C & DATA
> TRUCTURES

P.5. Desbpande and O.G. Kakde

—

f NEXT s |

C & Data Structures

i{*)] CD Content

Table of Contents
C & Data Structures

Preface

Part 1 - C Language

Chapter 1 - Introduction to the C Language
Chapter 2 - Data Types

Chapter 3 - C Operators

Chapter 4 - Control Structures
Chapter 5 - The printf Function
Chapter 6 - Address and Pointers
Chapter 7 - The scanf Function
Chapter 8 - Preprocessing
Chapter 9 - Arrays

Chapter 10 - Function

Chapter 11 - Storage of Variables
Chapter 12 - Memory Allocation
Chapter 13 - Recursion

Chapter 14 - Strings

Chapter 15 - Structures

Chapter 16 - Union

Chapter 17 - Files
Part 11 - Data Structures

Chapter 18 - Arrays, Searching, and Sorting
Chapter 19 - Stacks and Queues

Chapter 20 - Linked Lists

Chapter 21 - Trees

Chapter 22 - Graphs

by P.S. Deshpande and O.G. Kakde ISBN:1584503386

Charles River Media © 2004 (700 pages)

This thorough text provides a comprehensive guide to all the
data types in C with internal implementation, while
providing examples to demonstrate their behavior.

Table of Contents

Part 111 - Advanced Problems in Data Structures

Chapter 23 - Problems in Arrays, Searching, Sorting, Hashing
Chapter 24 - Problems in Stacks and Queues

Chapter 25 - Problems in Linked Lists

Chapter 26 - Problems in Strings

Chapter 27 - Problems in Trees

Chapter 28 - Problems in Graphs

Chapter 29 - Miscellaneous Problems

Index_

List of Figures

List of Tables
i#) CD Content

-

f NEXT oy |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/toc.html (2 of 2) [30.06.2007 10:56:57]

BackCover

= r

| 4 PREV | Ea 3

Back Cover

Divided into three separate sections, C & Data Structures covers C programming, as well as the
implementation of data structures and an analysis of advanced data structure problems. Beginning with
the basic concepts of the C language (including the operators, control structures, and functions), the
book progresses to show these concepts through practical application with data structures such as
linked lists and trees, and concludes with the integration of C programs and advanced data structure
problem-solving. The book covers a vast range of data structures and programming issues, such as
syntactic and semantic aspects of C, all control statements in C, concepts of function, macro, files and
pointers with examples, graphs, arrays, searching and sorting techniques, stacks and queues, files, and
preprocessing. C & Data Structures provides a comprehensive guide to all the data types in C with
internal implementation, while providing examples to demonstrate their behavior.

KEY FEATURES

. Explains all operators, expressions, control statements, and rules of C in detail

. Demonstrates language syntax, as well as discussing its behavior by showing specific internal
implementations

. Covers data structures such as linked lists, trees, graphs, arrays, and commonly used
algorithms, as well as advanced data structures such as B- trees and B+ trees

About the Authors

P.S. Deshpande is a faculty member in the Department of Computer Science at Visvesvarya National
Institute of Technology. He has acted as a consultant to various government and private organizations
in the field of database management, software engineering, data warehousing, WAP, and J2EE design
patterns, and has published a number of papers on Oracle, data warehousing, and programming
languages.

0.G. Kakde is also a faculty member in the Department of Computer Science at Visvesvarya National
Institute of Technology. He has done consulting work for the government as well as private
organizations in the fields of embedded systems, language translators, WAP, and several programming
languages. He is the author of Algorithms for Compiler Design.

- -

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/backcover.html [30.06.2007 10:56:57]

C & Data Structures

= r

| 4mPREV | | NEXT Wi |

C & Data Structures

P. S. Deshpande
0. G. Kakde

CHARLES RIVER MEDIA, INC.
Hingham, Massachusetts

Copyright © 2003 Dreamtech Press

Reprint Copyright © 2004 by CHARLES RIVER MEDIA, INC.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or transmitted by
any means or media, electronic or mechanical, including, but not limited to, photocopy, recording, or scanning, without
prior permission in writing from the publisher.

Acquisitions Editor: James Walsh
Production: Dreamtech Press
Cover Design: Sherry Stinson

CHARLES RIVER MEDIA, INC.
10 Downer Avenue

Hingham, Massachusetts 02043
781-740-0400

781-740-8816 (FAX)
info@charlesriver.com

http://www.charlesriver.com

P.S. Deshpande and O.G. Kakde. C & Data Structures
1-58450-338-6

All brand names and product names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to
infringe on the property of others. The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products.

Library of Congress Cataloging-in-Publication Data

Deshpande, P. S.

C & data structures / P.S. Deshpande, O.G. Kakde.

p. cm.

ISBN 1-58450-338-6 (Paperback with CD-ROM : alk. paper)

1. C (Computer program language) 2. Data structures (Computer
science) |. Kakde, O. G. Il. Title.

QA76.73.C15D48 2003

005.7'3—dc22
2003021572

04 7 654 3 2 First Edition

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU000L.html (1 of 2) [30.06.2007 10:56:58]

mailto:info@charlesriver.com
http://www.charlesriver.com/

C & Data Structures

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user groups, corporations,
etc. For additional information, please contact the Special Sales Department at 781-740-0400.

Requests for replacement of a defective CD-ROM must be accompanied by the original disc, your mailing address,
telephone number, date of purchase and purchase price. Please state the nature of the problem, and send the
information to CHARLES RIVER MEDIA, INC., 10 Downer Avenue, Hingham, Massachusetts 02043. CRM's sole
obligation to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not on the
operation or functionality of the product.

Acknowledgments

Writing any book is not an easy task. We spent about one year designing the contents, implementing the programs and
testing the programs. Our 12 years of teaching experience has helped us to explain the issues in the language and
complex problems in data structures.

We are thankful to our student Rupesh Nasre who, after receiving an M.Tech. degree in computer science from IIT
Mumbai, helped us in implementing advanced problems in data structures. We are also thankful to our students Ms.
Usha Agrawal and Mr. Ramchandra Vibhute for helping us in writing programs for Parts | and II.

- -

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU000L.html (2 of 2) [30.06.2007 10:56:58]

Preface

= o

| 4w PREV NE=T w |

Preface

The book is written for both undergraduate and graduate students of core computer science areas. The book would be
very useful for other students to learn programming for the purpose of making a career in computer science. It covers
all those topics that generally appear in aptitude tests and interviews. It not only gives the language syntax but also
discusses its behavior by showing the internal implementation. We have covered almost the entire range of data
structures and programming such as non-recursive implementation of tree traversals, A* algorithm in Artificial
Intelligence, 8-queens problems, etc. We also have supplied a CD-ROM which contains all the source material that
appears in the book. We welcome comments from our readers.

- -

| 4m PREV NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0002.html [30.06.2007 10:56:58]

Part |: C Language

[_ﬁ PREY j [_ NEHT ‘j

Part |. C Language
Chapter 1: Introduction to the C Language
Chapter 2: Data Types
Chapter 3: C Operators
Chapter 4: Control Structures
Chapter 5: The pri nt f Function
Chapter 6: Address and Pointers
Chapter 7: The scanf Function
Chapter 8: Preprocessing
Chapter 9: Arrays
Chapter 10: Functions
Chapter 11: Storage of Variables
Chapter 12: Memory Allocation
Chapter 13: Recursion
Chapter 14: Strings
Chapter 15: Structures
Chapter 16: Union

Chapter 17: Files

[_# PREV] [_ NEHT ‘]

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0003.html [30.06.2007 10:56:58]

Chapter 1: Introduction to the C Language

= r

| 4mPREV | | NEXT Wi |

Chapter 1: Introduction to the C Language
THE FIRST PROGRAM INC

I ntroduction

The C program is a set of functions. The program execution begins by executing the function mai n (). You can
compile the program and execute using Turbo C compiler or using the following commands in Unix/Linux:

$ cc -0 a a.c

where a.c is the file in which you have written the program. This will create an executable file named a.exe.
$./a.

This will execute the program.

Program

#i ncl ude <stdi o. h>

mai n()

{

printf("Hello \n"); /* prints Hello on standard output */ }

Qutput : Hello

Explanation

1. The program execution begins with the function nai n() .
2. The executable statements are enclosed within a block that is marked by ‘{’ and }.
3. Theprintf () function redirects the output to a standard output, which in most cases is the output on screen.

4. Each executable statement is terminated by *;’

5. The comments are enclosed in ‘/ *. .. */

Variables

I ntroduction

When you want to process some information, you can save the values temporarily in variables. In the following
program you can define two variables, save the values, and put the addition in the third variable.

Program

#i ncl ude <stdio. h>

mai n()

{

int i,j,k; // Defining variables Statenment A
i = 6; /] Statenent B

i =8

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0004.html (1 of 2) [30.06.2007 10:56:59]

Chapter 1: Introduction to the C Language

k=1 +j;
printf("sumof two nunbers is % \n",k); // Printing results
}

out put : sumof two nunbers is 14

Explanation
1. Statement A defines variables of the type integer. For each variable you have to attach some data type. The
data type defines the amount of storage allocated to variables, the values that they can accept, and the
operations that can be performed on variables.
2. The *// ’is used as single line comment.

3. The ‘%’ is used as format specifier for the integer. Each data type has a format specifier that defines how the
data of that data type will be printed.

4. The assignment operator is ‘=" and the statement is in the format:
Var = expression;

Pointsto Remember

1. The variables are defined at the begining of the block.
2. The data type is defined at the begining of declaration and followed by a list of variables.

3. ltis the data type that assigns a property to a variable.

- -

| 4mPREV | | MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0004.html (2 of 2) [30.06.2007 10:56:59]

INPUTTING THE DATA

= o

| 4mPREV | | NEXT Wi |

INPUTTING THE DATA

I ntroduction

In C, the input from a standard input device, such as a keyboard, is taken by using the function scanf . In scanf, you
have to specify both the variables in which you can take input, and the format specifier, such as % for the integer.

Program

#i ncl ude <stdio. h>

mai n()

{

int i,j,Kk;

scanf("%d%", & ,&); [/ statement A

kK =i +j;

printf("sumof two nunbers is % \n", k);

}
Input 3 4

Qutput: sumof two nunbers is 7

Explanation

1. Statement A indicates the scanf statement that is used for taking input. In scanf you have to specify a list of
addresses of variables (&i , &) which can take input. Before specifying the list of variables you have to include
a list of format specifiers that indicate the format of the input. For example, for the integer data type the format
specifier is %d.

2. In scanf , you have to specify the address of the variable, such as & . The address is the memory location
where a variable is stored. The reason you must specify the address will be discussed later.

3. The number of format specifiers must be the same as the number of variables.
Point to Remember

In scanf , you have to specify the address of a variable, such as & , & , and a list of format specifiers.

— —

| 4mPREY | | NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0005.html [30.06.2007 10:56:59]

THE CONTROL STATEMENT (if STATEMENT)

= r

| 4mPREV | | NEXT Wi |

THE CONTROL STATEMENT (i f STATEMENT)

I ntroduction

You can conditionally execute statements using the i f orthei f. .. el se statement. The control of the program is
dependent on the outcome of the Boolean condition that is specified in the i f statement.

Program

#i ncl ude <stdi o. h>

nmai n()

{

int i,j,big; [//variable declaration
scanf ("%%l", & ,&); big =i;

if(big <j) [/ statenment A

{ /I C
big =7j; /1 Part Z, then part
} /1 D

printf("biggest of two nunbers is % \n", big);
if(i <j) [/ statenent B
{
bi g
}

el se

{

bi g

}
printf("biggest of two nunbers(using else) is % \n",big);

}

iy Il Part X

i: [/l Part Y

Explanation

1. Statement A indicates the i f statement. The general form of the i f statementisi f (expr)

{
sl ;
s2 ;
}
2. expr is a Boolean expression that returns true (nonzero) or false (zero).

3. In C, the value nonzero is true while zero is taken as false.

4. If you want to execute only one statement, opening and closing braces are not required, which is indicated by C
and D in the current program.

5. The el se part is optional. If the i f condition is true then the part that is enclosed after the i f is executed (Part
X). If the i f condition is false then the el se part is executed (Part Y).

6. Without the el se statement (in the first i f statement), if the condition is true then Part Z is executed.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0006.html (1 of 2) [30.06.2007 10:56:59]

THE CONTROL STATEMENT (if STATEMENT)

Pointsto Remember

1. if andif... el se are used for conditional execution. After the i f statement the control is moved to the next
statement.

2. Ifthe i f condition is satisfied, then the "then" part is executed; otherwise the el se part is executed.

3. You can include any operators such as <, >, <=, >=, = = (for equality). Note that when you want to test two
expressions for equality, use = = instead of =.
| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0006.html (2 of 2) [30.06.2007 10:56:59]

THE ITERATION LOOP (for LOOP)

= r

| 4mPREV | | NEXT Wi |

THE ITERATION LOORP (f or LOOP)

I ntroduction

When you want to execute certain statements repeatedly you can use iteration statements. C has provided three types
of iteration statements: the f or loop, whi | e loop, and do. . . whi | e loop. Generally, the statements in the loop are

executed until the specified condition is true or false.

Program

#i ncl ude <stdio. h>

mai n()

{

int i,n; [/the

scanf ("%d", &n) ;

for(i =0; i<n; i=1i+1) [/ statenent A

{

printf("the nunbers are % \n",i); // statenent B
}

}

/* input and out put

5

t he nunbers are
t he nunbers are
t he nunbers are
t he nunbers are
t he nunbers are
*/

A WNPEFO

Explanation

1. Statement A indicates the f or loop. The statements in the enclosing braces, such as statement B, indicate the
statements that are executed repeatedly because of the f or loop.

2. The format of the f or loop is

for (exprl;expr2;expr3)
{

si;

s2 ; |/ repeat section

}

3. expr 2 is a Boolean expression. If it is not given, it is assumed to be true.
4. The expressions expr 1, expr 2 and expr 3 are optional.

5. expr 1 is executed only once, the first time the f or loop is invoked.

6. expr 2 is executed each time before the execution of the repeat section.

7. When expr 2 is evaluated false, the loop is terminated and the repeat section is not executed.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0007.html (1 of 2) [30.06.2007 10:57:00]

THE ITERATION LOOP (for LOOP)

8. After execution of the repeat section, expr 3 is executed. Generally, this is the expression that is used to ensure
that the loop will be terminated after certain iterations.

Pointsto Remember

1. Thef or loop is used for repeating the execution of certain statements.
2. The statements that you want to repeat should be written in the repeat section.
3. Generally, you have to specify any three expressions in the f or loop.

4. While writing expressions, ensure that expr 2 is evaluated to be false after certain iterations; otherwise your
loop will never be terminated, resulting in infinite iterations.

-

| 4mPREY |

—

| NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥20(2004)/7267/DDU0007.html (2 of 2) [30.06.2007 10:57:00]

THE do...while LOOP

= r

| 4mPREV | | NEXT Wi |

THE do. . . whi | e LOOP

I ntroduction

The do. . . whi | e loop is similar to the whi | e loop, but it checks the conditional expression only after the repetition

part is executed. When the expression is evaluated to be false, the repetition part is not executed. Thus it is
guaranteed that the repetition part is executed at least once.

Program

#i ncl ude <stdio. h>

mai n()

{

int i,n; //the

scanf ("%d", &n) ;

i = 0;

do [/l statenment A
{

printf("the nunbers are % \n",i);
i =i +1;

Iwhile(i<n) ;

}
/*
5
t he nunbers are
t he nunbers are
t he nunbers are
t he nunbers are
t he nunbers are
*/

A WNPEFO

Explanation
1. Statement A indicates the do. . . whi | e loop.

2. The general form of the do. . . whi | e loop is

do
{

repetition part;
} while (expr);

When the do. . . whi | e loop is executed, first the repetition part is executed, and then the conditional

expression is evaluated. If the conditional expression is evaluated as true, the repetition part is executed again.
Thus the condition is evaluated after each iteration. In the case of a normal whi | e loop, the condition is

evaluated before making the iteration.
3. The loop is terminated when the condition is evaluated to be false.
Point to Remember

The do. . . whi | e loop is used when you want to make at least one iteration. The condition should be checked after
each iteration.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0008.html (1 of 2) [30.06.2007 10:57:00]

THE do...while LOOP

[_ﬁ PREV j [_ MEMT ﬁj

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0008.html (2 of 2) [30.06.2007 10:57:00]

THE switch STATEMENT

= o

| 4mPREV | | NEXT Wi |

THE swi t ch STATEMENT

I ntroduction

When you want to take one of a number of possible actions and the outcome depends on the value of the expression,
you can use the swi t ch statement. swi t ch is preferred over multiple i f . . . el se statements because it makes the

program more easily read.

Program

#i ncl ude <stdio. h>

mai n()

{

int i,n; [//the

scanf ("%d", &) ; for(i = 1; i<n; i=1i+1)

{

switch(i9%®) // statement A

{

case 0 : printf("the nunber % is even \n",i); // statement B
br eak; /Il statenment C

case 1 : printf("the nunber % is odd \n",i);
br eak;

}

}

}

/ *

5

the nunber 1 is odd

the nunber 2 is even

the nunber 3 is odd

the nunber 4 is even

*/

Explanation

The program demonstrates the use of the swi t ch statement.

1. The general form of a swi t ch statement is

Swi tch(swi tch_expr)
{
case constant exprl : S1;
S2;
br eak;
case constant exprl : S3;
4,
br eak;
def aul t . S5;
S6;
br eak;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0009.html (1 of 2) [30.06.2007 10:57:01]

THE switch STATEMENT

2. When control transfers to the swi t ch statement then swi t ch_expr is evaluated and the value of the
expression is compared with const ant _expr 1 using the equality operator.

3. If the value is equal, the corresponding statements (S1 and S2) are executed. If br eak is not written, then S3
and S4 are executed. If br eak is used, only S1 and S2 are executed and control moves out of the swi t ch
statement.

4. If the value of swi t ch_expr does not match that of const ant _expr 1, then it is compared with the next
const ant _expr . If no values match, the statements in default are executed.

5. In the program, statement A is the swi t ch expression. The expression i %2 calculates the remainder of the
division. For 2, 4, 6 etc., the remainder is 0 while for 1, 3, 5 the remainder is 1. Thus i %2 produces either 0 or 1.

6. When the expression evaluates to 0, it matches that of const ant _expr 1, that is, 0 as specified by statement
B, and the corresponding pri nt f statement for an even number is printed. br eak moves control out of the
swi t ch statement.

7. The clause ‘def aul t ' is optional.

Point to Remember

The swi t ch statement is more easily read than multiplei f . . . el se statements and it is used when you want to
selectively execute one action among multiple actions.

- -

| 4mPREY | | NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0009.html (2 of 2) [30.06.2007 10:57:01]

Chapter 2: Data Types

= r

| 4mPREV | | NEXT Wi |

Chapter 2: Data Types
THE BUILT-IN DATA TYPESINC

I ntroduction

Data types are provided to store various types of data that is processed in real life. A student's record might contain the
following data types: name, roll number, and grade percentage. For example, a student named Anil might be assigned
roll number 5 and have a grade percentage of 78.67. The roll number is an integer without a decimal point, the name
consists of all alpha characters, and the grade percentage is numerical with a decimal point. C supports representation
of this data and gives instructions or statements for processing such data. In general, data is stored in the program in
variables, and the kind of data the variable can have is specified by the data type. Using this example, grade
percentage has a float data type, and roll number has an integer data type. The data type is attached to the variable at
the time of declaration, and it remains attached to the variable for the lifetime of the program. Data type indicates what
information is stored in the variable, the amount of memory that can be allocated for storing the data in the variable,
and the available operations that can be performed on the variable. For example, the operation S1 * S2, where S1

and S2 are character strings, is not valid for character strings because character strings cannot be multipled.

Program

/1 the program gi ves maxi mum and ni ni num val ues of data type
#i ncl ude <stdio. h>

mai n()

{

int i,j /1 A
i = 1;
while (i > 0)
to
o=

i ++;

}

printf ("the nmaxi mum value of integer is %\n",j);
printf ("the value of integer after overflowis %l\n",i);

}

Explanation
1. In this program there are two variables, i and j , of the type integer, which is declared in statement A.
2. The variables should be declared in the declaration section at the beginning of the block.

3. If you use variables without declaring them, the compiler returns an error.

Pointsto Remember

1. C supports various data types such as f | oat, i nt, char, etc., for storing data.

2. The variables should be declared by specifying the data type.

3. The data type determines the number of bytes to be allocated to the variable and the valid operations that can
be performed on the variable.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0010.html (1 of 2) [30.06.2007 10:57:01]

Chapter 2: Data Types

| 4m PREV | | NExT wp |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0010.html (2 of 2) [30.06.2007 10:57:01]

VARIOUSDATA TYPESINC

= o

| 4mPREV | | NEXT Wi |

VARIOUSDATA TYPESINC

I ntroduction

C supports various data types for processing information. There is a family of integer data types and floating-point data
types. Characters are stored internally as integers, and they are interpreted according to the character set. The most
commonly used character set is ASCII. In the ASCII character set, A is represented by the number 65.

Program/Examples

The data type families are as follows:

Integer famly
char data type
int data type
short int data type
long int data type

These data types differ in the amount of storage space allocated to their respective variables. Additionally, each type
has two variants, signed and unsigned, which will be discussed later.

Float famly (real nunbers with decimal points)
Fl oat data type
Doubl e data type

(ANSI has also specified | ong doubl e, which occupies the same storage space as doubl e)

Explanation

1. Data type determines how much storage space is allocated to variables.

2. Data type determines the permissible operations on variables.

Pointsto Remember

1. C has two main data type families: integer for representing whole numbers and characters of text data, and float
for representing the real-life numbers.

2. Each family has sub-data types that differ in the amount of storage space allocated to them.

3. In general, the data types that are allocated more storage space can store larger values.

— —

| 4mPREY | | NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0011.html [30.06.2007 10:57:01]

THE INTEGER DATA TYPE FAMILY

= r

| 4mPREV | | NEXT Wi |

THE INTEGER DATA TYPE FAMILY

I ntroduction

Integer data types are used for storing whole numbers and characters. The integers are internally stored in binary form.

Program/Example
Here is an example that shows how integers are stored in the binary form.
Number =13
. Decimal representation = 1*101 + 3*100
. Binary representation = 1101 = 1*23 + 1*22 + 0*21 + 1*1
Each 1 or 0 is called a bit, thus the number 13 requires 4 bits.
In the same way, the number 130 is 1000 0010 in binary.

If the general data type is char , 8 bits are allocated. Using 8 bits, you can normally represent decimal numbers from 0
to 255 (0000 0000 to 1111 1111). This is the case when the data type is unsigned char . However, with signed char ,
the leftmost bit is used to represent the sign of the number. If the sign bit is 0, the number is positive, but if it is 1, the
number is negative.

Binary representation of the following numbers in signed char is as follows:

Number = 127 Binary representation = 0111 1111 (leftmost bit is 0, indicating positive.)

Number = —128 Binary representation = 1000 0000 (leftmost bit is 1, indicating negative.)

The negative numbers are stored in a special form called "2's complement". It can be explained as follows:

Suppose you want to represent —127:
1. Convert 127 to binary form, i.e. 0111 1111.

2. Complement each bit: put a 0 wherever there is 1 and for O put 1. So you will get 17000 0000.

3. Add 1 to the above number
1000 0000

1000 0001 (—127)
Thus in the signed char you can have the range —128 to +127, i.e. (—28 to 28—1).

The binary representation also indicates the values in the case of overflow. Suppose you start with value 1 in char and
keep adding 1. You will get the following values in binary representation:

0000 0001 (1)
0111 1111 (127)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0012.html (1 of 2) [30.06.2007 10:57:02]

THE INTEGER DATA TYPE FAMILY

1000 0000 (- 128)
1000 0001 (-127)

In the case of unsigned char you will get

0000 0001 (1)
0111 1111 (127)
1000 0000 (128)
1000 0001 (129)
1111 1111 (255)
0000 0000 (0)

This concept is useful in finding out the behavior of the integer family data types.

The bytes allocated to the integer family data types are (1 byte = 8 bits) shown in Table 2.1.

Table 2.1: Integer data type storage allocations

Data Type Allocation Range
signed char 1 byte —27t027-1(—128to0 127)
Unsigned char 1 byte 0 to 28—1 (0 to 255)
short 2 bytes —21510 215 —1 (—32768 to 32767)
Unsigned 2 bytes 0 to 216 —1 (0 to 65535)
short
| ong i nt 4 bytes 2310 2311 (2,147,483,648 to
2,147,483,647)
i nt 2 or 4 bytes depending on Range for 2 or 4 bytes as given above
implementation
Explanation

1. In C, the range of the number depends on the number of bytes allocated and whether the number is signed.

2. If the data type is unsigned the lower value is 0 and the upper depends on the number of bytes allocated.

3. If the data type is signed then the leftmost bit is used as a sign bit.

4. The negative number is stored in 2's complement form.

5. The overflow behavior is determined by the binary presentation and its interpretation, that is, whether or not the
number is signed.

Pointsto Remember

1. The behavior of a data type can be analyzed according to its binary representation.

2. In the case of binary representation, you have to determine whether the number is positive or negative.

-

fﬁ PREV |

[

-

NEXT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0012.html (2 of 2) [30.06.2007 10:57:02]

OVERFLOW IN char AND UNSIGNED char DATA TYPES

| 4mPREV |

= r

| NEXT Wi |

OVERFLOW IN char AND UNSIGNED char DATA TYPES

I ntroduction

Overflow means you are carrying out an operation such that the value either exceeds the maximum value or is less
than the minimum value of the data type.

Program

/1 the program gi ves maxi mum and ni ni num val ues of data type
#i ncl ude <stdio. h>

mai n()

{

char i,j ;

i = 1;

while (i >0) // A
{

j =i; Il B

i++; // C

}

printf ("the maxi num value of char is %\n",j);
printf ("the value of char after overflowis %d\n",i);

}

Explanation

1.

This program is used to calculate the maximum positive value of char data type and the result of an operation
that tries to exceed the maximum positive value.

. The whi | e loop is terminated when the value of i is negative, as given in statement A. This is because if you

try to add 1 to the maximum value you get a negative value, as explained previously (127 + 1 gives —128).
The variable j stores the previous value of i as given in statement B.
The program determines the maximum value as 127. The value after overflow is -128.

The initial value of i is 1 and it is incremented by 1 in the whi | e loop. Afteri reaches 127, the next value is -
128 and the loop is terminated.

Pointsto Remember

1.

In the case of signed char , if you continue adding 1 then you will get the maximum value, and if you add 1 to
the maximum value then you will get the most negative value.

You can try this program for short and i nt, but be careful when you are using i nt . If the implementation is 4
bytes it will take too much time to terminate the whi | e loop.

You can try this program for unsigned char . Here you will get the maximum value, 255. The value after overflow
is 0.

| 4mPREV |

- -

| MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0013.html [30.06.2007 10:57:02]

THE char TYPE

= o

| 4mPREV | | NEXT Wi |

THE char TYPE

Introduction

Alpha characters are stored internally as integers. Since each character can have 8 bits, you can have 256 different
character values (0-255). Each integer is associated with a character using a character set. The most commonly used
character set is ASCII. In ASCII, "A" is represented as decimal value 65, octal value 101, or hexadecimal value 41.

Explanation

If you declared C as a character as

char c;

then you can assign A as follows:

c ="A;

C = 65;

c = "\x41'; /1 Hexadeci mal representation
c = '"\101"; [l Cctal representation

You cannot write ¢ = ‘A’ because ‘A’ is interpreted as a string.

Escape Sequence

Certain characters are not printable but can be used to give directive to functions such as pri nt f . For example, to

move printing to the next line you can use the character "\n". These characters are called escape sequences. Though
the escape sequences look like two characters, each represents only a single character.

The complete selection of escape sequences is shown here.

\a alert (bell) character \\ backslash

\b backspace \? question mark

\f form feed V single quote

\n new line \" double quote

\r carriage return \ooo octal number

\t horizontal tab \xhh hexadecimal number

\v vertical tab

Pointsto Remember

1. Characters are stored as a set of 255 integers and the integer value is interpreted according to the character set.
2. The most common character set is ASCII.

3. You can give directive to functions such as pri nt f by using escape sequence characters.

- -

| 4mPREV | | MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0014.html [30.06.2007 10:57:03]

OCTAL NUMBERS

[_ﬁ PREY j [_ NEHT *j

OCTAL NUMBERS

I ntroduction

You can represent a number by using the octal number system; that is, base 8. For example, if the number is 10, it can
be represented in the octal as 12, that is, 1*81 + 2*80.

Explanation

When octal numbers are printed they are preceeded by "%®".

[_ﬁ FREV j [- — *j

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0015.html [30.06.2007 10:57:03]

HEXADECIMAL NUMBERS

= =

[@ rPREV | | NExT Wb |

HEXADECIMAL NUMBERS

Introduction

Hexadecimal numbers use base 16. The characters used in hexadecimal numbers are 0, 1, 2, 3,4,5,6, 7,8, 9, A, B,
C, D, E, and F. For example, if the decimal number is 22, it is represented as 16 in the hexadecimal representation:
1*161 + 6*160 .

Explanation

You can print numbers in hexadecimal form by using the format "0x".

= =

[@ rPREV | | NExT Wb |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0016.html [30.06.2007 10:57:04]

REPRESENTATION OF FLOATING-POINT NUMBERS

= r

| 4mPREV | | NEXT Wi |

REPRESENTATION OF FLOATING-POINT NUMBERS

I ntroduction

Floating-point numbers represent two components: one is an exponent and the other is fraction. For example, the
number 200.07 can be represented as 0.20007*103, where 0.2007 is the fraction and 3 is the exponent. In a binary
form, they are represented similarly. There are two types of representation: short or single- precision floating-point
number and | ong or double-precision floating-point number. short occupies 4 bytes or 32 bits while | ong occupies 8
bytes or 64 bits.

Program/Example

In C, short or single-precision floating point is represented by the data type f | oat and appears as:
float f ;

A single-precision floating-point number is represented as follows:

31 30 23 22 0

[s exponent fraction

Here the fractional part occupies 23 bits from 0 to 22. The exponent part occupies 8 bits from 23 to 30 (bias exponent,
that is, exponent + 01111111). The sign bit occupies the 31st bit.

Suppose the decimal number is 100.25. It can be converted as follows:
1. Convert 100.25 into its equivalent binary representation: 1100100.01.

2. Then represent this number so that there is only 1 bit on the left side of the decimal point: 1.0010001*26

3. In a binary representation, exponent 6 means the number 110. Now add the bias, 0111 1111, to get the
exponent: 1000 0101

Since the number is positive, the sign bit is 0. The significant, or fractional, part is:
1001 0001 0000 0000 0000 000

Note that up until the fractional part, only those bits that are on the right side of the decimal point are present. The Os
are added to the right side to make the fractional part take up 23 bits.

Special rules are applied for some numbers:
1. The number 0 is stored as all Os, but the sign bit is 1.

2. Positive infinity is represented as all 1s in the exponent and all Os in the fractional part with the sign bit O.
3. Negative infinity is represented as all 1s in the exponent and all Os in fractional part with the sign bit 1.

4. A NAN (not a number) is an invalid floating number in which all the exponent bits are 1, and in the fractional part
you may have 1s or Os.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0017.html (1 of 3) [30.06.2007 10:57:04]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu22%5F1%5F0%2Ejpg

REPRESENTATION OF FLOATING-POINT NUMBERS

The range of the float data type is 10~ 38 to 1038 for positive values and —1038 to —10™ 38 for negative values.
The values are accurate to 6 or 7 significant digits depending on the actual implementation.
Conversion of a number in the floating-point form to a decimal number

Suppose the number has the following components:
a. Sign bit: 1

b. Exponent: 1000 0011
c. Significant or fractional part: 1001 0010 0000 0000 0000 000
Since the exponent is bias, find out the unbiased exponent.
d. 100 =1000 0011 — 0111 1111 (number 4)
Represent the number as 1.1001001*24
Represent the number without the exponent as 11001.001
Convert the binary number to decimal: —25.125

For double precision, you can declare the variable as double d; it is represented as

63 62 52 51 0
S exponent fraction

Here the fractional part occupies 52 bits from 0 to 51. The exponent part occupies 11 bits from 52 to 62 (the bias
exponent is the exponent plus 011 1111 1111). The sign bit occupies bit 63. The range of double representation is +10

~308 to +10308 and —10308 to —10 308, The precision is to 10 or more digits.
Formatsfor representing floating points

Following are the valid representions of floating points:

0. 23456
2. 3456E-1

. 23456

. 23456e-2
2. 3456E- 4
-. 232456E-4
2345.6
23. 456E2
- 23456
23456e3

Following are the invalid formats:
el

2.5e-.5
25.2-e5

2.5.3

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0017.html (2 of 3) [30.06.2007 10:57:04]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu23%5F1%5F0%2Ejpg

REPRESENTATION OF FLOATING-POINT NUMBERS

You can determine whether a format is valid or invalid based on the following rules:

1. The value can include a sign, it must include a numerical part, and it may or may not have exponent part.
2. The numerical part can be of following form:
d.d, d., .d, d, where d is a set of digits.

3. If the exponent part is present, it should be represented by ‘e’ or ‘E’, which is followed by a positive or negative
integer. It should not have a decimal point and there should be at least 1 digit after ‘E’.

4. All floating numbers have decimal points or ‘e’ (or both).
5. When ‘e’ or ‘E’ is used, it is called scientific notation.

6. When you write a constant, such as 50, it is interpreted as an integer. To interpret it as floating point you have to
write it as 50.0 or 50, or 50e0.

You can use the format % for printing floating numbers. For example, printf ("% \n", f);

% prints output with 6 decimal places. If you want to print output with 8 columns and 3 decimal places, you can use
the format 98. 3f . For printing double you can use % f .

Floating-point computation may give incorrect results in the following situations:

1. If the calculated value has a precision that exceeds the precision limit of the type;
2. If the calculated value exceeds the range allowable for the type;

3. If the two calculated values involve approximation then their operation may involve approximation.

Pointsto Remember

1. C provides two main floating-point representations: float (single precision) and double (double precision).
2. Afloating-point number has a fractional part and a biased exponent.

3. Float occupies 4 bytes and double occupies 8 bytes.

= r

| 4mPREV | | NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0017.html (3 of 3) [30.06.2007 10:57:04]

TYPE CONVERSION

= r

| 4mPREV | | NEXT Wi |

TYPE CONVERSION

I ntroduction

Type conversion occurs when the expression has data of mixed data types, for example, converting an integer value
into a float value, or assigning the value of the expression to a variable with different data types.

Program/Example

In type conversion, the data type is promoted from lower to higher because converting higher to lower involves loss of
precision and value.

For type conversion, C maintains a hierarchy of data types using the following rules:
1. Integer types are lower than floating-point types.

2. Signed types are lower than unsigned types.
3. Short whole-number types are lower than longer types.
4. The hierarchy of data types is as follows: double, float, long, int, short, char.

These general rules are accompanied by specific rules, as follows:

1. If the mixed expression is of the double data type, the other operand is also converted to double and the result
will be double.

2. If the mixed expression is of the unsigned long data type, then the other operand is also converted to double
and the result will be double.

3. Float is promoted to double.

4. If the expression includes long and unsigned integer data types, the unsigned integer is converted to unsigned
long and the result will be unsigned long.

5. If the expression contains long and any other data type, that data type is converted to long and the result will be
long.

6. If the expression includes unsigned integer and any other data type, the other data type is converted to an
unsigned integer and the result will be unsigned integer.

7. Character and short data are promoted to integer.

8. Unsigned char and unsigned short are converted to unsigned integer.

= r

| 4mPREV | | NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0018.html [30.06.2007 10:57:05]

FORCED CONVERSION

= r

| 4mPREV | | NEXT Wi |

FORCED CONVERSION

I ntroduction

Forced conversion occurs when you are converting the value of the larger data type to the value of the smaller data
type, for example, if the declaration is char c;

and you use the expression ¢ = 300; Since the maximum possible value for ¢ is 127, the value 300 cannot be
accommodated in c. In such a case, the integer 300 is converted to char using forced conversion.

Program/Example

In general, forced conversion occurs in the following cases:
1. When an expression gives a larger data type but the variable has a smaller data type.

2. When a function is written using a smaller data type but you call the function by using larger data type. For
example, in pri nt f you specify %, but you provide floating-point value.

Forced conversion is performed according to following rules:
1. Normally, when floating points are converted to integers, truncation occurs. For example, 10.76 is converted to
10.

2. When double is converted to float, the values are rounded or truncated, depending on implementation.

3. When longer integers are converted to shorter ones, only the lower bits are preserved and high-order bits are
skipped. For example, the bit representation of 300 is 1 0010 1100. If it is assigned to character, the lower bits
are preserved since a character can have 8 bits. So you will get the number 0010 1100 (44 in decimal).

In the case of type conversion, lower data types are converted to higher data types, so it is better to a write a function
using higher data types such as i nt or doubl e even if you call the function with char or f | oat . C provides built-in

mathematical functions such as sqrt (square root) which take the argument as double data type. Suppose you want
to call the function by using the integer variable ‘k’. You can call the function

sqgrt ((doubl e) n)

This is called type casting, that is, converting the data type explicitly. Here the value ‘K’ is properly converted to the
double data type value.

Pointsto Remember

1. C makes forced conversion when it converts from higher data type to lower data type.

2. Forced conversion may decrease the precision or convert the value to one that doesn't have a relation with the
original value.

3. Type casting is the preferred method of forced conversion.

= r

| 4mPREV | | NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0019.html [30.06.2007 10:57:05]

TYPE CASTING

= r

| 4mPREV | | NEXT Wi |

TYPE CASTING

I ntroduction

Type casting is used when you want to convert the value of a variable from one type to another. Suppose you want to
print the value of a double data type in integer form. You can use type casting to do this. Type casting is done to cast
an operator which is the name of the target data type in parentheses.

Program

#i ncl ude <stdio. h>

mai n()

{

double d1 = 123.56; \\ A

int i 1=456; \\ B

printf("the value of dl1 as int without cast operator %d\n",dl); \\ C
printf("the value of dl as int with cast operator %\ n", (int)dl);

\\ D
printf("the value of i1 as double w thout cast operator %\n",il); \\

printf("the value of il as double with cast operator %\n", (double)il);
\\ F

il = 10;
printf("effect of rmultiple unary operator %\n", (double)++i1); \\ G
il = 10; \\ H

[lprintf("effect of nmultiple unary operator %\n", (double) ++ -il);
error \\ | il = 10;
printf("effect of nmultiple unary operator %\n", (double)- ++i1);\\ J

il = 10; \\ K
printf("effect of nmultiple unary operator %\n", (double)- -il); \\ L
il = 10; \\' M

printf("effect of nmultiple unary operator %\n", (double)-il++); \\ N
}

Explanation

1. Statement A defines variable d1 as double.
2. Statement B defines variable i 1 as int.

3. Statement C tries to print the integer value of d1 using the placeholder %d. You will see that some random value
is printed.

4. Statement D prints the value of d1 using a cast operator. You will see that it will print that value correctly.
5. Statements E and F print the values of i1 using a cast operator. These will print correctly as well.

6. Statements from G onwards give you the effects of multiple unary operators. A cast operator is also a unary
operator.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0020.html (1 of 2) [30.06.2007 10:57:06]

TYPE CASTING

7.

8.

10.

Unary operators are associated from right to left, that is, the left unary operator is applied to the right value.

Statement G gives the effect of the cast operator double. The increment operator, in this case i 1, is first
incremented and then type casting is done.

If you do not comment out statement | you will get errors. This is because if unary +, — is included with the
increment and decrement operator, it may introduce ambiguity. For example, +++i may be taken as unary + and
increment operator ++, or it may be taken as increment operator ++ and unary +. Any such ambiguous
expressions are not allowed in the language.

Statement J will not introduce any error because you put the space in this operator, which is used to resolve any
ambiguity.

Pointsto Remember

1.

2.

Type casting is used when you want to convert the value of one data type to another.

Type casting does not change the actual value of the variable, but the resultant value may be put in temporary
storage.

. Type casting is done using a cast operator that is also a unary operator.

The unary operators are associated from right to left.

| 4mPREV |

- -

| MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0020.html (2 of 2) [30.06.2007 10:57:06]

Chapter 3: C Operators

= o

| 4mPREV | | NEXT Wi |

Chapter 3: C Operators
ASSIGNMENT OPERATOR

I ntroduction

The assignment operator is used for assigning the value of an expression to a variable. The general format for an
assignment operator is var = expression.

You can use other formats such as var += expression, which means var = var + expression.

Program
#i ncl ude<st di 0. h>

mai n()
{
int a,b,c,d,;
printf("ENTER VALUES OF a, b, ¢, d");
scanf (" %d%l%" , &a, &b, &c) ;
a += b*c+d;
printf("\n a = %", a);

}
| nput
a=5 b=5 ¢c=7,d=238
Qut put
ENTER VALUES CF a,b, ¢, d
5
5
7
8
a = 48
Explanation

The assignment operators have the lowest priority and they are evaluated from right to left. The assignment operators
are as follows:

Suppose the expression is
a = 5;
a += 5*7+8;

You will get the value 48. It is evaluated by the following steps:
1. 5*7 =35.

2. 35+8 =43.

3. a += 43 meansa = a + 43 which gives the value 48.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0021.html (1 of 2) [30.06.2007 10:57:06]

Chapter 3: C Operators

You can assign a value to multiple variables in one statement as:
i =) = k = 10 which givesvalue 10toi, j, k.

- -

[4w PREV | [NExTwp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0021.html (2 of 2) [30.06.2007 10:57:06]

ARITHMETIC OPERATOR

| 4mPREV | | NEXT Wi |
ARITHMETIC OPERATOR

Introduction

You can process data using arithmetic operators such as +, -, *, \ and the modulus operator % %indicates the

remainder after integer division; %cannot be used for float data type or double data type. If both operandsi 1 andi 2
are integers, the expression i 1/i 2 provides integer division, even if the target is a floating point variable. The operators
have normal precedence rules, as follows:

1. Unary operators such as —, + are evaluated.

2. The multiplication (*) and division (/,%) operators are evaluated.
3. The addition (+) and subtraction (—) operators are evaluated.

4. The assignment operator is evaluated.

5. The expressions are evaluated from left to right for unary operators. The assignment is from right to left.

Program

#i ncl ude<st di 0. h>

mai n()

{
int a,b,c,d;
int sum sub, mul,rem
float div;

printf("ENTER VALUES OF b, c, d");
scanf (" %d%l%l" , & &c, &d) ;

sum = b+c;
sub = b-c¢;
mul = b*c;
div = b/c;
rem= b%;
a=>bl/c * d;

printf("\n sum= %, sub = %, mul = %, div = %", sum sub, nmul , di v);
printf("\'n remai nder of division of b &dis %l",ren);

printf("\n a = %", a);

}

I nput
b =10, ¢ =5, d= 3.

Output

ENTER VALUES CF b, c, d
10
5
3

sum= 15, sub =5, mul = 50, div = 2.0

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0022.html (1 of 2) [30.06.2007 10:57:06]

ARITHMETIC OPERATOR

remai nder of division of b &dis 1
a==o
Explanation

1. Suppose you have the expression
a=~"blc*d

Here / and * both have the same priority. b/ c first is evaluated because the expression is evaluated from left to
right.

2. After evaluating the expression b/ ¢ * d, the value is assigned to a because the assignment operator has an
order of evaluation from right to left, that is, the right expression is evaluated first.

—

| MNExT W |

-

| 4mPREV |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0022.html (2 of 2) [30.06.2007 10:57:06]

RELATIONAL OPERATOR

= o

| 4w PREV NE=T w |

RELATIONAL OPERATOR

I ntroduction

Relational operators are used in Boolean conditions or expressions, that is, the expressions that return either true or
false. The relational operator returns zero values or nonzero values. The zero value is taken as false while the nonzero
value is taken as true.

Program

Th relational operators are as follows:

< <=, > >= == I=

The priority of the first four operators is higher than that of the later two operators. These operators are used in
relational expressions such as:

7 > 12 /] false
20.1 < 20.2 /] true
"b' <'c¢' [l true

“abb" < "abc" // true

The strings are compared according to dictionary comparison, so if the first characters are equal, the condition is
checked for the second characters. If they are also equal then it is checked for the third character, etc. The relational
operators return integer values of either zero or non zero.

Note that the equality operator is == and not =. ‘=’ is an assignment operator.

If you want to compare a and b for equality then you should write a == b, nota = b because a = b means you are
assigning the value of b to a, as shown in Table 3.1.

Table 3.1: Comparing the equality operator (= =) with the ‘=" assignment operator.

|Case |a |b |a:b |a::
| 1 | 5 | 3 | a = 3 (true) | false
| 2 | 7 | 0 | a =0 (false) | false
| 3 | 0 | 0 | a =0 (false) | true

In case 1, the value of a =5 and b = 3. The assignment expression assigns the value of b to a, so a will be 3. The
expression returns a true value because 3 is not zero. For the same case a == b does not make any assignment and
returns a false value because in the value of a does not equal that of b.

In case 2, the value of a = 7 and b = 0. The assignment expression assigns the value of b to a, so a will be 0. The
expression returns a false value of zero. For the same case, a == b does not make any assignment and returns a
false value because the value of a does not equal that of b.

In case 3, the values of a and b are both 0. The assignment expression assigns the value of b to a, so a will be 0. The
expression returns a false value of zero. For the same case, a == b does not make any assignment and returns a
true value because the value of a equals that of b.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0023.html (1 of 2) [30.06.2007 10:57:07]

RELATIONAL OPERATOR

[_ﬁ PREV j [_ NEXT *j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0023.html (2 of 2) [30.06.2007 10:57:07]

LOGICAL OPERATOR

= =

[@ rPREV | | NExT Wb |

LOGICAL OPERATOR

I ntroduction

You can combine results of multiple relations or logical operations by using logical operation. The logical operators are
negation (!), logical AND (&&), and logical OR (||), in the same order of preference.

Program
#i ncl ude<st di 0. h>

mai n()

{
int cl1,c2,c3;

printf("ENTER VALUES OF cl1l, c2 AND c3");
scanf (" %d%d%", &c1. &c2, &c3) ;
if((cl < c2)&&(cl<cl))
printf("\n cl is less than c2 and c3");
if (!(cl< c2))
printf("\n cl is greater than c2");
if ((cl <c2)||(cl <c3))
printf("\n cl is less than c2 or ¢3 or both");

}

Input

cl= 2;

c2= 3;

c3= 4;

Output

ENTER VALUES OF cl1, c2 AND c3
2

3

4

cl is less than ¢c2 and c3
cl is less than ¢c2 or c3 or both

Explanation

1. Logical ANDreturns a true value if both relational expressions are true. Logical OR returns true if any of the
expressions are true. Negations return complements of values of relational expressions, as shown in Table 3.2.

Table 3.2: Results of AND, OR, and Negation.

|R1 |R2 |Rl&&R2 |Rl||R2 |!Rl
N N T |7 |F
N | F | F N |F
|F | |F R R

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0024.html (1 of 2) [30.06.2007 10:57:07]

LOGICAL OPERATOR

F F F F T

2. Logical operators AND, and OR have higher priority than assignment operators, but less than relational operators.
Negation operators have the same priority as unary operators, that is, the highest priority.

3. While evaluating logical expressions, C uses the technique of short circuiting. So if the expression is:
Cl & C2 && C3 && C4 if Cl is true

then only C2 is evaluated. If Cl is false, the expression returns false even if C2, C3, and C4 are true. So if Cl is
false C2, C3, and C4 are not evaluated. Remember this when you are doing something such as searching in an

array. For example, if you want to search for K in an array, the last value of which is subscript N, you can write
the search condition in two ways:

| - (a[i] == K && (i <= N
Il - (i <= N & (a[i] == K)

4. In case | you compare the array limit with K and check the bound. This is not correct because if the value of i is
more than N you will get the array index out-of-bounds error.

