms of the Word class that holds information relevant to the problem of finding
word frequencies. Because Comparable is an interface, the Word class for objects to be
inserted into a splay tree must be defined as a class implementing Comparable, and
the definition of the class must include a definition of the compareTo() method. The
Word class also includes definitions of methods that override generic definitions pro-
vided in the Object class, namely the equals() and toString() methods.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 1 2 E x e r c i s e s ■ 289

FIGURE 6.64 An example of a binary search tree.

7

10

205

301564

0 13

8

6.12 EXERCISES

1. The method search() given in Section 6.3 is well suited for searching binary search
trees. Try to adopt all four traversal algorithms so that they become search procedures
for any binary tree.

2. Write functions

a. to count the number of nodes in a binary tree

b. to count the number of leaves

c. to count the number of right children

d. to find the height of the tree

e. to delete all leaves from a binary tree

3. Write a method that checks whether a binary tree is perfectly balanced.

4. Design an algorithm to test whether a binary tree is a binary search tree.

5. Apply preorder(), inorder(), and postorder() to the tree in Figure 6.64 if
visit(p) in IntBSTNode is defined as:

a. if (p.left != null && p.key - p.left.key < 2)

p.left.key += 2;

b. if (p.left == null)

p.right = null;

c. if (p.left == null)

p.left = new IntBSTNode(p.key-1);

d. { IntBSTNode tmp = p.right;

p.right = p.left;

p.left = tmp;

}

6. For which trees do the preorder and inorder traversals generate the same sequence?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Figure 6.59 indicates that the inorder traversal for different trees can result in the
same sequence. Is this possible for the preorder or postorder traversals? If it is, show
an example.

8. Draw all possible binary search trees for the three elements A, B, and C.

9. What are the minimum and maximum numbers of leaves in a balanced tree of height h?

10. Write a method to create a mirror image of a binary tree.

11. Consider an operation R that for a given traversal method t processes nodes in the
opposite order than t, and an operation C that processes nodes of the mirror image
of a given tree using traversal method t. For the tree traversal methods—preorder,
inorder, and postorder—determine which of the following nine equalities are true:

R(preorder) = C(preorder)
R(preorder) = C(inorder)
R(preorder) = C(postorder)
R(inorder) = C(preorder)
R(inorder) = C(inorder)
R(inorder) = C(postorder)
R(postorder) = C(preorder)
R(postorder) = C(inorder)
R(postorder) = C(postorder)

12. Using inorder, preorder, and postorder tree traversal, visit only leaves of a tree. What
can you observe? How can you explain this phenomenon?

13. (a) Write a method that prints each binary tree rotated to the left with proper inden-
tation, as in Figure 6.65a. (b) Adopt this method to print a threaded tree sideways; if
appropriate, print the key in the successor node, as in Figure 6.65b.

290 ■ C h a p t e r 6 B i n a r y T r e e s

FIGURE 6.65 Printing a binary search tree (a) and a threaded tree (b) growing from left to right.

2

7
6

10
20

5

2(5)

7(10)
6(7)

10
20

5

5

6

72

20

10

5

6

72

20

10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 1 2 E x e r c i s e s ■ 291

14. Outline methods for inserting and deleting a node in a threaded tree in which threads
are put only in the leaves in the way illustrated by Figure 6.66.

15. The tree in Figure 6.66b includes threads linking predecessors and successors accord-
ing to the postorder traversal. Are these threads adequate to perform threaded pre-
order, inorder, and postorder traversals?

16. Apply the method balance() to the English alphabet to create a balanced tree.

17. A sentence Dpq that uses a Sheffer’s alternative is false only if both p and q are
true. In 1925, J. L⁄ ukasiewicz simplified Nicod’s axiom from which all theses of
propositional logic can be derived. Transform the Nicod-L⁄ ukasiewicz axiom into
an infix parenthesized sentence and build a binary tree for it. The axiom is
DDpDqrDDsDssDDsqDDpsDps.

18. Write an algorithm for printing a parenthesized infix expression from an expression
tree. Do not include redundant parentheses.

19. Hibbard’s (1962) algorithm to delete a key from a binary search tree requires that if
the node containing the key has a right child, then the key is replaced by the smallest
key in the right subtree; otherwise, the node with the key is removed. In what respect
is Knuth’s algorithm (deleteByCopying()) an improvement?

20. Define a binary search tree in terms of the inorder traversal.

21. A Fibonacci tree can be considered the worst case AVL tree in that it has the smallest
number of nodes among AVL trees of height h. Draw Fibonacci trees for h = 1,2,3,4
and justify the name of the tree.

22. One-sided height-balanced trees are AVL trees in which only two balance factors are
allowed: –1 and 0 or 0 and +1 (Zweben and McDonald, 1978). What is the rationale
for introducing this type of tree?

23. In lazy deletion, nodes to be deleted are retained in the tree and only marked as
deleted. What are the advantages and disadvantages of this approach?

FIGURE 6.66 Examples of threaded trees.

(b)(a)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

292 ■ C h a p t e r 6 B i n a r y T r e e s

24. What is the number of comparisons and swaps in the best case for creating a heap
using

a. Williams’s method?

b. Floyd’s method?

25. A crossover between Floyd’s and Williams’s methods for constructing a heap is a method
in which an empty position occupied by an element is moved down to the bottom of
the tree and then the element is moved up the tree, as in Williams’s method, from the
position that was just moved down. A pseudocode of this function is as follows:

i = n/2–1; // position of the last parent in the array of n elements;

while (i >= 0)
// Floyd’s phase:
tmp = data[i];
consider element data[i] empty and move it down to the bottom

swapping it every time with larger child;
put tmp in the leaf at which this process ended;
// Williams’s phase: data[i] of the current tree
while tmp is not the root data [i] of the current tree and it is larger

than its parent swap tmp with its parent;
i--; // go to the preceding parent;

It has been shown that this algorithm requires 1.65n comparisons in the average case
(McDiarmid and Reed, 1989). Show changes in the array [2 8 6 1 10 15 3 12 11] during
execution of the algorithm. What is the worst case?

6.13 PROGRAMMING ASSIGNMENTS

1. Write a program that accepts an arithmetic expression written in prefix (Polish) nota-
tion, builds an expression tree, and then traverses the tree to evaluate the expression.
The evaluation should start after a complete expression has been entered.

2. A binary tree can be used to sort n elements of an array data. First, create a complete
binary tree, a tree with all leaves at one level, whose height h =]lg ng + 1, and store all
elements of the array in the first n leaves. In each empty leaf, store an element E greater
than any element in the array. Figure 6.67a shows an example for data = {8, 20, 41, 7,
2}, h =]lg(5)g + 1 = 4, and E = 42. Then, starting from the bottom of the tree, assign to
each node the minimum of its two children values, as in Figure 6.67b, so that the
smallest element emin in the tree is assigned to the root. Next, until the element E is
assigned to the root, execute a loop that in each iteration stores E in the leaf, with the
value of emin, and that, also starting from the bottom, assigns to each node the mini-
mum of its two children. Figure 6.67c displays this tree after one iteration of the loop.

3. Implement a menu-driven program for managing a software store. All information
about the available software is stored in a file software. This information includes
the name, version, quantity, and price of each package. When it is invoked, the pro-
gram automatically creates a binary search tree with one node corresponding to one

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

software package and includes as its key the name of the package and its version.
Another field in this node should include the position of the record in the file
software. The only access to the information stored in software should be
through this tree.

The program should allow the file and tree to be updated when new software
packages arrive at the store and when some packages are sold. The tree is updated in
the usual way. All packages are entry ordered in the file software; if a new package
arrives, then it is put at the end of the file. If the package already has an entry in the
tree (and the file), then only the quantity field is updated. If a package is sold out, the
corresponding node is deleted from the tree, and the quantity field in the file is
changed to 0. For example, if the file has these entries:

S e c t i o n 6 . 1 3 P r o g r a m m i n g A s s i g n m e n t s ■ 293

FIGURE 6.67 Binary tree used for sorting.

2 424242

(a)

8 74120

2

2

422

2 424242

(b)

7

78

8 74120

42

7

4242

42 424242

(c)

7

78

8 74120

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Adobe Photoshop 7.0 21 580
Norton Utilities 10 30
Norton SystemWorks 2003 6 50
Visual J++ Professional 6.0 19 100
Visual J++ Standard 6.0 27 40

then after selling all six copies of Norton SystemWorks 2003, the file is

Adobe Photoshop 7.0 21 580
Norton Utilities 10 30
Norton SystemWorks 2003 0 50
Visual J++ Professional 6.0 19 100
Visual J++ Standard 6.0 27 40

If an exit option is chosen from the menu, the program cleans up the file by moving
entries from the end of the file to the positions marked with 0 quantities. For exam-
ple, the previous file becomes

Adobe Photoshop 7.0 21 580
Norton Utilities 10 45
Visual J++ Standard 6.0 19 40
Visual J++ Professional 6.0 27 100

4. Implement algorithms for constructing expression trees and for differentiating the
expressions they represent. Extend the program to simplify expression trees. For
example, two nodes can be eliminated from the subtrees representing a ± 0, a · 1, or �

1
a

�.

5. Write a cross-reference program that constructs a binary search tree with all words in-
cluded from a text file and records the line numbers on which these words were used.
These line numbers should be stored on linked lists associated with the nodes of the tree.
After the input file has been processed, print in alphabetical order all words of the text
file along with the corresponding list of numbers of the lines in which the words occur.

6. Perform an experiment with alternately applying insertion and deletion of random
elements in a randomly created binary search tree. Apply asymmetric and symmetric
deletions (discussed in this chapter); for both these variants of the deletion
algorithm, alternate deletions strictly with insertions and alternate these operations
randomly. This gives four different combinations. Also, use two different random
number generators to ensure randomness. This leads to eight combinations. Run all
of these combinations for trees of heights 500, 1,000, 1,500, and 2,000. Plot the results
and compare them with the expected IPLs indicated in this chapter.

7. Each unit in a Latin textbook contains a Latin-English vocabulary of words that have
been used for the first time in a particular unit. Write a program that converts a set of
such vocabularies stored in file Latin into a set of English-Latin vocabularies. Make
the following assumptions:

a. Unit names are preceded by a percentage symbol.

b. There is only one entry per line.

c. A Latin word is separated by a colon from its English equivalent(s); if there is
more than one equivalent, they are separated by a comma.

294 ■ C h a p t e r 6 B i n a r y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 6 . 1 3 P r o g r a m m i n g A s s i g n m e n t s ■ 295

To output English words in alphabetical order, create a binary search tree for each
unit containing English words and linked lists of Latin equivalents. Make sure that
there is only one node for each English word in the tree. For example, there is only
one node for and, although and is used twice in unit 6: with words ac and atque. After
the task has been completed for a given unit (that is, the content of the tree has been
stored in an output file), delete the tree along with all linked lists from computer
memory before creating a tree for the next unit.

Here is an example of a file containing Latin-English vocabularies:

%Unit 5
ante : before, in front of, previously
antiquus : ancient
ardeo : burn, be on fire, desire
arma : arms, weapons
aurum : gold
aureus : golden, of gold

%Unit 6
animal : animal
Athenae : Athens
atque : and
ac : and
aurora : dawn

%Unit 7
amo : love
amor : love
annus : year
Asia : Asia

From these units, the program should generate the following output:

%Unit 5
ancient : antiquus
arms : arma
be on fire : ardeo
before : ante
burn : ardeo
desire : ardeo
gold: aurum
golden : aureus
in front of : ante
of gold : aureus
previously : ante
weapons : arma

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

296 ■ C h a p t e r 6 B i n a r y T r e e s

%Unit 6
Athens : Athenae
and : ac, atque
animal : animal
dawn : aurora

%Unit 7
Asia : Asia
love : amor, amo
year : annus

8. Write a program to draw a binary search tree of numbers. The distance between levels
should depend on the height of the tree (use a function from exercise 2). The distance
between nodes on one level is the same and is twice the distance between nodes on
the level above. To determine which link should be drawn, use a version of the
breadth-first traversal that for each dequeued node p that does not correspond to the
last level enqueues its left and right children if p is not null and two null nodes other-
wise. Also, if p is not null, draw a line between p and its parent (unless p is the root),
and draw no line if p is null. The total number of nodes to be processed depends on
the height of the tree and equals 2h-1 (see Figure 6.35).

BIBLIOGRAPHY

Insertions and Deletions

Culberson, Joseph, “The Effect of Updates in Binary Search Trees,” Proceedings of the 17th
Annual Symposium on Theory of Computing (1985), 205–212.

Eppinger, Jeffrey L., “An Empirical Study of Insertion and Deletion in Binary Search Trees,”
Communications of the ACM 26 (1983), 663–669.

Hibbard, Thomas N., “Some Combinatorial Properties of Certain Trees with Applications to
Searching and Sorting,” Journal of the ACM 9 (1962), 13–28.

Jonassen, Arne T., and Knuth, Donald E., “A Trivial Algorithm Whose Analysis Isn’t,” Journal
of Computer and System Sciences 16 (1978), 301–322.

Knuth, Donald E., “Deletions That Preserve Randomness,” IEEE Transactions of Software
Engineering, SE-3 (1977), 351–359.

Tree Traversals

Berztiss, Alfs, “A Taxonomy of Binary Tree Traversals,” BIT 26 (1986), 266–276.

Burkhard, W. A., “Nonrecursive Tree Traversal Algorithms,” Computer Journal 18 (1975),
227–230.

Morris, Joseph M., “Traversing Binary Trees Simply and Cheaply,” Information Processing
Letters 9 (1979), 197–200.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Balancing Trees

Baer, J. L., and Schwab, B., “A Comparison of Tree-Balancing Algorithms,” Communications
of the ACM 20 (1977), 322–330.

Chang, Hsi, and Iyengar, S. Sitharama, “Efficient Algorithms to Globally Balance a Binary
Search Tree,” Communications of the ACM 27 (1984), 695–702.

Day, A. Colin, “Balancing a Binary Tree,” Computer Journal 19 (1976), 360–361.

Martin, W. A., and Ness, D. N., “Optimizing Binary Trees Grown with a Sorting Algorithm,”
Communications of the ACM 1 (1972), 88–93.

Stout, Quentin F., and Warren, Bette L., “Tree Rebalancing in Optimal Time and Space,”
Communications of the ACM 29 (1986), 902–908.

AVL Trees

Adel’son-Vel’skii, G. M., and Landis, E. M.,“An Algorithm for the Organization of Information,”
Soviet Mathematics 3 (1962), 1259–1263.

Foster, Caxton C., “A Generalization of AVL Trees,” Communications of the ACM 16 (1973),
512–517.

Karlton, P. L., Fuller, S. H., Scroggs, R. E., and Kaehler, E. B., “Performance of Height-Balanced
Trees,” Communications of the ACM 19 (1976), 23–28.

Knuth, Donald, The Art of Computer Programming, Vol. 3: Sorting and Searching, Reading, MA:
Addison-Wesley, 1998.

Zweben, S. H., and McDonald, M. A., “An Optimal Method for Deletion in One-Sided Height
Balanced Trees,” Communications of the ACM 21 (1978), 441–445.

Self-Adjusting Trees

Allen, Brian, and Munro, Ian, “Self-Organizing Binary Search Trees,” Journal of the ACM 25
(1978), 526–535.

Bell, Jim, and Gupta, Gopal, “An Evaluation of Self-Adjusting Binary Search Tree Techniques,”
Software—Practice and Experience 23 (1993), 369–382.

Bitner, James R., “Heuristics That Dynamically Organize Data Structures,” SIAM Journal on
Computing 8 (1979), 82–110.

Sleator, Daniel D., and Tarjan, Robert E., “Self-Adjusting Binary Search Trees,” Journal of the
ACM 32 (1985), 652–686.

Heaps

Bollobés, B., and Simon, I., “Repeated Random Insertion into a Priority Queue Structure,”
Journal of Algorithms 6 (1985), 466–477.

Doberkat, E. E., “An Average Case of Floyd’s Algorithm to Construct Heaps,” Information and
Control 61 (1984), 114–131.

B i b l i o g r a p h y ■ 297

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Floyd, Robert W., “Algorithm 245: Treesort 3,” Communications of the ACM 7 (1964), 701.

Frieze, A., “On the Random Construction of Heaps,” Information Processing Letters 27 (1988),
103.

Gonnett, Gaston H., and Munro, Ian, “Heaps on Heaps,” SIAM Journal on Computing 15
(1986), 964–971.

Hayward, Ryan, and McDiarmid, Colin, “Average Case Analysis of Heap Building by Repeated
Insertion,” Journal of Algorithms 12 (1991), 126–153.

McDiarmid, C. J. H., and Reed, B. A., “Building Heaps Fast,” Journal of Algorithms 10 (1989),
351–365.

Weiss, Mark A., Data Structures and Algorithm Analysis, Redwood City, CA: Benjamin
Cummings, 1992, Ch. 6.

Williams, J. W. J., “Algorithm 232: Heapsort,” Communications of the ACM 7 (1964), 347–348.

298 ■ C h a p t e r 6 B i n a r y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A t the beginning of the preceding chapter, a general definition of a tree was
given, but the thrust of that chapter was binary trees, in particular, binary
search trees. A tree was defined as either an empty structure or a structure

whose children are disjoint trees t1, . . . , tm. According to this definition, each node of
this kind of tree can have more than two children. This tree is called a multiway tree of
order m, or an m-way tree.

In a more useful version of a multiway tree, an order is imposed on the keys
residing in each node. A multiway search tree of order m, or an m-way search tree, is a
multiway tree in which

1. Each node has m children and m – 1 keys.

2. The keys in each node are in ascending order.

3. The keys in the first i children are smaller than the ith key.

4. The keys in the last m – i children are larger than the ith key.

The m-way search trees play the same role among m-way trees that binary search
trees play among binary trees, and they are used for the same purpose: fast informa-
tion retrieval and update. The problems they cause are similar. The tree in Figure 7.1
is a 4-way tree in which accessing the keys can require a different number of tests for
different keys: The number 35 can be found in the second node tested, and 55 is in the
fifth node checked. The tree, therefore, suffers from a known malaise: It is unbal-
anced. This problem is of particular importance if we want to use trees to process data
on secondary storage such as disks or tapes where each access is costly. Constructing
such trees requires a more careful approach.

299

Multiway
Trees 7

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

300 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.1 A 4-way tree.

100

57

50 60 80

63 70 73

52 54

55 56

61 62

30 35 58 59

7.1 THE FAMILY OF B-TREES

The basic unit of I/O operations associated with a disk is a block. When information
is read from a disk, the entire block containing this information is read into memory,
and when information is stored on a disk, an entire block is written to the disk. Each
time information is requested from a disk, this information has to be located on the
disk, the head has to be positioned above the part of the disk where the information
resides, and the disk has to be spun so that the entire block passes underneath the
head to be transferred to memory. This means that there are several time components
for data access:

access time = seek time + rotational delay (latency) + transfer time

This process is extremely slow compared to transferring information within
memory. The first component, seek time, is particularly slow because it depends on
the mechanical movement of the disk head to position the head at the correct track
of the disk. Latency is the time required to position the head above the correct block,
and on the average, it is equal to the time needed to make one-half of a revolution. For
example, the time needed to transfer 5KB (kilobytes) from a disk requiring 40 ms
(milliseconds) to locate a track, making 3,000 revolutions per minute and with a data
transfer rate of 1,000KB per second, is

access time = 40 ms + 10 ms + 5 ms = 55 ms

This example indicates that transferring information to and from the disk is on
the order of milliseconds. On the other hand, the CPU processes data on the order of
microseconds, 1,000 times faster, or on the order of nanoseconds, 1 million times
faster, or even faster. We can see that processing information on secondary storage can
significantly decrease the speed of a program.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 301

If a program constantly uses information stored in secondary storage, the charac-
teristics of this storage have to be taken into account when designing the program. For
example, a binary search tree can be spread over many different blocks on a disk, as in
Figure 7.2, so that an average of two blocks have to be accessed. When the tree is used
frequently in a program, these accesses can significantly slow down the execution time
of the program. Also, inserting and deleting keys in this tree require many block ac-
cesses. The binary search tree, which is such an efficient tool when it resides entirely in
memory, turns out to be an encumbrance. In the context of secondary storage, its oth-
erwise good performance counts very little because the constant accessing of disk
blocks that this method causes severely hampers this performance.

It is also better to access a large amount of data at one time than to jump from
one position on the disk to another to transfer small portions of data. For example, if
10KB have to be transferred, then using the characteristics of the disk given earlier, we
see that

access time = 40 ms + 10 ms + 10 ms = 60 ms

However, if this information is stored in two 5KB pieces, then

access time = 2 · (40 ms + 10 ms + 5 ms) = 110 ms

which is nearly twice as long as in the previous case. The reason is that each disk access is
very costly; if possible, the data should be organized to minimize the number of accesses.

7.1.1 B-Trees
In database programs where most information is stored on disks or tapes, the time
penalty for accessing secondary storage can be significantly reduced by the proper
choice of data structures. B-trees (Bayer and McCreight, 1972) are one such approach.

A B-tree operates closely with secondary storage and can be tuned to reduce the
impediments imposed by this storage. One important property of B-trees is the size of
each node, which can be made as large as the size of a block. The number of keys in

FIGURE 7.2 Nodes of a binary tree can be located in different blocks on a disk.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

one node can vary depending on the sizes of the keys, organization of the data (are
only keys kept in the nodes or entire records?), and of course, on the size of a block.
Block size varies for each system. It can be 512 bytes, 4KB, or more; block size is the
size of each node of a B-tree. The amount of information stored in one node of the B-
tree can be rather large.

A B-tree of order m is a multiway search tree with the following properties:

1. The root has at least two subtrees unless it is a leaf.

2. Each nonroot and each nonleaf node holds k – 1 keys and k references to subtrees
where]m/2g ≤ k ≤ m.

3. Each leaf node holds k – 1 keys where]m/2g ≤ k ≤ m.

4. All leaves are on the same level.1

According to these conditions, a B-tree is always at least half full, has few levels, and is
perfectly balanced.

A node of a B-tree is usually implemented as a class containing an array of
m – 1 cells for keys, an m-cell array of references to other nodes, and possibly other in-
formation facilitating tree maintenance, such as the number of keys in a node and a
leaf/nonleaf flag, as in

class BTreeNode {
int m = 4;
boolean leaf = true;
int keyTally = 1;
int keys[] = new int[m-1];
BTreeNode references[] = new BTreeNode[m];
BTreeNode(int key) {

keys[0] = key;
for (int i = 0; i < m; i++)

references[i] = null;
}

}

Usually, m is large (50–500) so that information stored in one page or block of
secondary storage can fit into one node. Figure 7.3a contains an example of a B-tree of
order 7 that stores codes for some items. In this B-tree, the keys appear to be the only
objects of interest. In most cases, however, such codes would only be fields of larger
structures. In these cases, the array keys is an array of objects, each having a unique
identifier field (such as the identifying code in Figure 7.3a) and an address field, the
address of the entire record on secondary storage, as in Figure 7.3b.2 If the contents of

302 ■ C h a p t e r 7 M u l t i w a y T r e e s

1 In this definition, the order of a B-tree specifies the maximum number of children. Some-
times nodes of a B-tree of order m are defined as having k keys and k + 1 references where
m ≤ k ≤ 2m, which specifies the minimum number of children.

2 Figure 7.3 reflects the logic of the situation; in actual implementation, the array keys is
an array of references to objects, and each object has a key field and an address field.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

one such node also reside in secondary storage, each key access would require two sec-
ondary storage accesses. In the long run, this is better than keeping the entire records
in the nodes, because in this case, the nodes can hold a very small number of such
records. The resulting B-tree is much deeper, and search paths through it are much
longer than in a B-tree with the addresses of records.

From now on, B-trees will be shown in an abbreviated form without explicitly in-
dicating keyTally or the reference fields, as in Figure 7.4.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 303

FIGURE 7.4 A B-tree of order 5 shown in an abbreviated form.

6 8 11 12 16 18 21 25 27 29 54 56

50

70 8010 15 20

71 76 81 89

FIGURE 7.3 One node of a B-tree of order 7 (a) without and (b) with an additional indirection.

AB123

ST023

PQ12 SF012 ST023 \ \
\ \

4

(a)

(b)

SF012PQ12AB1234

Data file

\ \\

\ \

\

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Searching in a B-Tree

An algorithm for finding a key in a B-tree is simple, and is coded as follows:

public BTreeNode BTreeSearch(int key) {
return BTreeSearch(key,root);

}
protected BTreeNode BTreeSearch(int key, BTreeNode node) {

if (node != null) {
int i = 1;
for (; i <= node.keyTally && node.keys[i-1] < key; i++);
if (i > node.keyTally || node.keys[i-1] > key)

return BTreeSearch(key,node.references[i-1]);
else return node;

}
else return null;

}
The worst case of searching is when a B-tree has the smallest allowable number of ref-
erences per nonroot node, q =]m/2g, and the search has to reach a leaf (for either a
successful or an unsuccessful search). In this case, in a B-tree of height h, there are

1 key in the root +

2(q – 1) keys on the second level +

2q(q – 1) keys on the third level +

2q2(q – 1) keys on the fourth level +

� +

2qh–2(q – 1) keys in the leaves (level h) =

1 + ��
h– 2

i = 0

2qi� (q – 1) keys in the B-tree +

With the formula for the sum of the first n elements in a geometric progression,

�
n

i = 0

qi = �
qn

q

+

–

1 –
1

1
�

the number of keys in the worst-case B-tree can be expressed as

1 + 2(q – 1) ��
h – 2

i = 0

qi� = 1 + 2(q – 1) ��q
h

q

–1

–
–
1

1
�� = –1 + 2qh–1

The relation between the number n of keys in any B-tree and the height of the B-tree
is then expressed as

n ≥ –1 + 2qh–1

Solving this inequality for the height h results in

h ≤ logq �
n +

2
1

� + 1

This means that for a sufficiently large order m, the height is small even for a large
number of keys stored in the B-tree. For example, if m = 200 and n = 2,000,000, then

304 ■ C h a p t e r 7 M u l t i w a y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

h ≤ 4; in the worst case, finding a key in this B-tree requires four seeks. If the root can
be kept in memory at all times, this number can be reduced to only three seeks into
secondary storage.

Inserting a Key into a B-Tree

Both the insertion and deletion operations appear to be somewhat challenging if we
remember that all leaves have to be at the last level. Not even balanced binary trees re-
quire that. Implementing insertion becomes easier when the strategy of building a
tree is changed. When inserting a node into a binary search tree, the tree is always
built from top to bottom, resulting in unbalanced trees. If the first incoming key is the
smallest, then this key is put in the root, and the root does not have a left subtree un-
less special provisions are made to balance the tree.

But a tree can be built from the bottom up so that the root is an entity always in
flux, and only at the end of all insertions can we know for sure the contents of the
root. This strategy is applied to inserting keys into B-trees. In this process, given an in-
coming key, we go directly to a leaf and place it there, if there is room. When the leaf is
full, another leaf is created, the keys are divided between these leaves, and one key is
promoted to the parent. If the parent is full, the process is repeated until the root is
reached and a new root created.

To approach the problem more systematically, there are three common situations
encountered when inserting a key into a B-tree.

1. A key is placed in a leaf that still has some room, as in Figure 7.5. In a B-tree of order
5, a new key, 7, is placed in a leaf, preserving the order of the keys in the leaf so that
key 8 must be shifted to the right by one position.

2. The leaf in which a key should be placed is full, as in Figure 7.6. In this case, the leaf is
split, creating a new leaf, and half of the keys are moved from the full leaf to the new
leaf. But the new leaf has to be incorporated into the B-tree. The middle key is moved
to the parent, and a reference to the new leaf is placed in the parent as well. The same
procedure can be repeated for each internal node of the B-tree so that each such split
adds one more node to the B-tree. Moreover, such a split guarantees that each leaf
never has less than]m/2g – 1 keys.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 305

FIGURE 7.5 A B-tree (a) before and (b) after insertion of the number 7 into a leaf that has
available cells.

13 155 8

12

(a)

13 155 7 8

12

(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. A special case arises if the root of the B-tree is full. In this case, a new root and a new
sibling of the existing root have to be created. This split results in two new nodes in
the B-tree. For example, after inserting the key 13 in the third leaf in Figure 7.7a, the
leaf is split (as in case 2), a new leaf is created, and the key 15 is about to be moved to
the parent, but the parent has no room for it (7.7b). So the parent is split (7.7c), but
now two B-trees have to be combined into one. This is achieved by creating a new
root and moving the middle key to it (7.7d). It should be obvious that it is the only
case in which the B-tree increases in height.

An algorithm for inserting keys in B-trees follows:

BTreeInsert (K)
find a leaf node to insert K;
while (true)

find a proper position in array keys for K;
if node is not full

insert K and increment keyTally;
return;

else split node into node1 and node2;// node1 = node, node2 is new;
distribute keys and references evenly between node1 and node2 and
initialize properly their keyTally’s;
K = middle key;
if node was the root

create a new root as parent of node1 and node2;
put K and references to node1 and node2 in the root, and set its keyTally to 1;
return;

else node = its parent;// and now process the node’s parent;

306 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.6 Inserting the number 6 into a full leaf.

13 152 5 7 8

12

(a)

13 157 82 5

6

12

(b)

13 157 82 5

6 12

(c)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 7.8 shows the growth of a B-tree of order 5 in the course of inserting new
keys. Note that at all times the tree is perfectly balanced.

A variation of this insertion strategy uses presplitting: When a search is made
from the top down for a particular key, each visited node that is already full is split. In
this way, no split has to be propagated upward.

How often are node splits expected to occur? A split of the root node of a B-tree
creates two new nodes. All other splits add only one more node to the B-tree. During
the construction of a B-tree of p nodes, p – h splits have to be performed, where h is
the height of the B-tree. Also, in a B-tree of p nodes, there are at least

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 307

FIGURE 7.7 Inserting the number 13 into a full leaf.

18 19

6Insert 13 12 20 30

15

21 23 25 287 8 10 112 3 4 5 13 14

(b)

21 23 25 28

6 12 20 30

31 33 34 357 8 10 112 3 4 5 14 15 18 19

(a)

31 33 34 35

15

18 19

6 12 20 30

21 23 25 287 8 10 112 3 4 5 13 14

(c)

31 33 34 35

18 19

6 12 20 30

21 23 25 287 8 10 112 3 4 5 13 14

(d)

31 33 34 35

15

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

308 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.8 Building a B-tree of order 5 with the BTreeInsert() algorithm.

16Insert 22, 23, 24

Insert 18, 25, 7, 13, 20

18 20

3 8 16 25

27 375 6 71 2 13 14 15

(e)

18 20

3 8 22 25

23 245 6 71 2 13 14 15

(f)

27 37

Insert 27, 37

27 37

3 8 16

5 61 2 14 15

(d)

Insert 1, 16, 6, 5 3 8

5 61 2 14 15 16

(c)

Insert 3

Insert 8, 14, 2, 15

8

14 152 3

(b)

(a)

2 8 14 15

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1 + (]m/2g – 1)(p – 1)

keys. The rate of splits with respect to the number of keys in the B-tree can be given by

After dividing the numerator and denominator by p – h and observing that �
p–

1
h

� → 0
and �

p
p

–
–

h
1

� → 1 with the increase of p, the average probability of a split is

�]m/2
1g – 1
�

For example, for m = 10, this probability is equal to .25; for m = 100, it is .02; and for
m = 1,000, it is .002, and expectedly so: The larger the capacity of one node, the less
frequently splits occur.

Deleting a Key from a B-Tree

Deletion is to a great extent a reversal of insertion, although it has more special cases.
Care has to be taken to avoid allowing any node to be less than half full after a dele-
tion. This means that nodes sometimes have to be merged.

In deletion, there are two main cases: deleting a key from a leaf and deleting a
key from a nonleaf node. In the latter case, we will use a procedure similar to
deleteByCopying() used for binary search trees (Section 6.6).

1. Deleting a key from a leaf.

1.1 If, after deleting a key K, the leaf is at least half full and only keys greater
than K are moved to the left to fill the hole (see Figures 7.9a–b), this is the
inverse of insertion’s case 1.

1.2 If, after deleting K, the number of keys in the leaf is less than]m/2g – 1,
causing an underflow:

1.2.1 If there is a left or right sibling with the number of keys exceeding
the minimal]m/2g – 1, then all keys from this leaf and this sibling
are redistributed between them by moving the separator key from
the parent to the leaf and moving the middle key from the node and
the sibling combined to the parent (see Figures 7.9b–c).

1.2.2 If the leaf underflows and the number of keys in its siblings is]m/2g – 1,
then the leaf and a sibling are merged; the keys from the leaf, from its
sibling, and the separating key from the parent are all put in the leaf,
and the sibling node is discarded. The keys in the parent are moved if
a hole appears (see Figures 7.9c–d). This can initiate a chain of opera-
tions if the parent underflows. The parent is now treated as though
it were a leaf, and either step 1.2.2 is repeated until step 1.2.1 can be
executed or the root of the tree has been reached. This is the inverse
of insertion’s case 2.

p – h
���
1 + (]m/2g – 1)(p – 1)

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 309

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

310 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.9 Deleting keys from a B-tree.

16

18 20

3 8 22 25

23 245 6 71 2 13 14 15

(a)

27 37

16Delete 6

18 20

3 8 22 25

23 245 71 2 13 14 15

(b)

27 37

16Delete 7

18 20

3 13 22 25

23 245 81 2 14 15

(c)

27 37

16Delete 8

Delete 8 cont.

18 20

3 22 25

23 245 13 14 151 2

(d)

27 37

23 24

3 16 22 25

27 375 13 14 151 2 18 20

(e)

Delete 16

23 24

3 15 22 25

27 375 13 141 2 18 20

(f)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 311

1.2.2.1 A particular case results in merging a leaf or nonleaf with its
sibling when its parent is the root with only one key. In this
case, the keys from the node and its sibling, along with the only
key of the root, are put in the node, which becomes a new root,
and both the sibling and the old root nodes are discarded. This
is the only case when two nodes disappear at one time. Also,
the height of the tree is decreased by one (see Figures 7.9c–e).
This is the inverse of insertion’s case 3.

2. Deleting a key from a nonleaf. This may lead to problems with tree reorganiza-
tion. Therefore, deletion from a nonleaf node is reduced to deleting a key from
a leaf. The key to be deleted is replaced by its immediate predecessor (the succes-
sor could also be used), which can only be found in a leaf. This successor key is
deleted from the leaf, which brings us to the preceding case 1 (see Figures 7.9e–f).

Here is the deletion algorithm:

BTreeDelete(K)
node = BTreeSearch(K,root);
if (node != null)

if node is not a leaf
find a leaf with the closest predecessor S of K;
copy S over K in node;
node = the leaf containing S;
delete S from node;

else delete K from node;
while (true)

if node does not underflow
return;

else if there is a sibling of node with enough keys
redistribute the keys between node and its sibling;
return;

else if node’s parent is the root
if the parent has only one key

merge node, its sibling, and the parent to form a new root;
else merge node and its sibling;
return;

else merge node and its sibling;
node = its parent;

B-trees, according to their definition, are guaranteed to be at least 50 percent full, so
it may happen that 50 percent of space is basically wasted. How often does this happen?
If it happens too often, then the definition must be reconsidered or some other restric-
tions imposed on this B-tree. Analyses and simulations, however, indicate that after a
series of numerous random insertions and deletions, the B-tree is approximately 69 per-
cent full (Yao, 1978), after which the changes in the percentage of occupied cells are very
small. But it is very unlikely that the B-tree will ever be filled to the brim, so some addi-
tional stipulations are in order.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7.1.2 B*-Trees

Because each node of a B-tree represents a block of secondary memory, accessing one
node means one access of secondary memory, which is expensive compared to access-
ing keys in the node residing in primary memory. Therefore, the fewer nodes that are
created, the better.

A B*-tree is a variant of the B-tree, and was introduced by Donald Knuth and
named by Douglas Comer. In a B*-tree, all nodes except the root are required to be at
least two-thirds full, not just half full as in a B-tree. More precisely, the number of keys
in all nonroot nodes in a B-tree of order m is now k for ⎣�

2m
3
–1
�⎦ ≤ k ≤ m – 1. The fre-

quency of node splitting is decreased by delaying a split, and when the time comes, by
splitting two nodes into three, not one into two. The average utilization of B*-tree is
81 percent (Leung, 1984).

A split in a B*-tree is delayed by attempting to redistribute the keys between a
node and its sibling when the node overflows. Figure 7.10 contains an example of a
B*-tree of order 9. The key 6 is to be inserted into the left node, which is already full.
Instead of splitting the node, all keys from this node and its sibling are evenly divided
and the median key, key 10, is put into the parent. Notice that this evenly divides not
only the keys, but also the free spaces so that the node which was full is now able to ac-
commodate one more key.

If the sibling is also full, a split occurs: One new node is created, the keys from the
node and its sibling (along with the separating key from the parent) are evenly divided
among three nodes, and two separating keys are put into the parent (see Figure 7.11).
All three nodes participating in the split are guaranteed to be two-thirds full.

312 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.10 Overflow in a B*-tree is circumvented by redistributing keys between an overflowing
node and its sibling.

12

(b)

16 18 25 27 3028

10Insert 6

0 1 2 5 6 97

18

(a)

25 27 28 30

16

0 1 2 5 7 10 129

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note that, as may be expected, this increase of a fill factor can be done in a variety
of ways, and some database systems allow the user to choose a fill factor between .5
and 1. In particular, a B-tree whose nodes are required to be at least 75 percent full is
called a B**-tree (McCreight, 1977). The latter suggests a generalization: A Bn-tree is a
B-tree whose nodes are required to be �n

n
+
+

1
2

� full.

7.1.3 B+-Trees
Because one node of a B-tree represents one secondary memory page or block, the
passage from one node to another requires a time-consuming page change. Therefore,
we would like to make as few node accesses as possible. What happens if we request
that all the keys in the B-tree be printed in ascending order? An inorder tree traversal
can be used that is easy to implement, but for nonterminal nodes, only one key is dis-
played at a time and then another page has to be accessed. Therefore, we would like to
enhance B-trees to allow us to access data sequentially in a faster manner than using
inorder traversal. A B+-tree offers a solution (Wedekind, 1974).3

In a B-tree, references to data are made from any node of the tree, but in a B+-tree,
these references are made only from the leaves. The internal nodes of a B+-tree are in-
dexes for fast access of data; this part of the tree is called an index set. The leaves have a
different structure than other nodes of the B+-tree, and usually they are linked sequen-
tially to form a sequence set so that scanning this list of leaves results in data given in as-
cending order. Hence, a B+-tree is truly a B plus tree: It is an index implemented as a

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 313

FIGURE 7.11 If a node and its sibling are both full in a B*-tree, a split occurs: A new node is
created and keys are distributed between three nodes.

7

(b)

8 9 10 12 18 25 27 28 29 30

6Insert 4 16

0 1 2 4 5

12

(a)

16 18 25 27 28 29 30

10

0 1 2 5 6 8 97

3 Wedekind, who considered these trees to be only “a slight variation” of B-trees, called them
B*-trees.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

regular B-tree plus a linked list of data. Figure 7.12 contains an example of a B+-tree.
Note that internal nodes store keys, references to other nodes, and a key count. Leaves
store keys, references to records in a data file associated with the keys, and references to
the next leaf.

Operations on B+-trees are not very different from operations on B-trees. Insert-
ing a key into a leaf that still has some room requires putting the keys of this leaf in
order. No changes are made in the index set. If a key is inserted into a full leaf, the leaf
is split, the new leaf node is included in the sequence set, all keys are distributed evenly
between the old and the new leaves, and the first key from the new node is copied (not
moved, as in a B-tree) to the parent. If the parent is not full, this may require local re-
organization of the keys of the parent (see Figure 7.13). If the parent is full, the split-
ting process is performed the same way as in B-trees. After all, the index set is a B-tree.
In particular, keys are moved, not copied, in the index set.

Deleting a key from a leaf leading to no underflow requires putting the remaining
keys in order. No changes are made to the index set. In particular, if a key that occurs
only in a leaf is deleted, then it is simply deleted from the leaf but can remain in the
internal node. The reason is that it still serves as a proper guide when navigating down
the B+-tree because it still properly separates keys between two adjacent children even
if the separator itself does not occur in either of the children. The deletion of key 6
from the tree in Figure 7.13b results in the tree in Figure 7.14a. Note that the number
6 is not deleted from an internal node.

314 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.12 An example of a B+-tree of order 4.

AB203 AS09 BC263

CD2441

BF90 BQ3222

BF90 BF1302 BQ322 CD1232

CD244 CF032

CF04 DR3002

CF04 CF05 DP1023 DR300 DR3052

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 315

FIGURE 7.14 Actions after deleting the number 6 from the B+-tree in Figure 7.13b.

6 11

Delete 6

Delete 2

19

29

19 2611

(a)

13 158 101 2

11 19

29

19

(b)

2611 13 151 8 10

FIGURE 7.13 An attempt to insert the number 6 into the first leaf of a B+-tree.

6 11

Insert 6

19

29

19 2611

(b)

13 156 8 101 2

11 19

29

19

(a)

2611 13 151 2 8 10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When the deletion of a key from a leaf causes an underflow, then either the keys
from this leaf and the keys of a sibling are redistributed between this leaf and its sib-
ling or the leaf is deleted and the remaining keys are included in its sibling. Figure
7.14b illustrates the latter case. After deleting the number 2, an underflow occurs
and two leaves are combined to form one leaf. The separating key is removed from
the parent and keys in the parent are put in order. Both these operations require up-
dating the separator in the parent. Also, removing a leaf may trigger merges in the
index set.

7.1.4 Prefix B+-Trees
If a key occurred in a leaf and in an internal node of a B+-tree, then it is enough to
delete it only from the leaf because the key retained in the node is still a good guide in
subsequent searches. So it really does not matter whether a key in an internal node is
in any leaf or not. What counts is that it is an acceptable separator for keys in adjacent
children; for example, for two keys K1 and K2, the separator s must meet the condition
K1 < s ≤ K2. This property of the separator keys is also retained if we make keys in in-
ternal nodes as small as possible by removing all redundant contents from them and
still have a properly working B+-tree.

A simple prefix B+-tree (Bayer and Unterauer, 1977) is a B+-tree in which the cho-
sen separators are the shortest prefixes that allow us to distinguish two neighboring
index keys. For example, in Figure 7.12, the left child of the root has two keys, BF90
and BQ322. If a key is less than BF90, the first leaf is chosen; if it is less than BQ322,
the second leaf is the right pick. But observe that we also have the same results, if
instead of BF90, keys BF9 or just BF are used and instead of BQ322, one of three pre-
fixes of this key is used: BQ32, BQ3, or just BQ. After choosing the shortest prefixes
of both keys, if any key is less than BF, the search ends up in the first leaf, and if the
key is less than BQ, the second leaf is chosen; the result is the same as before. Reduc-
ing the size of the separators to the bare minimum does not change the result of the
search. It only makes separators smaller. As a result, more separators can be placed
in the same node, whereby such a node can have more children. The entire B+-tree
can have fewer levels, which reduces the branching factor and makes processing the
tree faster.

This reasoning does not stop at the level of parents of the leaves. It is carried over
to any other level so that the entire index set of a B+-tree is filled with prefixes (see
Figure 7.15).

The operations on simple prefix B+-trees are much the same as the operations on
B+-trees with certain modifications to account for prefixes used as separators. In par-
ticular, after a split, the first key from the new node is neither moved nor copied to the
parent, but the shortest prefix is found that differentiates it from the prefix of the last
key in the old node; and the shortest prefix is then placed in the parent. For deletion,
however, some separators retained in the index set may turn out to be too long, but to
make deletion faster, they do not have to be immediately shortened.

316 ■ C h a p t e r 7 M u l t i w a y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The idea of using prefixes as separators can be carried even further if we observe
that prefixes of prefixes can be omitted in lower levels of the tree, which is the idea be-
hind a prefix B+-tree. This method works particularly well if prefixes are long and rep-
etitious. Figure 7.16 contains an example. Each key in the tree has a prefix AB12XY,
and this prefix appears in all internal nodes. This is redundant; Figure 7.16b shows the
same tree with “AB12XY” stripped from prefixes in children of the root. To restore the
original prefix, the key from the parent node, except for its last character, becomes
the prefix of the key found in the current node. For example, the first cell of the child
of the root in Figure 7.16b has the key “08.” The last character of the key in the root is
discarded and the obtained prefix, “AB12XY,” is put in front of “08.” The new prefix,
“AB12XY08,” is used to determine the direction of the search.

How efficient are prefix B+-trees? Experimental runs indicate that there is almost
no difference in the time needed to execute algorithms in B+-trees and simple prefix
B+-trees, but prefix B+-trees need 50–100 percent more time. In terms of disk accesses,
there is no difference between these trees in the number of times the disk is accessed
for trees of 400 nodes or less. For trees of 400–800 nodes, both simple prefix B+-trees
and prefix B+-trees require 20–25 percent fewer accesses (Bayer and Unterauer, 1977).
This indicates that simple prefix B+-trees are a viable option, but prefix B+-trees re-
main largely of theoretical interest.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 317

FIGURE 7.15 A B+-tree from Figure 7.12 presented as a simple prefix B+-tree.

AB203 AS09 BC263

CD21

BF BQ2

BF90 BF1302 BQ322 CD1232

CD244 CF032

CF04 DR2

CF04 CF05 DP1023 DR300 DR3052

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

318 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.16 (a) A simple prefix B+-tree and (b) its abbreviated version presented as a prefix B+-tree.

(a
)

A
B

12
X

Y
15

B
C

A
B

12
X

Y
15

D
E

A
B

12
X

Y
16

A
B

3
A

B
12

X
Y

09
PR

A
B

12
X

Y
09

X
Y

A
B

12
X

Y
09

Y
Z

3

A
B

12
X

Y
10

A
B

A
B

12
X

Y
12

A
B

A
B

12
X

Y
12

B
C

3
A

B
12

X
Y

05
PR

A
B

12
X

Y
05

R
Q

A
B

12
X

Y
06

R
S

3

A
B

12
X

Y
12

C
A

B
12

X
Y

15
2

A
B

12
X

Y
1

1

A
B

12
X

Y
08

A
B

12
X

Y
09

P
2

A
B

12
X

Y
12

C
D

A
B

12
X

Y
13

D
F

A
B

12
X

Y
13

FG
3

A
B

12
X

Y
08

PR
A

B
12

X
Y

09
B

C
A

B
12

X
Y

09
G

H
3

(b
)

A
B

12
X

Y
15

B
C

A
B

12
X

Y
15

D
E

A
B

12
X

Y
16

A
B

3
A

B
12

X
Y

09
PR

A
B

12
X

Y
09

X
Y

A
B

12
X

Y
09

Y
Z

3

A
B

12
X

Y
10

A
B

A
B

12
X

Y
12

A
B

A
B

12
X

Y
12

B
C

3
A

B
12

X
Y

05
PR

A
B

12
X

Y
05

R
Q

A
B

12
X

Y
06

R
S

3

12
C

15

A
B

12
X

Y
1

08
09

P

A
B

12
X

Y
12

C
D

A
B

12
X

Y
13

D
F

A
B

12
X

Y
13

FG
3

A
B

12
X

Y
08

PR
A

B
12

X
Y

09
B

C
A

B
12

X
Y

09
G

H
3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7.1.5 Bit-Trees
A very interesting approach is, in a sense, taking to the extreme the prefix B+-tree
method. In this method, bytes are used to specify separators. In bit-trees, the bit level
is reached (Ferguson, 1992).

The bit-tree is based on the concept of a distinction bit (D-bit). A distinction bit
D(K,L) is the number of the most significant bit that differs in two keys, K and L, and
D(K,L) = key-length-in-bits – 1 – ⎣lg(K xor L)⎦. For example, the D-bit for the letters
“K” and “N”, whose ASCII codes are 01001011 and 01001110, is 5, the position at
which the first difference between these keys has been detected; D(“K”,“N”) = 8 – 1 –
⎣lg 5⎦ = 5.

A bit-tree uses D-bits to separate keys in the leaves only; the remaining part of the
tree is a prefix B+-tree. This means that the actual keys and entire records from which
these keys are extracted are stored in a data file so that the leaves can include much
more information than would be the case when the keys were stored in them. The leaf
entries refer to the keys indirectly by specifying distinction bits between keys corre-
sponding to neighboring locations in the leaf (see Figure 7.17).

Before presenting an algorithm for processing data with bit-trees, some useful
properties of D-bits need to be discussed. All keys in the leaves are kept in ascending
order. Therefore, Di = D(Ki–1,Ki) indicates the leftmost bit that is different in these
keys; this bit is always 1 because Ki–1 < Ki for 1 ≤ i < m (= order of the tree). For exam-
ple, D(“N”,“O”) = D(01001110, 01001111) = 7, and the bit in position 7 is on, all pre-
ceding bits in both keys being the same.

Let j be the first position in a leaf for which Dj < Di and j > i; Dj is the first D-bit
smaller than a preceding Di . In this case, for all keys between positions i and j in this
leaf, the Di bit is 1. In the example in Figure 7.17, j = i + 2, because Di +2 is the first
D-bit following position i that is smaller than Di . Bit 5 in key “O” in position i + 1 is 1
as it is 1 in key “N” in position i.

The algorithm for searching a key using a bit-tree leaf is

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 319

FIGURE 7.17 A leaf of a bit-tree.

i – 1 i i + 1 i + 2 i + 3

0101011001001011

Data file

01001110 01001111 01010010

"V""K" "N" "O" "R"

55 7 3

Position in leaf

Key code

Key

Records in data file

D-bits

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

bitTreeSearch(K)
R = record R0;
for i = 1 to m –1

if the Di bit in K is 1
R = Ri;

else skip all following D-bits until a smaller D-bit is found;
read record R from data file;
if K == key from record R

return R;
else return -1;

Using this algorithm, we can search for “V” assuming that, in Figure 7.17, i – 1 = 0
and i + 3 is the last entry in the leaf. R is initialized to R0, and i to 1.

1. In the first iteration of the for loop, bit D1 = 5 in key “V” = 01010110 is checked, and
because it is 1, R is assigned R1.

2. In the second iteration, bit D2 = 7 is tested. It is 0, but nothing is skipped, as required
by the else statement, because right away a D-bit is found that is smaller than 7.

3. The third iteration: bit D3 = 3 is 1, so R becomes R3.

4. In the fourth iteration, bit D4 = 5 is checked again, and because it is 1, R is assigned R5.
This is the last entry in the leaf; the algorithm is finished, and R5 is properly returned.

What happens if the desired key is not in the data file? We can try to locate “S” =
01010011 using the same assumptions on i – 1 and i + 3. Bit D1 = 5 is 0, so the posi-
tion with D-bit 7 is skipped, and because bit D3 = 3 in “S” is 1, the algorithm would
return record R3. To prevent this, bitTreeSearch() checks whether the record it
found really corresponds with the desired key. If not, a negative number is returned
to indicate failure.

7.1.6 R-Trees

Spatial data are the kind of objects that are utilized frequently in many areas. Com-
puter-assisted design, geographical data, and VLSI design are examples of domains
in which spatial data are created, searched, and deleted. This type of data requires
special data structures to be processed efficiently. For example, we may request that
all counties in an area specified by geographical coordinates be printed or that all
buildings in walking distance from city hall be identified. Many different data struc-
tures have been developed to accommodate this type of data. One example is an
R-tree (Guttman, 1984).

An R-tree of order m is a B-treelike structure containing at least m entries in one
node for some m ≤ maximum number allowable per one node (except the root).
Hence, an R-tree is not required to be at least half full.

A leaf in an R-tree contains entries of the form (rect,id) where rect = ([c1
1,c

2
1], . . . ,

[c1
n,c 2

n]) is an n-dimensional rectangle, c1
i, and c 2

i are coordinates along the same axis,
and id is a reference to a record in a data file. rect is the smallest rectangle containing
object id; for example, the entry in a leaf corresponding to an object X on a Cartesian
plane as in Figure 7.18 is the pair (([10,100], [5,52]), X).

320 ■ C h a p t e r 7 M u l t i w a y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A nonleaf node cell entry has the form (rect,child) where rect is the smallest rec-
tangle encompassing all the rectangles found in child. The structure of an R-tree is not
identical to the structure of a B-tree: The former can be viewed as a series of n keys
and n references corresponding to these keys.

Inserting new rectangles in an R-tree is made in B-tree fashion, with splits and re-
distribution. A crucial operation is finding a proper leaf in which to insert a rectangle
rect. When moving down the R-tree, the subtree chosen in the current node is the one
that corresponds to the rectangle requiring the least enlargement to include rect. If a
split occurs, new encompassing rectangles have to be created. The detailed algorithm
is more involved because, among other things, it is not obvious how to divide rectan-
gles of a node being split. The algorithm should generate rectangles that enclose rec-
tangles of the two resulting nodes and are minimal in size.

Figure 7.19 contains an example of inserting four rectangles into an R-tree. After
inserting the first three rectangles, R1, R2, and R3, only the root is full (Figure 7.19a).
Inserting R4 causes a split, resulting in the creation of two encompassing rectangles
(Figure 7.19b). Inserting R7 changes nothing, and inserting R8 causes rectangle R6 to
be extended to accommodate R8 (Figure 7.19c). Figure 7.19d shows another split after
entering R9 in the R-tree. R6 is discarded, and R10 and R11 are created.

A rectangle R can be contained in many other encompassing rectangles, but it can
be stored only once in a leaf. Therefore, a search procedure may take a wrong path at
some level h when it sees that R is enclosed by another rectangle found in a node on
this level. For example, rectangle R3 in Figure 7.19d is enclosed by both R10 and R11.
Because R10 is before R11 in the root, the search accesses the middle leaf when looking
for R3. However, if R11 preceded R10 in the root, following the path corresponding
with R11 would be unsuccessful. For large and high R-trees, this overlapping becomes
excessive.

A modification of R-trees, called an R+-tree, removes this overlap (Sellis, Rous-
sopoulos, and Faloutsos, 1987; Stonebraker, Sellis, and Hanson, 1986). The encom-
passing rectangles are no longer overlapping, and each encompassing rectangle
is associated with all the rectangles it intersects. But now the data rectangle can be
found in more than one leaf. For example, Figure 7.20 shows an R+-tree constructed

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 321

FIGURE 7.18 An area X on the Cartesian plane enclosed tightly by the rectangle ([10,100], [5,52]).
The rectangle parameters and the area identifier are stored in a leaf of an R-tree.

Data file

Leaf

X

(b)
10

52 ([10, 100], [5, 52])

5

100
(a)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

after the data rectangle R9 was inserted into the R-tree in Figure 7.19c. Figure 7.20
replaces Figure 7.19d. Note that R8 can be found in two leaves, because it is inter-
sected by two encompassing rectangles, R10 and R11. Operations on an R+-tree make
it difficult to ensure without further manipulation that nodes are at least half full.

322 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.19 Building an R-tree.

R8

R3R2

R7
R9

R4

R10
R11

R1

(d)

R2 R7

R5

R1

R3 R4

R5 R10 R11

R8 R9

R8

R3R2

R7

R4

R6

R1

(c)

R2 R7

R5

R1

R3 R4 R8

R5 R6

R3R2

R4

R6

R1

(b)

R2

R5

R1

R3 R4

R5 R6

R3R2

(a)

R1

R1 R2 R3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7.1.7 2–4 Trees

This section discusses a special case of B-tree, a B-tree of order 4. This B-tree was first
discussed by Rudolf Bayer, who called it a symmetric binary B-tree (Bayer, 1972), but it
is usually called a 2–3–4 tree or just a 2–4 tree. A 2–4 tree seems to offer no new per-
spectives, but quite the opposite is true. In B-trees, the nodes are large to accommo-
date the contents of one block read from secondary storage. In 2–4 trees, on the other
hand, only one, two, or at most three elements can be stored in one node. Unless the
elements are very large, so large that three of them can fill up one block on a disk,
there seems to be no reason for even mentioning B-trees of such a small order.
Although B-trees have been introduced in the context of handling data on secondary
storage, it does not mean that they have to be used only for that purpose.

We spent an entire chapter discussing binary trees, in particular, binary search
trees, and developing algorithms that allow quick access to the information stored in
these trees. Can B-trees offer a better solution to the problem of balancing or travers-
ing binary trees? We now return to the topics of binary trees and processing data in
memory.

B-trees are well-suited to challenge the algorithms used for binary search trees,
because a B-tree by its nature has to be balanced. No special treatment is needed in
addition to building a tree: Building a B-tree balances it at the same time. Instead of
using binary search trees, we may use B-trees of small order such as 2–4 trees. How-
ever, if these trees are implemented as structures similarly to B-trees, there are three
locations per node to store up to three keys and four locations per node to store up to
four references. In the worst case, half of these cells are unused, and on the average, 69
percent are used. Because space is much more at a premium in main memory than in
secondary storage, we would like to avoid this wasted space. Therefore, 2–4 trees are
transformed into binary tree form in which each node holds only one key. Of course,
the transformation has to be done in a way that permits an unambiguous restoration
of the original B-tree form.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 323

FIGURE 7.20 An R+-tree representation of the R-tree in Figure 7.19d after inserting the rectangle R9
in the tree in Figure 7.19c.

R8

R3R2

R7
R9

R4

R10
R11

R1 R2 R7

R1

R1

R4 R3

R5 R10 R11

R8 R8 R9

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To represent a 2–4 tree as a binary tree, two types of links between nodes are used:
One type indicates links between nodes representing keys belonging to the same node
of a 2–4 tree, and another represents regular parent–children links. Bayer called them
horizontal and vertical pointers or, more cryptically, �-pointers and �-pointers; Guibas
and Sedgewick in their dichromatic framework use the names red and black pointers.
Not only are the names different, but the trees are also drawn a bit differently. Figure
7.21 shows nodes with two and three keys, which are called 3-nodes and 4-nodes, and
their equivalent representations. Figure 7.22 shows a complete 2–4 tree and its binary
tree equivalents. Note that the red links are drawn with dashed lines. The red-black tree
better represents the exact form of a binary tree; the vertical-horizontal trees, or the
vh-trees, are better in retaining the shape of 2–4 trees and in having leaves shown as
though they were on the same level. Also, vh-trees lend themselves easily to represent-
ing B-trees of any order; the red-black trees do not.

Both red-black trees and vh-trees are binary trees. Each node has two references
that can be interpreted in two ways. To make a distinction between the interpretation
applied in a given context, a flag for each of the references is used.

324 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.21 (a) A 3-node represented (b–c) in two possible ways by red-black trees and (d–e) in
two possible ways by vh-trees. (f) A 4-node represented (g) by a red-black tree and
(h) by a vh-tree.

B

CA

S

(g)(f)

A B C

RQPSRQP

B CA

S

(h)

RQP

BA

R

(e)

QP

A

P

(d)

RQ

A

B

R

(b)

Or

Or

(a)

A B

Q

P

B

A

P

(c)

Q

R

RQP

B

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Vh-trees have the following properties:

■ The path from the root to any null node contains the same number of vertical
links.

■ No path from the root can have two horizontal links in a row.

The operations performed on vh-trees should be the same as on binary trees, al-
though their implementation is much more involved. Only searching is the same: To
find a key in a vh-tree, no distinction is made between the different types of references.
We can use the same searching procedure as for binary search trees: If the key is found,
stop. If the key in the current node is larger than the one we are looking for, we go to
the left subtree; otherwise, we go to the right subtree.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 325

FIGURE 7.22 (a) A 2–4 tree represented (b) by a red-black tree and (c) by a binary tree with horizon-
tal and vertical pointers.

3 5 8

10

4 6 7

13

11 12 14 15 161 2 9

(a)

13

10

1511

161412

(b)

5

83

1

6

974

2

(c)

1 42 6 7 9 1211 14

13

10

15 16

3 5 8

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To find the cost of searching a key in the worst case in a vh-tree, observe that in
each such tree we would like to find a correspondence between the number of nodes
in the tree and its height. First, observe that if the shortest path to a leaf consists of
vertical links only, then the longest path to another leaf can begin and end with hori-
zontal links and have vertical and horizontal links used interchangeably. Therefore,

pathlongest # 2 ? pathshortest 1 1

with equality if the shortest and the longest paths are as just described. Now we would
like to find the minimum number of nodes nmin in a vh-tree of a particular height h.
Consider first vh-trees of odd height. Figure 7.23a shows a vh-tree of height 7 and,
implicitly, of heights 1, 3, and 5. Beginning with h = 3, we can observe a geometric
progression in the number of nodes added to the tree of previous odd height

h 5 3 5 7 9 . . .
number of new nodes 5 3 6 12 24 . . .

The sum of the first m terms of a geometric sequence is expressed with the for-
mula and thus after adding 1 representing the root,

From this we have

and so

2lg

For even heights, as exemplified in Figure 7.23b for a vh-tree of height 8, we obtain

h 5 2 4 6 8 . . .
number of new nodes 5 2 4 8 16 . . .

and consequently

from which

It is simple to check that for any n, the bound for even heights is larger, so it can be
used as an upper bound for all heights. The lower bound is given by the height of a
complete binary tree. The number of nodes in such a tree of height h was found to be
n = 2h – 1 (see Figure 6.35), from which

lg(n + 1) # h # 2lg(n + 2) – 2

This is the worst case of search, when searching has to reach the leaf level.

2lg(n 1 2) 2 2 $ h

n $ nmin 5 2(2
h
2 2 1)

nmin 5 2(2
h
2 2 1)

n 1 2

3
1 1 $ h

n $ 3 ? 2
h 2 1

2 2 2

nmin 5 3
2

h 2 1
2 2 1

2 2 1
1 1 5 3 ? 2

h 2 1
2 2 2

a1
qm 2 1
q 2 1

326 ■ C h a p t e r 7 M u l t i w a y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Insertions restructure the tree by adding one more node and one more link to the
tree. Should it be a horizontal or vertical link? Deletions restructure the tree as well by
removing one node and one link, but this may lead to two consecutive horizontal
links. These operations are not as straightforward as for binary search trees, because
some counterparts of node splitting and node merging have to be represented in
vh-trees.

A good idea when splitting 2–4 trees, as already indicated in the discussion of
B-trees, is to split nodes when going down the tree while inserting a key. If a 4-node is
encountered, it is split before descending further down the tree. Because this splitting
is made from the top down, a 4-node can be a child of either a 2-node or a 3-node
(with the usual exception: unless it is the root). Figures 7.24a and 7.24b contain an ex-
ample. Splitting the node with keys B, C, and D requires creating a new node. The two
nodes involved in splitting (Figure 7.24a) are 4/6 full and three nodes after splitting
are 4/9 full (6/8 and 7/12, respectively, for reference fields). Splitting nodes in 2–4
trees results in poor performance. However, if the same operations are performed on
their vh-tree equivalents, the operation is remarkably efficient. In Figures 7.24c and
7.24d, the same split is performed on a vh-tree, and the operation requires changing
only two flags from horizontal to vertical and one from vertical to horizontal: Only
three bits are reset!

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 327

FIGURE 7.23 (a) A vh-tree of height 7; (b) a vh-tree of height 8.

(a)

(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Resetting these three flags suggests the following algorithm:

flagFlipping(node)
if node’s both links are horizontal

reset the flag corresponding to the link from node’s parent to node to horizontal;
reset flags in node to vertical;

For the second case, when 4-node is a child of a 3-node and the links are as in Figure
7.25a, the split results in the 2–4 tree as in Figure 7.25b; applying flagFlipping to a
vh-tree equivalent requires that only three bits are reset (Figures 7.25c and 7.25d).

Figure 7.21 indicates that the same node of a 2–4 tree can have two equivalents in
a vh-tree. Therefore, the situation in Figure 7.25a can be reflected not only by the tree
in Figure 7.25c, but also by the tree in Figure 7.26a. If we proceed as before, by chang-
ing three flags as in Figure 7.25d, the tree in Figure 7.26b ends up with two consecu-
tive horizontal links, which has no counterpart in any 2–4 tree. In this case, the three
flag flips have to be followed by a rotation; namely, node B is rotated about node A,
two flags are flipped, and the tree in Figure 7.26c is the same as in Figure 7.25d.

Figure 7.27a contains another way in which a 4-node is attached to a 3-node in a
2–4 tree before splitting. Figure 7.27b shows the tree after splitting. Applying flag-
Flipping to the tree in Figure 7.27c yields the tree in Figure 7.27d with two consecutive
horizontal links. To restore the vh-tree property, two rotations and four flag flips are
needed: Node C is rotated about node E, which is followed by two flag flips (Figure
7.27e), and then node C about node A, which is also followed by two flag flips. This all
leads to the tree in Figure 7.27f.

328 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.24 (a–b) Split of a 4-node attached to a node with one key in a 2–4 tree. (c–d) The same
split in a vh-tree equivalent to these two nodes.

(a)

B C D

TSRQ

A

P

(b)

B

RQ

A C

P D

TS

C

DB

T

(d)

SRQ

C DB

T

(c)

SRQ

A

P

A

P

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 329

FIGURE 7.25 (a–b) Split of a 4-node attached to a 3-node in a 2–4 tree and (c–d) a similar opera-
tion performed on one possible vh-tree equivalent to these two nodes.

(a)

C D E

UTSR

A B

QP

(b)

C

SR

A B D

QP E

UT

D

EC

U

(d)

TSR

D EC

U

(c)

TSR

BA

QP

BA

QP

FIGURE 7.26 Fixing a vh-tree that has consecutive horizontal links.

D

EC

U

(b)

TSR

D EC

U

(a)

TSR

BA

QP

D

EC

U

(c)

TSR

BA

QP

BA

QP

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

We presented four configurations leading to a split (Figures 7.24c, 7.25c, 7.26a,
7.27c). This number has to be doubled if the mirror images of the situation just ana-
lyzed are added. However, in only four cases does flag flipping have to be followed by
one or two rotations to restore the vh-property. It is important to notice that the
height of the tree measured in the number of vertical links (plus 1) does not grow as
the result of rotation(s). Also, because of splitting any 4-node along the path to the
insertion position, the new node is inserted into either a 2-node or a 3-node; that is, a
new node is always attached to its parent through a horizontal link, so the height of
the tree, after inserting a node, does not change either. The only case in which the
height does grow is when the root is a 4-node. This is the ninth case for the split.

The vh-tree property can be distorted not only after a 4-node split, but also after
including a new node in the tree, which leads to one or two rotations, as indicated at
the end of the following insertion algorithm.

330 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.27 A 4-node attached to a 3-node in a 2–4 tree.

(a)

B C D

TSRQ

A E

P U

(b)

B

RQ

A C E

UP D

TS

C

DB

T

(d)

SRQ

C DB

T

(c)

SRQ

EA

P U

EA

P U

DB

T

(f)

SRQ

P U

ECA

DB

T

(e)

SRQ

P U

ECA

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

VHTreeInsert(K)
create newNode and initialize it;
if VHTree is empty

root = newNode;
return;

for (p = root, prev = null; p != null;)
if both p’s flags are horizontal

set them to vertical; //flag flipping
mark prev’s link connecting it with p as horizontal;
if links connecting parent of prev with prev and prev with p are both marked horizontal
if both these links are left or both are right //Figure 26b

rotate prev about its parent;
else rotate p about prev and then p about its new parent; //Figure 27d

prev = p;
if (p.key > K)

p = p.left;
else p = p.right;

attach newNode to prev;
mark prev’s flag corresponding to its link to newNode to horizontal;
if link from prev’s parent to prev is marked horizontal

rotate prev about its parent or
first rotate newNode about prev and then newNode about its new parent;

Figure 7.28 contains an example of inserting a sequence of numbers. Note that a
double rotation has to be made in the tree in Figure 7.28h while 6 is being inserted.
First 9 is rotated about 5 and then 9 is rotated about 11.

Removing a node can be accomplished by deletion by copying, as described in
Section 6.6.2; that is, an immediate successor (or predecessor) is found in the tree,
copied over the element to be removed, and the node that holds the original suc-
cessor is removed from the tree. The successor is found by going one step to the
right from the node that holds the element to be removed and then as far as possible
to the left. The successor is on the last level of vertical links; that is, the successor
may have one left descendant accessible through a horizontal link (in Figure 7.28h,
a successor of 11, 12, has one such descendant, 13), or none (like 8, a successor of
5). In a plain binary search tree it is easy to remove such a successor. In the vh-tree,
however, it may not be so. If the successor is connected to its parent with a hori-
zontal link, it can simply be detached (like node 8 after copying 8 over 5 to remove
number 5 from the tree in Figure 7.28h), but if the connection of the successor
with no descendants with the parent is established through the vertical link, then
removing this successor may violate the vh-tree property. For example, to remove 9
in the tree in Figure 7.28j, the successor 10 is found and copied over 9 and then
node 10 is removed, but the path to the null left child of node 11 includes only one
vertical node, whereas the paths to any other null node in the tree include two such
links. One way to avoid the problem is to assure that when searching for the suc-
cessor of a particular node, tree transformations are executed that make a vh-tree a
valid vh-tree and cause the successor with no descendants to be connected to its
parent with a horizontal link. To that end, a number of cases are distinguished with

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 331

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

transformations corresponding to them. Figure 7.29 illustrates these cases and
shows an arrow next to a link to indicate the currently scrutinized node and the
next node to be checked afterwards.

■ Case 1. Two 2-node siblings have a 2-node parent; the node and its descen-
dants are merged into a 4-node (Figure 7.29a), which requires only two flag
changes.

■ Case 2. A 3-node with two 2-node descendants is transformed by splitting the
3-node into two 2-nodes and creating a 4-node from the three 2-nodes, as
indicated in Figure 7.29b, at the cost of three flag changes.

■ Case 2a. A 4-node with two 2-node descendants is split into a 2-node and a
3-node, and the three 2-nodes are merged into a 4-node (Figure 7.29c). This
requires the same three flag changes as in Case 2.

■ Case 3. When the end of a 3-node with an out-horizontal link is reached, the
direction of the link is reversed through one rotation and two flag changes
(Figure 7.29d).

332 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.28 Building a vh-tree by inserting numbers in this sequence: 10, 11, 12, 13, 4, 5, 8, 9,
6, 14.

(j)

4 6 108 12

11

9

13 14

5

(i)

4 6 108

119

12 13

5

(h)

4 8 109

11

12 13

5

(g)

4 8 1210

11

13

5

(f)

4 5 1210

10 11 12

11

13

(e)

4 1210

11

13

(d)(c)

1010 11

(b)(a)

1210

11

13

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 333

FIGURE 7.29 Deleting a node from a vh-tree.

A

QP

A

QP

2

2 2

3

2 2

2

4

4

(a)

(b)

(c)

4

2 2

3

4

(d)

CB

SR

C

SR

B

A

QP

C

S

T T

R

A

QP

CB

SR

B D

A

Q

C

SR

E

UT

E

UT

B D

D

A

QPP

A

P

B

RQ

A

QP

B

R

CB

SR

D

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

334 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.29 (continued)

2 3 (right) 3 2

(e)

(f)

(g)

2 3 (left) 3 2

2

1

2 4 3 3

A

QP

C

R

D

TS

B

A

QP

B

R

D

TS

C

A

QP

C

R

D

TS

B

A

QP

B

R

D

TS

C

A

Q SP

C

R

D D

UT

E D

UT

E

B

A

QP

B

R

D

S

C

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

■ Case 4. A 2-node has a 3-node sibling (there can be any sized parent). Through
one rotation—C about B—and two flag changes, the 2-node is expanded into
a 3-node and the 3-node sibling is reduced to a 2-node (Figure 7.29e).

■ Case 5. Similar to Case 4, except that the 3-node sibling has a different direc-
tion. The transformation is accomplished through two rotations—first, C
about D and then C about B—and two flag changes (Figure 7.29f).

■ Case 5a. A 2-node has a 4-node sibling (any parent). The 2-node is changed
into a 3-node and the 4-node is turned into a 3-node with the same transfor-
mations as in Case 5 (Figure 7.29g).

Note that in all these cases we are concerned about changing the link that leads
to a 2-node from vertical to horizontal (except Case 3, where the change is inside a
3-node). Nothing is done when the destination is a 3- or 4-node.

Required transformations are performed from the root until the successor of the
node to be deleted is found. Because the node to be deleted must be found first, sym-
metrical cases to the cases already listed have to be included as well, so all in all, there
are 15 cases: 1 requires no action, and the remaining 14 cases can be served with 10
different transformations. Examples of deletions are presented in Figure 7.30.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 335

FIGURE 7.30 Examples of node deletions from a vh-tree.

(a)

delete 10 3-node

2-node 3-node

3-node

2-node 4-node

(b)

10

873

5

18

25

15

13 27 28 35 5523

30 40

17

27

30

15

17 288 13

5

3 7

10

25

18 23

40

35 55

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

336 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.30 (continued)

delete 7

3-node

2-node 3-node

8 27

25

18 23 28

copy 13 over 10
remove leaf 13

8 27 28

5

3 7

13

25

23

40

35 55

30

17

15 18

17

13 15

change of direction
of 3-node

8 27 28

5

3 7

13

25

23

40

35 55

30

17

15 18

(c)

(d)

(e)

5

3 7

10 30

40

35 55

remove 7

(f)

28

13

8 15

17

5

3 7 27

40

35 55

30

25

18 23

28

13

15

17

5

3 8 27

40

35 55

30

25

18 23
(g)

delete 8 3-node

2-node 2-node

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The vh-trees also include AVL trees. An AVL tree can be transformed into a
vh-tree by converting the links connecting the roots of subtrees of even height with
children of these roots of odd height into horizontal links. Figure 7.31 illustrates this
conversion.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 337

FIGURE 7.30 (continued)

28

13

8 15

17

3 5 27

40

35 55

30

25

18 23

28

13

15

17

3 5 27

40

35 55

30

25

18 23

(h)

(i)

remove 8

FIGURE 7.31 An example of converting (a) an AVL tree into (b) an equivalent vh-tree.

20
5

3

1

1 1 1 1

1

2

2 3 2

4
10

5 35

32

30

2515

12 282318

24

5 1512 18 32 35

30

20

10

2824

25

23

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7.1.8 Trees in java.util
TreeSet

A set is an object that stores unique elements. In Java, two implementations are avail-
able. The class HashSet implements the set with a hash table and a hash function (see
Section 10.6.2). Another implementation is provided in the class TreeSet, which
keeps elements of a set in a sorted order. Methods of TreeSet are listed in Figure
7.32. Most of the methods have already been encountered in classes Vector and
LinkedList. However, because of the need for constant checking during insertion to
determine whether an element being inserted is already in the set, the insertion opera-
tion has to be implemented specifically for that task. Although an array list could be a
possible implementation of a set, the insertion operation requires O(n) time to finish.
For an unordered array list, all the elements of the array list have to be tested before an
insertion takes place. For an ordered array list, checking whether an element is in the
array list takes O(lg n) time with binary search, but an insertion of a new element re-
quires shifting all greater elements so that the new element can be placed in a proper
cell of the array list, and the complexity of this operation in the worst case is O(n). To
speed up execution of insertion (and also deletion), TreeSet uses a red-black tree for
implementation of a set. This guarantees O(lg n) time for insertion and deletion.

338 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.32 Methods of the class TreeSet.

Method Operation

void add(Object el) Insert object el into the tree set if it is not already there; throw
ClassCastException if el cannot be compared with the
elements currently in the tree set.

boolean Add all the elements from the collection c to the tree set;
addAll(Collection c) return true if the tree set was modified; throw

ClassCastException if the elements in c are not
comparable with elements in this tree set and
NullPointerException if c is null.

void clear() Remove all the elements from the tree set.

Object clone() Return the copy of the tree set without cloning its elements.

Comparator comparator() Return the comparator used to order the tree set or null if the
compareTo()method is defined for the elements of the tree set.

boolean contains(Object el) Return true if the tree set contains the object el; throw
ClassCastException if el cannot be compared with the
elements currently in the tree set.

boolean Return true if the tree set contains all elements in the collection
containsAll(Collection c) c; throw ClassCastException if the class type of any

element of c is incompatible with this tree set and
NullPointerException if c is null (inherited).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 339

FIGURE 7.32 (continued)

boolean equals(Object el) Return true if the current tree set and object el are equal
(inherited).

Object first() Return the smallest element of the tree set; throw
NoSuchElementException if this tree set is empty.

int hashCode() Return the hash code for the tree set (inherited).

SortedSet headSet(Object el) Return the subset with elements that precede el; throw
NullPointerException if el is null and this tree set uses
elements’compareTo()method, or its comparator does not
handle null elements; throw ClassCastException if el
is not comparable with the elements in this tree set; throw
IllegalArgumentException if this tree set is a subtree
set of another tree set and el is not within the specified range
of this tree set.

boolean isEmpty() Return true if the tree set contains no elements,false otherwise.

Iterator iterator() Generate and return an iterator for the tree set.

Object last() Return the largest element of the tree set; throw
NoSuchElementException if this tree set is empty.

boolean remove(Object el) Remove the object el from the tree set and return true if
el was in the tree set; throw ClassCastException if el
cannot be compared with the elements currently in the tree set.

boolean Remove from the tree set all elements contained in collection c;
removeAll(Collection c) return true if any element was removed; throw

ClassCastException if the class type of any element of c is
incompatible with this tree set and NullPointerException
if c is null (inherited).

boolean Remove from the tree set all elements that are not in the
retainAll(Collection c) collection c; return true if any element was removed; throw

ClassCastException if the class type of any element of c is
incompatible with this tree set and NullPointerException
if c is null (inherited).

int size() Return the number of elements in the tree set.

SortedSet subSet(Object Return the subset of the tree set (not its copy) containing
first, Object last) elements between first and last, including first; throw

NullPointerException if first or last is null and this
tree set uses keys’compareTo()method, or its comparator
does not handle null elements; throw ClassCastException
if first or last is not comparable with the elements in this
tree set; throw IllegalArgumentException if first
precedes last.

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Class hierarchy in java.util is as follows

Object ⇒ AbstractCollection ⇒ AbstractSet ⇒ TreeSet

The operation of some methods for integer sets is illustrated in Figure 7.33.
A new number is inserted into a tree set if it is not already there. For example, an

attempt to insert number 5 into st1 = (4 5 6) is unsuccessful.
A more interesting situation arises for compound objects whose order is determined

by the values of some of its fields. Consider the class Person defined in Figure 7.33.
Any attempt to add a new object of type Person raises the ClassCastException. Be-
cause TreeSet is an ordered structure, an ordering relation must be provided to deter-
mine the order of elements in the tree set. For simple objects, such as objects of type

340 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.32 (continued)

SortedSet tailSet(Object el) Return the subset with elements that are equal to or exceed el;
throw NullPointerException if el is null and this tree set
uses elements’compareTo()method, or its comparator does
not handle null elements; throw ClassCastException if
el is not comparable with the elements in this tree set; throw
IllegalArgumentException if this tree set is a subtree
set of another tree set and el is not within the specified range
of this tree set.

Object[] toArray() Copy all elements from the tree set to a newly created array and
return the array (inherited).

Object[] toArray(Object a[]) Copy all elements from the tree set to the array a if a is large
enough or to a newly created array and return the array; throw
ArrayStoreException if the class type of any element in the
tree set is not the same as or does not extend the class type of a;
throw NullPointerException if a is null (inherited).

String toString() Return a string representation of the tree set that contains the
string representation of all the elements (inherited).

TreeSet() Create an empty tree set for elements that implement
Comparable.

TreeSet(Collection c) Create a tree set with copies of elements from collection c
sorted according to the method compareTo(); throw
ClassCastException if the elements in c do not
implement Comparable or are not mutually comparable
and NullPointerException if c is null.

TreeSet(Comparator c) Create an empty tree set sorted according to the comparator c.

TreeSet(SortedSet s) Create a tree set with copies of elements from sorted set s using
s’s ordering; throw NullPointerException if s is null.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 341

FIGURE 7.33 An example of application of the TreeSet methods.

import java.io.*;
import java.util.TreeSet;

class Person {
protected String name;
protected int age;
public Person(String s, int i) {

name = s; age = i;
}
public Person() {

this("",0);
}
public String toString() {

return "(" + name + ", " + age + ")";
}

}

class PersonByName extends Person implements Comparable {
public PersonByName(String s, int i) {

super(s,i);
}
public PersonByName() {

super();
}
public PersonByName(Person p) {

super(p.name,p.age);
}
public int compareTo(Object p) {

return name.compareTo(((Person)p).name);
}

}

class PersonByAge extends Person implements Comparable {
public PersonByAge(String s, int i) {

super(s,i);
}
public PersonByAge() {

super();
}
public PersonByAge(Person p) {

super(p.name,p.age);
}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

342 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.33 (continued)

public int compareTo(Object p) {
return age - ((Person)p).age;

}
}

class PersonComparator implements java.util.Comparator {
public int compare(Object ob1, Object ob2) {

if (ob1 == ob2)
return 0;

else if(ob1 == null)
return -1;

else if (ob2 == null)
return 1;

else return ((Person)ob1).name.compareTo(((Person)ob2).name);
}

}

class TestTreeSet {
public static void main(String[] ar) {

TreeSet set1 = new TreeSet(); // set1 = []
set1.add(new Integer(4)); // set1 = [4]
set1.add(new Integer(5)); // set1 = [4, 5]
set1.add(new Integer(6)); // set1 = [4, 5, 6]
set1.add(new Integer(5)); // set1 = [4, 5, 6]
System.out.println("set1 = " + set1);// set1 = [4, 5, 6]
System.out.println(set1.contains(new Integer(5))); // true
System.out.println(set1.contains(new Integer(7))); // false
System.out.println(set1.first() + " " + set1.last()); // 4 6
System.out.println(set1.headSet(new Integer(5))); // [4]
System.out.println(set1.tailSet(new Integer(5))); // [5, 6]
TreeSet set2 = new TreeSet(set1); // set2 = [4, 5, 6]
set2.remove(new Integer(5)); // set2 = [4, 6]
set1.removeAll(set2); // set1 = [5]
set1.addAll(set2); // set1 = [4, 5, 6]

TreeSet pSet1 = new TreeSet(), pSet2 = new TreeSet();
Person[] p = {new Person("Gregg",25), new Person("Ann",30),

new Person("Bill",20), new Person("Gregg",35),
new Person("Kay",30)};

for (int i = 0; i < p.length; i++)
pSet1.add(new PersonByName(p[i]));

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Integer, the relation is already provided by the system, but for user-defined classes the
relation has to be also user-defined.

For the class Person, which contains two fields—a string field name and an
integer field age—the order of objects can be determined by the first field, by the
second, or by both. For the sake of example, two classes are derived from Person—
PersonByName and PersonByAge—which inherit the same data fields from
Person but define the ordering relation differently. The definition is accomplished by
defining the method compareTo() from interface Comparable. For this reason,
both PersonByName and PersonByAge are declared as implementations of
Comparable. Now, two tree sets are created, pSet1 with person objects ordered
by name and pSet2 with objects ordered by age. For this reason, each name appears
in pSet1 only once so that the object (“Gregg,”35) from the array p[] is not

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 343

FIGURE 7.33 (continued)

// pSet1 = [(Ann,30), (Bill,20), (Gregg,25), (Kay,30)]
for (int i = 0; i < p.length; i++)

pSet2.add(new PersonByAge(p[i]));
// pSet2 = [(Bill,20), (Gregg,25), (Ann,30), (Gregg,35)]
java.util.Iterator it = pSet2.iterator();
it.next();
((Person)it.next()).age = 50;
// pSet2 = [(Bill,20), (Gregg,50), (Ann,30), (Gregg,35)]
pSet2.add(new PersonByAge("Craig",40));
// pSet2 = [(Bill,20), (Craig,40), (Gregg,50), (Ann,30), (Gregg,35)]
for (int i = 0; i < p.length; i++)

System.out.println(p[i] + " "
+ pSet2.contains(new PersonByAge(p[i])));

// (Gregg,25) false
// (Ann,30) false
// (Bill,20) true
// (Gregg,35) false
// (Kay,30) false
TreeSet pSet3 = new TreeSet(new PersonComparator());
for (int i = 0; i < p.length; i++)

pSet3.add(p[i]);
pSet3.add(null);
pSet3.add(null);
System.out.println("pSet3 = " + pSet3);
// pSet3 = [null, (Ann,30), (Bill,20), (Gregg,25), (Kay,30)]

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

included, whereas in pSet2 each age is unique, so that object (“Kay,”30) is not
included.

It is very important that operations on the objects in the tree set do not disturb
the order of these elements in the tree set because it may adversely affect subsequent
operations. For example, after changing the age of Gregg in pSet1 to 50, the object
(“Craig,”40) is included in front of the updated object (“Gregg,”50). Moreover,
searching may result in incorrect results. For all the objects from the array p[], only
the one preceding the updated object is found. The remaining objects are considered
absent from pSet1. The reason is the tree implementation of the set. For each node of
the tree, the search decides whether to continue searching for a particular key in the
left subtree or in the right subtree. After the key in the node is increased, the search is
sometimes directed to the left subtree, although before modification of the node, it
would be directed to the right subtree.

Another concern is the inclusion of a null object in the tree set. An attempt to in-
clude a null object in pSet1 or pSet2 results in the NullPointerException. The
reason is the syntax of the compareTo() method, which is ob1.compareTo(ob2).
If ob1 is null, then the program crashes. To circumvent the problem, comparison
must be introduced not as redefinition of compareTo() from Comparable, but as
redefinition of compare() from class Comparator. The method compareTo() is
redefined inside of a class that is used to generate objects. The method compare() is
redefined outside of a class that is used to generate objects and inside a comparator
class that implements the interface Comparator. In Figure 7.33, PersonComparator
is defined to compare objects of type Person. To let the system know that compare()
should be used instead of compareTo(), a new tree set is declared with the construc-
tor TreeSet(comp), where comp is a comparator (see the declaration of pSet3),
not with TreeSet() as in the case of pSet1 and pSet2.

TreeMap

Maps are tables that can be indexed with any type of data. Hence, they are a general-
ization of arrays because arrays can be indexed only with constants and variables of
ordinal types, such as characters and nonnegative integers, but not with strings or
double numbers.

Maps use keys that are used as indexes and elements (values) to be accessed
through the keys. Like indexes in arrays, keys in maps are unique in that one key is asso-
ciated with one value only. Thus, maps are also a generalization of sets. Like sets, maps
are implemented as red-black trees. But unlike tree sets implementing sets that store
keys only, tree maps implementing maps store pairs (key, value) called entries that can
be operated on by methods specified in the interface Map.Entry whose declaration is
nested in the body of the interface Map (Figure 7.34a). The pairs are ordered by an or-
dering relation defined for keys, not for values. Therefore, a particular value is found in
the tree map by locating a particular node using the key that is associated with this value
and extracting the value from this node. Values can be modified without disturbing the
order in the tree map, because the tree map, is ordered by keys, not values, which also
means that keys in the tree map cannot be modified.

344 ■ C h a p t e r 7 M u l t i w a y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 345

FIGURE 7.34 (a) Methods in the interface Map.Entry; (b) methods of the class TreeMap.

(a) Method Operation

boolean equals(Object ob) Return true if the map entry equals ob.

Object getKey() Return the key of the map entry.

Object getValue() Return the value of the map entry.

int hashCode() Return the hash code for the map entry.

Object setValue(Object val) Replace the value of the map entry by val and return the old
value; throw UnsupportedOperationException if the
put operation is not defined by the underlying map m; throw
ClassCastException if the class of val prevents it from
being stored in m; throw IllegalArgumentException if
some aspect of val prevents it from being stored in m; throw
NullPointerException if val is null and null values can-
not be stored in m.

(b) Method Operation

void clear() Remove all the objects from the tree map.

Object clone() Return the copy of the tree map without cloning its elements.

Comparator comparator() Return the comparator used to order the tree map or null if the
compareTo()method is defined for the keys of the tree map.

boolean Return true if the tree map contains the object key; throw
containsKey(Object key) NullPointerException if key is null and this tree map

uses keys’compareTo()method or its comparator does not
handle null keys; throw ClassCastException if key is not
comparable with the keys in this tree map.

boolean Return true if the tree map contains the object val.
containsValue(Object val)

Set entrySet() Return a set containing all the pairs (key, value) in the tree map.

boolean equals(Object ob) Return true if the current tree map and object ob are equal
(inherited).

Object firstKey() Return the smallest key of the tree map; throw
NoSuchElementException if the tree map is empty.

Object get(Object key) Return the object associated with key; throw
NullPointerException if key is null and this tree map
uses keys’compareTo()method, or its comparator does not
handle null keys; throw ClassCastException if key is not
comparable with the keys in this tree map.

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

346 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.34 (continued)

int hashCode() Return the hash code for the tree map (inherited).

SortedMap Return the submap with objects associated with keys that precede
headMap(Object key) key; throw NullPointerException if key is null and this

tree map uses keys’compareTo()method, or its comparator
does not handle null keys; throw ClassCastException if
key is not comparable with the keys in this tree map; throw
IllegalArgumentException if this tree map is a subtree
map of another tree map and key is not within the specified
range of this tree map.

boolean isEmpty() Return true if the tree map contains no elements,false
otherwise (inherited).

Set keySet() Return a set containing all the keys of the tree map.

Object lastKey() Return the largest object of the tree map; throw
NoSuchElementException if the tree map is empty.

Object put(Object key, Put the pair (key,value) in the tree map; return a value
Object value) associated with key if there is any in the tree map,null

otherwise; throw NullPointerException if key is null and
this tree map uses keys’compareTo()method, or its compara-
tor does not handle null keys; throw ClassCastException
if key is not comparable with the keys in this tree map.

void putAll(Map m) Add objects from the map m to the current tree map; throw
ClassCastException if class of a key or value in m
does not allow it to be stored in this tree map and
NullPointerException if m is null or a key in m is null,
but this tree map does not permit null keys.

Object remove(Object key) Remove the pair (key,value) from the tree map and return the
value associated currently with key in the tree map or null
otherwise; throw NullPointerException if key is null and
this tree map uses keys’compareTo()method, or its compara-
tor does not handle null keys; throw ClassCastException
if key is not comparable with the keys in this tree map.

int size() Return the number of objects in the tree map.

SortedMap Return the submap of the tree map (not its copy) containing
subMap(Object first, elements with keys between first and last, including
Object last) first; throw NullPointerException if first or

last is null and this tree map uses keys’compareTo()
method, or its comparator does not handle null keys;
throw ClassCastException if first or last is not
comparable with the keys in this tree map; throw
IllegalArgumentException if first precedes last.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Methods of the class TreeMap are listed in Figure 7.34b. Class hierarchy in
java.util is as follows

Object ⇒ AbstractMap ⇒ TreeMap

Operation of some methods is illustrated in Figure 7.35. The tree map cities is
indexed with objects of type Person. The tree map is initialized with three pairs
(Person object, string). The statement

cities.put(new PersonByName("Gregg",30), "Austin");

uses a new object as an index. Note that the object has a different value in
the age field than the existing entry for Gregg in the tree map, but both the
object PersonByName("Gregg",25) in the tree map and the object
PersonByName("Gregg",30) are treated as equal because the definition of
compareTo() in the definition of class PersonByName takes only the name field
into account; therefore, the old value, "Pittsburgh", is replaced by a new value,
"Austin".

S e c t i o n 7 . 1 T h e F a m i l y o f B - Tr e e s ■ 347

FIGURE 7.34 (continued)

SortedMap tailMap(Object Return the submap with objects associated with keys not smaller
key) than key; throw NullPointerException if key is null and

this tree map uses keys’compareTo()method, or its compara-
tor does not handle null keys; throw ClassCastException if
key is not comparable with the keys in this tree map; throw
IllegalArgumentException if this tree map is a subtree
map of another tree map and key is not within the specified
range of this tree map.

String toString() Return a string representation of the tree map that contains the
string representation of all the objects (inherited).

TreeMap() Create an empty tree map for elements with keys that implement
Comparable.

TreeMap(Map m) Create a tree map with copies of elements from map m
sorted according to keys’compareTo()method; throw
ClassCastException if the keys in m do not implement
Comparable or are not mutually comparable; throw
NullPointerException if m is null.

TreeMap(Comparator c) Create an empty tree map sorted according to the comparator c.

TreeMap(SortedMap m) Create a tree map with copies of elements from sorted map m
using m’s ordering; throw NullPointerException
if m is null.

Collection values() Return a collection with all the values contained in the tree map.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

348 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.35 An example of application of the TreeMap methods. The class PersonByName is the
same as in Figure 7.33.

class TestTreeMap
public static void main(String[] a) {

TreeMap cities = new TreeMap();
cities.put(new PersonByName("Gregg",25),"Pittsburgh");
cities.put(new PersonByName("Ann",30),"Boston");
cities.put(new PersonByName("Bill",20),"Belmont");
System.out.println(cities);
// {(Ann,30)=Boston, (Bill,20)=Belmont, (Gregg,25)=Pittsburgh}
cities.put(new PersonByName("Gregg",30),"Austin");
// cities = {(Ann,30)=Boston, (Bill,20)=Belmont, (Gregg,25)=Austin}
System.out.println(cities.containsKey(new PersonByName("Ann",30)));
// true
System.out.println(cities.containsValue("Austin"));
// true
System.out.println(cities.firstKey() + " " + cities.lastKey());
// (Ann,30) (Gregg,25)
System.out.println(cities.get(new PersonByName("Ann",30)));
// Boston
System.out.println(cities.entrySet());
// [(Ann,30)=Boston, (Bill,20)=Belmont, (Gregg,25)=Austin]
System.out.println(cities.keySet());
// [(Ann,30), (Bill,20), (Gregg,25)]
System.out.println(cities.remove(new PersonByName("Bill",20)));
// Belmont
// cities = {(Ann,30)=Boston, (Gregg,25)=Austin}

Map.Entry me = (Map.Entry)cities.entrySet().iterator().next();
// first entry
System.out.println(me.getKey()); // (Ann,30)
System.out.println(me.getValue()); // Boston
System.out.println(me.setValue("Harrisburg")); // Boston
System.out.println(cities);
// cities = {(Ann,30)=Harrisburg, (Gregg,25)=Austin}

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The program in Figure 7.35 illustrates the way the methods specified in the inter-
face Map.Entry can be used. The set of entries of the underlying tree map can be cre-
ated with the entrySet() method and then the Map.Entry methods can be applied
individually to the desired entries. Note that updating the entry set returned by the
entrySet() method affects the tree map itself.

The program in Figure 7.35 is shown only to illustrate unconventional indexing.
For this particular example, it would probably be more natural to include a city as an-
other data member in each object. A more useful example concerns social security
numbers and objects of type PersonByName. If we wanted to create an array (or a
vector) so that SSNs could be used as indexes, the array would need 1 billion cells be-
cause the largest SSN equals 999999999. But with tree maps, we can have only as many
entries as the number of PersonByName objects used in the program. For example,
we can declare a map SSN

TreeMap SSN = new TreeMap();

and then execute a number of assignments

SSN.put(new Integer(123456789), new PersonByName("Gregg",25));
SSN.put(new Integer(111111111), new PersonByName("Ann",30));
SSN.put(new Integer(222222222), new PersonByName("Bill",20));

In this way, SSN has only three entries, although keys are very large numbers

SSN = {111111111= ("Ann",20), 123456789=("Gregg",25), 222222222=("Bill", 20)}

Information is now very easily accessible and modifiable by using SSNs as the access
keys.

7.2 TRIES

The preceding chapter showed that traversing a binary tree was guided by full key
comparisons; each node contained a key that was compared to another key to find a
proper path through the tree. The discussion of prefix B-trees indicated that this is
not necessary and that only a portion of a key is required to determine the path. How-
ever, finding a proper prefix became an issue, and maintaining prefixes of an accept-
able form and size made the process for insertion and deletion more complicated than
in standard B-trees. A tree that uses parts of the key to navigate the search is called a
trie. The name of the tree is appropriate, as it is a portion of the word retrieval with
convoluted pronunciation: To distinguish a tree from a trie in speech, trie is pro-
nounced “try.”

Each key is a sequence of characters, and a trie is organized around these charac-
ters rather than entire keys. For simplicity, assume that all the keys are made out of
five capital letters: A, E, I, P, R. Many words can be generated out of these five letters
but our examples will use only a handful of them.

Figure 7.36 shows a trie for words that are indicated in the vertical rectangles;
this form was first used by E. Fredkin. These rectangles represent the leaves of the
trie, which are nodes with actual keys. The internal nodes can be viewed as arrays of

S e c t i o n 7 . 2 Tr i e s ■ 349

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

350 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.36 A trie of some words composed of the five letters A, E, I, R, and P. The sharp sign, #,
indicates the end of a word, which can be a prefix of another word.

#
A

E
I

P
R

#
A

E
I

P
R

#
A

E
I

P
R

#
A

E
I

P
R

#
A

E
I

P
R

#
A

E
I

P
R

#
A

E I R E

E E R I E

A R E A

A R E

E R E

E R A

E R I E

P E E R

R E P

R E A R

P E A R

P E R

I R E

A R A

I P A

E
I

P
R

#
A

E
I

P
R

#
A

P I E R

E
I

P
R

#
A

A

E
I

P
R

#
A

E
I

P
R

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

references to subtries. At each level i, the position of the array that corresponds to the
ith letter of the key being processed is checked. If the reference in this position is null,
the key is not in the trie, which may mean a failure or a signal for key insertion. If
not, we continue processing until a leaf containing this key is found. For example, we
check for the word “ERIE.” At the first level of the trie, the reference corresponding to
the first letter of this word, “E,” is checked. The reference is not null, so we go to the
second level of the trie, to the child of the root accessible from position “E”; now the
reference in the position indicated by the second letter, “R,” is tested. It is not null
either, so we descend down the trie one more level. At the third level, the third letter,
“I,” is used to access a reference in this node. The reference refers to a leaf containing
the word “ERIE.” Thus, we conclude that the search is successful. If the desired word
was “ERIIE,” we would fail because we would access the same leaf as before, and ob-
viously, the two words are different. If the word were “ERPIE,” we would access the
same node with a leaf that contains “ERIE,” but this time “P” would be used to check
the corresponding reference in the node. Because the reference is null, we would con-
clude that “ERPIE” is not in the trie.

There are at least two problems. First, how do we make a distinction between two
words when one is a prefix of the other? For example, “ARE” is a prefix in “AREA.”
Thus, if we are looking for “ARE” in the trie, we must not follow the path leading to
“AREA.” To that end, a special character is used in each node guaranteed not to be
used in any word, in this case, a sharp sign, “#.” Now, while searching for “ARE” and
after processing “A,”“R,” and “E,” we find ourselves in a node at the fourth level of the
trie, whose leaves are “ARE” and “AREA.” Because we processed all letters of the key
“ARE,” we check the reference corresponding to the end of words,“#,” and because it is
not empty, we conclude that the word is in the trie.

This last example points to another problem. Is it really necessary to store entire
words in the trie? After we reached the fourth level when searching for “ARE” and the
reference for “#” is not null, do we have to go to the leaf to make a comparison be-
tween the key “ARE” and the contents of the leaf, also “ARE”? Not necessarily, and the
example of prefix B-trees suggests the solution. The leaves may contain only the un-
processed suffixes of the words.

This example restricted the number of letters used to five, but in a more realistic
setting, all letters are used so that each node has 27 references (including “#”). The
height of the trie is determined by the longest prefix, and for English words, the prefix
should not be a long string. For most words, the matter is settled after several node
visits, probably 5–7. This is true for 10,000 English words in the trie, and for 100,000.
A corresponding perfectly balanced binary search tree for 10,000 words has a height]lg 10,000g = 14. Most words are stored on the lowest levels of this tree, so on the aver-
age, the search takes 13 node visits. (The average path length in a perfectly balanced
tree of height h is]lg hg – 2.) This is double the number of visits in the trie. For
100,000 words, the average number of visits in the tree increases by 3 because]lg 100,000g = 17; in the trie this number can increase by 1 or 2. Besides, when making
a comparison in the binary search tree, the comparison is made between the key
searched for and the key in the current node, whereas in the trie only one character is
used in each comparison except when comparing with a key in a leaf. Therefore, in

S e c t i o n 7 . 2 Tr i e s ■ 351

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

situations where the speed of access is vital, such as in spell checkers, a trie is a very
good choice.

Due to the fact that the trie has two types of nodes, inserting a key into a trie is a
bit more complicated than inserting it into a binary search tree.

trieInsert(K)
i = 0;
p = the root;
while not inserted

if the end of word k is reached
set the end-of-word marker in p to true;

else if (p.ptrs[K[i]] == 0)
create a leaf containing K and put its address in p.ptrs[K[i]];

else if reference p.ptrs[K[i]] refers to a leaf
K_L = key in leaf p.ptrs[K[i]]
do create a nonleaf and put its address in p.ptrs[K[i]];

p = the new nonleaf;
while (K[i] == K_L[i++]);
create a leaf containing K and put its address in p.ptrs[K[--i]];
if the end of word k is reached

set the end-of-word marker in p to true;
else create a leaf containing K_L and put its address in p.ptrs[K_L[i]];

else p = p.ptrs[K[i++]];

The inner do loop in this algorithm is needed when a prefix in the word K and in
the word K_L is longer than the number of nodes in the path leading to the current
node p. For example, before “REP” is inserted in the trie in Figure 7.36, the word
“REAR” is stored in a leaf corresponding to the letter “R” of the root of the trie. If
“REP” is now being inserted, it is not enough to replace this leaf by a nonleaf, because
the second letters of both these words are the same letter, “E.” Hence, one more non-
leaf has to be created on the third level of the trie, and two leaves containing the words
“REAR” and “REP” are attached to this nonleaf.

If we compare tries with binary search trees, we see that for tries, the order in
which keys are inserted is irrelevant, whereas this order determines the shape of binary
search trees. However, tries can be skewed by words or, rather, by the type of prefixes in
words being inserted. The length of the longest identical prefix in two words deter-
mines the height of the trie. Therefore, the height of the trie is equal to the length of the
longest prefix common to two words plus one (for a level to discriminate between the
words with this prefix) plus one (for the level of leaves). The trie in Figure 7.36 has
height five because the longest identical prefix,“ARE,” is merely three letters long.

The main problem tries pose is the amount of space they require; a substantial
amount of this space is basically wasted. Many nodes may have only a couple of
nonnull references, and yet the remaining 25 references must reside in memory. There
is a burning need to decrease the amount of required space.

One way to reduce the size of a node is by storing only those references that are
actually in use, as in Figure 7.37 (Briandais, 1959). However, the introduced flexibility
concerning the size of each node somewhat complicates the implementation. Such

352 ■ C h a p t e r 7 M u l t i w a y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

tries can be implemented in the spirit of 2–4 tree implementation. All sibling nodes
can be put on a linked list accessible from the parent node, as in Figure 7.38. One node
of the previous trie corresponds now to a linked list. This means that random access
of references stored in arrays is no longer possible, and the linked lists have to be
scanned sequentially, although not exhaustively, because alphabetical order is most
likely maintained. The space requirements are not insignificant either because each
node now contains two references.

Another way to reduce the space requirements is by changing the way words are
tested (Rotwitt and Maine, 1971). A trie a tergo can be built in which the reverses of
words are inserted. In our example, the number of nodes is about the same, but a trie
a tergo representation for such words as “logged,”“loggerhead,”“loggia,” and “logging”
has leaves on the third level, not on the seventh, as in a forward trie. Admittedly, for
some frequently used endings, such as “tion,”“ism,” and “ics,” the problem reappears.

A variety of other orders can be considered, and checking every second character
proved to be very useful (Bourne and Ford, 1961), but solving the problem of an opti-
mal order cannot be solved in its generality, because the problem turns out to be ex-
tremely complex (Comer and Sethi, 1977).

S e c t i o n 7 . 2 Tr i e s ■ 353

FIGURE 7.37 The trie in Figure 7.36 with all unused reference fields removed.

A E I P R

P R EE IE I R# R

A
E
I
R
E

E
E
R
I
E

A
R
E
A

A
R
E

E
R
E

E
R
A

E
R
I
E

P
E
E
R

R
E
P

R
E
A
R

P
E
A
R

P
E
R

I
R
E

A
R
A

I
P
A

E I A E R

P
I
E
R

A PA
A

E

A

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

354 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.38 The trie from Figure 7.37 implemented as a binary tree.

E I R E

E E R I E

A R E A

A R E

E R E

E R A

E R I E

P E E R

R E P

R E A R

P E A R

P E R

I R E

A R A

I P A

P I E R

A

I
E

P

R
P

A

E
A

A
/

#

I
E

A

R
#

R
I

E

A
E

R
/

A
P

/

R
/ E

I
/

E
/

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Another way to save space is to compress the trie. One method creates a large
cellArray out of all the arrays in all nonleaf nodes by interleaving these arrays so
that the references remain intact. The starting positions of these arrays are recorded in
the encompassing cellArray. For example, the three nodes shown in Figure 7.39a
containing references p1 through p7 to other nodes of the trie (including leaves) are
put one by one into cellArray in a nonconflicting way, as in Figure 7.39b. The
problem is how to do that efficiently timewise and spacewise so that the algorithm is
fast and the resulting array occupies substantially less space than all nonleaf nodes
combined. In this example, all three nodes require 3 · 6 = 18 cells, and cellArray has
11 cells, so the compression rate is (18 – 11)/18, 39 percent. However, if the cells are
stored as in Figure 7.39c, the compression rate is (18 – 10)/18, 44 percent.

It turns out that the algorithm that compresses the trie is exponential in the
number of nodes and inapplicable for large tries. Other algorithms may not render
the optimal compression rate but are faster (cf. Al-Suwaiyel and Horowitz, 1984).
One such algorithm is compressTrie().

S e c t i o n 7 . 2 Tr i e s ■ 355

FIGURE 7.39 A part of a trie (a) before and (b) after compression using the compressTrie()
algorithm and (c) after compressing it in an optimal way.

A E I P R
P1 P2

A E I P R
P6 P7

A E I P R
P3 P4 P5

P1 P3 P2 P4 P5 P6 P7

(a)

(b)

cellArray

trieNodes
1 2 3

P1 P6 P7 P2 P3 P4 P5

(c)

cellArray

trieNodes
1 2 3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

compressTrie()
set to null all nodeNum*cellNum cells of cellArray;
for each node

for each position j of cellArray
if after superimposing node on cellArray[j], · · · , cellArray[j+cellNum-1]

no cell containing a reference is superimposed on a cell with a reference
copy reference cells from node to corresponding cells starting from cellArray[j];
record j in trieNodes as the position of node in cellArray;
break;

This is the algorithm that was applied to the trie in Figure 7.39a to render the ar-
rays in Figure 7.39b. Searching such a compressed trie is similar to searching a regular
trie. However, node accesses are mediated through the array trieNodes. If node1
refers to node2, the position of node2 has to be found in this array, and then node2 can
be accessed in cellArray.

The problem with using a compressed trie is that the search can lead us astray.
For instance, a search for a word starting with the letter “P” is immediately discon-
tinued in the trie in Figure 7.39a, because the reference field corresponding to this
letter in the root node is null. On the other hand, in the compressed version of the
same trie (Figure 7.39b), in the field corresponding to P, reference P3 can be found.
But the misguided path is detected only after later encountering a null reference
field or, after reaching a leaf, by comparing the key in this leaf with the key used in
searching.

One more way to compress tries is by creating a C-trie, which is a bit version of
the original trie (Maly, 1976). In this method, the nodes of one level of the C-trie are
stored in consecutive locations of memory, and the addresses of the first nodes of each
level are stored in a table of addresses. Information stored in particular nodes allows
us to access the children of these nodes by computing the offsets from these nodes to
their children.

Each node has four fields: a leaf/nonleaf flag, an end-of-word on/off field (which
functions as our sharp-sign field), a K-field of cellNum bits corresponding to the cells
with characters, and a C-field that gives the number of 1s in all the K-fields that are on
the same level and precede this node. The latter integer is the number of nodes in the
next level preceding the first child of this node.

The leaves store actual keys (or suffixes of keys) if they fit into the K-field+C-
field. If not, the key is stored in some table and the leaf contains a reference to its
position in this table. The end-of-word field is used to distinguish between these
two cases. A fragment of the C-trie version of the trie from Figure 7.39 is shown in
Figure 7.40. All nodes are the same size. It is assumed that the leaf can store up to
three characters.

To search a key in the C-trie, the offsets have to be computed very carefully. Here
is an outline of the algorithm:

CTrieSearch(K)
for (i = 1, p = the root; ; i++)

if p is a leaf
if K is equal to the key(p)

success;

356 ■ C h a p t e r 7 M u l t i w a y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

else failure;
else if the end of word k is reached

if end-of-word field is on
success;

else failure;
else if the bit corresponding to character K[i] is off

failure;
else p = address(the first node of level i+1)

+C-field(p)* size(one node) // to skip all children of nodes
// in front of p on level i;

+(number of 1-bits in K-field(p) to the left of the bit // to skip
corresponding to K[i])* size(one node) // some children of p;

For example, to find “EERIE” in the C-trie in Figure 7.40, we first check in the
root the bit corresponding to the first letter, “E.” Because the bit is on and the root is
not a leaf, we go to the second level. On the second level, the address of the node to be
tested is determined by adding the address of the first node on this level to the length
of one node, the first, in order to skip it. The bit of this nonleaf node corresponding to
the second letter of our word, also an “E,” is on, so we proceed to the third level. The
address of the node to be tested is determined by adding the address of the first node
of the third level to the size of one node (the first node of level three). We now access a
leaf node with the end-of-word field set to 0. The table of words is accessed to make a
comparison between the key looked for and the key in the table.

The compression is significant. One node of the original trie of 27 references of 2
bytes each occupies 54 bytes. One node of the C-trie requires 1 + 1 + 27 + 32 = 61 bits,
which can be stored in 9 bytes. But it is not without a price. This algorithm requires
putting nodes of one level tightly together, but storing one node at a time in memory
by using new does not guarantee that the nodes are put in consecutive locations, espe-
cially in a multiuser environment. Therefore, the nodes from one level have to be gen-
erated first in temporary storage, and only then can a chunk of memory be requested
that is large enough to accommodate all these nodes. This problem also indicates that

S e c t i o n 7 . 2 Tr i e s ■ 357

FIGURE 7.40 A fragment of the C-trie representation of the trie from Figure 7.36.

0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 2 1 1 I P A 1 1 I R E 0 0 0 1 1 0 0 5

0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 4 0 0 0 1 1 0 0 6 0 0 0 1 0 0 0 8

0 0 1 1 1 1 1 0

E E R I E E I R E

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the C-trie is ill-suited for dynamic updates. If the trie is generated only once, the C-
trie is an excellent variation to be utilized. If, however, the trie needs to be frequently
updated, this technique for trie compression should be abandoned.

7.3 CONCLUDING REMARKS

The survey of multiway trees in this chapter is by no means exhaustive. The number
of different types of multiway trees is very large. My intention is to highlight the vari-
ety of uses to which these trees can be applied and show how the same type of tree can
be applied to different areas. Of particular interest is a B-tree with all its variations.
B+-trees are commonly used in the implementation of indexes in today’s relational
databases. They allow very fast random access to the data, and they also allow fast se-
quential processing of the data.

The application of B-trees is not limited to processing information from sec-
ondary storage, although it was the original motivation in introducing these trees. A
variant of B-trees, 2–4 trees, although unsuitable for processing information in sec-
ondary storage, turns out to be very useful in processing information in memory.

Also of particular use are tries, a different type of tree. With many variations, they
have a vast scope of applications, and our case study illustrates one very useful appli-
cation of tries.

7.4 CASE STUDY: SPELL CHECKER

An indispensable utility for any word processor is a spell checker, which allows the
user to find as many spelling mistakes as possible. Depending on the sophistication of
the spell checker, the user may even see possible corrections. Spell checkers are used
mostly in an interactive environment; the user can invoke them at any time when
using the word processor, make corrections on the fly, and exit even before processing
the entire file. This requires writing a word processing program and, in addition to it,
a spell checker module. This case study focuses on the use of tries. Therefore, the spell
checker will be a stand-alone program to be used outside a word processor. It will
process a text file in batch mode, not allowing word-by-word corrections after possi-
ble errors are detected.

The core of a spell checker is a data structure allowing efficient access to words in
a dictionary. Such a dictionary most likely has thousands of words, so access has to be
very fast to process a text file in a reasonable amount of time. Out of many possible
data structures, the trie is chosen to store the dictionary words. The trie is first created
after the spell checker is invoked using the file dictionary, and afterward, the actual
spell checking takes place.

For a large number of dictionary words, the size of the trie is very important be-
cause it should reside in main memory without recourse to virtual memory. But as we
have already observed in this chapter, tries with fixed length nodes, as in Figure 7.36,
are too wasteful. In most cases, only a fraction of the positions in each node is utilized,

358 ■ C h a p t e r 7 M u l t i w a y T r e e s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

and the further away from the root, the smaller this fraction becomes (the root may be
the only node with 26 children). Creating linked lists corresponding to all utilized let-
ters for each node reduces wasted space, as in Figure 7.38. This approach has two dis-
advantages: The space required for the reference fields can be substantial, and the
linked lists force us to use sequential search. An improvement over the last solution is
to reserve only as much space as required by the letters used by each node without re-
sorting to the use of linked lists. We could use the type ArrayList as an implementa-
tion of flexible arrays (arrays automatically growable), but it incurs an additional
overhead: array lists store objects. Thus, to store a character in one, the char has to be
cast to the Character class and then stored. The same is true for extracting values
from array lists. Therefore, we will use strings as pseudoflexible arrays by substituting
larger strings for existing strings.

The key to the use of such pseudoflexible arrays is the implementation of a node.
There are three types of nodes: TrieNode with leaf/nonleaf flag and its subclasses,
TrieLeaf, and TrieNonLeaf. TrieNonLeaf node has three additional fields: an
end-of-word flag, a reference to a string, and a reference to an array of references to
nodes. These references can be references to both leaves and nonleaves, and this is a
reason why the superclass TrieNode is also used. The array is declared as an array of
TrieNode so that assigning instances of its subclasses does not cause a compilation
error. Figure 7.41 contains the trie utilizing the nodes of this structure. If a string
attached to a certain node has to be extended, a new string is created that contains the
contents of the old string with a new letter inserted into the proper position, a function
performed by addCell(). The letters in each node are kept in alphabetical order.

The method insert() is an implementation of the algorithm trieInsert()
discussed earlier in this chapter. Because the position of each letter may vary from one
node to another, this position has to be determined each time, a function performed
by position(). Should a letter be absent in a node, position() returns –1, which
allows insert() to undertake the proper action.

Also, the discussion of tries in this chapter assumed that the leaves of the tries store
full keys. This is not necessary because the prefixes of all words are implicitly stored in
the trie and can be reconstructed by garnering all the letters on the path leading to the
leaf. For example, to access the leaf with the word “ERIE,” two nonleaves have to be
passed through references corresponding to the letters “E” and “R.” Therefore, it is
enough to store the suffix “IE” in the leaf instead of the entire word “ERIE.” By doing
this, only 13 letters of suffixes of these words have to be retained in these leaves out of
the 58 letters stored in all leaves of the trie in Figure 7.36, a substantial improvement.

We also included the method printTrie(), which prints the content of a trie
sideways. The output generated by this method when applied to the trie in Figure 7.41
is as follows:

>>REP
>REA|R

>PI|ER
>>PER
>PEE|R
>PEA|R

S e c t i o n 7 . 4 C a s e S t u d y : S p e l l C h e c k e r ■ 359

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

360 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.41 An implementation of a trie that uses pseudoflexible arrays. The trie has the same
words as the trie in Figure 7.36.

A
E

I
P

R

A
E

R
A

P
A

E

EIR1

ER1

RE1
E1

E1

A1

A

A
E

I
0

0
0

0

0
1

0
0

0
0

E
I

R
0

0

R1
R1

R1

P
R

0
0

0
0

E
I

0
0

R
0

1
E

0
0

\

\

\

\

\

\

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

>IR|E
>IP|A

>ERI|E
>>ERE
>>ERA

>EI|RE
>EE|RIE

>>AREA
>>>ARE

>>ARA
>>>A

Three angle brackets indicate words for which the endOfWord flag has been set
in a corresponding node and two angle brackets indicate words that have an empty
leaf. The vertical bar in remaining words separates a prefix reconstructed when
scanning the trie and a suffix that was extracted from a leaf.

Spell checking works in a straightforward fashion by examining each word of a text
file and printing out all misspelled words along with the line numbers where the mis-
spelled words are found. Figure 7.42 contains the complete code of the spell checker.

S e c t i o n 7 . 4 C a s e S t u d y : S p e l l C h e c k e r ■ 361

FIGURE 7.42 Implementation of a spell checker using tries.

/************************ Trie.java *******************************

*

*/

class TrieNode {

public boolean isLeaf;

}

class TrieNonLeaf extends TrieNode {

public boolean endOfWord = false;

public String letters;

public TrieNode[] ptrs = new TrieNode[1];

public TrieNonLeaf() {

isLeaf = false;

}

public TrieNonLeaf(char ch) {

letters = new String();

letters += ch;

isLeaf = false;

}

}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

362 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.42 (continued)

class TrieLeaf extends TrieNode {

public String suffix;

public TrieLeaf() {

isLeaf = true;

}

public TrieLeaf(String suffix) {

this.suffix = new String(suffix);

isLeaf = true;

}

}

class Trie {

public TrieNonLeaf root;

public final int notFound = -1;

public Trie() {

}

public Trie(String word) {

root = new TrieNonLeaf(word.charAt(0)); // initialize the root

createLeaf(word.charAt(0),word.substring(1),root); // to avoid later

} // test;

public void printTrie() {

printTrie(0,root,new String()); // assumption: the root is not null;

}

protected void printTrie(int depth, TrieNode p, String prefix) {

if (p.isLeaf) {

for (int j = 1; j <= depth; j++)

System.out.print(" ");

System.out.println(" >" + prefix + "|" + ((TrieLeaf)p).suffix);

}

else {

for (int i = ((TrieNonLeaf)p).letters.length()-1; i >= 0; i--) {

if (((TrieNonLeaf)p).ptrs[i] != null) {

// add the letter corresponding to position i to prefix;

prefix = prefix.substring(0,depth) +

((TrieNonLeaf)p).letters.charAt(i);

sideView(depth+1,((TrieNonLeaf)p).ptrs[i],prefix);

}

else { // if empty leaf;

for (int j = 1; j <= depth+1; j++)

System.out.print(" ");

System.out.println(" >>" + prefix.substring(0,depth) +

((TrieNonLeaf)p).letters.charAt(i));

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 4 C a s e S t u d y : S p e l l C h e c k e r ■ 363

FIGURE 7.42 (continued)

}

if (((TrieNonLeaf)p).endOfWord) {

for (int j = 1; j <= depth+1; j++)

System.out.print(" ");

System.out.println(" >>" + prefix.substring(0,depth));

}

}

}

private int position(TrieNonLeaf p, char ch) {

int i = 0;

for (; i < p.letters.length() && p.letters.charAt(i) != ch; i++);

if (i < p.letters.length())

return i;

else return notFound;

}

public boolean found(String word) {

TrieNode p = root;

int pos, i = 0;

while (true)

if (p.isLeaf) { // node p is a leaf

TrieLeaf lf = (TrieLeaf) p; // where the matching

if (word.substring(i).equals(lf.suffix)) // suffix of

return true; // word should be found;

else return false;

}

else if ((pos = position((TrieNonLeaf)p,word.charAt(i))) != notFound

&& i+1 == word.length()) // the end of word has to

if (((TrieNonLeaf)p).ptrs[pos] == null) // correspond with

return true; // an empty leaf

else if(!(((TrieNonLeaf)p).ptrs[pos]).isLeaf &&

((TrieNonLeaf)((TrieNonLeaf)p).ptrs[pos]).endOfWord)

return true; // or the endOfWord marker on;

else return false;

else if (pos != notFound && ((TrieNonLeaf)p).ptrs[pos] != null) {

p = ((TrieNonLeaf)p).ptrs[pos];// continue path,

i++; // if possible,

}

else return false; // otherwise failure;

}

private void addCell(char ch, TrieNonLeaf p, int stop) {

int i;

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

364 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.42 (continued)

int len = p.letters.length();

char[] s = new char[len+1];

TrieNode[] tmp = p.ptrs;

p.ptrs = new TrieNode[len+1];

for (i = 0; i < len+1; i++)

p.ptrs[i] = null;

if (stop < len) // if ch does not follow all letters in p,

for (i = len; i >= stop+1; i--) { // copy from tmp letters > ch;

p.ptrs[i] = tmp[i-1];

s[i] = p.letters.charAt(i-1);

}

s[stop] = ch;

for (i = stop-1; i >= 0; i--) { // and letters < ch;

p.ptrs[i] = tmp[i];

s[i] = p.letters.charAt(i);

}

p.letters = new String(s);

}

private void createLeaf(char ch, String suffix, TrieNonLeaf p) {

int pos = position(p,ch);

TrieLeaf lf = null;

if (suffix != null && suffix.length() > 0) // don't create any leaf

lf = new TrieLeaf(suffix); // if there is no suffix;

if (pos == notFound) {

for (pos = 0; pos < p.letters.length() &&

p.letters.charAt(pos) < ch; pos++);

addCell(ch,p,pos);

}

p.ptrs[pos] = lf;

}

public void insert(String word) {

TrieNonLeaf p = root;

TrieLeaf lf;

int offset, pos, i = 0;

while (true) {

if (i == word.length()) { // if the end of word reached, then

if (p.endOfWord) // set endOfWord to true;

System.out.println("duplicate entry1: " + word);

p.endOfWord = true; // set endOfWord to true;

return;

} // if position in p indicated

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 4 C a s e S t u d y : S p e l l C h e c k e r ■ 365

FIGURE 7.42 (continued)

pos = position(p,word.charAt(i));

if (pos == notFound) { // by the first letter of word

createLeaf(word.charAt(i),word.substring(i+1),p);

// does not exist, create

return; // a leaf and store in it the

} // unprocessed suffix of word;

else if (pos != notFound && // empty leaf in position pos;

p.ptrs[pos] == null) {

if (i+1 == word.length()) {

System.out.println("duplicate entry1: " + word);

return;

}

p.ptrs[pos] = new TrieNonLeaf(word.charAt(i+1));

((TrieNonLeaf)(p.ptrs[pos])).endOfWord = true;

// check whether there is any suffix left:

String s = (word.length() > i+2) ? word.substring(i+2) : null;

createLeaf(word.charAt(i+1),s,(TrieNonLeaf)(p.ptrs[pos]));

return;

}

else if (pos != notFound && // if position pos is

p.ptrs[pos].isLeaf) { // occupied by a leaf,

lf = (TrieLeaf) p.ptrs[pos]; // hold this leaf;

if (lf.suffix.equals(word.substring(i+1))) {

System.out.println("duplicate entry2: " + word);

return;

}

offset = 0;

// create as many nonleaves as the length of identical

// prefix of word and the string in the leaf (for cell 'R',

// leaf "EP", and word "REAR", two such nodes are created);

do {

pos = position(p,word.charAt(i+offset));

// word = "ABC", leaf = "ABCDEF" => leaf = "DEF";

if (word.length() == i+offset+1) {

p.ptrs[pos] = new TrieNonLeaf(lf.suffix.charAt(offset));

p = (TrieNonLeaf) p.ptrs[pos];

p.endOfWord = true;

createLeaf(lf.suffix.charAt(offset),

lf.suffix.substring(offset+1),p);

return;

}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

366 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.42 (continued)

// word = "ABCDEF", leaf = "ABC" => leaf = "DEF";

else if (lf.suffix.length() == offset) {

p.ptrs[pos] = new TrieNonLeaf(word.charAt(i+offset+1));

p = (TrieNonLeaf) p.ptrs[pos];

p.endOfWord = true;

createLeaf(word.charAt(i+offset+1),

word.substring(i+offset+2),p);

return;

}

p.ptrs[pos] = new TrieNonLeaf(word.charAt(i+offset+1));

p = (TrieNonLeaf) p.ptrs[pos];

offset++;

} while (word.charAt(i+offset) == lf.suffix.charAt(offset-1));

offset--;

// word = "ABCDEF", leaf = "ABCPQR" =>

// leaf('D') = "EF", leaf('P') = "QR";

// check whether there is any suffix left:

// word = "ABCD", leaf = "ABCPQR" =>

// leaf('D') = null, leaf('P') = "QR";

String s = null;

if (word.length() > i+offset+2)

s = word.substring(i+offset+2);

createLeaf(word.charAt(i+offset+1),s,p);

// check whether there is any suffix left:

// word = "ABCDEF", leaf = "ABCP" =>

// leaf('D') = "EF", leaf('P') = null;

if (lf.suffix.length() > offset+1)

s = lf.suffix.substring(offset+1);

else s = null;

createLeaf(lf.suffix.charAt(offset),s,p);

return;

}

else {

p = (TrieNonLeaf) p.ptrs[pos];

i++;

}

}

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 4 C a s e S t u d y : S p e l l C h e c k e r ■ 367

FIGURE 7.42 (continued)

/************************ SpellCheck.java *******************************

*

*/

import java.io.*;

public class SpellCheck {

static int lineNum = 1;

static String s;

static int ch;

static void readWord(InputStream fIn) {

try {

while (true)

if (ch > -1 && !Character.isLetter((char)ch)) { // skip

ch = fIn.read(); // nonletters;

if (ch == '\n')

lineNum++;

}

else break;

if (ch == -1)

return;

s = "";

while (ch > -1 && Character.isLetter((char)ch)) {

s += Character.toUpperCase((char)ch);

ch = fIn.read();

}

} catch (IOException io) {

System.out.println("Problem with input.");

}

}

static public void main(String args[]) {

String fileName = "";

InputStream fIn, dictionary;

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader buffer = new BufferedReader(isr);

Trie trie = null;

try {

dictionary = new FileInputStream("dictionary");

readWord(dictionary);

trie = new Trie(s.toUpperCase()); // initialize root;

while (ch > -1) {

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

368 ■ C h a p t e r 7 M u l t i w a y T r e e s

FIGURE 7.42 (continued)

readWord(dictionary);

if (ch == -1)

break;

trie.insert(s);

}

dictionary.close();

} catch(IOException io) {

System.err.println("Cannot open dictionary");

}

System.out.println("\nTrie: ");

trie.printTrie();

ch = ' ';

lineNum = 1;

try {

if (args.length == 0) {

System.out.print("Enter a file name: ");

fileName = buffer.readLine();

fIn = new FileInputStream(fileName);

}

else {

fIn = new FileInputStream(args[0]);

fileName = args[0];

}

System.out.println("Misspelled words:");

while (true) {

readWord(fIn);

if (ch == -1)

break;

if (!trie.found(s))

System.out.println(s + " on line " + lineNum);

}

fIn.close();

} catch(IOException io) {

System.err.println("Cannot open " + fileName);

}

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 5 E x e r c i s e s ■ 369

7.5 EXERCISES

1. What is the maximum number of nodes in a multiway tree of height h?

2. How many keys can a B-tree of order m and of height h hold?

3. Write a method that prints out the contents of a B-tree in ascending order.

4. The root of a B*-tree requires special attention because it has no sibling. A split does
not render two nodes two-thirds full plus a new root with one key. Suggest some
solutions to this problem.