5. In case I, you first check the bound and then compare the array element. This is correct because you will never
compare the array element if value of i is more than N.

The technique of short-circuiting is applicable to the OR operator also. Thus if the expression is:
ClL||] €2]| G || &A4if Clis true

then the expression returns true and C2, C3 and C4 are not evaluated.

- -

| 4mPREV | | MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0024.html (2 of 2) [30.06.2007 10:57:07]

TERNARY OPERATOR

—

e =

| 4mPREV | | NEXT P |

TERNARY OPERATOR

I ntroduction

Ternary operators return values based on the outcomes of relational expressions. For example, if you want to return
the value of 1 if the expression is true and 2 if it is false, you can use the ternary operator.

Program/Example

If you want to assign the maximum values of i and to k then you can write the statement
k=(Ci>) ?2i :7j;

Ifi > j then k will get the value equal to i , otherwise it will get the value equal to j .

The general form of the ternary operator is:
(expr 1) ? expr2 : expr3

If expr 1 returns true then the value of expr 2 is returned as a result; otherwise the value of expr 3 is returned.

—

e e =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0025.html [30.06.2007 10:57:08]

INCREMENT OPERATOR

—

| NEXT Wi |

—

| 4mPREV |

INCREMENT OPERATOR

I ntroduction

You can increment or decrement the value of variable using the increment or decrement operator. These operators can
be applied only to variables and they can be applied using prefix form or postfix form.

Program
#i ncl ude<st di 0. h>

mai n()

{

int I,j,Kk;

i = 3

=4

K = i++ + --j;

printf("i =%, j =%, k = %l",i,j,k);
}

I nput

Explanation

When the prefix form is used, the value of the variable is incremented/decremented first and then applied. In the postfix
form, the value is applied and only after the assignment operator is done is the value incremented or decremented.

1. Suppose you write

you will get the value of k as 6,1 as 4 andj as 3. The order of evaluation is as follows:

1. i getsthe value 3.
2. | is decremented to 3.
3. k gets the value 3 + 3.
4. i is incremented.
2. Suppose you write
i = 5;
i = 0i4++ * 4+

Then you will get the value of i as 27. This is because first the value 5 is used asto makei = 25 and theni is

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0026.html (1 of 2) [30.06.2007 10:57:08]

INCREMENT OPERATOR

incremented twice. The increment and decrement operators have higher priority than the arithmetic operators.

- -

[4w FREV | [NexTwp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0026.html (2 of 2) [30.06.2007 10:57:08]

COMMA OPERATOR

= =

[@ rPREV | | NExT Wb |

COMMA OPERATOR

Introduction
You can combine multiple expressions in a single expression using the comma operator.

Program

#i ncl ude<st di 0. h>
mai n()
{
int i,j,k;
k = (i =4, j =5);
printf("k = %", k);
}

Input
i =4,j =5.

Output
k = 5.

Explanation
For example, you canwrite:k = (i = 4, j = 5)

Here the expression is evaluated from left to right, thatis,i = 4 is evaluated firstthenj = 5 is evaluated. The value
of the rightmost expression is specified as output, thus k will get the value 5.

—

[@ rPREV | | NExT Wb |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0027.html [30.06.2007 10:57:08]

BITWISE OPERATOR

= r

| 4mPREV | | NEXT Wi |

BITWISE OPERATOR

I ntroduction

Bitwise operators interpret operands as strings of bits. Bit operations are performed on this data to get the bit strings.
These bit strings are then interpreted according to data type. There are six bit operators: bitwise AND(&) , bitwise OR

(]), bitwise XOR(") , bitwise conpl enent (~),l eft shift(<<),andright shift(>>).

Program
incl ude<stdio. h>

mai n()
{
char c1,c2,c3;
printf("ENTER VAULES OF cl1 and c2");
scanf ("%, %", &1, &c?2);
c3 = cl & c2;
printf("\n Bitwise ANDi.e. cl & c2
c3 =cl | c2
printf("\n Bitwise ORi.e. ¢l | c2 = %", c3);
c3 =c¢cl N c2
printf("\n Bitwise XCRi.e. c1 » ¢c2 = %", c3);
c3 = ~c1
printf("\'n ones conplenmnent of cl = %", c3);
c3 = cl<<?;
printf("\n left shift by 2 bits cl << 2 = %", c3);
c3 = cl>>2;
printf("\'n right shift by 2 bits cl1l >> 2 = %", c3);
}

%", c3);

Input

cl = 4;
c2 = 6;

Output

ENTER VALUES OF cl1l and c2
4
6

Bitwise ANDi.e. cl1 &c2 =14
Bitwise ORi.e. ¢c1 | c2 =6
Bitwise XORi.e. ¢l ~ c2 =2
ones conplinment of cl = -4
left shift by 2 bits cl << 2 = 16
right shift by 2 bits cl1 > 2 =1

Explanation

1. Suppose you write
char cl1, c2, c3;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0028.html (1 of 3) [30.06.2007 10:57:09]

BITWISE OPERATOR

cl
c2

4;
6,

The binary values are

0000 0100
0000 0110

cl

c2
2. Suppose you write

c3 = cl & c2;

The value of ¢3 is interpreted as follows:

0000 0100
& 0000 0110

0000 0100

Each bit of c1 is compared with the corresponding bit of c2. If both bits are 1 then the corresponding bit is set as
1, otherwise it is set as 0. Thus the value of c3 is 4.

3.c3=cl| c2

The value of ¢3 is interpreted as follows:

0000 0100
| 0000 0110

0000 0110

Each bit of c1 is compared with the corresponding bit of c2. If any of the bits are 1 then the corresponding bit is
set as 1; otherwise it is set as 0. Thus the value of c3 is 6.

4. ¢c3 =c¢cl1 N c2

The value of c3 is interpreted as follows:

0000 0100
A 0000 0110

0000 0010

Each bit of c1 is compared with the corresponding bit of c2. If only one bit is 1, the corresponding bit is set to 1;
otherwise it is set to 0. Thus you will get the value of ¢3 as 2 because in the second position for c1, the bit is O

and for c2, the bitis 1. So only one bit is set.
5.¢c3 =~rcl

The value of ¢3 is interpreted as follows:
~ 0000 0100

1111 1011

Each bit of c1 is complemented; for 1 the complement is 0. Thus you will get the value of ¢3 as —4, because the
leftmost bit is set as 1.

6. c3 = cl << 2;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0028.html (2 of 3) [30.06.2007 10:57:09]

BITWISE OPERATOR

This is a left-shift operation. The bits are shifted left by two places. c1 indicates the operand that should be an

expression returning a whole number. 2 indicates a shift that should not be negative, and its value must be less
than the number of bits allocated to that data type.

It is evaluated as follows:
cl is 0000 0100

It is shifted 2 bits to the left to produce
0001 00**

While shifting, the high-order (left) bits are discarded. Since a vacuum is created on the right side, it is filled with
0Os to get 0001 0000. Thus the value is 16.

7. ¢c3 = cl >> 2;

This is a right shift operation. The bits are shifted right by two places. c1 indicates the operand that should be an

expression returning a whole number. 2 indicates a shift that should not be negative, and its value must be less
than the number of bits allocated to that data type.

It is evaluated as follows:
cl is 0000 0100

It is shifted 2 bits to the right to produce
**00 0001

While shifting, the low-order (right) bits are discarded. The asterisks are replaced using one of the following
strategies:

Logical shift: In this case, the high-order bits are filled with 0s, thus you get 0000 0001.

Arithmetic shift: In this case the high-order bits are filled with the original sign bits, so if the sign bit is 1, then all
bits are filled with 1s; otherwise, they are filled with 0Os.

For unsigned data types, logical shift is used, whereas for signed data types arithmetic shift is used.

In these examples, the char data type which is signed is used. In number 4, the sign bit is 0, so you will get the bit
pattern 0000 0001 (decimal 1).

- -

| 4mPREV | | MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0028.html (3 of 3) [30.06.2007 10:57:09]

OPERATOR PRECEDENCE

[_ﬁ PREY j

(

ME=T @

)

OPERATOR PRECEDENCE

I ntroduction

Since C has various types of operators, it also sets precedence rules so that the value of expressions that involve
multiple operators should be deterministic.

Program

The precedence of operators is given in Table 3.3.

Table 3.3: Operator precedence rules

| Operators | Order of evaluation | Remarks

| 0o -> | Left to right | Array subscript, function call

|—+sizeof()!++—— |]

| &*~(cas) | Right to left | Unary

| *[% | Left to right | Binary Multiplicative

| + - | Left to right | Binary Additive

| >> << | Left to right | Shift operators

| <<=>>= | Left to right | Relational operators
=== | Left to right | Equality operators

| & | Left to right | Bitwise And operator

| A | Left to right | Bitwise Xor operator

| | | Left to right | Bitwise Or operator

| && | Left to right | Logical And operator

1l | Left to right | Logical Or operator

| 2 | Left to right | Conditional operator

|:+=-:*:/:%: I ’

| &= -= |= <<= >>= | Right to left | Assignment

| , | Right to left | Comma

Point to Remember

The operators are evaluated according to the precedence as shown in Table 3.3.

[_* FREV j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0029.html [30.06.2007 10:57:09]

(

ME=T @

j

Chapter 4: Control Structures

= o

| 4w PREV NE=T w |

Chapter 4: Control Structures
CONTROL STRUCTURES

I ntroduction

C provides four general categories of control structures: sequential, selection, iteration and encapsulation.

Program/Example

A sequential structure is one in which instructions are executed in sequence. For example,

i =i + 1;

=1+ L

In the selection structure, the sequence of the instruction is determined by using the result of the condition. The
statements that can be used in this category are i f and swi t ch. For example:

if (a >Dhb)
i =i + 1
el se
o=+
If the condition is true then the statementi = i +1 is executed; otherwisej = j + 1is executed.7

The iteration structure is one in which statements are repeatedly executed. The iteration structure forms program
loops. The number of iterations generally depends on the values of particular variables.

for (i=0; i<5; i++)

The statementj = j + 1isexecuted 5 times and the value of i changes from 0 to 1, 2, 3, and 4.

Encapsulation structure is the structure in which the other component structures are included. For example, you can
include ani f statementinaf or looporafor loopinanif statement.

Explanation

C provides all the standard control structures that are available in programming languages. These structures are
capable of processing any information.

= o

| 4w PREV NE=T w |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0030.html [30.06.2007 10:57:10]

THE if STATEMENT

= o

| 4mPREV | | NEXT Wi |

THE i f STATEMENT

I ntroduction

The i f statement is the first selection structure. i f is used when a question requires a yes or no answer. If you want
to choose an answer from several possibilities then use the swi t ch statement.

Program/Example

The general format for ani f statement is:

if (condition)
sinmpl e or conpound st atenent.

Following are the properties of ani f statement:

1. If the condition is true then the simple or compound statements are executed.

2. If the condition is false it does not do anything.

3. The condition is given in parentheses and must be evaluated as true (nonzero value) or false (zero value).
4. If a compound statement is provided, it must be enclosed in opening and closing braces.

Following are the test conditions:

(7)/1 a non-zero value returns True.
(0)/! zero value returns Fal se.

(i==0) [l True if i=0 otherw se Fal se.

(i =0) /1 Fal se because value of the expression is

zero.

| 4mPREV | | NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0031.html [30.06.2007 10:57:10]

SCOPE OF AN if CLAUSE

e = e =

| 4mPREV | | NEXT P |

SCOPE OF ANi f CLAUSE

The scope of ani f clause determines a range over which the result of the condition affects. The scope of an i f
clause is on the statement which immediately follows the i f statement. It can be a simple statement or compound
statement.

Case 1:
if (a>b)
i =i + 1; /Il s1
i =] + 1 [l s2
Case 2:
if (a>b)
{
i =i +1; /] s1
j =j +1 Il s2
}

Ifin Case 1 thei f condition is true, then s1 is executed because s1 is a simple statement.

If in Case 2 the i f condition is true, then both statements s1 and s2 are executed because s1 and s2 are enclosed in
a compound statement.

- - - -

| 4@ PREV | | MNE=T m |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0032.html [30.06.2007 10:57:10]

THE if-else STATEMENT

= e

T — ———
| 4mPREV | | NEXT P |

THE i f-el se STATEMENT

I ntroduction

When you want to take actions based on the outcome of the conditions, (true or false), then you can use thei f - el se
statement.

Program/Example

The general format for ani f - el se statement is

if (condition)

sinmpl e or conpound st at enment /Il sl
el se

sinpl e or conpound statenment. // s2

If the condition is true then the s1 part is executed and if the condition is false then the s2 part is executed. For
example,

if (a>b)

printf (" big nunmber is %", a); /1 sl

el se

printf (" big nunber is %", b); [l s2

if a is greater than (b) then s1 is executed. Otherwise s2 is executed.

= e

T — ——
| 4w PREV | | NE<T @ |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥20(2004)/7267/DDU0033.html [30.06.2007 10:57:11]

THE if-elseif STATEMENT

= r

| 4mPREV | | NEXT Wi |

THEif-else if STATEMENT

I ntroduction

If you want to make many decisions, then you can use thei f - el se i f statement.

Program

The general format for the i f - el se i f statementis:

if (condition 1)

sinpl e or conpound st at enment Il s1
else if (condition 2)

sinmpl e or conpound statenent /Il s2
else if (condition 3)

sinmpl e or conpound st at enent /Il s3
else if (conditon n)

sinpl e or conpound st at enent [l sn

If condition 1 is true then s1 is executed. If condition 1 is false and condition 2 is true then s2 is executed.

The el se clause is always associated with the nearest unresolved i f statement.

if (a==bh) /1 A
if (a==7) /] B

i =10; [/ C
el se /1 D
if (a==7) [/l E
i =15; I/ F
el se Il G
i =20; // H

For the el se statement at position D, the nearest i f statement is specified at B. So, the el se statement is associated
with i f at B and not at A.

For the el se statement at G, the nearesti f statement is specified at E. So, it is associated with the i f statement at E
and not at A.

if (a==bh) A
if (a==7) /] B
i = 10; /Il C

el se /[l D
if (a==7) [/ E
i = 15; /1 F1
j = 20; /1 F2
el se Il G
i =20; [/ H

In this case, the el se statement at G cannot be associated with the i f statement at E because the i f statement at E
is already resolved. So, it is associated with the i f statement at A.

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0034.html (1 of 2) [30.06.2007 10:57:11]

THE if-elseif STATEMENT

Pointsto Remember

1. Youcanuseif-el se i f when you want to check several conditions but still execute one statement.

2. When writingani f - el se if statement, be careful to associate your el se statement to the appropriate i f
statement.

3. You must have parentheses around the condition.

4. You must have a semicolon or right brace before the el se statement.

- -

| 4m PREV NEXT o |

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0034.html (2 of 2) [30.06.2007 10:57:11]

THE switch STATEMENT

= r

| 4mPREV | | NEXT Wi |

THE swi t ch STATEMENT

I ntroduction

You can use a swi t ch statement when you want to check multiple conditions. It can also be done using anii f
statement but it will be too lengthy and difficult to debug.

Program/Example

The general format for a swi t ch statement is

switch (expressions)

{

case constant expressions

}

Example of a case constant expression and column:
switch (i/10)

{
case 0: printf ("Nunber |less than 10"); 11 A
br eak;
case 1. printf ("Nunber |ess than 20"); /1 B
br eak;
case 2. printf ("Nunmber |ess than 30"); /1 C
br eak;
default: printf ("Nunmber greater than or equal to 40"); /1 D
break; }
Explanation

1. The swi t ch expression should be an integer expression and, when evaluated, it must have an integer value.

2. The case constant expression must represent a particular integer value and no two case expressions should
have the same value.

3. The value of the swi t ch expression is compared with the case constant expression in the order specified, that
is, from the top down.

4. The execution begins from the case where the swi t ch expression is matched and it flows downward.

5. In the absence of a br eak statement, all statements that are followed by matched cases are executed. So, if
you don't include a br eak statement and the number is 5, then all the statements A, B, C, and D are executed.

6. If there is no matched case then the default is executed. You can have either zero or one default statement.
7. In the case of a nested swi t ch statement, the br eak statements break the inner swi t ch statement.
Point to Remember

The swi t ch statement is preferable to multiple i f statements.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0035.html (1 of 2) [30.06.2007 10:57:11]

THE switch STATEMENT

~ = — =

| 4mPREV | | NEXT P |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0035.html (2 of 2) [30.06.2007 10:57:11]

THE while LOOP

= o

| 4mPREV | | NEXT Wi |

THE whi | e LOOP

I ntroduction

The whi | e loop is used when you want to repeat the execution of a certain statement or a set of statements
(compound statement).

Program/Example

The general format for a whi | e loop is

whil e (condition)
sinmpl e or conpound staterment (body of the | oop)
For exanpl e,

i = 0;
while (i<b)
{
printf(" the value of i is %l\n", i);
i =i + 1;
}
Explanation
1. Before entering into the loop, the whi | e condition is evaluated. If it is true then only the loop body is executed.
2. Before making an iteration, the whi | e condition is checked. If it is true then the loop body is executed.
3. ltis the responsibility of the programmer to ensure that the condition is false after certain iterations; otherwise,
the loop will make infinite iterations and it will not terminate.
4. The programmer should be aware of the final value of the looping variable. For example, in this case, the final
value of the looping variable is 5.
5. While writing the loop body, you have to be careful to decide whether the loop variable is updated at the start of
the body or at the end of the body.
| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0036.html [30.06.2007 10:57:12]

THE do-while LOOP

—

—
| 4mPREV |

| NEXT Wi |

THE do- whi | e LOOP

I ntroduction

The do- whi | e loop is used when you want to execute the loop body at least once. The do- whi | e loop executes the

loop body and then traces the condition.
Program/Example

The general format for a do- whi | e loop is

do
sinpl e or conpound st at enent
whil e (condition)
For exanpl e,

i = 0;

do

{
printf(" the value of i is %l\n", i);
i =i + 1;

}

while (i<b)

Explanation

1. The loop body is executed at least once.
2. The condition is checked after executing the loop body once.
3. If the condition is false then the loop is terminated.

4. In this example, the last value of i is printed as 5.

-

T ——
| 4w PREV |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %620D ata%20Structures¥s20(2004)/7267/DDU0037.html [30.06.2007 10:57:12)

| MNExT W |

THE for LOOP

= o

| 4mPREV | | NEXT Wi |

THE f or LOOP

I ntroduction

The f or loop is used only when the number of iterations is predetermined, for example, 10 iterations or 100 iterations.

Program/Example

The general format for the f or loop is

for (initializing; continuation condition; update)
simpl e or conpound st at ermrent
For exanpl e,

for (i =0; i <5; i++4)

{
printf("value of i");
}
Explanation
1. The f or loop has four components; three are given in parentheses and one in the loop body.
2. All three components between the parentheses are optional.
3. The initialization part is executed first and only once.
4. The condition is evaluated before the loop body is executed. If the condition is false then the loop body is not
executed.
5. The update part is executed only after the loop body is executed and is generally used for updating the loop
variables.
6. The absence of a condition is taken as true.
7. Itis the responsibility of the programmer to make sure the condition is false after certain iterations.
| 4mPREV | | NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0038.html [30.06.2007 10:57:12]

THE for LOOPWITH A COMMA OPERATOR

= o

| 4mPREV | | NEXT Wi |

THE for LOOPWITH A COMMA OPERATOR

I ntroduction

You may want to control the loop variables in the same f or loop. You can use one f or loop with a comma operator in
such situations.

Program/Example

for (i =0, j =10; i <3 & j > 8; i++ j-)
printf (" the value of i and j % %\n",i, j);

Explanation

1. Firsti isinitialized to O, and j is initialized to 10.
2. The conditions i <3 and j >8 are evaluated and the result is printed only if both conditions are true.

3. After executing the loop body, i is incremented by 1 and j is decremented by 1.

4. The comma operator also returns a value. It returns the value of the rightmost operand. The value of (i = 0,
j = 10)is 10.
| 4mPREV | | MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0039.html [30.06.2007 10:57:13]

THE break STATEMENT

= =

[@ rPREV | | NExT Wb |

THE br eak STATEMENT

I ntroduction

Just like the swi t ch statement, br eak is used to break any type of loop. Breaking a loop means terminating it. A
br eak terminates the loop in which the loop body is written.

Program/Example

For example,
i = 0;
while (1)
{
=0 o+ 1
printf(" the value of i is %\ n");
if (i>5) break;
}
Explanation
1. Thewhil e (1) here means the whi | e condition is always true.
2. Wheni reaches 6, the i f condition becomes true and br eak is executed, which terminates the loop.
T — T —
| 4w PREV | | NE<T @ |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0040.html [30.06.2007 10:57:13]

THE continue STATEMENT

= o

| 4mPREV | | NEXT Wi |

THE conti nue STATEMENT

I ntroduction

The br eak statement breaks the entire loop, but a cont i nue statement breaks the current iteration. After a
cont i nue statement, the control returns to top of the loop, that is, to the test conditions. Swi t ch doesn't have a
cont i nue statement.

Program/Example

Suppose you want to print numbers 1 to 10 except 4 and 7. You can write:
for(i =0, i < 11, i++4)

{
if ((i ==4) || (i == 7)) continue;
printf(" the value of i is %d\n", i);
}
Explanation
1. Ifi is1thenthei f condition is not satisfied and cont i nue is not executed. The value of i is printed as 1.
2. Wheni is 4 thentheif condition is satisfied and cont i nue is executed.
3. After executing the cont i nue statement, the next statement, (pri nt f), is not executed; instead, the updated
part of the f or statement (i ++) is executed.
| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0041.html [30.06.2007 10:57:13]

printf

= r

| 4mPREV | | NEXT Wi |

Chapter 5: Thepri nt f Function
printf

I ntroduction

pri ntf is used to display information on screen, that is, standard output. pri nt f is a function that returns the number
of characters printed by the pri nt f function.

Program

#i ncl ude <stdi o. h>

mai n()

{

int i = 0;

i =printf("abcde"); I A

printf("total characters printed %\n",i); //B
}

Explanation

1. Here, five characters are printed by statement A. So, i will get the value 5.

2. Statement B prints the value of i as 5.

3. The general format for the pri nt f statement has a first string argument followed by any additional arguments.
4. In statement B, "total characters printed %\ n" is the first string argument.

5. i isthe second argument. You may have multiple arguments, but that depends on what value you have to print.

For each additional argument you will have to include a placeholder. Each placeholder begins with %. In
statement B, % is the placeholder.

6. For the second argument i , the placeholder is %8. So when you need an integer value, you have to use %d. The
placeholders are given for each data type.

7. For example, if you want to printi and j , you may have to use two placeholders. Any material in the first string
argument, other than the placeholder and characters, represents the escape sequence. In this example, the
escape sequence character is \ n, which is not printed but acts as a directive. For example, the \ n directive

indicates that the next printing should be done on a new line.

Pointsto Remember

1. printf is used to direct output to standard output format.

2. printf is afunction that returns the number of characters printed.

- -

| 4mPREV | | MNExT W |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0042.html [30.06.2007 10:57:14]

PLACEHOLDERS

= r

| 4mPREV | | NEXT Wi |

PLACEHOLDERS

Introduction
Placeholders are used to print values of arguments supplied in print. The directives in the placeholders control printing.
Program/Example

The general form of a placeholder is:
. % flags field-width precision prefix type-identifier.

Type-identifiers

The type-identifiers are as follows:

. d, i Signed integers

. 0 Unsigned integers displayed in octal form.

. U Unsigned integers in decimal form.

. X Unsigned integers in hexadecimal form, and the hexadecimal characters a, b, c, d, e, and f printed in lowercase.

. XUnsigned integer in hexadecimal form, and the hexadecimal characters A, B, C, D, E, and F printed in
uppercase.

. ¢ Any value converted to unsigned char and displayed; ¢ is used mainly for printing characters.
. s The argument is converted to a character array and is printed; the last null in the string is not printed.
. T Floating point.

. e, EFloating point displayed in exponential form. It will have one digit to the left of the decimal point; the number
of digits on the right side of the decimal point depends on the required precision.

. g, GThe value can be printed in floating point or exponential form. The exponential form is used if the exponent
is less than —1 or if the exponent causes more places than required by the specified precision; the decimal point
appears only if it is followed by a digit.

. N This indicates to print the number of characters that are printed so far by pri nt f .

. p It indicates an additional argument pointer to void; the value of the pointer is converted to a sequence of
characters.

Type prefixes

. h It can appear before type indicators d, i, 0, u, X, and X. It indicates that the value to be displayed should be
interpreted as short; for example, short integer (hd) and short unsigned integer (hu).

. | It can appear before type-identifiers d, i, 0, u, x, and X. It indicates that the value to be displayed should be
interpreted as long; for example, long integer (hd) and long unsigned integer (hu).

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0043.html (1 of 4) [30.06.2007 10:57:14]

PLACEHOLDERS

. |, L Available for type-identifiers e, E, f, g, and G. It indicates that a value should be indicated as long double.

Field-width
1. Field-width indicates the least number of columns that will be allocated to the output. For example, if you write %
4d toi and the value of i is 10, then 4 columns are allocated fori and 2 blank are added on left side of value
of i . So the output is bb10. Here, b indicates blank.

2. If the value is more than the specified column, field-width is ignored and the number of columns used is equal to
the number of columns required by the arguments. So if i is 12345 then 5 columns are used, even if %d is

specified.
3. In any circumstance, the output width is not shortened, because of field-width.

4. If you specify * instead of field-width then you have to specify additional arguments. For example,

printf ("%d\n", 5, 20); Il A
printf ("%d\n", 20, 5); /1 B

In A, 5 is substituted for * and it indicates putting the value 20 in 5 columns.
In B, 20 is substituted for * and it indicates putting the value 5 in 20 columns.
Precision

1. Precision indicates the minimum number of digits printed for type integers d, i, 0, u, X, and X. For example,
i. printf("%0.4d\n", 35)

2. Here 10 is the field-width and 4 is the precision, so 10 columns are used for the 4-digit output. To make 35 into 4
digits, two Os are added to the left side to make it 0035. To print 0035 in 10 columns, blanks are added to make
the output bbbbbb0035.

3. For floating arguments, precision indicates how many digits are printed after decimal points. If precision is more
than the number of digits on the right side of the decimal point, Os are added to the right side.

4. If precision indicates too few digits, then it is ignored and the number of digits are printed as necessary.

Flags

1. Flag characters are used to give directives for the output. You can use multiple flag characters in any order.

2. The flag characters are as follows:
o — Indicates that output is left justified.
printf("% 10.4d\n", 25)

o It causes the number to be printed as 0025bbbbbb. Thus, blanks are added to the right side.
o In the absence of a flag, it is printed as bbbbbb0025.

o + Indicates that i number is printed using a sign character (+ or —) .

printf("%d\n", -25);
printf("%d\n", 25);

o It causes printing as
-25

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0043.html (2 of 4) [30.06.2007 10:57:14]

PLACEHOLDERS

+25

o <space> Indicates a space for positive values so that positive values and negative values are aligned. For
example,

printf("%d\n", 25);
printf("%d", 25);

o It causes printing in the form of

b25
25

o In the first case, blank is displayed.

o — # Indicates that the value should be converted to another form before displaying. For example, for

hexadecimal values you can indicate 0X; for the floating data type, # indicates that the decimal point should
always be included in the output.

o 0 Used with whole and real numbers, 0 causes Os to be padded to complete the field width. If the precision
is specified as 0, then this flag is ignored; if the 0 and — flags are both specified, the 0 flag is ignored.

Escape Sequence

Escape sequences are the special directives used to format printing. For example, \ n indicates that the next printing
should start from the first column of the next line. Following are the escape sequences:

. \aAlert

. Produces a beep or flash; the cursor position is not changed.

. \ b Backspace

. Moves the cursor to the last column of the previous line.

. \'f Form feed

. Moves the cursor to start of next page.

. \'n New line

. Moves the cursor to the first column of the next line.

. \'r Carriage Return

. Moves the cursor to the first column of the current line.

. \'t Horizontal Tab

. Moves the cursor to the next horizontal tab stop on the line.

. \ v Vertical Tab

. Moves the cursor to the next vertical tab stop on the line.

<\

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0043.html (3 of 4) [30.06.2007 10:57:14]

PLACEHOLDERS

. Prints\\.
<\

. Prints"

. %%

. Prints %.

Pointsto Remember

1. printf returns the number of characters printed; if some error occurs then it returns a negative value.

2. Formating of pri nt f can be controlled by using flags, field-width, etc.

- - -

| 4@ PREV | | MNE=T m |

-

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures¥620(2004)/ 7267/DDU0043.html (4 of 4) [30.06.2007 10:57:14]

Chapter 6: Address and Pointers

= r

| 4mPREV | | NEXT Wi |

Chapter 6: Addressand Pointers
ADDRESS

I ntroduction

For every variable declared in a program there is some memory allocation. Memory is specified in arrays of bytes, the
size of which depending on the type of variable. For the integer type, 2 bytes are allocated, for floats, 4 bytes are
allocated, etc. For every variable there are two attributes: address and value, described as follows:

Program
#i ncl ude <stdio. h>
main ()
{
int i, j, k; /1A
i = 10; /1B
j = 20; /I/C
k =i +j; IID
printf ("Value of k is %d\n", k);
}
Explanation
1. Memory allocations to the variables can be explained using the following variables:
100, i 10
200, j 20
300, k 30
When you declare variables i , j , k, memory is allocated for storing the values of the variables. For example, 2

bytes are allocated for i , at location 100, 2 bytes are allocated for j at location 200, and 2 bytes allocated for k
at location 300. Here 100 is called the address of i , 200 is called address of j , and 300 is called the address of
K.

2. When you execute the statementi = 10, the value 10 is written at location 100, which is specified in the figure.
Now, the address of i is 100 and the value is 10. During the lifetime of variables, the address will remain fixed
and the value may be changed. Similarly, value 20 is written at address 200 for j .

3. During execution, addresses of the variables are taken according to the type of variable, that is, local or global.
Local variables usually have allocation in stack while global variables are stored in runtime storage.

Pointsto Remember

1. Each variable has two attributes: address and value.
2. The address is the location in memory where the value of the variable is stored.

3. During the lifetime of the variable, the address is not changed but the value may change.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0044.html (1 of 2) [30.06.2007 10:57:15]

Chapter 6: Address and Pointers

~ = — =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0044.html (2 of 2) [30.06.2007 10:57:15]

POINTERS

[@ rPREV | | NExT Wb |
POINTERS

I ntroduction

A pointer is a variable whose value is also an address. As described earlier, each variable has two attributes: address
and value. A variable can take any value specified by its data type. For example, if the variable i is of the integer type,
it can take any value permitted in the range specified by the integer data type. A pointer to an integer is a variable that
can store the address of that integer.

Program
#i ncl ude <stdio. h>
main ()
{
int i; [1A
int * ia; /1B
i = 10; //C
ia = & ; /1D
printf (" The address of i is %Bu \n", ia); /I1E
printf (" The value at that location is %d\n", i); I'1'F
printf (" The value at that locationis %\n", *ia); //G
*ia = 50; /1 H
printf ("The value of i is %d@\n", i); /11
}
Explanation

1. The program declares two variables, so memory is allocated for two variables. i is of the type of i nt,and i a
can store the address of an integer, so it is a pointer to an integer.

2. The memory allocation is as follows:

Click To expand

3. i gets the address 1000, and i a gets address 4000.

4. When you executei = 10, 10 is written at location 1000.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0045.html (1 of 2) [30.06.2007 10:57:15]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu65%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu65%5F1%5F0%2Ejpg

POINTERS

5. When you executei a = & then the address and value are assigned to i , thus i has the address of 4000 and
value is 1000.

6. You can print the value of i by using the format %au because addresses are usually in the format unsigned
long, as given in statement E.

7. Statement F prints the value of i , (at the location 1000).

8. Alternatively, you can print the value at location 1000 using statement G. *i a means you are printing the value
at the location specified by i a. Since i has the value for 1000, it will print the value at location 1000.

9. When you execute *i a = 50, which is specified by statement H, the value 50 is written at the location by i a.
Since i a specifies the location 1000, the value at the location 1000 is written as 50.

10. Sincei also has the location 1000, the value of i gets changed automatically from 10 to 50, which is confirmed
from the pri nt f statement written at position i .

Pointsto Remember

1. Pointers give a facility to access the value of a variable indirectly.
2. You can define a pointer by including a* before the name of the variable.

3. You can get the address where a variable is stored by using &.

= r

| 4mPREV | | NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0045.html (2 of 2) [30.06.2007 10:57:15]

scanf

= r

| 4mPREV | | NEXT Wi |

Chapter 7: Thescanf Function
scanf

I ntroduction

The scanf function is used to read information from a standard input device (keyboard). scanf starts with a string
argument and may contain additional arguments. Any additional arguments must be pointers (to implement calls by
reference).

Program
#i ncl ude <stdio. h>
mai n()
{
int i = 0;
int k,j=10;

=scanf (" %l%%", & , &, &);
printf(“total values inputted %\n",i);
printf("The input values % %l\n",j,k);

}

Explanation
1. Statement A indicates scanf ; it is used for inputting values fori , j , k.

2. You have to use the address of the variable as an additional variable, for example, & .

3. The first argument is always a string argument with placeholders.

4. During execution of scanf , the input is processed and it is matched against the string argument. The process is
continued until the matching is complete.

5. When the first placeholder is encountered in the string argument, a value of the specific type of the first element
constitutes a match. It is repeated for each placeholder.

6. If there are one or more whitespace characters in the first string argument between the placeholders, any
sequence of one or more whitespace characters in the input completes a match.

7. If there are other characters in a string argument, the input should have the same character in the same
sequence in order to constitute a match.

8. Once a match is not found, the function is terminated. Matching fails if the expected input is missing.

9. scanf returns the number of values that have been succesfully input. In this example, if you type A instead of
an integer when you are giving the value for k, then scanf returns only 1, although k gets the value 65 (the
ASCII value for A).

Pointsto Remember

1. Input can be done using scanf .

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0046.html (1 of 2) [30.06.2007 10:57:16]

scanf

2. For scanf, the address of the variable should be passed.

3. scanf returns the number of successful inputs.

- -

[4w PREV | [NExTwp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0046.html (2 of 2) [30.06.2007 10:57:16]

THE scanf PLACEHOLDERS

= r

| 4mPREV | | NEXT Wi |

THE scanf PLACEHOLDERS

I ntroduction

The scanf placeholder consists of % at the beginning and a type indicator at the end. Apart from that it can have *, a
maximum field-width indicator, and a type indicator modifier, for example,

%94.0. 2f, %40d

Program/Example

Typeindicators

. d, i Used for signed integers; the expected argument should be a pointerto i nt .
. 0 Used for unsigned i nt expected's value. It should be an integer in octal form.

. UUnsigned integer in decimal form.

. X, XUnsigned integer in hexadecimal form.

. E, E f, g, GFloating-pointvalues.

. S Character string. It matches a sequence of non-whitespace characters terminated by an end-of-line or end-of-file
character. The additional argument should be a pointer to char and should point to an area that is large enough to
hold the input string as well as the NULL terminator.

. CMatches the number of characters according to a specified field-width. If no width is specified then a single
character is assumed. The additional argument must be a pointer to char ; the area pointed to should be large
enough to hold the specified number of characters.

. NDoes not read any input but writes the number of characters so far in the target variable.
Useof *

The * is used to suppress input. For example, with %*d, if your input consists of 5 values and you want to ignore the
middle 3 values, you can write:

scanf (" %d %d %d¥wd %d ", &, &)

So, if your input is

10 20 30 40 50

it will get the value 10 and j will get the value 50. This is useful when you are getting the input from a file.
Field-width

It indicates the maximum number of characters that are read into the variables.

Explanation

1. scanf requires two inputs: the first is a string argument and the second is a set of additional arguments.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0047.html (1 of 2) [30.06.2007 10:57:16]

THE scanf PLACEHOLDERS

2. You can define how the input is to be taken by using placeholders.

[_ﬁ PREY] [_ NEXT ‘]

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0047.html (2 of 2) [30.06.2007 10:57:16]

Chapter 8: Preprocessing

= r

| 4mPREV | | NEXT Wi |

Chapter 8: Preprocessing
PREPROCESSOR

I ntroduction

C's preprocessor provides a facility for defining constant and substitution, which are commonly called macros. It is
used when you either want the make to program more readable or when you don't have enough information about
certain values. For example, if your input is in U.S. dollars, and your processing is done in terms of rupees, then your
program may have the expression

Rs = usd * 46;

where 46 is the currency rate. You can write the expression as:

define currency_rate 46
rs = usd * currency_rate;

So, if the currency rate is changed, you can make the necessary change only in one place. The preprocessor directive
is defined here.

Program
include <stdio. h>

#define VAL 35 [A
#define HELLO "HELLO'; /Il B
main ()
{
int res;
res = VAL-5; /[l C
printf ("res = VAL-5: res == %d\n", res);
printf (HELLO; /1D
}

Statements A and B indicate preprocessor directives. VAL is defined as integer 35 and HELLOis a string as "HELLQO'" .
Whenever VAL and HELLOappear, they are replaced by the specified values.

In statement C, VAL 35 is replaced by VAL —5. So the statement becomes
res = 35-5;

Statement D, after replacement, becomes
printf ("HELLO")

The preprocessor directives are not C statements, so they do not end with semicolons.

The i ncl ude directive tells the compiler to include all the contents of a specified file in the source file before giving the
source file for compiling.

Explanation

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0048.html (1 of 2) [30.06.2007 10:57:17]

Chapter 8: Preprocessing

1. The preprocessor substitutes strings that are specified by using def i ne directive
#define constant identifer "val ue"

2. Following are valid def i ne expressions:

#defi ne TRUE 1
#defi ne FALSE 0
#defi ne BS "\ b'

#defi ne TAB "\ 011"

- -

[@mPrREV | [NEXT W |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0048.html (2 of 2) [30.06.2007 10:57:17]

undef

[@ rPREV | [NexTap]
undef

I ntroduction

If you want to nullify the effect of the def i ne directive and specify a new value, then you can use the undef directive.
Program

#i ncl ude <stdio. h>

#defi ne VAL 40; /1A
#undef VAL /1B
#define VAL 40 /1C
mai n()
{
printf ("%l\n", VAL); /1D
}
Explanation

1. Statement A defines VAL as 40, that is, an erroneous definition.
2. Statement B indicates that the afore mentioned definition no longer exists.
3. Statement C allows a new definition.
4. Statement D uses new definition of 40.
Point to Remember

The undef directive nullifies the effect of an earlier definition.

—

NEXT s |

—

[@ rPREV |

i T

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0049.html [30.06.2007 10:57:17]

ifdef

| 4mPREV |

= r

| NEXT Wi |

| f def

I ntroduction

The i f def directive makes substitutions based on whether a particular identifier is defined.

Program

Suppose we have three files:

filel.h
#define USD 1
file2.h
#define UKP 1

file3

#i ncl ude <stdio. h>
#i ncl ude <filel. h> 1A
#i f def USD /l B

#define currency rate 46 /1C

#endi f /1D

#i f def UKP Il E
#define currency_rate 100 //F

#endi f 111G

mai n()

{

}

int rs;
rs =10 * currency_rate; [//H
printf ("%l\n", rs);

Explanation

1.

Statement A includes f i | el. h, so the content of the file is substituted in that position. If the file name is given

“y

in angle brackets, it means the file is searched in the default search path. If the file name is specified within *’,
likei nclude "filel.h",thenfil el. his searched only in the current directory.

Statement B is an i f def directive and it checks whether the identifier USD is defined. Since it is defined in
fil el. h, the condition is true and the currency rate is defined as 46. You can include multiple directives ini f,
def and endi f.

Statement E checks whether the identifier UKP is defined. Since it is not defined, because fi | e2. h, is not
included in the file, the condition is false and its defined directive is not processed.

. The currency rate infi | e3 is taken as 46.

In the expression in statement H, the currency rate is substituted as 46.

. If,instead of fi | el. h, you include fi | e2. h, then the currency rate will be 100.

Pointsto Remember

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0050.html (1 of 2) [30.06.2007 10:57:17]

ifdef
1. i f def is used to make a substitution depending on whether a certain identifier is defined.

2. If the identifier is defined, it returns true; otherwise, it is false.

- -

[4w PREV | [NExTwp |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0050.html (2 of 2) [30.06.2007 10:57:17]

ifndef

—

| 4mPREV |

-

| NEXT Wi |

| f ndef

I ntroduction

#i f ndef is used to check whether a particular symbol is defined.

Program

Suppose wse have three files:

filel.h
#defi ne USD 1

file2.h
#define UKP 1
file3
#i ncl ude <stdio. h>
#include <filel. h> [1TA
#i f ndef USD /Il B
#define currency_rate 100 /1C
#endi f /1D
#i f ndef UKP /[l E
#define currency rate 46 //F
#endi f /111G
mai n()
{ .
Int rs;

rs =10 * currency_rate; [//H
printf ("%\n", rs);
}

Explanation

1. i f ndef is a complement ofi f def . That is, if the symbol is defined, i f ndef returns false.

2. Statement B is ani f ndef directive and it checks whether the identifier USD is defined. Since it is defined in

filel. h, the condition is false and further processing is not done.

3. Statement E checks whether the identifier UKP is defined. Since it is not defined, because fi | e2. h is not

included in the file, the condition is true and the currency rate is defined as 46.

4. The currency rate infi | e3 is taken as 46.

5. In the expression in statement H, the currency rate is substituted as 46.

6. If,instead of fi | el, you include fi | e2. h, then the currency rate will be 100.

7. i f ndef is a complement of i f def. So, when i f def returns true, i f ndef returns false.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0051.html (1 of 2) [30.06.2007 10:57:18]

ifndef

| @m PREV | | NEXT &P |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0051.html (2 of 2) [30.06.2007 10:57:18]

#if

| 4mPREV | | NEXT Wi |

#if
I ntroduction

#i f allows you to define more generalized conditions. Multiple conditions, which are connected by relational operators
such as AND(&&) , OR(| |), are allowed.

Program

Suppose we have three files:

filel.h
#define USD 1

file2.h
#define UKP 1

file3
#i ncl ude <stdi o. h>
#i nclude <filel. h> /1A

#if ((1>0) &&(defined (USD)) /1 B
#define currency_rate 46 /1C
#endi f /1D

#if (defined (UKP)) Il E
#define currency rate 100 //F
#endi f 111G
mai n()
{ .
int rs;
rs = 10 * currency_rate; //H
printf ("%l\n", rs);
}
Explanation

1. Statement B indicates the i f directive.

2. The generalized form of the i f directive is

#if <condition>
#endi f

3. The condition (1>0) is absolutely not necessary here. It is given just to indicate how you can concatanate
multiple conditions.

4. The condition defined (USD) is true only if the identifier USD is defined.

5. Sincefil el. hisincluded and USD gets defined, the condition is evaluated as true and the currency rate is
defined as 46.

6. In statement E, the condition is false because UKP is not defined.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0052.html (1 of 2) [30.06.2007 10:57:18]

#if

7. In the statement H, the currency rate is 46.

Pointsto Remember

1. Thei f directive allows us to use a condition more generalized than i f def .

2. The defi ned() predicate returns true if the symbol is defined; otherwise, it is false.

= e

T — —E—
| ¥m PREV | | MNExT mjp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0052.html (2 of 2) [30.06.2007 10:57:18]

ifelse

—
| 4mPREV |

| NEXT Wi |

| fel se

I ntroduction

The i f el se directive lets us specify the action if the condition is not true.

Program

Suppose we have three files:

filel.h
#define USD 1
file2.h
#define UKP 1
file3
#i ncl ude <stdi o. h>
#include <filel. h> /1A
#if (defined (USD)) /1l B
#define currency_rate 46
#el se
#define currency_rate 100
#endi f /1D
mai n()
{ .
int rs;
rs = 10 * currency_rate; /IH
printf ("%l\n", rs);
}
Explanation

1. Statement B indicates the i f el se directive.

2. If the identifier USD is defined, the currency rate is taken as 46; otherwise, the currency rate is taken as 100.

3. Since USDis defined infi | el. h, the currency rate is taken as 46.

Point to Remember

The i f el se directive allows us to take action if the condition is not satisfied.

—

—
| 4mPREV |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0053.html [30.06.2007 10:57:19]

| NEXT Wi |

ifelif

| 4mPREV |

-

| NEXT Wi |

ifelif

I ntroduction

i felif allows us to take one action if there are multiple decision points. For example, if you want to take the currency

rate of 1 if USD and UKP are not defined,

Program

Suppose we have three files:

filel.h
#define USD 1

file2.h
#define UKP 1

file3
#i ncl ude <stdi o. h>
#i nclude <filel. h>

#if (defined (USD))

#define currency_rate 46
#elif (defined (UKP))

#define currency_rate 100
#el se

define currency rate 1
#endi f

mai n()

{ .
int rs;
rs = 10 * currency_rate;
printf ("%l\n", rs);

}

Explanation

1. Statement B includes the i f el i f directive. It is similar to the el se directive.

you can write the following program.

/1A

Il B

I1C

2. #el i f appears only after #i f , #i f def , #i f ndef , and #el i f .

3. #el i f is similar to #el se but it is followed by a condition.

4. You can have as many #el i f directives as you want.

5. If USD is defined, then the currency rate is 46; otherwise, if UKP is defined, then the currency rate is 100;

otherwise, the currency rate is 1.

6. In this case, if you remove the statementi ncl ude fil el. h at position A, then USD and UKP are not defined

and currency rate is taken as 1.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0054.html (1 of 2) [30.06.2007 10:57:19]

ifelif
Pointsto Remember

1. #el i f is similar to #el se but it is followed by a condition.

2. #el i f allows taking action in the case of multiple decision points.

- -

| 4w PREV | [NExTWp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0054.html (2 of 2) [30.06.2007 10:57:19]

ERROR DIRECTIVE

—

| 4mPREV |

| NEXT Wi |

ERROR DIRECTIVE

I ntroduction

The error directive is used to specify an error message for a specific situation. In the following program, the error

message is displayed if USD and UKP are not defined.

Program

Suppose we have three files:

filel.h
#define USD 1

file2.h

#define UKP 1

file3

#i ncl ude <stdio. h>

#i nclude <filel. h> /1A

#if ldefined (USD) || !'defined (UKP) /Il B

#error "ERROR. NO CURRENCY rate is specified." //C
#endi f

mai n()

{ .
int rs;
rs = 10 * currency_rate; /1D
printf ("%l\n", rs);

}

Explanation

1. Statement B checks whether UKP or USD is defined.

2. If both are not defined then the preprocessor displays an error.

Pointsto Remember
1. The #err or directive allows us to specify an error message.

2. The error message is generated by the preprocessor.

-

| 4mPREV |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0055.html [30.06.2007 10:57:19]

| NExT mp |

#line

| 4mPREV | | NEXT Wi |
#line

I ntroduction

The #1 i ne directive allows you to define arbitrary line numbers for the source lines. Normally, the compiler counts
lines starting at line number 1; using the #l i ne directive, you can specify an arbitrary line number at any point. The
compiler then uses that line number for subsequent counts.

Program

#i ncl ude <stdio. h>

nmai n()

{
printf("An"); ITA
#1 i ne100 /IH
printf("B\n"); /1B
printf("C FILE % LINE %@\n", __FILE , _LINE_);//C
#l i ne200 /1K
printf("D\n"); /1D
printf("E\n"); /1 E

}

Explanation

1. The statement H indicates the #l i ne directive.

2. The #1 i ne number in statement B is taken as 100 and for statement C, it is taken as 101.

3. The #l i ne number in statement D is taken as 200 and for statement E, it is taken as 201.

4. If you introduce any error in statement B then the compiler will display the error at #1 i ne number 100.

5. C has provided two special identifiers: __ FILE___and __LINE__, which indicate the file name of the source file
and the current line number, respectively.

Point to Remember

#| i ne is used to indicate line numbers which can be used for debugging.

- -

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0056.html [30.06.2007 10:57:20]

MACRO

= o

| 4mPREV | | NEXT Wi |

MACRO

I ntroduction

Macros allow replacement of the identifier by using a statement or expression. The replacement text is called the
macro body. C uses macros extensively in its standard header files, such as in get char (), getc().

Program

#define CUBE(X) X*X*X 1A
#i ncl ude <stdi o. h>
main ()
{
int k =5;
int j =0;
j = CUBE(k); /IB | = k*k*k

printf ("value of j is %@\n", j); /1C
}

Explanation

1. You can define the macro CUBE as in statement A.

2. The macro can be defined by using parameters, but that is not mandatory.

3. The parameter name that is used in a macro definition is called the formal parameter. In this example, it is x.
4. x*x*Xx is called the macro body.

5. There should not be any spaces between the macro name and the left parenthesis.

6. CUBE(K) in statement B indicates a macro call.

7. An argument such as k, which is used for calling a macro, is called an actual parameter.

8. While expanding the macro, the actual parameter is substituted in the formal parameter and the macro is
expanded. So you will get the expansionasj = k*k*Kk.

9. The value of j is calculated as 125.

10. Since macro expansion is mainly a replacement, you can use any data type for the actual parameter. So, the
above macro works well for the float data type.

Pointsto Remember

1. A macro is used when you want to replace a symbol with an expression or a statement.

2. You can define macros by using parameters.

- —

| 4mPREV | | MNExT W |

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0057.html [30.06.2007 10:57:20]

MACRO AND FUNCTION

—

| NEXT Wi |

—

| 4mPREV |

MACRO AND FUNCTION

I ntroduction

While writing the macro, you have to write the macro body carefully because the macro just indicates replacement, not
the function call.

Program

#i ncl ude <stdio. h>
#define add(x1, yl) x1l+yl /1E
#define mult(x1,y2) x2*y2 I1F

main ()
{
int a,b,c,d,e;
a = 2;
b = 3;
c = 4
d = 5
e = mult(add(a, b), add(c, d)); //A
[l mult(a+b, c+d) /1B
/[l a+b * c+d //C

printf ("The value of e is %d\n", e);

}

Explanation

1. Statement E indicates a macro for adding two numbers.
2. Statement F indicates a macro for multiplying two numbers.

3. Statement A indicates a macro that is supposed to add two numbers and then multiply two numbers. In this
case, it is supposed to perform the calculation (2+3) * (4+5).

4. The actual expansion of macro adds is given in statement B.
5. The final expansion of mul t gives the expansion a+b * c+d, which is erroneous.
6. The final value of e is 17, which is not correct.

7. To get the correct value, use the following definition:

#define add(xl, yl) (x1l+yl)
#define nmult(x2, y2) (x2*y2)

Point to Remember

While using the macro, you have to write the expression correctly. You can use parentheses to give the correct
meaning to the expression.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥20(2004)/7267/DDU0058.html (1 of 2) [30.06.2007 10:57:20]

MACRO AND FUNCTION

i = - =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0058.html (2 of 2) [30.06.2007 10:57:20]

Chapter 9: Arrays

= r

| 4mPREV | | NEXT Wi |

Chapter 9: Arrays
ARRAYS

I ntroduction

An array is a data structure used to process multiple elements with the same data type when a number of such
elements are known. You would use an array when, for example, you want to find out the average grades of a class
based on the grades of 50 students in the class. Here you cannot define 50 variables and add their grades. This is not
practical. Using an array, you can store grades of 50 students in one entity, say grades, and you can access each
entity by using subscript as grades[1], grades[2]. Thus you have to define the array of grades of the float data type and
a size of 50. An array is a composite data structure; that means it had to be constructed from basic data types such as
array integers.

Program
#i ncl ude <stdio. h>
mai n()
{
int a[5]; \\A
for(int i = 0;i<5;i++)
{
a[i]=i;\\B
}
printarr(a);
}
void printarr(int a[])
{
for(int i = 0;i<5;i++)
{
printf("value in array %d\n",a[i]);
}
}
Explanation

1. Statement A defines an array of integers. The array is of the size 5—that means you can store 5 integers.

2. Array elements are referred to using subscript; the lowest subscript is always 0 and the highest subscript is (size
—1). If you refer to an array element by using an out-of-range subscript, you will get an error. You can refer to
any element as a[0] , a[1], a[2], etc.

3. Generally, you can use a f or loop for processing an array. For the array, consecutive memory locations are
allocated and the size of each element is same.

4. The array name, for example, a, is a pointer constant, and you can pass the array name to the function and
manipulate array elements in the function. An array is always processed element by element.

5. When defining the array, the size should be known.

Note The array subscript has the highest precedence among all operators thus a[1] * a[2] gives the multiplication of
array elements at position 1 and position 2.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0059.html (1 of 2) [30.06.2007 10:57:21]

Chapter 9: Arrays

Pointsto Remember

1. An array is a composite data structure in which you can store multiple values. Array elements are accessed
using subscript.

2. The subscript operator has the highest precedence. Thus if you write a[2] ++,it increments the value at location
2 in the array.

3. The valid range of subscript is 0 to size —1.

= o

| 4w PREV NE=T w |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0059.html (2 of 2) [30.06.2007 10:57:21]

ADDRESS OF EACH ELEMENT IN AN ARRAY

= o

| 4mPREV | | NEXT Wi |

ADDRESSOF EACH ELEMENT IN AN ARRAY

I ntroduction

Each element of the array has a memory address. The following program prints an array limit value and an array
element address.

Program

#i ncl ude <stdi o. h>
void printarr(int a[]);

mai n()
{
int a[5];
for(int i = 0;i<5;i++)
{
a[i]=i;
}
printarr(a);
}
void printarr(int a[])
{
for(int i = 0;i<5;i++)
{
printf("value in array %@d\n",af[i]);
}
}
void printdetail (int a[])
{
for(int i = 0;i<5;i++)
{
printf("value in array %d and address is %d6lu\n",a[i], &[i]);
\\ A
}
}
Explanation

1. The function pri nt arr prints the value of each elementinarr.

2. The function pri nt det ai | prints the value and address of each element as given in statement A. Since each
element is of the integer type, the difference between addresses is 2.

3. Each array element occupies consecutive memory locations.

4. You can print addresses using place holders %4.61 u or %p.

Point to Remember

For array elements, consecutive memory locations are allocated.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0060.html (1 of 2) [30.06.2007 10:57:21]

ADDRESS OF EACH ELEMENT IN AN ARRAY

- -

[4w FREV | [NexTwp |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0060.html (2 of 2) [30.06.2007 10:57:21]

ACCESSING AN ARRAY USING POINTERS

= r

| 4mPREV | | NEXT Wi |

ACCESSING AN ARRAY USING POINTERS

I ntroduction

You can access an array element by using a pointer. For example, if an array stores integers, then you can use a
pointer to integer to access array elements.

Program

#i ncl ude <stdio. h>

void printarr(int a[]);
void printdetail (int a[]);

mai n()
{
int a[5];
for(int i = 0;i<5;i++)
{
afi]=i;
}
printdetail (a);
}
void printarr(int a[])
{
for(int i = 0;i<5;i++)
{
printf("value in array %@d\n",af[i]);
}
}
void printdetail (int a[])
{
for(int i = 0;i<5;i++)
{
printf("value in array %d and address is ¥Bu\n",a[i], &a[i]);
}
}
void print_usingptr(int a[]) \\ A
{
int *b; \\ B
b=a; \\ C
for(int i = 0;i<5;i++)
{
printf("value in array %d and address is %d6lu\n",*b,b); \\ D
b=b+2; \\E
}
}
Explanation

1. The function pri nt _usi ng pointer given at statement A accesses elements of the array using pointers.

2. Statement B defines variable b as a pointer to an integer.

3. Statement C assigns the base address of the array to b, thus the array's first location (a[0]) is at 100; then b will

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU006L.html (1 of 2) [30.06.2007 10:57:22]

ACCESSING AN ARRAY USING POINTERS

get the value 100. Other elements of the array will add 102,104, etc.

4. Statement D prints two values: * b means the value at the location specified by b, that is, the value at the
location 100. The second value is the address itself, that is, the value of b or the address of the first location.

5. For each iteration, b is incremented by 2 so it will point to the next array location. It is incremented by 2 because
each integer occupies 2 bytes. If the array is long then you may increment it by 4.

Pointsto Remember

1. Array elements can be accessed using pointers.

2. The array name is the pointer constant which can be assigned to any pointer variable.

-

| 4mPREV |

-

| MEXT WP |

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU006L.html (2 of 2) [30.06.2007 10:57:22]

MANIPULATING ARRAY SUSING POINTERS

—

| NEXT Wi |

—

| 4mPREV |

MANIPULATING ARRAYSUSING POINTERS

I ntroduction

When the pointer is incremented by an increment operator, it is always right incremented. That is, if the pointer points
to an integer, the pointer is incremented by 2, and, if it is long, it is incremented by 4.

Program

#i ncl ude <stdio. h>

void printarr(int a[]);

void printdetail (int a[]);
void print_usingptr(int a[]);

mai n()
{
int a[5];
for(int i = 0;i<5;i++)
{
a[i]=i;
}
print_usingptr(a);
}
void printarr(int a[])
{
for(int i = 0;i<5;i++)
{
printf("value in array %d\n",a[i]);
}
}
void printdetail (int a[])
{
for(int i = 0;i<5;i++)
{
printf("value in array %d and address is ¥Bu\n",a[i], &[i]);
}
}
void print_usingptr(int a[])
{
int *b;
b=a;
for(int i = 0;i<5;i++)
{
printf("value in array %d and address is %6l u\n", *b, b);
b++; /1A
}
}
Explanation

1. This function is similar to the preceding function except for the difference at statement A. In the previous version,
b = b+2 is used. Here b++ is used to increment the pointer.

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures¥620(2004)/ 7267/DDU0062.html (1 of 2) [30.06.2007 10:57:22]

MANIPULATING ARRAY SUSING POINTERS

2. Since the pointer is a pointer to an integer, it is always incremented by 2.
Point to Remember

The increment operator increments the pointer according to the size of the data type.

e = e =

| 4mPREV | | NEXT P |

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0062.html (2 of 2) [30.06.2007 10:57:22]

ANOTHER CASE OF MANIPULATING AN ARRAY USING POINTERS

= o

| 4mPREV | | NEXT Wi |

ANOTHER CASE OF MANIPULATING AN ARRAY USING POINTERS

I ntroduction

You can put values in the memory locations by using pointers, but you cannot assign the memory location to an array
to access those values because an array is a pointer constant.

Program

#i ncl ude <stdio. h>
void printarr(int a[]);
void printdetail (int a[]);
void print_usingptr_a(int a[]);
mai n()
{

int a[5];

int *b;

int *c;

for(int i = 0;i<5;i++)

{
}

printarr(a);

*ph=2; \\
b++; \\
*b=4; \\
b++;

*h=6; \W D
b++;

*ph=8; \\ E
b++;

*ph=10;

b++;

*p=12;

b++;
a=c; /lerror \WF
printarr(a);

ali]=i;

0Owm>

}

void printarr(int a[])

{
for(int i = 0;i<5;i++)

{
}

printf("value in array %d\n",a[i]);

}
void printdetail (int a[])

{
for(int i = 0;i<5;i++)
{
printf("value in array %d and address is %6lu\n",a[i], &[i]);

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0063.html (1 of 2) [30.06.2007 10:57:22]

ANOTHER CASE OF MANIPULATING AN ARRAY USING POINTERS

}
}
void print_usingptr_a(int a[])
{
for(int i = 0;i<5;i++)
{
printf("value in array %d and address is %6lu\n",*a,a); \\ F
at++; // increase by 2 bytes \\W G
}
}
Explanation

1. You can assign a value at the location specified by b using statement A.

2. Using statement B, you can point to the next location so that you can specify a value at that location using
statement C. Using this procedure, you can initialize 5 locations.

3. You cannot assign the starting memory location as given by statement F to access those elements because a is
a pointer constant and you cannot change its value.

4. The function pri nt _usi ngpt r _a works correctly even though you are writing a++. This is because when you
pass a as a pointer in an actual parameter, only the value of a is passed and this value is copied to the local
variable. So changing the value in the local variable will not have any effect on the outside function.

Point to Remember

The array limit is a pointer constant and you cannot change its value in the program.

- -

| 4mPREV | | MNExT W |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0063.html (2 of 2) [30.06.2007 10:57:22]

TWO-DIMENSIONAL ARRAY

= o

| 4mPREV | | NEXT Wi |

TWO-DIMENSIONAL ARRAY

I ntroduction

You can define two- or multi-dimensional arrays. It is taken as an array of an array. Logically, the two-dimensional
array 3 X 2 is taken as

3 1
5 2
8 7

Here there are three arrays, i.e. one array in each row. The values are stored as
3 1 5 2 8 7

This style is called row measure form. Each row array is represented as a[0] , which consists of elements 3 and 1. a
[1] consists of 52 and a[2] consists of 8 7. Each element of a[0] is accessedasa[0] [0] anda[0] [1],thus
the value of a[0] [0] and a[O] [1] is 1.

Program

#i ncl ude <stdio. h>

void printarr(int a[][]);

void printdetail(int a[][]);
void print_usingptr(int a[][]);

mai n()
{
int a[3][2]; WA
for(int i = 0;i<3;i++)
for(int j=0;j<2 ;j++)
{
{
a[i]=i;
}
}
printdetail (a);
}
void printarr(int a[][])
{
for(int i = 0;i<3;i++)
for(int j=0;j<2;j++)
{
{
printf("value in array %\n",a[il[j]);
}
}
}
void printdetail (int a[][])
{
for(int i = 0;i<3;i++)
for(int j=0;j<2;j++)
{

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0064.html (1 of 2) [30.06.2007 10:57:23]

TWO-DIMENSIONAL ARRAY

{
printf(
"value in array %d and address is %8u\n",
a[i][j],&[i][jl]);
}
}
}
void print_usingptr(int a[][])
{
int *b; \\ B
b=a; \\W C
for(int i = 0;i<6;i++) \\ D
{
printf("value in array %d and address is %6l u\n", *b, b);
b++; // increase by 2 bytes \\ E
}
}
Explanation

1.

2.

8.

Statement A declares a two-dimensional array of the size 3 x 2.
The size of the array is 3 x 2, or 6.
Each array element is accessed using two subscripts.

You can use two f or loops to access the array. Since i is used for accessing a row, the outer loop prints
elements row-wise, that is, for each value of i , all the column values are printed.

. You can access the element of the array by using a pointer.

Statement B assigns the base address of the array to the pointer.

The f or loop at statement C increments the pointer and prints the value that is pointed to by the pointer. The
number of iterations done by the f or loop, 6, is equal to the array.

Using the output, you can verify that C is using row measure form for storing a two-dimensional array.

Pointsto Remember

1

2

3

. You can define a multi-dimensional array in C.
. You have to provide multiple subscripts for accessing array elements.

. You can access array elements by using a pointer.

(-

PREV | | NExT mp

- o —

-

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0064.html (2 of 2) [30.06.2007 10:57:23]

THREE-DIMENSIONAL ARRAY

= r

| 4mPREV | | NEXT Wi |

THREE-DIMENSIONAL ARRAY

I ntroduction

Just as with a two-dimensional array, you can define three-dimensional arrays and processing in a similar way. Each
three-dimensional array is taken as an array of two-dimensional arrays.

Program

#i ncl ude <stdio. h>

mai n()

{
int a[2][3][4]; WA
int b[3][4]; \\ B
int c[4]; \\W C
int cnt=0;

for(int i=0;i<2;i++)
for(int j=0;j<3;j++)
for(int k=0; k<4; k++)

{
a[i][j]1[k] = cnt;
cnt;
}
}
void print_onedinmint a[]) \\ D
{
for(int i=0;i<4;i++)
printf("% ",a[i]);
}
void print_twodin(int a[][4]) \\ E
{
for(int j=0;j<3;j++)
print_onedimalj]);
printf("\n");
}
void print_threedin(int a[][3][4]) \\ F
{
printf("Each two dinmension matrix\n");
for(int j=0;j<2;j++)
print_twodim(alj]);;
}
Explanation

1. The three-dimensional array consists of two arrays of the size 3 x 4. Each is referredto as a[0] a[1] . Thus a
[O] consists of 12 elements and a[1] also consists of 12 elements.

2. Each two-dimensional array is taken as three arrays of the size 4.

3. The function pri nt _onedi mprints a single-dimensional array.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0065.html (1 of 2) [30.06.2007 10:57:23]

THREE-DIMENSIONAL ARRAY

4,

The function pri nt _t wodi mprints a two-dimensional array and it calls the function for printing a single-
dimensional value.

The function pri nt _t hr eedi mprints a three-dimensional array and calls the function for printing a three-
dimensional value.

Dimension two, which is closer to the array name, is called the outermost dimension, and dimension four, which
is far from the array name declaration, is called the innermost dimension.

. When you pass an array to the function, you have to specify the inner dimension. For example, to printt wo_di m

you have to specify the inner dimension, i.e. 4, and for pri ntt hr ee_di myou have to pass 3 and 4 as inner
dimensions.

When you pass a single-dimension array, you need not pass a dimension because the function knows what the
best address of the array is.

In a case of a two-dimensional array, we have to pass the inner dimension because only then does the function
know the base address of each array. For example, if the declaration is

int a[3][4]

it is considered as three arrays of the size 4. So the base address of a[0] is a itself. The base address of a[1]
is a+8 because the first row has 4 elements of size 2 bytes each; thus we can get the base address of a[1] .
Similarly, the base address of a[2] is a+16. Thus, to calculate the base address, you should know the inner
dimension, 4.

Pointsto Remember

1.

2.

You can declare a multi-dimensional array and access it in a similar way to accessing a two-dimensional array.

While passing an array to the function, you have to specify the inner dimension to facilitate calculations of the
base addresses.

| 4mPREV |

- -

| MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0065.html (2 of 2) [30.06.2007 10:57:23]

POINTER ARRAYS

| NEXT Wi |

—

| 4mPREV |

POINTER ARRAYS

I ntroduction

You can define a pointer array similarly to an array of integers. In the pointer array, the array elements store the pointer
that points to integer values.

Program

#i ncl ude <stdi o. h>
void printarr(int *a[]);
void printarr_usingptr(int *a[]);

int *a[5]; WA
mai n()
{
int il1=4,i2=3,i3=2,i4=1,i5=0; \\ B
a[0] =& 1; \\ C
al 1] =& 2;
al 2] =& 3;
al 3] =&i 4;
al 4] =& 5;
printarr(a);
printarr_usingptr(a);
}
void printarr(int *a[]) \\ D
{
printf("Address Address in array Val ue\ n");
for(int j=0;j<5;j++)
{
printf("%l6u %6u %\ n",
a[jl.a[jl.a[jl); \WE
}
}
void printarr_usingptr(int *a[])
{
int j=0;
printf("using pointer\n");
for(j=0;j<5;j++)
{
printf("value of elenents %l %6lu %d6lu\n",**a,*a,a); \\ F
a++;
}
}
Explanation

1. Statement A declares an array of pointers so each element stores the address.

2. Statement B declares integer variables and assigns values to these variables.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0066.html (1 of 2) [30.06.2007 10:57:24]

POINTER ARRAYS

3. Statement C assigns the address of i 1 to element a[0] of the array. All the array elements are given values in
a similar way.

4. The function pri nt _arr prints the address of each array element and the value of each array element (the
pointers and values that are pointed to by these pointers by using the notations &a[i],a[i] and*a[i]).

5. You can use the function pri nt arr _usi ngpt r to access array elements by using an integer pointer, thus a is
the address of the array element, * a is the value of the array element, and * * a is the value pointed to by this
array element.

Point to Remember

You can store pointers in arrays. You can access values specified by these values by using the * notations.

- —

| 4mPREV | | MNExT W |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0066.html (2 of 2) [30.06.2007 10:57:24]

Chapter 10: Function

= r

| 4mPREV | | NEXT Wi |

Chapter 10: Function
FUNCTION

I ntroduction

Functions are used to provide modularity to the software. By using functions, you can divide complex tasks into small
manageable tasks. The use of functions can also help avoid duplication of work. For example, if you have written the
function for calculating the square root, you can use that function in multiple programs.

Program
#i ncl ude <stdio. h>
int add (int x, int y) 1A
{
int z; /1B
zZ =X +vy;
return (z); /1C
}
main ()
{
int i, j, k;
i = 10;
j = 20;
k = add(i, j); /1D
printf ("The value of k is%\n", k); /1E
}
Explanation

1. This function adds two integers and returns their sum.

2. When defining the name of the function, its return data type and parameters must also be defined. For example,
when you write

int add (int x, int y)

i nt is the type of data to be returned, add is the name of the function, and x and y are the parameters of the
type i nt . These are called formal parameters.

3. The body of a function is just like the body of main. That means you can have variable declarations and
executable statements.

4. A function should contain statements that return values compatible with the function's return type.
5. The variables within the function are called local variables.
6. After executing the return statement, no further statements in the function body are executed.

7. The name of the function can come from the arguments that are compatible with the formal parameters, as
indicated in statement D.

8. The arguments that are used in the call of the function are called actual parameters.

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0067.html (1 of 2) [30.06.2007 10:57:24]

Chapter 10: Function

9. During the call, the value of the actual parameter is copied into the formal parameter and the function body is
executed.

10. After the return statement, control returns to the next statement which is after the call of the function.

Pointsto Remember

1. A function provides modularity and readability to the software.

2. To define the function, you have to define the function name, the return data type and the formal parameters.
3. Functions do not require formal parameters.
4. If the function does not return any value, then you have to set the return data type as void.

5. A call to a function should be compatible with the function definition.

| 4mPREV | | MNExT W |

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0067.html (2 of 2) [30.06.2007 10:57:24]

THE CONCEPT OF STACK

= o

| 4mPREV | | NEXT Wi |

THE CONCEPT OF STACK

I ntroduction

A stack is memory in which values are stored and retrieved in "last in first out" manner by using operations called push
and pop.

Program

Suppose you want to insert values in a stack and retrieve values from the stack. The operations would proceed in the
following manner:

G
A B
A

Stack Push (A) Push (B) PushiC)
D

B B B

A A A

Pop() =>C Pushi [b) Pop()=>D Pop=> B
Explanation

1. Initially, the stack is empty. When you start push A, Ais placed in the stack.
2. Similarly, push Band push Cput these elements in the stack; the last element pushed is C.

3. The pop operation takes the topmost element from the stack. Thus the element C, which was put in last, is
retrieved first. This method is called last-in first-out (LIFO).

4. The push D operation puts element D in the stack above B.

5. Thus push puts the element on the top of the stack and pop takes the element from the top of the stack. The
element A which is pushed is the last element taken from the stack.

Point to Remember

The last-in first-out retrieval from the stack is useful for controlling the flow of execution during the function call.

- —

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0068.html [30.06.2007 10:57:24]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu103%5F1%5F0%2Ejpg

THE SEQUENCE OF EXECUTION DURING A FUNCTION CALL

= r

| 4mPREV | | NEXT Wi |

THE SEQUENCE OF EXECUTION DURING A FUNCTION CALL

I ntroduction

When the function is called, the current execution is temporarily stopped and the control goes to the called function.
After the call, the execution resumes from the point at which the execution is stopped.

To get the exact point at which execution is resumed, the address of the next instruction is stored in the stack. When
the function call completes, the address at the top of the stack is taken.

Program
main ()
{
printf ("1 \n"); // 1
printf ("2 \n"); /] 2
printf ("3 \n"); // 3
printf ("4 \n"),; // 4
printf ("5\n"); // 5
f1();
printf ("6 \n"); // 6
printf ("7 \n"); /] 7
printf ("8 \n"); // 8
}
void f1 (void)
{
printf ("f1-9 \n"); /119
printf ("f1-10 \n"); /1 10
f2.();
printf ("f1-11 \n"); /111
printf ("f1-12 \n"); Il 12
}
void f2 (void)
{
printf ("f2-13 \n"); /1 13
printf ("f2-14 \n"); /1 14
printf ("f3-15 \n"); /1 15
}
Explanation

1. Statements 1 to 5 are executed and function f 1() is called.

2. The address of the next instruction is pushed into the stack.

3. Control goes to function f 1(), which starts executing.
4. After the 10th statement, fuction f 2 is called and address of the next instruction, 11, is pushed into the stack.
5. Execution begins for function f 2 and statements 13, 14, and 15 are executed.

6. When f 2 is finished, the address is popped from the stack. So address 11 is popped.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0069.html (1 of 2) [30.06.2007 10:57:25]

THE SEQUENCE OF EXECUTION DURING A FUNCTION CALL
7. Control resumes from statement 11.
8. Statements 11 and 12 are executed.
9. After finishing the f 1 address is popped from the stack, i.e. 6.
10. Statements 6, 7, and 8 are executed.

11. The execution sequenceisl 2 3 4 5 f1 9 f1 10 f2_13 f2_14 f2_15 f1_11 f1_12 6 7 8.

Pointsto Remember

1. Functions or sub-programs are implemented using a stack.
2. When a function is called, the address of the next instruction is pushed into the stack.

3. When the function is finished, the address for execution is taken by using the pop operation.

- —

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0069.html (2 of 2) [30.06.2007 10:57:25]

PARAMETER PASSING

= o

| 4mPREV | | NEXT Wi |

PARAMETER PASSING

Introduction
Information can be passed from one function to another using parameters.

Program
main ()

{ . .
int i;
i = 0;
printf (" The value of i before call % \n", i);
f1(i);
printf (" The value of i after call % \n", i);
}
void f1 (int k)
{

}

k = k + 10;

Explanation

1. The parameter used for writing the function is called the formal parameter, k in this case.

2. The argument used for calling the function is called the actual parameter.
3. The actual and formal parameters may have the same name.

4. When the function is called, the value of the actual parameter is copied into the formal parameter. Thus k gets
the value 0. This method is called parameter passing by value.

5. Since only the value of i is passed to the formal parameter k, and k is changed within the function, the changes
are done in k and the value of i remains unaffected.

6. Thus i will equal O after the call; the value of i before and after the function call remains the same.

Pointsto Remember

1. C uses the method of parameter passing by value.

2. In parameter passing by value, the value before and after the call remains the same.

- -

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0070.html [30.06.2007 10:57:25]

CALL BY REFERENCE

= r

| 4mPREV | | NEXT Wi |

CALL BY REFERENCE

I ntroduction

Suppose you want to pass a parameter under the following conditions:

1. You need to change the value of the parameter inside the function.
2. You are interested in the changed value after the function completes.

In languages such as Pascal, you have the option of passing the parameter by reference. C, however, does not
support this. As explained in the previous example, you cannot have a changed value after the function call because C
uses the method of parameter passing by value. Instead, you'll have to implement the function indirectly. This is done
by passing the address of the variable and changing the value of the variable through its address.

Program
main ()
{
int i;
i = 0;
printf (" The value of i before call % \n", i);
fl1(&); Il A
printf (" The value of i after call % \n", i);
}
void (int *Kk) /1 B
{
*k = *k + 10; /Il C
}
Explanation

1. This example is similar to the previous example, except that the function is written using a pointer to an integer
as a parameter.

2. Statement C changes the value at the location specified by * k.

3. The function is called by passing the address of i using notation &i .

4. When the function is called, the address of i is copied to k, which holds the address of the integer.
5. Statement C increments the value at the address specified by k.

6. The value at the address of i is changed to 10. It means the value of i is changed.

7. The pri nt f statements after the function call prints the value 10, that is, the changed value of i .

Pointsto Remember
1. Call by reference is implemented indirectly by passing the address of the variable.

2. In this example, the address of i is passed during the function call. It does not change; only the value of the
address is changed by the function.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0071.html (1 of 2) [30.06.2007 10:57:26]

CALL BY REFERENCE

[_ﬁ PREV j [_ NEXT *j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0071.html (2 of 2) [30.06.2007 10:57:26]

THE CONCEPT OF GLOBAL VARIABLES

= r

| 4mPREV | | NEXT Wi |

THE CONCEPT OF GLOBAL VARIABLES

I ntroduction

The various modules can share information by using global variables.

Program
#i ncl ude <stdi o. h>
int i =0; /1 d obal variable
mai n()
{
int j; /1 local variable in main
void f1(void) ;
i =0;
printf("value of i in main %\n",i);
f1();
printf("value of i after call%\n",i);
}
voi d f1(void)
{
int Kk; /!l local variable for f1.
i = 50;
}
Explanation

1. When you define a variable inside the function block it is called a local variable.
2. The local variable can be accessed only in the block in which it is declared.

3. j isthe local variable for main and it can be accessed only in the block main. That means you cannot access it
in function f 1.

4. Kk is the local variable for function f 1 and it cannot be accessed in main.

5. The variable i , which is outside main, is called a global variable. It can be accessed from function main as well
as function f 1.

6. Any expression in this function is going to operate on the same i .

7. When you call function f 1, which sets the value of i to 50, it is also reflected in main because main and f 1 are
referring to the same variable, i .

Pointsto Remember

1. Global variables can be accessed in all the functions in that file.

2. Any update to the global variable also affects the other functions, because all functions refer to the same value
of i.

3. When you want to share information between multiple functions, you can use the concept of global variables.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0072.html (1 of 2) [30.06.2007 10:57:26]

THE CONCEPT OF GLOBAL VARIABLES

[_ﬁ PREY j [_ NERT ‘j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0072.html (2 of 2) [30.06.2007 10:57:26]

RESOLVING VARIABLE REFERENCES

= r

| 4mPREV | | NEXT Wi |

RESOLVING VARIABLE REFERENCES

I ntroduction

When the same variable is resolved using both local definition and global definition, the local definition is given
preference. This is called the rule of inheritance. It says that when you can resolve a reference to the variable by using
multiple definitions, the nearest definition is given preference. Since local definition is the nearest, it gets preference.

Program
int i =0; //dobal variable /A
mai n()
{
int i ; /1 local variable for main / B
void f1(void) ; /1C
i =0; /Il D
printf("value of i in main %\n",i); /Il E
f1(); /Il F
printf("value of i after call%\n",i); // G
}
voi d f1(void) /1 H
{
int i=0; //1local variable for f1 1] 1
i = 50; 1l J
}
Explanation
1. Herei is declared globally and locally in function main and in function f 1, respectively, as given in statements
A, Bandl.

2. Statement D refers to i , which can be resolved by using both local definition and global definition. Local
definition is given more preference. So statement D refers to the definition at statement B and all the statements
in main refer to the definition at statement B, that is, the local definition.

3. When a function is called, statement i = 50 refers to the local definition in that function (definition at statement I).

4. Using statement G, the value of i is 0 because both main and function f 1 refer to their local copies of i . So the
changed value of f 1 is not reflected in main.

5. Even if you comment local definition of function f 1 at statement | the value printed remains the same. This is
because main refers to its local copy while f 1 refers to the global variable i — the two are different.

Point to Remember

When a variable can be resolved by using multiple references, the local definition is given more preference.

- -

| 4mPREV | | MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0073.html [30.06.2007 10:57:26]

SYNTAX OF FUNCTION DEFINITION

= r

| 4mPREV | | NEXT Wi |

SYNTAX OF FUNCTION DEFINITION

I ntroduction

When specifying the function, you have to specify the return type, function name, parameter, list, and function body.
Within the function body, you can have local definition and return statements.

Program/Example

The general format of a function is
<Return type> <Function name> <Parameter |ist>

{
<l ocal definitions>
execut abl e statenents;
Return (expression);
}
For exanpl e,
int f1 (int j, float f)
{
int k;
k =1;
return (Kk);
}
Explanation

1. A function returns a value of the type that is specified by the return type. If you don't specify a written type, it is
assumed that it returns an i nt value.

2. When the function does not return a value, you have to specify the return data type as void. When the function
returns void, you may not write return in the body or you can write the return statement asret urn; .

3. All functions must be named.

4. You can specify parameters in the parameter list, separated by commas. While specifying the parameters, you
have to specify the parameter data type and parameter name.

5. If you don't specify parameters, then you can specify only parentheses as shown here:
int f1()

6. When you want to use variables only for the function then you can declare them just as in main.

7. A function returns a value to the caller using the return statement. You may have multiple return statements and
the return expression should evaluate to a value that is compatible with the return data type.

8. A function returns to the caller after executing the first return statement it encounters during execution.
9. A call to a function should match the definition of the function.

10. The order of parameters in the call is important because the actual parameter value is copied to the formal
parameter value according to the order. It means that the first argument in the call is copied to the first

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0074.html (1 of 2) [30.06.2007 10:57:27]

SYNTAX OF FUNCTION DEFINITION

parameter, the second argument is copied to the second parameter, etc.

11. When you are using whole numbers as parameters, it is better to declare them by using the data type i nt .
Because all your lower data types' actual parameters can be used for passing the value, your function can be
useful for multiple data types.

12. When you are using real numbers as parameters, it is better to declare them as double so that the function can
be used for both the float and double data types.

Pointsto Remember

1. While specifying the function you have to specify five main functions: written type, function name, parameter,
list, function body and return statement.

2. Function name and function body are necessary, while the others are optional.

-

| MEXT WP |

-

| 4mPREV |

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0074.html (2 of 2) [30.06.2007 10:57:27]

CALLING FUNCTION

= o

| 4mPREV | | NEXT Wi |

CALLING FUNCTION

I ntroduction

When a function is written before main it can be called in the body of main. If it is written after main then in the
declaration of main you have to write the prototype of the function. The prototype can also be written as a global
declaration.

Program
Case 1:
#i ncl ude <stdio. h>
main ()
{
int i;
void (int *k) /1 D
i = 0;
printf (" The value of i before call % \n", i);
fl(&); I A
printf (" The value of i after call %l \n", i);
}
void (int *k) /1 B
{
*k = *k + 10; /1 C
}
Case 2:
#i ncl ude <stdio. h>
void (int *k) /1 B
{
*k = *k + 10; /1 C
}
main ()
{
int i;
i = 0;
printf (" The value of i before call % \n", i);
fl(&); I A
printf (" The value of i after call % \n", i);
}
Case 3:
#i ncl ude <stdio. h>
void f1(int *k) /1 B
{
*k = *k + 10; /1 C
}
main ()

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0075.html (1 of 2) [30.06.2007 10:57:27]

CALLING FUNCTION

{
int i;
i = 0;
printf ("The value of i before call % \n", i);
fl(&); I A
printf ("The value of i after call % \n", i);
}
Explanation
1. In Case 1, the function is written after main, so you have to write the prototype definition in main as given in
statement D.
2. In Case 2, the function is written above the function main, so during the compilation of main the reference of
function f 1 is resolved. So it is not necessary to write the prototype definition in main.
3. In Case 3, the prototype is written as a global declaration. So, during the compilation of main, all the function
information is known.
| 4mPREY | | NEXT o |

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures¥620(2004)/ 7267/DDU0075.html (2 of 2) [30.06.2007 10:57:27]

Chapter 11: Storage of Variables

= r

| 4mPREV | | NEXT Wi |

Chapter 11: Storage of Variables
STORAGE

I ntroduction

In the variable declaration you can also define lifetime or storage duration of the variable. Lifetime indicates the length
of time the variable value is guaranteed during execution. For example, if the variable is defined inside the function, its
value is kept until the function executes. After completion of the function, the storage allocated for the variable is freed.

Program

#i ncl ude <stdio. h>
int g = 10; \\ A
mai n()
{
int i =0; \\ B
void f1(); \\ C

f1(); \\ D
printf(" after first call \n");
f1(); \\ E
printf("after second call \n");
f1(); \\ F
printf("after third call \n");

}

void f1()

{
static int k=0; \W G
int j = 10; \\ H
printf("value of k % j %", k,j);
k=k+10;

}

Explanation

1. Variables in C language can have automatic or static lifetimes. Automatic means the variable is in existence until
the function in which it is defined executes; static means the variable is retained until the program executes.

2. The variable that is defined outside the function, such as g in statement A, is called a global variable because it

is accessible from all the functions. These global variables have static lifetimes, that is, variable return
throughout the program execution. The value of the variable, as updated from one function, affects another
function that refers to that variable. It means that the updating in this variable is visible to all functions.

3. Variables such as i , defined in main, or j , defined in f 1, are of the automatic type; i exists until main is
completed and j exists until f 1 is completed.

4. You can define the lifetime of a local variable in a function as given in statement G. The variable k has a static
lifetime; its value is returned throughout the execution of the program.

5. The function f 1 increments the value of k by 10 and prints the values of j and k.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0076.html (1 of 2) [30.06.2007 10:57:28]

Chapter 11: Storage of Variables

6. When you call the function for the first time using statement D, k is printed as 0, j is printed as 10, k is
incremented to 10, the space of | is reallocated, and j ceases to exist.

7. When you call the function the second time, it will give 10 (the previous value of k) because k is a static
variable. There are reallocations forj soj is printed as 10.

8. When you call the function the third time, j is still printed as 10.

Pointsto Remember

1. The variables in C can have static or automatic lifetimes.

2. When a variable has a static lifetime, memory is allocated at the beginning of the program execution and it is
reallocated only after the program terminates.

3. When a variable has an automatic lifetime, the memory is allocated to the variable when the function is called
and it is deallocated once the function completes its execution.

4. Global variables have static lifetimes.
5. By default, local variables have automatic lifetimes.

6. To make a local variable static, use the storage-class specifier.

- -

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0076.html (2 of 2) [30.06.2007 10:57:28]

EXTERNAL REFERENCES

-

| NEXT Wi |

—

| 4mPREV |

EXTERNAL REFERENCES

I ntroduction

In collaborative software development it is common for multiple users to write programs in different files. For example,
one user implements function f 1, a second user implements function f 2, while a third user implements the main
function. C has a provision to compile programs even if function or variable implementation is not available. In such
cases, the program is compiled but it is not yet fit for execution. The program is not executable until all the references
in the file are available.

Program
\\ Programin file external.c

#i ncl ude <stdi o. h> \\W A

#i ncl ude <d:\cbook\storage\fl.cpp>\\ B
extern int i; \W C
nmai n()

{
i =0; \\ D
printf("value of i %\n",i);
}
\\ Programin file fl.cpp
int i =7; \\ E
Explanation

1. Here the program is written in two files: ext ernl. c and f 1. cpp. The file ext er nl. ¢ has the main and
reference of variable i .

2. Thefile f 1. cpp has the declaration of i .

3. Inthe file ext er n. c there is a reference of i so the compiler should know the data type of i . This is done using
the extern definition by statement C. Extern means that the variable or function is implemented elsewhere but is
referred to in the current file.

4. Statement D referstoi .

5. The definition of i is given in the file f 1. cpp, as given by statement E.

6. In the absence of ani ncl ude directive in statement B, you can still compile the file; it will give no errors. Such a
file is called an object file. It is not fit for execution because the reference of i is not resolved.

7. When you write statement B the reference of i is re-sorted and the executable file can be made.

Pointsto Remember

1. Extern definition is used when you have to refer a function or variable that is implemented elsewhere or it will be
implemented later on.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0077.html (1 of 2) [30.06.2007 10:57:28]

EXTERNAL REFERENCES

2. When all the references are resolved then only the executable file is made.

o = e

| ¥m PREV | | NExT mjp |

-

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥20(2004)/7267/DDU0077.html (2 of 2) [30.06.2007 10:57:28]

REGISTER VARIABLES

| NEXT Wi |

—

| 4mPREV |

REGISTER VARIABLES

I ntroduction

When you want to refer a variable, many times you can allocate fast memory in the form of a register to that variable.
For variables such as loop counters, register allocation is done. The processor has memory in the form of register for
its temporary storage. The access time of the register is much less than main memory. That is the reason that register
allocation provides more speed. But the processor has a limited number of registers. So the register declaration acts
as a directive; it does not guarantee the allocation of a register for storing value of that variable.

Program

#i ncl ude <stdi o. h>

mai n()
{
register int i = 0; \\ A
for(i=0;i<2;i++)
{
printf("value of i is %\n",i);
}
}
Explanation

1. Here the register allocation directive is given for variable i . During execution, i will be allocated a register if it is
available; otherwise, i will receive normal memory allocations.

2. You can use a register directive only for variables of the automatic storage class, not for global variables.
3. Generally, you can use register storage fori nt or char data types.
Note You cannot use register allocation for global variables because memory is allocated to the global variable at
the beginning of the program execution. At that time, it is not certain which function is invoked and which
register is used. Function code may use the register internally, but it also has access to a global variable,

which might also use the same register. This leads to contradiction, so global register variables are not
allowed.

Pointsto Remember

1. Register allocation is done for faster access, generally for loop counters.

2. You cannot declare global register variables.

-

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0078.html [30.06.2007 10:57:28]

SCOPE OF VARIABLES

= r

| 4mPREV | | NEXT Wi |

SCOPE OF VARIABLES

I ntroduction

In C you can define a variable in the block. The blocks are marked using { and } braces. The blocks can also be
defined using the f or statement. The scope of the variable is in the block in which it is declared, meaning that you can
use that variable anywhere in the block. Even if some block is declared in that block, you can use that variable. When
the variable is referred in the block and if it can be resolved using two definitions, then the nearest definition has more
precedence. So the variable is interpreted according to the nearest definition. Even if the two definitions define two
different data types for variables, they are accepted.

Program
#i ncl ude <stdi o. h>
mai n()
{ \\ Block 1
int i = 10; \\ A
{ \\ Block 2
int i =0; \\ B
for(i=0;i<2;i++) \W C
{
printf("value of i is %\n",i);
} \\ End of block 2
}

printf("the value of i is %\n",i); \\ D
} \\ End of block 1

Explanation
1. The statement bl ock 1 defines the start of block 1.

2. The statement ‘end of bl ock 1’ defines the end of block 1.

3. Statement A defines variable i which has the scope in the entire block 1.

4. The statement bl ock 2 defines the start of block 2.

5. The statement ‘end of bl ock 2’ defines the end of block 2.

6. Statement B defines variable i which is entirely in block 2.

7. The f or loop refers i, which can be resolved using two definitions: statement A and statement B.

8. Since the definition of statement B is nearest, the variable is referred using that definition, so the f or loop
modifies the value of i at statement B.

9. Variable i at statement A and variable i at statement B are two independent variables even though they have
the same name. Statement D is outside block 2, so it prints the value of variable i in block 1.

Pointsto Remember

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0079.html (1 of 2) [30.06.2007 10:57:29]

SCOPE OF VARIABLES

1. In C, you can define variables in the block, which is demarcated by using { and } braces. The variable has the
scope inside the block in which it is declared.

2. When the variable is resolved using two definitions, the nearest definition has more precedence.

- -

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0079.html (2 of 2) [30.06.2007 10:57:29]

FURTHER SCOPE OF VARIABLES

—

— ———
| 4mPREV | | NEXT P |

FURTHER SCOPE OF VARIABLES

I ntroduction

In C, you can define the counter in the f or loop itself; the counter has scope up to the end of the f or loop.

Program
#i ncl ude <stdio. h>
mai n()
{
int kK = 10;
}
for(int i=0;i<2;i++)\\ A
{ \\ B
printf("value of i is %\n",i); \\W C
} \\ D
{
printf("the value of i is %d\n",i); \W E
}
Explanation

1. The counter variable i is defined at statement A.

2. The scope of the f or loop is up to statement D, which is the end of the f or loop for statement B.

3. If you do not comment out statement E, you will get an error, because you cannot refer i in the outside block.
Point to Remember

You can define counter variable inside the f or loop.

—

— ———
| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0080.html [30.06.2007 10:57:29]

Chapter 12: Memory Allocation

= r

| 4mPREV | | NEXT Wi |

Chapter 12: Memory Allocation
DYNAMIC MEMORY ALLOCATIONS

I ntroduction

You can use an array when you want to process data of the same data type and you know the size of the data.
Sometimes you may want to process the data but you don't know what the size of the data is. An example of this is
when you are reading from a file or keyboard and you want to process the values. In such a case, an array is not useful
because you don't know what the dimension of the array should be. C has the facility of dynamic memory allocations.
Using this, you can allocate the memory for your storage. The allocation is done at runtime. When your work is over,
you can deallocate the memory. The allocation of memory is done using three functions: mal | oc, rel | oc, and

cal | oc. The functions return the pointers to void, so it can be typecast to any data type, thus making the functions

generic. These functions take the input as the size of memory requirement.

Program

#i ncl ude <stdi o. h>
#i ncl ude <mal |l oc. h>
mai n()
{
i nt *base,; WA
int i;
i nt cnt=0;
i nt sunFO;
printf("how many integers you have to store \n");
scanf ("%", &cnt); \\ B
base = (int *)malloc(cnt * sizeof(int)); \\W C
printf("the base of allocation is %6lu \n", base); \\' D
if(!base) \\ E
printf("unable to allocate size \n");

el se
{
for(int j=0;j<cnt;]j++) \\W F
*(base+j) =5;
}
sum = 0;
for(int j=0;j<cnt;]++) \\ G

sum = sum + *(base+j);
printf("total sumis %\n", sun;
free(base); \\ H
printf("the base of allocation is %46lu \n", base);
base = (int *)malloc(cnt * sizeof(int));
printf("the base of allocation is %6lu \n", base);

base = (int *)malloc(cnt * sizeof(int)); W\
printf("the base of allocation is %6lu \n", base);
base = (int *)calloc(10,2); W\ J
printf("the base of allocation is %46lu \n", base);

}

Explanation

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU008L.html (1 of 2) [30.06.2007 10:57:30]

Chapter 12: Memory Allocation

1. This program demonstrates the use of dynamic memory allocation for processing n integers where n is not
defined at compilation time, but the user instead specifies the number of integers to be processed.

2. The processing adds 5 to the value of each integer.
3. Statement B reads how many integers you have to process.

4. Statement C allocates memory for the required integers by using the function nal | oc.
5. mal | oc takes the size in bytes as input.

6. The size of the operator returns how many bytes can be occupied by one unit of the specified data type. The
size of i nt returns two bytes. If you give the value cnt as 10 then it will allocate 20 bytes.

7. mal | oc returns the pointer to void, which is typecast as a pointer to an integer. The value starts at the address

of the memory from where allocations are done. The value is stored in the variable base, which is declared at
statement A. If memory allocations cannot be done, the base will get the value 0, which can be tested using an
i f statement. The f or loop F puts a value of 5 in the allocated memory. Note that the first value is stored in the

location specified by the base and the next value is stored according to base +j . If the base is 100 and j is 1

then the value of base + 1 is 102, according to pointer arithmetic, and not 101, because this is a pointer to an
integer and an integer occupies two bytes. You can retreive the value by using a pointer to an integer as
specified by the f or loop in statement G. After your work is over, you can return the memory using the function

free. free takes a pointer to storage as input.

8. You can again allocate more or less memory by using the function mal | oc. You can again allocate memory
without deallocating previous memory as given by statement |. You can allocate the memory similarly to mal | oc
by using the function cal | oc. cal | oc takes two arguments: total number of data and the size of each data.

Pointsto Remember

You can allocate memory at runtime by using the function mal | oc. mal | oc allocates memory specified using an
argument in terms of bytes, and returns the pointer to storage from where the memory is allocated. You can deallocate
the memory by using the function f r ee.

The prototypes of the function are available in the hidden files nal | oc. h.

= r

| 4mPREV | | NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU008L.html (2 of 2) [30.06.2007 10:57:30]

Chapter 13: Recursion

—

| 4mPREV |

| NEXT Wi |

Chapter 13: Recursion
RECURSION

I ntroduction

You can express most of the problems in the following program by using recursion. We represent the function add by

using recursion.