5. Are B-trees immune to the order of the incoming data? Construct B-trees of order 3
(two keys per node) first for the sequence 1, 5, 3, 2, 4 and then for the sequence 1, 2, 3,
4, 5. Is it better to initialize B-trees with ordered data or with data in random order?

6. Draw all 10 different B-trees of order 3 that can store 15 keys and make a table that
for each of these trees shows the number of nodes and the average number of visited
nodes (Rosenberg and Snyder, 1981). What generalization can you make about them?
Would this table indicate that (a) the smaller the number of nodes, the smaller the
average number of visited nodes and (b) the smaller the average number of visited
nodes, the smaller the number of nodes? What characteristics of the B-tree should
we concentrate on to make them more efficient?

7. In all our considerations concerning B-trees, we assumed that the keys are unique.
However, this does not have to be the case because multiple occurrences of the same
key in a B-tree do not violate the B-tree property. If these keys refer to different ob-
jects in the data file (e.g., if the key is a name, and many people can have the same
name), how would you implement such data file references?

8. What is the maximum height of a B+-tree with n keys?

9. Occasionally, in a simple prefix B+-tree, a separator can be as large as a key in a leaf.
For example, if the last key in one leaf is “Herman” and the first key in the next leaf is
“Hermann,” then “Hermann” must be chosen as a separator in the parent of these
leaves. Suggest a procedure to enforce the shorter separator.

10. Write a method that determines the shortest separator for two keys in a simple prefix
B+-tree.

11. Is it a good idea to use abbreviated forms of prefixes in the leaves of prefix B+-trees?

12. If in two different positions, i and j, i < j, of a leaf in a bit-tree two D-bits are found
such that Dj = Di , what is the condition on at least one of the D-bits Dk for i < k < j?

13. If key Ki is deleted from a leaf of a bit-tree, then the D-bit between Ki–1 and Ki +1 has
to be modified. What is the value of this D-bit if the values Di and Di +1 are known?
Make deletions in the leaf in Figure 7.17 to make an educated guess and then general-
ize this observation. In making a generalization, consider two cases: (a) Di < Di +1 and
(b) Di > Di +1.

14. Write an algorithm that, for an R-tree, finds all entries in the leaves whose rectangles
overlap a search rectangle R.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

370 ■ C h a p t e r 7 M u l t i w a y T r e e s

15. In the discussion of B-trees, which are comparable in efficiency to binary search trees,
why are only B-trees of small order used and not B-trees of large order?

16. What is the worst case of inserting a key into a 2–4 tree?

17. What is the complexity of the compressTrie() algorithm in the worst case?

18. Can the leaves of the trie compressed with compressTrie() still have abbreviated
versions of the words, namely, parts that are not included in the nonterminal nodes?

19. In the examples of tries analyzed in this chapter, we dealt with only 26 capital letters.
A more realistic setting includes lowercase letters as well. However, some words re-
quire a capital letter at the beginning (names), and some require the entire word to be
capitalized (acronyms). How can we solve this problem without including both low-
ercase and capital letters in the nodes?

20. A variant of a trie is a digital tree, which processes information on the level of bits.
Because there are only two bits, only two outcomes are possible. Digital trees are
binary. For example, to test whether the word “BOOK” is in the tree, we do not use
the first letter, “B,” in the root to determine to which of its children we should go, but
the first bit, 0, of the first letter (ASCII(B) = 01000010), on the second level, the sec-
ond bit, and so on before we get to the second letter. Is it a good idea to use a digital
tree for a spell checking program, as was discussed in the case study?

7.6 PROGRAMMING ASSIGNMENTS

1. Extend our spell checking program to suggest the proper spelling of a misspelled word.
Consider these types of misspellings: changing the order of letters (copmuter), omitting
a letter (computr), adding a letter (compueter), dittography, i.e., repeating a letter
(computter), and changing a letter (compurer). For example, if the letter i is exchanged
with the letter i + 1, then the level i of the trie should be processed before level i + 1.

2. A point quadtree is a 4-way tree used to represent points on a plane (Samet, 1989). A
node contains a pair of coordinates (latitude,longitude) and references to four chil-
dren that represent four quadrants, NW, NE, SW, and SE. These quadrants are gener-
ated by the intersection of the vertical and horizontal lines passing through point
(lat,lon) of the plane. Write a program that accepts the names of cities and their geo-
graphical locations (lat,lon) and inserts them into the quadtree. Then, the program
should give the names of all cities located within distance r from a location (lat,lon)
or, alternatively, within distance r from a city C.

Figure 7.43 contains an example. Locations on the map in Figure 7.43a are in-
serted into the quadtree in Figure 7.43b in the order indicated by the encircled num-
bers shown next to the city names. For instance, when inserting Pittsburgh into the
quadtree, we check in which direction it is with respect to the root. The root stores
the coordinates of Louisville, and Pittsburgh is NE from it; that is, it belongs to the
second child of the root. But this child already stores a city, Washington. Therefore,
we ask the same question concerning Pittsburgh with respect to the current node,
the second child of the root: In which direction with respect to this city is Pittsburgh?
This time the answer is NW. Therefore, we go to the first child of the current node.
The child is a null node, and therefore, the Pittsburgh node can be inserted here.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 6 P r o g r a m m i n g A s s i g n m e n t s ■ 371

FIGURE 7.43 A map indicating (a) coordinates of some cities and (b) a quadtree containing the
same cities.

2

Montreal
(45, 73)

8

New York
(40, 74)

45

Washington
(38, 77)

Louisville

(a)

(b)

Cleveland
(41, 81)

9
Chicago
(41, 87)

3

Dayton
(39, 84)

6

Nashville
(36, 87)

7

Atlanta
(34, 84)

10

Louisville
(38, 85)

1

38 85

NE

NENW

SWNW NE

SW
NW SE

Chicago

41 87
/ // /

Washington

38 77
/ /

Nashville

36 87
/ // /

Atlanta

34 84
/ // /

Pittsburgh

40 79

New York

40 74

Dayton

39 84
/ // /

Cleveland

41 81
/ // /

Montreal

45 73
/ // /

Pittsburgh
(40, 79)

// / //

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The problem is to not do an exhaustive search of the quadtree. So, if we are after
cities within a radius r from a city C, then, for a particular node nd you find the dis-
tance between C and the city represented by nd. If the distance is within r, you have to
continue to all four descendants of nd. If not, you continue to the descendants indi-
cated by the relative positions. To measure a distance between cities with coordinates
(lat1, lon1) and (lat2, lon2), the great circle distance formula can be used:

d = R arccos(sin(lat1) ? sin(lat2) 1 cos(lat1) ? cos(lat2) ? cos(lon22 lon1))

assuming that the earth radius R = 3,956 miles and latitudes and longitudes are ex-
pressed in radians (to convert decimal degrees to radians, multiply the number of
degrees by π/180 = 0.017453293 radians/degree). Also, for the directions west and
south, negative angles should be used.

For example, to find cities within the distance of 200 miles from Pittsburgh,
begin with the root and d((38,85),(40,79)) = 350, so Louisville does not qualify, but
now you need to continue only in the SE and NE descendants of Louisville after com-
paring the coordinates of Louisville and Pittsburgh. Then you try Washington, which
qualifies (d = 175), so, from Washington you go to Pittsburgh and then to both Pitts-
burgh’s descendants. But when you get to the NE node from Washington, you see that
New York does not qualify (d = 264), and from New York you would have to continue
in SW and NW descendants, but they are null, so you stop right there. Also, Atlanta
needs to be checked.

3. Figure 7.36 indicates one source of inefficiency for tries: The path to “REAR” and
“REP” leads through a node that has just one child. For longer identical prefixes, the
number of such nodes can be even longer. Implement a spell checker with a variation
of the trie, called the multiway Patricia tree (Morrison, 1968),4 which curtails the
paths in the trie by avoiding nodes with only one child. It does this by indicating for
each branch how many characters should be skipped to make a test. For example, a
trie from Figure 7.44a is transformed into a Patricia tree in Figure 7.44b. The paths
leading to the four words with prefix “LOGG” are shortened at the cost of recording
in each node the number of characters to be omitted starting from the current posi-
tion in a string. Now, because certain characters are not tested along the way, the final
test should be between a key searched for and the entire key found in a specific leaf.

4. The definition of a B-tree stipulates that the nodes have to be half full, and the defini-
tion of a B*-tree increases this requirement to two-thirds. The reason for these re-
quirements is to achieve reasonably good disk space utilization. However, it may be
claimed that B-trees can perform very well requiring only that they include no empty
nodes. To distinguish between these two cases, the B-trees discussed in this chapter
are called merge-at-half B-trees, and the other type, when nodes must have at least
one element, are called free-at-empty B-trees. It turns out, for example, that after a
free-at-empty B-tree is built and then each insertion is followed by deletion, the space
utilization is about 39 percent (Johnson and Shasha, 1993), which is not bad consid-
ering the fact that this type of tree can have very small space utilization (for
a tree of order m), whereas a merge-at-half B-tree has at least 50 percent utilization.

1
m ? 100%

372 ■ C h a p t e r 7 M u l t i w a y T r e e s

4 The original Patricia tree was a binary tree, and the tests were made on the level of bits.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 7 . 6 P r o g r a m m i n g A s s i g n m e n t s ■ 373

Therefore, it may be expected that if the number of insertions outweighs the number
of deletions, the gap between merge-at-half and free-at-empty B-trees will be bridged.
Write a simulation program to check this contention. First build a large B-tree, and
then run a simulation for this tree treating it as a merge-at-half B-tree and then as a
free-at-empty B-tree for different ratios of number i of insertions to number d of
deletions, so that ; that is, the number of insertions is not less than the number
of deletions (the case when deletions outweigh insertions is not interesting, because
eventually the tree would disappear). Compare the space utilization for these differ-
ent cases. For what ratio is the space utilization between these two types of B-treesi

d

i
d $ 1

FIGURE 7.44 (a) A trie with words having long identical prefixes and (b) a Patricia tree with the
same words.

L
O
G
G
E
D

L
O
G
G
E
R
H
E
A
D

0... ... 0

D R

(b)

....

L
O
G
G
I
A

A
D
A
M

L
O
G
G
I
N
G

0 ... 0

A N

........

0... ... 0

E I

......

0 4

A L

.....

L
O
G
G
E
D

L
O
G
G
E
R
H
E
A
D

... ...
D R

(a)

....

L
O
G
G
I
A

A
D
A
M

L
O
G
G
I
N
G

...
A N

........

... ...
E I

......

.....
A L

.....

........
O

.....

...
G

........

...
G

........

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

374 ■ C h a p t e r 7 M u l t i w a y T r e e s

sufficiently close (say, within 5–10 percent difference)? After how many deletions and
insertions is this similar utilization accomplished? Does the order of the tree have an
impact on the difference of space utilization? One advantage of using free-at-empty
trees would be to decrease the probability of tree restructuring. In all cases, compare
the tree restructuring rate for both types of B-trees.

BIBLIOGRAPHY

B-Trees

Bayer, R., “Symmetric Binary B-Trees: Data Structures and Maintenance Algorithms,” Acta
Informatica 1 (1972), 290–306.

Bayer, R., and McCreight, E., “Organization and Maintenance of Large Ordered Indexes,” Acta
Informatica 1 (1972), 173–189.

Bayer, Rudolf, and Unterauer, Karl, “Prefix B-Trees,” ACM Transactions on Database Systems 2
(1977), 11–26.

Comer, Douglas, “The Ubiquitous B-Tree,” Computing Surveys 11 (1979), 121–137.

Ferguson, David E., “Bit-Tree: A Data Structure for Fast File Processing,” Communications of the
ACM 35 (1992), No. 6, 114–120.

Folk, Michael J., Zoellick, Bill, and Riccardi, Greg, File Structures: An Object-Oriented Approach
with C++, Reading, MA: Addison-Wesley (1998), Chs. 9, 10.

Guibas, Leo J., and Sedgewick, Robert, “A Dichromatic Framework for Balanced Trees,”
Proceedings of the 19th Annual Symposium on Foundation of Computer Science (1978), 8–21.

Guttman, Antonin, “R-Trees: A Dynamic Index Structure for Spatial Searching,” ACM SIG-
MOD ’84 Proc. of Annual Meeting, SIGMOD Record 14 (1984), 47–57 [also in Stonebraker,
Michael (ed.), Readings in Database Systems, San Mateo, CA: Kaufmann (1988), 599–609].

Johnson, Theodore, and Shasha, Dennis, “B-Trees with Inserts and Deletes: Why Free-at-
Empty Is Better Than Merge-at-Half,” Journal of Computer and System Sciences 47 (1993),
45–76.

Leung, Clement H. C., “Approximate Storage Utilization of B-Trees: A Simple Derivation and
Generalizations,” Information Processing Letters 19 (1984), 199–201.

McCreight, Edward M., “Pagination of B*-Trees with Variable-Length Records,” Communica-
tions of the ACM 20 (1977), 670–674.

Rosenberg, Arnold L., and Snyder, Lawrence, “Time- and Space-Optimality in B-Trees,” ACM
Transactions on Database Systems 6 (1981), 174–193.

Sedgewick, Robert, Algorithms, Reading, MA: Addison-Wesley (1998), Ch. 13.

Sellis, Timos, Roussopoulos, Nick, and Faloutsos, Christos, “The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects,” Proceedings of the 13th Conference on Very Large Databases (1987),
507–518.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Stonebraker, M., Sellis, T., and Hanson, E., “Analysis of Rule Indexing Implementations in Data
Base Systems,” Proceedings of the First International Conference on Expert Database Systems,
Charleston, SC (1986), 353–364.

Wedekind, H., “On the Selection of Access Paths in a Data Base System,” in Klimbie, J. W., and
Koffeman, K. L. (eds.), Data Base Management, Amsterdam: North-Holland (1974), 385–397.

Yao, Andrew Chi-Chih, “On Random 2–3 Trees,” Acta Informatica 9 (1978), 159–170.

Tries

Bourne, Charles P., and Ford, Donald F., “A Study of Methods for Systematically Abbreviating
English Words and Names,” Journal of the ACM 8 (1961), 538–552.

Briandais, Rene de la, “File Searching Using Variable Length Keys,” Proceedings of the Western
Joint Computer Conference (1959), 295–298.

Comer, Douglas, and Sethi, Ravi, “The Complexity of Trie Index Construction,” Journal of the
ACM 24 (1977), 428–440.

Fredkin, Edward, “Trie Memory,” Communications of the ACM 3 (1960), 490–499.

Maly, Kurt, “Compressed Tries,” Communications of the ACM 19 (1976), 409–415.

Morrison, Donald R., “Patricia Trees,” Journal of the ACM 15 (1968), 514–534.

Rotwitt, T., and de Maine, P. A. D., “Storage Optimization of Tree Structured Files Representing
Descriptor Sets,” Proceedings of the ACM SIGFIDET Workshop on Data Description, Access and
Control, New York (1971), 207–217.

Al-Suwaiyel, M., and Horowitz, E., “Algorithms for Trie Compaction,” ACM Transactions on
Database Systems 9 (1984), 243–263.

Quadtrees

Finkel, R. A., and Bentley, J. L., “Quad Trees: A Data Structure for Retrieval on Composite
Keys,” Acta Informatica 4 (1974), 1–9.

Samet, Hanan, The Design and Analysis of Spatial Data Structures, Reading, MA: Addison-
Wesley, 1989.

B i b l i o g r a p h y ■ 375

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

376

In spite of the flexibility of trees and the many different tree applications, trees, by
their nature, have one limitation, namely, they can only represent relations of a hi-
erarchical type, such as relations between parent and child. Other relations are

only represented indirectly, such as the relation of being a sibling. A generalization of
a tree, a graph, is a data structure in which this limitation is lifted. Intuitively, a graph
is a collection of vertices (or nodes) and the connections between them. Generally, no
restriction is imposed on the number of vertices in the graph or on the number of
connections one vertex can have to other vertices. Figure 8.1 contains examples of
graphs. Graphs are versatile data structures that can represent a large number of dif-
ferent situations and events from diverse domains. Graph theory has grown into a so-
phisticated area of mathematics and computer science in the last 200 years since it was
first studied. Many results are of theoretical interest, but in this chapter, some selected
results of interest to computer scientists are presented. Before discussing different al-
gorithms and their applications, several definitions need to be introduced.

A simple graph G = (V, E) consists of a nonempty set V of vertices and a possibly
empty set E of edges, each edge being a set of two vertices from V. The number of ver-
tices and edges is denoted by |V | and |E |, respectively. A directed graph, or a digraph,
G = (V, E) consists of a nonempty set V of vertices and a set E of edges (also called
arcs), where each edge is a pair of vertices from V. The difference is that one edge of a
simple graph is of the form {vi, vj}, and for such an edge, {vi,vj} = {vj,vi}. In a digraph,
each edge is of the form (vi,vj), and in this case, (vi,vj) ≠ (vj,vi). Unless necessary, this
distinction in notation will be disregarded, and an edge between vertices vi and vj will
be referred to as edge(vivj).

These definitions are restrictive in that they do not allow for two vertices to have
more than one edge. A multigraph is a graph in which two vertices can be joined by
multiple edges. Geometric interpretation is very simple (see Figure 8.1e). Formally,
the definition is as follows: A multigraph G = (V,E,f) is composed of a set of vertices
V, a set of edges E, and a function f : E → {{vi,vj} : vi,vj ∈ V and vi ≠ vj}. A pseudograph is
a multigraph with the condition vi ≠ vj removed, which allows for loops to occur; in a
pseudograph, a vertex can be joined with itself by an edge (Figure 8.1f).

A path from v1 to vn is a sequence of edges edge(v1v2), edge(v2v3), . . . , edge(vn–1vn)
and is denoted as path v1, v2, v3, . . . , vn–1, vn. If v1 = vn and no edge is repeated, then the

Graphs8

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

path is called a circuit (Figure 8.1g). If all vertices in a circuit are different, then it is
called a cycle (Figure 8.1h).

A graph is called a weighted graph if each edge has an assigned number. Depend-
ing on the context in which such graphs are used, the number assigned to an edge is
called its weight, cost, distance, length, or some other name.

A graph with n vertices is called complete and is denoted Kn if for each pair of dis-
tinct vertices there is exactly one edge connecting them; that is, each vertex can be con-
nected to any other vertex (Figure 8.1c). The number of edges in such a graph |E| =

��
|V
2

|
�� = �

2!(|V
|V

|
|
–

!

2)!
� = �

|V|(|V
2

| – 1)
� = O(|V|2).

A subgraph G ′ of graph G = (V,E) is a graph (V ′,E ′) such that V ′ ⊆ V and E ′ ⊆ E. A
subgraph induced by vertices V ′ is a graph (V ′,E ′) such that an edge e ∈ E if e ∈ E ′.

Two vertices vi and vj are called adjacent if the edge(vivj) is in E. Such an edge is
called incident with the vertices vi and vj. The degree of a vertex v, deg(v), is the number
of edges incident with v. If deg(v) = 0, then v is called an isolated vertex. Part of the
definition of a graph indicating that the set of edges E can be empty allows for a graph
consisting only of isolated vertices.

8.1 GRAPH REPRESENTATION

There are various ways to represent a graph. A simple representation is given by an ad-
jacency list which specifies all vertices adjacent to each vertex of the graph. This list
can be implemented as a table, in which case it is called a star representation, which
can be forward or reverse, as illustrated in Figure 8.2b, or as a linked list (Figure 8.2c).

S e c t i o n 8 . 1 G r a p h R e p r e s e n t a t i o n ■ 377

FIGURE 8.1 Examples of graphs: (a–d) simple graphs; (c) a complete graph K4; (e) a multigraph;
(f) a pseudograph; (g) a circuit in a digraph; (h) a cycle in the digraph.

(d)(c)(b)(a)

b

a
c

(h)(g)(e) (f)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

378 ■ C h a p t e r 8 G r a p h s

Another representation is a matrix, which comes in two forms: an adjacency
matrix and an incidence matrix. An adjacency matrix of graph G = (V,E) is a binary
|V | × |V | matrix such that each entry of this matrix

FIGURE 8.2 Graph representations. (a) A graph represented as (b–c) an adjacency list, (d) an adja-
cency matrix, and (e) an incidence matrix.

a

c

b

g

e

f

d

(a)

a
b
c
d
e
f
g

c
d
a
a
b
a

d
e
f
b
d
c

f

e

d

f

f
\

dca

e
\

db

f
\

ac

f
\

ebad

d
\

be

d
\

c

(c)

(e)

(b)

af

g
\
\

1
0
1
0
0
0
0

a
b
c
d
e
f
g

ac

1
0
0
1
0
0
0

ad

1
0
0
0
0
1
0

af

0
1
0
1
0
0
0

bd

0
0
1
0
0
1
0

cf

0
0
0
1
1
0
0

de

0
0
0
1
0
1
0

df

0
1
0
0
1
0
0

be

(d)

0
0
1
1
0
1
0

a
b
c
d
e
f
g

a

0
0
0
1
1
0
0

b

1
0
0
0
0
1
0

c

1
1
0
0
1
1
0

d

1
0
1
1
0
0
0

f

0
0
0
0
0
0
0

g

0
1
0
1
0
0
0

e

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

aij = �
An example is shown in Figure 8.2d. Note that the order of vertices v1, . . . , v|V | used

for generating this matrix is arbitrary; therefore, there are n! possible adjacency matrices
for the same graph G. Generalization of this definition to also cover multigraphs can be
easily accomplished by transforming the definition into the following form:

aij = number of edges between vi and vj

Another matrix representation of a graph is based on the incidence of vertices
and edges and is called an incidence matrix. An incidence matrix of graph G = (V,E) is
a |V | × |E | matrix such that

aij = �
Figure 8.2e contains an example of an incidence matrix. In an incidence matrix for
a multigraph, some columns are the same, and a column with only one 1 indicates a
loop.

Which representation is best? It depends on the problem at hand. If our task is to
process vertices adjacent to a vertex v, then the adjacency list requires only deg(v)
steps, whereas the adjacency matrix requires |V | steps. On the other hand, inserting or
deleting a vertex adjacent to v requires linked list maintenance for an adjacency list (if
such an implementation is used); for a matrix, it requires only changing 0 to 1 for in-
sertion, or 1 to 0 for deletion, in one cell of the matrix.

8.2 GRAPH TRAVERSALS

As in trees, traversing a graph consists of visiting each vertex only one time. The sim-
ple traversal algorithms used for trees cannot be applied here because graphs may in-
clude cycles; hence, the tree traversal algorithms would result in infinite loops. To
prevent that from happening, each visited vertex can be marked to avoid revisiting it.
However, graphs can have isolated vertices, which means that some parts of the graph
are left out if unmodified tree traversal methods are applied.

An algorithm for traversing a graph, known as the depth-first search algorithm,
was developed by John Hopcroft and Robert Tarjan. In this algorithm, each vertex
v is visited and then each unvisited vertex adjacent to v is visited. If a vertex v has
no adjacent vertices or all of its adjacent vertices have been visited, we backtrack to the
predecessor of v. The traversal is finished if this visiting and backtracking process leads
to the first vertex where the traversal started. If there are still some unvisited vertices in
the graph, the traversal continues restarting for one of the unvisited vertices.

Although it is not necessary for the proper outcome of this method, the algo-
rithm assigns a unique number to each accessed vertex so that vertices are now
renumbered. This will prove useful in later applications of this algorithm.

DFS(v)
num(v)= i++;
for all vertices u adjacent to v

1 if edge ej is incident with vertex vi
0 otherwise

1 if there exists an edge(vivj)
0 otherwise

S e c t i o n 8 . 2 G r a p h Tr a v e r s a l s ■ 379

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

if num(u) is 0
attach edge(uv) to edges;
DFS(u);

depthFirstSearch()
for all vertices v

num(v) = 0;
edges = null;
i = 1;
while there is a vertex v such that num(v) is 0

DFS(v);
output edges;

Figure 8.3 contains an example with the numbers num(v) assigned to each
vertex v shown in parentheses. Having made all necessary initializations,
depthFirstSearch() calls DFS(a). DFS() is first invoked for vertex a; num(a) is
assigned number 1. a has four adjacent vertices, and vertex e is chosen for the next in-
vocation, DFS(e), which assigns number 2 to this vertex, that is, num(e) = 2, and puts
the edge(ae) in edges. Vertex e has two unvisited adjacent vertices, and DFS() is called
for the first of them, the vertex f. The call DFS(f) leads to the assignment num(f) = 3
and puts the edge(ef) in edges. Vertex f has only one unvisited adjacent vertex, i; thus,
the fourth call, DFS(i), leads to the assignment num(i) = 4 and to the attaching of
edge(fi) to edges. Vertex i has only visited adjacent vertices; hence, we return to call
DFS(f) and then to DFS(e) in which vertex i is accessed only to learn that num(i) is
not 0, whereby the edge(ei) is not included in edges. The rest of the execution can be
seen easily in Figure 8.3b. Solid lines indicate edges included in the set edges.

Note that this algorithm guarantees generating a tree (or a forest, a set of trees)
that includes or spans over all vertices of the original graph. A tree that meets this
condition is called a spanning tree. The fact that a tree is generated is ascertained by
the fact that the algorithm does not include in the resulting tree any edge that leads
from the currently analyzed vertex to a vertex already analyzed. An edge is added to
edges only if the condition in “if num(u) is 0” is true; that is, if vertex u reachable

380 ■ C h a p t e r 8 G r a p h s

FIGURE 8.3 An example of application of the depthFirstSearch() algorithm to a graph.

e

a

i

f

(a)

b

g

dc

h

e(2)

a(1)

i(4)

f(3)

(b)

b(6)

g(5)

d(9)c(7)

h(8)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

from vertex v has not been processed. As a result, certain edges in the original graph
do not appear in the resulting tree. The edges included in this tree are called forward
edges (or tree edges), and the edges not included in this tree are called back edges and
are shown as dashed lines.

Figure 8.4 illustrates the execution of this algorithm for a digraph. Notice that the
original graph results in three spanning trees, although we started with only two iso-
lated subgraphs.

The complexity of depthFirstSearch() is O(|V | + |E |) because (a) initializ-
ing num(v) for each vertex v requires |V | steps; (b) DFS(v) is called deg(v) times for
each v—that is, once for each edge of v (to spawn into more calls or to finish the chain
of recursive calls)—hence, the total number of calls is 2|E |; (c) searching for vertices
as required by the statement

while there is a vertex v such that num(v) is 0

can be assumed to require |V | steps. For a graph with no isolated parts, the loop
makes only one iteration, and an initial vertex can be found in one step, although it
may take |V | steps. For a graph with all isolated vertices, the loop iterates |V | times,
and each time a vertex can also be chosen in one step, although in an unfavorable im-
plementation, the ith iteration may require i steps, whereby the loop would require
O(|V |2) steps in total. For example, if an adjacency list is used, then for each v, the
condition in the loop,

for all vertices u adjacent to v

is checked deg(v) times. However, if an adjacency matrix is used, then the same con-
dition is used |V | times, whereby the algorithm’s complexity becomes O(|V |2).

As we shall see, many different algorithms are based on DFS(); however, some algo-
rithms are more efficient if the underlying graph traversal is not depth first but breadth
first. We have already encountered these two types of traversals in Chapter 6; recall that
the depth-first algorithms rely on the use of a stack (explicitly, or implicitly, in recursion),
and breadth-first traversal uses a queue as the basic data structure. Not surprisingly, this
idea can also be extended to graphs, as shown in the following pseudocode:

S e c t i o n 8 . 2 G r a p h Tr a v e r s a l s ■ 381

FIGURE 8.4 The depthFirstSearch() algorithm applied to a digraph.

e

a

i

f

(a)

b

g

dc

h

e(2)

a(1)

i(3)

f(4)

(b)

b(5)

g(6)

d(9)c(7)

h(8)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

breadthFirstSearch()
for all vertices u

num(u) = 0;
edges = null;
i = 1;
while there is a vertex v such that num(v) == 0

num(v)=i++;
enqueue(v);
while queue is not empty

v = dequeue();
for all vertices u adjacent to v

if num(u) is 0
num(u) = i++;
enqueue(u);
attach edge(vu) to edges;

output edges;

Examples of processing a simple graph and a digraph are shown in Figures 8.5
and 8.6. breadthFirstSearch() first tries to mark all neighbors of a vertex v be-
fore proceeding to other vertices, whereas DFS() picks one neighbor of a v and then
proceeds to a neighbor of this neighbor before processing any other neighbors of v.

382 ■ C h a p t e r 8 G r a p h s

FIGURE 8.5 An example of application of the breadthFirstSearch() algorithm to a graph.

e

a

i

f

(a)

b

g

dc

h

e(2)

a(1)

i(5)

f(3)

(b)

b(6)

g(4)

d(9)c(7)

h(8)

FIGURE 8.6 The breadthFirstSearch() algorithm applied to a digraph.

e

a

i

f

(a)

b

g

dc

h

e(2)

a(1)

i(4)

f(3)

(b)

b(5)

g(6)

d(9)c(7)

h(8)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8.3 SHORTEST PATHS

Finding the shortest path is a classical problem in graph theory, and a large number of
different solutions have been proposed. Edges are assigned certain weights represent-
ing, for example, distances between cities, times separating the execution of certain
tasks, costs of transmitting information between locations, amounts of some sub-
stance transported from one place to another, and so on. When determining the
shortest path from vertex v to vertex u, information about distances between interme-
diate vertices w has to be recorded. This information can be recorded as a label associ-
ated with these vertices, where the label is only the distance from v to w or the distance
along with the predecessor of w in this path. The methods of finding the shortest path
rely on these labels. Depending on how many times these labels are updated, the
methods solving the shortest path problem are divided in two classes: label-setting
methods and label-correcting methods.

For label-setting methods, in each pass through the vertices still to be processed,
one vertex is set to a value that remains unchanged to the end of the execution. This,
however, limits such methods to processing graphs with only positive weights. The
second category includes label-correcting methods, which allow for the changing of
any label during application of the method. The latter methods can be applied to
graphs with negative weights and with no negative cycle—a cycle composed of edges
with weights adding up to a negative number—but they guarantee that, for all ver-
tices, the current distances indicate the shortest path only after the processing of the
graph is finished. Most of the label-setting and label-correcting methods, however,
can be subsumed to the same form, which allows finding the shortest paths from one
vertex to all other vertices (Gallo and Pallottino, 1986):

genericShortestPathAlgorithm(weighted simple digraph, vertex first)
for all vertices v

currDist(v) = ∞;
currDist(first) = 0;
initialize toBeChecked;
while toBeChecked is not empty

v = a vertex in toBeChecked;
remove v from toBeChecked;
for all vertices u adjacent to v

if currDist(u) > currDist(v) + weight(edge(vu))
currDist(u) = currDist(v) + weight(edge(vu));
predecessor(u) = v;
add u to toBeChecked if it is not there;

In this generic algorithm, a label consists of two elements:

label(v) = (currDist(v), predecessor(v))

This algorithm leaves two things open: the organization of the set toBeChecked
and the order of assigning new values to v in the assignment statement

v = a vertex in toBeChecked;

S e c t i o n 8 . 3 S h o r t e s t P a t h s ■ 383

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

It should be clear that the organization of toBeChecked can determine the order of
choosing new values for v, but it also determines the efficiency of the algorithm.

What distinguishes label-setting methods from label-correcting methods is the
method of choosing the value for v, which is always a vertex in toBeChecked with
the smallest current distance. One of the first label-setting algorithms was developed
by Dijkstra.

In Dijkstra’s algorithm, a number of paths p1, . . . , pn from a vertex v are tried, and
each time, the shortest path is chosen among them, which may mean that the same
path pi can be continued by adding one more edge to it. But if pi turns out to be longer
than any other path that can be tried, pi is abandoned and this other path is tried by
resuming from where it was left and by adding one more edge to it. Because paths can
lead to vertices with more than one outgoing edge, new paths for possible exploration
are added for each outgoing edge. Each vertex is tried once, all paths leading from it
are opened, and the vertex itself is put away and not used anymore. After all vertices
are visited, the algorithm is finished. Dijkstra’s algorithm is as follows:

DijkstraAlgorithm(weighted simple digraph, vertex first)
for all vertices v

currDist(v) = ∞;
currDist(first) = 0;
toBeChecked = all vertices;
while toBeChecked is not empty

v = a vertex in toBeChecked with minimal currDist(v);
remove v from toBeChecked;
for all vertices u adjacent to v and in toBeChecked

if currDist(u) > currDist(v)+ weight(edge(vu))
currDist(u) = currDist(v)+ weight(edge(vu));
predecessor(u) = v;

Dijkstra’s algorithm is obtained from the generic method by being more specific
about which vertex is to be taken from toBeChecked so that the line

v = a vertex in toBeChecked;

is replaced by the line

v = a vertex in toBeChecked with minimal currDist(v);

and by extending the condition in the if statement whereby the current distance of
vertices eliminated from toBeChecked is set permanently.1 Note that the structure of
toBeChecked is not specified, and the efficiency of the algorithms depends on the
data type of toBeChecked, which determines how quickly a vertex with minimal dis-
tance can be retrieved.

Figure 8.7 contains an example. The table in this figure shows all iterations of the
while loop. There are 10 iterations because there are 10 vertices. The table indicates
the current distances determined up until the current iteration.

384 ■ C h a p t e r 8 G r a p h s

1Dijkstra used six sets to ensure this condition, three for vertices and three for edges.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The list toBeChecked is initialized to {a b . . . j}; the current distances of all ver-
tices are initialized to a very large value, marked here as ∞; and in the first iteration,
the current distances of d ’s neighbors are set to numbers equal to the weights of
the edges from d. Now, there are two candidates for the next try, a and h, because
d was excluded from toBeChecked. In the second iteration, h is chosen, because its
current distance is minimal, and then the two vertices accessible from h, namely,
e and i, acquire the current distances 6 and 10. Now, there are three candidates
in toBeChecked for the next try, a, e, and i. a has the smallest current distance, so
it is chosen in the third iteration. Eventually, in the tenth iteration, toBeChecked
becomes empty and the execution of the algorithm completes.

The complexity of Dijkstra’s algorithm is O(|V |2). The first for loop and the
while loop are executed |V | times. For each iteration of the while loop, (a) a vertex
v in toBeChecked with minimal current distance has to be found, which requires
O(|V |) steps, and (b) the for loop iterates deg(v) times, which is also O(|V |). The ef-
ficiency can be improved by using a heap to store and order vertices and adjacency
lists (Johnson 1977). Using a heap turns the complexity of this algorithm into O((|E |
+ |V |) lg |V |); each time through the while loop, the cost of restoring the heap after

S e c t i o n 8 . 3 S h o r t e s t P a t h s ■ 385

FIGURE 8.7 An execution of DijkstraAlgorithm().

∞
∞
∞
0
∞
∞
∞
∞
∞
∞

4
∞
∞

∞
∞
∞
1
∞
∞

4
∞
∞

6
∞
∞

10
∞

∞
∞

5
∞
∞

10

(b)

∞

∞
∞

8
∞

10
∞

9
11

15

9
∞

11

15

9
∞

11

15

11

15 12

11

a
b
c
d
e
f
g
h
i
j

1
d

iteration:
active vertex:

init 2
h

3
a

4
e

6
b

7
i

8
c

9
j

10
g

5
f

j

b c2

7

31

1 1

f

i

g

h

a

4

1
5

1

10 e

9

(a)

2

3
d

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

removing a vertex is proportional to O(lg|V |). Also, in each iteration, only adjacent
vertices are updated on an adjacency list so that the total updates for all vertices con-
sidered in all iterations are proportional to |E |, and each list update corresponds to
the cost of lg|V | of the heap update.

Dijkstra’s algorithm is not general enough in that it may fail when negative
weights are used in graphs. To see why, change the weight of edge(ah) from 10 to –10.
Note that the path d, a, h, e is now –1, whereas the path d, a, e as determined by the al-
gorithm is 5. The reason for overlooking this less costly path is that the vertices with the
current distance set from ∞ to a value are not checked anymore: First, successors of
vertex d are scrutinized and d is removed from toBeChecked, then the vertex h is re-
moved from toBeChecked, and only afterward is the vertex a considered as a candi-
date to be included in the path from d to other vertices. But now, the edge(ah) is not
taken into consideration because the condition in the for loop prevents the algorithm
from doing this. To overcome this limitation, a label-correcting method is needed.

One of the first label-correcting algorithms was devised by Lester Ford. Like Dijk-
stra’s algorithm, it uses the same method of setting current distances, but Ford’s
method does not permanently determine the shortest distance for any vertex until it
processes the entire graph. It is more powerful than Dijkstra’s method in that it can
process graphs with negative weights (but not graphs with negative cycles).

As required by the original form of the algorithm, all edges are monitored to find
a possibility for an improvement of the current distance of vertices so that the algo-
rithm can be presented in this pseudocode:

FordAlgorithm(weighted simple digraph, vertex first)
for all vertices v

currDist(v) = ∞;
currDist(first) = 0;
while there is an edge(vu) such that currDist(u) > currDist(v)+ weight(edge(vu))

currDist(u) = currDist(v)+ weight(edge(vu));

To impose a certain order on monitoring the edges, an alphabetically ordered se-
quence of edges can be used so that the algorithm can repeatedly go through the entire
sequence and adjust the current distance of any vertex, if needed. Figure 8.8 contains
an example. The graph includes edges with negative weights. The table indicates itera-
tions of the while loop and current distances updated in each iteration, where one it-
eration is defined as one pass through the edges. Note that a vertex can change its
current distance during the same iteration. However, at the end, each vertex of the
graph can be reached through the shortest path from the starting vertex (vertex c in the
example in Figure 8.8).

The computational complexity of this algorithm is O(|V ||E |). There will be at
most |V | – 1 passes through the sequence of |E | edges, because |V | – 1 is the largest
number of edges in any path. In the first pass, at least all one-edge paths are deter-
mined; in the second pass, all two-edge paths are determined; and so on. However, for
graphs with irrational weights, this complexity is O(2|V |) (Gallo and Pallottino 1986).

We have seen in the case of Dijkstra’s algorithm that the efficiency of an algo-
rithm can be improved by scanning edges and vertices in a certain order, which in
turn depends on the data structure used to store them. The same holds true for label-
correcting methods. In particular, FordAlgorithm() does not specify the order of

386 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

checking edges. In the example illustrated in Figure 8.8, a simple solution is used
in that all adjacency lists of all vertices were visited in each iteration. However, in this
approach, all the edges are checked every time, which is not necessary, and more judi-
cious organization of the list of vertices can limit the number of visits per vertex. Such
an improvement is based on the genericShortestPathAlgorithm() by explic-
itly referring to the toBeChecked list, which in FordAlgorithm() is used only
implicitly: It simply is the set of all vertices V and remains such for the entire run of
the algorithm. This leads us to a general form of a label-correcting algorithm as
expressed in this pseudocode:

labelCorrectingAlgorithm(weighted simple digraph, vertex first)
for all vertices v

currDist(v) = ∞;
currDist(first) = 0;
toBeChecked = {first};
while toBeChecked is not empty

v = a vertex in toBeChecked;
remove v from toBeChecked;
for all vertices u adjacent to v

if currDist(u) > currDist(v)+ weight(edge(vu))
currDist(u) = currDist(v)+ weight(edge(vu));
predecessor(u) = v;
add u to toBeChecked if it is not there;

The efficiency of particular instantiations of this algorithm hinges on the data
structure used for the toBeChecked list and on operations for extracting elements
from this list and including them into it.

S e c t i o n 8 . 3 S h o r t e s t P a t h s ■ 387

FIGURE 8.8 FordAlgorithm() applied to a digraph with negative weights.

0

3

1
2

2

the order of edges: ab be cd cg ch da de di ef gd hg if

 1 0

1 0

–1

1

9
5

3 2
–2
1

–1

1

(b)

0

2

–3

34
a
b
c
d
e
f
g
h
i

1init 2
iteration

3 4

(a)

4e

i

f

h

d
4

–52

1

1 11

1 –1

–1

c

g

1a b

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

One possible organization of this list is a queue: Vertex v is dequeued from
toBeChecked, and if the current distance of any of its neighbors, u, is updated, u is en-
queued onto toBeChecked. It seems like a natural choice, and in fact, it was one of the
earliest, used in 1968 by C. Witzgall (Deo and Pang, 1984). However, it is not without flaws,
as it sometimes reevaluates the same labels more times than necessary. Figure 8.9 contains
an example of an excessive reevaluation. The table in this figure shows all changes on
toBeChecked implemented as a queue when labelCorrectingAlgorithm() is ap-
plied to the graph in Figure 8.8a. The vertex d is updated three times. These updates cause
three changes to its successors, a and i, and two changes to another successor, e. The
change of a translates into two changes to b and these into two more changes to e. To avoid
such repetitious updates, a doubly ended queue, or deque, can be used.

The choice of a deque as a solution to this problem is attributed to D. D’Esopo
(Pollack and Wiebenson, 1960) and was implemented by Pape. In this method, the
vertices included in toBeChecked for the first time are put at the end of the list; oth-
erwise, they are added at the front. The rationale for this procedure is that if a vertex v
is included for the first time, then there is a good chance that the vertices accessible
from v have not been processed yet, so they will be processed after processing v. On
the other hand, if v has been processed at least once, then it is likely that the vertices
reachable from v are still on the list waiting for processing; by putting v at the end of
the list, these vertices may very likely be reprocessed due to the update of currDist(v).
Therefore, it is better to put v in front of their successors to avoid an unnecessary
round of updates. Figure 8.10 shows changes in the deque during the execution of

388 ■ C h a p t e r 8 G r a p h s

FIGURE 8.9 An execution of labelCorrectingAlgorithm(), which uses a queue.

active vertex
c d g h a e i d g b f a e i d b f a i e b f e

queue d g h a e i d g b f a e i d b f a i e b f e
g h a e i d g b f a e i d b f a i e b f e
h a e i d g b f a e i d b f a i e b f

e i d g b f a e i d b i e
i d g b f e i d

i d

a ∞ ∞ 3 3 3 3 3 3 2 2 2 2 2 2 2 1
b ∞ ∞ ∞ ∞ ∞ 4 4 4 4 4 4 4 3 3 3 3 3 3 2
c 0
d ∞ 1 1 0 0 0 0 0 0 –1
e ∞ ∞ 5 5 5 5 5 5 4 4 –1 –1 –1 –1 –1 –1 –2 –2 –2 –2 –2 –3
f ∞ ∞ ∞ ∞ ∞ ∞ 9 3 3 3 3 3 3 3 2 2 2 2 2 1
g ∞ 1 1 1 0
h ∞ 1
i ∞ ∞ 2 2 2 2 2 2 1 1 1 1 1 1 1 0

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

labelCorrectingAlgorithm() applied to the graph in Figure 8.8a. This time, the
number of iterations is dramatically reduced. Although d is again evaluated three
times, these evaluations are performed before processing its successors so that a and i
are processed once and e twice. However, this algorithm has a problem of its own
because in the worst case its performance is an exponential function of the number of
vertices. (See Exercise 13 at the end of this chapter.) But in the average case, as Pape’s
experimental runs indicate, this implementation fares at least 60 percent better than
the previous queue solution.

Instead of using a deque, which combines two queues, the two queues can be
used separately. In this version of the algorithm, vertices stored for the first time are
enqueued on queue1, and on queue2 otherwise. Vertices are dequeued from queue1 if
it is not empty, and from queue2 otherwise (Gallo and Pallottino, 1988).

Another version of the label-correcting method is the threshold algorithm, which
also uses two lists. Vertices are taken for processing from list1. A vertex is added to the
end of list1 if its label is below the current threshold level, and to list2 otherwise. If list1
is empty, then the threshold level is changed to a value greater than a minimum label
among the labels of the vertices in list2, and then the vertices with the label values
below the threshold are moved to list1 (Glover, Glover, and Klingman, 1984).

Still another algorithm is a small label first method. In this method, a vertex is in-
cluded at the front of a deque if its label is smaller than the label at the front of the
deque; otherwise, it is put at the end of the deque (Bertsekas, 1993). To some extent,
this method includes the main criterion of label-setting methods. The latter methods
always retrieve the minimal element from the list; the small label first method puts a
vertex with the label smaller than the label of the front vertex at the top. The approach

S e c t i o n 8 . 3 S h o r t e s t P a t h s ■ 389

FIGURE 8.10 An execution of labelCorrectingAlgorithm(), which applies a deque.

active vertex
c d g d h g d a e i b e f

deque d g d h g d a e i b e f
g h h a a a e i b f f
h a a e e e i b f

e e i i i
i i

a ∞ ∞ 3 3 2 2 2 1
b ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2
c 0
d ∞ 1 1 0 0 0 –1
e ∞ ∞ 5 5 4 4 4 3 3 3 3 –3
f ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 7 1
g ∞ 1 1 1 1 0
h ∞ 1
i ∞ ∞ 2 2 1 1 1 0

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

can be carried to its logical conclusion by requiring each vertex to be included in the
list according to its rank so that the deque turns into a priority queue and the result-
ing method becomes a label-correcting version of Dijkstra’s algorithm.

8.3.1 All-to-All Shortest Path Problem
Although the task of finding all shortest paths from any vertex to any other vertex
seems to be more complicated than the task of dealing with one source only, a method
designed by Stephen Warshall and implemented by Robert W. Floyd and P. Z. Inger-
man does it in a surprisingly simple way, provided an adjacency matrix is given that
indicates all the edge weights of the graph (or digraph). The graph can include nega-
tive weights. The algorithm is as follows:

WFIalgorithm(matrix weight)
for i = 1 to |V|

for j = 1 to |V|
for k = 1 to |V|

if weight[j][k] > weight[j][i] + weight[i][k]
weight[j][k] = weight[j][i] + weight[i][k];

The outermost loop refers to vertices that may be on a path between the vertex
with index j and the vertex with index k. For example, in the first iteration, when
i = 1, all paths vj . . . v1 . . . vk are considered, and if there is currently no path from
vj to vk and vk is reachable from vj, the path is established, with its weight equal to
p = weight(path(vjv1)) + weight(path(v1vk)), or the current weight of this path,
weight(path(vjvk)), is changed to p if p is less than weight(path(vjvk)). As an example,
consider the graph and the corresponding adjacency matrix in Figure 8.11. This fig-
ure also contains tables that show changes in the matrix for each value of i and the
changes in paths as established by the algorithm. After the first iteration, the matrix
and the graph remain the same, because a has no incoming edges (Figure 8.11a).
They also remain the same in the last iteration, when i = 5; no change is introduced
to the matrix because vertex e has no outgoing edges. A better path, one with a lower
combined weight, is always chosen, if possible. For example, the direct one-edge path
from b to e in Figure 8.11c is abandoned after a two-edge path from b to e is found
with a lower weight, as in Figure 8.11d.

This algorithm also allows us to detect cycles if the diagonal is initialized to ∞ and
not to zero. If any of the diagonal values are changed, then the graph contains a cycle.
Also, if an initial value of ∞ between two vertices in the matrix is not changed to a fi-
nite value, it is an indication that one vertex cannot be reached from another.

The simplicity of the algorithm is reflected in the ease with which its complexity
can be computed: All three for loops are executed |V | times, so its complexity is |V |3.
This is a good efficiency for dense, nearly complete graphs, but in sparse graphs, there
is no need to check for all possible connections between vertices. For sparse graphs, it
may be more beneficial to use a one-to-all method |V | times—that is, apply it to each
vertex separately. This should be a label-setting algorithm, which as a rule has better
complexity than a label-correcting algorithm. However, a label-setting algorithm can-
not work with graphs with negative weights. To solve this problem, we have to modify

390 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 3 S h o r t e s t P a t h s ■ 391

FIGURE 8.11 An execution of WFIalgorithm().

0

2
0

–2

 0
4
10
3

0

– 4
1

a
b
c
d
e

ba c d e

2

e

b

1

–2

31 c (a)

4
d

a

– 4

e

b

c (b)

d

a

0

2
0

0
–2

 0
9
10
3

0

5–4
1

a
b
c
d
e

ba c d e

e

b

c (c)

d

a

0

2
0

0
–2

 0
4
10
–1

0

1–4
1

a
b
c
d
e

ba c d e

e

b

c (d)

d

a

0

2
0

0
–2

 0
4
10
–1

0

0–4
1

a
b
c
d
e

ba c d e

e

b

c (e)

d

a

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the graph so that it does not have negative weights and it guarantees to have the same
shortest paths as the original graph. Fortunately, such a modification is possible (Ed-
monds and Karp, 1972).

Observe first that, for any vertex v, the length of the shortest path to v is never
greater than the length of the shortest path to any of its predecessors w plus the length
of edge from w to v, or

dist(v) ≤ dist(w) + weight(edge(wv))

for any vertices v and w. This inequality is equivalent to the inequality

0 ≤ weight′(edge(wv)) = weight(edge(vw)) + dist(w) – dist(v)

Hence, changing weight(e) to weight′(e) for all edges e renders a graph with nonnega-
tive edge weights. Now note that the shortest path v1, v2, . . . , vk is

Therefore, if the length L′ of the path from v1 to vk is found in terms of nonnegative
weights, then the length L of the same path in the same graph using the original
weights, some possibly negative, is L = L′ – dist(v1) + dist(vk).

But because the shortest paths have to be known to make such a transformation,
the graph has to be preprocessed by one application of a label-correcting method.
Only afterward are the weights modified, and then a label-setting method is applied
|V | times.

8.4 CYCLE DETECTION

Many algorithms rely on detecting cycles in graphs. We have just seen that, as a side
effect, WFIalgorithm() allows for detecting cycles in graphs. However, it is a cubic
algorithm, which in many situations is too inefficient. Therefore, other cycle detection
methods have to be explored.

One such algorithm is obtained directly from depthFirstSearch(). For undi-
rected graphs, small modifications in DFS(v) are needed to detect cycles and report
them

cycleDetectionDFS(v)
num(v) = i++;
for all vertices u adjacent to v

if num(u) is 0
attach edge(uv) to edges;
cycleDetectionDFS(u);

else if edge(vu) is not in edges
cycle detected;

For digraphs, the situation is a bit more complicated, because there may be edges
between different spanning subtrees, called side edges (see edge(ga) in Figure 8.4b). An
edge (a back edge) indicates a cycle if it joins two vertices already included in the same

weight edge v v weight edge v v dist v dist vi i i i

i

k

k

i

k

′ ()() = ()()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + () − ()+ +

=

−

=

−

∑∑ 1 1

1

1

1

1

1

392 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

spanning subtree. To consider only this case, a number higher than any number gener-
ated in subsequent searches is assigned to a vertex being currently visited after all its de-
scendants have also been visited. In this way, if a vertex is about to be joined by an edge
with a vertex having a lower number, we declare a cycle detection. The algorithm is now

digraphCycleDetectionDFS(v)
num(v) = i++:
for all vertices u adjacent to v

if num(u) is 0
pred(u) = v;
digraphCycleDetectionDFS(u);

else if num (u) is not ∞
pred(u) = v;
cycle detected;

num(v) = ∞;

8.4.1 Union-Find Problem

Let us recall from a preceding section that depth-first search guaranteed generating a
spanning tree in which no element of edges used by depthFirstSearch() led to a
cycle with other elements of edges. This was due to the fact that if vertices v and u be-
longed to edges, then the edge(vu) was disregarded by depthFirstSearch(). A
problem arises when depthFirstSearch() is modified so that it can detect
whether a specific edge(vu) is part of a cycle (see Exercise 20). Should such a modified
depth-first search be applied to each edge separately, then the total run would be
O(|E |(|E | + |V |)), which could turn into O(|V |4) for dense graphs. Hence, a better
method needs to be found.

The task is to determine if two vertices are in the same set. Two operations are
needed to implement this task: finding the set to which a vertex v belongs and uniting
two sets into one if vertex v belongs to one of them and w to another. This is known as
the union-find problem.

The sets used to solve the union-find problem are implemented with circular
linked lists; each list is identified by a vertex that is the root of the tree to which the
vertices in the list belong. But first, all vertices are numbered with integers 0, . . . , |V |
– 1, which are used as indexes in three arrays: root[] to store a vertex index identify-
ing a set of vertices, next[] to indicate the next vertex on a list, and length[] to in-
dicate the number of vertices in a list.

We use circular lists to be able to combine two lists right away, as illustrated in
Figure 8.12. Lists L1 and L2 (Figure 8.12a) are merged into one by interchanging
next references in both lists (Figure 8.12b or, the same list, Figure 8.12c). However,
the vertices in L2 have to “know” to which list they belong; therefore, their root indi-
cators have to be changed to the new root. Because it has to be done for all vertices of
list L2, then L2 should be the shorter of the two lists. To determine the length of lists,
the third array is used, length[], but only lengths for the identifying nodes (roots)
have to be updated. Therefore, the lengths indicated for other vertices that were roots
(and at the beginning each of them was) are disregarded.

S e c t i o n 8 . 4 C y c l e D e t e c t i o n ■ 393

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The union operation performs all the necessary tasks, so the find operation be-
comes trivial. By constantly updating the array root[], the set, to which a vertex j be-
longs, can be immediately identified, because it is a set whose identifying vertex is
root[j]. Now, after the necessary initializations,

initialize()
for i = 0 to |V| – 1

root[i] = next[i] = i;
length[i] = 1;

union() can be defined as follows:

union(edge(vu))
if (root[u] == root[v]) // disregard this edge,

return; // since v and u are in
else if (length[root[v]] < length[root[u]]) // the same set; combine

rt = root[v]; // two sets into one;
length[root[u]] += length[rt];
root[rt] = root[u]; // update root of rt and
for (j = next[rt]; j != rt; j = next[j]) // then other vertices

root[j] = root[u]; // in circular list;
swap(next[rt],next[root[u]]); // merge two lists;
add edge(vu) to spanningTree;

else // if length[root[v]] >= length[root[u]]
// proceed as before, with v and u reversed;

An example of the application of union() to merge lists is shown in Figure 8.13.
After initialization, there are |V | unary sets or one-node linked lists, as in Figure
8.13a. After executing union() several times, smaller linked lists are merged into
larger ones, and each time, the new situation is reflected in the three arrays, as shown
in Figures 8.13b–d.

The complexity of union() depends on the number of vertices that have to be up-
dated when merging two lists, specifically, on the number of vertices on the shorter list,
because this number determines how many times the for loop in union() iterates. Be-
cause this number can be between 1 and |V|/2, the complexity of union() is given by
O(|V|).

394 ■ C h a p t e r 8 G r a p h s

FIGURE 8.12 Concatenating two circular linked lists.

a

L1

q r p b c da

L1

b c d

p

L2

q r

a

L1

b c d

p

L2

q r

(a) (b) (c)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 5 S p a n n i n g T r e e s ■ 395

FIGURE 8.13 An example of application of union() to merge lists.

0

2

1 2 3 4 5

4 5 1 0

union (2, 1)

2 3

0 1 54 3

union (0, 1), union (4, 3)

1 1 1 1 1 1 …length

0 1 2 3 4 5 …next

0 1 2 3 4 5 …root

0 1 2 3 4 5 …

(a)

vertices

2 1 1 1 2 1 …length

1 0 2 4 3 5 …next

0 0 2 4 4 5 …root

0 1 2 3 4 5 …

(b)

vertices

3 1 1 1 3 1 …length

5 0 3 4 2 1 …next

0 0 4 4 4 0 …root

0 1 2 3 4 5 …

(c)

vertices

3 1 1 1 6 1 …length

2 0 3 4 5 1 …next

4 4 4 4 4 4 …root

0 1 2 3 4 5 …

(d)

vertices

0 5 1 4 2 3

union (2, 3), union (0, 5)

8.5 SPANNING TREES

Consider the graph representing the airline’s connections between seven cities (Fig-
ure 8.14a). If the economic situation forces this airline to shut down as many con-
nections as possible, which of them should be retained to make sure that it is still
possible to reach any city from any other city, if only indirectly? One possibility is
the graph in Figure 8.14b. City a can be reached from city d using the path d, c, a, but
it is also possible to use the path d, e, b, a. Because the number of retained connec-
tions is the issue, there is still the possibility we can reduce this number. It should be
clear that the minimum number of such connections form a tree because alternate
paths arise as a result of cycles in the graph. Hence, to create the minimum number
of connections, a spanning tree should be created, and such a spanning tree is the by-
product of depthFirstSearch(). Clearly, we can create different spanning trees

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(Figures 8.14c–d)—that is, we can decide to retain different sets of connections—but
all these trees have six edges and we cannot do any better than that.

The solution to this problem is not optimal in that the distances between cities have
not been taken into account. Because there are alternative six-edge connections between
cities, the airline uses the cost of these connections to choose the best, guaranteeing the
optimum cost. This can be achieved by having maximally short distances for the six
connections. This problem can now be phrased as finding a minimum spanning tree,
which is a spanning tree in which the sum of the weights of its edges is minimal. The
previous problem of finding a spanning tree in a simple graph is a case of the minimum
spanning tree problem in that the weights for each edge are assumed to equal one.
Therefore, each spanning tree is a minimum tree in a simple graph.

The minimum spanning tree problem has many solutions, and only a handful of
them are presented here. (For a review of these methods, see Graham and Hell 1985.)

One popular algorithm was devised by Joseph Kruskal. In this method, all edges are
ordered by weight, and then each edge in this ordered sequence is checked to see
whether it can be considered part of the tree under construction. It is added to the tree if
no cycle arises after its inclusion. This simple algorithm can be summarized as follows:

KruskalAlgorithm(weighted connected undirected graph)
tree = null;
edges = sequence of all edges of graph sorted by weight;
for (i = 1; i ≤ |E| and |tree| < |V| – 1; i++)

if ei from edges does not form a cycle with edges in tree
add ei to tree;

Figures 8.15ba–bf contain a step-by-step example of Kruskal’s algorithm.
The complexity of this algorithm is determined by the complexity of the sorting

method applied, which for an efficient sorting is O(|E | lg |E |). It also depends on the
complexity of the method used for cycle detection. If we use union() to implement
Kruskal’s algorithm, then the for loop of KruskalAlgorithm() becomes

396 ■ C h a p t e r 8 G r a p h s

FIGURE 8.14 A graph representing (a) the airline connections between seven cities and (b–d) three
possible sets of connections.

a b

f

g

d

e

c

(a)

a b

f

g

d

e

c

(d)

a b

f

g

d

e

c

(b)

a b

f

g

d

e

c

(c)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 5 S p a n n i n g T r e e s ■ 397

FIGURE 8.15 A spanning tree of graph (a) found, (ba–bf) with Kruskal’s algorithm, (ca–cl) and with
Dijkstra’s method.

a
6 9

5

8
3

7

16
13 1215b

f

g

d

e

c

(a
)

f

g (b
a)

a
b

f

g

d

e

c

(b
f)

a
b

f

g

d

e

c

(b
e)

a
b

f

g

d
c

(b
d)

a
b

f

g

c

(b
c)

a

f

g

c

(b
b)

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

398 ■ C h a p t e r 8 G r a p h s

FIGURE 8.15 (continued)

a
b

(c
a)

a
b

f

d

e

c

(c
e)

a
b

d

e

c

(c
d)

a
b

e

c

(c
c)

a
b

c

(c
b)

a
b

f

d

e

c

(c
f)

a
b

f

d

e

c

(c
i)

a
b

f

d

e

c

(c
h)

a
b

f

d

e

c

(c
g)

a
b

f

g

d

e

c

(c
j)

a
b

f

g

d

e

c

(c
l)

a
b

f

g

d

e

c

(c
k)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

for (i = 1; i ≤ |E | and |tree| < |V| – 1; i++)
union(ei = edge(vu));

Although union() can be called up to |E | times, it is exited after one (the first)
test if a cycle is detected and it performs a union, which is of complexity O(|V |), only
for |V | – 1 edges added to tree. Hence, the complexity of KruskalAlgorithm()’s
for loop is O(|E | + (|V | – 1)|V |), which is O(|V |2). Therefore, the complexity of
KruskalAlgorithm() is determined by the complexity of a sorting algorithm,
which is O(|E |lg|E |), that is, O(|E |lg|V |).

Kruskal’s algorithm requires that all the edges be ordered before beginning to
build the spanning tree. This, however, is not necessary; it is possible to build a span-
ning tree by using any order of edges. A method was proposed by Dijkstra (1960) and
independently by Robert Kalaba, and because no particular order of edges is required
here, their method is more general than the other two.

DijkstraMethod(weighted connected undirected graph)
tree = null;
edges = an unsorted sequence of all edges of graph;
for j = 1 to |E|

add ej to tree;
if there is a cycle in tree

remove an edge with maximum weight from this only cycle;

In this algorithm, the tree is being expanded by adding to it edges one by one, and
if a cycle is detected, then an edge in this cycle with maximum weight is discarded. An
example of building the minimum spanning tree with this method is shown in Fig-
ures 8.15ca–cl.

To deal with cycles, DijkstraMethod() can use a modified version of
union(). In the modified version, an additional array, prior, is used to enable im-
mediate detaching of a vertex from a linked list. Also, each vertex should have a field
next so that an edge with the maximum weight can be found when checking all the
edges in a cycle. With these modifications, the algorithm runs in O(|E||V|) time.

8.6 CONNECTIVITY

In many problems, we are interested in finding a path in the graph from one vertex to
any other vertex. For undirected graphs, this means that there are no separate pieces,
or subgraphs, of the graph; for a digraph, it means that there are some places in the
graph to which we can get from some directions but are not necessarily able to return
to the starting points.

8.6.1 Connectivity in Undirected Graphs

An undirected graph is called connected when there is a path between any two vertices
of the graph. The depth-first search algorithm can be used for recognizing whether a
graph is connected provided that the loop heading

while there is a vertex v such that num(v) == 0

S e c t i o n 8 . 6 C o n n e c t i v i t y ■ 399

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is removed. Then, after the algorithm is finished, we have to check whether the list edges
includes all vertices of the graph or simply check if i is equal to the number of vertices.

Connectivity comes in degrees: A graph can be more or less connected, and it de-
pends on the number of different paths between its vertices. A graph is called
n-connected if there are at least n different paths between any two vertices; that is, there
are n paths between any two vertices that have no vertices in common. A special type of
graph is a 2-connected, or biconnected, graph for which there are at least two nonover-
lapping paths between any two vertices. A graph is not biconnected if a vertex can be
found that always has to be included in the path between at least two vertices a and b.
In other words, if this vertex is removed from the graph (along with incident edges),
then there is no way to find a path from a to b, which means that the graph is split into
two separate subgraphs. Such vertices are called articulation points, or cut-vertices. Ver-
tices a and b in Figure 8.1d are examples of articulation points. If an edge causes a
graph to be split into two subgraphs, it is called a bridge or cut-edge, as for example, the
edge(bc) in Figure 8.1d. Connected subgraphs with no articulation points or bridges
are called blocks, or—when they include at least two vertices—biconnected components.
It is important to know how to decompose a graph into biconnected components.

Articulation points can be detected by extending the depth-first search algo-
rithm. This algorithm creates a tree with forward edges (the graph edges included in
the tree) and back edges (the edges not included). A vertex v in this tree is an articula-
tion point if it has at least one subtree unconnected with any of its predecessors by a
back edge; because it is a tree, certainly none of v’s predecessors is reachable from any
of its successors by a forward link. For example, the graph in Figure 8.16a is trans-
formed into a depth-first search tree (Figure 8.16c), and this tree has four articulation
points, b, d, h, and i, because there is no back edge from any node below d to any node
above it in the tree, and no back edge from any vertex in the right subtree of h to any
vertex above h. But vertex g cannot be an articulation point because its successor h is
connected to a vertex above it. The four vertices divide the graph into the five blocks
indicated in Figure 8.16c by dotted lines.

A special case for an articulation point is when a vertex is a root with more than one
descendant. In Figure 8.16a, the vertex chosen for the root, a, has three incident edges,
but only one of them becomes a forward edge in Figures 8.16b and 8.16c, because the
other two are processed by depth-first search. Therefore, if this algorithm again recur-
sively reaches a, there is no untried edge. If a were an articulation point, there would be
at least one such untried edge, and this indicates that a is a cut vertex. So a is not an ar-
ticulation point. To sum up, we say that a vertex v is an articulation point

1. if v is the root of the depth-first search tree and v has more than one descendant in
this tree or

2. if at least one of v’s subtrees includes no vertex connected by a back edge with any of
v’s predecessors.

To find articulation points, a parameter pred(v) is used, defined as min(num(v),
num(u1), . . . , num(uk)), where u1, . . . , uk are vertices connected by a back edge with a
descendant of v or with v itself. Because the higher a predecessor of v is, the lower its
number is, choosing a minimum number means choosing the highest predecessor.
For the tree in Figure 8.16c, pred(c) = pred(d) = 1, pred(b) = 4, and pred(k) = 7.

400 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 6 C o n n e c t i v i t y ■ 401

FIGURE 8.16 Finding blocks and articulation points using the blockDFS() algorithm.

f

d

bd

b g
h

i k

j

(a
)

(c
)

(d
)

e
c

a f

d(
4)

b(
5)

g(
7)

h(
8)

i(
9)

k(
11

)

j(
10

)

(b
)

e(
6)

c(
2)

a(
1)

f(
3)

a
a b c d e f g h i j k lis

ts
 o

f
ed

ge
s

in
cl

ud
ed

 in
 th

e
ou

tp
ut

 b
lo

ck
s

(i
j)

1
1

2
2

5
5

7
7

9
9

10
 1

0

6
6

4

8
8

5

11
 1

1
7

5

1
4

3
3

1

4
4

1
c

e
g

h

i

j

k

(h
i)

(k
g)

(e
d)

(d
a)

(h
k)

(b
e)

(f
d)

(h
b)

(d
b)

(f
a)

(g
h)

(c
f)

(b
g)

(a
c)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The algorithm uses a stack to store all currently processed edges. After an articu-
lation point is identified, the edges corresponding to a block of the graph are output.
The algorithm is given as follows:

blockDFS(v)
pred(v) = num(v) = i++;
for all vertices u adjacent to v

if edge(uv) has not been processed
push(edge(uv));

if num(u) is 0
blockDFS(u);
if pred(u) ≥ num(v) // if there is no edge from u to a

e = pop(); // vertex above v, output a block
while e / edge(vu) // by popping all edges off the

output e; // stack until edge(vu) is
e = pop(); // popped off;

output e; // e == edge(vu);
else pred(v) = min(pred(v),pred(u)); // take a predecessor higher up in

else if u is not the parent of v // tree;
pred(v) = min(pred(v),num(u)); // update when back edge(vu) is

// found;
blockSearch()

for all vertices v
num(v) = 0;

i = 1;
while there is a vertex v such that num(v) == 0

blockDFS(v);

An example of the execution of this algorithm is shown in Figure 8.16d as applied
to the graph in Figure 8.16a. The table lists all changes in pred(v) for vertices v processed
by the algorithm, and the arrows show the source of the new values of pred(v). For each
vertex v, blockDFS(v) first assigns two numbers: num(v), shown in italics, and
pred(v), which may change during the execution of blockDFS(v). For example, a is
processed first with num(a) and pred(a) set to 1. The edge(ac) is pushed onto the stack,
and because num(c) is 0, the algorithm is invoked for c. At this point, num(c) and pred(c)
are set to 2. Next, the algorithm is invoked for f, a descendant of c, so that num(f) and
pred(f) are set to 3, and then it is invoked for a, a descendant of f. Because num(a) is not
0 and a is not f’s parent, pred(f) is set to 1 = min(pred(f),num(a)) = min(3, 1).

This algorithm also outputs the edges in detected blocks, and these edges are shown
in Figure 8.16d at the moment they were output after popping them off the stack.

8.6.2 Connectivity in Directed Graphs

For directed graphs, connectedness can be defined in two ways depending on whether or
not the direction of the edges is taken into account. A directed graph is weakly connected
if the undirected graph with the same vertices and the same edges is connected. A di-
rected graph is strongly connected if for each pair of vertices there is a path between them
in both directions. The entire digraph is not always strongly connected, but it may be

402 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

composed of strongly connected components (SCC), which are defined as subsets of ver-
tices of the graph such that each of these subsets induces a strongly connected digraph.

To determine SCCs, we also refer to depth-first search. Let vertex v be the first
vertex of an SCC for which depth-first search is applied. Such a vertex is called the root
of the SCC. Because each vertex u in this SCC is reachable from v, num(v) < num(u),
and only after all such vertices u have been visited, the depth-first search backtracks to
v. In this case, which is recognized by the fact that pred(v) = num(v), the SCC accessi-
ble from the root can be output.

The problem now is how to find all such roots of the digraph, which is analogous to
finding articulation points in an undirected graph. To that end, the parameter pred(v) is
also used, where pred(v) is the lower number chosen out of num(v) and pred(u), where u
is a vertex reachable from v and belonging to the same SCC as v. How can we determine
whether two vertices belong to the same SCC before the SCC has been determined? The
apparent circularity is solved by using a stack that stores all vertices belonging to the
SCCs under construction. The topmost vertices on the stack belong to the currently an-
alyzed SCC. Although construction is not finished, we at least know which vertices are
already included in the SCC. The algorithm attributed to Tarjan is as follows:

strongDFS(v)
pred(v) = num(v) = i++;
push(v);
for all vertices u adjacent to v
if num(u) is 0
strongDFS(u);
pred(v) = min(pred(v),pred(u)); // take a predecessor higher up in

else if num(u) < num(v) and u is on stack // tree; update if back edge found
pred(v) = min(pred(v),num(u)); // to vertex u is in the same SCC;

if pred(v) == num(v) // if the root of a SCC is found,
w = pop(); // output this SCC, i.e.,
while w ≠ v // pop all vertices off the stack

output w; // until v is popped off;
w = pop();

output w; // w == v;

stronglyConnectedComponentSearch()
for all vertices v

num(v) = 0;
i = 1;
while there is a vertex v such that num(v) == 0
strongDFS(v);

Figure 8.17 contains a sample execution of Tarjan’s algorithm. The digraph in Fig-
ure 8.17a is processed by a series of calls to strongDFS(), which assigns to vertices a
though k the numbers shown in parentheses in Figure 8.17b. During this process, five
SCCs are detected: {a,c,f },{b,d,e,g,h},{i},{j}, and {k}. Figure 8.17c contains the depth-
first search trees created by this process. Note that two trees are created so that the num-
ber of trees does not have to correspond to the number of SCCs, as the number of trees
did not correspond to the number of blocks in the case for undirected graphs. Figure

S e c t i o n 8 . 6 C o n n e c t i v i t y ■ 403

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

404 ■ C h a p t e r 8 G r a p h s

FIGURE 8.17 Finding strongly connected components with the strongDFS() algorithm.

(c
)

(d
)

d(
6)

b(
4)

g(
8)

h(
7)

i(
10

)

k(
9)

j(
11

)

(b
)

e(
5)

c(
2)

a(
1)

f(
3)

a b c d e f g h i j k lis
ts

 o
f

ve
rt

ic
es

in
cl

ud
ed

 in
 th

e
ou

tp
ut

 S
C

C
s

f c a

1
1

2
2

1

1

4

4
4

7
7

9
9

10
 1

0
10

5
5

6
6

4

8
8

4

11
 1

1

4

4

3
3

1

k
j

i
g h d e b

d

b g
h

i k

j

(a
)

e
c

a f

b

e
h

g
d

i

j

c

fa

k

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8.17d indicates, in italics, numbers assigned to num(v) and all changes of parameter
pred(v) for all vertices v in the graph. It also shows the SCC’s output during the pro-
cessing of the graph.

8.7 TOPOLOGICAL SORT

In many situations, there is a set of tasks to be performed. For some pairs of tasks, it mat-
ters which task is performed first, whereas for other pairs, the order of execution is unim-
portant. For example, students need to take into consideration which courses are
prerequisites or corequisites for other courses when making a schedule for the upcoming
semester so that Computer Programing II cannot be taken before Computer Program-
ming I, but the former can be taken along with, say, Ethics or Introduction to Sociology.

The dependencies between tasks can be shown in the form of a digraph. A topo-
logical sort linearizes a digraph; that is, it labels all its vertices with numbers 1, . . . , |V |
so that i < j only if there is a path from vertex vi to vertex vj. The digraph must not in-
clude a cycle; otherwise, a topological sort is impossible.

The algorithm for a topological sort is rather simple. We have to find a vertex v with
no outgoing edges, called a sink or a minimal vertex, and then disregard all edges leading
from any vertex to v. The summary of the topological sort algorithm is as follows:

topologicalSort(digraph)
for i = 1 to |V|

find a minimal vertex v;
num(v) = i;
remove from digraph vertex v and all edges incident with v;

Figure 8.18 contains an example of an application of this algorithm. The graph in
Figure 8.18a undergoes a sequence of deletions (Figures 8.18b–f) and results in the se-
quence g, e, b, f, d, c, a.

Actually, it is not necessary to remove the vertices and edges from the digraph
while it is processed if it can be ascertained that all successors of the vertex being
processed have already been processed, so they can be considered as deleted. And once
again, depth-first search comes to the rescue. By the nature of this method, if the
search backtracks to a vertex v, then all successors of v can be assumed to have already
been searched (that is, output and deleted from the digraph). Here is how depth-first
search can be adapted to topological sort:

TS(v)
num(v) = i++;
for all vertices u adjacent to v

if num(u) == 0
TS(u);

else if TSNum(u) == 0
error; // a cycle detected;

TSNum(v) = j++; // after processing all successors of v,
// assign to v a number larger than
// assigned to any of its successors;

S e c t i o n 8 . 7 To p o l o g i c a l S o r t ■ 405

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

topologicalSorting(digraph)
for all vertices v

num(v) = TSNum(v) = 0;
i = j = 1;
while there is a vertex v such that num(v) == 0

TS(v);
output vertices according to their TSNum’s;

The table in Figure 8.18h indicates the order in which this algorithm assigns
num(v), the first number in each row, and TSNum(v), the second number, for each
vertex v of the graph in Figure 8.18a.

406 ■ C h a p t e r 8 G r a p h s

FIGURE 8.18 Executing a topological sort.

a
b
c
d
e
f
g

2

1

3
5 2

7 4

5
6

7

6 1

(h)

4 3

a

d

(a)

c

f

a

d

(d)

c

f

a

d

(e)

c

a

(f)

c

a

(g)

b

e

g

a

d

(b)

c

f

b

e

a

d

(c)

c

f

b

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 8 N e t w o r k s ■ 407

8.8 NETWORKS

8.8.1 Maximum Flows

An important type of graph is a network. A network can be exemplified by a network
of pipelines used to deliver water from one source to one destination. However, water is
not simply pumped through one pipe, but through many pipes with many pumping
stations in between. The pipes are of different diameter and the stations are of different
power so that the amount of water that can be pumped may differ from one pipeline to
another. For example, the network in Figure 8.19 has eight pipes and six pumping sta-
tions. The numbers shown in this figure are the maximum capacities of each pipeline.
For example, the pipe going northeast from the source s, the pipe sa, has a capacity of 5
units (say, 5,000 gallons per hour). The problem is to maximize the capacity of the en-
tire network so that it can transfer the maximum amount of water. It may not be obvi-
ous how to accomplish this goal. Notice that the pipe sa coming from the source goes
to a station that has only one outgoing pipe, ab, of capacity 4. This means that we can-
not put 5 units through pipe sa, because pipe ab cannot transfer it. Also, the amount of
water coming to station b has to be controlled as well because if both incoming pipes,
ab and cb, are used to full capacity, then the outgoing pipe, bt, cannot process it either.
It is far from obvious, especially for large networks, what the amounts of water put
through each pipe should be to utilize the network maximally. Computational analysis
of this particular network problem was initiated by Lester R. Ford and D. Ray Fulker-
son. Since their work, scores of algorithms have been published to solve this problem.

Before the problem is stated more formally, I would like to give some definitions.
A network is a digraph with one vertex s, called the source, with no incoming edges,
and one vertex t, called the sink, with no outgoing edges. (These definitions are cho-
sen for their intuitiveness; however, in a more general case, both source and sink can
be any two vertices.) With each edge e we associate a number cap(e) called the capacity
of the edge. A flow is a real function f : E → R that assigns a number to each edge of the
network and meets these two conditions:

1. The flow through an edge e cannot be greater than its capacity, or 0 ≤ f(e) ≤ cap(e)
(capacity constraint).

FIGURE 8.19 A pipeline with eight pipes and six pumping stations.

a

cs
7

5

4

3 5

2

48
d

b

t

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. The total flow coming to a vertex v is the same as the total flow coming from it, or
∑u f (edge(uv)) = ∑w f (edge(vw)), where v is neither the source nor the sink (flow
conservation).

The problem now is to maximize the flow f so that the sum ∑u f (edge(ut)) has a
maximum value for any possible function f. This is called a maximum-flow (or max-
flow) problem.

An important concept used in the Ford-Fulkerson algorithm is the concept of
cut. A cut separating s and t is a set of edges between vertices of set X and vertices of set
X̄ ; any vertex of the graph belongs to one of these sets, and source s is in X and sink t is
in X̄ . For example, in Figure 8.19, if X = {s,a}, then X̄ = {b,c,d,t}, and the cut is the set
of edges {(a,b),(s,c),(s,d)}. This means that if all edges belonging to this set are cut,
then there is no way to get from s to t. Let us define the capacity of the cut as the sum
of capacities of all its edges leading from a vertex in X to a vertex in X̄ ; thus,
cap{(a,b),(s,c),(s,d)} = cap(a,b) + cap(s,c) + cap(s,d) = 19. Now, it should be clear that
the flow through the network cannot be greater than the capacity of any cut. This ob-
servation leads to the max-flow min-cut theorem (Ford and Fulkerson 1956):

Theorem. In any network, the maximal flow from s to t is equal to the minimal ca-
pacity of any cut.

This theorem states what is expressed in the simile of a chain being as strong as its
weakest link. Although there may be cuts with great capacity, the cut with the smallest
capacity determines the flow of the network. For example, although the capacity
cap{(a,b),(s,c),(s,d)} = 19, two edges coming to t cannot transfer more than 9 units.
Now we have to find a cut that has the smallest capacity among all possible cuts and
transfer through each edge of this cut as many units as the capacity allows. To that
end, a new concept is used.

A flow-augmenting path from s to t is a sequence of edges from s to t such that, for
each edge in this path, the flow f(e) < cap(e) on forward edges and f (e) > 0 on back-
ward edges. It means that such a path is not optimally used yet, and it can transfer
more units than it is currently transferring. If the flow for at least one edge of the path
reaches its capacity, then obviously the flow cannot be augmented. Note that the path
does not have to consist only of forward edges, so that examples of paths in Figure
8.19 are s, a, b, t, and s, d, b, t. Backward edges are what they are, backward; they push
back some units of flow, decreasing the flow of the network. If they can be eliminated,
then the overall flow in the network can be increased. Hence, the process of augment-
ing flows of paths is not finished until the flow for such edges is zero. Our task now is
to find an augmenting path if it exists. There may be a very large number of paths
from s to t, so finding an augmenting path is a nontrivial problem, and Ford and Fulk-
erson (1957) devised the first algorithm to accomplish it in a systematic manner.

The labeling phase of the algorithm consists of assigning to each vertex v a label,
which is the pair

label(v) = (parent(v), slack(v))

where parent(v) is the vertex from which v is being accessed and slack(v) is the
amount of flow that can be transferred from s to v. The forward and backward edges
are treated differently. If a vertex u is accessed from v through a forward edge, then

408 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

label(u) = (v+,min(slack(v),slack(edge(vu))))

where

slack(edge(vu)) = cap(edge(vu)) – f(edge(vu))

which is the difference between the capacity of edge(vu) and the amount of flow currently
carried by this edge. If the edge from v to u is backward (i.e., forward from u to v), then

label(u) = (v–,min(slack(v),f(edge(uv))))

and

slack(v) = min(slack(parent(v)), slack(edge(parent(v)v)))

After a vertex is labeled, it is stored for later processing. In this process, only this
edge(vu) is labeled, which allows for some more flow to be added. For forward edges, this
is possible when slack(edge(vu)) > 0, and for backward edges when f (edge(uv)) > 0. How-
ever, finding one such path may not finish the entire process. The process is finished if we
are stuck in the middle of the network unable to label any more edges. If we reach the sink
t, the flows of the edges on the augmenting path that was just found are updated by in-
creasing flows of forward edges and decreasing flows of backward edges, and the process
restarts in the quest for another augmenting path. Here is a summary of the algorithm.

augmentPath(network with source s and sink t)
for each edge e in the path from s to t

if forward(e)
f(e) += slack(t);

else f(e) -= slack(t);

FordFulkersonAlgorithm(network with source s and sink t)
set flow of all edges and vertices to 0;
label(s) = (null,∞);
labeled = {s};
while labeled is not empty // while not stuck;

detach a vertex v from labeled;
for all unlabeled vertices u adjacent to v

if forward(edge(vu)) and slack(edge(vu)) > 0
label(u) = (v+,min(slack(v),slack(edge(vu))))

else if backward(edge(vu)) and f(edge(uv)) > 0
label(u) = (v–,min(slack(v),f(edge(uv))));

if u got labeled
if u == t

augmentPath(network);
labeled = {s}; // look for another path;

else include u in labeled;

Notice that this algorithm is noncommittal with respect to the way the network
should be scanned. In exactly what order should vertices be included in labeled and
detached from it? This question is left open, and we choose push and pop as implemen-
tations of these two operations, thereby processing the network in a depth-first fashion.

S e c t i o n 8 . 8 N e t w o r k s ■ 409

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 8.20 illustrates an example. Each edge has two numbers associated with
it, the capacity and the current flow, and initially the flow is set to zero for each edge
(8.20a). We begin by putting the vertex s in labeled. In the first iteration of the
while loop, s is detached from labeled, and in the for loop, label (s,2) is assigned
to the first adjacent vertex, a; label (s,4) to vertex c; and label (s,1) to vertex e (Figure
8.20b), and all three vertices are pushed onto labeled. The for loop is exited, and
because labeled is not empty, the while loop begins its second iteration. In this it-
eration, a vertex is popped off from labeled, which is e, and both unlabeled vertices
incident to e, vertices d and f, are labeled and pushed onto labeled. Now, the third
iteration of the while loop begins by popping f from labeled and labeling its only
unlabeled neighbor, vertex t. Because t is the sink, the flows of all edges on the aug-
menting path s, e, f, t are updated in the inner for loop (Figure 8.20c), labeled is
reinitialized to {s}, and the next round begins to find another augmenting path.

The next round starts with the fourth iteration of the while loop. In its eighth
iteration, the sink is reached (Figure 8.20d) and flows of edges on the new augmenting

410 ■ C h a p t e r 8 G r a p h s

FIGURE 8.20 An execution of FordFulkersonAlgorithm() using depth-first search.

2, 0
2, 0

3, 0 2, 0

5, 0

capacity

3, 0

1, 01, 0

(a)

4, 0 2, 0

5, 0

3, 0

3, 1 2, 1

1, 11, 1

4, 1 2, 1

3, 0

a

s c

e

b

d t

f

1, 11, 1

(c)
3, 1

a

s c

e

b

d t

f

(e)

a

s c

e

b

d t

f

flow

(s, 2)

(s, 1) (e, 1)

(s, 4) (e, 1) (f, 1)

(s, 2) (d, 1)

(f, 1) (c, 3)

(s, 4) (e, 1) (d, 1)

(s, 2) (a, 2)

(c, 2)
(s, 3)

(b, 2)

(b)

a

s c

e

d t

f

(d)

a

s c

e

b

d t

f

(f)

a

s c

b

t

f

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

path are updated (Figure 8.20e). Note that this time one edge, edge(fe), is a backward
edge. Therefore, its flow is decremented, not incremented as is the case for forward edges.
The one unit of flow that was transferred from vertex e through edge(ef) is redirected to
edge(ed). Afterward, two more augmenting paths are found and corresponding edges are
updated. In the last round, we are unable to reach the sink (Figure 8.20j), which means
that all augmenting edges have been found and the maximum flow has been determined.

If after finishing execution of the algorithm all vertices labeled in the last round,
including the source, are put in the set X and the unlabeled vertices in the set X̄ , then
we have a min-cut (Figure 8.20k). For clarity, both sets are also shown in Figure 8.20l.
Note that all the edges from X to X̄ are used in full capacity, and all the edges from X̄
to X do not transfer any flow at all.

S e c t i o n 8 . 8 N e t w o r k s ■ 411

FIGURE 8.20 (continued)

2, 2
2, 1

3, 1 2, 1

5, 0
3, 3

1, 11, 1

(k)

4, 2 2, 1

5, 3

3, 0

a

s c

e

b

d t

f

1, 1 2, 1

2, 1
2, 2

2, 1

1, 1

3, 1

(l)

4, 2

5, 3 5, 0

3, 0

3, 3

b

c

a

XX
X

s

f

d

t

e
X

2, 2

3, 1 2, 1

3, 2

1, 11, 1

4, 1 2, 1

5, 2

3, 0

2, 2
2, 1

3, 1 2, 1

3, 3

1, 11, 1

4, 2 2, 1

5, 3

3, 0

(g)

a

s c

e

b

d t

f

(i)

a

s c

e

b

d t

f

(c, 2) (a, 2)

(c, 3)
(s, 3)

(c, 1) (a, 1)

(c, 2)
(s, 2)

(b, 1)

(h)

a

s c

b

t

f

(j)

a

s c

b

f

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The complexity of this implementation of the algorithm is not necessarily a func-
tion of the number of vertices and edges in the network. Consider the network in Fig-
ure 8.21. Using a depth-first implementation, we could choose the augmenting path s,
a, b, t with flows of all three edges set to 1. The next augmenting path could be s, b, a, t
with flows of two forward edges set to 1 and the flow of one backward edge(ba) reset
to 0. Next time, the augmenting path could be the same as the first, with flows of two
edges set to 2 and with the vertical edge set to 1. It is clear that an augmenting path
could be chosen 2 · 10 times, although there are only four vertices in the network.

The problem with FordFulkersonAlgorithm() is that it uses the depth-
first approach when searching for an augmenting path. But as already mentioned,
this choice does not stem from the nature of this algorithm. The depth-first ap-
proach attempts to reach the sink as soon as possible. However, trying to find the
shortest augmenting path gives better results. This leads to a breadth-first ap-
proach (Edmonds and Karp 1972). The breadth-first processing uses the same
procedure as FordFulkersonAlgorithm() except that this time labeled is a
queue. Figure 8.22 illustrates an example.

To determine one single augmenting path, the algorithm requires at most 2|E |, or
O(|E |) steps, to check both sides of each edge. The shortest augmenting path in the
network can have only one edge, and the longest path can have at most |V | – 1 edges.
Therefore, there can be augmenting paths of lengths 1, 2, . . . , |V | – 1. The number of
augmenting paths of a certain length is at most |E |. Therefore, to find all augmenting
paths of all possible lengths, the algorithm needs to perform O(|V ||E |) steps. And be-
cause finding one such path is of order O(|E |), the algorithm is of order O(|V ||E |2).

Although the pure breadth-first search approach is better than the pure depth-
first search implementation, it still is far from ideal. We will not fall into a loop of
tiny increments of augmenting steps anymore, but there still seems to be a great deal

412 ■ C h a p t e r 8 G r a p h s

FIGURE 8.21 An example of an inefficiency of FordFulkersonAlgorithm().

10, 010, 0

10, 0 10, 0

1, 0

a

ts

b

10, 010, 1

10, 0 10, 1

1, 1

a

ts

b

10, 110, 2

10, 1 10, 2

1, 1

a

ts

b

10, 1010, 10

10, 10 10, 10

1, 0

a

ts

b

10, 110, 1

10, 1 10, 1

1, 0

a

ts

b

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 8 N e t w o r k s ■ 413

FIGURE 8.22 An execution of FordFulkersonAlgorithm() using breadth-first search.

2, 0
2, 0

3, 0 2, 0

5, 0
3, 0

1, 01, 0

(a)

5, 0

3, 0

a

s c

e

b

d t

f

2, 2 3, 2

(c)

5, 2
a

s c

e

b

d t

f

2, 2

3, 1

3, 2

1, 1

(e)

4, 1

4, 0 2, 0

4, 0 2, 0

5, 2
a

s c

e

b

d t

f

2, 2

3, 1 2, 1

3, 2

1, 11, 1

(g)

4, 1 2, 1

5, 2
a

s c

e

b

d t

f

2, 2
2, 1

3, 1 2, 1

5, 0
3, 3

1, 11, 1

(i)

4, 2 2, 1

5, 3

3, 0

a

s c

e

b

d t

f

(b)

(a, 2)

(b, 2)

(s, 4)

(c, 3)(s, 1)

(s, 2)

(a, 2)

(e, 1)

(f, 1)
(s, 4)

(c, 3)(s, 1)

(c, 2)

(a, 2)

(e, 1) (d, 1)
(s, 3)

(c, 2)(s, 1)

(c, 2)

(a, 2)

(b, 1)
(s, 3)

(c, 2)

(c, 2)

(a, 2)

(s, 2)

(c, 2)

(c, 1)

a

s c

e

b

t

f

(d)

a

s c

e

b

d

(e, 1)d

t

f

(f)

a

s c

e

b

d t

f

(h)

a

s c

b

t

f

(j)

a

s c

b

f

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

of wasted effort. In breadth-first search, a large number of vertices are labeled to find
the shortest path (shortest in a given iteration). Then all these labels are discarded
to re-create them when looking for another augmenting path (edge(sc), edge(se),
and edge(cf) in Figure 8.22b–d). Therefore, it is desirable to reduce this redundancy.
Also, there is some merit to using the depth-first approach in that it attempts to aim
at the goal, the sink, without expanding a number of paths at the same time and
finally choosing only one and discarding the rest. Hence, the Solomonic solution
appears to use both approaches, depth-first and breadth-first. Breadth-first search
prepares the ground to prevent loops of small increments from happening (as in
Figure 8.21) and to guarantee that depth-first search takes the shortest route. Only
afterward, the depth-first search is launched to find the sink by aiming right at it. An
algorithm based upon this principle was devised first by Efim A. Dinic (pronounced:
dee-neetz).

In Dinic’s algorithm, up to |V | – 1 passes (or phases) through the network are
performed, and in each pass, all augmenting paths of the same length from the source
to the sink are determined. Then, only some or all of these paths are augmented.

All augmenting paths form a layered network (also called a level network). Ex-
tracting layered networks from the underlying network starts from the lowest values.
First, a layered network of a path of length one is found, if such a network exists. After
the network is processed, a layered network of paths of length two is determined, if it
exists, and so on. For example, the layered network with the shortest paths corre-
sponding with the network in Figure 8.23a is shown in Figure 8.23b. In this network,
all augmenting paths are of length three. A layered network with a single path of
length one and layered networks with paths of length two do not exist. The layered
network is created using breadth-first processing, and only forward edges that can
carry more flow and backward edges that already carry some flow are included. Oth-
erwise, even if an edge may lay on a short path from the source to the sink, it is not in-
cluded. Note that the layered network is determined by breadth-first search that
begins in the sink and ends in the source.

Now, because all the paths in a layered network are of the same length, it is possi-
ble to avoid redundant tests of edges that are part of augmenting paths. If in a current
layered network there is no way to go from a vertex v to any of its neighbors, then in
later tests in the same layered network there will be the same situation; hence, check-
ing again all neighbors of v is not needed. Therefore, if such a dead-end vertex v is de-
tected, all edges incident with v are marked as blocked so that there is no possibility to
get to v from any direction. Also, all saturated edges are considered blocked. All
blocked edges are shown in dashed lines in Figure 8.23.

After a layered network is determined, the depth-first process finds as many aug-
menting paths as possible. Because all paths are of the same length, depth-first search
does not go to the sink through some longer sequence of edges. After one such path is
found, it is augmented and another augmenting path of the same length is looked for.
For each such path, at least one edge becomes saturated so that eventually no aug-
menting path can be found. For example, in the layered network in Figure 8.23b that
includes only augmenting paths three edges long, path s, e, f, t is found (Figure 8.23c),
and all its edges are augmented (Figure 8.23d). Then only one more three-edge path is
found, the path s, a, b, t (8.23e), because, for example, previous augmentation satu-
rated edge(ft) so that the partial path s, c, f ends with a dead end. In addition, because

414 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 8 N e t w o r k s ■ 415

FIGURE 8.23 An execution of DinicAlgorithm().

(a)

a

s c

e

b

d t

f

(c)

(e, 1) (f, 1)

(s, 4)

(s, 2)

(s, 1)

(e, 1)

(b, 2)

(s, 4)

(s, 2)
(a, 2)

(b, 1)

(s, 4)

(d, 1)(s, 3) (e, 1)

(f, 1) (c, 3)

(c, 2)
(a, 2)

(c, 3)

a

s c

e

d t

f

(e)

a

s c

b

t

f

(g)

a

s c

b

t

(i)

s c

e

d t

f

(b)

a

s c

e

b

d t

f

(d)

a

s c

e

b

d t

f

(f)

a

s c

e

b

d t

f

(h)

a

s c

e

b

d t

f

2, 2
2, 1

3, 1 2, 1

5, 0
3, 3

1, 11, 1

(j)

4, 2 2, 1

5, 3

3, 0

2, 2
2, 1

3, 0 2, 0

5, 0
3, 3

1, 11, 1

4, 1 2, 0

5, 35

4

0

2 3

1

0

2

1

3, 1

2, 2
2, 0

3, 0 2, 0

5, 0
3, 2

1, 11, 1

4, 0 2, 0

5, 22

4

5

3

1

1

0

2
3, 1

2, 0
2, 0

3, 0 2, 0

5, 0
3, 0

1, 11, 1

4, 0 2, 0

5, 0

3, 1

2, 0

3, 0 2, 0

3, 0

1, 01, 0

4, 0 2, 0

5, 02 1 level

2 1

23 1 0

3, 0

a

s c

e

b

d t

f

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

no other vertex can be reached from f, all edges incident with f are blocked (Figure
8.23f) so that an attempt to find the third three-edge augmenting path only tests ver-
tex c, but not vertex f, because edge(cf) is blocked.

If no more augmenting paths can be found, a higher level layered network is
found, and augmenting paths for this network are searched for. The process stops
when no layered network can be formed. For example, out of the network in Figure
8.23f, the layered network in Figure 8.23g is formed, which has only one four-edge
path. To be sure, this is the only augmenting path for this network. After augmenting
this path, the situation in the network is as in Figure 8.23h, and the last layered net-
work is formed, which also has only one path, this time a path of five edges. The path
is augmented (Figure 8.23j) and then no other layered network can be found. This al-
gorithm can be summarized in the following pseudocode:

layerNetwork(network with source s and sink t)
for all vertices u

level(u) = -1;
level(t) = 0;
enqueue(t);
while queue is not empty

v = dequeue();
for all vertices u adjacent to v such that level(u) == -1

if forward(edge(uv)) and slack(edge(uv)) > 0 or
backward(edge(uv)) and f(edge(vu)) > 0

level(u) = level(v)+1;
enqueue(u);

if u == s
return success;

return failure;

processAugmentingPaths(network with source s and sink t)
unblock all edges;
labeled = {s};
while labeled is not empty // while not stuck;

pop v from labeled;
for all unlabeled vertices u adjacent to v such that

edge(vu) is not blocked and level(v) == level(u) +1
if forward(edge(vu)) and slack(edge(vu)) > 0

label(u) = (v+,min(slack(v),slack(edge(vu))))
else if backward(edge(vu)) and f(edge(uv)) > 0

label(u) = (v–,min(slack(v),f(edge(uv))));
if u got labeled

if u == t
augmentPath(network);
block saturated edges;
labeled = {s}; // look for another path;

else push u onto labeled;
if no neighbor of v has been labeled

block all edges incident with v;

416 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DinicAlgorithm(network with source s sink t)
set flows of all edges and vertices to 0;
label(s) = (null,∞);
while layerNetwork(network) is successful

processAugmentingPaths(network);

What is the complexity of this algorithm? There are maximum |V| – 1 layerings
(phases) and up to O(|E|) steps to layer the network. Hence, finding all the layered net-
works requires O(|V||E|) steps. Moreover, there are O(|E|) paths per phase (per one
layered network) and, due to blocking, O(|V|) steps to find one path, and because there
are O(|V|) layered networks, in the worst case, O(|V|2|E|) steps are required to find the
augmenting paths. This estimation determines the efficiency of the algorithm, which is
better than O(|V||E|2) for breadth-first FordFulkersonAlgorithm(). The improve-
ment is in the number of steps to find one augmenting path, which is now O(|V|), not
O(|E|), as before. The price for this improvement is the need to prepare the network by
creating layered networks, which, as established, require additional O(|V||E|) steps.

The difference in pseudocode for FordFulkersonAlgorithm() and process
AugmentingPaths() is not large. The most important difference is in the amplified
condition for expanding a path from a certain vertex v: Only the edges to adjacent ver-
tices u that do not extend augmenting paths beyond the length of paths in the layered
network are considered.

8.8.2 Maximum Flows of Minimum Cost
In the previous discussion, edges had two parameters, capacity and flow: how much
flow they can carry and how much flow they are actually carrying. But although many
different maximum flows through the network are possible, we choose the one dictated
by the algorithm currently in use. For example, Figure 8.24 illustrates two possible max-
imum flows for the same network. Note that in the first case, the edge(ab) is not used at
all; only in the second case are all the edges transferring some flow. The breadth-first al-
gorithm leads to the first maximum flow and finishes our quest for maximum flow after
identifying it. However, in many situations, this is not a good decision. If there are many
possible maximum flows, it does not mean that any one of them is equally good.

S e c t i o n 8 . 8 N e t w o r k s ■ 417

FIGURE 8.24 Two possible maximum flows for the same network.

2, 22, 2

1, 1 2, 1

1, 0

a

ts

b

(a)

2, 12, 2

1, 1 2, 2

1, 1

a

ts

b

(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Consider the following example. If edges are roads between some locations, then it
is not enough to know that a road has one or two lanes to choose a proper route. If the
distance(a,t) is very long and distance(a,b) and distance(b,t) are relatively short, then it
is better to consider the second maximum flow (Figure 8.24b) as a viable option rather
than the first (Figure 8.24a). However, this may not be enough. The shorter way can
have no pavement: It can be muddy, hilly, close to the avalanche areas, or sometimes
blocked by boulders, among other disadvantages. Hence, using the distance as the sole
criterion for choosing a road is insufficient. Taking the roundabout way may bring us
to the destination faster and cheaper (to mention only time and gasoline burned).

We clearly need a third parameter for an edge: the cost of transferring one unit of
flow through this edge. The problem now is how to find a maximum flow at mini-
mum cost. More formally, if for each edge e, the cost(e) of sending one unit of flow is
determined so that it costs n � cost(e) to transmit n units of flow over edge e, then we
need to find a maximum flow f of minimum cost, or a flow such that

cost(f) = min{∑e∈E f (e)·cost(e) : f is a maximum flow}

Finding all possible maximum flows and comparing their costs is not a feasible solu-
tion because the amount of work to find all such flows can be prohibitive. Algo-
rithms are needed that find not only a maximum flow, but also the maximum flow at
minimum cost.

One strategy is based on the following theorem, proven first by W. S. Jewell, R. G.
Busacker, and P. J. Gowen, and implicitly used by M. Iri (Ford and Fulkerson, 1962):

Theorem. If f is a minimal-cost flow with the flow value v and p is the minimum cost
augmenting path sending a flow of value 1 from the source to the sink, then the flow
f + p is minimal and its flow value is v + 1.

The theorem should be intuitively clear. If we determined the cheapest way to
send v units of flow through the network and afterward found a path that is the
cheapest way for sending 1 unit of flow from the source to the sink, then we found the
cheapest way to send v + 1 units using the route, which is a combination of the route
already determined and the path just found. If this augmenting path allows for send-
ing 1 unit for minimum cost, then it also allows for sending 2 units at minimum cost,
and also 3 units, up to n units, where n is the maximum amount of units that can be
sent through this path; that is,

n = min{capacity(e) – f(e) : e is an edge in minimum cost augmenting path}

This also suggests how we can proceed systematically to find the cheapest maxi-
mum route. We start with all flows set to zero. In the first pass, we find the cheapest
way to send 1 unit and then send as many units through this path as possible. After the
second iteration, we find a path to send 1 unit at least cost, and we send through this
path as many units as this path can hold, and so on until no further dispatch from the
source can be made or the sink cannot accept any more flow.

Note that the problem of finding maximum flow of minimum cost bears some re-
semblance to the problem of finding the shortest path, because the shortest path can be
understood as the path with minimum cost. Hence, a procedure is needed to find the
shortest path in the network so that as much flow as possible can be sent through this
path. Therefore, a reference to an algorithm that solves the shortest path problem should

418 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

not be surprising. We modify Dijkstra’s algorithm used for solving the one-to-one
shortest path problem (see Exercise 7 at the end of this chapter). Here is the algorithm:

modifiedDijkstraAlgorithm(network, s, t)
for all vertices u

f(u) = 0;
cost(u) = ∞;

set flows of all edges to 0;
label(s) = (null,∞,0);
labeled = null;
while (true)

v = a vertex not in labeled with minimal cost(v);
if v == t

if cost(t) == ∞ // no path from s to t can be found;
return failure;

else return success;
add v to labeled;
for all vertices u not in labeled and adjacent to v

if forward(edge(vu)) and slack(edge(vu)) > 0 and cost(v) + cost(vu) < cost(u)
label(u) = (v+,min(slack(v),slack(edge(vu)), cost(v) + cost(vu))

else if backward(edge(vu)) and f(edge(uv)) > 0 and cost(v) – cost(uv) < cost(u)
label(u) = (v–,min(slack(v),f(edge(uv)), cost(v) – cost(uv));

maxFlowMinCostAlgorithm(network with source s and sink t)
while modifiedDijkstraAlgorithm(network,s,t) is successful

augmentPath(network,s,t);

modifiedDijkstraAlgorithm() keeps track of three things at a time so that
the label for each vertex is the triple

label(u) = (parent(u), flow(u), cost(u))

First, for each vertex u, it records the predecessor v, the vertex through which u is
accessible from the source s. Second, it records the maximum amount of flow that can
be pushed through the path from s to u and eventually to t. Third, it stores the cost of
passing all the edges from the source to u. For forward edge(vu), cost(u) is the sum of
the costs already accumulated in v plus the cost of pushing one unit of flow through
edge(vu). For backward edge(vu), the unit cost of passing through this edge is sub-
tracted from the cost(v) and stored in cost(u). Also, flows of edges included in aug-
mented paths are updated; this task is performed by augmentPath() (see p. 409).

Figure 8.25 illustrates an example. In the first iteration of the while loop, la-
beled becomes {s} and the three vertices adjacent to s are labeled, label(a) = (s,2,6),
label(c) = (s,4,2), and label(e) = (s,1,1). Then the vertex with the smallest cost is cho-
sen, namely, vertex e. Now,labeled = {s,e} and two vertices acquire new labels, label(d)
= (e,1,3) and label(f) = (e,1,2). In the third iteration, vertex c is chosen, because its cost,
2, is minimal. Vertex a receives a new label, (c,2,3), because the cost of accessing it from s
through c is smaller than accessing it directly from s. Vertex f, which is adjacent to c, does
not get a new label, because the cost of sending one unit of flow from s to f through c, 5,
exceeds the cost of sending this unit through e, which is 2. In the fourth iteration, f is

S e c t i o n 8 . 8 N e t w o r k s ■ 419

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

420 ■ C h a p t e r 8 G r a p h s

FIGURE 8.25 Finding a maximum flow of minimum cost.

2, 0, 6
2, 0, 1

flow
cost

3, 0, 3 2, 0, 2

5, 0, 1

capacity

3, 0, 2

1, 0, 31, 0, 1

(a)

4, 0, 2 2, 0, 2

5, 0, 1

3, 0, 1

a

s c

e

b

d t

f

1, 1, 31, 1, 1

(c)
3, 1, 1

a

s c

e

b

d t

f

2, 2, 1
3, 2, 2

(e)

4, 2, 2

5, 2, 1
a

s c

e

b

d t

f

3, 1, 3 2, 1, 2

(g)

4, 3, 2 2, 1, 2

3, 0, 1

a

s c

e

b

d t

f

2, 1, 6
2, 2, 1

3, 1, 3 2, 1, 2

5, 0, 1
3, 3, 2

1, 1, 31, 1, 1

(i)

4, 3, 2 2, 1, 2

5, 3, 1

3, 0, 1

a

s c

e

b

d t

f

flow
parent cost

(b)

(a, 2, 4)

(f, 1, 5)(e, 1, 3)

(s, 1, 1)

(e, 1, 2)

(s, 4, 2)

(a, 2, 4)

(b, 2, 6)(e, 1, 6)

(f, 1, 4)

(c, 3, 5)

(s, 4, 2)

labeled = {s, e, c, f, a, d, b}

labeled = {s, c, a, b, f, e, d}

labeled = {s, c, f, e, a, d, b}

labeled = {s, c, f, a, b}

labeled = {s, c, f, a, b}

(c, 2, 3)
(s, 2, 6)

a

s c

e

b

d t

f

(d)

a

s c

e

b

d t

f

(f)

a

s c

e

b

d t

f

(h)

a

s c

b

t

f

(j)

a

s c

b

f

(c, 2, 3)
(s, 2, 6)

(d, 1, 8)(f, 1, 6)

(f, 1, 4)
(c, 2, 5)

(s, 2, 2)

(s, 2, 6) (a, 2, 7)

(b, 1, 9)

(c, 1, 5)

(s, 1, 2)

(s, 2, 6) (a, 2, 7)

(c, 1, 5)

(s, 1, 2)

(s, 1, 6) (a, 1, 7)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

chosen, labeled becomes {s,e,c,f}, and label(t) = (f,1,5). After the seventh iteration, the
situation in the graph is as pictured in Figure 8.25b. The eighth iteration is exited right
after the sink t is chosen, after which the path s, e, f, t is augmented (Figure 8.25c). The
execution continues, modifiedDijkstraAlgorithm() is invoked four more times
and in the last invocation no other path can be found from s to t. Note that the same
paths were found here as in Figure 8.20, although in a different order, which was due to
the cost of these paths: 5 is the cost of the first detected path (Figure 8.25b), 6 is the cost
of the second path (Figure 8.25d), 8 is the cost of the third (Figure 8.25f), and 9 is the
cost of the fourth (Figure 8.25h). But the distribution of flows for particular edges al-
lowing for the maximum flow is slightly different. In Figure 8.20k, edge(sa) transmits 2
units of flow, edge(sc) transmits 2 units, and edge(ca) transmits 1 unit. In Figure 8.25i,
the same three edges transmit 1, 3, and 2 units, respectively.

8.9 MATCHING

Suppose that there are five job openings a, b, c, d, and e and five applicants p, q, r, s,
and t with qualifications shown in this table:

Applicants: p q r s t

Jobs: a b c b d a e e c d e

The problem is how to find a worker for each job; that is, how to match jobs with
workers. There are many problems of this type. The job matching problem can be
modeled with a bipartite graph. A bipartite graph is one in which the set of vertices V
can be divided into two subsets V1 and V2 such that, for each edge(vw), if vertex v is in
one of the two sets V1 or V2, then w is in the other set. In this example, one set of ver-
tices, V1, represents applicants, the other set, V2, represents jobs, and edges represent
jobs for which applicants are qualified (Figure 8.26). The task is to find a match be-
tween job and applicants so that one applicant is matched with one job. In a general
case, there may not be enough applicants, or there may be no way to assign an appli-
cant for each opening, even if the number of applicants exceeds the number of open-
ings. Hence, the task now is to assign applicants to as many jobs as possible.

A matching M in a graph G = (V,E) is a subset of edges, M ⊆ E, such that no two
edges share the same vertex; that is, no two edges are adjacent. A maximum matching

S e c t i o n 8 . 9 M a t c h i n g ■ 421

FIGURE 8.26 Matching five applicants with five jobs.

cba d e

rqp s t

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is a matching that contains a maximum number of edges so that the number of un-
matched vertices (that is, vertices not incident with edges in M) is minimal. For exam-
ple, in the graph in Figure 8.27, the sets M1 = {edge(cd), edge(ef)} and M2 = {edge(cd),
edge(ge), edge(fh)} are matchings, but M2 is a maximum matching, whereas M1 is not.
A perfect matching is a matching that pairs all the vertices of graph G. A matching M =
{edge(pc), edge(qb), edge(ra), edge(se), edge(td)} in Figure 8.26 is a perfect matching,
but there is no perfect matching for the graph in Figure 8.27. A matching problem con-
sists in finding a maximum matching for a certain graph G. The problem of finding a
perfect matching is also called the marriage problem.

An alternating path for M is a sequence of edges edge(v1v2), edge(v2v3), . . . ,
edge(vk–1vk) that alternately belongs to M and to E – M = set of edges that are not in M.
An augmenting path for M is an alternating path where both end vertices are not inci-
dent with any edge in matching M. Thus, an augmenting path has an odd number of
edges, 2k + 1, k of them belonging to M and k + 1 not in M. If edges in M are replaced
by edges not in M, then there is one more edge in M than before the interchange.
Thus, the cardinality of the matching M is augmented by one.

A symmetric difference between two sets, X ⊕ Y, is the set

X ⊕ Y = (X – Y) x (Y – X) = (X x Y) – (X y Y)

In other words, a symmetric difference X ⊕ Y includes all elements from X and Y
combined except for the elements that belong at the same time to X and Y.

Lemma 1. If for two matchings M and N in a graph G = (V,E) we define a set of edges
M ⊕ N ⊆ E, then each connected component of the subgraph G′ = (V,M ⊕ N) is either
(a) a single vertex, (b) a cycle with an even number of edges alternately in M and N,
or (c) a path whose edges are alternately in M and N and such that each end vertex of
the path is matched only by one of the two matchings M and N (i.e., the whole path
should be considered, not just part, to cover the entire connected component).

Proof. For each vertex v of G′, deg(v) # 2, at most one edge of each matching can
be incident with v; hence, each component of G′ is either a single vertex, a path, or
a cycle. If it is a cycle or a path, the edges must alternate between both matchings;
otherwise, the definition of matching is violated. Thus, if it is a cycle, the number of
edges must be even. If it is a path, then the degree of both end vertices is one so that
they can be matched with only one of the matchings, not both. ❑

422 ■ C h a p t e r 8 G r a p h s

FIGURE 8.27 A graph with matchings M1 = {edge(ab), edge(ef)} and M2 = {edge(ab), edge(de), edge(fh)}.

c

ba

d e

g h

f

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 8.28 contains an example. A symmetric difference between matching M =
{edge(ad), edge(bf), edge(gh), edge(ij)} marked with dashed lines and matching N =
{edge(ad), edge(cf), edge(gi), edge(hj)} shown in dotted lines is the set M ⊕ N =
{edge(bf), edge(cf), edge(gh), edge(gi), edge(hj), edge(ij)}, which contains one path
and a cycle (Figure 8.28b). The vertices of graph G that are not incident with any of
the edges in M ⊕ N are isolated in the graph G′ = (V,M ⊕ N).

Lemma 2. If M is a matching and P is an augmenting path for M, then M ⊕ P is a
matching of cardinality |M| + 1.

Proof. By definition of symmetric difference, M ⊕ P = (M – P) x (P – M). Except for
the end vertices, all other vertices incident with edges in P are matched by edges in P.
Hence, no edge in M – P contains any vertex in P. Thus, edges in M – P share no ver-
tices with edges in P – M. Moreover, because P is a path with every other edge in P –
M, then P – M has no edges that share vertices. Hence, (M – P) x (P – M) is a union
of two nonoverlapping matchings and thus a matching. If |P| = 2k + 1, then |M – P| =
|M| – k because all edges in M x P are excluded, and the number of edges in P but
not in M, |P – M| = k + 1. Because (M – P) and (P – M) are not overlapping, |(M – P)
x (P – M)| = |M – P| + |P – M| = (|M| – k) + k + 1 = |M| + 1. ❑

Figure 8.29 illustrates this lemma. For matching M = {edge(bf), edge(gh),
edge(ij)} shown with dashed lines, and augmenting path P for M, the path c, b, f, h, g, i,
j, e, the resulting matching is {edge(bc), edge(ej), edge(fh), edge(gi)}, which includes all
the edges from the path P that were originally excluded from M. So in effect the
lemma finds a larger matching if in an augmenting path the roles of matched and un-
matched edges are reversed.

Theorem (Berge 1957). A matching M in a graph G is maximum if there is no aug-
menting path connecting two unmatched vertices in G.

Proof. ⇒ By lemma 2, if there were an augmenting path, then a larger matching
could be generated; hence, M would not be a maximum matching.

S e c t i o n 8 . 9 M a t c h i n g ■ 423

FIGURE 8.28 (a) Two matchings M and N in a graph G = (V,E) and (b) the graph G′ = (V, M ⊕ N).

cb

a

d e

g

h

f

i j

cb

a

d e

g

h

f

i j

(a) (b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

⇐ Suppose M is not maximum and a matching N is maximum. Let G′ = (V,M ⊕ N).
By lemma 1, connected components of G ′ are either cycles of even length or paths
(isolated vertices are not included here). If it is a cycle, then half of its edges are in
N and half are in M because the edges are alternating between M and N. If it is an
even path, then it also has the same number of edges from M and N. However, if it
is an odd path, it has more edges from N than from M, because |N| > |M|, and both
end vertices are incident with edges from N. Hence, it is an augmenting path, which
leads to contradiction with the assumption that there is no augmenting path. ❑

This theorem suggests that a maximum matching can be found by beginning
with an initial matching, possibly empty, and then by repeatedly finding new aug-
menting paths and increasing the cardinality of matching until no such path can be
found. This requires an algorithm to determine alternate paths. It is much easier to
develop such an algorithm for bipartite graphs than for any other graphs; therefore,
we start with a discussion of this simpler case.

To find an augmenting path, breadth-first search is modified to allow for always
finding the shortest path. The procedure builds a tree, called a Hungarian tree, with an
unmatched vertex in the root consisting of alternating paths, and a success is pro-
nounced as soon as it finds another unmatched vertex than the one in the root (that
is, as soon as it finds an augmenting path). The augmenting path allows for increasing
the size of matching. After no such path can be found, the procedure is finished. The
algorithm is as follows:

findMaximumMatching(bipartite graph)
for all unmatched vertices v

set level of all vertices to 0;
set parent of all vertices to null;
level(v) = 1;
last = null;
clear queue;
enqueue(v);

424 ■ C h a p t e r 8 G r a p h s

FIGURE 8.29 (a) Augmenting path P and a matching M and (b) the matching M ⊕ P.

cb

a

d e

g

h

f

i j

cb e

g

h

f

i j

(a) (b)

p

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

while queue is not empty and last is null
v = dequeue();
if level(v) is an odd number

for all vertices u adjacent to v such that level(u) is 0
if u is unmatched // the end of an augmenting

parent(u) = v; // path is found;
last = u; // this also allows to exit the while loop;
break; // exit the for loop;

else if u is matched but not with v
parent(u) = v;
level(u) = level(v) + 1;
enqueue(u);

else // if level(v) is an even number
enqueue(vertex u matched with v);
parent(u) = v;
level(u) = level(v) + 1;

if last is not null // augment matching by updating the augmenting path;
for (u = last; u is not null; u = parent(parent(u)))

matchedWith(u) = parent(u);
matchedWith(parent(u)) = u;

An example is shown in Figure 8.30. For the current matching M = {(u1, v4), (u2,
v2), (u3, v3), (u5, v5)} (Figure 8.30a), we start from vertex u4. First, three vertices adjacent
to u4 (namely, v3, v4, and v5) are enqueued, all of them connected to u4 with edges not in
M. Then v3 is dequeued, and because it is on an even level of the tree (Figure 8.30b),
there is at most one successor to be considered, which is the vertex u3 because
edge(u3v3) is in M and u3 is enqueued. Then successors of v4 and v5 are found—that is,
u1 and u5, respectively—after which the vertex u3 is considered. This vertex is on an odd
level; hence, all vertices directly accessible from it through edges not in M are checked.
There are three such vertices, v2, v4, and v5, but only the first is not yet in the tree, so it is
included now. Next, successors of u1 are tested, but the only candidate, v2, does not
qualify because it is already in the tree. Finally, u5 is checked, from which we arrive at an
unmatched vertex v6. This marks the end of an augmenting path; hence, the while
loop is exited and then matching M is modified by including in M the edges in the
newly found path that are not in M and excluding from M the edges of the path that are
there. The path has one more edge in M than not in M, so after such modification the
number of edges in M is increased by one. The new matching is shown in Figure 8.30c.

After finding and modifying an augmenting path, a search for another augmenting
path begins. Because there are still two unmatched vertices, there still exists a possibility
that a larger matching can be found. In the second iteration of the outer for loop, we
begin with the vertex u6, which eventually leads to the tree as in Figure 8.30d that includes
an augmenting path, which in turn gives a matching as in Figure 8.30e. There are no un-
matched vertices left; thus, the maximum matching just found is also a perfect matching.

Complexity of the algorithm is found as follows. Each alternating path increases
the cardinality of matching by one, and because the maximum number of edges in
matching M is |V |/2, the number of iterations of the outer for loop is at most |V |/2.
Moreover, finding one augmenting path requires O(|E |) steps so that the total cost of
finding a maximum matching is O(|V ||E |).

S e c t i o n 8 . 9 M a t c h i n g ■ 425

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8.9.1 Stable Matching Problem

In the example of matching applicants with jobs, any successful maximum matching
was acceptable because it did not matter to applicants what job they got and it did not
matter to the employers whom they hired. But usually this is not the case. Applicants
have their preferences, and so do employers. In the stable matching problem, also
called the stable marriage problem, there are two nonoverlapping sets U and W of the

426 ■ C h a p t e r 8 G r a p h s

FIGURE 8.30 Application of the findMaximumMatching() algorithm. Matched vertices are
connected with solid lines.

v3v2v1 v4 v5

u3u2u1 u4 u5

v6

u6

u4

u1

v4 v5

u5

v6v2

u3

v3

(a) (b)

v3v2v1 v4 v5

u3u2u1 u4 u5

v6

u6

(c)

v3v2v1 v4 v5

u3u2u1 u4 u5

v6

u6

(e)

u6

u5

v6

v5

u4

v1

u2

v2

(d)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

same cardinality. Each element of U has a ranking list of elements of W, and each ele-
ment of W has a preference list consisting of elements of U. Ideally, the elements
should be matched with their highest preferences, but because of possible conflicts
between different lists (for example, the same w can be first on two ranking lists), a
matching should be created that is stable. A matching is unstable if two such elements,
u and w, rank each other higher than the elements with which they are currently
matched; otherwise, the matching is stable. Consider sets U = {u1, u2, u3, u4} and W =
{w1, w2, w3, w4} and ranking lists

u1: w2 > w1 > w3 > w4 w1: u3 > u2 > u1 > u4

u2: w3 > w2 > w1 > w4 w2: u1 > u3 > u4 > u2

u3: w3 > w4 > w1 > w2 w3: u4 > u2 > u3 > u1

u4: w2 > w3 > w4 > w1 w4: u2 > u1 > u3 > u4

The matching (u1, w1), (u2, w2), (u3, w4), (u4, w3) is unstable because there are two
elements, u1 and w2, that prefer each other over the elements with which they are cur-
rently matched: u1 prefers w2 over w1 and w2 prefers u1 over u2.

A classical algorithm to find a stable matching was designed by Gale and Shapley
(1962), who also show that a stable matching always exists.

stableMatching(graph = (UxW,M)) // UyW = null, |U| = |W|, M = null;
while there is an unmatched element uHU

w = the highest remaining choice from W on u’s list;
if w is unmatched

matchedWith(u) = w; // include edge(uw) in matching M;
matchedWith(w) = u;

else if w is matched and w ranks u higher than its current match
matchedWith(matchedWith(w)) = null; // remove edge(matchedWith(w), w) from M;
matchedWith(u) = w; // include edge(uw) in M;
matchedWith(w) = u;

Because the list of choices for each u ∈ U decreases in each iteration, each list is of
length |W| = |U| and there are |U| such lists, one for each u, the algorithm executes
O(|U|2) iterations: |U| times in the best case and |U|2 in the worst case.

Consider an application of this algorithm to the set U and W defined before with
the specified rankings. In the first iteration, u1 is chosen and matched immediately
with the unmatched w2 that is highest on u1’s ranking list. In the second iteration, u2
is successfully matched with its highest choice, w3. In the third iteration, an attempt is
made to match u3 with its preference, w3, but w3 is already matched and w3 prefers its
current match, u2, more than u3, so nothing happens. In the fourth iteration, u3
is matched with its second preference, w4, which is currently unmatched. In the fifth
iteration, a match is tried for u4 and w2, but unsuccessfully, because w2 is matched al-
ready with u1, and u1 is ranked by w2 higher than u4. In the sixth iteration, a successful
attempt is made to match u4 with its second choice, w3: w3 is matched with u2, but it
prefers u4 over u2, so u2 becomes unmatched and u4 is matched with w3. Now, u2 has to
be matched. The summary of all steps is given in the following table:

S e c t i o n 8 . 9 M a t c h i n g ■ 427

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Iteration u w Matched Pairs

1 u1 w2 (u1, w2)

2 u2 w3 (u1, w2), (u2, w3)

3 u3 w3 (u1, w2), (u2, w3)

4 u3 w4 (u1, w2), (u2, w3), (u3, w4)

5 u4 w2 (u1, w2), (u2, w3), (u3, w4)

6 u4 w3 (u1, w2), (u3, w4), (u4, w3)

7 u2 w2 (u1, w2), (u3, w4), (u4, w3)

8 u2 w1 (u1, w2), (u2, w1), (u3, w4), (u4, w3)

Note that an asymmetry is implied in this algorithm concerning whose rankings
are more important. The algorithm is working in favor of elements of set U. When the
roles of sets U and W are reversed, then w’s immediately have their preferred choices
and the resulting stable matching is

(u1, w2), (u2, w4), (u3, w1), (u4, w3)

and u2 and u3 are matched with w’s—w4 and w1, respectively—that are lower on their
ranking lists than the w’s chosen before—w1 and w4, respectively.

8.9.2 Assignment Problem
The problem of finding a suitable matching becomes more complicated in a weighted
graph. In such a graph, we are interested in finding a matching with the maximum
total weight. The problem is called an assignment problem. The assignment problem
for complete bipartite graphs with two sets of vertices of the same size is called an op-
timal assignment problem.

An O(|V |)3 algorithm is due to Kuhn (1955) and Munkres (1957) (Bondy and
Murty 1976; Thulasiraman and Swamy 1992). For a bipartite graph G = (V,E), V = U
x W, we define a labeling function f: U x W → R such that a label f (v) is a number as-
signed to each vertex v such that for all vertices v, u, f (u) + f (v) ≥ weight(edge(uv)).
Create a set H = {edge(uv) ∈ E: f(u) + f(v) = weight(edge(uv))} and then an equality
subgraph Gf = (V, H). The Kuhn-Munkres algorithm is based on the theorem stating
that if for a labeling function f and an equality subgraph Gf, graph G contains a perfect
matching, then this matching is optimal: for any matching M in G, ∑f(u) + ∑f(v) $
weight(M), for any perfect matching Mp, ∑f(u) + ∑f(v) = weight(Mp); that is,
weight(M) # ∑f(u) + ∑f(v) = weight(Mp).