Program

#i ncl ude <stdi o. h>
int add(int pk,int pm;

mai n()
{
int kK ,i,m
me2;
k=3;
i =add(k, m;.
printf("The value of addition is %\n",i);
}
int add(int pk,int pm
{
i f (pm==0) return(pk); \\ A
el se return(1l+add(pk, pm1)); \\ B
}
Explanation
1. The add function is recursive as follows:
add (x, y) =1 + add(x, y-1) y >0
= X y = 0
for exanpl e,
add(3, 2) =1 + add(3, 4)
add(3, 1) =1 + add(3, 0)
add(3, 0) = 3
add(3, 1) = 1+3 = 4
add(3, 2) = 1+4 = 5

2. The recursive expression is 1+add(pk, pm 1) . The terminating condition is pm = 0 and the recursive

condition is pm > 0.

—

| 4mPREV |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0082.html [30.06.2007 10:57:30]

—

| NEXT Wi |

STACK OVERHEADS IN RECURSION

= r

| 4mPREV | | NEXT Wi |

STACK OVERHEADSIN RECURSION

I ntroduction

If you analyze the address of local variables of the recursive function, you will get two important results: the depth of
recursion and the stack overheads in recursion. Since local variables of the function are pushed into the stack when
the function calls another function, by knowing the address of the variable in repetitive recursive call, you will determine
how much information is pushed into the stack. For example, the stack could grow from top to bottom, and the local
variable j gets the address 100 in the stack in the first column. Suppose stack overheads are 16 bytes; in the next call
j will have the address 84, in the call after that it will get the address 16. That is a difference of 16 bytes. The following

program uses the same principle: the difference of the address in consecutive calls is the stack overhead.

Program

#i ncl ude <stdi o. h>
int fact(int n);
| ong ol d=0; \WE

| ong current =0; \WF
mai n()
{
int kK =4,i;
| ong diff;
i =fact(k);
printf("The value of i is %\n",i);
diff = old-current;
printf("stack overheads are %6l u\n",diff);
}
int fact(int n)
} . .
int j;
static int meO;
if(m=0) old =(long) & ; \\A
i f(me=1) current =(long) &; \\B
m+; \\C
printf("the address of j and mis %6lu %6l u\n", & , &M ; \\D
i f(n<=0)
return(l);
el se
return(n*fact(n-1));
}
Explanation

1. The program calculates factorials just as the previous program.

2. The variable to be analyzed is the local variable j , which is the automatic variable. It gets its location in the
stack.

3. The static variable mis used to track the number of recursive calls. Note that the static variables are stored in
memory locations known as data segments, and are not stored in stack. Global variables such as ol d and
current are also stored in data segments.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0083.html (1 of 2) [30.06.2007 10:57:31]

STACK OVERHEADS IN RECURSION

4. The program usually has a three-segment text: first, storing program instructions or program code, then the data
segment for storing global and static variables, and then the stack segment for storing automatic variables.

5. During the first call, mis 0 and the value of j is assigned to the global varable ol d. The value of mis
incremented.

6. In the next call, mis 1 and the value of j is stored in current.
7. Note that the addresses of j are stored in long variables of type castings.

8. ol d and curr ent store the address of j in consecutive calls, and the difference between them gives the stack
overheads.

9. You can also check the address of j and check how the allocation is done in the stack and how the stack grows.
Note You can also check whether the address of m is constant.

Pointsto Remember

1. The recursive program has a stack overhead.

2. You can calculate stack overheads by analyzing the addresses of local variables.

- -

| 4mPREV | | MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0083.html (2 of 2) [30.06.2007 10:57:31]

WRITING A RECURSIVE FUNCTION

—

| 4mPREV |

-

| NEXT Wi |

WRITING A RECURSIVE FUNCTION

I ntroduction

A recursive function is a function that calls itself. Some problems can be easily solved by using recursion, such as
when you are dividing a problem into sub- problems with similar natures. Note that recursion is a time-consuming
solution that decreases the speed of execution because of stack overheads. In recursion, there is a function call and
the number of such calls is large. In each call, data is pushed into the stack and when the call is over, the data is
popped from the stack. These push and pop operations are time-consuming operations. If you have the choice of
iteration or recursion, it is better to choose iteration because it does not involve stack overheads. You can use

recursion only for programming convenience. A sample recursive program for calculating factorials follows.

Program

#i ncl ude <stdio. h>
int fact(int n);

nmai n()
{
int kK =4,i;
i =fact(k); \\W A
printf("The value of i is %d\n",i);
}
int fact(int n)
{
i f(n<=0) \\ B
return(l); \\W C
el se
return(n*fact(n-1)); \\ D
}
Explanation
1. You can express factorials by using recursion as shown:
fact (5) =5 * fact (4)
In general,
fact (NN = N* fact (N1)
fact 5 is calculated as foll ows:
fact (5) =5 * fact (4) i.e. there is call to fact
fact (4) =4 * fact (3)
fact (3) = 3 * fact (2)
fact (2) =2 * fact (1)
fact (1) =1 * fact (0)
fact (0) =1 \\ B
fact (1) =1 * 1, that is the value of the fact(0)
fact (2) =2 * 1 =2
fact (3) =3 * 2 =6
fact (4) =4 * 6 = 24
fact (5) =5 * 24 = 120 \\ C

(4) \\ A

is substituted in 1.

2. The operations from statements B to A are collectivelly called the winding phase, while the operations from B to
C are called the unwinding phase. The winding phase should be the terminating point at some time because
there is no call to function that is given by statement B; the value of the argument that equals 0 is the terminating

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0084.html (1 of 2) [30.06.2007 10:57:31]

WRITING A RECURSIVE FUNCTION

condition. After the winding phase is over, the unwinding phase starts and finally the unwinding phase ends at
statement C. In recursion, three entities are important; recursive expressions, recursive condition, and
terminating condition. For example,

fact (NN = N* fact (NN1) N>0
= 1N =0

o N* fact (N-1) indicates a recursive expression.
o N > 0 indicates a recursive condition.
o N = 0 indicates a terminating condition.
3. You should note that the recursive expression is such that you will get a terminating condition after some time.
Otherwise, the program enters into an infinite recursion and you will get a stack overflow error. Statement B

indicates the terminating condition, thatis, N = 0.

4. The condition N > 0 indicates a recursive condition that is specified by the el se statement. The recursive
expressionisn* fact(n-1), as given by statement D.

Pointsto Remember
1. Recursion enables us to write a program in a natural way. The speed of a recursive program is slower because
of stack overheads.

2. In arecursive program you have to specify recursive conditions, terminating conditions, and recursive
expressions.

- -

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0084.html (2 of 2) [30.06.2007 10:57:31]

Chapter 14: Strings

= r

| 4mPREV | | NEXT Wi |

Chapter 14: Strings
STRINGSASAN ARRAY OF CHARACTERS

I ntroduction

A string is defined as an array of characters. Strings are terminated by the special character *\ 0’ ; this is called a null

parameter or null terminator. When you declare the string, you should ensure that you should have sufficient room for
the null terminator. The null terminator has ASCII value O.

Program
main ()

{
char sl1[6]; \\W A

char s2[6];

char ch;

int cnt = O;

sl = "Hello"; \\ B

printf ("% \n", sl1); \\W C

s2={H, e, "I, "', "0"} \\ D

printf("% \n", s2); \\ E

while ((ch = getchar())! ="'# && (cnt < 6-1)) \\W F
slicnt++] = ch; \\ G

slicnt] = "\0'; \\ H

}

Explanation

1. The size of the string is 6, which is the last element terminator, so you can use only 5 positions.

2. In statement B, the string "Hello" is assigned so that the array elements are
H e | | o \O

3. The null terminator is appended automatically.
4. Statement B puts the data in a string using standard array notation.

5. You can print a string using the placeholder %s; the string is printed until it encounters a null character.
6. The whi | e loop in statement H inputs the string by reading character by character.
7. The function get char returns the character.

8. Note that the counter is incremented up to 5 so as to accommodate the last null terminator.
9. The null terminator is put in place by statement H.

10. The whi | e loop can be terminated before counter 5 by putting in the # character.

Pointsto Remember

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0085.html (1 of 2) [30.06.2007 10:57:31]

Chapter 14: Strings
1. A string is a character array with a null terminator at the end.

2. You can initialize the array using different methods.

- -

| 4w PREV | [NExTWp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0085.html (2 of 2) [30.06.2007 10:57:31]

STRING DEFINITION

—

| 4mPREV |

—

| NEXT Wi |

STRING DEFINITION

I ntroduction

A string can be defined using a character array or a pointer to characters. Although the two definitions look similar, they

are actually different.

Program

main ()

{
char * sl =
char s2[] =
printf("%
printf("%
sl = s2;
printf("%
printf("%

}

Explanation

"abcd"

"ef gh";

%461 u
%461 u

%46l u
%46l u

\'n,
\'n,

\n,
\n,

\\ A
\\ B
sl, sl);
s2, s2);
\\ E
sl, sl);
s2, s2);

\\ C
\\ D

1. Statement A declares s1 as a pointer to a character. When this definition is encountered, the compiler allocates
space for the string abcd; the base address of the string is assigned to s1, which is the pointer variable.

2. Statement B declares s2 as a character array. The size of the array is 5 because of an additional null terminator
in this case. Also, a space of 5 characters is allocated and the base address is given to s2, which is the pointer

constant. During the lifetime of the program, we cannot change the value of s2.

3. The allocation for s1 is the allocation required by the pointer variable.

4. Statement C prints s1, using two place holders: % and %461 u. Using %s, you will print the string as "abcd".

Using 946! u you will print the base address of the string.

5. Statement E assigns a base address of s2 to s1; that is possible because s1 is a variable.

Point to Remember

When the string is declared as a character pointer, a space is allocated for the pointer variable, which holds the base

address of the string.

-

| 4mPREV |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0086.html [30.06.2007 10:57:32]

-

| NExT mp |

STRINGS ASPARAMETERS

= e

T — ———
| 4mPREV | | NEXT P |

STRINGSASPARAMETERS

I ntroduction

The string can be passed to a function just as in a normal array. The following examples are used for printing the
number of characters in the string:

Program
main ()
{
char sl1[6] = "abcde ";
int cnt = 0;
cnt = cnt_str(sl); \\W A
printf(" total characters are % \n", cnt);
}
int cnt_str(char si[]); \\ B
{
int cn = 0;
while ((cn < 6) &% sl[cn]! = '\0")
cn++;
return(cn);
}
Explanation
1. Afunction, cnt _st r, calculates the number of characters in a string. The string is passed just as a character
array. When the array is passed, the base address of the array is actually what gets passed.
2. Statement B is called to a function in which s1 is passed just as a normal array.
e =
| 4m PREV | | NEXT & |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0087.html [30.06.2007 10:57:32]

Chapter 15: Structures

= r

| 4mPREV | | NEXT Wi |

Chapter 15: Structures
STRUCTURES

I ntroduction

Structures are used when you want to process data of multiple data types but you still want to refer to the data as a
single entity. Structures are similar to records in Cobal or Pascal. For example, you might want to process information
on students in the categories of name and marks (grade percentages). Here you can declare the structure ‘student’
with the fields ‘name’ and ‘marks’, and you can assign them appropriate data types. These fields are called members
of the structure. A member of the structure is referred to in the form of st r uct ur enane. nmenber nane.

Program
struct student \\ A
{
char nane[30]; \\ B
float marks; \W C
} student 1, student?2; \\ D
main ()
{
struct student student3; \\ E
char s1[30]; \\ F
float f; \\ G
scanf ("%", nane); \\ H
scanf (" %", &f); \\ |
student 1. name = sl; W\
student 2. marks = f; \\ K
printf (" Nane is % \n", studentl.nane); \WW L
printf (" Marks are % \n", student?2. marks); \\ M
}
Explanation

1. Statement A defines the structure type st udent . It has two members: name and mar ks.
2. Statement B defines the structure member nane of the type char act er 30.
3. Statement C defines the structure member mar ks of the type f | oat .

4. Statement D defines two structure variables: st ruct ur el and st r uct ur e2. In the program you have to use
variables only. Thus st ruct st udent is the data type, just as i nt and st udent 1 is the variable.

5. You can define another variable, st udent 3, by using the notations as specified in statement E.

6. You can define two local variables by using statements F and G.

7. Statement J assigns s1 to a member of the structure. The structure member is referred to as structure
vari abl enane. nenber nane. The member st udent 1. nane is just like an ordinary string, so all the
operations on the string are allowed. Similarly, statement J assigns a value to st udent 1. mar ks

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0088.html (1 of 2) [30.06.2007 10:57:33]

Chapter 15: Structures

8. Statement L prints the marks of st udent 1 just as an ordinary string.

Pointsto Remember

1. Structures are used when you want to process data that may be of multiple data types.

2. Structures have members in the form:
st ruct ur enane. nenber nane.

-, s

T S
| 4m PREV | | NEXT & |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0088.html (2 of 2) [30.06.2007 10:57:33]

COMPLEX STRUCTURE DEFINITIONS

—

| 4mPREV |

-

| NEXT Wi |

COMPLEX STRUCTURE DEFINITIONS

I ntroduction

You can define structures of arrays or arrays of structures, etc. The following section gives definitions of complex

structures.

Program

Struct address \\W A

{
pl ot char [30], struc char[30];
city char[30]

}

struct student \\ B

{
nane char[30];
mar ks fl oat;
struct address adr; \\ C

}

main ()

{
struct student studentl; \\ D
struct student cl ass[20]; \\ E
class[1l].marks = 70; \\ F
class[1] .name = " Anil ";
class[1l].adr.plot ="7 "; \\ G
class[1l].adr.street =" M Road";
class[1l].adr.city = "munbai";
printf(" Marks are %\ n", class[1].marks);
printf(" nanme are %\n", class[1].nane);
printf(" adr.plot is %\n", class[1].adr.plot);
printf(" adr.street is %\n", class[1].adr.stret);
printf(" adr.city is %\n", class[1].adr.city);

}

Explanation

1. Statement A declares the address of a structure containing the members pl ot , street andcity.

2. Statement B declares a structure having 3 members: nane, mar ks, and adr . The data type of adr is structure
address, which is given by statement C.

3. Statement D defines the variable st udent 1 of the data type st ruct student.

4. Statement E defines an array class with 20 elements. Each element is a structure.

5. You can refer to marks of the students of cl ass[1] using the notation cl ass[1] . mar ks.

cl ass[1]

indicates the first element of the array, and since each element is a structure, a member can be accessed using
dot notation.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0089.html (1 of 2) [30.06.2007 10:57:33]

COMPLEX STRUCTURE DEFINITIONS

6. You can refer to the plot of a student of cl ass[1] using the notation cl ass[1] . adr. pl ot . Since the third
element of the structure is adr, and pl ot is a member of adr, you can refer to members of the nested
structures.

7. If you want to refer to the first character of the character array pl ot , then you can refer it as
Class[1].adr.plot[0]

because pl ot is a character array.

Pointsto Remember

1. When a structure is a member of another structure it is called a nested structure.

2. You can define structures of arrays or arrays of structures, and the members are referred to using dot notations.

-

| 4mPREV |

-

| MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0089.html (2 of 2) [30.06.2007 10:57:33]

MEMORY ALLOCATION TO STRUCTURE

= o

| 4mPREV | | NEXT Wi |

MEMORY ALLOCATION TO STRUCTURE

I ntroduction

For each structure, variable memory is allocated. The following sections give the memory layout of the structure
student 1.

Program/Example

student 1

student 1 0 name
30 mar ks
34 adr pl ot
64 street
94 city
Explanation

1. Suppose the base address of the allocations is 0; then the first member nane starts from 0.
2. Since nane has 30 characters, the second member, mar ks, starts from location 30; mar ks occupies 4 bytes.

3. The third member, adr , starts from location 34, so the first member of adr starts from location 34. Period pl ot
occupies 30 bytes, so st r eet starts at 64.

4. city starts at 94.

5. You can print the addresses of the members using the following pri nt f statements:

printf("16lu\n", &studentl. narks);
printf("16lu\n", &studentl.adr.plot);

Point to Remember

The structure members are allocated consecutive memory locations.

- —

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0090.html [30.06.2007 10:57:33]

PROGRAMMING WITH STRUCTURES

= r

| 4mPREV | | NEXT Wi |

PROGRAMMING WITH STRUCTURES

I ntroduction

You can write programs with structures by using modular programming.

Program
struct student

{

nane char|[30];
mar ks fl oat;

}
main ()
{
struct student student1;
studentl = read_student ()
print_student(studentl);
read_st udent _p(student1);
print_student (studentl);
}
struct student read_student() WA
{
struct student student2;
get s(student 2. nane) ;
scanf ("%", &t udent 2. mar ks) ;
return (student?2);
}
void print_student (struct student student2) \\ B
{
printf("name is %\n", student2.nane);
printf("marks are%\n", student2.narks);
}
voi d read_student _p(struct student student?2) \\W C
{
get s(student 2. nane) ;
scanf ("%d", &t udent 2. nmar ks) ;
}
Explanation

1. The function r ead_st udent reads values in structures and returns the structure.
2. The function pri nt _st udent takes the structure variable as input and prints the content in the structure.

3. The function r ead_st udent _p reads the data in the structure similarly to r ead_st udent . It takes the
structure st udent as an argument and puts the data in the structure. Since the data of a member of the

structure is modified, you need not pass the structure as a pointer even though structure members are modified.
Here you are not modifying the structure, but you are modifying the structure members through the structure.

Pointsto Remember
1. You can write a function that returns the structure. While writing the function, you should indicate the type of

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0091.html (1 of 2) [30.06.2007 10:57:34]

PROGRAMMING WITH STRUCTURES

structure that is returned by the function. The r et ur n statement should return the structure using a variable.

2. You can pass a structure as an argument. You can modify a member of the structure by passing the structure of
an argument. The changes in the member made by the function are retained in the called module. This is not

against the principle of call by value because you are not modifying the structure variable, but are instead
modifying the members of the structure.

- -

| 4m PREV NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0091.html (2 of 2) [30.06.2007 10:57:34]

STRUCTURE POINTERS

= r

| 4mPREV | | NEXT Wi |

STRUCTURE POINTERS

I ntroduction

You can process the structure using a structure pointer.

Program
struct student \\ A
{
char nane[30]; \\ B
float marks; \\ C
}; \\ D
main ()
{
struct student *student1; \\ E
struct student student2; \\ F
char s1[30];
float f;
student1 = &student 2; \\ G
scanf ("%", nane); \\' H
scanf (" %", & f); W\
*student 1. name = sli; \\ J studentl1l-> nane = f;
*student 2. marks = f; \\ K student1-> marks = sli;
printf (" Nane is % \n", *studentl.nane); \W L
printf (" Marks are % \n", *student2.marks); \\ M
}
Explanation

1. Statement E indicates that st udent 1 is the pointer to the structure.
2. Statement F defines the structure variable st udent 2 so that memory is allocated to the structure.
3. Statement G assigns the address of the structure st udent 2 to the pointer variable structure st udent 1.

4. In the absence of statement G, you cannot refer to the structure using a pointer. This is because when you
define the pointer to the structure, the memory allocation is done only for pointers; the memory is not allocated
for structure. That is the reason you have to declare a variable of the structure type so that memory is allocated
to the structure and the address of the variable is given to the point.

5. Statement J modifies a member of the structure using the * notation. The alternative notation is

student 1-> nane = f;
student 1-> marks = s1;

Pointsto Remember

1. You can access members of the structure using a pointer.

2. To access members of the structure, you have to first create a structure so that the address of the structure is
assigned to the pointer.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0092.html (1 of 2) [30.06.2007 10:57:34]

STRUCTURE POINTERS

| @m PREV | | NEXT &P |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0092.html (2 of 2) [30.06.2007 10:57:34]

Chapter 16: Union

= r

| 4mPREV | | NEXT Wi |

Chapter 16: Union
UNION

I ntroduction

Union is a composite type similar to structure. Even though it has members of different data types, it can hold data of
only one member at a time.

Program
uni on mar ks \\ A
{
fl oat perc; \\' B
char grade; \\ C
}
main ()
{
uni on mar ks student 1; \\ E

student 1. perc = 98.5; \\ F

printf("Marks are % address is %46l u\n",
student 1. perc, &studentl.perc); \\ G

studentl.grade = "A""'; \\ H

printf("Gade is % address is %6l u\n",
student 1. grade, &studentl1.grade); \\ |

}

Explanation

1. Statement A declares a union of the type mar ks. It has two members: per ¢ and gr ade. These two members

are of different data types but they are allocated the same storage. The storage allocated by the union variable
is equal to the maximum size of the members. In this case, the member gr ade occupies 1 byte, while the

member per ¢ occupies 4 bytes, so the allocation is 4 bytes. The data is interpreted in bytes depending on
which member you are accessing.

2. Statement E declares the variable st udent 1 of the type union.

3. Statement F assigns a value to a member of the union. In this case, the data is interpreted as the f | oat data
type.

4. Statement H assigns character ‘A’ to member gr ade. st udent 1. gr ade interprets the data as character data.

5. When you print the value of the member per c, you have to use the placeholder % ype. Note that the addresses
printed by both pri nt f statements are the same. This means that both members have the same memory
location.

Points to Remember
1. In aunion, the different members share the same memory location.

2. The total memory allocated to the union is equal to the maximum size of the member.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0093.html (1 of 2) [30.06.2007 10:57:35]

Chapter 16: Union

3. Since multiple members of different data types have the same location, the data is interpreted according to the
type of the member.

= - e -

| 4@ PREV | | MNE=T m |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0093.html (2 of 2) [30.06.2007 10:57:35]

Chapter 17: Files

= r

| emPREV | NExT o |

Chapter 17: Files
THE CONCEPT OF FILES

I ntroduction

A file is a data object whose lifetime may be greater than the lifetime of a program responsible for creating it, because
it is created on secondary storage devices. It is used to store persistent data values and information. The files are used
mainly for input and output of data to an external operating environment. The components of the file are called as
records (this term has nothing to do with record data structure).

Typesof Files

A file may be a sequential file, a direct-access file, or an indexed sequential file. A sequential file can be thought of as a
linear sequence of components of the same type with no fixed maximum bound. The major operations on the
sequential files are:

Open operation: When a file is to be used, it is first required to be opened. The open operation requires two operands:
the name of the file and the access mode telling whether the file is to be opened for reading or writing. If the access
mode is "read," then the file must exist. If the access mode is "write," then if the file already exists, that file is emptied
and the file position pointer is set to the start of the file. If the file does not exist then the operating system is requested
to create a new empty file with a given name. The open operation requests the information about the locations and
other properties of the file from the operating system. The operating system allocates the storage for this information
and for buffers, and sets the file-position pointer to the first component of the file. The runtime library of C provides an

f open(name, node) function for it. This function returns a pointer to the internal structure called FILE (you get the
definition of this structure in st di 0. h). This pointer is called a file descriptor; it is used by the C program to refer to the
file for reading or writing purposes.

Read operation: This operation transfers the current file component to the designated program variable. The runtime
library of C provides a function f get c(f p) , where f p is a file descriptor, for f scanf (). fscanf () is similar to
scanf () except that one extra parameter, f p, is required to be passed as the first parameter. The second and third
parameters are the same as the first and second parameters of scanf ().

Write operation: This operation transfers the contents of the designated program variable to the new component
created at the current position. The runtime library of C provides a function f put c(c, f p) , where f p is afile
descriptor, and c is a character to be written in the file f pri ntf (). fprintf () issimilartoprintf () except that
one extra parameter, f p, is required to be passed as the first parameter. The second and third parameters are the
same as the first and second parameters of printf ().

Close operation: This operation notifies the operating system that the file can be detached from the program and that
it can deallocate the internal storage used for the file. The file generally gets closed implicitly when the program
terminates without explicit action by the programmer. But when the access mode is required to be changed it is
required to be closed explicitly and reopened in the new mode. The runtime library of C provides an f cl ose(f p)
function for it.

Random Access

Each read and write operation takes place at a position in the file right after the previous one. But it is possible that you
may need to read or write the file in any arbitrary order. The runtime library of C provides an f seek(f p, offset,

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0094.html (1 of 7) [30.06.2007 10:57:36]

Chapter 17: Files

f rom wher e) function for this. This function forces the current position in the file, whose descriptor is f d, to move by

offset bytes from either the beginning of the file, the current file pointer position, or from the end of the file, depending
upon the value of f r om wher e. The parameter f r om wher e must have one of the values (0, 1, or 2) that represent
three symbolic constants (defined in st di 0. h) as shown in Table 17.1.

Table 17.1: Random access

| CONSTANT] WHERE | FILE LOCATION

| SEEK_SET |0 | File beginning

| SEEK_CUR |1 | Current file pointer position
| SEEK_END |2 | End-of-file

After f seek, the next operation on an update file can be either input or output.
Program

This program is designed to handle data such at r ol | no, nane and mar ks of a student. In this program, the following
operations are performed:

1. Information on a new student is entered and stored in the st udent . t xt file.

2. The student . t xt file is printed on screen on the operator's request.

3. The student . t xt file is sorted on the basis of marks and stored in the file mar ks. t xt .
4. Information on a student whose r ol | no is given is printed on screen.

5. The average marks of all students are calculated.
#i ncl ude<stdi 0. h>

i nt bubble(int*,int);
void filewite();

voi d avgmar ks();
void fileprint();
void filesort();
void rollin();

/******************** SCR'I’I NG FUNCTI O\l ************************/
int bubble(int x[],int n)

{
int hold,j,pass,i,switched = 1;
for(pass = 0; pass < n-1 && switched == 1; pass++)
{
swi t ched=0;

for (j=0;j<n-pass-1;j++)
it (x[j]>x[]+1])

}
swi t ched=1;
hold = x[j];
x[j1 = x[j+1];
x[j +1] =hol d;

}

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0094.html (2 of 7) [30.06.2007 10:57:36]

Chapter 17: Files

return(0);

/**************** FI LE \/\RI TI NG FUNCTI O\l ***********************/

void filewite()

{
int roll,ch, nmark
char nanf 50];
FI LE *f p;
clrscr();
fp = fopen("student.txt","a");
printf("ENTER ROLL NUVBER, NAME, MARKS \n");
ch =1;
whi | e(ch)
{
scanf ("%% %", & ol | , &ham &nar k) ;
fprintf(fp,"%l % %\n",roll, nam mark);
printf("\n\n press 1 to continue,0 to stop");
scanf ("%d", &ch) ;
}
fclose(fp) ;
}

/******************** OJTPUTTI NG DATA O\I SCREEN***************/
void fileprint()

{
int marks[100],rollno[100], x[100],i ;
char nane[100] [50];
FILE *fp
clrscr();
fp = fopen("student.txt","r");
i =0;
printf("RCOLLNO NANVE MARK\ n") ;
whi |l e(!feof (fp))
{
fscanf (fp,"%d % %\n",& ollnol[i], &ane[i], &marks[i]);
printf(" %l %s
%\ n",rollno[i],name[i], marks[i]);
i =i +1;
}
fcl ose(fp);
printf("\ n\n\nPRESS ANY KEY");
getch();
}

/******************* SmTI NG FI LE ************************/

void filesort()
{
i nt marks[100], rol I no[100], x[100], n,i,j;
char nane[100][50];
FILE *fp,*fm

fopen("student.txt","r");
fopen("marks.txt","w');

fp
fm
i =0;

while(! feof(fp))

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0094.html (3 of 7) [30.06.2007 10:57:36]

Chapter 17: Files

{
fscanf (fp,"%d % %\n",& ollnol[i], &ane[i], &marks[i]);
X[1]= marks[i];
i =i +1;
}
n=i;
bubbl e(x, n);
for(i=0;i<n;i++)
{
printf(" %\t",x[i]);
}
for(i=0;i<n;i++)
{

for (j=0;j<n;j++)
{
i f(x[i]==marks[j])
{
fprintf(fm"% %
%\ n",rollno[j],name[j],marks[j]);
}
}
}
fclose(fm;
fclose(fp);
printf("\n\n\nPRESS ANY KEY");
getch();

/******************** DATA USI NG RO_L'\D\'***********************/

void rollin()

{
int i,roll,ch, mrk,roll1;
char nanf 50];
FILE *fm

ch=1;
whi | e(ch)
{
clrscr();
fm= fopen("marks.txt","r");
printf(" \'n ENTER ROLL NUMBER - ");
scanf (" %", & oll1);
i =0;
while(! feof (fm)
{
fscanf(fm"% % %\n", & ol |, &am &nark) ;
if(rolll==roll)
{
printf("\nROLLNO. NAME MARKS\n ");
printf(" %l %s

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0094.html (4 of 7) [30.06.2007 10:57:36]

Chapter 17: Files

%\ n" ,roll , nam marKk);
br eak;
}
el se
i =i +1;

}

printf(

"\nm\npress 1 to see student info, O to return to main nenu\n");
scanf (" %", &ch);

fclose(fm;

}

voi d avgmar ks()
{
i nt marks[100], rol I no[100], n,i;
fl oat avg, X;
char nane[100] [50];
FILE *fm
fm= fopen("marks.txt","r");
i =0;
whil e(! feof(fm)
{

fscanf(fm"% % %\n",& ollnol[i], &ane[i], &marks[i]);
X = x + marks[i];
i =i +1;

avg = x/n;

printf("AVERAGE MARKS OF % STUDENTS ARE - % ", n, avg);
fclose(fm;

printf("\n\n\nPRESS ANY KEY");

getch();

}

/**************** FUI\IC ENDS************************/

voi d nain()

{
i nt marks[100],rollno[100], x[100],n,i,j,roll,c,mark, roll 1;
char nane[100][10], nani 50] ;

whi | e(c! =6)

{
clrscr();
printf("GVE CHO CE--\n");
printf(" 1 TO ENTER STUDENT I NFO.\n");
printf(" 2 TO SEE STUDENT. TXT FILE\n");
printf(" 3 TO SORT FILE ON BASI S OF MARKS\ n");
printf(" 4 TO PRI NT STUDENT | NFO USING ROLL NO n");
printf(" 5 TO FI ND AVERAGE OF MARKS\ n");
printf(" 6 TOEXIT\n\n--");
scanf (" %", &c) ;
clrscr();
swi tch(c)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0094.html (5 of 7) [30.06.2007 10:57:36]

Chapter 17: Files

{

case 1:
filewite();
br eak;

case 2:
fileprint();
br eak;

case 3:
filesort();
br eak;

case 4: rollin();
br eak;

case 5. avgnarks();
br eak;

case 6:
br eak;

defaul t:
br eak;

}
}

Explanation

1. This program uses the following functions for its specified operation.

i nt bubbl e(int*,int) This bubble sorting technique is used for file sorting.

void filewite() — Used to write data of a new student in "student.txt" file

void fileprint() — Used to print information on students.

void filesort() — Used to sort the "student.txt" files on mark basis in "marks.
txt"

void rollin() — Used to find information on a student using his roll number.

voi d avgmarks() — Used to find average marks of all students.

2. Thefilewite() function opens the st udent . t xt file in the append mode, and data entered is written in the
same file. Inthe void fi | epri nt () file, st udent . t xt is opened in read mode and data is read from it. This
data is printed on the screen.

3. filesort () opensthe student.txt filein read mode and the file mar ks. t xt in write mode. The data of all
students is temporarily stored in one buffer consisting of three arrays: one for r ol | no, the second for nane and
the third for mar ks. At the same time, marks are stored in the x[] array for sorting purposes. The sorting is
done by bubble sort. The result of sorting is available in x[] . At this stage, each x[i] is compared with
marks[j] .If amatch is found, the data on that student is stored in the mar ks. t xt file. This process is
done for all marks.

4. In this way, we geta mar ks. t xt file that is sorted on the basis of mar ks. In the void rollin(), the file mar ks.
t xt is used to find the student whose roll number (rolino) is given. For every line in the file, the rollno in that file
is compared with the rollno to be found. If a match exists in the file, the data on that student is printed on the
screen. The avgmar ks() function uses the file mar ks. t xt . Marks of students are added to variable X, each
time the file pointer is incremented. Then, the average nmar ks (sre) is displayed on the screen.

5. In main function, the swi t ch statement is used to invoke the function related to the option given by the user.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0094.html (6 of 7) [30.06.2007 10:57:36]

Chapter 17: Files

6. In this program, input consists of the r ol | no, mar ks, and nane of each student.

7. Output depends on the user's choice. When information on students is to be printed, the program prints the
content of the student.txt file on the screen. When information is sought on the basis of the roll number, the
program prints the rollno, marks, and name of each student. When the average of marks is found, it prints that.

-

| | NExT mp |

| 4m PREV

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0094.html (7 of 7) [30.06.2007 10:57:36]

DIRECT ACCESS FILES

= r

| 4mrFREV | | NExT |

DIRECT ACCESSFILES

I ntroduction

A direct access file is a file in which any single component may be accessed at random. Every component has a key value
associated with it. A write operation takes a component and its key value, writes the component into the file, and stores
both the key and the location of the record in a file, an index. A read operation takes the key of the desired component,
searches the index to find the location of the component, and retrieves the component from the file.

Program

A complete C program implementing a direct access file is given below:

#i ncl ude <stdi o. h>

#i ncl ude <string. h>
#i ncl ude <stdlib. h>
#defi ne MAX 50

typedef struct
{
char nanme[10] ;
i nt key;
} file_record;
/* this function adds the relative address to the index for a key */
void create_index(long index[], int key, long rel_add)

{
}

/* this function wites a record to the file */
void wite_rec(FILE *fp, file_record rec)

i ndex[key] = rel _add;

{
fwite(& ec,sizeof(rec),1,fp);
}
voi d main()
{

| ong rel add;

int key;

file record frec;

| ong i ndex[MAX];/* an index list*/
int n,i;

FI LE *recfil e=NULL, *ifil e=NULL;
/[* this initializes the index list to all -1 */
for(i=0; i< MAX; i++)

index[i]= (-1);

recfil e=fopen("nfile","w");

if(recfile == NULL)

{
printf("Error in opening file nfile\n");
exit(0);

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0095.html (1 of 6) [30.06.2007 10:57:37]

DIRECT ACCESS FILES

rel _add =0 ;
do
{

printf(

Enter the data value and the key of the record to be added to file nfile\n");
scanf ("% %", frec. nane, & rec. key);
whi | e(i ndex[frec. key] !'= (-1))
{
printf(
" Arecord with this key value already exist in a file enter record key val ue\n");
scanf ("% %", frec. nane, & rec. key) ;
}

create_i ndex(index, frec. key, rel _add);

wite rec(recfile,frec);

rel _add = ftell(recfile);

/* this sets the relative address for the next record to be
the value of current file position pointer in bytes from
the beginning of the file */

printf("Enter 1 to continue adding records to the file\n");

scanf (" %", &n);

Iwhile(n == 1);
ifile=fopen("index file","w");
if(ifile == NULL)
{
printf("Error in opening file index file\n");
exit(0);
}
fwrite(index,sizeof (index),1,ifile);/*wites the conplete index into the index file */
fclose(recfile);
fclose(ifile);
printf("Enter 1 if you want to retrieve a record\n");
scanf (" %", &n) ;
if(n==1)
{
ifile=fopen("index_file","r");
if(ifile == NULL)
{
printf("Error in opening file index file\n");
exi t(0);
}
fread(i ndex, si zeof (index),1,ifile);
/*reads the conplete index into the index list fromthe
i ndex_file*/
fclose(ifile);
recfile=fopen("nfile","r");
if(recfile == NULL)
{
printf("Error in opening file nfile\n");
exit(0);
}
}
printf("THE CONTENTS OF FILE IS \n")
while((fread(&f rec, sizeof(frec),1,recfile)) = 0)
printf ("% %\ n",frec.nane, frec. key);
do
{

printf("Enter the key of the record to be retrieved\n");

scanf (" %", &ey);

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0095.html (2 of 6) [30.06.2007 10:57:37]

DIRECT ACCESS FILES

rel _add = index[key]; /* gets the relative address of the record fromindex list */
if((fseek(recfile,rel _add, SEEK SET))!= 0)
{
printf("Error\n");
exit(0);
}

fread(&f rec, sizeof (frec), 1, recfile);
printf("The data value of the retrieved record is %\n",
frec. nane);
printf("Enter 1 if you want to retrieve a record\n");
scanf (" %", &n);

} while(n == 1);

fclose(recfile);

}

Explanation

1. This program writes the names in the file. A unique integer value is assigned to every name as a key value.

2. The program takes the name to be stored in the file along with its key value, writes the name and key value in the
file, obtains the relative address of that record, and stores it in a list called an index. The index is organized by key

value.
3. When the addition process ends, it writes the complete index into an index file.

4. When retrieval of names is requested, the following occurs:
A. The complete index is loaded into a list index from the index file.

B. The index file is used to find the relative address of the record whose key value is given.
C. The current position pointer is moved to that address.

D. The record is read from the file.

Example
Input and Output

1.

Enter the data value and the key of the record to be added to file nfi | e
| ogk 10

Enter 1 to continue adding records to the file

1

Enter the data value and the key of the record to be added to file nfi | e
psd 20

Enter 1 to continue adding records to the file

1

Enter the data value and the key of the record to be added to file nfi | e
apg 3

Enter 1 to continue adding records to the file

1

Enter the data value and the key of the record to be added to file nfi | e
agk 5

Enter 1 to continue adding records to the file

1

Enter the data value and the key of the record to be added to file nfi | e

kdk 34

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0095.html (3 of 6) [30.06.2007 10:57:37]

DIRECT ACCESS FILES

Enter 1 to continue adding records to the file
0

Enter 1 if you want to retrieve a record

1

THE CONTENTS OF FILE IS

. logk 10
. psd 20
. apg 3

. agk 5

. kdk 34

Enter the key of the record to be retrieved

5

The data value of the retrieved record is agk
Enter 1 if you want to retrieve a record

1

Enter the key of the record to be retrieved
10

The data value of the retrieved record is 1ogk
Enter 1 if you want to retrieve a record

1

Enter the key of the record to be retrieved
34

The data value of the retrieved record is kdk
Enter 1 if you want to retrieve a record

1

Enter the key of the record to be retrieved
20

The data value of the retrieved record is psd
Enter 1 if you want to retrieve a record

1

Enter the key of the record to be retrieved
10

The data value of the retrieved record is 1ogk
Enter 1 if you want to retrieve a record

0

2.

Enter the data value and the key of the record to be added to file nfi | e
| ogk 10

Enter 1 to continue adding records to the file

1

Enter the data value and the key of the record to be added to file nfi | e
psd 20

Enter 1 to continue adding records to the file

1

Enter the data value and the key of the record to be added to file nfi | e
kdk 20

A record with this key value already exist in a file enter record key value
kdk 30

Enter 1 to continue adding records to the file

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0095.html (4 of 6) [30.06.2007 10:57:37]

DIRECT ACCESS FILES

1

Enter the data value and the key of the record to be added to file nfi | e
asg 10

A record with this key value already exists in a file, enter record key value
asg 15

Enter 1 to continue adding records to the file

0

Enter 1 if you want to retrieve a record

1

THE CONTENTS OF FILE IS

. logk 10
. psd 20
. kdk 30

. asg 15

Enter the key of the record to be retrieved
20

The data value of the retrieved record is psd
Enter 1 if you want to retrieve a record

1

Enter the key of the record to be retrieved
15

The data value of the retrieved record is asg
Enter 1 if you want to retrieve a record

1

Enter the key of the record to be retrieved
10

The data value of the retrieved record is | ogk
Enter 1 if you want to retrieve a record

1

Enter the key of the record to be retrieved
30

The data value of the retrieved record is kdk
Enter 1 if you want to retrieve a record

0

Indexed Sequential Files

An indexed sequential file is like a direct access file with the additional facility of accessing the components in a sequential
manner, beginning from the position of the component selected at random. This requires the index to be ordered by key

values.

Exercises

1. Write a C program to implement a telephone directory. Your program should provide for retrieval of an arbitrary

record, given the name of the telephone subscriber.

2. Write a C program to implement a database of people. Your program should provide for retrieval of information from

any arbitrary record, given the code number of the person.

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0095.html (5 of 6) [30.06.2007 10:57:37]

DIRECT ACCESS FILES

e = e

| 4m PREV | | MEXT W |

-

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0095.html (6 of 6) [30.06.2007 10:57:37]

Part I1: Data Structures

| 4m FPREV | | NEXT @ |

Part |1: Data Structures
Chapter 18: Arrays, Searching, and Sorting
Chapter 19: Stacks and Queues
Chapter 20: Linked Lists
Chapter 21: Trees

Chapter 22: Graphs

| 4m FPREV | | NEXT @ |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0096.html [30.06.2007 10:57:37]

Chapter 18: Arrays, Searching, and Sorting

= r

| 4mPREV | | NEXT Wi |

Chapter 18: Arrays, Searching, and Sorting
ARRAYS

I ntroduction

An array is a fixed-sized, homogeneous, and widely-used data structure. By homogeneous, we mean that it consists of
components which are all of the same type, called element type or base type. And by fixed sized, we mean that the
number of components is constant, and so does not change during the lifetime of the structure. An array is also called
a random-access data structure, because all components can be selected at random and are equally accessible. An
array can be used to structure several data objects in the programming languages. A component of an array is
selected by giving its subscript, which is an integer indicating the position of the component in the sequence.
Therefore, an array is made of the pairs (value, index); it means that with every index, a value is associated. If every
index is one single value then it is called a one-dimensional array, whereas if every index is a n-tuple {iy, iy, is,....., in},

the array is called a n-dimensional array.

Memory Representation

An array is represented in memory by using a sequential mapping. The basic characteristic of the sequential mapping
is that every element is at a fixed distance apart. Therefore, if the ith element is mapped into a location having an
address a, then the (i + 1)th element is mapped into the memory location having an address (a + 1), as shown in Figure
18.1.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0097.html (1 of 4) [30.06.2007 10:57:37]

Chapter 18: Arrays, Searching, and Sorting

al
ac
a3
S al a
az a+1
all
a3 a+2
Array
all a4
Memory

Figure 18.1: Representation of an array.

The address of the first element of an array is called the base address, so the address of the the ith element is
Base address + offset of the ith element from base address

where the offset is computed as:

Offset of the ith element = number of elements before the ith *

size of each element.

If LB is the lower bound, then the offset computation becomes:

offset = (i — LB) * size.

Representation of Two-Dimensional Array

A two-dimensional array can be considered as a one-dimensional array whose elements are also one-dimensional

arrays. So, we can view a two dimensional array as one single column of rows and map it sequentially as shown in
Figure 18.2. Such a representation is called a row-major representation.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0097.html (2 of 4) [30.06.2007 10:57:37]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig18%2D1%5F0%2Ejpg

Chapter 18: Arrays, Searching, and Sorting

[] I
| 1
| |
>
[]
Two-Dimensional Array
»
Memory

Figure 18.2: Row-major representation of a two-dimensional array.
The address of the element of the ith row and the jth column therefore is:

addr(a[i, j]) = (number of rows placed before ith row * size of a row) + (number of elements placed before the jth
element in the ith row * size of element)

where
Number of rows placed before ith row = (i — LB1), and LB1 is the lower bound of the first dimension.
Size of a row = number of elements in a row * a size of element.

Number of elements in a row = (UB2 — LB2+1), where UB2 and LB2 are the upper and lower bounds of the second
dimension, respectively.

Therefore:
addr(a[i, j]) = ((i — LB1) * (UB2 — LB2+1) * size) + ((j — LB2)*size)

It is also possible to view a two-dimensional array as one single row of columns and map it sequentially as shown in
Figure 18.3. Such a representation is called a column-major representation.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0097.html (3 of 4) [30.06.2007 10:57:37]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig18%2D2%5F0%2Ejpg

Chapter 18: Arrays, Searching, and Sorting

= = — .._
F:
- ;wu_-[?limensiﬂnal Array - !
»
Memory }

Figure 18.3: Column major representation of a two-dimensional array.
The address of the element of the ith row and the jth column therefore is:

addr(a[i, j]) = (number of columns placed before jth column * size of a column) + (number of elements placed before
the ith element in the jth column * size of each element)

Number of columns placed before jth column = (j — LB2) where LB2 is the lower bound of the second dimension.

Size of a column = number of elements in a column * size of element Number of elements in a column = (UB1 - LB1 +
1), where UB1 and LB1 are the upper and lower bounds of the first dimension, respectively.

Therefore:

addr(a[i,) = ((j — LB2) * (UB1 — LB1+1) * size) + ((i — LB1)*size)

-

[4w PREV | [NExTwp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0097.html (4 of 4) [30.06.2007 10:57:37]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig18%2D3%5F0%2Ejpg

APPLICATION OF ARRAYS

= o

| 4mPREV | | NEXT Wi |

APPLICATION OF ARRAYS

Whenever we require a collection of data objects of the same type and want to process them as a single unit, an array
can be used, provided the number of data items is constant or fixed. Arrays have a wide range of applications ranging
from business data processing to scientific calculations to industrial projects.

I mplementation of a Static Contiguous List

A list is a structure in which insertions, deletions, and retrieval may occur at any position in the list. Therefore, when the
list is static, it can be implemented by using an array. When a list is implemented or realized by using an array, it is a
contiguous list. By contiguous, we mean that the elements are placed consecutively one after another starting from
some address, called the base address. The advantage of a list implemented using an array is that it is randomly
accessible. The disadvantage of such a list is that insertions and deletions require moving of the entries, and so it is
costlier. A static list can be implemented using an array by mapping the ith element of the list into the ith entry of the
array, as shown in Figure 18.4.

= 4,
a. a,
aI

list to ba implemeanted

amay heolding the elements of list
Figure 18.4: Implementation of a static contiguous list.

Program

A complete C program for implementing a list with operations for reading values of the elements of the list and
displaying them is given here:
#i ncl ude<st di 0. h>
#i ncl ude<coni 0. h>
voi d nain()
{
void read(int *,int);
void dis(int *,int);
int a[5],i, sum=0;

clrscr();
printf("Enter the elenents of array \n");

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0098.html (1 of 2) [30.06.2007 10:57:38]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig18%2D4%5F0%2Ejpg

APPLICATION OF ARRAYS

read(a, 5); /*read the array*/
printf("The array el enents are \n");

dis(a, 5);
}

void read(int c[],int i)

{ . .
int j;
for(j=0;j<i;j++)
scanf("%", &c[j]);
fflush(stdin);

}

void dis(int d[],int i)
{ . .
int j;
for(j=0;j<i;j++)
printf("% ",d[j]);

printf("\n");
}
Example
Input

Enter the elements of the first array

15
30
45
60
75

Output

The elements of the first array are
15 30 45 60 75

-

| 4mPREV |

| MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0098.html (2 of 2) [30.06.2007 10:57:38]

MANIPULATIONS ON THE LIST IMPLEMENTED USING AN ARRAY

= o

| 4mPREV | | NEXT Wi |

MANIPULATIONSON THE LIST IMPLEMENTED USING AN ARRAY

I ntroduction

Shown next are C programs for carrying out manipulations such as finding the sum of elements of an array, adding two
arrays, and reversing an array.

Program

ADDI TI ON OF THE ELEMENTS OF THE LI ST
#i ncl ude<st di o. h>
#i ncl ude<coni o. h>
voi d main()
{
void read(int *,int);
void dis(int *,int);
int a[5],i, sum=0;

clrscr();

printf("Enter the elenents of list \n");
read(a, 5); /[*read the list*/
printf("The list elenents are \n");
dis(a, 5);

for(i=0;i<5;i++)

{
}

printf("The sumof the elements of the list is %d\n", sum;
getch();

sumr=ali];

void read(int c[],int i)
int j;
for(j=0;j<i;j++)
scanf("%d", &c[j]);
fflush(stdin);

void dis(int d[],int i)
int j;
for(j=0;j<i;j++)
printf("% ",d[j]);

printf("\n");
}

Example
I nput

Enter the elements of the first array

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0099.html (1 of 6) [30.06.2007 10:57:39)

MANIPULATIONS ON THE LIST IMPLEMENTED USING AN ARRAY

15
30
45
60
75

Output

The elements of the first array are
15 30 45 60 75

The sum of the elements of an array is 225.
Addition of thetwo lists

Suppose the first list is

a b~ wNPE

and the second list is

5
6
8
9
10

The first element of first list is added to the first element of the second list, and the result of the addition is the first
element of the third list.