The algorithm expands the equality subgraph Gf until a perfect matching can be
found in it, which will also be an optimal matching for graph G.

optimalAssignment()
Gf = equality subgraph for some vertex labeling f;
M = matching in Gf;
S = {some unmatched vertex u}; // beginning of an augmenting path P;
T = null;
while M is not a perfect matching

428 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Γ(S) = {w: ∃u∈S: edge(uw)∈Gf};// vertices adjacent in Gf to the vertices in S;
if Γ(S) == T

d = min{(f(u) + f(w) - weight(edge(uw)): u∈S, w∉T};
for each vertex v

if v ∈ S
f(v) = f(v) - d;

else if v ∈ T
f(v) = f(v) + d;

construct new equality subgraph Gf and new matching M;
else // if T � Γ(S)

w = a vertex from Γ(S) - T;
if w is unmatched // the end of the augmenting path P;

P = augmenting path just found;
M = M ⊕ P;
S = {some unmatched vertex u};
T = null;

else S = S x {neighbor of w in M};
T = T x {w};

For an example, see Figure 8.31. A complete bipartite graph G = ({u1, . . . , u4} x
{w1, . . . , w4}, E) has weights defined by the matrix in Figure 8.31a.

0. For an initial labeling, we choose the function f such that f (u) =
max{weight(edge(uw)):w∈W}; that is, the maximum weight in the weight matrix in the
row for vertex u, and f (w) = 0, so that for the graph G, the initial labeling is as in Figure
8.31b. We choose a matching as in Figure 8.31b and set S to {u4}and T to null.

1. In the first iteration of the while loop, Γ(S) = {w2, w4}, because both w2 and w4 are
neighbors of u4, which is the only element of S. Because T � Γ(S)—that is, ∅ � {w2,
w4}—the outer else clause is executed, whereby w = w2 (we simply choose the first
element if Γ(S) not in T), and because w2 is matched, the inner else clause is exe-
cuted, in which we extend S to {u2, u4}, because u2 is both matched and adjacent to
w2, and extend T to {w2}.

S e c t i o n 8 . 9 M a t c h i n g ■ 429

FIGURE 8.31 An example of application of the optimalAssignment() algorithm.

u3

u2

u1

u4

w3w2w1 w4

(a)

2

3

2

1

2

4

2

2

4

4

3

1

1

2

3

2

u1 u2 u3 u4
4 3 24

w3w2w1 w4
0 0 00

(b)

u1 u2 u3 u4
3 2 13

w3w2w1 w4
0 1 11

(c)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

All the iterations are summarized in the following table.

Iteration Γ(S) w S T

0 ∅ {u4} ∅
1 {w2, w4} w2 {u2, u4} {w2}

2 {w2, w3, w4} w3 {u1, u2, u4} {w2, w3}

3 {w2, w3, w4} w4 {u1, u2, u3, u4} {w2, w3, w4}

4 {w2, w3, w4}

In the fourth iteration, the condition of the outer if statement becomes true because
sets T and Γ(S) are now equal, so the distance d = min{(f (u) + f (w) – weight(edge(uw)):
u∈S, w∉T} is computed. Because w1 is the only vertex not in T = {w2, w3, w4}, d =
min{(f (u) + f (w1) – weight(edge(uw1)): u∈S = {u1, u2, u3, u4}} = min{(4 + 0 – 2), (4 + 0 –
3), (3 + 0 – 2), (2 + 0 – 1)} = 1. With this distance, the labels of vertices in graph G are up-
dated to become labels in Figure 8.31c. The labels of all four vertices in S are decremented
by d = 1, and all three vertices in T are incremented by the same value. Next, an equality
subgraph is created that includes all the edges, as in Figure 8.31c, and then the matching is
found that includes edges drawn with solid lines. This is a perfect matching, and hence, an
optimal assignment, which concludes the execution of the algorithm.

8.9.3 Matching in Nonbipartite Graphs
The algorithm findMaximumMatching() is not general enough to properly process
nonbipartite graphs. Consider the graph in Figure 8.32a. If we start building a tree
using breadth-first search to determine an augmenting path from vertex c, then vertex
d is on an even level, vertex e is on an odd level, and vertices a and f are on an even
level. Next, a is expanded by adding b to the tree and then f by including i in the tree so
that an augmenting path c, d, e, f, g, i is found. However, if vertex i were not in the
graph, then the only augmenting path c, d, e, a, b, g, f, h could not be detected because

430 ■ C h a p t e r 8 G r a p h s

FIGURE 8.32 Application of the findMaximumMatching() algorithm to a nonbipartite graph.

b

e

a

f g

dc

(a)

h i

b

e

a

f
g

dc

(b)

h i

s r

p q

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

vertex g has been labeled, and as such it blocks access to f and consequently to vertex h.
The path c, d, e, a, b, g, f, h could be found if we used a depth-first search and ex-
panded the path leading through a before expanding a path leading through f, be-
cause the search would first determine the path c, d, e, a, b, g, f, and then it would
access h from f. However, if h was not in the graph, then the very same depth-first
search would miss the path c, d, e, f, g, i because first the path c, d, e, a, b, g, f with ver-
tices g and f would be expanded so that the detection of path c, d, e, f, g, i is ruled out.

A source of the problem is the presence of cycles with an odd number of edges.
But it is not just the odd number of edges in a cycle that causes the problem. Consider
the graph in Figure 8.32b. The cycle e, a, b, p, q, r, s, g, f, e has nine edges, but find-
MaximumMatching() is successful here, as the reader can easily determine (both
depth-first search and breadth-first search first find path c, d, e, a, b, p and then path h,
f, g, i). The problem arises in a special type of cycle with an odd number of edges,
which are called blossoms. The technique of determining augmenting paths for
graphs with blossoms is due to Jack Edmonds. But first some definitions.

A blossom is an alternating cycle v1, v2, . . . , v2k–1v1 such that edge(v1v2) and
edge(v2k–1v1) are not in matching. In such a cycle, the vertex v1 is called the base of the
blossom. An even length alternating path is called a stem; a path of length zero that
has only one vertex is also a stem. A blossom with a stem whose edge in matching is
incident with the base of the blossom is called a flower. For example, in Figure 8.32a,
path c, d, e and path e are stems, and cycle e, a, b, g, f, e is a blossom with the base e.

The problems with blossoms arise if a prospective augmenting path leads to a
blossom through the base. Depending on which edge is chosen to continue the path,
we may or may not obtain an augmenting path. However, if the blossom is entered
through any other vertex v than the base, the problem does not arise because we can
choose only one of the two edges of v. Hence, an idea is to prevent a blossom from
possibly harmful effects by detecting the fact that a blossom is being entered through
its base. The next step is to temporarily remove the blossom from the graph by
putting in place of its base a vertex that represents such a blossom and to attach to this
vertex all edges connected to the blossom. The search for an augmenting path contin-
ues, and if an augmenting path that includes a vertex representing a blossom is found,
the blossom is expanded and the path through it is determined by going backward
from the edge that leads to the blossom to one of the edges incident with the base.

The first problem is how to recognize that a blossom has been entered through
the base. Consider the Hungarian tree in Figure 8.33a, which is generated using
breadth-first search in the graph in Figure 8.32a. Now, if we try to find neighbors of b,
then only g qualifies because edge(ab) is in matching, and thus only edges not in
matching can be included starting from b. Such edges would lead to vertices on an
even level of the tree. But g has already been labeled and it is located on an odd level.
This marks a blossom detection. If a labeled vertex is reached through different paths,
one of them requiring this vertex to be on an even level and another on a odd level,
then we know that we are in the middle of a blossom entered through its base. Now
we trace the paths from g and b back in the tree until a common root is found. This
common root, vertex e in our example, is the base of the detected blossom. The blos-
som is now replaced by a vertex A, which leads to a transformed graph, as in Figure
8.33b. The search for an augmenting path restarts from vertex A and continues until
such a path is found, namely, path c, d, A, h. Now we expand the blossom represented

S e c t i o n 8 . 9 M a t c h i n g ■ 431

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

by A and trace the augmenting path through the blossom. We do that by starting from
edge(hA), which is now edge(hf). Because it is an edge not in matching, then from f
only edge(fg) can be chosen so that the augmenting path can be alternating. Moving
through vertices f, g, b, a, e, we determine the part of the augmenting path, c, d, A, h,
which corresponds to A (Figure 8.33c) so that the full augmenting path is c, d, e, a, b,
g, f, h. After the path is processed, we obtain a new matching, as in Figure 8.33d.

8.10 EULERIAN AND HAMILTONIAN GRAPHS

8.10.1 Eulerian Graphs

An Eulerian trail in a graph is a path that includes all edges of the graph only once. An
Eulerian cycle is a cycle that is also an Eulerian trail. A graph that has an Eulerian cycle is
called an Eulerian graph. A theorem proven by Euler (pronounced: oiler) says that a
graph is Eulerian if every vertex of the graph is incident to an even number of edges.
Also, a graph contains an Eulerian trail if it has exactly two vertices incident with an
odd number of edges.

432 ■ C h a p t e r 8 G r a p h s

FIGURE 8.33 Processing a graph with a blossom.

b

e

a

f g

dc

(c)

h i

f

g

a

b

b

e

a

f g

dc

(d)

h i

A

i

dc

h

(a) (b)

d

c

e

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 1 0 E u l e r i a n a n d H a m i l t o n i a n G r a p h s ■ 433

The oldest algorithm that allows us to find an Eulerian cycle if this is possible is due to
Fleury (1883). The algorithm takes great care in not traversing a bridge—that is, an edge
whose removal would disconnect the graphs G1 and G2—because if traversal of G1 is not
completed before traversing such an edge to pass to G2, it would not be possible to return
to G1. As Fleury himself phrases it, the algorithm consists in “taking an isolating path (= a
bridge) only when there is no other path to take.” Only after the entire subgraph G1 has
been traversed can the path lead through such an edge. Fleury’s algorithm is as follows:

FleuryAlgorithm(undirected graph)
v = a starting vertex; // any vertex;
path = v;
untraversed = graph;
while v has untraversed edges

if edge(vu) is the only one untraversed edge
e = edge(vu);
remove v from untraversed;

else e = edge(vu) which is not a bridge in untraversed;
path = path + u;
remove e from untraversed;
v = u;

if untraversed has no edges
success;

else failure;

Note that for cases when a vertex has more than one untraversed edge, a connec-
tivity checking algorithm should be applied.

An example of finding an Eulerian cycle is shown in Figure 8.34. It is critical that before
an edge is chosen, a test is made to determine whether the edge is a bridge in the untra-
versed subgraph. For example, if in the graph in Figure 8.34a the traversal begins in vertex b
to reach vertex a through vertices e, f, and b, and c, thereby using the path b, e, f, b, c, a, then
we need to be careful which untraversed edge is chosen in a: edge(ab), edge(ad), or edge(ae)
(Figure 8.34b). If we choose edge(ab), then the remaining three untraversed edges are un-
reachable, because in the yet untraversed subgraph untraversed = ({a,b,d,e}, {edge(ab),
edge(ad), edge(ae), edge(de)}), edge(ab) is a bridge because it disconnects two subgraphs of
untraversed, ({a,d,e}, {edge(ad), edge(ae), edge(de)}) and ({b}, ∅).

FIGURE 8.34 Finding an Eulerian cycle.

(a)

c
b

a

f
e

d

cba

fed

(b)

cba

fed

(c)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Chinese Postman Problem

The Chinese postman problem is stated as follows: A postman picks up mail at the post
office, delivers the mail to houses in a certain area, and returns to the post office
(Kwan, 1962). The walk should have a shortest distance when traversing each street at
least once. The problem can be modeled with a graph G whose edges represent streets
and their lengths and vertices represent street corners in which we want to find a min-
imum closed walk. Let us observe first that if the graph G is Eulerian, then each Euler-
ian cycle gives a solution; however, if the graph G is not Eulerian, then it can be so
amplified that it becomes an Eulerian graph G* in which every edge e appears as many
times as the number of times it is used in the postman’s walk. If so, we want to con-
struct such a graph G* in which the sum of distances of the added edges is minimal.
First, odd-degree vertices are grouped into pairs (u, w) and a path of new edges is
added to an already existing path between both vertices of each pair, thereby forming
the graph G*. The problem consists now in so grouping the odd-degree vertices that
the total distance of the added paths is minimum. The following algorithm for solving
this problem is due to Edmonds and Johnson (Edmonds, 1965; Edmonds and Johnson,
1973; see Gibbons, 1985).

ChinesePostmanTour(G = (V, E))
ODD = set of all odd-degree vertices of G;
if ODD is not empty

E* = E;
G* = (V, E*);
find the shortest paths between all pairs of odd-degree vertices;
construct a complete bipartite graph H = (UxW, Er), ODD == (v1, . . . , v2k), such that

U = (u1, . . . , u2k) and ui is a copy of vi;
W = (w1, . . . , w2k) and wi is a copy of vi;
dist(edge(uiwi)) = -`;
dist(edge(uiwj)) = -dist(edge(vivj)) for i ≠ j;

find optimal assignment M in H;
for each edge(uiwj) ∈ M such that vi is still an odd-degree vertex

E* = E*x{edge(uw) ∈ path(uiwj): path(uiwj) is minimum};
find Eulerian path in G*;

Note that the number of odd-degree vertices is even (Exercise 44).
A process of finding a postman tour is illustrated in Figure 8.35. The graph in

Figure 8.35a has six odd-degree vertices, ODD = {c, d, f, g, h, j}. The shortest paths be-
tween all pairs of these vertices are determined (Figure 8.35b–c) and then a complete
bipartite graph H is found (Figure 8.35d). Next, an optimal assignment M is found. By
using the optimalAssignment() algorithm (Section 8.9.1), a matching in an initial
equality subgraph is found (Figure 8.35e). The algorithm finds two matchings, as in
Figure 8.35f–g, and then a perfect matching, as in Figure 8.35h. Using this matching,
the original graph is amplified by adding new edges, shown as dashed lines in Figure
8.35i, so that the amplified graph has no odd-degree vertices, and thus finding an
Eulerian trail is possible.

434 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 1 0 E u l e r i a n a n d H a m i l t o n i a n G r a p h s ■ 435

FIGURE 8.35 Solving the Chinese postman problem.

c d f g h j

 c 0 1 2 1 2 2.4
 d 1 0 3 2 3 3.4
 f 2 3 0 1 2 2.4
 g 1 2 1 0 1 1.4
 h 2 3 2 1 0 2.4
 j 2.4 3.4 2.4 1.4 2.4 0

a b c d

e f g h

i j k l
(a)

(c) (d)

a b c d

e f g h

i j k l
(b)

�1 �1 �1 �1 �1 �1.4
c d f g h j

c d f g h j
0 0 0 0 0 0

(e)

�1 �1 �2 �1 �2 �1.4
c d f g h j

c d f g h j
0 0 0 1 0 0

(f)

c d f g h j

 c �	 �1 �2 �1 �2 �2.4
 d �1 �	 �3 �2 �3 �3.4
 f �2 �3 �	 �1 �2 �2.4
 g �1 �2 �1 �	 �1 �1.4
 h �2 �3 �2 �1 �	 �2.4
 j �2.4 �3.4 �2.4 �1.4 �2.4 �	

U

U

W

U

W

W

�1 �1 �2 �1 �2 �2.4
c d f g h j

c d f g h j
0 0 0 1 0 0

(g)

�1 �1.4 �2.4 �1.4 �2.4 �2.8
c d f g h j

c d f g h j
0.4 0 0.4 1.4 0.4 0

(h)

U

W

a b c d

e f g h

i j k l
(i)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8.10.2 Hamiltonian Graphs
A Hamiltonian cycle in a graph is a cycle that passes through all the vertices of the
graph. A graph is called a Hamiltonian graph if it includes at least one Hamiltonian
cycle. There is no formula characterizing a Hamiltonian graph. However, it is clear
that all complete graphs are Hamiltonian.

Theorem (Bondy and Chvátal, 1976; Ore, 1960). If edge(vu)∉E, graph G* =
(V,Ex{edge(vu)}) is Hamiltonian, and deg(v) + deg(u) $ |V |, then graph G = (V,E)
is also Hamiltonian.

Proof. Consider a Hamiltonian cycle in G* that includes edge(vu) ∉ E. This implies
that G has a Hamiltonian path v = w1, w2, . . . , w|V |–1, w|V | = u. Now we want to find
two crossover edges, edge(vwi+1) and edge(wiu), such that w1, wi+1, wi+2, . . . , w|V |, wi, . . .
, w2, w1 is a Hamiltonian cycle in G (see Figure 8.36). To see that this is possible,
consider a set S of subscripts of neighbors of v, S = {j: edge(vwj+1)}, and a set T of
subscripts of neighbors of u, T = {j: edge(wju)}. Because S x T ⊆ {1, 2, . . . , |V | – 1},
|S| = deg(v), |T| = deg(u), and deg(v) + deg(u) $ |V |, then S and T must have a com-
mon subscript so that the two crossover edges, edge(vwi+1) and edge(wiu), exist. ❑

The theorem, in essence, says that some Hamiltonian graphs allow us to create Hamil-
tonian graphs by eliminating some of their edges. This leads to an algorithm that first
expands a graph to a graph with more edges in which finding a Hamiltonian cycle is
easy, and then manipulates this cycle by adding some edges and removing other edges
so that eventually a Hamiltonian cycle is formed that includes the edges that belong to
the original graph. An algorithm for finding Hamiltonian cycles based on the preced-
ing theorem is as follows (Chvátal, 1985):

HamiltonianCycle(graph G = (V,E))
set label of all edges to 0;
k = 1;
H = E;
GH = G;
while GH contains nonadjacent vertices v, u such that degH(v) + degH(u) ≥ |V|

H = H x {edge(vu)};

436 ■ C h a p t e r 8 G r a p h s

FIGURE 8.36 Crossover edges.

v=w1 u=w|V|

w|V|-1

wi+1wi

w2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

GH = (V,H);
label(edge(vu)) = k++;

if there exists a Hamiltonian cycle C
while (k = max{label(edge(pq)): edge(pq)∈C}) > 0

C = a cycle due to a crossover with each edge labeled by a number < k;

Figure 8.37 contains an example. In the first phase, the while loop is executed to
create graph GH based on graph G in Figure 8.37a. In each iteration, two nonadjacent
vertices are connected with an edge if the total number of their neighbors is not less
than the number of all vertices in the graph. We first look at all the vertices not adjacent
to a. For vertex c, degH(a) + degH(c) = 6 ≥ |V| = 6, the edge(ac) labeled with number 1 is
included in H. Next, vertex e is considered, and because the degree of a just increased by
acquiring a new neighbor, b, degH(a) + degH(e) = 6, so the edge(ae) labeled with 2 is
included in H. The next vertex, for which we try to establish new neighbors, is b of de-
gree 2, for which there are three nonadjacent vertices, d, e, and f with degrees 3, 3, and
3, respectively; therefore, the sum of b’s degree and a degree of any of the three vertices
does not reach 6, and no edge is now included in H. In the next iterations of the while
loop, all possible neighbors of vertices c, d, e, and f are tested, which results in graph H
as in Figure 8.37b with new edges shown as dashed lines with their labels.

In the second phase of HamiltonianCycle(), a Hamiltonian cycle in H is
found, a, c, e, f, d, b, a. In this cycle, an edge with the highest label is found, edge(ef)
(Figure 8.37c). The vertices in the cycle are so ordered that the vertices in this edge are
on the extreme ends. Then by moving left to right in this sequence of vertices, we try
to find crossover edges by checking edges from two neighbor vertices to the vertices at
the ends of the sequence so that the edges cross each other. The first possibility is ver-
tices d and b with edge(bf) and edge(de), but this pair is rejected because the label of
edge(bf) is greater than the largest label of the current cycle, 6. After this, the vertices b
and a and the edges connecting them to the ends of the sequence edge(af) and
edge(be) are checked; the edges are acceptable (their labels are 0 and 5), so the old
cycle f, d, b, a, c, e, f is transformed into a new cycle f, a, c, e, b, d, f. This is shown be-
neath the diagram in Figure 8.37d with two new edges crossing each other and also in
a sequence and in the diagram in Figure 8.37d.

In the new cycle, edge(be) has the highest label, 5, so the cycle is presented with
the vertices of this edge, b and e, shown as the extremes of the sequence b, d, f, a, c, e
(Figure 8.37e). To find crossover edges, we first investigate the pair of crossover edges,
edge(bf) and edge(de), but the label of edge(bf), 7, is greater than the largest label of
the current Hamiltonian cycle, 5, so the pair is discarded. Next, we try the pair
edge(ab) and edge(ef), but because of the magnitude of label of edge(ef), 6, the pair is
not acceptable. The next possibility is the pair edge(bc) and edge(ae), which is accept-
able, so a new cycle is formed, b, c, e, a, f, d, b (Figure 8.37e). In this cycle, a pair of
crossover edges is found, edge(ab) and edge(de), and a new cycle is formed, b, a f, d, e, c
(Figure 8.37f), which includes edges only with labels equal to 0 (that is, only edges
from graph G), which marks the end of execution of the algorithm with the last cycle
being Hamiltonian and built only from edges in G.

S e c t i o n 8 . 1 0 E u l e r i a n a n d H a m i l t o n i a n G r a p h s ■ 437

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Traveling Salesman Problem

The traveling salesman problem (TSP) consists in finding a minimum tour; that is, in
visiting once each city from a set of cities and then returning home so that the total dis-
tance traveled by the salesman is minimal. If distances between each pair of n cities are
known, then there are (n - 1)! possible routes (the number of permutations of the ver-
tices starting with a vertex v1) or tours (or if two tours traveled in opposite di-
rections are equated). The problem is then in finding a minimum Hamiltonian cycle.

(n 2 1) !
2

438 ■ C h a p t e r 8 G r a p h s

FIGURE 8.37 Finding a Hamiltonian cycle.

a

b c

d e

f

a

b c

d e

f

1

2

3

4

5

6
7

a

b c

d e

f

a

b c

d e

f

a

b c

d e

f

a

b c

d e

f

6

5

4

old f – d – b – a – c – e

f – d – b – a – c – e

f – a – c – e – b – d

b – d – f – a – c – e

b – d – f – a – c – e

b – c – e – a – f – d

b – c – e – a – f – d

b – c – e – a – f – d

b – a – f – d – e – c
new

(a) (b) (c)

(d) (e) (f)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Most versions of TSP rely on the triangle inequality, dist(vivj) # dist(vivk) +
dist(vkvj). One possibility is to add to an already constructed path v1, . . . , vj a city vj+1
that is closest to vj (a greedy algorithm). The problem with this solution is that the last
edge(vnv1) may be as long as the total distance for the remaining edges.

One approach is to use a minimum spanning tree. Define the length of the tree to
be the sum of lengths of all the edges in the tree. Because removing one edge from the
tour results in a spanning tree, then the minimum salesman tour cannot be shorter
than the length of the minimum spanning tree mst, length(minTour) $ length(mst).
Also, a depth-first search of the tree traverses each edge twice (when going down and
then when backtracking) to visit all vertices (cities), whereby the length of the mini-
mum salesman tour is at most twice the length of the minimum spanning tree,
2length(mst) $ length(minTour). But a path that includes each edge twice goes
through some vertices twice, too. Each vertex, however, should be included only once
in the path. Therefore, if vertex v has already been included in such a path, then its
second occurrence in a subpath . . . w v u . . . is eliminated and the subpath is con-
tracted to . . . w u . . . whereby the length of the path is shortened due to the triangle
inequality. For example, the minimum spanning tree for the complete graph that con-
nects the cities a through h in Figure 8.38a is given in Figure 8.38b, and depth-first
search renders the path in Figure 8.38c. By repeatedly applying the triangle inequality

S e c t i o n 8 . 1 0 E u l e r i a n a n d H a m i l t o n i a n G r a p h s ■ 439

FIGURE 8.38 Using a minimum spanning tree to find a minimum salesman tour.

a b c

e f

h
(c)

g

a b c

e f

h
(d)

g

b b

a 3

1 1

1

1b c

1

2

e f

h
(a)

g

a b c

e f

h
(b)

g

	
5

d

d

d

d

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(Figure 8.38c–i), the path is transformed into the path in Figure 8.38i in which each
city is visited only once. This final path can be obtained directly from the minimum
spanning tree in Figure 8.38b by using the preorder tree traversal of this tree, which
generates a salesman tour by connecting vertices in the order determined by the tra-
versal and the vertex visited last with the root of the tree. The tour in Figure 8.38i is
obtained by considering vertex a as the root of the tree, whereby the cities are in the
order a, d, e, f, h, g, c, b, after which we return to a (Figure 8.38i). Note that the sales-
man tour in Figure 8.38i is minimum, which is not always the case. When vertex d is
considered the root of the minimum spanning tree, then preorder traversal renders
the path in Figure 8.38j, which clearly is not minimum.

440 ■ C h a p t e r 8 G r a p h s

FIGURE 8.38 (continued)

a b c

e f

h
(g)

g

a b c

e f

h
(h)

g

a b c

e f

h
(i)

g

a b c

e f

h
(j)

g

d

d

d

d

(c) (d)

a b c

e f

h
(e)

g

a b c

e f

h
(f)

g

d d

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In a version of this algorithm, we extend one tour by adding to it the closest city.
Because the tour is kept in one piece, it bears resemblance to the Jarník-Prim method.

nearestAdditionAlgorithm(cities V)
tour = {edge(vv)} for some v;
while tour has less than |V| edges

vi = a vertex not on the tour closest to it;
vp = a vertex on the tour closest to vi (edge(vpvi) ∉tour);
vq = a vertex on the tour such that edge(vpvq) ∈tour;
tour = tour x {edge(vpvi), edge(vivq)} - {edge(vpvq)};

In this algorithm, edge(vpvq) is one of two edges that connects the city vp on the
tour to one of its two neighbors vq on the tour. An example application of the algo-
rithm is presented in Figure 8.39.

It may appear that the cost of execution of this algorithm is rather high.
To find vi and vp in one iteration, all combinations should be tried, which is

. However, a speedup is possible
by carefully structuring the data. After the first vertex v is determined and used to ini-
tialize the tour, distances from each other vertex u to v are found, and two fields are

(g 0V 021
i51 i(0V 0 2 i) 5 (0 V 0 2 1) 0 V 0 (0 V 0 1 1)

6 5 O(0V 0 3)

S e c t i o n 8 . 1 0 E u l e r i a n a n d H a m i l t o n i a n G r a p h s ■ 441

FIGURE 8.39 Applying the nearest insertion algorithm to the cities in Figure 8.38a.

a b c

e f

h
(c)

a b c

e f

h
(d)

g

a b c

e f

h
(a)

g

a b c

e f

h
(b)

g

d d

d d

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

properly set up for u: the field distance = distance(uv) and distanceTo = v; at the same
time, a vertex vmin with the minimum distance is determined. Then, in each iteration,
vp = vmin from the previous iteration. Next, each vertex u not on the tour is checked to
learn whether distance(uvp) is smaller than distance(uvr) for a vertex vr already on the
tour. If so, the distance field in u is updated, as is the field distanceTo = vp. At the same
time, a vertex vmin with the minimum distance is determined. In this way, the overall
cost is , which is O(|V|2).

8.11 GRAPH COLORING

Sometimes we want to find a minimum number of nonoverlapping sets of vertices,
where each set includes vertices that are independent—that is, they are not connected
by any edge. For example, there are a number of tasks and a number of people per-
forming these tasks. If one task can be performed by one person at one time, the tasks
have to be scheduled so that performing them is possible. We form a graph in which
the tasks are represented by vertices; two tasks are joined by an edge if the same per-
son is needed to perform them. Now we try to construct a minimum number of sets
of independent tasks. Because tasks in one set can be performed concurrently, the
number of sets indicates the number of time slots needed to perform all the tasks.

g
0V 021
i51 i

442 ■ C h a p t e r 8 G r a p h s

FIGURE 8.39 (continued)

a b c

e f

h
(e)

g

a b c

e f

h
(f)

g

a b c

e f

h
(g)

g

a b c

e f

h
(h)

g

d

d d

d

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In another version of this example, two tasks are joined by an edge if they cannot
be performed at the same time. Each set of independent tasks represents the sets that
can be performed concurrently, but this time the minimum number of sets indicates
the minimum number of people needed to perform the tasks. Generally, we join by an
edge two vertices when they are not allowed to be members of the same class. The
problem can be rephrased by saying that we assign colors to vertices of the graph so
that two vertices joined by an edge have different color, and the problem amounts to
coloring the graph with the minimum number of colors. More formally, if we have a
set of colors C then we wish to find a function f:V → C such that if there is an
edge(vw), then f(v) ≠ f(w), and also C is of minimum cardinality. The minimum num-
ber of colors used to color the graph G is called the chromatic number of G and is de-
noted χ(G). A graph for which k = χ(G) is called k-colorable.

There may be more than one minimum set of colors C. No general formula exists
for the chromatic number of any arbitrary graph. For some special cases, however, the
formula is rather easy to determine: for a complete graph Kn, χ(Kn) = n; for a cycle C2n
with an even number of edges, χ(C2n) = 2; for a cycle C2n + 1 with an odd number of
edges, χ(C2n + 1) = 3; and for a bipartite graph G, χ(G) # 2.

Determining a chromatic number of a graph is an NP-complete problem. There-
fore, methods should be used that can approximate the exact graph coloring reason-
ably well—that is, methods that allow for coloring a graph with the number of colors
that is not much larger than the chromatic number.

One general approach, called sequential coloring, is to establish the sequence of
vertices and a sequence of colors before coloring them, and then color the next vertex
with the lowest number possible.

sequentialColoringAlgorithm(graph = (V, E))
put vertices in a certain order vp1

, vp2
, . . . , vpv;

put colors in a certain order cp1
, c2, . . . , ck;

for i = 1 to |V|
j = the smallest index of color that does not appear in any neighbor of vpi

;
color(vpi) = cj;

The algorithm is not specific about the criteria by which vertices are ordered (the
order of colors is immaterial). One possibility is to use an ordering according to in-
dices already assigned to the vertices before the algorithm is invoked, as in Figure
8.40b, which gives a O(|V|2) algorithm. The algorithm, however, may result in a num-
ber of colors that is vastly different from the chromatic number for a particular graph.

Theorem (Welsh and Powell 1967). For the sequential coloring algorithm, the
number of colors needed to color the graph, .

Proof. When coloring the ith vertex, at most min of its neighbors
already have colors; therefore, its color is at most min . Taking the
maximum value over all vertices renders the upper bound. ❑

For the graph in Figure 8.40a, = max(min(1, 4),
min(2, 4), min(3, 3), min(4, 3), min(5, 3), min(6, 5), min(7, 6), min(8, 4)) = max(1, 2,
3, 3, 3, 5, 6, 4) = 6.

χ(G) # max
i

min(i, deg(vpi
) 1 1)

(i, deg(vpi
) 1 1)

(i 2 1, deg(vpi
))

χ(G) # max
i

min(i, deg(vpi
) 1 1)

S e c t i o n 8 . 1 1 G r a p h C o l o r i n g ■ 443

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The theorem suggests that the sequence of vertices should be organized so that
vertices with high degrees should be placed at the beginning of the sequence so that
min(position in sequence, deg(v)) = position in sequence, and the vertices with low
degree should be placed at the end of the sequence so that min(position in sequence,
deg(v)) = deg(v). This leads to the largest first version of the algorithm in which the
vertices are ordered in descending order according to their degrees. In this way, the
vertices from Figure 8.40a are ordered in the sequence v7, v6, v1, v2, v8, v3, v4, v5, where
the vertex v7, with the largest number of neighbors, is colored first, as shown in Figure
8.40c. This ordering also gives a better estimate of the chromatic number, because
now χ(G) # max(min(1, deg(v7) + 1), min(2, deg(v6) + 1), min(3, deg(v1) + 1), min(4,
deg(v2) + 1), min(5, deg(v8) + 1), min(6, deg(v3) + 1), min(7, deg(v4) + 1), min(8,
deg(v5) + 1)) = max(1, 2, 3, 4, 4, 3, 3, 3) = 4.

The largest first approach is guided by the first principle, and so they use only one
criterion to generate a sequence of vertices to be colored. However, this restriction can
be lifted so that two or more criteria can be used at the same time. This is particularly
important in breaking ties. In our example, if two vertices have the same degree, a ver-
tex with the smaller index is chosen. In an algorithm proposed by Brélaz (1979), the
primary criterion relies on the saturation degree of a vertex v, which is the number of
different colors used to color neighbors of v. Should a tie occur, it is broken by choos-
ing a vertex with the largest uncolored degree, which is the number of uncolored ver-
tices adjacent to v.

444 ■ C h a p t e r 8 G r a p h s

FIGURE 8.40 (a) A graph used for coloring; (b) colors assigned to vertices with the sequential color-
ing algorithm that orders vertices by index number; (c) vertices are put in the largest
first sequence; (d) graph coloring obtained with the Brélaz algorithm.

v1 v2 v3 v4

v5 v6 v7 v8

(a)

v1 v2 v3 v4 v5 v6 v7 v8

c1 c1 c2 c1 c2 c2 c3 c4

(b)

v7 v6 v1 v2 v8 v3 v4 v5

c1 c2 c3 c1 c3 c2 c3 c2

(c)

v7 v6 v1 v8 v4 v2 v5 v3

c1 c2 c3 c3 c3 c1 c2 c2

(d)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

BrelazColoringAlgorithm(graph)
for each vertex v

saturationDeg(v) = 0;
uncoloredDeg(v) = deg(v);

put colors in a certain order c1,c2, . . . , ck;
while not all vertices are processed

v = a vertex with highest saturation degree or,
in case of a tie, vertex with maximum uncolored degree;

j = the smallest index of color that does not appear in any neighbor of v;
for each uncolored vertex u adjacent to v

if no vertex adjacent to u is assigned color cj
saturationDeg(u)++;

uncoloredDeg(u)– –;
color(v) = cj;

For an example, see Figure 8.40d. First, v7 is chosen and assigned color c1 because
v7 has the highest degree. Next, saturation degrees of vertices v1, v3, v4, v6, and v8 are set
to one because they are vertices adjacent to v7. From among these five vertices, v6 is
selected because it has the largest number of uncolored neighbors. Then, saturation
degrees of v1 and v8 are increased to two, and because both saturation and uncolored
degrees of the two vertices are equal, we choose v1 as having a lower index. The re-
maining color assignments are shown in Figure 8.40d.

The while loop is executed |V| times; v is found in O(|V|) steps and the for loop
takes deg(v) steps, which is also O(|V|); therefore, the algorithm runs in O(|V|2) time.

8.12 NP-COMPLETE PROBLEMS IN GRAPH THEORY

In this section, NP-completeness of some problems in graph theory is presented.

8.12.1 The Clique Problem

A clique in a graph G is a complete subgraph of G. The clique problem is to determine
whether G contains a clique Km for some integer m. The problem is NP, because we
can guess a set of m vertices and check in polynomial time whether a subgraph with
these vertices is a clique. To show that the problem is NP-complete, we reduce the 3-
satisfiability problem (see Section 2.10) to the clique problem. We perform reduction
by showing that for a Boolean expression BE in CNF with three variables we can con-
struct such a graph that the expression is satisfiable if there is a clique of size m in the
graph. Let m be the number of alternatives in BE, that is,

BE = A1 ` A2 ` . . . ` Am

and each Ai = (p ~ q ~ r) for pH{x, ¬x}, qH{y, ¬y}, and rH{z, ¬z}, where x, y, and z are
Boolean variables.

We construct a graph whose vertices represent all the variables and their nega-
tions found in BE. Two vertices are joined by an edge if variables they represent are in
different alternatives and the variables are not complementary—that is, one is not a
negation of the other. For example, for the expression

S e c t i o n 8 . 1 2 N P - C o m p l e t e P r o b l e m s i n G r a p h T h e o r y ■ 445

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

BE = (x � y � ¬z) � (x � ¬y � ¬z) � (w � ¬x � ¬y)

a corresponding graph is in Figure 8.41. With this construction, an edge between two
vertices represents a possibility of both variables represented by the vertices to be true
at the same time. An m-clique represents a possibility of one variable from each alter-
native to be true, which renders the entire BE true. In Figure 8.41, each triangle repre-
sents a 3-clique. In this way, if BE is satisfiable, then an m-clique can be found. It is
also clear that if an m-clique exists, then BE is satisfiable. This shows that the satisfia-
bility problem is reduced to the clique problem, and the latter is NP-complete because
the former has already been shown to be NP-complete.

8.12.2 The 3-Colorability Problem
The 3-colorability problem is a question of whether a graph can be properly colored
with three colors. We prove that the problem is NP-complete by reducing to it the 3-
satisfiability problem. The 3-colorability problem is NP because we can guess a color-
ing of vertices with three colors and check in quadratic time that the coloring is
correct (for each of the |V| vertices check the color of up to |V| – 1 of its neighbors).
To reduce the 3-satisfiability problem to the 3-colorability problem, we utilize an aux-
iliary 9-subgraph. A 9-subgraph takes 3 vertices, v1, v2, and v3, from an existing graph
and adds 6 new vertices and 10 edges, as in Figure 8.42a. Consider the set {f, t, n}
(fuchsia/false, turquoise/true, nasturtium/neutral) of three colors used to color a
graph. The reader can easily check the validity of the following lemma.

Lemma. 1) If all three vertices, v1, v2, and v3, of a 9-subgraph are colored with f, then
vertex v4 must also be colored with f to have the 9-subgraph colored correctly. 2) If
only colors t and f can be used to color vertices v1, v2, and v3 of a 9-subgraph and at
least one is colored with t, then vertex v4 can be colored with t. ❑

446 ■ C h a p t e r 8 G r a p h s

FIGURE 8.41 A graph corresponding to the Boolean expression
(x ¡ y ¡ ¬z) ¿ (x ¡ ¬y ¡ ¬z) ¿ (w ¡ ¬x ¡ ¬y).

¬y ¬y

¬x

¬z

¬z w

x

x

y

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Now, for a given Boolean expression BE consisting of k alternatives we construct a
graph in the following fashion. The graph has two special vertices, a and b, and edge(ab).
Moreover, the graph includes one vertex for each variable used in BE and the negation
of this variable. For each pair of vertices x and ¬x, the graph includes edge(ax),
edge(a(¬x)), and edge(x(¬x)). Next, for each alternative p, q, or r included in BE, the
graph has a 9-subgraph whose vertices v1, v2, and v3 correspond to the three Boolean
variables or their negations p, q, and r in this alternative. Finally, for each 9-subgraph,
the graph includes edge(v4b). A graph corresponding to the Boolean expression

(¬w � x � y) � (¬w � ¬y � z) � (w � ¬y � ¬z)

is presented in Figure 8.42b.
We now claim that if a Boolean expression BE is satisfiable, then the graph corre-

sponding to it is 3-colorable. For each variable x in BE, we set color(x) = t and
color(¬x) = f when x is true, and color(x) = f and color(¬x) = t otherwise. A Boolean
expression is satisfiable if each alternative Ai in BE is satisfiable, which takes place
when at least one variable x or its negation ¬x in Ai is true. Because, except for b
(whose color is about to be determined), each neighbor of a has color t or f, and

S e c t i o n 8 . 1 2 N P - C o m p l e t e P r o b l e m s i n G r a p h T h e o r y ■ 447

FIGURE 8.42 (a) A 9-subgraph; (b) a graph corresponding to the Boolean expression
(¬w ¡ x ¡ y) ¿ (¬w ¡ ¬y ¡ z) ¿ (w ¡ ¬y ¡ ¬z).

v4

v1 v2 v3

(a) (b)

x

a

b

¬x ¬z¬w zw¬yy

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

because at least one of the three vertices v1, v2, and v3 of each 9-subgraph has color t,
each 9-subgraph is 3-colorable, and color(v4) = t; by setting color(a) = n and color(b) =
f, the entire graph is 3-colorable.

Suppose that a graph as in Figure 8.42b is 3-colorable and that color(a) = n and
color(b) = f. Because color(a) = n, each neighbor of a has color f or t, which can be in-
terpreted so that the Boolean variable or its negation corresponding to this neighbor-
ing vertex is either true or false. Only if all three vertices, v1, v2, and v3 , of any
9-subgraph have color f can vertex v4 have color f, but this would conflict with color f
of vertex b. Therefore, no 9-subgraph’s vertices v1, v2, and v3 can all have color f; that
is, at least one of these vertices must have color t (the remaining one(s) having color f,
not n, because color(a) = n). This means that no alternative corresponding to a 9-sub-
graph can be false, which means each alternative is true, and so the entire Boolean ex-
pression is satisfiable.

8.12.3 The Vertex Cover Problem
A vertex cover of an undirected graph G = (V, E) is a set of vertices W 8 V such that
each edge in the graph is incident to at least one vertex from W. In this way, the ver-
tices in W cover all the edges in E. The problem to determine whether G has a vertex
cover containing at most k vertices for some integer k is NP-complete.

The problem is NP because a solution can be guessed and then checked in poly-
nomial time. That the problem is NP-complete is shown by reducing the clique prob-
lem to the vertex cover problem.

First, define a complement graph of graph G = (V, E) to be a graph that has the
same vertices V, but has connections between vertices that are not in G; that is, = (V,

= {edge(uv): u, v ∈ V and edge(uv) ∉ E}). The reduction algorithm converts in poly-
nomial time a graph G with a (|V| – k)-clique into a complement graph with a vertex
cover of size k. If C = (VC, EC) is a clique in G, then vertices from the set V – VC cover all
the edges in , because has no edges with both endpoints in VC . Consequently,
V – VC is a vertex cover in (see Figure 8.43a for a graph with a clique and 8.43b for
a complement graph with a vertex cover). Suppose now that has a vertex cover W;
that is, an edge is in if at least one endpoint of the edge is in W. Now, if none of
the endpoints of an edge is in W, the edge is in graph G—the latter endpoints are in

E
G

G
GG

G
E

G
G

448 ■ C h a p t e r 8 G r a p h s

FIGURE 8.43 (a) A graph with a clique; (b) a complement graph.

(a) (b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

V – W, and thus VC = V – W generates a clique. This proves that the positive answer to
the clique problem is, through conversion, a positive answer to a vertex cover problem,
and thus the latter is an NP-complete problem because the former is.

8.12.4 The Hamiltonian Cycle Problem
The contention that finding a Hamiltonian cycle in a simple graph G is an NP-complete
problem is shown by reducing the vertex cover problem to the Hamiltonian cycle prob-
lem. First, we introduce an auxiliary concept of a 12-subgraph that is depicted in Figure
8.44a. The reduction algorithm converts each edge(vu) of graph G into a 12-subgraph so
that one side of the subgraph, with vertices a and b, corresponds to a vertex v of G, and
the other side, with vertices c and d, corresponds to vertex u. After entering one side of a
12-subgraph, for instance, at a, we can go through all the 12 vertices in order a, c, d, b
and exit the 12-subgraph on the same side, at b. Also, we can go directly from a to b and
if there is a Hamiltonian cycle in the entire graph, the vertices c and b are traversed dur-
ing another visit of the 12-subgraph. Note that any other path through the 12-subgraph
renders building a Hamiltonian cycle of the entire graph impossible.

Provided that we have a graph G, we build a graph GH as follows. Create vertices
u1, . . . , uk, where k is the parameter corresponding to the vertex cover problem for
graph G. Then, for each edge of G, a 12-subgraph is created; the 12-subgraphs associ-
ated with vertex v are connected together on the sides corresponding to v. Each end-
point of such a string of 12-subgraphs is connected to vertices u1, . . . , uk. The result
of transforming graph G for k = 3 in Figure 8.44b is the graph GH in Figure 8.44c. To
avoid clutter, the figure shows only some complete connections between endpoints of
strings of 12-subgraphs and vertices u1, u2, and u3, indicating only the existence of re-
maining connections. The claim is that there is a vertex cover of size k in graph G if
there is a Hamiltonian cycle in graph GH . Assume that W = {v1, . . . , vk} is a vertex
cover in G. Then there is a Hamiltonian cycle in GH formed in the following way. Be-
ginning with u1, go through the sides of 12-subgraphs that correspond to v1. For a
particular 12-subgraph, go through all of its 12 vertices if the other side of the 12-sub-
graph corresponds to a vertex in the cover W; otherwise, go straight through the 12-
subgraph. In the latter case, six vertices corresponding to a vertex w are not currently
traversed, but they are traversed when processing the part of the Hamiltonian cycle
corresponding to w. After the end of the string of 12-subgraphs is reached, go to u2,
and from here process the string of 12-subgraphs corresponding to v2, and so on. For
the last vertex uk, process vk and end the path at u1, thereby creating a Hamiltonian
cycle. Figure 8.44c presents with a thick line the part of the Hamiltonian cycle corre-
sponding to v1 that begins at u1 and ends at u2. Because the cover W = {v1, v2, v6}, the
processing continues for v2 at u2 and ends at u3, and then for v6 at u3 and ends at u1.

Conversely, if GH has a Hamiltonian cycle, it includes subpaths through k 12-
subgraph strings that correspond to k vertices in GC that form a cover.

Consider now this version of the traveling salesman problem. In a graph with dis-
tances assigned to each edge we try to determine whether there is a cycle with total
distance with the combined distance not greater than an integer k. That the problem
is NP-complete can be straightforwardly shown by reducing it to the Hamiltonian
path problem.

S e c t i o n 8 . 1 2 N P - C o m p l e t e P r o b l e m s i n G r a p h T h e o r y ■ 449

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8.13 CASE STUDY: DISTINCT REPRESENTATIVES

Let there be a set of committees, C = {C1, . . . , Cn}, each committee having at least one
person. The problem is to determine, if possible, representatives from each committee
so that the committee is represented by one person and each person can represent
only one committee. For example, if there are three committees, C1 = {M5,M1}, C2 =
{M2,M4,M3}, and C3 = {M3,M5}, then one possible representation is: member M1 rep-
resents committee C1, M2 represents C2, and M5 represents C3. However, if we have
these three committees, C4 = C5 = {M6,M7}, and C6 = {M7}, then no distinct represen-

450 ■ C h a p t e r 8 G r a p h s

FIGURE 8.44 (a) A 12-subgraph; (b) a graph G and (c) its transformation, graph GH.

(a)

(c)

(b)

a

c

b

d

v1

v4

v3v1

v3v6

v2
v1

v6

u1

u2

u3

v4

v2

v4

v5

v1

v2

v5

v3

v6

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

tation can be created, because there are only two members in all three committees
combined. The latter observation has been proven by P. Hall in the system of distinct
representatives theorem, which can be phrased in the following way:

Theorem. A nonempty collection of finite nonempty sets C1, . . . , Cn has a system of dis-
tinct representatives if for any i # n, the union Ck1

x . . .xCki
has at least i elements.

The problem can be solved by creating a network and trying to find a maximum
flow in this network. For example, the network in Figure 8.45a can represent the
membership of the three committees, C1, C2, and C3. There is a dummy source vertex
connected to nodes representing committees, the committee vertices are connected to
vertices representing their members, and the member vertices are all connected to a
dummy sink vertex. We assume that each edge e’s capacity cap(e) = 1. A system of dis-
tinct representatives is found if the maximum flow in the network equals the number
of committees. The paths determined by a particular maximum flow algorithm deter-
mine the representatives. For example, member M1 would represent the committee C1
if a path s, C1, M1, t is determined.

The implementation has two main stages. First, a network is created using a set of
committees and members stored in a file. Then, the network is processed to find aug-
menting paths corresponding to members representing committees. The first stage is
specific to the system of distinct representatives. The second stage can be used for
finding the maximum flow of any network because it assumes that the network has
been created before it begins.

When reading committees and members from a file, we assume that the name of
a committee is always followed by a colon and then by a list of members separated by
commas and ended with a semicolon. An example is the following file committees,
which includes information corresponding to the network in Figure 8.45a:

S e c t i o n 8 . 1 3 C a s e S t u d y : D i s t i n c t R e p r e s e n t a t i v e s ■ 451

FIGURE 8.45 (a) A network representing membership of three committees, C1, C2, and C3, and
(b) the first augmenting path found in this network.

s

C3

C1

C2

t

(a)

M1

M5

M3

M4

M2

s

C3

C1

C2

t

(b)

M3

M4

M2

labeled = {s, C3, C1, M3, M4}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

C2: M2, M4, M3;
C1: M5, M1;
C3: M3, M5;

The network is represented by the array list vertices storing objects of type
Vertex. Each vertex i includes information necessary for proper processing of the ver-
tex i: the name of the vertex, vertex slack, labeled/nonlabeled flag, adjacency list, parent
in the current augmenting path, and a reference to a node i in the parent’s adjacency list.

An adjacency list of a vertex in position i represents edges incident with this
vertex. Each node on the list is identified by its idNum, which is the position in
vertices of the same vertex. Information in each node of such a list also includes
capacity of the edge, its flow, forward/backward flag, and a reference to the twin. If
there is an edge from vertex i to j, then i’s adjacency list includes a node represent-
ing a forward edge from i to j, and j’s adjacency list has a node corresponding to a
backward edge from j to i. Hence, each edge is represented twice in the network. If
a path is augmented, then augmenting an edge means updating two nodes on two
adjacency lists. To make it possible, each node on such a list points to its twin, or
rather a node representing the same edge taken in the opposite direction.

In the first phase of the process, the method readCommittees() builds both
the array list vertices and the adjacency list for each vertex in the array list when
reading the data from the file committees. Both the array list and the lists include
unique elements. The method also builds a separate adjacency list for the source
vertex.

In the second phase, the program looks for augmenting paths. In the algorithm
used here, the source node is always processed first because it is always pushed first
onto stack labeledS. Because the algorithm requires processing only unlabeled ver-
tices, there is no need to include the source vertex in any adjacency list, because the
edge from any vertex to the source has no chance to be included in any augmenting
path. In addition, after the sink is reached, the process of finding an augmenting path
is discontinued, whereby no edge incident with the sink is processed, so there is no
need to keep an adjacency list for the sink.

The structure created by readCommittees() using the file committees is
shown in Figure 8.46; this structure represents the network shown in Figure 8.45a. The
numbers in the nodes and array list elements are put by FordFulkersonMaxFlow()
right after finding the first augmenting path, 0, 2, 3, 1; that is, the path source, C2, M2,
sink (Figure 8.45b). Nodes in the adjacency list of a vertex i do not include the names
of vertices accessible from i, only their idNum; therefore, these names are shown above
each node. The dashed lines show twin edges. In order not to clutter Figure 8.46 with
too many links, only the links for two pairs of twin nodes are shown.

The output generated by the program

Augmenting paths:
source => C2 => M2 => sink (augmented by 1);
source => C1 => M5 => sink (augmented by 1);
source => C3 => M3 => sink (augmented by 1);

determines the following representation: Member M2 represents committee C2, M5
represents C1, and M3 represents C3.

Figure 8.47 contains the code for this program.

452 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 1 3 C a s e S t u d y : D i s t i n c t R e p r e s e n t a t i v e s ■ 453

FIGURE 8.46 The network representation created by FordFulkersonMaxFlow().

source

idName

vertexSlack

labeled

corrVer

adjacent

parent

1 –1∞

C3

0 1
9 1

C1

0 1
6 1

C2

1 1

\

2

capacity

forward

idNum

edgeFlow

twin

1

M3

0 1
5 1

M4

0 1
4 1

M2

1 1

\

3 1

C2

1 0
2 1

sink

1 1

\

1 1

C2

0 0
2 1

sink

0 1

\

1 1

C3

0 0
9 1

C2

0 0
2 1

sink

0 1

\

1 1

M1

0 1
8 1

M5

0 1

\

7 1

C3

0 0
9 1

C1

0 0
6 1

sink

0 1

\

1 1

C1

0 0
6 1

sink

0 1

\

1 1

M5

0 1
7 1

M3

0 1

\

5 1

sink1
1 31

C22

1

\

01

M23

1 21

M44

1 21

M35

1 21

C16

1 01

M57

0

M18

0

C39

1 01

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

454 ■ C h a p t e r 8 G r a p h s

FIGURE 8.47 An implementation of the distinct representatives problem.

import java.io.*;
import java.util.*;

class Vertex {
public int idNum, capacity, edgeFlow;
public boolean forward; // direction;
public Vertex twin; // edge in opposite direction;
public Vertex() {
}
public Vertex(int id, int c, int ef, boolean f) {

idNum = id; capacity = c; edgeFlow = ef; forward = f; twin = null;
}
public boolean equals(Object v) {

return idNum == ((Vertex)v).idNum;
}
public String toString() {

return (idNum + " " + capacity + " " + edgeFlow + " " + forward);
}

}

class VertexInArray {
public String idName;
public int vertexSlack;
public boolean labeled = false;
public int parent;
public LinkedList adjacent = new LinkedList();
public Vertex corrVer; // corresponding vertex: vertex on parent's
public VertexInArray() { // list of adjacent vertices with the same
} // idNum as the cell's index;
public VertexInArray(String s) {

idName = s;
}
public boolean equals(Object v) {

return idName.equals(((VertexInArray)v).idName);
}
public void display() {

System.out.print(idName + ' ' + vertexSlack + ' '
+ labeled + ' ' + parent + ' ' + corrVer + "-> ");

System.out.print(adjacent);
System.out.println();

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 1 3 C a s e S t u d y : D i s t i n c t R e p r e s e n t a t i v e s ■ 455

Continues

FIGURE 8.47 (continued)

class Network {
public Network() {

vertices.add(source,new VertexInArray());
vertices.add(sink,new VertexInArray());
((VertexInArray)vertices.get(source)).idName = "source";
((VertexInArray)vertices.get(sink)).idName = "sink";
((VertexInArray)vertices.get(source)).parent = none;

}
private final int sink = 1, source = 0, none = -1;
private ArrayList vertices = new ArrayList();
private int edgeSlack(Vertex u) {

return u.capacity - u.edgeFlow;
}
private boolean labeled(Vertex p) {

return ((VertexInArray)vertices.get(p.idNum)).labeled;
}
public void display() {

for (int i = 0; i < vertices.size(); i++) {
System.out.print(i + ": ");
((VertexInArray)vertices.get(i)).display();

}
}

public void readCommittees(String fileName, InputStream fIn) {
int ch = 1, pos;
try {

while (ch > -1) {
while (true)

if (ch > -1 && !Character.isLetter((char)ch)) // skip
ch = fIn.read(); // nonletters;

else break;
if (ch == -1)

break;
String s = "";
while (ch > -1 && ch != ':') {

s += (char)ch;
ch = fIn.read();

}
VertexInArray committee = new VertexInArray(s.trim());
int commPos = vertices.size();
Vertex commVer = new Vertex(commPos,1,0,false);

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

456 ■ C h a p t e r 8 G r a p h s

FIGURE 8.47 (continued)

vertices.add(committee);
for (boolean lastMember = false; !lastMember;) {

while (true)
if (ch > -1 && !Character.isLetter((char)ch))

ch = fIn.read(); // skip nonletters;
else break;

if (ch == -1)
break;

s = "";
while (ch > -1 && ch != ',' && ch != ';') {

s += (char)ch;
ch = fIn.read();

}
if (ch == ';')

lastMember = true;
VertexInArray member = new VertexInArray(s.trim());
Vertex memberVer = new Vertex(0,1,0,true);
if ((pos = vertices.indexOf(member)) == -1) {

memberVer.idNum = vertices.size();
member.adjacent.addFirst(new

Vertex(sink,1,0,true));
member.adjacent.addFirst(commVer);
vertices.add(member);

}
else {

memberVer.idNum = pos;
((VertexInArray)vertices.get(pos)).

adjacent.addFirst(commVer);
}
committee.adjacent.addFirst(memberVer);
memberVer.twin = commVer;
commVer.twin = memberVer;

}
commVer = new Vertex(commPos,1,0,true);
((VertexInArray)vertices.get(source)).adjacent.

addFirst(commVer);
}

} catch (IOException io) {
}
display();

}
private void label(Vertex u, int v) {

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 1 3 C a s e S t u d y : D i s t i n c t R e p r e s e n t a t i v e s ■ 457

Continues

FIGURE 8.47 (continued)

VertexInArray uu = (VertexInArray) vertices.get(u.idNum);
VertexInArray vv = (VertexInArray) vertices.get(v);
uu.labeled = true;
if (u.forward)

uu.vertexSlack = Math.min(vv.vertexSlack,edgeSlack(u));
else uu.vertexSlack = Math.min(vv.vertexSlack,u.edgeFlow);
uu.parent = v;
uu.corrVer = u;

}
private void augmentPath() {

int sinkSlack = ((VertexInArray)vertices.get(sink)).vertexSlack;
Stack path = new Stack();
for (int i = sink; i != source;

i = ((VertexInArray)vertices.get(i)).parent) {
VertexInArray vv = (VertexInArray) vertices.get(i);
path.push(vv.idName);
if (vv.corrVer.forward)

vv.corrVer.edgeFlow += sinkSlack;
else vv.corrVer.edgeFlow -= sinkSlack;
if (vv.parent != source && i != sink)

vv.corrVer.twin.edgeFlow = vv.corrVer.edgeFlow;
}
for (int i = 0; i < vertices.size(); i++)

((VertexInArray)vertices.get(i)).labeled = false;
System.out.print(" source");
while (!path.isEmpty())

System.out.print(" => " + path.pop());
System.out.print(" (augmented by " + sinkSlack + ");\n");

}
public void FordFulkersonMaxFlow() {

Stack labeledS = new Stack();
for (int i = 0; i < vertices.size(); i++)

((VertexInArray) vertices.get(i)).labeled = false;
((VertexInArray)vertices.get(source)).vertexSlack =

Integer.MAX_VALUE;
labeledS.push(new Integer(source));
System.out.println("Augmenting paths:");
while (!labeledS.isEmpty()) { // while not stuck;

int v = ((Integer) labeledS.pop()).intValue();
for (Iterator it = ((VertexInArray)vertices.get(v)).

adjacent.iterator();

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

458 ■ C h a p t e r 8 G r a p h s

FIGURE 8.47 (continued)

it.hasNext();) {
Vertex u = (Vertex) it.next();
if (!labeled(u)) {

if (u.forward && edgeSlack(u) > 0 ||
!u.forward && u.edgeFlow > 0)
label(u,v);

if (labeled(u))
if (u.idNum == sink) {

augmentPath();
labeledS.clear(); // look for another path;
labeledS.push(new Integer(source));
break;

}
else {

labeledS.push(new Integer(u.idNum));
((VertexInArray)vertices.get(u.idNum)).

labeled = true;
}

}
}

}
}

}

public class DistinctRepresentatives {
static public void main(String args[]) {

String fileName = "";
Network net = new Network();
InputStream fIn;
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader buffer = new BufferedReader(isr);
try {

if (args.length == 0) {
System.out.print("Enter a file name: ");
fileName = buffer.readLine();
fIn = new FileInputStream(fileName);

}
else {

fIn = new FileInputStream(args[0]);
fileName = args[0];

}
net.readCommittees(fileName,fIn);

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 8 . 1 3 C a s e S t u d y : D i s t i n c t R e p r e s e n t a t i v e s ■ 459

FIGURE 8.47 (continued)

fIn.close();
} catch(IOException io) {

System.err.println("Cannot open " + fileName);
}
net.FordFulkersonMaxFlow();
net.display();

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

460 ■ C h a p t e r 8 G r a p h s

8.14 EXERCISES

1. Look carefully at the definition of a graph. In one respect, graphs are more specific
than trees. What is it?

2. What is the relationship between the sum of the degrees of all vertices and the number
of edges of graph G = (V,E)?

3. What is the complexity of breadthFirstSearch()?

4. Show that a simple graph is connected if it has a spanning tree.

5. Show that a tree with n vertices has n – 1 edges.

6. How can DijkstraAlgorithm() be applied to undirected graphs?

7. How can DijkstraAlgorithm() be modified to become an algorithm for finding
the shortest path from vertex a to b?

8. The last clause from genericShortestPathAlgorithm()

add u to toBeChecked if it is not there;

is not included in DijkstraAlgorithm(). Can this omission cause any trouble?

9. Modify FordAlgorithm() so that it does not fall into an infinite loop if applied to a
graph with negative cycles.

10. For what digraph does the while loop of FordAlgorithm() iterate only one time?
Two times?

11. Can FordAlgorithm() be applied to undirected graphs?

12. Make necessary changes in FordAlgorithm() to adapt it to solving the all-to-one
shortest path problem and apply the new algorithm to vertex f in the graph in Figure
8.8. Using the same order of edges, produce a table similar to the table shown in this
figure.

13. The D’Esopo-Pape algorithm is exponential in the worst case. Consider the following
method to construct pathological graphs of n vertices (Kershenbaum 1981), each
vertex identified by a number 1, . . . , n:

KershenbaumAlgorithm()
construct a two-vertex graph with vertices 1 and 2, and edge(1,2) = 1;
for k = 3 to n

add vertex k;
for i = 2 to k – 1

add edge(k,i) with weight(edge(k,i)) = weight(edge(l,i));
weight(edge(l,i)) = weight(l,i) + 2k–3 + 1;

add edge(l,k) with weight(edge(l,k)) = 1;

The vertices adjacent to vertex 1 are put in ascending order and the remaining adjacency
lists are in descending order. Using this algorithm, construct a five-vertex graph and exe-
cute the D’Esopo-Pape algorithm showing all changes in the deque and all edge updates.
What generalization can you make about applying Pape’s method to such graphs?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

14. What do you need to change in genericShortestPathAlgorithm() in order to
convert it to Dijkstra’s one-to-all algorithm?

15. Enhance WFIalgorithm() to indicate the shortest paths, in addition to their lengths.

16. WFIalgorithm() finishes execution gracefully even in the presence of a negative
cycle. How do we know that the graph contains such a cycle?

17. The original implementation of WFIalgorithm() given by Floyd is as follows:

WFIalgorithm2(matrix weight)
for i = 1 to |V|

for j = 1 to |V|
if weight[j,i] < ∞

for k = 1 to |V|
if weight[i,k] < ∞

if (weight[j][k] > weight[j][i] + weight[i][k])
weight[j][k] = weight[j][i] + weight[i][k];

Is there any advantage to this longer implementation?

18. One method of finding shortest paths from all vertices to all other vertices requires us
to transform the graph so that it does not include negative weights. We may be
tempted to do it by simply finding the smallest negative weight k and adding –k to the
weights of all edges. Why is this method inapplicable?

19. For which edges does # in the inequality

dist(v) # dist(w) + weight(edge(wv)) for any vertex w

become <?

20. Modify cycleDetectionDFS() so that it could determine whether a particular
edge is part of a cycle in an undirected graph.

21. Our implementation of union() requires three arrays. Is it possible to use only two
of them and still have the same information concerning roots, next vertices, and
lengths? Consider using negative numbers.

22. When would KruskalAlgorithm() require |E | iterations?

23. How can the second minimum spanning tree be found?

24. Is the minimum spanning tree unique?

25. How can the algorithms for finding the minimum spanning tree be used to find the
maximum spanning tree?

26. Apply the following two algorithms to find the minimum spanning tree to the graph
in Figure 8.15a.

a. Probably the first algorithm for finding the minimum spanning tree was devised
in 1926 by Otakar Borůvka (pronounced: boh-roof-ka). In this method, we start
with |V | one-vertex trees, and for each vertex v, we look for an edge(vw) of mini-
mum weight among all edges outgoing from v and create small trees by including

S e c t i o n 8 . 1 4 E x e r c i s e s ■ 461

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

these edges. Then, we look for edges of minimal weight that can connect the
resulting trees to larger trees. The process is finished when one tree is created.
Here is a pseudocode for this algorithm:

BorůvkaAlgorithnm(weighted connected undirected graph)
make each vertex the root of a one-node tree;
while there is more than one tree

for each tree t
e = minimum weight edge(vu) where v is included in t and u is not;
create a tree by combining t and the tree that includes u

if such a tree does not exist yet;

b. Another algorithm was discovered by Vojtech Jarník (pronounced: yar-neek) in
1936 and later rediscovered by Robert Prim. In this method, all of the edges are
also initially ordered, but a candidate for inclusion in the spanning tree is an edge
that not only does not lead to cycles in the tree, but also is incident to a vertex
already in the tree:

JarnikPrimAlgorithm(weighted connected undirected graph)
tree = null;
edges = sequence of all edges of graph sorted by weight;
for i = 1 to |V| – 1

for j = 1 to |edges|
if ej from edges does not form a cycle with edges in tree and

is incident to a vertex in tree
add ej to tree;
break;

27. The algorithm blockSearch(), when used for undirected graphs, relies on the
following observation: In a depth-first search tree created for an undirected graph,
each back edge connects a successor to a predecessor (and not, for instance, a sibling
to a sibling). Show the validity of this observation.

28. What is the complexity of blockSearch()?

29. Blocks in undirected graphs are defined in terms of edges, and the algorithm
blockDFS() stores edges on the stack to output blocks. On the other hand, SCCs
in digraphs are defined in terms of vertices, and the algorithm strongDFS()
stores vertices on the stack to output SCC. Why?

30. Consider a possible implementation of topologicalSort() by using in it the
following routine:

minimalVertex(digraph)
v = a vertex of digraph;
while v has a successor

v = successor(v);
return v;

What is the disadvantage of using this implementation?

462 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

31. A tournament is a digraph in which there is exactly one edge between every two vertices.

a. How many edges does a tournament have?

b. How many different tournaments of n edges can be created?

c. Can each tournament be topologically sorted?

d. How many minimal vertices can a tournament have?

e. A transitive tournament is a tournament that has edge(vw) if it has edge(vu) and
edge(uw). Can such a tournament have a cycle?

32. Does considering loops and parallel edges complicate the analysis of networks? How
about multiple sources and sinks?

33. FordFulkersonAlgorithm() assumes that it terminates. Do you think such an
assumption is safe?

34. FordFulkersonAlgorithm() executed in a depth-first fashion has some redun-
dancy. First, all outgoing edges are pushed onto the stack and then the last is popped
off to be followed by the algorithm. For example, in the network in Figure 8.20a, first,
all three edges coming out of vertex s are pushed, and only afterward is the last of
them, edge(se), followed. Modify FordFulkersonAlgorithm() so that the first
edge coming out of a certain vertex is immediately followed, and the second is fol-
lowed only if the first does not lead to the sink. Consider using recursion.

35. Find the capacity of the cut determined by the set X = {s,d} in the graph in Figure
8.19.

36. What is the complexity of DinicAlgorithm() in a network where all edges have a
capacity of one?

37. Why does DinicAlgorithm() start from the sink to determine a layered network?

38. Apply to Figure 8.38a the following approximation algorithms (Johnson and
Papadimitriou, 1985; Rosenkrantz et al., 1977) to solve the traveling salesman
problem.

a. The nearest neighbor algorithm (next best method) begins with an arbitrary vertex v
and then finds a vertex w not on the tour that is closest to the vertex u last added
and includes in the tour edge(uw) and edge(wv) after deleting edge(vw).

b. The nearest insertion algorithm is obtained from nearestAdditionAlgorithm()
by minimizing

edge(vpvi) + edge(vivq) – edge(vpvq)

b. In this way, a new vertex vi is inserted in the best place in the existing tour, which
may not be next to vp.

c. The cheapest insertion algorithm is obtained from nearestAdditionAlgorithm()
by including in tour a new vertex vi that minimizes the length of the new tour.

d. The farthest insertion algorithm is just like the nearest insertion algorithms except
that it requires that vi is farthest from tour, not closest.

S e c t i o n 8 . 1 4 E x e r c i s e s ■ 463

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

464 ■ C h a p t e r 8 G r a p h s

e. The nearest merger algorithm, which corresponds to the Borůvka algorithm:

nearestMergerAlgorithm(cities V)
create |V| tours such that touri = {edge(vivi)};
while there are at least two tours

find two closest tours touri and tourj
(the minimum distance between city vs∈touri and vt∈tourj is the smallest for all tours);

find edge(vkvl)∈touri and edge(vpvq)∈tourj such that they minimize
dist(edge(vkvp)) + dist(edge(vlvq)) – dist(edge(vkvl)) – dist(edge(vpvq));

touri = touri x tourj x {edge(vkvp), edge(vlvq)} – {edge(vkvl), edge(vpvq)};
remove tourj;

39. Consider a bipartite graph G = ({u1 u2 . . . uk} x {w1 w2 . . . wk}, {(edge(uiwj): i Z j}.
How many colors are needed to color vertices of G with
sequentialColoringAlgorithm() if vertices are colored in this order

a. u1, . . . , uk, w1, . . . , wk?

b. u1, w1, u2, w2, . . . , uk, wk?

40. What is the vertex cover for a matching? For a bipartite graph?

41. Show a coloring of the 9-subgraph from Figure 8.42a in which one vertex x, y, or z is t,
the color of the other two vertices is f, and color(p) = f.

42. Show that the 2-colorability problem can be solved in polynomial time.

43. Show that the number of odd-degree vertices in simple graphs is even.

44. What would be the output of the program in the case study if linked lists in Figure 8.46
were in the reverse order?

8.15 PROGRAMMING ASSIGNMENTS

1. All algorithms discussed in this chapter for determining the minimum spanning tree
have one thing in common: They start building the tree from the beginning and they
add new edges to the structure, which eventually becomes such a tree. However, we
can go in the opposite direction and build this tree by successively removing edges to
break cycles in the graph until no circuit is left. In this way, the graph turns into the
tree. The edges chosen for removal should be the edges of maximum weight among
those that can break any cycle in the tree (for example, Dijkstra’s method). This algo-
rithm somewhat resembles the Kruskal method, but because it works in the opposite
direction, it can be called a Kruskal method à rebours. Use this approach to find the
minimum spanning tree for the graph of distances between at least a dozen cities.

2. Write a graphics demonstration program to show the difference between Kruskal’s
method and Jarník-Prim’s algorithm. Randomly generate 50 vertices and display
them in the left half of the screen. Then, randomly generate 200 edges and display
them. Make sure that the graph is connected. After the graph is ready, create the mini-
mum spanning tree using Kruskal’s method and display each edge included in the

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

tree. (Use a different color than the one used during graph generation.) Then, display
the same graph in the right half of the screen, create the minimum spanning tree
using Jarník-Prim’s algorithm, and display all edges being included in the tree.

3. An important problem in database management is preventing deadlocks between
transactions. A transaction is a sequence of operations on records in the database. In
large databases, many transactions can be executed at the same time. This can lead to
inconsistencies if the order of executing operations is not monitored. However, this
monitoring may cause transactions to block each other, thereby causing a deadlock.
To detect a deadlock, a wait-for graph is constructed to show which transaction waits
for which. Use a binary locking mechanism to implement a wait-for graph. In this
mechanism, if a record R is accessed by a transaction T, then T puts a lock on R and
this record cannot be processed by any other transaction before T is finished. Release
all locks put on by a transaction T when T finishes. The input is composed of the
following commands: read(T,A), write(T,A), end(T). For example, if input is

read(T1,A1), read(T2,A2), read(T1,A2), write(T1,A2), end(T1) . . .

then T1 is suspended when attempting to execute the step read(T1,A2), and edge(T1,T2) is
created, because T1 waits for T2 to finish. If T1 does not have to wait, resume its execu-
tion. After each graph update, check for a cycle in the graph. If a cycle is detected, inter-
rupt execution of the youngest transaction T and put its steps at the end of the input.

Note that some records might have been modified by such a transaction, so they
should be restored to their state before T started. But such a modification could have
been used by another transaction, which should also be interrupted. In this program,
do not address the problem of restoring the values of records (the problem of rolling
back transactions and of cascading this rolling back). Concentrate on updating and
monitoring the wait-for graph. Note that if a transaction is finished, its vertex should
be removed from the graph, which may be what other transactions are waiting for.

4. Write a rudimentary spreadsheet program. Display a grid of cells with columns A
through H and rows 1 through 20. Accept input in the first row of the screen. The com-
mands are of the form column row entry, where entry is either a number, a cell address
preceded by a plus (e.g., +A5), a string, or a function preceded by an at sign, @. The
functions are: max, min, avg, and sum. During execution of your program, build and
modify the graph reflecting the situation in the spreadsheet. Show the proper values
in proper cells. If a value in a cell is updated, then the values in all cells depending on
it should also be modified. For example, after the following sequence of entries:

A1 10
B1 20
A2 30
D1 +A1
C1 @sum(A1..B2)
D1 +C1

both cells C1 and D1 should display the number 60.

S e c t i o n 8 . 1 5 P r o g r a m m i n g A s s i g n m e n t s ■ 465

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

466 ■ C h a p t e r 8 G r a p h s

Consider using a modification of the interpreter from Chapter 5 as an enhance-
ment of this spreadsheet so that arithmetic expressions could also be used to enter
values, such as

C3 2*A1
C4 @max(A1..B2) – (A2 + B2)

BIBLIOGRAPHY

Ahuja, Ravindra K., Magnanti, Thomas L., and Orlin, James B., Network Flows; Theory, Algo-
rithms, and Applications, Englewood Cliffs, NJ: Prentice Hall, 1993.

Berge, Claude, “Two Theorems in Graph Theory,” Proceedings of the National Academy of Sci-
ences of the USA 43 (1957), 842–844.

Bertsekas, Dimitri P., “A Simple and Fast Label Correcting Algorithm for Shortest Paths,” Net-
works 23 (1993), 703–709.

Bondy, J. A. and Chvátal, V., “A Method in Graph Theory,” Discrete Mathematics 15 (1976),
111–135.

Bondy, John A., and Murty, U. S. R., Graph Theory with Applications, New York: Elsevier, 1976.

Brélaz, Daniel, “New Methods to Color the Vertices of a Graph,” Communications of the ACM
22 (1979), 251–256.

Chvátal, V., “Hamiltonian Cycles,” in Lawler, E. L., Lenstra, J. K., Rinnoy, Kan, A. H. G., and
Shmoys, D. B. (eds.), The Traveling Salesman Problem, New York: Wiley (1985), 403–429.

Deo, Narsingh, and Pang, Chi-yin, “Shortest Path Algorithms: Taxonomy and Annotation,”
Networks 14 (1984), 275–323.

Dijkstra, E. W., “A Note on Two Problems in Connection with Graphs,” Numerische Mathe-
matik 1 (1959), 269–271.

Dijkstra, E. W., “Some Theorems on Spanning Subtrees of a Graph,” Indagationes Mathemati-
cae 28 (1960), 196–199.

Dinic, Efim A., “Algorithm for Solution of a Problem of Maximum Flow in a Network with
Power Estimation” [Mistranslation of: with Polynomial Bound], Soviet Mathematics Doklady
11 (1970), 1277–1280.

Edmonds, Jack, “Paths, Trees, and Flowers,” Canadian Journal of Mathematics 17 (1963),
449–467.

Edmonds, Jack, “The Chinese Postman Problem,” Operations Research 13 (1965), Suppl. 1,
B–73.

Edmonds, Jack, and Johnson, Elias L., “Matching, Euler Tours and the Chinese Postman,”
Mathematical Programming 5 (1973), 88–124.

Edmonds, Jack, and Karp, Richard M., “Theoretical Improvement in Algorithmic Efficiency for
Network Flow Problems,” Journal of the ACM 19 (1972), 248–264.

Fleury, “Deux Problèmes de Géométrie de Situation,” Journal de Mathématiques Élémentaires
1883, 257–261.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Floyd, Robert W., “Algorithm 97: Shortest Path,” Communications of the ACM 5 (1962), 345.

Ford, Lester R., and Fulkerson, D. R., “Maximal Flow Through a Network,” Canadian Journal of
Mathematics 8 (1956), 399–404.

Ford, Lester R., and Fulkerson, D. R., “A Simple Algorithm for Finding Maximal Network Flows
and an Application to the Hitchcock Problem,” Canadian Journal of Mathematics 9 (1957),
210–218.

Ford, Lester R., and Fulkerson, D. R., Flows in Networks, Princeton, NJ: Princeton University
Press, 1962.

Gale, D., and Shapley, L. S., “College Admissions and the Stability of Marriage,” American
Mathematical Monthly 69 (1962), 9–15.

Gallo, Giorgio, and Pallottino, Stefano, “Shortest Path Methods: A Unified Approach,” Mathe-
matical Programming Study 26 (1986), 38–64.

Gallo, Giorgio, and Pallottino, Stefano, “Shortest Path Methods,” Annals of Operations Research
7 (1988), 3–79.

Gibbons, Alan, Algorithmic Graph Theory, New York: Cambridge University Press, 1985.

Glover, Fred, Glover, Randy, and Klingman, Darwin, “Computational Study of an Improved
Shortest Path Algorithm,” Networks 14 (1984), 25–36.

Gould, Ronald, Graph Theory, Menlo Park, CA: Benjamin Cummings, 1988.

Graham, R. L., and Hell, Pavol, “On the History of the Minimum Spanning Tree Problem,”
Annals of the History of Computing 7 (1985), 43–57.

Hall, Philip, “On Representatives of Subsets,” Journal of the London Mathematical Society 10
(1935), 26–30.

Ingerman, P. Z., “Algorithm 141: Path Matrix,” Communications of the ACM 5 (1962), 556.

Johnson, Donald B., “Efficient Algorithms for Shortest Paths in Sparse Networks,” Journal of the
ACM 24 (1977), 1–13.

Johnson, D. S. and Papadimitriou, C. H., “Performance Guarantees for Heuristics,” in Lawler, E.
L., Lenstra, J. K., Rinnoy, Kan A. H. G., and Shmoys, D. B. (eds.), The Traveling Salesman Problem,
New York: Wiley (1985), 145–180.

Kalaba, Robert, “On Some Communication Network Problems,” Combinatorial Analysis, Provi-
dence, RI: American Mathematical Society (1960), 261–280.

Kershenbaum, Aaron, “A Note on Finding Shortest Path Trees,” Networks 11 (1981), 399–400.

Kruskal, Joseph B., “On the Shortest Spanning Tree of a Graph and the Traveling Salesman
Problem,” Proceedings of the American Mathematical Society 7 (1956), 48–50.

Kuhn, Harold W., “The Hungarian Method for the Assignment Problem,” Naval Research
Logistics Quarterly 2 (1955), 83–97.

Kwan, Mei-ko, “Graphic Programming Using Odd or Even Points,” Chinese Mathematics 1
(1962), 273–277, translation of a paper published in Acta Mathematica Sinica 10 (1960),
263–266.

Munkres, James, “Algorithms for the Assignment Problem and Transportation Problems,”
Journal of the Society of Industrial and Applied Mathematics 5 (1957), 32–38.

B i b l i o g r a p h y ■ 467

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Ore, Oystein, “Note on Hamilton Circuits,” American Mathematical Monthly 67 (1960), 55.

Papadimitriou, Christos H., and Steiglitz, Kenneth, Combinatorial Optimization: Algorithms
and Complexity, Englewood Cliffs, NJ: Prentice Hall, 1982.

Pape, U., “Implementation and Efficiency of Moore-Algorithms for the Shortest Route Prob-
lem,” Mathematical Programming 7 (1974), 212–222.

Pollack, Maurice, and Wiebenson, Walter, “Solutions of the Shortest-Route Problem—A Re-
view,” Operations Research 8 (1960), 224–230.

Prim, Robert C., “Shortest Connection Networks and Some Generalizations,” Bell System
Technical Journal 36 (1957), 1389–1401.

Rosenkrantz, Daniel J., Stearns, Richard E., and Lewis, Philip M., “An Analysis of Several
Heuristics for the Traveling Salesman Problem,” SIAM Journal on Computing 6 (1977),
563–581.

Tarjan, Robert E., Data Structures and Network Algorithms, Philadelphia: Society for Industrial
and Applied Mathematics, 1983.

Thulasiraman, K., and Swamy, M. N. S., Graphs: Theory and Algorithms, New York: Wiley, 1992.

Warshall, Stephen, “A Theorem on Boolean Matrices,” Journal of the ACM 9 (1962), 11–12.

Welsh, D. J. A., and Powell, M. B., “An Upper Bound for the Chromatic Number of a Graph and
Its Application to Timetabling Problems,” Computer Journal 10 (1967), 85–86.

468 ■ C h a p t e r 8 G r a p h s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The efficiency of data handling can often be substantially increased if the data are
sorted according to some criteria of order. For example, it would be practically
impossible to find a name in the telephone directory if the names were not al-

phabetically ordered. The same can be said about dictionaries, book indexes, payrolls,
bank accounts, student lists, and other alphabetically organized materials. The conve-
nience of using sorted data is unquestionable and must be addressed in computer sci-
ence as well. Although a computer can grapple with an unordered telephone book more
easily and quickly than a human can, it is extremely inefficient to have the computer
process such an unordered data set. It is often necessary to sort data before processing.

The first step is to choose the criteria that will be used to order data. This choice
will vary from application to application and must be defined by the user. Very often,
the sorting criteria are natural, as in the case of numbers. A set of numbers can be
sorted in ascending or descending order. The set of five positive integers (5, 8, 1, 2, 20)
can be sorted in ascending order resulting in the set (1, 2, 5, 8, 20) or in descending
order resulting in the set (20, 8, 5, 2, 1). Names in the phone book are ordered alpha-
betically by last name, which is the natural order. For alphabetic and nonalphabetic
characters, the American Standard Code for Information Interchange (ASCII) code is
commonly used, although other choices such as Extended Binary Coded Decimal In-
terchange Code (EBCDIC) are possible. Once a criterion is selected, the second step is
how to put a set of data in order using that criterion.

The final ordering of data can be obtained in a variety of ways, and only some of
them can be considered meaningful and efficient. To decide which method is best,
certain criteria of efficiency have to be established and a method for quantitatively
comparing different algorithms must be chosen.

To make the comparison machine-independent, certain critical properties of
sorting algorithms should be defined when comparing alternative methods. Two such
properties are the number of comparisons and the number of data movements. The
choice of these two properties should not be surprising. To sort a set of data, the data
have to be compared and moved as necessary; the efficiency of these two operations
depends on the size of the data set.

469

Sorting 9

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Because determining the precise number of comparisons is not always necessary
or possible, an approximate value can be computed. For this reason, the number of
comparisons and movements is approximated with big-O notation by giving the order
of magnitude of these numbers. But the order of magnitude can vary depending on the
initial ordering of data. How much time, for example, does the machine spend on data
ordering if the data are already ordered? Does it recognize this initial ordering immedi-
ately or is it completely unaware of that fact? Hence, the efficiency measure also indi-
cates the “intelligence” of the algorithm. For this reason, the number of comparisons
and movements is computed (if possible) for the following three cases: best case (often,
data already in order), worst case (usually, data in reverse order), and average case (data
in random order). Some sorting methods perform the same operations regardless of
the initial ordering of data. It is easy to measure the performance of such algorithms,
but the performance itself is usually not very good. Many other methods are more flex-
ible, and their performance measures for all three cases differ.

The number of comparisons and the number of movements do not have to coin-
cide. An algorithm can be very efficient on the former and perform poorly on the lat-
ter, or vice versa. Therefore, practical reasons must aid in the choice of which
algorithm to use. For example, if only simple keys are compared, such as integers or
characters, then the comparisons are relatively fast and inexpensive. If strings or ar-
rays of numbers are compared, then the cost of comparisons goes up substantially,
and the weight of the comparison measure becomes more important. If, on the other
hand, the data items moved are large, such as structures, then the movement measure
may stand out as the determining factor in efficiency considerations. All theoretically
established measures have to be used with discretion, and theoretical considerations
should be balanced with practical applications. After all, the practical applications
serve as a rubber stamp for theory decisions.

Sorting algorithms, whose number can be counted in the dozens, are of different
levels of complexity. A simple method can be only 20 percent less efficient than a
more elaborate one. If sorting is used in the program once in a while and only for
small sets of data, then using a sophisticated and slightly more efficient algorithm may
not be desirable; the same operation can be performed using a simpler method and
simpler code. But if thousands of items are to be sorted, then a gain of 20 percent
must not be neglected. Simple algorithms often perform better with a small amount
of data than their more complex counterparts whose effectiveness may become obvi-
ous only when data samples become very large.

9.1 ELEMENTARY SORTING ALGORITHMS

9.1.1 Insertion Sort

An insertion sort starts by considering the two first elements of the array data, which
are data[0] and data[1]. If they are out of order, an interchange takes place. Then,
the third element, data[2], is considered and inserted into its proper place. If
data[2] is less than data[0] and data[1], these two elements are shifted by one
position; data[0] is placed at position 1, data[1] at position 2, and data[2] at
position 0. If data[2] is less than data[1] and not less than data[0], then only
data[1] is moved to position 2 and its place is taken by data[2]. If, finally,

470 ■ C h a p t e r 9 S o r t i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

data[2] is not less than both its predecessors, it stays in its current position. Each el-
ement data[i] is inserted into its proper location j such that 0 # j # i, and all ele-
ments greater than data[i] are moved by one position.

An outline of the insertion sort algorithm is as follows:

insertionsort(data[]) {
for i = 1 to data.length–1

tmp = data[i];
move all elements data[j] greater than tmp by one position;
place tmp in its proper position;

In this method, sorting is restricted only to a fraction of the array in each iteration,
and only in the last pass is the whole array considered. Figure 9.1 shows what changes
are made to the integer array [5 2 3 8 1] when insertionsort() executes. An array
having only one element is already ordered, so the algorithm starts sorting from the
second position, position 1. Then for each element tmp = data[i], all elements
greater than tmp are copied to the next position, and tmp is put in its proper place.

An implementation of insertion sort is

public void insertionsort(Object[] data) {
for (int i = 1, j; i < data.length; i++) {

Comparable tmp = (Comparable)data[i];
for (j = i; j > 0 && tmp.compareTo(data[j-1]) < 0; j--)

data[j] = data[j-1];
data[j] = tmp;

}
}

This is a generic implementation, as are implementations of the sorting algorithms
that follow. For arrays of the basic type, separate implementations are needed to avoid
using wrapper classes. For example, for arrays of integers, the following implementa-
tion should be used:

S e c t i o n 9 . 1 E l e m e n t a r y S o r t i n g A l g o r i t h m s ■ 471

FIGURE 9.1 The array [5 2 3 8 1] sorted by insertion sort.

5

1
1

2
j
i

tmp

2

3

8

1

2

2
2

3

5

3

8

1

2

3
3

8

3

5

8

1

2

4
4

1

3

5

8

1

2

3

3

5

8

8

2

2

3

5

5

8

2

1

3

3

5

8

2

0

2

3

5

8

1

5

2

3

5

8

0

1

2

3

4

5

0

5

3

8

1

2

1

5

5

8

1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

public void insertionsort(int[] data) {
for (int i = 1,j; i < data.length; i++) {

int tmp = data[i];
for (j = i, j; j > 0 && tmp < data[j-1]; j--)

data[j] = data[j-1];
data[j] = tmp;

}
}

Another version is needed for characters, for float numbers, and so on. This
chapter focuses on the mechanics of the algorithms; therefore, only one generic im-
plementation is used. However, for each sorting algorithm (except for radix sort), the
number of implementations should match the number of implementations provided
by Java, as discussed in Section 9.4.

An advantage of using insertion sort is that it sorts the array only when it is really
necessary. If the array is already in order, no substantial moves are performed; only
the variable tmp is initialized, and the value stored in it is moved back to the same po-
sition. The algorithm recognizes that part of the array is already sorted and stops exe-
cution accordingly. But it recognizes only this, and the fact that elements may already
be in their proper positions is overlooked. Therefore, they can be moved from these
positions and then later moved back. This happens to numbers 2 and 3 in the example
in Figure 9.1. Another disadvantage is that if an item is being inserted, all elements
greater than the one being inserted have to be moved. Insertion is not localized and
may require moving a significant number of elements. Considering that an element
can be moved from its final position only to be placed there again later, the number of
redundant moves can slow down execution substantially.

To find the number of movements and comparisons performed by insertion-
sort(), observe first that the outer for loop always performs n – 1 iterations, where
n = data.length. However, the number of elements greater than data[i] to be
moved by one position is not always the same.

The best case is when the data are already in order. Only one comparison is made
for each position i, so there are n – 1 comparisons, which is O(n), and 2(n – 1) moves,
all of them redundant.

The worst case is when the data are in reverse order. In this case, for each i, the
item data[i] is less than every item data[0], . . . , data[i-1], and each of them is
moved by one position. For each iteration i of the outer for loop, there are i compar-
isons, and the total number of comparisons for all iterations of this loop is

�
n–1

i=1

i = 1 + 2 + · · · + (n – 1) = �
n(n

2
– 1)
� = O(n2)

The number of times the assignment in the inner for loop is executed can be
computed using the same formula. The number of times tmp is loaded and unloaded
in the outer for loop is added to that, resulting in the total number of moves:

�
n(n

2
– 1)
� + 2(n – 1) = �

n2 + 3
2
n – 4
� = O(n2)

472 ■ C h a p t e r 9 S o r t i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Only extreme cases have been taken into consideration. What happens if the data
are in random order? Is the sorting time closer to the time of the best case, O(n), or to
the worst case, O(n2)? Or is it somewhere in between? The answer is not immediately
evident and requires certain introductory computations.

For every iteration i of the outer for loop, the number of comparisons depends
on how far away the item data[i] is from its proper position in the currently sorted
subarray data[0 . . . i]. If it is already in this position, only one test is performed
that compares data[i] and data[i-1]. If it is one position away from its proper
place, two comparisons are performed: data[i] is compared with data[i-1] and
then with data[i-2]. Generally, if it is j positions away from its proper location,
data[i] is compared with j + 1 other elements. This means that, in iteration i of the
outer for loop, there are either 1, 2, . . . , or i comparisons.

Under the assumption of equal probability of occupying array cells, the average
number of comparisons of data[i] with other elements during the iteration i of the
outer for loop can be computed by adding all the possible numbers of times such tests
are performed and dividing the sum by the number of such possibilities. The result is

To obtain the average number of all comparisons, the computed figure has to be
added for all i’s (for all iterations of the outer for loop) from 1 to n – 1. The result is

which is O(n2) and approximately one-half of the number of comparisons in the
worst case.

By similar reasoning, we can establish that, in iteration i of the outer for loop,
data[i] can be moved either 0, 1, . . . , or i – 1 times; that is

times plus two unconditional movements (to tmp and from tmp). Hence, in all the
iterations of the outer for loop we have, on the average,

movements, which is also O(n2).
This answers the question: Is the number of movements and comparisons for a

randomly ordered array closer to the best or to the worst case? Unfortunately, it is
closer to the latter, which means that, on the average, when the size of an array is dou-
bled, the sorting effort quadruples.

i
i

n n
n

n n

i

n

i

n

i

n− +
⎛
⎝⎜

⎞
⎠⎟

= + =
−

+ − = + −

=

−

=

−

=

−

∑ ∑ ∑1

2
2

1

2

3

2

1

2

3

2
1

5 6

4
1

1

1

1

1

1 1
2

2()
()

0 1 1 1 1

2

1
2+ + + − =

−
= −. . . () ()i

i

i i

i

i

i
i

n n
n

n n

i

n

i

n

i

n+ = + =
−

+ − = + −

=

−

=

−

=

−

∑ ∑ ∑1

2

1

2

1

2

1

2

1

2
1

2

4
1

1

1

1

1

1 1
2

2()
()

1 2 1 1 1

2

1
2+ + + − =

+
= +. . . ()i

i

i i

i

i

S e c t i o n 9 . 1 E l e m e n t a r y S o r t i n g A l g o r i t h m s ■ 473

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9.1.2 Selection Sort
Selection sort is an attempt to localize the exchanges of array elements by finding a
misplaced element first and putting it in its final place. The element with the lowest
value is selected and exchanged with the element in the first position. Then, for n =
data.length, the smallest value among the remaining elements data[1], . . . ,
data[n-1] is found and put in the second position. This selection and placement by
finding, in each pass i, the lowest value among the elements data[i], . . . ,data[n-1]
and swapping it with data[i] are continued until all elements are in their proper posi-
tions. The following pseudocode reflects the simplicity of the algorithm:

selectionsort(data[])
for i = 0 to data.length-2

select the smallest element among data[i], . . . , data[data.length-1];
swap it with data[i];

It is rather obvious that n-2 should be the last value for i, because if all elements
but the last have been already considered and placed in their proper positions, then
the nth element (occupying position n-1) has to be the largest. Here is a Java imple-
mentation of selection sort:

public void selectionsort(Object[] data) {
int i,j,least;
for (i = 0; i < data.length-1; i++) {

for (j = i+1, least = i; j < data.length; j++)
if (((Comparable)data[j]).compareTo(data[least]) < 0)

least = j;
if i != least)

swap(data,least,i);
}

}

where the method swap() exchanges elements data[least] and data[i]:

void swap(Object[] a, int e1, int e2) {
Object tmp = a[e1]; a[e1] = a[e2]; a[e2] = tmp;

}

Note that least is not the smallest element but its position.
Figure 9.2 illustrates how the array [5 2 3 8 1] is sorted by selection sort.
The analysis of the performance of the method selectionsort() is simplified

by the presence of two for loops with lower and upper bounds. The outer loop exe-
cutes n – 1 times, and for each i between 0 and n – 2, the inner loop iterates j = (n –
1) – i times. Because comparisons of keys are done in the inner loop, there are

�
n–2

i=0

(n – 1 – i) = (n – 1) + · · · + 1 = �
n(n

2
– 1)
� = O(n2)

comparisons plus n – 1 comparisons if indexes i and least. This number stays the
same for all cases. There can be some savings only in the number of swaps.

474 ■ C h a p t e r 9 S o r t i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the best case, when an ordered array is sorted, no array elements are swapped. In
the worst case, when the largest element is in the first position and the remaining ele-
ments are ordered, the swapping method is called as many times as the outer loop iter-
ates, which is n – 1; that is, in the worst case, the array elements are moved 3(n – 1)
times, which is O(n), a very good result.

9.1.3 Bubble Sort
A bubble sort can be best understood if the array to be sorted is envisaged as a vertical
column whose smallest elements are at the top and whose largest elements are at the
bottom. The array is scanned from the bottom up, and two adjacent elements are in-
terchanged if they are found to be out of order with respect to each other. First, items
data[n-1] and data[n-2] are compared and swapped if they are out of order.
Next, data[n-2] and data[n-3] are compared, and their order is changed if neces-
sary, and so on up to data[1] and data[0]. In this way, the smallest element is bub-
bled up to the top of the array.

However, this is only the first pass through the array. The array is scanned again
comparing consecutive items and interchanging them when needed, but this time, the
last comparison is done for data[2] and data[1] because the smallest element is
already in its proper position, namely, position 0. The second pass bubbles the second
smallest element of the array up to the second position, position 1. The procedure
continues until the last pass when only one comparison, data[n-1] with data[n-2],
and possibly one interchange are performed.

A pseudocode of the algorithm is as follows:

bubblesort(data[])
for i = 0 to data.length-2

for j = data.length-1 downto i+1
swap elements in position j and j-1 if they are out of order;

S e c t i o n 9 . 1 E l e m e n t a r y S o r t i n g A l g o r i t h m s ■ 475

FIGURE 9.2 The array [5 2 3 8 1] sorted by selection sort.

5

1, 2, 3, 4, 5
0

0, 1
j
i

least

2

3

8

1

1

2, 3, 4, 5
1

1

2

3

8

5

1

3, 4, 5
2

2

2

3

8

5

1

4, 5
3 4

3, 4

2

3

8

5

1

2

3

5

8

4

0

1

2

3

4

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 9.3 illustrates the changes performed in the integer array [5 2 3 8 1] during the
execution of bubblesort(). Here is an implementation of bubble sort:

public void bubblesort(Object[] data) {
for (int i = 0; i < data.length-1; i++)

for (int j = data.length-1; j > i; --j)
if (((Comparable)data[j]).compareTo(data[j-1]) < 0)

swap(data,j,j-1);
}

The number of comparisons is the same in each case (best, average, and worst)
and equals the total number of iterations of the inner for loop:

�
n–2

i=0

(n – 1 – i) = �
n(n

2
– 1)
� = O(n2)

This formula also computes the number of swaps in the worst case when the array is
in reverse order. In this case, 3 �n(n

2
–1)
� moves have to be made.

The best case, when all elements are already ordered, requires no swaps. To find
the number of moves in the average case, note if an i-cell array is in random order.
Then the number of swaps can be any number between zero and i – 1; that is, there
can be either no swap at all (all items are in ascending order), one swap, two swaps, . . . ,
or i – 1 swaps. The array processed by the inner for loop is data[i], . . . , data[n-
1], and the number of swaps in this subarray—if its elements are randomly or-
dered—is either zero, one, two, . . . , or n – 1 – i. After averaging the sum of all these
possible numbers of swaps by the number of these possibilities, the average number
of swaps is obtained, which is

= �
n –

2
i – 1
�

If all these averages for all the subarrays processed by bubblesort() are added (that
is, if such figures are summed over all iterations i of the outer for loop), the result is

0 + 1 + 2 + · · · + (n – 1 – i)
n – i

476 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.3 The array [5 2 3 8 1] sorted by bubble sort.

5

0
4

i
j

2

3

8

1

5

3

2

3

1

8

5

2

2

1

3

8

5

1

1

2

3

8

1

1 2

5

2

3

8

1

2

5

3

8

1

2

3

5

8

3
0, 4, 3, 2 1, 4, 3 2 4, 3

4

0

1

2

3

4

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

�
n–2

i=0

�
n –

2
i – 1
� = �

1
2

� �
n–2

i=0

(n – 1) – �
1
2

� �
n–2

i=0

i

= �
(n –

2
1)2

� – �
(n – 1)

4
(n – 2)
� = �

n(n
4
– 1)
�

swaps, which is equal to �
3
4

�n(n – 1) moves.
The main disadvantage of bubble sort is that it still painstakingly bubbles items

step by step up toward the top of the array. It looks at two adjacent array elements at a
time and swaps them if they are not in order. If an element has to be moved from the
bottom to the top, it is exchanged with every element in the array. It does not skip
them as selection sort did. In addition, the algorithm concentrates only on the item
that is being bubbled up. Therefore, all elements that distort the order are moved,
even those that are already in their final positions (see numbers 2 and 3 in Figure 9.3,
the situation analogous to that in insertion sort).

What is bubble sort’s performance in comparison to insertion and selection sort?
In the average case, bubble sort makes approximately twice as many comparisons and
the same number of moves as insertion sort, as many comparisons as selection sort,
and n times more moves than selection sort.

It could be said that insertion sort is twice as fast as bubble sort. In fact it is, but
this fact does not immediately follow from the performance estimates. The point is
that when determining a formula for the number of comparisons, only comparisons
of data items have been included. The actual implementation for each algorithm in-
volves more than just that. In bubblesort(), for example, there are two loops, both
of which compare indexes: i and data.length-1 in the first loop, j and i in the
second. All in all, there are �n(n

2
–1)
� such comparisons, and this number should not be

treated too lightly, particularly if data consists of integers, because then comparing
the data takes a similar amount of time as comparing indexes. A more thorough treat-
ment of the problem of efficiency should focus on more than just data comparison
and exchange. It should also include the overhead necessary for implementation of
the algorithm.

9.2 DECISION TREES

The three sorting methods analyzed in previous sections were not very efficient. This
leads to several questions: Can any better level of efficiency for a sorting algorithm be
expected? Can algorithms, at least theoretically, be more efficient by executing faster?
If so, when can we be satisfied with an algorithm and be sure that the sorting speed is
unlikely to be increased? We need a quantitative measurement to estimate a lower
bound of sorting speed.

This section focuses on the comparisons of two elements and not the element in-
terchange. The questions are: On the average, how many comparisons have to be
made to sort n elements? Or what is the best estimate of the number of item compar-
isons if an array is assumed to be ordered randomly?

Every sorting algorithm can be expressed in terms of a binary tree in which the
arcs carry the labels Y(es) or N(o). Nonterminal nodes of the tree contain conditions

S e c t i o n 9 . 2 D e c i s i o n T r e e s ■ 477

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

or queries for labels, and the leaves have all possible orderings of the array to which
the algorithm is applied. This type of tree is called a decision tree. Because the initial
ordering cannot be predicted, all possibilities have to be listed in the tree in order for
the sorting procedure to grapple with any array and any possible initial order of data.
This initial order determines which path is taken by the algorithm and what sequence
of comparisons is actually chosen. Note that different trees have to be drawn for ar-
rays of different length.

Figure 9.4 illustrates decision trees for insertion sort and bubble sort for an array
[a b c]. The tree for insertion sort has six leaves, and the tree for bubble sort has eight
leaves. How many leaves does a tree for an n-element array have? Such an array can be
ordered in n! different ways, as many ways as the possible permutations of the array
elements, and all of these orderings have to be stored in the leaves of the decision tree.
Thus, the tree for insertion sort has six leaves because n = 3, and 3! = 6.

But as the example of the decision tree for bubble sort indicates, the number of
leaves does not have to equal n!. In fact, it is never less than n!, which means that it can
be greater than n!. This is a consequence of the fact that a decision tree can have leaves
corresponding to failures, not only to possible orderings. The failure nodes are
reached by an inconsistent sequence of operations. Also, the total number of leaves
can be greater than n! because some orderings (permutations) can occur in more than
one leaf, because the comparisons may be repeated.

478 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.4 Decision trees for (a) insertion sort and (b) bubble sort as applied to the array [a b c].

c < a

b < a

[c b a] [c a b]

N

NY
b < a

NY

c < b

(b)

Y N

Y
b < c

impossible [a c b]

NY
c < a

[b c a] [b a c]

NY
c < b

impossible [a b c]

NY

c < a

c < b

[c b a] [b c a]

N

NY
c < b

NY

b < a

(a)

Yes No

Y
[b a c] c < a

[c a b] [a c b]

NY
[a b c]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

One of the interesting properties of decision trees is the average number of arcs
traversed from the root to reach a leaf. Because one arc represents one comparison,
the average number of arcs reflects the average number of key comparisons when exe-
cuting a sorting algorithm.

As already established in Chapter 6, an i-level complete decision tree has 2i–1

leaves, 2i–1 – 1 nonterminal nodes (for i $ 1) and 2i – 1 total nodes. Because all non-
complete trees with the same number of i levels have fewer nodes than that, k + m #
2i – 1, where m is the number of leaves and k is the number of nonleaves. Also, k # 2i–1

– 1 and m # 2i–1 (Section 6.1 and Figure 6.5). The latter inequality is used as an ap-
proximation for m. Hence, in an i-level decision tree, there are at most 2i–1 leaves.

Now, a question arises: What is a relationship between the number of leaves of a
decision tree and the number of all possible orderings of an n-element array? There are
n! possible orderings, and each one of them is represented by a leaf in a decision tree.
But the tree may also have some extra nodes due to repetitions and failures. Therefore,
n! # m # 2i–1, or 2i–1 $ n!. This inequality answers the following question: How many
comparisons are performed when using a certain sorting algorithm for an n-element
array in the worst case? Or rather, what is the lowest or the best figure expected in the
worst case? Note that this analysis pertains to the worst case. We assume that i is a level
of a tree regardless of whether or not it is complete; i always refers to the longest path
leading from the root of the tree to the lowest tree level, which is also the largest num-
ber of comparisons needed to reach an ordered configuration of array stored in the
root. First, the inequality 2i–1 $ n! is transformed into i – 1 $ lg(n!), which means that
the path length in a decision tree with at least n! leaves must be at least lg(n!), or rather,
it must be]lg(n!)g, where]xg is an integer not less than x. See the example in Figure 9.5.

It can be proven that, for a randomly chosen leaf of an m-leaf decision tree, the
length of the path from the root to the leaf is not less than lg m and that, both in the
average case and the worst case, the required number of comparisons, lg(n!), is
O(n lg n) (see Section A.2 in Appendix A). That is, O(n lg n) is also the best that can be
expected in average cases.

It is interesting to compare this approximation to some of the numbers com-
puted for sorting methods, especially for the average and worst cases. For example, in-
sertion sort requires only n – 1 comparisons in the best case, but in the average and
the worst cases, this sort turns into an n2 algorithm because the functions relating the
number of comparisons to the number of elements are, for these cases, the big-Os of
n2. This is much greater than n lg n, especially for large numbers. Consequently, inser-
tion sort is not an ideal algorithm. The quest for better methods can be continued
with at least the expectation that the number of comparisons should be approximated
by n lg n rather than by n2.

The difference between these two functions is best seen in Figure 9.6 if the per-
formance of the algorithms analyzed so far is compared with the expected perfor-
mance n lg n in the average case. The numbers in the table in Figure 9.6 show that if
100 items are sorted, the desired algorithm is four times faster than insertion sort and
eight times faster than selection sort and bubble sort. For 1,000 items, it is 25 and 50
times faster, respectively. For 10,000, the difference in performance differs by factors
of 188 and 376, respectively. This can only serve to encourage the search for an algo-
rithm embodying the performance of the function n lg n.

S e c t i o n 9 . 2 D e c i s i o n T r e e s ■ 479

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

480 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.5 Examples of decision trees for an array of three elements.

3

2

1
Level

4

6

5

7
(a) (b) (c) (d)

04-035 Course Tech
Drozdek
04-035 Fig09.05
28p2 X 10p1

These are some possible decision trees for an array of three elements. These trees must have at least
3! = 6 leaves. For the sake of the example, it is assumed that each tree has one extra leaf (a repetition
or a failure). In the worst and average cases, the number of comparisons is i – 1 $]lg(n!)g. In this
example, n = 3, so i – 1 $]lg3!g =]lg6g ≈]2.59g = 3. And, in fact, only for the best balanced tree (a),
the nonrounded length of the average path is less than three.

These are the sums of the lengths of the paths from the root to all leaves in trees (a) – (d) and the av-
erage path lengths:

(a) 2 + 3 + 3 + 3 + 3 + 3 + 3 = 20; average = �
2
7
0
� ≈ 2.86

(b) 4 + 4 + 3 + 3 + 3 + 2 + 2 = 21; average = �
2
7
1
� = 3

(c) 2 + 4 + 5 + 5 + 3 + 2 + 2 = 23; average = �
2
7
3
� ≈ 3.29

(d) 6 + 6 + 5 + 4 + 3 + 2 + 1 = 27; average = �
2
7
7
� ≈ 3.86

FIGURE 9.6 Number of comparisons performed by the simple sorting method and by an algorithm
whose efficiency is estimated by the function n lg n.

sort type n 100 1,000 10,000

insertion �
n(n

4
– 1)
� 2,475 249,750 24,997,500

selection, bubble �
n(n

2
– 1)
� 4,950 499,500 49,995,000

expected n lg n 664 9,966 132,877

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 481

9.3 EFFICIENT SORTING ALGORITHMS

9.3.1 Shell Sort

The O(n2) limit for a sorting method is much too large and must be broken to im-
prove efficiency and decrease run time. How can this be done? The problem is that the
time required for ordering an array by the three sorting algorithms usually grows
faster than the size of the array. In fact, it is customarily a quadratic function of that
size. It may turn out to be more efficient to sort parts of the original array first and
then, if they are at least partially ordered, to sort the entire array. If the subarrays are
already sorted, we are that much closer to the best case of an ordered array than ini-
tially. A general outline of such a procedure is as follows:

divide data into h subarrays;
for i = 1 to h

sort subarray datai;
sort array data;

If h is too small, then the subarrays datai of array data could be too large, and
sorting algorithms might prove inefficient as well. On the other hand, if h is too large,
then too many small subarrays are created, and although they are sorted, it does not
substantially change the overall order of data. Lastly, if only one such partition of
data is done, the gain on the execution time may be rather modest. To solve that
problem, several different subdivisions are used, and for every subdivision, the same
procedure is applied separately, as in:

determine numbers ht . . . h1 of ways of dividing array data into subarrays;
for (h=ht; t > 1; t- -, h=ht)

divide data into h subarrays;
for i = 1 to h

sort subarray datai;
sort array data;

This idea is the basis of the diminishing increment sort, also known as Shell sort
and named after Donald L. Shell who designed this technique. Note that this
pseudocode does not identify a specific sorting method for ordering the subarrays; it
can be any simple method. Usually, however, Shell sort uses insertion sort.

The heart of Shell sort is an ingenious division of the array data into several sub-
arrays. The trick is that elements spaced further apart are compared first, then the ele-
ments closer to each other are compared, and so on, until adjacent elements are
compared on the last pass. The original array is logically subdivided into subarrays by
picking every htth element as part of one subarray. Therefore, there are ht subarrays,
and for every h = 1, . . . , ht,

dataht h[i] = data[ht · i + (h – 1)]

For example, if ht = 3, the array data is subdivided into three subarrays data1, data2,
and data3 so that

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

data3131[0] = data[0], data3131[1] = data[3], . . . , data3131[i] = data[3*i], . . .
data3232[0] = data[1], data3232[1] = data[4], . . . , data3232[i] = data[3*i+1], . . .
data3333[0] = data[2], data3333[1] = data[5], . . . , data3333[i] = data[3*i+2], . . .

and these subarrays are sorted separately. After that, new subarrays are created with an
ht–1 < ht, and insertion sort is applied to them. The process is repeated until no subdi-
visions can be made. If ht = 5, the process of extracting subarrays and sorting them is
called a 5-sort.

Figure 9.7 shows the elements of the array data that are five positions apart and
are logically inserted into a separate array—“logically” because physically they still oc-
cupy the same positions in data. For each value of increment ht, there are ht subar-
rays, and each of them is sorted separately. As the value of the increment decreases,
the number of subarrays decreases accordingly, and their sizes grow. Much of data’s
disorder has been removed in the earlier iterations, so on the last pass, the array is
much closer to its final form than before all the intermediate h-sorts.

482 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.7 The array [10 8 6 20 4 3 22 1 0 15 16] sorted by Shell sort.

data before 5-sort 10 8 6 20 4 3 22 1 0 15 16

Five subarrays before 10 — — — — 3 — — — — 16
sorting 8 — — — — 22

6 — — — — 1
20 — — — — 0

4 — — — — 15

Five subarrays after 3 — — — — 10 — — — — 16
sorting 8 — — — — 22

1 — — — — 6
0 — — — — 20

4 — — — — 15

data after 5-sort and 3 8 1 0 4 10 22 6 20 15 16
before 3-sort

Three subarrays before 3 — — 0 — — 22 — — 15
sorting 8 — — 4 — — 6 — — 16

1 — — 10 — — 20

Three subarrays after 0 — — 3 — — 15 — — 22
sorting 4 — — 6 — — 8 — — 16

1 — — 10 — — 20

data after 3-sort and 0 4 1 3 6 10 15 8 20 22 16
before 1-sort

data after 1-sort 0 1 3 4 6 8 10 15 16 20 22

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

One problem still has to be addressed, namely, choosing the optimal value of the
increment. In the example in Figure 9.7, the value of 5 is chosen to begin with, then 3,
and 1 is used for the final sort. But why these values? Unfortunately, no convincing an-
swer can be given. In fact, any decreasing sequence of increments can be used as long as
the last one, h1, is equal to 1. Donald Knuth has shown that even if there are only two
increments, (�

1
π
6n
�)�

1
3

� and 1, Shell sort is more efficient than insertion sort because it takes
O(n�

5
3

�) time instead of O(n2). But the efficiency of Shell sort can be improved by using a
larger number of increments. It is imprudent, however, to use sequences of increments
such as 1, 2, 4, 8, . . . or 1, 3, 6, 9, . . . because the mixing effect of data is lost.

For example, when using 4-sort and 2-sort, a subarray, data2,i, for i = 1, 2, con-
sists of elements of two arrays, data4,i and data4,j, where j = i + 2, and only those. It is
much better if elements of data4,i do not meet together again in the same array be-
cause a faster reduction in the number of exchange inversions is achieved if they are
sent to different arrays when performing the 2-sort. Using only powers of 2 for the in-
crements, as in Shell’s original algorithm, the items in the even and odd positions of
the array do not interact until the last pass, when the increment equals 1. This is where
the mixing effect (or lack thereof) comes into play. But there is no formal proof indi-
cating which sequence of increments is optimal. Extensive empirical studies along
with some theoretical considerations suggest that it is a good idea to choose incre-
ments satisfying the conditions

h1 = 1

hi+1 = 3hi + 1

and stop with ht for which ht+2 $ n. For n = 10,000, this gives the sequence

1, 4, 13, 40, 121, 364, 1093, 3280

Experimental data have been approximated by the exponential function, the esti-
mate, 1.21n�

5
4

�, and the logarithmic function .39n ln2 n – 2.33n ln n = O(n ln2 n). The first
form fits the results of the tests better. 1.21n1.25 = O(n1.25) is much better than O(n2) for
insertion sort, but it is still much greater than the expected O(n lg n) performance.

Figure 9.8 contains a function to sort the array data using Shell sort. Note that
before sorting starts, increments are computed and stored in the array increments.

The core of Shell sort is to divide an array into subarrays by taking elements h posi-
tions apart. Three features of this algorithm vary from one implementation to another:

1. The sequence of increments

2. A simple sorting algorithm applied in all passes except the last

3. A simple sorting algorithm applied only in the last pass, for 1-sort

In our implementation, as in Shell’s, insertion sort is applied in all h-sorts, but
other sorting algorithms can be used. For example, Dobosiewicz uses bubble sort
for the last pass and insertion sort for other passes. Incerpi and Sedgewick use two
iterations of cocktail shaker sort, a version of bubble sort in each h-sort, and finish
with insertion sort, obtaining what they call a shakersort. All these versions perform
better than simple sorting methods, although there are some differences in perfor-
mance among versions. Analytical results concerning the complexity of these sorts are
not available. All results regarding complexity are of an empirical nature.

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 483

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9.3.2 Heap Sort

Selection sort makes O(n2) comparisons and is very inefficient, especially for large n.
But it performs relatively few moves. If the comparison part of the algorithm is im-
proved, the end results can be promising.

Heap sort was invented by John Williams and uses the approach inherent to se-
lection sort. Selection sort finds among the n elements the one that precedes all other
n – 1 elements, then the least element among those n – 1 items, and so forth, until the
array is sorted. To have the array sorted in ascending order, heap sort puts the largest
element at the end of the array, then the second largest in front of it, and so on. Heap
sort starts from the end of the array by finding the largest elements, whereas selection
sort starts from the beginning using the smallest elements. The final order in both
cases is indeed the same.

484 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.8 Implementation of Shell sort.

void Shellsort (Object[] data) {
int i, j, k, h, hCnt, increments[] = new int[20];

// create an appropriate number of increments h
for (h = 1, i = 0; h < data.length; i++) {

increments[i] = h;
h = 3*h + 1;

}
// loop on the number of different increments h

for (i--; i >= 0; i--) {
h = increments[i];

// loop on the number of subarrays h-sorted in ith pass
for (hCnt = h; hCnt < 2*h; hCnt++) {
// insertion sort for subarray containing every hth element
// of array data

for (j = hCnt; j < data.length;) {
Comparable tmp = (Comparable)data[j];
k = j;
while (k-h >= 0 && tmp.compareTo(data[k-h]) < 0) {

data[k] = data[k-h];
k -= h;

}
data[k] = tmp;
j += h;

}
}

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Heap sort uses a heap as described in Section 6.9. A heap is a binary tree with the
following two properties:

1. The value of each node is not less than the values stored in each of its children.

2. The tree is perfectly balanced and the leaves in the last level are all in the leftmost
positions.

A tree has the heap property if it satisfies condition 1. Both conditions are useful
for sorting, although this is not immediately apparent for the second condition. The
goal is to use only the array being sorted without using additional storage for the array
elements; by condition 2, all elements are located in consecutive positions in the array
starting from position 0, with no unused position inside the array. In other words,
condition 2 reflects the packing of an array with no gaps.

Elements in a heap are not perfectly ordered. It is known only that the largest ele-
ment is in the root node and that, for each other node, all its descendants are not
greater than the element in this node. Heap sort thus starts from the heap, puts the
largest element at the end of the array, and restores the heap that now has one less ele-
ment. From the new heap, the largest element is removed and put in its final position,
and then the heap property is restored for the remaining elements. Thus, in each
round, one element of the array ends up in its final position, and the heap becomes
smaller by this one element. The process ends with exhausting all elements from the
heap and is summarized in the following pseudocode:

heapsort(data[])
transform data into a heap;
for i = data.length-1 downto 2

swap the root with the element in position i;
restore the heap property for the tree data[0], . . . , data[i-1];

In the first phase of heap sort, an array is transformed into a heap. In this process,
we use a bottom-up method devised by Floyd and described in Section 6.9.2. All steps
leading to the transformation of the array [2 8 6 1 10 15 3 12 11] into a heap are illus-
trated in Figure 9.9 (cf. Figure 6.58).

The second phase begins after the heap has been built (Figures 9.9g and 9.10a).
At that point, the largest element, number 15, is moved to the end of the array.
Its place is taken by 8, thus violating the heap property. The property has to be
restored, but this time it is done for the tree without the largest element, 15. Because
it is already in its proper position, it does not need to be considered anymore and
is removed (pruned) from the tree (indicated by the dashed lines in Figure 9.10).
Now, the largest element among data[0], . . . , data[n-2] is looked for. To that
end, the method moveDown() from Section 6.9 (Figure 6.56) is called to construct
a heap out of all the elements of data except the last, data[n-1], which results
in the heap in Figure 9.10c. Number 12 is sifted up and then swapped with 1,
giving the tree in Figure 9.10d. The method moveDown() is called again to select 11
(Figure 9.10e), and the element is swapped with the last element of the current
subarray, which is 3 (Figure 9.10f). Now 10 is selected (Figure 9.10g) and exchanged
with 2 (Figure 9.10h). The reader can easily construct trees and heaps for the
next passes through the loop of heapsort(). After the last pass, the array is in

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 485

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ascending order and the tree is ordered accordingly. An implementation of
heapsort()is as follows:

void heapsort(Object[] data) {
for (int i = data.length/2 - 1; i >= 0; --i)

moveDown(data,i,data.length-1);

486 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.9 Transforming the array [2 8 6 1 10 15 3 12 11] into a heap.

2

68

1 31510

12 11

2 8 6 1 10 15 3 12 11

(a)

2

158

12 3610

1 11

2 8 15 12 10 6 3 1 11

(c)

2

68

12 31510

1 11

2 8 6 12 10 15 3 1 11

(b)

2

1512

8 3610

1 11

2 12 15 8 10 6 3 1 11

(d)

15

212

11 3610

1 8

15 12 2 11 10 6 3 1 8

(f)

2

1512

11 3610

1 8

2 12 15 11 10 6 3 1 8

(e)

15

612

11 3210

1 8

15 12 6 11 10 2 3 1 8

(g)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

for (int i = data.length-1; i >= 1; --i) {
swap(data,0,i);
moveDown(data,0,i-1);

}
}

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 487

FIGURE 9.10 Execution of heap sort on the array [15 12 6 11 10 2 3 1 8], which is the heap con-
structed in Figure 9.9.

15

612

11 3210

1 8

15 12 6 11 10 2 3 1 8

(a)

12

611

8 3210

1 15

12 11 6 8 10 2 3 1 15

(c)

8

612

11 3210

1 15

8 12 6 11 10 2 3 1 15

(b)

1

611

8 3210

12 15

1 11 6 8 10 2 3 12 15

(d)

3

610

8 1121

12 15

3 10 6 8 1 2 11 12 1511 10 6 8 1 2 3 12 15

(f)

11

610

8 321

12 15

(e)

10

68

3 1121

12 15

10 8 6 3 1 2 11 12 15

(g)

1

32

6 11108

12 15

1 2 3 6 8 10 11 12 152 8 6 3 1 10 11 12 15

(i)

2

68

3 11101

12 15

(h)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Heap sort might be considered inefficient because the movement of data seems
to be very extensive. First, all effort is applied to moving the largest element to the left-
most side of the array in order to move it to the furthest right. But therein lies its effi-
ciency. In the first phase, to create the heap, heapsort() uses moveDown(), which
performs O(n) steps (see Section 6.9.2).

In the second phase, heapsort() exchanges n – 1 times the root with the ele-
ment in position i and also restores the heap n – 1 times, which in the worst case
causes moveDown() to iterate lgi times to bring the root down to the level of the
leaves. Thus, the total number of moves in all executions of moveDown() in the sec-
ond phase of heapsort() is �n – 1

i = 1 lgi, which is O(n lg n). In the worst case, heap-
sort() requires O(n) steps in the first phase, and in the second phase, n – 1 swaps
and O(n lg n) operations to restore the heap property. This gives O(n) + O(n lg n) + (n
– 1) = O(n lg n) exchanges for the whole process in the worst case.

For the best case, when the array contains identical elements, moveDown() is
called �

n
2

� times in the first phase, but no moves are performed. In the second phase,
heapsort() makes one swap to move the root element to the end of the array, re-
sulting in only n – 1 moves. Also, in the best case, n comparisons are made in the first
phase and 2(n – 1) in the second. Hence, the total number of comparisons in the best
case is O(n). However, if the array has distinct elements, then in the best case the
number of comparisons equals n lg n – O(n) (Ding and Weiss 1992).

9.3.3 Quicksort

Shell sort approached the problem of sorting by dividing the original array into subar-
rays, sorting them separately, and then dividing them again to sort the new subarrays
until the whole array is sorted. The goal was to reduce the original problem to sub-
problems that can be solved more easily and quickly. The same reasoning was a guiding
principle for C. A. R. Hoare, who invented an algorithm appropriately called quicksort.

The original array is divided into two subarrays, the first of which contains ele-
ments less than or equal to a chosen key called the bound or pivot. The second sub-
array includes elements equal to or greater than the bound. The two subarrays can be
sorted separately, but before this is done, the partition process is repeated for both
subarrays. As a result, two new bounds are chosen, one for each subarray. The four
subarrays are created because each subarray obtained in the first phase is now divided
into two segments. This process of partitioning is carried down until there are only
one-cell arrays that do not need to be sorted at all. By dividing the task of sorting a
large array into two simpler tasks and then dividing those tasks into even simpler
tasks, it turns out that in the process of getting prepared to sort, the data have already
been sorted. Because the sorting has been somewhat dissipated in the preparation
process, this process is the core of quicksort.

Quicksort is recursive in nature because it is applied to both subarrays of an array at
each level of partitioning. This technique is summarized in the following pseudocode:

quicksort(array[])
if array.length > 1

choose bound; // partition array into subarray1 and subarray2
while there are elements left in array

488 ■ C h a p t e r 9 S o r t i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

include element either in subarray1 = {el: el ≤ bound}
or in subarray2 = {el: el ≥ bound};

quicksort(subarray1);
quicksort(subarray2);

To partition an array, two operations have to be performed: A bound has to be
found and the array has to be scanned to place the elements in the proper subarrays.
However, choosing a good bound is not a trivial task. The problem is that the subarrays
should be approximately the same length. If an array contains the numbers 1 through
100 (in any order) and 2 is chosen as a bound, then an imbalance results: The first sub-
array contains only 1 number after partitioning, whereas the second has 99 numbers.

A number of different strategies for selecting a bound have been developed. One
of the simplest consists of choosing the first element of an array. That approach can
suffice for some applications; however, because many arrays to be sorted already have
many elements in their proper positions, a more cautious approach is to choose the
element located in the middle of the array. This approach is incorporated in the im-
plementation in Figure 9.11.

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 489

FIGURE 9.11 Implementation of quicksort.

void quicksort(Object[] data, int first, int last) {
int lower = first + 1, upper = last;
swap(data,first,(first+last)/2);
Comparable bound = (Comparable)data[first];
while (lower <= upper) {

while bound.compareTo(data[upper])
lower++;

while (bound.compareTo(data[upper])> 0)
upper--;

if (lower < upper)
swap(data,lower++,upper--);

else lower++;
}
swap(data,upper,first);
if (first < upper-1)

quicksort(data,first,upper-1);
if (upper+1 < last)

quicksort(data,upper+1,last);
}
void quicksort(Object[] data) {

if (data.length < 2)

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Another task is scanning the array and dividing the elements between its two
subarrays. The pseudocode is vague about how this can be accomplished. In particu-
lar, it does not decide where to place an element equal to the bound. It only says that
elements are placed in the first subarray if they are less than or the same as the bound
and in the second if they are greater than or the same as the bound. The reason is that
the difference between the lengths of the two subarrays should be minimal. There-
fore, elements equal to the bound should be so divided between the two subarrays as
to make this difference in size minimal. The details of handling this depend on a par-
ticular implementation, and one such implementation is given in Figure 9.11. In this
implementation, quicksort(data[]) preprocesses the array to be sorted by locat-
ing the largest element in the array and exchanging it with the last element of the
array. Having the largest element at the end of the array prevents the index lower
from running off the end of the array. This could happen in the first inner while
loop if the bound were the largest element in the array. The index lower would be
constantly incremented, eventually causing an abnormal program termination by
raising the ArrayIndexOutOfBoundsException. Without this preprocessing, the
first inner while loop would have to be

while (lower < last && bound.compareTo(data[lower]) > 0)

The first test, however, would be necessary only in extreme cases, but it would be exe-
cuted in each iteration of this while loop.

In this implementation, the main property of the bound is used, namely, that it
is a boundary item. Hence, as befits the boundary item, it is placed on the borderline
between the two subarrays obtained as a result of one call to quicksort(). In this
way, the bound is located in its final position and can be excluded from further pro-
cessing. To ensure that the bound is not moved around, it is stashed in the first posi-
tion, and after partitioning is done, it is moved to its proper position, which is the
rightmost position of the first subarray.

Figure 9.12 contains an example of partitioning the array [8 5 4 7 6 1 6 3 8 12 10].
In the first partitioning, the largest element in the array is located and exchanged with
the last element, resulting in the array [8 5 4 7 6 1 6 3 8 10 12]. Because the last element

490 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.11 (continued)

return;
int max = 0;
// find the largest element and put it at the end of data;
for (int i = 1; i < data.length; i++)

if (((Comparable)data[max]).compareTo(data[i]) < 0)
max = i;

swap(data,data.length-1,max); // largest el is now in its
quicksort(data,0,data.length-2); // final position;

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is already in its final position, it does not have to be processed anymore. Therefore, in
the first partitioning, lower = 1, upper = 9, and the first element of the array, 8, is ex-
changed with the bound, 6 in position 4, so that the array is [6 5 4 7 8 1 6 3 8 10 12]
(Figure 9.12b). In the first iteration of the outer while loop, the inner while loop

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 491

FIGURE 9.12 Partitioning the array [8 5 4 7 6 1 6 3 8 12 10] with quicksort().

8 5 4 7 6 1 6 3 8 12 10

6 5 4 7 8 1 6 3 8 10 12

6 5 4 7 8 1 6 3 8 10 12

6 5 4 3 8 1 6 7 8 10 12

6 5 4 3 8 1 6 7 8 10 12

6 5 4 3 6 1 8 7 8 10 12

6 5 4 3 6 1 8 7 8 10 12

6 5 4 3 6 1 8 7 8 10 12

1 5 4 3 6 6 8 7 8 10 12

4 5 1 3 6 7 8 8 10

lower upper

lower upper

lower upper

lower upper

lower upper

lower upper

upper lower

upper lower

lower lowerupper upper

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

moves lower to position 3 with 7, which is greater than the bound. The second inner
while loop moves upper to position 7 with 3, which is less than the bound (Figure
9.12c). Next the elements in these two cells are exchanged, giving the array [6 5 4 3 8 1 6
7 8 10 12] (Figure 9.12d). Then lower is incremented to 4 and upper is decremented
to 6 (Figure 9.12e). This concludes the first iteration of the outer while loop.

In its second iteration, neither of the two inner while loops modifies any of the
two indexes because lower indicates a position occupied by 8, which is greater than
the bound, and upper indicates a position occupied by 6, which is equal to the
bound. The two numbers are exchanged (Figure 9.12f), and then both indexes are up-
dated to 5 (Figure 9.12g).

In the third iteration of the outer while loop, lower is moved to the next posi-
tion containing 8, which is greater than the bound, and upper stays in the same posi-
tion because 1 in this position is less than the bound (Figure 9.12h). But at that point,
lower and upper cross each other, so no swapping takes place, and after a redundant
increment of lower to 7, the outer while loop is exited. At that point, upper is the
index of the rightmost element of the first subarray (with the element not exceeding
the bound), so the element in this position is exchanged with the bound (Figure
9.12i). In this way, the bound is placed in its final position and can be excluded from
subsequent processing. Therefore, the two subarrays that are processed next are the
left subarray, with elements to the left of the bound, and the right subarray, with ele-
ments to its right (Figure 9.12j). Then partitioning is performed for these two subar-
rays separately, and then for subarrays of these subarrays, until subarrays have less
than two elements. The entire process is summarized in Figure 9.13, in which all the
changes in all current arrays are indicated.

The worst case occurs if in each invocation of quicksort(), the smallest (or
largest) element of the array is chosen for the bound. This is the case if we try to sort
the array [5 3 1 2 4 6 8]. The first bound is 1, and the array is broken into an empty
array and the array [3 5 2 4 6] (the largest number, 8, does not participate in partition-
ing). The new bound is 2, and again only one nonempty array, [5 3 4 6], is obtained as
the result of partitioning. The next bound and array returned by partition are 3 and [5
4 6], then 4 and [5 6], and finally 5 and [6]. The algorithm thus operates on arrays of
size n – 1, n – 2, . . . , 2. The partitions require n – 2 + n – 3 + · · · + 1 comparisons, and
for each partition, only the bound is placed in the proper position. This results in a run
time equal to O(n2), which is hardly a desirable result, especially for large arrays or files.

The best case is when the bound divides an array into two subarrays of approxi-
mately length �

n
2

�. If the bounds for both subarrays are well chosen, the partitions pro-
duce four new subarrays, each of them with approximately �

n
4

� cells. If, again, the
bounds for all four subarrays divide them evenly, the partitions give eight subarrays,
each with approximately �

n
8

� elements. Therefore, the number of comparisons per-
formed for all partitions is approximately equal to

n + 2�
n
2

� + 4�
n
4

� + 8�
n
8

� + · · · + n�
n
n

� = n(lg n +1)

which is O(n lg n). This is due to the fact that parameters in the terms of this sum (and
also the denominators) form a geometric sequence so that n = 2k for k = lg n (assum-
ing that n is a power of 2).

Now we can answer the question asked before: Is the average case, when the array
is ordered randomly, closer to the best case, n lg n, or to the worst, O(n2)? Some calcu-

492 ■ C h a p t e r 9 S o r t i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

lations show that the average case requires only O(n lg n) comparisons (see Appendix
A.3), which is the desired result. The validity of this figure can be strengthened by re-
ferring to the tree obtained after disregarding the bottom rectangle in Figure 9.13.
This tree indicates how important it is to keep the tree balanced, for the smaller the
number of levels, the quicker the sorting process. In the extreme case, the tree can be
turned into a linked list in which every nonleaf node has only one child. That rather
rare phenomenon is possible and prevents us from calling quicksort the ideal sort. But
quicksort seems to be closest to such an ideal because, as analytic studies indicate, it
outperforms other efficient sorting methods by at least a factor of 2.

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 493

FIGURE 9.13 Sorting the array [8 5 4 7 6 1 6 3 8 12 10] with quicksort().

8 5 4 7 6 1 6 3 8 10

8 5 4 7 6 1 6 3 8 10 12

6 5 4 7 8 1 6 3 8 10

6 5 4 3 8 1 6 7 8 10

6 5 4 3 6 1 8 7 8 10

1 5 4 3 6 6 8 7 8 10

1 5 4 3 6

4 5 1 3 6

4 3 1 5 6

1 3 4 5 6

8 7 8 10

7 8 8 10

8 8 10

5 61 3

1 3 4 5 6 6 7 8 8 10 12

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

How can the worst case be avoided? The partition procedure should produce arrays
of approximately the same size, which can be achieved if a good bound is chosen. This is
the crux of the matter: How can the best bound be found? Only two methods will be men-
tioned. The first method randomly generates a number between first and last. This
number is used as an index of the bound, which is then interchanged with the first element
of the array. In this method, the partition process proceeds as before. Good random num-
ber generators may slow down the execution time as they themselves often use sophisti-
cated and time-consuming techniques. Thus, this method is not highly recommended.

The second method chooses a median of three elements: the first, middle, and
last. For the array [1 5 4 7 8 6 6 3 8 12 10], 6 is chosen from the set [1 6 10], and for the
first generated subarray, the bound 4 is chosen from the set [1 4 6]. Obviously, there is
the possibility that all three elements are always the smallest (or the largest) in the
array, but it does not seem very likely.

Is quicksort the best sorting algorithm? It certainly is—usually. It is not bullet-
proof, however, and some problems have already been addressed in this section. First,
everything hinges on which element of the file or array is chosen for the bound. Ide-
ally, it should be the median element of the array. An algorithm to choose a bound
should be flexible enough to handle all possible orderings of the data to be sorted. Be-
cause some cases always slip by these algorithms, from time to time quicksort can be
expected to be anything but quick.

Second, it is inappropriate to use quicksort for small arrays. For arrays with fewer
than 30 items, insertion sort is more efficient than quicksort (Cook and Kim, 1980).
In this case the initial pseudocode can be changed to

quicksort2 (array[])
if array.length > 30

partition array into subarray1 and subarray2;
quicksort2(subarray1);
quicksort2(subarray2);

else insertionsort(array);

and the implementations changed accordingly. However, the table in Figure 9.18 later
in this chapter indicates that quicksort2() does appreciably improve the efficiency
of quicksort(), particularly for arrays that are nearly sorted.

9.3.4 Mergesort
The problem with quicksort is that its complexity in the worst case is O(n2) because it
is difficult to control the partitioning process. Different methods of choosing a bound
attempt to make the behavior of this process fairly regular; however, there is no guar-
antee that partitioning results in arrays of approximately the same size. Another strat-
egy is to make partitioning as simple as possible and concentrate on merging the two
sorted arrays. This strategy is characteristic of mergesort. It was one of the first sorting
algorithms used on a computer and was developed by John von Neumann.

The key process in mergesort is merging sorted halves of an array into one sorted
array. However, these halves have to be sorted first, which is accomplished by merging
the already sorted halves of these halves. This process of dividing arrays into two

494 ■ C h a p t e r 9 S o r t i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

halves stops when the array has fewer than two elements. The algorithm is recursive in
nature and can be summarized in the following pseudocode:

mergesort(data)
if data have at least two elements

mergesort(left half of data);
mergesort(right half of data);
merge(both halves into a sorted list);

Merging two subarrays into one is a relatively simple task, as indicated in this
pseudocode:

merge(array1, array2, array3)
i1, i2, i3 are properly initialized;
while both array2 and array3 contain elements

if array2[i2] < array3[i3]
array1[i1++] = array2[i2++];

else array1[i1++] = array3[i3++];
load into array1 the remaining elements of either array2 or array3;

For example, if array2 = [1 4 6 8 10] and array3 = [2 3 5 22], then the resulting
array1 = [1 2 3 4 5 6 8 10 22].

The pseudocode for merge() suggests that array1, array2, and array3 are
physically separate entities. However, for the proper execution of mergesort(),
array1 is a concatenation of array2 and array3 so that array1 before the execu-
tion of merge() is [1 4 6 8 10 2 3 5 22]. In this situation, merge() leads to erroneous
results, because after the second iteration of the while loop, array2 is [1 2 6 8 10]
and array1 is [1 2 6 8 10 2 3 5 22]. Therefore, a temporary array has to be used dur-
ing the merging process. At the end of the merging process, the contents of this tem-
porary array are transferred to array1. Because array2 and array3 are subarrays
of array1, they do not need to be passed as parameters to merge(). Instead, indexes
for the beginning and the end of array1 are passed, because array1 can be a part of
another array. The new pseudocode is

merge (array1, first, last)
mid = (first + last) / 2;
i1 = 0;
i2 = first;
i3 = mid + 1;
while both left and right subarrays of array1 contain elements

if array1[i2] < array1[i3]
temp[i1++] = array1[i2++];

else temp[i1++] = array1[i3++];
load into temp the remaining elements of array1;
load to array1 the content of temp;

The entire array1 is copied to temp and then temp is copied back to array1,
so the number of movements in each execution of merge() is always the same and
is equal to 2 · (last – first + 1). The number of comparisons depends on the
ordering in array1. If array1 is in order or if the elements in the right half

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 495

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

precede the elements in the left half, the number of comparisons is (first +
last)/2. The worst case is when the last element of one half precedes only the last
element of the other half, as in [1 6 10 12] and [5 9 11 13]. In this case, the number of
comparisons is last – first. For an n-element array, the number of comparisons
is n – 1.

The pseudocode for mergesort() is now

mergesort (data, first, last)
if first < last

mid = (first + last) / 2;
mergesort(data, first, mid);
mergesort(data, mid+1, last);
merge(data, first, last);

Figure 9.14 illustrates an example using this sorting algorithm. This pseudocode
can be used to analyze the computing time for mergesort. For an n-element array, the
number of movements is computed by the following recurrence relation:

M(1) = 0

M(n) = 2M��
n
2

�� + 2n

496 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.14 The array [1 8 6 4 10 5 3 2 22] sorted by mergesort.

1 2 3 4 5 6 8 10 22

1 8 6 4 10 5 3 2 22

5 3 2 221 8 6 4 10

1 4 6 8 10

1 8 6

1 6 8

81

6 4 10

4 10

1 8

1 8

5 3

5 3

2 22

2 22

4 10

2 3 5 22

2 223 5

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

M(n) can be computed in the following way:

M(n) = 2�2M��
n
4

�� + 2��
n
2

��� + 2n = 4M��
n
4

�� + 4n

= 4�2M��
n
8

�� + 2��
n
4

��� + 4n = 8M��
n
8

�� + 6n

= �

= 2iM��
2
n

i�� + 2in

Choosing i = lg n so that n = 2i allows us to infer

M(n) = 2iM��
2
n

i�� + 2in = nM(1) + 2n lg n = 2n lg n = O(n lg n)

The number of comparisons in the worst case is given by a similar relation:

C(1) = 0

C(n) = 2C ��
n
2

�� + n – 1

which also results in C(n) being O(n lg n).
Mergesort can be made more efficient by replacing recursion with iteration (see

the exercises at the end of this chapter) or by applying insertion sort to small portions
of an array, a technique that was suggested for quicksort. However, mergesort has one
serious drawback: the need for additional storage for merging arrays, which for large
amounts of data could be an insurmountable obstacle.

9.3.5 Radix Sort
Radix sort is a popular way of sorting used in everyday life. To sort library cards, we
may create as many piles of cards as letters in the alphabet, each pile containing au-
thors whose names start with the same letter. Then, each pile is sorted separately using
the same method; namely, piles are created according to the second letter of the au-
thors’ names. This process continues until the number of times the piles are divided
into smaller piles equals the number of letters of the longest name. This method is ac-
tually used when sorting mail in the post office, and it was used to sort 80-column
cards of coding information in the early days of computers.

When sorting library cards, we proceed from left to right. This method can also
be used for sorting mail because all ZIP codes have the same length. However, it may
be inconvenient for sorting lists of integers because they may have an unequal num-
ber of digits. If applied, this method would sort the list [23 123 234 567 3] into the list
[123 23 234 3 567]. To get around this problem, zeros can be added in front of each
number to make them of equal length so that the list [023 123 234 567 003] is sorted
into the list [003 023 123 234 567]. Another technique looks at each number as a
string of bits so that all integers are of equal length. This approach will be discussed
shortly. Still another way to sort integers is by proceeding right to left, and this
method is discussed now.

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 497

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When sorting integers, 10 piles numbered 0 through 9 are created, and initially, inte-
gers are put in a given pile according to their rightmost digit so that 93 is put in pile 3. Then,
piles are combined and the process is repeated, this time with the second rightmost digit;
in this case, 93 ends up on pile 9. The process ends after the leftmost digit of the longest
number is processed. The algorithm can be summarized in the following pseudocode:

radixsort()
for d = 1 to the position of the leftmost digit of longest number

distribute all numbers among piles 0 through 9 according to the dth digit;
put all integers on one list;

The key to obtaining a proper outcome is the way the 10 piles are implemented
and then combined. For example, if these piles are implemented as stacks, then the in-
tegers 93, 63, 64, 94 are put on piles 3 and 4 (other piles being empty):

pile 3: 63 93
pile 4: 94 64

These piles are then combined into the list 63, 93, 94, 64. When sorting them accord-
ing to the second rightmost digit, the piles are as follows:

pile 6: 64 63
pile 9: 94 93

and the resulting list is 64, 63, 94, 93. The processing is finished, but the result is an
improperly sorted list.

However, if piles are organized as queues, the relative order of elements on the list
is retained. When integers are sorted according to the digit in position d, then within
each pile, integers are sorted with regard to the part of the integer extending from
digit 1 to d – 1. For example, if after the third pass, pile 5 contains the integers 12534,
554, 3590, then this pile is ordered with respect to the two rightmost digits of each
number. Figure 9.15 illustrates another example of radix sort.

An implementation of radix sort follows. The implementation is a part of class
Sorts in which integer radix is assigned number 10 and integer digits is also as-
signed 10 (the maximum number of digits for an integer).

void radixsort(int[] data) {
int d, j, k, factor;
Queue[] queues = new Queue[radix];
for (d = 0; d < radix; d++)

queues[d] = new Queue();
for (d = 1, factor = 1; d <= digits; factor *= radix, i++) {

for (j = 0; j < data.length; j++)
queues[(data[j] / factor) % radix].enqueue(

new Integer(data[j]));
for (j = k = 0; j < radix; j++)

while (!queues[j].isEmpty())
data[k++] =

((Integer) queues[j].dequeue()).intValue();
}

}

498 ■ C h a p t e r 9 S o r t i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This algorithm does not rely on data comparison as did the previous sorting
methods. For each integer from data, two operations are performed: division by a
factor to disregard digits following digit i being processed in the current pass and
division modulo radix (equal to 10) to disregard all digits preceding i for a total of
2ndigits = O(n) operations. The operation div can be used, which combines both
/ and %. In each pass, all integers are moved to piles and then back to data for a total
of 2ndigits = O(n) moves. The algorithm requires additional space for piles, which

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 499

FIGURE 9.15 Sorting the list 10, 1234, 9, 7234, 67, 9181, 733, 197, 7, 3 with radix sort.

data = [10 1234 9 7234 67 9181 733 197 7 3]

7
3 7234 197

10 9181 733 1234 67 9
piles: 0 1 2 3 4 5 6 7 8 9

pass 1

data = [10 9181 733 3 1234 7234 67 197 7 9]

9 7234
7 1234
3 10 733 67 9181 197

piles: 0 1 2 3 4 5 6 7 8 9

pass 2

data = [3 7 9 10 733 1234 7234 67 9181 197]

piles: 67
10

9
7 197 7234 773
3 9181 1234
0 1 2 3 4 5 6 7 8 9

pass 3

data = [3 7 9 10 67 9181 197 1234 7234 733]

piles: 733
197

67
10

9
7
3 1234 7234 9181
0 1 2 3 4 5 6 7 8 9

pass 4

data = [3 7 9 10 67 197 733 1234 7234 9181]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

if implemented as linked lists, is equal to 4n bytes for reference fields. Our implemen-
tation uses only for loops with counters; therefore, it requires the same amount of
passes for each case: best, average, and worst. The body of the only while loop is al-
ways executed n times to dequeue integers from all queues.

The foregoing discussion treated integers as combinations of digits. But as al-
ready mentioned, they can be regarded as combinations of bits. This time, division
and division modulo are not appropriate, because for each pass, one bit for each num-
ber has to be extracted. In this case, only two queues are required.

An implementation can be given as follows:

void bitRadixsort(int[] data) {
int d, j, k, factor, mask = 1;
Queue[] queues = new Queue[2];
queues[0] = new Queue();
queues[1] = new Queue();
for (d = 1; d <= bits; d++) {

for (j = 0; j < data.length; j++)
queues[(data[j] & mask) == 0 ? 0 : 1].enqueue(

new Integer(data[j]));
mask <<= 1;
k = 0;
while (!queues[0].isEmpty())

data[k++] = ((Integer)queues[0].dequeue()).intValue();
while (!queues[1].isEmpty())

data[k++] = ((Integer)queues[1].dequeue()).intValue();
k = 0;

}
}

Division is replaced here by the bitwise-and operation &. The variable mask has
one bit set to 1 and the rest are set to 0. After each iteration, this 1 is shifted to the left.
If data[j] & mask has a nonzero value, then data[j] is put in queues[1]; other-
wise, it is put in queues[0]. Bitwise and is much faster than integer division, but this
time 31 passes are needed; before it was only 10 (31 passes because only positive inte-
gers can be meaningfully processed with radix sort). This means 31n data movements
as opposed to 10n, and quicker operations cannot outweigh a larger number of
moves: bitRadixsort() is slower, much slower, than radixsort().

The problem is caused by the implementation of queues. They are implemented
as linked lists, and for each item included in a particular queue, a new node has to be
created and attached to the queue, and for each item copied back to the data, the
node has to be detached from the queue. Although theoretically obtained perfor-
mance O(n) is truly impressive, it does not include operations on queues, although
overall efficiency hinges upon the efficiency of queue implementation.

A better implementation is an array of size n for each queue, which requires cre-
ating these queues only once. The efficiency of the algorithm depends only on the
number of exchanges (copying to and from queues). However, if radix r is a large

500 ■ C h a p t e r 9 S o r t i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

number and a large amount of data has to be sorted, then this solution requires r
queues of size n, and the number (r + 1) · n (original array included) may be unrealis-
tically large.

A better solution uses one integer array queues of size n representing linked lists
of indexes of numbers belonging to particular queues. Cell i of the array queueHeads
contains an index of the first number in data that belongs to this queue, whose dth
digit is i. queueTails[] contains a position in data of the last number whose dth
digit is i. Figure 9.16 illustrates the situation after the first pass, for d = 1. queue-
Heads[4] is 1, which means that the number in position 1 in data, 1234, is the first
number found in data with 4 as the last digit. Cell queues[1] contains 3, which
is an index of the next number in data with 4 as the last digit, 7234. Finally,
queues[3] is –1 to indicate the end of the numbers meeting this condition.

The next stage orders data according to information gathered in queues. It
copies all the data from the original array to some temporary storage and then back to
this array. To avoid the second copy, two arrays can be used, constituting a two-
element circular linked list. After copying, the reference to the list is moved to the next
node, and the array in this node is treated as storage of numbers to be sorted. The im-
provement is significant because the new implementation runs at least three times
faster than the implementation that uses queues (see Figure 9.18 later in this chapter).

S e c t i o n 9 . 3 E f f i c i e n t S o r t i n g A l g o r i t h m s ■ 501

FIGURE 9.16 An implementation of radix sort.

0

10

5 –1 6 1 –1 –1 4 –1 2

0 1 2 3 4 5 6 7 8 9

0 5 –1 9 3 –1 –1 8 –1 2

0 1 2 3 4 5 6 7 8 9

9181 733 3 1234 7234 67 197 7 9 99

10 1234 9 7234 67 9181 733 197 7 3 99

0

data

queues

queueHeads queueTails

1 2 3 4 5 6 7 8 9 10

–1 3 10 –1 7 –1 9 8 –1 –1 –1

0 1 2 3 4 5 6 7 8 9 10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

502 ■ C h a p t e r 9 S o r t i n g

9.4 SORTING IN java.util

Java provides two sets of versions of sorting methods: one for arrays and one for
lists.

The first set of sorting methods is given in the utility class Arrays. The class
Arrays includes methods for processing arrays, in particular, methods for searching
arrays for elements with binary search, methods for filling arrays with a particular
value, a method for converting an array into a list, and sorting methods. All the sort-
ing methods in Arrays implement a version of the quicksort algorithm. The sorting
methods are provided for arrays with elements of all elementary types except
Boolean. For each type, there are two versions, one for sorting an entire array and
one for sorting a subarray. For example, for integer arrays there are two sorting
methods:

public static void sort(int[] a);
public static void sort(int[] a, int first, int last);

An example of sorting an integer array, integer subarray, and a character array is given
in Figure 9.17. The class Arrays also includes four generic sorting methods:

public static void sort(Object[] a);
public static void sort(Object[] a, int first, int last);
public static void sort(Object[] a, Comparator c);
public static void sort(Object[] a, int first, int last, Comparator c);

Quicksort implemented in Arrays’ sorting methods is based on comparison of
elements. For basic data types, the comparison is obvious, but for objects, a compari-
son criterion must be provided by the user (except for wrapper classes). For example, if
an array consists of objects of type Person that includes two fields, a string field and
an integer field, it is not obvious what it means that one Person object is less than an-
other. For this reason, the class definition should implement the compareTo()
method whose signature is included in the interface java.lang.Comparable. For
example, class Person is defined as (Figure 9.17)

class Person implements Comparable { . . . }

There are two possible problems. First, there may be null objects present in an
array, in which case the program crashes because compareTo() would be searched
for in the null objects, as in

null.compareTo(someObject);

To prevent this from happening, a two-argument comparison method should be
used, as in

compare(null,someObject);

Second, the user may want to apply another comparison criterion so that, for exam-
ple, the Person objects can be ordered not by name but by age. One solution was
proposed in Section 7.1.8 by defining two classes with their own versions of

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 9 . 4 S o r t i n g i n java.util ■ 503

FIGURE 9.17 Demonstration of sorting functions.

import java.io.*;
import java.util.*;

class Person implements Comparable {
private String name;
public int age;
public Person(String s, int i) {

name = s; age = i;
}
public Person() {

this("",0);
}
public String toString() {

return "(" + name + ", " + age + ")";
}
public int compareTo(Object p) {

return name.compareTo(((Person)p).name);
}

}

class PersonComparator implements Comparator {
public int compare(Object ob1, Object ob2) {

if (ob1 == ob2)
return 0;

else if(ob1 == null)
return -1;

else if (ob2 == null)
return 1;

return ((Person)ob1).age - ((Person)ob2).age;
}

}

class testSorts {
public static void main(String[] ar) {

int[] intArr1 = {4, 6, 7, 4, 2};
int[] intArr2 = {4, 6, 7, 4, 2};
char[] charArr = {'a', 'n', 'd', 'v', 'a'};
Arrays.sort(intArr1); // intArr1 = [2, 4, 4, 6, 7]
for (int i = 0; i < intArr1.length; i++)

System.out.print(intArr1[i] + " ");
System.out.println();

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

504 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.17 (continued)

Arrays.sort(intArr2,1,intArr2.length-2); // intArr2 = [4, 6, 7, 4, 2]
Arrays.sort(charArr); // charArr = ['a', 'a', 'd', 'n', 'v']
Person[] persons1 = {new Person("Tom",50), new Person("Lili",29),

new Person("Jeff",44)};
Person[] persons2 = {new Person("Tom",50), new Person("Lili",29),

new Person("Jeff",44), null};
Vector personVector = new Vector();
LinkedList personLList1 = new LinkedList();
LinkedList personLList2 = new LinkedList();
ArrayList personAList = new ArrayList();
for (int i = 0; i < persons1.length; i++) {

personVector.add(persons1[i]);
personLList1.add(persons1[i]);
personLList2.add(persons1[i]);
personAList.add(persons1[i]);

}
Collections.sort(personVector);
System.out.println("personVector = " + personVector);
// personVector = [(Jeff, 44), (Lili, 29), (Tom, 50)]
Collections.sort(personLList1);
// personLList1 = [(Jeff, 44), (Lili, 29), (Tom, 50)]
Collections.sort(personLList2,new PersonComparator());
// personLList2 = [(Lili, 29), (Jeff, 44), (Tom, 50)]
Collections.sort(personAList);
// personAList = [(Jeff, 44), (Lili, 29), (Tom, 50)]
Arrays.sort(persons1);
// persons1 = [(Jeff, 44), (Lili, 29), (Tom, 50)]
Arrays.sort(persons2,new PersonComparator());
// persons2 = [null, (Lili, 29), (Jeff, 44), (Tom, 50)]

Integer[] a = {new Integer(1), new Integer(4),
new Integer(2), new Integer(5)};

(new Sorts()).insertionsort(a); // a = [1, 2, 4, 5]
Person[] persons3 = {new Person("Tom",50), new Person("Lili",29),

new Person("Jeff",44)};
(new Sorts()).insertionsort(persons3);
// persons3 = [(Lili, 29), (Jeff, 44), (Tom, 50)]

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

compareTo(). But this still does not solve the problem of null objects. The solu-
tion is in defining a comparator for a particular class by extending the interface
java.util.Comparator, which includes a signature of the method compare().
An example of a PersonComparator is given in Figure 9.17. To apply a compara-
tor, a sorting method has to be given an instance of the comparator to use the com-
pare() method in sorting an array. If a comparator is not provided, the sorting
method uses the compareTo() method.

Another set of sorting methods is included in the class java.util.Collections
and consists of two methods:

public static void sort(List lst);
public static void sort(List lst, Comparator comp);

The two sorting methods implement mergesort and can be applied to vectors,
array lists, and linked lists. Some examples are given in Figure 9.17. The figure also
demonstrates an application of insertionsort(), discussed in Section 9.1.1, to an
array of Integer objects and Person objects.

9.5 CONCLUDING REMARKS

Figure 9.18 compares the run times for different sorting algorithms and different num-
bers of integers being sorted. They were all run on a PC. At each stage, the number of
integers has been doubled to see the factors by which the run times raise. These factors
are included in each column except for the first three columns, and are shown along
with the run times. The factors are rounded to one decimal place, whereas run times
(in seconds) are rounded to two decimal places. For example, heap sort requires .38 sec
to sort an array of 10,000 Integer objects in ascending order, and .72 sec to sort
20,000 Integer objects, also in ascending order. Doubling the amount of data is asso-
ciated with the increase of run time by a factor of .72/.38 = 1.8947 ≈ 1.9, and the num-
ber 1.9 follows .72 in the fifth column.

Figure 9.18 indicates that the run time for elementary sorting methods, which are
squared algorithms, grows approximately by a factor of 4 after the amount of data is
doubled, whereas the same factor for nonelementary methods, whose complexity if
O(n lg n) is approximately 2. This is also true for the four implementations of radix
sort, whose complexity equals 2ndigits or 2nbits. The table also shows that quick-
sort is the fastest algorithm among all sorting methods; most of the time, it runs at least
twice as fast as any other algorithm.

It is important, however, that if possible, wrapper types should be avoided in sort-
ing, and basic cases should be used instead to increase efficiency of the sorting routine.
Figure 9.18 indicates times for sorting routines applied to arrays of Integer objects.
Sorting arrays of integers is approximately 15 times faster.

S e c t i o n 9 . 5 C o n c l u d i n g R e m a r k s ■ 505

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

506 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.18 Comparison of run times for different sorting algorithms and different numbers of
integers to be sorted.

10
,0

00
20

,0
00

A
sc

en
di

n
g

R
an

do
m

D
es

ce
n

di
n

g
A

sc
en

di
n

g
R

an
do

m
D

es
ce

n
di

n
g

i
n
s
e
r
t
i
o
n
s
o
r
t

.0
5

15
.8

2
26

.9
2

.0
6

1.
2

1
m

 1
4.

83
4.

7
1

m
 4

0.
57

3.
7

s
e
l
e
c
t
i
o
n
s
o
r
t

46
.8

6
51

.4
6

59
.9

1
3

m
 1

3.
5

4.
1

3
m

 4
4.

92
4.

4
3

m
 2

3.
56

4.
0

b
u
b
b
l
e
s
o
r
t

43
.0

6
1

m
 1

1.
24

1
m

 1
3.

05
2

m
 5

8.
51

4.
1

4
m

 4
7.

81
4.

0
5

m
 3

.9
0

4.
2

S
h
e
l
l
s
o
r
t

.1
1

.2
2

.1
1

.2
2

2.
0

.4
9

2.
2

.3
3

3.
0

h
e
a
p
s
o
r
t

.3
8

.3
9

.2
8

.7
2

1.
9

.8
8

2.
3

.7
2

2.
8

m
e
r
g
e
s
o
r
t

.2
7

.3
3

.2
2

.5
0

1.
8

.6
6

2.
0

.4
9

2.
2

q
u
i
c
k
s
o
r
t

.1
1

.1
7

.1
1

.1
6

1.
5

.4
4

2.
6

.2
2

2.
0

q
u
i
c
k
s
o
r
t
2

.0
6

.1
6

.1
1

.1
1

1.
8

.3
8

2.
4

.1
6

1.
5

r
a
d
i
x
s
o
r
t

1.
20

1.
05

1.
16

2.
31

1.
9

1.
59

1.
5

2.
20

1.
9

b
i
t
R
a
d
i
x
s
o
r
t

2.
97

1.
92

2.
47

6.
54

2.
2

4.
50

2.
7

5.
65

2.
3

r
a
d
i
x
s
o
r
t
2

.1
1

.1
1

.1
1

.2
1

1.
9

.2
8

2.
0

.2
2

2.
0

b
i
t
R
a
d
i
x
s
o
r
t
2

.3
3

.1
7

.2
7

.1
4

1.
3

.4
4

2.
2

.4
4

1.
6

40
,0

00
80

,0
00

A
sc

en
di

n
g

R
an

do
m

D
es

ce
n

di
n

g
A

sc
en

di
n

g
R

an
do

m
D

es
ce

n
di

n
g

i
n
s
e
r
t
i
o
n
s
o
r
t

.1
1

18
6

m
 8

.9
3

5.
0

7
m

 1
1.

82
4.

3
.1

1
1.

0
29

 m
 2

.7
3

4.
7

29
 m

 3
6.

13
4.

2
s
e
l
e
c
t
i
o
n
s
o
r
t

14
 m

 8
.1

1
4.

4
16

 m
 1

2.
23

4.
3

13
 m

 3
1.

52
4.

0
56

 m
 8

.0
9

4.
0

67
 m

 2
1.

31
4.

2
56

 m
 4

9.
94

4.
2

b
u
b
b
l
e
s
o
r
t

12
 m

 5
8.

95
4.

4
20

 m
 5

3.
62

4.
4

20
 m

 1
7.

92
4.

0
52

 m
 6

.9
0

4.
0

87
 m

 9
.6

2
4.

2
83

 m
 6

.6
8

4.
1

S
h
e
l
l
s
o
r
t

.6
0

2.
7

1.
15

2.
3

.7
2

2.
2

1.
32

2.
2

2.
75

2.
4

1.
59

2.
2

h
e
a
p
s
o
r
t

2.
63

2.
2

2.
03

2.
3

1.
59

2.
2

3.
63

2.
3

4.
56

2.
2

3.
35

2.
1

m
e
r
g
e
s
o
r
t

1.
59

2.
2

1.
48

2.
2

.9
9

2.
0

2.
19

2.
1

3.
35

2.
3

2.
20

2.
2

q
u
i
c
k
s
o
r
t

.4
4

2.
7

93
2.

1
.4

4
2.

0
.9

3
2.

1
2.

04
2.

2
.9

9
2.

3
q
u
i
c
k
s
o
r
t
2

.3
3

3.
0

.8
8

2.
3

.3
3

2.
0

.7
7

2.
3

1.
92

2.
2

.8
2

2.
2

r
a
d
i
x
s
o
r
t

5.
22

2.
3

4.
51

2.
8

5.
60

2.
6

10
.9

8
2.

1
10

.8
2

2.
4

10
.0

0
1.

8
b
i
t
R
a
d
i
x
s
o
r
t

9.
94

1.
5

11
.3

1
2.

2
17

.6
8

3.
1

28
.4

0
2.

9
31

.0
4

2.
7

29
.0

0
1.

6
r
a
d
i
x
s
o
r
t
2

.5
5

2.
6

.6
1

2.
2

.5
5

2.
5

1.
16

2.
1

1.
26

2.
1

1.
15

2.
1

b
i
t
R
a
d
i
x
s
o
r
t
2

.9
3

2.
1

1.
15

1.
3

.8
8

2.
0

1.
83

2.
0

2.
42

2.
1

1.
98

 2
.3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 9 . 6 C a s e S t u d y : A d d i n g P o l y n o m i a l s ■ 507

9.6 CASE STUDY: ADDING POLYNOMIALS

Adding polynomials is a common algebraic operation and is usually a simple calculation.
It is a known rule that, to add two terms, they must contain the same variables raised to
the same powers, and the resulting term retains these variables and powers, except that its
coefficient is computed by simply adding coefficients of both terms. For example,

3x2y3 + 5x2y3 = 8x2y3

but 3x2y3 and 5x2z3 or 3x2y3 and 5x2y2 cannot be conveniently added because the first
pair of terms has different variables, and the variables in the second pair are raised to
different powers. We would like to write a program that computes the sum of two
polynomials entered by the user. For example, if

3x2y3 + 5x2w3 – 8x2w3z4 + 3

and
–2x2w3 + 9y – 4xw – x2y3 + 8x2w3z4 – 4

are entered, the program should output

–4wx + 3w3x2 + 2x2y3 + 9y – 1

To be more exact, the input and output for this problem should be as follows:

Enter two polynomials ended with a semicolon:
3x2y3 + 5x2w3 - 8x2w3z4 + 3;
- 2x2w3 + 9y - 4xw - x2y3 + 8x2w3z4 - 4;
The result is:
- 4wx + 3w3x2 + 2x2y3 + 9y - 1

It has to be observed that the order of variables in a term is irrelevant; for example,
x2y3 and y3x2 represent exactly the same term. Therefore, before any addition is per-
formed, the program should order all of the variables in each term to make the terms
homogeneous and add them properly. Thus, there are two major tasks to be imple-
mented: ordering variables in each term of both polynomials and adding the polyno-
mials. But before we embark on the problem of implementing the algorithms, we have
to decide how to represent polynomials in Java. Out of many possibilities, a linked list
representation is chosen with each node on the list representing one term. A term con-
tains information about a coefficient, variables, and exponents included in the term.
Because each variable and its exponent belong together, they are also kept together in
an object of type Variable. Also, because the number of variables can vary from one
term to another, an array list of the Variable objects is used to store in one node in-
formation concerning variables in one term. A polynomial is simply a linked list of
such nodes. For example,

– x2y + y – 4x2y 3 + 8x2w3z4

is represented by the list in Figure 9.19a, which in Java looks like the list in Figure 9.19b.
The first operation to perform on these polynomials is to order variables in their

terms. After a polynomial is entered, each term is sorted separately by sorting array
lists accessible from the nodes of the list.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The second task is to add the polynomials. The process begins by creating a
linked list consisting of copies of nodes of the polynomials to be added. In this way,
the two polynomials are not affected and can be used in other operations.

Now, addition is reduced to simplification. In the linked list, all equal terms
(equal except for the coefficients) have to be collapsed together, and redundant nodes
must be eliminated. For example, if the list being processed is as in Figure 9.20a, then
the resulting list in Figure 9.20b results from the simplification operation.

When printing the result, remember that not everything should be printed. If the
coefficient is zero, a term is omitted. If it is one or minus one, the term is printed, but
the coefficient is not included (except for the sign), unless the term has just a coeffi-
cient. If an exponent is one, it is also omitted.

Another printing challenge is ordering terms in a polynomial—that is, convert-
ing a somewhat disorganized polynomial

–z2 – 2w2x3 + 5 + 9y – 5z – 4wx – x2y3 + 3w2x3z4 + 10yz

into the tidier form

–4wx – 2w2x3 + 3w2x3z4 – x2y3 + 9y + 10yz – 5z – z2 + 5

To accomplish this, the linked list representing a polynomial has to be sorted.
Figure 9.21 contains the complete code for the program to add polynomials.

508 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.19 A linked list representation of the expression –x2y + y – 4x2y 3 + 8x2w3z4.

(a)

(b)

–1

8

x y

2 1
1

y

1
–4

x y

2 3
8

x w

2 3

z

4
/

–41

/

1

/

y

1

x

2

y

3

x

2

y

1

w

3

x

2

z

4

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 9 . 6 C a s e S t u d y : A d d i n g P o l y n o m i a l s ■ 509

FIGURE 9.20 Transforming (a) a list representing the expression –x2y3 + 3x2y3 + y2z + 2x2y3 – 2y2z
into (b) a list representing a simplified version of this expression, 4x2y3 – y2z.

–1
x

2

y

3
3

x

2

y

3
1

y

2

z

1

(a)

(b)

2
x

2

y

3
–2

y

2

z

1

4
x

2

y

3
–1

y

2

z

1

FIGURE 9.21 Implementation of the program to add polynomials.

import java.io.*;

import java.util.*;

class Variable implements Comparable, Cloneable {

public char id;

public int exp;

public Variable() {

}

public Variable(char c, int i) {

id = c; exp = i;

}

public int compareTo(Object v) {

return id - ((Variable)v).id;

}

public boolean equals(Object v) {

return id == ((Variable)v).id && exp == ((Variable)v).exp;

}

public Object clone() {

return new Variable(id,exp);

}

}

class Term implements Comparable, Cloneable {

public Term() {

}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

510 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.21 (continued)

public int coeff;

public ArrayList vars = new ArrayList();

public Object clone() {

Term t = new Term();

t.coeff = coeff;

t.vars = (ArrayList) vars.clone();

for (int i = 0; i < vars.size(); i++)

t.vars.set(i,((Variable)vars.get(i)).clone());

return t;

}

/** two terms are equal if all variables are the same and

* corresponding variables are raised to the same power;

* the first cell of the node containing a term is excluded

* from comparison, since it stores coefficient of the term;

*/

public boolean equals(Object term) {

int i;

for (i = 0; i < Math.min(vars.size(),((Term)term).vars.size()) &&

vars.get(i).equals(((Term)term).vars.get(i)); i++);

return i == vars.size() && vars.size() == ((Term)term).vars.size();

}

public int compareTo(Object term2) {

if (vars.size() == 0)

return 1; // this is just a coefficient;

else if (((Term)term2).vars.size() == 0)

return -1; // term2 is just a coefficient;

Variable var1, var2;

for (int i = 0; i < Math.min(vars.size(),((Term)term2).vars.size()); i++) {

var1 = (Variable)vars.get(i);

var2 = (Variable)((Term)term2).vars.get(i);

if (var1.id < var2.id)

return -1; // this precedes term2;

else if (var2.id < var1.id)

return 1; // term2 precedes this;

else if (var1.exp < var2.exp)

return -1; // this precedes term2;

else if (var2.exp < var1.exp)

return 1; // term2 precedes this;

}

return vars.size() - ((Term)term2).vars.size();

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 9 . 6 C a s e S t u d y : A d d i n g P o l y n o m i a l s ■ 511

FIGURE 9.21 (continued)

class Polynomial {

private LinkedList terms = new LinkedList();

public Polynomial() {

}

private void error(String s) {

System.out.println(s);

Runtime.getRuntime().exit(-1);

}

public Polynomial add(Polynomial polyn2) {

ListIterator p1, p2;

Polynomial result = new Polynomial();

int i;

for (p1 = terms.listIterator(); p1.hasNext();) // create new polynomial

result.terms.add(((Term)p1.next()).clone());// out of copies

for (p2 = polyn2.terms.listIterator(); p2.hasNext();) // of this

result.terms.add(((Term)p2.next()).clone());// polynomial and polyn2;

for (i = 0, p1 = result.terms.listIterator(); p1.hasNext();

i++, p1 = result.terms.listIterator(i)) {

Term term1 = (Term) p1.next();

for (p2 = p1; p2.hasNext();) {

Term term2 = (Term) p2.next();

if (term1.equals(term2)) {

term2.coeff += term1.coeff;

result.terms.remove(term1);

if (term2.coeff == 0) // remove terms with zero

result.terms.remove(term2); // coefficients;

i = -1; // to become i = 0 after autoincrement;

break;

}

}

}

Collections.sort(result.terms);

return result;

}

public void get(InputStream fIn) {

int ch = ' ', i, sign, exp;

boolean coeffUsed;

char id;

Term term = new Term();

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

512 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.21 (continued)

try {

while (ch > -1) {

coeffUsed = false;

while (true)

if (ch > -1 && Character.isWhitespace((char)ch)) // skip

ch = fIn.read(); // blanks;

else break;

if (!Character.isLetterOrDigit((char)ch) &&

ch != ';' && ch != '-' && ch != '+')

error("Wrong character entered2");

if (ch == -1)

break;

sign = 1;

while (ch == '-' || ch == '+') { // first get sign(s) of Term

if (ch == '-')

sign *= -1;

ch = fIn.read();

while (Character.isWhitespace((char)ch))

ch = fIn.read();

}

if (Character.isDigit((char)ch)) { // and then its coefficient;

String number = "";

while (Character.isDigit((char)ch)) {

number += (char) ch;

ch = fIn.read();

}

while (Character.isWhitespace((char)ch))

ch = fIn.read();

term.coeff = sign * Integer.valueOf(number).intValue();

coeffUsed = true;

}

else term.coeff = sign;

for (i = 0; Character.isLetterOrDigit((char)ch); i++) {

id = (char) ch; // process this term:

ch = fIn.read(); // get a variable name

if (Character.isDigit((char)ch)) { // and an exponent

String number = ""; // (if any);

while (Character.isDigit((char)ch)) {

number += (char) ch;

ch = fIn.read();

}

exp = Integer.valueOf(number).intValue();

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 9 . 6 C a s e S t u d y : A d d i n g P o l y n o m i a l s ■ 513

FIGURE 9.21 (continued)

while (Character.isWhitespace((char)ch))

ch = fIn.read();

}

else exp = 1;

term.vars.add(new Variable(id,exp));

}

terms.add(term.clone());

term.vars = new ArrayList();

while (Character.isWhitespace((char)ch))

ch = fIn.read();

if (ch == ';') // finish if a semicolon is entered;

if (coeffUsed || i > 0)

break;

else error("Term is missing"); // e.g., 2x - ; or just ';'

else if (ch != '-' && ch != '+') // e.g., 2x 4y;

error("wrong character entered");

}

} catch (IOException io) {

}

for (Iterator p = terms.iterator(); p.hasNext();) {

term = (Term) p.next(); // order alphabetically variables

if (term.vars.size() > 1) // in each term separately;

Collections.sort(term.vars);

}

}

public void display() {

boolean afterFirstTerm = false;

for (Iterator it = terms.iterator(); it.hasNext();) {

Term term = (Term) it.next();

System.out.print(" ");

if (term.coeff < 0) // put '-' before polynomial

System.out.print("-"); // and between terms (if needed);

else if (afterFirstTerm) // don't put '+' in front of

System.out.print("+"); // polynomial;

afterFirstTerm = true;

System.out.print(" "); // print a coefficient if

if (term.vars.size() == 0 || // the term has only

Math.abs(term.coeff) != 1) // a coefficient or coefficient

System.out.print(Math.abs(term.coeff)); // is not 1 or -1;

for (int i = 1; i <= term.vars.size(); i++) {

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

514 ■ C h a p t e r 9 S o r t i n g

FIGURE 9.21 (continued)

Variable var = (Variable) term.vars.get(i-1);

System.out.print(var.id); // print a variable name

if (var.exp != 1) // and an exponent, only

System.out.print(var.exp); // if it is not 1.

}

}

System.out.println();

}

}

class AddPolyn {

static public void main(String[] a) {

Polynomial polyn1 = new Polynomial(), polyn2 = new Polynomial();

System.out.println("Enter two polynomials, each ended with a semicolon:");

polyn1.get(System.in);

polyn2.get(System.in);

System.out.println("The result is:");

polyn1.add(polyn2).display();

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 9 . 7 E x e r c i s e s ■ 515

9.7 EXERCISES

1. Many operations can be performed faster on sorted than on unsorted data. For which
of the following operations is this the case?

a. checking whether one word is an anagram of another word, e.g., plum and lump

b. finding an item with a minimum value

c. computing an average of values

d. finding the middle value (the median)

e. finding the value that appears most frequently in the data

2. The method bubblesort() is inefficient because it continues execution after an
array is sorted by performing unnecessary comparisons. Therefore, the number of
comparisons in the best and worst cases is the same. The implementation can be
improved by making a provision for the case when the array is already sorted. Modify
bubblesort() by adding a flag to the outer for loop indicating whether it is neces-
sary to make the next pass. Set the flag to true every time an interchange occurs,
which indicates that there is a need to scan the array again.

3. Will bubblesort() work properly if the inner loop

for (int j = n-1; j > i; --j)

is replaced by

for (int j = n-1; j > 0; --j)

What is the complexity of the new version?

4. In our implementation of bubble sort, a sorted array was scanned bottom-up to
bubble up the smallest element. What modifications are needed to make it work top-
down to bubble down the largest element?

5. A cocktail shaker sort designed by Donald Knuth is a modification of bubble sort in
which the direction of bubbling changes in each iteration: In one iteration, the small-
est element is bubbled up; in the next, the largest is bubbled down; in the next, the
second smallest is bubbled up; and so forth. Implement this new algorithm and ex-
plore its complexity.

6. Insertion sort goes sequentially through the array when making comparisons to find
a proper place for an element currently processed. Consider using binary search in-
stead and give a complexity of the resulting insertion sort.

7. Draw decision trees for all the elementary sorting algorithms as applied to the array
[a b c d].

8. Which of the algorithms discussed in this chapter is easily adaptable to singly linked
lists? To doubly linked lists?

9. What exactly are the smallest and largest numbers of movements and comparisons
to sort four elements using Shellsort(), heapsort(), quicksort(), and
mergesort()?

10. Implement and test mergesort().

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

516 ■ C h a p t e r 9 S o r t i n g

11. Show that for mergesort the number of comparisons C(n) = n lg n – 2lg n + 1.

12. Implement and analyze the complexity of the following nonrecursive version of
mergesort. First, merge subarrays of length 1 into �

n
2

� two-cell subarrays, possibly one
of them being a one-cell array. The resulting arrays are then merged into �

n
4

� four-cell
subarrays possibly, with one smaller array, having one, two, or three cells, and so on,
until the entire array is ordered. Note that this is a bottom-up approach to the merge-
sort implementation, as opposed to the top-down approach discussed in this chapter.

13. mergesort() merges the subarrays of an array that is already in order. Another
top-down version of mergesort alleviates this problem by merging only runs, sub-
arrays with ordered elements. Merging is applied only after two runs are
determined. For example, in the array [6 7 8 3 4 10 11 12 13 2], runs [6 7 8] and [3
4] are first merged to become [3 4 6 7 8], then runs [10 11 12 13] and [2] are
merged to become [2 10 11 12 13], and finally, runs [3 4 6 7 8] and [2 10 11 12 13]
are merged to become [2 3 4 6 7 8 10 11 12 13]. Implement this algorithm and in-
vestigate its complexity. A mergesort that takes advantage of a partial ordering of
data (that is, uses the runs) is called a natural sort. A version that disregards the
runs by always dividing arrays into (almost) even sections is referred to as straight
merging.

14. To avoid doubling the workspace needed when arrays are sorted with mergesort, it
may be better to use a linked list of data instead of an array. In what situations is this
approach better? Implement this technique and discuss its complexity.

15. A sorting algorithm is said to be stable if equal keys remain in the same relative order
in the output as they are in the initial array; if a[i] equals a[j] for i < j and then the
ith element ends up in the kth position, and the ith element in the mth position, then
k < m. Which sorting algorithms are stable?

16. Consider a slow sorting algorithm, which applies selection sort to every ith element
of an n-element array, where i takes on values n/2, n/3, . . ., n/n (Julstrom 1992). First,
selection sort is applied to two elements of the array, the first and the middle elements,
then to three elements, separated by the distance n/3, and so on, and finally to every
element. Compute the complexity of this algorithm.

9.8 PROGRAMMING ASSIGNMENTS

1. At the end of the section discussing quicksort, two techniques for choosing the bound
were mentioned—using a randomly chosen element from the file and using a median
element of the first, middle, and last elements of the array. Implement these two ver-
sions of quicksort, apply them to large arrays, and compare their run times.

2. Implement different versions of Shell sort by mixing simple sorts used in h-sorts, 1-
sort, and different sequences of increments. Run each version with (at least) any of
the following sequences:

a. h1 = 1, hi+1 = 3hi + 1 and stop with ht for which ht+2 $ n (Knuth)

b. 2k – 1 (Hibbard)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

B i b l i o g r a p h y ■ 517

c. 2k + 1 (Papernov and Stasevich)

d. Fibonacci numbers

e. �
n
2

� is the first increment and then hi = .75hi+1 (Dobosiewicz)

Run all these versions for at least five sets of data of sizes 1,000, 5,000, 10,000, 50,000,
and 100,000. Tabulate and plot the results and try to approximate them with some
formula expressing the complexity of these versions.

3. Extend the program from the case study to include polynomial multiplication.

4. Extend the program from the case study to include polynomial differentiation. For
the rules, see the exercises in Chapter 5.

BIBLIOGRAPHY

Sorting Algorithms

Flores, Ivan, Computer Sorting, Englewood Cliffs, NJ: Prentice Hall, 1969.

Knuth, Donald E., The Art of Computer Programming, Vol. 3: Sorting and Searching, Reading,
MA: Addison-Wesley, 1998.

Lorin, Harold, Sorting and Sort Systems, Reading, MA: Addison-Wesley, 1975.

McLuckie, Keith, and Barber, Angus, Sorting Routines for Microcomputers, Basingstoke, United
Kingdom: Macmillan, 1986.

Mehlhorn, Kurt, Data Structures and Algorithms, Vol. 1: Sorting and Searching, Berlin: Springer,
1984.

Reynolds, Carl W., “Sorts of Sorts,” Computer Language (March 1988), 49–62.

Rich, R., Internal Sorting Methods Illustrated with PL/1 Programs, Englewood Cliffs, NJ: Prentice
Hall, 1972.

Shell Sort

Dobosiewicz, W., “An Efficient Variation of Bubble Sort,” Information Processing Letters 11
(1980), 5–6.

Gale, David, and Karp, Richard M.,“A Phenomenon in the Theory of Sorting,” Journal of Computer
and System Sciences 6 (1972), 103–115.

Incerpi, Janet, and Sedgewick, Robert, “Practical Variations of Shellsort,” Information Processing
Letters 26 (1987/88), 37–43.

Poonen, Bjorn, “The Worst Case in Shellsort and Related Algorithms,” Journal of Algorithms 15
(1993), 101–124.

Pratt, Vaughan R., Shellsort and Sorting Networks, New York: Garland, 1979.

Shell, Donald L.,“A High-Speed Sorting Procedure,” Communications of the ACM 2 (1959), 30–32.

Weiss, Mark A., and Sedgewick, Robert,“Tight Lower Bounds for Shellsort,” Journal of Algorithms
11 (1990), 242–251.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Heap Sort

Carlsson, Svente, “Average-Case Results on Heapsort,” BIT 27 (1987), 2–17.

Ding, Yuzheng, and Weiss, Mark A., “Best Case Lower Bounds for Heapsort,” Computing 49
(1992), 1–9.

Wegener, Ingo, “Bottom-up-Heap Sort, A New Variant of Heap Sort Beating on Average Quick
Sort,” in Rovan, B. (ed.), Mathematical Foundations of Computer Science, Berlin: Springer,
(1990), 516–522.

Williams, John W. J., “Algorithm 232: Heapsort,” Communications of the ACM 7 (1964),
347–348.

Quicksort

Cook, Curtis R., and Kim, Do Jin, “Best Sorting Algorithm for Nearly Sorted Lists,” Communi-
cations of the ACM 23 (1980), 620–624.

Dromey, R. G., “Exploiting Partial Order with Quicksort,” Software Practice and Experience 14
(1984), 509–518.

Frazer, William D., and McKellar, Archie C., “Samplesort: A Sampling Approach to Minimal
Storage Tree Sorting,” Journal of the ACM 17 (1970), 496–507.

Hoare, Charles A. R., “Algorithm 63: Quicksort,” Communications of the ACM 4 (1961), 321.

Hoare, Charles A. R., “Quicksort,” Computer Journal 2 (1962), 10–15.

Huang, B. C., and Knuth, Donald, “A One-Way, Stackless Quicksort Algorithm,” BIT 26 (1986),
127–130.

Motzkin, Dalia, “Meansort,” Communications of the ACM 26 (1983), 250–251.

Sedgewick, Robert, Quicksort, New York: Garland, 1980.

Mergesort

Dvorak, S., and Durian, B., “Unstable Linear Time O(1) Space Merging,” The Computer Journal
31 (1988), 279–283.

Huang, B. C., and Langston, M. A., “Practical In-Place Merging,” Communications of the ACM
31 (1988), 348–352.

Knuth, Donald, “Von Neumann’s First Computer Program,” Computing Surveys 2 (1970),
247–260.

Slow Sorting

Julstrom, A., “Slow Sorting: A Whimsical Inquiry,” SIGCSE Bulletin 24 (1992), No. 3, 11–13.

Decision Trees

Moret, B. M. E., “Decision Trees and Algorithms,” Computing Surveys 14 (1982), 593–623.

518 ■ C h a p t e r 9 S o r t i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The main operation used by the searching methods described in the preceding
chapters was comparison of keys. In a sequential search, the table that stores
the elements is searched successively, and the key comparison determines

whether an element has been found. In a binary search, the table that stores the ele-
ments is divided successively into halves to determine which cell of the table to check,
and again, the key comparison determines whether an element has been found. Simi-
larly, the decision to continue the search in a binary search tree in a particular direc-
tion is accomplished by comparing keys.

A different approach to searching calculates the position of the key in the table
based on the value of the key. The value of the key is the only indication of the posi-
tion. When the key is known, the position in the table can be accessed directly, with-
out making any other preliminary tests, as required in a binary search or when
searching a tree. This means that the search time is reduced from O(n), as in a sequen-
tial search, or from O(lg n), as in a binary search, to 1 or at least O(1); regardless of the
number of elements being searched, the run time is always the same. But this is just an
ideal, and in real applications, this ideal can only be approximated.

We need to find a function h that can transform a particular key K, be it a string,
number, record, or the like, into an index in the table used for storing items of the
same type as K. The function h is called a hash function. If h transforms different keys
into different numbers, it is called a perfect hash function. To create a perfect hash
function, which is always the goal, the table has to contain at least the same number
of positions as the number of elements being hashed. But the number of elements is
not always known ahead of time. For example, a compiler keeps all variables used in
a program in a symbol table. Real programs use only a fraction of the vast number of
possible variable names, so a table size of 1,000 cells is usually adequate.

But even if this table can accommodate all the variables in the program, how can
we design a function h that allows the compiler to immediately access the position as-
sociated with each variable? All the letters of the variable name can be added together
and the sum can be used as an index. In this case, the table needs 3,782 cells (for a

519

Hashing 10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

variable K made out of 31 letters “z,” h(K) = 31 · 122 = 3,782). But even with this size,
the function h does not return unique values. For example, h(“abc”) = h(“acb”). This
problem is called collision, and is discussed later. The worth of a hash function de-
pends on how well it avoids collisions. Avoiding collisions can be achieved by making
the function more sophisticated, but this sophistication should not go too far because
the computational cost in determining h(K) can be prohibitive, and less sophisticated
methods may be faster.

10.1 HASH FUNCTIONS

The number of hash functions that can be used to assign positions to n items in a table of
m positions (for n ≤ m) is equal to mn. The number of perfect hash functions is the same
as the number of different placements of these items in the table and is equal to �

(m
m
–n

!
)!

� For
example, for 50 elements and a 100-cell array, there are 10050 = 10100 hash functions, out
of which “only” 1094 (one in a million) are perfect. Most of these functions are too un-
wieldy for practical applications and cannot be represented by a concise formula. How-
ever, even among functions that can be expressed with a formula, the number of
possibilities is vast. This section discusses some specific types of hash functions.

10.1.1 Division

A hash function must guarantee that the number it returns is a valid index to one of
the table cells. The simplest way to accomplish this is to use division modulo TSize =
sizeof(table), as in h(K) = K mod TSize, if K is a number. It is best if TSize is a prime
number; otherwise, h(K) = (K mod p) mod TSize for some prime p > TSize can be
used. However, nonprime divisors may work equally well as prime divisors provided
they do not have prime factors less than 20 (Lum et al., 1971). The division method is
usually the preferred choice for the hash function if very little is known about the keys.

10.1.2 Folding
In this method, the key is divided into several parts (which conveys the true meaning
of the word hash). These parts are combined or folded together and are often trans-
formed in a certain way to create the target address. There are two types of folding:
shift folding and boundary folding.

The key is divided into several parts and these parts are then processed using a
simple operation such as addition to combine them in a certain way. In shift folding,
they are put underneath one another and then processed. For example, a social security
number (SSN) 123-45-6789 can be divided into three parts, 123, 456, 789, and then
these parts can be added. The resulting number, 1,368, can be divided modulo TSize
or, if the size of the table is 1,000, the first three digits can be used for the address. To
be sure, the division can be done in many different ways. Another possibility is to di-
vide the same number 123-45-6789 into five parts (say, 12, 34, 56, 78, and 9), add
them, and divide the result modulo TSize.

With boundary folding, the key is seen as being written on a piece of paper that is
folded on the borders between different parts of the key. In this way, every other part

520 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

will be put in the reverse order. Consider the same three parts of the SSN: 123, 456,
and 789. The first part, 123, is taken in the same order, then the piece of paper with the
second part is folded underneath it so that 123 is aligned with 654, which is the second
part, 456, in reverse order. When the folding continues, 789 is aligned with the two
previous parts. The result is 123 + 654 + 789 = 1,566.

In both versions, the key is usually divided into even parts of some fixed size plus
some remainder and then added. This process is simple and fast, especially when bit
patterns are used instead of numerical values. A bit-oriented version of shift folding is
obtained by applying the exclusive-or operation, ˆ.

In the case of strings, one approach processes all characters of the string by “xor’ing”
them together and using the result for the address. For example, for the string “abcd,”
h(“abcd”) = “a”ˆ“b”ˆ“c”ˆ“d.” However, this simple method results in addresses between
the numbers 0 and 127. For better result, chunks of strings are “xor’ed” together rather
than single characters. These chunks are composed of the number of characters equal to
the number of bytes in an integer. An integer in Java is 4 bytes long, so h(“abcdefgh”) =
“abcd” xor “efgh” (most likely divided modulo TSize). Such a function is used in the case
study in this chapter.

10.1.3 Mid-Square Function
In the mid-square method, the key is squared and the middle or mid part of the result
is used as the address. If the key is a string, it has to be preprocessed to produce a
number by using, for instance, folding. In a mid-square hash function, the entire key
participates in generating the address so that there is a better chance that different ad-
dresses are generated for different keys. For example, if the key is 3,121, then 3,1212 =
9,740,641, and for the 1,000-cell table, h(3,121) = 406, which is the middle part of
3,1212. In practice, it is more efficient to choose a power of 2 for the size of the table
and extract the middle part of the bit representation of the square of a key. If we as-
sume that the size of the table is 1,024, then, in this example, the binary representation
of 3,1212 is the bit string 100101001010000101100001, with the middle part shown in
italics. This middle part, the binary number 0101000010, is equal to 322. This part can
easily be extracted by using a mask and a shift operation.

10.1.4 Extraction

In the extraction method, only a part of the key is used to compute the address. For
the social security number 123-45-6789, this method might use the first four digits,
1,234; the last four, 6,789; the first two combined with the last two, 1,289; or some
other combination. Each time, only a portion of the key is used. If this portion is care-
fully chosen, it can be sufficient for hashing, provided the omitted portion distin-
guishes the keys only in an insignificant way. For example, in some university settings,
all international students’ ID numbers start with 999. Therefore, the first three digits
can be safely omitted in a hash function that uses student IDs for computing table po-
sitions. Similarly, the starting digits of the ISBN code are the same for all books pub-
lished by the same publisher (e.g., 0534 for Brooks/Cole Publishing Company).
Therefore, they should be excluded from the computation of addresses if a data table
contains only books from one publisher.

S e c t i o n 1 0 . 1 H a s h F u n c t i o n s ■ 521

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10.1.5 Radix Transformation
Using the radix transformation, the key K is transformed into another number base;
K is expressed in a numerical system using a different radix. If K is the decimal num-
ber 345, then its value in base 9 (nonal) is 423. This value is then divided modulo
TSize, and the resulting number is used as the address of the location to which K
should be hashed. Collisions, however, cannot be avoided. If TSize = 100, then al-
though 345 and 245 (decimal) are not hashed to the same location, 345 and 264 are
because 264 decimal is 323 in the nonal system, and both 423 and 323 return 23 when
divided modulo 100.

10.2 COLLISION RESOLUTION

Note that straightforward hashing is not without its problems, because for almost all
hash functions, more than one key can be assigned to the same position. For example, if
the hash function h1 applied to names returns the ASCII value of the first letter of each
name (i.e., h1(name) = name[0]), then all names starting with the same letter are hashed
to the same position. This problem can be solved by finding a function that distributes
names more uniformly in the table. For example, the function h2 could add the first two
letters (i.e., h2(name) = name[0] + name[1]), which is better than h1. But even if all the
letters are considered (i.e., h3(name) = name[0] + · · · + name[length(name) – 1]), the
possibility of hashing different names to the same location still exists. The function h3
is the best of the three because it distributes the names most uniformly for the three
defined functions, but it also tacitly assumes that the size of the table has been in-
creased. If the table has only 26 positions, which is the number of different values re-
turned by h1, there is no improvement using h3 instead of h1. Therefore, one more
factor can contribute to avoiding conflicts between hashed keys, namely, the size of
the table. Increasing this size may lead to better hashing, but not always! These two
factors—hash function and table size—may minimize the number of collisions, but
they cannot completely eliminate them. The problem of collision has to be dealt with
in a way that always guarantees a solution.

There are scores of strategies that attempt to avoid hashing multiple keys to the
same location. Only a handful of these methods are discussed in this chapter.

10.2.1 Open Addressing

In the open addressing method, when a key collides with another key, the collision is
resolved by finding an available table entry other than the position (address) to which
the colliding key is originally hashed. If position h(K) is occupied, then the positions
in the probing sequence

norm(h(K) + p(1)), norm(h(K) + p(2)), . . . , norm(h(K) + p(i)), . . .

are tried until either an available cell is found or the same positions are tried repeat-
edly or the table is full. Function p is a probing function, i is a probe, and norm is a nor-
malization function, most likely, division modulo the size of the table.

The simplest method is linear probing, for which p(i) = i, and for the ith probe, the
position to be tried is (h(K) + i) mod TSize. In linear probing, the position in which a

522 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

key can be stored is found by sequentially searching all positions starting from the posi-
tion calculated by the hash function until an empty cell is found. If the end of the table is
reached and no empty cell has been found, the search is continued from the beginning
of the table and stops—in the extreme case—in the cell preceding the one from which
the search started. Linear probing, however, has a tendency to create clusters in the table.
Figure 10.1 contains an example where a key Ki is hashed to the position i. In Figure
10.1a, three keys—A5, A2, and A3—have been hashed to their home positions. Then B5
arrives (Figure 10.1b), whose home position is occupied by A5. Because the next posi-
tion is available, B5 is stored there. Next, A9 is stored with no problem, but B2 is stored in
position 4, two positions from its home address. A large cluster has already been formed.
Next, B9 arrives. Position 9 is not available, and because it is the last cell of the table, the
search starts from the beginning of the table, whose first slot can now host B9. The next
key, C2, ends up in position 7, five positions from its home address.

In this example, the empty cells following clusters have a much greater chance to
be filled than other positions. This probability is equal to (sizeof(cluster) + 1)/TSize.
Other empty cells have only 1/TSize chance of being filled. If a cluster is created, it has
a tendency to grow, and the larger a cluster becomes, the larger is the likelihood that it
will become even larger. This fact undermines the performance of the hash table for
storing and retrieving data. The problem at hand is how to avoid cluster buildup. An
answer can be found in a more careful choice of the probing function p.

One such choice is a quadratic function so that the resulting formula is

p(i) = h(K) + (–1)i–1((i + 1)/2)2 for i = 1, 2, . . . , TSize – 1

S e c t i o n 1 0 . 2 C o l l i s i o n R e s o l u t i o n ■ 523

FIGURE 10.1 Resolving collisions with the linear probing method. Subscripts indicate the home
positions of the keys being hashed.

0

1

A22

A33

4

A55

6

7

8

9

(a)

Insert: A5, A2, A3

0

1

A22

A33

B24

A55

B56

7

8

A99

(b)

B5, A9, B2

B90

1

A22

A33

B24

A55

B56

C27

8

A99

(c)

B9, C2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This rather cumbersome formula can be expressed in a simpler form as a sequence of
probes:

h(K) + i2, h(K) – i2 for i = 1, 2, . . . , (TSize – 1)/2

Including the first attempt to hash K, this results in the sequence:

h(K), h(K) + 1, h(K) – 1, h(K) + 4, h(K) – 4, . . . , h(K) + (TSize – 1)2/4,

h(K) – (TSize – 1)2/4

all divided modulo TSize. The size of the table should not be an even number, because
only the even positions or only the odd positions are tried depending on the value of h(K).
Ideally, the table size should be a prime 4j + 3 of an integer j, which guarantees the inclu-
sion of all positions in the probing sequence (Radke, 1970). For example, if j = 4, then
TSize = 19, and assuming that h(K) = 9 for some K, the resulting sequence of probes is1

9, 10, 8, 13, 5, 18, 0, 6, 12, 15, 3, 7, 11, 1, 17, 16, 2,14, 4

The table from Figure 10.1 would have the same keys in a different configuration,
as in Figure 10.2. It still takes two probes to locate B2 in some location, but for C2, only
four probes are required, not five.

524 ■ C h a p t e r 1 0 H a s h i n g

1Special care should be taken for negative numbers. When implementing these formulas, the
operator % means division modulo a modulus. However, this operator is usually implemented
as the remainder of division. For example, –6 % 23 is equal to –6, and not to 17, as expected.
Therefore, when using the operator % for the implementation of division modulo, the modu-
lus (the right operand of %) should be added to the result when the result is negative. There-
fore, (–6 % 23) + 23 returns 17.

FIGURE 10.2 Using quadratic probing for collision resolution.

0

1

A22

A33

4

A55

6

7

8

9

(a)

Insert: A5, A2, A3

0

1

A2

B2

2

A33

4

A55

B56

7

8

A99

(b)

B5, A9, B2

B90

1

A2

B2

2

A33

4

A55

B56

C2

7

8

A99

(c)

B9, C2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note that the formula determining the sequence of probes chosen for quadratic
probing is not h(K) + i2, for i = 1, 2, . . . , TSize – 1, because the first half of the sequence

h(K) + 1, h(K) + 4, h(K) + 9, . . . , h(K) + (TSize – 1)2

covers only half of the table, and the second half of the sequence repeats the first half
in the reverse order. For example, if TSize = 19, and h(K) = 9, then the sequence is

9, 10, 13, 18, 6, 15, 7, 1, 16, 14, 14, 16, 1, 7, 15, 6, 18, 13, 10

This is not an accident. The probes that render the same address are of the form

i = TSize/2 + 1 and j = TSize/2 – 1

and they are probes for which

i2 mod TSize = j2 mod TSize

that is,
(i2 – j2) mod TSize

In this case,

(i2 – j2) = (TSize/2 + 1)2 – (TSize/2 – 1)2

= (TSize2/4 + TSize + 1 – TSize2/4 + TSize – 1)

= 2TSize

and to be sure, 2TSize mod TSize = 0.
Although using quadratic probing gives much better results than linear probing,

the problem of cluster buildup is not avoided altogether, because for keys hashed to
the same location, the same probe sequence is used. Such clusters are called secondary
clusters. These secondary clusters, however, are less harmful than primary clusters.

Another possibility is to have p be a random number generator (Morris 1968),
which eliminates the need to take special care about the table size. This approach pre-
vents the formation of secondary clusters, but it causes a problem with repeating the
same probing sequence for the same keys. If the random number generator is initialized
at the first invocation, then different probing sequences are generated for the same key
K. Consequently, K is hashed more than once to the table, and even then it might not be
found when searched. Therefore, the random number generator should be initialized to
the same seed for the same key before beginning the generation of the probing se-
quence. This can be achieved in Java by using the setSeed()method with a parameter
that depends on the key; for example, p(i) = setSeed(sizeof(K)) · i or setSeed(K[0])
+ i. Also, the constructor Random() with a parameter can be used. To avoid relying on
setSeed(), a random number generator can be written that assures that each invoca-
tion generates a unique number between 0 and TSize – 1. The following algorithm was
developed by Robert Morris for tables with TSize = 2n for some integer n:

int r = 1;
generateNumber()

r = 5*r;
r = mask out n + 2 low-order bits of r;
return r/4;

S e c t i o n 1 0 . 2 C o l l i s i o n R e s o l u t i o n ■ 525

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The problem of secondary clustering is best addressed with double hashing. This
method utilizes two hash functions, one for accessing the primary position of a key, h,
and a second function, hp, for resolving conflicts. The probing sequence becomes

h(K), h(K) + hp(K), . . . , h(K) + i · hp(K), . . .

(all divided modulo TSize). The table size should be a prime number so that each po-
sition in the table can be included in the sequence. Experiments indicate that sec-
ondary clustering is generally eliminated because the sequence depends on the values
of hp, which, in turn, depend on the key. Therefore, if the key K1 is hashed to the posi-
tion j, the probing sequence is

j, j + hp(K1), j + 2 · hp(K1), . . .

(all divided modulo TSize). If another key K2 is hashed to j + hp(K1), then the next
position tried is j + hp(K1) + hp(K2), not j + 2 · hp(K1), which avoids secondary cluster-
ing if hp is carefully chosen. Also, even if K1 and K2 are hashed primarily to the same
position j, the probing sequences can be different for each. This, however, depends on
the choice of the second hash function, hp, which may render the same sequences for
both keys. This is the case for function hp(K) = K.length when both keys are of the
same length.

Using two hash functions can be time-consuming, especially for sophisticated
functions. Therefore, the second hash function can be defined in terms of the first, as
in hp(K) = i · h(K) + 1. The probing sequence for K1 is

j, 2j + 1, 5j + 2, . . .

(modulo TSize). If K2 is hashed to 2j + 1, then the probing sequence for K2 is

2j + 1, 4j + 3, 10j + 11, . . .

which does not conflict with the former sequence. Thus, it does not lead to cluster
buildup.

How efficient are all these methods? Obviously, it depends on the size of the table
and on the number of elements already in the table. The inefficiency of these methods
is especially evident for unsuccessful searches, searching for elements not in the table.
The more elements in the table, the more likely it is that clusters will form (primary or
secondary) and the more likely it is that these clusters are large.

Consider the case when linear probing is used for collision resolution. If K is not
in the table, then starting from the position h(K), all consecutively occupied cells are
checked; the longer the cluster, the longer it takes to determine that K, in fact, is not in
the table. In the extreme case, when the table is full, we have to check all the cells start-
ing from h(K) and ending with (h(K) – 1) mod TSize. Therefore, the search time in-
creases with the number of elements in the table.

There are formulas that approximate the number of times for successful and un-
successful searches for different hashing methods. These formulas were developed by
Donald Knuth and are considered by Thomas Standish to be “among the prettiest in
computer science.” Figure 10.3 contains these formulas. Figure 10.4 contains a table
showing the number of searches for different percentages of occupied cells. This table
indicates that the formulas from Figure 10.3 provide only approximations of the

526 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 0 . 2 C o l l i s i o n R e s o l u t i o n ■ 527

FIGURE 10.3 Formulas approximating, for different hashing methods, the average numbers of trials
for successful and unsuccessful searches (Knuth, 1998).

Linear Probing Quadratic Probinga Double Hashing

successful search �
1
2

� �1 + �
1 –

1
LF
�� 1 – 1n(1 – LF) – �

L
2
F
� �

L
1
F
� 1n �

1 –
1
LF
�

unsuccessful search �
1
2

� �1+ �
(1 –

1
LF)2�� �

1 –
1
LF
� – LF – 1n(1 – LF) �

1 –
1
LF
�

Load Factor LF =

a The formulas given in this column approximate any open addressing method that causes
secondary clusters to arise, and quadratic probing is only one of them.

number of elements in the table
table size

FIGURE 10.4 The average numbers of successful searches and unsuccessful searches for different
collision resolution methods.

Linear Probing Quadratic Probing Double Hashing
LF Successful Unsuccessful Successful Unsuccessful Successful Unsuccessful

0.05 1.0 1.1 1.0 1.1 1.0 1.1

0.10 1.1 1.1 1.1 1.1 1.1 1.1

0.15 1.1 1.2 1.1 1.2 1.1 1.2

0.20 1.1 1.3 1.1 1.3 1.1 1.2

0.25 1.2 1.4 1.2 1.4 1.2 1.3

0.30 1.2 1.5 1.2 1.5 1.2 1.4

0.35 1.3 1.7 1.3 1.6 1.2 1.5

0.40 1.3 1.9 1.3 1.8 1.3 1.7

0.45 1.4 2.2 1.4 2.0 1.3 1.8

0.50 1.5 2.5 1.4 2.2 1.4 2.0

0.55 1.6 3.0 1.5 2.5 1.5 2.2

0.60 1.8 3.6 1.6 2.8 1.5 2.5

0.65 1.9 4.6 1.7 3.3 1.6 2.9

0.70 2.2 6.1 1.9 3.8 1.7 3.3

0.75 2.5 8.5 2.0 4.6 1.8 4.0

0.80 3.0 13.00 2.2 5.8 2.0 5.0

0.85 3.8 22.70 2.5 7.7 2.2 6.7

0.90 5.5 50.50 2.9 11.40 2.6 10.00

0.95 10.50 200.500 3.5 22.00 3.2 20.00

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

number of searches. This is particularly evident for the higher percentages. For exam-
ple, if 90 percent of the cells are occupied, then linear probing requires 50 trials to de-
termine that the key being searched for is not in the table. However, for the full table
of 10 cells, this number is 10, not 50.

For the lower percentages, the approximations computed by these formulas are
closer to the real values. The table in Figure 10.4 indicates that if the table is 65 percent
full, then linear probing requires, on average, fewer than two trials to find an element
in the table. Because this number is usually an acceptable limit for a hash function,
linear probing requires 35 percent of the spaces in the table to be unoccupied to keep
performance at an acceptable level. This may be considered too wasteful, especially for
very large tables or files. This percentage is lower for a quadratic probing (25 percent)
and for double hashing (20 percent), but it may still be considered large. Double hash-
ing requires one cell out of five to be empty, which is a relatively high fraction. But all
these problems can be solved by allowing more than one item to be stored in a given
position or in an area associated with one position.

10.2.2 Chaining

Keys do not have to be stored in the table itself. In chaining, each position of the table
is associated with a linked list or chain of structures whose info fields store keys or
references to keys. This method is called separate chaining, and a table of references
(pointers) is called a scatter table. In this method, the table can never overflow, be-
cause the linked lists are extended only upon the arrival of new keys, as illustrated in
Figure 10.5. For short linked lists, this is a very fast method, but increasing the length
of these lists can significantly degrade retrieval performance. Performance can be
improved by maintaining an order on all these lists so that, for unsuccessful searches,

528 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.5 In chaining, colliding keys are put on the same linked list.

Insert: A5, A2, A3,

0

1

2

A33

4

5

6

7

8

9

B5, A9, B2, B9, C2

A5 B5

A9 B9

A2 B2 C2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

an exhaustive search is not required in most cases or by using self-organizing linked
lists (Pagli, 1985).

This method requires additional space for maintaining references. The table
stores only references, and each node requires one reference field. Therefore, for
n keys, n + TSize references are needed, which for large n can be a very demanding
requirement.

A version of chaining called coalesced hashing (or coalesced chaining) combines
linear probing with chaining. In this method, the first available position is found for a
key colliding with another key, and the index of this position is stored with the key
already in the table. In this way, a sequential search down the table can be avoided by
directly accessing the next element on the linked list. Each position pos of the table
includes two fields: an info field for a key and a next field with the index of the next
key that is hashed to pos. Available positions can be marked by, say, –2 in next; –1 can
be used to indicate the end of a chain. This method requires TSize · (sizeof(reference) +
sizeof(next)) more space for the table in addition to the space required for the keys.
This is less than for chaining, but the table size limits the number of keys that can be
hashed into the table.

An overflow area known as a cellar can be allocated to store keys for which there
is no room in the table.

Figure 10.6 illustrates an example where coalesced hashing puts a colliding key in
the last position of the table. In Figure 10.6a, no collision occurs. In Figure 10.6b, B5 is
put in the last cell of the table, which is found occupied by A9 when it arrives. Hence,
A9 is attached to the list accessible from position 9. In Figure 10.6c, two new colliding
keys are added to the corresponding lists.

S e c t i o n 1 0 . 2 C o l l i s i o n R e s o l u t i o n ■ 529

FIGURE 10.6 Coalesced hashing puts a colliding key in the last available position of the table.

0

1

A22

A33

4

A55

6

B27

A98

B59

(b)

B5, A9, B2

0

1

A22

A33

4

A55

6

7

8

9

(a)

0

1

A22

A33

C24

A55

B96

B27

A98

B59

(c)

B9, C2Insert: A5, A2, A3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 10.7 illustrates coalesced hashing that uses a cellar. Noncolliding keys are
stored in their home positions, as in Figure 10.7a. Colliding keys are put in the last
available slot of the cellar and added to the list starting from their home position, as in
Figure 10.7b. In Figure 10.7c, the cellar is full, so an available cell is taken from the
table when C2 arrives.

10.2.3 Bucket Addressing
Another solution to the collision problem is to store colliding elements in the same
position in the table. This can be achieved by associating a bucket with each address. A
bucket is a block of space large enough to store multiple items.

By using buckets, the problem of collisions is not totally avoided. If a bucket is al-
ready full, then an item hashed to it has to be stored somewhere else. By incorporating
the open addressing approach, the colliding item can be stored in the next bucket if it
has an available slot when using linear probing, as illustrated in Figure 10.8, or it can
be stored in some other bucket when, say, quadratic probing is used.

The colliding items can also be stored in an overflow area. In this case, each bucket
includes a field that indicates whether the search should be continued in this area or
not. It can be simply a yes/no marker. In conjunction with chaining, this marker can be
the number indicating the position in which the beginning of the linked list associated
with this bucket can be found in the overflow area (see Figure 10.9).

530 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.7 Coalesced hashing that uses a cellar.

0

1

A22

A33

4

A55

6

7

8

A99

(b)

B5, A9, B2

0

1

A22

A33

4

A55

6

7

8

9

(a)

0

1

A22

A33

4

A55

6

7

C28

A99

(c)

10

B211

B512

10

11

12

B910

B211

B512

B9, C2Insert: A5, A2, A3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 0 . 3 D e l e t i o n ■ 531

FIGURE 10.8 Collision resolution with buckets and linear probing method.

0

1

A22

A33

4

A55

6

7

8

A9

B2

C2

B5

B99

Insert: A5, A2, A3, B5, A9, B2, B9, C2

FIGURE 10.9 Collision resolution with buckets and overflow area.

0

1

A22

A33

4

A55

6

7

8

A9

B2

B5

B99

C2

10.3 DELETION

How can we remove data from a hash table? With a chaining method, deleting an ele-
ment leads to the deletion of a node from a linked list holding the element. For other
methods, a deletion operation may require a more careful treatment of collision reso-
lution, except for the rare occurrence when a perfect hash function is used.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Consider the table in Figure 10.10a in which the keys are stored using linear prob-
ing. The keys have been entered in the following order: A1, A4, A2, B4, B1. After A4 is
deleted and position 4 is freed (Figure 10.10b), we try to find B4 by first checking posi-
tion 4. But this position is now empty, so we may conclude that B4 is not in the table. The
same result occurs after deleting A2 and marking cell 2 as empty (Figure 10.10c). Then,
the search for B1 is unsuccessful, because if we are using linear probing, the search termi-
nates at position 2. The situation is the same for the other open addressing methods.

If we leave deleted keys in the table with markers indicating that they are not valid
elements of the table, any subsequent search for an element does not terminate prema-
turely. When a new key is inserted, it overwrites a key that is only a space filler. However,
for a large number of deletions and a small number of additional insertions, the table
becomes overloaded with deleted records, which increases the search time because the
open addressing methods require testing the deleted elements. Therefore, the table
should be purged after a certain number of deletions by moving undeleted elements to
the cells occupied by deleted elements. Cells with deleted elements that are not overwrit-
ten by this procedure are marked as free. Figure 10.10d illustrates this situation.

10.4 PERFECT HASH FUNCTIONS

All the cases discussed so far assume that the body of data is not precisely known.
Therefore, the hash function only rarely turned out to be an ideal hash function in the
sense that it immediately hashed a key to its proper position and avoided any colli-
sions. In most cases, some collision resolution technique had to be included, because
sooner or later, a key would arrive that conflicted with another key in the table. Also,

532 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.10 Linear search in the situation where both insertion and deletion of keys are permitted.

0

A11

A22

B13

A44

B45

6

7

8

9

(a)

Insert: A1, A4, A2, B4, B1

0

A11

A22

B13

4

B45

6

7

8

9

(b)

Delete: A4

0

A11

2

B13

4

B45

6

7

8

9

(c)

Delete: A2

0

A11

B12

3

B44

5

6

7

8

9

(d)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the number of keys is rarely known in advance, so the table had to be large enough to
accommodate all the arriving data. Moreover, the table size contributed to the num-
ber of collisions: A larger table has a smaller number of collisions (provided the hash
function took table size into consideration). All this was caused by the fact that the
body of data to be hashed in the table was not precisely known ahead of time. There-
fore, a hash function was first devised and then the data were processed.

In many situations, however, the body of data is fixed, and a hash function can be
devised after the data are known. Such a function may really be a perfect hash func-
tion if it hashes items on the first attempt. In addition, if such a function requires only
as many cells in the table as the number of data so that no empty cell remains after
hashing is completed, it is called a minimal perfect hash function. Wasting time for col-
lision resolution and wasting space for unused table cells are avoided in a minimal
perfect hash function.

Processing a fixed body of data is not an uncommon situation. Consider the fol-
lowing examples: a table of reserved words used by assemblers or compilers, files on
unerasable optical disks, dictionaries, and lexical databases.

Algorithms for choosing a perfect hash function usually require tedious work due
to the fact that perfect hash functions are rare. As already indicated for 50 elements
and a 100-cell array, only one in 1 million is perfect. Other functions lead to collisions.

10.4.1 Cichelli’s Method

One algorithm to construct a minimal perfect hash function was developed by
Richard J. Cichelli. It is used to hash a relatively small number of reserved words. The
function is of the form

h(word) = (length(word) + g(firstletter(word)) + g(lastletter(word))) mod TSize

where g is the function to be constructed. The function g assigns values to letters so
that the resulting function h returns unique hash values for all words in a predefined
set of words. The values assigned by g to particular letters do not have to be unique.
The algorithm has three parts: computation of the letter occurrences, ordering the
words, and searching. The last step is the heart of this algorithm and uses an auxiliary
function try(). Cichelli’s algorithm for constructing g and h is as follows:

choose a value for max;
compute the number of occurrences of each first and last letter in the set of all words;
order all words in accordance to the frequency of occurrence of the first and the last letters;
search(wordList)

if wordList is empty
halt;

word = first word from wordList;
wordList = wordList with the first word detached;
if the first and the last letters of word are assigned g-values

try(word,-1,-1); // -1 signifies 'value already assigned'

if success
search(wordList);

put word at the beginning of wordList and detach its hash value;

S e c t i o n 1 0 . 4 P e r f e c t H a s h F u n c t i o n s ■ 533

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

else if neither the first nor the last letter has a g-value
for each n,m in {0, . . . , Max}

try(word,n,m);
if success

search(wordList);
put word at the beginning of wordList and detach its hash value;

else if either the first or the last letter has a g-value
for each n in {0, . . . , Max}

try(word,-1,n) or try(word,n,-1);
if success
search(wordList);

put word at the beginning of wordList and detach its hash value;

try(word,firstLetterValue,lastLetterValue)
if h(word) has not been claimed

reserve h(word);
assign firstLetterValue and/or lastLetterValue as g-values of firstletter(word)
and/or lastletter(word) if they are not -1 (i.e., not assigned);
return success;
return failure;

We can use this algorithm to build a hash function for the names of the nine
Muses: Calliope, Clio, Erato, Euterpe, Melpomene, Polyhymnia, Terpsichore, Thalia,
and Urania. A simple count of the letters renders the number of times a given letter
occurs as a first and last letter (case sensitivity is disregarded): E (6), A (3), C (2), O
(2), T (2), M (1), P (1), and U (1). According to these frequencies, the words can be
put in the following order: Euterpe (E occurs six times as the first and the last letter),
Calliope, Erato, Terpsichore, Melpomene, Thalia, Clio, Polyhymnia, and Urania.

Now the procedure search() is applied. Figure 10.11 contains a summary of its
execution, in which Max = 4. First, the word Euterpe is tried. E is assigned the g-value
of 0, whereby h(Euterpe) = 7, which is put on the list of reserved hash values. Every-
thing goes well until Urania is tried. All five possible g-values for U result in an already
reserved hash value. The procedure backtracks to the preceding step, when Polyhym-
nia was tried. Its current hash value is detached from the list, and the g-value of 1 is
tried for P, which causes a failure, but 2 for P gives 3 for the hash value, so the algo-
rithm can continue. Urania is tried again five times, then the fifth attempt is success-
ful. All the names have been assigned unique hash values and the search process is
finished. If the g-values for each letter are A = C = E = O = M = T = 0, P = 2, and U =
4, then h is the minimal perfect hash function for the nine Muses.

The searching process in Cichelli’s algorithm is exponential because it uses an ex-
haustive search, and thus, it is inapplicable to a large number of words. Also, it does
not guarantee that a perfect hash function can be found. For a small number of
words, however, it usually gives good results. This program often needs to be run only
once, and the resulting hash function can be incorporated into another program.
Cichelli applied his method to the Pascal reserved words. The result was a hash func-
tion that reduced the run time of a Pascal cross-reference program by 10 percent after
it replaced the binary search used previously.

534 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

There have been many successful attempts to extend Cichelli’s technique and
overcome its shortcomings. One technique modified the terms involved in the defini-
tion of the hash function. For example, other terms, the alphabetical positions of the
second to last letter in the word, are added to the function definition (Sebesta and
Taylor, 1986), or the following definition is used (Haggard and Karplus, 1986):

h(word) = length(word) + g1(firstletter(word)) + · · · + glength(word)(lastletter(word))

Cichelli’s method can also be modified by partitioning the body of data into sep-
arate buckets for which minimal perfect hash functions are found. The partitioning is
performed by a grouping function, gr, which for each word indicates the bucket to
which it belongs. Then a general hash function is generated whose form is

h(word) = bucketgr(word) + hgr(word)(word)

(e.g., Lewis and Cook, 1986). The problem with this approach is that it is difficult to
find a generally applicable grouping function tuned to finding minimal perfect hash
functions.

Both these ways—modifying hash function and partitioning—are not entirely
successful if the same Cichelli’s algorithm is used. Although Cichelli ends his paper

S e c t i o n 1 0 . 4 P e r f e c t H a s h F u n c t i o n s ■ 535

FIGURE 10.11 Subsequent invocations of the searching procedure with Max = 4 in Cichelli’s
algorithm assign the indicated values to letters and to the list of reserved hash
values. The asterisks indicate failures.

reserved hash values

Euterpe E = 0 h = 7 {7}
Calliope C = 0 h = 8 {7 8}

Erato O = 0 h = 5 {5 7 8}
Terpsichore T = 0 h = 2 {2 5 7 8}

Melpomene M = 0 h = 0 {0 2 5 7 8}
Thalia A = 0 h = 6 {0 2 5 6 7 8}

Clio h = 4 {0 2 4 5 6 7 8}
Polyhymnia P = 0 h = 1 {0 1 2 4 5 6 7 8}

Urania U = 0 h = 6 * {0 1 2 4 5 6 7 8}
Urania U = 1 h = 7 * {0 1 2 4 5 6 7 8}
Urania U = 2 h = 8 * {0 1 2 4 5 6 7 8}
Urania U = 3 h = 0 * {0 1 2 4 5 6 7 8}
Urania U = 4 h = 1 * {0 1 2 4 5 6 7 8}

Polyhymnia P = 1 h = 2 * {0 2 4 5 6 7 8}
Polyhymnia P = 2 h = 3 {0 2 3 4 5 6 7 8}

Urania U = 0 h = 6 * {0 2 3 4 5 6 7 8}
Urania U = 1 h = 7 * {0 2 3 4 5 6 7 8}
Urania U = 2 h = 8 * {0 2 3 4 5 6 7 8}
Urania U = 3 h = 0 * {0 2 3 4 5 6 7 8}
Urania U = 4 h = 1 {0 1 2 3 4 5 6 7 8}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

with the adage: “When all else fails, try brute force,” the attempts to modify his ap-
proach included devising a more efficient searching algorithm to circumvent the need
for brute force. One such approach is incorporated in the FHCD algorithm.

10.4.2 The FHCD Algorithm
An extension of Cichelli’s approach is a method devised by Thomas Sager. The FHCD
algorithm (Fox et al., 1992) is a modification of Sager’s method, and it is discussed in this
section. The FHCD algorithm searches for a minimal perfect hash function of the form

h(word) = h0(word) + g(h1(word)) + g(h2(word))

(modulo TSize), where g is the function to be determined by the algorithm. To define
the functions hi, three tables—T0, T1, and T2—of random numbers are defined, one for
each function hi. Each word is equal to a string of characters c1c2 . . . cm corresponding to
a triple (h0(word), h1(word), h2(word)) whose elements are calculated according to the
formulas

h0 = (T0(c1) + · · · + T0(cm)) mod n

h1 = (T1(c1) + · · · + T1(cm)) mod r

h2 = ((T2(c1) + · · · + T2(cm)) mod r) + r

where n is the number of all words in the body of data, r is a parameter usually equal
to n/2 or less, and Ti(cj) is the number generated in table Ti for cj. The function g is
found in three steps: mapping, ordering, and searching.

In the mapping step, n triples (h0(word), h1(word), h2(word)) are created. The
randomness of functions hi usually guarantees the uniqueness of these triples; should
they not be unique, new tables Ti are generated. Next, a dependency graph is built. It is
a bipartite graph with half of its vertices corresponding to the h1 values and labeled 0
through r – 1 and the other half to the h2 values and labeled r through 2r – 1. Each
word corresponds to an edge of the graph between the vertices h1(word) and h2(word).
The mapping step is expected to take O(n) time.

As an example, we again use the set of names of the nine Muses. To generate three
tables Ti, the random number generator from class Random can be used, and with these
tables, a set of nine triples is computed, as shown in Figure 10.12a. Figure 10.12b con-
tains a corresponding dependency graph with r = 3. Note that some vertices cannot be
connected to any other vertices, and some pairs of vertices can be connected with more
than one arc.

The ordering step rearranges all the vertices so that they can be partitioned into a
series of levels. When a sequence v1, . . . , vt of vertices is established, then a level K(vi)
of keys is defined as a set of all the edges that connect vi with those vjs for which j # i.
The sequence is initiated with a vertex of maximum degree. Then, for each successive
position i of the sequence, a vertex vi is selected from among the vertices having at
least one connection to the vertices v1, . . . , vi–1, which has maximal degree. When no
such vertex can be found, any vertex of maximal degree is chosen from among the un-
selected vertices. Figure 10.12c contains an example.

In the last step, searching, hash values are assigned to keys level by level. The
g-value for the first vertex is chosen randomly among the numbers 0, . . . , n – 1. For the

536 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

other vertices, because of their construction and ordering, we have the following rela-
tion: If vi < r, then vi = h1. Thus, each word in K(vi) has the same value g(h1(word)) =
g(vi). Also, g(h2(word)) has already been defined, because it is equal to some vj that has
already been processed. Analogical reasoning can be applied to the case when vi > r and
then vi = h2. For each word, either g(h1(word)) or g(h2(word)) is known. The second
g-value is found randomly for each level so that the values obtained from the formula
of the minimal perfect hash function h indicate the positions in the hash table that are

S e c t i o n 1 0 . 4 P e r f e c t H a s h F u n c t i o n s ■ 537

FIGURE 10.12 Applying the FHCD algorithm to the names of the nine Muses.

Calliope
Clio
Erato
Euterpe
Melpomene
Polyhymnia
Terpsichore
Thalia
Urania

C
lio

Cal
lio

pe

Erato

E
ut

er
peM
elp

om
en

e

U
ra

ni
a T

ha
lia

1

4

2

3

0

5

6

T
er

ps
ic

ho
re

Po
ly

hy
m

ni
a

(0
(7
(3
(6
(3
(8
(8
(8
(0

h0

1
1
2
2
1
2
0
2
2

h1

5)
4)
5)
3)
5)
4)
5)
3)
4)

h2Value of:

(a) (b)

0
1
2
2
3
3
3
4
4
4

Level

2
5
1
1
4
4
4
3
3
3

h(Erato)
h(Calliope)
h(Melpomene)
h(Clio)
h(Polyhymnia)
h(Urania)
h(Euterpe)
h(Terpsichore)
h(Thalia)

Vertex

2
6
4
4
2
2
2
4
4
4

g-value

(d)

= (3 + 2 + 6) % 9 = 2
= (0 + 4 + 6) % 9 = 1
= (3 + 4 + 6) % 9 = 4
= (7 + 6 + 2) % 9 = 6
= (8 + 6 + 2) % 9 = 7
= (0 + 6 + 2) % 9 = 8
= (6 + 2 + 4) % 9 = 3
= (8 + 2 + 4) % 9 = 5
= (8 + 4 + 6) % 9 = 0

0
1
2
3
4
5

Level

2
5
1
4
3
0

Erato
Calliope, Melpomene
Clio, Polyhymnia, Urania
Euterpe, Thalia
Terpsichore

Node Arcs

(c)

0
1
2
3
4
5

Function g

4
4
2
4
2
6

(e)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

available. Because the first choice of a random number will not always fit all words on a
given level to the hash table, both random numbers may need to be tried.

The searching step for the nine Muses starts with randomly choosing g(v1). Let
g(2) = 2, where v1 = 2. The next vertex is v2 = 5 so that K(v2) = {Erato}. According to
Figure 10.12a, h0(Erato) = 3, and because the edge Erato connects v1 and v2, either
h1(Erato) or h2(Erato) must be equal to v1. We can see that h1(Erato) = 2 = v1; hence,
g(h1(Erato)) = g(v1) = 2. A value for g(v2) = g(h2(Erato)) = 6 is chosen randomly.
From this, h(Erato) = (h0(Erato) + g(h1(Erato)) + g(h2(Erato))) mod TSize = (3 + 2 +
6) mod 9 = 2. This means that position 2 of the hash table is no longer available. The
new g-value, g(5) = 6, is retained for later use.

Now, v3 = 1 is tried, with K(v3) = {Calliope, Melpomene}. The h0-values for both
words are retrieved from the table of triples, and the g(h2)-values are equal to 6 for
both words, because h2 = v2 for both of them. Now we must find a random g(h1)-value
such that the hash function h computed for both words renders two numbers differ-
ent from 2, because position two is already occupied. Assume that this number is 4. As
a result, h(Calliope) = 1 and h(Melpomene) = 4. Figure 10.12d contains a summary of
all the steps. Figure 10.12e shows the values of the function g. Through these values of
g, the function h becomes a minimal perfect hash function. However, because g is
given in tabular form and not with a neat formula, it has to be stored as a table to be
used every time function h is needed, which may not be a trivial task. The function g :
{0, . . . , 2r – 1} → {0, . . ., n – 1}, and the size of g’s domain increases with r. The pa-
rameter r is approximately n/2, which for large databases means that the table storing
all values for g is not of a negligible size. This table has to be kept in main memory to
make computations of the hash function efficient.

10.5 HASH FUNCTIONS FOR EXTENDIBLE FILES

All the methods discussed so far work on tables of fixed sizes. This is a reasonable as-
sumption for arrays, but for files it may be too restrictive. After all, file sizes change
dynamically by adding new elements or deleting old ones. Some hashing techniques
can be used in this situation, such as coalesced hashing or hashing with chaining, but
some of them may be inadequate. New techniques have been developed that specifi-
cally take into account the variable size of the table or file. We can distinguish two
classes of such techniques: directory and directoryless.

In the directory schemes, key access is mediated by the access to a directory or an
index of keys in the structure. There are several techniques and modifications to those
techniques in the category of the directory schemes. We mention only a few: expand-
able hashing (Knott, 1971), dynamic hashing (Larson, 1978), and extendible hashing
(Fagin et al., 1979). All three methods distribute keys among buckets in a similar fash-
ion. The main difference is the structure of the index (directory). In expandable hash-
ing and dynamic hashing, a binary tree is used as an index of buckets. On the other
hand, in extendible hashing, a directory of records is kept in a table.

One directoryless technique is virtual hashing, defined as “any hashing which may
dynamically change its hashing function” (Litwin, 1978). This change of hashing func-
tion compensates for the lack of a directory. An example of this approach is linear hash-
ing (Litwin, 1980). In the following pages, one method from each category is discussed.

538 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10.5.1 Extendible Hashing
Assume that a hashing technique is applied to a dynamically changing file composed
of buckets, and each bucket can hold only a fixed number of items. Extendible hash-
ing accesses the data stored in buckets indirectly through an index that is dynamically
adjusted to reflect changes in the file. The characteristic feature of extendible hashing
is the organization of the index, which is an expandable table.

A hash function applied to a certain key indicates a position in the index and not
in the file (or table of keys). Values returned by such a hash function are called
pseudokeys. In this way, the file requires no reorganization when data are added to it
or deleted from it, because these changes are indicated in the index. Only one hash
function h can be used, but depending on the size of the index, only a portion of the
address h(K) is utilized. A simple way to achieve this effect is by looking at the address
h(K) as a string of bits from which only the i leftmost bits can be used. The number i is
called the depth of the directory. In Figure 10.13a, the depth is equal to two.

S e c t i o n 1 0 . 5 H a s h F u n c t i o n s f o r E x t e n d i b l e F i l e s ■ 539

FIGURE 10.13 An example of extendible hashing.

h(K) = 11001

00

01

10

11

0 0 0 1 1

2

2 0 0 1 1 0

0 0 1 0 1

b00

0 1 1 0 0

2

0 1 0 1 1 b01

1 0 0 1 1

1

1 1 0 1 1

1 1 1 0 0

b1

(a)

000

001

010

011

100

101

110

111

0 0 0 1 1

3

3 0 0 0 0 1 b000

0 1 1 0 0

2

0 1 0 1 1 b01

1 0 0 1 1

2

b10

1 1 0 1 1

2

1 1 1 0 0

1 1 0 0 1

b11

0 0 1 1 0

3

0 0 1 0 1 b001

(c)

h(K) = 00001

00

01

10

11

0 0 0 1 1

2

2 0 0 1 1 0

0 0 1 0 1

b00

0 1 1 0 0

2

0 1 0 1 1 b01

1 0 0 1 1

2

b10

1 1 0 1 1

2

1 1 1 0 0

1 1 0 0 1

b11

(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As an example, assume that the hash function h generates patterns of five bits. If
this pattern is the string 01011 and the depth is two, then the two leftmost bits, 01, are
considered to be the position in the directory containing the reference to a bucket in
which the key can be found or into which it is to be inserted. In Figure 10.13, the val-
ues of h are shown in the buckets, but these values represent only the keys that are ac-
tually stored in these buckets.

Each bucket has a local depth associated with it that indicates the number of left-
most bits in h(K). The leftmost bits are the same for all keys in the bucket. In Figure
10.13, the local depths are shown on top of each bucket. For example, the bucket b00
holds all keys for which h(K) starts with 00. More important, the local depth indicates
whether the bucket can be accessed from only one location in the directory or from at
least two. In the first case, when the local depth is equal to the depth of directory, it is
necessary to change the size of the directory after the bucket is split in the case of over-
flow. When the local depth is smaller than the directory depth, splitting the bucket only
requires changing half of the references pointing to this bucket so that they point to the
newly created one. Figure 10.13b illustrates this case. After a key with h-value 11001 ar-
rives, its two first bits (because depth = 2) direct it to the fourth position of the direc-
tory, from which it is sent to the bucket b1, which contains keys whose h-value starts
with 1. An overflow occurs, and b1 is split into b10 (the new name for the old bucket)
and b11. The local depths of these two buckets are set to two. The reference from posi-
tion 11 points now to b11, and the keys from b1 are redistributed between b10 and b11.

The situation is more complex if overflow occurs in a bucket with a local depth
equal to the depth of the directory. For example, consider the case when a key with
h-value 00001 arrives at the table in Figure 10.13b and is hashed through position 00 (its
first two bits) to bucket b00. A split occurs, but the directory has no room for the reference
to the new bucket. As a result, the directory is doubled in size so that its depth is now
equal to three, b00 becomes b000 with an increased local depth, and the new bucket is b001.
All the keys from b00 are divided between the new buckets: Those whose h-value starts
with 000 become elements of b000; the remaining keys, those with prefix 001, are put in
b001, as in Figure 10.13c. Also, all the slots of the new directory have to be set to their
proper values by having newdirectory[2 · i] = olddirectory[i] and newdirectory[2 · i + 1] =
olddirectory[i] for i’s ranging over positions of the olddirectory, except for the position
referring to the bucket that just has been split.

The following algorithm inserts a record into a file using extendible hashing:

extendibleHashingInsert(K)
bitPattern = h(K);
p = directory[depth(directory) leftmost bits of bitPattern];
if space is available in bucket bd pointed to by p

place K in the bucket;
else split bucket bd into bd0 and bd1;

set local depth of bd0 and bd1 to depth(bd) + 1;
distribute records from bd between bd0 and bd1;
if depth(bd) < depth(directory)

update the half of the references which pointed to bd to point to bd1;
else double the directory and increment its depth;

set directory entries to proper references;

540 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An important advantage of using extendible hashing is that it avoids a reorgani-
zation of the file if the directory overflows. Only the directory is affected. Because the
directory in most cases is kept in main memory, the cost of expanding and updating
it is very small. However, for large files of small buckets, the size of the directory can
become so large that it may be put in virtual memory or explicitly in a file, which
may slow down the process of using the directory. Also, the size of the directory does
not grow uniformly, because it is doubled if a bucket with a local depth equal to the
depth of the directory is split. This means that for large directories there will be many
redundant entries in the directory. To rectify the problem of an overgrown directory,
David Lomet proposed using extendible hashing until the directory becomes too
large to fit into main memory. Afterward, the buckets are doubled instead of the di-
rectory, and the bits in the bit pattern h(K) that come after the first depth bits are
used to distinguish between different parts of the bucket. For example, if depth = 3
and a bucket b10 has been quadrupled, its parts are distinguished with bit strings 00,
01, 10, and 11. Now, if h(K) = 10101101, the key K is searched for in the second por-
tion, 01, of b101.

10.5.2 Linear Hashing

Extendible hashing allows the file to expand without reorganizing it, but it requires
storage space for an index. In the method developed by Witold Litwin, no index is nec-
essary because new buckets generated by splitting existing buckets are always added in
the same linear way, so there is no need to retain indexes. To this end, a reference split
indicates which bucket is to be split next. After the bucket pointed to by split is divided,
the keys in this bucket are distributed between this bucket and the newly created
bucket, which is added to the end of the table. Figure 10.14 contains a sequence of ini-
tial splits in which TSize = 3. Initially, the reference split is zero. If the loading factor

S e c t i o n 1 0 . 5 H a s h F u n c t i o n s f o r E x t e n d i b l e F i l e s ■ 541

FIGURE 10.14 Splitting buckets in the linear hashing technique.

0 1

split (e)

2 3 4 5 6

h2 h2h1

0 1

split

(c)

2 3 4

h1 h1h0

0 1

split

(b)

2 3

h1 h1h0

0 1

split (d)

2 3 4 5

h1

0 1

split

(a)

2

h0

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

exceeds a certain level, a new bucket is created, keys from bucket zero are distributed
between bucket zero and bucket three, and split is incremented. How is this distribu-
tion performed? If only one hash function is used, then it hashes keys from bucket zero
to bucket zero before and after splitting. This means that one function is not sufficient.

At each level of splitting, linear hashing maintains two hash functions, hlevel and
hlevel+1, such that hlevel(K) = K mod (TSize · 2level). The first hash function, hlevel, hashes
keys to buckets that have not yet been split on the current level. The second function,
hlevel+1 is used for hashing keys to already split buckets. The algorithm for linear hash-
ing is as follows:

initialize: split = 0; level = 0;

linearHashingInsert(K)
if hlevel(K) < split // bucket hlevel(K) has been split

hashAddress = hlevel+1(K);
else hashAddress = hlevel(K);
insert K in a corresponding bucket or an overflow area if possible;
while the loading factor is high or K not inserted

create a new bucket with index split + TSize * 2level;
redistribute keys from bucket split between buckets split and split + TSize * 2level;
split++;
if split == TSize * 2level // all buckets on the current

// level have been split;
level++; // proceed to the next level
split = 0;

try to insert K if not inserted yet;

It may still be unclear when to split a bucket. Most likely, as the algorithm as-
sumes, a threshold value of the loading factor is used to decide whether to split a
bucket. This threshold has to be known in advance, and its magnitude is chosen by the
program designer. To illustrate, assume that keys can be hashed to buckets in a file. If a
bucket is full, the overflowing keys can be put on a linked list in an overflow area.
Consider the situation in Figure 10.15a. In this figure, TSize = 3, h0(K) = K mod TSize,
h1(K) = K mod 2 · TSize. Let the size of the overflow area OSize = 3, and let the highest
acceptable loading factor that equals the number of elements divided by the number
of slots in the file and in the overflow area be 80 percent. The current loading factor in
Figure 10.15a is 75 percent. If the key 10 arrives, it is hashed to location 1, but the
loading factor increases to 83 percent. The first bucket is split and the keys are redis-
tributed using function h1, as in Figure 10.15b. Note that the first bucket had the low-
est load of all three buckets, and yet it was the bucket that was split.

Assume that 21 and 36 have been hashed to the table (Figure 10.15c), and now 25
arrives. This causes the loading factor to increase to 87 percent, resulting in another
split, this time the split of the second bucket, which results in the configuration shown
in Figure 10.15d. After hashing 27 and 37, another split occurs, and Figure 10.15e il-
lustrates the new situation. Because split reached the last value allowed on this level, it
is assigned the value of zero, and the hash function to be used in subsequent hashing

542 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is h1, the same as before, and a new function, h2, is defined as K mod 4 · TSize. All of
these steps are summarized in the following table:

K h (K) Number Number Loading Hash
of Items of Cells Factor Split Functions

9 9 + 3 9/12 = 75% 0 K mod 3 K mod 6

10 1 10 9 + 3 10/12 = 83% 0 K mod 3 K mod 6

10 9 + 3 10/15 = 67% 1 K mod 3 K mod 6

21 3 11 12 + 3 11/15 = 73% 1 K mod 3 K mod 6

36 0 12 12 + 3 12/15 = 80% 1 K mod 3 K mod 6

25 1 13 12 + 3 13/15 = 87% 1 K mod 3 K mod 6

13 12 + 3 13/18 = 72% 2 K mod 3 K mod 6

27 3 14 15 + 3 14/18 = 78% 2 K mod 3 K mod 6

37 1 15 15 + 3 15/18 = 83% 2 K mod 3 K mod 6

15 18 + 3 15/21 = 71% 0 K mod 6 K mod 12

Note that linear hashing requires the use of some overflow area because the order
of splitting is predetermined. In the case of files, this may mean more than one file
access. This area can be explicit and different from buckets, but it can be introduced

S e c t i o n 1 0 . 5 H a s h F u n c t i o n s f o r E x t e n d i b l e F i l e s ■ 543

FIGURE 10.15 Inserting keys to buckets and overflow areas with the linear hashing technique.

12
36

7
13

25
37

31

14
8

32

15
21
27

10 11

split

(e)

12
36

7
13

25

31

14
11
8

15
21

10

split

(d)

32

12
36

7
13

10
25

31

14
11
8

15
21

split

(c)

15
12

7
13
31

14
11
8

split

(a)

32 32

12 7
13
31

14
11
8

15

split

(b)

3210

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

somewhat in the spirit of coalesced hashing by utilizing empty space in the buckets
(Mullin, 1981). In a directory scheme, on the other hand, an overflow area is not nec-
essary, although it can be used.

As in a directory scheme, linear hashing increases the address space by splitting a
bucket. It also redistributes the keys of the split bucket between the buckets that result
from the split. Because no indexes are maintained in linear hashing, this method is
faster and requires less space than previous methods. The increase in efficiency is par-
ticularly noticeable for large files.

10.6 HASHING IN java.util

10.6.1 HashMap

HashMap is an implementation of the interface Map. A map is a collection that holds
pairs (key, value) or entries (another implementation, TreeMap, was discussed in
Section 7.1.8). Class hierarchy in java.util for HashMap is as follows:

Object ⇒ AbstractMap ⇒ HashMap

A hash map is a collection of singly linked lists (buckets); that is, chaining is used
as a collision resolution technique. Methods of the class HashMap are listed in Figure
10.16. An example program is shown in Figure 10.17. In the program, a hash map
stores pairs (key, value), where a key is an object of type Person and a value is a
string. The class Person contains definitions (in fact, redefinitions) of the methods
equals() and hashCode(). The two methods have to work in unison, and should
be defined so that if for two objects ob1 and ob2, ob1.equals(ob2), then their
hash codes ob1.hashCode() and ob2.hashCode() are the same. For example, if
equals() is not defined in Person, and so the inherited equals() would be used
by methods of the hash map, then containsKey() would return false. To speed up
the process of finding a hash value, the value is computed once and stored in an in-
stance variable hashcode, which is used by hashCode() in its return statement.

Note that, in a hash map, both null values and null keys are permitted, as in

cities.put(null,"Nashville");
cities.put(new Person("Kay",44),null);

However, afterwards, both these statements

cities.get(new Person("Kay",44));
cities.get(new Person("Stan",55));

return null. To distinguish the null that is an indicator of the fact that the value associ-
ated with a key is not in the hash map from the null that is the value associated with
the key, the method containsKey() can be applied to the keys and, if it returns true,
then null returned by get() is the value associated with the key.

544 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 0 . 6 H a s h i n g i n java.util ■ 545

FIGURE 10.16 Methods in class HashMap including three inherited methods.

Method Operation

void clear() Remove all the objects from the hash map.

Object clone() Return a copy of the hash map without cloning its elements.

boolean Return true if the hash map contains the object key.
containsKey(Object key)

boolean Return true if the hash map contains the object val.
containsValue(Object val)

Set entrySet() Return a set containing all the pairs (key, value) in the hash map.

boolean equals(Object ob) Return true if the current hash map and object ob are equal
(inherited).

int hashCode() Return the hash code for the hash map (inherited).

Object get(Object key) Return the object associated with key.

HashMap() Create an empty hash map with initial capacity equal to 16 and
the load factor equal to .75.

HashMap(int ic) Create an empty hash map with initial capacity ic and the load
factor equal to .75; throw IllegalArgumentException
if ic < 0.

HashMap(int ic, float lf) Create an empty hash map with initial capacity ic and the load
factor lf; throw IllegalArgumentException if ic < 0 or
lf ≤ 0.

HashMap(Map m) Create a hash map with copies of elements from map m; throw
NullPointerException if m is null.

boolean isEmpty() Return true if the hash map contains no elements,false otherwise.

Set keySet() Return a set containing all the keys of the hash map.

Object put(Object key, Put the pair (key,val) in the hash map; return a value associated
Object val) with key if there is any in the hash map,null otherwise.

void putAll(Map m) Add objects from map to the current hash map; throw
NullPointerException if m is null.

void rehash() A protected method to increase the capacity of the hashtable;
the method is called automatically when the number of keys in the
hashtable is greater than the product of the load factor and the
current capacity.

Object remove(Object key) Remove the pair (key, corresponding value) from the hash map
and return the value associated currently with key in the hash map.

int size() Return the number of objects in the hash map.

String toString() Return a string representation of the hash map that contains the
string representation of all the elements (inherited).

Collection values() Return a collection with all the values contained in the hash map.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

546 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.17 Demonstrating the operation of the methods in class HashMap.

import java.io.*;
import java.util.HashMap;

class Person {
private String name;
int age;
private int hashcode = 0;
public Person(String n, int a) {

name = n; age = a;
for (int i = 0; i < name.length(); i++)

hashcode += name.charAt(i);
}
public Person() {

this("",0);
}
public boolean equals(Object p) {

return name.equals(((Person)p).name);
}
public int hashCode() {

return hashcode;
}
public String toString() {

return "(" + name + "," + age + ")";
}

}

class TestHashMap {
public static void main(String[] a) {

HashMap cities = new HashMap();
cities.put(new Person("Gregg",25),"Pittsburgh");
cities.put(new Person("Ann",30),"Boston");
cities.put(new Person("Bill",20),"Belmont");
System.out.println(cities);
// {(Ann,30)=Boston, (Gregg,25)=Pittsburgh, (Bill,20)=Belmont}
cities.put(new Person("Gregg",30),"Austin");
System.out.println(cities);
// {(Ann,30)=Boston, (Gregg,25)=Austin, (Bill,20)=Belmont}
System.out.println(cities.containsKey(new Person("Ann",30)));
// true
System.out.println(cities.containsValue("Boston"));
// true
System.out.println(cities.size()); // 3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10.6.2 HashSet

A set—that is, an object that stores unique elements—was already implemented as
TreeSet (Section 7.1.8); HashSet is another implementation of a set. The methods
of the HashSet class are listed in Figure 10.18.

Class hierarchy in java.util for HashSet is as follows:

Object ⇒ AbstractCollection ⇒ AbstractSet ⇒ HashSet

that is, interfaces for HashSet are different than for HashMap; however, HashSet is
implemented in terms of HashMap (which is similar to the relation between TreeSet
and TreeMap). For example, the constructor HashSet() is defined as

public HashSet() {
map = new HashMap();

}

S e c t i o n 1 0 . 6 H a s h i n g i n java.util ■ 547

FIGURE 10.17 (continued)

System.out.println(cities.get(new Person("Ann",30))); // Boston
System.out.println(cities.entrySet());
// [(Ann,30)=Boston, (Gregg,25)=Austin, (Bill,20)=Belmont]
System.out.println(cities.values());
// [Boston, Austin, Belmont]
System.out.println(cities.keySet());
// [(Ann,30), (Gregg,25), (Bill,20)]
System.out.println(cities.remove(new Person("Bill",20)));
// Belmont
System.out.println(cities);
// [(Ann,30), (Gregg,25)]
cities.put(null,"Nashville");
cities.put(new Person("Kay",44),null);
System.out.println(cities);
// [(Ann,30)=Boston, (Gregg,25)=Austin, (Kay,44)=null,
// null=Nashville]
System.out.println(cities.get(new Person("Kay",44)));
// null
System.out.println(cities.get(new Person("Stan",55)));
// null
System.out.println(cities.containsKey(new Person("Kay",44)));
// true
System.out.println(cities.containsKey(new Person("Stan",55)));
// false

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

548 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.18 Methods in class HashSet including some inherited methods.

Method Operation

boolean add(Object ob) Add ob to the hash set if it is not already there; return true if
ob was added.

boolean Add all the elements from the collection c to the hash set;
addAll(Collection c) return true if the hash set was modified(); throw

NullPointerException if c is null (inherited).

void clear() Remove all the objects from the hash set.

Object clone() Return a copy of the hash set without cloning its elements.

boolean contains(Object ob) Return true if the hash set contains the object ob.

boolean Return true if the hash set contains all elements in the collection
containsAll(Collection c) c; throw NullPointerException if c is null (inherited).

boolean equals(Object ob) Return true if the current hash set and object ob are equal
(inherited).

int hashCode() Return the hash code for the hash set (inherited).

HashSet() Create an empty hash set with initial capacity equal to 16 and the
load factor equal to .75.

HashSet(int ic) Create an empty hash set with initial capacity ic and the load
factor equal to .75; throw IllegalArgumentException if
ic < 0.

HashSet(int ic, float lf) Create an empty hash set with initial capacity ic and the load
factor lf; throw IllegalArgumentException if ic < 0
or lf # 0.

HashSet(Collection c) Create a hash set with copies of elements from c; throw
NullPointerException if c is null.

boolean isEmpty() Return true if the hash set contains no elements,false otherwise.

boolean iterator() Return an iterator over the elements in the hash set; the iteration
order can change over time.

boolean remove(Object ob) Remove ob from the hash set and return true if ob was in the
hash set.

boolean Remove from the hash set all elements contained in collection c;
removeAll(Collection c) return true if any element was removed; throw

NullPointerException if c is null (inherited).

boolean Remove from the hash set all elements that are not in the collection
retainAll(Collection c) c; return true if any element was removed; throw

NullPointerException if c is null (inherited).

Object[] toArray() Copy all elements from the hash set to a newly created array and
return the array (inherited).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To account in this implementation for the value of each entry in the underlying map,
a dummy constant is used:

private static final Object dummy = new Object();

and then other methods are defined by the methods for the underlying map, possibly
using dummy; for example,

public boolean add(Object ob) {
return map.put(ob,dummy) == null;

}

Some of the operations are illustrated in Figure 10.19. Note that out of five objects in
the array p, only four are inserted in pSet, because the objects Person("Gregg",25)
and Person("Gregg",30) are considered to be the same on account of the way the
method equals() is defined in the class Person.

S e c t i o n 1 0 . 6 H a s h i n g i n java.util ■ 549

FIGURE 10.18 (continued)

Object[] toArray(Object Copy all elements from the hash set to the array a if a is large
a[]) enough or to a newly created array and return the array; throw

ArrayStoreException if the class type of any element in the
hash set is not the same as or does not extend the class type of a;
throw NullPointerException if a is null (inherited).

int size() Return the number of objects in the hash set.

String toString() Return a string representation of the hash set that contains the
string representation of all the elements (inherited).

FIGURE 10.19 Demonstrating the operation of the methods in class HashSet.

import java.io.*;
import java.util.*;

class Person implements Comparable {
private String name;
public int age;
private int hashcode = 0;
public Person(String n, int a) {

name = n; age = a;
for (int i = 0; i < name.length(); i++)

hashcode += name.charAt(i);

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

550 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.19 (continued)

}
public Person() {

this("",0);
}
public boolean equals(Object p) {

return name.equals(((Person)p).name);
}
public int compareTo(Object p) {

return name.compareTo(((Person)p).name);
}
public int hashCode() {

return hashcode;
}
public String toString() {

return "(" + name + "," + age + ")";
}

}

class TestHashSet {
public static void main(String[] ar) {

HashSet hashset1 = new HashSet();
hashset1.add(new Integer(40));
hashset1.add(new Integer(60));
System.out.println(hashset1); // [40, 60]
hashset1.add(new Integer(50));
System.out.println(hashset1); // [40, 50, 60]
hashset1.add(new Integer(50));
System.out.println(hashset1); // [40, 50, 60]
System.out.println(hashset1.contains(new Integer(50))); // true
System.out.println(hashset1.contains(new Integer(70))); // false
HashSet hashset2 = new HashSet();
hashset2.add(new Integer(30));
hashset2.add(new Integer(40));
hashset2.add(new Integer(50));
System.out.println(hashset2); // [30, 40, 50]
hashset1.addAll(hashset2);
// union: [40, 50, 60] and [30, 40, 50] ==> [30, 40, 50, 60]
System.out.println(hashset1); // [30, 40, 50, 60]
hashset1.remove(new Integer(30));
System.out.println(hashset1); // [40, 50, 60]
hashset1.retainAll(hashset2); // [40, 50]
// intersection: [40, 50, 60] and [30, 40, 50] ==> [40, 50]
System.out.println(hashset1); // [40, 50]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 0 . 6 H a s h i n g i n java.util ■ 551

FIGURE 10.19 (continued)

hashset1.add(new Integer(60)); // [40, 50, 60]
hashset1.removeAll(hashset2);
// difference: [40, 50, 60] and [30, 40, 50] ==> [60]
System.out.println(hashset1); // [60]
hashset1.add(null);
System.out.println(hashset1); // [60, null]

HashSet pSet = new HashSet();
Person[] p = {new Person("Gregg",25), new Person("Ann",30),

new Person("Bill",20), new Person("Gregg",35),
new Person("Kay",30)};

for (int i = 0; i < p.length; i++)
pSet.add(p[i]);

System.out.println(pSet);
// [(Ann,30), (Gregg,25), (Kay,30), (Bill,20)]
java.util.Iterator it = pSet.iterator();
((Person)it.next()).age = 50;
System.out.println(pSet);
// [(Ann,50), (Gregg,25), (Kay,30), (Bill,20)]
pSet.add(new Person("Craig",40));
System.out.println(pSet);
// [(Ann,50), (Gregg,25), (Kay,30), (Craig,40), (Bill,20)]
for (int i = 0; i < p.length; i++)

System.out.println(p[i] + " " + pSet.contains(p[i]));
// (Gregg,25) true
// (Ann,50) true
// (Bill,20) true
// (Gregg,35) true
// (Kay,30) true
// Using an array to sort elements in the hashset:
Person[] pArray = (Person[]) pSet.toArray(new Person[0]);
for (int i = 0; i < p.length; i++)

System.out.print(pArray[i] + " ");
System.out.println();
// (Ann,50) (Gregg,25) (Kay,30) (Craig,40) (Bill,20)
Arrays.sort(pArray);
for (int i = 0; i < p.length; i++)

System.out.print(pArray[i] + " ");
System.out.println();
// (Ann,50) (Bill,20) (Craig,40) (Gregg,25) (Kay,30)
System.out.println(pSet);

}
}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To sort elements in the hash set, the elements are first copied to an array pArray
with the toArray() method, and then a sorting method from class Array is applied
to pArray. The elements are sorted by name according to the compareTo() method
defined in class Person that implements the Comparable interface precisely to en-
able such sorting (see Person in Figure 9.17).

10.6.3 Hashtable

Another implementation of the interface Map is Hashtable, which is roughly equiv-
alent to HashMap except that it is synchronized and does not permit null values with
methods to operate on hash tables. The class Hashtable is considered a legacy class,
just like the class Vector. Class hierarchy in java.util is as follows:

Object ⇒ Dictionary ⇒ Hashtable

Hashtable methods are listed in Figure 10.20.

552 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.20 Methods of the class Hashtable including three inherited methods.

Method Operation

void clear() Remove all the objects from the hashtable.

Object clone() Return a copy of the hashtable without cloning its elements.

boolean contains(Object Return true if the hashtable contains the object val; throw
val) NullPointerException if val is null.

boolean Return true if the hashtable contains the object key; throw
containsKey(Object key) NullPointerException if key is null.

boolean Return true if the hashtable contains the object val;
containsValue(Object val) throw NullPointerException if val is null.

Enumeration elements() Return an enumeration of the values in the hashtable.

Set entrySet() Return a set containing all the pairs (key, value) in the
hashtable.

boolean equals(Object ob) Return true if the current hashtable and object ob are equal.