In this example, 5 is added to 1, and the first element of third list is 6.

This step is repeated for all the elements of the lists and the resultant list after the addition is

6
8
11
13
15

#i ncl ude<st di 0. h>
#1 ncl ude<coni o. h>
void main()
{
void read(int *,int);
void dis(int *,int);
void add(int *,int *,int * ,int);
int a[5],b[5],c[5],i;

clrscr();
printf("Enter the elenents of first list \n");
read(a, 5); /*read the first |ist*/

printf("The elenments of first list are \n");
dis(a,5); /*Display the first list*/
printf("Enter the elenents of second list \n");

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0099.html (2 of 6) [30.06.2007 10:57:39]

MANIPULATIONS ON THE LIST IMPLEMENTED USING AN ARRAY

read(b, 5); /*read the second |ist*/
printf("The el ements of second list are \n");
dis(b,5); /*Display the second |ist*/

add(a, b,c,i);
printf("The resultant list is \n");
dis(c, 5);
getch();
}
void add(int a[],int b[],int c[],int i)
{
for(i=0;i<5;i++)
{
c[i]=a[i]+b[i];
}
}
void read(int c[],int i)
{
int j;

for(j=0;j<i;j++)
scanf ("%d", &c[j]);
fflush(stdin);

}

void dis(int d[],int i)
{

int j;

for(j=0;j<i;j++)
printf("% ", d[j]);
printf("\n");

}

Explanation
1. Repeat step (2) fori =0, 1, 2,... (n—1), where n is the maximum number of elements in a list.

2. c[i] = a[i]+b[i],where ais the first list, b is the second list, and c is the resultant list; a[i] denotes the
i th element of list a.

Example
I nput

Enter the elements of the first list

a b~ wNBE

Output

The elements of the first list are
2345

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0099.html (3 of 6) [30.06.2007 10:57:39]

MANIPULATIONS ON THE LIST IMPLEMENTED USING AN ARRAY
I nput

Enter the elements of the second list

6
7
8
9
10

Output

The elements of the second list are
6 789 10

The resultant list is
7 9 11 13 15

Inverse of thelist

The following program makes a reverse version of the list.

#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
voi d nain()

{
void read(int *,int);
voi d dis(int *,int);
void inverse(int *,int);
int a[5],i;
clrscr();
read(a, 5);
di s(a, 5);
i nverse(a,b);
dis(a,b5);
getch();
}
void read(int c[],int i)
{ . .
int j;
printf("Enter the list \n");
for(j=0;j<i;j++)
scanf ("%d", &c[j]);
fflush(stdin);
}
void dis(int d[],int i)
{ . .
int j;
printf("The list is \n");
for(j=0;j<i;j++)
printf("% ",d[j]);
printf("\n");
}
void inverse(int inver_a[],int j)
{

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0099.html (4 of 6) [30.06.2007 10:57:39)

MANIPULATIONS ON THE LIST IMPLEMENTED USING AN ARRAY

int i,tenp;
j-s
for(i=0;i<(j/2);i++)

{
tenp=i nver_afi];
inver _a[i]=inver_a[j];
i nver_alj]=tenp;
-,
}
}
Example
I nput

Enter the list

10
20
30
40
50

Output

The list is
10 20 30 40 50

The inverse of the list is
50 40 30 20 10

This is another version of an inverse program, in which another list is used to hold the reversed list.

#i ncl ude<st di o. h>

#1 ncl ude<coni o. h>

voi d nain()

{
void read(int *,int);
void dis(int *,int);
void inverse(int *,int *,int);
int a[5],b[5];
clrscr();
read(a, 5);
di s(a, 5);
i nverse(a,b,5);
di s(h, 5);
getch();

void read(int c[],int i)

int j;

printf("Enter the list \n");

for(j=0;j<i;j++)
scanf("%d", &c[j]);

fflush(stdin);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0099.html (5 of 6) [30.06.2007 10:57:39)

MANIPULATIONS ON THE LIST IMPLEMENTED USING AN ARRAY

void dis(int d[],int i)

{
int j;
printf("The list is \n");
for(j=0;j<i;j++)
printf("o%d ", d[j]);
printf("\n");
}
void inverse(int a[],int inverse b[],int j)
{
int i,Kk;
k=j - 1;
for(i=0;i<j;i++)
{
i nverse_b[i]=a[K];
k-,
}
}
Example
I nput

Enter the list

10
20
30
40
50

Output

The list is
10 20 30 40 50

The inverse of the list is
50 40 30 20 10

- —

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0099.html (6 of 6) [30.06.2007 10:57:39)

MERGING OF TWO SORTED LISTS

| 4mPREV |

—

-

| NEXT Wi |

MERGING OF TWO SORTED LISTS

I ntroduction

Assume that two lists to be merged are sorted in descending order. Compare the first element of the first list with the
first element of the second list. If the element of the first list is greater, then place it in the resultant list. Advance the
index of the first list and the index of the resultant list so that they will point to the next term. If the element of the first
list is smaller, place the element of the second list in the resultant list. Advance the index of the second list and the
index of the resultant list so that they will point to the next term.

Repeat this process until all the elements of either the first list or the second list are compared. If some elements
remain to be compared in the first list or in the second list, place those elements in the resultant list and advance the
corresponding index of that list and the index of the resultant list.

Suppose the first list is 10 20 25 50 63, and the second listis 12 16 62 68 80. The sorted lists are 63 50 25 20 10 and
80 68 62 16 12.

The first element of the first list is 63, which is smaller than 80, so the first element of the resultant list is 80. Now, 63 is
compared with 68; again it is smaller, so the second element in the resultant list is 68. Next, 63 is compared with 50. In
this case it is greater, so the third element of the resultant list is 63.

Repeat this process for all the elements of the first list and the second list. The resultant list is 80 68 63 62 50 25 20 16
12 10.

Program

#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
voi d nmain()

{

void read(int *,int);
void dis(int *,int);
void sort(int *,int);
void nerge(int *,int *,int *,int);
int a[5],b[5],c[10];

clrscr();
printf("Enter the elenents of first list \n");
read(a, 5); /*read the list*/

printf("The el enents of first list are \n");
dis(a,5); /*Display the first list*/
printf("Enter the elenents of second list \n");
read(b, 5); [*read the |ist*/

printf("The el ements of second list are \n");
dis(b,5); /*Display the second list*/
sort(a,b);

printf("The sorted list a is:\n");

dis(a, 5);

sort(b,5);

printf("The sorted list b is:\n");

di s(b, 5);

nerge(a, b,c,5);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0100.html (1 of 4) [30.06.2007 10:57:39]

MERGING OF TWO SORTED LISTS

printf("The el enments of nmerged list are \n");
dis(c,10); /*Display the nmerged list*/

getch();
}
void read(int c[],int i)
{
int j;
for(j=0;j<i;j++)
scanf ("%d", &c[j]);
fflush(stdin);
}
void dis(int d[],int i)
{
int j;
for(j=0;j<i;j++)
printf("% ",d[j]);
printf("\n");
}
void sort(int arr[] ,int k)
{
int tenp;
int i,j;
for(i=0;i<k;i++)
{
for(j=0;j<k-i-1;j++)
{
if(arr[j]<arr[j+1])
{
tenp=arr[j];
arr[j]=arr[j+1];
arr[j+1] =t enp;
}
}
} }
void nmerge(int a[],int b[],int c[],int k)
{

int ptra=0, ptrb=0, ptrc=0;
whi | e(ptra<k && ptrb<k)

{
if(a[ptra] < b[ptrb])
{
c[ptrc]=a[ptra];
ptra++;
}
el se
{
c[ptrc]=b[ptrb];
ptrb++;
}
ptrc++;
}
whi | e(pt ra<k)
{

c[ptrc]=a[ptra];

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0100.html (2 of 4) [30.06.2007 10:57:39)

MERGING OF TWO SORTED LISTS

ptra++; ptrc++;

}
whi | e(pt r b<k)
{
c[ptrc]=b[ptrb];
ptrb++; ptrc++;
}
}
Example
Input

Enter the elements of the first list
10 20 25 50 63

Output

The elements of first list are
20 25 50 63

Input

Enter the elements of the second list
16 62 68 80

Output

The elements of second list are
12 16 62 68 80

The sorted list a is
63 50 25 20 10

The sorted list b is
80 68 62 16 12

The elements of the merged list are
80 68 63 62 50 25 20 16 12 10

Explanation
1. ptra=0, ptrb=0, ptrc=0;

2. If the element in the first list pointed to by pt r a is greater than the element in the second list pointed to by pt r b,
place the element of the first list in the resultant list at the index equal to pt r c. Increment pt r a or pt r ¢ by one,
or else place the element of the second list in the resultant list at the index equal to pt r c. Increment pt r b and
pt r ¢ by 1. Repeat this step until pt r a is greater than the number of terms in the first list and pt r b is greater
than the number of terms in the second list.

3. If the first list has any elements, place one in the resultant list pointed to by pt r ¢, and increment pt r a and
pt r c. Repeat this step until pt r a is greater than the number of terms in the first list.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0100.html (3 of 4) [30.06.2007 10:57:39)

MERGING OF TWO SORTED LISTS

4. If the second list has any elements, place one in the resultant list pointed to by pt r ¢, and increment pt r b and
pt r c. Repeat this step until pt r b is greater than the number of terms in the first list.

e = e =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0100.html (4 of 4) [30.06.2007 10:57:39]

TRANSPOSE OF A MATRIX

= r

| 4mPREV | | NEXT Wi |

TRANSPOSE OF A MATRIX

I ntroduction

The transpose of a matrix is obtained by interchanging the rows with the corresponding columns. Let matrix a be

12 13 14
15 16 17
18 19 11

The diagonal elements are the same both in matrix a and in the matrix obtained by transposing a. In this example, in
the Oth row, interchange 13 with 15 and 14 with 18. After interchanging, the matrix becomes

12 15 18
13 16 17
14 19 11

In the first row, interchange the element that has not yet been interchanged in the Oth row; 17 with 19. After
interchanging the elements, the matrix becomes:

12 15 18
13 16 19
11 17 11

In the next iteration, search for the nondiagonal un-swapped element. In this example, no such element is there, so the
result of transposing matrix a is

12 15 18
13 16 19
14 19 11

Program

#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
#defi ne ROW 3
#define COL 3

voi d mai n()

{
void read(int a[][CO],int,int);
void dis(int a[]J[CO.],int,int);
void trans(int a[][CO.],int,int);
int a[3][3];
clrscr();
read(a, ROW CQL) ;
printf("\nThe matrix is \n");
di s(a, ROWCQL) ;
trans(a, ROW CQL);
printf("The tranpose of the matrix is\n");
di s(a, ROW CQL) ;
getch();

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0101.html (1 of 4) [30.06.2007 10:57:40]

TRANSPOSE OF A MATRIX

void read(int c[3][3] ,int i ,int k)
{
int j,I;
printf("Enter the array \n");
for(j=0;j<i;j++)
for(1=0;1<k;| ++)
scanf("o%d", &[j]1[11]);
fflush(stdin);

}
void dis(int d[3][3],int i,int k)
{
int j,I;
for(j=0;j<i;j++)
{
for(1=0;1<k;!|++)
printf("% ",d[jI[I]);
printf("\n");
}
}
void trans(int mat[][3],int k ,int |)
{
int i,j,tenp;
for(i=0;i<k;i++)
for(j=i+1;j<l;j++)
{
temp=nmt[i][j];
mat[i][j]=mat[j][i];
mat [j][i]=tenp;
}
}
Explanation
Basic steps:
1. Repeatstep (2)fori=0,1,2, (k-1) where k is the number of rows in the matrix.
2. Repeat step (3-5) forj =(i +1), (i +2)..... {I -1) where | is the number of columns in the matrix .

. temp = mat[i][j]

4. mat[i][j] = mat[j][i]
5. mt[j][i] = tenp
Example
Input

Enter the array

12
13
14
15
16
17

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0101.html (2 of 4) [30.06.2007 10:57:40]

TRANSPOSE OF A MATRIX

18
19
11

Output

The matrix is

12 13 14
15 16 17
18 19 11

The transpose of the matrix is

12 15 18
13 16 19
14 17 11

Alternative Version of the Program

This is another version of the transpose program. Here a separate matrix is used to hold the result of transposition.

#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
#define RONV 3 #define COL 3
void nmain() {
void read(int a[][COL],int,int);
void dis(int a[][CO.],int,int);
void trans(int a[][COL],int b[][CO.],int,int);
int a[3][3],b[3][3].i,];
clrscr();
read(a, ROW CQL) ;
printf("\nThe matrix is \n");
di s(a, Rowca.);
trans(a, b, RON CQL);
printf("The tranpose of the matrix is\n");

di s(b, ROW CQL) ;
getch();
}
void read(int c[3][3] ,int i ,int k)
{
int j,I;
printf("Enter the array \n");
for(j=0;j<i;j++)
for(1=0;1<k;| ++)
scanf("%d", &[j1[11]);
fflush(stdin);
}
void dis(int d[3][3],int i,int k)
{
int j,I;
for(j=0;j<i;j++)
{
for(I=0;1<k;!|++)
printf("9% ",d[j][!1]);
printf("\n");
}
}

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0101.html (3 of 4) [30.06.2007 10:57:40]

TRANSPOSE OF A MATRIX

void trans(int mat[][3],int tr_mat[][3], int k ,int |)

{
int i,j;
for(i=0;i<k;i++)
for(j=0;j<l;j++)
{
} tr_mat[i][j]=mat[j][i];
}
Example
Input

Enter the array 1

O©OoOo~NOOUThWDN

Output

The matrix is
123
456
789

The transpose of the matrix is

147

258

3609

— —
| 4m PREV | | NEXT & |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0101.html (4 of 4) [30.06.2007 10:57:40]

FINDING THE SADDLE POINT OF A MATRIX

= o

| 4mPREV | | NEXT Wi |

FINDING THE SADDLE POINT OF A MATRIX

I ntroduction

A matrix a is said to have a saddle point if some entrya[I] [j] is the smallest value in the i th row and the largest
value in the j th column. A matrix may have more than one saddle point.

Program

#i ncl ude<st di o. h>
#i ncl ude<coni o. h>
#defi ne ROW 3
#define COL 3

voi d main()

{
void read(int a[][CCL],int,int);
void dis(int a[][CO.],int,int);
int sadd_pt(int a[]J[CO.],int,int,int *,int*);
int i,a[3][3], n=0, n=0;
clrscr();
read(a, ROW CQL) ;
printf("\nThe matrix is \n");
di s(a, ROW CQL) ;
i =sadd_pt (a, 3, 3, &m &n);
printf("The saddle point is % & ts positionis row: %l co
%@\ n",
i, ml, n+l);
getch();
}
void read(int c[][3] ,int i ,int k)
{
int j,I;
printf("Enter the array \n");
for(j=0;j<i;j++)
for(1=0;1<k;| ++)
scanf("%d", &[j1[11]);
fflush(stdin);
}
void dis(int d[][3],int i,int k)
{
int j,I;
for(j=0;j<i;j++)
{
for(1=0;I<k;|++)
printf("\tod",d[j][I]);
printf("\n");
}
}
int sadd_pt(int mat[][3],int k ,int |,int *row, int *col)
{

int mn=32767,i=0,j,mn, p=0;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0102.html (1 of 2) [30.06.2007 10:57:40]

FINDING THE SADDLE POINT OF A MATRIX

whi
{

p++;
i f(p==3)
{
*row=m
*col =n;
return(mn);
J
i ++;
}
printf("No saddl e point exists\n");
getch();
exit(0);
}
Example
Input

I e(i<k)
m n=32767;
e ;
p=0;
for(j=0;j<l;j++)
{
if(mat[i][j]<mn)
{
mn=mat[i][]j];
n=j ;
}
}

for(j=0;j<k;j++)
if(min>=mat[j][n])

Enter the array

20 30
56 78
123

Output

40
45

The matrix is

20 30
56 78
123

The saddle point is 45 and its position is row 2, column 3.

40
45

| 4mPREV |

-

| MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0102.html (2 of 2) [30.06.2007 10:57:40]

IMPLEMENTATION OF HEAPS

—

| 4mPREV |

—

| NEXT Wi |

IMPLEMENTATION OF HEAPS

A heap is a list with the following attributes:

. Each entry contains a key.

. For all positions k in the list, the key at position k is least as large as the keys in positions 2k and 2k+1, provided
these positions exist in the list. Therefore, an array can be used to implement a heap as shown in Figure 18.5.

97

58

75

53

42

53

48

O |~ [|0 | W

32

9

20

Figure 18.5: A heap.

A heap is definitely not an ordered list because the first entry in the heap has the largest key, and there is no

necessary ordering between the keys in locations k and k+1, if k > 1.

A heap is used in sorting a continuous list of length n in O(n log,(n)) comparisons and movements of entries, even in

the worst case. The corresponding sorting method is called heapsort.

-

| 4mPREY |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥20(2004)/7267/DDU0103.html [30.06.2007 10:57:41]

—

| NEXT o |

SORTING AND SEARCHING

e = e

| 4mPREV | | NEXT P |

—

SORTING AND SEARCHING

We encounter several applications that require an ordered list. So it is required to order the elements of a given list
either in ascending/increasing order or decending/decreasing order, as per the requirement. This process is called
sorting. There are many techniques available for sorting an array-based list. These techniques differ in their time and
space complexities. Some of the important sorting techniques are discussed here.

— g -

| 4m PREV | | NEXT & |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0104.html [30.06.2007 10:57:41]

BUBBLE SORT

= r

| 4mPREV | | NEXT Wi |

BUBBLE SORT

I ntroduction

Bubble sorting is a simple sorting technique in which we arrange the elements of the list by forming pairs of adjacent
elements. That means we form the pair of the i th and (i +1) th element. If the order is ascending, we interchange the
elements of the pair if the first element of the pair is greater than the second element. That means for every pair (list[i],
list[i+1]) for i :=1 to (n—1) if list[i] > list[i+1], we need to interchange list[i] and list[i+1]. Carrying this out once will move
the element with the highest value to the last or nth position. Therefore, we repeat this process the next time with the
elements from the first to (n— 1)th positions. This will bring the highest value from among the remaining (n— 1) values
to the (n—1)th position. We repeat the process with the remaining (n—2) values and so on. Finally, we arrange the
elements in ascending order. This requires to perform (n—1) passes. In the first pass we have (n—1) pairs, in the
second pass we have (n—2) pairs, and in the last (or (n—1)t") pass, we have only one pair. Therefore, the number of
probes or comparisons that are required to be carried out is

(n=1) +(n=2)+ (n=-3)+...+1
=n(n-1)/2,

and the order of the algorithm is O(n2).

Program

#i ncl ude <stdi o. h>
#defi ne MAX 10
voi d swap(int *x,int *y)

{ .
int tenp;
tenp = *X;
*X :*y,
*y = tenp;
}
void bsort(int list[], int n)
int i,j;
for(i=0;i<(n-1);i++)
for(j=0;j<(n-(i+1));]++)
if(list[j] > list[j+1])
swap(&ist[j],&ist[j+1]);
}
void readlist(int list[],int n)
{ . .
Int 1;
printf("Enter the elenents\n");
for(i=0;i<n;i++)
scanf("%", & ist[i]);
}
void printlist(int list[],int n)
{

int i;

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures?620(2004)/ 7267/DDU0105.html (1 of 2) [30.06.2007 10:57:41]

BUBBLE SORT
printf("The elenents of the list are: \n");
for(i=0;i<n;i++)
printf("%\t", list[i]);

}

voi d nmain()

{
int list[MAX], n;
printf("Enter the nunber of elenments in the list max = 10\n");
scanf ("%", &n);
readlist(list,n);
printf("The Iist before sorting is:\n");
printlist(list,n);
bsort (list,n);
printf("The list after sorting is:\n");
printlist(list,n);

}

Example

I nput

Enter the number of elements in the list, max = 10
5

Enter the elements

23
5

4
9
1
Output

The list before sorting is:

The elements of the list are:
235491

The list after sorting is:

The elements of the list are:

1459 23
| 4mPREV | | NEXT Wi |

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%208& %20Data%20Structures?620(2004)/ 7267/DDU0105.html (2 of 2) [30.06.2007 10:57:41]

QUICK SORT

= r

| 4mPREV | | NEXT Wi |

QUICK SORT

I ntroduction

In the quick sort method, an array a[1],.....,a[n] is sorted by selecting some value in the array as a key element. We
then swap the first element of the list with the key element so that the key will be in the first position. We then
determine the key's proper place in the list. The proper place for the key is one in which all elements to the left of the
key are smaller than the key, and all elements to the right are larger.

To obtain the key's proper position, we traverse the list in both directions using the indices i and j , respectively. We
initialize i to that index that is one more than the index of the key element. That is, if the list to be sorted has the
indices running from m to n, the key element is at index m, hence we initialize i to (m+1). The index i is incremented
until we get an element at the ith position that is greater than the key value. Similarly, we initialize j to n and go on
decrementing j until we get an element with a value less than the key's value.

We then check to see whether the values of i and j have crossed each other. If not, we interchange the elements at the
key (mth)position with the elements at the jth position. This brings the key element to the jth position, and we find that
the elements to its left are less than it, and the elements to its right are greater than it. Therefore we can split the list
into two sublists. The first sublist is composed of elements from the mth position to the (j—1)t" position, and the second
sublist consists of elements from the (j+1)th position to the nth position. We then repeat the same procedure on each of
the sublists separately.

Choice of the key

We can choose any entry in the list as the key. The choice of the first entry is often a poor choice for the key, since if
the list has already been sorted, there will be no element less than the first element selected as the key. So, one of the
sublists will be empty. So we choose a key near the center of the list in the hope that our choice will partition the list in
such a manner that about half of the elements will end up on one side of the key, and half will end up on the other.

Therefore the function get keyposi ti onis

int getkeyposition(int i,j)
{

}

return((i+)/ 2);

The choice of the key near the center is also arbitrary, so it is not necessary to always divide the list exactly in half. It
may also happen that one sublist is much larger than the other. So some other method of selecting a key should be
used. A good way to choose a key is to use a random number generator to choose the position of the next key in each
activation of quick sort. Therefore, the function get keyposi ti on is:

int getkeyposition(int i,j)

{

return(random nunber in the range of i to j);
}
Program

#i ncl ude <stdio. h>
#defi ne MAX 10
void swap(int *x,int *y)

{

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0106.html (1 of 5) [30.06.2007 10:57:42]

QUICK SORT

int tenp;
tenp = *X;
*X :*y;
*y = tenp;
}
int getkeyposition(int i,int j)
{
return((i+j) /2);
}
void gsort(int list[],int mint n)
{
int key,i,j,Kk;
if(m<n
{
k = getkeyposition(mn);
swap(&ist[m,&ist[k]);
key = list[m;
i = ml;
jo=nm
while(i <=j)
{
while((i <=n) && (list[i] <= key))
i ++;
while((j >=m && (list[j] > key))
] -3
if(i <j)
swap(&ist[i],&ist[j]);
}
swap(&ist[m,&ist[j]);
gsort(list[],mj-1);
gsort(list[],j+1,n);
}
}
void readlist(int list[],int n)
{ . .
Int 1;
printf("Enter the el enents\n");
for(i=0;i<n;i++)
scanf("%", & ist[i]);
}
void printlist(int list[],int n)
{ . .
Int 1;
printf("The elements of the list are: \n");
for(i=0;i<n;i++)
printf("%\t",list[i]);
}

voi d main()

int [ist[MAX], n;

printf("Enter the nunber of elenents in the list max = 10\ n");
scanf ("%d", &n);

readlist(list,n);

printf("The Iist before sorting is:\n");

printlist(list,n);

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0106.html (2 of 5) [30.06.2007 10:57:42]

QUICK SORT

gsort(list,0,n-1);
printf("\nThe list after sorting is:\n");
printlist(list,n);

}

Example
I nput

Enter the number of elements in the list, max = 10
10

Enter the elements

7
99
23
11
65
43
23
21
21
77

Output
The list before sorting is:

The elements of the list are:
7 99 23 11 65 43 23 21 21 77

The list after sorting is:

The elements of the list are:
7 11 21 21 23 23 43 65 77 99

Explanation

Consider the following list:

0 | 2 3 4] 6 #— indices
(o | 5 | 23 | &7 | 20 | 30 [60 |

1. When gsort is activated the first time, key = 67,1 =1, andj =6.i is incremented until it becomes 7, because
there is no element greater than the key. j is not decremented, because at position 6, the value that we have is
less than the key. Sincei > j, we interchange the key element (the element at position 0) with the element at
position 6, and call gsort recursively, with the left sublist made of elements from positions 0 to 5, and the right
sublist empty as shown here:

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0106.html (3 of 5) [30.06.2007 10:57:42]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu199%5F1%5F0%2Ejpg

QUICK SORT

0 1 2 3 4 5 6 - indices
Leo 5 [23 T 1w [20 T 30 JTe67 |
! T

Left sublist

2. When gsort is activated the second time on the left sublist as shown, key = 23,1 =1,and | =5.i is
incremented until it reaches 2. Because the element at position 2 is greater than the key, j is decremented to 4
because the value at position 4 is less than the key. Sincei < j, the elements at positions 2 and 4 are
swapped. i is thenincremeneted to 4 and j is decremented to 3. Sincei > j, we interchange the key element
(the element at position 0), with the element at position 3, and call gsort recursively with the left sublist made
of elements from position 0 to 2, and the right sublist made of elements from position 4 to 5, as shown here:

0 I 2 3 4 5 fi a4 indices
o 1 23 | e | 3 | 67 |
1 1 |]

Laxft sulblis Right subli=i

3. By continuing in this fashion, we eventually get the list sorted.

4. The average case-time complexity of the quick sort algorithm can be determined as follows:

We assume that every time this is done, the list gets split into two approximately equal-sized sublists. If the size
of a given list is n, it gets split into two sublists of size approximately n/2. Each of these sublists gets further split
into two sublists of size n/4, and this is continued until the size equals 1. When the quick sort works with a list of
size n, it places the key element (which takes the first element of the list under consideration) in its proper
position in the list. This requires no more than n iterations. After placing the key element in its proper position in
the list of size n, quick sort activates itself twice to work with the left and right sublists, each assumed to be of
size n/2. Therefore T(n) is the time required to sort a list of size n. Since the time required to sort the list of size n
is equal to the sum of the time required to place the key element in its proper position in the list of size n, and
the time required to sort the left and right sublists, each assumed to be of size n/2. T(n) turns out to be:

S T(n) = c*n + 2*T(n/2)

where c is a constant and T(n/2) is the time required to sort the list of size n/2.

5. Similarly, the time required to sort a list of size n/2 is equal to the sum of the time required to place the key
element in its proper position in the list of size n/2 and the time required to sort the left and right sublists each
assumed to be of size n/4. T(n/2) turns out to be:

T(n/2) = c*n/2 + 2*T(n/4)

where T(n/4) is the time required to sort the list of size n/4.
o .. T(n/4) = c*n/4 + 2*T(n/8), and so on. We eventually we get T(1) = 1.

o .. T(n) = c*n + 2(c*n(n/2) + 2T(n/4))

o .. T(n) =c*n + c*n + 4T(n/4)) = 2*c*n + 4T(n/4) = 2*c*n + 4(c*(n/4) + 2T(n/8))
o .. T(n) = 2*c*n + c*n + 8T(n/8) = 3*c*n + 8T(n/8)

o .. T(n) = (log n)*c*n + n T(n/n)= (log n)*c*n + n T(1) = n + n*(log n) *c

o .. T(n) unlog(n)

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0106.html (4 of 5) [30.06.2007 10:57:42]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu199%5F2%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu200%5F1%5F0%2Ejpg

QUICK SORT

6. Therefore, we conclude that the average complexity of the quick sort algorithm is O(nlog n). But the worst-case
time complexity is of the O(n2). The reason for this is, in the worst case, one of the two sublists will always be
empty and the other will be of size (n—1), where n is the size of the original list. Therefore, in the worst case, T
(n) turns out to be

T(n) =c*n + T(n-1)

=c*n +c*(n-1) + T(n-2)

= 2%c*n - c + T(n-2)

= 2%*n —c + ¢*(n-2) + T(n-3)
= 3**n - 3% + T(n-3)

= n*c*n —nte + T(1)
= n'c-nec+l

Therefore T(#) | »? so the order is O(n?).

7. Space complexity: The average-case space complexity is log,n, because the space complexity depends on the

maximum number of activations that can exist. We find that if we assume that every time the list gets split into
approximately two equal-sized lists, the maximum number of activations that will exist simultaneously will be
log,n.

In the worst case, there exist n activations, because the depth of the recursion is n. So the worst-case space
complexity is O(n).

—

| 4mPREV |

—

| NEXT Wi |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0106.html (5 of 5) [30.06.2007 10:57:42]

MERGE SORT

= o

| 4mPREV | | NEXT Wi |

MERGE SORT

I ntroduction

This is another sorting technique having the same average-case and worst-case time complexities, but requiring an
additional list of size n.

The technique that we use is the merging of the two sorted lists of size m and n to form a single sorted list of size (m +
n). Given a list of size n to be sorted, instead of viewing it to be one single list of size n, we start by viewing it to be n
lists each of size 1, and merge the first list with the second list to form a single sorted list of size 2.

Similarly, we merge the third and the fourth lists to form a second single sorted list of size 2, and so on. This completes
one pass. We then consider the first sorted list of size 2 and the second sorted list of size 2, and merge them to form a
single sorted list of size 4.

Similarly, we merge the third and the fourth sorted lists, each of size 2, to form the second single sorted list of size 4,
and so on. This completes the second pass.

In the third pass, we merge these adjacent sorted lists, each of size 4, to form sorted lists of size 8. We continue this
process until we finally obtain a single sorted list of size n as shown next.

23 4 1 g G 3 3 2

[4,23] [1.9] [3,6] [2,5]

[1.4,9.23] [2,3,5,6)

[1.2,3.4,5,6,9,23)

To carry out this task, we require a function to merge the two sorted lists of size m and n to form a single sorted list of
size (m + n). We also require a function to carry out one pass of the list to merge the adjacent sorted lists of the
specified size. This is because we have to carry out repeated passes of the given list.

In the first pass, we merge the adjacent lists of size 1. In the second pass, we merge the adjacent lists of size 2, and so
on. Therefore, we will call this function by varying the size of the lists to be merged.

Program

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0107.html (1 of 4) [30.06.2007 10:57:43]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu202%5F1%5F0%2Ejpg

MERGE SORT

#i ncl ude <stdi o. h>
#define MAX 10
void nmerge(int list[],int listl[],int k,int mint n)

{

int i,j;

i =k;

jo= mtl;

while(i <= m&&j <= n)

{
if(list[i] <= list[j])
{

listl[k] = list[i];
i ++;
kK++;
}
el se
{
listl[K] = list[j];
j
kK++;
}

}

while(i <= m

{

listl[k] = list[i];
i ++;
K++;

}

while (i <= n)

{

listl[Kk] = list[j];
j
K++;
}
}
void nmpass(int list[],int listl[],int |,int n)
{

int i;

i = 0;

while(i <= (n-2*1+1))

{
merge(list,listd,i,(i+l-1),(i+2*1-1));
=0 + 2%1;

}

if((i+l-1) < n)
merge(list,listl,i,(i+l-1),n);

el se
while (i <= n)
{
listl[i] = list[i];
i ++;
}
}

void nsort(int list[], int n)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0107.html (2 of 4) [30.06.2007 10:57:43]

MERGE SORT

{
int I;
int [istl] MAX];
| =1;
while (I <= n)
{
npass(list,listl,|,n);
I = 1*2;
npass(listl,list,l,n);
| = 1*2;
}
}
void readlist(int list[],int n)
{ . .
int i;
printf("Enter the elements\n");
for(i=0;i<n;i++)
scanf ("%d", & ist[i]);
}
void printlist(int list[],int n)
{ . .
int i;
printf("The elements of the list are: \n");
for(i=0;i<n;i++)
printf("%\t",list[i]);
}
voi d main()
{
int [ist[MAX], n;
printf("Enter the nunber of elenents in the list max = 10\ n");
scanf ("%", &n);
readlist(list,n);
printf("The Iist before sorting is:\n");
printlist(list,n);
msort (list,n-1);
printf("The list after sorting is:\n");
printlist(list,n);
}
Example
Input

Enter the number of elements in the list, max = 10
10

Enter the elements

11
2

45
67
33

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0107.html (3 of 4) [30.06.2007 10:57:43]

MERGE SORT

22
11
0

34
23

Output

The list before sorting has the following elements:
11 2 45 67 33 22 11 0 34 23

The list after sorting has the following elements:
0 2 11 11 22 23 33 34 45 67

Explanation

1. The merging of two sublists, the first running from the index 0 to m, and the second running from the index (m +
1) to (n — 1) requires no more than (n—I + 1) iterations.

2. Soif I =1, then no more than n iterations are required, where n is the size of the list to be sorted.

3. Therefore, if n is the size of the list to be sorted, every pass that a merge routine performs requires a time
proportional to O(n), since the number of passes required to be performed is log2n.

4. The time complexity of the algorithm is O(n log,(n)), for both average-case and worst-case. The merge sort
requires an additional list of size n.

- -

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0107.html (4 of 4) [30.06.2007 10:57:43]

HEAPSORT

—

| 4mPREV |

-

| NEXT Wi |

HEAPSORT

I ntroduction

Heapsort is a sorting technique that sorts a contiguous list of length n with O(n log, (n)) comparisons and movement of

entries, even in the worst case. Hence it achieves the worst-case bounds better than those of quick sort, and for the
contiguous list, it is better than merge sort, since it needs only a small and constant amount of space apart from the list

being sorted.

Heapsort proceeds in two phases. First, all the entries in the list are arranged to satisfy the heap property, and then the
top of the heap is removed and another entry is promoted to take its place repeatedly. Therefore, we need a function
that builds an initial heap to arrange all the entries in the list to satisfy the heap property. The function that builds an
initial heap uses a function that adjusts the ith entry in the list, whose entries at 2i and 2i + 1 positions already satisfy
the heap property in such a manner that the entry at the ith position in the list will also satisfy the heap property.

Program

#i ncl ude <stdio. h>
#defi ne MAX 10
void swap(int *x,int *y)
{
int tenp;
tenp = *x;
*X = *y,
*y = tenp;
}

void adjust(int list[],int i, int n)
{
int j,k,flag;
k = 1list[i];
flag = 1;
j =2 * i,
while(j <= n && flag)
{
if(j <n &% list[j] < list[j+1])
j ++;
if(k >=1list[j])
flag =0;
el se
{
list[j/2] =1list[j];
=10 72
}
}
list [j/2] = k;
}

void build_ initial _heap(int list[], int n)

{
int i;
for(i=(n/2);i>=0;i-)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0108.html (1 of 4) [30.06.2007 10:57:44]

HEAPSORT

adjust (list,i,n-1);

}
voi d heapsort(int list[],int n)
{ . .
int i;
build initial heap(list,n);
for(i=(n-2); i>=0;i-)
{
swap(& ist[O0],&ist[i+1]);
adjust(list,0,i);
}
}
void readlist(int list[],int n)
{ . .
Int 1;
printf("Enter the elenents\n");
for(i=0;i<n;i++)
scanf("%", & ist[i]);
}
void printlist(int list[],int n)
{ . .
int i;
printf("The elenents of the list are: \n");
for(i=0;i<n;i++)
printf("%\t",list[i]);
}
voi d main()
{
int list[] MAX], n;
printf("Enter the nunber of elenents in the list max = 10\ n");
scanf ("%", &n);
readlist(list,n);
printf("The list before sorting is:\n");
printlist(list,n);
heapsort (list,n);
printf("The list after sorting is:\n");
printlist(list,n);
}
Example
Input

Enter the number of elements in the list, max = 10
10

Enter the elements

56
1

34
42

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0108.html (2 of 4) [30.06.2007 10:57:44]

HEAPSORT

90
66
87
12
21
11

Output
The list before sorting is:

The elements of the list are:
56 1 34 42 90 66 87 12 21 11

The list after sorting is:

The elements of the list are:
1 11 12 21 34 42 56 66 87 90

Explanation

In each pass of the whi | e loop in the function adj ust (x, i, n), the positioni is doubled, so the number of passes
cannot exceed log(n/i). Therefore, the computation time of adjust is O(log n/i).

The function bui | d_i ni ti al _heap calls the adjust procedure n/2 for values ranging from n1/2 to 0. Hence the total
number of iterations will be:

log (n) + log(»/2) + ...+log(n/ni2)
#f2
2 log (n/i)
i=1
=n/2log(n) - log (1#/2)

This turns out to be some constant time n. So the computation time of build_initial _heap is O(n). The heapsort function
calls the adjust (x,1, i) (h—1) times. So the total number of iterations made in the heapsort will be

log (i/1)
= n=1
log (1)
i=1

= log(1) + log(2)+...+log(n-1)

which turns out to be approximately n log(n). So the computing time of heapsort is O(n log(n)) + O(n). The only
additional space needed by heapsort is the space for one record to carry out the exchange.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0108.html (3 of 4) [30.06.2007 10:57:44]

HEAPSORT

i = - =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0108.html (4 of 4) [30.06.2007 10:57:44]

SEARCHING TECHNIQUES: LINEAR OR SEQUENTIAL SEARCH

= r

| 4mPREV | | NEXT Wi |

SEARCHING TECHNIQUES: LINEAR OR SEQUENTIAL SEARCH

I ntroduction

There are many applications requiring a search for a particular element. Searching refers to finding out whether a
particular element is present in the list. The method that we use for this depends on how the elements of the list are
organized. If the list is an unordered list, then we use linear or sequential search, whereas if the list is an ordered list,
then we use binary search.

The search proceeds by sequentially comparing the key with elements in the list, and continues until either we find a
match or the end of the list is encountered. If we find a match, the search terminates successfully by returning the
index of the element in the list which has matched. If the end of the list is encountered without a match, the search
terminates unsuccessfully.

Program

#i ncl ude <stdi o. h>
#defi ne MAX 10
void Isearch(int list[],int n,int elenent)
{
int i, flag = 0;
for(i=0;i<n;i++)
if(list[i] == elenment)
{
printf(" The el ement whose value is %l is present at position %
inlist\n",
el enent,i);
flag =1;
br eak;
}
if(flag == 0)
printf("The el ement whose value is % is not present in the

[ist\n",
el enent) ;
}
void readlist(int [ist[],int n)
{ . .
int i;
printf("Enter the elenents\n");
for(i=0;i<n;i++)
scanf("%", & ist[i]);
}
void printlist(int list[],int n)
{ . .
int i;
printf("The elenments of the list are: \n");
for(i=0;i<n;i++)
printf("%\t",list[i]);
}

voi d main()

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0109.html (1 of 3) [30.06.2007 10:57:44]

SEARCHING TECHNIQUES: LINEAR OR SEQUENTIAL SEARCH

{
int Iist[MAX], n, elenent;
printf("Enter the nunber of elenments in the list max = 10\ n");
scanf ("%", &n);
readlist(list,n);
printf("\nThe list before sorting is:\n");
printlist(list,n);
printf("\nEnter the elenent to be searched\n");
scanf ("%", &el enment) ;
| search(list,n,elenment);
}
Example
I nput

Enter the number of elements in the list, max = 10
10

Enter the elements

23
1
45
67
90
100
432
15
77
55

Output
The list before sorting is:

The elements of the list are:
23 1 45 67 90 100 432 15 77 55

Enter the element to be searched
100

The element whose value is 100 is present at position 5 in list
Input

Enter the number of elements in the list max = 10
10

Enter the elements

23
1

45
67
90

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥20(2004)/7267/DDU0109.html (2 of 3) [30.06.2007 10:57:44]

SEARCHING TECHNIQUES: LINEAR OR SEQUENTIAL SEARCH

101
23
56
44
22

Output
The list before sorting is:

The elements of the list are:
23 1 45 67 90 101 23 56 44 22

Enter the element to be searched
100

The element whose value is 100 is not present in the list

Explanation
1. In the best case, the search procedure terminates after one comparison only, whereas in the worst case, it will
do n comparisons.

2. On average, it will do approximately n/2 comparisons, since the search time is proportional to the number of
comparisons required to be performed.

3. The linear search requires an average time proportional to O(n) to search one element. Therefore to search n
elements, it requires a time proportional to O(n2).

4. We conclude that this searching technique is preferable when the value of n is small. The reason for this is the
difference between n and n? is small for smaller values of n.

-

| MEXT WP |

-

| 4mPREV |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0109.html (3 of 3) [30.06.2007 10:57:44]

BINARY SEARCH

| NEXT Wi |

—

| 4mPREV |

BINARY SEARCH

I ntroduction

The prerequisite for using binary search is that the list must be a sorted one. We compare the element to be searched
with the element placed approximately in the middle of the list.

If a match is found, the search terminates successfully. Otherwise, we continue the search for the key in a similar
manner either in the upper half or the lower half. If the elements of the list are arranged in ascending order, and the key
is less than the element in the middle of the list, the search is continued in the lower half. If the elements of the list are
arranged in descending order, and the key is greater than the element in the middle of the list, the search is continued
in the upper half of the list. The procedure for the binary search is given in the following program.

Program

#i ncl ude <stdio. h>
#defi ne MAX 10

void bsearch(int list[],int n,int elenent)

{

int I,um flag = 0;

| = 0;

u = n-1;

while(l <= u)

{
m= (Il+u)/2;
if(list[mM == elenent)
{

printf(" The el ement whose value is %l is present at
position % in list\n",

el ement, m;
flag =1;
br eak;
}
el se
if(list[mM < elenent)
I = m1;
el se
u=m1il;
}
if(flag == 0)
printf("The el ement whose value is % is not present in the list\n",
el enent) ;

}

void readlist(int list[],int n)
{ . .
int i;
printf("Enter the elenents\n");
for(i=0;i<n;i++)
scanf("%", & ist[i]);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0110.html (1 of 3) [30.06.2007 10:57:45]

BINARY SEARCH

}
void printlist(int list[],int n)
{
int i;
printf("The elenments of the list are: \n");
for(i=0;i<n;i++)
printf("%\t", list[i]);
}
voi d main()
{
int list[MAX], n, elenent;
printf("Enter the nunber of elenents in the list max = 10\ n");
scanf ("o%d", &n) ;
readlist(list,n);
printf("\nThe list before sorting is:\n");
printlist(list,n);
printf("\nEnter the elenent to be searched\n");
scanf (" %", &el enent) ;
bsearch(list,n, el ement);
}
Example
Input

Enter the number of elements in the list, max = 10
10

Enter the elements

34
2

1
789
99
45
66
33
22
11

Output

The elements of the list before sorting are:

34 2 1 789 99 45 66 33 22 11
1 2 3 4 5 6 7 8 9 10

Enter the element to be searched
99

The element whose value is 99 is present at position 5 in the list

I nput

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0110.html (2 of 3) [30.06.2007 10:57:45]

BINARY SEARCH

Enter the number of elements in the list max = 10
10

Enter the elements

54
89
09
43
66
88
77
11
22
33

Output

The elements of the list before sorting are:
54 89 9 43 66 88 77 11 22 33

Enter the element to be searched
100

The element whose value is 100 is not present in the list.

In the binary search, the number of comparisons required to search one element in the list is no more than log2n,
where n is the size of the list. Therefore, the binary search algorithm has a time complexity of O(n *(log2n.).)

= o

| 4mPREV | | NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0110.html (3 of 3) [30.06.2007 10:57:45]

HASHING

= r

| 4mPREV | | NEXT Wi |

HASHING

I ntroduction

A data object called a symbol table is required to be defined and implemented in many applications, such as compiler/
assembler writing. A symbol table is nothing but a set of pairs (hame, value), where value represents a collection of
attributes associated with the name, and the collection of attributes depends on the program element identified by the
name.

For example, if a name x is used to identify an array in a program, then the attributes associated with x are the number
of dimensions, lower bound and upper bound of each dimension, and element type. Therefore, a symbol table can be
thought of as a linear list of pairs (name, value), and we can use a list data object for realizing a symbol table.

A symbol table is referred to or accessed frequently for adding a name, or for storing or retrieving the attributes of a
name.

Therefore, accessing efficiency is a prime concern when designing a symbol table. The most common method of
implementing a symbol table is to use a hash table.

Hashing is a method of directly computing the index of the table by using a suitable mathematical function called a
hash function.

Note The hash function operates on the name to be stored in the symbol table, or whose attributes are to be
retrieved from the symbol table.

If h is a hash function and x is a name, then h(x) gives the index of the table where x, along with its attributes, can be
stored. If x is already stored in the table, then h(x) gives the index of the table where it is stored, in order to retrieve the
attributes of x from the table.

There are various methods of defining a hash function. One is the division method. In this method, we take the sum of
the values of the characters, divide it by the size of the table, and take the remainder. This gives us an integer value
lying in the range of 0 to (n—1), if the size of the table is n.

Another method is the mid-square method. In this method, the identifier is first squared and then the appropriate
number of bits from the middle of the square is used as the hash value. Since the middle bits of the square usually
depend on all the characters in the identifier, it is expected that different identifiers will result in different values. The
number of middle bits that we select depends on the table size. Therefore, if r is the number of middle bits that we are
using to form the hash value, then the table size will be 2. So when we use this method, the table size is required to be
a power of 2.

A third method is folding, in which the identifier is partitioned into several parts, all but the last part being of the same
length. These parts are then added together to obtain the hash value.

To store the name or to add attributes of the name, we compute the hash value of the name, and place the name or
attributes, as the case may be, at that place in the table whose index is the hash value of the name.

To retrieve the attribute values of the name kept in the symbol table, we apply the hash function of the name to that
index of the table where we get the attributes of the name. So we find that no comparisons are required to be done; the
time required for the retrieval is independent of the table size. The retrieval is possible in a constant amount of time,
which will be the time taken for computing the hash function.

Therefore a hash table seems to be the best for realization of the symbol table, but there is one problem associated

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0111.html (1 of 3) [30.06.2007 10:57:45]

HASHING

with the hashing, and that is collision.

Hash collision occurs when the two identifiers are mapped into the same hash value. This happens because a hash
function defines a mapping from a set of valid identifiers to the set of those integers that are used as indices of the
table.

Therefore we see that the domain of the mapping defined by the hash function is much larger than the range of the
mapping, and hence the mapping is of a many-to-one nature. Therefore, when we implement a hash table, a suitable
collision-handling mechanism is to be provided, which will be activated when there is a collision.

Collision handling involves finding an alternative location for one of the two colliding symbols. For example, if x and y
are the different identifiers and h(x = h(y), x and y are the colliding symbols. If x is encountered before y, then the ith
entry of the table will be used for accommodating the symbol x, but later on when y comes, there is a hash collision.
Therefore we have to find a suitable alternative location either for x or y. This means we can either accommodate y in
that location, or we can move x to that location and place y in the ith location of the table.

Various methods are available to obtain an alternative location to handle the collision. They differ from each other in
the way in which a search is made for an alternative location. The following are commonly used collision-handling
techniques:

Linear Probingor Linear Open Addressing

In this method, if for an identifier x, h(x) = i, and if the ith location is already occupied, we search for a location close to
the ith location by doing a linear search, starting from the (i+1)t" location to accommodate x. This means we start from

the (i+1)th location and do the linear search until we get an empty location; once we get an empty location we
accommodate x there.