Object get(Object key) Return the object associated with key; throw
NullPointerException if key is null.

int hashCode() Return the hash code for the hashtable.

Hashtable() Create an empty hashtable with initial capacity equal to 11 and the
load factor equal to .75.

Hashtable(int ic) Create an empty hashtable with initial capacity ic and the load
factor equal to .75; throw IllegalArgumentException if
ic < 0.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Hashtable objects are expandable hash tables that automatically adjust the ca-
pacity of the table if the load factor is surpassed. The default load factor equals .75 and
the default table capacity equals 11, which is a prime number. The user can choose an-
other load factor and capacity when creating a Hashtable object with one of the
four constructors. The program in Figure 10.21 demonstrates the operation of some
of the Hashtable methods. A new entry is inserted in a bucket of the hash table indi-
cated by the hashCode() method of the key object that is the first parameter of the
method put(). The value generated by hashCode() is then used internally by the
hash table object to produce an actual hash value.

S e c t i o n 1 0 . 6 H a s h i n g i n java.util ■ 553

FIGURE 10.20 (continued)

Hashtable(int ic, float lf) Create an empty hashtable with initial capacity ic and the load
factor lf; throw IllegalArgumentException if ic < 0
or lf ≤ 0.

Hashtable(Map m) Create a hashtable with copies of elements from map m; throw
NullPointerException if m is null.

boolean isEmpty() Return true if the hashtable contains no elements,false otherwise.

Enumeration keys() Return an enumeration containing all the keys of the hashtable.

Set keySet() Return a set containing all the keys of the hashtable.

Object put(Object key, Put the pair (key,val) in the hashtable; return a value associated
Object val) with key if there is any in the hashtable,null otherwise; throw

NullPointerException if key or val is null.

void putAll(Map m) Add objects from map m to the current hashtable; throw
NullPointerException if m is null.

void rehash() A protected method to increase the capacity of the hashtable; the
method is called automatically when the number of keys in the
hashtable is greater than the product of the load factor and the
current capacity.

Object remove(Object key) Remove the pair (key, corresponding value) from the hashtable
and return the value associated currently with key in the
hashtable; throw NullPointerException if key
is null.

int size() Return the number of objects in the hashtable.

String toString() Return a string representation of the hashtable that contains the
string representation of all the objects.

Collection values() Return a Collection object with all the values contained in the
hashtable.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

554 ■ C h a p t e r 2 C o m p l e x i t y A n a l y s i s

FIGURE 10.21 A program demonstrating operations of the Hashtable methods.

import java.io.*;

import java.util.*;

class Person {

private String name;

public int age;

public Person(String s, int i) {

name = s; age = i;

}

Person() {

this("",0);

}

public String toString() {

return "(" + name + "," + age + ")";

}

public boolean equals(Object p) {

return name.equals(((Person)p).name);

}

}

class SSN {

private int value;

private hashValue;

public SSN(int i) {

value = i;

hashValue = (value & 0x0000ffff) + (value >>> 16)

}

public boolean equals(Object ob) {

return value == ((SSN)ob).value;

}

public int hashCode() {

return hashValue;

}

public String toString() {

return "" + value;

}

}

class testHashtable {

static void print(Iterator it) {

if (it.hasNext()) {

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 0 . 6 H a s h i n g i n java.util ■ 555

FIGURE 10.21 (continued)

System.out.print(it.next());

while (it.hasNext())

System.out.print(", " + it.next());

}

System.out.println();

}

static void print(Enumeration e) {

if (e.hasMoreElements()) {

System.out.print(e.nextElement());

while (e.hasMoreElements())

System.out.print(", " + e.nextElement());

}

System.out.println();

}

public static void main(String[] ar) {

Hashtable hashTable1 = new Hashtable(4);

hashTable1.put(new Integer(123456789),new Person("Larry",25));

hashTable1.put(new Integer(111111111),new Person("Kathy",30));

System.out.println(hashTable1);

// {111111111=(Kathy,30), 123456789=(Larry,25)}

hashTable1.put(new Integer(222222222),new Person("Kathy",20));

System.out.println(hashTable1);

// {111111111=(Kathy,30), 222222222=(Kathy,20), 123456789=(Larry,25)}

print(hashTable1.entrySet().iterator());

// 111111111=(Kathy,30), 222222222=(Kathy,20), 123456789=(Larry,25)

print(hashTable1.keySet().iterator());

// 111111111, 222222222, 123456789

print(hashTable1.elements());

// (Kathy,30), (Kathy,20), (Larry,25)

print(hashTable1.keys());

// 111111111, 222222222, 123456789

print(hashTable1.values().iterator());

// (Kathy,30), (Kathy,20), (Larry,25)

Iterator it = hashTable1.values().iterator();

((Person)it.next()).age = 28;

System.out.println(hashTable1);

// {111111111=(Kathy,28), 222222222=(Kathy,20), 123456789=(Larry,25)}

hashTable1.put(new Integer(111111111),new Person("Jerry",20));

System.out.println(hashTable1);

// {111111111=(Jerry,20), 222222222=(Kathy,20), 123456789=(Larry,25)}

hashTable1.put(new Integer(111111113),new Person("Frank",30));

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An attempt to add an entry with the same key as an existing entry results in re-
placing the value of the existing entry with the value of the entry being added. At any
time, methods keySet() and entrySet() can be applied to generate a set of keys
and a set of entries in the table. The set generated with entrySet() includes objects
of type Map.Entry, and thus the methods from the Map.Entry interface can be ap-
plied to this set (see Figure 7.34). All keys of the hash table can also be included in one
enumeration object with the method keys() and all entries in one enumeration ob-
ject with values().

The object hashTable1 in Figure 10.21 is declared to have an initial capacity of
4, so that after adding the fourth object to the table, the default load factor of 75 per-
cent is exceeded and thus the method rehash() is automatically invoked. Note that
after adding new elements when the load factor is not exceeded, the new element is
put in one of the existing buckets of the table. Printing the table shows that some of

556 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.21 (continued)

System.out.println(hashTable1);

// {111111113=(Frank,30), 123456789=(Larry,25), 222222222=(Kathy,20),

// 111111111=(Jerry,20)}

System.out.println(hashTable1.get(new Integer(111111111))); // (Jerry,20)

System.out.println(hashTable1.contains(new Person("Jerry",20))); // true

System.out.println(hashTable1.containsValue(new Person("Jerry",20))); // true

System.out.println(hashTable1.remove(new Integer(111111111))); // (Jerry,20)

System.out.println(hashTable1);

// {222222222=(Kathy,20), 123456789=(Larry,25)}

Hashtable hashTable2 = new Hashtable();

hashTable2.put(new SSN(123456789),new Person("Larry",28));

hashTable2.put(new SSN(111111111),new Person("Kathy",30));

System.out.println(hashTable2);

// {111111111=(Kathy,30), 123456789=(Larry,28)}

hashTable2.put(new SSN(222222222),new Person("Kathy",20));

System.out.println(hashTable2);

// {222222222=(Kathy,20), 111111111=(Kathy,30), 123456789=(Larry,28)}

hashTable2.put(new SSN(111111111),new Person("Jerry",25));

System.out.println(hashTable2);

// {222222222=(Kathy,20), 111111111=(Jerry,25), 123456789=(Larry,28)}

hashTable2.put(new SSN(111111113),new Person("Frank",30));

System.out.println(hashTable2);

// {222222222=(Kathy,20), 111111113=(Frank,30), 111111111=(Jerry,25),

// 123456789=(Larry,28)}

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the old elements retain their relative order. But after adding the fourth object, which is
Person("Frank",30), the elements of the table are reordered by applying an ad-
justed hash function to all the elements and hashing them to the new table of double
size plus one.

The hashCode() method applied for hashTable1 is a built-in method of the
Integer() class that simply returns the integer for which an Integer object is cre-
ated. The user can redefine this method, and, in fact, must redefine this method in
user-defined types. If the method is not redefined, then hashCode() inherited from
the class Object is applied, which returns the address of a particular object. As an ex-
ample, consider the class SSN which, if it were possible, should be an extension of
Integer(), but the latter is a final class, so its extension cannot be produced.
SSN()’s hashCode() generates a hash code that is the sum of the first two bytes con-
stituting an integer and the last two bytes. For example, the hash code for integer
0x12345678 equals 0x1234 + 0x5678 = 0x68ac = 26,796.

10.7 CASE STUDY: HASHING WITH BUCKETS

The most serious problem to be solved in programs that rely on a hash function to in-
sert and retrieve items from an undetermined body of data is resolving collision. De-
pending on the technique, allowing deletion of items from the table can significantly
increase the complexity of the program. In this case study, a program is developed
that allows the user to insert and delete elements from the file names interactively.
This file contains names and phone numbers, and is initially ordered alphabetically.
At the end of the session, the file is ordered with all updates included. To that end, the
outfile is used throughout the execution of the program. outfile is the file of
buckets initialized as empty. Elements that cannot be hashed to the corresponding
bucket in this file are stored in the file overflow. At the end of the session both files
are combined and sorted to replace the contents of the original file names.

The outfile is used here as the hash table. First, this file is prepared by filling
it with tableSize * bucketSize empty records (one record is simply a certain
number of bytes). Next, all entries of names are transferred to outfile to buckets
indicated by the hash function. This transfer is performed by the method inser-
tion(), which includes the hashed item in the bucket indicated by the value com-
puted by the method hash() or in overflow if the bucket is full. In the latter case,
overflow is searched from the beginning, and if a position occupied by a deleted
record is found, the overflow item replaces it. If the end of overflow is reached, the
item is put at the end of this file.

After initializing outfile, a menu is displayed and the user chooses to insert a new
record, delete an old one, or exit. For insertion, the same method is used as before. No
duplicates are allowed. When the user wants to delete an item, the hash function is used
to access the corresponding bucket, and the linear search of positions in the bucket is
performed until the item is found, in which case the deletion marker “#” is written over
the first character of the item in the bucket. However, if the item is not found and the
end of the bucket is reached, the search continues sequentially in overflow until either
the item is found and marked as deleted or the end of the file is encountered.

S e c t i o n 1 0 . 7 C a s e S t u d y : H a s h i n g w i t h B u c k e t s ■ 557

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

If the user chooses to exit, the undeleted entries of overflow are transferred to
outfile, and all undeleted entries of outfile are sorted using an external sort. To
that end, quicksort is applied both to outfile and to an array positions[],
which contains the addresses of entries in outfile. For comparison, the entries in
outfile can be accessed, but the elements in positions[] are moved, not the ele-
ments of outfile.

After this indirect sorting is accomplished, the data in outfile have to be put in
alphabetical order. This is accomplished by transferring entries from outfile to
sorted using the order indicated in positions[]; that is, by going down the array
and retrieving the entry in outfile through the address stored in the currently ac-
cessed cell. After transferring outfile to unsorted, names is deleted and sorted is
renamed names.

Here is an example. If the contents of the original file are

Adam 123-4567 Brenda 345-5352 Brendon 983-7373
Charles 987-1122 Jeremiah 789-4563 Katherine 823-1573
Patrick 757-4532 Raymond 090-9383 Thorsten 929-6632

the hashing generates the outfile:

Katherine 823-1573 |*******************||
Adam 123-4567 |Brenda 345-5352 ||
Raymond 090-9383 |Thorsten 929-6632 ||

and the file overflow:

Brendon 983-7373 |Charles 987-1122 ||
Jeremiah 789-4563 |Patrick 757-4532 ||

(The vertical bars are not included in the file; one bar divides the records in the same
bucket, and two bars separate different buckets.)

After inserting Carol 654-6543 and deleting Brenda 345-5352 and
Jeremiah 789-4563, the file’s contents are:

outfile:

Katherine 823-1573 |Carol 654-6543 ||
Adam 123-4567 |#renda 345-5352 ||
Raymond 090-9383 |Thorsten 929-6632 ||

and overflow:

Brendon 983-7373 |Charles 987-1122 ||
#eremiah 789-4563 |Patrick 757-4532 ||

A subsequent insertion of Maggie 733-0983 and deletion of Brendon
983-7373 changes only overflow:

#rendon 983-7373 |Charles 987-1122 ||
Maggie 733-0983 |Patrick 757-4532 ||

558 ■ C h a p t e r 1 0 H a s h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

After the user chooses to exit, undeleted records from overflow are transferred
to outfile, which now includes:

Katherine 823-1573 |Carol 654-6543 ||
Adam 123-4567 |#renda 345-5352 ||
Raymond 090-9383 |Thorsten 929-6632 ||
Charles 987-1122 |Maggie 733-0983 ||
Patrick 757-4532 |

This file is sorted and the outcome is:

Adam 123-4567 |Carol 654-6543 ||
Charles 987-1122 |Katherine 823-1573 ||
Maggie 733-0983 |Patrick 757-4532 ||
Raymond 090-9383 |Thorsten 929-6632 ||

Figure 10.22 contains the code for this program.

S e c t i o n 1 0 . 7 C a s e S t u d y : H a s h i n g w i t h B u c k e t s ■ 559

FIGURE 10.22 Implementation of hashing using buckets.

import java.io.*;

import java.io.File;

public class FileHashing {

private final int bucketSize = 2, tableSize = 3, strLen = 20;

private final int recordLen = strLen;

private final byte empty = '*', delMarker = '#';

private long[] positions;

private InputStreamReader isr = new InputStreamReader(System.in);

private BufferedReader buffer = new BufferedReader(isr);

private RandomAccessFile outfile;

private RandomAccessFile sorted;

private RandomAccessFile overflow;

public FileHashing() {

}

private void print(byte[] s) { // print a byte array;

for(int k = 0; k < s.length; k++)

System.out.print((char)s[k]);

}

private long hash(byte[] s) {

long xor = 0, pack;

int i, j, slength; // exclude trailing blanks:

for (slength = s.length; s[slength-1] == ' '; slength--);

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

560 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.22 (continued)

for (i = 0; i < slength;) {

for (pack = j = 0; ; j++, i++) {

pack |= (long) s[i]; // include s[i] in the rightmost

if (j == 3 || i == slength - 1) { // byte of pack;

i++;

break;

}

pack <<= 8;

} // xor at one time 8 bytes from s;

xor ^= pack; // last iteration may put less

} // than 8 bytes in pack;

return (xor % tableSize) * bucketSize * recordLen;

}// return byte position of home bucket for s;

private byte[] getName() throws IOException {

System.out.print("Enter a name & phone#: ");

String s = buffer.readLine();

for (int i = s.length(); i < recordLen; i++)

s += ' ';

return s.getBytes(); // s => line

}

private int comparesTo(byte[] s1, byte[] s2) { // same length

for (int i = 0; i < s1.length; i++) // of s1 and s2

if (s1[i] != s2[i])] // is assumed;

return s1[i] - s2[i];

return 0;

}

private void insert() throws IOException {

insertion(getName());

}

private void insertion(byte[] line) throws IOException {

byte[] name = new byte[recordLen];

boolean done = false, inserted = false;

int counter = 0;

long address = hash(line);

outfile.seek(address);

while (!done && outfile.read(name) != -1) {

if (name[0] == empty || name[0] == delMarker) {

outfile.seek(address+counter*recordLen);

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 0 . 7 C a s e S t u d y : H a s h i n g w i t h B u c k e t s ■ 561

Continues

FIGURE 10.22 (continued)

outfile.write(line);

done = inserted = true;

}

else if (comparesTo(name,line) == 0) {

print(line);

System.out.println(" is already in the file");

return;

}

else counter++;

if (counter == bucketSize)

done = true;

else outfile.seek(address+counter*recordLen);

}

if (!inserted) {

done = false;

counter = 0;

overflow.seek(0);

while (!done && overflow.read(name) != -1) {

if (name[0] == delMarker)

done = true;

else if (comparesTo(name,line) == 0) {

print(line);

System.out.println(" is already in the file");

return;

}

else counter++;

}

if (done)

overflow.seek(counter*recordLen);

else overflow.seek(overflow.length());

overflow.write(line);

}

}

private void delete() throws IOException {

byte[] line = getName();

long address = hash(line);

outfile.seek(address);

int counter = 0;

boolean done = false, deleted = false;

byte[] name = new byte[recordLen];

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

562 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.22 (continued)

while (!done && outfile.read(name) != -1) {

if (comparesTo(line,name) == 0) {

outfile.seek(address+counter*recordLen);

outfile.write(delMarker);

done = deleted = true;

}

else counter++;

if (counter == bucketSize)

done = true;

else outfile.seek(address+counter*recordLen);

}

if (!deleted) {

done = false;

counter = 0;

overflow.seek(0);

while (!done && overflow.read(name) != -1) {

if (comparesTo(line,name) == 0) {

overflow.seek(counter*recordLen);

overflow.write(delMarker);

done = deleted = true;

}

else counter++;

overflow.seek(counter*recordLen);

}

}

if (!deleted) {

print(line);

System.out.println(" is not in database");

}

}

private void swap(long[] arr, int i, int j) {

long tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp;

}

private int partition(int low, int high) throws IOException {

byte[] rec = new byte[recordLen];

byte[] pivot = new byte[recordLen];

int i, lastSmall;

swap(positions,low,(low+high)/2);

outfile.seek(positions[low]*recordLen);

outfile.read(pivot);

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 0 . 7 C a s e S t u d y : H a s h i n g w i t h B u c k e t s ■ 563

FIGURE 10.22 (continued)

for (lastSmall = low, i = low+1; i <= high; i++) {

outfile.seek(positions[i]*recordLen);

outfile.read(rec);

if (comparesTo(rec,pivot) < 0) {

lastSmall++;

swap(positions,lastSmall,i);

}

}

swap(positions,low,lastSmall);

return lastSmall;

}

private void sort(int low, int high) throws IOException {

if (low < high) {

int pivotLoc = partition(low, high);

sort(low, pivotLoc-1);

sort(pivotLoc+1, high);

}

}

private void sortFile() throws IOException {

byte[] rec = new byte[recordLen];

sort(1,(int)positions[0]); // positions[0] contains the # of elements;

for (int i = 1; i <= positions[0]; i++) { // put data from

outfile.seek(positions[i]*recordLen); // outfile in sorted order

outfile.read(rec);

sorted.write(rec); // in file sorted;

}

}

// data from overflow file and outfile are all stored in outfile and

// prepared for external sort by loading positions of the data to an array;

private void combineFiles() throws IOException {

byte[] rec = new byte[recordLen];

int counter = bucketSize*tableSize;

outfile.seek(outfile.length());

overflow.seek(0);

while (overflow.read(rec) != -1) { // transfer from

if (rec[0] != delMarker) { // overflow to outfile only

counter++; // valid (undeleted) items;

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

564 ■ C h a p t e r 1 0 H a s h i n g

FIGURE 10.22 (continued)

outfile.write(rec);

}

}

positions = new long[counter+1];

outfile.seek(0); // load to the array positions

int arrCnt = 1; // of valid data stored in output file;

for (int i = 0; i < counter; i++) {

outfile.seek(i*recordLen);

outfile.read(rec);

if (rec[0] != empty && rec[0] != delMarker)

positions[arrCnt++] = i;

}

positions[0] = --arrCnt; // store the number of data in position 0;

}

public void processFile(String fileName) {

char command = '1';

byte[] line = new byte[recordLen];

String commandLine;

try {

(new File(".\\","outfile")).delete();

(new File(".\\","overflow")).delete();

(new File(".\\","sorted")).delete();

RandomAccessFile fIn = new RandomAccessFile(fileName,"rw");

outfile = new RandomAccessFile("outfile","rw");

sorted = new RandomAccessFile("sorted","rw");

overflow = new RandomAccessFile("overflow","rw");

for (int i = 1; i <= tableSize*bucketSize*recordLen; i++)

outfile.write(empty); // initialize outfile;

while (fIn.read(line) != -1) // load fIn to outfile;

insertion(line);

while (command != '3') {

System.out.print("Enter your choice "

+ "(1. insert, 2. delete, 3. exit): ");

commandLine = buffer.readLine();

command = commandLine.charAt(0);

if (command == '1')

insert();

else if (command == '2')

delete();

else if (command != '3')

System.out.println("Wrong command entered, please retry.");

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 0 . 7 C a s e S t u d y : H a s h i n g w i t h B u c k e t s ■ 565

FIGURE 10.22 (continued)

}

combineFiles();

sortFile();

outfile.close();

sorted.close();

overflow.close();

fIn.close();

(new File(".\\","names")).delete();

(new File(".\\","sorted")).renameTo(new File(".\\","names"));

} catch (IOException ioe) {

}

}

static public void main(String args[]) {

String fileName = "";

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader buffer = new BufferedReader(isr);

FileHashing fClass = new FileHashing();

try {

if (args.length == 0) {

System.out.print("Enter a file name: ");

fileName = buffer.readLine();

}

else fileName = args[0];

} catch(IOException io) {

System.err.println("Cannot open " + fileName);

}

fClass.processFile(fileName);

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

566 ■ C h a p t e r 1 0 H a s h i n g

10.8 EXERCISES

1. What is the minimum number of keys that are hashed to their home positions using
the linear probing technique? Show an example using a 5-cell array.

2. Consider the following hashing algorithm (Bell and Kaman, 1970). Let Q and R be
the quotient and remainder obtained by dividing K by TSize, and let the probing
sequence be created by the following recurrence formula:

hi(K) = �
What is the desirable value of TSize? What condition should be imposed on Q?

3. Is there any advantage to using binary search trees instead of linked lists in the sepa-
rate chaining method?

4. In Cichelli’s method for constructing the minimal hash function, why are all words
first ordered according to the occurrence of the first and the last letters? The subse-
quent searching algorithm does not make any reference to this order.

5. Trace the execution of the searching algorithm used in Cichelli’s technique with
Max = 3. (See the illustration of such a trace for Max = 4 in Figure 10.11.)

6. In which case does Cichelli’s method not guarantee to generate a minimal perfect
hash function?

7. Apply the FHCD algorithm to the nine Muses with r = n/2 = 4 and then with r = 2.
What is the impact of the value of r on the execution of this algorithm?

8. Strictly speaking, the hash function used in extendible hashing also dynamically
changes. In what sense is this true?

9. Consider an implementation of extendible hashing that allows buckets to be pointed
to by only one reference. The directory contains null references so that all references
in the directory are unique except the null references. What keys are stored in the
buckets? What are the advantages and disadvantages of this implementation?

10. How would the directory used in extendible hashing be updated after splitting if the
last depth bits of h(K) are considered an index to the directory, not the first depth bits?

11. List the similarities and differences between extendible hashing and B+-trees.

12. What is the impact of the uniform distribution of keys over the buckets in extendible
hashing on the frequency of splitting?

13. Apply the linear hashing method to hash numbers 12, 24, 36, 48, 60, 72, and 84 to an
initially empty table with three buckets and with three cells in the overflow area. What
problem can you observe? Can this problem bring the algorithm to a halt?

R if i = 0
(hi–1(K) + Q) mod TSize otherwise

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 0 . 9 P r o g r a m m i n g A s s i g n m e n t s ■ 567

14. Outline an algorithm to delete a key from a table when the linear hashing method is
used for inserting keys.

15. The method hash() applied in the case study uses the exclusive or (xor) operation to
fold all the characters in a string. Would it be a good idea to replace it by bitwise-and
or bitwise-or?

10.9 PROGRAMMING ASSIGNMENTS

1. As discussed in this chapter, the linear probing technique used for collision resolution
has a rapidly deteriorating performance if a relatively small percentage of the cells are
available. This problem can be solved using another technique for resolving collisions,
and also by finding a better hash function, ideally, a perfect hash function. Write a
program that evaluates the efficiency of various hashing functions combined with the
linear probing method. Have your program write a table similar to the one in Figure
10.4, which gives the averages for successful and unsuccessful trials of locating items
in the table. Use string methods and a large text file whose words will be hashed to the
table. Here are some examples of hash functions (all values are divided modulo TSize):

a. FirstLetter(s) + SecondLetter(s) + · · · + LastLetter(s)

b. FirstLetter(s) + LastLetter(s) + length(s) (Cichelli)

c. for (i = 0, index = 0; i < s.length; i++)
index = (26 * index + s.charAt(i) - ' '); (Ramakrishna)

2. Another way of improving the performance of hashing is to allow reorganization of
the hash table during insertions. Write a program that compares the performance of
linear probing with the following self-organization hashing methods:

a. Last-come-first-served hashing places a new element in its home position, and in
case of a collision, the element that occupies this position is inserted in another
position using a regular linear probing method to make room for the arriving
element (Poblete and Munro, 1989).

b. Robin Hood hashing checks the number of positions two colliding keys are away
from their home positions and continues searching for an open position for the
key closer to its home position (Celis et al., 1985).

3. Write a program that inserts records into a file and retrieves and deletes them using
either extendible hashing or the linear hashing technique.

4. Extend the program presented in the case study by creating a linked list of overflow-
ing records associated with each bucket of the intermediate file outfile. Note that if
a bucket has no empty cells, the search continues in the overflow area. In the extreme
case, it may mean that the bucket holds only deleted items, and new items are inserted
in the overflow area. Therefore, it may be advantageous to have a purging method
that, after a certain number of deletions, is automatically invoked. This method trans-
fers items from the overflow area to the main file, which are hashed to buckets with
deleted items. Write such a method.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

568 ■ C h a p t e r 1 0 H a s h i n g

BIBLIOGRAPHY

Bell, James R., and Kaman, Charles H., “The Linear Quotient Hash Code,” Communications of
the ACM 13 (1970), 675–677.

Celis, P., Larson P., and Munro J. I., “Robin Hood Hashing,” Proceedings of the 26th IEEE
Symposium on the Foundations of Computer Science (1985), 281–288.

Cichelli, Richard J., “Minimal Perfect Hash Function Made Simple,” Communications of the
ACM 23 (1980), 17–19.

Czech, Zbigniew J., and Majewski, Bohdan S., “A Linear Time Algorithm for Finding Minimal
Perfect Hash Functions,” Computer Journal 36 (1993), 579–587.

Enbody, R. J., and Dy, H. C.,“Dynamic Hashing Schemes,” Computing Surveys 20 (1988),
85–113.

Fagin, Ronald, Nievergelt, Jurg, Pippenger, Nicholas, and Strong, H. Raymond, “Extendible
Hashing—A Fast Access Method for Dynamic Files,” ACM Transactions on Database Systems 4
(1979), 315–344.

Fox, Edward A., Heath, Lenwood S., Chen, Qi F., and Daoud, Amjad M., “Practical Minimal
Perfect Hash Functions for Large Databases,” Communications of the ACM 35 (1992), 105–121.

Haggard, G., and Karplus, K., “Finding Minimal Perfect Hash Functions,” SIGCSE Bulletin 18
(1986), No. 1, 191–193.

Knott, G. D., “Expandable Open Addressing Hash Table Storage and Retrieval,” Proceedings of
the ACM SIGFIDET Workshop on Data Description, Access, and Control (1971), 186–206.

Knuth, Donald, The Art of Computer Programming, Vol. 3, Reading, MA: Addison-Wesley, 1998.

Larson, Per A., “Dynamic Hashing,” BIT 18 (1978), 184–201.

Larson, Per A., “Dynamic Hash Tables,” Communications of the ACM 31 (1988), 446–457.

Lewis, Ted G., and Cook, Curtis R., “Hashing for Dynamic and Static Internal Tables,” IEEE
Computer (October 1986), 45–56.

Litwin, Witold, “Linear Hashing: A New Tool for File and Table Addressing,” Proceedings of the
Sixth Conference of Very Large Databases (1980), 212–223.

Litwin, Witold, “Virtual Hashing: A Dynamically Changing Hashing,” Proceedings of the Fourth
Conference of Very Large Databases (1978), 517–523.

Lomet, David B.,“Bounded Index Exponential Hashing,” ACM Transactions on Database Systems
8 (1983), 136–165.

Lum, V. Y., Yuen, P. S. T., and Dood, M., “Key-to-Address Transformation Techniques: A Funda-
mental Performance Study on Large Existing Formatted Files,” Communications of the ACM 14
(1971), 228–239.

Morris, Robert, “Scatter Storage Techniques,” Communications of the ACM 11 (1968), 38–44.

Mullin, James K., “Tightly Controlled Linear Hashing Without Separate Overflow Storage,” BIT
21 (1981), 390–400.

Pagli, L., “Self-Adjusting Hash Tables,” Information Processing Letters 21 (1985), 23–25.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Poblete, Patricio V., and Munro, J. Ian,“Last-Come-First-Served Hashing,” Journal of Algorithms
10 (1989), 228–248.

Radke, Charles E., “The Use of the Quadratic Search Residue,” Communications of the ACM 13
(1970), 103–105.

Sager, Thomas J., “A Polynomial Time Generator for Minimal Perfect Hash Functions,”
Communications of the ACM 28 (1985), 523–532.

Sebesta, Robert W., and Taylor, Mark A., “Fast Identification of Ada and Modula-2 Reserved
Words,” Journal of Pascal, Ada, and Modula-2 (March/April 1986), 36–39.

Tharp, Alan L., File Organization and Processing, New York: Wiley, 1988.

Vitter, Jeffrey S., and Chen, Wen C., Design and Analysis of Coalesced Hashing, New York:
Oxford University Press, 1987.

B i b l i o g r a p h y ■ 569

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Transfer of information is essential for the proper functioning of any structure
on any level and any type of organization. The faster an exchange of informa-
tion occurs, the smoother the structure functions. Improvement of the rate of

transfer can be achieved by improving the medium through which data are trans-
ferred or by changing the data themselves so that the same information can be trans-
mitted within a shorter time interval.

Information can be represented in a form that exhibits some redundancy. For ex-
ample, in a database, it is enough to say about a person that he is “M” or she is “F,” in-
stead of spelling out the whole words, “male” and “female,” or to use 1 and 2 to
represent the same information. The number one hundred twenty-eight can be stored
as 80 (hexadecimal), 128, 1000000 (binary), CXXVIII, ��� (the Greek language used
letters as digits), or | | | . . . | (128 bars). If numbers are stored as the sequences of digits
representing them, then 80 is the shortest form. Numbers are represented in binary
form in computers.

11.1 CONDITIONS FOR DATA COMPRESSION

When transferring information, the choice of the data representation determines how
fast the transfer is performed. A judicious choice can improve the throughput of a
transmission channel without changing the channel itself. There are many different
methods of data compression (or compaction) that reduce the size of the representa-
tion without affecting the information itself.

Assume that there are n different symbols used to code messages. For a binary
code, n = 2; for Morse code, n = 3: the dot, the dash, and the blank separating the
sequences of dots and dashes that represent letters. Assume also that all symbols mi
forming a set M have been independently chosen and are known to have probabilities
of occurrence P(mi), and the symbols are coded with strings of 0s and 1s. Then P(m1)
+ · · · + P(mn) = 1. The information content of the set M, called the entropy of the
source M, is defined by

Lave = P(m1)L(m1) + · · · + P(mn)L(mn) (11.1)

570

Data
Compression11

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

where L(mi) = –lg(P(mi)), which is the minimum length of a codeword for symbol mi.
Claude E. Shannon established in 1948 that Equation 11.1 gives the best possible aver-
age length of a codeword when the source symbols and the probabilities of their use
are known. No data compression algorithm can be better than Lave, and the closer it is
to this number, the better is its compression rate.

For example, if there are three symbols, m1, m2, and m3, with the probabilities .25,
.25, and .5, respectively, then the lengths of the codewords assigned to them are:

–lg(P(m1)) = –lg(P(m2)) = –lg(.25) = lg��
.2
1
5
�� = lg(4) = 2 and

–lg(P(m3)) = lg(2) = 1

and the average length of a codeword is

Lave = P(m1) · 2 + P(m2) · 2 + P(m3) · 1 = 1.5

Various data compression techniques attempt to minimize the average codeword
length by devising an optimal code (that is, an assignment of codewords to symbols)
that depends on the probability P with which a symbol is being used. If a symbol is is-
sued infrequently, it can be assigned a long codeword. For frequently issued symbols,
very short encodings are more to the point.

Some restrictions need to be imposed on the prospective codes:

1. Each codeword corresponds to exactly one symbol.

2. Decoding should not require any look ahead; after reading each symbol it should be
possible to determine whether the end of a string encoding a symbol of the original
message has been reached. A code meeting this requirement is called a code with the
prefix property, and it means that no codeword is a prefix of another codeword. There-
fore, no special punctuation is required to separate two codewords in a coded message.

The second requirement can be illustrated by three different encodings of three
symbols, as given in the following table:

Symbol code1 code2 code3

A 1 1 11

B 2 22 12

C 12 12 21

The first code does not allow us to make a distinction between AB and C, because
both are coded as 12. The second code does not have this ambiguity, but it requires a
look ahead, as in 1222: The first 1 can be decoded as A. The following 2 may indicate
that A was improperly chosen, and 12 should have been decoded as C. It may be that
A is a proper choice if the third symbol is 2. Because 2 is found, AB is chosen as the
tentatively decoded string, but the fourth symbol is another 2. Hence, the first turn
was wrong, and A has been ill-chosen. The proper decoding is CB. All these problems
arise because both code1 and code2 violate the prefix property. Only code3 can be un-
ambiguously decoded as read.

For an optimal code, two more stipulations are specified.

S e c t i o n 1 1 . 1 C o n d i t i o n s f o r D a t a C o m p r e s s i o n ■ 571

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. The length of the codeword for a given symbol mj should not exceed the length of the
codeword of a less probable symbol mi; that is, if P(mi) ≤ P(mj), then L(mi) ≥ L(mj)
for 1 ≤ i, j ≤ n.

4. In an optimal encoding system, there should not be any unused short codewords
either as stand-alone encodings or as prefixes for longer codewords, because this
would mean that longer codewords were created unnecessarily. For example, the
sequence of codewords 01, 000, 001, 100, 101 for a certain set of five symbols is not
optimal because the codeword 11 is not used anywhere; this encoding can be turned
into an optimal sequence 01, 10, 11, 000, 001.

In the following sections, several data compression methods are presented. To
compare the efficiency of these methods when applied to the same data, the same
measure is used. This measure is the compression rate (also called the fraction of data
reduction), and it is defined as the ratio

(11.2)

It is expressed as a percentage indicating the amount of redundancy removed from
the input.

11.2 HUFFMAN CODING

The construction of an optimal code was developed by David Huffman, who utilized
a tree structure in this construction: a binary tree for a binary code. The algorithm is
surprisingly simple and can be summarized as follows:

Huffman()
for each symbol create a tree with a single root node and order all trees

according to the probability of symbol occurrence;
while more than one tree is left

take the two trees t1, t2 with the lowest probabilities p1, p2 (p1 ≤ p2)
and create a tree with t1 and t2 as its children and with
the probability in the new root equal to p1 + p2;

associate 0 with each left branch and 1 with each right branch;
create a unique codeword for each symbol by traversing the tree from the root

to the leaf containing the probability corresponding to this
symbol and by putting all encountered 0s and 1s together;

The resulting tree has a probability of 1 in its root.
It should be noted that the algorithm is not deterministic in the sense of produc-

ing a unique tree because, for trees with equal probabilities in the roots, the algorithm
does not prescribe their positions with respect to each other either at the beginning or
during execution. If t1 with probability p1 is in the sequence of trees and the new tree t2
is created with p2 = p1, should t2 be positioned to the left of t1 or to the right? Also,
if there are three trees, t1, t2, and t3, with the same lowest probability in the entire
sequence, which two trees should be chosen to create a new tree? There are three possi-

length(input) – length(output)
length(input)

572 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

bilities for choosing two trees. As a result, different trees can be obtained depending on
where the trees with equal probabilities are placed in the sequence with respect to each
other. Regardless of the shape of the tree, the average length of the codeword remains
the same.

To assess the compression efficiency of the Huffman algorithm, a definition of
the weighted path length is used, which is the same as Equation 11.1 except that L(mi)
is interpreted as the number of 0s and 1s in the codeword assigned to symbol mi by
this algorithm.

Figure 11.1 contains an example for the five letters A, B, C, D, and E with proba-
bilities .39, .21, .19, .12, and .09, respectively. The tree in Figures 11.1a and 11.1b are
different in the way in which the two nodes containing a probability of .21 have been
chosen to be combined with tree .19 to create a tree of .40. Regardless of the choice,
the lengths of the codewords associated with the five letters A through E are the same,
namely, 2, 2, 2, 3, and 3, respectively. However, the codewords assigned to them are
slightly different, as shown in Figures 11.1c and 11.1d, which present abbreviated
(and more commonly used) versions of the way the trees in Figures 11.1a and 11.1b
were created. The average length for the latter two trees is

LHuf = .39 · 2 + .21 · 2 + .19 · 2 + .12 · 3 + .09 · 3 = 2.21

which is very close to 2.09 (only 5 percent off), the average length computed accord-
ing to Equation 11.1:

Lave = .39 · 1.238 + .21 · 2.252 + .19 · 2.396 + .12 · 3.059 + .09 · 3.474 = 2.09

Corresponding letters in Figures 11.1a and 11.1b have been assigned codewords
of the same length. Obviously, the average length for both trees is the same. But each
way of building a Huffman tree, starting from the same data, should result in the same
average length, regardless of the shape of the tree. Figure 11.2 shows two Huffman
trees for the letters P, Q, R, S, and T with the probabilities .1, .1, .1, .2, and .5, respec-
tively. Depending on how the lowest probabilities are chosen, different codewords are
assigned to these letters with different lengths, at least for some of them. However, the
average length remains the same and is equal to 2.0.

The Huffman algorithm can be implemented in a variety of ways, at least as many
as the number of ways a priority queue can be implemented. The priority queue is the
natural data structure in the context of the Huffman algorithm because it requires re-
moving the two smallest probabilities and inserting the new probability in the proper
position.

One way to implement this algorithm is to use a singly linked list of references to
trees, which reflects closely what Figure 11.1a illustrates. The linked list is initially
ordered according to the probabilities stored in the trees, all of them consisting of
just a root. Then, repeatedly, the two trees with the smallest probabilities are chosen;
the tree with the smaller probability is replaced by a newly created tree, and the node
with the reference to the tree with the higher probability is removed from the linked
list. From trees having the same probability in their roots, the first tree encountered
is chosen.

S e c t i o n 1 1 . 2 H u f f m a n C o d i n g ■ 573

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

574 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.1 Two Huffman trees created for five letters A, B, C, D, and E with probabilities .39,
.21, .19, .12, and .09.

1.0

.40

.21 .19

1

10

0

.09 .12

1

0

1

0

0
.21

.40

1.0

.60

1

0

1
1

(a)

(c)

000

001

01

10

11

.09

.12

.19

.21

.39

E

D

C

B

A

0

.40

.21 .19

.09 .12

.60

.60

.21 .39

10

.40

.21 .19

.09 .12

.21 .39

.21 .19 .21 .39

.09 .12

.09 .12 .19 .21 .39

1.0

.60

.21 .39

1

10

0

.09 .12

1

(b)

0

.60

.21 .39

.09 .12

.40

.40

.19 .21

10

.21

.09 .12

.40 .39

.19 .21

.21 .19 .21 .39

.09 .12

0

0

1
0

.21

.60
1.0

.40

1

0

1
1

(d)

000

001

10

11

01

.09

.12

.19

.21

.39

E

D

C

B

A

.19 .21.21 .39

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In another implementation, all probability nodes are first ordered, and that order
is maintained throughout the operation. From such an ordered list, the first two trees
are always removed to create a new tree from them, which is inserted close to the end
of the list. To that end, a doubly linked list of references to trees with immediate access
to the beginning and to the end of this list can be used. Figure 11.3 contains a trace of
the execution of this algorithm for the letters A, B, C, D, and E with the same probabil-
ities as in Figure 11.1. Codewords assigned to these letters are also indicated in Figure
11.3. Note that they are different from the codewords in Figure 11.1, although their
lengths are the same.

The two preceding algorithms built Huffman trees bottom-up by starting with a
sequence of trees and collapsing them together to a gradually smaller number of trees
and, eventually, to one tree. However, this tree can be built top-down, starting from
the highest probability. But only the probabilities to be placed in the leaves are known.
The highest probability, to be put in the root, is known if lower probabilities, in the
root’s children, have been determined; the latter are known if still lower probabilities
have been computed, and so on. Therefore, creating nonterminal nodes has to be de-
ferred until the probabilities to be stored in them are found. It is very convenient to
use the following recursive algorithm to implement a Huffman tree:

createHuffmanTree(prob)
declare the probabilities p1, p2, and the Huffman tree Htree;
if only two probabilities are left in prob

return a tree with p1, p2 in the leaves and p1 + p2 in the root;
else remove the two smallest probabilities from prob and assign them to p1 and p2;

insert p1 + p2 to prob;
Htree = createHuffmanTree(prob);
in Htree make the leaf with p1 + p2 the parent of two leaves with p1 and p2;
return Htree;

Figure 11.4 contains a summary of the trace of the execution of this algorithm for the
letters A, B, C, D, and E with the probabilities as shown in Figure 11.1. Indentation in-
dicates consecutive calls to createHuffmanTree().

One implementation of a priority queue is a min heap, which can also be used to
implement this algorithm. In this heap, each nonterminal node has a smaller probability

S e c t i o n 1 1 . 2 H u f f m a n C o d i n g ■ 575

FIGURE 11.2 Two Huffman trees generated for letters P, Q, R, S, and T with probabilities .1, .1, .1,
.2, and .5.

0

1

0
.2

.3
.5

1.0

1

0

0

1

1

0000

0001

001

01

1

.1

.1

.1

.2

.5

P

Q

R

S

T

0

1

00

1

0

1

1

.3
.5

.2
1.0

000

010

011

001

1

.1

.1

.1

.2

.5

P

Q

R

S

T

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

than the probabilities in its children, and because the smallest probability is in the root,
that one is simple to remove. But after it is removed, the root is empty. Therefore, the
largest element is put in the root and the heap property is restored. Then the second ele-
ment can be removed from the root and replaced with a new element, which represents
the sum of the probability of the root and the probability previously removed.

Afterward, the heap property has to be restored again. After one such sequence of
operations, the heap has one less node: Two probabilities from the previous heap have
been removed and a new one has been added. But it is not enough to create the Huff-
man tree: The new probability is a parent of the probabilities just removed, and this
information must be retained. To that end, three arrays can be used: indexes contain-
ing the indexes of the original probabilities and the probabilities created during the
process of creating the Huffman tree; probabilities, an array of the original and newly
created probabilities; and parents, an array of indexes indicating the position of the

576 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.3 Using a doubly linked list to create the Huffman tree for the letters from Figure 11.1.

1.0

.60.40

.19 .39

.12.09

.21 .21

\
\

.60

.39

.12.09

.21

\

.40

.21.19

\

11

01

00

101

100

A

B

C

D

E

.40

.21.19

/

.39.21

.12.09

\

.39

\

.21.21

.12.09

.19

\

.39

\

.21.19.12.09

\

trees

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

parents of the elements stored in probabilities. A positive number in parents indicates
the left child, and a negative number indicates the right child. Codewords are created
by accumulating 0s and 1s when going from leaves to the root using the array parents,
which functions as an array of references. It is important to note that in this particular
implementation probabilities are sorted indirectly: The heap is actually made up of
indexes to probabilities, and all exchanges take place in indexes.

Figure 11.5 illustrates an example of using a heap to implement the Huffman al-
gorithm. The heaps in steps (a), (e), (i), and (m) in Figure 11.5 are ready for process-
ing. First, the highest probability is put in the root, as in steps (b), (f), (j), and (n) of
Figure 11.5. Next, the heap is restored, as in steps (c), (g), (k), and (o), and the root
probability is set to the sum of the two smallest probabilities, as in steps (d), (h), (l),
and (p). Processing is complete when there is only one node in the heap.

S e c t i o n 1 1 . 2 H u f f m a n C o d i n g ■ 577

FIGURE 11.4 Top-down construction of a Huffman tree using recursive implementation.

1.0return

.60

.21 .39

.09 .12

.40

.19 .21

1.0return

.60

.21 .39

.40

.19 .21

1.0return

.60

.21 .39

.40

1.0return

prob = {.09, .11, .19, .21, .39}

prob = {.09, .21, .39, .21}

prob = {.39, .21, .40}

p1 = .09

p1 = .19

p1 = .21

p2 = .11

p2 = .21

p2 = .39

prob = {.40, .60}

.60 .40

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

578 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.5 Huffman algorithm implemented with a heap.

0 1

.09

.19.12

.21 .39

0

21

3

(a)

4

.12

.19.21

.39 .09

1

23

4

(c)

0

.39

.19.12

.21 .09

1.0

.40

.19 .21

.60

.39 .21

.09 .12

4

21

3

(b)

0

.09probabilities

indexes

.12

2

.19

3

.21

4

.39

5 3

.21 = .12 + .09

.19.21

.39

5

23

4

.09probabilities

indexes

.12

2

.19

4

.39.21 .21

(d)
5parents –5

.21

.21.39

.19

3

54

2

(g)

.39

.21.21

.19

4

53

2

(f)

.19

.21.21

.39

2

53

4

(e)

6 4

.40 = .21 + .19

.21.39

6

34

.09probabilities

indexes

.12

3

.19 .21.39.21 .40

(h)

6parents –65 –5

.39

.21.40

4

36

(k)

.40

.21.39

6

34

(j)

.21

.40.39

3

64

(i)

7 6

.60 = .39 + .21

.40

7

6

.09probabilities

indexes

.12 .19 .21.39.21 .60.40

(l)

7parents –76 –65 –5

8

1.0

.09probabilities

indexes

.12 .19 .21.39.21 1.0.60.40

(q)(p)

8parents –87 –76 –65 –5

.60

.40

7

6

(o)

.60

.40

7

6

(n)

.40

.60

6

7

(m)

10

11

00

011

010

A

B

C

D

E

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using the Huffman tree, a table can be constructed that gives the equivalents for
each symbol in terms of 1s and 0s encountered along the path leading to each of the
leaves of the tree. For our example, the tree from Figure 11.3 will be used, and the re-
sulting table is

A 11

B 01

C 00

D 101

E 100

The coding process transmits coded equivalents of the symbols to be sent. For exam-
ple, instead of sending ABAAD, the sequence 11011111101 is dispatched with the average
number of bits per one letter equal to 11/5 = 2.2, almost the same as 2.09, the value speci-
fied by the formula for Lave. To decode this message, the conversion table has to be known
to the message receiver. Using this table, a Huffman tree can be constructed with the same
paths as the tree used for coding, but its leaves would (for the sake of efficiency) store the
symbols instead of their probabilities. In this way, upon reaching a leaf, the symbol can be
retrieved directly from it. Using this tree, each symbol can be decoded uniquely. For ex-
ample, if 1001101 is received, then we try to reach a leaf of the tree using the path indi-
cated by leading 1s and 0s. In this case, 1 takes us to the right, 0 to the left, and another 0
again to the left, whereby we end up in a leaf containing E. After reaching this leaf, decod-
ing continues by starting from the root of the tree and trying to reach a leaf using the re-
maining 0s and 1s. Because 100 has been processed, 1101 has to be decoded. Now, 1 takes
us to the right and another 1 again to the right, which is a leaf with A. We start again from
the root, and the sequence 01 is decoded as B. The entire message is now decoded as EAB.

At this point, a question can be asked: Why send 11011111101 instead of ABAAD?
This is supposed to be data compression, but the coded message is twice as long as the
original. Where is the advantage? Note precisely the way in which messages are sent. A,
B, C, D, and E are single letters, and letters, being characters, require 1 byte (8 bits) to be
sent, using the extended ASCII code. Therefore, the message ABAAD requires 5 bytes
(40 bits). On the other hand, 0s and 1s in the coded version can be sent as single bits.
Therefore, if 11011111101 is regarded not as a sequence of the characters “0” and “1,”
but as a sequence of bits, then only 11 bits are needed to send the message, about one-
fourth of what is required to send the message in its original form, ABAAD.

This example raises one problem: Both the encoder and the decoder have to use
the same coding, the same Huffman tree. Otherwise, the decoding will be unsuccess-
ful. How can the encoder let the decoder know which particular code has been used?
There are at least three possibilities:

1. Both the encoder and the decoder agree beforehand on a particular Huffman tree and
both use it for sending any message.

2. The encoder constructs the Huffman tree afresh every time a new message is sent
and sends the conversion table along with the message. The decoder either uses the
table to decode the message or reconstructs the corresponding Huffman tree and
then performs the translation.

3. The decoder constructs the Huffman tree during transmission and decoding.

S e c t i o n 1 1 . 2 H u f f m a n C o d i n g ■ 579

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The second strategy is more versatile, but its advantages are visible only when large
files are encoded and decoded. For our simple example, ABAAD, sending both the
table of codewords and the coded message 11011111101 is hardly perceived as data
compression. However, if a file contains a message of 10,000 characters using the char-
acters A through E, then the space saved is significant. Using the probabilities indicated
earlier for these letters, we project that there are approximately 3,900 As, 2,100 Bs,
1,900 Cs, 1,200 Ds, and 900 Es. Hence, the number of bits needed to code this file is

3,900 · 2 + 2,100 · 2 + 1,900 · 2 + 1,200 · 3 + 900 · 3 = 22,100 bits = 2,762.5 bytes

which is approximately one-fourth the 10,000 bytes required for sending the original file.
Even if the conversion table is added to the file, this proportion is only minimally affected.

However, even with this approach, there may be some room for improvement. As
indicated, an ideal compression algorithm should give the same average codeword
length as computed from Equation 11.1. The symbols from Figure 11.1 have been as-
signed codewords whose average length is 2.21, approximately 5 percent worse than
the ideal 2.09. Sometimes, however, the difference is larger. Consider, for example,
three symbols, X, Y, and Z, with probabilities .1, .1, and .8. Figure 11.6a shows a Huff-

580 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.6 Improving the average length of the codeword by applying the Huffman algorithm
to (b) pairs of letters instead of (a) single letters.

0

1
.2

1.0

00

01

1

.1

.1

.8

X

Y

Z

0

0

0
.02

.02

.04
.12

.20

.36

.16

0

1

0

1

(b)

0

1

1.0

1

0

1

1

1

000000

000001

0001

000010

000011

001

010

011

1

.01

.01

.08

.01

.01

.08

.08

.08

.64

XX

XY

XZ

YX

YY

YZ

ZX

ZY

ZZ

0

1

LHuf = 1.92 Lave = 1.844 diff (LHuf, Lave) = 3.96%

(a)

LHuf = 1.2 Lave = .922 diff (LHuf, Lave) = 23.2%

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

man tree for these symbols, with codewords assigned to them. The average length,
according to this tree, is

LHuf = 2 · .1 + 2 · .1 + 1 · .8 = 1.2

and the best expected average, Lave, is .922. Therefore, there is a possibility we can im-
prove the Huffman coding by approximately 23.2 percent, ignoring the fact that, at
this point, a full 23.2 percent improvement is not possible because the average is
below 1. How is this possible? As already stated, all Huffman trees result in the same
average weighted path length. Therefore, no improvement can be expected if only the
symbols, X, Y, and Z, are used to construct this tree.

On the other hand, if all possible pairs of symbols are used for building a Huffman
tree, the data rate can be reduced. Figure 11.6b illustrates this procedure. Out of three
symbols, X, Y, and Z, nine pairs are created whose probabilities are computed by multi-
plying the probability of both symbols. For example, because the probability for both X
and Y is .1, the probability of pair XY is .01 = .1 · .1. The average LHuf is 1.92 and the ex-
pected average Lave is 1.84 (twice the previous Lave), with the difference between these
averages being 4 percent. This represents a 19.2 percent improvement at the cost of in-
cluding a larger conversion table (nine entries instead of three) as part of the message
to be sent. If the message is large and the number of symbols used in the message is rel-
atively small, then the increase in the size of the table is insignificant. However, for a
large number of symbols, the size of the table may be much too large to notice any im-
provement. For 26 English letters, the number of pairs is 676, which is considered rela-
tively small. But if all printable characters have to be distinguished in an English text,
from the blank character (ASCII code 32) to the tilde (ASCII code 126), plus the car-
riage return character, then there are (126 – 32 + 1) + 1 = 96 characters and 9,216 pairs
of characters. Many of these pairs are not likely to occur at all (e.g., XQ or KZ), but
even if 50 percent of them are found, the resulting table containing these pairs along
with codewords associated with them may be too large to be useful.

Using pairs of symbols is still a good idea, even if the number of symbols is large.
For example, a Huffman tree can be constructed for all symbols and for all pairs of
symbols that occur at least five times. The efficiency of the variations of Huffman en-
coding can be measured by comparing the size of compressed files. Experiments were
performed on an English text, a PL/1 program file, and a digitized photographic
image (Rubin 1976). When only single characters were used, the compression rates
were approximately 40 percent, 60 percent, and 50 percent, respectively. When single
characters were used along with the 100 most frequent groups (not only two charac-
ters long), the compression rates were 49 percent, 73 percent, and 52 percent. When
the 512 most frequent groups were used, the compression rates were around 55 per-
cent, 71 percent, and 62 percent.

11.2.1 Adaptive Huffman Coding
The foregoing discussion assumed that the probabilities of messages are known in ad-
vance. A natural question is: How do we know them?

One solution computes the number of occurrences of each symbol expected in
messages in some fairly large sample of texts of, say, 10 million characters. For mes-
sages in natural languages such as English, such samples may include some literary

S e c t i o n 1 1 . 2 H u f f m a n C o d i n g ■ 581

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

works, newspaper articles, and a portion of an encyclopedia. After each character’s
frequency has been determined, a conversion table can be constructed for use by both
the sending and receiving ends of the data transfer. This eliminates the need to in-
clude such a table every time a file is transmitted.

However, this method may not be useful for sending some specialized files, even if
written in English. A computer science paper includes a much higher percentage of
digits and parentheses, especially if it includes extensive illustrations in LISP or Java
code, than a paper on the prose of Jane Austen. In such circumstances, it is more judi-
cious to use the text to be sent to determine the needed frequencies, which also requires
enclosing the table as overhead in the file being sent. A preliminary pass through this
file is required before an actual conversion table can be constructed; however, the file to
be preprocessed may be very large, and preprocessing slows down the entire transmis-
sion process. Also, the file to be sent may not be known in its entirety when it is being
sent, and yet compression is necessary; for example, when a text is being typed and sent
line by line, there is no way to know the contents of the whole file at the time of send-
ing. In such a situation, adaptive compression is a viable solution.

An adaptive Huffman encoding technique was devised first by Robert G. Gallager and
then improved by Donald Knuth. The algorithm is based on the following sibling property:
If each node has a sibling (except for the root) and the breadth-first right-to-left tree tra-
versal generates a list of nodes with nonincreasing frequency counters, it can be proven

In adaptive Huffman coding, the Huffman tree includes a counter for each sym-
bol, and the counter is updated every time a corresponding input symbol is being
coded. Checking whether the sibling property is retained assures that the Huffman
tree under construction is still a Huffman tree. If the sibling property is violated, the
tree has to be restructured to restore this property. Here is how this is accomplished.

First, it is assumed that the algorithm maintains a doubly linked list nodes that
contains the nodes of the tree ordered by breadth-first right-to-left tree traversal. A
blocki is a part of the list where each node has frequency i, and the first node in each
block is called a leader. For example, Figure 11.7 shows the Huffman tree and also the
list nodes = (7 4 3 2 2 2 1 1 1 1 0) that has six blocks—block7, block4, block3, block2,
block1, and block0—with leaders shown with counters in boldface.

All unused symbols are kept in one node with a frequency of 0, and each symbol en-
countered in the input has its own node in the tree. Initially, the tree has just one 0-node
that includes all symbols. If an input symbol did not yet appear in the input, the 0-node is
split in two, with the new 0-node containing all symbols except the newly encountered
one and the node referring to this new symbol with counter set to 1; both nodes become
children of the one parent whose counter is also set to 1. If an input symbol already has a
node p in the tree, its counter is incremented. However, such an increment may endanger
the sibling property, so this property has to be restored by exchanging the node pwith the
leader of the block to which p currently belongs, except when this leader is p’s parent.
This node is found by going in nodes from p toward the beginning of this list. If p be-
longs to blocki before increment, it is swapped with the leader of this block, whereby it is
included in blocki+1. Then the counter increment is done for p’s possibly new parent,
which may also lead to a tree transformation to restore the sibling property. This process
is continued until the root is reached. In this way, the counters are updated on the new
path from p to the root rather than on its old path. For each symbol, the codeword is is-

582 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

that a tree with the sibling property is a Huffman tree (Faller, 1974; Gallager, 1978).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

sued, which is obtained by scanning the Huffman tree from the root to the node corre-
sponding to this symbol before any transformation in the tree takes place.

Two different types of codewords are transmitted during this process. If a symbol
being coded has already appeared, then the normal coding procedure is applied: The
Huffman tree is scanned from the root to the node holding this symbol to determine
its codeword. If a symbol appears in the input for the first time, it is in the 0-node, but
just sending the Huffman codeword of the 0-node does not suffice. Therefore, along
with the codeword allowing us to reach the 0-node, the codeword is sent that indicates
the position of the encountered symbol. For the sake of simplicity, we assume that po-
sition n is coded as n 1s followed by a 0. Zero is used to separate the 1s from those be-
longing to the next codeword. For example, when the letter c is coded for the first time,
its codeword, 001110, is a combination of the codeword for the 0-node, 00, and the
codeword 1110 indicating that c can be found in the third position in the list of unused
symbols associated with 0-node. These two codewords (or rather, parts of one code-
word) are marked in Figure 11.8 by underlining them separately. After a symbol is re-
moved from the list in 0-node, its place is taken by the last symbol of this list. This also
indicates that the encoder and receiver have to agree on the alphabet being used and its
ordering. The algorithm is shown in this pseudocode:

FGKDynamicHuffmanEncoding(symbol s)
p = leaf that contains symbol s;
c = Huffman codeword for s;

if p is the 0-node
c = c concatenated with the number of 1s representing position of s in 0-node and with 0;
write the last symbol in 0-node over s in this node;
create a new node q for symbol s and set its counter to 1;
p = new node to become the parent of both 0-node and node q;
counter(p) = 1;
include the two new nodes to nodes;

else increment counter(p);
while p is not the root

S e c t i o n 1 1 . 2 H u f f m a n C o d i n g ■ 583

FIGURE 11.7 Doubly linked list nodes formed by breadth-first right-to-left tree traversal.

7

3

1 2

1 1

4

2 2

0 1

ab c

d

e

nodes

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

if p violates the sibling property
if the leader of the blocki that still includes p is not parent(p)

swap p with the leader;
p = parent(p);
increment counter(p);

return codeword c;

A step-by-step example for string aafcccbd is shown in Figure 11.8.

584 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.8 Transmitting the message “aafcccbd” using an adaptive Huffman algorithm.

1 1
b

1
f

2

2
a

3
c

3

0 1
(e) d

8

5

1 1
b

1
f

2

2
a

3
c

Transf.
3

0 1
(e) d

7

4

1 1
b

1
f

2

2
a

3
c

d

1000110
2

0 1
(e) d

7

43
c

7

Transf.

Transf.

1 1
f

2
a

2

4

0 1
(e d) b

2

3
c

Transf.
1

6

3

1
f

0

3
c a

2
a

c

11
1

5

32
a

5

b

100110

c

001110

f

010

Input a

(a b c d e f) Output 10

Input a

Output 1

0 1
f(e b d) (e b d)

1
f

0
(e b d)

2
c

1

3

2

2
a

Transform
1

4

3

2
c

0

1
f c

1

2
a

0

3

11
a(f b c d e)

1

0 2
a(f b c d e)

2

0

f(e b c d)

2
a

c

001
1

4

22
a

4

0 1
c(e b d) (e b d)

1
f

0
(e b d)

1
f

1

2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1. Initially, the tree includes only the 0-node with all the source letters (a, b, c, d, e, f).
After the first input letter, a, only the codeword for the position occupied by a in the
0-node is output. Because it is the first position, one 1 is output, followed by a 0. The
last letter in the 0-node is placed in the first position, and a separate node is created
for the letter a. The node, with the frequency count set to 1, becomes a child of an-
other new node that is also the parent of the 0-node.

2. After the second input letter, also an a, 1 is output, which is the Huffman codeword
for the leaf that includes a. The frequency count of a is incremented to 2, which vio-
lates the sibling property, but because the leader of the block is the parent of node p
(that is, of node a), no swap takes place; only p is updated to point to its parent, and
then p’s frequency count is incremented.

3. The third input letter, f, is a letter output for the first time; thus, the Huffman code-
word for the 0-node, 0, is generated first, followed by the number of 1s corresponding
to the position occupied by f in the 0-node, followed by 0: 10. The letter e is put in
place of letter f in the 0-node, a new leaf for f is created, and a new node becomes the
parent of the 0-node and the leaf just created. Node p, which is the parent of leaf f,
does not violate the sibling property, so p is updated, p = parent(p), thereby becom-
ing the root that is incremented.

4. The fourth input letter is c, which appears for the first time in the input. The Huff-
man codeword for the 0-node is generated, followed by three 1s and a 0 because c is
the third letter in the 0-node. After that, d is put in place of c in the 0-node, and c is
put in a newly created leaf; p is updated twice, allowing for incrementing counters of
two nodes, left child of the root and the root itself.

5. The letter c is the next input letter; thus, first the Huffman codeword for its leaf is
given, 001. Next, because the sibling property is violated, the node p (that is, the leaf
c), is swapped with the leader f of block1 that still includes this leaf. Then, p =
parent(p), and the new parent p of the c node is incremented, which leads to another
violation of the sibling property and to an exchange of node p with the leader of
block2, namely, with the node a. Next, p = parent(p), node p is incremented, but be-
cause it is the root, the process of updating the tree is finished.

6. The sixth input letter is c, which has a leaf in the tree, so first, the Huffman codeword,
11, of the leaf is generated and the counter of node c is incremented. The node p,
which is the node c, violates the sibling property, so p is swapped with the leader,
node a, of block3. Now, p = parent(p), p’s counter is incremented, and because p is the
root, the tree transformation is concluded for this input letter. The remaining steps
can be traced in Figure 11.8.

It is left to the reader to make appropriate modifications to this pseudocode to
obtain an FGKDynamicHuffmanDecoding(codeword c) algorithm.

It is possible to design a Huffman coding that does not require any initial knowl-
edge of the set of symbols used by the encoder (Cormack and Horspool 1984). The
Huffman tree is initialized to a special escape character. If a new symbol is to be sent, it
is preceded by the escape character (or its current codeword in the tree) and followed
by the symbol itself. The receiver can now know this symbol so that if its codeword ar-
rives later on, it can be properly decoded. The symbol is inserted in the tree by making

S e c t i o n 1 1 . 2 H u f f m a n C o d i n g ■ 585

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the leaf L with the lowest frequency a nonleaf so that L has two children, one pertain-
ing to the symbol previously in L and one to the new symbol.

Adaptive Huffman coding surpasses simple Huffman coding in two respects: It
requires only one pass through the input, and it adds only an alphabet to the output.
Both versions are relatively fast, and more important, they can be applied to any kind
of file, not only to text files. In particular, they can compress object or executable files.
The problem with executable files, however, is that they generally use larger character
sets than source code files, and the distribution of these characters is more uniform
than in text files. Therefore, the Huffman trees are large, the codewords are of similar
length, and the output file is not much smaller than the original; it is compressed
merely by 10–20 percent.

11.3 RUN-LENGTH ENCODING

A run is defined as a sequence of identical characters. For example, the string s =
“aaabba” has three runs: a run of three “a”s followed by runs of two “b”s and one “a.”
The run-length encoding technique takes advantage of the presence of runs and rep-
resents them in an abbreviated, compressed form.

If runs are of the same characters, as in the string s = “nnnn***r%%%%%%%,”
then instead of transmitting this string, information about runs can be transferred.
Each run is coded by the pair (n, ch), where ch is a character and n is the integer repre-
senting the number of consecutive characters ch in the run. The string s is coded as
4n3*1r7%. However, a problem arises if one of the characters being transferred is a
digit, as in 11111111111544444, which is represented as 1111554 (for eleven 1s, one 5,
and five 4s). Therefore, for each run, instead of the number n, a character can be used
whose ASCII value is n. For example, the run of 43 consecutive letters “c” is repre-
sented as +c (“+” has ASCII code 43), and the run of 49 1s is coded as 11 (“1” has
ASCII code 49).

This technique is efficient only when at least two-character runs are transmitted, be-
cause for one-character runs, the codeword is twice as long as the character. Therefore,
the technique should be applied only to runs of at least two characters. This requires
using a marker indicating that what is being transmitted is either a run in an abbreviated
form or a literal character. Three characters are needed to represent a run: a compression
marker cm, a literal character ch, and a counter n, which make up a triple �cm, ch, n�. The
problem of choosing the compression marker is especially delicate, because it should not
be confused with a literal character being transmitted. If a regular text file is transmitted,
then the character ‘~’+1 can be chosen. If there is no restriction on the characters trans-
mitted, then whenever the compression marker itself occurs in the input file, we transmit
the compression marker twice. The decoder discards one such marker upon receiving
two of them in a row and retains just one as part of the data being received. For example,
%% in a printf statement in C indicates to print just one percent sign. Because for each
literal marker two of them must be sent, an infrequently used marker should be chosen.
In addition, runs of markers are not sent in compressed form.

Compressing runs results in a sequence of three characters, so this technique
should be applied to runs of at least four characters. The maximum length of a run
that can be represented by the triple �cm, ch, n� is 255 for 8-bit ASCII if the number n

586 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

represents the number of characters in the run. But because only runs of four or more
characters are encoded, n can represent the number of actual characters in the run
minus 4; for example, if n = 1, then there are five characters in the run. In this case, the
longest run representable by one triple has 259 characters.

Run-length encoding is only modestly efficient for text files in which only the
blank character has a tendency to be repeated. In this case, a predecessor of this
technique can be applied, null suppression, which compresses only runs of blanks
and eliminates the need to identify the character being compressed. As a result,
pairs �cm, n� are used for runs of three or more blanks. This simple technique is
used in the IBM 3780 BISYNC transmission protocol where throughput gain is be-
tween 30 and 50 percent.

Run-length encoding is very useful when applied to files that are almost guaran-
teed to have many runs of at least four characters. One example is relational data-
bases. All records in the same relational database file have to be of equal length.
Records (rows, tuples) are collections of fields, which may be—and most often are—
longer than the information stored in them. Therefore, they have to be padded with
some character, thereby creating a large collection of runs whose only purpose is to fill
up free space in each field of every record.

Another candidate for compression using run-length encoding is fax images,
which are composed of combinations of black and white pixels. For low resolution,
there are about 1.5 million pixels per page.

A serious drawback of run-length encoding is that it relies entirely on the occur-
rences of runs. In particular, this method taken by itself is unable to recognize the high
frequency of the occurrence of certain symbols that call for short codewords. For
example, AAAABBBB can be compressed, because it is composed of two runs, but
ABABABAB cannot, although both messages are made up of the same letters. On the
other hand, ABABABAB is compressed by Huffman encoding into the same number of
codewords as AAAABBBB without taking into consideration the presence of runs.
Therefore, it seems appropriate to combine both methods as in this chapter’s case study.

11.4 ZIV-LEMPEL CODE

The problem with some of the methods discussed thus far is that they require some
knowledge about the data before encoding takes place. A “pure form” of the Huffman
encoder has to know the frequencies of symbol occurrences before codewords are as-
signed to the symbols. Some versions of the adaptive Huffman encoding can circum-
vent this limitation, not by relying on previous knowledge of the source
characteristics, but by building this knowledge in the course of data transmission.
Such a method is called a universal coding scheme, and Ziv-Lempel code is an example
of a universal data compression code.

In a version of the Ziv-Lempel method called LZ77, a buffer of symbols is main-
tained. The first l1 positions hold the l1 most recently encoded symbols from the
input, and the remaining l2 positions contain the l2 symbols about to be encoded. In
each iteration, starting from one of the first l1 positions, the buffer is searched for a
substring matching a prefix of a string located in the second portion of the buffer. If
such a match is found, a codeword is transmitted; the codeword is a triple composed

S e c t i o n 1 1 . 4 Z i v - L e m p e l C o d e ■ 587

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

of the position in which the match was found, the length of the match, and the first
mismatching symbol. Then, the entire content of the buffer is shifted to the left by the
length of match plus one. Some symbols are shifted out. Some new symbols from the
input are shifted in. To initiate this process, the first l1 positions are filled with l1 copies
of the first symbol of the input.

As an example, consider the case when l1 = l2 = 4, and the input is the string
“aababacbaacbaadaaa. . . .” Positions in the buffer are indexed with the numbers 0–7.
The initial situation is shown at the top of Figure 11.9. The first symbol of the input is
“a,” and positions 0 through 3 are filled up with “a”s. The first four symbols of the
input, “aaba,” are placed in the remaining positions. The longest prefix matching any
substring that begins in any position between 0 and 3 is “aa.” Therefore, the generated
codeword is a triple �2, 2, b�, or simply 22b: The match starts in position two, it is two
symbols long, and the symbol following this match is “b.” Next, a left shift occurs,
three “a”s are shifted out, and the string “bac” is shifted in. The longest match also
starts in position two and is three symbols long, namely, “aba,” with “c” following it.
The issued codeword is 23c. Figure 11.9 illustrates a few more steps.

The numbers l1 and l2 are chosen in this example so that only 2 bits are needed for
each. Because each symbol requires 1 byte (8 bits), one codeword can be stored in 12
bits. Therefore, l1 and l2 should be powers of 2, so that no binary number is unused. If l1
is 5, then 3 bits are needed to code all possible positions 0 through 4, and the 3-bit
combinations corresponding to the numbers 5, 6, and 7 are not used.

A more frequently applied version of Ziv-Lempel algorithm called LZW uses a
table of codewords created during data transmission. A simple algorithm for encod-

LZWcompress()
enter all letters to the table;
initialize string s to the first letter from input;
while any input left

588 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.9 Encoding the string “aababacbaacbaadaaa . . .” with LZ77.

Input Buffer Code Transmitted

aababacbaacbaadaa . . . aaaa a

aababacbaacbaadaa . . . aaaaaaba 22b

abacbaacbaadaaa . . . aaababac 23c

baacbaadaaa . . . abacbaac 12a

cbaadaaa . . . cbaacbaa 03a

daaa . . . cbaadaaa 30d

aaa

ing can be presented as follows (Miller and Wegman, 1985; Welch, 1984):

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

read character c;
if s+c is in the table

s = s+c;
else output codeword(s);

enter s+c to the table;
s = c;

output codeword(s);

String s is always at least one character long. After reading a new character, the
concatenation of string s and character c is checked in the table. A new character is
read if the concatenation s+c is in the table. If it is not, the codeword for s is output,
the concatenation s+c is stored in the table, and s is initialized to c. Figure 11.10
shows a trace of the execution of this procedure applied to the input
“aababacbaacbaadaaa. . . .” The figure contains the generated output, the strings in-
cluded in the table in full form and in abbreviated form, represented by a number and
a character.

S e c t i o n 1 1 . 4 Z i v - L e m p e l C o d e ■ 589

FIGURE 11.10 LZW applied to the string “aababacbaacbaadaaa”

Encoder Table
Index Full Abbreviated

Input Output (Codeword) String String

1 a a

2 b b

3 c c

a 4 d d

a 1 5 aa 1a

b 1 6 ab 1b

ab 2 7 ba 2a

a 6 8 aba 6a

c 1 9 ac 1c

ba 3 10 cb 3b

ac 7 11 baa 7a

baa 9 12 acb 9b

d 11 13 baad 11d

aa 4 14 da 4a

a 5 15 aaa 5a

...

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A crucial component of efficiency is the organization of the table. Clearly, for
more realistic examples, hundreds and thousands of entries can be expected in this
table so that an efficient searching method has to be used. A second concern is the size
of the table, which grows particularly when new long strings are entered in it. The
problem of size is addressed by storing in the table codewords for the prefix and the
last characters of strings. For example, if “ba” is assigned the codeword 7, then “baa”
can be stored in the table as a number of its prefix, “ba,” and the last character, “a,” that
is, as 7a. In this way, all table entries have the same length. The problem of searching is
addressed by using a hash function.

For decoding, the same table is created by updating it for each incoming code-
word except the first. For each codeword, a corresponding prefix and a character are
retrieved from the table. Because the prefix is also a codeword (except for single char-
acters), it requires another table lookup, as the entire string is decoded. This is clearly
a recursive procedure that may be implemented with an explicit stack. This is neces-
sary because the decoding process applied to prefixes yields a string in the reverse
order. The decoding procedure can be summarized as follows:

LZWdecompress()
enter all letters to the table;
read priorcodeword and output one character corresponding to it;
while codewords are still left

read codeword;
if codeword is not in the table // special case: c+s+c+s+c, also if s is null;

enter in table string(priorcodeword) + firstchar(string(priorcodeword));
output string(priorcodeword) + firstchar(string(priorcodeword));

else enter in table string(priorcodeword) + firstchar(string(codeword));
output string(codeword);

priorcodeword = codeword;

This relatively simple algorithm has to consider a special case, when a codeword
being processed has no corresponding entry in the table. This situation arises when
the string being decoded contains a substring “cScSc,” where “c” is a single character,
and “cS” is already in the table.

All of the discussed compression algorithms are widely used. UNIX has three
compression programs: pack uses the Huffman algorithm, compact is based on the
adaptive Huffman method, and compress uses LZW coding. According to system
manuals, pack compresses text files by 25–40 percent, compact by 40 percent, and com-
press by 40–50 percent. The rate of compression is better for Ziv-Lempel coding. It is
also faster.

11.5 CASE STUDY: HUFFMAN METHOD WITH
RUN-LENGTH ENCODING

As indicated in the discussion of run-length encoding, this method is suitable for files
that are almost guaranteed to have many runs of at least four symbols; otherwise, no
compression is achieved. The Huffman algorithm, on the other hand, can be applied

590 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

to files with any runs, including runs of one to three symbols long. This method can
be applied to single symbols, such as letters, but also to pairs of symbols, to triples,
and to a collection of variable length sequences of symbols. Incorporating run-length
encoding in the Huffman method works exceedingly well for files with many long
runs and moderately well for files with a small number of runs and a large number of
different symbols.

For files with no runs, this method is reduced to plain Huffman encoding. In this
approach, a file to be compressed is scanned first to determine all runs, including
one-, two-, and three-symbols long runs. Runs composed of the same symbols but of
different lengths are treated as different “super-symbols,” which are used to create a
Huffman tree. For example, if the message to be compressed is AAABAACCAABA,
then the super-symbols included in the Huffman tree are AAA, B, AA, CC, and A, and
not symbols A, B, and C. In this way, the number of codewords to be created grows
from three for the symbols to five for the super-symbols. The conversion table be-
comes larger, but the codewords assigned to the runs are much shorter than in
straight run-length encoding. In run-length encoding, this codeword is always 3 bytes
long (24 bits). In Huffman code, it may be even 1 bit long.

First, an input file is scanned and all super-symbols are collected in the array list
data by the method garnerData() and sorted according to the frequency of occur-
rence. Figure 11.11a illustrates the positions of the data in the sorted array list. Next,
the sorted data are stored in the output file to be used by the decoder to create the

S e c t i o n 1 1 . 5 C a s e S t u d y : H u f f m a n M e t h o d w i t h R u n - L e n g t h E n c o d i n g ■ 591

FIGURE 11.11 (a) Contents of the array data after the message AAABAACCAABA has been
processed. (b) Huffman tree generated from these data.

7

43

A
0
1
1
2

codeword
freq
runLen
codewordLen

B
1
2
1
2

A
2
2
2
2

(b)

symbol
runLen
freq

A
3
1

0

data

2

A
6
1
3
3

C
7
1
2
3

110
10
00
01
111

AAA
AA

A
B

CC

C
2
1

A
1
1

B
1
2

A
2
2

1

(a)

2 3 4 5

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

same Huffman tree that the encoder is about to create. createHuffmanTree() gen-
erates the tree of Huffman codewords using information collected in data. To that
end, a doubly linked list of single node trees similar to the list in Figure 11.3 is created
first. Then, repeatedly, the two trees with the lowest frequencies are combined to cre-
ate one tree, which eventually results in one Huffman tree, as in Figure 11.11b.

After the tree has been created, the positions of all nodes, in particular the leaves,
can be determined whereby the codewords of all symbols in the leaves can be gener-
ated. Each node in this tree has seven data members, but only five of them are shown,
just for leaves. The codewords are stored as numbers that represent binary sequences
of 0s and 1s. For example, the codeword for CC is 7, 111 in binary. However, these
numbers are always the same length, and 7 is stored as 3 bits set to 1 preceded by 29
bits set to 0, 0 . . . 0111. It is, therefore, unclear how many bits out of 32 are included in
the sequence representing the codeword for a certain symbol. Is it 111, 0111, 00111, or
some other sequence? The codeword field for single As is 0. Is the codeword for A 0,
00, 000, or some more 0s? To avoid ambiguity, the codewordLen field stores the
number of bits included in the codeword for a given symbol. codewordLen for A is 2
and codeword is 0, so the codeword sequence representing A is 00.

After the Huffman tree is generated and the leaves are filled with relevant infor-
mation, the process of coding information in the input file can be initiated. Because
searching for particular symbols directly in the tree is too time-consuming, an array
chars[] of linked lists corresponding to each ASCII symbol is created. The nodes of
the linked lists are simply leaves of the tree linked through right references, and each
list has as many nodes as the number of different run lengths of a given symbol in the
input file. It gives immediate access to a particular linked list, but some linked lists
may be long if there are many run lengths of a given symbol.

Next, the file is scanned for the second time to find each super-symbol and its
corresponding codeword in the Huffman tree and to transmit it to the output file. As
the sequences are retrieved from the tree, they are tightly packed into a 4-byte numer-
ical variable pack. The first encountered super-symbol in the input file is AAA with
codeword 110, which is stored in pack so that pack contains the sequence 0 . . . 0110.
After B is retrieved from the file, its code, 01, is attached to the end of pack. As a re-
sult, the contents of pack have to be shifted to the left by two positions to make room
for 01, and then 01 is stored in it using the bitwise-or operation |. Now, pack contains
the string 0 . . . 011001. After pack is filled up with codewords, it is output as a se-
quence of 4 bytes to the output file.

Particular care has to be taken to put exactly 32 bytes in pack. When there are
fewer available positions in pack than the number of bits in a codeword, only a por-
tion of the codeword is put in pack. Then pack is output and the remaining portion
of the codeword is put in pack before any other symbol is encoded. For example, if
pack currently contains 001 . . . 10011, pack can take only two more bits. Because the
codeword 1101 is 4 bits long, the contents of pack are shifted to the left by two posi-
tions, 1 . . . 1001100, and the first two bits of the codeword, 11, are put at the end of
pack, after which pack’s contents are 1 . . . 1001111. Next, pack is output as 4 bytes
(characters), and then the remaining 2 bits of the codeword, 01, are put into pack,
which now contains 0 . . . 001.

Another problem is with the last codewords. The encoder fills the output file with
bytes (in this case, with chunks of 4 bytes), each containing 8 bits. What happens if

592 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

there are no symbols left, but there is still room in pack? The decoder has to know that
some bits at the end of the file should not be decoded. If they are, some spurious char-
acters will be added to the decoded file. In this implementation, the problem is solved
by transmitting at the beginning of the encoded file the number of characters to be de-
coded. The decoder decodes only this number of codewords. Even if some bits are left
in the encoded file, they are not included in the decoding process. This is a problem
that arises in our example. The message AAABAACCAABA is encoded as the sequence
of codewords 110, 01, 10, 111, 10, 01, 00, and the contents of pack are
00000000000000001100110111100100. If the encoding process is finished, the con-
tents are shifted to the left by the number of unused bits, whereby pack becomes
11001101111001000000000000000000 and is output as a sequence of 4 bytes,
11001101, 1100100, 00000000, and 00000000 or, in more readable decimal notation, as
205, 228, 0, and 0. The last 16 bits do not represent any codewords, and if it is not indi-
cated, they are decoded as eight As, whose codeword is 00. To prevent this, the output
file includes the number of encoded characters, namely, 12: A, A, A, B, A, A, C, C, A, A,
B, and A. The output file also includes the number of all symbols in the Huffman
tree. For this example, it is the number 5, because five different super-symbols can be
found in the input file and in the Huffman tree: AAA, B, AA, CC, and A. Therefore, the
structure of the output file is as follows: the number of super-symbols, data.Size(),
number of characters, contents of data (symbols, run lengths, and frequencies), and
codewords of all super-symbols found in the input file.

The decoder is much simpler than the encoder because it uses information sup-
plied by the encoder in the header of the encoded message. The decoder re-creates
first the array list data[] in inputFrequencies(), then reconstructs the Huffman
tree with the same createHuffmanTree() and createCodewords() decoder
used, and finally, in decode(), scans the tree in the order determined by the stream
of bits in the compressed file to find in its leaves the encrypted symbols.

As expected, this implementation gives particularly good results for database
files, with a compression rate of 60 percent. The compression rate for LISP files is 50
percent (runs of parentheses); for text files, 40 percent; and for executable files, merely
13 percent.

Figure 11.12 contains the complete code for the encoder.

S e c t i o n 1 1 . 5 C a s e S t u d y : H u f f m a n M e t h o d w i t h R u n - L e n g t h E n c o d i n g ■ 593

FIGURE 11.12 Implementation of Huffman method with run-length encoding.

//************************** HuffmanCoding.java **********************

import java.io.*;

class HuffmanNode {

public byte symbol;

public int codeword;

public int freq;

public int runLen;

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

594 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.12 (continued)

public int codewordLen;

public HuffmanNode left = null, right = null;

public HuffmanNode() {

}

public HuffmanNode(byte s, int f, int r) {

this(s,f,r,null,null);

}

public HuffmanNode(byte s, int f, int r, HuffmanNode lt, HuffmanNode rt) {

symbol = s; freq = f; runLen = r; left = lt; right = rt;

}

}

class ListNode {

public HuffmanNode tree;

public ListNode next = null, prev = null;

public ListNode() {

}

public ListNode(ListNode p, ListNode n) {

prev = p; next = n;

}

}

class DataRec implements Comparable {

public byte symbol;

public int runLen;

public int freq;

public DataRec() {

}

public DataRec(byte s, int r) {

symbol = s; runLen = r; freq = 1;

}

public boolean equals(Object el) {

return symbol == ((DataRec)el).symbol && runLen == ((DataRec)el).runLen;

}

public int compareTo(Object el) {

return freq - ((DataRec)el).freq;

}

}

class HuffmanCoding {

public HuffmanCoding() {

}

private final int ASCII = 256,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 1 . 5 C a s e S t u d y : H u f f m a n M e t h o d w i t h R u n - L e n g t h E n c o d i n g ■ 595

FIGURE 11.12 (continued)

intBytes = 4, // bytes per int;

bits = 8; // bits per byte;

private HuffmanNode HuffmanTree;

private HuffmanNode[] chars = new HuffmanNode[ASCII + 1];

private java.util.ArrayList data = new java.util.ArrayList();

private long charCnt;

private void error(String s) {

System.err.println(s); System.exit(-1);

}

private void garnerData(RandomAccessFile fIn) throws IOException {

int ch, ch2, runLen, i;

for (ch = fIn.read(); ch != -1; ch = ch2) {

for (runLen = 1, ch2 = fIn.read(); ch2 != -1 && ch2 == ch; runLen++)

ch2 = fIn.read();

DataRec r = new DataRec((byte)ch,runLen);

if ((i = data.indexOf(r)) == -1)

data.add(r);

else ((DataRec)data.get(i)).freq++;

}

java.util.Collections.sort(data);

}

private void outputFrequencies(RandomAccessFile fIn, RandomAccessFile fOut)

throws IOException {

fOut.writeInt(data.size());

fOut.writeLong(fIn.getFilePointer());

for (int j = 0; j < data.size(); j++) {

DataRec r = (DataRec)data.get(j);

fOut.write(r.symbol);

fOut.writeInt(r.runLen);

fOut.writeInt(r.freq);

}

}

private void inputFrequencies(RandomAccessFile fIn) throws IOException {

int dataIndex = fIn.readInt();

charCnt = fIn.readLong();

data.ensureCapacity(dataIndex);

for (int j = 0; j < dataIndex; j++) {

DataRec r = new DataRec();

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

596 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.12 (continued)

r.symbol = (byte) fIn.read();

r.runLen = fIn.readInt();

r.freq = fIn.readInt();

data.add(r);

}

}

private void createHuffmanTree() {

ListNode p, newNode, head, tail;

head = tail = new ListNode(); // initialize list pointers;

DataRec r = (DataRec)data.get(0);

head.tree = new HuffmanNode(r.symbol,r.freq,r.runLen);

for (int i = 1; i < data.size(); i++) { // create the rest of the list;

tail.next = new ListNode(tail,null);

tail = tail.next;

r = (DataRec)data.get(i);

tail.tree = new HuffmanNode(r.symbol,r.freq,r.runLen);

}

while (head != tail) { // create one Huffman tree;

int newFreq = head.tree.freq + head.next.tree.freq; // two lowest

// frequencies

for (p = tail; p != null && p.tree.freq > newFreq; p = p.prev);

newNode = new ListNode(p,p.next);

p.next = newNode;

if (p == tail)

tail = newNode;

else newNode.next.prev = newNode;

newNode.tree =

new HuffmanNode((byte)0,newFreq,0,head.tree,head.next.tree);

head = head.next.next;

head.prev = null;

}

HuffmanTree = head.tree;

}

private void createCodewords(HuffmanNode p, int codeword, int lvl) {

if (p.left == null && p.right == null) { // if p is a leaf,

p.codeword = codeword; // store codeword

p.codewordLen = lvl; // and its length,

}

else { // otherwise add 0

createCodewords(p.left, codeword<<1, lvl+1);// for left branch

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 1 . 5 C a s e S t u d y : H u f f m a n M e t h o d w i t h R u n - L e n g t h E n c o d i n g ■ 597

FIGURE 11.12 (continued)

createCodewords(p.right,(codeword<<1)+1,lvl+1);// and 1 for right;

}

}

private void transformTreeToArrayOfLists(HuffmanNode p) {

if (p.left == null && p.right == null) { // if p is a leaf,

p.right = chars[p.symbol+128]; // include it in

chars[p.symbol+128] = p; // a list associated

} // with symbol found in p;

else { // add 128 to change the

transformTreeToArrayOfLists(p.left); // range of bytes from

transformTreeToArrayOfLists(p.right); // [-128, 127] to

} // [0, 255];

}

private void encode(RandomAccessFile fIn, RandomAccessFile fOut) throws

IOException {

int packCnt = 0, hold, maxPack = 4 * bits, pack = 0;

int ch, ch2, bitsLeft, runLen;

HuffmanNode p;

for (ch = fIn.read(); ch != -1;) {

for (runLen = 1, ch2 = fIn.read(); ch2 != -1 && ch2 == ch; runLen++)

ch2 = fIn.read();

for (p = chars[(byte)ch+128]; p != null && runLen != p.runLen;

p = p.right)

;

if (p == null)

error("A problem in transmitCode()");

if (p.codewordLen < maxPack - packCnt) { // if enough room in

pack = (pack << p.codewordLen) | p.codeword; // pack to store

packCnt += p.codewordLen; // new codeword, shift its

} // content to the left

// and attach new codeword;

else { // otherwise move

bitsLeft = maxPack - packCnt; // pack's content to

pack <<= bitsLeft; // the left by the

if (bitsLeft != p.codewordLen) { // number of left

hold = p.codeword; // spaces and if new

hold >>>= p.codewordLen - bitsLeft;// codeword is longer

pack |= hold; // than room left, transfer

} // only as many bits as

// can fit in pack;

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

598 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.12 (continued)

else pack |= p.codeword; // if new codeword

// exactly fits in

// pack, transfer it;

fOut.writeInt(pack); // output pack as

// four bytes;

if (bitsLeft != p.codewordLen) { // transfer

pack = p.codeword; // unprocessed bits

packCnt = maxPack - (p.codewordLen - bitsLeft);// of new

packCnt = p.codewordLen - bitsLeft;// codeword to pack;

}

else packCnt = 0;

}

ch = ch2;

}

if (packCnt != 0) {

pack <<= maxPack - packCnt; // transfer leftover codewords

fOut.writeInt(pack); // and some 0's;

}

}

public void compressFile(String inFileName, RandomAccessFile fIn) throws

IOException {

String outFileName = new String(inFileName+".z");

RandomAccessFile fOut = new RandomAccessFile(outFileName,"rw");

Date start = new Date();

garnerData(fIn);

outputFrequencies(fIn,fOut);

createHuffmanTree();

createCodewords(HuffmanTree,0,0);

for (int i = 0; i <= ASCII; i++)

chars[i] = null;

transformTreeToArrayOfLists(HuffmanTree);

fIn.seek(0);

encode(fIn,fOut);

}

private void decode(RandomAccessFile fIn, RandomAccessFile fOut) throws

IOException {

int chars, j, ch, bitCnt = 1, mask = 1;

mask <<= bits - 1; // change 00000001 to 100000000

for (chars = 0, ch = fIn.read(); ch != -1 && chars < charCnt;) {

for (HuffmanNode p = HuffmanTree; ;) {

if (p.left == null && p.right == null) {

for (j = 0; j < p.runLen; j++)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 1 . 5 C a s e S t u d y : H u f f m a n M e t h o d w i t h R u n - L e n g t h E n c o d i n g ■ 599

FIGURE 11.12 (continued)

fOut.write(p.symbol);

chars += p.runLen;

break;

}

else if ((ch & mask) == 0)

p = p.left;

else p = p.right;

if (bitCnt++ == bits) { // read next character from FIn

ch = fIn.read(); // if all bits in ch are checked;

bitCnt = 1;

} // otherwise move all bits in ch

else ch <<= 1; // to the left by one position;

}

}

}

public void decompressFile(String inFileName, RandomAccessFile fIn)

throws IOException {

String outFileName = new String(inFileName+".dec");

RandomAccessFile fOut = new RandomAccessFile(outFileName,"rw");

Date start = new Date();

inputFrequencies(fIn);

createHuffmanTree();

createCodewords(HuffmanTree,0,0);

for (int i = 0; i <= ASCII; i++)

chars[i] = null;

decode(fIn,fOut);

}

}

//************************** HuffmanEncoder.java **********************

import java.io.*;

public class HuffmanEncoder {

static public void main (String args[]) {

String fileName = "";

HuffmanCoding Htree = new HuffmanCoding();

RandomAccessFile fIn;

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader buffer = new BufferedReader(isr);

try {

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

600 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.12 (continued)

if (args.length == 0) {
System.out.print("Enter a file name: ");
fileName = buffer.readLine();
fIn = new RandomAccessFile(fileName,"r");

}
else {

fIn = new RandomAccessFile(args[0],"r");
fileName = args[0];

}
Htree.compressFile(fileName,fIn);
fIn.close();

} catch(IOException io) {
System.err.println("Cannot open " + fileName);

}
}

}

//************************* HuffmanDecoder.java ************************

import java.io.*;

public class HuffmanDecoder {
static public void main (String args[]) {

String fileName = "";
HuffmanCoding Htree = new HuffmanCoding();
RandomAccessFile fIn;
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader buffer = new BufferedReader(isr);
try {

if (args.length == 0) {
System.out.print("Enter a file name: ");
fileName = buffer.readLine();
fIn = new RandomAccessFile(fileName,"r");

}
else {

fIn = new RandomAccessFile(args[0],"r");
fileName = args[0];

}
Htree.decompressFile(fileName,fIn);
fIn.close();

} catch(IOException io) {
System.err.println("Cannot open " + fileName);

}
}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 1 . 7 P r o g r a m m i n g A s s i g n m e n t s ■ 601

11.6 EXERCISES

1. For which probabilities P(mi) of n symbols is the average length maximal? When is it
minimal?

2. Find Lave for the letters X, Y, and Z and their probabilities .05, .05, and .9 and compare
it to LHuf computed for single letters and pairs of letters, as in Figure 11.6. Does LHuf
satisfactorily approximate Lave? How can we remedy the problem?

3. Assess the complexity of all the implementations of the Huffman algorithm suggested
in this chapter.

4. What are the lengths of the Huffman codewords of the least probable messages with
respect to each other?

5. In the adaptive Huffman algorithm, first the codeword for an encountered symbol is
issued and then the conversion table is updated. Could the table be updated first and
then the new codeword for this symbol be issued? Why or why not?

6. The methods createCodewords() and transformTreeToArrayOfLists()
used in the case study seem to be vulnerable because the first thing they both do is
access the field left of node p, which would be dangerous if p were null; therefore,
the body of both methods should apparently be preceded by the condition
if (p != null). Explain why this is not necessary.

7. What problem arises if, in run-length encoding, triples of the form �cm, n, ch� are
used instead of triples of the form �cm, ch, n�?

8. In Figure 11.9, l1 = l2 = 4 = 22. In what respect does the choice of l1 = l2 = 16 = 24 sim-
plify the implementation of LZ77?

9. In which situation does LZ77 perform best? Worst?

10. Describe the process of decoding using LZ77. What string is coded by this sequence
of codewords: b, 31a, 23b, 30c, 21a, 32b?

11. Using LZW with the table initialized with the letters a, b, c, decode the string coded as
1 2 4 3 1 4 9 5 8 12 2.

11.7 PROGRAMMING ASSIGNMENTS

1. A large number of messages with very low probabilities in a long series of messages
require a large number of very long codewords (Hankamer, 1979). Instead, one code-
word can be assigned to all these messages, and if needed, this codeword is sent along
with the message. Write a program for coding and decoding this approach by adapt-
ing the Huffman algorithm.

2. Write an encoder and a decoder that use the run-length encoding technique.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Write an encoder and a decoder using run-length encoding to transmit voice, with
the voice simulated by a certain function f. Voice is generated continuously, but it is
measured at t0, t1, . . ., where ti – ti–1 =
, for some time interval
. If |f(ti) – f(ti–1)| < 	
for some tolerance 	, then the numbers f(ti) and f(ti–1) are treated as equal. Therefore,
for runs of such equal values, a compressed version can be transmitted in the form of
a triple �cm, f(ti), n� with cm being a negative number. In Figure 11.13, circles repre-
sent the numbers included in a run indicated by the first preceding bullet; in this
example, two runs are sent. What is a potential danger of this technique, known also
as the zero-order predictor? How can this be solved? Try your program on the func-
tions �sin

n
n

� and ln n.

4. Static dictionary techniques are characterized by using a predefined dictionary of
patterns encoded with unique codewords. After a dictionary is established, the prob-
lem of using it most efficiently still remains. For example, for a dictionary = {ability,
ility, pec, re, res, spect, tab}, the word respectability can be broken down in two ways:
res, pec, tab, ility and re, spect, ability; that is, the first division requires four codewords
for this word, whereas the second requires only three. The algorithm parses the word
or words and determines which of the two choices will be made. Of course, for a large
dictionary, there may be more than two possible parsings of the same word or phrase.
By far the most frequently used technique is a greedy algorithm that finds the longest
match in the dictionary. For our example, the match res is longer than re; therefore,
the word respectability is divided into four components with the greedy strategy. An
optimal parsing can be found by adapting a shortest path algorithm. (Bell, Cleary,
and Witten, 1990; Schuegraf and Heaps, 1974). Write a program that for a dictionary
of patterns compresses a text file. For each string s, create a digraph with s.length
nodes. Edges are labeled with the dictionary patterns, and their codeword lengths are
edges’ costs. Two nodes i and j are connected with an edge if the dictionary contains
a pattern s.charAt(i) . . . s.charAt(j–1). The shortest path represents the shortest
sequences of codewords for patterns found in the path.

602 ■ C h a p t e r 1 1 D a t a C o m p r e s s i o n

FIGURE 11.13 A function representing voice frequency.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

B i b l i o g r a p h y ■ 603

BIBLIOGRAPHY

Data Compression Methods

Bell, Timothy C., Cleary, J. G., and Witten, Ian H., Text Compression, Englewood Cliffs, NJ:
Prentice Hall, 1990.

Drozdek, Adam, Elements of Data Compression, Pacific Grove, CA: Brooks/Cole, 2002.

Lelever, Debra A., and Hirschberg, Daniel S., “Data Compression,” ACM Computing Surveys 19
(1987), 261–296.

Rubin, Frank, “Experiments in Text File Compression,” Communications of the ACM 19 (1976),
617–623.

Salomon, David, Data Compression: The Complete Reference, New York: Springer, 2000.

Schuegraf, E. J., and Heaps, H. S.,“A Comparison of Algorithms for Data-Base Compression by
Use of Fragments as Language Elements,” Information Storage and Retrieval 10 (1974), 309–319.

Huffman Coding

Information Processing Letters 18 (1984), 159–165.

Faller, Newton, “An Adaptive System for Data Compression,” Conference Record of the Seventh
IEEE Asilomar Conference on Circuits, Systems, and Computers, San Francisco: IEEE (1974),
593–597.

Gallager, Robert G., “Variations on a Theme of Huffman,” IEEE Transactions on Information
Theory IT-24 (1978), 668–674.

Hankamer, M., “A Modified Huffman Procedure with Reduced Memory Requirement,” IEEE
Transactions on Communication COM-27 (1979), 930–932.

Huffman, David A., “A Method for the Construction of Minimum-Redundancy Codes,” Pro-
ceedings of the Institute of Radio Engineers 40 (1952), 1098–1101.

Knuth, Donald E., “Dynamic Huffman Coding,” Journal of Algorithms 6 (1985), 163–180.

Run-Length Encoding

Pountain, Dick, “Run-Length Encoding,” Byte 12 (1987), No. 6, 317–320.

Ziv-Lempel Code

Miller, Victor S., and Wegman, Mark N., “Variations on a Theme by Ziv and Lempel,” in Apos-
tolico, A., and Galil, Z. (eds.), Combinatorial Algorithms on Words, Berlin: Springer (1985),
131–140.

Welch, Terry A., “A Technique for High-Performance Data Compression,” Computer 17 (1984),
6, 8–19.

Ziv, Jacob, and Lempel, Abraham, “A Universal Algorithm for Sequential Data Compression,”
IEEE Transactions on Information Theory IT-23 (1977), 337–343.

Cormack, Gordon V., and Horspool, R. Nigel, “Algorithms for Adaptive Huffman Codes,”

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

T he preceding chapters rarely looked behind the scenes to see how programs
are actually executed and how variables of different types are stored. The rea-
son is that this book emphasizes data structures rather than the inner work-

ings of the computer. The latter belongs more to a book about operating systems or
assembly language programming than to a discussion of data structures.

But at least in one case, such a reference was inescapable, namely, when dis-
cussing recursion in Chapter 5. Using recursion was explained in terms of the run-
time stack and how a computer actually works.

The heap is the region of main memory from which portions of memory are dy-
namically allocated upon request of a program. (This heap has nothing to do with the
special tree structure called a heap in Section 6.9.) In languages such as FORTRAN,
COBOL, or BASIC, the compiler determines how much memory is needed to run
programs. In languages that allow dynamic memory allocation, the amount of mem-
ory required cannot always be determined prior to the program run. To that end, the
heap is used. If a C program requests memory by issuing malloc() or calloc()
and a C++ or Java program does it by issuing a call to new, a certain amount of bytes
is allocated from the heap, and the address to the first byte of this portion is returned.
Also, in these languages, unused memory has to be specifically released by the pro-
grammer through dispose() in Pascal, free() in C, and delete in C++. In some
languages, there is no need to explicitly release memory. Unused memory is simply
abandoned and then automatically reclaimed by the operating system. Automatic
storage reclamation is a luxury that is not part of every language environment. It
emerged with LISP and it is part of functional languages, but logic languages and
most object-oriented languages, including Smalltalk, Prolog, Modula-3, and Eiffel,
also have automatic storage reclamation.

The maintenance of free memory blocks, assigning specific memory blocks to the
user programs if necessary and cleaning memory from unneeded blocks to return
them to the memory pool, is performed by a part of the operating system called a
memory manager. The memory manager also performs other functions, such as sched-
uling access to shared data, moving code and data between main and secondary mem-
ory, and keeping one process away from another. This is particularly important in the

604

Memory
Management12

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

multiprogramming system, where many different processes can reside in memory at
the same time and the CPU serves for a brief amount of time each of the processes in
turn. The processes are put in memory in free spaces and removed if either space is
needed for other processes to be served or they’ve completed execution.

One problem that a well-designed memory manager has to solve is that of the
configuration of available memory. In particular, after many allocations and deallo-
cations, the heap is divided into small pieces of available memory sandwiched be-
tween chunks of memory in use. If a request comes to allocate n bytes of memory, the
request may not be met if there is not enough contiguous memory in the heap, al-
though the total of available memory may far surpass n. This phenomenon is called
external fragmentation. Changing memory configuration and, in particular, putting
available memory in one part of the heap and allocated memory in another solve this
problem. Another problem is internal fragmentation, when allocated memory chunks
are larger than requested. External fragmentation amounts to the presence of wasted
space between allocated segments of memory; internal fragmentation amounts to the
presence of unused memory inside the segments.

12.1 THE SEQUENTIAL-FIT METHODS

A simple organization of memory could require a linked list of all memory blocks,
which is updated after a block is either requested or returned. The blocks on such linked
lists can be organized in a variety of ways, according to the block sizes or the block ad-
dresses. Whenever a block is requested, a decision has to be made concerning which
block to allocate and how to treat the portion of the block exceeding the requested size.

For reasons of efficiency, doubly linked lists of blocks are maintained with links
residing in the blocks. Each available block of memory uses a portion of itself for two
links. Also, both available and reserved blocks have two fields to indicate their status
(available or reserved) and their size.

In the sequential-fit methods, all available memory blocks are linked, and the
list is searched to find a block whose size is larger than or the same as the requested
size. A simple policy for handling returned blocks of memory is to coalesce them
with neighboring blocks and reflect this fact by properly adjusting the links in the
linked list.

The order of searching the list for such a block determines the division of these
methods into several categories. The first-fit algorithm allocates the first block of
memory large enough to meet the request. The best-fit algorithm allocates a block that
is closest in size to the request. The worst-fit method finds the largest block on the list
so that, after returning its portion equal to the requested size, the remaining part is
large enough to be used in later requests. The next-fit method allocates the next avail-
able block that is sufficiently large.

Figure 12.1a contains a memory configuration after several requests and returns
of memory blocks. Figure 12.1b illustrates which portion of memory would be allo-
cated by which sequential-fit method to satisfy a request for 8KB of memory.

The most efficient method is the first-fit procedure. The next-fit method is of
comparable speed but causes more extensive external fragmentation because it scans

S e c t i o n 1 2 . 1 T h e S e q u e n t i a l - F i t M e t h o d s ■ 605

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the list of blocks starting from the current position and reaches the end of the list
much earlier than the first-fit method. But the best-fit algorithm is even worse in that
respect because it searches for the closest match with respect to size. The parts of
blocks remaining after returning the required size are small and practically unusable.
The worst-fit algorithm attempts to prevent this type of fragmentation by avoiding,
or at least delaying, the creation of small blocks.

The way the blocks are organized on the list determines how fast the search for an
available block succeeds or fails. For example, to optimize the best-fit and the worst-fit
methods, the blocks should be arranged by size. For other methods, the address order-
ing is adequate.

12.2 THE NONSEQUENTIAL-FIT METHODS

The sequential-fit methods being what they are, they may become inefficient for large
memory. In the case of large memory, a nonsequential search is desirable. One strat-
egy divides memory into an arbitrary number of lists, each list holding blocks of the
same size (Ross, 1967). Larger blocks are split into smaller blocks to satisfy requests,
and new lists may be created. Because the number of such lists can become large, they
can be organized as a tree.

Another approach is based on the observation that the number of sizes requested
by a program is limited, although the sizes may differ from one program to another.
Therefore, the lists of blocks of different sizes can be kept short if it can be determined
which sizes are the most popular. This leads to an adaptive exact-fit technique that dy-
namically creates and adjusts storage block lists that fit the requests exactly (Olde-
hoeft and Allan, 1985).

606 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.1 Memory allocation using sequential-fit methods.

108 12 21
Best-fit

25 34

(b)

(a)

60

10 12 21 25 34 43 60 70
Current

First-fit Worst-fitNext-fit

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In adaptive exact-fit, a size-list of block lists of a particular size returned to the
memory pool during the last T allocations is maintained. A block b is added to a par-
ticular block list if this block list holds blocks of b’s size and b has been returned by the
program. When a request comes for a block of b’s size, a block from its block list is de-
tached to meet the request; otherwise, a more time-consuming search for a block in
memory is triggered using one of the sequential-fit methods.

The exact-fit method disposes of entire block lists if no request comes for a block
from this list in the last T allocations. In this way, lists of infrequently used block sizes
are not maintained, and the list of block lists is kept small to allow a sequential search
of this list. Because it is not a sequential search of the memory, the exact-fit method is
not considered a sequential-fit method.

Figure 12.2 contains an example of a size-list and a heap created using the adap-
tive exact-fit method. The memory is fragmented, but if a request comes for a block of
size 7, the allocation can be done immediately, because the size-list has an entry for
size 7; thus, memory does not have to be searched. A simple algorithm for allocating
blocks is as follows:

t = 0;
allocate (reqSize)

t++;
if a block list b1 with reqSize blocks is on sizeList

lastref(b1) = t;
b = head of blocks(b1);
if b was the only block accessible from b1

detach b1 from sizeList;
else b = search-memory-for-a-block-of(reqSize);
dispose of all block lists on sizeList for which t - lastref(b1) < T;
return b;

S e c t i o n 1 2 . 2 T h e N o n s e q u e n t i a l - F i t M e t h o d s ■ 607

FIGURE 12.2 An example configuration of a size-list and heap created by the adaptive exact-fit
method.

size

lastref

blocks

5

3

sizeList

10

4

7

6

20

2 T = 10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A procedure for returning blocks is even simpler.
This algorithm highlights the problem of memory fragmentation. The algorithm

must be expanded to deal with this problem successfully. One solution is to write a
method to compact memory after a certain number of allocations and deallocations.
A noncompacting approach may consist in liquidating the size-list and building it
anew after some predetermined period. The authors of this method claim that frag-
mentation problems “failed to materialize,” but that can be attributed to the configu-
rations of their tests. Such problems certainly materialize in sequential-fit methods
and in another nonsequential-fit strategy to be discussed in the next section.

12.2.1 Buddy Systems

Nonsequential memory management methods known as buddy systems do not just
assign memory in sequential slices, but divide it into two buddies that are merged
whenever possible. In the buddy system, two buddies are never free. A block can have
either a buddy used by the program or none.

The classic buddy system is the binary buddy system (Knowlton, 1965). The binary
buddy system assumes that storage consists of 2m locations for some integer m, with
addresses 0, . . . , 2m – 1, and that these locations can be organized into blocks whose
lengths can only be powers of 2. There is also an array avail[] such that, for each i =
0, . . . , m, avail[i] is the head of a doubly linked list of blocks of the same size, 2i.

The name of this method is derived from the fact that each block of memory (ex-
cept the entire memory) is coupled with a buddy of the same size that participates with
the block in reserving and returning chunks of memory. The buddy of a block of
length 2i is determined by complementing bit i + 1 in the address of this block. This is
strictly related to the lengths of blocks, which can only be powers of 2. In particular, all
blocks of size 2i have 0s in the i rightmost positions and differ only in the remaining
bits. For example, if memory has only eight locations, then the possible addresses of
blocks of size one are {000, 001, 010, 011, 100, 101, 110, 111}, addresses of blocks of size
two are {000, 010, 100, 110}, of size four {000, 100}, and of size eight {000}. Note that in
the second set of addresses, the last bit is 0, and the addresses refer to blocks of size 21.
The addresses in the third set have two ending 0s, because the size of the blocks is 22.
Now, for the second set, there are two pairs of blocks and their buddies: {(000, 010),
(100, 110)}; for the third set, there is only one pair: (000, 100). Hence, the difference be-
tween the address of a block of size 2i and the address of its buddy is only in bit i + 1.

If a request arrives to allocate a memory block of size s, then the buddy system re-
turns a memory block whose size is greater than or equal to s. There are many candi-
dates for such blocks, so the list of such blocks is checked in avail[] whose size k is
the smallest among all k ≥ s. This list of blocks can be found in location avail[k]. If
the list is empty, then the next list of blocks is checked in position k + 1, then in
position k + 2, and so on. The search continues until a nonempty list is found (or the
end of avail[] is reached), and then a block is detached from it.

The algorithm for memory allocation in binary buddy systems is as follows:

size of memory = 2m for some m;
avail[i] = -1 for i = 0, . . . , m-1;
avail[m] = first address in memory;

608 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

reserve(reqSize)
roundedSize =]lg(reqSize)g;
availSize = min(roundedSize, . . . , m) for which avail[availSize] > -1;
if no such availSize exists

failure;
block = avail[availSize];
detach block from list avail[availSize];
while (rounded Size < availSize) // while an available block

availSize--; // is too large - split it;
block = left half of block;
insert buddy of block in list avail[availSize];

return block;

Each free block of the buddy system should include four fields indicating its sta-
tus, its size, and its two neighbors in the list. On the other hand, reserved blocks in-
clude only a status field and a size field. Figure 12.3a illustrates the structure of a free
block in the buddy system. The block is marked as free with the status field set to 0.
The size is specified as 25 locations. No predecessor is specified, so this block is
pointed to by avail[5]. The size of its successor is also 25 locations. Figure 12.3b il-
lustrates a reserved block whose status field is set to 1.

Figure 12.4 contains an example of reserving three blocks, assuming that the
memory in use is of size 27 = 128 locations. First, the entire memory is free (Figure
12.4a). Then, 18 locations are requested, so roundedSize =]lg(18)g = 5. But avail-
Size = 7, so the memory is split into two buddies, each of size 26. The second buddy is
marked as available by setting the status field and including it in the list avail[6]
(Figure 12.4b). availSize is still greater than roundedSize, so another iteration of
the while loop of reserve() is executed. The first block is split into two and the sec-
ond buddy is included in the list avail[5] (Figure 12.4c). The first buddy is marked
as reserved and returned to the caller of reserve() for use. Note that only a portion
of the returned block is really needed; however, the entire block is marked as reserved.

S e c t i o n 1 2 . 2 T h e N o n s e q u e n t i a l - F i t M e t h o d s ■ 609

FIGURE 12.3 Block structure in the binary buddy system.

Status

0 5 \

Size Predecessor

Successor

Status Size

1 3

(a) (b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

610 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.4 Reserving three blocks of memory using the binary buddy system.

0 18 32 46 64 80 96
0 5 \ \

48
0 4 \ \ 111 0 4 \

0

(g)

1 2 3 4 5 6 7

0 18 32 46 6448
0 4 \ \ 111

0

(f)

1 2 3 4 5 6 7

0 18 32 46 6448
0 4 \ \ 0 6 \ \11

0

(e)

1 2 3 4 5 6 7

0 18 32 46 64
0 6 \ \11

0

(d)

1 2 3 4 5 6 7

0 18 32 64
0 6 \ \0 5 \ \1

0

(c)

1 2 3 4 5 6 7

0 18 64
1 0 6 \ \

0

(b)

1 2 3 4 5 6 7

0
0 7 \ \

0
avail(a)

1 2 3 4 5 6 7

0 5 \ \

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Next, a block of 14 locations is requested; now, roundedSize =]lg(14)g = 4,
availSize = 5, and the block pointed to by avail[5] is claimed (Figure 12.4d).
This block is too large because roundedSize < availSize, so the block is divided
into two buddies. The first buddy is marked as reserved and returned, and the second
is included in a list (Figure 12.4e). Finally, a block of 16 locations is requested. After
two iterations of the while loop of reserve(), the configuration pictured in Figure
12.4g emerges; there are two available blocks of 16 locations and both are linked up in
list avail[4].

To be sure, blocks of memory are not only claimed, but also returned; hence, they
have to be included in the pool of available blocks. Before they are included, the status
of each block’s buddy is checked. If the buddy is available, the block is combined with
its buddy to create a block twice as large as before the combination. If the buddy of the
new block is available, it is also combined with its buddy, resulting in a still larger
block of memory. This process continues until the entire memory is combined into
one block or a buddy is not available. This coalescing creates blocks of available mem-
ory as large as possible. The algorithm of including a block in the pool of available
blocks is as follows:

include(block)
blockSize = size(block);
buddy = address(block) with bit blockSize+1 set to its complement;
while status(buddy) is 0 // buddy has not

and size(buddy) == blockSize // been claimed;
and blockSize != lg(size of memory) // buddy exists;

detach buddy from list avail[blockSize];
block = block plus body; // coalesce block and its buddy;
set status(block) to 0;
blockSize++;
buddy = address(now extended block) with bit blockSize+1 set to its complement;

include block in list avail[blockSize];

Figure 12.5 illustrates this process. A block previously claimed is now released
(Figure 12.5a), and because the buddy of this block is free, it is combined with the
block, resulting in a double-sized block, which is included in the list avail[5] (Fig-
ure 12.5b). Releasing another block allows the memory manager to combine this
block with its buddy and the resulting block with its buddy (Figure 12.5c). Note that
the free portion of the leftmost block (marked with the darker screen) did not partici-
pate in this coalescing process and is still considered occupied. Also, the two rightmost
blocks in Figure 12.5c, although adjacent, were not combined because they are not
buddies. Buddies in the binary buddy method have to be of the same size.

The binary buddy system, although relatively efficient in terms of speed, may be
inefficient in terms of space. Figure 12.4d shows that the two leftmost blocks amount
to a size of 48 locations, but only 32 of them are in use, because the user really needs
18 + 14 locations. This means that one-third of these two blocks is wasted. This can
get even worse if the number of locations requested is always slightly more than a
power of 2. In this case, approximately 50 percent of memory is not in actual use. This
is a problem with internal fragmentation that results from the need to round all re-
quests to the nearest larger power of 2.

S e c t i o n 1 2 . 2 T h e N o n s e q u e n t i a l - F i t M e t h o d s ■ 611

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Also, there may be a problem with external fragmentation; a request may be re-
fused although the amount of available space is sufficient to meet it. For example, for
the configuration of memory in Figure 12.4g, a request for 50 locations is refused be-
cause there is no block available with a size of 64 locations or more. A request for 33
locations is treated similarly and for the same reason, although there are 33 available
consecutive locations. But one of these locations belongs to another block, which puts
it out of reach.

These problems are brought about by the fact that the binary buddy system uses a
simple division of blocks into two even parts, which results in the division of memory
not sufficiently tuned to incoming requests. The sequence of block sizes possible in
this system is 1, 2, 4, 8, 16, . . . , 2m. An improvement of the binary buddy system can
be obtained if this sequence is rendered by the recurrence equation

si = �1 if i = 0
si–1 + si–1 otherwise

612 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.5 (a) Returning a block to the pool of blocks, (b) resulting in coalescing one block with
its buddy. (c) Returning another block leads to two coalescings.

0 18 32 64
0 6 \ \0 5 \ \1

0

(c)

1 2 3 4 5 6 7

0 18 32 64 80 96
0 5 \ \0 4 \ \1

Release

1 0 5 \

0

(b)

1 2 3 4 5 6 7

0 18 32 46 64 80 96
0 5 \ \

48
0 4 \ \ 111 0 4 \

0

(a)

1 2 3 4 5 6 7

Release

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

which can be considered a particular case of a more general equation:

si = c1 if i = 0,
si = � �
si = ck if i = k – 1
si = �

si–1 + si–2 otherwise

If k = 1, then this equation renders the equation for the binary buddy system. If k = 2,
then the obtained formula is a very familiar equation for a Fibonacci sequence:

si = �
This leads to the Fibonacci buddy system developed by Daniel S. Hirschberg. He chose
3 and 5 as the values for s0 and s1. If k > 2, then we enter the realm of the generalized
Fibonacci systems (Hinds, 1975).

The problem with the Fibonacci buddy system is that finding a buddy of a block
is not always simple. In the binary buddy system, the information stored in the size
field of the block is sufficient to compute the address of the buddy. If the size holds the
number k, then the address of the buddy is found by complementing the bit k + 1 in
the address of the block. This works regardless of whether the block has a right buddy
or a left buddy. The reason for this simplicity is that only powers of 2 for the sizes of
all blocks are used, and each block and its buddy are of the same size.

In the Fibonacci system, this approach is inapplicable, yet it is necessary to know
whether a returned block has a right or a left buddy in order to combine the two. Not
surprisingly, finding the buddy of a block may be rather demanding in terms of time
or space. To this end, Hirschberg used a table that could have nearly 1,000 entries if
buffers of up to 17,717 locations are allowed. His method can be simplified if a proper
flag is included in each block, but a binary Left/Right flag may be insufficient. If block
b1 marked as Left is coalesced with its buddy, block b2, then the question is: How do
you find the buddy of the resulting block, b3? An elegant solution uses two binary flags
instead of one: a buddy-bit and a memory-bit (Cranston and Thomas, 1975). If a
block b1 is split into blocks bleft and bright, then buddy-bit(bleft) = 0, buddy-bit(bright) =
1, memory-bit(bleft) = buddy-bit(b1), and finally, memory-bit(bright) = memory-
bit(b1) (see Figure 12.6a). The last two assignments preserve some information about
predecessors: Memory-bit(bleft) indicates whether its parent is a left or right buddy,
and memory-bit(bright) is a bit of information to indicate the same status for one of
the predecessors of its parent. Note that the coalescing process is an exact reversal of
splitting (see Figure 12.6b).

The algorithms for reserving blocks and for returning them are in many respects
similar to the algorithms used for the binary buddy system. An algorithm for reserv-
ing blocks is as follows:

avail[i] = -1 for i = 0, . . . , m-1;
avail[m] = first address in memory;

reserveFib(reqSize)
availSize = the position of the first Fibonacci number greater than reqSize

for which avail[availSize] > -1;

1 if i = 0,1
si–1 + si–1 otherwise

S e c t i o n 1 2 . 2 T h e N o n s e q u e n t i a l - F i t M e t h o d s ■ 613

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

if no such availSize exists
failure;

block = avail[availSize];
detach block from list avail[availSize];
while Fib(availSize-1) > reqSize // while an available block is

// too large - split it; choose
if reqSize ≤ Fib(availSize-2) // smaller of the buddies if it’s

insert block’s larger part in avail[availSize-1]; // large enough;
block = block’s smaller part;

else insert block’s smaller part in avail[availSize-2];
block = block’s larger part;

availSize = size(block);
set flags(block);
set flags(block’s buddy);

return block;

Another extension of the binary buddy system is a weighted buddy system (Shen
and Peterson, 1974). Its goal, as in the case of Fibonacci systems, is to decrease the
amount of internal fragmentation by allowing more block sizes than in the binary
system. Block sizes in the weighted buddy system in memory of 2m unary blocks are 2k

for 0 ≤ k ≤ m, and 3 · 2k, for 0 ≤ k ≤ m – 2; the sizes are 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, . . .,
which is nearly twice as many different sizes than in the binary method. If necessary,

614 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.6 (a) Splitting a block of size Fib(k) into two buddies using the buddy-bit and the
memory-bit. (b) Coalescing two buddies utilizing information stored in buddy- and
memory-bits.

Buddy Memory Status Size Predecessor Successor

0 K

0 K–1

K

1

(a)

(b)

K–2

0 K–1 1 K–2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

blocks of size 2k are split into blocks 3 · 2k–2 and 2k–2, and the blocks of size 3 · 2k are
split into blocks 2k+1 and 2k. Note that the buddy of a 2k block cannot be uniquely de-
termined because it can have either a right buddy of size 2k+1 or 3 · 2k or it can have a
left buddy of size 2k–1. To distinguish between these three cases, a 2-bit flag type is
added to each block. However, simulations indicate that the weighted buddy system is
three times slower and generates larger external fragmentation than the binary buddy
system. As mentioned, the weighted buddy system requires two additional bits per
block, and the algorithm is more complex than in the binary buddy system, because it
requires considering more cases when coalescing blocks.

A buddy system that takes a middle course between the binary system and the
weighted system is a dual buddy system (Page and Hagins, 1986). This method main-
tains two separate memory areas, one with block sizes 1, 2, 4, 8, 16, . . . , 2i, . . . and an-
other with block sizes 3, 6, 9, 18, 36, . . . , 3 · 2j, In this way, the binary buddy
method is applied in two areas. Internal fragmentation of the dual method is more or
less halfway between that of the binary and weighted methods. External fragmenta-
tion in the dual buddy system is almost the same as that of the binary buddy system.

To conclude this discussion, observe that internal fragmentation is often inversely
proportional to external fragmentation because internal fragmentation is avoided if allo-
cated blocks are as close in size to the requested blocks as possible. But this means that
some small splinter blocks are generated that are of little use. These small blocks can be
compacted together to form a large block with sequential-fit methods, but compaction
does not square very well with the buddy system approach. In fact, the variant buddy sys-
tem, which is an elaboration of the weighted buddy method, attempts to compact mem-
ory, but the complexity of the algorithm undermines its usefulness (Bromley, 1980).

12.3 GARBAGE COLLECTION

As mentioned at the beginning of this chapter, some languages have automatic storage
reclamation in their environment so that no explicit return on unused memory cells
must be done by any program. The program can allocate memory through the function
new, but there is no need to return the allocated memory block to the operating system if
the block is not needed any longer. The block is simply abandoned, and it will be re-
claimed by a method called a garbage collector that is automatically invoked to collect un-
used memory cells when the program is idle or when memory resources are exhausted.

The garbage collector views the heap as a collection of memory cells, or nodes, each
cell composed of several fields. Depending on the garbage collector, the fields can be dif-
ferent. For example, in LISP, a cell has two pointers, head and tail (or in LISP terminol-
ogy, car and cdr), to other cells, except for atomic cells that have no pointers. The cells
include headers with such elements as an atom/nonatom flag and a marked/ unmarked
flag. Data that are included may be stored in yet another field of a cell or in the portion
of atomic cells used for pointers in nonatomic cells. Moreover, if variable sized cells are
used, the header includes the number of bytes in the data field. Using more than two
pointer fields is also possible. References to all linked structures currently utilized by the
program are stored in a root set, which contains all root pointers. The garbage collector’s
task is to determine those parts of memory that are accessible from any of these pointers
and parts that are not currently in use and can be returned to the free memory pool.

S e c t i o n 1 2 . 3 G a r b a g e C o l l e c t i o n ■ 615

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Garbage collection methods usually include two phases, which may be imple-
mented as distinct passes or can be integrated:

1. The marking phase—to identify all currently used cells.

2. The reclamation phase—when all unmarked cells are returned to the memory pool;
this phase can also include heap compaction.

12.3.1 Mark-and-Sweep

A classical method of collecting garbage is the mark-and-sweep technique, which
clearly distinguishes the two phases. First, memory cells currently in use are marked
by traversing each linked structure, and then the memory is swept to glean unused
(garbage) cells and put them together in a memory pool.

Marking

A simple marking procedure looks very much like preorder tree traversal. If a node is
not marked, then it is marked, and if it is not an atomic node, marking continues for
its head and for its tail:

marking (node)
if node is not marked

mark node;
if node is not an atom
marking(head(node));
marking(tail(node));

This procedure is called for each element of the root set. The problem with this
succinct and elegant algorithm is that it may cause the run-time stack to overflow,
which is a very real prospect considering the fact that the list being marked can be
very long. Therefore, an explicit stack can be used so that there is no need to store on
the run-time stack the data necessary to properly resume execution after returning
from recursive calls. Here is an example of an algorithm that uses an explicit stack:

markingWithStack (node)
push(node);
while stack is not empty

node = pop();
while node is an unmarked nonatom

mark node;
push(tail(node));
node = head(node);

if node is an unmarked atom
mark node;

The problem of an overflow is not avoided altogether. If the stack is implemented
as an array, the array may turn out to be too small. If it is implemented as a linked list, it
may be impossible to use, because the stack requires memory resources that have just

616 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

been used up and in the restoration of which the stack was supposed to participate.
There are two ways to avoid this predicament: by using a stack of limited size and in-
voking some operations in case of stack overflow or by trying not to use any stack at all.

A useful algorithm that requires no explicit stack was developed by Schorr and
Waite. The basic idea is to, in a sense, incorporate the stack in the list being processed.
This technique belongs in the same category as the stackless tree traversal techniques
discussed in Section 6.4.3. In the Schorr and Waite marking method, some links are
temporarily reversed when traversing the list to “remember” the path back, and their
original setting is restored after marking all cells accessible from a position in which
the reversal has been performed. When a marked node or an atom is encountered, the
algorithm returns to the preceding node. However, it can return to a node through the
head field or through the tail field. In the former case, the tail path has to be explored,
and the algorithm has to use a marker to indicate whether both head and tail paths
have been checked or only the head path has been checked. To that end, the algorithm
uses one additional bit called a tag bit. If the head of a cell is accessed, then the tag bit
remains zero so that, upon return to this cell, the path accessible from tail will be fol-
lowed, in which case the tag bit is set to one and reset to zero upon return. The sum-
mary of the algorithms is as follows:

invertLink (p1, p2, p3)
tmp = p3;
p3 = p1;
p1 = p2;
p2 = tmp;

SWmarking (curr)
prev = null;
while (1)

mark curr;
if head(curr) is marked or atom

if head(curr) is an unmarked atom
mark head(curr);

while tail(curr) is marked or atom
if tail(curr) is an unmarked atom

mark tail(curr);
while prev is not null and tag(prev) is 1// go back

tag(prev) = 0;
invertLink(curr,prev,tail(prev));

if prev is not null
invertLink(curr,prev,head(prev));

else finished;
tag(curr) = 1;
invertLink(prev,curr,tail(curr));

else invertLink(prev,curr,head(curr));

Figure 12.7 illustrates an example. Each part of this figure shows changes in the
list after the indicated operations have been performed. Note that atom nodes do not
require a tag bit. Figure 12.7a contains the list before marking. Each nonatomic node

S e c t i o n 1 2 . 3 G a r b a g e C o l l e c t i o n ■ 617

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

618 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.7 An example of execution of the Schorr and Waite algorithm for marking used memory cells.

1 0 \ 0 0 0

1

prev

0 0 0

(c)

0 0

0

curr

1 0 \ 0 0 0

1

curr

0 0 0

(d)

1 0

0

prev

1 0 \ 0 0 0

1

curr

0 0 0

(e)

1 0

1

prev

1 0 0 0 0

1

curr

0 1 0

(f)

1 0

1

prev

0 0 0 0 0

0 0 0 0

(a)

0 0

0

curr
prev null

1 0 \ 0 0 0

0

curr

0 0 0

(b)

0 0

0

prev

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 2 . 3 G a r b a g e C o l l e c t i o n ■ 619

FIGURE 12.7 (continued)

1 0 0 0 1

1 0 1 0

(i)

1 0

1

curr
prev null

1 1 \ 0 0 1

1 0 1 0

(j)

1 0

1

prev curr

1 0 1 0 1

1 0 1 0

(k)

1 0

1

curr
prev null

1 0 \ 0 0 0

1

prev

1 1 0

(g)

1 0

1

curr

1 0 \ 0 0 1

1

curr

0 1 0

(h)

1 0

1

prev

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

has four parts: a marking bit, a tag bit, and head and tail fields. The marking and tag
bits are initialized to 0. There is one more bit not shown in this figure, an atom/
nonatom flag.

Here is a description of each iteration of the while loop and the figure number
that contains the structure of the list after that iteration.

Iteration 1: Execute invertLink(prev,curr,head(curr)) (Figure 12.7b).

Iteration 2: Execute another invertLink(prev,curr,head(curr)) (Figure 12.7c).

Iteration 3: Execute still another invertLink(prev,curr,head(curr)) (Figure 12.7d).

Iteration 4: Mark tail(curr) and execute invertLink(curr,prev,head(prev)) (Figure
12.7e), execute another invertLink(curr,prev,head(prev)) (Figure 12.7f), set
tag(curr) to 1, and execute invertLink(prev,curr,tail(curr)) (Figure 12.7g).

Iteration 5: Mark tail(curr) to 1, set tag(prev) to 0, and execute
invertLink(curr,prev,tail(prev)) (Figure 12.7h). Execute
invertLink(curr,prev,head(prev)) (Figure 12.7i), set tag(curr) to 1, and
execute invertLink(prev,curr,tail(curr)) (Figure 12.7j).

Iteration 6: Set tag(prev) to 0 and execute invertLink(curr,prev,tail(prev)) (Figure
12.7k). The algorithm completes and prev becomes null.

Note that the algorithm has no problem with cycles in lists. SWmarking() is
slower than markingWithStack(), because it requires two visits per cell, reference
maintenance, and an additional bit. Hence, disposing of a stack does not seem to be the
best solution. Other approaches attempt to combine a stack with some form of over-
flow handling. Schorr and Waite proposed such a solution by resorting to their link in-
version technique if a fixed-length stack becomes full. Other techniques are more
discriminating about what information should be stored on the stack. For example,
markingWithStack() unnecessarily pushes onto the stack the nodes that have
empty tail fields—nodes whose processing is finished after the head path is finished.

The method devised by Wegbreit requires no tag bit and uses a bit stack instead of
a reference stack to store one bit for each node on the trace path whose head and tail
fields both reference nonatoms. The trace path is the path from the current node to
the root pointer. But as in the Schorr and Waite algorithm, link inversion is still in use.
An improvement of this method is the fastmark algorithm (Kurokawa, 1981). As in
Wegbreit’s method, the fastmark algorithm retains information about nodes that refer
to nonatoms on the stack. But the stack stores references to nodes, not bits, so link in-
version is not necessary.

fastmark(node)
if node is not an atom

mark node;
while (true)

if both head(node) and tail(node) are marked or atoms
if stack is empty

finished;
else node = pop();

else if only tail(node) is not marked nor is it atom
mark tail(node);

620 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

node = tail(node);
else if only head(node) is not marked nor is it atom

mark head(node);
node = head(node);

else if both head(node) and tail(node) are not marked nor are they atoms
mark both head(node) and tail(node);
push(tail(node));
node = head(node);

The reader is encouraged to apply this algorithm to the list in Figure 12.7a. However,
the vexing problem of stack overflow is still not completely resolved. Although the fast-
mark algorithm claims to require approximately 30 locations in most situations, some
degenerate cases may occur that require thousands of locations in the stack. Therefore,
fastmark has to be extended to be robust. The basic idea of the resulting stacked-node-
checking algorithm is to delete from the stack nodes that are already marked or nodes
whose head or tail path has already been traced. However, even this improved algorithm
runs out of space occasionally, in which situation “it gives up and advises a fatal stack
overflow error” (Kurokawa, 1981). Hence, the Schorr and Waite approach with its two
techniques, stacking and list reversal, is more reliable although slower.

Space Reclamation

After all the cells currently in use have been marked, the reclamation process returns all
unmarked locations in memory to the heap pool by going sequentially through the
heap, cell by cell, starting from the highest address and inserting all unmarked loca-
tions in the avail-list. Upon completion of this process, all locations on the avail-list are
in ascending order. During this process, all mark bits are reset to 0 so that at the end the
mark bits of all used and unused locations are 0. This simple algorithm is as follows:

sweep()
for each location from the last to the first

if mark(location) is 0
insert location in front of availList;

else set mark(location) to 0;

The sweep() algorithm makes a pass through the entire memory. If we add a
pass required for marking and the subsequent maintenance of the availList con-
taining locations sparsely scattered throughout the heap, this rather undesirable situa-
tion calls for improvement.

Compaction

After the reclamation process is complete, the available locations are interspersed with
the cells being used by the program. This requires compaction. If all available cells are
in contiguous order, then there is no need to maintain the availList. Also, if
garbage collection is used for reclaiming cells of variable cells, then having all avail-
able cells in sequence is highly desirable. Compaction is also necessary when garbage
collection processes virtual memory. In this way, responses to memory requests can

S e c t i o n 1 2 . 3 G a r b a g e C o l l e c t i o n ■ 621

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

be performed with a minimal number of accesses. Another situation in which com-
pacting is beneficial is when the run-time stack and a heap are used at the same time.
The heap and the stack are in opposite sides of memory and they grow toward one an-
other. If occupied memory cells on the heap can be kept away from the stack, then the
stack has more room for expansion.

A simple two-pointer algorithm for heap compaction uses an approach similar to
the one utilized in partitioning in quicksort: Two references scan the heap starting
from opposite sides of memory. After the first reference finds an unmarked cell and
the second finds a marked cell, the contents of the marked cell are moved to the un-
marked cell and its new location is recorded in the old location. This process contin-
ues after the references cross. Then, the compacted part is scanned to readjust the
head and tail references. If the references of the copied cells refer to locations beyond
the compacted area, the old locations are accessed to retrieve the new address. Here is
the algorithm:

compact()
lo = the bottom of heap;
hi = the top of heap;
while lo < hi // scan the entire heap;

while cell(lo) is marked
lo++;

while cell(hi) is not marked
hi++;

unmark cell(hi) ;
move cell(hi) to position lo;
tail (cell(hi--)) = lo++; // leave forwarding address;

lo = the bottom of heap;
while lo <= hi // scan only the compacted area;

if cell(lo) is not atom and head (cell(lo)) > hi
headcell(lo)) = tail(head(cell(lo)));

if cell(lo) is not atom and tail(cell(lo)) > hi
tail(cell(lo)) = tail(tail(cell(lo)));

lo++;

Figure 12.8 illustrates this process in the case of two available spots in front of cell
A to which cells B and C can be moved. Figure 12.8a illustrates the situation in the
heap before compaction. In Figure 12.8b, cells B and C have been moved into these
spots with the tail fields of the old cells indicating the new positions. Figure 12.8c il-
lustrates the compacted part of the heap after checking the head and tail fields of all
cells and updating them in case they referred to positions beyond the compacted area.

This simple algorithm is inefficient in that it requires one pass through the heap
to mark cells, one pass to move marked cells into contiguous locations, and one pass
through the compacted area to update references; two and a half heap passes are re-
quired. One way to reduce the number of passes is to integrate marking and sweeping,
which opens up a new category of methods.

622 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12.3.2 Copying Methods
Copying algorithms are cleaner than the previous methods in that they do not touch
garbage. They process only the cells accessible from the root pointers and put them
together; the unprocessed cells are available. An example of a copying method is the
stop-and-copy algorithm, which divides the heap into two semispaces, one of which is
only used for allocating memory (Fenichel and Yochelson, 1969). After the allocation
reference reaches the end of the semispace, all the cells being used are copied to the
second semispace, which becomes an active space, and the program resumes execu-
tion (see Figure 12.9).

Lists can be copied using breadth-first traversal (Cheney, 1970). If lists were just
binary trees with no cross-references, the algorithm would be the same as the
breadth-first tree traversal discussed in Section 6.4.1. However, lists can have cycles,
and cells on one list can point to cells on another. In the latter case, this algorithm
would produce multiple copies of the same cell. In the former case it would fall into
an infinite loop. The problem can be easily solved, as in compact(), by retaining a
forward address in the cell being copied. This allows the copying procedure to refer
to a cell after it has already been copied. This algorithm requires no marking phase
and no stack. The breadth-first traversal also allows it to combine two tasks: copying
lists and updating references. The algorithm deals with garbage only indirectly be-
cause it does not really access unneeded cells. The more garbage that is in memory,
the faster the algorithm.

Note that the cost of garbage collection decreases with the increase in the size of
the heap (semispaces). Actually, not only does the number of collections drop with
the increase of the heap, but the time per collection decreases, which is a more unex-
pected result. For example, a program run in 4MB memory requires 34 collections
with an average of 6.8 seconds per collection. The same program run in 16MB mem-
ory requires only 3 collections with 2.7 seconds per collection—a very significant

S e c t i o n 1 2 . 3 G a r b a g e C o l l e c t i o n ■ 623

FIGURE 12.8 An example of heap compaction.

C

B

A

Bold

Cold

(b)

A

B

C

(a)

C

B

A

(c)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

improvement. To be sure, if memory is really large (64MB in this example), no
garbage collection is needed (Appel 1987). This also indicates that shifting the respon-
sibility for free locations from the programmer (as in C++ or Pascal) to the garbage
collector (as in Java) does not have to lead to slower programs. All this is true under
the assumption that a large memory is available.

624 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.9 (a) A situation in the heap before copying the contents of cells in use from semispace1
to semispace2 and (b) the situation right after copying. All used cells are packed
contiguously.

Roots

Semispace 1 Semispace 2

Roots

Semispace 1 Semispace 2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12.3.3 Incremental Garbage Collection
Garbage collectors are invoked automatically when the available memory resources
become scanty. If this happens during the execution of a program, the garbage col-
lector suspends program execution until the garbage collector finishes its task.
Garbage collection may take several seconds, which may turn into minutes in time-
sharing systems. This situation may not be acceptable in real-time systems in which
the fast response of a program is vital. Therefore, it is often desirable to create incre-
mental garbage collectors whose execution is interleaved with the execution of the
program. Program execution is suspended only for a brief moment, allowing the col-
lector to clean the heap to some extent, leaving some unprocessed portion of the
heap to be cleaned later. But therein lies the problem. After the collector partially
processes some lists, the program can change or mutate those lists. For this reason,
a program used in connection with an incremental garbage collection is called a mu-
tator. Such changes have to be taken into consideration after the collector resumes
execution, possibly to reprocess some cells or entire lists. This additional burden in-
dicates that incremental collectors require more effort than regular collectors. In
fact, it has been shown that incremental collectors require twice the processing
power of regular collectors (Wadler, 1976).

Copying Methods in Incremental Garbage Collection

An incremental algorithm based on the stop-and-copy technique has been devised by
Henry Baker (1978). As in stop-and-copy, the Baker algorithm also uses two semi-
spaces, called fromspace and tospace, which are both active to ensure proper coopera-
tion between the mutator and the collector. The basic idea is to allocate cells in
tospace starting from its top, and to always copy the same number, k, of cells from
fromspace to tospace upon request. In this way, the collector can perform its task
without incurring any undue interruption of the mutator’s work. After all reachable
cells have been copied to tospace, the roles of the semispaces are interchanged.

The collector maintains two references. The first reference is scan, which points
to a cell whose head and tail lists should be copied to tospace if they still are in from-
space. Because these lists may be larger than k, they may not be processed at one time.
Up to k cells accessible by breadth-first traversal are copied from fromspace, and the
copies are put at the end of the queue. This queue is simply accessible by the second
reference, bottom, which points to the beginning of the free space in tospace. The col-
lector can process tail of the current cell during the same time slice, but it may wait
until the next turn. Figure 12.10 contains an example. If a request comes to allocate a
cell whose head points to P and tail to Q (as in LISP’s cons(P, Q)), with both P and Q
residing in tospace, then a new cell is allocated in the upper part of tospace with both
its reference fields properly initialized. Assuming that k = 2, two cells are copied from
the head list of the cell pointed to by scan, and the tail is processed when the next re-
quest comes. As in stop-and-copy, Baker’s algorithm retains a forwarding address in
the original cell in fromspace to its copy in tospace, just in case later allocations refer
to this original.

S e c t i o n 1 2 . 3 G a r b a g e C o l l e c t i o n ■ 625

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Special care must be taken when the head and/or tail of a cell being allocated refer
to a cell in fromspace that is either already copied or still in fromspace. Because the
cells at the top of tospace are not processed by the collector, retaining a reference in
any of them to fromspace cells leads to fatal consequences after fromspace becomes
tospace because the latter cells are now considered available and filled with new con-

626 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.10 A situation in memory (a) before and (b) after allocating a cell with head and tail
references referring to cells P and Q in tospace according to the Baker algorithm.

Bottom

Cells copied
from space

Top

Bottom

Top

scan

(a)
Q

scan

(b)
Q

P

Cells allocated
upon request

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

tents. The mutator could at one point use the reference to the original, and at a later
point could use a copy, leading to inconsistencies. Hence, the mutator is preceded by a
read barrier, which precludes utilizing references to cells in fromspace. In the case of a
reference to fromspace, we have to check whether this cell has a forwarding address,
an address in its tail to a location in tospace. If the answer is yes, the forwarding ad-
dress is used in the allocation; otherwise, the cell referred to in the current allocation
has to be copied before the actual allocation takes place. For example, if the head of a
cell to be allocated is to point to P, a cell in fromspace that has already been copied, as
illustrated in Figure 12.11a, P’s new address is stored in head (see Figure 12.11b). If
the tail of the new cell is to point to Q, which is still untouched in fromspace, Q is
copied to tospace (along with one descendant, because k = 2) and only afterward is
the tail of the new cell initialized to the copy of Q.

Baker’s algorithm lends itself to various modifications and improvements. For
example, to avoid constant condition tests when allocating new cells, an indirection
field is included in every cell. If a cell is in tospace, the indirection field points to itself;
otherwise, it points to its copy in tospace (Brooks, 1984). Tests are avoided, but indi-
rection references have to be maintained for every cell instead. Another way to solve
this problem is by utilizing hardware facilities, if available. For example, memory pro-
tection facilities can prevent the mutator’s access to cells not processed by the collec-
tor: All pages of the heap with unprocessed cells are read-protected (Ellis, Li, and
Appel, 1988). If the mutator attempts to access such a page, the access is trapped and
an exception raised, forcing the collector to process this page so that the mutator can
resume execution. But this method can undermine the incremental collection, be-
cause after the semispaces change roles, traps are invoked frequently, and each trap re-
quires that an entire page of the heap be processed. Some additional provisions may
be needed such as not requiring a scan of the entire page in case of a trap. On the
other hand, if the heap is not accessed too frequently, this is not a problem.

An interesting modification to Baker’s algorithm is a technique based on the ob-
servation that most allocated cells are needed for a very short time; only some of them
are used for longer timespans. This leads to a generational garbage collection technique
that divides all allocated cells into at least two generations and focuses its attention on
the youngest generation, which generates most of the garbage. Such cells do not need
to be copied, saving the garbage collector some work. Moreover, the constant check-
ing and copying of long-lived cells is unnecessarily wasteful, so testing garbage pro-
duction among such cells is performed only infrequently.

In a classic version of a generational garbage collector, the address space is divided
into several regions, r1 . . . , rn, not just into tospace and fromspace; each of these regions
holds cells of the same generation (Lieberman and Hewitt, 1983). Most references
point to cells of an older generation. Some of them, however, can point forward in
time (e.g., when LISP’s rplaca is used). In this method, such forward references are
made indirectly through an entry table associated with each region. A reference from a
region ri does not point to a cell c in a region ri+j but to a cell c′ in the entry table asso-
ciated with ri+j; c′ contains a reference to c. If a region ri becomes full, all reachable cells
are copied to another region r′i, and all regions with generations younger than ri are
visited to update references referring to cells that just have been transferred to the new

S e c t i o n 1 2 . 3 G a r b a g e C o l l e c t i o n ■ 627

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

region. Regions with generations older than ri do not have to be visited. Presumably
only a few references in the entry table of ri are updated (see Figure 12.12). The prob-
lem of cleaning the entry tables can be solved by storing in each table, along with each
reference, a unique identifier for a region to which the reference refers. The identifier
is updated along with the reference. Some references may be abandoned, as the refer-
ence in the entry table for region ri+1 in Figure 12.12b, and they are ready to be cleaned
up after the region itself is abandoned.

628 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.11 Changes performed by the Baker algorithm when addresses P and Q refer to cells in
fromspace, P to an already copied cell, Q to a cell still in fromspace.

Bottom

Top

(a)

P

ATOM

Q

Bottom

Top

(b)

ATOM

ATOM

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Noncopying Methods

In incremental methods based on copying, the problem is not so much with the con-
tent of the original cells and its copy, but with their positions or addresses in memory,
which by necessity have to be different. The mutator must not treat these addresses on
a par; otherwise, the program crashes. Therefore, some mechanisms are needed to
maintain the integrity of addressing, and the read barrier serves this purpose. But we
may need to avoid copying altogether; after all, the first garbage collection method,
mark-and-sweep, did not use copies. However, because of the exhaustive and uninter-
rupted passes, the mark-and-sweep method was too costly, and in real-time systems,

S e c t i o n 1 2 . 3 G a r b a g e C o l l e c t i o n ■ 629

FIGURE 12.12 A situation in three regions (a) before and (b) after copying reachable cells from region
ri to region r ri in the Lieberman-Hewitt technique of generational garbage collection.

ri

ri

ri + 1

ri + 1

ri - 1

(a)

Regions

Entry tables

ri + 1

ri + 1

ri - 1

ri' ri'

ri'

(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

it is simply unacceptable. Yet, the simplicity of this method is very appealing, and an
attempt was made by Taiichi Yuasa to adapt it to real-time constraints, with satisfac-
tory results.

Yuasa’s algorithm also has two phases; one for marking reachable (used) cells and
one for sweeping the heap by including in avail-list all unused (unmarked) cells. The
marking phase is similar to that used in the mark-and-sweep method except that it is
incremental; each time the marking procedure is invoked, it marks only k1 cells for
some small constant k1. After k1 cells have been marked, the mutator resumes execu-
tion. The constant k2 is used during the sweeping phase to decide how many cells have
to be processed before execution is turned over to the mutator. The garbage collector
remembers whether it is in the middle of marking or sweeping. The procedure for
marking or sweeping is always invoked after one cell is requested from the heap by a
procedure that creates one new root pointer and initializes its head and tail fields, as in
the following pseudocode:

createRootPtr(p,q,r) // Lisp’s cons
if collector is in the marking phase

mark up to k1 cells;
else if collector is in the sweeping phase

sweep up to k2 cells;
else if the number of cells on availList is low

push all root pointers onto collector’s stack st;
p = first cell on availList;
head(p) = q;
tail(p) = r;
mark p if it is in the unswept portion of heap;

Remember that the mutator can scramble some graphs accessible from root
pointers, which is particularly important if it happens during the marking phase, be-
cause it may cause certain cells to remain unmarked even though they are accessible.
Figure 12.13 contains an example. After all of the roots have been pushed onto stack
st (Figure 12.13a), and roots r3 and r2 have been processed and root r1 is being
processed (Figure 12.13b), the mutator executes two assignments: head(r3) is changed
to tail(r1), and tail(r1) is assigned r2 (Figure 12.13c). If the marking process is now
restarted, it has no chance to mark head(r3) = c5, because the entire graph r3 is as-
sumed to have been processed. This leads to including the cell head(r3) in the avail-list
during the sweeping phase. To prevent that, the method that updates either head or
tail of any cell pushes the old value of the field being updated onto the stack used by
the garbage collector. For example,

updateTail(p,q) // Lisp’s rplacd
if collector is in the marking phase

mark tail(p);
st.push(tail(p));

tail(p) = q;

In the marking phase, the stack st is popped up k1 times, and for each reference p
popped off, its head and tail are marked.

630 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The sweeping phase incrementally goes through the heap, includes in avail-list
all unmarked cells, and unmarks all marked cells. For the sake of consistency, if a new
cell is allocated, it remains unmarked if a certain part of the heap has been already
swept. Otherwise, the next round of marking could lead to distorted results. Figure
12.14 illustrates an example. The reference sweeper has already reached cell c3, and
now the mutator requests a new cell by executing createRootPtr(r2, c5, c3),
whereby the first cell is detached from avail-list and made a new root (Figure
12.14b). But the newly allocated cell is not marked because it precedes sweeper in the
heap.

If some cell is released in the swept area, it becomes garbage, but it is not swept up
until sweeping restarts from the beginning of memory. For example, after assigning
tail(r1) to r1, cell c2 becomes unreachable, and yet it is not reclaimed now by adding it

S e c t i o n 1 2 . 3 G a r b a g e C o l l e c t i o n ■ 631

FIGURE 12.13 An inconsistency that results if, in Yuasa’s noncopying incremental garbage collector,
a stack is not used to record cells possibly unprocessed during the marking phase.

Roots

0

(a)

0 0

st

r1

r1

r2

r3

r2 r3

00 0

Mark

1

(b)

0 1

st

r1 r2 r3

00 1

Roots

1

(c)

0 1

st

r1

c5c5

r2 r3

00 1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

to avail-list (Figure 12.14c). The same thing happens to cells having higher addresses
than the current value of sweeper, as is the case with cell c6 after assigning tail(r2)
to tail(r1) (Figure 12.14d). This is called floating garbage, and is collected in the next
cycle.

632 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.14 Memory changes during the sweeping phase using Yuasa’s method.

Free

0

c1

0

Roots

c2

r1

1

c3

1

c4

0

(a)

c7

0

c8

1

c5

1

c6

Free

Sweeper

0

c1

0

Roots

c2

r1 r2

1

c3

1

c4

0

(b)

c7

0

c8

1

c5

1

c6

Sweeper

Free

0

c1

0

c2

0

c3

1

c4

0

(c)

c7

0

c8

1

c5

1

c6

Free

Sweeper

0

c1

0

Roots

c2

r1 r2

0

c3

0

c4

0

(d)

c7

0

c8

1

c5

1

c6

Sweeper

Roots

r1 r2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 2 . 4 C o n c l u d i n g R e m a r k s ■ 633

12.4 CONCLUDING REMARKS

When assessing the efficiency of memory management algorithms, and especially
garbage collectors, we have to be careful to avoid Paul Wilson’s castigation that stan-
dard textbooks overstress the asymptotic complexity of algorithms missing the key
point: “the constant factors associated with various costs” (Wilson, 1992). This is es-
pecially apparent in the case of nonincremental algorithms whose cost is usually pro-
portional either to the size n of the heap (mark-and-sweep) or to the number m of
reachable cells (stop-and-copy). This is an immediate indication of the superiority of
the latter techniques, especially when the number of surviving cells is small compared
to the heap size. However, when we take into consideration that the cost of sweeping is
minuscule compared to the cost of copying, the difference in efficiency is not so obvi-
ous. In fact, as has been shown, real-time performances of the mark-and-sweep and
stop-and-copy techniques are very similar (Zorn, 1990).

This example indicates that there are two main sources affecting the efficiency of
algorithms: the behavior of the program and the characteristics of the underlying
hardware. If a program allocates memory for a long time, then m approaches n; scan-
ning only reachable cells is close to scanning the entire heap (or its region). This is es-
pecially important for generational garbage collectors, whose efficiency relies on the
assumption that most allocated cells are used for a very brief interval. On the other
hand, if sweeping a cell is not much faster than copying it, then copying techniques
have an edge.

Asymptotic complexity is too imprecise, and the published research on memory
management indicates little preoccupation with computing this characteristic of al-
gorithms. “The constant factors associated with various costs” are much more rele-
vant. Also, fine-grained measures of efficiency are proposed, but not all of them are
easy to measure, such as the amount of work per memory cell reclaimed, the rate of
object creation, the average lifetime of objects, or the density of accessible objects
(Lieberman and Hewitt, 1983).

Memory management algorithms are usually closely tied to the hardware, which
may determine which algorithm is chosen. For example, garbage collection can be sub-
stantially sped up if some dedicated hardware is used. In LISP machines, the read bar-
rier is implemented in hardware and microcode, which points to those incremental
garbage collectors that rely on this barrier. Without hardware support, processing time
in such collectors takes approximately 50 percent of program run time. If this hard-
ware support is lacking, noncopying algorithms are a better choice. In real-time sys-
tems, where the responsiveness of the computer is the issue, additional overhead of
the garbage collector is added. It may be less noticeable than in the case of nonincre-
mental collectors, because at no time does a program have to wait in a visible way for
the collector to finish its task. However, the tuning of incremental methods should
be proportional to real-time constraints.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

634 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

12.5 CASE STUDY: AN IN-PLACE GARBAGE COLLECTOR

Copying algorithms for garbage collectors are efficient in that they do not require
processing unused cells. Cells that are not processed are considered garbage at the end
of collection. However, these algorithms are inefficient in copying reachable cells from
one semispace to another. An in-place garbage collector attempts to retain the advan-
tages of copying algorithms without producing copies of the reachable cells (Baker,
1992).

The in-place algorithm constantly maintains two doubly linked lists: freeCells
and nonFreeCells. The list freeCells initially contains all cells of heap[], and a
cell is moved from freeCells to the other list if a request comes to construct a list or
construct a new atom. After freeCells becomes empty, the method collect() is
invoked. This method first transfers all root pointers from nonFreeCells to an in-
termediate list markDescendants and sets their marked field to true. Then,
collect() detaches from markDescendants cell by cell to transfer each cell to an-
other temporary list, markedCells. For each nonatom cell, collect() attaches to
markDescendants unmarked head and tail references to be processed later. In
the case study, they are attached to the beginning of markDescendants, thereby
leading to depth-first traversal of list structures. For breadth-first traversal (as in
Cheney’s algorithm), they have to be attached to the end of markDescendants,
which requires another reference to the end of the list. Note that, although a cell is
transferred to markedCells, it is also marked to prevent infinite loops in case of
cyclic structures and redundant processing in case of interconnected noncycling
structures.

After the list markDescendants becomes empty, all reachable cells of heap[]
have been processed and collect() is almost done. Before returning from
collect(), all cells left in nonFreeCells become members of freeCells, and all
marked cells are put on nonFreeCells after setting their marked fields to false. The
user program() can now resume.

To be sure, the garbage collector is part of the program’s environment and is exe-
cuted in the background almost unbeknownst to the user. To exemplify the workings
of a garbage collector, some elements of the program background are simulated in the
case study, in particular the heap and the symbol table.

The heap is implemented as an array of objects with two flag fields, atom/
nonatom and marked/nonmarked, and two reference fields, which are really inte-
ger fields indicating positions in heap[] of the previous and next cells (if any).
In accordance with this implementation, both permanent lists, freeCells and
nonFreeCells, and both temporary lists, markDescendants and markedCells,
are simply integers indicating the index in heap[] of the first cell on a given list
(if any).

The symbol table is implemented as an integer array roots[] of root pointers.
No explicit variable names are used, only indexes to heap[] cells. For example, if
roots is [3 2 4 0], then only four variables are currently in use by program(),
roots[0] through roots[3], and these variables are pointing to cells 3, 2, 4, and 0

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

in heap[]. The numbers 0–3 can be seen as subscripts to more palpable variable
names, such as var0, var1, var2 and var3.

The user program() is just a coarse simulator that does nothing but require al-
locations and reallocations on heap[]. These requirements are generated randomly
and classified by the type of requirement: 20 percent are atom (re)allocations, 20 per-
cent are list (re)allocations, 20 percent are head updates, 20 percent are tail updates,
and the remaining 20 percent are deallocations. Deallocations are simulated by the
method deallocate(), which decides whether an existing root variable should be
assigned empty (which represents the null reference) or a local block is exited upon
which all local variables are removed, which in turn means that memory assigned to
them is free. The percentages can be assigned differently, and the distribution of as-
signments can be tuned to the number of assignments already made. This is just a
matter of introducing changes in program(). Also, the size of heap[] and the size of
roots[] can be modified.

The user program() randomly generates a number rn between 0 and 99 to indi-
cate the operation to be performed. Then, variables are randomly chosen from
roots[]. For example, if rn is 11, roots[] is [3 2 4 0], and p is 2, then the cell
roots[p] = 4 of heap[] indicated by variable 2 becomes an atom by storing the
value of val in its value field and the atom field is set to true. If p is 4, this indicates
that a new variable (variable 4, or var4) has to be created in position 4 of roots[],
and position roots[4] is assigned the first value from freeCells.

To see that this program does something, a simple printList() method is sup-
plied, which prints elements on a given list, and a printHeap() method outputs the
contents of heap[] and of roots[]. Here is an example of an output generated by
printHeap()and by printList() called twice from printHeap() for a heap of
six cells:

roots: 1 5 3
(0: -1 2 false false 0 0) (1: 5 4 false false 1 4)
(2: 0 -1 false false 2 2) (3: 4 -1 true false 130)
(4: 1 3 true false 129) (5: -1 1 false false 5 1)
freeCells: (0 0 0)(2 2 2)
nonFreeCells: (5 5 1)(1 1 4)(4 129)(3 130)

This output represents the situation illustrated in Figure 12.15. Figure 12.15a
shows the contents of a heap with links prev and next used by lists freeCells and
nonFreeCells and info field. For nonatom cells, this field references an object with
two fields, head and tail; for atom cells, info field references an object that stores
some value. Because of the number of crisscrossing links, the same situation is pre-
sented in Figure 12.15b, where the cells are organized by their connections rather than
the positions in heap.

Figure 12.16 contains the listing of the program.

S e c t i o n 1 2 . 5 C a s e S t u d y : A n I n - P l a c e G a r b a g e C o l l e c t o r ■ 635

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

636 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.15 An example of a situation on the heap.

freeCells

1 5 3

–1 2

0 0

5 4

0 0

0 –1

0 0

1 4

4 –1

1 0

130

1 3

1 0

129

–1 1

0 0

5 1

0 1 2 3 4 5

roots

heap

nonFreeCells

(a)

1 5 3roots

0 0 0 0 01

130

1 3

4

5

01

129

2–1 0 –1

0 2

freeCells

(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 2 . 5 C a s e S t u d y : A n I n - P l a c e G a r b a g e C o l l e c t o r ■ 637

FIGURE 12.16 Implementation of an in-place garbage collector.

//**************************** Heap.java **************************

import java.util.Random;

class Value {

public int value;

public Value(int v) {

value = v;

}

}

class Links {

public int head = -1, tail = -1;

public Links(int h, int t) {

head = h; tail = t;

}

}

class Cell {

public boolean atom;

public boolean marked = false;

public int prev = -1, next = -1;

public Object info = null; // either Value or Links;

}

public class Heap {

private final int maxHeap = 6, maxRoot = 50, empty = -1;

private int rootCnt = 0;

private boolean OK = true;

private Cell[] heap = new Cell[maxHeap];

private int[] roots = new int[maxRoot];

private int freeCells = empty, nonFreeCells = empty;

private Random rd = new Random(10);

public Heap() {

for (int i = maxHeap-1; i >= 0; i--) {

heap[i] = new Cell();

freeCells = insert(i,freeCells);

}

for (int i = maxRoot-1; i >= 0; i--)

roots[i] = empty;

}

public int rootCnt(){

return rootCnt;

}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

638 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.16 (continued)

public void updateHead(int p, int q) { // Lisp's rplaca;

if (roots[p] != empty && !heap[roots[p]].atom)

((Links)heap[roots[p]].info).head = roots[q];

}

public void updateTail(int p, int q) { // Lisp's rplacd;

if (roots[p] != empty && !heap[roots[p]].atom)

((Links)heap[roots[p]].info).tail = roots[q];

}

private int detach(int cell, int list) {

if (heap[cell].next != empty)

heap[heap[cell].next].prev = heap[cell].prev;

if (heap[cell].prev != empty)

heap[heap[cell].prev].next = heap[cell].next;

if (cell == list) // head of the list;

return heap[cell].next;

else return list;

}

private int insert(int cell, int list) {

heap[cell].prev = empty;

if (cell == list) // don't create a circular list;

heap[cell].next = empty;

else heap[cell].next = list;

if (list != empty)

heap[list].prev = cell;

return cell;

}

private void collect() {

int p, markDescendants = empty, markedCells = empty;

for (p = 0; p < rootCnt; p++) {

if (roots[p] != empty) {

nonFreeCells = detach(roots[p],nonFreeCells);

markDescendants = insert(roots[p],markDescendants);

heap[roots[p]].marked = true;

}

}

printList(markDescendants,"markDescendants C1 "+p);

for (p = markDescendants; p != empty; p = markDescendants) {

markDescendants = detach(p,markDescendants);

markedCells = insert(p,markedCells);

if (!heap[p].atom) {

if (!heap[((Links)heap[p].info).head].marked) {

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 2 . 5 C a s e S t u d y : A n I n - P l a c e G a r b a g e C o l l e c t o r ■ 639

FIGURE 12.16 (continued)

nonFreeCells = detach(((Links)heap[p].info).head,

nonFreeCells);

markDescendants = insert(((Links)heap[p].info).head,

markDescendants);

heap[((Links)heap[p].info).head].marked = true;

}

if (!heap[((Links)heap[p].info).tail].marked) {

nonFreeCells = detach(((Links)heap[p].info).tail,

nonFreeCells);

markDescendants = insert(((Links)heap[p].info).tail,

markDescendants);

heap[((Links)heap[p].info).tail].marked = true;

}

}

}

printList(markedCells,"MarkedCells");

for (p = markedCells; p != empty; p = heap[p].next)

heap[p].marked = false;

freeCells = nonFreeCells;

nonFreeCells = markedCells;

}

private boolean allocateAux(int p) {

if (p == maxRoot) {

System.out.println("No room for new roots");

return !OK;

}

if (freeCells == empty)

collect();

if (freeCells == empty) {

System.out.println("No room in heap for new cells");

return !OK;

}

if (p == rootCnt)

rootCnt++;

roots[p] = freeCells;

freeCells = detach(roots[p],freeCells);

nonFreeCells = insert(roots[p],nonFreeCells);

return OK;

}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

640 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.16 (continued)

public void allocateAtom (int p, int val) { // an instance of Lisp's setf;

if (allocateAux(p) == OK) {

heap[roots[p]].atom = true;

heap[roots[p]].info = new Value(val);

}

}

public void allocateNonAtom(int p, int q, int r) { // Lisp's cons;

if (allocateAux(p) == OK) {

heap[roots[p]].atom = false;

heap[roots[p]].info = new Links(roots[q],roots[r]);

}

}

public void deallocate(int p) {

if (rootCnt > 0)

if (Math.abs(rd.nextInt()) % 2 == 0)

roots[p] = roots[--rootCnt]; // remove variable when exiting a

// block;

else roots[p] = empty; // set variable to null;

}

private void printList(int list, String name) {

System.out.print(name + ": ");

for (int i = list; i != empty; i = heap[i].next) {

System.out.print("(" + i + " ");

if (heap[i].atom)

System.out.print(((Value)heap[i].info).value);

else if (heap[i].info != null)

System.out.print(((Links)heap[i].info).head + " " +

((Links)heap[i].info).tail);

System.out.print(") ");

}

System.out.println();

}

private void printHeap() {

System.out.print("roots: ");

for (int i = 0; i < rootCnt; i++)

System.out.print(roots[i] + " ");

System.out.println();

for (int i = 0; i < maxHeap; i++) {

System.out.print("(" + i + ": " + heap[i].prev + " "

+ heap[i].next + " "+ heap[i].atom + " " + heap[i].marked + " ");

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 2 . 5 C a s e S t u d y : A n I n - P l a c e G a r b a g e C o l l e c t o r ■ 641

FIGURE 12.16 (continued)

if (heap[i].atom)

System.out.print(((Value)heap[i].info).value);

else if (heap[i].info != null)

System.out.print(((Links)heap[i].info).head + " " +

((Links)heap[i].info).tail);

System.out.print(") ");

}

System.out.println();

printList(freeCells,"FreeCells");

printList(nonFreeCells,"NonFreeCells");

}

}

//************************** Collector.java ************************

import java.util.Random;

public class Collector {

private Heap heap = new Heap();

private Random rd = new Random(10);

private int val = 123;

private void program() {

int rn, p, q = 1, r = 1;

if (heap.rootCnt() == 0) { // call heap.allocateAtom(0,val++);

p = 0;

rn = 1;

}

else {

rn = Math.abs(rd.nextInt()) % 100 + 1;

p = Math.abs(rd.nextInt()) % (heap.rootCnt()+1); // possibly

q = Math.abs(rd.nextInt()) % heap.rootCnt(); // new root;

r = Math.abs(rd.nextInt()) % heap.rootCnt();

}

if (rn <= 20)

heap.allocateAtom(p,val++);

else if (rn <= 40)

heap.allocateNonAtom(p,q,r);

else if (rn <= 60)

heap.updateHead(q,r);

else if (rn <= 80)

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

642 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.16 (continued)

heap.updateTail(q,r);

else heap.deallocate(p);

heap.printHeap();

}

static public void main(String a[]) {

Collector c = new Collector();

for (int i = 0; i < 50; i++)

c.program();

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 2 . 6 E x e r c i s e s ■ 643

12.6 EXERCISES

1. What happens to the first-fit method if it is applied to a list ordered by block sizes?

2. How does the effort leading to coalescing blocks in sequential-fit methods depend
on the order of blocks on the list? How can possible problems caused by these orders
be solved?

3. The optimal-fit method determines which block to allocate after examining a
sample of blocks to find the closest match to the request, and then finds the first
block exceeding this match (Campbell, 1971). What does the efficiency of this
method depend on? How does this algorithm compare to the efficiency of other
sequential-fit methods?

4. In what circumstances can the size-list in the adaptive exact-fit method be empty
(except at the beginning)? What is its maximal size, and when can it be this size?

5. Why in the buddy system are doubly linked, not singly linked, lists of blocks used?

6. Give an algorithm for returning blocks to the memory pool using the Fibonacci
buddy system.

7. Apply markingWithStack() to the left degenerate and right degenerate list struc-
tures in Figure 12.17. How many calls to pop() and push() are executed for each
case? Are all of them necessary? How would you optimize the code to avoid unneces-
sary operations?

8. In a reference count method of garbage collection, each cell c has a counter field whose
value indicates how many other cells refer (point) to it. The counter is incremented
every time another cell refers to c and decremented if a reference is deleted. The
garbage collector uses this counter when sweeping the heap: If a cell’s count is zero,

FIGURE 12.17 (a) Left degenerate and (b) right degenerate list structures.

ATOM ATOM

(a)

ATOM

ATOM

ATOMATOM

(b)

ATOM

ATOM

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

644 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

the cell can be reclaimed because it is not pointed to by any other cell. Discuss the
advantages and disadvantages of this garbage collection method.

9. In Baker’s algorithm, the scanning performed by the collector should be finished
before bottom reaches top in tospace to flip spaces. What should the value of k be to
ensure this? Assume that n is the maximum number of cells required by a program,
and 2m is the number of cells in fromspace and tospace. What is the impact of dou-
bling the value of k when it is an integer and when it is a fraction (for example, if it is
.5, then one copy is made per two requests)?

10. In a modification of Baker’s algorithm that requires updating heap pages in the
case when the mutator’s access is trapped (Ellis, Li, and Appel, 1988), there is a
problem with objects that may cross the page boundary. Suggest a solution to this
problem.

12.7 PROGRAMMING ASSIGNMENTS

1. Implement the following memory allocation method developed by W. A. Wulf, C. B.
Weinstock, and C. B. Johnsson (Standish, 1980) called the quick-fit method. For an
experimentally found number n of the most frequently requested sizes of blocks, this
method uses an array avail of n + 1 cells, each cell i pointing to a linked list of blocks
of size i. The last cell (n + 1) refers to a block of other less frequently needed sizes. It
may also be a reference to a linked list, but because of possibly a large number of such
blocks, another organization is recommended, such as a binary search tree. Write
methods to allocate and deallocate blocks. If a block is returned, coalesce it with its
neighbors. To test your program, randomly generate sizes of blocks to be allocated
from memory simulated by an array whose size is a power of 2.

2. In the dual buddy system, two parts of memory are managed by the binary buddy
method. But the number of such areas can be larger (Page and Hagins, 1986). Write
a program to operate on three such areas with block sizes of the form 2i, 3 · 2j, and 5 ·
2k. For a requested block size s, round s to the nearest block size that can be generated
by this method. For example, size 11 is rounded up to 12, which is the number from
the second area. If this request cannot be accommodated in this area, 12 is rounded
up to the next possibly available number, which is 15, a number from the third area.
If there is no available block of this or greater size in this area either, the first area is
tried. In case of failure, keep requests on a list and process them as soon as a block
of sufficient size is coalesced. Run your program changing three parameters: the
intervals for which blocks are reserved, the number of incoming requests, and the
overall size of memory.

3. Implement a simple version of a generational garbage collector that uses only two
regions (Appel, 1989). The heap is divided into two even parts. The upper part holds
cells that have been copied from the lower part as cells reachable from the root
pointers. The lower part is used for memory allocation and holds only newer cells
(see Figure 12.18a). After this part becomes full, the garbage collector cleans it by
copying all reachable cells to the upper part (Figure 12.18b), after which allocations

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

are made starting from the beginning of the lower part. After several turns, the upper
part becomes full too, and the cells being copied from the lower part are in reality
copied to the lower part (Figure 12.18c). In this case, the cleanup process of the
upper part is begun by copying all reachable cells from the upper part to the lower
part (Figure 12.18d), and then all reachable cells are copied to the beginning of the
upper part (Figure 12.18e).

4. The case study presents an in-place nonincremental garbage collector. Modify and
extend it to become an incremental collector. In this case, program() becomes
mutator(), which allows the method collect() to process k cells for some
value of k. To prevent mutator() from introducing inconsistencies in structures
possibly not completely processed by collect(), mutator() should transfer
any unmarked cells from freeCells to markDescendants.

Another very elegant modification is obtained by grouping all four lists in a
circular list, creating what Henry Baker (1992) called a treadmill (Figure 12.19a).
Reference free is moved in a clockwise direction if a new cell is requested; refer-
ence toBeMarked is moved k times when allowed by the mutator. For each nonatom
cell currently scanned by toBeMarked, its head and tail are transferred in front of
toBeMarked if they are not marked. After toBeMarked meets endNonFree, there
are no cells to be marked, and after free meets nonFree, there are no free cells on
the list of free cells (Figure 12.19b). In this case, what remains between nonFree
and endNonFree (former nonFreeCells) is garbage, and hence, it can be utilized
by the mutator. Therefore, the roles of nonFree and endNonFree are exchanged; it
is as though nonFreeCells became freeCells (Figure 12.19c). All root pointers
are transferred to a part of the treadmill between toBeMarked and endFree (to
create a seed of the former markDescendants, and the mutator can resume
execution.

S e c t i o n 1 2 . 7 P r o g r a m m i n g A s s i g n m e n t s ■ 645

FIGURE 12.18 A heap with two regions for Appel’s generational garbage collection.

(a)

Older

Newer

(b)

Older

Newer
turned older C

op
ie

d

(c)

Older

C
op

ie
d

(d)

Older C
op

ie
d

(e)

Older

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

646 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

FIGURE 12.19 Baker’s treadmill.

freeCells

n
o
n
F
r
e
e
C
e
l
l
s

markDescendants

(a)

toBeMarked

m
a
r
k
e
d
C
e
l
l
s

free

nonFree

endNonFree

toBeMarked

freeCells

(c)

endNonFree

free
toBeMarkedroots

nonFree

free

n
o
n
F
r
e
e
C
e
l
l
s

(b)

nonFree

endNonFree

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

B i b l i o g r a p h y ■ 647

BIBLIOGRAPHY

Memory Management

Smith, Harry F., Data Structures: Form and Function, San Diego, CA: Harcourt-Brace-
Jovanovich (1987), Ch. 11.

Standish, Thomas A., Data Structure Techniques, Reading, MA: Addison-Wesley (1980), Chs. 5
and 6.

Sequential-Fit Methods

Campbell, J. A., “A Note on an Optimal-Fit Method for Dynamic Allocation of Storage,”
Computer Journal 14 (1971), 7–9.

Nonsequential-Fit Methods

Oldehoeft, Rodney R., and Allan, Stephen J., “Adaptive Exact-Fit Storage Management,”
Communications of the ACM 28 (1985), 506–511.

Ross, Douglas T., “The AED Free Storage Package,” Communications of the ACM 10 (1967),
481–492.

Buddy Systems

Bromley, Allan G., “Memory Fragmentation in Buddy Methods for Dynamic Storage Alloca-
tion,” Acta Informatica 14 (1980), 107–117.

Cranston, Ben, and Thomas, Rick, “A Simplified Recombination Scheme for the Fibonacci
Buddy System,” Communications of the ACM 18 (1975), 331–332.

Hinds, James A., “An Algorithm for Locating Adjacent Storage Blocks in the Buddy System,”
Communications of the ACM 18 (1975), 221–222.

Hirschberg, Daniel S., “A Class of Dynamic Memory Allocation Algorithms,” Communications
of the ACM 16 (1973), 615–618.

Knowlton, Kenneth C., “A Fast Storage Allocator,” Communications of the ACM 8 (1965),
623–625.

Page, Ivor P., and Hagins, Jeff, “Improving Performance of Buddy Systems,” IEEE Transactions
on Computers C-35 (1986), 441–447.

Shen, Kenneth K., and Peterson, James L., “A Weighted Buddy Method for Dynamic Storage
Allocation,” Communications of the ACM 17 (1974), 558–562.

Garbage Collection

Appel, Andrew W., “Garbage Collection Can Be Faster Than Stack Allocation,” Information
Processing Letters 25 (1987), 275–279.

Appel, Andrew W., “Simple Generational Garbage Collection and Fast Allocation,” Software—
Practice and Experience 19 (1989), 171–183.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Baker, Henry G., “List Processing in Real Time on a Serial Computer,” Communications of the
ACM 21 (1978), 280–294.

Baker, Henry G., “The Treadmill: Real-Time Garbage Collection Without Motion Sickness,”
ACM SIGPLAN Notices 27 (1992), No. 3, 66–70.

Brooks, Rodney A., “Trading Data Space for Reduced Time and Code Space in Real-Time
Collection on Stock Hardware,” Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, Austin, TX (1984), 108–113.

Cheney, C. J., “A Nonrecursive List Compacting Algorithm,” Communications of the ACM 13
(1970), 677–678.

Cohen, Jacques, “Garbage Collection of Linked Data Structures,” Computing Surveys 13 (1981),
341–367.

Ellis, John R., Li, Kai, and Appel, Andrew W., “Real-Time Concurrent Collection on Stock
Multiprocessors,” SIGPLAN Notices 23 (1988), No. 7, 11–20.

Fenichel, Robert R., and Yochelson, Jerome C., “A Lisp Garbage-Collector for Virtual-Memory
Computer Systems,” Communications of the ACM 12 (1969), 611–612.

Jones, Richard, and Lins, Rafael, Garbage Collection: Algorithms for Automatic Dynamic Mem-
ory Management, Chichester, United Kingdom: Wiley, 1996.

Kurokawa, Toshiaki, “A New Fast and Safe Marking Algorithm,” Software—Practice and Experi-
ence 11 (1981), 671–682.

Layer, D. Kevin, and Richardson, Chris, “Lisp Systems in the 1990s,” Communications of the
ACM 34 (1991), No. 9, 49–57.

Lieberman, Henry, and Hewitt, Carl, “A Real-Time Garbage Collector Based on the Lifetimes of
Objects,” Communications of the ACM 26 (1983), 419–429.

Schorr, H., and Waite, W. M., “An Efficient Machine-Independent Procedure for Garbage
Collection in Various List Structures,” Communications of the ACM 10 (1967), 501–506.

Wadler, Philip L., “Analysis of Algorithm for Real-Time Garbage Collection,” Communications
of the ACM 19 (1976), 491–500, 20 (1977), 120.

Wegbreit, Ben, “A Space-Efficient List Structure Tracing Algorithm,” IEEE Transactions on
Computers C-21 (1972), 1009–1010.

Wilson, Paul R., “Uniprocessor Garbage Collection Techniques,” in Bekkers, Yves, and Cohen,
Jacques (eds.), Memory Management, Berlin: Springer (1992), 1–42.

Yuasa, Taiichi, “Real-Time Garbage Collection on General-Purpose Machine,” Journal of Sys-
tems and Software 11 (1990), 181–198.

Zorn, Benjamin,“Comparing Mark-and-Sweep and Stop-and-Copy Garbage Collection,”
Proceedings of the 1990 ACM Conference on Lisp and Functional Programming (1990), 87–98.

648 ■ C h a p t e r 1 2 M e m o r y M a n a g e m e n t

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S tring matching is important for virtually each computer user. When editing a
text, the user processes it, organizes it into paragraphs and sections, reorders it,
and, very often, searches for some subtext or pattern in the text to locate the

pattern or replace it with something else. The larger the text that is being searched for
a pattern, the more important is the efficiency of the searching algorithm. The algo-
rithm cannot usually rely on, say, alphabetical ordering of words, as would be the case
with a dictionary. For example, string searching algorithms are increasingly impor-
tant in molecular biology, where they are used to extract information from DNA se-
quences by locating some pattern in them and comparing the sequences for common
subsequences. Such processing has to be done frequently, under the assumption that
an exact match cannot be expected. Problems of that type are addressed by what is
often called stringology, whose major area of interest is pattern matching. Some
stringological problems are discussed in this chapter.

This chapter uses the following notation: For a text T, which is a sequence of
symbols, characters, or letters, |T | signifies the length of T, Tj is the character at posi-
tion j of T, and T(i . . . j) is a substring of T that begins at position i and ends at j. The
first characters in pattern P and text T are in position 0. Also, a regular expression an

stands for a string a . . . a of n as.

13.1 EXACT STRING MATCHING

Exact string matching consists of finding an exact copy of pattern P in text T. It is an
all-or-nothing approach; if there is a very close similarity between P and a substring of
T, the partial match is rejected.

13.1.1 Straightforward Algorithms
A simple approach to string matching is starting the comparison of P and T from the
first letter of T and the first letter of P. If a mismatch occurs, the matching begins from

649

String
Matching 13

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the second character of T, and so on. Any information that can be useful in subse-
quent tries is not retained. The algorithm is given in this pseudocode:

bruteForceStringMatching(pattern P, text T)
i = 0;
while i ≤ |T| - |P|

j = 0;
while Ti == Pj and j < |P|

i++; // try to match all characters in P;
j++;

if j == |P|
return match at i - |P|; // success if the end of P is reached;

// if there is a mismatch,
i = i - j + 1; // shift P to the right by one position;

return no match; // failure if fewer characters left in T than |P|;

In the worst case the algorithm executes in O(|T ||P|) time. For example, if P =
am–1b and T = an, then the algorithm makes (n – (m – 1))m = nm – m2 + m compar-
isons, which is approximately nm for a large n and small m.

The average performance depends on the probability distribution of the charac-
ters in both the pattern and the text. As an example, assume that only two characters
are used, and the probability of using any of the two characters equals 1/2. In this case,
for a particular scan i, the probability equals 1/2 that only one comparison is made,
the probability 1/2 · 1/2 = 1/4 that two comparisons are made, . . . , and the probability
1/2 · . . . · 1/2 = 2–|P| that m comparisons are performed; that is, on average, for a given
i, the number of comparisons equals

so that the average number of comparisons for all the scans equals 2(|T | – (|P| – 1)) <
2|T | for a large |T |. A far better estimate, 2|P|+1 – 2, is found using the theory of absorb-
ing Markov chains, and, more generally, for an alphabet A, the average number of
comparisons is (|A||P|+1 – |A|) / (|A| – 1) (Barth 1985).

Here is an example of execution of the brute force algorithm for T = ababcdab-
babababad and P = abababa:

ababcdabbabababad
1 abababa
2 abababa
3 abababa
4 abababa
5 abababa (13-1)
6 abababa
7 abababa
8 abababa
9 abababa
10 abababa

a

0P 0

k51

k

2k , 2

650 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The corresponding characters in P and T are compared—which is marked by under-
lining characters in P—starting at the position where P is currently aligned with T.
After a mismatch is found, the scan through P and T is aborted and restarted after P is
shifted to the right by one position. In the first iteration, the matching process begins
at the first characters of P and T, and a mismatching occurs at the fifth character of
T(T4 = c), and the fifth character of P(P4 = a). The next round begins from the first
character of P, but this time, from the second character of T, which immediately leads
to a mismatch. The third iteration reaches the third character of P,a, and the fifth
character of T,c. The match of the entire pattern P is found in the tenth iteration.

Note that no actual shifting takes place; the shifting is accomplished by updating
index i.

An improvement is accomplished by a not-so-naïve algorithm proposed by Han-
cart (1992). It begins comparisons from the second character of P, goes to the end,
and ends comparisons with the first character. So the order of characters involved in
comparisons is P1, P2, . . . , P|P|–1, P0.

The information about equality of the first two characters of P is recorded and
used in the matching process. Two cases are distinguished: P0 = P1 and P0 ≠ P1. In the
first case, if P1 ≠ Ti+1, text index i is incremented by 2, because P0 ≠ Ti+1; otherwise, i is
incremented by 1. It is similar in the second case, if P1 = Ti+1. In this way, a shift by two
positions is possible. Here is the algorithm:

Hancart(pattern P, text T)
if P0 == P1

sEqual = 1;
sDiff = 2;

else sEqual = 2;
sDiff = 1;

i = 0;
while i ≤ |T| - |P|

if Ti+1 ≠ P1
i = i + sDiff;

else j = 1;
while j < |P| and Ti+j == Pj

j++;
if j == |P| and P0 == Ti

return match at i;
i = i + sEqual;

return no match;

Matching begins from the second pattern character. If there is a mismatch between P1
and Ti+1, then P can be shifted by two positions before beginning the next round, as
long as the first two characters of P are the same, because this mismatch means that P0
and Ti+1 are also different:

i
T
acaaca

1 aab
2 aab

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 651

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

However, after a mismatch occurs in the inner while loop, the pattern is shifted by
only one position:

i
T

acaaca
2 aab
3 aab

On the other hand, if the first two characters of P are different, then after noticing in
the if statement that P1 and Ti+1 are different, P is shifted by one position only:

i
T
aabaca

1 abb
2 abb

so that a possible occurrence of P is not missed. However, after a mismatch is found in
any other position, P is shifted by two places:

i
T
aabaca

2 abb
3 aab

This can be done safely, because P1 and Ti+1 have just been determined as equal and
because P0 and P1 are different, P0 and Ti+1 must be also different, thus there is no
need to check this in the third iteration. Here is another example:

ababcdabbabababad
1 abababa
2 abababa
3 abababa
4 abababa
5 abababa
6 abababa
7 abababa

In the worst case, the algorithm executes in O(|T ||P|) time, but, as Hancart
shows, it performs on average better than some of the more developed algorithms to
be discussed in the next section.

13.1.2 The Knuth-Morris-Pratt Algorithm
The brute force algorithm is inefficient in that it shifts pattern P by one position after
a mismatch is found. To speed up the process, Hancart’s algorithm allows for a shift by
two characters. However, a method is needed to shift P by as many positions to the
right as possible, but so that no match is missed.

652 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The source of inefficiency of the brute force algorithm lies in performing redun-
dant comparisons. The redundancy can be avoided by observing that pattern P in-
cludes identical substrings at the beginning of P and before the mismatched character.
This fact can be used to shift P to the right by more than one position before begin-
ning the next scan. Consider line 1 of the following diagram. The mismatch occurs
at the fifth character, but until that point, both the prefix ab of P and the substring
P(2 . . . 3), which is also ab, have been successfully processed. P can now be moved to
the right to align its prefix ab with the substring T(2 . . . 3), and the matching process
can start from character P2 and from the mismatched character in T, T4. Because char-
acters in the substring P(2 . . . 3) have just been successfully matched with T(2 . . . 3), it
is as though the characters in the prefix P(0 . . . 1) were matched with T(2 . . . 3). In this
way, the two redundant comparisons in line 2 can be omitted. After the mismatch

i
T

ababcdabbabababad
1 abababa

c
j

the matching process continues as in

i
T

ababcdabbabababad
2 abababa

c
j

thereby skipping ab = P(0 . . . 1). The two identical parts relevant to this shift are the
prefix of P and suffix of this part of P that is currently successfully matched, which is
the prefix P(0 . . . 1) and the suffix P(2 . . . 3) of the matched part of P, P(0 . . . 3).

Generally, to perform a shift, we first need to match a prefix of P with a suffix of
P(0 . . . j), where Pj+1 is a mismatched character. This matching prefix should be the
longest possible so that no potential match is passed after shifting P; that is, if the
match is of length len and the current scan starts at position k of T, then no occur-
rence of P should begin in any position between k and k + len, but it may begin at po-
sition k + len, so that shifting P by len positions is safe.

This information will be used many times during the matching process; there-
fore, P should be preprocessed. Importantly, in this approach only the information
about P is used; the configuration of characters in T is irrelevant.

Define the table next:

next3j4 5 c21 for j 5 0

max5k:0 , k , j and P 30ck 2 14 5 P 3j 2 kcj 2 146 if such a k exists

0 otherwise

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 653

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

that is, the number next[j] indicates the length of the longest suffix of substring
P(0 . . . j – 1) equal to a prefix of the same substring:

j – next[j] j – 1
T T

a...bc...da...be...

c c
0 next[j]

The condition k < j indicates that the prefix is also a proper suffix. Without this condi-
tion, next[2] for P(0 . . . 2) = aab would be 2, because aa is at the same time a prefix
and suffix of aa, but with the additional condition, next[2] = 1, not 2.

For example, for P = abababa,

P a b a b a b a
j 0 1 2 3 4 5 6
next[j] -1 0 0 1 2 3 4

Note that because of the condition requiring that the matching suffix be the
longest, next[5] = 3 for P(1 . . . 6) = ababab, because aba is the longest suffix of ababa
matching its prefix (they overlap), not 1, although a is also both a prefix and a suffix of
ababa.

The Knuth-Morris-Pratt algorithm can be obtained relatively easily from
bruteForceStringMatching():

KnuthMorrisPratt(pattern P, text T)
findNext(P,next);
i = j = 0;
while i ≤ |T| - |P|

while j == -1 or j < |P| and Ti == Pj
i++; // increment i only for matched characters;
j++;

if j == |P|
return a match at i - |P|;

j = next[j] // in the case of a mismatch, i does not change;
return no match;

The algorithm findNext() to determine the table next will be defined shortly.
For example, for P = abababa, next = [–1 0 0 1 2 3 4], and T = ababcdabbabababad, the
algorithm executes as follows:

ababcdabbabababad
1 abababa
2 abababa
3 abababa
4 abababa
5 abababa
6 abababa
7 abababa

654 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The diagram indicates that –1 in next means that the entire pattern P should
be shifted past the mismatched text character; see the shift from line 4 to 5 and from
line 6 to 7. One major difference between bruteForceStringMatching() and
KnuthMorrisPratt() is that i is never decremented in the latter algorithm. It is in-
cremented in the case of a match; in the case of a mismatch i stays the same so that the
mismatched character in T is compared to another character in P in the next iteration
of the outer while loop. The only case when i is incremented in the case of mismatch
is when the first character in P is a mismatched character; to this end the subcondition
j == -1 is needed in the inner loop. After finding a mismatch at position j Z 0 of P, P
is shifted by j – next[j] positions; when the mismatch occurs at the first position of P,
the pattern is shifted by one position.

To assess the computational complexity of KnuthMorrisPratt(), note that the
outer loop executes O(|T |) times. The inner loop executes at most |T | – |P| times, be-
cause i is incremented in each iteration of the loop, and by the condition on the outer
loop, |T | – |P| is the maximum value for i. But for a mismatched character Ti , j can be
assigned a new value k ≤ |P| times. When this happens, the first character in P, for
which the mismatch occurs, is aligned with the character Ti+k. Consider P = aaab and
T = aaacaaadaaab. In this case, next = [–1 0 1 2], and the trace of the execution of the
algorithm is as follows:

aaacaaadaaab
1 aaab
2 aaab
3 aaab
4 aaab
5 aaab
6 aaab
7 aaab
8 aaab
9 aaab

The mismatched c in T is compared to four characters in P in lines 1 through 4
because b is the fourth character in P for which the mismatch occurs for the first time
and because b is aligned with c; that is, all the preceding characters have already been
matched successfully. The next time, such a situation occurs for d in T and again for b
in P on line 5, and by this time all the preceding characters in P are successfully
matched. This means that for some i, |P| comparisons can be performed, but this can
not happen for every i, but only for every |P|th i, so that the number of unsuccessful
comparisons can be up to |P|(|T |/|P|) = |T |. Up to |T | – |P| successful comparisons
have to be added to this number to obtain the running time O(|T |).

The table next still remains to be determined. We can use the brute force algo-
rithm to that end, which is not necessarily inefficient for short patterns. But we can
also adapt the Knuth-Morris-Pratt algorithm to improve the efficiency of determin-
ing next.

Remember that next contains the lengths of the longest suffixes matching prefixes
of P; that is, parts of P are being matched with other parts of P. But the problem of
matching is solved already by the Knuth-Morris-Pratt algorithm. In this case, P is
matched against itself. However, the Knuth-Morris-Pratt algorithm uses next, which is

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 655

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

still unknown. Therefore, the Knuth-Morris-Pratt algorithm has to be modified so
that it determines the values of the table next by using values already found. Let
next[0] = –1. Assuming that values next[0], . . . , next[i – 1] have already been deter-
mined, we want to find the value next[i]. There are two cases to consider.

In the first case, the longest suffix matching a prefix is found by simply attaching
the character Pi–1 to the suffix corresponding to position next[i – 1], which is true
when Pi–1 = Pnext[i–1]:

a...bc............da...bc...

c c
next[i – 1] – 1 i – 1

2 next[i] = next[i – 1] + 1

a...bc............da...bc...

c c
next[i – 1] i

In this case, the current suffix is longer by one character than the previously
found suffix so that next[i] = next[i – 1] + 1.

In the second case, Pi–1 ≠ Pnext[i–1]. But this is simply a mismatch, and a mismatch
can be handled with the table next, which is why it is being determined. Because
Pnext[i–1] is a mismatched character, we need to go to next[next[i – 1]] to check whether
Pi–1 matches Pnext[next[i–1]]. If they match, next[i] is assigned next[next[i – 1]] + 1:

a...bc...da...be...........fa...bc...da...bc...

c c
next[i – 1] i – 1

2 next[i] = next[next[i – 1]] + 1

a...bc...da...be...........fa...bc...da...bc...

c c
next[next[i – 1]] i

otherwise Pi–1 is compared to Pnext[next[next[i–1]]] to have next[i] = next[next[next[i – 1]]] +
1 if the characters match; if not, the search continues until a match is found or the be-
ginning of P is reached.

Note that in the previous diagram, the first prefix a . . . bc . . . da . . . b of P(0 . . . i – 1)
has a prefix a . . . b identical to its suffix. This is not an accident. The reason for a . . . b being
both prefix and suffix of a . . . bc . . . da . . . b when a . . . b is about to be found as the longest
prefix and suffix of P(0 . . . i – 1) is as follows. The prefix P(0 . . . j – 1) = a . . . bc . . . da . . . b of
P(0 . . . i – 1) indicated by next[i – 1] is, by definition, equal to the suffix P(i – j – 1 . . . i – 2),
which means that the suffix P(j – next[j] . . . j – 1) = a . . . b is also a suffix of P(i – j – 1 . . . i – 2).
Therefore, to determine the value of next[i] we refer to the already determined value
next[j] that specifies the length of this shorter suffix of P(0 . . . j – 1) matching a prefix of P,
and thus the length of the suffix a . . . b of P(0 . . . i – 1) matching the same prefix.

The algorithm to find the table next is as follows:

656 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

findNext(pattern P, table next)
next[0] = -1;
i = 0;
j = -1;
while i < |P|

while j == 0 or i < |P| and Pi == Pj
i++;
j++;
next[i] = j;

j = next[j];

Here is an example of finding next for pattern P = ababacdd. The values of indices
i and j and the table next before entering the inner while loop are indicated with an
arrow (and by the fact that i does not change); the remaining lines show these values
at the end of the inner loop and a comparison that follows. For example, in line 2,
after incrementing i to 1 and j to 0, 0 is assigned to next[1], and then the first and sec-
ond characters of P are compared, which leads to exiting the loop.

i j next[] P
S 0 -1 -1 ababacdd

1 0 -1 0 ababacdd
S 1 -1 -1 0

2 0 -1 0 0 ababacdd
3 1 -1 0 0 1 ababacdd
4 2 -1 0 0 1 2 ababacdd
5 3 -1 0 0 1 2 3 ababacdd

S 5 1 -1 0 0 1 2 3 ababacdd
S 5 0 -1 0 0 1 2 3 ababacdd
S 5 -1 -1 0 0 1 2 3

6 0 -1 0 0 1 2 3 0 ababacdd
S 6 -1 -1 0 0 1 2 3 0

7 0 -1 0 0 1 2 3 0 0 ababacdd
S 7 -1 -1 0 0 1 2 3 0 0

8 0 -1 0 0 1 2 3 0 0

Because of the similarity of this algorithm and the Knuth-Morris-Pratt algo-
rithm, we conclude that next can be determined in O(|P|) time.

The outer while loop in KnuthMorrisPratt() executes in O(|T |) time, so the
Knuth-Morris-Pratt algorithm, including findNext(), executes in O(|T | + |P|)
time. Note that in the analysis of the complexity of the algorithm, no mention was
made about the alphabet underlying the text T and pattern P; that is, the complexity is
independent of the number of different characters constituting P and T.

The algorithm requires no backtracking in text T; that is, the variable i is never
decremented during execution of the algorithm. This means that T can be processed
one character at a time, which is very convenient for online processing.

The Knuth-Morris-Pratt algorithm can be improved if we eliminate unpromis-
ing comparisons. If the mismatch occurs for characters Ti and Pj , then the next match
is attempted for the same character Ti and character Pnext[j]+1. But if Pj = Pnext[j]+1 then

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 657

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the same mismatch takes place, which means a redundant comparison is made. Con-
sider P = abababa and T = ababcdabbabababad, analyzed earlier, for which next = [–1
0 0 1 2 3 4] and the Knuth-Morris-Pratt algorithm begins with:

ababcdabbabababad
1 abababa
2 abababa

The first mismatch occurs for a at the fifth position of P and for c in T. The table next
indicates that in the case of the mismatch of the fifth character of P, P should be shifted
by two positions to the right, because 4 – next[4] = 2; that is, the two-character prefix of P
should be aligned with the two-character suffix of P(0 . . . 3). The situation is illustrated
on the second line of the diagram. However, this means that the next comparison is made
between c that just caused a mismatch and a at the third position of P. But this is a com-
parison that has just been made on line 1 of the diagram, where a in the fifth position of P
was also compared to c. Therefore, if we knew that the prefix ab of P is followed by a,
which is also a character following suffix ab of P(0 . . . 3), then the situation of the second
line of the diagram could be avoided. To accomplish it, the table next has to be redesigned
to exclude such redundant comparisons. This is done by extending the definition of next
by one more condition, which leads to the following definition of a stronger next :

To compute nextS, the algorithm findNext() needs to be modified slightly to
account for the additional condition, as in

findNextS(pattern P, table nextS)
nextS[0] = -1;
i = 0;
j = -1;
while i < |P|

while j == -1 or i < |P| and Pi == Pj
i++;
j++;
if Pi ≠ Pj

nextS[i] = j;
else nextS[i] = nextS[j];

j = nextS[j];

The rationale is as follows. If Pi ≠ Pj —that is, the new subcondition defining nextS is
satisfied—then clearly next[i] and nextS[i] are equal, and so nextS[i] in findNextS() is
assigned the same value as next[i] in findNext(). If the characters Pi and Pj are equal,

a...bc...da...be...fa...bc...da...be...

c c c
j i-j i

then the subcondition is violated, thus nextS[i] < next[i], and the situation is as follows

nextS3j4 5 c 2 1 for j 5 0

max5k:0 , k , j and P 30ck 2 14 5 P 3j 2 kcj 2 14 and Pk11 2 Pj6 i̊f such a k exists

0 otherwise

658 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

a...bc...da...be...fa...bc...da...be...
c c c c

j – nextS[j] j i – nextS[i] i

The underlined substrings are the proper prefix and suffix of P(0 . . . i – 1) indicated by
nextS[i] that are shorter than next[i] (they can be empty). But the prefix P(0 . . . j – 1) =
a . . . bc . . . da . . . b of P(0 . . . i – 1) indicated by next[i] is, by definition, equal to the
suffix P(i – j . . . i – 1), which means that the suffix P(j – nextS[j] . . . j – 1) = a . . . b
shown in italic is also a suffix of P(i – j . . . i – 1). Therefore, to determine the value of
nextS[i] we refer to the already determined value nextS[j] that specifies the length of
the italicized suffix of P(0 . . . j – 1) matching a prefix of P, and thus the length of the
suffix of P(0 . . . i – 1) matching the same prefix. If the prefix is followed by the charac-
ter Pi , then nextS[j] contains the length of a shorter prefix determined by the same
process. For example, when processing position 11 in the string

P = abcabdabcabdfabcabdabcabd
nextS =2.....2.............

number 2 is copied to nextS[11] from nextS[5], and the same number from position
11—that is, indirectly, from position 5—to nextS[24]:

P = abcabdabcabdfabcabdabcabd
nextS =2.....2............2

The Knuth-Morris-Pratt algorithm is modified by replacing findNext() with
findNextS(). The execution of this algorithm for P = abababa generates nextS = [–1
0 –1 0 –1 0 –1] and then continues with comparisons as summarized in this diagram:

ababcdabbabababad
1 abababa
2 abababa
3 abababa
4 abababa

The Knuth-Morris-Pratt algorithm exhibits the worst case performance for Fi-
bonacci words defined recursively as follows:

F1 = b, F2 = a, Fn = Fn–1Fn–2 for n > 2

The words are: b, a, ab, aba, abaab, abaababa,

In the case of mismatch, a Fibonacci word Fn can be shifted logw|Fn| times, where
w is the golden ratio. If the pattern P = F7 = abaababaabaab, the
Knuth-Morris-Pratt algorithm executes as follows:

abaababaabaca...
1 abaababaabaa
2 abaabab
3 abaa
4 ab
5 a
6 a...

5 (1 1 "5)>2

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 659

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13.1.3 The Boyer-Moore Algorithm
In the Knuth-Morris-Pratt algorithm, each of the first |T | – |P| + 1 characters is used
at least once in a comparison for an unsuccessful search. The source of this algo-
rithm’s better efficiency over the brute force approach lies in not starting the matching
process from the beginning of pattern P when a mismatch is detected, if possible. So
xthe Knuth-Morris-Pratt algorithm goes through almost all characters in T from left
to right and tries to minimize the number of characters in P involved in matching. It
is not possible to skip any characters in T itself to avoid unpromising comparisons. To
accomplish such skipping, the Boyer-Moore algorithm tries to match P with T by
comparing them from right to left, not from left to right. In the case of a mismatch, it
shifts P to the right and always begins the next matching from the end of P, but it
shifts P to the right so that many characters in T are not involved in the comparisons.
Thus, the Boyer-Moore algorithm attempts to gain speed by skipping characters in T
rather than, as the Knuth-Morris-Pratt algorithm does, skipping them in P, which is
more prudent because the length of P is usually negligible in comparison to the length
of T.

The basic idea is very simple. In the case of detecting a mismatch at character Ti ,
P is shifted to the right to align Ti with the first encountered character equal to Ti , if
such a character exists. For example, for T = aaaaebdaabadbda and P = dabacbd, first,
characters T6 = d and P6 = d, then characters T5 = b and P5 = b are compared, and then
the first mismatch is found at T4 = e and P4 = c. But there is no occurrence of e in P.
This means that there is no character in P to be aligned with e in T; that is, no charac-
ter can be successfully matched with e. Therefore, P can be shifted to the right past the
mismatched character:

aaaaebdaabadbda
1 dabacbd
2 dabacbd

In this way, the first four characters of the text are excluded from later comparisons.
Now, matching starts from the end of P and from position 11 = 4 + 7 = (the position
of the mismatched character T4) + |P|. A mismatch is found at T10 = a and P5 = b, and
then the mismatched a is aligned with the first a to the left of mismatched P5:

aaaaebdaabadbda
2 dabacbd
3 dabacbd

that is, the position in T from which the matching process starts in the third line is 13
= 10 + 3 = (the position of the mismatched character T10 = a) + (|P| – position of the
rightmost a in P). After matching characters T13 with P6 and T12 with P5, a mismatch is
found at T11 = d and P4 = c. If we aligned the mismatched d in text with the rightmost
d in P, P would be moved backwards. Therefore, if there is a character in P equal to the
mismatched character in T to the left of the mismatched character in P, the pattern P
is shifted to the right by one position only:

660 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

aaaaebdaabadbda
3 dabacbd
4 dabacbd

To sum up, the three rules can be termed character occurrence rules:

1. No occurrence rule. If the mismatched character Ti appears nowhere in P, align P0 with
Ti+1.

2. Right side occurrence rule. If there is a mismatch at Ti and Pj , and if there is an occur-
rence of character ch equal to Ti to the right of Pj , shift P by one position.

3. Left side occurrence rule. If there is an occurrence of character ch equal to Ti only to the
left of Pj , align Ti with Pk = ch closest to Pj .

To implement the algorithm, a table delta1 specifies, for each character in the al-
phabet, by how much to increment i after a mismatch is detected. The table is indexed
with characters and is defined as follows:

For the pattern P = dabacbd, delta1[‘a’] = 3, delta1[‘b’] = 1, delta1[‘c’] = 2,
delta1[‘d’] = 0, and for remaining characters ch, delta1[ch] = 7.

The algorithm itself can be summarized as follows:

BoyerMooreSimple(pattern P, text T)
initialize all cells of delta1 to |P|;
for j = 0 to |P| - 1

delta1[Pj] = |P| - j - 1;
i = |P| - 1;
while i < |T|

j = |P| - 1;
while j ≥ 0 and Pj == Ti

i--;
j--;

if j == -1
return match at i+1;

i = i + max(delta1[Ti],|P|-j);
return no match;

In the algorithm, i is incremented by delta1[Ti] if the character Ti that caused a
mismatch has in P an equivalent to the left of character Pj that caused the same mis-
match and none to its right, which means shifting P to the right by delta1[Ti] –
(|P| – j) positions; otherwise, i is incremented by |P| – j, which is tantamount to shift-
ing P by one position to the right. Without the latter provision, P would be shifted
backwards to align the two characters.

In the worst case the algorithm executes in O(|T ||P|) time; for example, if P =
bam–1 and T = an. Note that in this case, the algorithm rechecks characters in T that
have already been checked.

delta13ch4 5 b 0 P 0 if ch is not in P

min5 0 P 0 2 i 2 1:Pi 5 ch6 otherwise

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 661

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The algorithm can be improved if we take into account the entire substring that
follows a mismatched character Pj . Consider the following shift

aaabcabcbabbaecabcab
1 abdabcabcab
2 abdabcabcab

which shifts P by one position in accordance with the left side occurrence rule. But a
longer shift can result from aligning the substring of T equal to the already matched
suffix that directly follows the mismatched character P8 = b with an equal substring in
P that begins to the left of P8.

aaabcabcbabbaecabcab
1 abdabcabcab
2 abdabcabcab

However, note that after the shift, the mismatched character b in T is again aligned with
c = P5, which just caused a mismatch. Therefore, if matching ever reaches c after restart-
ing from the end of P, the mismatch is guaranteed to reoccur. To avoid this mismatch, it
is better to align the suffix ab of P that directly follows P8 = c with an equal substring of P
that is preceded by a different character than c. In our example, substring ab in P that
follows the mismatched character P8 should be aligned with ab preceded by d because it
is different from c:

aaabcabcbabbaecabcab
1 abdabcabcab
2 abdabcabcab

after which the matching process restarts from the end of P.
What should be the shift if no substring begins to the left of a mismatched char-

acter Pj and is equal to the suffix that directly follows Pj? For example, what should be
the shift after a mismatch is found in line 2? In this case, we align the longest suffix of
P that follows the mismatched character Pj with an equal prefix of P:

aaabcabcbabbaecabcab...
2 abdabcabcab
3 abdabcabcab

To sum up, there are two cases to consider:

1. A full suffix rule. If a mismatched character Pj is directly followed by a suffix that is
equal to a substring of P that begins anywhere to the left of Pj , align the suffix with
the substring.

2. A partial suffix rule. If there is a prefix of P equal to the longest suffix anywhere to the
right of the mismatched character Pj , align the suffix with the prefix.

To accomplish these shifts, a table delta2 is created that for each position in P
holds a number by which the index i that scans T has to be incremented to restart the
matching process; that is, if a mismatched character is Pj , then i is incremented by
delta2[j] (and j is set to |P| – 1). Formally, delta2 is defined as follows:

delta2[j] = min{s + |P| – j – 1: 1 ≤ s and (j ≤ s or Pj–s ≠ Pj) and for j < k < |P|: (k ≤ s or Pk–s = Pk)}

662 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

and delta2[|P| – 1] = delta2[|P| – 2] if the last two characters in P are the same (if they
are different, then delta2[|P| – 1] = 1, because the third subcondition in the definition,
“for . . .”, is vacuously true).

There are, as already indicated, two cases. In the first case, the suffix directly fol-
lowing the mismatched character Pj has a matching substring in P, so the situation
after detecting a mismatch

i
T

................ xb...cy...................y...
1 ...ab...cd.............eb...c

c c c
|P| – delta2[j] 2|P| – delta2[j] – j – 2 j

when suffix P(j + 1 . . . |P| – 1) equals to the substring P(|P| – delta2[j] . . . 2|P| – delta2[j] –
j – 2) changes to:

i
T

................xb...cy...................y...
2 ...ab...cd..............eb...c

c
j

before resuming the matching process.
In the second case, the situation

i
T

.........x...ea...b.................y...
1 a...bc..........d...ea...b

c c c
2|P| – delta2[j] – j – 2 j delta2[j] – |P| + j + 1

when suffix P(delta2[j] – |P| + j + 1 . . . |P| – 1) equals the prefix P(0 . . . 2|P| –
delta2[j] – j – 2) changes to:

i
T

.........x...ea...b.................y...
2 a...bc.......d...ea...b

c
j

Note that the inequalities in the or clauses in the definition of delta2 are indispensable
for the second case.

To compute delta2, a brute force algorithm can be used, as follows:

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 663

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

computeDelta2ByBruteForce(pattern P, table delta2)
for k = 0 to |P|-1

delta2[k] = 2*|P|-k-1;
// partial suffix phase:
for k = 0 to |P|-2 // k is a mismatch position;

for (i = 0, s = j = k+1; j < |P|; s++, j = s, i = 0)
while j < |P| and Pi == Pj

i++;
j++;

if j == |P| // a suffix to the right of k is detected
delta2[k] = |P|-(k+1) + |P|-i; // that is equal to a prefix of P,
break; // P(0 . . . i – 1) equals P(|P|-i . . . |P| – 1);

// full suffix phase:
for k = |P|-2 downto 0 // k is a mismatch position;

for (i = |P|-1, s = j = |P|-2; j ≥ |P|-k-2; s--, j = s, i = |P|-1)
if Pi == Pj

while i > k and Pi == Pj
i--;
j--;

if j == -1 or i == k and Pi Z Pj // a substring in P is detected
delta2[k] = |P|-j-1; // that is equal to the suffix directly following k,
break; // P(j + 1 . . . j + |P| - k – 1) equals P(k + 1 . . . |P|–1);

if P|P|-1 == P|P|-2

delta2[|P|-1] = delta2[|P|-2];
else delta2[|P|-1] = 1;

The algorithm has three phases: initialization, partial suffix phase, and full suf-
fix phase. Initialization prepares the pattern for the longest shift; after a mismatch,
the pattern is shifted all the way past the mismatched character. The only exception
is the mismatch at the last character in P, after which P is shifted by only one posi-
tion. The partial suffix phase looks for the longest suffixes after a mismatch point by
matching prefixes. The full suffix phase updates those values in delta2 that correspond
to a mismatch being followed by a suffix that has a matching substring in P. For P =
abdabcabcab, the values in delta2 after each phase are as follows:

a b d a b c a b c a b
delta2 = 21 20 19 18 17 16 15 14 13 12 * after initialization
delta2 = 19 18 17 16 15 14 13 12 11 12 * after partial suffix phase
delta2 = 19 18 17 16 15 8 13 12 8 12 1 after full suffix phase

The algorithm can be applied to short patterns only, because it is quadratic in the
best case and cubic in the worst case. For P = am, the full suffix phase executes in total,

comparisons, because in one iteration of the inner for loop, m – k – 1 comparisons
are performed in the while loop and one in the if statement. P = am–1b is an exam-

a

m22

k50
a

m22

j5m2k22

(m 2 k)5
(m 2 1)m(m 1 4)

6

664 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ple of the worst case for the partial suffix phase. Clearly, for longer patterns a faster al-
gorithm is needed.

The algorithm can be significantly improved by using an auxiliary table f that is a
counterpart of next for the reverse of P. The table f is defined as follows:

That is, f [j] is the position preceding the starting position of the longest suffix of P of
length |P|–f [j] that is equal to the substring of P that begins at position j + 1:

f [j] + 1 |P| – 1
T T

...a...bc...da...b

c c
j + 1 j + |P| – f [j]

For example, for P = aaabaaaba, f [0] = 4, because substring P(1 . . . 4) = aaba is
the same as the suffix P(5 . . . 8); f [1] = 5, because substring P(2 . . . 4) is equal to the
suffix P(6 . . . 8); that is, the underlined substrings in P = aaabaaaba are equal. The en-
tire table f = [4 5 6 7 7 7 8 8 9]. Note that a substring of P equal to a suffix of P can
overlap, as in P = baaabaaaba.

The table f allows us to go from a certain substring of P to a matching suffix of P.
But the matching process during execution of the Boyer-Moore algorithm proceeds
from right to left, so that after a mismatch is found, a suffix is known and we need to
know a matching substring of P to align the substring with the suffix. In other words,
we need to go from the suffix to the matching substring, which is the opposite direc-
tion with respect to information provided by f. That is why delta2 is created to have
direct access to the needed information. This can be accomplished with the following
algorithm, which is obtained from computeDelta2ByBruteForce().

computeDelta2UsingNext(pattern P, table delta2)
findNext2(reverse(P),next);
for i = 0 to |P|-1

f[i] = |P| - next[|P|-i-1] - 1;
delta2[i] = 2*|P| - i - 1;

// full suffix phase:
for i = 0 to |P|-2

j = f[i];
while j < |P|-1 and Pi ≠ Pj

delta2[j] = |P| - i - 1;
j = f[j];

// partial suffix phase:
for (i = 0; i < |P|-1 and P0 == Pf[i]; i = f[i])

for j = i to f[i]-1
if delta2[j] == 2*|P| - j - 1 // if not updated during full suffix phase,

delta2[j] = delta2[j] - (|P| - f[i]); // update it now;

f 3j4 5 c 0 P 0 if j 5 0 P 0 2 1

min5k:j , k , 0 P 0 2 1 and P(j 1 1cj 1 0 P 0 2 k)5 P(k 1 1c 0 P 0 2 1)6 if 0 # j , 0 P 0 2 1

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 665

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

if P|P|-1 == P|P|-2

delta2[|P|-1] = delta2[|P|-2];
else delta2[|P|-1] = 1;

First, table next is created and used to initialize table f. Also, table delta2 is initial-
ized to values that indicate shifting P past the mismatched character in T. For P =
dabcabeeeabcab it is

P = a b c a b d a b c a b e e e a b c a b
f = 14 15 16 17 18 13 14 15 16 17 18 18 18 16 17 18 18 18 19
delta2 = 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

As in the brute force algorithm, the full suffix phase addresses the first case when
a mismatched character Pj is directly followed by the suffix that is equal to a substring
of P that begins anywhere to the left of Pj . In that phase, positions directly accessible
from f are processed. For example, in the sixth iteration of the for loop, i = 5 and f [5]
= 13, which means that there is a suffix beginning at position 14, abcab, for which
there is a substring beginning at position |P| – f [5] = 6, which is equal to the suffix.
Because also P5 ≠ P13, delta2[13] can be assigned a proper value:

0 5 13 18
P = a b c a b d a b c a b e e e a b c a b
f = 14 15 16 17 18 13 14 15 16 17 18 18 18 16 17 18 18 18 19
delta2 = 37 36 35 34 33 32 31 30 29 28 27 26 25 13 23 22 21 20 19

But the substring P(6 . . . 10) = abcab has a prefix ab that is the same as a suffix of
the suffix abcab, and both the prefix ab and suffix ab are preceded by different charac-
ters. The position right before this shorter suffix is directly accessible only from the
position f [13] = f [f [5]] = 16 because i is still 5. Therefore, after the second iteration of
the while loop—still during the sixth iteration of the for loop—the situation
changes to

0 5 13 16 18
P = a b c a b d a b c a b e e e a b c a b
f = 14 15 16 17 18 13 14 15 16 17 18 18 18 16 17 18 18 18 19
delta2 = 37 36 35 34 33 32 31 30 29 28 27 26 25 13 23 22 13 20 19

Number 13 is put in cell delta2[16], which means that when the matching process
stops at P16, index i that scans T is incremented by 13; that is, when scanning stops
after detecting a mismatch with P16, the situation is as in

i
T

...abcabdabcabeeeabcab.......x...
abcabdabcabeeeabcab

so that scanning is resumed after updating i as in

i
T

...abcabdabcabeeeabcab.......x...
abcabdabcabeeeabcab

666 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note that the increment is the same as for the mismatch with P14. This is because in
both cases character Ti+1 = a (before updating i) is aligned with P6, because both suf-
fixes ab and abcab have a match that starts at P6. However, as shown in the previous
diagram, a match would be missed if i were incremented by 13. But the algorithm
continues and for i = 13 and j = f [13] = 16 the while loop is entered to modify delta2:

0 13 16 18
P = a b c a b d a b c a b e e e a b c a b
f = 14 15 16 17 18 13 14 15 16 17 18 18 18 16 17 18 18 18 19
delta2 = 37 36 35 34 33 32 31 30 29 28 27 26 25 13 23 22 5 20 19

which prevents i from missing a match.
After finishing the first outer for loop, the second outer for loop is executed to

decrease, if possible, other values in delta2. For i = 0 the inner for loop is entered and
executed for j from i = 0 to f [0] – 1 = 13, so that delta2 becomes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 18
P = a b c a b d a b c a b e e e a b c a b
f = 14 15 16 17 18 13 14 15 16 17 18 18 18 16 17 18 18 18 19
delta2 = 32 31 30 29 28 27 26 25 24 23 22 21 20 13 23 22 5 20 19

In this way, the first 13 values in delta2 are decremented by 5. This corresponds to the
situation when a mismatch occurs for any of the first 13 characters in P. When this
happens, the suffix abcab is aligned with the prefix abcab because the suffix is to the
right of any of these positions.

In the second iteration of the outer loop, when i = 14 and f [14] – 1 = 16, the
inner loop updates delta2[14] and delta2[15] by decrementing them by 2 because this
is the length of suffix ab to the right of P14 and P15 that have a matching prefix:

0 14 15 16 18
P = a b c a b d a b c a b e e e a b c a b
f = 14 15 16 17 18 13 14 15 16 17 18 18 18 16 17 18 18 18 19
delta2 = 32 31 30 29 28 27 26 25 24 23 22 21 20 13 21 20 5 20 19

After exiting the loops, the last value is changed so that finally the situation is

0 18
P = a b c a b d a b c a b e e e a b c a b
f = 14 15 16 17 18 13 14 15 16 17 18 18 18 16 17 18 18 18 19
delta2 = 32 31 30 29 28 27 26 25 24 23 22 21 20 13 21 20 5 20 1

To find the complexity of the algorithm we claim that the while loop is executed
at most |P| – 1 times in total. This is because after entering the while loop for an i and
executing k iterations, the while loop is not entered for the next |P| – f [i] – 1 itera-
tions of the outer for loop, where |P| – f [i] – 1 is the length of a matching suffix that
begins at Pf [i]+1 that matches the substring that begins at P1 and for which k ≤ |P| – f [i]
– 1. It is because for each character Pr in the substring P(i + 2 . . . i + |P| – f [i]), Pr and
the corresponding characters Pr+f [i] are preceded by the same character so that the
condition in the while loop is false. Consider P = badaacadaa for which f = [5 6 7 8 9
8 9 8 9 10]. Iterations of the while loop can be activated either for P0 or for an s for

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 667

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

which f [s – 1] > f [s] (e.g., for s = 5, f [4] = 9, and f [5] = 8). Increasing numbers in f in-
dicate substrings that are extensions of following substrings and corresponding suf-
fixes of P. For example, for f [1] = 6 and f [2] = 7, numbers 1 and 6 indicate that the
substring P(2 . . . 4) equals suffix P(7 . . . 9) and numbers 2 and 7 indicate that the sub-
string P(3 . . . 4) equals suffix P(8 . . . 9), that is, P(2 . . . 4) is an extension of P(3 . . . 4)
and so is suffix P(7 . . . 9) a forward extension of suffix P(8 . . . 9). This means that P2 =
P7, and for j = 2 the while loop cannot be entered.

In the worst case, the first half of P can lead to |P|/2 iterations of the while loop
followed by |P|/2 iterations of the outer for loop without entering the while loop.
Next, the first half of the second half of P can lead to |P|/4 iterations of the while
loop followed by the same number of iterations of the outer for loop without enter-
ing the while loop, and so on, which gives

iterations of the while loop in total. Because the outer for loop can iterate |P| – 1
times, this gives 2(|P| – 1) as the maximum number of values assigned to j, and hence
the complexity of the outer for loop.

The last nested for loop is executed at most |P| – 1 times: For each i, it is executed
for j from i to f [i] – 1 and then i is updated to f [i]; therefore, j refers to one position at
most once. We can conclude that the algorithm is linear in the length of P.

To use delta2, algorithm BoyerMooreSimple() is modified by replacing the
line that updates i

else i = i + max(delta1[Ti],|P|-j);

with the line

else i = i + max(delta1[Ti],delta2[j]);

In an involved proof, Knuth shows that the Boyer-Moore algorithm that utilizes
tables delta1 and delta2 performs at most 7|T | comparisons if the text does not con-
tain any occurrence of the pattern (Knuth, Morris, and Pratt, 1977). Guibas and
Odlyzko (1980) improved the bound to 4|T | and Cole (1994) improved it to 3|T |.

The Sunday Algorithms

Daniel Sunday (1990) begins his analyses with an observation that in the case of a
mismatch with a text character Ti , the pattern shifts to the right by at least one posi-
tion so that the character Ti+|P| is included in the next iteration. The Boyer-Moore al-
gorithm shifts the pattern according to the value in the delta1 table (we leave the table
delta2 aside, for now) and this table includes shifts with respect to the mismatched
character Ti . It would be more advantageous, Sunday submits, to build delta1 with re-
spect to character Ti+|P|. In this way, delta1[ch] is the position of character ch in P
counted from the left. This is closely related to Boyer-Moore’s delta1 because by incre-
menting by one the values in the latter, we obtain Sunday’s delta1.

a

lg 0P 0

k51

0 P 0

2k 5 0 P 0 2 1

668 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

One advantage of this solution is that the set of three rules used in the Boyer-Moore
algorithm can be simplified. The no occurrence rule is slightly modified: If the character
Ti+|P| appears nowhere in P, align P0 with Ti+|P|+1. The right side occurrence rule is no
longer needed because all characters in P are to the left of Ti+|P|. Finally, the left side oc-
currence rule can be simplified to the occurrence rule: If there is an occurrence in P of
character ch equal to Ti+|P|, align Ti+|P| with the closest (the rightmost) ch in P.

Although the definition of delta1 depends on right-to-left scan of pattern, the
matching process can be performed in any order, not only left to right or right to left.
Sunday’s quickSearch() performs the scan left to right. Here is its pseudocode:

quickSearch(pattern P, text T)
initialize all cells of delta1 to |P| + 1;
for i = 0 to |P|-1

delta1[Pi] = |P| + 1 - i;
i = 0
while i ≤ |T|-|P|

j = 0;
while j < |P| and i < |T| and Pj == Ti

i++;
j++;

if j > |P|
return success at i-|P|;

i = i + delta1[Ti+|P|];
return failure;

For example, for P = cababa, delta1[‘a’] = 1, delta1[‘b’] = 2, delta1[‘c’] = 6, and for
remaining characters ch, delta1[ch] = 7. Here is an example:

ffffaabcfacababafa
1 cababa
2 cababa
3 cababa
4 cababa

Line 1 has a mismatch right at the beginning, so that in line 2, character Ti+|P| =
T0+6 = b is aligned with the rightmost b in P and i = 0 is incremented by delta1[Ti+|P|]
= delta1[‘b’] = 2, so that i = 2. Again, there is a mismatch at the beginning of P; i = 2 is
incremented by delta1[Ti+|P|] = delta1[‘f ’] = 6, so that i = 9; that is, in effect, P is
shifted past letter Ti+|P| = f. The fourth iteration is successful. Compare this trace with
the trace for BoyerMooreSimple(), for which delta1[‘a’] = 0, delta1[‘b’] = 1,
delta1[‘c’] = 5, and for remaining characters ch, delta1[ch] = 6:

ffffaabcfacababafa
1 cababa
2 cababa
3 cababa
4 cababa
5 cababa
6 cababa

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 669

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Sunday introduces two more algorithms, both based on a generalized delta2 table.
Sunday’s delta2 may be the same as Knuth-Morris-Pratt’s next table if the delta2 table is
initialized by scanning P left to right. If it is scanned in the reverse order, then delta2 is
the same as Boyer-Moore’s delta2. However, the matching process can be done in any
order. Sunday’s second algorithm, the maximal shift algorithm, uses delta2 such that
delta2[0] is associated with a character in P whose next leftward occurrence in P is
maximum; delta[1] refers to a character in P for which the next leftward occurrence in
P is not less than delta2[0], and so on. In the third algorithm, the optimal mismatch al-
gorithm, characters are ordered in ascending order of frequency of occurrence. This is
motivated by the fact that in English, 20 percent of words end with the letter e and 10
percent of the letters used in English are also e. Thus, it is very likely to match first char-
acters tested by using Boyer-Moore’s backward scanning. The testing of the least prob-
able characters first improves the likelihood of early mismatch. However, Sunday’s own
tests show that although his three algorithms fare much better on searching for short
English words than the Boyer-Moore algorithm, there is little difference between the
three algorithms, and for all practical purposes quickSearch() is sufficient. This is
particularly true when the overhead to find delta2 is taken into account (see Pirklbauer,
1992). To address the problem of frequency of character occurrence, an adaptive tech-
nique can be used, as in Smith (1991).

Sunday points out that his delta1 table usually allows for shifts one position
greater than shifts based on Boyer-Moore’s delta1. However, after pointing out that
this is not always the case, Smith (1991) indicates that the larger of the two values
should be used.

13.1.4 Multiple Searches

The algorithms presented in the preceding sections are designed to find an occurrence
of a pattern in a text. Even if there are many occurrences, the algorithms are discon-
tinued after finding the first. Many times, however, we are interested in finding all oc-
currences in the text. One way to accomplish this is to continue the search after an
occurrence is detected, after shifting the pattern by one position. For example, the
Boyer-Moore algorithm can be quickly modified to accommodate multiple searches
in the following fashion:

BoyerMooreAllOccurrences(pattern P, text T)
initialize all cells of delta1 to |P|;
for i = 0 to |P| - 1

delta1[Pi] = |P| - i - 1;
compute delta2;
i = |P| - 1;
while i < |T|

j = |P| - 1;
while j ≥ 0 and Pj == Ti

i--;
j--;

if j == -1
output: match at i+1;

670 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

i = i + |P| + 1; // shift P by one position to the right;
else i = i + max(delta1[Ti],delta2[j]);

But consider the process of finding all occurrences of P = abababa in T = ababababa . . . :

abababababa...
1 abababa
2 abababa
3 abababa
4 abababa

In every second iteration, the entire pattern is compared to the text only after shifting
by two positions. For this reason, the algorithm requires |P|(|T | – |P| + 1)/2, or more
generally, O(|T ||P|) steps. To reduce the number of comparisons it should be recog-
nized that the pattern includes consecutive repetitive substrings, called periods, which
should not be reexamined after they were matched with substrings in the text with
which they are about to be matched.

The Boyer-Moore-Galil algorithm works the same as the Boyer-Moore algorithm
until the first occurrence of the pattern is detected (Galil, 1979). After that, the pattern
is shifted by p = |the period of the pattern|, and only the last p characters of the pat-
tern need to be compared to the corresponding characters in the text to know whether
the entire pattern matches a substring in the text. In this way, the part overlapping a
previous occurrence does not have to be rechecked. For example, for P = abababa
with the period ab, the new algorithm is executed as follows:

abababababa...
1 abababa
2 abababa
3 abababa

However, if a mismatch is found, then the Boyer-Moore-Galil algorithm resumes its
executions in the same way as the Boyer-Moore algorithm. The algorithm is as follows:

BoyerMooreGalil(pattern P, text T)
p = period(P);
compute delta1 and delta2;
skip = -1;
i = |P|-1;
while i < |T|

j = |P|-1;
while j > skip and Pj == Ti

i--;
j--;

if j == skip
output: a match at i-skip;
if p == 0

i = i + |P|+1;
else if skip == -1

i = i + |P|+p;
else i = i + 2*p;

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 671

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

skip = |P|-p-1;
else skip = -1;

i = i + max(delta1[Ti],delta2[j]);

It is clear that the algorithm achieves better performance only for patterns with
periods and only if the text contains a high number of overlapping occurrences of the
pattern. For patterns with no periods, the two algorithms work the same way. For a
pattern with periods but with no overlapping occurrence, the Boyer-Moore-Galil
algorithm performs better shifts than the Boyer-Moore algorithm, but only when an
occurrence is found.

13.1.5 Bit-Oriented Approach

In this approach, each state of the search is represented as a number—that is, a string
of bits—and a transition from one state to the next is the result of a small number of
bitwise operations. A shift-and algorithm that uses a bit-oriented approach for string
matching was proposed by Baeza-Yates and Gonnet (1992) (see also Wu and Manber,
1992).

Consider a (|P| + 1) 3 (|T | + 1) table of bits defined as follows:

The table includes information concerning all matches between prefixes of P and
substrings ending at particular positions of the text. Number 1s in a row j of the table
indicate the ending positions in T of substrings T(i – j . . . i) matching prefix P(0 . . . j)
and number 1s in a column i indicate the prefixes of P that match substrings ending at
i in T. For P = ababac and T = bbababacaaba, state[0,4] = state[2,4] = 1 because posi-
tion 4 of T is the ending position of matches for prefixes P(0 . . . 0) = a and P(0 . . . 2) =
aba. Number 1 in the last row indicates an occurrence of the entire pattern P in T.

The algorithm computes a new state from the previous state, however, which can
be done very efficiently without maintaining the entire table state. To accomplish it, a
two-dimensional bit table is used to indicate for each character of the alphabet the po-
sitions at which it occurs in the pattern:

For example, the letter a occurs at positions 0, 2, and 4 of the pattern P = ababac;
therefore, charactersInP[0,‘a’] = charactersInP[2,‘a’] = charactersInP[4,‘a’] = 1 and
charactersInP[1,‘a’] = charactersInP[3,‘a’] = charactersInP[5,‘a’] = 0. In practice,
charactersInP is a one-dimensional table of numbers where bit positions in the num-
ber are implicitly used for row indices. Also, the table can only include information
about the characters that appear in P. The tables state and charactersInP for P = ababac
and T = bbababacaaba are as follows:

charactersInP3j,ch4 5 b1 if ch 5 Pj

0 otherwise

state3j,i4 5 d0 if i 5 21 and j . 21

1 if j 5 21

1 if state3j 2 1,i 2 14 5 1 and Pj 5 Ti

0 otherwise

672 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5 6 7
b b a b a b a c a a b a a b c

1 1 1 1 1 1 1 1 1 1 1 1 1
a 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0
b 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0
a 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0
b 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
a 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

With charactersInP it is easy now to compute a state corresponding to the cur-
rently processed position i of the text from the state corresponding to the preceding
position. This is accomplished by executing the operation shiftBits, which shifts down
bits corresponding to state i – 1 so that the bottom bit is shifted out and 1 is shifted in
as a new top bit. The result of the operation shiftBits is subjected to the bitwise-and
operation with bits in charactersInP corresponding to the character Ti :

state[i] = shiftBits(state[i – 1])) bitwise-and charactersInP[Ti]

To see it, consider the transition from state 5 to state 6; that is, processing character T6
after processing of T5 has finished, and then to state 7. By that time, prefixes abab and
ab of P have been found to match substrings T(2 . . . 5) and T(4 . . . 5):

i = 5 6 7 7
T = bbababacaaba abababacaaba bbababacaaba bbababacaaba

a 0 a a
b 1 ab ab
a 2 aba
b 3 abab abac
a 4 ababa
c 5 ababac ababac

Passing to state 6 means that we try to match P with T(1 . . . 6). But it is also an at-
tempt to extend partial matches. Therefore, the already matched prefixes are not shifted,
but are extended by one character and tested as to whether the added character is the
same as T6. This is done not by comparing T6 with the added character of each partially
matched prefix of P, but by using information in charactersInP, which allows for checking
all these partial matches at the same time. This is done by first shifting bits in column 5 of
the table state down by one position. This amounts to giving the existing partial matches
a chance to be successfully matched after extending them by one character. By shifting in
1 at the top of the column, the shortest prefix of P is given a chance as well. Whether the
extended prefixes are matching substrings ending at position 6 is tested with charac-
tersInP. Number 1 in row j of state indicates the occurrence of P’s matched prefixes of
length j. After a downward shift, the extended partial matches are tested by testing only
the newly included character, which is in position j. An extended prefix is a match if the
new character is the same as the current character in T, which is now T6 = a. Therefore, if
for a particular row j, the last character of a prefix is also a, then bitwise-and between 1
from state[j,6] and 1 from charactersInP[6,‘a’] gives 1 as a result, which means a successful
match. For example, aba in row 2 means that the prefix ab was successfully matched with

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 673

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

a substring ending at position 5 of T, and now we are about to check whether the longer
prefix aba matches a substring of T ending at 6. Because the last letter of this prefix, a, is
the same as T6, the tentative match becomes permanent. But consider the processing of
T7. The prefixes a, aba, and ababa are extended to become ab, abab, and ababac, and then
the last characters are indirectly (with bitwise-and) compared with T7 = c. Out of three
extended prefixes, only one is retained, and because this prefix is equal to the pattern it-
self, an occurrence of P is reported.

The transition from state 6 to 7 is summarized as follows: first, the shift operation
is executed:

6
b
1 1
0 1

shiftBits 1 1 0
0 1
1 0
0 1

and then the bitwise-and generates state 7:

7
c c

1 0 0
1 0 0
0 bitwise-and 0 1 0
1 0 0
0 0 0
1 1 1

A pseudocode of the algorithm is quite simple:

shiftAnd(pattern P, text T)
state = 0;
matchBit = 1;
// initialization:
for i = 1 to |P|-1

matchBit <<= 1;
for i = 0 to 255

charactersInP[i] = 0;
for (i = 0, j = 1; i < |P|; i++, j <<= 1)

charactersInP[Pi] |= j;
// matching process:
for i = 0 to |T|-1

state = ((state << 1) | 1) & charactersInP[Ti];
if ((matchBit & state) != 0)

output: a match at i-|P|+1;

The two-dimensional table charactersInP is implemented as a one-dimensional
table of long integers, where the second dimension is indicated by positions of bits in

674 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the integers. The function shiftBits is implemented as left shift followed by bitwise-or
of the result of the shift and number 1. In this way, number 1 is placed in the least sig-
nificant (rightmost) bit position. The algorithm performs |T | iterations in the match-
ing phase, executing four bitwise operations in each iteration, an assignment, and a
comparison.

The algorithm requires no buffering of text as is the case for the Boyer-Moore al-
gorithm. It is also clear that the length of the pattern must not exceed the size of an in-
teger, which for many practical purposes is adequate. However, this limitation can be
lifted by using a dynamic version of the shift-and algorithm. Here is one possible im-
plementation of such a version:

dynamicShiftAnd(pattern P, text T)
cellLen = size of long integer in bits;
lastBit = 1;
matchBit = 1;
cellNum = (|P| % 8 == 0) ? (|P|/8) : (|P|/8 + 1);
matchBit = 1;
// initialization:
for i = 1 to |P| - cellLen*(cellNum-1)-1

matchBit <<= 1;
for k = 0 to cellNum-1

for i = 0 255
charactersInP[k,i] = 0;

for (i = k*cellLen, j = 1; i < (k+1)*cellLen && i < |P|; i++, j <<= 1)
charactersInP[k,Pi] |= j;

// matching process:
for j = cellNum-1 down to 0

state[j] = 0;
for i = 0 to |T|-1

for (j = cellNum-1 down to 1
firstBit = ((state[j-1] & lastBit) == 0) ? 0 : 1;
state[j] = ((state[j] << 1) | firstBit) & charactersInP[j,Ti];

state[0] = ((state[0] << 1) | 1) & charactersInP[0,Ti];
if ((matchBit & state[cellNum-1]) != 0)

output: a match at i-|P|+1;

The table charactersInP, as before, records the occurrences of characters in the
pattern, but in a piecemeal fashion. For example, for a pattern P of length 80 and
64-bit long integers, charactersInP[0] records character occurrences for subpattern
P(0 . . . 63) and charactersInP[1] for P(64 . . . 79). The table state still implements one
state of the matching process. For example, state[0] represents the state for P(0 . . . 63)
and state[1] represents the state for P(64 . . . 79). Shifting bits consists of shifting bits
to the right neighbor cell and shifting in bits from left neighbors, if any. For example,
the last bit shifted out from state[0] is shifted in as the first bit to state[1]

The dynamic algorithm is not linear for all the lengths, but it is linear in intervals
marked by the long integer size. For example, for a 64-bit word, patterns of length 1
through 64 require O(|T |) operations; patterns of length 65 through 128 require
O(2|T |) operations and, generally, O(L|P|/64M|T |) operations.

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 675

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13.1.6 Matching Sets of Words
The problem of matching sets of words arises in the situation when for a set keywords
= {s0, . . . ,sk–1} of strings and a text T, we need to identify in T all substrings that
match strings in keywords. It is possible that the substrings overlap one another. In a
brute force approach, the matching process is executed for each word in the set key-
words separately. The running time of such an approach is O(|keywords||T |). However,
it is possible to considerably improve the run time by considering all relevant words at
the same time during the matching process. An algorithm performing such matching
was proposed by Aho and Corasick (1975).

Aho and Corasick construct a string-matching automaton that is composed of a
set of states represented by numbers, an initial state 0, an alphabet, and two functions:
a goto function g that assigns to each pair (state, character) a state or a special label
fail, and a failure function f that assigns a state to a state. Also, the algorithm uses an
output function output, which associates a set of keywords with each state. The states,
for which a set of keywords is not empty, are accepting states. After reaching an ac-
cepting state, a set of keywords associated with it is output.

Two types of transitions from one state to another are made during execution of
the algorithm: goto transitions and failure transitions. The automaton makes a failure
transition, when for the current state and character Ti , g(state, Ti) = fail, in which case,
the failure function f is used to determine the next current state = f(state). If g(state,
Ti) = state1 Z fail, then state1 becomes the current state, Ti+1 becomes the current char-
acter, and the transition from state1 to g(state1, Ti+1) is tried.

For no character ch, g(0, ch) = fail ; that is, no failure transitions occur in the ini-
tial state. In this way, one character from T can be processed in each iteration of the al-
gorithm. The algorithm is summarized as follows:

AhoCorasick(set keywords, text T)
computeGotoFunction(keywords,g,output); // the output function is computed
computeFailureFunction(g,output,f); // in these two functions;
state = 0;
for i = 0 to |T| - 1

while g(state,Ti) == fail
state = f(state);

state = g(state,Ti);
if output(state) is not empty

output: a match ending at i;
output(state);

The goto function is constructed in the form of a trie with numbered nodes rep-
resenting states and the root representing the start state, state0. A trie, as discussed in
Section 7.2, is a multiway tree in which consecutive characters of a string are used to
navigate the search in the tree. To enable such a search, links in the trie can be labeled
with characters. When descending down a particular path and concatenating the
characters encountered along the way, a word corresponding to this path is con-
structed. To make it possible, the insertion process has to construct such paths. Con-
sider the construction of a trie for the set keywords = {inner, input, in, outer, output,
out, put, outing, tint} (Figure 13.1). After inserting the word inner, there is only one

676 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

path in the trie (Figure 13.1a). When inserting the next word, input, a part of the exist-
ing path is used for the prefix in, and then a new path is branching out from node 2
for the suffix put (Figure 13.1b). For the word in, no new path is created.

The remaining steps are summarized in Figure 13.1c. For the word outer, a new
path is created. A path for the word output overlaps partially with the beginning of the
path for outer, because the two words have the same prefix out.

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 677

FIGURE 13.1 (a) A trie for the string inner, (b) for the strings inner and input, and (c) or the set
keywords = {inner, input, in, outer, output, out, put, outing, tint }; (d) the trie
(c) with failure links; (e) scanning the trie (d) for the text T = outinputting.

0 0

1 1

2 2

3 3

4 4

5 5

6

7

8

e

n

n

i

r

e

n

n

i

r t

u

p

(a) (b) (c)

Not {i,o,p,t}

0

1

2

3

4

5

6

7

8

9

10

11

12

1314

15

16

17

18

19

20 21 22

23 24 25 26

e
n

n

i

i

r

e

n

n

i

r

t

t t

g

u

t t

t

u u

u

p
p

p
o 0

1

2

3

4

5

6

7

8

9

10

11

12

1314

15

16

17

18

19

20 21 22

23 24 25 26

0

1

2

3

4

5

6

7

8

9

10

11

12

1314

15

16

17

18

19

20 21 22

23 24 25 26

e
n

n

i

i

r

e

n

n

i

r

t

t t

g

u

t t

t

u u

u

p
p

p
o

(d) (e)

T0

T1

T2
T3 T4

T5

T6

T7

T8 T9 T10T11

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The last step is adding a loop in the root; that is, a one-branch-long path from the
root to the root, for all characters other than the characters for which there are
branches coming out of the root, in this case characters i, o, p, and t. An algorithm to
construct the goto function is as follows:

computeGotoFunction(set keywords, function g, function output)
newstate = 0;
for i = 0 to |keywords| - 1

state = 0;
j = 0;
P = keyword[i];
while g(state,Pj) ≠ fail // descend down an existing path;

state = g(state,Pj);
j++;

for p = j to |P| - 1 // create a path for suffix P(j...|P|);
newstate++;
g(state,Pp) = newstate;
state = newstate;

add P to the set output(state);
for all characters ch of the alphabet // create loops in state 0;

if g(0,ch) == fail
g(0,ch) = 0;

Note that it is now impossible to tell which words are included in the trie. Is the
word inn in the trie? There exists a path corresponding to it, but the word should not
be counted as a part of the trie. To handle the problem of words whose paths are en-
tirely included in other paths—that is, words, that are prefixes of other words—a spe-
cial symbol can be used as a marker of the end of each word and included in the trie
only when ambiguity may arise. Another solution is to include a flag as a part of each
node to indicate the end of a word. The Aho-Corasick algorithm solves this problem
with the output function, although this is not the only role played by this function.

The first stage of constructing the output function is included in
computeGotoFunction(). For each state s (node of the trie), the output function
tells whether there are paths that begin anywhere between the start state and s that
correspond to words in the set keywords. After computeGotoFunction() is finished,
the output function establishes the following mapping between states and keywords
(states not indicated correspond to an empty set of words):

2 {in} 5 {inner} 8 {input}
11 {out} 13 {outer} 16 {output}
19 {put} 22 {outing} 26 {tint}

At this stage, the output function finds for each state s a word in keywords that
corresponds to the path that begins at the start state and ends at s. At that moment,
the output function plays the role of a flag, indicating for each node of the trie
whether it corresponds to a keyword.

The goto function is now used to construct the failure function during a breadth-
first trie traversal; that is, when traversing the trie level by level. For each node, the

678 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

function records the fact that a suffix of the string ending in a particular node is also a
prefix of a word that begins in the root, if any. In this, the failure function is a general-
ization of the table next used by the Knuth-Morris-Pratt algorithm, and it determines
from which state the matching process should be resumed if a mismatch occurs. Con-
sider the matching process executed as in the Knuth-Morris-Pratt algorithm with
character comparison:

i
T

...outinput...
1 outing
2a inner
2b input
2c tint

After a mismatch in position i, the matching process should resume from the
same character Ti and a character in any of the keywords that follows a prefix equal to
any of the suffixes in the substrings that end before the mismatched position in the
pattern. In our example, the suffix in of the partially matched pattern outin is the
same as a prefix of two keywords, inner and input, and the suffix tin of outin corre-
sponds to a prefix of tint. As in the Knuth-Morris-Pratt algorithm, we do not want to
repeat the comparisons already made, so the matching process is resumed from the
mismatched character Ti , and the characters in the three keywords that follow the
matched prefixes. But unlike in the Knuth-Morris-Pratt method, three patterns (key-
words) have to be taken into account at the same time. How can the mismatched
character Ti , be compared at the same time to three different characters, n, p, and t, in
the three candidate keywords for a possible match? They are not compared at all. In-
stead of comparing characters between the text and keywords, the current character
in the text is used to choose a transition in the trie, whereby some of the candidate
keywords can be eliminated. After the matching process continues in round 2, three
keywords are eliminated and the situation is as in

i
T

...outinput...
2b input

But how can candidate keywords be chosen for the next round? This is precisely
the role of the failure function. The function adds to the trie the failure transitions. A
failure transition is made if the matching process reaches a particular node (state) and
there is no branch coming out of the node that corresponds to the current text char-
acter. In other words, the failure transition is made when a mismatch occurs between
the current text character and each character accessible from the current node. Figure
13.1d shows the failure links corresponding to the failure function, which is:

state 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
f(state) 0 0 0 0 0 17 18 19 0 0 23 0 0 17 18 19 0 0 23 24 25 0 0 1 2 23

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 679

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A failure transition exists for each state except for the start state. The transitions
to the start state are not shown. With this function, a part of the matching process in-
dicated in the previous two diagrams—an attempt to match outing in round 1 and
then three keywords in round 2—corresponds to scanning the trie along the path
shown in Figure 13.1e. Each nonfailure transition means descending the trie down a
path. After reaching node 21, a mismatch occurs (the text character p mismatches the
only character reachable from this node, g), and the failure transition leads to node 25
and, indirectly (through a failure transition from node 25), to node 2. This means that
the words associated with paths on which nodes 25 and 2 are located are candidates
for matches. The current text letter p mismatches the letter t accessible from node 25;
therefore, the next failure transition is made, from node 25 to node 2, which eventu-
ally leads to a successful match.

Here is an algorithm to construct the failure function:

computeFailureFunction(function g, function output, function f)
for each character ch of the alphabet

if g(0,ch) ≠ 0
enqueue(g(0,ch));
f(g(0,ch)) = 0;

while queue is not empty
dequeue state r;
for each character ch of the alphabet

if g(r,ch) ≠ fail
enqueue(g(r,ch));
state = f(r);
while g(state,ch) == fail // follow failure links for

state = f(state); // character ch;
f(g(r,ch)) = g(state,ch);
include in output(s) keywords from output(f(g(r,ch)));

For each state accessible through character ch from a dequeued state r, the algo-
rithm adds a failure link. It follows failure links for ch until it finds a nonfailure (goto)
transition for it. For example, when processing state 12 accessible through letter e
from state r = 11, there is a failure transition for e from 11 to 0 and a nonfailure link
for e from 0 to 0; therefore, f(12) = 0 (Figure 13.1d). For state 20 accessible from the
same state 11 through letter i, there is a nonfailure transition from 11 for i; therefore,
the inner while loop is not entered and f(20) = 24. The while loop iterates twice
when determining the failure transition for state 22 accessible from state r = 21
through letter g; the first failure link for g leads from 21 to 25, then from 25 to 2, and
finally from 2 to 0, where there is a nonfailure link for g to the same state 0.

The algorithm also completes the construction of the output function. For each
node, the output function records words that end in this node, although they do not
have to begin in the root. In the process of creating the output function during the
breadth-first traversal, a list of words associated with the current node is expanded
by adding words associated with a node reachable through the failure link. The first
list expanded in this way is the empty list corresponding to node 25 on level 4 by in-
cluding the word from the list {in} corresponding to node 2 and created when exe-

680 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

cuting computeGotoFunction(). The next list expanded in this process is the list
{input} associated with node 8 on level 6 by including the list {put} associated with
node 19 accessible from node 8 through a failure link. In effect, the number of non-
empty lists is expanded and some of the existing lists are extended by adding new
keywords:

2 {in} 5 {inner} 8 {put, input}
11 {out} 13 {outer} 16 {put, output}
19 {put} 21 {in} 22 {outing}
25 {in} 26 {tint}

In this way, every time a matching process reaches a node in the trie that is associ-
ated with a nonempty list of keywords, all the keywords can be output as match-
ing a substring of text ending in the current text position i. For example, for text
outinputting and keywords = {inner, input, in, outer, output, out, put, outing, tint}, the
steps executed by AhoCorasick() are as follows:

outinputting outinputting outinputting outinputting outinputting
inner out out outing outing
input outer outer outer tint
in outing outing output in
outer output output tint inner
output tint in input
out inner
put input
outing
tint

0 9 10 11 20 21

outinputting outinputting outinputting outinputting outinputting
outing input input tint tint

inner put put in
input tint inner
put input

25 2 6 7 8 19 23 0 23 24

outinputting outinputting
tint tint
in
inner
input

25 2 0 0

The numbers indicate states. For example, the initial o leads from state 0 to state
9, and letter p leads from state 21 to state 25 through a failure link, then to state 2, also
though a failure link, and then to state 6. Underlined are letters of the words that are
on the path chosen by the algorithm or letters that are at the links branching out from
the current state. Words not underlined are the ones that can be reached indirectly
through the output function or through failure links.

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 681

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The algorithm produces the following output:

a match ending at 2: out
a match ending at 4: in
a match ending at 7: put input
a match ending at 10: in

The goto function can be implemented as a two-dimensional array of size (num-
ber of states) ? (number of characters). This implementation allows for an immediate
access of the value corresponding to a pair (state,ch); however, the array would be very
sparsely populated with nonfailure transitions. Therefore, a one-dimensional array of
array lists or linked lists can be used instead: an array of linked lists (array lists) of
characters indexed with the state numbers or an array indexed with characters of
linked lists (array lists) of states (or state numbers) (see Section 3.6).

The failure function can be implemented as a one-dimensional array indexed
with state numbers of states.

The output function can be implemented as an array of linked lists (or array lists)
or words.

For the set keywords = {s0, . . . ,sk–1} and the total length of keywords m = |s0| + . . .
+ |sk–1|, the algorithm computeGotoFunction() is executed in linear time O(m),
and the algorithm computeFailureFunction() can be executed in the same time.

To determine the complexity of AhoCorasick(), note that in one iteration
of the for loop for state on level l, the while loop is executed at most l – 1 times,
which means that at most l – 1 failure transitions can be made for state corre-
sponding to a node on level l, because these transitions always go up the trie by
at least one level root. Therefore, the total number of failure transitions can be at
most |T | – 1, and because the goto transitions go down the trie by exactly one level
so that the number of goto transitions is exactly |T |, the number of state transi-
tions during the entire matching process is O(2|T |). Therefore, the complexity of the
Aho-Corasick algorithm, including the creation of the failure and goto functions, is
O(|T | + m).

It is worth mentioning that the UNIX system’s command fgrep is an implementa-
tion of Aho-Corasick.

13.1.7 Regular Expression Matching

In this section we address the problem of finding in text matches that are specified not
by single or multiple patterns, but by regular expressions.

Regular expressions are defined as follows:

1. All letters of the alphabet are regular expressions.

2. If r and s are regular expressions, then r|s, (r), r*, and rs are regular expressions.

a. Regular expression r|s represents regular expression r or s.

b. Regular expression r* (where the star is called a Kleene closure) represents any
finite sequence of rs: r, rr, rrr,

c. Regular expression rs represents a concatenation rs.

d. (r) represents regular expression r.

682 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An algorithm created by Ken Thompson constructs a nondeterministic finite au-
tomaton (NDFA) corresponding to a regular expression. An NDFA is a directed graph
in which each node represents a state and each edge is labeled by a letter or a symbol _
that represents an empty string. The automaton has one initial state and may have
multiple terminal or accepting states, but in the context of this section it has only one
accepting state. An NDFA is used during the matching process. A match in the text is
found if there is a path with letters on the edges in NDFA from the initial state to an
accepting state that matches a substring of the text.

A construction of an NDFA is given in the form of the following recursive procedure:

1. An automaton representing one letter has one initial state i, one accepting state a, and
an edge from the former to the latter labeled with the letter (Figure 13.2a).

2. An automaton representing a regular expression r|s is a union of the automata repre-
senting r and s. The union is constructed by

a. creating an initial state i with two outcoming ε-edges, one to the initial state i1
of the automaton representing r and one to the initial state i2 of the automaton
representing s;

b. creating an accepting state with two incoming ε-edges from accepting states a1
and a2 of the two automata (Figure 13.2b).

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 683

FIGURE 13.2 (a) An automaton representing one letter c; an automaton a regular expression (b) r |s,
(c) rs, (d) r*.

(a)

ai

�

�

�

��

�

�

�

�

i

i

i1

i1

i2

i2

a1

a1
a1

a

a

a

a2

a2

(d)

(c)

(b)

i1i

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. An automaton representing a regular expression rs is a concatenation of the automata
representing r and s. The concatenation is constructed by creating an ε-edge from the
accepting state a1 of the automaton representing r to the initial state i2 of the automa-
ton representing s; the initial state i1 becomes the initial state of the concatenated
automaton, and a2 becomes its accepting state (Figure 13.2c).

4. An automaton representing a regular expression r* is constructed as follows.

a. A new initial state i is created with an ε-edge to the initial state i1 of the automa-
ton representing r;

b. a new accepting state a is added with an ε-edge from the state a1;

c. an ε-edge is added from the initial state i to the accepting state a; and

d. an ε-edge is added from the state a1 to the state i1 (Figure 13.2d).

5. An automaton representing a regular expression (r) is the same as the automaton
representing r. The construction process indicates that an automaton corresponding
to a regular expression

a. has one initial state and one accepting state;

b. each state has one outgoing edge labeled by a letter, one ε-edge, or two
ε-edges;

c. in each step two new nodes can be created (or none), so the number of states in
the automaton is at most twice the length of the regular expression to which it
corresponds, and the number of edges is at most four times that size.

An automaton can be created with the following routines:

component()
if regExpri is a letter

p = a character automaton as in Figure 13.2a;
i++;

else if regExpri == '('
i++;
p = regularExpr();
if regExpri ≠ ')'

failure;
i++;

if regExpri == '*'
while regExpr++i == '*';
p = a star automaton as in Figure 13.2d;

return p;

concatenation()
p1 = component();
while regExpri is a letter or '('

p2 = component();
p1 = concatenation of automata as in Figure 13.2c;

return p1;

684 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

regularExpr() {
p1 = concatenation();
while i < |T| and regExpri == '|'

i++;
p2 = concatenation();
p1 = union of automata as in Figure 13.2b;

return p1;

and the processing begins by calling first regularExpr(). Note that the processing
is done very much in the same spirit as the interpreter presented in Section 5.11,
where regularExpr() corresponds to expression(), concatenation() corre-
sponds to term(), and component() corresponds to factor().