Rehashing

In rehashing we find an alternative empty location by modifying the hash function and applying the modified hash
function to the colliding symbol. For example, if x is the symbol and h(x) = i, and if the ith location is already occupied,
then we modify the hash function h to hy, and find out hy(x), if hy(x) = j. If the jth location is empty, then we

accommodate x in the jth location. Otherwise, we once again modify h; to some h, and repeat the process until the

collision is handled. Once the collision is handled, we revert to the original hash function before considering the next
symbol.

Overflow chaining

Overflow chaining is a method of implementing a hash table in which the collisions are handled automatically. In this
method, we use two tables: a symbol table to accommodate identifiers and their attributes, and a hash table, which is
an array of pointers pointing to symbol table entries. Each symbol table entry is made of three fields: the first for
holding the identifier, the second for holding the attributes, and the third for holding the link or pointer that can be made
to point to any symbol table entry. The insertions into the symbol table are done as follows:

If X is the symbol to be inserted, it will be added to the next available entry of the symbol table. The hash value of x is
then computed. If h(x) = i, then the ith hash table pointer is made to point to the symbol table entry in which x is stored,
if the ith hash table pointer does not point to any symbol table entry. If the ith hash table pointer is already pointing to
some symbol table entry, then the link field of the symbol table entry containing x is made to point to that symbol table
entry to which the ith hash table pointer is pointing to, and the ith hash table pointer is made to point to the symbol entry
containing x. This is equivalent to building a linked list on the ith index of the hash table. The retrieval of attributes is
done as follows:

If X is a symbol, then we obtain h(x), use this value as the index of the hash table, and traverse the list built on this
index to get that entry which contains x. A typical hash table implemented using this technique is shown here.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0111.html (2 of 3) [30.06.2007 10:57:45]

HASHING

The symbols to b stored are x1,¥1,21,X5,Y2,Z5. The hash function that we use is h(symbol) = (value of first letter of the
symbol) mod n, where n is the size of table.

if h(xq) =i
h(yy) =]
h(zq) =k
then
h(xp) =i
h(ys) =]
h(z,) =k

Therefore, the contents of the symbol table will be the one shown in Figure 18.6.

Nam=a Altnibutes Link

kK & W MULL L
Y, MULL o
2z MULL 4
i| e g % .
Sm— Y. *
Z. L

=

Hash table Symixal lable
Figure 18.6: Hash table implementation using overflow chaining for collision handling.

- -

[4w FREV | [NexTwp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0111.html (3 of 3) [30.06.2007 10:57:45]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig18%2D6%5F0%2Ejpg

HASHING FUNCTIONS

= r

| 4mPREV | | NEXT Wi |

HASHING FUNCTIONS

Some of the methods of defining a hash function are discussed in the following paragraphs.

Modular Arithmetic

In modular arithmetic, first the key is converted to an integer, then it is divided by the size of the index range, and the
remainder is taken to be the hash value. The spread achieved depends very much on the modulus. If the modulus is
the power of small integers such as 2 or 10, then many keys tend to map into the same index, while other indices
remain unused. The best choice for the modulus is often, but not always, a prime number, which usually has the effect
of spreading the keys quite uniformly.

Truncation

Truncation ignores part of the key, and uses the remainder directly as the hash value (using numeric code to represent
non-numeric field data). If the keys, for example, are eight-digit numbers and the hash table has 1000 entries, then the
first, second, and fifth digits from the right side might make the hash value. So, 62538194 maps to 394. It is a fast
method, but it often fails to distribute keys evenly.

Folding

In folding, the identifier is partitioned into several parts, all but the last part being of the same length. These parts are
then added together to obtain the hash value. For example, an eight-digit integer can be divided into groups of three,
three, and two digits. The groups are then added together, and truncated, if necessary, to be in the proper range of
indices. So 62538149 maps to 625 + 381 + 94 = 1100, truncated to 100. Since all information in the key can affect the
value of the function, folding often achieves a better spread of indices than truncation.

Mid-squar e method

In this method, the identifier is squared (using numeric code to represent non- numeric field data), and then the
appropriate number of bits from the middle of the square are used to get the hash value. Since the middle bits of the
square usually depend on all the characters in the identifier, it is expected that different identifiers will result in different
values. The number of middle bits that we select depends on table size. Therefore, if r is the number of middle bits
used to form the hash value, then the table size will be 2'. So when we use the mid- square method, the table size
should be a power of 2.

Program

A complete C program for implementation of a hash table is given here:

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>
#define SIZE 50
#defi ne MAX 10
typedef struct node

{

char synbol [MAX] ;
i nt val ue;

struct node *next;
} entry;
typedef entry *entry ptr;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0112.html (1 of 5) [30.06.2007 10:57:46]

HASHING FUNCTIONS

i nt hash_val ue(char * nane)

{
i nt sum=O0;
while(*name !'= "\0")
{
sum += *nane;
nane++;
}
return(sum % Sl ZE)
}
void initialize(entry_ptr table[])
{
int i=0;

for(i=0; i<SIZE;, i++)
table[i] = NULL;

}
void insert(entry_ptr table[], char *nanme, int val)
{
int h, flag = 1;
entry_ptr tenp;
h = hash_val ue(nan®e);
temp = tabl e[h];
while(tenp '= NULL && flag)
{

i f(strcnp(tenp->synbol,nanme) == 0)
{
printf("The synbol % is already present in the
tabl e\ n", nane) ;

flag =0;;
}
t enp=t enp- >next ;
}
i f(flag)
{

temp = (entry_ptr) malloc(sizeof (entry));
if(temp == NULL)

{
printf("ERRRR \n");
exit(0);
}
strcpy(tenp->synbol , nane) ;
t emp- >val ue = val
tenp->next = table[h];
t abl e[h] =t enp;
}
}
void retrieve(entry ptr table[], char *nane)
{
int h,flag =1;
entry_ptr tenp;
h = hash_val ue(nane);
temp = tabl e[h];
while(tenp !'= NULL && fl ag)
{

i f(strcnp(tenp->synbol, nane) == 0)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0112.html (2 of 5) [30.06.2007 10:57:46]

HASHING FUNCTIONS

printf("The synbol % is present in the table and having value =
%\ n",
nane, t enp- >val ue) ;
flag =0;
}
t enp=t enp- >next;
}
if(flag == 1)
printf("The synmbol % is not present in the table
\'n", nane) ;
}
voi d mai n()
{
entry ptr table[SIZE];
char nane[MAX] ;
int val ue, n;
initialize(table);

do
{
do

{
printf("Enter the synbol and value pair to be inserted\n");
scanf ("% %", nane, &val ue);
i nsert(tabl e, nane, val ue) ;
printf("Enter 1 to continue\n");
scanf ("%", &n) ;

}

while(n == 1);

do

{

printf("Enter the symbol whose value is to be retrieved\in");
scanf ("% ", nane) ;
retrieve(table, nane);
printf("Enter 1 to continue\n");
scanf (" %", &n) ;
Iwhile(n == 1);
printf("Eneter 1 to continue\n");
scanf ("%d", &n);
Iwhile(n == 1);
}

Example

Input and Output

Enter the symbol and value pair to be inserted
ogkl10

Enter 1 to continue
1

Enter the symbol and value pair to be inserted
psd20

Enter 1 to continue

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0112.html (3 of 5) [30.06.2007 10:57:46]

HASHING FUNCTIONS

0

Enter the symbol whose value is to be retrieved
ogk

The symbol ogk is present in the table with the value = 10

Enter 1 to continue
1

Enter the symbol whose value is to be retrieved
psd

The symbol psd is present in the table with the value = 20

Enter 1 to continue
1

Enter the symbol whose value is to be retrieved
asg

The symbol asg is not present in the table

Enter 1 to continue
0

Eneter 1 to continue
1

Enter the symbol and value pair to be inserted
asg30

Enter 1 to continue
0

Enter the symbol whose value is to be retrieved
asg

The symbol asg is present in the table with the value = 30

Enter 1 to continue
0

Eneter 1 to continue
0

Exercises

1. Consider an unsorted array A[n] of integer elements that may have many elements present more than once. It is
required to store only the distinct elements of the array A in a separate array B. The information about the
number of times each element is replicated is maintained in a third array C. For example, C[0] would indicate the
number of times the element B[0] occurs in array A. Write a C program to generate the arrays B and C, given an

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0112.html (4 of 5) [30.06.2007 10:57:46]

HASHING FUNCTIONS

array A.

2. Write a C program that finds the largest and the second largest elements in an unsorted array A. The program
should make just a single scan of the array.

3. Sort the following list by applying the bubble sort method.

10
01
11
100
23
21
11
99
78

4. Sort the following list by applying the heapsort method.

44
23
67
88
22
43
90
04

5. Consider the following list whose elements are arranged in ascending order. Assume that a binary search
technique is used. Determine the number of probes required to find each entry in the list.

11
22
43
56
67
71
89

— —

| 4mPREY | | NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0112.html (5 of 5) [30.06.2007 10:57:46]

Chapter 19: Stacks and Queues

= =

[@ rPREV | | NExT Wb |

Chapter 19: Stacks and Queues

THE CONCEPT OF STACKSAND QUEUES

There are many applications requiring the use of the data structures stacks and queues. The most striking use of a
data structure stack is the runtime stack that a programming language uses to implement a function call and return.
Similarly, one of the important uses of a data structure queue is the process queue maintained by the scheduler. Both
these data structures are modified versions of the list data structure, so they can be implemented using arrays or linked
representation.

— g -

| 4m PREV | | NEXT & |

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0113.html [30.06.2007 10:57:46]

STACKS

[@ rPREV | | NExT Wb |
STACKS

A stack is simply a list of elements with insertions and deletions permitted at one end—called the stack top. That
means that it is possible to remove elements from a stack in reverse order from the insertion of elements into the stack.
Thus, a stack data structure exhibits the LIFO (last in first out) property. Push and pop are the operations that are
provided for insertion of an element into the stack and the removal of an element from the stack, respectively. Shown
in Figure 19.1 are the effects of push and pop operations on the stack.

. =i
B C
—
" A A A, A]
Ermplty Push (&) Push (B) Pop) Push (C) Pop ()

Stack

= [dicales the SOk 10D position
Figure 19.1: Stack operations.

Since a stack is basically a list, it can be implemented by using an array or by using a linked representation.

Array Implementation of a Stack

When an array is used to implement a stack, the push and pop operations are realized by using the operations
available on an array. The limitation of an array implementation is that the stack cannot grow and shrink dynamically as
per the requirement.

Program

A complete C program to implement a stack using an array appears here:

#i ncl ude <stdi o. h>
#define MAX 10 /* The maxi num si ze of the stack */
#i ncl ude <stdlib. h>

voi d push(int stack[], int *top, int value)

{
if(*top < MAX)

{
*top = *top + 1;
stack[*top] = val ue;

}

el se

{

printf("The stack is full can not push a value\n");
exit(0);

}

voi d pop(int stack[], int *top, int * val ue)

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%208& %20Data%20Structures?620(2004)/ 7267/DDU0114.html (1 of 7) [30.06.2007 10:57:47]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig19%2D1%5F0%2Ejpg

STACKS

{
if(*top >= 0)
{
*val ue = stack[*top];
*top = *top - 1;
}
el se
{
printf("The stack is enpty can not pop a value\n");
exit(0);
}
}
voi d nain()
{
i nt stack[MAX];
int top = -1;
int n,val ue;
do
{
do
{
printf("Enter the elenent to be pushed\n");
scanf ("%d", &val ue);
push(st ack, & op, val ue);
printf("Enter 1 to continue\n");
scanf (" %", &n) ;
} while(n == 1);
printf("Enter 1 to pop an el enent\n");
scanf ("%", &) ;
while(n == 1)
{
pop(stack, & op, &val ue) ;
printf("The val ue poped is %\ n", val ue);
printf("Enter 1 to pop an el ement\n");
scanf (" %", &n) ;
}
printf("Enter 1 to continue\n");
scanf ("%", &n);
} while(n == 1);
}
Example

Enter the element to be pushed
10

Enter 1 to continue
1

Enter the element to be pushed
20

Enter 1 to continue

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%208& %20Data%20Structures?620(2004)/ 7267/DDU0114.html (2 of 7) [30.06.2007 10:57:47]

STACKS
0

Enter 1 to pop an element
1

The value popped is 20
Enter 1 to pop an element

0

Enter 1 to continue
1

Enter the element to be pushed
40

Enter 1 to continue
1

Enter the element to be pushed
50

Enter 1 to continue
0

Enter 1 to pop an element
1

The value popped is 50

Enter 1 to pop an element
1

The value popped is 40 Enter 1 to pop an element
1

The value popped is 10 Enter 1 to pop an element
0

Enter 1 to continue
0

Implementation of a Stack Using Linked Representation

Initially the list is empty, so the top pointer is NULL. The push function takes a pointer to an existing list as the first
parameter and a data value to be pushed as the second parameter, creates a new node by using the data value, and
adds it to the top of the existing list. A pop function takes a pointer to an existing list as the first parameter, and a
pointer to a data object in which the popped value is to be returned as a second parameter. Thus it retrieves the value
of the node pointed to by the top pointer, takes the top point to the next node, and destroys the node that was pointed
to by the top.

If this strategy is used for creating a stack with the previously used four data values: 10, 20, 30, and 40, then the stack

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0114.html (3 of 7) [30.06.2007 10:57:47)

STACKS

is created as shown in Figure 19.2.

top ——= NULL

Initeally

10 —T*NULL

fop

Alter first it@ralion

| 200 —4 10 | S MLUILL

el

Top
Aftar second iteration

| 30 | J—p| 20 4 10 ——pNULL

top
After thind Reration

40 __,,.! 30 | 1 200 Ll 10 1 gpNuLL

top

Altar las! iteration
Figure 19.2: Linked stack.

Program

A complete C program for implementation of a stack using the linked list is given here:

1 nclude <stdio. h>
include <stdlib. h>
struct node

{
i nt data;
struct node *Ilink;
b
struct node *push(struct node *p, int value)
{

struct node *tenp;

tenp=(struct node *)nuall oc(sizeof (struct node));
/* creates new node
usi ng data val ue
passed as paraneter */

i f(tenp==NULL)

{
printf("No Menory available Error\n");
exit(0);

}

tenp->data = val ue;

temp->link = p;

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%20& %20Data%20Structures¥620(2004)/ 7267/DDU0114.html (4 of 7) [30.06.2007 10:57:47]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig19%2D2%5F0%2Ejpg

STACKS

p = tenp;
return(p);

}

struct node *pop(struct node *p, int *val ue)
{
struct node *tenp;
i f(p==NULL)
{
printf(" The stack is enpty can not pop Error\n");
exit(0);
}
*val ue = p->data;
temp = p;
p = p->link;
free(tenp);
return(p);

voi d nain()

struct node *top = NULL;
i nt n,val ue;
do

{
do

{
printf("Enter the elenent to be pushed\n");
scanf (" %", &al ue) ;
top = push(top, val ue);
printf("Enter 1 to continue\n");
scanf (" %", &) ;
} while(n == 1);

printf("Enter 1 to pop an el enment\n");
scanf ("%", &n);
while(n == 1)
{
top = pop(top, &al ue);
printf("The val ue poped is %\ n", val ue);
printf("Enter 1 to pop an el enment\n");
scanf (" %", &n) ;

}
printf("Enter 1 to continue\n");
scanf ("%", &n) ;
} while(n == 1);
}

Example

Input and Output

Enter the element to be pushed
10

Enter 1 to continue

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0114.html (5 of 7) [30.06.2007 10:57:47)

STACKS

Enter the element to be pushed
20

Enter 1 to continue
0

Enter 1 to pop an element
1

The value popped is 20
Enter 1 to pop an element

1

The value poped is 10
Enter 1 to pop an element

0

Enter 1 to continue
1

Enter the element to be pushed
30

Enter 1 to continue
1

Enter the element to be pushed
40

Enter 1 to continue
0

Enter 1 to pop an element
1

The value popped is 40
Enter 1 to pop an element

0

Enter 1 to continue
1

Enter the element to be pushed
50

Enter 1 to continue
0

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0114.html (6 of 7) [30.06.2007 10:57:47)

STACKS

Enter 1 to pop an element
1

The value popped is 50
Enter 1 to pop an element

1

The value popped is 30
Enter 1 to pop an element

0

Enter 1 to continue

0
[@ rPREV | | NExT Wb |

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%208& %20Data%20Structures?620(2004)/ 7267/DDU0114.htm (7 of 7) [30.06.2007 10:57:47]

APPLICATIONS OF STACKS

= r

| 4mPREV | | NEXT Wi |

APPLICATIONSOF STACKS

I ntroduction

One of the applications of the stack is in expression evaluation. A complex assignment statement such as a = b + c*d/
e—f may be interpreted in many different ways. Therefore, to give a unique meaning, the precedence and associativity
rules are used. But still it is difficult to evaluate an expression by computer in its present form, called the infix notation.
In infix notation, the binary operator comes in between the operands. A unary operator comes before the operand. To
get it evaluated, it is first converted to the postfix form, where the operator comes after the operands. For example, the
postfix form for the expression a*(b—c)/d is abc—*d/. A good thing about postfix expressions is that they do not require
any precedence rules or parentheses for unique definition. So, evaluation of a postfix expression is possible using a
stack-based algorithm.

Program

Convert an infix expression to prefix form.
#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <ctype. h>

#define N 80

typedef enum {FALSE, TRUE} bool;

#i ncl ude "stack.h"
#i ncl ude "queue. h"

#defi ne NOPS 7

char operators [] = "()N *+-";
int priorities[] =1{4,4,3,2,2,1,1};
char associates[] =" RLLLL";
char t[N; char *tptr =t; // this is where prefix will be saved.
int getlndex(char op) {

/*

* returns index of op in operators.

*/

int i;

for(i=0; i<NOPS;, ++i)

if(operators[i] == op)
return i;

return -1;
}
int getPriority(char op) {

/*

* returns priority of op.

*/

return priorities[getlndex(op)];
}

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0115.html (1 of 5) [30.06.2007 10:57:48]

APPLICATIONS OF STACKS

char getAssociativity(char op) {

/*
* returns associativity of op
*/
return associ ates[getlndex(op)];
}
voi d processQp(char op, queue *qg, stack *s) {
/*
* performs processing of op.
*/
switch(op) {
case ')’
printf("\t S pushing)...\n");
sPush(s, op);
br eak;
case '(':
whi I e(!qEmpty(q)) {
*tptr++ = qPop(Qq);
printf("\tQ popping %...\n", *(tptr-1));
}
while(!'sEnpty(s)) {
char popop = sPop(s);
printf("\tS popping %...\n", popop);
if(popop ==")")
br eak;
*tptr++ = popop;
}
br eak;
default: {
int priop; [l priority of op.
char topop; /1 operator on stack top
int pritop; [l priority of topop
char asstop; // associativity of topop
while(!'sEmpty(s)) {
priop = getPriority(op);
topop = sTop(s);
pritop = getPriority(topop);
asstop = getAssociativity(topop);
if(pritop < priop || (pritop == priop & asstop == 'L")
|| topop ==")") [/ |MP.
br eak;
while(!qEmty(a)) {
“tptr++ = qPop(q);
printf("\tQ popping %...\n", *(tptr-1));
}
*tptr++ = sPop(s);
printf("\tS popping %...\n", *(tptr-1));
}
printf("\tS pushing %...\n", op);
sPush(s, op);
br eak;
}
}

}
bool isop(char op) {

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0115.html (2 of 5) [30.06.2007 10:57:48]

APPLICATIONS OF STACKS

/*

* is op an operator?

*/

return (getlndex(op) !'=-1);

}

char *in2pre(char *str) { /*

* returns valid infix expr in str to prefix.

*/

char *sptr;

queue g = {NULL};

stack s = NULL;

char *res = (char *)malloc(Ntsizeof(char));

char *resptr = res;

tptr = t;

for(sptr=str+strlen(str)-1; sptrl=str-1; -sptr) {
printf("processing % tptr-t=%l...\n", *sptr, tptr-t);
if(isalpha(*sptr)) // if operand.

gqPush(&g, *sptr);

else if(isop(*sptr)) /1 if valid operator.
processOp(*sptr, &q, &s);

el se if(isspace(*sptr)) /1 if whitespace.

el se {

fprintf(stderr, "ERROR invalid char %.\n", *sptr);

return X
}
}
while(!'qEmpty(&q)) {
*tptr++ = qPop(&q);
printf("\tQ popping %...\n", *(tptr-1));
}
while(!'sEmpty(&s)) {
*tptr++ = sPop(&s);
printf("\tS popping %...\n", *(tptr-1));
}
*tptr = 0;
printf("t=%.\n", t);
for(-tptr; tptr!=t-1; -tptr) {
*resptr++ = *tptr;

}

*resptr = 0;

return res;

}

int main() {
char s[N;

puts("enter infix freespaces max 80.");
gets(s);
whil e(*s) {

puts(in2pre(s));

gets(s);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0115.html (3 of 5) [30.06.2007 10:57:48]

APPLICATIONS OF STACKS

return O;

}

Explanation

1. In aninfix expression, a binary operator separates its operands (a unary operator precedes its operand). In a
postfix expression, the operands of an operator precede the operator. In a prefix expression, the operator
precedes its operands. Like postfix, a prefix expression is parenthesis-free, that is, any infix expression can be
unambiguously written in its prefix equivalent without the need for parentheses.

2. To convert an infix expression to reverse-prefix, it is scanned from right to left. A queue of operands is
maintained noting that the order of operands in infix and prefix remains the same. Thus, while scanning the infix
expression, whenever an operand is encountered, it is pushed in a queue. If the scanned element is a right
parenthesis ()), it is pushed in a stack of operators. If the scanned element is a left parenthesis (‘(), the queue
of operands is emptied to the prefix output, followed by the popping of all the operators up to, but excluding, a
right parenthesis in the operator stack.

3. If the scanned element is an arbitrary operator o, then the stack of operators is checked for operators with a
greater priority then o. Such operators are popped and written to the prefix output after emptying the operand
gueue. The operator o is finally pushed to the stack.

4. When the scanning of the infix expression is complete, first the operand queue, and then the operator stack, are

emptied to the prefix output. Any whitespace in the infix input is ignored. Thus the prefix output can be reversed
to get the required prefix expression of the infix input.

Example

If the infix expression is a*b + c/d, then different snapshots of the algorithm, while scanning the expression from right to
left, are shown in Table 19.1.

Table 19.1: Scanning the infex expression a*b+c/d from right to left

STEP REMAINING SCANNED QUEUE OF STACK OF PREFIX

EXPRESSION ELEMENT OPERANDS OPERATORS OUTPUT

|0 | a*bc/d | nil | empty | empty | nil

| | a*b+c/ | d | d | empty | nil

| | atb+c |/ | d |/ | nil

|3 | atb+ K |dc |/ | nil

| 4 | a*b |+ | empty |+ | de/

5= [[E e

DEE § [B e

| | nil |a |ba |+ | de/

| 8 | il | il | empty | empty | dc/ba*+

The final prefix output that we get is dc/ba*+ whose reverse is +*ab/cd, which is the prefix equivalent of the input infix
expression a*b+c*d. Note that all the operands are simply pushed to the queue in steps 1, 3, 5, and 7. In step 2, the
operator / is pushed to the empty stack of operators.

In step 4, the operator + is checked against the elements in the stack. Since / (division) has higher priority than +
(addition), the queue is emptied to the prefix output (thus we get ‘dc’ as the output) and then the operator / is written
(thus we get ‘dc/’ as the output). The operator + is then pushed to the stack. In step 6, the operator * is checked
against the stack elements. Since * (multiplication) has a higher priority than + (addition), * is pushed to the stack. Step

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0115.html (4 of 5) [30.06.2007 10:57:48]

APPLICATIONS OF STACKS

8 signifies that all of the infix expression is scanned. Thus, the queue of operands is emptied to the prefix output (to get
‘dc/ba’), followed by the emptying of the stack of operators (to get ‘dc/ba*+’).

Pointsto remember

1. A prefix expression is parenthesis-free.

2. To convert an infix expression to the postfix equivalent, it is scanned from right to left. The prefix expression we
get is the reverse of the required prefix equivalent.

3. Conversion of infix to prefix requires a queue of operands and a stack, as in the conversion of an infix to postfix.
4. The order of operands in a prefix expression is the same as that in its infix equivalent.

5. If the scanned operator 01 and the operator 02 at the stack top have the same priority, then the associativity of
02 is checked. If 02 is right-associative, it is popped from the stack.

-

| 4mPREV |

-

| MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0115.html (5 of 5) [30.06.2007 10:57:48]

QUEUES

[@ rPREV | [NexTap]
QUEUES

I ntroduction

A queue is also a list of elements with insertions permitted at one end—called the rear, and deletions permitted from
the other end—called the front. This means that the removal of elements from a queue is possible in the same order in
which the insertion of elements is made into the queue. Thus, a queue data structure exhibits the FIFO (first in first out)
property. i nsert and del et e are the operations that are provided for insertion of elements into the queue and the
removal of elements from the queue, respectively. Shown in Figure 19.3 are the effects of i nsert and del et e

operations on the queue.

+

front = rear

Empty queue

b4

front rear
A inserted

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0116.html (1 of 2) [30.06.2007 10:57:48]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu242%5F1%5F0%2Ejpg

QUEUES

A B
front rear
B inserted
B

1

front rear
A deleted
B C
front rear
C inserted
C
front rear
B deleted

Figure 19.3: Operations on a queue.

~ = ~—

| 4@ PREV | | ME=T mp |

-

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0116.html (2 of 2) [30.06.2007 10:57:48]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig19%2D3%5F0%2Ejpg

IMPLEMENTATION OF QUEUES

= r

| 4mPREV | | NEXT Wi |

IMPLEMENTATION OF QUEUES

I ntroduction

Since a queue is also a list, it can be implemented using an array or it can be implemented using a linked
representation.

Array Implementation of a Stack

When an array is used to implement a queue, then the insert and delete operations are realized using the operations
available on an array. The limitation of an array implementation is that the queue cannot grow and shrink dynamically
as per the requirement.

Program

A complete C program to implement a queue by using an array is shown here:

#i ncl ude <stdi o. h>
#define MAX 10 /* The nmaxi mum si ze of the queue */
#i ncl ude <stdlib. h>

void insert(int queue[], int *rear, int value)

{
if(*rear < MAX-1)
{
*rear= *rear +1;
queue[*rear] = val ue;
}
el se
{
printf("The queue is full can not insert a value\n");
exit(0);
}
}
voi d del ete(int queue[], int *front, int rear, int * val ue)
{
if(*front == rear)
{
printf("The queue is enpty can not delete a value\n");
exit(0);
}
*front = *front + 1;
*val ue = queue[*front];
}

voi d nain()

{
i nt queue[MAX] ;
int front,rear;
int n,val ue;
front=rear=(-1);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0117.html (1 of 3) [30.06.2007 10:57:49]

IMPLEMENTATION OF QUEUES

do

{
do

{
printf("Enter the elenent to be inserted\n");
scanf (" %", &al ue) ;
i nsert (queue, & ear, val ue) ;
printf("Enter 1 to continue\n");
scanf ("%d", &n) ;
} while(n == 1);

printf("Enter 1 to delete an el enent\n");
scanf ("%", &n);
while(n == 1)

{
del et e(queue, & ront, rear, &val ue);
printf("The value deleted is %\ n", val ue);
printf("Enter 1 to delete an el enent\n");
scanf ("%", &n) ;
}

printf("Enter 1 to continue\n");
scanf (" %", &n) ;
} while(n == 1);
}

Example

Input and Output

Enter the element to be inserted
10

Enter 1 to continue
1

Enter the element to be inserted
20

Enter 1 to continue
1

Enter the element to be inserted
30

Enter 1 to continue
0

Enter 1 to delete an element
1

The value deleted is 10
Enter 1 to delete an element

1

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0117.html (2 of 3) [30.06.2007 10:57:49]

IMPLEMENTATION OF QUEUES

The value deleted is 20
Enter 1 to delete an element

0

Enter 1 to continue
1

Enter the element to be inserted

40

Enter 1 to continue
1

Enter the element to be inserted

50

Enter 1 to continue
0

Enter 1 to delete an element
1

The value deleted is 30
Enter 1 to delete an element

1

The value deleted is 40
Enter 1 to delete an element

0

Enter 1 to continue
0

-

| 4mPREY |

| NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0117.html (3 of 3) [30.06.2007 10:57:49]

CIRCULAR QUEUES

| NEXT Wi |

—

| 4mPREV |

CIRCULAR QUEUES

I ntroduction

The problem with the previous implementation is that the i nsert function gives a queue-full signal even if a

considerable portion is free. This happens because the queue has a tendency to move to the right unless the ‘front’
catches up with the ‘rear’ and both are reset to 0 again (in the delete procedure). To overcome this problem, the
elements of the array are required to shift one position left whenever a deletion is made. But this will make the deletion
process inefficient. Therefore, an efficient way of overcoming this problem is to consider the array to be circular, as

shown in Figure 19.4.

- 5
rear 5

front
1 0

Figure 19.4: Circular queue.

Program

#i ncl ude <stdi o. h>
#define MAX 10 /* The nmaxi num si ze of the queue */
#i ncl ude <stdlib. h>

void insert(int queue[], int *rear, int front, int value)
{
*rear= (*rear +1) % MAX;
if(*rear == front)
{
printf("The queue is full can not insert a value\n");
exit(0);
}

queue[*rear] = val ue;

}

voi d del ete(int queue[], int *front, int rear, int * val ue)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0118.html (1 of 5) [30.06.2007 10:57:50]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig19%2D4%5F0%2Ejpg

CIRCULAR QUEUES

{
if(*front == rear)
{
printf("The queue is enpty can not delete a value\n");
exit(0);
}
*front = (*front + 1) % MAX;
*val ue = queue[*front];
}
voi d main()
{
i nt queue[MAX] ;
int front,rear
i nt n,val ue;
front=0; rear=0;
do
{
do
{
printf("Enter the elenent to be inserted\n");
scanf (" %", &al ue) ;
i nsert (queue, & ear, front, val ue);
printf("Enter 1 to continue\n");
scanf ("o%d", &n) ;
} while(n == 1);
printf("Enter 1 to delete an el enent\n");
scanf ("%", &n);
while(n == 1)
{
del et e(queue, & ront, rear, &al ue);
printf("The value deleted is %\ n", val ue);
printf("Enter 1 to delete an elenent\n");
scanf ("%", &n);
}
printf("Enter 1 to continue\n");
scanf ("%d", &n);
} while(n == 1);
}
Example

Input and Output

Enter the element to be inserted
10

Enter 1 to continue
1

Enter the element to be inserted
20

Enter 1 to continue

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0118.html (2 of 5) [30.06.2007 10:57:50]

CIRCULAR QUEUES

1

Enter the element to be inserted
30

Enter 1 to continue
1

Enter the element to be inserted
40

Enter 1 to continue
1

Enter the element to be inserted
50

Enter 1 to continue
1

Enter the element to be inserted
60

Enter 1 to continue
1

Enter the element to be inserted
70

Enter 1 to continue
1

Enter the element to be inserted
80

Enter 1 to continue
1

Enter the element to be inserted
90

Enter 1 to continue
0

Enter 1 to delete an element
1

The value deleted is 10
Enter 1 to delete an element

1

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0118.html (3 of 5) [30.06.2007 10:57:50]

CIRCULAR QUEUES

The value deleted is 20
Enter 1 to delete an element

0

Enter 1 to continue
1

Enter the element to be inserted
100

Enter 1 to continue
1

Enter the element to be inserted
110

Enter 1 to continue
0

Enter 1 to delete an element
1

The value deleted is 30
Enter 1 to delete an element

1

The value deleted is 40

Enter 1 to delete an element
0

Enter 1 to continue
1

Enter the element to be inserted
120

Enter 1 to continue
1

Enter the element to be inserted
130

Enter 1 to continue
0

Enter 1 to delete an element
0

Enter 1 to continue

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0118.html (4 of 5) [30.06.2007 10:57:50]

CIRCULAR QUEUES

0

[_ﬁ PREV j [_ NEXT ﬂrj

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0118.html (5 of 5) [30.06.2007 10:57:50]

IMPLEMENTATION OF A QUEUE USING LINKED REPRESENTATION

[@ rPREV | | NExT Wb |

IMPLEMENTATION OF A QUEUE USING LINKED REPRESENTATION

I ntroduction

Initially, the list is empty, so both the front and rear pointers are NULL. The i nsert function creates a new node, puts
the new data value in it, appends it to an existing list, and makes the rear pointer point to it. A del et e function checks
whether the queue is empty, and if not, retrieves the data value of the node pointed to by the front, advances the front,
and frees the storage of the node whose data value has been retrieved.

If the above strategy is used for creating a queue with four data values —10, 20, 30, and 40, the queue gets created as
shown in Figure 19.5.

fronl = rear —IippMLULL
Imitiadly

10 =" NULL

front, rear
Aftar the first iteration

20 o] 10 4 NuLL

frant rear
Aftar the sacond laration

— g NULL

30 ol 20 | 1yl 10

front raar
Aftar the third ilerabon

40| .| 30| _ .|m 4l 0| 1 pnu

front rear

Aftar the last leration
Figure 19.5: Linked queue.

Program

A complete C program for implementation of a stack using the linked list is shown here:

include <stdio. h>
include <stdlib. h>
struct node

{

int data;
struct node *link;

b

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0119.html (1 of 4) [30.06.2007 10:57:50]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig19%2D5%5F0%2Ejpg

IMPLEMENTATION OF A QUEUE USING LINKED REPRESENTATION

void insert(struct node **front, struct node **rear, int val ue)
{
struct node *tenp;
tenmp=(struct node *)nall oc(sizeof (struct node));
/* creates new node
usi ng data val ue
passed as paraneter */
i f(tenmp==NULL)
{
printf("No Menory available Error\n");
exit(0);
}
tenp->data = val ue;
t emp- >l i nk=NULL;
i f(*rear == NULL)

{
*rear = tenp;
*front = *rear;
}
el se
{
(*rear)->link = tenp;
*rear = tenp;
}

voi d del ete(struct node **front, struct node **rear, int *val ue)

struct node *tenp;

if((*front == *rear) && (*rear == NULL))

{
printf(" The queue is enpty cannot delete Error\n");
exit(0);

}

*val ue = (*front)->dat a;

tenp = *front;

*front = (*front)->link;

if(*rear == tenp)

*rear = (*rear)->link;

free(tenp);

voi d mai n()

struct node *front=NULL, *rear = NULL
int n,val ue;
do

{
do

{
printf("Enter the elenent to be inserted\n");
scanf (" %", &al ue) ;
i nsert (& ront, & ear, val ue) ;
printf("Enter 1 to continue\n");
scanf (" %", &n) ;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0119.html (2 of 4) [30.06.2007 10:57:50]

IMPLEMENTATION OF A QUEUE USING LINKED REPRESENTATION
} while(n == 1);
printf("Enter 1 to delete an elenent\n");

scanf ("%", &n);
while(n == 1)

{
del ete(& ront, &rear, &al ue) ;
printf("The value deleted is %\ n", val ue);
printf("Enter 1 to delete an el enent\n");
scanf (" %", &n) ;

}

printf("Enter 1 to continue\n");
scanf ("%", &n);
} while(n == 1);
}

Example
Input and Output

Enter the element to be inserted
10

Enter 1 to continue
1

Enter the element to be inserted
20

Enter 1 to continue
1

Enter the element to be inserted
30

Enter 1 to continue
0

Enter 1 to delete an element
1

The value deleted is 10
Enter 1 to delete an element

1

The value deleted is 20
Enter 1 to delete an element

0

Enter 1 to continue
1

Enter the element to be inserted

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0119.html (3 of 4) [30.06.2007 10:57:50]

IMPLEMENTATION OF A QUEUE USING LINKED REPRESENTATION

40

Enter 1 to continue
1

Enter the element to be inserted
50

Enter 1 to continue
0

Enter 1 to delete an element
1

The value deleted is 30
Enter 1 to pop an element

1

The value deleted is 40
Enter 1 to delete an element

1

The value deleted is 50

Enter 1 to delete an element
1

The queue is empty, cannot delete Error

-

| 4mPREY |

| NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0119.html (4 of 4) [30.06.2007 10:57:50]

APPLICATIONS OF QUEUES

= r

| 4mPREV | | NEXT Wi |

APPLICATIONS OF QUEUES

I ntroduction

One application of the queue data structure is in the implementation of priority queues required to be maintained by the
scheduler of an operating system. It is a queue in which each element has a priority value and the elements are
required to be inserted in the queue in decreasing order of priority. This requires a change in the function that is used
for insertion of an element into the queue. No change is required in the del et e function.

Program

A complete C program implementing a priority queue is shown here:

include <stdio. h>
include <stdlib. h>
struct node

{
int data;
int priority;
struct node *Ilink;
}

void insert(struct node **front, struct node **rear, int value, int priority)

struct node *tenp, *tenpl;

tenmp=(struct node *)nall oc(sizeof (struct node));
/* creates new node using data val ue

passed as paraneter */

i f(tenmp==NULL)

{
printf("No Menory available Error\n");
exit(0);

}

tenp->data = val ue;

tenmp->priority = priority;

t emp->1i nk=NULL;

if(*rear == NULL) /* This is the first node */

{ *rear = tenp;
*front = *rear;

}

el se

{

if((*front)->priority < priority)

/* the elenment to be inserted has
hi ghest priority hence should

be the first el enent*/

{
tenmp->link = *front;
*front = tenp;

}

el se

if((*rear)->priority > priority)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥20(2004)/7267/DDU0120.html (1 of 5) [30.06.2007 10:57:51]

APPLICATIONS OF QUEUES

/* the elenent to be inserted has
| owest priority hence shoul d
be the | ast el enent*/

(*rear)->link = tenp;
*rear = tenp;

el se

templ = *front;
while((tenpl->link)->priority >= priority)
/* find the position and insert the new el enent */
tenmpl=tenpl->link;
tenp->link = tenpl->link;
tenmpl->link = tenp;
}

voi d del ete(struct node **front, struct node **rear, int *value, int *priority)
{
struct node *tenp;
if((*front == *rear) && (*rear == NULL))
{
printf(" The queue is enpty cannot delete Error\n");
exit(0);
}
*value = (*front)->dat a;
*priority = (*front)->priority;
temp = *front;
*front = (*front)->link;
if(*rear == tenp)
*rear = (*rear)->link;
free(tenp);

voi d main()

struct node *front =NULL, *rear = NULL
int n,value, priority;
do

{
do

{
printf("Enter the elenent to be inserted and its priority\n");
scanf ("% %", &val ue, &riority);
insert(& ront, & ear,val ue,priority);
printf("Enter 1 to continue\n");
scanf ("%", &n);
} while(n == 1);

printf("Enter 1 to delete an el enent\n");
scanf ("%d", &n);
while(n ==1)
{
del ete(&f ront, & ear, &al ue, &riority);
printf("The value deleted is %\ and its priority is % \n",

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0120.html (2 of 5) [30.06.2007 10:57:51]

APPLICATIONS OF QUEUES

val ue, priority);
printf("Enter 1 to delete an el enent\n");
scanf (" %", &n) ;
}

printf("Enter 1 to delete an elenment\n");
scanf ("%d", &n);
} while(n ==1)
}

Example

Input and Output

Enter the element to be inserted and its priority
10 90

Enter 1 to continue
1

Enter the element to be inserted and its priority
58

Enter 1 to continue
1

Enter the element to be inserted and its priority
11 60

Enter 1 to continue
1

Enter the element to be inserted and its priority
12 75

Enter 1 to continue
1

Enter the element to be inserted and its priority
13 10

Enter 1 to continue
1

Enter the element to be inserted and its priority
14 6

Enter 1 to continue
0

Enter 1 to delete an element
1

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0120.html (3 of 5) [30.06.2007 10:57:51]

APPLICATIONS OF QUEUES
The value deleted is 10 and its priority is 90

Enter 1 to delete an element
1

The value deleted is 12 and its priority is 75

Enter 1 to delete an element
1

The value deleted is 11 and its priority is 60 Enter 1 to delete an element
1

The value deleted is 13 and its priority is 10 Enter 1 to delete an element
1

The value deleted is 5 and its priority is 8

Enter 1 to delete an element
1

The value deleted is 14 and its priority is 6

Enter 1 to delete an element
1

The queue is empty cannot delete Error

Pointsto Remember

1. A stack is basically a list with insertions and deletions permitted from only one end, called the stack-top, soitis a
data structure that exhibits the LIFO property.

2. The operations that are permitted to manipulate a stack are push and pop.
3. One of the important applications of a stack is in the implementation of recursion in the programming language.

4. A queue is also a list with insertions permitted from one end, called rear, and deletions permitted from the other
end, called front. So it is a data structure that exhibits the FIFO property.

5. The operations that are permitted on a queue are i nsert and del et e.
6. A circular queue is a queue in which the element next to the last element is the first element.

7. When the size of the stack/queue is known beforehand, the array implementation can be used and is more
efficient.

8. When the size of the stack/queue is not known beforehand, then the linked representation is used. It provides
more flexibility.

Exercises

1. Write a C program to implement a stack of characters.

2. Write a C program to implement a double-ended queue, which is a queue in which insertions and deletions may

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0120.html (4 of 5) [30.06.2007 10:57:51]

APPLICATIONS OF QUEUES

be performed at either end. Use a linked representation.

[_ﬁ PREV j [_ NEXT *j

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0120.html (5 of 5) [30.06.2007 10:57:51]

Chapter 20: Linked Lists

= r

| 4mPREV | | NEXT Wi |

Chapter 20: Linked Lists
THE CONCEPT OF THE LINKED LIST

I ntroduction

When dealing with many problems we need a dynamic list, dynamic in the sense that the size requirement need not be
known at compile time. Thus, the list may grow or shrink during runtime. A linked list is a data structure that is used to
model such a dynamic list of data items, so the study of the linked lists as one of the data structures is important.

Concept

An array is represented in memory using sequential mapping, which has the property that elements are fixed distance
apart. But this has the following disadvantage: It makes insertion or deletion at any arbitrary position in an array a
costly operation, because this involves the movement of some of the existing elements.

When we want to represent several lists by using arrays of varying size, either we have to represent each list using a
separate array of maximum size or we have to represent each of the lists using one single array. The first one will lead
to wastage of storage, and the second will involve a lot of data movement.

So we have to use an alternative representation to overcome these disadvantages. One alternative is a linked
representation. In a linked representation, it is not necessary that the elements be at a fixed distance apart. Instead, we
can place elements anywhere in memory, but to make it a part of the same list, an element is required to be linked with
a previous element of the list. This can be done by storing the address of the next element in the previous element
itself. This requires that every element be capable of holding the data as well as the address of the next element. Thus
every element must be a structure with a minimum of two fields, one for holding the data value, which we call a data
field, and the other for holding the address of the next element, which we call link field.

Therefore, a linked list is a list of elements in which the elements of the list can be placed anywhere in memory, and
these elements are linked with each other using an explicit link field, that is, by storing the address of the next element
in the link field of the previous element.

Program

Here is a program for building and printing the elements of the linked list:

include <stdio. h>
include <stdlib. h>
struct node

{

i nt data;

struct node *Ilink;

1

struct node *insert(struct node *p, int n)
{

struct node *tenp;

/* if the existing list is enpty then insert a new node as the
starting node */

i f (p==NULL)

{

p=(struct node *)nmalloc(sizeof (struct node)); /* creates new node

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0121.html (1 of 3) [30.06.2007 10:57:51]

Chapter 20: Linked Lists

dat a val ue passes
as paraneter */

i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p-> data = n;
p-> link = p; /* makes the pointer pointing to itself because it
is acircular list*/
}
el se
{
tenp = p;
/* traverses the existing list to get the pointer to the | ast node of
it */
while (tenp-> link != p)
temp = tenp-> |ink;
temp-> link = (struct node *)mall oc(sizeof (struct node)); /*
creates new node using
dat a val ue passes as
paraneter and puts its
address in the link field
of | ast node of the
existing list*/
if(temp -> link == NULL)
{
printf("Error\n");
exit(0);
}
tenp = tenp-> link;
tenp-> data = n;
temp-> link = p;

}
return (p);
}
void printlist (struct node *p)
{
struct node *tenp;
tenp = p;
printf("The data values in the list are\n");
i f(p!= NULL)
{
do
{
printf("%\t", tenp->data);
t enp=t enp- >l i nk;
} while (tenp!= p);
}
el se
printf("The list is enpty\n");
}

voi d nain()

{

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0121.html (2 of 3) [30.06.2007 10:57:51]

Chapter 20: Linked Lists
int n;
int Xx;
struct node *start = NULL ;
printf("Enter the nodes to be created \n");
scanf ("%", &n) ;
while ((n-- >0)
{

printf("Enter the data values to be placed in a node\n");
scanf (" %", &x) ;
start = insert (start, x);

}
printf("The created list is\n");

printlist (start);
}

Explanation

1. This program uses a strategy of inserting a node in an existing list to get the list created. Ani nsert function is
used for this.

2. Thei nsert function takes a pointer to an existing list as the first parameter, and a data value with which the

new node is to be created as a second parameter, creates a new node by using the data value, appends it to
the end of the list, and returns a pointer to the first node of the list.

3. Initially the list is empty, so the pointer to the starting node is NULL. Therefore, when i nsert is called first time,
the new node created by the i nsert becomes the start node.

4. Subsequently, the insert traverses the list to get the pointer to the last node of the existing list, and puts the
address of the newly created node in the link field of the last node, thereby appending the new node to the
existing list.

5. The main function reads the value of the number of nodes in the list. Calls iterate that many times by going in a
whi | e loop to create the links with the specified number of nodes.

Pointsto Remember

1. Linked lists are used when the quantity of data is not known prior to execution.
2. In linked lists, data is stored in the form of nodes and at runtime, memory is allocated for creating nodes.
3. Due to overhead in memory allocation and deallocation, the speed of the program is lower.

4. The data is accessed using the starting pointer of the list.

- =

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0121.html (3 of 3) [30.06.2007 10:57:51]

INSERTING A NODE BY USING RECURSIVE PROGRAMS

= o

| 4mPREV | | NEXT Wi |

INSERTING A NODE BY USING RECURSIVE PROGRAMS

I ntroduction

A linked list is a recursive data structure. A recursive data structure is a data structure that has the same form
regardless of the size of the data. You can easily write recursive programs for such data structures.

Program

include <stdio. h>
include <stdlib. h>
struct node
{
int data;
struct node *li nk;
s
struct node *insert(struct node *p, int n)
{
struct node *tenp;
i f(p==NULL)
{
p=(struct node *)mal | oc(sizeof (struct node));
i f(p==NULL)
{
printf("Error\n");
exit(0);

n;
NULL;

}
p-> data
p-> |ink

}

el se
p->link = insert(p->link,n);/* the while [oop replaced by
recursive call */

return (p);
}
void printlist (struct node *p)
{
printf("The data values in the list are\n");
while (p!'= NULL)
{
printf("%\t", p-> data);
p = p-> link;
}
}
voi d nain()
{
int n;
int X;

struct node *start = NULL ;

printf("Enter the nodes to be created \n");
scanf (" %", &n) ;

while (n- > 0)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0122.html (1 of 2) [30.06.2007 10:57:52]

INSERTING A NODE BY USING RECURSIVE PROGRAMS

{

printf("Enter the data values to be placed in a node\n");
scanf ("%d", &) ;
start = insert (start, x);

}
printf("The created list is\n");

printlist (start);
}
Explanation

1. This recursive version also uses a strategy of inserting a node in an existing list to create the list.

2. Aninsert function is used to create the list. The i nsert function takes a pointer to an existing list as the first

parameter, and a data value with which the new node is to be created as the second parameter. It creates the
new node by using the data value, then appends it to the end of the list. It then returns a pointer to the first node
of the list.