Two sets are needed to properly process regular expression. The set epsilon(S) is a
set of states accessible from the states in S through ε-paths. The set goto(S,ch) is a set
of states for which there is an edge labeled with character ch from a state in S. The sets
can be created with the following algorithms:

gotoFunction(states, ch)
for each state in states

if there is a ch-transition from state to a state s
include s in states2 if it is not already included;

return states2;

epsilon(states)
for each state in states

remove state from states
for each state s for which there is an e-edge from state to s

include s in states and in states2 if it is not already included;
return states2;

The automaton and the sets so constructed are now used to process a text and de-
tect the longest matching regular expressions in a text and print their positions in the
text. The algorithm is as follows:

Thompson(regExpr, text T)
initState = parse();
from = 1;
states = epsilon({initState});
for i = 0 to |T|-1

states = gotoFunction(states,Ti);
if states is empty

states = gotoFunction({initState});
from = i;

if accepting state is in states
output: “match from ” from “ to ” i;

states = epsilon(states);
if accepting state is in states

output: “match from ” from “ to ” i;

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 685

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

if states is empty
states = epsilon({initState});
from = i+1;

The following table shows the steps in processing the string T = aabbcdeffaefc and
regular expression regExpr = a(b|cd)*ef with initialization states = epsilon({initState})
= {}. The automaton for the expression is given in Figure 13.3 with the number repre-
senting the order in which the states were generated. The substrings in the second col-
umn in boldface indicate the substrings detected by the program as matching regExpr;
they are substrings T(0 . . . 6) = abbcdef and T(8 . . . 10) = aef.

i ch goto(states,ch) states epsilon(states,ch) states
after if-stmt after if-stmt

0 a {} {1} {2 4 8 10 11 12} {2 4 8 10 11 12}
1 a {} {1} {2 4 8 10 11 12} {2 4 8 10 11 12}
2 b {3} {3} {2 4 8 9 11 12} {2 4 8 9 11 12}
3 b {3} {3} {2 4 8 9 11 12} {2 4 8 9 11 12}
4 c {5} {5} {6} {6}
5 d {7} {7} {2 4 8 9 11 12} {2 4 8 9 11 12}
6 e {13} {13} {14} {14}
7 f {15} {15} {} {1}
8 f {} {1} {2 4 8 10 11 12} {2 4 8 10 11 12}
9 a {} {1} {2 4 8 10 11 12} {2 4 8 10 11 12}
10 e {13} {13} {14} {14}
11 f {15} {15} {} {1}
12 c {} {1} {} {1}

13.1.8 Suffix Tries and Trees
In many situations it is beneficial to preprocess a string or strings by creating a
structure that allows further processing to be executed more efficiently than with-
out using this structure. One such structure is a suffix trie and its generalization, a
suffix tree.

686 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

FIGURE 13.3 The Thompson automaton for the regular expression a(b|cd)*ef.

0 1 10 8

2 3

4 5 6 7

9 11 12 13 14 15
a � �

�

�

�

� � �

�

fe

b

c d

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A suffix trie for a text T is a tree structure in which each edge is labeled with one
letter of T and each suffix of T is represented in the trie as a concatenation of edge la-
bels from the root to some node of the trie. In a suffix trie, head(i) is the longest prefix
of string T(i . . . |T | – 1) that matches a prefix of a suffix T(j . . . |T | – 1) that is already
in the tree. A trie for the word caracas is in Figure 13.4a. It should be clear that in the
worst case, when all letters are different, a trie requires one node for the root and |T | – i
nodes for each suffix, where i is its starting position—that is, (|T | + 1)|T |/2 in total—
which means that the space requirement for a suffix trie is quadratic.

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 687

FIGURE 13.4 (a) A suffix trie for the string caracas; (b) a suffix tree for the substring caraca and
(c) for the string caracas.

0

4

1

5

20

21

22

23

24

6

19

1410 11 12 13

2

3

7 8 9
15

16

17

18

s

s

s

s

r

r

r

a

a

a

a

a

a

c

c

c

c
c

a

a

a

s

s

s

9 8

3

6

0

1

57

2

4

s
a

s

cas
cas

ra
c
a
s

racas

3

6

0

1

57

2

4

s
a

ss

ca
cas

ra
c
a
s

racas

racas

(c)(b)

(a)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A simple algorithm for creating a suffix trie for a text T simply looks at one suffix
at a time and extends paths corresponding to the suffix when necessary:

bruteForceSuffixTrie(text T) {
// the order of processing suffixes does not matter; it can be
// from the largest to the smallest:

// for i = 0 to |T|-1
// or from the smallest to the largest:
for i = |T|-1 downto 0

node = root;
j = i; // to represent the suffix T(i...|T| – 1);
while Tj-edge from node exists

node = the node accessible through Tj-edge from node;
j++;

// store the suffix T(j...|T| – 1) of the suffix T(i...|T| – 1) in the trie:
for k = j to |T|-1

create newNode;
create edge(node,newNode,Tk);
node = newNode;

The trie in Figure 13.4a has been created with this algorithm, which is reflected in
the node numbers that indicate the order in which nodes were included in the trie.

The run time of the algorithm is quadratic because for each iteration i of the
outer loop, the two inner loops combined perform |T| – i + 1 iterations.

A compact version of a suffix trie is a suffix tree, in which there are no internal
nodes with only one descendant. A suffix tree can be obtained from a suffix trie by la-
beling each edge with the substring of T that corresponds to the concatenation of
characters on the subpaths of the trie in which only nodes with one descendant are
used. In other words, one-descendant nodes on such subpaths are merged into one
single node, and the edges on such subpaths are merged into one edge. By converting
the trie in Figure 13.4a, a suffix tree in Figure 13.4c is created. A suffix tree can have up
to |T | leaves and thus up to |T | – 1 nonleaves. It has exactly |T | – 1 nonleaves if it has
|T | leaves, each nonleaf has two descendants, and no suffix is represented by a path
that ends in an nonleaf (see Section 6.1 and Figure 6.5). In this way, space require-
ments for a suffix tree are linear in the length of the text.

In a suffix tree, most of the nodes are implicit; these are the nodes that in a corre-
sponding trie have one descendant. The problem with processing a suffix tree is deter-
mining when an implicit node has to be made explicit. The situation is illustrated by
inserting the suffix caracas into the tree in Figure 13.4b, which requires splitting the
edge labeled cas into two edges, labeled ca and s, and then inserting a new edge labeled
racas, as shown in Figure 13.4c. For practical purposes, it is more convenient to label
edges in a suffix tree with two indexes that represent starting and ending positions of
a substring of T that is the word label of the edge.

Here is a summary of an algorithm:

bruteForceSuffixTree(text T)
for each suffix s of T

determine the head of s (find the longest match for the longest prefix of s and a path from the root);

688 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

if the suffix of the head matches an entire label of an edge that ends in a leaf
extend the label by the unmatched part of s;

else if the suffix of the head matches an entire label of an edge that ends in a nonleaf
create a leaf connected to the nonleaf with an edge labeled by the unmatched part of s;

else split the edge(u,v) partially matched with the suffix of the head into
edge(u,w) labeled with the part of the current label matching the longest suffix of the head and
edge(w,v) labeled with the unmatched part of the current label and
create edge(w,u) labeled with the unmatched part of s;

Processing can be done in at least two ways, left to right or right to left. The suffix
tree in Figure 13.4c is created by processing suffixes of caracas right to left, from the
smallest suffix to the largest, which is reflected in the order in which nodes have been
created.

The algorithm executes in O(|T |2) time due to a straightforward strategy to de-
termine the head: The search always starts at the root, which requires performing
|head(i)| steps in each iteration, which in the worst case is |T | – i; that is, the length of
suffix – 1. To see that, consider string akb. The complexity can be improved by devis-
ing quicker ways of determining heads of suffixes, which is accomplished by main-
taining additional links in the suffix tree. One such suffix tree is constructed by an
algorithm devised by Esko Ukkonen.

Conceptually, a suffix tree is a compressed suffix trie, so the presentation of the
Ukkonen algorithm for a suffix tree (Ukkonen, 1995) is better understood when
started with the discussion of an algorithm for suffix tries (Ukkonen and Wood,
1993).

Ukkonen suffix tries and suffix trees use suffix links in the construction (these
links are the same as failure transitions in the Aho-Corasick algorithm).

A new suffix trie is obtained from an existing suffix trie by extending paths corre-
sponding to all suffixes of the subtext T(0 . . . i – 1) by adding new transitions corre-
sponding to the character Ti . In this way, a new trie has paths for all suffixes of the
subtext T(0 . . . i). The states for which new transitions are added can be found using
suffix links that form a path from the deepest node to the root. This path is called the
boundary path. The path is traversed, and for each encountered node p a new leaf q is
created with the edge(p,q,ch) (i.e., an edge from p to q labeled ch) if there is no ch-edge
coming out of p. The path traversal is aborted after the first node is encountered for
which there is a ch-edge.

Also, new suffix links are created that form a path that joins together the newly
added nodes. The new suffix links are a part of the boundary path of the updated trie.

The algorithm is as follows:

UkkonenSuffixTrie(text T)
create newNode;
root = deepestNode = oldNewNode = newNode;
suffixLink(root) = null;
for i = 0 to |T|-1

node = deepestNode;
while node is not null and Ti-edge from node does not exist

create newNode;
create edge(node,newNode,Ti);

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 689

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

if node ≠ deepestNode
suffixLink(oldNewNode) = newNode;

oldNewNode = newNode;
node = suffixLink(node);

if node is null
suffixLink(newNode) = root;

else suffixLink(newNode) = child of node through Ti-edge;
deepestNode = child of deepestNode through Ti-edge;

The algorithm is executed in the time proportional to the number of different
substrings of the text T, which can be quadratic, as, for example, for a text with all dif-
ferent characters.

For an example, consider building a suffix trie for the word pepper. The trie is initial-
ized to a one-node tree (Figure 13.5a). In the first iteration of the for loop, a new node is
created with an edge corresponding to letter p between the root and the new node; a suf-
fix link from the new node to the root also is created (Figure 13.5b). In the second itera-
tion of the for loop, the letter e is processed. A new node is created in the first iteration of
the while loop (Figure 13.5c). In the second iteration of the while loop, first another
new node is created (Figure 13.5d), then a suffix link is established (Figure 13.5e), and
after exiting the while loop, another suffix link is created (Figure 13.5f). Figure 13.5g–f
shows the trie being expanded for each subsequent letter of the word pepper. The num-
bers in the nodes indicate the order in which the nodes have been created.

To improve on space requirements for a suffix trie, a suffix tree is used in which
only those nodes of a trie that have at least two descendants are included. In this way,
the suffix tries in Figures 13.5b and 13.5f–j can be transformed into corresponding
suffix trees in Figure 13.6a–f. Note that only suffix links from nonleaves are indicated
because, as discussed later in Section 13.3, leaves and thus suffix links from leaves are
not indispensable for the proper processing of a suffix tree.

The problem now is that in order to expand the tree in Figure 13.6c into the tree
in Figure 13.6d by processing letter p, an implicit node between substrings p and ep
has to be made explicit and then a new leaf is attached to it with the edge labeled p.
The old leaf is retained and also attached to the newly created explicit node and con-
nected with the edge with the modified (extended) label epp. To develop an algorithm
for a suffix tree, consider again the processing of a trie.

The first nonleaf on the boundary path is called an active point. When processing
a trie, a new ch-edge and a new leaf are added for each leaf on the boundary path—
that is, for each node that precedes the active point. Then, each node on the subpath
between the active point and the so-called endpoint also receives a new ch-edge to a
new leaf. Therefore, an endpoint is a node for which a ch-edge already exists, and thus
such a ch-edge exists for all the nodes on the boundary path from the endpoint to the
root. An endpoint can be a virtual parent of the root if the root also acquires a new ch-
edge (it is assumed that between such a virtual parent and the root there is a ch-edge
for each letter). For example, in Figure 13.5i, on the boundary path 9 10 11 2 3 0 –1,
node 2 is the active point and node –1, the virtual parent of the root, is the endpoint
with respect to character r, which is inserted into this trie. If p were inserted into this
trie, then the active point would be the same, but node 2, the active point, would be
the endpoint.

690 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 691

FIGURE 13.5 Creating an Ukkonen suffix trie for the string pepper.

(a) (b) (c) (d) (e)

(f)

0

1

2

4

6

9

8

11

3

5

7

10

(i)

(g) (h)

0

1

2

4

6

9

12

15

8

11

14

17

163

5

7

10

13

(j)

p

p

p

p

p
p

e

e

e

ee

0

1

2

4

3

5

p

p

p

e

e

0

1

2

4

6

8

3

5

7

0

1

2

3
p e

e

0

1

2

3
p e

e

0

1

2

3
p e

e

0

1

2

p

e

0

1

p
0

p

p

p

p

p
p

e

e

r

r

r

r

r

r

p

p
e

e

e

e

ep

p

p

p

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When processing a tree, an update of the equivalent of the beginning of the
boundary path that includes all leaves requires only updating the labels of the edges
that connect these leaves with their parents. However, each nonleaf on the boundary
path up to the node before the endpoint may need to be made explicit in the tree so
that a leaf can be attached to it. Here is a summary of the algorithm:

UkkonenSuffixTree(text T)
initialize the root and active point to a new node corresponding to T;
for i = 0 to |T|-1

for each leaf on the boundary path (i.e., from the beginning to a node before the active point)
update the label of the edge between the leaf and its parent;

for each node on the boundary path from the active point to a node before the endpoint
create newNode;
if node is not explicit

make node explicit by inserting it between its parent p and a node q;
update the edge between node and p;
create an edge between node and q;

create edge(node,newNode,Ti);

An implementation of the algorithm is presented in the case study at the end of
this chapter.

692 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

FIGURE 13.6 Creating an Ukkonen suffix tree for the string pepper.

r

r

r

p

pere

e

p

pe

eppe

eppe

p

p

epp

epp

pep eppe ep

pper

pper

(a) (b) (d)(c)

(f)(e)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13.1.9 Suffix Arrays
Sometimes suffix trees may require too much space. A very simple alternative to suffix
trees are suffix arrays (Manber and Myers, 1993).

Suffix array pos is the array of positions 0 through |T | – 1 of suffixes taken in lexi-
cographic order. It is obvious that the suffix array requires |T | cells. For example, suf-
fixes of text T = proposition are ordered as follows:

8 ion
6 ition
10 n
9 on
2 oposition
4 osition
3 position
0 proposition
1 roposition
5 sition
7 tion

with their positions in the text indicated on the left-hand side; these positions form a
suffix array pos = [8 6 10 9 2 4 3 0 1 5 7] that corresponds to the order of the suffixes.

The suffix array can be created in O(|T | lg |T |) time by sorting an array initialized
as [0 1 . . . |T | – 1]. The sorting routine compares suffixes but moves numbers in pos
when the suffixes indicated by the positions are out of sequence.

The suffix array can be created from an existing suffix tree on which an ordered
depth-first traversal is performed. For each node of the tree, the traversal traverses its
subtrees according to the order of word labels of the outgoing edges, which is the
order of the first letters in these labels. The traversal inserts in the suffix array the leaf
numbers in the order of reaching the leaves. The edges can be sorted in O(|A| lg |A|)
time so that traversal is executed in O(|T ||A| lg |A|) time. The suffix tree routine can
maintain the edges on a linked list in sorted order, which amounts to O(|A|2) time to
maintain one such list and thus O(|T ||A|2) time to maintain the tree. Only then can
the traversal be done in linear time, O(|T |).

With the suffix array, a pattern P can be found very quickly in text T by using bi-
nary search (see Section 2.7) and then all suffixes with prefix P are grouped together.
To locate the beginning of the cluster of such suffixes, the following version of binary
search can be used:

binarySearch(pattern P, text T, suffix array pos)
left = 0;
right = |T|; // that is, |pos|;
while left < right

middle = (left+right)/2;
if P ≤ T(pos[middle] . . . |T|-1)

right = middle;
else left = middle+1;

if P is equal to T(pos[left] . . . pos[left]+|P|)
return left;

else return -1; // failure;

S e c t i o n 1 3 . 1 E x a c t S t r i n g M a t c h i n g ■ 693

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To locate the end of the cluster of such suffixes, the inequality ≤ in the if statement
should be turned into ≥, and left should be replaced by right in the if statement fol-
lowing the loop. Pattern P is found in T at positions located in the cluster just deter-
mined. The cluster is determined in O(|P| lg |T |) time, where lg |T | refers to the number
of iterations of the while loop of binarySearch(), and |P| refers to the number of
character comparisons between P and suffixes of T in one iteration of the loop.

13.2 APPROXIMATE STRING MATCHING

In preceding sections, algorithms for exact matching were analyzed, which was an all-
or-nothing proposition: A search for a pattern P in a text T is considered successful if
there is at least one substring in T that is equal to P. If there is at least one character
difference, the substring is not considered a match for P. In many situations, however,
the requirement for exact match can be relaxed by stating that only a certain level of
similarity between P and T (or its substring) is needed to consider a match successful.

A popular measure of the similarity of two strings is the number of elementary
edit operations that are needed to transform one string into another. Three elemen-
tary operations on strings are considered: insertion I, deletion D, and substitution S.
The differences between two strings is sought in terms of these operations. These dif-
ferences can be represented in at least three ways: trace, alignment (matching), and
listing (derivation). For example,

alignment:
-app--le source
capital- target

listing:
apple source
capple (I)
capile (S)
capitle (I)
capitale (I)
capital (D) target

trace:
apple source

TTT R
capital target

Lines in the trace cannot cross one other, and only one line can connect a source
character with a target letter. A letter with no line in the source indicates a deletion; a
letter with no line in the target indicates an insertion. Lines connect a source letter
with the same letter of the target or a letter that is substituted for another letter.

Alignment is obtained by aligning two strings that may include null characters
indicated by dashes. A dash in the source indicates an insertion; a dash in the target
indicates a deletion.

694 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Listings directly correspond to the way strings are processed by a particular algo-
rithm, alignments and traces summarize the work more succinctly and legibly.

The most popular measure of distance between two strings is the Levenshtein dis-
tance. In fact, Levenshtein (1965) introduced two concepts of distance d(Q,R) be-
tween two strings Q and R. One is the smallest number of insertions, deletions, and
substitutions needed to convert Q into R. Another distance takes only deletions and
insertions into account.

Mathematically, distance is a function d that satisfies the following conditions.
For any Q, R, and U:

d(Q,R) ≥ 0
d(Q,R) = 0 iff Q = R
d(Q,R) = d(R,Q) (symmetry)
d(Q,R) + d(Q,U) ≥ d(Q,U) (triangle inequality)

Most distance functions used for string processing meet these requirements, in-
cluding the Levenshtein distance, but exceptions are possible. Also, distances that in-
clude weights are possible. For example, in microbiological applications, a single
deletion of two neighboring string elements may be much more likely than two sepa-
rate deletions of single elements. In such a case, a larger weight is used for two consec-
utive deletions than for two separate deletions.

13.2.1 String Similarity

The string similarity problem arises when for two strings R and Q, the distance
d(Q,R) between these two strings needs to be determined.

Let D(i,j) = d(Q(0 . . . i – 1), R(0 . . . j – 1)) be the edit distance between prefixes
Q(0 . . . i – 1) and R(0 . . . j – 1). The string similarity problem can be approached by
reducing the problem of finding the minimum distance for a particular i and j to the
problem of finding the minimum distance for values not larger than i and j. If the
subproblems are solved, then the solution can be extended to i and j by observing
which operation is needed to find correspondence between characters Qi and Rj.
There are four possibilities:

1. Deletion. When Qi is deleted from Q(0 . . . i), then D(i – 1,j – 1) = D(i – 2,j – 1) + 1;
that is, the minimum distance between Q(0 . . . i) and R(0 . . . j) equals the minimum
distance between Q(0 . . . i – 1) and R(0 . . . j) plus 1, where 1 signifies deletion of Qi
from the end of Q(0 . . . i).

2. Insertion. When Rj is inserted into R(0 . . . j – 1), then D(i – 1,j – 1) = D(i – 1,j – 2) + 1;
that is, the minimum distance between Q(0 . . . i) and R(0 . . . j) equals the minimum
distance between Q(0 . . . i) and R(0 . . . j – 1) plus 1, where 1 signifies insertion of Rj at
the end of R(0 . . . j – 1).

3. Substitution. When Rj is substituted in R(0 . . . j) for Qi ≠ Rj in Q(0 . . . i), then
D(i – 1,j – 1) = D(i – 2,j – 2) + 1; that is, the minimum distance between Q(0 . . . i)
and R(0 . . . j) equals the minimum distance between Q(0 . . . i – 1) and R(0 . . . j – 1)
plus 1, where 1 signifies the substitution operation.

S e c t i o n 1 3 . 2 A p p r o x i m a t e S t r i n g M a t c h i n g ■ 695

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Match. When Qi = Rj, no additional operation is needed, and thus D(i – 1,j – 1) =
D(i – 2,j – 2); that is, the minimum distance between Q(0 . . . i) and R(0 . . . j) equals
the minimum distance between Q(0 . . . i – 1) and R(0 . . . j – 1).

All these conditions can be combined into one recurrence relation:

D(i,j) = min(D(i – 1,j) + 1, D(i,j – 1) + 1, D(i – 1,j – 1) + c(i,j))

where c(i,j) = 0 if Qi = Rj and 1 otherwise.
Moreover, to transform a nonempty string into an empty string, all its characters

have to be deleted, so that

D(i,0) = i

and to transform an empty string into a nonempty string, all its characters have to be
inserted, that is,

D(0,j) = j

The problem can be solved recursively by directly using the equations. However,
in this way, the problem of large size is reduced to three problems that are only slightly
smaller, which, in effect triples the effort needed at a particular level of recursion. The
smaller problems have to be solved separately, which triples the effort for every one of
them and means a nine-fold increase of effort for the previous level of recursion.
Eventually, the original problem requires exponential effort to be solved. To avoid the
use of excessive recursion, the problem is solved differently.

One solution is to use a 2D edit table, in which the results of iteratively solved sub-
problems, from smallest to largest, are recorded. We use an (|R| + 1) 3 (|Q| + 1) edit table
dist[0 . . . |R|,0 . . . |Q|] for which dist[i,j] = D(i,j); that is, its rows correspond to characters
in R and columns to characters in Q. The first row corresponds to values D(0,j) and thus
is initialized with numbers 0, 1, . . . , |R|. Similarly, the first column corresponds to values
D(i,0) and so is initialized with numbers 0, 1, . . . , |Q|. Afterwards, for each cell of the
table, the value stored in the cell is determined in accordance with the recurrence relation
for D(i,j), which means that it refers to three cells: one above, one to the left, and one
positioned diagonally. Here is an algorithm devised by Wagner and Fischer (1974):

WagnerFischer(edit table dist, string Q, string R)
for i = 0 to |Q|

dist[i,0] = i;
for j = 0 to |R|

dist[0,j] = j;
for i = 1 to |Q|

for j = 1 to |R|
x = dist[i-1,j]+1; // upper
y = dist[i,j-1]+1; // left
z = dist[i-1,j-1]; // diagonal
if Qi-1 ≠ Rj-1

z++;
dist[i,j] = min(x,y,z);

It is clear from the use of nested for loops that the algorithm runs in O(|Q||R|)
time and space.

Consider strings Q = capital and R = apple and the edit table dist created for them:

696 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

a p p l e
0 1 2 3 4 5

c 1 1 2 3 4 5
a 2 1 2 3 4 5
p 3 2 1 2 3 4
i 4 3 2 2 3 4
t 5 4 3 3 3 4
a 6 5 4 4 4 4
l 7 6 5 5 4 5

After initializing the first row and first column, the value for each cell is found by
using values of the three mentioned neighboring cells. For example, to determine the
value D(6,3)—that is, the value dist[6,3] = 4, which is shown in italics in the dia-
gram—the three neighbors shown in bold type are consulted. There are two candi-
dates for the minimum value, both with a value of 3: dist[5,2] and dist[5,3]. If the first
is chosen, then we choose the operation of substitution, because the sixth character in
capital, character a, is different from the third character in apple, character p. In this
way, D[6,3] = d(capita,app) = d(capit,ap) + 1 = 4. When the second candidate is cho-
sen, then we choose the operation of insertion of a in the substring capit to obtain
substring capita, so that D[6,3] = d(capita,app) = d(capit,app) + 1 = 4.

The number in the lower right corner of dist, number 5, is the minimum distance
between strings capital and apple. The table can be used to generate an alignment so
that not only d(capital,apple) is known, but also a listing. If we are interested in only
one possible listing, then it can be generated with the following algorithm:

WagnerFisherPrint(edit table dist, string Q, string R)
i = |Q|;
j = |R|;
while i ≠ 0 or j ≠ 0

output pair (i, j);
if i > 0 and dist[i-1,j] < dist[i,j] // up

sQ.push(Qi-1);
sR.push('-');
i--;

else if j > 0 and dist[i,j-1] < dist[i,j] // left
sQ.push('-');
sR.push(Rj-1);
j--;

else // if i > 0 and j > 0 and // diagonally
// (dist[i-1,j-1] == dist[i,j] and Qi-1 == Rj-1 or
// dist[i-1,j-1] < dist[i,j] and Qi-1 ≠ Rj-1)
sQ.push(Qi-1);
sR.push(Rj-1);
i--;
j--;

print stack sQ;
print stack sR;

S e c t i o n 1 3 . 2 A p p r o x i m a t e S t r i n g M a t c h i n g ■ 697

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

At least one of the indexes i and j is decremented in each iteration of the while
loop, so the algorithm runs in O(max(|Q|,|R|)) time.

Two stacks are used to generate the elements of the alignment. Stacks are very
suitable here because the source and target of the alignment are generated backwards.
Processing starts in the lower right corner, and for each cell c it goes to one of the three
neighbors whose values were used to determine the value stored in c; depending on
which neighbor it is, either a character from a string or a dash is stored—a dash in the
target to indicate a deletion, and a dash in the source to indicate an insertion. The al-
gorithm WagnerFisherPrint() generates this output:

path: [7 5] [6 5] [5 4] [4 3] [3 2] [2 1] [1 0]
capital
-apple-

As an extra, the path from the lower right corner to the upper left corner is also
generated. The order of if statements in the algorithm determines which alignment
is generated. If the first if statement is exchanged with the second, then the output is

path: [7 5] [7 4] [6 3] [5 3] [4 3] [3 2] [2 1] [1 0]
capital-
-app--le

It is also possible to generate all alignments and print them after removing duplicates.
The Wagner-Fisher algorithm can be improved in many ways, one way being the

reduction of space from O(|Q||R|) to O(|R|) (Drozdek 2002), another way is improv-
ing running time when sequences are far apart (Hunt and Szymanski 1977).

For two strings Q and R, a common subsequence is the sequence of characters
that occurs in both strings, not necessarily in consecutive order. For example, es, ece,
and ee are common subsequences in predecessor and descendant. The longest common
subsequence problem is the task of determining what is the longest subsequence
found in two strings Q and R. A strong connection exists between the longest com-
mon subsequence and edit distance.

It is clear that the length of the longest common subsequence lcs(Q, R) is the
largest number of pairs (i, j) in any alignment in which equal characters Qi and Rj are
aligned. Let us consider such an alignment. Define a new edit distance d2 in which the
cost of insertion and deletion is 1, but the cost of substitution is 2 for unequal charac-
ters and 0 when they are equal. This amounts to the more restricted concept of Leven-
shtein edit distance, which includes only deletion and insertion, because substitution
is, in effect, replaced by deletion followed by an insertion. In this case,

d2(Q, R) = |Q| + |R| – 2lcs(Q, R)

because

d2(Q, R) = #deletions + #insertions + 2 · #substitutions

d2(Q, R) = |Q| – #substitutions – lcs(Q, R) + |R| – #substitutions – lcs(Q, R) +
2 · #substitutions

The longest common subsequence can be found with the following algorithm:

698 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

HuntSzymanski(Q, R)
for i = 0 to |Q|-1

matchlist[i] = list in descending order of positions j for which Qi == Rj;
for i = 1 to |Q|

threshold[k] = |R|+1;
threshold[0] = -1;
for i = 0 to |Q|-1

for each j in matchlist[i]
find position k such that threshold[k] < j ≤ threshold[k+1];
if j < threshold[k+1]

threshold[k+1] = j;
link[k] = new node(i,j,link[k-1]);

k = max{t: threshold[t] < |R|+1};
for (p = link[k]; p ≠ null; p = prev(p)) // print pairs in reverse order;

output pair (i, j) in node p;

The matchlist is a table of lists of positions in descending order and a list match-
list[i] includes all positions j for which Qi = Rj. The lists can be created in O(|R|lg|R| +
|Q|lg|R|) time by sorting in O(|R|lg|R|) time a copy of R while remembering original
positions of its characters, and then for each position i extracting the list of positions
corresponding to character Qi using binary search to locate this list. For example, for
strings Q = rapidity and R = paradox, the lists are as follows:

r: matchlist[0] = (2)
a: matchlist[1] = (3 1)
p: matchlist[2] = (0)
i: matchlist[3] = ()
d: matchlist[4] = (4)
i: matchlist[5] = ()
t: matchlist[6] = ()
y: matchlist[7] = ()

that is, the list matchlist[0] that corresponds to character r in rapidity has one number,
2, which is the position of r in paradox; the list matchlist[1] that corresponds to char-
acter a has two numbers, 3 and 1, which are the positions of a in paradox, and so on.
The lists represent the following table:

p a r a d o x
0 1 2 3 4 5 6

r 0 x
a 1 x x
p 2 x
i 3
d 4 x
i 5
t 6
y 7

in which xs represent matching characters in the two strings.

S e c t i o n 1 3 . 2 A p p r o x i m a t e S t r i n g M a t c h i n g ■ 699

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To find the longest common sequence (marked with bold xs), the table threshold is
used. Positions marked with xs are the positions indicated by the positions k in threshold
and the numbers in this position, which can change during execution of the algorithm.
Numbers in threshold are in ascending order so that the required position k can be found
in lg|R| time with binary search. Denote by r the number of pairs (i, j) for which Qi = Rj.
Because there are r iterations of the inner for loop, one for each number in matchlist, this
phase is executed in O(rlg|R|) time, during which up to r nodes in link can be created.

Here are the changes in threshold, link, and some variables during processing of
strings Q = rapidity and R = paradox:

p a r a d o x i j k threshold link
0 1 2 3 4 5 7 0 1 2 3 4 5 6 7 8

r 0 x 0 2 0 -1 2 8 8 8 8 8 8 8 link[0] = (0,2)
a 1 x 1 3 1 -1 2 3 8 8 8 8 8 8 link[0] = (0,2)

link[1] = (1,3)Q
a 1 x 1 1 0 -1 1 3 8 8 8 8 8 8 link[0] = (1,1)

link[1] = (1,3)S(0,2)
p 2 x 2 0 0 -1 0 3 8 8 8 8 8 8 link[0] = (2,0)

link[1] = (1,3)S(0,2)
i 3 3 -1 0 3 8 8 8 8 8 8
d 4 x 4 4 2 -1 0 3 4 8 8 8 8 8 link[0] = (2,0)

link[1] = (1,3)S(0,2)
link[2] = (4,4)Q

i 5 5 -1 0 3 4 8 8 8 8 8
t 6 6 -1 0 3 4 8 8 8 8 8
y 7 7 -1 0 3 4 8 8 8 8 8

Position 0 of threshold always equals –1. At the end of iteration i, threshold[k + 1] is
the position j for which the length of common subsequence for Q(0 . . . i) and R(0 . . . j)
equals k + 1.

In the first iteration of the outer for loop, a match for the first character in rapid-
ity, r, when i = 0, is retrieved from matchlist[0], which is the position j = 2 of paradox,
and 2 is assigned to threshold[0], which indicates that there is a common subsequence
of length 1 for Q(0 . . . 0) = r and R(0 . . . 2) = par. The subsequences themselves are
stored as a pair of indexes (0,2) on link[0] because list link[k] defines a list of k + 1
pairs (i,j) that record a common subsequence of length k + 1.

In the second iteration of the outer for loop, when i = 0, the inner for loop is
activated twice for the two numbers in matchlist[i = 1] = (3 1). First, number j = 3 is
stored in threshold[k = 1] to indicate that substrings Q(0 . . . 1) = ra and R(0 . . . 3) =
para have a common subsequence of length k + 1 = 2. In the second iteration of the
inner for loop, number j = 1 overwrites 2 in threshold[0] to indicate that substrings
Q(0 . . . 1) = ra and R(0 . . . 1) = pa have a common subsequence of length 1. The sub-
sequences are recorded in link. Note that link[0] is updated but the second node on
link[1] remains the same. This node is now accessible only from the first node in list
link[1], whereas before the update of link[0], it was also accessible from link[0].

In its last phase, the algorithm prints the (i, j) pairs in reverse order:

[4 4] [1 3] [0 2]

700 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The algorithm runs in O((|Q| + |R| + r)lg|R|) time and O(r + |Q| + |R|) space. The
algorithm is particularly efficient when sequences are far apart; that is, when most
positions of one string match only a few positions in the other string, in which case r
is small in comparison with the length of the two strings so that the algorithm runs in
O((|Q| + |R|)lg|R|) time. However, in the worst case, for strings aaa. . . . and aaa. . . . , r
= |Q||R| and the algorithm runs in unpromising O(|Q||R|lg|R|) time.

It is worth noticing that the Hunt-Szymanski algorithm is implemented as the
diff command in UNIX.

13.2.2 String Matching with k Errors
Our task is now to determine all substrings of text T for which the Levenshtein dis-
tance does not exceed k; that is, we would like to perform string matching with at
most k errors (or k differences).

In Section 13.1.5, we discussed the shiftAnd() algorithm for exact matching.
The algorithm relied on bitwise operations, and Wu and Manber (1992) devised a
generalization of shiftAnd() that can be used for approximate matching. The algo-
rithm is implemented in UNIX as agrep, the approximate grep command.

Consider the case when the only edit operation is insertion and k = 2. For each
prefix of P and a substring ending at character Ti , there may be now an exact match, a
match with one insertion, and a match with two insertions. To handle all three possi-
bilities, three tables are used—state0 = state as used in shiftAnd(), state1, and state2,
where statek indicates all matches with up to k insertions. A value in statek is determined
from the corresponding value in statek–1 and the characters Pj and Ti being compared.

If there is an exact match between P(0 . . . j – 1) and T(i – j . . . i – 1) and Pj = Ti ,
then the exact match continues for P(0 . . . j) and T(i – j . . . i), and this fact has to be re-
flected in all three state tables, state0, state1, and state2. If there is an exact match be-
tween P(0 . . . j – 1) and T(i – j . . . i – 1) and Pj ≠ Ti , then an approximate match with
one insertion of Ti is marked in state1 and state2. In effect, P0P1 . . . Pj–1– (note the
dash) is approximately matched with Ti–jTi–j+1 . . . Ti . Finally, if there is an approxi-
mate match with one insertion between P(0 . . . j – 1) and T(i – j . . . i – 1) and Pj ≠ Ti ,
then an approximate match with two insertions, of Ti – j+s for some 0 ≤ s ≤ j – 1, and of
Ti , is marked in state2. This means that P0P1. . . Ps–Ps+1. . . Pj–1– (note two dashes) is
approximately matched with Ti–jTi–j+1. . . Ti. However, if Pj = Ti , then the one-inser-
tion match continues, which has to be reflected in both state1 and state2. Therefore, all
the matches indicated in statee are also found in states for e < s ≤ k ; that is, the amount
of information grows with the increase of subscript e in statee because criteria for
matching become more and more relaxed. Consider pattern P = abc and text T =
abaccabc. The situation in table state0 changes as follows:

i = 0 1 2 3 4 5 6 7
T = abaccabc abaccabc abaccabc abaccabc abaccabc abaccabc abaccabc abaccabc

a 0 a a a
b 1 ab ab
c 2 abc

S e c t i o n 1 3 . 2 A p p r o x i m a t e S t r i n g M a t c h i n g ■ 701

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

For i = 0, substrings P(0 . . . 0) and T(0 . . . 0) are matched, for i = 1, a match is
continued for substrings P(0 . . . 1) and T(0 . . . 1), but for i = 2, P2 ≠ T2, so the match-
ing for P(0 . . . 1) and T(0 . . . 1) has to be discontinued. But there is a match for P(0 . . .
0) and T(2 . . . 2). However, the latter match is also discontinued for i = 3. An exact
match is found for i = 7.

Table state1 is richer with information:

i = 0 1 2 3 4 5 6 7
T = abaccabc abaccabc abaccabc abaccabc abaccabc abaccabc abaccabc abaccabc

a 0 a a- a a- a a-
b 1 ab ab- ab ab-
c 2 ab-c abc

For i = 0, as before, substrings P(0 . . . 0) and T(0 . . . 0) are matched; for i = 1, a
match is continued for substrings P(0 . . . 1) and T(0 . . . 1), but also a match with one
insertion, for P(0 . . . 0)– (one dash) and T(0 . . . 1). This approximate match cannot be
continued for i = 2, when P2 ≠ T2, but the approximate match P(0 . . . 1)– (one dash)
and T(0 . . . 2) can, which leads to a successful approximate match of the entire pattern
with substring T(0 . . . 3) in step i = 3. Note that the substrings in state0 appear in
state1, which leads to reflecting the exact match between P and T(5 . . . 7) also in state1.

Finally, table state2:

i = 0 1 2 3 4 5 6 7
T = abaccabc abaccabc abaccabc abaccabc abaccabc abaccabc abaccabc abaccabc

a 0 a a- a a- a-- a a- a--
a--

b 1 ab ab- ab-- ab ab-
c 2 ab-c ab--c abc

Substrings are matched and extended similarly to entries in state0 and state1. Note
that for i = 2, there are two matches for P(0 . . . 0): with T(0 . . . 2), with two insertions,
and an exact match with T(2 . . . 2). For i = 4, there is a match with two insertions be-
tween P and T(0 . . . 4), a match that did not appear in the previous tables.

In the tables used thus far, only exact matches and matches with insertions were
analyzed. The situation is similar for two other edit operations, deletion and substitu-
tion. Moreover, we need to consider a general case for k errors in a match.

All the possibilities for matching P(0 . . . j) with a substring of T that ends at posi-
tion i with e ≤ k errors can be summarized as follows.

1. Match. Pj = Ti , and there is a match with e errors between P(0 . . . j – 1) and a sub-
string ending at Tj–1.

2. Substitution. There is a match with e – 1 errors between P(0 . . . j – 1) and a substring
ending at Tj–1.

3. Insertion. There is a match with e – 1 errors between P(0 . . . j) and a substring ending
at Tj–1.

4. Deletion. There is a match with e – 1 errors between P(0 . . . j – 1) and a substring
ending at Tj .

702 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A statee can be derived from a preceding statee–1 in a remarkably simple manner
by generalizing the formula used in implementation of shiftAnd():

statee,i+1 = 11 . . . 1100 . . . 00 with e 1s.

statee,i+1 = (shiftBits(statee,i) AND charactersInP[Ti]) OR shiftBits(statee–1,i) OR
shiftBits(statee–1,i+1) OR statee–1,i

where AND and OR are bitwise operations. AND is used to shift information out; OR
is used to accumulate it. With bitwise-or, information included in the preceding state
is also included in the current state. Here is an implementation of the algorithm:

WuManber(pattern P, text T, int k)
matchBit = 1;
for i = 1 to |P|-1

matchBit <<= 1;
initialize charactersInP;
oldState[0] = 0;
for e = 1 to k

oldState[e] = (oldState[e-1] << 1) | 1;
for i = 0 to |T|-1

state[0] = ((state[0] << 1) | 1) & charactersInP[Ti];
for e = 1 to k

state[e] = ((oldState[e] << 1) | 1) & charactersInP[Ti] |
// insertion

((oldState[e-1] << 1) | 1) | // substitution/match
((state[e-1] << 1) | 1) | // deletion
oldState[e-1]; // match

for e = 0 to k
oldState[e] = state[e];

if matchBit & state[k] Z 0
output "a match ending at " i;

Creating charactersInP takes O(|P||A|) time; the state arrays require k space
and k initialization steps. The matching process takes O(|T |k) steps.

The algorithm can be accelerated using the partition approach in the case when k
is small in comparison to |P|. In this case, the pattern P is divided into k + 1 or k + 2
blocks, each of the first k + 1 blocks of size r = |P|/(k + 1). If there is a match with up to
k errors for P in T, then at least one of the first k + 1 blocks is matched without any
error. Therefore, if one of the blocks is matched exactly, then an approximate match
can be found in the neighborhood of size |P| of the exact match.

To locate exact matches of the first k + 1 blocks, an algorithm can be used that
searches for all the blocks at the same time. To that end, the Aho-Corasick algorithm
can be used (Baeza-Yates and Perleberg, 1992), but Wu and Manber propose a small
modification of algorithm shiftAnd(). Consider the following example. For P =
abcdefghi and k = 3, the pattern is divided into five blocks ab, cd, ef, gh, and i, out of
which only the first four are considered. The four blocks are interleaved to form a new
pattern acegbdfh to which WuManber() is applied with one difference: Instead of
shifting by one in each iteration of the main loop, state is shifted by four, in which step

S e c t i o n 1 3 . 2 A p p r o x i m a t e S t r i n g M a t c h i n g ■ 703

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

four 1s are also shifted in. A match is detected if any of the last four bits is 1. Consider
text T = aibcdiefgabb Modified shiftAnd() renders the following changes of bits
in state:

1 2 3 4 5 6 7 8 9 10 charactersInP
a i b c d i e f g a b b a b c d e f g h

1 1 1 1 1 1 1 1 1 1 1 1 1
a 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
c 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
e 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
g 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
d 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
f 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

In step 4, when T3 = c, P1 is also c, which is reflected in setting the bit in row 2
(the third row) to 1. Afterwards, state is shifted by four and the result is matched with
charactersInP[T4 = ‘d’] using bitwise-and, which gives a 1 in row 6, and row 6 is one of
the last four rows. This signifies a detection of a block in T, which happens to be the
block cd, and consequently to a search for an approximate match in its neighborhood.
The latter search matches P with T(0 . . . 9) = aibcdiefga. Then, we return to finding
another occurrence of a block in T, which occurs at T7 , for block ef and then at T7 , for
block ab.

13.3 CASE STUDY: LONGEST COMMON SUBSTRING

Finding the longest common substring of two strings Q and R is a classical problem in
string processing. It was once conjectured that it is impossible to solve the problem in
linear time (Knuth, Morris, and Pratt, 1977); however, using a suffix tree makes it pos-
sible. Therefore, before discussing the problem, an implementation of the Ukkonen
algorithm to construct a suffix tree from Section 13.1.8 is introduced.

A node in the suffix tree is implemented as an object that includes an array of ref-
erences to descendants; the array is indexed with letters of the alphabet from which a
text T being processed is built. Also, the node includes arrays for right and left indexes
of letters in T to indicate the label of the edge leading to a descendant. For example,
for T = abaabaac and node 1 in Figure 13.7i, left['a'-offset] = right['a'-
offset] = 3, which amounts to the label a; left['b'-offset] = 1, right['b'-
offset] = 3, which identifies the label baa; and finally, left['c'-offset] =
right['c'-offset] = 7, which corresponds to the label c. Also, for node 1,
descendants['a'-offset] = node 4, descendants['b'-offset] = node 2,
and descendants['c'-offset] = null. Using edge labels and nodes from which
the edges originate, each edge can be uniquely identified, which is important in a suf-
fix tree, where some nodes may not be explicit. To that end, the notation node(explicit
node, edge label) = node(explicit node, right, left) is used. The notation is called a
canonical reference, and the explicit node used in it, when it is closest to the implicit
node for which the reference is used, is called a canonical node. For example, in Figure

704 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 3 . 3 C a s e S t u d y : L o n g e s t C o m m o n S u b s t r i n g ■ 705

FIGURE 13.7 (a–h) Creating an Ukkonen suffix tree for the string abaabaac; (i) a data structure used
for implementation of the Ukkonen tree (h).

c

c c

c

c

a

a

a

baaba

baaba

abaa

a

baabaa

baabaa

abaa

a

baab

baab

ab

a

baa

baa

a

ab a aba baa

baac baac

baa
baac

baa

(a) (b) (d) (e)(c)

(h)(g)(f)

00

0 0

0

000

1 1

11 1

24

3

0

0
0

1

1

1

3

3
3 3

3

7
7

7
7

7
77

7
7

7
77

7

–1

–1

–1 –1
–1

–1

–1
–1 –1

–1
–1

//

/

/ / / / / / / /

/ / / //

2

4

4

4 4

(i)

id
left

right
descendants

suffixLink

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13.7h, node(node 1, ba) = node(node 1, 1, 2) identifies an implicit node that falls be-
tween ba and a on the edge between node 1 and node 2; node(node 1, null string) =
node(node1, 2, 1) identifies node 1 itself.

As discussed in Section 13.1.8, only the nodes of the equivalent of the trie’s
boundary path have to be updated. The first part of the path includes only leaves;
however, there is no need to process the leaves on the boundary path because after
processing of a text T, all the leaves are connected to their parents with edges that are
suffixes of T, so it can be assumed at the outset that each edge is labeled with such a
suffix. Therefore, the edges leading to the leaves do not have to be updated, and thus
the first for loop in UkkonenSuffixTree(), presented in Section 13.1.8, can be
eliminated. Moreover, as a space saving device, the leaves can also be eliminated by re-
taining only the edges leading to them. In this way, the worst case for a trie for T with
all different letters when 1 + (1 + 2 + . . . + |T |) nodes are required, turns into a best
case tree with one node only, the root.

The second part of the boundary path begins with the first nonleaf, the active
point, and ends right before the endpoint. Processing of the suffix tree concentrates
on these nodes.

To create a new edge for a node, the node, if it is implicit, has to be made ex-
plicit first. To make it explicit, an edge from an explicit parent of the node to the node
itself has to be split. To split it, the parent, a canonical node, has to be found first. This
is the role of the method findCanonicalNode() that for an implicitNode =
node(explicitNode, left, right) determines whether explicitNode is canonical. If it is, the
search is finished; if not, the canonical node is found. For example, for the tree in Fig-
ure 13.7g and q = node(node 0, 5, 6) = node(node 0, aa), the canonical node is node 1,
and q becomes explicit as node 4 and a descendant of node 1. After an implicit node r
is made explicit, the edges between r and its parent and between r and its descendant
are updated; afterwards, whether it was explicit or implicit, the node acquires a new
Ti-edge.

The task of modifying the tree by processing nodes from the active point to the
node before the endpoint is performed by the method update(). The task of deter-
mining whether the current node is an endpoint is performed by testAndSplit().

The processing of a letter Ti begins from the active point. The point is easily de-
termined because it is the endpoint reached after processing letter Ti–1 is finished. To
see this, consider processing letter Ti–1 in a trie. In the trie’s boundary path, each node
acquires a new leaf reachable from its parent through a Ti–1-edge. Processing ends at
the endpoint that already has a Ti–1-edge. Therefore, all the added leaves are linked in
a new boundary path that includes the endpoint. This endpoint is the first nonleaf in
the path, and thus it becomes the active point before processing of the letter Ti begins,
and the processing starts from this active point.

By default, each node carries three arrays of 128 cells each, so each text letter
would be an index for the arrays. If a range of characters is known, the first and the
last characters of the range can be given as arguments to a constructor, whereby the
variable offset is set to be the first character, and for each text character, the index is
found by subtracting the offset.

The code for the suffix tree, which closely follows pseudocode given by Ukkonen
(1995), is given in Figure 13.8.

706 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 3 . 3 C a s e S t u d y : L o n g e s t C o m m o n S u b s t r i n g ■ 707

FIGURE 13.8 Listing of the program to find longest common substring.

//********************** UkkonenSuffixTree.java ********************

import java.io.*;

class SuffixTreeNode {

public SuffixTreeNode[] descendants;

public int[] left, right;

public SuffixTreeNode suffixLink = null;

public static int cnt = 0; // for printing only;

public int id = 1; // for printing only;

public SuffixTreeNode() {

this(128);

}

public SuffixTreeNode(int sz) {

id = cnt++;

descendants = new SuffixTreeNode[sz];

left = new int[sz];

right = new int[sz];

for (int i = 0; i < sz; i++)

left[i] = –1;

}

}

public class UkkonenSuffixTree {

protected SuffixTreeNode root;

protected int size, offset;

protected String T;

private int Lt = 1;

private boolean endPoint;

public UkkonenSuffixTree() {

this(0,127);

}

public UkkonenSuffixTree(int from, int to) {

size = to – from + 1;

offset = from;

root = new SuffixTreeNode(size);

root.suffixLink = root;

}

public void printTree(int pos) {

System.out.println();

printTree(root,0,0,0,pos);

}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

708 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

FIGURE 13.8 (continued)

private void printTree(SuffixTreeNode p, int lvl, int lt, int rt, int pos) {

for (int i = 1; i <= lvl; i++)

System.out.print(" ");

if (p != null) { // if a nonleaf;

if (p == root)

System.out.println(p.id);

else if (p.suffixLink != null) // to print in the middle of

System.out.println(T.substring(lt,rt+1) // update;

+ " " + p.id + " " + p.suffixLink.id

+ " [" + lt + " " + rt + "]");

else System.out.println(T.substring(lt,pos+1) + " " + p.id);

for (char i = 0; i < size; i++)

if (p.left[i] != -1) // if a tree node;

printTree(p.descendants[i],lvl+1,p.left[i],p.right[i],pos);

}

else System.out.println(T.substring(lt,pos+1) + " [" + lt + " " + rt + "]");

}

SuffixTreeNode testAndSplit(SuffixTreeNode p, int i) {

int Rt = i-1;

if (Lt <= Rt) {

int pos = T.charAt(Lt)-offset;

SuffixTreeNode pp = p.descendants[pos];

int lt = p.left[pos];

int rt = p.right[pos];

if (T.charAt(i) == T.charAt(lt+Rt-Lt+1)) { // if T(lt..rt) is

endPoint = true; // and extension of

return p; // T(Lt..i);

}

else{// insert a new node r between s and ss by splitting

// edge(p,pp) = T(lt..rt) into

// edge(p,r) = T(lt..lt+Rt-Lt) and

// edge(r,pp) = T(lt+Rt-Lt+1..rt);

pos = T.charAt(lt)-offset;

SuffixTreeNode r = p.descendants[pos] = new SuffixTreeNode(size);

p.right[pos] = lt+Rt-Lt;

pos = T.charAt(lt+Rt-Lt+1)-offset;

r.descendants[pos] = pp;

r.left [pos] = lt+Rt-Lt+1;

r.right[pos] = rt;

endPoint = false;

return r;

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 3 . 3 C a s e S t u d y : L o n g e s t C o m m o n S u b s t r i n g ■ 709

FIGURE 13.8 (continued)

else if (p.left[T.charAt(i)-offset] == -1)

endPoint = false;

else endPoint = true;

return p;

}

private SuffixTreeNode findCanonicalNode(SuffixTreeNode p, int Rt) {

if (Rt >= Lt) {

int pos = T.charAt(Lt)-offset;

SuffixTreeNode pp = p.descendants[pos];

int lt = p.left[pos];

int rt = p.right[pos];

while (rt - lt <= Rt - Lt) {

Lt = Lt + rt - lt + 1;

p = pp;

if (Lt <= Rt) {

pos = T.charAt(Lt)-offset;

pp = p.descendants[pos];

lt = p.left[pos];

rt = p.right[pos];

if (p == root)

pp = root;

}

}

}

return p;

}

private SuffixTreeNode update(SuffixTreeNode p, int i) {

SuffixTreeNode prev = null, r = testAndSplit(p,i);

while (!endPoint) {

int pos = T.charAt(i)-offset;

r.left [pos] = i; // add a T(i)-edge to r;

r.right[pos] = T.length()-1;

if (prev != null)

prev.suffixLink = r;

prev = r;

if (p == root)

Lt++;

else p = p.suffixLink;

p = findCanonicalNode(p,i-1);

r = testAndSplit(p,i); // check if not the endpoint;

}

Continues

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

710 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

FIGURE 13.8 (continued)

if (prev != null)

prev.suffixLink = p;

return p;

}

public void run(String text) {

T = text;

final int n = T.length(), pos = T.charAt(0)-offset;

SuffixTreeNode canonicalNodeAP = root, canonicalNodeEP;

root.left [pos] = 0;

root.right[pos] = n-1;

for (int i = 1; i < n; i++) {

canonicalNodeEP = update(canonicalNodeAP,i);

// and thus, endpoint = node(canonicalNodeEP,Lt,i);

canonicalNodeAP = findCanonicalNode(canonicalNodeEP,i);

// and so, active point = node(canonicalNodeAP,Lt,i);

printTree(i);

}

}

}

//******************** LongestCommonSubstring.java ******************

public class LongestCommonSubstring extends UkkonenSuffixTree {

public LongestCommonSubstring(int from, int to) {

super(from,to+2);

}

private int s1length, position, length;

private void findLongest(String s1, String s2) {

boolean[] dummy = {false, false};

position = length = 0;

s1length = s1.length();

traverseTree(root,0,0,dummy);

if (length == 0)

System.out.println("Strings \"" + s1 + "\" and \"" + s2

+ "\" have no common substring");

else System.out.println("A longest common substring for \""

+ s1 + "\" and \"" + s2 + "\" is " + "\""

+ T.substring(position-length,position) + "\" of length "

+ length);

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

With the suffix tree, a solution of the longest common substring for strings Q
and R is now rather simple. First we need to create a suffix tree for the string T =
Q$R# where $ and # represent characters not used in the two strings. In this tree, no
suffix ends in an internal (implicit or explicit) node. A leaf corresponding to Q is a
leaf that is connected to its parent with an edge whose label includes $ (and #); a leaf

S e c t i o n 1 3 . 3 C a s e S t u d y : L o n g e s t C o m m o n S u b s t r i n g ■ 711

FIGURE 13.8 (continued)

private void traverseTree(SuffixTreeNode p, int lt, int len, boolean[] whichEdges) {

boolean[] edges = {false, false};

for (char i = 0; i < size; i++)

if (p.left[i] != -1) {

if (p.descendants[i] == null) // if it is an edge to

if (p.left[i] <= s1length)// a leaf corresponding

whichEdges[0] = edges[0] = true; // to s1

else whichEdges[1] = edges[1] = true; // to s2

else {

traverseTree(p.descendants[i],p.left[i],

len+(p.right[i]-p.left[i]+1),edges);

if (edges[0])

whichEdges[0] = true;

if (edges[1])

whichEdges[1] = true;

}

if (edges[0] && edges[1] && len > length) {

position = p.left[i];

length = len;

}

}

}

public void run(String s1, String s2) {

run(s1+(char)(size+offset-2)+s2+(char)(size+offset-1));

findLongest(s1,s2);

}

static public void main(String[] a) {

String s1 = "ababca";

String s2 = "cabaca";

if (a.length == 2) {

s1 = a[0];

s2 = a[1];

}

(new LongestCommonSubstring('a','z').run(s1,s2));

}

}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

corresponding to R is connected to its parent with an edge whose label includes #
(but not $). Now the tree is traversed to find a node that meets two conditions. The
node is the root of a subtree with edge labels corresponding to both strings. More-
over, the node should correspond to the longest string obtained by concatenating la-
bels from the root to this node; this concatenated string is the sought longest
substring for Q and R.

In the implementation provided in Figure 13.8, the symbols $ and # are the char-
acters that directly follow the range specified by the user, and are automatically at-
tached to the two strings. For example, if the range is from a to z, and the strings are
abccab and daababca, then the suffix tree is built for the string T = abccab{daababca|,
because in the ASCII character set, characters ‘{’ and ‘|’ directly follow ‘z’.

To learn during a tree traversal whether a particular subtree contains edges corre-
sponding to both strings (only edges that lead to leaves can provide this information),
a two-cell Boolean array is associated with each node. When an edge is detected that
leads to a leaf (leaves are implicit nodes), then the left index of its label is tested. If the
index is not greater than the length of Q, then the leaf corresponds to a suffix of Q;
otherwise, to a suffix of R. The program maintains the maximum length of the com-
mon substring, and when it detects a node with a longer common substring and with
suffixes of both strings in its subtree, the maximum length is updated, as is the posi-
tion at which the substring ends.

It is clear that because the suffix tree can be created in linear time and because
tree traversal can also be done in linear time, the problem of finding the longest com-
mon substrings for strings Q and R is solved in linear time O(|Q| + |R|).

712 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 3 . 4 E x e r c i s e s ■ 713

13.4 EXERCISES

1. Apply the Knuth-Morris-Pratt algorithm with next, and then with nextS to P =
bacbaaa and T = bacbacabcbacbbbacabacbabcbbba.

2. Determine all three positions i, j, k, such that for the string abcabdabcabdfabcabdab-
cabd findNextS() executes first nextS[i] = nextS[j] and then nextS[j] = nextS[k].

3. As mentioned in Section 13.3, P = am–1b is an example of the worst case for the partial
suffix phase for computeDelta2ByBruteForce(). What exactly is the total num-
ber of comparisons for this phase?

4. Consider the search for a pattern in a text when the pattern is not in the text. What is
the smallest number of character comparisons in this case executed by

a. Knuth-Morris-Pratt?

b. Boyer-Moore?

5. An example of the worst case for bruteForceStringMatching() are strings
P = am–1b and T = an; for BoyerMooreSimple() it is strings P = bam–1 and T = an.
Explain this symmetry.

6. As it stands,BoyerMooreSimple() shifts P by one position if a mismatched text char-
acter occurs also in P to the right of the mismatched pattern characters, for example,

abbaabac...
1 aabbcbac
2 aabbcbac

where the mismatched text character a occurs also in P to the right of the mismatched
pattern character c. However, it is clear that it would be more efficient to align the
mismatched text character with the same character in P that is closest to the left of the
mismatched pattern character, as in

abbaabac...
1 aabbcbac
2 aabbcbac

where mismatched text character a is aligned with an a to the right of the mismatched
pattern character c and closest to c. Generalize this rule and propose an implementa-
tion of delta1 for the new rule.

7. Horspool gives a version of the Boyer-Moore algorithm that uses only one table,
delta12, which is just like delta1 except that for the last character of P, the entry in
delta12 is |P|, not a value < |P| as in delta1:

BoyerMooreHorspool(pattern P, text T)
initialize all cells of delta12 to |P|;
for j = 0 to |P|-2 // |P|-2, not |P|–1 as for delta1;

delta12[Pj] = |P| - j - 1;
i = |P| - 1;
while i < |T|

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

714 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

j = |T| - 1;
if Ti == P|P|-1

if T(i-|P|+1 . . . i) is equal to P
return match at i+|P|+1;

i = i + delta12[Ti];
return no match;

Apply BoyerMooreHorspool() and BoyerMooreSimple() to T = abababab-
bababba and P = aacaab.

8. Implement the function period() to be used by the BoyerMooreGalil() algorithm.

9. BoyerMooreGalil()may be less efficient than BoyerMoore() because for patterns
with no periods it checks the condition in an if statement in each iteration of the outer
while loop. Change the algorithm so that a driver function preprocesses the pattern to
check for a period, and if a period is found, it calls BoyerMoore(); otherwise, it calls
BoyerMooreGalil()without the if statement.

10. Adopt quickSearch() so that it performs matching right to left.

11. Show an example for the case when BoyerMooreSimple() provides better shift
than Sunday’s quickSearch().

12. The shiftAnd() algorithm performs four bitwise operations in each iteration of the
last for loop. The number can be reduced to three if the roles of bits are reversed, as
it is done originally by Baeza-Yates and Gonnet (1992); for example, in charactersInP,
0 represents the positions at which a character occurs in the pattern. With this bit role
reversal, the assignment

state = ((state << 1) | 1) & charactersInP[T[i]];

can be changed to

state = (state << 1) | charactersInP[T[i]];

Write an algorithm shiftOr() by making all the necessary changes in shiftAnd()
including the indicated modifications.

13. What is the maximum number of keywords in a set output(state) for some state?

14. Draw Ukkonen suffix tries for

a. aaaa

b. aabb

c. abba

d. abcd

e. baaa

f. abaa

g. aaba

h. aaab

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n 1 3 . 5 P r o g r a m m i n g A s s i g n m e n t s ■ 715

15. How can the number of occurrences of pattern P in text T be determined using a
suffix tree for T ?

16. How can a suffix tree be used to determine all substrings of Q that are not substrings
of R?

17. The problem of string matching with k differences can be solved by simple modifica-
tion of the Wagner-Fischer algorithm. This is accomplished by having the entries in
the edit distance table represent the minimum distance between prefix Q(0 . . . i) and
any suffix of R(0 . . . j) (Sellers, 1980). This is done by defining the entries in the ma-
trix with the same recurrence relation as D(i,j) = min(D(i – 1,j) + 1, D(i,j – 1) + 1,
D(i – 1,j – 1) + c(i,j)), the same boundary condition for column 0: D(i,0) = i, but a
different condition for row 0: D(0,j) = 0 to indicate that an occurrence can start at any
position of R. In the resulting edit table, any number in the last row that is not greater
than k indicates a position in R of the end of a substring of R that has at most k differ-
ences with Q. Build such an edit table for strings Q = abcabb and R = acbdcbbcdd.

13.5 PROGRAMMING ASSIGNMENTS

1. Write a program that implements and tests the brute force algorithm to create a suffix
tree.

2. Extend the program from the case study so that it can find all substrings of length
greater than k common to both strings.

3. Write a program that uses a suffix tree to find the longest repeated substring in a
string s. After creating the tree, perform a tree traversal and find a node that has only
leaf descendants and a longest substring determined by the path from the root to this
node. Consider extending your program in one of three ways:

a. Find only nonoverlapping substrings.

b. Find the longest substring repeated at least k times.

c. Find all repeated substrings longer than m characters.

4. One constructor of the UkkonenSuffixTree class allows for using a range of char-
acters to save space for the three arrays used in each node. Sometimes, however, only
a few nonconsecutive characters are used in the text, for example, letters A, C, G, and
T in DNA sequences. In this situation, the constructor UkkonenSuffixTree('A','T')
can be used, which would create three arrays of 'T'-'A' + 1 = 20 cells each, although
only four cells would be used in each array. Modify the program so that it accepts a set
of characters to be used—as with the string “ACGT” in our example—and operates
on arrays of the size equal to the number of characters used in the set.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

716 ■ C h a p t e r 1 3 S t r i n g M a t c h i n g

BIBLIOGRAPHY

Aho, Alfred V., and Corasick, Margaret J., “Efficient String Matching: An Aid to Bibliographic
Search,” Communications of the ACM 18 (1975), 333–340.

Baeza-Yates, Ricardo, and Gonnet, Gaston H., “A New Approach to Text Searching,” Communi-
cations of the ACM 35 (1992), No. 10, 74–82.

Baeza-Yates, Ricardo A., and Perleberg, Chris H., “Fast and Practical Approximate String
Matching,” in A. Apostolico, M. Crochemore, Z. Galil, U. Manber (eds.), Combinatorial Pattern
Matching, Berlin: Springer (1992), 185–192.

Barth, Gerhard, “Relating the Average-Case Costs of the Brute-Force and Knuth-Morris-Pratt
Matching Algorithm,” in A. Apostolico and Z. Galil (eds.), Combinatorial Algorithms on Words.
Berlin: Springer (1985), 45–58.

Boyer, Robert S., and Moore, J. Strother, “A Fast Searching Algorithm,” Communications of the
ACM 20 (1977), 762–772.

Cole, Richard, “Right Bounds on the Complexity of the Boyer-Moore String Matching Algo-
rithm,” SIAM Journal on Computing 23 (1994), 1075–1091.

Drozdek, Adam, “Hirschberg’s Algorithm for Approximate Matching,” Computer Science 4
(2002), 91–100.

Galil, Zvi, “On Improving the Worst Case Running Time of the Boyer-Moore String Matching,”
Communications of the ACM 22 (1979), 505–508.

Guibas, Leo J., and Odlyzko, Andrew M., “A New Proof of the Linearity of the Boyer-Moore
String Searching Algorithm,” SIAM Journal on Computing 9 (1980), 672–682.

Hancart, Christophe, “Un Analyse en Moyenne de l’Algorithm de Morris et Pratt et ses Raffine-
ments,” in D. Krob (ed.), Actes des deuxièmes journées franco-belges, Rouen: Université de Rouen
(1992), 99–110.

Horspool, R. Nigel, “Practical Fast Searching in Strings,” Software—Practice and Experience 10
(1980), 501–506.

Hunt, James W., and Szymanski, Thomas G., “A Fast Algorithm for Computing Longest Com-
mon Subsequences,” Communications of the ACM 20 (1977), 350–353.

Knuth, Donald E., Morris, James H., and Pratt, Vaughan R., “Fast Pattern Matching in Strings,”
SIAM Journal on Computing 6 (1977), 323–350.

Levenshtein, V. I., “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals,”
Cybernetics and Control Theory 10 (1966), 707–710, translation of a paper from Doklady
Akademii Nauk SSSR 163 (1965), 845–848.

Manber, Udi, and Myers, Gene, “Suffix Arrays: A New Method for On-line String Searches,”
SIAM Journal on Computing 22 (1993), 935–948.

Pirklbauer, Klaus, “A Study of Pattern-Matching Algorithms,” Structured Programming 13
(1992), 89–98.

Sellers, Peter H., “The Theory and Computation of Evolutionary Distances: Pattern Recogni-
tion,” Journal of Algorithms 1 (1980), 359–373.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

B i b l i o g r a p h y ■ 717

Smith, P. D., “Experiments with a Very Fast Substring Search Algorithm,” Software—Practice
and Experience 21 (1991), 1065–1074.

Sunday, Daniel M., “A Very Fast Substring Searching Algorithm,” Communications of the ACM
33 (1990), 132–142.

Thompson, Ken, “Regular Expression Search Algorithm,” Communications of the ACM 6
(1968), 419–422.

Ukkonen, Esko, “On-line Construction of Suffix Trees,” Algoritmica 14 (1995), 249–260.

Ukkonen, Esko, and Wood, Derick, “Approximate String Matching with Suffix Automata,”
Algoritmica 10 (1993), 353–364.

Wagner, Richard A., and Fischer, M. J., “The String-to-String Correction Problem,” Journal of
the ACM 21 (1974), 168–173.

Wu, Sun, and Manber, Udi, “Fast Text Searching Allowing Errors,” Communications of the ACM
35 (1992), No. 10, 83–91.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

718

Computing
Big-OA

A.1 HARMONIC SERIES

In some computations in this book, the convention Hn is used for harmonic numbers.
The harmonic numbers Hn are defined as the sums of the harmonic series, a series of
the form ∑n

i=1 �
1
i
�. This is a very important series for the analysis of searching and sort-

ing algorithms. It is proved that

Hn = ln n + � + �
2
1
n
� – �

12
1
n2� + �

120
1
n4� – 	

where n ≥ 1, 0 < 	 < �
256

1
n6�, and Euler’s constant � ≈ 0.5772. This approximation, how-

ever, is very unwieldy and, in the context of our analyses, not necessary in this form.
Hn’s largest term is almost always ln n, the only increasing term in Hn. Thus, Hn can be
referred to as O(ln n).

A.2 APPROXIMATION OF THE FUNCTION LG(N!)

The roughest approximation of lg(n!) can be obtained by observing that each number
in the product n! = 1 � 2 � · · · � (n – 1) � n is less than or equal to n. Thus, n! ≤ nn (only
for n = 1, n = nn), which implies that lg(n!) < lg(nn) = n lg n—that is, n lg n is an upper
bound of lg(n!)—and that lg(n!) is O(n lg n).

Let us also find a lower bound for lg(n!). If the elements of the product n! are
grouped appropriately, as in

Pn! = (1 · n)(2 · (n – 1))(3 · (n – 2)) · · · (i · (n – i + 1)) . . . , for 1 ≤ i ≤ �
n
2

�

then it can be noted that there are �
n
2

� such terms and n! = Pn! for even ns or �n+
2

1
� terms

and n! = Pn!�
n+

2
1

� for odd ns. We claim that each term of Pn! is not less than n, or

1 ≤ i ≤ �
n
2

� ⇒ i(n – i + 1) ≥ n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In fact, this holds because

�
n
2

� ≥ i = �
i(

i
i
–
–

1
1)

� ⇒ i(n – 2i + 2) ≥ n

and, as can easily be checked,

i ≥ 1 ⇒ (n – 2i + 2) ≤ (n – i + 1)

We have shown that n! = Pn! ≥ n
n
2
�, which means that lg(n!) ≥ �

n
2

� lg n. This assumes
that n is even. If n is odd, it has to be raised to the power of �

n+
2

1
�, which introduces no

substantial change.
The number lg(n!) has been estimated using the lower and upper bounds of this

function, and the result is �
n
2

� lg n ≤ lg(n!) ≤ n lg n. To approximate lg(n!), lower and
upper bounds have been used that both grow at the rate of n lg n. This implies that
lg(n!) grows at the same rate as n lg n or that lg(n!) is not only O(n lg n), but also �(n
lg n). In other words, any sorting algorithm using comparisons on an array of size n
must make at least O(n lg n) comparisons in the worst case. Thus, the function n lg n
approximates the optimal number of comparisons in the worst case.

However, this result seems unsatisfactory because it refers only to the worst case,
and such a case occurs only occasionally. Most of the time, average cases with random
orderings of data occur. Is the number of comparisons really better in such cases, and
is it a reasonable assumption that the number of comparisons in the average case can
be better than O(n lg n)? Unfortunately, this conjecture has to be rejected, and the fol-
lowing computations prove it false.

Our conjecture is that, in any binary tree with m leaves and two children for each
nonterminal node, the average number of arcs leading from the root to a leaf is
greater than or equal to lg m.

For m = 2, lg m = 1, if there is just a root with two leaves, then there is only one arc
to every one of them. Assume that the proposition holds for a certain m ≥ 2 and that

Avem = ≥ lg m

where each pi is a path (the number of arcs) from the root to node i. Now consider a
randomly chosen leaf with two children about to be attached. This leaf converted to
a nonterminal node has an index m (this index is chosen to simplify the notation) and
a path from the root to the node m is pm. After adding two new leaves, the total num-
ber of leaves is incremented by one and the path for both these appended leaves is
pm+1 = pm + 1. Is it now true that

Avem+1 = ≥ lg(m + 1)

From the definition of Avem and Avem+1 and from the fact that pm = Avem (because leaf
m was chosen randomly),

(m + 1)Avem+1 = mAvem + pm + 2 = (m + 1)Avem + 2

Is it now true that

(m + 1)Avem+1 ≥ (m + 1) lg(m + 1)

p1 + · · · + pm–1 + 2pm + 2
m + 1

p1 + · · · + pm
m

S e c t i o n A . 2 A p p r o x i m a t i o n o f t h e F u n c t i o n l g (n !) ■ 719

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

720 ■ A p p e n d i x A C o m p u t i n g B i g - O

or

(m + 1)Avem+1 = (m + 1)Avem + 2 ≥ (m + 1) lg m + 2 ≥ (m + 1) lg(m + 1)

This is transformed into

2 ≥ lg ��mm
+ 1
��

m+1
= lg�1 + �

m
1
�� + lg�1 + �

m
1
��

m
→ lg 1 + lg e = lg e ≈ 1.44

which is true for any m ≥ 1. This completes the proof of the conjecture.
This proves that for a randomly chosen leaf of an m-leaf decision tree, the reason-

able expectation is that the path from the root to the leaf is not less than lg m. The
number of leaves in such a tree is not less than n!, which is the number of all possible
orderings of an n-element array. If m ≥ n!, then lg m ≥ lg(n!). That is the unfortunate
result indicating that an average case also requires, like the worst case, lg(n!) compar-
isons (length of path = number of comparisons), and as already estimated, lg(n!) is
O(n lg n). This is also the best that can be expected in average cases.

A.3 BIG-O FOR AVERAGE CASE OF QUICKSORT

Let C(n) be the number of comparisons required to sort an array of n cells. Because
the arrays of size 1 and 0 are not partitioned, C(0) = C(1) = 0. Assuming a random or-
dering of an n-element array, any element can be chosen as the bound; the probability
that any element will become the bound is the same for all elements. With C(i – 1)
and C(n – i) denoting the numbers of the comparisons required to sort the two sub-
arrays, there are

C(n) = n – 1 + �
n
1

� �
n

i=1

(C(i – 1) + C(n – i)), for n ≥ 2

comparisons, where n – 1 is the number of comparisons in the partition of the array
of size n. First, some simplification can be done:

C(n) = n – 1 + �
n
1

� ��
n

i=1

C(i – 1) + �
n

i=1

C(n – i)�
= n – 1 + �

n
1

� ��
n

i=1

C(i – 1) + �
n

j=1

C(j – 1)�
= n – 1 + �

n
2

� �
n–1

i=0

C(i)

or

nC(n) = n(n – 1) = 2 �
n–1

i=0

C(i)

To solve the equation, the summation operator is removed first. To that end, the last
equation is subtracted from an equation obtained from it,

(n + 1)C(n + 1) = (n + 1)n + 2 �
n

i=0

C(i)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

resulting in

(n + 1)C(n + 1) – nC(n) = (n + 1)n – n(n – 1) + 2��
n

i=0

C(i) – �
n–1

i=0

C(i)� = 2C(n) + 2n

from which

�
C(

n
n
+
+

2
1)

� = �
n
C(

+
n

1
)

� + �
(n + 1

2
)
n
(n + 2)
� = �

n
C(

+
n

1
)

� + �
n +

4
2

� – �
n +

2
1

�

This equation can be expanded, which gives

�
C(

3
2)
� = �

C(
2
1)
� + �

4
3

� – �
2
2

� = �
4
3

� – �
2
2

�

�
C(

4
3)
� = �

C(
3
2)
� + �

4
4

� – �
2
3

�

�
C(

5
4)
� = �

C(
4
3)
� + �

4
5

� – �
2
4

�

�

�
n
C(

+
n

1
)

� = �
C(n

n
– 1)
� + �

n +
4

1
� – �

n
2

�

�
C(

n
n
+
+

2
1)

� = �
n
C(

+
n

1
)

� + �
n +

4
2

� – �
n +

2
1

�

from which

�
C(

n
n
+
+

2
1)

� = ��
4
3

� – �
2
2

�� + ��
4
4

� – �
2
3

�� + ��
4
5

� – �
2
4

�� + · · · + ��n +
4

1
� – �

n
2

��
= + ��n +

4
2

� – �
n +

2
1

��
= – �

2
2
� + �

2
3

� + �
2
4

� + �
2
5

� + · · · + �
n
2

� + �
n +

2
1

� + �
n +

4
2

�

= –4 + 2Hn+2 + �
n +

2
2

�

Note that Hn+2 is a harmonic number. Using an approximation for this number
(see Section A.1)

C(n) = (n + 1)�–4 + 2Hn+1 + �
n +

2
1

��
= (n + 1)�–4 + 2O(ln n) + �

n +
2

1
��

= O(n lg n)

S e c t i o n A . 3 B i g - O f o r A v e r a g e C a s e o f Q u i c k s o r t ■ 721

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

722 ■ A p p e n d i x A C o m p u t i n g B i g - O

A.4 AVERAGE PATH LENGTH IN
A RANDOM BINARY TREE

In Chapter 6, an approximation is used for the average path length in a randomly cre-
ated binary search tree. Assuming that

Pn(i) =

this approximation is given by this recurrence relation

P1 = 0

Pn = �
n
1

� �
n

i=1

Pn(i) = �
n
1
2� �

n

i=1

((i – 1)(Pi–1 + 1) + (n – i)(Pn–i + 1))

Pn = �
n
2
2��

n–1

i=1

i(Pi + 1) (1)

From this, we also have

Pn–1 = �
(n –

2
1)2� �

n–2

i=1

i(Pi + 1) (2)

After multiplying this equation by �(n
n
–

2
1)2

� and subtracting the resulting equation
from (1), we have

Pn = Pn–1�
(n

n
–

2
1)2

� + �
2(n – 1)(

n
P
2
n–1 + 1)
� = �

(n
n
–
2
1)

�((n + 1)Pn–1 + 2)

After successive applications of this formula to each Pn–i, we have

Pn = �
n

n
–
2
1

��(n + 1)�
(
(
n
n

–
–

1
2
)
)
2��n�

(
(
n
n

–
–

2
3
)
)
2��(n – 1)�

(
(
n
n

–
–

3
4
)
)
2� �· · · �

2
1
2�(3P1 + 2) · · ·� + 2� + 2� + 2�

Pn = 2��nn
–
2
1

� + �
(n

(
+
n

1
–
)
1
(n
)n

–
2

2)
� + �

n
(
(
n
n
+
–

1
1
)
)
(
(
n
n

–
–

3
2
)
)

� + �
n
(
(
n
n
+
–

1
2
)
)
(
(
n
n

–
–

4
3
)
)

� + · · · + �
2
n

·
+
3n

1
��

Pn = 2��n +
n

1
���

n–1

i=1

= 2��n +
n

1
���

n–1

i=1
��n –

2
i + 2
� – �

n –
1
i + 1
��

Pn = 2��n +
n

1
���n +

2
1

� + 2��n +
n

1
����

n

i=1

�
1
i
� – 2� = 2��n +

n
1

��Hn – 4

So, Pn is O(2 ln n).

n – i
(n – i + 1)(n – i + 2)

(i – 1)(Pi–1 + 1) + (n – i)(Pn–i + 1)
n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S e c t i o n A . 5 T h e N u m b e r o f N o d e s i n a n A V L T r e e ■ 723

A.5 THE NUMBER OF NODES IN AN AVL TREE

The minimum number of nodes in an AVL tree is determined by the recurrence equation

AVLh = AVLh–1 + AVLh–2 + 1

with AVL0 = 0 and AVL1 = 1. A comparison of this equation with the definition of the
Fibonacci sequence (Section 5.8) indicates that AVLh = Fh+2 – 1; that is, using the de
Moivre formula

we obtain

Because , the second term in this equation quickly de-

creases with the increase of h and has the maximum value 0.17082 for h = 0; therefore,

or

Taking lg of both sides renders

from which we obtain an upper bound on h

h # 1.44042 lg(AVLh + 2) – 0.32824 # 1.44042 lg(AVLh + 2)

and thus

lg(AVLh + 1) # h < 1.44042lg(AVLh + 2) – 0.32824.

lg(AVLh 1 2) $ lg
1

"5
1 2lga

1 1 "5

2
b 1 hlga

1 1 "5

2
b < 0.22787 1 0.69424h

AVLh 1 2 $
1

"5
a

1 1 "5

2
b

h12

AVLh $
1

"5
a

1 1 "5

2
b

h12

2 0.17082 2 1 $
1

"5
a

1 1 "5

2
b

h12

2 2

`
1

2
(1 2 "5) ` < 0.618034

AVLh 5
1

"5
a

1 1 "5

2
b

h12

2
1

"5
a

1 2 "5

2
b

h12

2 1

Fh 5
1

"5
a

1 1 "5

2
b

h

2
1

"5
a

1 2 "5

2
b

h

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

724

NP-
CompletenessB

B.1 COOK’S THEOREM

A Turing machine is a device that reads and manipulates symbols in the cells of an in-
finite tape. It processes symbols by using a head that can move in either direction.
More formally, a Turing machine M is defined as a tuple

M = (Q, S, G, d, q0, F)

where

Q = {q0, q1, . . . , qn} is a finite set of states.

S (G – {#} is a finite input alphabet.

G = {a0, a1, . . . , am}, a0 = blank #, is a finite tape alphabet.

d: Q 3 G S Q 3 G 3 { –1,+1} is a transition function.

q0 is a start state.

F 8 Q is a set of final states.

The machine accepts or rejects any string of symbols built from alphabet S. In
this way, a Turing machine defines a language that is a set of all strings acceptable by
the machine.

The following is a Turing machine that computes the function sign for binary in-
tegers (possibly beginning with redundant 0s), that is

sgn(n) 5 b0 if n 5 0,

1 if x . 0

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

For this machine, Q = {q0, q1, q2, q3}, S = {0, 1, #}, G = {0, 1}, F = {q3}, and the
transition function d is given by the following table:

For the binary representation of number 2 with one redundant 0, 010, the
changes of states are indicated by the following modifications of the tape.

Initial situation:

T

0 1 0 # # ...

Step 0. Because d(q0,0) = (q0,0,+1)—which reads: From state q0 and 0 in the current
cell, leave 0 in this cell, go to the cell to its right and to state q0—the next situation is

T

0 1 0 # # ...

Step 1. Because d(q0,1) = (q1,1,+1), then

T

0 1 0 # # ...

Step 2. Because d(q1,0) = (q1,0,+1), we have

T

0 1 0 # # ...

Step 3. Form d(q1,#) = (q2,1,–1), the next configuration is

T

0 1 0 1 # ...

Step 4. On account of the transition d(q2,0) = (q3,#,+1),

T

0 1 # 1 # ...

In this example, the head goes to the right when it encounters 0 or 1 in a cell.
When it encounters a blank, it writes 1 over it, goes to the left, writes a blank over it,
and the machine finishes execution. When an input is all 0s, then the head ignores
these zeros by moving to the right until it finds a blank. Then it writes 0 over it, moves
to the left, writes a blank over it, and finishes execution.

d 0 1 #

q0 (q0,0,+1) (q1,1,+1) (q2,0,–1)

q1 (q1,0,+1) (q1,1,+1) (q2,1,–1)

q2 (q3,#,+1) (q3,#,+1)

S e c t i o n B . 1 C o o k ’s T h e o r e m ■ 725

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A nondeterministic Turing machine has a finite number of choices for the next
move and it is not determined which move should be made.

Theorem (Cook). Satisfiability problem is NP-complete.
Proof: A nondeterministic Turing machine M is assumed to be polynomially

time bounded; that is, a valid computation sequence on input I takes N = p(|I|) steps,
where p(|I|) is a polynomial in the length |I| of input I, and can use at most N tape
cells. M has an infinite tape extended in one direction only, with cells 0, 1,

To show that every NP problem is polynomially transformable to a satisfiability
problem, a mapping is constructed from any input I of an arbitrary nondeterministic
Turing machine M to an instance r(I) of a satisfiability problem. The mapping r is so
constructed that the Boolean formula r(I) is satisfiable iff M accepts I. Thus, the re-
duction r(I) models (simulates) a computation on M for an input I.

There are three types of logical (Boolean) variables (proposition symbols) used
by function r to construct r(I):

P(i,s,t)1 is true iff at step t, tape cell s contains symbol ai.
Q(j,t) is true iff at step t, M is in state qj.
S(s,t) is true iff at step t, cell s is scanned by M’s head.

where 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ s,t ≤ N. With these definitions, computations of M on I
can be represented as assignments of truth values to sequences of Boolean variables.
With these variables, Boolean clauses can be written that describe various situations
in M during computation on I. The conjunction of these clauses that represent the
history of computation of M on I is the formula r(I).

The statement r(I) is a conjunction of eight groups of statements, each group
used to enforce one requirement that r(I) models a computation on M.

Let ̀ 0 ≤ i ≤ mQ(i,t) = Q(0,t) ̀ Q(1,t) ̀ ... ` Q(m,t), and similarly for the alternative.

1. At each step t, each tape cell contains exactly one symbol

`0 ≤ s,t ≤ N(~0 ≤ i ≤ m P(i,s,t) ` `0 ≤ i < i´≤ N(¬P(i,s,t) ~ ¬P(i´,s,t)))

This condition states that at each step t and each cell s, s includes at least a symbol ai ,
P(i,s,t), but, at the same time, no more than one symbol; that is, ¬(P(i,s´,t) ` P(i,s,t)), or,
by de Morgan’s law, ¬P(i,s,t) ~ ¬P(i´,s,t) for two different symbols ai and ai´.

2. At each step t, M is in exactly one state qj

`0 ≤ t ≤ N(~0 ≤ j ≤ n Q(j,t) ` `0 ≤ j < j´≤ n(¬Q(j,t) ~ ¬Q(j´,t)))

3. At each step t, M is scanning exactly one tape cell s

`0 ≤ t ≤ N(~0 ≤ s ≤ N S(s,t) ` `0 ≤ s < s´≤ N(¬S(s,t) ~ ¬S(s´,t)))

4. The computation process begins in state q0 with input symbols occu-
pying 0, . . . , |I| – 1 leftmost cells of the tape, with the remaining cells filled with blank
characters #. This initial situation is represented by this formula:

I 5 as1
as2
cas 0I 0

726 ■ A p p e n d i x B N P - C o m p l e t e n e s s

1The notation Pi,s,t can also be used.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Q(0,0) ` S(0,0) ` ` ... ` ` P(#,|I|,0) ` ... ` P(#,N,0)

5. The permitted transitions during computation are given by the transition function
d(qj,ai) = (qj´,ai´,dH{–1,+1}). Using this function it has to be stated now that in each
step the values of functions P, Q, and S are properly updated. For example, for each
cell s and step t, if M is in state qj scanning symbol ai, then in the next step it is in state
qj´, as specified by the function d:

`0≤t<N`0≤s≤N(P(i,s,t) ` Q(j,t) ` S(s,t)) 1 Q(j´,t+1)

that is, by the definition of implication (a 1 b = ¬a ~ b) and by de Morgan’s law:

`0≤t<N`0≤s≤N(¬P(i,s,t) ~ ¬Q(j,t) ~ ¬S(s,t) ~ Q(j´,t+1))

After we generalize it for all steps and all cells, we obtain the requirement

`0≤t<N`0≤s≤N`0≤i≤m`0≤j≤n(¬P(i,s,t) ~ ¬Q(j,t) ~ ¬S(s,t) ~ Q(j´,t+1))

where “for all” should be qualified to range over i and j for which d(qj,ai) is defined. If
M is in a halting state, then in the next step it remains in that state, in the same cell,
and the symbol in the cell remains the same. If M is in cell 0 and the next step would
require going to the left, thereby sliding off the tape, then M halts; that is, it remains in
the same state, in the same cell with the same symbol in the cell.

6. Similarly, we obtain permitted updates for P:

`0≤t<N`0≤s≤N`0≤i≤m`0≤j≤n (¬P(i,s,t) ~ ¬Q(j,t) ~ ¬S(s,t) ~ P(i´,s,t+1))

7. and for S:

`0≤t<N`0≤s≤N`0≤i≤m`0≤j≤n (¬P(i,s,t) ~ ¬Q(j,t) ~ ¬S(s,t) ~ S(s+d,t+1))

8. The machine finally reaches an accepting state, which is reflected in the simple formula

~ Q(j,N) ■

If input I belongs to language for which M was constructed, then M reaches the
accepting state when processing I. This processing imposes truth value assignments
that satisfy all the clauses from groups 1 through 8. Also, any assignment of truth val-
ues to statements 1–8 that satisfies them describes a computation that ends in an ac-
cepting state. Therefore, r(I) is satisfiable iff input I is an element of language
recognizable by M.

The construction process of r(I) indicates that r(I) can be constructed in polyno-
mial time.

For the Turing machine M defined earlier, with N = 4, m = 2, and n = 3, the state-
ment r(010) is the following conjunction of alternatives:

(P(0,0,0) ~ P(1,0,0) ~ P(2,0,0)) ` (¬P(0,0,0) ~ ¬P(1,0,0)) ` (¬P(0,0,0) ~ ¬P(2,0,0)) ` (¬P(1,0,0) ~ ¬P(2,0,0)) `
(P(0,0,1) ~ P(1,0,1) ~ P(2,0,1)) ` (¬P(0,0,1) ~ ¬P(1,0,1)) ` (¬P(0,0,1) ~ ¬P(2,0,1)) ` (¬P(1,0,1) ~ ¬P(2,0,1)) `
(P(0,0,2) ~ P(1,0,2) ~ P(2,0,2)) ` (¬P(0,0,2) ~ ¬P(1,0,2)) ` (¬P(0,0,2) ~ ¬P(2,0,2)) ` (¬P(1,0,2) ~ ¬P(2,0,2)) `
(P(0,0,3) ~ P(1,0,3) ~ P(2,0,3)) ` (¬P(0,0,3) ~ ¬P(1,0,3)) ` (¬P(0,0,3) ~ ¬P(2,0,3)) ` (¬P(1,0,3) ~ ¬P(2,0,3)) `
(P(0,0,4) ~ P(1,0,4) ~ P(2,0,4)) ` (¬P(0,0,4) ~ ¬P(1,0,4)) ` (¬P(0,0,4) ~ ¬P(2,0,4)) ~ (¬P(1,0,4) ~ (P(2,0,4)) `
(P(0,1,0) ~ P(1,1,0) ~ P(2,1,0)) ` (¬P(0,1,0) ~ ¬P(1,1,0)) ` (¬P(0,1,0) ~ ¬P(2,1,0)) ` (¬P(1,1,0) ~ ¬P(2,1,0)) `
(P(0,1,1) ~ P(1,1,1) ~ P(2,1,1)) ` (¬P(0,1,1) ~ ¬P(1,1,1)) ` (¬P(0,1,1) ~ ¬P(2,1,1)) ` (¬P(1,1,1) ~ ¬P(2,1,1)) `

5j:qj[F6

P(as 0I 0, 0 I 0 2 1,0)P(as1
,0,0)

S e c t i o n B . 1 C o o k ’s T h e o r e m ■ 727

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(P(0,1,2) ~ P(1,1,2) ~ P(2,1,2)) ` (¬P(0,1,2) ~ ¬P(1,1,2)) ` (¬P(0,1,2) ~ ¬P(2,1,2)) ` (¬P(1,1,2) ~ ¬P(2,1,2)) `
(P(0,1,3) ~ P(1,1,3) ~ P(2,1,3)) ` (¬P(0,1,3) ~ ¬P(1,1,3)) ` (¬P(0,1,3) ~ ¬P(2,1,3)) ` (¬P(1,1,3) ~ ¬P(2,1,3)) `
(P(0,1,4) ~ P(1,1,4) ~ P(2,1,4)) ` (¬P(0,1,4) ~ ¬P(1,1,4)) ` (¬P(0,1,4) ~ ¬P(2,1,4)) ` (¬P(1,1,4) ~ ¬P(2,1,4)) `
(P(0,2,0) ~ P(1,2,0) ~ P(2,2,0)) ` (¬P(0,2,0) ~ ¬P(1,2,0)) ` (¬P(0,2,0) ~ ¬P(2,2,0)) ` (¬P(1,2,0) ~ ¬P(2,2,0)) `
(P(0,2,1) ~ P(1,2,1) ~ P(2,2,1)) ` (¬P(0,2,1) ~ ¬P(1,2,1)) ` (¬P(0,2,1) ~ ¬P(2,2,1)) ` (¬P(1,2,1) ~ ¬P(2,2,1)) `
(P(0,2,2) ~ P(1,2,2) ~ P(2,2,2)) ` (¬P(0,2,2) ~ ¬P(1,2,2)) ` (¬P(0,2,2) ~ ¬P(2,2,2)) ` (¬P(1,2,2) ~ ¬P(2,2,2)) `
(P(0,2,3) ~ P(1,2,3) ~ P(2,2,3)) ` (¬P(0,2,3) ~ ¬P(1,2,3)) ` (¬P(0,2,3) ~ ¬P(2,2,3)) ` (¬P(1,2,3) ~ ¬P(2,2,3)) `
(P(0,2,4) ~ P(1,2,4) ~ P(2,2,4)) ` (¬P(0,2,4) ~ ¬P(1,2,4)) ` (¬P(0,2,4) ~ ¬P(2,2,4)) ` (¬P(1,2,4) ~ ¬P(2,2,4)) `
(P(0,3,0) ~ P(1,3,0) ~ P(2,3,0)) ` (¬P(0,3,0) ~ ¬P(1,3,0)) ` (¬P(0,3,0) ~ ¬P(2,3,0)) ` (¬P(1,3,0) ~ ¬P(2,3,0)) `
(P(0,3,1) ~ P(1,3,1) ~ P(2,3,1)) ` (¬P(0,3,1) ~ ¬P(1,3,1)) ` (¬P(0,3,1) ~ ¬P(2,3,1)) ` (¬P(1,3,1) ~ ¬P(2,3,1)) `
(P(0,3,2) ~ P(1,3,2) ~ P(2,3,2)) ` (¬P(0,3,2) ~ ¬P(1,3,2)) ` (¬P(0,3,2) ~ ¬P(2,3,2)) ` (¬P(1,3,2) ~ ¬P(2,3,2)) `
(P(0,3,3) ~ P(1,3,3) ~ P(2,3,3)) ` (¬P(0,3,3) ~ ¬P(1,3,3)) ` (¬P(0,3,3) ~ ¬P(2,3,3)) ` (¬P(1,3,3) ~ ¬P(2,3,3)) `
(P(0,3,4) ~ P(1,3,4) ~ P(2,3,4)) ` (¬P(0,3,4) ~ ¬P(1,3,4)) ` (¬P(0,3,4) ~ ¬P(2,3,4)) ` (¬P(1,3,4) ~ ¬P(2,3,4)) `
(P(0,4,0) ~ P(1,4,0) ~ P(2,4,0)) ` (¬P(0,4,0) ~ ¬P(1,4,0)) ` (¬P(0,4,0) ~ ¬P(2,4,0)) ` (¬P(1,4,0) ~ ¬P(2,4,0)) `
(P(0,4,1) ~ P(1,4,1) ~ P(2,4,1)) ` (¬P(0,4,1) ~ ¬P(1,4,1)) ` (¬P(0,4,1) ~ ¬P(2,4,1)) ` (¬P(1,4,1) ~ ¬P(2,4,1)) `
(P(0,4,2) ~ P(1,4,2) ~ P(2,4,2)) ` (¬P(0,4,2) ~ ¬P(1,4,2)) ` (¬P(0,4,2) ~ ¬P(2,4,2)) ` (¬P(1,4,2) ~ ¬P(2,4,2)) `
(P(0,4,3) ~ P(1,4,3) ~ P(2,4,3)) ` (¬P(0,4,3) ~ ¬P(1,4,3)) ` (¬P(0,4,3) ~ ¬P(2,4,3)) ` (¬P(1,4,3) ~ ¬P(2,4,3)) `
(P(0,4,4) ~ P(1,4,4) ~ P(2,4,4)) ` (¬P(0,4,4) ~ ¬P(1,4,4)) ` (¬P(0,4,4) ~ ¬P(2,4,4)) ` (¬P(1,4,4) ~ ¬P(2,4,4)) `
(Q(0,0) ~ Q(1,0) ~ Q(2,0) ~ Q(3,0)) ` // group 2

(¬Q(0,0) ~ ¬Q(1,0)) ` (¬Q(0,0) ~ ¬Q(2,0)) ` (¬Q(0,0) ~ ¬Q(3,0)) `
(¬Q(1,0) ~ ¬Q(2,0)) ` (¬Q(1,0) ~ ¬Q(3,0)) `
(¬Q(2,0) ~ ¬Q(3,0)) `
(Q(0,1) ~ Q(1,1) ~ Q(2,1) ~ Q(3,1)) `
(¬Q(0,1) ~ ¬Q(1,1)) ` (¬Q(0,1) ~ ¬Q(2,1)) ` (¬Q(0,1) ~ ¬Q(3,1)) `
(¬Q(1,1) ~ ¬Q(2,1)) ` (¬Q(1,1) ~ ¬Q(3,1)) `
(¬Q(2,1) ~ ¬Q(3,1)) `
(Q(0,2) ~ Q(1,2) ~ Q(2,2) ~ Q(3,2)) `
(¬Q(0,2) ~ ¬Q(1,2)) ` (¬Q(0,2) ~ ¬Q(2,2)) ` (¬Q(0,2) ~ ¬Q(3,2)) `
(¬Q(1,2) ~ ¬Q(2,2)) ` (¬Q(1,2) ~ ¬Q(3,2)) `
(¬Q(2,2) ~ ¬Q(3,2)) `
(Q(0,3) ~ Q(1,3) ~ Q(2,3) ~ Q(3,3)) `
(¬Q(0,3) ~ ¬Q(1,3)) ` (¬Q(0,3) ~ ¬Q(2,3)) ` (¬Q(0,3) ~ ¬Q(3,3)) `
(¬Q(1,3) ~ ¬Q(2,3)) ` (¬Q(1,3) ~ ¬Q(3,3)) `
(¬Q(2,3) ~ ¬Q(3,3)) `
(Q(0,4) ~ Q(1,4) ~ Q(2,4) ~ Q(3,4)) `
(¬Q(0,4) ~ ¬Q(1,4)) ` (¬Q(0,4) ~ ¬Q(2,4)) ` (¬Q(0,4) ~ ¬Q(3,4)) `
(¬Q(1,4) ~ ¬Q(2,4)) ` (¬Q(1,4) ~ ¬Q(3,4)) `
(¬Q(2,4) ~ ¬Q(3,4)) `
(S(0,0) ~ S(1,0) ~ S(2,0) ~ S(3,0) ~ S(4,0)) ` // group 3

(¬S(0,0) ~ ¬S(1,0)) ` (¬S(0,0) ~ ¬S(2,0)) ` (¬S(0,0) ~ ¬S(3,0)) ` (¬S(0,0) ~ ¬S(4,0))

(¬S(1,0) ~ ¬S(2,0)) ` (¬S(1,0) ~ ¬S(3,0)) ` (¬S(1,0) ~ ¬S(4,0)) `
(¬S(2,0) ~ ¬S(3,0)) ` (¬S(2,0) ~ ¬S(4,0)) `
(¬S(3,0) ~ ¬S(4,0)) `
(S(0,1) ~ S(1,1) ~ S(2,1) ~ S(3,1) ~ S(4,1)) `
(¬S(0,1) ~ ¬S(1,1)) ` (¬S(0,1) ~ ¬S(2,1)) ` (¬S(0,1) ~ ¬S(3,1)) ` (¬S(0,1) ~ ¬S(4,1)) `
(¬S(1,1) ~ ¬S(2,1)) ` (¬S(1,1) ~ ¬S(3,1)) ` (¬S(1,1) ~ ¬S(4,1)) `
(¬S(2,1) ~ ¬S(3,1)) ` (¬S(2,1) ~ ¬S(4,1)) `

728 ■ A p p e n d i x B N P - C o m p l e t e n e s s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(¬S(3,1) ~ ¬S(4,1)) `
(S(0,2) ~ S(1,2) ~ S(2,2) ~ S(3,2) ~ S(4,2)) `
(¬S(0,2) ~ ¬S(1,2)) ` (¬S(0,2) ~ ¬S(2,2)) ` (¬S(0,2) ~ ¬S(3,2)) ` (¬S(0,2) ~ ¬S(4,2)) `
(¬S(1,2) ~ ¬S(2,2)) ` (¬S(1,2) ~ ¬S(3,2)) ` (¬S(1,2) ~ ¬S(4,2)) `
(¬S(2,2) ~ ¬S(3,2)) ` (¬S(2,2) ~ ¬S(4,2)) `
(¬S(3,2) ~ ¬S(4,2)) `
(S(0,3) ~ S(1,3) ~ S(2,3) ~ S(3,3) ~ S(4,3)) `
(¬S(0,3) ~ ¬S(1,3)) ` (¬S(0,3) ~ ¬S(2,3)) ` (¬S(0,3) ~ ¬S(3,3)) ` (¬S(0,3) ~ ¬S(4,3)) `
(¬S(1,3) ~ ¬S(2,3)) ` (¬S(1,3) ~ ¬S(3,3)) ` (¬S(1,3) ~ ¬S(4,3)) `
(¬S(2,3) ~ ¬S(3,3)) ` (¬S(2,3) ~ ¬S(4,3)) `
(¬S(3,3) ~ ¬S(4,3)) `
(S(0,4) ~ S(1,4) ~ S(2,4) ~ S(3,4) ~ S(4,4)) `
(¬S(0,4) ~ ¬S(1,4)) ` (¬S(0,4) ~ ¬S(2,4)) ` (¬S(0,4) ~ ¬S(3,4)) ` (¬S(0,4) ~ ¬S(4,4)) `
(¬S(1,4) ~ ¬S(2,4)) ` (¬S(1,4) ~ ¬S(3,4)) ` (¬S(1,4) ~ ¬S(4,4)) `
(¬S(2,4) ~ ¬S(3,4)) ` (¬S(2,4) ~ ¬S(4,4)) `
(¬S(3,4) ~ ¬S(4,4)) `
Q(0,0) ` S(0,0) ` P(0,0,0) ` P(1,1,0) ` P(0,2,0) ` P(#,3,0) ` P(#,4,0) ` // group 4

(¬P(0,0,0) ~ ¬Q(0,0) ~ ¬S(0,0) ~ Q(0,1)) ` (¬P(0,0,1) ~ ¬Q(0,1) ~ ¬S(0,1) ~ Q(0,2)) ` // group 5

(¬P(0,0,2) ~ ¬Q(0,2) ~ ¬S(0,2) ~ Q(0,3)) ` (¬P(0,0,3) ~ ¬Q(0,3) ~ ¬S(0,3) ~ Q(0,4)) `
(¬P(1,0,0) ~ ¬Q(0,0) ~ ¬S(0,0) ~ Q(1,1)) ` (¬P(1,0,1) ~ ¬Q(0,1) ~ ¬S(0,1) ~ Q(1,2)) `
(¬P(1,0,2) ~ ¬Q(0,2) ~ ¬S(0,2) ~ Q(1,3)) ` (¬P(1,0,3) ~ ¬Q(0,3) ~ ¬S(0,3) ~ Q(1,4)) `
// A blank # in cell 0 in state 0 causes M to halt to prevent it from sliding off the tape:

(¬P(#,0,0) ~ ¬Q(0,0) ~ ¬S(0,0) ~ Q(3,1)) ` (¬P(#,0,1) ~ ¬Q(0,1) ~ ¬S(0,1) ~ Q(3,2)) `
(¬P(#,0,2) ~ ¬Q(0,2) ~ ¬S(0,2) ~ Q(3,3)) ` (¬P(#,0,3) ~ ¬Q(0,3) ~ ¬S(0,3) ~ Q(3,4)) `
(¬P(0,1,0) ~ ¬Q(0,0) ~ ¬S(1,0) ~ Q(0,1)) ` (¬P(0,1,1) ~ ¬Q(0,1) ~ ¬S(1,1) ~ Q(0,2)) `
(¬P(0,1,2) ~ ¬Q(0,2) ~ ¬S(1,2) ~ Q(0,3)) ` (¬P(0,1,3) ~ ¬Q(0,3) ~ ¬S(1,3) ~ Q(0,4)) `
(¬P(1,1,0) ~ ¬Q(0,0) ~ ¬S(1,0) ~ Q(1,1)) ` (¬P(1,1,1) ~ ¬Q(0,1) ~ ¬S(1,1) ~ Q(1,2)) `
(¬P(1,1,2) ~ ¬Q(0,2) ~ ¬S(1,2) ~ Q(1,3)) ` (¬P(1,1,3) ~ ¬Q(0,3) ~ ¬S(1,3) ~ Q(1,4)) `
(¬P(#,1,0) ~ ¬Q(0,0) ~ ¬S(1,0) ~ Q(2,1)) ` (¬P(#,1,1) ~ ¬Q(0,1) ~ ¬S(1,1) ~ Q(2,2)) `
(¬P(#,1,2) ~ ¬Q(0,2) ~ ¬S(1,2) ~ Q(2,3)) ` (¬P(#,1,3) ~ ¬Q(0,3) ~ ¬S(1,3) ~ Q(2,4)) `
(¬P(0,2,0) ~ ¬Q(0,0) ~ ¬S(2,0) ~ Q(0,1)) ` (¬P(0,2,1) ~ ¬Q(0,1) ~ ¬S(2,1) ~ Q(0,2)) `
(¬P(0,2,2) ~ ¬Q(0,2) ~ ¬S(2,2) ~ Q(0,3)) ` (¬P(0,2,3) ~ ¬Q(0,3) ~ ¬S(2,3) ~ Q(0,4)) `
(¬P(1,2,0) ~ ¬Q(0,0) ~ ¬S(2,0) ~ Q(1,1)) ` (¬P(1,2,1) ~ ¬Q(0,1) ~ ¬S(2,1) ~ Q(1,2)) `
(¬P(1,2,2) ~ ¬Q(0,2) ~ ¬S(2,2) ~ Q(1,3)) ` (¬P(1,2,3) ~ ¬Q(0,3) ~ ¬S(2,3) ~ Q(1,4)) `
(¬P(#,2,0) ~ ¬Q(0,0) ~ ¬S(2,0) ~ Q(2,1)) ` (¬P(#,2,1) ~ ¬Q(0,1) ~ ¬S(2,1) ~ Q(2,2)) `
(¬P(#,2,2) ~ ¬Q(0,2) ~ ¬S(2,2) ~ Q(2,3)) ` (¬P(#,2,3) ~ ¬Q(0,3) ~ ¬S(2,3) ~ Q(2,4)) `
(¬P(0,3,0) ~ ¬Q(0,0) ~ ¬S(3,0) ~ Q(0,1)) ` (¬P(0,3,1) ~ ¬Q(0,1) ~ ¬S(3,1) ~ Q(0,2)) `
(¬P(0,3,2) ~ ¬Q(0,2) ~ ¬S(3,2) ~ Q(0,3)) ` (¬P(0,3,3) ~ ¬Q(0,3) ~ ¬S(3,3) ~ Q(0,4)) `
(¬P(1,3,0) ~ ¬Q(0,0) ~ ¬S(3,0) ~ Q(1,1)) ` (¬P(1,3,1) ~ ¬Q(0,1) ~ ¬S(3,1) ~ Q(1,2)) `
(¬P(1,3,2) ~ ¬Q(0,2) ~ ¬S(3,2) ~ Q(1,3)) ` (¬P(1,3,3) ~ ¬Q(0,3) ~ ¬S(3,3) ~ Q(1,4)) `
(¬P(#,3,0) ~ ¬Q(0,0) ~ ¬S(3,0) ~ Q(2,1)) ` (¬P(#,3,1) ~ ¬Q(0,1) ~ ¬S(3,1) ~ Q(2,2)) `
(¬P(#,3,2) ~ ¬Q(0,2) ~ ¬S(3,2) ~ Q(2,3)) ` (¬P(#,3,3) ~ ¬Q(0,3) ~ ¬S(3,3) ~ Q(2,4)) `
(¬P(0,4,0) ~ ¬Q(0,0) ~ ¬S(4,0) ~ Q(0,1)) ` (¬P(0,4,1) ~ ¬Q(0,1) ~ ¬S(4,1) ~ Q(0,2)) `
(¬P(0,4,2) ~ ¬Q(0,2) ~ ¬S(4,2) ~ Q(0,3)) ` (¬P(0,4,3) ~ ¬Q(0,3) ~ ¬S(4,3) ~ Q(0,4)) `
(¬P(1,4,0) ~ ¬Q(0,0) ~ ¬S(4,0) ~ Q(1,1)) ` (¬P(1,4,1) ~ ¬Q(0,1) ~ ¬S(4,1) ~ Q(1,2)) `
(¬P(1,4,2) ~ ¬Q(0,2) ~ ¬S(4,2) ~ Q(1,3)) ` (¬P(1,4,3) ~ ¬Q(0,3) ~ ¬S(4,3) ~ Q(1,4)) `
(¬P(#,4,0) ~ ¬Q(0,0) ~ ¬S(4,0) ~ Q(2,1)) ` (¬P(#,4,1) ~ ¬Q(0,1) ~ ¬S(4,1) ~ Q(2,2)) `

S e c t i o n B . 1 C o o k ’s T h e o r e m ■ 729

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(¬P(#,4,2) ~ ¬Q(0,2) ~ ¬S(4,2) ~ Q(2,3)) ` (¬P(#,4,3) ~ ¬Q(0,3) ~ ¬S(4,3) ~ Q(2,4)) `
(¬P(0,0,0) ~ ¬Q(1,0) ~ ¬S(0,0) ~ Q(1,1)) ` (¬P(0,0,1) ~ ¬Q(1,1) ~ ¬S(0,1) ~ Q(1,2)) ` //can’t be in state 1

(¬P(0,0,2) ~ ¬Q(1,2) ~ ¬S(0,2) ~ Q(1,3)) ` (¬P(0,0,3) ~ ¬Q(1,3) ~ ¬S(0,3) ~ Q(1,4)) ` //in step 0

(¬P(1,0,0) ~ ¬Q(1,0) ~ ¬S(0,0) ~ Q(1,1)) ` (¬P(1,0,1) ~ ¬Q(1,1) ~ ¬S(0,1) ~ Q(1,2)) `
(¬P(1,0,2) ~ ¬Q(1,2) ~ ¬S(0,2) ~ Q(1,3)) ` (¬P(1,0,3) ~ ¬Q(1,3) ~ ¬S(0,3) ~ Q(1,4)) `
// A blank # in cell 0 in state 1 causes M to halt:

(¬P(#,0,0) ~ ¬Q(1,0) ~ ¬S(0,0) ~ Q(3,1)) ` (¬P(#,0,1) ~ ¬Q(1,1) ~ ¬S(0,1) ~ Q(3,2)) `
(¬P(#,0,2) ~ ¬Q(1,2) ~ ¬S(0,2) ~ Q(3,3)) ` (¬P(#,0,3) ~ ¬Q(1,3) ~ ¬S(0,3) ~ Q(3,4)) `
(¬P(0,1,0) ~ ¬Q(1,0) ~ ¬S(1,0) ~ Q(1,1)) ` (¬P(0,1,1) ~ ¬Q(1,1) ~ ¬S(1,1) ~ Q(1,2)) `
(¬P(0,1,2) ~ ¬Q(1,2) ~ ¬S(1,2) ~ Q(1,3)) ` (¬P(0,1,3) ~ ¬Q(1,3) ~ ¬S(1,3) ~ Q(1,4)) `
(¬P(1,1,0) ~ ¬Q(1,0) ~ ¬S(1,0) ~ Q(1,1)) ` (¬P(1,1,1) ~ ¬Q(1,1) ~ ¬S(1,1) ~ Q(1,2)) `
(¬P(1,1,2) ~ ¬Q(1,2) ~ ¬S(1,2) ~ Q(1,3)) ` (¬P(1,1,3) ~ ¬Q(1,3) ~ ¬S(1,3) ~ Q(1,4)) `
(¬P(#,1,0) ~ ¬Q(1,0) ~ ¬S(1,0) ~ Q(2,1)) ` (¬P(#,1,1) ~ ¬Q(1,1) ~ ¬S(1,1) ~ Q(2,2)) `
(¬P(#,1,2) ~ ¬Q(1,2) ~ ¬S(1,2) ~ Q(2,3)) ` (¬P(#,1,3) ~ ¬Q(1,3) ~ ¬S(1,3) ~ Q(2,4)) `
(¬P(0,2,0) ~ ¬Q(1,0) ~ ¬S(2,0) ~ Q(1,1)) ` (¬P(0,2,1) ~ ¬Q(1,1) ~ ¬S(2,1) ~ Q(1,2)) `
(¬P(0,2,2) ~ ¬Q(1,2) ~ ¬S(2,2) ~ Q(1,3)) ` (¬P(0,2,3) ~ ¬Q(1,3) ~ ¬S(2,3) ~ Q(1,4)) `
(¬P(1,2,0) ~ ¬Q(1,0) ~ ¬S(2,0) ~ Q(1,1)) ` (¬P(1,2,1) ~ ¬Q(1,1) ~ ¬S(2,1) ~ Q(1,2)) `
(¬P(1,2,2) ~ ¬Q(1,2) ~ ¬S(2,2) ~ Q(1,3)) ` (¬P(1,2,3) ~ ¬Q(1,3) ~ ¬S(2,3) ~ Q(1,4)) `
(¬P(#,2,0) ~ ¬Q(1,0) ~ ¬S(2,0) ~ Q(2,1)) ` (¬P(#,2,1) ~ ¬Q(1,1) ~ ¬S(2,1) ~ Q(2,2)) `
(¬P(#,2,2) ~ ¬Q(1,2) ~ ¬S(2,2) ~ Q(2,3)) ` (¬P(#,2,3) ~ ¬Q(1,3) ~ ¬S(2,3) ~ Q(2,4)) `
(¬P(0,3,0) ~ ¬Q(1,0) ~ ¬S(3,0) ~ Q(1,1)) ` (¬P(0,3,1) ~ ¬Q(1,1) ~ ¬S(3,1) ~ Q(1,2)) `
(¬P(0,3,2) ~ ¬Q(1,2) ~ ¬S(3,2) ~ Q(1,3)) ` (¬P(0,3,3) ~ ¬Q(1,3) ~ ¬S(3,3) ~ Q(1,4)) `
(¬P(1,3,0) ~ ¬Q(1,0) ~ ¬S(3,0) ~ Q(1,1)) ` (¬P(1,3,1) ~ ¬Q(1,1) ~ ¬S(3,1) ~ Q(1,2)) `
(¬P(1,3,2) ~ ¬Q(1,2) ~ ¬S(3,2) ~ Q(1,3)) ` (¬P(1,3,3) ~ ¬Q(1,3) ~ ¬S(3,3) ~ Q(1,4)) `
(¬P(#,3,0) ~ ¬Q(1,0) ~ ¬S(3,0) ~ Q(2,1)) ` (¬P(#,3,1) ~ ¬Q(1,1) ~ ¬S(3,1) ~ Q(2,2)) `
(¬P(#,3,2) ~ ¬Q(1,2) ~ ¬S(3,2) ~ Q(2,3)) ` (¬P(#,3,3) ~ ¬Q(1,3) ~ ¬S(3,3) ~ Q(2,4)) `
(¬P(0,4,0) ~ ¬Q(1,0) ~ ¬S(4,0) ~ Q(1,1)) ` (¬P(0,4,1) ~ ¬Q(1,1) ~ ¬S(4,1) ~ Q(1,2)) `
(¬P(0,4,2) ~ ¬Q(1,2) ~ ¬S(4,2) ~ Q(1,3)) ` (¬P(0,4,3) ~ ¬Q(1,3) ~ ¬S(4,3) ~ Q(1,4)) `
(¬P(1,4,0) ~ ¬Q(1,0) ~ ¬S(4,0) ~ Q(1,1)) ` (¬P(1,4,1) ~ ¬Q(1,1) ~ ¬S(4,1) ~ Q(1,2)) `
(¬P(1,4,2) ~ ¬Q(1,2) ~ ¬S(4,2) ~ Q(1,3)) ` (¬P(1,4,3) ~ ¬Q(1,3) ~ ¬S(4,3) ~ Q(1,4)) `
(¬P(#,4,0) ~ ¬Q(1,0) ~ ¬S(4,0) ~ Q(2,1)) ` (¬P(#,4,1) ~ ¬Q(1,1) ~ ¬S(4,1) ~ Q(2,2)) `
(¬P(#,4,2) ~ ¬Q(1,2) ~ ¬S(4,2) ~ Q(2,3)) ` (¬P(#,4,3) ~ ¬Q(1,3) ~ ¬S(4,3) ~ Q(2,4)) `
(¬P(0,0,0) ~ ¬Q(2,0) ~ ¬S(0,0) ~ Q(3,1)) ` (¬P(0,0,1) ~ ¬Q(2,1) ~ ¬S(0,1) ~ Q(3,2)) `
(¬P(0,0,2) ~ ¬Q(2,2) ~ ¬S(0,2) ~ Q(3,3)) ` (¬P(0,0,3) ~ ¬Q(2,3) ~ ¬S(0,3) ~ Q(3,4)) `
(¬P(1,0,0) ~ ¬Q(2,0) ~ ¬S(0,0) ~ Q(3,1)) ` (¬P(1,0,1) ~ ¬Q(2,1) ~ ¬S(0,1) ~ Q(3,2)) `
(¬P(1,0,2) ~ ¬Q(2,2) ~ ¬S(0,2) ~ Q(3,3)) ` (¬P(1,0,3) ~ ¬Q(2,3) ~ ¬S(0,3) ~ Q(3,4)) `
(¬P(0,1,0) ~ ¬Q(2,0) ~ ¬S(1,0) ~ Q(3,1)) ` (¬P(0,1,1) ~ ¬Q(2,1) ~ ¬S(1,1) ~ Q(3,2)) `
(¬P(0,1,2) ~ ¬Q(2,2) ~ ¬S(1,2) ~ Q(3,3)) ` (¬P(0,1,3) ~ ¬Q(2,3) ~ ¬S(1,3) ~ Q(3,4)) `
(¬P(1,1,0) ~ ¬Q(2,0) ~ ¬S(1,0) ~ Q(3,1)) ` (¬P(1,1,1) ~ ¬Q(2,1) ~ ¬S(1,1) ~ Q(3,2)) `
(¬P(1,1,2) ~ ¬Q(2,2) ~ ¬S(1,2) ~ Q(3,3)) ` (¬P(1,1,3) ~ ¬Q(2,3) ~ ¬S(1,3) ~ Q(3,4)) `
(¬P(0,2,0) ~ ¬Q(2,0) ~ ¬S(2,0) ~ Q(3,1)) ` (¬P(0,2,1) ~ ¬Q(2,1) ~ ¬S(2,1) ~ Q(3,2)) `
(¬P(0,2,2) ~ ¬Q(2,2) ~ ¬S(2,2) ~ Q(3,3)) ` (¬P(0,2,3) ~ ¬Q(2,3) ~ ¬S(2,3) ~ Q(3,4)) `
(¬P(1,2,0) ~ ¬Q(2,0) ~ ¬S(2,0) ~ Q(3,1)) ` (¬P(1,2,1) ~ ¬Q(2,1) ~ ¬S(2,1) ~ Q(3,2)) `
(¬P(1,2,2) ~ ¬Q(2,2) ~ ¬S(2,2) ~ Q(3,3)) ` (¬P(1,2,3) ~ ¬Q(2,3) ~ ¬S(2,3) ~ Q(3,4)) `
(¬P(0,3,0) ~ ¬Q(2,0) ~ ¬S(3,0) ~ Q(3,1)) ` (¬P(0,3,1) ~ ¬Q(2,1) ~ ¬S(3,1) ~ Q(3,2)) `
(¬P(0,3,2) ~ ¬Q(2,2) ~ ¬S(3,2) ~ Q(3,3)) ` (¬P(0,3,3) ~ ¬Q(2,3) ~ ¬S(3,3) ~ Q(3,4)) `

730 ■ A p p e n d i x B N P - C o m p l e t e n e s s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(¬P(1,3,0) ~ ¬Q(2,0) ~ ¬S(3,0) ~ Q(3,1)) ` (¬P(1,3,1) ~ ¬Q(2,1) ~ ¬S(3,1) ~ Q(3,2)) `
(¬P(1,3,2) ~ ¬Q(2,2) ~ ¬S(3,2) ~ Q(3,3)) ` (¬P(1,3,3) ~ ¬Q(2,3) ~ ¬S(3,3) ~ Q(3,4)) `
(¬P(0,4,0) ~ ¬Q(2,0) ~ ¬S(4,0) ~ Q(3,1)) ` (¬P(0,4,1) ~ ¬Q(2,1) ~ ¬S(4,1) ~ Q(3,2)) `
(¬P(0,4,2) ~ ¬Q(2,2) ~ ¬S(4,2) ~ Q(3,3)) ` (¬P(0,4,3) ~ ¬Q(2,3) ~ ¬S(4,3) ~ Q(3,4)) `
(¬P(1,4,0) ~ ¬Q(2,0) ~ ¬S(4,0) ~ Q(3,1)) ` (¬P(1,4,1) ~ ¬Q(2,1) ~ ¬S(4,1) ~ Q(3,2)) `
(¬P(1,4,2) ~ ¬Q(2,2) ~ ¬S(4,2) ~ Q(3,3)) ` (¬P(1,4,3) ~ ¬Q(2,3) ~ ¬S(4,3) ~ Q(3,4)) `
(¬P(0,0,0) ~ ¬Q(3,0) ~ ¬S(0,0) ~ Q(3,1)) ` (¬P(0,0,1) ~ ¬Q(3,1) ~ ¬S(0,1) ~ Q(3,2)) `
(¬P(0,0,2) ~ ¬Q(3,2) ~ ¬S(0,2) ~ Q(3,3)) ` (¬P(0,0,3) ~ ¬Q(3,3) ~ ¬S(0,3) ~ Q(3,4)) `
(¬P(1,0,0) ~ ¬Q(3,0) ~ ¬S(0,0) ~ Q(3,1)) ` (¬P(1,0,1) ~ ¬Q(3,1) ~ ¬S(0,1) ~ Q(3,2)) `
(¬P(1,0,2) ~ ¬Q(3,2) ~ ¬S(0,2) ~ Q(3,3)) ` (¬P(1,0,3) ~ ¬Q(3,3) ~ ¬S(0,3) ~ Q(3,4)) `
(¬P(#,0,0) ~ ¬Q(3,0) ~ ¬S(0,0) ~ Q(3,1)) ` (¬P(#,0,1) ~ ¬Q(3,1) ~ ¬S(0,1) ~ Q(3,2)) `
(¬P(#,0,2) ~ ¬Q(3,2) ~ ¬S(0,2) ~ Q(3,3)) ` (¬P(#,0,3) ~ ¬Q(3,3) ~ ¬S(0,3) ~ Q(3,4)) `
(¬P(0,1,0) ~ ¬Q(3,0) ~ ¬S(1,0) ~ Q(3,1)) ` (¬P(0,1,1) ~ ¬Q(3,1) ~ ¬S(1,1) ~ Q(3,2)) `
(¬P(0,1,2) ~ ¬Q(3,2) ~ ¬S(1,2) ~ Q(3,3)) ` (¬P(0,1,3) ~ ¬Q(3,3) ~ ¬S(1,3) ~ Q(3,4)) `
(¬P(1,1,0) ~ ¬Q(3,0) ~ ¬S(1,0) ~ Q(3,1)) ` (¬P(1,1,1) ~ ¬Q(3,1) ~ ¬S(1,1) ~ Q(3,2)) `
(¬P(1,1,2) ~ ¬Q(3,2) ~ ¬S(1,2) ~ Q(3,3)) ` (¬P(1,1,3) ~ ¬Q(3,3) ~ ¬S(1,3) ~ Q(3,4)) `
(¬P(#,1,0) ~ ¬Q(3,0) ~ ¬S(1,0) ~ Q(3,1)) ` (¬P(#,1,1) ~ ¬Q(3,1) ~ ¬S(1,1) ~ Q(3,2)) `
(¬P(#,1,2) ~ ¬Q(3,2) ~ ¬S(1,2) ~ Q(3,3)) ` (¬P(#,1,3) ~ ¬Q(3,3) ~ ¬S(1,3) ~ Q(3,4)) `
(¬P(0,2,0) ~ ¬Q(3,0) ~ ¬S(2,0) ~ Q(3,1)) ` (¬P(0,2,1) ~ ¬Q(3,1) ~ ¬S(2,1) ~ Q(3,2)) `
(¬P(0,2,2) ~ ¬Q(3,2) ~ ¬S(2,2) ~ Q(3,3)) ` (¬P(0,2,3) ~ ¬Q(3,3) ~ ¬S(2,3) ~ Q(3,4)) `
(¬P(1,2,0) ~ ¬Q(3,0) ~ ¬S(2,0) ~ Q(3,1)) ` (¬P(1,2,1) ~ ¬Q(3,1) ~ ¬S(2,1) ~ Q(3,2)) `
(¬P(1,2,2) ~ ¬Q(3,2) ~ ¬S(2,2) ~ Q(3,3)) ` (¬P(1,2,3) ~ ¬Q(3,3) ~ ¬S(2,3) ~ Q(3,4)) `
(¬P(#,2,0) ~ ¬Q(3,0) ~ ¬S(2,0) ~ Q(3,1)) ` (¬P(#,2,1) ~ ¬Q(3,1) ~ ¬S(2,1) ~ Q(3,2)) `
(¬P(#,2,2) ~ ¬Q(3,2) ~ ¬S(2,2) ~ Q(3,3)) ` (¬P(#,2,3) ~ ¬Q(3,3) ~ ¬S(2,3) ~ Q(3,4)) `
(¬P(0,3,0) ~ ¬Q(3,0) ~ ¬S(3,0) ~ Q(3,1)) ` (¬P(0,3,1) ~ ¬Q(3,1) ~ ¬S(3,1) ~ Q(3,2)) `
(¬P(0,3,2) ~ ¬Q(3,2) ~ ¬S(3,2) ~ Q(3,3)) ` (¬P(0,3,3) ~ ¬Q(3,3) ~ ¬S(3,3) ~ Q(3,4)) `
(¬P(1,3,0) ~ ¬Q(3,0) ~ ¬S(3,0) ~ Q(3,1)) ` (¬P(1,3,1) ~ ¬Q(3,1) ~ ¬S(3,1) ~ Q(3,2)) `
(¬P(1,3,2) ~ ¬Q(3,2) ~ ¬S(3,2) ~ Q(3,3)) ` (¬P(1,3,3) ~ ¬Q(3,3) ~ ¬S(3,3) ~ Q(3,4)) `
(¬P(#,3,0) ~ ¬Q(3,0) ~ ¬S(3,0) ~ Q(3,1)) ` (¬P(#,3,1) ~ ¬Q(3,1) ~ ¬S(3,1) ~ Q(3,2)) `
(¬P(#,3,2) ~ ¬Q(3,2) ~ ¬S(3,2) ~ Q(3,3)) ` (¬P(#,3,3) ~ ¬Q(3,3) ~ ¬S(3,3) ~ Q(3,4)) `
(¬P(0,4,0) ~ ¬Q(3,0) ~ ¬S(4,0) ~ Q(3,1)) ` (¬P(0,4,1) ~ ¬Q(3,1) ~ ¬S(4,1) ~ Q(3,2)) `
(¬P(0,4,2) ~ ¬Q(3,2) ~ ¬S(4,2) ~ Q(3,3)) ` (¬P(0,4,3) ~ ¬Q(3,3) ~ ¬S(4,3) ~ Q(3,4)) `
(¬P(1,4,0) ~ ¬Q(3,0) ~ ¬S(4,0) ~ Q(3,1)) ` (¬P(1,4,1) ~ ¬Q(3,1) ~ ¬S(4,1) ~ Q(3,2)) `
(¬P(1,4,2) ~ ¬Q(3,2) ~ ¬S(4,2) ~ Q(3,3)) ` (¬P(1,4,3) ~ ¬Q(3,3) ~ ¬S(4,3) ~ Q(3,4)) `
(¬P(#,4,0) ~ ¬Q(3,0) ~ ¬S(4,0) ~ Q(3,1)) ` (¬P(#,4,1) ~ ¬Q(3,1) ~ ¬S(4,1) ~ Q(3,2)) `
(¬P(#,4,2) ~ ¬Q(3,2) ~ ¬S(4,2) ~ Q(3,3)) ` (¬P(#,4,3) ~ ¬Q(3,3) ~ ¬S(4,3) ~ Q(3,4)) `
(¬P(0,0,0) ~ ¬Q(0,0) ~ ¬S(0,0) ~ P(0,0,1)) ` (¬P(0,0,1) ~ ¬Q(0,1) ~ ¬S(0,1) ~ P(0,0,2)) ` // group 6