3. Initially, the list is empty, so the pointer to the starting node is NULL. Therefore, when i nsert is called the first
time, the new node created by the i nsert function becomes the start node.

4. Subsequently, the i nsert function traverses the list by recursively calling itself.

5. The recursion terminates when it creates a new node with the supplied data value and appends it to the end of
the list.

Pointsto Remember

1. Alinked list has a recursive data structure.

2. Writing recursive programs for such structures is programmatically convenient.

- -

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0122.html (2 of 2) [30.06.2007 10:57:52]

SORTING AND REVERSING A LINKED LIST

—

[@ rPREV | | NExT Wb |

SORTING AND REVERSING A LINKED LIST

I ntroduction

To sort a linked list, first we traverse the list searching for the node with a minimum data value. Then we remove that
node and append it to another list which is initially empty. We repeat this process with the remaining list until the list
becomes empty, and at the end, we return a pointer to the beginning of the list to which all the nodes are moved, as

shown in Figure 20.1.

5] L —pl 10 ——p 3 S+ 7 | ——enULL
start
LISt R b Scnrtesd

5 4 5l 10 L —1 MULL
start
q— p 3 g NULL

Atter the lirsi pass
Figure 20.1: Sorting of a linked list.

To reverse a list, we maintain a pointer each to the previous and the next node, then we make the link field of the
current node point to the previous, make the previous equal to the current, and the current equal to the next, as shown

in Figure 20.2.
‘4:" T T —HMULL
?

pre CARIT gL:kil
Figure 20.2: A linked list showing the previous, current, and next nodes at some point during reversal process.

Therefore, the code needed to reverse the list is

Prev = NULL;
While (curr !'= NULL)
{

Next = curr->link;
Curr -> link = prev;
Prev = curr;

Curr = next;

}

Program

include <stdio. h>
include <stdlib. h>
struct node

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0123.html (1 of 6) [30.06.2007 10:57:52]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D2%5F0%2Ejpg

SORTING AND REVERSING A LINKED LIST

{

int data;
struct node *Ilink;
H
struct node *insert(struct node *p, int n)
{
struct node *tenp;
i f(p==NULL)
{
p=(struct node *)nall oc(sizeof (struct node));
i f(p==NULL)
{
printf("Error\n");
exit(0);

n;
NULL;

temp = p;
while (tenp-> |ink!= NULL)
temp = tenp-> |ink;
temp-> link = (struct node *)nall oc(sizeof (struct node));
if(temp -> link == NULL)
{
printf("Error\n");
exit(0);
}
temp = tenp-> |ink;
tenp-> data n;
tenmp-> |ink nul | ;
}

return(p);

}

void printlist (struct node *p)

{

printf("The data values in the list are\n");
while (p!'= NULL)
{
printf("%\t", p-> data);
p = p-> link;

}

/[* a function to sort reverse list */
struct node *reverse(struct node *p)

{
struct node *prev, *curr
prev = NULL;
curr = p;
while (curr !'= NULL)
{
p = p-> link;

curr-> link = prev;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0123.html (2 of 6) [30.06.2007 10:57:52]

SORTING AND REVERSING A LINKED LIST

prev
curr

curr;
p;

}

return(prev);

}

/[* a function to sort a list */
struct node *sortlist(struct node *p)

{
struct node *tenpl, *tenp2, *nmin, *prev, *q;
g = NULL;
while(p !'= NULL)
{
prev = NULL,

mn = tenpl = p;
temp2 = p -> link;
while (tenmp2 !'= NULL)

{
if(mn -> data > tenp2 -> data)
{
mn = tenp2;
prev = tenpl;
}
tenpl = tenp2,
tenmp2 = temp2-> |ink;
}

i f(prev == NULL)
p=mn->1link;

el se
prev -> link = min ->1link
mn ->link = NULL;
i f(g == NULL)
g =mn; /* noves the node with |owest data value in the |ist
pointed to by p to the list
pointed to by q as a first node*/
el se

{

tenpl = q;

/[* traverses the list pointed to by g to get pointer to its
| ast node */

while(templ -> link !'= NULL)

tenpl = tenpl -> link;

templ -> link = nin; /* noves the node with | owest data val ue

inthe list pointed to
by p tothe list pointed to by q at the end of |ist pointed by

q*/

}
}
return (q);
}
voi d nain()
{ .
Int n;
int Xx;

struct node *start = NULL ;
printf("Enter the nodes to be created \n");

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0123.html (3 of 6) [30.06.2007 10:57:52]

SORTING AND REVERSING A LINKED LIST

scanf ("%", &n);
while (n- > 0)

{
printf("Enter the data values to be placed in a
node\ n");
scanf ("%d", &x) ;
start = insert (start,Xx);
}

printf("The created list is\n");
printlist (start);
start = sortlist(start);
printf("The sorted list is\n");
printlist (start);
start = reverse(start);
printf("The reversed list is\n");
printlist (start);

}

Explanation

The working of the sorting function on an example list is shown in Figure 20.3.

10"'5 T 20| T 3| T nil

P
Original List

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0123.html (4 of 6) [30.06.2007 10:57:52]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu273%5F1%5F0%2Ejpg

SORTING AND REVERSING A LINKED LIST

w|T™ s '_'|4ﬂ T i

P

|_*-'3 T nil

-]
After the first pass

10 | —1— 40 = il
4]

I_; =™ 5| T"ni

5
Altar the sacand pass

40 __."nil

+]

Lra ™ sl 1™ 1ol T
5

After the third pass

u ® s [T 10l T™ a0 T ri

5 =p
After the last pass
Figure 20.3: Sorting of a linked list.

The working of a reverse function is shown in Figure 20.4.

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0123.html (5 of 6) [30.06.2007 10:57:52]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D3%5F0%2Ejpg

SORTING AND REVERSING A LINKED LIST

. R R R — il
Crriginal st
h
d‘} e R R S
r I'I*
After the first loration
¢
B 1# —t- |1 — il
'}
mil r
Aftar the sacond itaration
q
B -.I'|I|

o l — |,7_ +——

F fiil

Afler the third feralion
. — - i
JI r=p

After the last leration
Figure 20.4: Reversal of a list.

[_ﬁ PREY j

(

MEXT s

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0123.html (6 of 6) [30.06.2007 10:57:52]

:

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D4%5F0%2Ejpg

DELETING THE SPECIFIED NODE IN A SINGLY LINKED LIST

= r

| 4mPREV | | NEXT Wi |

DELETING THE SPECIFIED NODE IN A SINGLY LINKED LIST

I ntroduction

To delete a node, first we determine the node number to be deleted (this is based on the assumption that the nodes of
the list are numbered serially from 1 to n). The list is then traversed to get a pointer to the node whose number is given,
as well as a pointer to a node that appears before the node to be deleted. Then the link field of the node that appears
before the node to be deleted is made to point to the node that appears after the node to be deleted, and the node to
be deleted is freed. Figures 20.5 and 20.6 show the list before and after deletion, respectively.

Program

include <stdio. h>

include <stdlib. h>

struct node *delet (struct node *, int);
int length (struct node *);

struct node

{
i nt data;
struct node *link;
1
struct node *insert(struct node *p, int n)
{
struct node *tenp;
i f(p==NULL)
{
p=(struct node *)nall oc(sizeof (struct node));
i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p-> data = n;
p-> link = NULL;
}
el se
{
tenp = p;
while (tenp-> link !'= NULL)
temp = tenp-> |ink;
temp-> link = (struct node *)nall oc(sizeof (struct node));
if(tenp -> link == NULL)
{
printf("Error\n");
exit(0);
}
temp = tenp-> |ink;
tenp-> data = n;
tenmp-> |ink = NULL;
}
return (p);
}

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0124.html (1 of 4) [30.06.2007 10:57:53]

DELETING THE SPECIFIED NODE IN A SINGLY LINKED LIST

void printlist (struct node *p)
{
printf("The data values in the list are\n");
while (p!= NULL)
{
printf("%\t", p-> data);
p = p-> link;

}

voi d mai n()

{ .
int n;
int x;
struct node *start = NULL
printf("Enter the nodes to be created \n");
scanf ("%", &n);
while (n- > 0)
{

printf("Enter the data values to be placed in a node\n");
scanf ("%", &) ;
start = insert (start, x);

}
printf(" The list before deletion id\n");
printlist (start);
printf("%\n Enter the node no \n");
scanf (" %", &n);
start = delet (start , n);
printf(" The list after deletion is\n");
printlist (start);

/* a function to delete the specified node*/
struct node *delet (struct node *p, int node_no)

{

struct node *prev, *curr
int i;

if (p == NULL)

{
printf("There is no node to be deleted \n");
}
el se
{
if (node_no > length (p))
{
printf("Error\n");
}
el se
{
prev = NULL;
curr = p;
i =1 ;

while (i < node_no)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0124.html (2 of 4) [30.06.2007 10:57:53]

DELETING THE SPECIFIED NODE IN A SINGLY LINKED LIST

{
prev = curr;
curr = curr-> link;
o= i+1;
}
if (prev == NULL)
{
p = curr -> link;
free (curr);
}
el se
{
prev -> link = curr -> link
free (curr);
}
}
}
return(p);

}
/[* a function to conpute the length of a linked list */
int length (struct node *p)

{
int count = 0 ;
while (p !'= NULL)
{
count ++;
p = p->link;
}
return (count) ;
}
Explanation

pointer X

e W = W = Wy

node to be deleted

Figure 20.5: Before deletion.

pointer x

y
Y s

Figure 20.6: After deletion.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0124.html (3 of 4) [30.06.2007 10:57:53]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D5%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D6%5F0%2Ejpg

DELETING THE SPECIFIED NODE IN A SINGLY LINKED LIST

e = e =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0124.html (4 of 4) [30.06.2007 10:57:53]

INSERTING A NODE AFTER THE SPECIFIED NODE IN A SINGLY LINKED LIST

= r

| 4mPREV | | NEXT Wi |

INSERTING A NODE AFTER THE SPECIFIED NODE IN A SINGLY LINKED LIST

I ntroduction

To insert a new node after the specified node, first we get the number of the node in an existing list after which the new
node is to be inserted. This is based on the assumption that the nodes of the list are numbered serially from 1 to n. The
list is then traversed to get a pointer to the node, whose number is given. If this pointer is x, then the link field of the
new node is made to point to the node pointed to by x, and the link field of the node pointed to by x is made to point to
the new node. Figures 20.7 and 20.8 show the list before and after the insertion of the node, respectively.

Program

include <stdio. h>
include <stdlib. h>
int length (struct node *);
struct node
{
i nt data;
struct node *li nk;

s

/* a function which appends a new node to an existing list used for
building a Iist */
struct node *insert(struct node *p, int n)
{
struct node *tenp;
i f(p==NULL)
{
p=(struct node *)nmall oc(sizeof (struct node));
i f (p==NULL)
{
printf("Error\n");
exit(0);

n;
NULL;

>
~
I

tenp = p;
while (tenp-> link !'= NULL)
tenp = tenp-> link;
temp-> link = (struct node *)mall oc(sizeof (struct node));
if(temp -> link == NULL)
{
printf("Error\n");
exit(0);
}
temp = tenp-> |ink;
tenp-> data = n;
temp-> | i nk= NULL;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0125.html (1 of 3) [30.06.2007 10:57:54]

INSERTING A NODE AFTER THE SPECIFIED NODE IN A SINGLY LINKED LIST

return (p);
}

[* a function which inserts a newy created node after the specified
node */
struct node * newi nsert (struct node *p, int node_no, int value)

{
struct node *tenp, * tenpl;

int i;
if (node_no <= 0 || node_no > length (p))
{
printf("Error! the specified node does not exist\n");
exit(0);
}
if (node_no == 0)
{
temp = (struct node *)Ymalloc (sizeof (struct node));
if (temp == NULL)
{
printf(" Cannot allocate \n");
exit (0);
}
temp -> data = val ue;
temp -> link = p;
p =tenmp ;
}
el se
{
temp = p ;
i = 1;
while (i < node_no)
{
i = i+1;
tenp = tenp-> link ;
}
templ = (struct node *)malloc (sizeof(struct node));
if (temp == NULL)
{
printf ("Cannot allocate \n");
exit(0)
}
tenmpl -> data = val ue ;
templ -> link = tenp -> link;
temp -> link = tenpl;
}
return (p);
}
void printlist (struct node *p)
{
printf("The data values in the list are\n");
while (p!= NULL)
{
printf("%\t", p-> data);
p = p-> link;
}
}

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0125.html (2 of 3) [30.06.2007 10:57:54]

INSERTING A NODE AFTER THE SPECIFIED NODE IN A SINGLY LINKED LIST

void main ()

= NULL,;

printf("Enter the nodes to be created \n");

printf("Enter the data values to be placed in a node\n");

printf(" \'n Enter the node no after which the insertion is to be

(start, x);

before deletion is\n");

printf("Enter the value of the node\n");

printf("The list after insertionis \n");

{
int n;
int x;
struct node *start
scanf (" %", &n) ;
while (n- > 0)
{
scanf (" %", &) ;
start = insert
}
printf(" The I|ist
printlist (start);
done\ n");
scanf (" %", &n);
scanf (" %", &) ;
start = newinsert(start,n, x);
printlist(start);
}
Explanation

pointer x

X

> g

node to be inserted

Figure 20.7: Before insertion.

pointer x

>

Figure 20.8: After insertion.

—

| 4m PREV |

-

f NEXT mjp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0125.html (3 of 3) [30.06.2007 10:57:54]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D7%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D8%5F0%2Ejpg

INSERTING A NEW NODE IN A SORTED LIST

= r

| 4mPREV | | NEXT Wi |

INSERTING A NEW NODE IN A SORTED LIST

I ntroduction

To insert a new node into an already sorted list, we compare the data value of the node to be inserted with the data
values of the nodes in the list starting from the first node. This is continued until we get a pointer to the node that
appears immediately before the node in the list whose data value is greater than the data value of the node to be
inserted.

Program

Here is a complete program to insert an element in a sorted list of elements using the linked list representation so that
after insertion, it will remain a sorted list.

include <stdio. h>

include <stdlib. h>

struct node

{

i nt data;

struct node *li nk;

b

struct node *insert(struct node *, int);
struct node *sinsert(struct node*, int);
void printlist (struct node *);

struct node *sortlist(struct node *);

struct node *insert(struct node *p, int n)

{
struct node *tenp;
i f(p==NULL)
{
p=(struct node *)mal |l oc(sizeof (struct node));
i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p-> data = n;
p-> link = NULL;
}
el se
{
temp = p;

while (tenp-> link!= NULL)
tenmp = tenp-> |ink;

temp-> link = (struct node *)nall oc(sizeof (struct node));
if(temp -> link == NULL)

{

printf("Error\n");
exit(0);

}

temp = tenmp-> |ink;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0126.html (1 of 4) [30.06.2007 10:57:54]

INSERTING A NEW NODE IN A SORTED LIST

tenp-> data = n;
temp-> |ink = NULL;
}

return (p);

}

void printlist (struct node *p)

{
printf("The data values in the list are\n");
while (p!= NULL)

{
printf("%\t", p-> data);
p = p-> link;
}

}

/* a function to sort a list */
struct node *sortlist(struct node *p)
{
struct node *tenpl, *tenp2,*nin, *prev, *q;
g = NULL;
while(p !'= NULL)
{
prev = NULL;
mn =tenpl = p;
temp2 = p -> link;
while (tenmp2 !'= NULL)

{

if(mn->data > tenp2 -> data)
{

mn = tenp2;

prev = tenpl;

}
tenpl = tenp2;
temp2 = tenmp2-> I|ink;

}
i f(prev == NULL)
p=mn->1link;
el se
prev -> link = nin -> [link
mn ->1link = NULL;
if(g == NULL)
g =mn; /* noves the node with |owest data value in the |ist
pointed to by p to the |ist
pointed to by q as a first node*/
el se

{
tenpl = q;
/[* traverses the list pointed to by g to get pointer to its
| ast node */
while(templ -> link !'= NULL)
templ = tenmpl -> link;
templ -> link = nmin; /* noves the node with | owest data val ue
inthe list pointed to
by p tothe list pointed to by g at the end of |ist pointed by

q*/

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0126.html (2 of 4) [30.06.2007 10:57:54]

INSERTING A NEW NODE IN A SORTED LIST
}
}
return (q);

}

/* a function to insert a node with data value n in a sorted |i st
poi nted to by p*/
struct node *sinsert(struct node *p, int n)
{
struct node *curr, *prev;
curr =p;
prev = NULL;
whil e(curr ->data < n)
{
prev = curr;
curr = curr->link;
}
if (prev == NULL) /* the elenment is to be inserted at the start of

the list because
it is less than the data value of the first node*/

{
curr = (struct node *) nall oc(sizeof(struct node));
i f(curr == NULL)
{
printf("error cannot allocate\n");
exit(0);
}
curr->data = n;
curr->link = p;
p = curr;
}
el se
{
curr->data = n;
curr->link = prev->link
prev->link = curr;
}
return(p);
}
void nmain()
{ .
Int n;
int X;

struct node *start = NULL

printf("Enter the nodes to be created \n");

scanf ("%d", &n) ;

while (n-- >0)

{

printf("Enter the data values to be placed in a node\n");

scanf ("%d", &) ;
start = insert (start,Xx);

}

printf("The created list is\n");

printlist (start);

start = sortlist(start);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0126.html (3 of 4) [30.06.2007 10:57:54]

INSERTING A NEW NODE IN A SORTED LIST

printf("The sorted |ist
printlist (start);

is\n");

printf("Enter the value to be inserted\n");
scanf (" %", &n) ;
start

}

Explanation

= sinsert(start,n);
printf("The list after insertion is\n");
printlist (start);

1. If this pointer is pr ev, then pr ev is checked for a NULL value.

2. If prev is NULL, then the new node is created and inserted as the first node in the list.

3. When pr ev is not NULL, then a new node is created and inserted after the node pointed by pr ev, as shown in
Figure 20.9.

10

.

30

40

Sorted linked list

25

node to be inserted

Before insertion

pointer prev

10

20

40

node inserted

—» o5

After insertion

Figure 20.9: Insertion in a sorted list.

—

| 4m PREV |

-

f NEXT mjp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0126.html (4 of 4) [30.06.2007 10:57:54]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D9%5F0%2Ejpg

COUNTING THE NUMBER OF NODES OF A LINKED LIST

= r

| 4mPREV | | NEXT Wi |

COUNTING THE NUMBER OF NODESOF A LINKED LIST

I ntroduction

Counting the number of nodes of a singly linked list requires maintaining a counter that is initialized to 0 and
incremented by 1 each time a node is encountered in the process of traversing a list from the start.

Here is a complete program that counts the number of nodes in a singly linked chain p, where p is a pointer to the first
node in the list.

Program

include <stdio. h>

include <stdlib. h>

struct node

{

i nt data;

struct node *li nk;

H

struct node *insert(struct node *, int);
i nt nodecount (struct node*);

void printlist (struct node *);

struct node *insert(struct node *p, int n)

{
struct node *tenp;
i f(p==NULL)
{
p=(struct node *)nall oc(sizeof (struct node));
i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p-> data = n;
p-> link = NULL;
}
el se
{
temp = p;

while (tenp-> link!= NULL)

temp = tenp-> |ink;

temp-> link = (struct node *)mall oc(sizeof (struct node));
if(tenp -> link == NULL)

{
printf("Error\n");
exit(0);
}
temp = tenp-> |ink;

tenp-> data = n;
tenmp-> |ink = NULL;
}

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0127.html (1 of 2) [30.06.2007 10:57:55]

COUNTING THE NUMBER OF NODES OF A LINKED LIST

return (p);
}
void printlist (struct node *p)
{

printf("The data values in the list are\n");

while (p!= NULL)

{

printf("%\t", p-> data);
p = p-> link;

}

}

/* A function to count the nunber of nodes in a singly linked list */
i nt nodecount (struct node *p)

{ i nt count =0;
while (p !'= NULL)
{ count ++;
p = p->link;
}
return(count);
}
void nain()
{ .
int n;
int x;

struct node *start = NULL

printf("Enter the nodes to be created \n");

scanf ("%d", &n);

while (n-- >0)

{

printf("Enter the data values to be placed in a node\n");

scanf (" %", &) ;
start = insert (start,Xx);

}

printf("The created list is\n");

printlist (start);

n = nodecount (start);

printf("The nunber of nodes in a list are: %\ n",n);

- —

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0127.html (2 of 2) [30.06.2007 10:57:55]

MERGING OF TWO SORTED LISTS

= r

| 4mPREV | | NEXT Wi |

MERGING OF TWO SORTED LISTS

I ntroduction

Merging of two sorted lists involves traversing the given lists and comparing the data values stored in the nodes in the
process of traversing.

If p and q are the pointers to the sorted lists to be merged, then we compare the data value stored in the first node of
the list pointed to by p with the data value stored in the first node of the list pointed to by g. And, if the data value in the
first node of the list pointed to by p is less than the data value in the first node of the list pointed to by g, make the first
node of the resultant/merged list to be the first node of the list pointed to by p, and advance the pointer p to make it
point to the next node in the same list.

If the data value in the first node of the list pointed to by p is greater than the data value in the first node of the list
pointed to by g, make the first node of the resultant/merged list to be the first node of the list pointed to by g, and
advance the pointer g to make it point to the next node in the same list.

Repeat this procedure until either p or g becomes NULL. When one of the two lists becomes empty, append the
remaining nodes in the non-empty list to the resultant list.

Program

include <stdio. h>
include <stdlib. h>
struct node

{

i nt data;

struct node *li nk;

b

struct node *merge (struct node *, struct node *);
struct node *insert(struct node *p, int n)

{
struct node *tenp;
i f(p==NULL)
{
p=(struct node *)nall oc(sizeof (struct node));
i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p-> data = n;
p-> link = NULL;
}
el se
{
temp = p;

while (tenp-> link!= NULL)
temp = tenp-> |ink;
temp-> link = (struct node *)mall oc(sizeof (struct node));

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0128.html (1 of 6) [30.06.2007 10:57:55]

MERGING OF TWO SORTED LISTS

if(temp -> link == NULL)

{
printf("Error\n");
exit(0);
}
temp = tenp-> |ink;
tenp-> data = n;
temp-> |ink = NULL;
}
return (p);
}
void printlist (struct node *p)
{
printf("The data values in the list are\n");
while (p!'= NULL)
{
printf("%\t", p-> data);
p = p-> link;
}
}

/[* a function to sort a list */
struct node *sortlist(struct node *p)
{

struct node *tenpl, *tenp2,*nin, *prev, *q;

q = NULL;

while(p !'= NULL)

{

prev = NULL;

mn = tenpl = p;

temp2 = p -> link;

while (tenmp2 !'= NULL)

{
if(mn->data > tenp2 -> data)

prev = tenpil,

tenp2,
tenmp2-> link;

i f(prev == NULL)
p=mn->1ink
el se
prev -> link = min -> |ink
mn ->link = NULL
if(g == NULL)
g =mn; /* noves the node with [owest data value in the list
pointed to by p to the list
pointed to by q as a first node*/
el se
{
tenpl = g;
/* traverses the list pointed to by g to get pointer to its
| ast node */
while(templ -> link !'= NULL)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0128.html (2 of 6) [30.06.2007 10:57:55]

MERGING OF TWO SORTED LISTS

tenpl = tenpl -> link;
templ -> link = mn; /* noves the node with | owest data val ue
inthe list pointed to
by ptothe list pointed to by g at the end of |ist pointed by

q*/

}
}
return (q);
}
void main()
{ .
int n;
int x;
struct node *startl = NULL ;
struct node *start2 = NULL;
struct node *start3 = NULL;
/* The follow ng code creates and sorts the first list */
printf("Enter the nunber of nodes in the first list \n");
scanf ("%", &n);
while (n-- > 0)
{
printf("Enter the data value to be placed in a node\n");
scanf (" %", &) ;
startl = insert (startl, Xx);
}
printf("The first list is\n");
printlist (startl);
startl = sortlist(startl);
printf("The sorted listl is\n");
printlist (startl);
/* the follow ng creates and sorts the second |ist*/
printf("Enter the nunber of nodes in the second list \n");
scanf ("%", &n);
while (n-- >0)
{
printf("Enter the data value to be placed in a node\n");
scanf (" %", &) ;
start2 = insert (start2,x);
}
printf("The second list is\n");
printlist (start2);
start2 = sortlist(start2);
printf("The sorted list2 is\n");
printlist (start2);
start3 = nmerge(startl,start?2);
printf("The nmerged list is\n");
printlist (start3);
}

/* A function to merge two sorted lists */
struct node *merge (struct node *p, struct node *q)

{
struct node *r=NULL, *t enp;

if (p == NULL)
ro=q;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0128.html (3 of 6) [30.06.2007 10:57:55]

MERGING OF TWO SORTED LISTS

el se
i f(g == NULL)
r = p;
el se
{
if (p->data < g->data)
{
r =p;
temp = p;
p = p->link;
tenmp->link = NULL;
}
el se
{
r =4q;
temp =q;
g =g->link;
tenmp->link = NULL;
}
while((p!'= NULL) && (q != NULL))
{
if (p->data < g->data)
{
tenmp->link =p;
p = p->link;

temp =tenp->link;
temp->link =NULL;

}
el se
{
temp->link =q;
g = g->link;
tenp =tenp->link;
tenp->link =NULL;
}
}
if (p'= NULL)
temp->link = p;
if (g !'= NULL)
temp->link = q;
}
return(r) ;
}
Explanation

If the following lists are given as input, then what would be the output of the program after each pass? This is shown
here:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0128.html (4 of 6) [30.06.2007 10:57:55]

MERGING OF TWO SORTED LISTS

p

N) 50 s) e LT
q
\‘1 15 25] ——»] 27] F—» 28] — 1™ nuLL

Two sorted lists before merging

rotemp

1D|

0] {30 | {70 [J»Nui

|
v
NULL
qQ

\'115 [F{es [z >z 1> no

After the first paas
r

T, |m1 T e

'1 Il IH 25] — 4w 27] P 28] T nuLL

NULL
After tha second pass
f termp \n‘
10 20 | [oeo] ™ 40 —wnuLL
MULL

] | (28] 27| M 2] TmNLL

After the third pass

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0128.html (5 of 6) [30.06.2007 10:57:55]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu296%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu297%5F1%5F0%2Ejpg

MERGING OF TWO SORTED LISTS

¥ P
I| | —I—H | |."'I"~ILJLL
F:il T 1" nu
MULL
After the fourth pass
F F‘
|..J =+ [1™ nun
FILr !_I'L—-FLV_\ T
I"-ILILL
After the hilth pass
¥
| \‘l [T~
o q
| | |
MLILL
Alter the soith pass
r p

10 20 [_\?[= 40| =T nuLL

temp
15 [25] 27] 2a] 1]

Final merged list

[_ﬁ PREV j [_ NEXT ﬂrj

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0128.html (6 of 6) [30.06.2007 10:57:55]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu298%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu299%5F1%5F0%2Ejpg

ERASING A LINKED LIST

= r

| 4mPREV | | NEXT Wi |

ERASING A LINKED LIST

I ntroduction

Erasing a linked list involves traversing the list starting from the first node, freeing the storage allocated to the nodes,
and then setting the pointer to the list to NULL. If p is a pointer to the start of the list, the actions specified through the

following code will erase the list:
while(p !'= NULL)

{
temp = p;
p = p->link;
free(t);

}

But a better strategy of erasing a list is to mark all the nodes of the list to be erased as free nodes without actually
freeing the storage of these nodes. That means to maintain this list, a list of free nodes, so that if a new node is
required it can be obtained from this list of free nodes.

Program

Here is a complete program that erases a list pointed to by p by adding the nodes of a list pointed by p to the free list.

include <stdio. h>

include <stdlib. h>

struct node

{

i nt data;

struct node *li nk;

1

struct node *insert(struct node *, int);
voi d erase(struct node **,struct node **);
void printlist (struct node *);

void erase (struct node **p, struct node **free)

{
struct node *tenp;
tenp = *p;
while (tenmp->link !'= NULL)
temrp = tenp ->link;
temp->link = (*free);
*free = *p;
*p = NULL;
}
struct node *insert(struct node *p, int n)
{

struct node *tenp;

i f (p==NULL)

{
p=(struct node *)nmall oc(sizeof (struct node));
i f(p==NULL)
{

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0129.html (1 of 3) [30.06.2007 10:57:56]

ERASING A LINKED LIST

printf("Error\n");

exit(0);

}

p-> data = n;

p-> link = NULL;
}
el se
{

temp = p;

while (tenp-> |ink!= NULL)
tenp = tenp-> |ink;
temp-> link = (struct node *)nalloc(sizeof (struct node));
if(temp -> link == NULL)
{
printf("Error\n");
exit(0);
}

tenp = tenp-> |ink;
tenp-> data n;
tenp-> |ink NULL;
}

return (p);

}

void printlist (struct node *p)

{
printf("The data values in the list are\n");
while (p!= NULL)

{
printf("%\t", p-> data);
p = p-> link;
}
}
void nain()
{ .
int n;
int x;

struct node *start = NULL
struct node *free=NULL;

/* this code will create a free list for the test purpose*/
printf("Enter the nunmber of nodes in the initial free list \n");
scanf (" %", &) ;

while (n-- >0)

{
printf("Enter the data values to be placed in a node\n");
scanf ("%d", &) ;
free = insert (free, x);
}
/[* this code will create a list to be erased*/

printf("Enter the nunber of nodes in the list to be created for
erasing \n");

scanf (" %", &n) ;

while (n-- >0)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0129.html (2 of 3) [30.06.2007 10:57:56]

ERASING A LINKED LIST

{
printf("Enter the data values to be placed in a node\n");
scanf ("%d", &) ;
start = insert (start,Xx);

}

printf("The free list islist is:\n");

printlist (free);

printf("The list to be erased is:\n");

printlist (start);

erase(&start, & ree);

printf("The free list after adding all the nodes fromthe list to

be erased is:\n");
printlist (free);
}

Explanation

The method of erasing a list requires adding all the nodes of the list to be erased to the list of free nodes, as shown
here.

o O B e e

List to e erased

frea lisi

\l | T [+ | 3 |—4+nu

Before erasing the list pointed o by p

%Iisl

LT3 T3> T 3 T 7

S e B N Iy I S I U

Aftar arasing the list pointed to by p

—

[@ rPREV |

—

NEXT s |

TN

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0129.html (3 of 3) [30.06.2007 10:57:56]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu302%5F1%5F0%2Ejpg

POLYNOMIAL REPRESENTATION

—

| 4mPREV |

—

| NEXT Wi |

POLYNOMIAL REPRESENTATION

I ntroduction

One of the problems that a linked list can deal with is manipulation of symbolic polynomials. By symbolic, we mean that

a polynomial is viewed as a list of coefficients and exponents. For example, the polynomial
3X2+2x+4,

can be viewed as list of the following pairs

(3,2),(2,1),(4,0)

Therefore, we can use a linked list in which each node will have three fields, as shown in Figure 20.10.

Exp | Coef |link

A polynomial 10x4 + 5x2 + 1 can be represented as shown here:

4 10 —_— b —_—— 1 =i 1l
Figure 20.10: Polynomial representation.

The procedure to add these two polynomials using the linked list is in the following program.

Program

include <stdio. h>
include <stdlib. h>
struct pnode

{ .
i nt exp;
doubl e coeff;
struct pnode *li nk;
}

struct pnode *insert(struct pnode *, int,double);

void printlist (struct pnode *);

struct pnode *pol yadd(struct pnode *, struct pnode *);
struct pnode *sortlist(struct pnode *);

struct pnode *insert(struct pnode *p, int e, double c)
{
struct pnode *tenp;
i f(p==NULL)
{
p=(struct pnode *)nmall oc(sizeof (struct pnode));
i f(p==NULL)
{

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0130.html (1 of 5) [30.06.2007 10:57:56]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D10%5F0%2Ejpg

POLYNOMIAL REPRESENTATION

printf("Error\n");
exit(0);
}
p-> exp = e
p- >coef f
p-> |ink

:C1
= NULL;
}
el se
{
temp = p;
while (tenp-> link!= NULL)
temp = tenmp-> |ink;
temp-> link = (struct pnode *)nall oc(sizeof (struct pnode));
if(temp -> link == NULL)
{
printf("Error\n");
exit(0);
}

temp = tenp-> |ink;
tenp-> exp = e;
t emp- >coeff = c;
temp-> |ink = NULL;
}

return (p);

}

/[* a function to sort a list */
struct pnode *sortlist(struct pnode *p)

{
struct pnode *tenpl, *tenp2, *max, *prev, *q;
g = NULL;
while(p !'= NULL)
{
prev = NULL;

max = tenpl = p;
temp2 = p -> link;
while (temp2 !'= NULL)

{

if(max -> exp < tenmp2 -> exp)
{

mex = tenpz;

prev = tenpl;

}
tenmpl = tenp2;
tenp2 = tenp2-> |ink;

}
i f(prev == NULL)
p = max -> |ink;
el se
prev -> link = max -> |ink;
max -> |ink = NULL;
if(g == NULL)
g = max; /* noves the node with highest data value in the |ist
pointed to by p to the list
pointed to by q as a first node*/
el se

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0130.html (2 of 5) [30.06.2007 10:57:56]

POLYNOMIAL REPRESENTATION

{
tenpl = q;
/* traverses the list pointed to by g to get pointer to its
| ast node */
while(tenpl -> link !'= NULL)
templ = tenmpl -> link;
templ -> link = nax; /* noves the node with highest data val ue
inthe list pointed to
by p tothe list pointed to by q at the end of |ist pointed by

q*/

}
}
return (q);
}
/[* A function to add two polynonials */
struct pnode *pol yadd(struct pnode *p, struct pnode *qQ)

{
struct pnode *r = NULL;
int e;
doubl e c;
whil e((p!=NULL) && (g !'= NULL))
{
i f(p->exp > g->exp)
{
r = insert(r, p->exp, p->coeff);
p = p->link;
}
el se
i f(p->exp < g->exp)
{
r = insert(r, g->exp, g->coeff);
g = g->link;
}
el se
{
c = p->coeff + g->coeff;
e = (- >exp;
r =insert(r, e, c);
p = p->link;
g = g->link;
}
while(p !'= NULL)
{
r = insert(r, p->exp,p->coeff);
p = p->link;
}
whi | e(g! =NULL)
{
r = insert(r, g->exp,q->coeff);
g = g->link;
}
return(r);
}

void printlist (struct pnode *p)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0130.html (3 of 5) [30.06.2007 10:57:56]

POLYNOMIAL REPRESENTATION

{
printf("The polynomal is\n");
while (p!'= NULL)
{
printf("% %f\t", p-> exp, p->coeff);
p = p-> link;
}
}
voi d nain()
{ .
int e
int n,i;
doubl e c;

struct pnode *polyl = NULL ;
struct pnode *pol y2=NULL;
struct pnode *result;
printf("Enter the terns in the polynomall \n");
scanf (" %", &) ;
i =1;
while (n-- >0)
{
printf("Enter the exponent and coefficient of the term nunber
%\ n",i);
scanf ("% %f", &e, &c);
polyl = insert (polyl, e, c);
}
printf("Enter the terns in the polynomal2 \n");
scanf (" %", &n) ;
i =1;
while (n-- >0)
{
printf("Enter the exponent and coefficient of the term nunber
%\ n",i);
scanf("%d % f", &e, &) ;
poly2 = insert (poly2,e,c);

}
pol yl = sortlist(polyl);
poly2 = sortlist(poly2);

printf("The polynomal 1 is\n");
printlist (polyl);

printf("The polynomal 2 is\n");
printlist (poly2);

result = pol yadd(pol y1, poly2);
printf("The result of addition is\n");
printlist (result);

}

Explanation
1. If the polynomials to be added have n and m terms, respectively, then the linked list representation of these
polynomials contains m and n terms, respectively.

2. Since pol yadd traverses each of these lists, sequentially, the maximum number of iterations that pol yadd will
make will not be more than m + n. So the computation time of pol yadd is O(m + n).

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0130.html (4 of 5) [30.06.2007 10:57:56]

POLYNOMIAL REPRESENTATION

~ = — =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0130.html (5 of 5) [30.06.2007 10:57:56]

REPRESENTATION OF SPARSE MATRICES

= o

| 4mPREV | | NEXT Wi |

REPRESENTATION OF SPARSE MATRICES

I ntroduction

A matrix is a two-dimensional data object made of m rows and n columns, therefore having m * n values. When m=n,
we call it a square matrix.

The most natural representation is to use two-dimensional array A[m][n] and access the element of ith row and jth
column as AJi][j]. If a large number of elements of the matrix are zero elements, then it is called a sparse matrix.

Representing a sparse matrix by using a two-dimensional array leads to the wastage of a substantial amount of space.
Therefore, an alternative representation must be used for sparse matrices. One such representation is to store only
non- zero elements along with their row positions and column positions. That means representing every non-zero
element by using triples (i, j, value), where i is a row position and j is a column position, and store these triples in a
linear list. It is possible to arrange these triples in the increasing order of row indices, and for the same row index in the
increasing order of column indices. Each triple (i,j,value) can be represented by using a node having four fields as
shown in the following:

Struct snode{

Int row, col,val;
Struct snode *next;

s

row ‘ col value‘ link

So a sparse matrix can be represented using a list of such nodes, one per non-zero element of the matrix. For
example, consider the sparse matrix shown in Figure 20.11.

0 2 0 0 2 0
0 0 0 1 0 5
0 0 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Figure 20.11: A sparse matrix.

This matrix can be represented using the linked list shown in Figure 20.12.

I..-'__pildl.-'__h 'ZI-'_plll-'- s IR =
Figure 20.12: Linked list representation of sparse matrix of Figure 20.11.

Program

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0131.html (1 of 6) [30.06.2007 10:57:57]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu309%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D11%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D12%5F0%2Ejpg

REPRESENTATION OF SPARSE MATRICES

Here is a program for the addition of two sparse matrices:

include <stdio. h>
include <stdlib. h>
struct snode
{
int row, col, val;
struct snode *I|ink;

s

struct snode *insert(struct snode *, int,int,int);
void printlist (struct snode *);

struct snode *sadd(struct snode *, struct snode *);
[/ struct pnode *sortlist(struct pnode *);

struct snode *insert(struct snode *p, int r,int c,int val)
{
struct snode *tenp;
i f(p==NULL)
{
p=(struct snode *)nall oc(sizeof (struct snode));
i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p->row = r;
p- >col
p->val = val;
p-> link = NULL;

I
(@]

}
el se
{
temp = p;
while (tenp-> link!= NULL)
temp = tenp-> |ink;
temp-> link = (struct snode *)nmall oc(sizeof (struct snode));
if(temp -> link == NULL)
{
printf("Error\n");
exit(0);
}
temp = tenp-> |ink;
tenp-> row = r;
t enp- >col = c;
t enp- >val =val ;
temp-> |ink = NULL;
}

return (p);

}

/* A function to add two sparse natrices */
struct snode *sadd(struct snode *p, struct snode *q)

{

struct snode *r = NULL;
int val;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0131.html (2 of 6) [30.06.2007 10:57:57]

REPRESENTATION OF SPARSE MATRICES

whi | e((p!=NULL) && (g !'= NULL))

{
i f(p->row < g->row
{
r = insert(r,p->row, p->col,p->val);
p = p->link;
}
el se
i f(p->row > g->row
{
r = insert(r,g->row, g->col, g->val);
g = g->link;
}
el se
i f(p->col < g->col)
{
r = insert(r, p->row, p->col, p->val);
p = p->link;
}
el se
i f(p->col > g->col)
{
r = insert(r,g->row, g->col,g->val);
g = g->link;
}
el se
{
val = p->val + g->val
r =insert(r, p->row, p->col,val);
p = p->link;
g = g->link;
}
}
while(p !'= NULL)
{
r =insert(r, p->row,p->col,p->val);
p = p->link;
}
whi | e(g! =NULL)
{
r = insert(r, g->row,qQ->col,g->val);
g = g->link;
}
return(r);
}
void printlist (struct snode *p)
{

printf("The resultant sparse matrix is\n");
whil e (p!= NULL)
{
printf("% % % d\n", p-> row, p->col, p->val);
p = p-> link;
}
}

void main()

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0131.html (3 of 6) [30.06.2007 10:57:57]

REPRESENTATION OF SPARSE MATRICES

{
int r,n,c,val;
struct snode *s1 = NULL ;
struct snode *s2=NULL,;
struct snode *result = NULL
printf("Enter the nunber of non-zero ternms in the sparse matrix1l \n");
scanf ("%", &n);
printf("Enter the terns in the sparse matrix1 in the increasing
order of row indices and for the same row index in the increasing order of
row i ndi ces and for the sane row index in the increasing order of colum
i ndices \n");
while (n-- > 0)
{
printf("Enter the row nunber, colum nunber, and val ue\n");
scanf ("% %%l", &, &c, &val);
sl =insert (si,r,c,val);
}
printf("Enter the nunber of non-zero terns in the sparse matrix1 \n");
scanf ("%d", &n) ;
printf("Enter the terns in the sparse matrix2 in the increasing
order of row indices and for the sanme row index in the increasing order of
row i ndi ces and for the sane row index in the increasing order of columm
i ndices \n");
while (n-- >0)
{
printf("Enter the row nunber, colum nunber, and val ue\n");
scanf ("% %%", &, &c, &val);
s2 = insert (s2,r,c,val);
}
result = sadd(sl, s2);
printf("The result of addition is\n");
printlist (result);

}

Explanation

1. In order to add two sparse matrices represented using the sorted linked lists as shown in the preceding
program, the lists are traversed until the end of one of the lists is reached.

2. In the process of traversal, the row indices stored in the nodes of these lists are compared. If they don't match, a
new node is created and inserted into the resultant list by copying the contents of a node with a lower value of
row index. The pointer in the list containing a node with a lower value of row index is advanced to make it point
to the next node.

3. If the row indices match, column indices for the corresponding row positions are compared. If they don't match,
a new node is created and inserted into the resultant list by copying the contents of a node with a lower value of
column index. The pointer in the list containing a node with a lower value of column index is advanced to make it
point to the next node.

4. If the column indices match, a new node is created and inserted into the resultant list by copying the row and
column indices from any of the nodes and the value equal to the sum of the values in the two nodes.

5. After this, the pointers in both the lists are advanced to make them point to the next nodes in the respective lists.
This process is repeated in each iteration. After reaching the end of any one of the lists, the iterations come to
an end and the remaining nodes in the list whose end has not been reached are copied, as it is in the resultant
list.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0131.html (4 of 6) [30.06.2007 10:57:57]

REPRESENTATION OF SPARSE MATRICES

Example

Consider the following sparse matrices:

0 0 5 0 0 1] 1] 0
0 1 0 0 0 3 0 1
| O 0 0 0| 0 1] 0 0 |
0 0 2 0 0 0 5 0
Sparse matnx a =parse matnx b

Pointer a
i|3fs p 2|2 |1 » 4|3 i
Painter b

223__,241__,' 43|5_.,ni|

If the procedure sadd is applied to the above linked list representations then we get the resultant list, as shown in
Figure 20.13.

1| 3| 6) ——{ 2] 2] &) — 2 |4 |1 }—= 4] 3|7 | —4—P=nil
Figure 20.13: Result of application of the procedure sadd.

This resultant list represents the matrix shown below:

o o jo|<
ol |0o

=] O | |O]h
oo =10

0

This matrix is an addition of the matrices of a and b, respectively.

Pointsto Remember

1. If the sparse matrices to be added have n and m non-zero terms, respectively, then the linked list representation
of these sparse matrices contains mand n terms, respectively.

2. Since sadd traverses each of these lists sequentially, the maximum number of iterations that sadd will make will

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0131.html (5 of 6) [30.06.2007 10:57:57)

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu313%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu314%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D13%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu314%5F2%5F0%2Ejpg

REPRESENTATION OF SPARSE MATRICES

not be more than m+n. So the computation time of sadd is O(m+n).

[_ﬁ FREV j [- — *j

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0131.html (6 of 6) [30.06.2007 10:57:57]

CIRCULAR LINKED LISTS

—

| 4mPREV | | NEXT Wi |

CIRCULAR LINKED LISTS

I ntroduction

A circular list is a list in which the link field of the last node is made to point to the start/first node of the list, as shown in
Figure 20.14.

zn_‘"l 5 "m T s

start
Figure 20.14: A circular list.

In the case of circular lists, the empty list also should be circular. So to represent a circular list that is empty, it is
required to use a header node or a head-node whose data field contents are irrelevant, as shown in Figure 20.15.

A

» o ‘_’lso T 7

Header Node

start

Header Node

Figure 20.15: (A) A circular list with head node, (B) an empty circular list.

Program

Here is a program for building and printing the elements of the circular linked list.

i nclude <stdio. h>
include <stdlib. h>

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0132.html (1 of 3) [30.06.2007 10:57:58]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D14%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D15%5F0%2Ejpg

CIRCULAR LINKED LISTS

struct node

{
i nt data;
struct node *li nk;
i
struct node *insert(struct node *p, int n)
{

struct node *tenp;
[* if the existing list is enpty then insert a new node as the
starting node */
i f(p==NULL)
{
p=(struct node *)mal |l oc(sizeof (struct node)); /* creates new
node data val ue passes
as paraneter */
i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p-> data = n;
p-> link = p; /* nakes the pointer pointing to itself because it
is acircular list*/
}
el se
{
temp = p;
/* traverses the existing list to get the pointer to the | ast node of
it */
while (tenp-> link !'= p)
tenp = tenp-> |ink;
tenp-> link = (struct node *)mal | oc(sizeof (struct node)); /*
creat es new node using
data val ue passes as
paraneter and puts its
address in the link field
of |last node of the
existing list*/
if(temp -> link == NULL)

{
printf("Error\n");
}
exit(0);
tenp = tenp-> link;
tenp-> data = n;
temp-> link = p;
}
return (p);
}
void printlist (struct node *p)
{
struct node *tenp;
tenp = p;
printf("The data values in the list are\n");
i f(p!'= NULL)
{

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0132.html (2 of 3) [30.06.2007 10:57:58]

CIRCULAR LINKED LISTS

do

{
printf(%l\t",tenp->data);

t enp=t enp- >l i nk;
} while (temp!= p)

}
el se
printf("The list is enpty\n");
}
voi d mai n()
{ .
int n;
int x;
struct node *start = NULL ;
printf("Enter the nodes to be created \n");
scanf ("%", &n);
while (n- >0)
{
printf("Enter the data values to be placed in a
node\ n");
scanf (" %", &x) ;
start = insert (start, x);
}
printf("The created list is\n");
printlist (start);
}
Explanation

The program appends a new node to the existing list (that is, it inserts a new node in the existing list at the end), and it
makes the link field of the newly inserted node point to the start or first node of the list. This ensures that the link field of
the last node always points to the starting node of the list.