(¬P(0,0,2) ~ ¬Q(0,2) ~ ¬S(0,2) ~ P(0,0,3)) ` (¬P(0,0,3) ~ ¬Q(0,3) ~ ¬S(0,3) ~ P(0,0,4)) `
(¬P(1,0,0) ~ ¬Q(0,0) ~ ¬S(0,0) ~ P(1,0,1)) ` (¬P(1,0,1) ~ ¬Q(0,1) ~ ¬S(0,1) ~ P(1,0,2)) `
(¬P(1,0,2) ~ ¬Q(0,2) ~ ¬S(0,2) ~ P(1,0,3)) ` (¬P(1,0,3) ~ ¬Q(0,3) ~ ¬S(0,3) ~ P(1,0,4)) `
// A blank # in cell 0 in state 0 causes M to halt and retain the blank in cell 0:

(¬P(#,0,0) ~ ¬Q(0,0) ~ ¬S(0,0) ~ P(#,0,1)) ` (¬P(#,0,1) ~ ¬Q(0,1) ~ ¬S(0,1) ~ P(#,0,2)) `
(¬P(#,0,2) ~ ¬Q(0,2) ~ ¬S(0,2) ~ P(#,0,3)) ` (¬P(#,0,3) ~ ¬Q(0,3) ~ ¬S(0,3) ~ P(#,0,4)) `
(¬P(0,1,0) ~ ¬Q(0,0) ~ ¬S(1,0) ~ P(0,1,1)) ` (¬P(0,1,1) ~ ¬Q(0,1) ~ ¬S(1,1) ~ P(0,1,2)) `
(¬P(0,1,2) ~ ¬Q(0,2) ~ ¬S(1,2) ~ P(0,1,3)) ` (¬P(0,1,3) ~ ¬Q(0,3) ~ ¬S(1,3) ~ P(0,1,4)) `
(¬P(1,1,0) ~ ¬Q(0,0) ~ ¬S(1,0) ~ P(1,1,1)) ` (¬P(1,1,1) ~ ¬Q(0,1) ~ ¬S(1,1) ~ P(1,1,2)) `

S e c t i o n B . 1 C o o k ’s T h e o r e m ■ 731

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(¬P(1,1,2) ~ ¬Q(0,2) ~ ¬S(1,2) ~ P(1,1,3)) ` (¬P(1,1,3) ~ ¬Q(0,3) ~ ¬S(1,3) ~ P(1,1,4)) `
(¬P(#,1,0) ~ ¬Q(0,0) ~ ¬S(1,0) ~ P(0,1,1)) ` (¬P(#,1,1) ~ ¬Q(0,1) ~ ¬S(1,1) ~ P(0,1,2)) `
(¬P(#,1,2) ~ ¬Q(0,2) ~ ¬S(1,2) ~ P(0,1,3)) ` (¬P(#,1,3) ~ ¬Q(0,3) ~ ¬S(1,3) ~ P(0,1,4)) `
(¬P(0,2,0) ~ ¬Q(0,0) ~ ¬S(2,0) ~ P(0,2,1)) ` (¬P(0,2,1) ~ ¬Q(0,1) ~ ¬S(2,1) ~ P(0,2,2)) `
(¬P(0,2,2) ~ ¬Q(0,2) ~ ¬S(2,2) ~ P(0,2,3)) ` (¬P(0,2,3) ~ ¬Q(0,3) ~ ¬S(2,3) ~ P(0,2,4)) `
(¬P(1,2,0) ~ ¬Q(0,0) ~ ¬S(2,0) ~ P(1,2,1)) ` (¬P(1,2,1) ~ ¬Q(0,1) ~ ¬S(2,1) ~ P(1,2,2)) `
(¬P(1,2,2) ~ ¬Q(0,2) ~ ¬S(2,2) ~ P(1,2,3)) ` (¬P(1,2,3) ~ ¬Q(0,3) ~ ¬S(2,3) ~ P(1,2,4)) `
(¬P(#,2,0) ~ ¬Q(0,0) ~ ¬S(2,0) ~ P(0,2,1)) ` (¬P(#,2,1) ~ ¬Q(0,1) ~ ¬S(2,1) ~ P(0,2,2)) `
(¬P(#,2,2) ~ ¬Q(0,2) ~ ¬S(2,2) ~ P(0,2,3)) ` (¬P(#,2,3) ~ ¬Q(0,3) ~ ¬S(2,3) ~ P(0,2,4)) `
(¬P(0,3,0) ~ ¬Q(0,0) ~ ¬S(3,0) ~ P(0,3,1)) ` (¬P(0,3,1) ~ ¬Q(0,1) ~ ¬S(3,1) ~ P(0,3,2)) `
(¬P(0,3,2) ~ ¬Q(0,2) ~ ¬S(3,2) ~ P(0,3,3)) ` (¬P(0,3,3) ~ ¬Q(0,3) ~ ¬S(3,3) ~ P(0,3,4)) `
(¬P(1,3,0) ~ ¬Q(0,0) ~ ¬S(3,0) ~ P(1,3,1)) ` (¬P(1,3,1) ~ ¬Q(0,1) ~ ¬S(3,1) ~ P(1,3,2)) `
(¬P(1,3,2) ~ ¬Q(0,2) ~ ¬S(3,2) ~ P(1,3,3)) ` (¬P(1,3,3) ~ ¬Q(0,3) ~ ¬S(3,3) ~ P(1,3,4)) `
(¬P(#,3,0) ~ ¬Q(0,0) ~ ¬S(3,0) ~ P(0,3,1)) ` (¬P(#,3,1) ~ ¬Q(0,1) ~ ¬S(3,1) ~ P(0,3,2)) `
(¬P(#,3,2) ~ ¬Q(0,2) ~ ¬S(3,2) ~ P(0,3,3)) ` (¬P(#,3,3) ~ ¬Q(0,3) ~ ¬S(3,3) ~ P(0,3,4)) `
(¬P(0,4,0) ~ ¬Q(0,0) ~ ¬S(4,0) ~ P(0,4,1)) ` (¬P(0,4,1) ~ ¬Q(0,1) ~ ¬S(4,1) ~ P(0,4,2)) `
(¬P(0,4,2) ~ ¬Q(0,2) ~ ¬S(4,2) ~ P(0,4,3)) ` (¬P(0,4,3) ~ ¬Q(0,3) ~ ¬S(4,3) ~ P(0,4,4)) `
(¬P(1,4,0) ~ ¬Q(0,0) ~ ¬S(4,0) ~ P(1,4,1)) ` (¬P(1,4,1) ~ ¬Q(0,1) ~ ¬S(4,1) ~ P(1,4,2)) `
(¬P(1,4,2) ~ ¬Q(0,2) ~ ¬S(4,2) ~ P(1,4,3)) ` (¬P(1,4,3) ~ ¬Q(0,3) ~ ¬S(4,3) ~ P(1,4,4)) `
(¬P(#,4,0) ~ ¬Q(0,0) ~ ¬S(4,0) ~ P(0,4,1)) ` (¬P(#,4,1) ~ ¬Q(0,1) ~ ¬S(4,1) ~ P(0,4,2)) `
(¬P(#,4,2) ~ ¬Q(0,2) ~ ¬S(4,2) ~ P(0,4,3)) ` (¬P(#,4,3) ~ ¬Q(0,3) ~ ¬S(4,3) ~ P(0,4,4)) `
(¬P(0,0,0) ~ ¬Q(1,0) ~ ¬S(0,0) ~ P(0,0,1)) ` (¬P(0,0,1) ~ ¬Q(1,1) ~ ¬S(0,1) ~ P(0,0,2)) `
(¬P(0,0,2) ~ ¬Q(1,2) ~ ¬S(0,2) ~ P(0,0,3)) ` (¬P(0,0,3) ~ ¬Q(1,3) ~ ¬S(0,3) ~ P(0,0,4)) `
(¬P(1,0,0) ~ ¬Q(1,0) ~ ¬S(0,0) ~ P(1,0,1)) ` (¬P(1,0,1) ~ ¬Q(1,1) ~ ¬S(0,1) ~ P(1,0,2)) `
(¬P(1,0,2) ~ ¬Q(1,2) ~ ¬S(0,2) ~ P(1,0,3)) ` (¬P(1,0,3) ~ ¬Q(1,3) ~ ¬S(0,3) ~ P(1,0,4)) `
// A blank # in cell 0 in state 1 causes M to halt and retain the blank in cell 0:

(¬P(#,0,0) ~ ¬Q(1,0) ~ ¬S(0,0) ~ P(#,0,1)) ` (¬P(#,0,1) ~ ¬Q(1,1) ~ ¬S(0,1) ~ P(#,0,2)) `
(¬P(#,0,2) ~ ¬Q(1,2) ~ ¬S(0,2) ~ P(#,0,3)) ` (¬P(#,0,3) ~ ¬Q(1,3) ~ ¬S(0,3) ~ P(#,0,4)) `
(¬P(0,1,0) ~ ¬Q(1,0) ~ ¬S(1,0) ~ P(0,1,1)) ` (¬P(0,1,1) ~ ¬Q(1,1) ~ ¬S(1,1) ~ P(0,1,2)) `
(¬P(0,1,2) ~ ¬Q(1,2) ~ ¬S(1,2) ~ P(0,1,3)) ` (¬P(0,1,3) ~ ¬Q(1,3) ~ ¬S(1,3) ~ P(0,1,4)) `
(¬P(1,1,0) ~ ¬Q(1,0) ~ ¬S(1,0) ~ P(1,1,1)) ` (¬P(1,1,1) ~ ¬Q(1,1) ~ ¬S(1,1) ~ P(1,1,2)) `
(¬P(1,1,2) ~ ¬Q(1,2) ~ ¬S(1,2) ~ P(1,1,3)) ` (¬P(1,1,3) ~ ¬Q(1,3) ~ ¬S(1,3) ~ P(1,1,4)) `
(¬P(#,1,0) ~ ¬Q(1,0) ~ ¬S(1,0) ~ P(1,1,1)) ` (¬P(#,1,1) ~ ¬Q(1,1) ~ ¬S(1,1) ~ P(1,1,2)) `
(¬P(#,1,2) ~ ¬Q(1,2) ~ ¬S(1,2) ~ P(1,1,3)) ` (¬P(#,1,3) ~ ¬Q(1,3) ~ ¬S(1,3) ~ P(1,1,4)) `
(¬P(0,2,0) ~ ¬Q(1,0) ~ ¬S(2,0) ~ P(0,2,1)) ` (¬P(0,2,1) ~ ¬Q(1,1) ~ ¬S(2,1) ~ P(0,2,2)) `
(¬P(0,2,2) ~ ¬Q(1,2) ~ ¬S(2,2) ~ P(0,2,3)) ` (¬P(0,2,3) ~ ¬Q(1,3) ~ ¬S(2,3) ~ P(0,2,4)) `
(¬P(1,2,0) ~ ¬Q(1,0) ~ ¬S(2,0) ~ P(1,2,1)) ` (¬P(1,2,1) ~ ¬Q(1,1) ~ ¬S(2,1) ~ P(1,2,2)) `
(¬P(1,2,2) ~ ¬Q(1,2) ~ ¬S(2,2) ~ P(1,2,3)) ` (¬P(1,2,3) ~ ¬Q(1,3) ~ ¬S(2,3) ~ P(1,2,4)) `
(¬P(#,2,0) ~ ¬Q(1,0) ~ ¬S(2,0) ~ P(1,2,1)) ` (¬P(#,2,1) ~ ¬Q(1,1) ~ ¬S(2,1) ~ P(1,2,2)) `
(¬P(#,2,2) ~ ¬Q(1,2) ~ ¬S(2,2) ~ P(1,2,3)) ` (¬P(#,2,3) ~ ¬Q(1,3) ~ ¬S(2,3) ~ P(1,2,4)) `
(¬P(0,3,0) ~ ¬Q(1,0) ~ ¬S(3,0) ~ P(0,3,1)) ` (¬P(0,3,1) ~ ¬Q(1,1) ~ ¬S(3,1) ~ P(0,3,2)) `
(¬P(0,3,2) ~ ¬Q(1,2) ~ ¬S(3,2) ~ P(0,3,3)) ` (¬P(0,3,3) ~ ¬Q(1,3) ~ ¬S(3,3) ~ P(0,3,4)) `
(¬P(1,3,0) ~ ¬Q(1,0) ~ ¬S(3,0) ~ P(1,3,1)) ` (¬P(1,3,1) ~ ¬Q(1,1) ~ ¬S(3,1) ~ P(1,3,2)) `
(¬P(1,3,2) ~ ¬Q(1,2) ~ ¬S(3,2) ~ P(1,3,3)) ` (¬P(1,3,3) ~ ¬Q(1,3) ~ ¬S(3,3) ~ P(1,3,4)) `
(¬P(#,3,0) ~ ¬Q(1,0) ~ ¬S(3,0) ~ P(1,3,1)) ` (¬P(#,3,1) ~ ¬Q(1,1) ~ ¬S(3,1) ~ P(1,3,2)) `
(¬P(#,3,2) ~ ¬Q(1,2) ~ ¬S(3,2) ~ P(1,3,3)) ` (¬P(#,3,3) ~ ¬Q(1,3) ~ ¬S(3,3) ~ P(1,3,4)) `

732 ■ A p p e n d i x B N P - C o m p l e t e n e s s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(¬P(0,4,0) ~ ¬Q(1,0) ~ ¬S(4,0) ~ P(0,4,1)) ` (¬P(0,4,1) ~ ¬Q(1,1) ~ ¬S(4,1) ~ P(0,4,2)) `
(¬P(0,4,2) ~ ¬Q(1,2) ~ ¬S(4,2) ~ P(0,4,3)) ` (¬P(0,4,3) ~ ¬Q(1,3) ~ ¬S(4,3) ~ P(0,4,4)) `
(¬P(1,4,0) ~ ¬Q(1,0) ~ ¬S(4,0) ~ P(1,4,1)) ` (¬P(1,4,1) ~ ¬Q(1,1) ~ ¬S(4,1) ~ P(1,4,2)) `
(¬P(1,4,2) ~ ¬Q(1,2) ~ ¬S(4,2) ~ P(1,4,3)) ` (¬P(1,4,3) ~ ¬Q(1,3) ~ ¬S(4,3) ~ P(1,4,4)) `
(¬P(#,4,0) ~ ¬Q(1,0) ~ ¬S(4,0) ~ P(1,4,1)) ` (¬P(#,4,1) ~ ¬Q(1,1) ~ ¬S(4,1) ~ P(1,4,2)) `
(¬P(#,4,2) ~ ¬Q(1,2) ~ ¬S(4,2) ~ P(1,4,3)) ` (¬P(#,4,3) ~ ¬Q(1,3) ~ ¬S(4,3) ~ P(1,4,4)) `
(¬P(0,0,0) ~ ¬Q(2,0) ~ ¬S(0,0) ~ P(#,0,1)) ` (¬P(0,0,1) ~ ¬Q(2,1) ~ ¬S(0,1) ~ P(#,0,2)) `
(¬P(0,0,2) ~ ¬Q(2,2) ~ ¬S(0,2) ~ P(#,0,3)) ` (¬P(0,0,3) ~ ¬Q(2,3) ~ ¬S(0,3) ~ P(#,0,4)) `
(¬P(1,0,0) ~ ¬Q(2,0) ~ ¬S(0,0) ~ P(#,0,1)) ` (¬P(1,0,1) ~ ¬Q(2,1) ~ ¬S(0,1) ~ P(#,0,2)) `
(¬P(1,0,2) ~ ¬Q(2,2) ~ ¬S(0,2) ~ P(#,0,3)) ` (¬P(1,0,3) ~ ¬Q(2,3) ~ ¬S(0,3) ~ P(#,0,4)) `
(¬P(0,1,0) ~ ¬Q(2,0) ~ ¬S(1,0) ~ P(#,1,1)) ` (¬P(0,1,1) ~ ¬Q(2,1) ~ ¬S(1,1) ~ P(#,1,2)) `
(¬P(0,1,2) ~ ¬Q(2,2) ~ ¬S(1,2) ~ P(#,1,3)) ` (¬P(0,1,3) ~ ¬Q(2,3) ~ ¬S(1,3) ~ P(#,1,4)) `
(¬P(1,1,0) ~ ¬Q(2,0) ~ ¬S(1,0) ~ P(#,1,1)) ` (¬P(1,1,1) ~ ¬Q(2,1) ~ ¬S(1,1) ~ P(#,1,2)) `
(¬P(1,1,2) ~ ¬Q(2,2) ~ ¬S(1,2) ~ P(#,1,3)) ` (¬P(1,1,3) ~ ¬Q(2,3) ~ ¬S(1,3) ~ P(#,1,4)) `
(¬P(0,2,0) ~ ¬Q(2,0) ~ ¬S(2,0) ~ P(#,2,1)) ` (¬P(0,2,1) ~ ¬Q(2,1) ~ ¬S(2,1) ~ P(#,2,2)) `
(¬P(0,2,2) ~ ¬Q(2,2) ~ ¬S(2,2) ~ P(#,2,3)) ` (¬P(0,2,3) ~ ¬Q(2,3) ~ ¬S(2,3) ~ P(#,2,4)) `
(¬P(1,2,0) ~ ¬Q(2,0) ~ ¬S(2,0) ~ P(#,2,1)) ` (¬P(1,2,1) ~ ¬Q(2,1) ~ ¬S(2,1) ~ P(#,2,2)) `
(¬P(1,2,2) ~ ¬Q(2,2) ~ ¬S(2,2) ~ P(#,2,3)) ` (¬P(1,2,3) ~ ¬Q(2,3) ~ ¬S(2,3) ~ P(#,2,4)) `
(¬P(0,3,0) ~ ¬Q(2,0) ~ ¬S(3,0) ~ P(#,3,1)) ` (¬P(0,3,1) ~ ¬Q(2,1) ~ ¬S(3,1) ~ P(#,3,2)) `
(¬P(0,3,2) ~ ¬Q(2,2) ~ ¬S(3,2) ~ P(#,3,3)) ` (¬P(0,3,3) ~ ¬Q(2,3) ~ ¬S(3,3) ~ P(#,3,4)) `
(¬P(1,3,0) ~ ¬Q(2,0) ~ ¬S(3,0) ~ P(#,3,1)) ` (¬P(1,3,1) ~ ¬Q(2,1) ~ ¬S(3,1) ~ P(#,3,2)) `
(¬P(1,3,2) ~ ¬Q(2,2) ~ ¬S(3,2) ~ P(#,3,3)) ` (¬P(1,3,3) ~ ¬Q(2,3) ~ ¬S(3,3) ~ P(#,3,4)) `
(¬P(0,4,0) ~ ¬Q(2,0) ~ ¬S(4,0) ~ P(#,4,1)) ` (¬P(0,4,1) ~ ¬Q(2,1) ~ ¬S(4,1) ~ P(#,4,2)) `
(¬P(0,4,2) ~ ¬Q(2,2) ~ ¬S(4,2) ~ P(#,4,3)) ` (¬P(0,4,3) ~ ¬Q(2,3) ~ ¬S(4,3) ~ P(#,4,4)) `
(¬P(1,4,0) ~ ¬Q(2,0) ~ ¬S(4,0) ~ P(#,4,1)) ` (¬P(1,4,1) ~ ¬Q(2,1) ~ ¬S(4,1) ~ P(#,4,2)) `
(¬P(1,4,2) ~ ¬Q(2,2) ~ ¬S(4,2) ~ P(#,4,3)) ` (¬P(1,4,3) ~ ¬Q(2,3) ~ ¬S(4,3) ~ P(#,4,4)) `
(¬P(0,0,0) ~ ¬Q(3,0) ~ ¬S(0,0) ~ P(0,0,1)) ` (¬P(0,0,1) ~ ¬Q(3,1) ~ ¬S(0,1) ~ P(0,0,2)) `
(¬P(0,0,2) ~ ¬Q(3,2) ~ ¬S(0,2) ~ P(0,0,3)) ` (¬P(0,0,3) ~ ¬Q(3,3) ~ ¬S(0,3) ~ P(0,0,4)) `
(¬P(1,0,0) ~ ¬Q(3,0) ~ ¬S(0,0) ~ P(1,0,1)) ` (¬P(1,0,1) ~ ¬Q(3,1) ~ ¬S(0,1) ~ P(1,0,2)) `
(¬P(1,0,2) ~ ¬Q(3,2) ~ ¬S(0,2) ~ P(1,0,3)) ` (¬P(1,0,3) ~ ¬Q(3,3) ~ ¬S(0,3) ~ P(1,0,4)) `
(¬P(#,0,0) ~ ¬Q(3,0) ~ ¬S(0,0) ~ P(#,0,1)) ` (¬P(#,0,1) ~ ¬Q(3,1) ~ ¬S(0,1) ~ P(#,0,2)) `
(¬P(#,0,2) ~ ¬Q(3,2) ~ ¬S(0,2) ~ P(#,0,3)) ` (¬P(#,0,3) ~ ¬Q(3,3) ~ ¬S(0,3) ~ P(#,0,4)) `
(¬P(0,1,0) ~ ¬Q(3,0) ~ ¬S(1,0) ~ P(0,1,1)) ` (¬P(0,1,1) ~ ¬Q(3,1) ~ ¬S(1,1) ~ P(0,1,2)) `
(¬P(0,1,2) ~ ¬Q(3,2) ~ ¬S(1,2) ~ P(0,1,3)) ` (¬P(0,1,3) ~ ¬Q(3,3) ~ ¬S(1,3) ~ P(0,1,4)) `
(¬P(1,1,0) ~ ¬Q(3,0) ~ ¬S(1,0) ~ P(1,1,1)) ` (¬P(1,1,1) ~ ¬Q(3,1) ~ ¬S(1,1) ~ P(1,1,2)) `
(¬P(1,1,2) ~ ¬Q(3,2) ~ ¬S(1,2) ~ P(1,1,3)) ` (¬P(1,1,3) ~ ¬Q(3,3) ~ ¬S(1,3) ~ P(1,1,4)) `
(¬P(#,1,0) ~ ¬Q(3,0) ~ ¬S(1,0) ~ P(#,1,1)) ` (¬P(#,1,1) ~ ¬Q(3,1) ~ ¬S(1,1) ~ P(#,1,2)) `
(¬P(#,1,2) ~ ¬Q(3,2) ~ ¬S(1,2) ~ P(#,1,3)) ` (¬P(#,1,3) ~ ¬Q(3,3) ~ ¬S(1,3) ~ P(#,1,4)) `
(¬P(0,2,0) ~ ¬Q(3,0) ~ ¬S(2,0) ~ P(0,2,1)) ` (¬P(0,2,1) ~ ¬Q(3,1) ~ ¬S(2,1) ~ P(0,2,2)) `
(¬P(0,2,2) ~ ¬Q(3,2) ~ ¬S(2,2) ~ P(0,2,3)) ` (¬P(0,2,3) ~ ¬Q(3,3) ~ ¬S(2,3) ~ P(0,2,4)) `
(¬P(1,2,0) ~ ¬Q(3,0) ~ ¬S(2,0) ~ P(1,2,1)) ` (¬P(1,2,1) ~ ¬Q(3,1) ~ ¬S(2,1) ~ P(1,2,2)) `
(¬P(1,2,2) ~ ¬Q(3,2) ~ ¬S(2,2) ~ P(1,2,3)) ` (¬P(1,2,3) ~ ¬Q(3,3) ~ ¬S(2,3) ~ P(1,2,4)) `
(¬P(#,2,0) ~ ¬Q(3,0) ~ ¬S(2,0) ~ P(#,2,1)) ` (¬P(#,2,1) ~ ¬Q(3,1) ~ ¬S(2,1) ~ P(#,2,2)) `
(¬P(#,2,2) ~ ¬Q(3,2) ~ ¬S(2,2) ~ P(#,2,3)) ` (¬P(#,2,3) ~ ¬Q(3,3) ~ ¬S(2,3) ~ P(#,2,4)) `
(¬P(0,3,0) ~ ¬Q(3,0) ~ ¬S(3,0) ~ P(0,3,1)) ` (¬P(0,3,1) ~ ¬Q(3,1) ~ ¬S(3,1) ~ P(0,3,2)) `
(¬P(0,3,2) ~ ¬Q(3,2) ~ ¬S(3,2) ~ P(0,3,3)) ` (¬P(0,3,3) ~ ¬Q(3,3) ~ ¬S(3,3) ~ P(0,3,4)) `

S e c t i o n B . 1 C o o k ’s T h e o r e m ■ 733

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(¬P(1,3,0) ~ ¬Q(3,0) ~ ¬S(3,0) ~ P(1,3,1)) ` (¬P(1,3,1) ~ ¬Q(3,1) ~ ¬S(3,1) ~ P(1,3,2)) `
(¬P(1,3,2) ~ ¬Q(3,2) ~ ¬S(3,2) ~ P(1,3,3)) ` (¬P(1,3,3) ~ ¬Q(3,3) ~ ¬S(3,3) ~ P(1,3,4)) `
(¬P(#,3,0) ~ ¬Q(3,0) ~ ¬S(3,0) ~ P(#,3,1)) ` (¬P(#,3,1) ~ ¬Q(3,1) ~ ¬S(3,1) ~ P(#,3,2)) `
(¬P(#,3,2) ~ ¬Q(3,2) ~ ¬S(3,2) ~ P(#,3,3)) ` (¬P(#,3,3) ~ ¬Q(3,3) ~ ¬S(3,3) ~ P(#,3,4)) `
(¬P(0,4,0) ~ ¬Q(3,0) ~ ¬S(4,0) ~ P(0,4,1)) ` (¬P(0,4,1) ~ ¬Q(3,1) ~ ¬S(4,1) ~ P(0,4,2)) `
(¬P(0,4,2) ~ ¬Q(3,2) ~ ¬S(4,2) ~ P(0,4,3)) ` (¬P(0,4,3) ~ ¬Q(3,3) ~ ¬S(4,3) ~ P(0,4,4)) `
(¬P(1,4,0) ~ ¬Q(3,0) ~ ¬S(4,0) ~ P(1,4,1)) ` (¬P(1,4,1) ~ ¬Q(3,1) ~ ¬S(4,1) ~ P(1,4,2)) `
(¬P(1,4,2) ~ ¬Q(3,2) ~ ¬S(4,2) ~ P(1,4,3)) ` (¬P(1,4,3) ~ ¬Q(3,3) ~ ¬S(4,3) ~ P(1,4,4)) `
(¬P(#,4,0) ~ ¬Q(3,0) ~ ¬S(4,0) ~ P(#,4,1)) ` (¬P(#,4,1) ~ ¬Q(3,1) ~ ¬S(4,1) ~ P(#,4,2)) `
(¬P(#,4,2) ~ ¬Q(3,2) ~ ¬S(4,2) ~ P(#,4,3)) ` (¬P(#,4,3) ~ ¬Q(3,3) ~ ¬S(4,3) ~ P(#,4,4)) `
(¬P(0,0,0) ~ ¬Q(0,0) ~ ¬S(0,0) ~ S(1,1)) ` (¬P(0,0,1) ~ ¬Q(0,1) ~ ¬S(0,1) ~ S(1,2)) ` // group 7

(¬P(0,0,2) ~ ¬Q(0,2) ~ ¬S(0,2) ~ S(1,3)) ` (¬P(0,0,3) ~ ¬Q(0,3) ~ ¬S(0,3) ~ S(1,4)) `
(¬P(1,0,0) ~ ¬Q(0,0) ~ ¬S(0,0) ~ S(1,1)) ` (¬P(1,0,1) ~ ¬Q(0,1) ~ ¬S(0,1) ~ S(1,2)) `
(¬P(1,0,2) ~ ¬Q(0,2) ~ ¬S(0,2) ~ S(1,3)) ` (¬P(1,0,3) ~ ¬Q(0,3) ~ ¬S(0,3) ~ S(1,4)) `
// passing from S(0,0) to S(–1,1) means sliding off the tape, that is, halting execution; M remains in cell 0:

(¬P(#,0,0) ~ ¬Q(0,0) ~ ¬S(0,0) ~ S(0,1)) ` (¬P(#,0,1) ~ ¬Q(0,1) ~ ¬S(0,1) ~ S(0,2)) `
(¬P(#,0,2) ~ ¬Q(0,2) ~ ¬S(0,2) ~ S(0,3)) ` (¬P(#,0,3) ~ ¬Q(0,3) ~ ¬S(0,3) ~ S(0,4)) `
(¬P(0,1,0) ~ ¬Q(0,0) ~ ¬S(1,0) ~ S(2,1)) ` (¬P(0,1,1) ~ ¬Q(0,1) ~ ¬S(1,1) ~ S(2,2)) `
(¬P(0,1,2) ~ ¬Q(0,2) ~ ¬S(1,2) ~ S(2,3)) ` (¬P(0,1,3) ~ ¬Q(0,3) ~ ¬S(1,3) ~ S(2,4)) `
(¬P(1,1,0) ~ ¬Q(0,0) ~ ¬S(1,0) ~ S(2,1)) ` (¬P(1,1,1) ~ ¬Q(0,1) ~ ¬S(1,1) ~ S(2,2)) `
(¬P(1,1,2) ~ ¬Q(0,2) ~ ¬S(1,2) ~ S(2,3)) ` (¬P(1,1,3) ~ ¬Q(0,3) ~ ¬S(1,3) ~ S(2,4)) `
(¬P(#,1,0) ~ ¬Q(0,0) ~ ¬S(1,0) ~ S(0,1)) ` (¬P(#,1,1) ~ ¬Q(0,1) ~ ¬S(1,1) ~ S(0,2)) `
(¬P(#,1,2) ~ ¬Q(0,2) ~ ¬S(1,2) ~ S(0,3)) ` (¬P(#,1,3) ~ ¬Q(0,3) ~ ¬S(1,3) ~ S(0,4)) `
(¬P(0,2,0) ~ ¬Q(0,0) ~ ¬S(2,0) ~ S(3,1)) ` (¬P(0,2,1) ~ ¬Q(0,1) ~ ¬S(2,1) ~ S(3,2)) `
(¬P(0,2,2) ~ ¬Q(0,2) ~ ¬S(2,2) ~ S(3,3)) ` (¬P(0,2,3) ~ ¬Q(0,3) ~ ¬S(2,3) ~ S(3,4)) `
(¬P(1,2,0) ~ ¬Q(0,0) ~ ¬S(2,0) ~ S(3,1)) ` (¬P(1,2,1) ~ ¬Q(0,1) ~ ¬S(2,1) ~ S(3,2)) `
(¬P(1,2,2) ~ ¬Q(0,2) ~ ¬S(2,2) ~ S(3,3)) ` (¬P(1,2,3) ~ ¬Q(0,3) ~ ¬S(2,3) ~ S(3,4)) `
(¬P(#,2,0) ~ ¬Q(0,0) ~ ¬S(2,0) ~ S(1,1)) ` (¬P(#,2,1) ~ ¬Q(0,1) ~ ¬S(2,1) ~ S(1,2)) `
(¬P(#,2,2) ~ ¬Q(0,2) ~ ¬S(2,2) ~ S(1,3)) ` (¬P(#,2,3) ~ ¬Q(0,3) ~ ¬S(2,3) ~ S(1,4)) `
(¬P(0,3,0) ~ ¬Q(0,0) ~ ¬S(3,0) ~ S(4,1)) ` (¬P(0,3,1) ~ ¬Q(0,1) ~ ¬S(3,1) ~ S(4,2)) `
(¬P(0,3,2) ~ ¬Q(0,2) ~ ¬S(3,2) ~ S(4,3)) ` (¬P(0,3,3) ~ ¬Q(0,3) ~ ¬S(3,3) ~ S(4,4)) `
(¬P(1,3,0) ~ ¬Q(0,0) ~ ¬S(3,0) ~ S(4,1)) ` (¬P(1,3,1) ~ ¬Q(0,1) ~ ¬S(3,1) ~ S(4,2)) `
(¬P(1,3,2) ~ ¬Q(0,2) ~ ¬S(3,2) ~ S(4,3)) ` (¬P(1,3,3) ~ ¬Q(0,3) ~ ¬S(3,3) ~ S(4,4)) `
(¬P(#,3,0) ~ ¬Q(0,0) ~ ¬S(3,0) ~ S(2,1)) ` (¬P(#,3,1) ~ ¬Q(0,1) ~ ¬S(3,1) ~ S(2,2)) `
(¬P(#,3,2) ~ ¬Q(0,2) ~ ¬S(3,2) ~ S(2,3)) ` (¬P(#,3,3) ~ ¬Q(0,3) ~ ¬S(3,3) ~ S(2,4)) `
(¬P(0,4,0) ~ ¬Q(0,0) ~ ¬S(4,0) ~ S(5,1)) ` (¬P(0,4,1) ~ ¬Q(0,1) ~ ¬S(4,1) ~ S(5,2)) `
(¬P(0,4,2) ~ ¬Q(0,2) ~ ¬S(4,2) ~ S(5,3)) ` (¬P(0,4,3) ~ ¬Q(0,3) ~ ¬S(4,3) ~ S(5,4)) `
(¬P(1,4,0) ~ ¬Q(0,0) ~ ¬S(4,0) ~ S(5,1)) ` (¬P(1,4,1) ~ ¬Q(0,1) ~ ¬S(4,1) ~ S(5,2)) `
(¬P(1,4,2) ~ ¬Q(0,2) ~ ¬S(4,2) ~ S(5,3)) ` (¬P(1,4,3) ~ ¬Q(0,3) ~ ¬S(4,3) ~ S(5,4)) `
(¬P(#,4,0) ~ ¬Q(0,0) ~ ¬S(4,0) ~ S(3,1)) ` (¬P(#,4,1) ~ ¬Q(0,1) ~ ¬S(4,1) ~ S(3,2)) `
(¬P(#,4,2) ~ ¬Q(0,2) ~ ¬S(4,2) ~ S(3,3)) ` (¬P(#,4,3) ~ ¬Q(0,3) ~ ¬S(4,3) ~ S(3,4)) `
(¬P(0,0,0) ~ ¬Q(1,0) ~ ¬S(0,0) ~ S(1,1)) ` (¬P(0,0,1) ~ ¬Q(1,1) ~ ¬S(0,1) ~ S(1,2)) `
(¬P(0,0,2) ~ ¬Q(1,2) ~ ¬S(0,2) ~ S(1,3)) ` (¬P(0,0,3) ~ ¬Q(1,3) ~ ¬S(0,3) ~ S(1,4)) `
(¬P(1,0,0) ~ ¬Q(1,0) ~ ¬S(0,0) ~ S(1,1)) ` (¬P(1,0,1) ~ ¬Q(1,1) ~ ¬S(0,1) ~ S(1,2)) `
(¬P(1,0,2) ~ ¬Q(1,2) ~ ¬S(0,2) ~ S(1,3)) ` (¬P(1,0,3) ~ ¬Q(1,3) ~ ¬S(0,3) ~ S(1,4)) `
// an attempt to slide off the tape; M halts and remains in cell 0:

734 ■ A p p e n d i x B N P - C o m p l e t e n e s s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(¬P(#,0,0) ~ ¬Q(1,0) ~ ¬S(0,0) ~ S(0,1)) ` (¬P(#,0,1) ~ ¬Q(1,1) ~ ¬S(0,1) ~ S(0,2)) `
(¬P(#,0,2) ~ ¬Q(1,2) ~ ¬S(0,2) ~ S(0,3)) ` (¬P(#,0,3) ~ ¬Q(1,3) ~ ¬S(0,3) ~ S(0,4)) ` //can’t be in state 1

(¬P(0,1,0) ~ ¬Q(1,0) ~ ¬S(1,0) ~ S(2,1)) ` (¬P(0,1,1) ~ ¬Q(1,1) ~ ¬S(1,1) ~ S(2,2)) `
(¬P(0,1,2) ~ ¬Q(1,2) ~ ¬S(1,2) ~ S(2,3)) ` (¬P(0,1,3) ~ ¬Q(1,3) ~ ¬S(1,3) ~ S(2,4)) `
(¬P(1,1,0) ~ ¬Q(1,0) ~ ¬S(1,0) ~ S(2,1)) ` (¬P(1,1,1) ~ ¬Q(1,1) ~ ¬S(1,1) ~ S(2,2)) `
(¬P(1,1,2) ~ ¬Q(1,2) ~ ¬S(1,2) ~ S(2,3)) ` (¬P(1,1,3) ~ ¬Q(1,3) ~ ¬S(1,3) ~ S(2,4)) `
(¬P(#,1,0) ~ ¬Q(1,0) ~ ¬S(1,0) ~ S(0,1)) ` (¬P(#,1,1) ~ ¬Q(1,1) ~ ¬S(1,1) ~ S(0,2)) `
(¬P(#,1,2) ~ ¬Q(1,2) ~ ¬S(1,2) ~ S(0,3)) ` (¬P(#,1,3) ~ ¬Q(1,3) ~ ¬S(1,3) ~ S(0,4)) `
(¬P(0,2,0) ~ ¬Q(1,0) ~ ¬S(2,0) ~ S(3,1)) ` (¬P(0,2,1) ~ ¬Q(1,1) ~ ¬S(2,1) ~ S(3,2)) `
(¬P(0,2,2) ~ ¬Q(1,2) ~ ¬S(2,2) ~ S(3,3)) ` (¬P(0,2,3) ~ ¬Q(1,3) ~ ¬S(2,3) ~ S(3,4)) `
(¬P(1,2,0) ~ ¬Q(1,0) ~ ¬S(2,0) ~ S(3,1)) ` (¬P(1,2,1) ~ ¬Q(1,1) ~ ¬S(2,1) ~ S(3,2)) `
(¬P(1,2,2) ~ ¬Q(1,2) ~ ¬S(2,2) ~ S(3,3)) ` (¬P(1,2,3) ~ ¬Q(1,3) ~ ¬S(2,3) ~ S(3,4)) `
(¬P(#,2,0) ~ ¬Q(1,0) ~ ¬S(2,0) ~ S(1,1)) ` (¬P(#,2,1) ~ ¬Q(1,1) ~ ¬S(2,1) ~ S(1,2)) `
(¬P(#,2,2) ~ ¬Q(1,2) ~ ¬S(2,2) ~ S(1,3)) ` (¬P(#,2,3) ~ ¬Q(1,3) ~ ¬S(2,3) ~ S(1,4)) `
(¬P(0,3,0) ~ ¬Q(1,0) ~ ¬S(3,0) ~ S(4,1)) ` (¬P(0,3,1) ~ ¬Q(1,1) ~ ¬S(3,1) ~ S(4,2)) `
(¬P(0,3,2) ~ ¬Q(1,2) ~ ¬S(3,2) ~ S(4,3)) ` (¬P(0,3,3) ~ ¬Q(1,3) ~ ¬S(3,3) ~ S(4,4)) `
(¬P(1,3,0) ~ ¬Q(1,0) ~ ¬S(3,0) ~ S(4,1)) ` (¬P(1,3,1) ~ ¬Q(1,1) ~ ¬S(3,1) ~ S(4,2)) `
(¬P(1,3,2) ~ ¬Q(1,2) ~ ¬S(3,2) ~ S(4,3)) ` (¬P(1,3,3) ~ ¬Q(1,3) ~ ¬S(3,3) ~ S(4,4)) `
(¬P(#,3,0) ~ ¬Q(1,0) ~ ¬S(3,0) ~ S(2,1)) ` (¬P(#,3,1) ~ ¬Q(1,1) ~ ¬S(3,1) ~ S(2,2)) `
(¬P(#,3,2) ~ ¬Q(1,2) ~ ¬S(3,2) ~ S(2,3)) ` (¬P(#,3,3) ~ ¬Q(1,3) ~ ¬S(3,3) ~ S(2,4)) `
(¬P(0,4,0) ~ ¬Q(1,0) ~ ¬S(4,0) ~ S(5,1)) ` (¬P(0,4,1) ~ ¬Q(1,1) ~ ¬S(4,1) ~ S(5,2)) `
(¬P(0,4,2) ~ ¬Q(1,2) ~ ¬S(4,2) ~ S(5,3)) ` (¬P(0,4,3) ~ ¬Q(1,3) ~ ¬S(4,3) ~ S(5,4)) `
(¬P(1,4,0) ~ ¬Q(1,0) ~ ¬S(4,0) ~ S(5,1)) ` (¬P(1,4,1) ~ ¬Q(1,1) ~ ¬S(4,1) ~ S(5,2)) `
(¬P(1,4,2) ~ ¬Q(1,2) ~ ¬S(4,2) ~ S(5,3)) ` (¬P(1,4,3) ~ ¬Q(1,3) ~ ¬S(4,3) ~ S(5,4)) `
(¬P(#,4,0) ~ ¬Q(1,0) ~ ¬S(4,0) ~ S(3,1)) ` (¬P(#,4,1) ~ ¬Q(1,1) ~ ¬S(4,1) ~ S(3,2)) `
(¬P(#,4,2) ~ ¬Q(1,2) ~ ¬S(4,2) ~ S(3,3)) ` (¬P(#,4,3) ~ ¬Q(1,3) ~ ¬S(4,3) ~ S(3,4)) `
(¬P(0,0,0) ~ ¬Q(2,0) ~ ¬S(0,0) ~ S(1,1)) ` (¬P(0,0,1) ~ ¬Q(2,1) ~ ¬S(0,1) ~ S(1,2)) `
(¬P(0,0,2) ~ ¬Q(2,2) ~ ¬S(0,2) ~ S(1,3)) ` (¬P(0,0,3) ~ ¬Q(2,3) ~ ¬S(0,3) ~ S(1,4)) `
(¬P(1,0,0) ~ ¬Q(2,0) ~ ¬S(0,0) ~ S(1,1)) ` (¬P(1,0,1) ~ ¬Q(2,1) ~ ¬S(0,1) ~ S(1,2)) `
(¬P(1,0,2) ~ ¬Q(2,2) ~ ¬S(0,2) ~ S(1,3)) ` (¬P(1,0,3) ~ ¬Q(2,3) ~ ¬S(0,3) ~ S(1,4)) `
(¬P(#,0,0) ~ ¬Q(2,0) ~ ¬S(0,0) ~ S(1,1)) ` (¬P(#,0,1) ~ ¬Q(2,1) ~ ¬S(0,1) ~ S(1,2)) `
(¬P(#,0,2) ~ ¬Q(2,2) ~ ¬S(0,2) ~ S(1,3)) ` (¬P(#,0,3) ~ ¬Q(2,3) ~ ¬S(0,3) ~ S(1,4)) `
(¬P(0,1,0) ~ ¬Q(2,0) ~ ¬S(1,0) ~ S(2,1)) ` (¬P(0,1,1) ~ ¬Q(2,1) ~ ¬S(1,1) ~ S(2,2)) `
(¬P(0,1,2) ~ ¬Q(2,2) ~ ¬S(1,2) ~ S(2,3)) ` (¬P(0,1,3) ~ ¬Q(2,3) ~ ¬S(1,3) ~ S(2,4)) `
(¬P(1,1,0) ~ ¬Q(2,0) ~ ¬S(1,0) ~ S(2,1)) ` (¬P(1,1,1) ~ ¬Q(2,1) ~ ¬S(1,1) ~ S(2,2)) `
(¬P(1,1,2) ~ ¬Q(2,2) ~ ¬S(1,2) ~ S(2,3)) ` (¬P(1,1,3) ~ ¬Q(2,3) ~ ¬S(1,3) ~ S(2,4)) `
(¬P(#,1,0) ~ ¬Q(2,0) ~ ¬S(1,0) ~ S(2,1)) ` (¬P(#,1,1) ~ ¬Q(2,1) ~ ¬S(1,1) ~ S(2,2)) `
(¬P(#,1,2) ~ ¬Q(2,2) ~ ¬S(1,2) ~ S(2,3)) ` (¬P(#,1,3) ~ ¬Q(2,3) ~ ¬S(1,3) ~ S(2,4)) `
(¬P(0,2,0) ~ ¬Q(2,0) ~ ¬S(2,0) ~ S(3,1)) ` (¬P(0,2,1) ~ ¬Q(2,1) ~ ¬S(2,1) ~ S(3,2)) `
(¬P(0,2,2) ~ ¬Q(2,2) ~ ¬S(2,2) ~ S(3,3)) ` (¬P(0,2,3) ~ ¬Q(2,3) ~ ¬S(2,3) ~ S(3,4)) `
(¬P(1,2,0) ~ ¬Q(2,0) ~ ¬S(2,0) ~ S(3,1)) ` (¬P(1,2,1) ~ ¬Q(2,1) ~ ¬S(2,1) ~ S(3,2)) `
(¬P(1,2,2) ~ ¬Q(2,2) ~ ¬S(2,2) ~ S(3,3)) ` (¬P(1,2,3) ~ ¬Q(2,3) ~ ¬S(2,3) ~ S(3,4)) `
(¬P(#,2,0) ~ ¬Q(2,0) ~ ¬S(2,0) ~ S(3,1)) ` (¬P(#,2,1) ~ ¬Q(2,1) ~ ¬S(2,1) ~ S(3,2)) `
(¬P(#,2,2) ~ ¬Q(2,2) ~ ¬S(2,2) ~ S(3,3)) ` (¬P(#,2,3) ~ ¬Q(2,3) ~ ¬S(2,3) ~ S(3,4)) `
(¬P(0,3,0) ~ ¬Q(2,0) ~ ¬S(3,0) ~ S(4,1)) ` (¬P(0,3,1) ~ ¬Q(2,1) ~ ¬S(3,1) ~ S(4,2)) `
(¬P(0,3,2) ~ ¬Q(2,2) ~ ¬S(3,2) ~ S(4,3)) ` (¬P(0,3,3) ~ ¬Q(2,3) ~ ¬S(3,3) ~ S(4,4)) `

S e c t i o n B . 1 C o o k ’s T h e o r e m ■ 735

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

(¬P(1,3,0) ~ ¬Q(2,0) ~ ¬S(3,0) ~ S(4,1)) ` (¬P(1,3,1) ~ ¬Q(2,1) ~ ¬S(3,1) ~ S(4,2)) `
(¬P(1,3,2) ~ ¬Q(2,2) ~ ¬S(3,2) ~ S(4,3)) ` (¬P(1,3,3) ~ ¬Q(2,3) ~ ¬S(3,3) ~ S(4,4)) `
(¬P(#,3,0) ~ ¬Q(2,0) ~ ¬S(3,0) ~ S(4,1)) ` (¬P(#,3,1) ~ ¬Q(2,1) ~ ¬S(3,1) ~ S(4,2)) `
(¬P(#,3,2) ~ ¬Q(2,2) ~ ¬S(3,2) ~ S(4,3)) ` (¬P(#,3,3) ~ ¬Q(2,3) ~ ¬S(3,3) ~ S(4,4)) `
(¬P(0,4,0) ~ ¬Q(2,0) ~ ¬S(4,0) ~ S(5,1)) ` (¬P(0,4,1) ~ ¬Q(2,1) ~ ¬S(4,1) ~ S(5,2)) `
(¬P(0,4,2) ~ ¬Q(2,2) ~ ¬S(4,2) ~ S(5,3)) ` (¬P(0,4,3) ~ ¬Q(2,3) ~ ¬S(4,3) ~ S(5,4)) `
(¬P(1,4,0) ~ ¬Q(2,0) ~ ¬S(4,0) ~ S(5,1)) ` (¬P(1,4,1) ~ ¬Q(2,1) ~ ¬S(4,1) ~ S(5,2)) `
(¬P(1,4,2) ~ ¬Q(2,2) ~ ¬S(4,2) ~ S(5,3)) ` (¬P(1,4,3) ~ ¬Q(2,3) ~ ¬S(4,3) ~ S(5,4)) `
(¬P(#,4,0) ~ ¬Q(2,0) ~ ¬S(4,0) ~ S(5,1)) ` (¬P(#,4,1) ~ ¬Q(2,1) ~ ¬S(4,1) ~ S(5,2)) `
(¬P(#,4,2) ~ ¬Q(2,2) ~ ¬S(4,2) ~ S(5,3)) ` (¬P(#,4,3) ~ ¬Q(2,3) ~ ¬S(4,3) ~ S(5,4)) `
(¬P(0,0,0) ~ ¬Q(3,0) ~ ¬S(0,0) ~ S(0,1)) ` (¬P(0,0,1) ~ ¬Q(3,1) ~ ¬S(0,1) ~ S(0,2)) `
(¬P(0,0,2) ~ ¬Q(3,2) ~ ¬S(0,2) ~ S(0,3)) ` (¬P(0,0,3) ~ ¬Q(3,3) ~ ¬S(0,3) ~ S(0,4)) `
(¬P(1,0,0) ~ ¬Q(3,0) ~ ¬S(0,0) ~ S(0,1)) ` (¬P(1,0,1) ~ ¬Q(3,1) ~ ¬S(0,1) ~ S(0,2)) `
(¬P(1,0,2) ~ ¬Q(3,2) ~ ¬S(0,2) ~ S(0,3)) ` (¬P(1,0,3) ~ ¬Q(3,3) ~ ¬S(0,3) ~ S(0,4)) `
(¬P(#,0,0) ~ ¬Q(3,0) ~ ¬S(0,0) ~ S(0,1)) ` (¬P(#,0,1) ~ ¬Q(3,1) ~ ¬S(0,1) ~ S(0,2)) `
(¬P(#,0,2) ~ ¬Q(3,2) ~ ¬S(0,2) ~ S(0,3)) ` (¬P(#,0,3) ~ ¬Q(3,3) ~ ¬S(0,3) ~ S(0,4)) `
(¬P(0,1,0) ~ ¬Q(3,0) ~ ¬S(1,0) ~ S(1,1)) ` (¬P(0,1,1) ~ ¬Q(3,1) ~ ¬S(1,1) ~ S(1,2)) `
(¬P(0,1,2) ~ ¬Q(3,2) ~ ¬S(1,2) ~ S(1,3)) ` (¬P(0,1,3) ~ ¬Q(3,3) ~ ¬S(1,3) ~ S(1,4)) `
(¬P(1,1,0) ~ ¬Q(3,0) ~ ¬S(1,0) ~ S(1,1)) ` (¬P(1,1,1) ~ ¬Q(3,1) ~ ¬S(1,1) ~ S(1,2)) `
(¬P(1,1,2) ~ ¬Q(3,2) ~ ¬S(1,2) ~ S(1,3)) ` (¬P(1,1,3) ~ ¬Q(3,3) ~ ¬S(1,3) ~ S(1,4)) `
(¬P(#,1,0) ~ ¬Q(3,0) ~ ¬S(1,0) ~ S(1,1)) ` (¬P(#,1,1) ~ ¬Q(3,1) ~ ¬S(1,1) ~ S(1,2)) `
(¬P(#,1,2) ~ ¬Q(3,2) ~ ¬S(1,2) ~ S(1,3)) ` (¬P(#,1,3) ~ ¬Q(3,3) ~ ¬S(1,3) ~ S(1,4)) `
(¬P(0,2,0) ~ ¬Q(3,0) ~ ¬S(2,0) ~ S(2,1)) ` (¬P(0,2,1) ~ ¬Q(3,1) ~ ¬S(2,1) ~ S(2,2)) `
(¬P(0,2,2) ~ ¬Q(3,2) ~ ¬S(2,2) ~ S(2,3)) ` (¬P(0,2,3) ~ ¬Q(3,3) ~ ¬S(2,3) ~ S(2,4)) `
(¬P(1,2,0) ~ ¬Q(3,0) ~ ¬S(2,0) ~ S(2,1)) ` (¬P(1,2,1) ~ ¬Q(3,1) ~ ¬S(2,1) ~ S(2,2)) `
(¬P(1,2,2) ~ ¬Q(3,2) ~ ¬S(2,2) ~ S(2,3)) ` (¬P(1,2,3) ~ ¬Q(3,3) ~ ¬S(2,3) ~ S(2,4)) `
(¬P(#,2,0) ~ ¬Q(3,0) ~ ¬S(2,0) ~ S(2,1)) ` (¬P(#,2,1) ~ ¬Q(3,1) ~ ¬S(2,1) ~ S(2,2)) `
(¬P(#,2,2) ~ ¬Q(3,2) ~ ¬S(2,2) ~ S(2,3)) ` (¬P(#,2,3) ~ ¬Q(3,3) ~ ¬S(2,3) ~ S(2,4)) `
(¬P(0,3,0) ~ ¬Q(3,0) ~ ¬S(3,0) ~ S(3,1)) ` (¬P(0,3,1) ~ ¬Q(3,1) ~ ¬S(3,1) ~ S(3,2)) `
(¬P(0,3,2) ~ ¬Q(3,2) ~ ¬S(3,2) ~ S(3,3)) ` (¬P(0,3,3) ~ ¬Q(3,3) ~ ¬S(3,3) ~ S(3,4)) `
(¬P(1,3,0) ~ ¬Q(3,0) ~ ¬S(3,0) ~ S(3,1)) ` (¬P(1,3,1) ~ ¬Q(3,1) ~ ¬S(3,1) ~ S(3,2)) `
(¬P(1,3,2) ~ ¬Q(3,2) ~ ¬S(3,2) ~ S(3,3)) ` (¬P(1,3,3) ~ ¬Q(3,3) ~ ¬S(3,3) ~ S(3,4)) `
(¬P(#,3,0) ~ ¬Q(3,0) ~ ¬S(3,0) ~ S(3,1)) ` (¬P(#,3,1) ~ ¬Q(3,1) ~ ¬S(3,1) ~ S(3,2)) `
(¬P(#,3,2) ~ ¬Q(3,2) ~ ¬S(3,2) ~ S(3,3)) ` (¬P(#,3,3) ~ ¬Q(3,3) ~ ¬S(3,3) ~ S(3,4)) `
(¬P(0,4,0) ~ ¬Q(3,0) ~ ¬S(4,0) ~ S(4,1)) ` (¬P(0,4,1) ~ ¬Q(3,1) ~ ¬S(4,1) ~ S(4,2)) `
(¬P(0,4,2) ~ ¬Q(3,2) ~ ¬S(4,2) ~ S(4,3)) ` (¬P(0,4,3) ~ ¬Q(3,3) ~ ¬S(4,3) ~ S(4,4)) `
(¬P(1,4,0) ~ ¬Q(3,0) ~ ¬S(4,0) ~ S(4,1)) ` (¬P(1,4,1) ~ ¬Q(3,1) ~ ¬S(4,1) ~ S(4,2)) `
(¬P(1,4,2) ~ ¬Q(3,2) ~ ¬S(4,2) ~ S(4,3)) ` (¬P(1,4,3) ~ ¬Q(3,3) ~ ¬S(4,3) ~ S(4,4)) `
(¬P(#,4,0) ~ ¬Q(3,0) ~ ¬S(4,0) ~ S(4,1)) ` (¬P(#,4,1) ~ ¬Q(3,1) ~ ¬S(4,1) ~ S(4,2)) `
(¬P(#,4,2) ~ ¬Q(3,2) ~ ¬S(4,2) ~ S(4,3)) ` (¬P(#,4,3) ~ ¬Q(3,3) ~ ¬S(4,3) ~ S(4,4)) `
Q(3,4) // group 8

736 ■ A p p e n d i x B N P - C o m p l e t e n e s s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

737

Name Index
Ackermann, Wilhelm, 187
Adel’son-Vel’skii, G. M., 297
Aho, Alfred V., 676, 716
Ahuja, Ravindra K., 466
Allan, Stephen J., 606, 647
Allen, Brian, 261, 297
Appel, Andrew W., 624, 627, 644,

647, 648
Auslander, M. A., 213

Bachmann, Paul, 57
Baer, J. L., 297
Baeza-Yates, Ricardo, 672, 703,

714, 716
Baker, Henry G., 625, 634, 645,

648
Barber, Angus, 517
Barron, David W., 212
Barth, Gerhard, 650, 716
Bayer, Rudolf, 301, 316, 317, 323,

374
Bell, James R., 267, 297, 566, 568,

602
Bell, Timothy C., 603
Bentley, Jon L., 139, 375
Berge, Claude, 423, 466
Berlioux, Pierre, 212
Bertsekas, Dimitri, 389, 466
Berztiss, Alfs, 296
Bird, Richard S., 212, 213
Bitner, James R., 261, 297
Blackstone, John H., 157, 168
Bollobés, B., 297
Bondy, John A., 428, 436, 466
Boruvka, Otakar, 461
Bourne, Charles P., 353, 375
Boyer, Robert S., 716
Bracha, Silad, 55
Brassard, G., 79
Brélaz, Daniel, 444, 466
Bretholz, E., 135, 139
Briandais, Rene de la, 352, 375
Bromley, Allan G., 615, 647

Brooks, Rodney A., 627, 648
Burge, William H., 212
Burkhard, W. A., 296
Busacker, R. G., 418

Campbell, J. A., 643, 647
Cardelli, Luca, 55
Carlsson, Svente, 518
Carroll, Lewis, 150
Celis, P., 567, 568
Chang, Hsi, 297
Chen, Qi F., 568
Chen, Wen C., 569
Cheney, C. J., 623, 634, 648
Chvátal, V., 436, 466
Cichelli, Richard J., 533, 568
Cleary, J. G., 602, 603
Cohen, Jacques, 648
Cole, Richard, 668, 716
Comer, Douglas, 312, 353, 374,

375
Cook, Curtis R., 494, 518, 535, 568
Cook, Stephen A., 75, 79, 494
Copes, Wayne, 168
Corasick, Margaret J., 676, 716
Cormack, Gordon V., 585, 603
Cranston, Ben, 613, 647
Culberson, Joseph, 248, 296
Czech, Zbigniew, J., 568

Daoud, Amjad M., 568
Day, A. Colin, 252, 297
deMaine, P. A. D., 353, 375
Deo, Narsingh, 388, 466
D’Esopo, D., 388
Dijkstra, Edsger W., 172, 213, 384,

419, 466
Ding, Yuzheng, 488, 518
Dinic, Efim A., 414, 466
Doberkat, E. E., 275, 297
Dobosiewicz, W., 483, 517
Dood, M., 568
Downing, Troy, 168

Dromey, R. G., 518
Drozdek, Adam, 603, 698, 716
Dunn, Douglas, 55
Durian, B., 518
Dvorak, S., 518
Dy, H. C., 568
Dymes, Ruth, 150
Edmonds, Jack, 392, 412, 431, 434,

466
Ege, Raimund K., 55
Ellis, John R., 627, 644, 648
Enbody, R. J., 568
Eppinger, Jeffrey L., 248, 296
Euler, Leonhard, 432

Fagin, Ronald, 538, 568
Faller, Newton, 582, 603
Faloutsos, Christos, 321, 374
Fenichel, Robert R., 623, 648
Ferguson, David E., 319, 374
Finkel, R. A., 375
Fischer, M. J., 696, 717
Fleury, 433, 466
Flores, Ivan, 517
Floyd, Robert W., 272, 275, 292,

298, 390, 461, 467, 485
Folk, Michael J., 374
Ford, Donald F., 353, 375
Ford, Lester R., 386, 407, 408, 418,

467
Foster, Caxton C., 297
Foster, John M., 139, 260
Fox, Edward A., 536, 568
Frazer, William D., 518
Fredkin, Edward, 349, 375
Frieze, A., 298
Fulkerson, D. R., 407, 408, 418,

467
Fuller, S. H., 297

Gale, David, 427, 467, 517
Galil, Zvi, 671, 716
Gallager, Robert G., 582, 603

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Gallo, Giorgio, 383, 386, 389, 467
Garey, Michael R., 79
Gibbons, Alan, 434, 467
Gittleman, Art, 55
Glover, Fred, 389, 467
Glover, Randy, 389, 467
Gonnett, Gaston H., 298, 672, 714,

716
Gosling, James, 55
Gould, Ronald, 467
Gowen, P. J., 418
Graham, R. L., 396, 467
Guibas, Leo J., 324, 374, 668, 716
Gupta, Gopal, 267, 297
Guttman, Antonin, 320, 374
Haggard, G., 535, 568
Hagins, Jeff, 615, 644, 647
Hall, Philip, 451, 467
Hamilton, William, 53
Hancart, Christophe, 651, 652,

716
Hankamer, M., 601, 603
Hansen, Wilfred J., 139
Hanson, E., 321, 375
Hartmanis, Juris, 56, 79
Hayward, Ryan, 275, 298
Heaps, H. S., 602, 603
Heath, Lenwood S., 568
Heileman, Gregory, 79
Hell, Pavol, 396, 467
Hendriksen, James O., 158,

168
Hester, James H., 139
Hewitt, Carl, 627, 633, 648
Hibbard, Thomas N., 246, 291,

296, 516
Hinds, James A., 613, 647
Hirschberg, Daniel S., 139, 603,

613, 647
Hoare, Charles A. R., 488, 518
Hogg, Gary L., 168
Hopcroft, John E., 79, 379
Horowitz, E., 355, 375
Horspool, R. Nigel, 585, 603, 713,

716
Huang, B. C., 518
Huffman, David A., 572, 603
Hunt, James W., 698, 716

Incerpi, Janet, 483, 517
Ingerman, P. Z., 390, 467

Iri, M., 418
Isaacson, Joel D., 467
Iyengar, S. Sitharama, 297

Jarník, Vojtech, 462
Jewell, W. S., 418
Johnson, David S., 73, 79, 372,

463, 467
Johnson, Donald B., 385, 467
Johnson, Elias L., 434, 466
Johnson, Theodore, 374
Johnsson, C. B., 644
Jonassen, Arne T., 248, 296
Jones, Douglas W., 158, 168
Jones, Richard, 648
Joshi, Daniel i., 168
Joy, Bill, 55
Julstrom A., 516, 518

Kaehler, E. B., 297
Kalaba, Robert, 399, 467
Kaman, Charles H., 566, 568
Karlton, P. L., 260, 297
Karp, Richard M., 79, 392, 412,

466, 517
Karplus, K., 535, 568
Kershenbaum, Aaron, 460, 467
Khoshafian, Setrag, 55
Kim, Do Jin, 494, 518
Klingman, Darwin, 389, 467
Knott, G. D., 538, 568
Knowlton, Kenneth C., 608, 647
Knuth, Donald E., 79, 246, 248,

256, 275, 291, 296, 297, 312,
483, 515, 516, 517, 518, 526,
527, 568, 582, 603, 668, 704,
716

Koch, Helge von, 181
Kruskal, Joseph B., 396, 467
Kuhn, Harold W., 428, 467
Kurokawa, Toshiaki, 620, 621,

648
Kwan, Mei-ko, 467

Landis, E. M., 255, 297
Langston, M. A., 518
Larson, Per A., 538, 568
Layer, D. Kevin, 648
Lelever, Debra A., 603
Lemay, Laura, 168
Lempel, Abraham, 603

Leung, Clement H. C., 312, 374
Levenshtein, V. I., 695, 716
Lewis, Philip M., 468
Lewis, Ted G., 535, 568
Li, Kai, 627, 644, 648
Lieberman, Henry, 627, 633,

648
Lindholm, Tim, 168
Lins, Rafael, 648
Litwin, Witold, 538, 541, 568
Lomet, David B., 541, 568
Lorentz, Richard, 212
Lorin, Harold, 517
Lukasiewicz, Jan, 275, 291
Lum, V. Y., 520, 568
Magnanti, Thomas L., 466
Majewski, Bohdan S., 568
Maly, Kurt, 356, 375
Manber, Udi, 62, 79, 672, 693, 701,

703, 716, 717
Marble, George, 467
Martin, W. A., 297
Matthews, D., 135, 139
Matula, David W., 467
McCreight, Edward M., 301, 313,

374
McDiarmid, Colin, 275, 292, 298
McDonald, M. A., 291, 297
McGeoch, Catherine C., 139
McKellar, Archie C., 518
McLuckie, Keith, 517
Meertens, L., 79
Mehlhorn, Kurt, 517
Meyer, Bertrand, 55
Meyer, Jon, 168
Miller, Victor S., 588, 603
Moivre, A. de, 190
Moore, J. Strother, 716
Moret, B. M. E., 518
Morris, James H., 668, 704, 716
Morris, Joseph M., 236-239,

296
Morris, Robert, 525, 568
Morrison, Donald R., 374, 375
Motzkin, Dalia, 518
Mullin, James K., 544, 568
Munkres, James, 428, 468
Munro, J. Ian, 261, 297, 298, 567,

568, 569
Murty, U. S. R., 428, 466
Myers, Gene, 693, 716

738 ■ N a m e I n d e x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Napier, John, 208
Naughton, Patrick, 55
Ness, D. N., 297
Neumann, John von, 494
Ng, D. T. H., 135, 139
Nievergelt, Jurg, 568

Odlyzko, Andrew M., 668, 716
Oldehoeft, Rodney R., 606, 647
Oommen, B. J., 139
Ore, Oystein, 436, 468
Orlin, James B., 466

Page, Ivor P., 615, 644, 647
Pagli, L., 529, 568
Pallottino, Stefano, 383, 386, 389,

467
Pang, Chi-yin, 388, 466
Papadimitriou, Christos H., 74,

79, 463, 467, 468
Pape, U., 388, 389, 468
Papernov, A. A., 517
Perkins, Charles L., 168
Perleberg, Chris H., 703, 716
Peter, Rozsa, 187
Peterson, James L., 614, 647
Phillips, Don T., 168
Pippenger, Nicholas, 568
Pirklbauer, Klaus, 670, 716
Poblete, Patricio V., 567, 569
Pollack, Maurice, 388, 468
Poonen, Bjorn, 517
Pountain, Dick, 603
Powell, M. B., 443, 468
Pratt, Vaughan R., 517, 668, 704,

716
Preparata, Franco P., 79
Prim, Robert C., 462, 468
Pugh, William, 101, 139

Radke, Charles E., 524, 569
Ramakrishna, M. V., 567
Razmik, Abnous, 55
Reed, B. A., 275, 292, 298
Reynolds, Carl W., 517
Riccardi, Greg, 374
Rich, R., 517
Richardson, Chris, 648
Rivest, Ronald, 139
Roberts, Eric, 212

Rohl, Jeffrey S., 212
Rosenberg, Arnold L., 369, 374
Rosenkrantz, Daniel J., 463, 468
Ross, Douglas T., 606, 647
Rotem, D., 135, 139
Rotwitt, T., 353, 375
Roussopoulos, Nick, 321, 374
Rubin, Frank, 581, 603

Sacco, William, 168
Sager, Thomas J., 536, 569
Salomon, David, 603
Samet, Hanan, 370, 375
Schildt, Herbert, 55
Schorr, H., 617-621, 648
Schuegraf, E. J., 602, 603
Schwab, B., 297
Scroggs, R. E., 297
Sebesta, Robert W., 535, 569
Sedgewick, Robert, 324, 374, 483,

517, 518
Sellers, Peter H., 715, 716
Sellis, Timos, 321, 374, 375
Sethi, Ravi, 353, 375
Shannon, Claude E., 571
Shapley, L. S., 427, 467
Shasha, Dennis, 372, 374
Shell, Donald L., 481, 517
Shen, Kenneth K., 614, 647
Simon, I., 297
Sleator, Daniel D., 139, 262, 265,

297
Sloyer, Clifford, 168
Smith, Harry F., 647
Smith, P. D., 670, 717
Snyder, Lawrence, 369, 374
Standish, Thomas A., 526, 644, 647
Starck, Robert, 168
Stasevich, G. V., 517
Stearns, Richard E., 56, 79, 468
Steiglitz, Kenneth, 468
Stonebraker, M., 321, 375
Stout, Quentin F., 252, 297
Strong, H. Raymond, 213, 568
Sunday, Daniel M., 668, 717
Al-Suwaiyel, M., 355, 375
Swamy, M. N. S., 428, 468
Szymanski, Thomas G., 698, 716

Tarjan, Robert E., 79, 139, 262,
265, 297, 379, 403, 468

Taylor, Mark A., 535, 569
Tharp, Alan L., 569
Thomas, Rick, 613, 647
Thompson, Ken, 683, 717
Thulasiraman, K., 428, 468

Ukkonen, Esko, 689, 717
Unterauer, Karl, 316, 317, 374

Vitanyi, P. M. B., 79
Vitter, Jeffrey S., 569

Wadler, Philip L., 625, 648
Wagner, Richard A., 696, 717
Waite, W. M., 617-621, 648
Warren, Bette L., 252, 297
Warshall, Stephen, 390, 468
Weber, Joe, 55
Wedekind, H., 313, 375
Wegbreit, Ben, 620, 648
Wegener, Ingo, 518
Wegman, Mark N., 588, 603
Wegner, Peter, 55
Weinstock, C. B., 644
Weiss, Mark A., 55, 298, 488, 517,

518
Welch, Terry A., 588, 603
Welsh, D. J. A., 443, 468
Wiebenson, Walter, 388, 468
Wilkes, Maurice V., 139
Williams, J. W. J., 272, 275, 292,

298, 484, 518
Wilson, Paul R., 633, 648
Wirth, Niklaus, 213
Witten, Ian H., 602, 603
Witzgall, C., 388
Wood, Derick, 689, 717
Wu, Sun, 672, 701, 703, 717
Wulf, W. A., 644

Yao, Andrew Chi-Chih, 311, 375
Yellin, Frank, 168
Yochelson, Jerome C., 623, 648
Yuasa, Taiichi, 630, 648
Yuen, P. S. T., 568

Ziv, Jacob, 603
Zoellick, Bill, 374
Zorn, Benjamin, 633, 648
Zweben, S. H., 291, 297

N a m e I n d e x ■ 739

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

740

Subject Index

abstract classes, 17
abstract data types, 16–17, 140
access time, 300–301
Ackermann function, 187
acrostics, 150
activation record, 173
active point, 690
adaptive exact-fit method,

606–607
adaptive Huffman coding,

581–586
Ada, speed of, 56
adding polynomials: case study,

507–514
implementation of program,

509–514
adjacency list, 377
adjacency matrix, 378
adjacent vertices, 377
admissible trees. See AVL trees
Aho-Corasick algorithm,

676–678, 703
algorithms, 405

acrostic, 150
adding large numbers

(pseudocode), 144
Aho-Corasick algorithm,

676–678, 703
backtracking (psuedocode),

192
Baker’s algorithm, 625–627
binary search, 65
Boruvka’s algorithm, 462
Boyer-Moore algorithm,

660–668, 671
Boyer-Moore-Galil algorithm,

671
Cichelli’s algorithm, 533–536
classes of, 63
classified by time or space

complexities, 62, 63, 64
comparison of run times for

different sorting, 506

constant, 62, 63
cubic, 63, 64, 393
for deleting by copying, imple-

mentation of, 247
for deleting by merging, im-

plementation of, 244–245
delimiter matching, 141–142,

142
depth-first search, 379–382
for dequeuing, 270
D’Esopo-Pape algorithm, 460
deterministic, 73–74
Dijkstra’s algorithm, 384–386
DSW, 252–255
efficient, 74
efficient sorting, 481–501
elementary sorting, 470–477
for enqueuing, 269
estimating efficiency of, with

big-O notation, 59–61
evaluating efficiency of, 56–57
exponential, 63
FHCD algorithm, 536–538
flagFlipping, 328, 330–331
Fleury’s algorithm, 433
Ford’s algorithm, 386–388
Hancart’s algorithm, 651–652
Huffman algorithm, 572–573
Hunt-Szymanski algorithm,

699–701
implementation of insertion,

240
inefficient, 64
for inserting keys in B-trees,

306
to insert node into threaded

tree, implementation of, 241
Jarník-Prim algorithm, 462,

464
Kershenbaum’s algorithm, 460
Knuth-Morris-Pratt algo-

rithm, 652–659, 679–680
Kruskal’s algorithm, 396–399

Kuhn-Munkres algorithm,
428–429

linear, 63
logarithmic, 63
Morris, 236–239, 237, 240
with nested loops, 65
nondeterministic, 73–74
O(n lg n), 63
polynomial-time, 74
quadratic, 62, 63, 64
Schorr and Waite algorithm,

617–621
for searching key using bit-tree

leaf, 320
sorting, 123
sources affecting efficiency of,

633
stop-and-copy algorithm, 623,

625, 633
straightforward string match-

ing, 649–652
Sunday algorithms, 668–670
Tarjan’s algorithm, 403
Ukkonen algorithm, 689–692,

704
Wagner-Fischer algorithm,

696–698
WFI algorithm, 390, 392, 461
Yuasa’s algorithm, 630–632
Ziv-Lempel algorithm, 588–589

alignments, 694
alternating path, 422
American Standard Code for

Information Interchange
(ASCII) code. See ASCII
code

amortized complexity, 69–73, 110,
265–267

amortized cost, 71–73, 110
of access in splaying, lemma

specifying, 265
estimating, 72
of single operations, 110

*page numbers in italic represent diagrams/figures/pseudocode.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

analysis, amortized, 69–73
anchor, 169, 175, 186
approximate string matching,

694–704
string matching with k errors,

701–704
string similarity, 695–701

arcs, 214, 376
in decision trees, 479

array indexes, 106
array list, 338
ArrayList class, 120–123

list of methods, 120–122
methods, program demon-

strating operation, 122–123
arrays, 15–16. See also sorting

advantages of, over linked lists,
123

calculating sum of numbers in,
64–66

flexible. See vectors
heaps implemented by, 267–269
implementation of queues in,

151, 152
implementing trees as, 219
of numbers, 93
ordered, 65
organizing, as heaps, 272–275,

273
overcoming limitations of, 123
parallel two-dimensional, 112,

113, 114
pseudoflexible, 359, 360
of references, 106
of references to subtries, 349,

351
and sparse table for storing

student grades, 112
stack implementation as flexi-

ble, 146
for storing items, 14
transformed into heaps, 485,

486
unordered, 67

articulation points, 400
artificial intelligence, 191
ASCII code, 579, 581, 586

used in sorting, 469
values in, 522

ASCII codes, 50, 319
assignment operators, 4
assignment problem, 428–430

assignments
for nodes, 82
value, 4

assignment statements, 64–66
asymptotic complexity, 57

imprecision of, 633
augmenting path, 422, 424
avail-list, 621
average case assessment, 66–69
average path length, 222
AVL trees, 107, 255, 255–260, 258

rebalancing, after deleting
node, 259

transforming, into vh-trees,
337, 337

backbone, 253–255
transforming binary search

tree into, 253
transforming, into perfectly

balanced tree, 254
back edges, 392
backtracking, 158, 159, 191–198

in graphs, 379
Backus-Naur form (BNF), 171
Baker’s algorithm, 625–627

modification to, 627
balanced trees, 249
Bank One, 154–157

customer data example, 155
example: implementation

code, 156–157
base class, 20
BASIC

compiler in, 604
speed of, 56

Bessel functions, 249
best case assessment, 66–69
best-fit algorithm, 605
biconnected components, 400
biconnected graphs, 400
big-omega notation, 61–62
big-O notation, 57–61, 470

calculation according to defin-
ition of, 58

estimates, typical functions
applied in, 63

inherent imprecision of, 59
possible problems, 62
properties of, 59–61

binary buddy system, 608–613,
610

binary code, 570, 572
binary file, 26
binary search, 123, 250, 519, 693

algorithms, 65
average case for, 67–69
nondeterministic version,

73–74
binary search algorithm, 65
binary search trees, 217–218, 218,

249. See also 2–4 trees
comparing tries with, 352
creating, from ordered array,

251
deleting nodes in, 242–249
as an encumbrance, 301
implementation of generic,

220–221
inserting nodes into, 240
property of, 217–218
searching, 221–223
transforming, into backbone,

253
binary trees, 214–288. See also

trees
balanced, 249
defined, 216
heap properties of, 485
heaps, 267–275
height-balanced, 249
implementing, 219–221
important characteristic of,

217
inserting nodes in, 239–242
ordered, 217
perfectly balanced, 249
red-black trees, 324
representing 2–4 trees as, 324
searching, 239
sorting algorithms expressed

in terms of, 477–478
top-down or bottom-up

creation of, 277
tries implemented as, 354
vh-trees, 324–327

bipartite graphs, 421, 424, 536
bits, 42

strings of, 672
bit-trees, 319, 319–320
bivariate integral equations, 249
black pointers, 324
blocks, 300

algorithm for allocating, 607

S u b j e c t I n d e x ■ 741

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

in graphs, 400
in Huffman trees, 582
memory, 605

blossoms, 431
Bn-trees, 313
Boolean arguments, 5
Boolean conditions, 6
Boolean expressions, 6, 447

in conjunctive normal form
(CNF), 75

satisfiable, 75
Boolean methods, 93
Boolean value, 5
Boolean variables, 75
Boruvka’s algorithm, 462
boundary folding, 520–521
boundary path, 689
bounds, 488–494

finding best, 494
selecting, 489

Boyer-Moore algorithm, 660–668,
671

Boyer-Moore-Galil algorithm, 671
breadth-first search, 381, 382, 412,

413, 424, 430
breadth-first traversal, 224, 582,

623, 625, 634, 678
copying lists using, 623
implementation, 224

Brelaz algorithm, 444–445
bridge, in graph, 400, 433
B**-trees, 313
B*-trees, 312–313
B+-trees, 313–316, 314
B-trees, 301–337

building, 323
deleting keys from, 309–311,

310
family of, 300–337
free-at-empty, 372–374
important property of, 301–302
inserting keys, 305–309
merge-at-half, 372–374
merging in, 309
of order 4. See 2–4 trees
of order m, properties of, 302
searching, 304–305
splitting, 305–307, 309

bubble sort, 475–477, 479, 483, 506
bucket addressing, 530–531
buckets, 541–544. See also bucket

addressing

hashing with: case study,
557–565

splitting, 541
buddy systems, 608–615
bytecodes, 144

index, 145
bytes, 43, 49

files as collections of, 42
reading and writing, 26–27
sequence of, 26
used to specify separators, 319

C, 2, 15
library, 12
pointers in, 35
speed of, 56
unused memory in, 604

C++, 2, 15
library, 12
pointers in, 35
shifting responsibility to

garbage collector in, 624
unused memory in, 604

canonical node, 704, 706
canonical reference, 704
capacity, of edge, 407
Cartesian plane, 320
case studies:

adding polynomials, 507–514
computing word frequencies,

280–288
distinct representatives,

450–459
exiting a maze, 158–163
hashing with buckets, 557–565
Huffman method with run-

length encoding, 590–600
in-place garbage collector,

634–635
library, 124–133
longest common substring,

704–712
random access file, 42–50
recursive descent interpreter,

199–206
spell checker, 358–368

cellar, 529
coalesced hashing using, 530

chaining, 528, 528–530
characters, 2

literal, 3
non-Latin, 2

sequence of, 26
sequences of blank, 42–43
Unicode, 1, 3

cheapest insertion algorithum, 463
children, on trees, 214, 299. See

also nodes
deleting nodes with, 243

Chinese postman problem, 434
solving, 435

chromatic number, 443
Cichelli’s method, 533–536
circuit, 377
circular lists, 99–101, 393, 501

doubly linked, 101
inserting nodes, 100
singly linked, 99

class(es)
abstract, 17
base, 20
buffered, 24
building, 42
creating hierarchy of, 18
derived, 20
filtered, 24
generic, 14
implementation of interfaces

by, 17
legacy, 35
methods, 12–13
nonderived, 20
piped streams, 24
variables, 12–13
wrapper, 16, 23

class declaration, 10
program, 10

class methods, 12–13
class scope variables, 8
class type, 1
class variables, 12–13
clique, 445
cloning, 33, 33–34, 41
clusters, in hashing, 523, 525
coalesced hashing, 529, 529
coalescing process, 605, 611–614,

612, 614
COBOL, 604
cocktail shaker sort, 483, 515
collision resolution, 522–531

bucket addressing, 530–531
chaining, 528–530
open addressing, 522–526, 528

collisions, 520

742 ■ S u b j e c t I n d e x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

compaction, 621–622
data. See data compression
heap, 623

compilation, 199
compilers, 199, 276, 604

generating code in, 278
symbol tables in, 519

complement graphs, 448
complete binary trees, 217
complete graphs, 377
complexity analysis, 56–75

amortized complexity, 69–73
best, average, and worst cases,

66–69
big-O notation, 57–61
computational and asymptotic

complexity, 56–57
examples of complexities,

62–64
finding asymptotic complex-

ity: examples, 64–66
NP-completeness, 73–75
omega and theta notations,

61–62
possible problems, 62

compound statements, 1
compression

adaptive, 582
of tries, 355, 355–358

compression rate, 355, 572
computational complexity, 56–57
computing word frequencies: case

study, 280–288
implementation, 282–287
semisplay tree used for, 281

conditional operators, 5
conjunctive normal form (CNF),

75
connected graphs, 399–400
connectivity, 399–405

in directed graphs, 402–403,
405

in undirected graphs, 399–400,
402

constant algorithm, 62, 63
constants, 17
constructors, 30

in nodes, 82
copying methods, of garbage

collection, 623–628, 633
count method, of organization,

107–110

Cray computers, 56
C-tries, 356–358
cubic algorithm, 63, 64, 393
cut-edge, 400
cuts, 408
cut-vertices, 400
cycle, 377
cycle detection, 392–393

dangling reference problem,
34

data
final ordering of, 469–470
secondary storage, processing,

299
spatial, 320
transferal, 570

data compression, 570–593
conditions for, 570–572

data encapsulation, 8
data fields, 8

with no access modifier, 21
in nodes, 82
nodes containing, referencing

other nodes, 80
data structures

composed of nodes, 80
with contiguous block of

memory. See vectors
equalizing, 41
graphs as versatile, 376
linear, 140. See also stacks
and object-oriented program-

ming (OOP), 42
sophisticated, 106–107. See

also trees
for spatial data, 320
spell checker, 358
subject to sequence of opera-

tions, 69
data types, reading and writing

primitive, 29
D-bits, useful properties of, 319
decision problems, 74
decision statements, 5–6
decision trees, 217, 477–480, 480.

See also sorting
declaration, 26

class, 10–12
for nodes, 82

default modifier, 12
degree of vertex, 377

deleting by copying, 246–249, 248,
331–332

implementation of algorithm
for, 247

deleting by merging, 243–246,
245, 246

implementation of algorithm
for, 244–245

summary of, 244
deletion

AVL trees, 258–260
binary search trees, 242–249,

309
B+-trees, 314, 316
B-trees, 309–311, 310
by copying, 246–249,

331–332
doubly linked lists, 98
in hashing, 531–532
linked lists, 88, 88–93, 90, 92,

98, 99
by merging, 243–246
prefix B+-trees, 316
sets, 338
simple prefix B+-trees, 316
2–4 trees, 327
vh-trees, 331–332, 333–337,

335
delimiters, 1

matching, 141
dependency graph, 536
depth-first search, 379–382, 393,

395, 400, 405, 409–412, 414,
431

adapted to topological sort,
405–406

depth-first traversal, 225–231,
634, 693

implementation, 226
stackless, 231–235
tasks of interest in, 225

depth, of directory, 539, 540
deques, 388–389
dequeuing, 149, 150, 151, 153

algorithm, 270
elements from heaps, 269–270,

271
derived classes, 20
D’Esopo-Pape algorithm, 388, 460
deterministic algorithms, 73–74
differentiation, 279
digital trees, 370

S u b j e c t I n d e x ■ 743

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

digraphs, 376. See also directed
graphs; networks

depth-first search in, 381
linearizing. See topological sort

Dijkstra’s algorithm, 384–386
label-correcting version of, 390
modified, 419

Dijkstra’s method, 399, 464
diminishing increment sort. See

Shell sort
Dinic’s algorithm, 414, 415,

416–417
directed graphs, 376. See also

digraphs
connectivity in, 402–403, 405

directories, 538–541
depth of, 539, 540

disks, 300
distinction bits. See D-bits
distinct representatives: case

study, 450–459
problem, implementation,

454–459
division, in hashing, 520
dot notation, 35
double hashing, 526, 527, 528
double-O (OO) notation, 62
doubly linked lists, 95, 95–99, 575,

582–583, 605, 608, 634
circular, 100
deleting nodes, 98, 98
implementation, 96
inserting nodes, 97, 98

DSW algorithm, 252–255
dual buddy system, 615
dynamic binding, 21, 22
dynamic hashing, 538

echoprinting, 150
edges, weights assigned to, 376, 383
edit table, 696
efficiency

of algorithms, using big-O
notation to estimate, 59–61

best, average, and worst cases,
66–69

criteria, 56
of heap sort, 488
of prefix B+-trees, 317
of recursion, 198–199
searching, improving, 107
of searching in binary trees, 223

of skip lists, 106–107, 110
of traversal procedures, 239

Eiffel, 604
eight queens problem, 191–198,

192, 195, 197–198
implementation, 194
encapsulation, 8–16

arrays, 15–16
class methods and class vari-

ables, 12–13
generic classes, 14
wrapper classes, 16

endpoint, 690
enqueuing, 149, 150, 151, 153

algorithm, 269
elements to heaps, 269, 270, 272

entries, map, 344, 349
entropy, 570
entry table, 627–628
equality operator, 43
error messages, 6–7

run-time, 15
Eulerian cycle, 432, 433
Eulerian graphs, 432–435

Chinese postman problem, 434
Eulerian trail, 432
exact string matching, 649–692

bit-oriented approach, 672–675
Boyer-Moore algorithm,

660–668
Knuth-Morris-Pratt algo-

rithm, 652–659
matching sets of words,

676–682
multiple searches, 670–672
regular expression matching,

682–686
straightforward algorithms,

649–652
suffix arrays, 693–694
suffix tries and trees, 686–692
Sunday algorithms, 668–670

exceptions
catching, 145
handling, 6–8
throwing, 25, 89–90

excessive recursion, 188–191
exiting a maze: case study, 158,

158–163
algorithm psuedocode for, 159
example of processing maze,

160

program for maze processing,
161–163

expandable hashing, 538
expected value, 66
explicit cast, 2
exponential algorithm, 63
expression trees, 276, 276–277, 279

operations on, 277–280
Extended Binary Coded Decimal

Interchange Code
(EBCDIC), 469

extendible hashing, 538, 539,
539–541

external fragmentation, 605, 612,
615

extraction, in hashing, 521

factorial function, 170
farthest insertion algorithum, 463
fastmark algorithm, 620
fax images, 587
FHCD algorithm, 536–538
Fibonacci buddy system, 613
Fibonacci numbers, 188–191, 199

algorithms for calculating, 191
calculating, 190

Fibonacci words, 659
fields, 8, 49

initialization of, 82
FIFO (first in/first out) structures,

149. See also queues
files, 42, 49

binary, 26
text, 26

fill factor, 313
final variables, 17
first-fit algorithm, 605
fixed-length records, 43
flag flipping, 328, 330–331
Fleury’s algorithm, 433
flexible arrays, 35
floating garbage, 632
floating-point literals, 3
floating-point numbers, 3, 4, 202
float numbers, 93
flow, 407–408
flow-augmenting path, 408
flower, on blossom, 431
folding, 520–521
Ford-Fulkerson algorithm,

408–414, 410–411, 413, 417
Ford’s algorithm, 386–388

744 ■ S u b j e c t I n d e x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

forest, 380
Forth, use of postfix notation by,

277
FORTRAN, 604
forward edges, 381
4-nodes, 324
fraction of data reduction, 572.

See also compression rate
frames, 145
free-at-empty B-trees, 372–374
fromspace, 625
full suffix rule, 662
functional languages, 9
functions

complex, 56–57
defined in a class, 8
factorial, 170
f growth rate of all terms of, 57
recursive, 174

garbage collection, 615–632
copying methods, 623–628, 633
decreasing cost of, 623–624
incremental garbage collec-

tion, 625–632
marking phase, 616–621
noncopying methods of,

629–632
reclamation phase, 621

garbage collector, 34, 88, 92, 98,
242, 615–616

generalized Fibonacci system, 613
generational garbage collection,

627, 633
Lieberman-Hewitt technique

of, 629
generic classes, 14
Godel numbers, 167
graphs, 376–459, 377

connectivity, 399–405
cycle detection, 392–393
defined, 376
Eulerian graphs, 432–435
graph coloring, 442–445
Hamiltonian graphs, 436–437
matching, 421–432
networks, 407–421
NP-completeness problems in

graph theory, 443, 445–449
representation, 377–379
shortest paths, 383–392
spanning trees, 380, 395–396,

399

topological sort, 405–406
traversing. See graph traversals

graph traversals, 379–382
ground case, 169

Hamiltonian cycle, 436–437, 438
problem, 449

Hamiltonian graphs, 436–437
traveling salesman problem

(TSP), 438–442
Hancart’s algorithm, 651–652
hash function, 338
hash functions, 519, 520–522, 590

division, 520
for extendible files, 538–544
extendible hashing, 539–541
extraction, 521
folding, 520–521
linear hashing, 541–544
mid-square function, 521
radix transformation, 522

hashing, 519–557
with buckets: case study,

557–565
collision resolution, 522–531
deletion, 531–532
hash functions, 520–522
hash functions for extendible

files, 538–544
in java.util, 544–557
perfect hash functions, 532–538
using buckets, implementa-

tion, 559–565
HashMap, 544–557

demonstrating operation of
methods in class, 546–547

methods in class, 545
HashSet, 547–552

demonstrating operation of
methods in class, 549–551

methods in class, 548–549
hash table, 338
Hashtable, 552–557

methods of class, 552–553
methods, program demonstrat-

ing operation of, 554–556
heap, memory, 604, 605, 607,

633
compaction, 623

heap property, 267
heaps, 267–275, 268, 385,

575–579. See also heap sort

implemented by arrays,
267–269

organizing arrays as, 272–275,
273

as priority queues, 269–271
properties of, 485

heap sort, 484–488
height

-balanced trees, 249
of empty and nonempty trees,

214
maximum number of nodes in

binary trees of different, 250
tree, extension or reduction

after deletion by merging,
246

of tries, determining, 351, 352
of vh-trees, 326

height-balanced trees, 249
hexadecimal notation, 570
hiding, 9
horizontal pointers, 324, 325
Huffman algorithm, 572–573

implemented with heap, 578
Huffman coding, 572–581

adaptive, 581–586
Huffman method
implementation, 593–600

with run-length encoding: case
study, 590–600

Huffman trees, 573, 574, 575–581
Hungarian tree, 424, 431
Hunt-Szymanski algorithm,

699–701

identifiers, 28
implementation

array, of list, 120–123
of Java by Microsoft, 32
of Java by Sun, 32
program, 16
skip list, 103–105

incidence matrix, 378, 379
incremental garbage collection,

625–632
copying methods in, 625–628

indexes, 519
array, 106
of buckets, 538
bytecode, 145

index set, 313, 314
of B+-tree, 316

S u b j e c t I n d e x ■ 745

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

indirect recursion, 185–187
infix notation, 277
information-hiding principle, 9, 20
inheritance, 18–21
initialization, 64, 65

of fields, 82
inorder tree traversal, 225–230,

227, 228, 313
changes in run-time stack

during, 229
generation of infix notation

by, 277
Morris algorithm for, 236–237,

237
nonrecursive implementation

of, 232
in-place garbage collector: case

study, 634–635
implementation, 637–642

input and output, 24–31, 41
buffered, 27
random access files, 30–31
reading and writing bytes,

26–27
reading and writing objects,

29–30
reading and writing primitive

data types, 29
reading lines, 27
reading tokens: words and

numbers, 28
insertion

AVL tree, 256–258
binary search trees, 240
binary trees, 239–242
B*-trees, 312
B+-trees, 314
B-trees, 305–309
doubly linked lists, 98
linked lists, 86, 86–88, 87, 97,

98, 100
R-trees, 321
sets, 338, 340
simple prefix B+-trees, 316
threaded trees, 242
tries, 352
2–4 trees, 327
vectors, 41
vh-trees, 330–331

insertion sort, 470–473, 479, 483,
494, 497, 505–506

instance methods, 12

instance variables, 12
integer literals, 3
integer operations, 2
integers, 14, 42

list that stores, 115
literal, 3
short, 114
sorting, 497–498
storing, 93
unsigned, 2, 25

interfaces, 16, 17, 22
relaxation of rigidity of, 17

internal fragmentation, 605, 615
internal path length (IPL), 222, 248
Internet, bytecodes received

through, 144
interpretation, 199
interpreter, 145

implementation of simple
language, 203–206

need for, to execute bytecodes,
144

recursive descent: case study,
199–206

sample, for limited program-
ming language, 199–206

intractable problems, 74
inversion, 109–110
ISBN code, 521
iteration

use in real-time systems,
198–199

use of, versus recursion,
198–199

iterators, example of application
of, 118–119, 128–133

Jarník-Prim algorithm, 440, 462,
464

Java
case sensitivity in, 1
decision statements, 5–6
delimiters in, 141
equivalent of factorial, 171
exception handling, 6–8
implementation of selection

sort, 474
important difference between

C/C++ and, 2
loops, 6
operators, 4–5
and pointers, 31–35

representing polynomials in,
507

rudimentary, 1–8
variable declarations, 1–4

Java stack, 172
java.util

ArrayList class, 120–123
hashing in, 544–557
HashSet, 547–552
Hashtable, 552–557
LinkedList class, 114–120
sorting in, 502–505
stacks in, 148–149
TreeMap, 344–349, 345–347
TreeSet, 338–340, 338–344,

341–343
Vector, member functions in,

36–39
vectors in, 35–41

Java Virtual Machine (JVM), 172
stack used by, 144–145

k-colorable, 443
Kershenbaum’s algorithm, 460
keyboard, 24, 25
keys, 301

comparison of, 519
deletion from B-trees of,

309–311, 310
insertion into B-trees of,

305–309
separator, 316
in tries, 349
used in maps, 344

Kleene closure, 682
Knuth-Morris-Pratt algorithm,

652–659, 679–680
Kruskal’s algorithm, 396–399, 464
Kuhn-Munkres algorithm, 428–429

label-correcting methods, 383–390
label, in network, 408, 419
label-setting methods, 383–390
largest first algoritham, 444
last-come-first-served hashing, 567
latency, 300
layered network, 414, 416
leaders, 582
leaves, 214, 217

adding, to trees, 218
of bit-trees, 319
in B+-trees, 313

746 ■ S u b j e c t I n d e x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

in decision trees, 479
deleting, 242
or nonleaves, merging in B-

trees, 309
of tries, 349

left side occurrence rule, 661
legacy class, 35
length of path, 214
level network. See layered network
level, of nodes, 214
Levenshtein distance, 695, 698
lg, 61
library case study, 124–133

library program, 128–133
linked lists indicating library

status, 125
LIFO (last in/first out) structures,

140. See also stacks
linear algorithm, 63
linear hashing, 538, 541–544
linear probing, 522–523, 526, 527,

528
lines, reading, 27
LinkedList class, 114–120

list of methods, 116–118
linked lists, 80–133, 573

advantages of arrays over, 123
circular lists, 99–101, 393
doubly linked lists, 95, 95–99
drawback of, 101
implementation of queues in,

153
implementing stack as,

146–147, 147
indicating library status, 125
in java.util, 114–120
library program, 128–133
of n elements, searching, 216
scanning, 90, 91, 95
searching, 93
self-organizing lists, 107–111
singly linked lists, 80–86, 81
skip lists, 101–107
sparse tables, 111–114
student grades implemented

using, 115
linked structures, 80. See also

linked lists
LISP, 9

automatic storage reclamation
in, 604

files, 593

forward references in, 627
garbage collection in, 615
read barrier in, 633
speed of, 56
use of prefix notation by, 277

listings, 694
literals

floating-point, 3
integer, 3

literal strings, 24
loading factor, 527, 542
local depth, in hashing, 540
logarithmic algorithm, 63
logarithmic function, 60–61
LOGO, use of prefix notation by,

277
longest common substring: case

study, 704–712
listing of program to find,

707–711
loops, 6, 64–66

infinite, 379, 623, 634
nested, 6
for printing vectors safely, 41
relation of tail recursion to,

178–179
required for deletion of tail

node in circular list,
100–101

in singly linked lists, 95
LZ77, 587–588, 588
LZW, 588–589, 589

maps, 344, 347, 349. See also tables
mark-and-sweep, 616, 629–630,

633
marking, in garbage collection,

616–621
Markov chains, theory of absorb-

ing, 650
marriage problem, 422
matching, 421–432, 423

assignment problem, 428–430
in nonbipartite graphs,

430–432
stable matching problem,

426–428
matching problem, 422
matchlist, 699
matrix, 378
max-flow min-cut theorem, 408
max-flow problem, 408

max heap, 267
maximum-flow problem, 408
maximum flows, 407–417

of minimum cost, 417–421, 420
maximum matching, 421–422
member functions

program demonstrating oper-
ation of vector, 40

vector, 36–39
memory

data structure with contiguous
block of. See vectors

dynamic allocation of neces-
sary amounts of, 123

nodes located anywhere in, 80
memory cells

currently in use, 616
unused, 615

memory management, 604–633
nonsequential-fit methods,

606–615
sequential-fit methods, 605–606

memory manager, 604–605
returning unneeded space to,

34
merge-at-half B-trees, 372–374
mergesort, 494–497, 496, 516
merging

in B-trees, 309
deleting by, 243–246

message passing, 11
method calls, 172, 179

and recursion implementa-
tion, 172–174

method prototypes, 17
methods, 8

application of TreeMap, 348
arrays passed to, by reference,

15–16
Boolean, 93
class, 12–13
of class TreeMap, 345–347
of class TreeSet, 338–340
instance, 12
list of, in class LinkedList,

116–118
with no access modifier, 21
nonstatic, 12

Microsoft, 32
mid-square hash function, 521
min heap, 267, 575–576
minimal vertex, 405

S u b j e c t I n d e x ■ 747

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

minimum spanning trees, 396,
399, 439

modifiers, 2
default, 12

Modula-3, 604
monitor, 24
Morris algorithm, 236–239, 237,

240
Morse code, 570
move-to-end method, 135
move-to-front method, of organi-

zation, 107–110
multigraphs, 376, 379
multiway Patricia trees, 372
multiway search tree of order m,

299
multiway tree of order m, 299
multiway trees, 299–358. See also

specific trees
mutators, 625, 627, 630
m-way search tree, defined, 299
m-way trees, 299

natural sort, 516
n-connected graphs, 400
nearest addition algorithum, 441
nearest insertion algorithum, 463
nearest neighbor algorithum, 463
nearest merger algorithum, 464
negative cycle, 383
nested loops, 6, 64, 65
nested recursion, 187
networks, 407–421

defined, 407
maximum flows, 407–417

next-fit method, 605–606
Nicod’s axiom, 291
nodes

on B-trees, 302
data fields in, 82
definition of, 82
deleting, in binary search trees,

242–249
deleting, in linked lists, 88,

88–93, 90, 92, 98, 99
deletion of tail, 100–101
inserting, in binary trees,

239–242
inserting, in linked lists, 86,

86–88, 87, 97, 98, 100
located anywhere in memory,

80

maximum number, in binary
trees of different heights, 250

in m-way search trees, 299
in skip lists, 102
in trees, 214
types of, in tries, 352

non–object-oriented languages, 8
nonbipartite graphs, 430–432
noncopying methods, of garbage

collection, 629–632
nonderived classes, 20
nondeterministic algorithms,

73–74
nondeterministic finite automa-

ton (NDFA), 683–686
nonsequential-fit methods,

606–615
nonsequential searching, 101
nonstatic methods, 12
nonstatic variables, 12
nontail recursion, 179–185
no occurrence rule, 661
normalization function, 522
notation, 649
NP-completeness, 73–75

clique problem, 445–446
Hamiltonian cycle problem,

449
problems in graph theory, 443,

445–449
3-colorability problem,

446–448
vertex cover problem, 448–449

null reference field, 80
null suppression, 587
numbers, 28

represented in binary form in
computers, 570

stored in binary form, 50

O(n lg n) algorithm, 63
Objective-C, 17
object-oriented programming

(OOP), 8–50
abstract data types, 16–17
data structures and, 42
encapsulation, 8–16
inheritance, 18–21
input and output, 24–31
polymorphism in the context

of, 21–24
random access files, 30–31

roots of, in simulation, 9
vectors, 35–41

objects
abandoning unneeded, 34
compound, 340
creation of, 8
in OOL, 9

organizing hierarchical represen-
tation of. See trees

reading and writing, 29–30
referred to, contents of, 23
self-referential, 82
simple, 340, 343
specification of, 10

open addressing, 522–526, 528
operand stack, 145
operations

integer, 2
performing user-defined, 115,

119
precisely specified, 16

operators, 4–5
assignment, 4
conditional, 5
equality, 43
prefix and postfix, 4

optimal assignment problem, 428
optimal code, 571–572
optimal-fit method, 643
optimal static ordering, 107
ordered binary trees, 217
ordering method, of organization,

107–110
orderly trees, 216

packages, 12
parsing, 200, 202
partial suffix rule, 662
partition approach, 703
Pascal, 9, 34

cross-reference program,
535

-like languages, 9
shifting responsibility to

garbage collector in, 624
unused memory in, 604
path, 214, 376
finding shortest, in graph

theory, 383
Patricia trees, 372 n, 373
pattern matching, 649
PCs, 56

748 ■ S u b j e c t I n d e x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

perfect hash functions, 519,
532–538

Cichelli’s method, 533–536
FHCD algorithm, 536–538

perfectly balanced trees, 249, 254
perfect matching, 422
periods, 671
piped streams, 24
pivots, 488
platform independent, 26
pointers, 31–35

horizontal and vertical, 324
red and black, 324

point quadtrees, 370
Polish notation, 275–277
polymorphism, 21–24
power of, 22
polynomials, 60

adding: case study, 507–514
postfix notation, 277
postfix operators, 4
postorder tree traversal, 225,

230–231, 440
generation of postfix notation

by, 277
nonrecursive implementation

of, 232
nonrecursive version of, 231
threaded trees used for, 235

PostScript, use of postfix notation
by, 277

potential, 71–73
prefix B+-trees, 316–318, 318
prefix notation, 277
prefix operators, 4
prefix property, 571
preorder tree traversal, 225,

230–231, 440
generation of prefix notation

by, 277
nonrecursive implementation

of, 230
threaded trees used for, 235

priority queues, 157–158, 573, 575
heaps as, 269–271

probability distribution, 66–67
probe, 522
probing function, 522, 523
problems

intractable, 74
NP-complete, 74
tractable, 74

Prolog, 179
automatic storage reclamation

in, 604
protocols, 17
pseudographs, 376
pseudokeys, 539
public information, 9
quadratic algorithm, 62, 63, 64
quadratic probing, 525, 527, 528
qualifiers, 24
quaternions, 53
queues, 149–157, 412, 416,

424–425, 498–501
array implementation of,

150–151, 151, 152
in graphs, 381, 388
linked list implementation of,

153
operations executed on ab-

stract, 154
operations needed to manage,

149
piles organized as, 498
priority, 157–158
series of operations executed

on, 150
used in breadth-first traversal,

224
used in simulations, 153

queuing theory, 153
quick-fit method, of memory

allocation, 644
quicksort, 488–494, 506, 558

implementation, 489–490

radix sort, 497–501, 499, 506
radix transformation, 522
random access, 123

of references stored in arrays,
353

random access files, 30–31
case study, 42–50

program to manage, 44–49
read barrier, 627, 629
reading

bytes, 26–27
input, 25
lines, 27
objects, 29–30
primitive data types, 29
records, methods for, 50
from standard device, 24

tokens: words and numbers, 28
real-time systems, use of iteration

in, 198–199
records, 49

fixed-length, 43
methods for reading and

writing, 50
recursion, 169–206, 226, 251, 489,

495
anatomy of recursive call,

174–178
backtracking, 191–198
double, 225
efficiency of iteration versus,

198–199
excessive, 188–191
implementation, method calls

and, 172
indirect, 185–187
as natural implementation of

backtracking, 191
nested, 187
nontail, 179–185
power of, 231
recursive definitions, 169–172
replacing, with iteration in

mergesort, 497
tail, 178–179

recursive definitions
parts of, 169
purposes of, 170
of sequences, undesirable

feature of, 170–171
uses of, 171

recursive descent, 200, 277
recursive descent interpreter

case study, 199–206
diagrams of methods used by,

201
red-black trees, 324, 325

maps implemented as, 344
used for implementation of

sets, 338
redistribution, in B-tree, 309
red pointers, 324
reducibility, 74
reduction algorithm, 74
reduction function, 74
reference count method, of

garbage collection,
643–644

reference fields

S u b j e c t I n d e x ■ 749

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

having different numbers of,
101

for nodes in trees, 233
null, 80
per node, 106
trees and, 219
two-dimensional, 93

references, 31–35, 82
inconvenience of using, 83
permanent, in circular linked

list, 99–100
in red-black trees and vh-trees,

324
singly linked lists of, 573
split, 541–542
storing, to nodes, 80
in trees, 233
in tries, 351
updating, 623

reference variables, 31–35
object, 32

relational databases, 587
right side occurrence rule, 661
Robin Hood hashing, 567
root, of SCC, 403
root pointers, 615
root set, 615
roots, tree, 214
rotation, 252–255, 261

of child about parent, 252
rotational delay, 300
R+-trees, 321–322
R-trees, 320–322, 322
run-length encoding, 586–587
candidates for compression using,

587
Huffman method with: case

study, 590–600
runs, 516

defined, 586
run-time stacks, 172, 199. See also

stacks
changes to, 177
contents, 174
for eight queens problem, 196
during inorder traversal, 229
overflow of, 616
reliance of recursive traversals

on, 239
in tree traversal, 225, 228–231

satisfiability problem, 75
saturation degree, of vertex, 444

scatter tables, 528
Schorr and Waite algorithm,

617–621
example of execution of,

618–619
searching

binary search trees, 221–223
binary trees, 239

bit-tree, 319–320
B-trees, 304–305

compressed tries, problem
with, 356

improving efficiency of, 107
linked list of n elements, 216
linked lists, 93, 102–107
nonsequential, 101
process, speeding up, 107
process, tree operations that

accelerate. See trees
R-tree, 321
sequential, 43, 49, 67, 107, 519
skip lists, 102–103, 105–106
tree sets, 344

2–4 tree, 325-326
secondary clusters, 525, 526
secondary storage

decrease in speed related to,
299

relation of B-trees to, 301–303
seektime, 300
selection sort, 474–475, 475, 479,

484, 506
self-adjusting trees, 107, 260–267

self-restructuring trees,
261–262

splaying, 262–267
self-organizing lists, 107–111, 108,

111
count method, 107–110, 108,

111
methods for organizing, 107
move-to-front method, of

organization, 107–110
ordering method, 107–110,

108
sample runs, 111
transpose method, 107–110,

108, 111
self-referential objects, 82
self-restructuring trees, 261–262
semispaces, 623

fromspace and tospace, 625

semisplaying, 263, 266–267, 267,
281

separate chaining, 528
sequence set, 313
sequential coloring, 443
sequential-fit methods, 605–606
sequential scanning, 101, 353
sequential searching, 43, 49, 67,

107, 519
sets

integer, 340
tree implementation of, 344

shakersort, 483
sharp sign (#), 350, 351
Shell sort, 481–484, 482, 506
shift folding, 520, 521
sibling property, 582
side edges, 392
signatures, 17
simple graphs, 376
simple prefix B+-trees, 316, 318
Simula, 9
simulations, 9

queues used in, 153
singly linked lists, 80–86, 81, 216,

314, 573
circular, 99
deleting nodes, 88, 88–93, 90,

92
implementation, 83–85
implementation of circular,

99–100
implementation of generic,

94–95
inserting nodes, 86, 86–88, 87
of integers, 85
searching, 93

sink, 405, 407
skip lists, 101–107

efficiency, 106–107, 110
implementation, 103–105
nodes, 102
searching, 102–103,

105–106
slack, 408
slow sorting, 516
small label first method, 389
Smalltalk, 604
sorting, 69, 469–514. See also

decision trees
algorithm, 123
algorithms, efficient, 481–501

750 ■ S u b j e c t I n d e x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

algorithms, elementary,
470–477

bubble sort, 475–477
criteria, 469
heap sort, 484–488
insertion sort, 470–473
in java.util, 502–505
mergesort, 494–497
quicksort, 488–494
radix sort, 497–501
selection sort, 474–475
Shell sort, 481–484
speed, estimating lower bound

of, 477
topological sort, 405–406

source, in network, 407
space, 56

advantages of arrays, 123–124
complexities, algorithms

classified by, 62, 63, 64
wasted, 114, 323, 352

space reclamation, 621
spanning trees, 380, 395–396,

397–398, 399
sparse tables, 111–114

arrays and, for storing student
grades, 112

spell checker: case study, 358–368
implementation, using tries,

361–368
splaying, 262–267

heterogeneous configuration,
263, 263, 266

homogeneous configuration,
262, 263, 265–266

restructuring tree with, 264
splitting

blocks into buddies, 614
B*-trees, 312–313
B+-tree, 314
B-trees, 305–307, 309
in hashing, 541–544
R-trees, 321
simple prefix B+-trees, 316
2–4 trees, 327, 328
vh-trees, 327–328, 330

stable marriage problem, 426–428
stable matching problem,

426–428
stable sorting, 516
stacked-node-checking algorithm,

621

stack frame, 173
stacks, 140–149, 172–174,

227–230, 402, 452, 498, 616
See also run-time stacks

applications of, 141, 142–144
array list implementation, 146
explicit, 616
in java.util, 148–149
natural implementation for,

146
operations, 140
operations executed on ab-

stract, 148
overflow of, 621
used by Java Virtual Machine

(JVM), 144–145
star representation, 377
statements, 1

assignment, 64–66
compound, 1

static binding, 21
stem, on blossom, 431
stop-and-copy algorithm, 623,

625, 633
storage, 14
straight merging, 516
stream tokenizers, 202
string matching, 649–704

approximate string matching,
694–704

exact string matching,
649–692

stringology, 649
strings, 1, 24, 49, 586. See also

string matching
null, 27

string variables, 24
strongly connected components

(SCC), 403
strongly connected graphs, 402
structures

FIFO (first in/first out), 149.
See also queues

LIFO (last in/first out), 140.
See also stacks

subarrays, 65, 66
subclasses, 20
subdirectories, 12
subgraphs, 377
suffix arrays, 693–694
suffix links, 689
suffix trees, 686–692, 687

suffix tries, 686–692, 687
Sun, 32
Sunday algorithms, 668–670
superclass, 20
super-symbols, 591
sweeping, 621
symmetric binary B-trees. See 2–4

trees
symmetric difference, 422
syntax, 1
system of distinct representatives

theorem, 451

tables, 111. See also maps
sparse, 111–114
tag bit, 617
tail recursion, 178–179
Tarjan’s algorithm, 403, 404, 405
temporary variables, 91, 98
text files, 26

tokens extracted from, 28
theta notation, 61–62
threaded trees, 231–235, 233

implementation of algorithm
to insert node into, 241

implementation of, and in-
order traversal, 234–235

threads, 233
3-colorability problem, 446–448
3-nodes, 324
three-satisfiability problem, 75, 445
threshold algorithm, 389
time, 56

complexities, algorithms
classified by, 62, 63, 64

constant, 147
polynomial, 448

tokens, 28
topological sort, 405–406, 406
tospace, 625
tournament, 463
traces, 694
tractable problems, 74
transfer time, 300
transitive tournament, 463
transpose method, of organiza-

tion, 107–110
traveling salesman problem

(TSP), 438–442
traversal. See tree traversal
treadmill, 645, 646
tree edges, 381

S u b j e c t I n d e x ■ 751

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

TreeMap, 344–349
methods, application of, 348
methods of class, 345–347

trees, 73–74, 199, 215. See also tries
AVL, 107, 255, 255–260
balancing, 249–260, 256, 257
of calls for Fib (6), 189
defined, 214, 299
height of empty and non-

empty, 214
in java.util, 338–349
limitations of, 376
multiway. See multiway trees
orderly, 216
representing hierarchical

structures, 214, 215
representing recursive calls as,

187
restructuring, 261, 262
self-adjusting, 107, 260–267
threaded, 231–235
tree traversal, 223–229

TreeSet, 338–344
methods, application of,

341–343
methods of class, 338–340

tree traversal, 223–229, 582
breadth-first traversal, 224
defined, 223
depth-first traversal, 225–231
with Morris method, 238
stackless depth-first traversal,

231–235
through tree transformation,

235–239
trie a tergo, 353
tries, 349–359, 350, 676

compression of, 355, 355–358
defined, 349
implementation using pseudo-

flexible arrays, 360
implemented as binary trees,

354
space problems of, 352

Turing machine, 74, 75
2-connected graphs, 400
2–4 trees, 323–327

represented by red-black trees,
325

two-pointer algorithm, 622
2–3–4 trees. See 2–4 trees
types, built-in, and sizes, 2

Ukkonen algorithm, 689–692,
704

uncolored degree, of vertex, 444
underflow, 309, 314
undirected graphs, connectivity

in, 399–400, 402
Unicode

characters, 1, 3
codes, 3

union-find problem, 393–395
universal coding scheme, 587
UNIX, 590

Hunt-Szymanski algorithm
implemented in, 701

implementation of Aho-
Corasick in, 682

variable declarations, 1–4
variables

Boolean, 75, 445, 447
character, 3
class, 12–13
in common algebraic opera-

tions, 507
declarations of, 1–4
final, 17
initialization of local, 1
instance, 12
integer, 27
nonstatic, 12
object, 33
reference, 31–35
references of compared, 23
storage of automatic (local),

172–173
string, 24
temporary, 91, 98
types, 2
used in a class, 8

variant buddy system, 615
vectors, 35–41, 71

cloned, 41
inserting elements, 41
member functions, 36–39

methods for testing status of,
39, 41

program demonstrating oper-
ation of member functions,
40

vertex
as articulation point, 400, 402
independent, 442
isolated, 377
saturation degree of, 444
uncolored degree of, 444

vertex cover, 448
vertex cover problem, 448–449
vertical-horizontal trees. See vh-

trees
vertical pointers, 324, 325
vh-trees, 324–327
vine. See backbone
virtual hashing, 538
von Koch snowflakes, 181–185

drawing, 182
examples of, 182
recursive implementation of,

183–185

Wagner-Fischer algorithm,
696–698

weakly connected graphs, 402
weighted buddy system, 614–615
weighted graphs, 377, 428
weighted path length, 573
WFI algorithm, 390, 392, 461

execution of, 391
words, 28
worst case assessment, 66–69
worst-fit method, 605
wrapper classes, 16, 23
writing

bytes, 26–27
objects, 29–30
primitive data types, 29
records, methods for, 50
to standard device, 24

Yuasa’s algorithm, 630–632

zero-order predictor, 602
Ziv-Lempel algorithm, 588–589
Ziv-Lempel code, 587–590

752 ■ S u b j e c t I n d e x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

	Cover Page
	Title Page
	Copyright Page
	Dedication
	Contents
	1 OBJECT-ORIENTED PROGRAMMING USING JAVA
	1.1 Rudimentary Java
	1.1.1 Variable Declarations
	1.1.2 Operators
	1.1.3 Decision Statements
	1.1.4 Loops
	1.1.5 Exception Handling

	1.2 Object-Oriented Programming in Java
	1.2.1 Encapsulation
	1.2.2 Abstract Data Types
	1.2.3 Inheritance
	1.2.4 Polymorphism

	1.3 Input and Output
	1.3.1 Reading and Writing Bytes
	1.3.2 Reading Lines
	1.3.3 Reading Tokens: Words and Numbers
	1.3.4 Reading and Writing Primitive Data Types
	1.3.5 Reading and Writing Objects
	1.3.6 Random Access File

	1.4 Java and Pointers
	1.5 Vectors in java.util
	1.6 Data Structures and Object-Oriented Programming
	1.7 Case Study: Random Access File
	1.8 Exercises
	1.9 Programming Assignments
	Bibliography

	2 COMPLEXITY ANALYSIS
	2.1 Computational and Asymptotic Complexity
	2.2 Big-O Notation
	2.3 Properties of Big-O Notation
	2.4 Ω and Θ Notations
	2.5 Possible Problems
	2.6 Examples of Complexities
	2.7 Finding Asymptotic Complexity: Examples
	2.8 The Best, Average, and Worst Cases
	2.9 Amortized Complexity
	2.10 NP-Completeness
	2.11 Exercises
	Bibliography

	3 LINKED LISTS
	3.1 Singly Linked Lists
	3.1.1 Insertion
	3.1.2 Deletion
	3.1.3 Search

	3.2 Doubly Linked Lists
	3.3 Circular Lists
	3.4 Skip Lists
	3.5 Self-Organizing Lists
	3.6 Sparse Tables
	3.7 Lists in java.util
	3.7.1 LinkedList
	3.7.2 ArrayList

	3.8 Concluding Remarks
	3.9 Case Study: A Library
	3.10 Exercises
	3.11 Programming Assignments
	Bibliography

	4 STACKS AND QUEUES
	4.1 Stacks
	4.1.1 Stacks in java.util

	4.2 Queues
	4.3 Priority Queues
	4.4 Case Study: Exiting a Maze
	4.5 Exercises
	4.6 Programming Assignments
	Bibliography

	5 RECURSION
	5.1 Recursive Definitions
	5.2 Method Calls and Recursion Implementation
	5.3 Anatomy of a Recursive Call
	5.4 Tail Recursion
	5.5 Nontail Recursion
	5.6 Indirect Recursion
	5.7 Nested Recursion
	5.8 Excessive Recursion
	5.9 Backtracking
	5.10 Concluding Remarks
	5.11 Case Study: A Recursive Descent Interpreter
	5.12 Exercises
	5.13 Programming Assignments
	Bibliography

	6 BINARY TREES
	6.1 Trees, Binary Trees, and Binary Search Trees
	6.2 Implementing Binary Trees
	6.3 Searching a Binary Search Tree
	6.4 Tree Traversal
	6.4.1 Breadth-First Traversal
	6.4.2 Depth-First Traversal
	6.4.3 Stackless Depth-First Traversal

	6.5 Insertion
	6.6 Deletion
	6.6.1 Deletion by Merging
	6.6.2 Deletion by Copying

	6.7 Balancing a Tree
	6.7.1 The DSW Algorithm
	6.7.2 AVL Trees

	6.8 Self-Adjusting Trees
	6.8.1 Self-Restructuring Trees
	6.8.2 Splaying

	6.9 Heaps
	6.9.1 Heaps as Priority Queues
	6.9.2 Organizing Arrays as Heaps

	6.10 Polish Notation and Expression Trees
	6.10.1 Operations on Expression Trees

	6.11 Case Study: Computing Word Frequencies
	6.12 Exercises
	6.13 Programming Assignments
	Bibliography

	7 MULTIWAY TREES
	7.1 The Family of B-Trees
	7.1.1 B-Trees
	7.1.2 B*-Trees
	7.1.3 B+-Trees
	7.1.4 Prefix B+-Trees
	7.1.5 Bit-Trees
	7.1.6 R-Trees
	7.1.7 2–4 Trees
	7.1.8 Trees in java.util

	7.2 Tries
	7.3 Concluding Remarks
	7.4 Case Study: Spell Checker
	7.5 Exercises
	7.6 Programming Assignments
	Bibliography

	8 GRAPHS
	8.1 Graph Representation
	8.2 Graph Traversals
	8.3 Shortest Paths
	8.3.1 All-to-All Shortest Path Problem

	8.4 Cycle Detection
	8.4.1 Union-Find Problem

	8.5 Spanning Trees
	8.6 Connectivity
	8.6.1 Connectivity in Undirected Graphs
	8.6.2 Connectivity in Directed Graphs

	8.7 Topological Sort
	8.8 Networks
	8.8.1 Maximum Flows
	8.8.2 Maximum Flows of Minimum Cost

	8.9 Matching
	8.9.1 Stable Matching Problem
	8.9.2 Assignment Problem
	8.9.3 Matching in Nonbipartite Graphs

	8.10 Eulerian and Hamiltonian Graphs
	8.10.1 Eulerian Graphs
	8.10.2 Hamiltonian Graphs

	8.11 Graph Coloring
	8.12 NP-Complete Problems in Graph Theory
	8.12.1 The Clique Problem
	8.12.2 The 3-Colorability Problem
	8.12.3 The Vertex Cover Problem
	8.12.4 The Hamiltonian Cycle Problem

	8.13 Case Study: Distinct Representatives
	8.14 Exercises
	8.15 Programming Assignments
	Bibliography

	9 SORTING
	9.1 Elementary Sorting Algorithms
	9.1.1 Insertion Sort
	9.1.2 Selection Sort
	9.1.3 Bubble Sort

	9.2 Decision Trees
	9.3 Efficient Sorting Algorithms
	9.3.1 Shell Sort
	9.3.2 Heap Sort
	9.3.3 Quicksort
	9.3.4 Mergesort
	9.3.5 Radix Sort

	9.4 Sorting in java.util
	9.5 Concluding Remarks
	9.6 Case Study: Adding Polynomials
	9.7 Exercises
	9.8 Programming Assignments
	Bibliography

	10 HASHING
	10.1 Hash Functions
	10.1.1 Division
	10.1.2 Folding
	10.1.3 Mid-Square Function
	10.1.4 Extraction
	10.1.5 Radix Transformation

	10.2 Collision Resolution
	10.2.1 Open Addressing
	10.2.2 Chaining
	10.2.3 Bucket Addressing

	10.3 Deletion
	10.4 Perfect Hash Functions
	10.4.1 Cichelli’s Method
	10.4.2 The FHCD Algorithm

	10.5 Hash Functions for Extendible Files
	10.5.1 Extendible Hashing
	10.5.2 Linear Hashing

	10.6 Hashing in java.util
	10.6.1 HashMap
	10.6.2 HashSet
	10.6.3 HashTable

	10.7 Case Study: Hashing with Buckets
	10.8 Exercises
	10.9 Programming Assignments
	Bibliography

	11 DATA COMPRESSION
	11.1 Conditions for Data Compression
	11.2 Huffman Coding
	11.2.1 Adaptive Huffman Coding

	11.3 Run-Length Encoding
	11.4 Ziv-Lempel Code
	11.5 Case Study: Huffman Method with Run-Length Encoding
	11.6 Exercises
	11.7 Programming Assignments
	Bibliography

	12 MEMORY MANAGEMENT
	12.1 The Sequential-Fit Methods
	12.2 The Nonsequential-Fit Methods
	12.2.1 Buddy Systems

	12.3 Garbage Collection
	12.3.1 Mark-and-Sweep
	12.3.2 Copying Methods
	12.3.3 Incremental Garbage Collection

	12.4 Concluding Remarks
	12.5 Case Study: An In-Place Garbage Collector
	12.6 Exercises
	12.7 Programming Assignments
	Bibliography

	13 STRING MATCHING
	13.1 Exact String Matching
	13.1.1 Straightforward Algorithms
	13.1.2 The Knuth-Morris-Pratt Algorithm
	13.1.3 The Boyer-Moore Algorithm
	13.1.4 Multiple Searches
	13.1.5 Bit-Oriented Approach
	13.1.6 Matching Sets of Words
	13.1.7 Regular Expression Matching
	13.1.8 Suffix Tries and Trees
	13.1.9 Suffix Arrays

	13.2 Approximate String Matching
	13.2.1 String Similarity
	13.2.2 String Matching with k Errors

	13.3 Case Study: Longest Common Substring
	13.4 Exercises
	13.5 Programming Assignments
	Bibliography

	APPENDIXES
	A Computing Big-O
	A.1 Harmonic Series
	A.2 Approximation of the Function lg(n!)
	A.3 Big-O for Average Case of Quicksort
	A.4 Average Path Length in a Random Binary Tree
	A.5 The Number of Nodes in an AVL Tree

	B NP-Completeness
	B.1 Cook’s Theorem

	Name Index
	Subject Index