- -

| 4mPREV | | MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0132.html (3 of 3) [30.06.2007 10:57:58]

SPLITTING A LIST WITH 2N NODES INTO TWO SEPARATE AND EQUAL LISTS

= o

| 4mPREV | | NEXT Wi |

SPLITTING A LIST WITH 2N NODESINTO TWO SEPARATE AND EQUAL LISTS

I ntroduction

If the circular linked list has 10 nodes, then the two lists have 5 nodes each. The procedure for splitting a circular list
with 2n nodes into two equal circular lists is given here:

Program

include <stdio. h>
include <stdlib. h>
struct node

{
int data;
struct node *li nk;
b
void split(struct node *p, struct node **q, int n)
{
struct node *tenp;
int i =1;
temp = p;
while(i < n)
{
temp = tenp->link;
i ++;
}

*q = tenp->link;
temp->link = p;
tenp = *q;
while(tenmp->link !'= p)
temp = tenp ->link;
tenmp->link = *q;
}

struct node *insert(struct node *p, int n)

{

struct node *tenp;

[* if the existing list is enpty then insert a new node as the
starting node */

i f(p==NULL)

{

p=(struct node *)mall oc(sizeof (struct node)); /* creates new node

dat a val ue passes

as paraneter */

i f(p==NULL)
{
printf("Error\n");

exit(0);
}

p-> data = n;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0133.html (1 of 3) [30.06.2007 10:57:58]

SPLITTING A LIST WITH 2N NODES INTO TWO SEPARATE AND EQUAL LISTS

p-> link = p; /* nakes the pointer point to itself because it is
acircular list*/
}
el se
{
tenmp = p;
/* traverses the existing list to get the pointer to the |ast node of
it */
while (tenp->1link !'= p)
temp = tenp-> |ink;
temp-> link = (struct node *)mall oc(sizeof (struct node)); /*
creates new node using
dat a val ue passes as
paraneter and puts its
address in the link field
of | ast node of the
existing list*/
if(temp -> link == NULL)

{
printf("Error\n");
exit(0);
}
temp = tenp-> |ink;
tenp-> data = n;
temp-> link = p;
}
return (p);
}
void printlist (struct node *p)
{
struct node *tenp;
tenp = p;
printf("The data values in the list are\n");
i f(p!= NULL)
do
{
printf("%\t",tenp->data);
t emp=t enp- >l i nk;
} while (tenp!= p);
el se
printf("The list is enpty\n");
}
void nain()
{ .
int n,num
int x;

struct node *start = NULL

struct node *start 1=NULL;

printf("Enter the value of n \n");

scanf ("%", &n) ;

num = n;

n*=2,

/* this will create a circular list with 2n nodes*/
while (n-- > 0)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0133.html (2 of 3) [30.06.2007 10:57:58]

SPLITTING A LIST WITH 2N NODES INTO TWO SEPARATE AND EQUAL LISTS

{

printf("Enter the data values to be placed in a node\n");
scanf ("%d", &x) ;
start = insert (start, x);
}
printf("The created list is\n");
printlist (start);
split(start, &startl, nunj;
printf("The first list is:\n");
printlist(start);
printf("The second list is:\n");
printlist(startl);

}
Explanation

Consider a circular list containing 2n nodes, as shown in Figure 20.16.

v

P

Figure 20.16: List containing 2n nodes.

To split this list into two equal lists, it is required to traverse the list up to the nth node and store the link of the nth node,
which is the address of (n+1)th node in the pointer, say q. After this, make the link field of the nth node point to the first
node pointed to by p. Then traverse the list starting from the node pointed to by q up to the end. Then make the link
field of the last node point to the node pointed to by g. The result of this is shown in Figure 20.17.

P q
Figure 20.17: Splitting of a circular list.

- -

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0133.html (3 of 3) [30.06.2007 10:57:58]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D16%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D17%5F0%2Ejpg

MERGING OF TWO CIRCULARLISTS

= r

| 4mPREV | | NEXT Wi |

MERGING OF TWO CIRCULARLISTS

Introduction
You can merge two lists into one list. The following program merges two circular lists.

Program

i nclude <stdio. h>
include <stdlib. h>
struct node

{

int data;

struct node *|i nk;

s

struct node *insert(struct node *p, int n)

{

struct node *tenp;

[* if the existing list is enpty then insert a new node as the
starting node */

i f (p==NULL)

{

p=(struct node *)nalloc(sizeof (struct node)); /* creates new node

dat a val ue passes

as paraneter */

i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p-> data = n;
p-> link = p; /* makes the pointer pointing to itself because it
is acircular list*/
}
el se
{
tenmp = p;

/* traverses the existing list to get the pointer to the | ast node of
it */
while (tenp->1link !'= p)
temp = tenp-> |ink;
temp-> link = (struct node *)nalloc(sizeof (struct node)); /*
creates new node using
dat a val ue passes as
parameter and puts its
address in the link field
of | ast node of the
existing list*/
if(tenp -> link == NULL)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0134.html (1 of 4) [30.06.2007 10:57:59]

MERGING OF TWO CIRCULARLISTS

{
printf("Error\n");

exit(0);
}
tenp = tenp-> link;
tenp-> data n;
tenmp-> |ink p;
}

return (p);

}

void printlist (struct node *p)

{
struct node *tenp;
temp = p;
printf("The data values in the list are\n");
i f(p!= NULL)
{
do
{
printf("%\t",tenp->data);
t emp=t enp- >l i nk;
} while (tenp!= p);
}

el se
printf("The list is enpty\n");
}
struct node *merge(struct node *p, struct node *q)
{
struct node *tenmp=NULL;
struct node *r=NULL;
r=op;
tenp = p;
while(tenmp->link != p)
temp = tenp->link;
temp->link = q;
tenp = Q;
while(tenmp->link !'= Q)
temp = tenp->link;
temp->link = r;
return(r);

}

voi d mai n()

{ .
int n;
int x;
struct node *start1=NULL ;
struct node *start2=NULL;
struct node *start3=NULL;

/* this will create the first circular |ist nodes*/
printf("Enter the nunber of nodes in the first list \n");
scanf ("%", &n) ;

while (n-- >0)

{

printf("Enter the data value to be placed in a node\n");

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0134.html (2 of 4) [30.06.2007 10:57:59]

MERGING OF TWO CIRCULARLISTS

scanf ("%d", &) ;

startl = insert (startl, x);
}
printf("The first list is\n");
printlist (startl);

/* this will create the second circular |ist nodes*/

printf("Enter the nunmber of nodes in the second list \n");

scanf ("%d", &n);

while (n-- >0)

{

printf("Enter the data value to be placed in a node\n");

scanf ("%d", &) ;
start2 = insert (start2, x);

}

printf("The second list is:\n");

printlist (start2);

start3 = nerge(startl,start?2);
printf("The resultant list is:\n");
printlist(start3);

}
Explanation
In order to merge or concatenate the two non-empty circular lists pointed to by p and q, it is required to make the start
of the resultant list p. Then the list pointed to by p is required to be traversed until its end, and the link field of the last

node must become the pointer g. After that, the list pointed to by q is required to be traversed until its end, and the link
field of the last node is required to be made p.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0134.html (3 of 4) [30.06.2007 10:57:59]

MERGING OF TWO CIRCULARLISTS

q

The given lists

'

T [+ [+

> ——>| —+—»

The resultant list

- -

[4w FREV | [NexTwp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0134.html (4 of 4) [30.06.2007 10:57:59]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu325%5F1%5F0%2Ejpg

REVERSING THE DIRECTION OF LINKSIN A SINGLY LINKED CIRCULAR LIST

= o

| 4mPREV | | NEXT Wi |

REVERSING THE DIRECTION OF LINKSIN A SINGLY LINKED CIRCULAR LIST

Introduction
You can reverse the direction of links in the circular list. If you do so, each link should be reversed.

Program

i nclude <stdio. h>
include <stdlib. h>
struct node
{
int data;
struct node *link;
s
/* A function to reverse a singly linked circular list */
struct node *reverselist(struct node *p)
{
struct node *tenp;
struct node *prev
struct node *curr;
if(p !'= NULL)
{
curr = p;
tenp = curr;
whil e(curr->link !
{
curr = curr->link;
temp ->link = preyv;
prev t enp;
tenp curr;

NULL;

P)

}
temp ->link = prev;
p->link = tenp;

p= tenp;
}
return(p);

}

struct node *insert(struct node *p, int n)
{
struct node *tenp;
[* if the existing list is enpty then insert a new node as the
starting node */
i f (p==NULL)
{
p=(struct node *)mall oc(sizeof (struct node)); /* creates new node
data val ue passes
as paraneter */

i f (p==NULL)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0135.html (1 of 5) [30.06.2007 10:57:59]

REVERSING THE DIRECTION OF LINKSIN A SINGLY LINKED CIRCULAR LIST

{
printf("Error\n");

exit(0);
}
p-> data
p-> link
a circular list*/

}

el se

{

n,
p; /* makes the pointer point to itself because it is

tenp = p;
/* traverses the existing list to get the pointer to the |ast node of
it */
while (tenmp-> link = p)
temp = tenp-> |ink;
temp-> link = (struct node *)nalloc(sizeof (struct node)); /*
creates new node using
dat a val ue passes as
paraneter and puts its

address in the link field
of | ast node of the
existing list*/

if(tenp -> link == NULL)

{

printf("Error\n");

exit(0);

}

temp = tenp-> |ink;

tenp-> data n;

tenp-> link p;

}

return (p);

}

void printlist (struct node *p)

{
struct node *tenp;
temp = p;
printf("The data values in the list are\n");
i f(p!= NULL)
{
do
{
printf("%\t",tenp->data);
t enp=t enp- >l i nk;
} while (tenp!= p);
}
el se
printf("The list is enpty\n");
}
void main()
{ .
int n;
int x;
struct node *start = NULL
struct node *start1=NULL;
/* this will create at circular list */

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0135.html (2 of 5) [30.06.2007 10:57:59]

REVERSING THE DIRECTION OF LINKSIN A SINGLY LINKED CIRCULAR LIST

printf("Enter the nunber of nodes in the list \n");
scanf (" %", &n) ;

while (n-- >0)

{

printf("Enter the data value to be placed in a node\n");
scanf ("%d", &) ;
start = insert (start, x);

}

printf("The list is\n");

printlist (start);

startl = reverselist(start);
printf("The reversed list is:\n");
printlist(startl);

}
Explanation
To reverse the links of a singly linked circular list, the list is required to be traversed from the start node until a node is
encountered whose link points to the start node (that is, the last node in the list). For this, it is required to maintain the

pointers to the current node and the previous node. An additional temporary pointer pointing to the current node is also
required to be maintained. Initially, the current, temporary, and previous pointers are set as follows:

1. Set the current as well as the temporary pointer to the start pointer.

2. Set the previous pointer to NULL.

3. The pointers are manipulated in each iteration as follows:

i. Advance the current pointer to make it point to the next node.
ii. Setthe link field of the node pointed to by the temporary pointer to the value of the previous pointer.
iii. Make the previous pointer point to the node pointed to by the temporary pointer.
iv. Make the temporary pointer point to the node pointed to by the current pointer.
v. When the last node is encountered, its link field is made to point to the previous node. After that, the link

field of the node pointed to by the start pointer (first node) is made to point to this last node. And the start
pointer is made to point to this last node. These manipulations are shown in the following diagrams.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0135.html (3 of 5) [30.06.2007 10:57:59]

REVERSING THE DIRECTION OF LINKSIN A SINGLY LINKED CIRCULAR LIST

P rien ey LI L

-+ -+

4] curm
tamp
The given list with initial pointers
-+ o
X
P CLir
prev mp
MULL
After tha first ileration
——
| X
p CLUIrr
prey tenp
NULL
After the second iteration
l |'L [+
P curr
prev terhp
MULL
After the third iteration
l l |
p

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0135.html (4 of 5) [30.06.2007 10:57:59]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu329%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu330%5F1%5F0%2Ejpg

REVERSING THE DIRECTION OF LINKSIN A SINGLY LINKED CIRCULAR LIST

e = e =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0135.html (5 of 5) [30.06.2007 10:57:59]

DOUBLY LINKED LISTS

= o

| 4mPREV | | NEXT Wi |

DOUBLY LINKED LISTS

I ntroduction

The following are problems with singly linked lists:

1. A singly linked list allows traversal of the list in only one direction.

2. Deleting a node from a list requires keeping track of the previous node, that is, the node whose link points to the
node to be deleted.

3. If the link in any node gets corrupted, the remaining nodes of the list become unusable.

These problems of singly linked lists can be overcome by adding one more link to each node, which points to the
previous node. When such a link is added to every node of a list, the corresponding linked list is called a doubly linked
list. Therefore, a doubly linked list is a linked list in which every node contains two links, called left link and right link,
respectively. The left link of the node points to the previous node, whereas the right points to the next node. Like a
singly linked list, a doubly linked list can also be a chain or it may be circular with or without a header node. If it is a
chain, the left link of the first node and the right link of the last node will be NULL, as shown in Figure 20.18.

start—m — — —» NULL
<

NULL

Figure 20.18: A doubly linked list maintained as chain.

If it is a circular list without a header node, the right link of the last node points to the first node. The left link of the first
node points to the last node, as shown in Figure 20.19.

¥
start —» I.'—_h-l —— ,r

Figure 20.19: A doubly linked list maintained as a circular list.

If it is a circular list with a header node, the left link of the first node and the right link of the last node point to the
header node. The right link of the header node points to the first node and the left link of the header node points to the
last node of the list, as shown in Figure 20.20.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0136.html (1 of 4) [30.06.2007 10:58:00]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D18%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D19%5F0%2Ejpg

DOUBLY LINKED LISTS

Header Node

v T T

Figure 20.20: A doubly linked list maintained as a circular list with a header node.

Therefore, the following representation is required to be used for the nodes of a doubly linked list.
struct dnode

{
i nt data;
struct dnode *left, *right;
}
Program

A program for building and printing the elements of a doubly linked list follows:

include <stdio. h>

include <stdlib. h>

struct dnode

{

i nt data;

struct dnode *left, *right;

s

struct dnode *insert(struct dnode *p, struct dnode **q, int n)

{

struct dnode *tenp;

[* if the existing list is enpty then insert a new node as the
starting node */

i f(p==NULL)

{
p=(struct dnode *)nmall oc(sizeof (struct dnode)); /* creates new
node data val ue
passed as paraneter */

i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p->data = n;
p-> left = p->right =NULL,;

*q =p;
}
el se
{

temp = (struct dnode *)mall oc(sizeof (struct dnode)); /* creates
new node usi ng
data val ue passed as
paraneter and puts its

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0136.html (2 of 4) [30.06.2007 10:58:00]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D20%5F0%2Ejpg

DOUBLY LINKED LISTS

address in the tenp

*/
if(temp == NULL)
{
printf("Error\n");
exit(0);
}
tenp->data = n;
temp->left = (*q);
tenmp->right = NULL;
(*q)->right = tenp;
(*q) = tenp;
}
return (p);
}
void printfor(struct dnode *p)
{
printf("The data values in the list in the forward order are:\n");
while (p!= NULL)
{
printf("%\t", p-> data);
p = p->right;
}
}
void printrev(struct dnode *p)
{

printf("The data values in the list in the reverse order are:\n");
while (p!'= NULL)

{

printf("%\t", p->data);
p = p->left;

}
}
void nain()
{ .
Int n;
int Xx;
struct dnode *start = NULL ;
struct dnode *end = NULL;
printf("Enter the nodes to be created \n");
scanf ("%d", &n) ;
while (n-- >0)
{
ntf("Enter the data values to be placed in a node\n");

scanf ("%d", &x) ;

start = insert (start, &end,x);
}
printf("The created list is\n");
printfor (start);
printrev(end);

pr

}

Explanation

1. This program uses a strategy of inserting a node in an existing list to create it. For this, an i nsert function is

used. The i nsert function takes a pointer to an existing list as the first parameter.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0136.html (3 of 4) [30.06.2007 10:58:00]

DOUBLY LINKED LISTS

2. The pointer to the last node of a list is the second parameter. A data value with which the new node is to be
created is the third parameter. This creates a new node using the data value, appends it to the end of the list,
and returns a pointer to the first node of the list. Initially, the list is empty, so the pointer to the start node is
NULL. When i nsert is called the first time, the new node created by the i nsert becomes the start node.

3. Subsequently, i nsert creates a new node that stores the pointer to the created node in a temporary pointer.

Then the left link of the node pointed to by the temporary pointer becomes the last node of the existing list, and
the right link points to NULL. After that, it updates the value of the end pointer to make it point to this newly

appended node.

4. The main function reads the value of the number of nodes in the list, and calls i nsert that many times by going
in a whi | e loop, in order to get a doubly linked list with the specified number of nodes created.

— —

| 4mPREY | | NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0136.html (4 of 4) [30.06.2007 10:58:00]

INSERTION OF A NODE IN A DOUBLY LINKED LIST

= o

| 4mPREV | | NEXT Wi |

INSERTION OF A NODE IN A DOUBLY LINKED LIST

Introduction
The following program inserts the data in a doubly linked list.

Program

include <stdio. h>
include <stdlib. h>
struct dnode

{

i nt data;

struct node *left, *right;

}

struct dnode *insert(struct dnode *p, struct dnode **q, int n)
{

struct dnode *tenp;

[* if the existing list is enpty then insert a new node as the
starting node */

i f(p==NULL)

{
p=(struct dnode *)nmall oc(sizeof (struct dnode)); /* creates new
node data val ue
passed as paraneter */

i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p-> data = n;
p-> left = p->right =NULL
*q =p
}
el se
{

temp = (struct dnode *)mall oc(sizeof (struct dnode)); /* creates
new node usi ng
dat a val ue passed as
paraneter and puts its
address in the tenp
*/
i f(temp == NULL)
{
printf("Error\n");
exi t(0);
}
tenp-> data = n;
temp->left = (*q);
tenmp->right = NULL;
(*q) = tenp;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0137.html (1 of 4) [30.06.2007 10:58:00]

INSERTION OF A NODE IN A DOUBLY LINKED LIST

}
return (p);
}
void printfor(struct dnode *p)
{
printf("The data values in the list in the forward order are:\n");
while (p!= NULL)
{
printf("%\t", p-> data);
p = p-> right;
}
}

/* A function to count the nunber of nodes in a doubly linked Iist */
i nt nodecount (struct dnode *p)

{
i nt count =0;
while (p !'= NULL)
{
count ++;
p = p->right;
}
return(count);
}

/* a function which inserts a newy created node after the specified
node in a doubly

linked list */
struct node * new nsert (struct dnode *p, int node_no, int value)

{

struct dnode *tenp, * tenpl,

int i;

if (node_no <= 0 || node_no > nodecount (p))

{

printf("Error! the specified node does not exist\n");
exit(0);

}

if (node_no == 0)

{

temp = (struct dnode *)malloc (sizeof (struct dnode));
if (temp == NULL)

{

printf(" Cannot allocate \n");
exit (0);

}

tenmp -> data = val ue

temp -> right = p;

temp->left = NULL

p =tenp ;

}

el se

{

temp = p ;

i = 1;

while (i < node_no)

{

o= i+1;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0137.html (2 of 4) [30.06.2007 10:58:00]

INSERTION OF A NODE IN A DOUBLY LINKED LIST

temp = tenp-> right ;

}

templ = (struct dnode *)malloc (sizeof(struct dnode));
if (temp == NULL)

{

printf("Cannot allocate \n");
exit(0);

}

tenmpl -> data = val ue ;

templ -> right = tenp -> right;
templ -> left = tenp;
templ->right->left = tenpl;
templ->left->right = tenpl

}
return (p);
}
voi d main()
{ .
int n;
int x;

struct dnode *start = NULL ;

struct dnode *end = NULL;

printf("Enter the nodes to be created \n");

scanf (" %", &n) ;

while (n- >0)

{

printf("Enter the data values to be placed in a node\n");

scanf (" %", &) ;
start = insert (start, &end,x);

}

printf("The created list is\n");

printfor (start);

printf("enter the node nunber after which the new node is to be

i nserted\n");

scanf ("%", &n) ;

printf("enter the data value to be placed in the new node\n");

scanf (" %", &x) ;

start=newi nsert(start, n, x);

printfor(start);

}

Explanation

1. Toinsert a new node in a doubly linked chain, it is required to obtain a pointer to the node in the existing list
after which a new node is to be inserted.

2. To obtain this pointer, the node number after which the new node is to be inserted is given as input. The nodes
are assumed to be numbered as 1,2,3,..., etc., starting from the first node.

3. The list is then traversed starting from the start node to obtain the pointer to the specified node. Let this pointer
be x. A new node is then created with the required data value, and the right link of this node is made to point to
the node to the right of the node pointed to by x. And the left link of the newly created node is made to point to
the node pointed to by x. The left link of the node which was to the right of the node pointed to by x is made to
point to the newly created node. The right link of the node pointed to by x is made to point to the newly created
node.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0137.html (3 of 4) [30.06.2007 10:58:00]

INSERTION OF A NODE IN A DOUBLY LINKED LIST

e = e =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0137.html (4 of 4) [30.06.2007 10:58:00]

DELETING A NODE FROM A DOUBLY LINKED LIST

= o

| 4mPREV | | NEXT Wi |

DELETING A NODE FROM A DOUBLY LINKED LIST

Introduction
The following program deletes a specific node from the linked list.

Program

include <stdio. h>
include <stdlib. h>
struct dnode

{

i nt data;

struct dnode *left, *right;

}

struct dnode *insert(struct dnode *p, struct dnode **q, int n)
{

struct dnode *tenp;
[* if the existing list is enpty then insert a new node as the
starting node */
i f(p==NULL)
{
p=(struct dnode *)nmal |l oc(si zeof (struct dnode)); /* creates new node
dat a val ue
passed as paraneter */

i f(p==NULL)
{
printf("Error\n");
exit(0);
}
p-> data = n;
p-> left = p->right =NULL
*q =p;
}
el se
{

temp = (struct dnode *)mall oc(sizeof (struct dnode)); /* creates
new node usi ng
dat a val ue passed as
paraneter and puts its
address in the tenmp

*/
i f(temp == NULL)
{
printf("Error\n");
exit(0);
}

tenp-> data = n;

temp->left = (*q);
t enp- >ri ght NULL;
(*q)->right t enp;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0138.html (1 of 3) [30.06.2007 10:58:01]

DELETING A NODE FROM A DOUBLY LINKED LIST

(*aq) = tenp;
}
return (p);
}
void printfor(struct dnode *p)
{
printf("The data values in the list in the forward order are:\n");
while (p!= NULL)
{
printf("%\t", p-> data);
p = p->right;
}
}

/* A function to count the nunber of nodes in a doubly linked list */
i nt nodecount (struct dnode *p)

{
i nt count =0;
while (p !'= NULL)
{
count ++;
p = p->right;
}
return(count);
}

/* a function which inserts a newy created node after the specified
node in a doubly
linked list */
struct dnode * delete(struct dnode *p, int node_no, int *val)

{
struct dnode *tenp , *prev=NULL
int i;
if (node_no <= 0 || node_no > nodecount (p))
{
printf("Error! the specified node does not exist\n");
exit(0);
}
if (node_no == 0)
{
temp = p;

p = tenp->right;
p->left = NULL;

*val = tenp->dat a;
return(p);
}
el se
{
temp = p ;
i = 1;
while (i < node_no)
{
= i+1;
prev = tenp;
temp = tenp-> right ;
}

prev->right = tenp->right;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0138.html (2 of 3) [30.06.2007 10:58:01]

DELETING A NODE FROM A DOUBLY LINKED LIST

i f(temp->right !'= NULL)
temp->right->left = prev;
*val = tenp->data;
free(tenp);
}

}

return (p);

voi d mai n()
{ .
int n;
int x;
struct dnode *start = NULL ;
struct dnode *end = NULL;
printf("Enter the nodes to be created \n");
scanf ("9%d", &n);
while (n-- >0)
{
ntf("Enter the data values to be placed in a node\n");

scanf ("%d", &x) ;

start = insert (start, &end,x);
}
printf("The created list is\n");
printfor (start);
printf("enter the nunber of the node which is to be deleted\n");
scanf ("%", &n) ;
start=del ete(start, n, &);
printf("The data value of the node deleted fromlist is :
%\ n", Xx);

printf("The list after deletion of the specified node is :\n");
printfor(start);

pr

}

Explanation

1. To delete a node from a doubly linked chain, it is required to obtain a pointer to the node in the existing list that
appears to the left of the node which is to be deleted.

2. To obtain this pointer, the node number which is to be deleted is given as input. The nodes are assumed to be
numbered 1,2,3,..., etc., starting from the first node.

3. The list is then traversed starting from the start node to obtain the pointer to the specified node. Let this pointer
be x. A pointer to the node to the right of the node x is also obtained. Let this be pointer y (this is a pointer to the
node to be deleted). The right link of the node pointed to by x is the node pointing to the node to which the right
link of the node pointed to by y points. The left link of the node to the right of the node pointed to by y is made to
point to x. The node pointed to by y is then freed.

- =

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0138.html (3 of 3) [30.06.2007 10:58:01]

APPLICATION OF DOUBLY LINKED LISTSTO MEMORY MANAGEMENT

= o

| 4mPREV | | NEXT Wi |

APPLICATION OF DOUBLY LINKED LISTSTO MEMORY MANAGEMENT

I ntroduction

A doubly linked list is used to maintain both the list of allocated blocks and the list of free blocks by the memory
manager of the operating system. To keep track of the allocated and free portions of memory, the memory manager is
required to maintain a linked list of allocated and free segments. Each node of this list contains a starting address, size,
and status of the segment. This list is kept sorted by the starting address field to facilitate the updating, because when
a process terminates, the memory segment allocated to it becomes free, and so if any of the segments are freed, then
they can be merged with the adjacent segment, if the adjacent segment is already free. This requires traversal of the
list both ways to find out whether any of the adjacent segments are free. So this list is required to be maintained as a
doubly linked list. For example, at a particular point in time, the list may be as shown in Figure 20.21.

start —™h |0 |10 —"'m 100 | 50 "'—'_p:;' 150 oo -

Figure 20.21: Before termination of process p1l.

If the process pl terminates, it is required to be modified as shown in Figure 20.22.

stat—> h [o [150] e=>p2| 150 00| T™

Figure 20.22: After termination of process p1.

General Commentson Linked Lists

1. Alinked list is a dynamic data structure that can grow and shrink based on need.
2. The elements are not necessarily at a fixed distance apart.

3. In alinked list, the elements are placed in hon-contiguous blocks of memory, and each block is linked to its
previous block.

4. To link the next element to the previous element, the address of the next element is stored in the previous
element itself.

5. Insertion or deletion at any arbitrary position in the linked list can be done easily, since it requires adjustment of
only a few pointers.

6. Linked lists can be used for manipulation of symbolic polynomials.
7. Alinked list is suitable for representation of sparse matrices.
8. A circular list is a list in which the link field of the last node is made to point to the start/first node of the list

9. A doubly linked list (DLL) is a linked list in which every node contains two links, called the left link and right link,
respectively.

10. The left link of the node in a DLL is made to point to the previous node, whereas the right link is made to point to
the next node.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0139.html (1 of 2) [30.06.2007 10:58:02]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D21%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig20%2D22%5F0%2Ejpg

APPLICATION OF DOUBLY LINKED LISTSTO MEMORY MANAGEMENT

11. A DLL can be traversed in both directions.

12. Having two pointers in a DLL provides safety, because even if one of the pointers get corrupted, the node still
remains linked.

13. Deleting a particular node from a list, therefore, does not require keeping track of the previous node in a DLL.

Exercises

1. Write a C program to delete a node with the minimum value from a singly linked list.

2. Write a C program that will remove a specified node from a given doubly linked list and insert it at the end of the
list.

3. Write a C program to transform a circular list into a chain.

4. Write a C program to merge two given lists A and B to form C in the following manner:
The first element of C is the first element of A and the second element of C is the first element of B. The second
elements of A and B become the third and fourth elements of C, and so on. If either A or B gets exhausted, the

remaining elements of the other are to be copied to C.

5. Write a C program to delete all occurrences of x from a given singly linked list.

—

| 4mPREV |

-

| NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0139.html (2 of 2) [30.06.2007 10:58:02]

Chapter 21: Trees

= o

| 4mPREV | | NEXT Wi |

Chapter 21: Trees
THE CONCEPT OF TREES

Introduction

Trees are used to impose a hierarchical structure on a collection of data items. For example, we need to impose a
hierarchical structure on a collection of data items while preparing organizational charts and geneologies to represent
the syntactic structure of a source program in compilers. So the study of trees as one of the data structures is
important.

Definition of a Tree

A tree is a set of one or more nodes T such that:

i. there is a specially designated node called a root

ii. The remaining nodes are partitioned into n disjointed set of nodes Ty, T,,...,T , each of which is a tree.

A tree strucutre is shown in Figure 21.1.

Figure 21.1: A tree structure.
This is a tree because it is a set of nodes {A,B,C,D,E,F,G,H,I}, with node A as a root node and the remaining nodes
partitioned into three disjointed sets {B,G,H,1}, { C,E,F} and {D}, respectively. Each of these sets is a tree because each
satisfies the aforementioned definition properly.

Shown in Figure 21.2 is a structure that is not a tree.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0140.html (1 of 2) [30.06.2007 10:58:02]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D1%5F0%2Ejpg

Chapter 21: Trees

Figure 21.2: A non-tree structure.

Even though this is a set of nodes {A,B,C,D,E,F,G,H,I}, with node A as a root node, this is not a tree because the fact
that node E is shared makes it impossible to partition nodes B through | into disjointed sets.

Degreeof aNodeof aTree

The degree of a node of a tree is the number of subtrees having this node as a root. In other words, the degree is the
number of descendants of a node. If the degree is zero, it is called a terminal or leaf node of a tree.

Degreeof aTree

The degree of a tree is defined as the maximum of degree of the nodes of the tree, that is, degree of tree = max
(degree(node i) for | =1 to n)

L evel of a Node

We define the level of the node by taking the level of the root node as 1, and incrementing it by 1 as we move from the
root towards the subtrees. So the level of all the descendants of the root nodes will be 2. The level of their descendants
will be 3, and so on. We then define the depth of the tree to be the maximum value of the level of the node of the tree.

- -

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0140.html (2 of 2) [30.06.2007 10:58:02]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D2%5F0%2Ejpg

BINARY TREE AND ITS REPRESENTATION

| NEXT Wi |

—

| 4mPREV |

BINARY TREE AND ITSREPRESENTATION

I ntroduction

A binary tree is a special case of tree as defined in the preceding section, in which no node of a tree can have a
degree of more than 2. Therefore, a binary tree is a set of zero or more nodes T such that:

i. there is a specially designated node called the root of the tree

ii. the remaining nodes are partitioned into two disjointed sets, T, and T,, each of which is a binary tree. T, is

called the left subtree and T, is called right subtree, or vice-versa.

A binary tree is shown in Figure 21.3.

Figure 21.3: Binary tree structure.

So, for a binary tree we find that:

i. The maximum number of nodes at level i will be 2i"1

ii. If kis the depth of the tree then the maximum number of nodes that the tree can have is
2k —1=2kT14+2k724+ 420

Also, there are skewed binary trees, such as the one shown in Figure 21.4.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0141.html (1 of 6) [30.06.2007 10:58:03]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D3%5F0%2Ejpg

BINARY TREE AND ITS REPRESENTATION

S

Left Skewed Right Skewed
Figure 21.4: Skewed trees.

A full binary tree is a binary of depth k having 2k — 1 nodes. If it has < 2K — 1, it is not a full binary tree. For example,
for k = 3, the number of nodes =2k — 1 =23 — 1 =8 — 1 = 7. A full binary tree with depth k = 3 is shown in Figure 21.5.

Figure 21.5: A full binary tree.

We use numbers from 1 to 2k — 1 as labels of the nodes of the tree.

If a binary tree is full, then we can number its nodes sequentially from 1 to 2k~ 1, starting from the root node, and at
every level numbering the nodes from left to right.

A complete binary tree of depth k is a tree with n nodes in which these n nodes can be numbered sequentially from 1
to n, as if it would have been the first n nodes in a full binary tree of depth k.

A complete binary tree with depth k = 3 is shown in Figure 21.6.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0141.html (2 of 6) [30.06.2007 10:58:03]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D4%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D5%5F0%2Ejpg

BINARY TREE AND ITS REPRESENTATION

Figure 21.6: A complete binary tree.

Representation of a Binary Tree

If a binary tree is a complete binary tree, it can be represented using an array capable of holding n elements where n is
the number of nodes in a complete binary tree. If the tree is an array of n elements, we can store the data values of the
ith node of a complete binary tree with n nodes at an index i in an array tree. That means we can map node i to the ith
index in the array, and the parent of node i will get mapped at an index i/2, whereas the left child of node i gets mapped
at an index 2i and the right child gets mapped at an index 2i + 1. For example, a complete binary tree with depth k = 3,
having the number of nodes n =5, can be represented using an array of 5 as shown in Figure 21.7.

kWK =
o|0| W >

E
Array tree

Figure 21.7: An array representation of a complete binary tree having 5 nodes and depth 3.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0141.html (3 of 6) [30.06.2007 10:58:03]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D6%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D7%5F0%2Ejpg

BINARY TREE AND ITS REPRESENTATION

Shown in Figure 21.8 is another example of an array representation of a complete binary tree with depth k = 3, with the
number of nodes n = 4.

Ol @| >

W N =

D

Array tree
Figure 21.8: An array representation of a complete binary tree with 4 nodes and depth 3.

In general, any binary tree can be represented using an array. We see that an array representation of a complete
binary tree does not lead to the waste of any storage. But if you want to represent a binary tree that is not a complete
binary tree using an array representation, then it leads to the waste of storage as shown in Figure 21.9.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0141.html (4 of 6) [30.06.2007 10:58:03]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D8%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu352%5F1%5F0%2Ejpg

BINARY TREE AND ITS REPRESENTATION

"y

E'J"'ll'l'l’:l>(‘lm1=-

— = ©O 00 ~ O 0 = WM

0 H
1 I
Array tree

Figure 21.9: An array representation of a binary tree.

An array representation of a binary tree is not suitable for frequent insertions and deletions, even though no storage is
wasted if the binary tree is a complete binary tree. It makes insertion and deletion in a tree costly. Therefore, instead of
using an array representation, we can use a linked representation, in which every node is represented as a structure
with three fields: one for holding data, one for linking it with the left subtree, and the third for linking it with right subtree
as shown here:

| leftchild | data | rightchild

We can create such a structure using the following C declaration:
struct tnode

{

int data
struct tnode *lchild, *rchild;

b

A tree representation that uses this node structure is shown in Figure 21.10.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0141.html (5 of 6) [30.06.2007 10:58:03]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D9%5F0%2Ejpg

BINARY TREE AND ITS REPRESENTATION

MULL NULL MULL

s

MULL NULL

Figure 21.10: Linked representation of a binary tree.

— — -

| 4@ PREV | | ME=T mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0141.html (6 of 6) [30.06.2007 10:58:03]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D10%5F0%2Ejpg

BINARY TREE TRAVERSAL

= o

| 4mPREV | | NEXT Wi |

BINARY TREE TRAVERSAL

I ntroduction

Order of Traversal of Binary Tree

The following are the possible orders in which a binary tree can be traversed:

LDR
LRD
DLR
RDL
RLD
DRL

where L stands for traversing the left subtree, R stands for traversing the right subtree, and D stands for processing the
data of the node. Therefore, the order LDR is the order of traversal in which we start with the root node, visit the left
subtree, process the data of the root node, and then visit the right subtree. Since the left and right subtrees are also the
binary trees, the same procedure is used recursively while visiting the left and right subtrees.

The order LDR is called as inorder; the order LRD is called as postorder; and the order DLR is called as preorder. The
remaining three orders are not used. If the processing that we do with the data in the node of tree during the traversal
is simply printing the data value, then the output generated for a tree is given in Figure 21.11, using inorder, preorder
and postorder as shown.

Inorder : DBHEIAFCG
Preorder : ABDEHICFG
Postorder : DHIEBFGCA

Figure 21.11: A binary tree along with its inorder, preorder and postorder.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0142.html (1 of 4) [30.06.2007 10:58:03]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D11%5F0%2Ejpg

BINARY TREE TRAVERSAL

If an expression is represented as a binary tree, the inorder traversal of the tree gives us an infix expression, whereas
the postorder traversal gives us a postfix expression as shown in Figure 21.12.

Inorder:a+b*c+d*e

postorder : abc™+de”™+
Figure 21.12: A binary tree of an expression along with its inorder and postorder.

Given an order of traversal of a tree, it is possible to construct a tree; for example, consider the folowing order:
Inorder = DBEAC

We can construct the binary trees shown in Figure 21.13 by using this order of traversal:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0142.html (2 of 4) [30.06.2007 10:58:03]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D12%5F0%2Ejpg

BINARY TREE TRAVERSAL

Figure 21.13: Binary trees constructed using the given inorder.

Therefore, we conclude that given only one order of traversal of a tree, it is possible to construct a number of binary
trees; a unique binary tree cannot be constructed with only one order of traversal. For construction of a unique binary
tree, we require two orders, in which one has to be inorder; the other can be preorder or postorder. For example,
consider the following orders:

Inorder = DBEAC

Postorder = DEBCA

We can construct the unique binary tree shown in Figure 21.14 by using these orders of traversal:

Figure 21.14: A unique binary tree constructed using its inorder and postorder.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0142.html (3 of 4) [30.06.2007 10:58:03]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D13%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D14%5F0%2Ejpg

BINARY TREE TRAVERSAL

i = - =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0142.html (4 of 4) [30.06.2007 10:58:03]

BINARY SEARCH TREE

- -

| 4mPREV | | NExT W

BINARY SEARCH TREE

Introduction

A binary search tree is a binary tree that may be empty, and every node must contain an identifier. An identifier of any node in the left subtree is less
than the identifier of the root. An identifier of any node in the right subtree is greater than the identifier of the root. Both the left subtree and right
subtree are binary search trees.

A binary search tree is shown in Figure 21.15.

Figure 21.15: The binary search tree.

The binary search tree is basically a binary tree, and therefore it can be traversed in inorder, preorder, and postorder. If we traverse a binary search
tree in inorder and print the identifiers contained in the nodes of the tree, we get a sorted list of identifiers in ascending order.

A binary search tree is an important search structure. For example, consider the problem of searching a list. If a list is ordered, searching becomes
faster if we use a contiguous list and perform a binary search. But if we need to make changes in the list, such as inserting new entries and deleting
old entries, using a contiguous list would be much slower, because insertion and deletion in a contiguous list requires moving many of the entries
every time. So we may think of using a linked list because it permits insertions and deletions to be carried out by adjusting only a few pointers. But in
an n-linked list, there is no way to move through the list other than one node at a time, permitting only sequential access. Binary trees provide an
excellent solution to this problem. By making the entries of an ordered list into the nodes of a binary search tree, we find that we can search for a key
in O(n logn) steps.

Program: Creating a Binary Search Tree

We assume that every node of a binary search tree is capable of holding an integer data item and that the links can be made to point to the root of
the left subtree and the right subtree, respectively. Therefore, the structure of the node can be defined using the following declaration:

struct tnode
{
int data;
struct tnode *lchild, *rchild;

}s

A conplete C programto create a binary search tree follows:
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
struct tnode

{

int data;

struct tnode *Ichild, *rchild;
b
struct tnode *insert(struct tnode *p,int val)
{

struct tnode *tenpl, *tenp2;

if(p == NULL)

p = (struct tnode *) malloc(sizeof(struct tnode)); /* insert the new node as root node*/
i f(p == NULL)
{

printf("Cannot allocate\n");

file:///Z)/Charles%20River/(Charl es%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0143.html (1 of 4) [30.06.2007 10:58:04]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D15%5F0%2Ejpg

BINARY SEARCH TREE

exit(0);
}
p->data = val;
p- >l chi | d=p->rchi | d=NULL;

}
el se
{
templ = p;
/* traverse the tree to get a pointer to that node whose child will be the newy created node*/
whil e(tenpl != NULL)
{
tenp2 = tenpl,
if(tenpl ->data > val)
templ = tenmpl->lchild;
el se
templ = tenpl->rchild;
}
if(tenp2->data > val)
{
temp2->lchild = (struct tnode*)mall oc(sizeof (struct tnode));/*inserts the newy created node as left child*/
temp2 = tenmp2->lchild;
i f(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
tenmp2->data = val;
tenmp2->l chil d=tenp2->rchild = NULL;
}
el se
{

tenp2->rchild = (struct tnode*)nalloc(sizeof(struct tnode));/ *inserts the newly created node
as left child*/
tenp2 = tenp2->rchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
tenp2->data = val;
tenp2- >l chil d=tenmp2->rchild = NULL;
}
}
return(p);
}
/* a function to binary tree in inorder */
void inorder(struct tnode *p)

{
if(p !'= NULL)
{
i norder (p->Ichild);
printf("%\t", p->data);

i norder (p->rchild);
}

}

void main()
{

struct tnode *root = NULL;

int n,x;

printf("Enter the nunmber of nodes\n");

scanf (" %", &n);

while(n - > 0)

{
printf("Enter the data val ue\n");
scanf (" %", &) ;
root = insert(root,X);
}
i norder(root);
}

file:///Z)/Charles%20River/(Charl es%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0143.html (2 of 4) [30.06.2007 10:58:04]

BINARY SEARCH TREE

Explanation

1. To create a binary search tree, we use a function called i nser t , which creates a new node with the data value supplied as a parameter to it,
and inserts it into an already existing tree whose root pointer is also passed as a parameter.

2. The function accomplishes this by checking whether the tree whose root pointer is passed as a parameter is empty. If it is empty, then the
newly created node is inserted as a root node. If it is not empty, then it copies the root pointer into a variable t enp1l. It then stores the value of
t enpl in another variable, t enp2, and compares the data value of the node pointed to by t enpl with the data value supplied as a
parameter. If the data value supplied as a parameter is smaller than the data value of the node pointed to by t enp1, it copies the left link of
the node pointed to by t enpl into t enpl (goes to the left); otherwise it copies the right link of the node pointed to by t enpl into t enpl
(goes to the right).

3. It repeats this process until t enpl reaches 0. When t enpl becomes 0, the new node is inserted as a left child of the node pointed to by
t enp2, if the data value of the node pointed to by t enp2 is greater than the data value supplied as a parameter. Otherwise, the new node is
inserted as a right child of the node pointed to by t enp2. Therefore the insert procedure is:

o Input: 1. The number of nodes that the tree to be created should have
2. The data values of each node in the tree to be created

1 Output: The data value of the nodes of the tree in inorder

Example

. Input: 1. The number of nodes that the created tree should have =5
2. The data values of the nodes in the tree to be created are: 10, 20, 5, 9, 8

. Output:589 1020
Program

A function for inorder traversal of a binary tree:
voi d inorder(struct tnode *p)

{
if(p !'= NULL)

{
i norder (p->lchild);
printf("%\t", p->data);
i norder (p->rchild);
}

A non-recursive/iterative function for traversing a binary tree in inorder is given here for the purpose of doing the analysis.
void inorder(struct tnode *p)

{

struct tnode *stack[100];
int top;

top = -1,

if(p !'= NULL)

top++;

stack[top] = p;
p = p->lchild;
whil e(top >= 0)

while (p!'= NULL)/* push the left child onto stack*/
{
top++;
stack[top] =p;
p = p->lchild;
}
p = stack[top];
top-;
printf("%\t", p->data);
p = p->rchild;
if (p!= NULL) /* push right child*/
{
top++;
stack[top] = p;
p = p->lchild;

file:///Z)/Charles%20River/(Charles%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0143.html (3 of 4) [30.06.2007 10:58:04]

BINARY SEARCH TREE

}
}
}

A function for preorder traversal of a binary tree:
voi d preorder(struct tnode *p)

{
if(p !'= NULL)

{
printf("%\t", p->data);
preorder (p->lchild);
preorder (p->rchild);
}

A function for postorder traversal of a binary tree:
voi d postorder(struct node *p)

{
if(p !'= NULL)
{
post order (p->l child);
post order (p->rchild);
printf("%\t", p->data);
}

Explanation

Consider the iterative version of the inorder just given. If the binary tree to be traversed has n nodes, the number of NULL links are n+1. Since every
node is placed on the stack once, the statements st ack[t op] : =p and p: =st ack[t op] are executed n times. The test for NULL links will be done

exactly n+1 times. So every step will be executed no more than some small constant times n. So the order of the algorithm is O(n). A similar analysis
can be done to obtain the estimate of the computation time for preorder and postorder.

Constructing aBinary Tree Using the Preorder and Inorder Traversals

To obtain the binary tree, we reverse the preorder traversal and take the first node that is a root node. We then search for this node in the inorder
traversal. In the inorder traversal, all the nodes to the left of this node will be the part of the left subtree, and all the nodes to the right of this node will
be the part of the right subtree. We then consider the next node in the reversed preorder. If it is a part of the left subtree, then we make it the left
child of the root; if it is part of the right subtree, we make it part of right subtree. This procedure is repeated recursively to get the tree as shown in
Figure 21.16.

Figure 21.16: A unique binary tree constructed using the inorder and postorder.

For example, for the preorder and inorder traversals of a binary tree, the binary tree and its postorder traversal are as follows:
. Z,A,Q,P,Y,X,C,B = Preorder

. QAZY,P,CX,B = Inorder
The postorder for this tree is:

Z,APXB,CY,Q

- -

| 4 PREV | | NExT o |

file:///Z)/Charles%20River/(Charl es%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0143.html (4 of 4) [30.06.2007 10:58:04]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D16%5F0%2Ejpg

COUNTING THE NUMBER OF NODES IN A BINARY SEARCH TREE

- -

| 4mPREV | E 3

COUNTING THE NUMBER OF NODESIN A BINARY SEARCH TREE

Introduction

To count the number of nodes in a given binary tree, the tree is required to be traversed recursively until a leaf node is encountered.
When a leaf node is encountered, a count of 1 is returned to its previous activation (which is an activation for its parent), which takes the
count returned from both the children's activation, adds 1 to it, and returns this value to the activation of its parent. This way, when the
activation for the root of the tree returns, it returns the count of the total number of the nodes in the tree.

Program

A complete C program to count the number of nodes is as follows:

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
struct tnode
{
int data;
struct tnode *lchild, *rchild
s
i nt count(struct tnode *p)
{
if(p == NULL)
return(0);
el se
if(p->lchild == NULL && p->rchild == NULL)
return(1);
el se
return(1l + (count(p->lchild) + count(p->rchild)));

}

struct tnode *insert(struct tnode *p,int val)
{
struct tnode *tenpl, *temp2;
if(p == NULL)
{
p = (struct tnode *) nmalloc(sizeof (struct tnode)); /* insert the new node as root node*/
if(p == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
p->data = val;
p- >l chi | d=p->rchi | d=NULL;
}
el se
{
tenpl = p;
/* traverse the tree to get a pointer to that node whose child will be the newly created node*/
while(tenmpl !'= NULL)
{
tenp2 = tenpl;
if(tenmpl ->data > val)
templ = tenpl->lchild;
el se
tenpl = tenpl->rchild;
}
if(tenp2->data > val)
{

file:/l/Z)/Charles%20River/(Charles¥%20River) %20C%20& %20Data%20Structures¥20(2004)/7267/DDU0144.html (1 of 3) [30.06.2007 10:58:05]

COUNTING THE NUMBER OF NODES IN A BINARY SEARCH TREE

tenp2->lchild = (struct tnode*)malloc(sizeof (struct tnode)); /
*inserts the newy created node
as left child*/
temp2 = tenp2->lchild;
i f(tenp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
tenmp2- >data = val;
t enp2- >l chil d=t emp2->rchild = NULL;
}

el se

{
tenp2->rchild = (struct tnode*)nmalloc(sizeof(struct tnode));/ *inserts the newy created node
as left child*/
tenmp2 = tenp2->rchild;
i f(tenp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
temp2- >data = val;
t enp2- >l chil d=tenp2->rchild = NULL;
}
}
return(p);
}
/* a function to binary tree in inorder */
voi d i norder(struct tnode *p)

{
if(p != NULL)

{
i norder (p->lchild);
printf("%l\t", p->data);
i norder (p->rchild);
}
}
voi d main()
{
struct tnode *root = NULL;
int n,x;
printf("Enter the nunber of nodes\n");
scanf (" %", &n) ;
while(n--- > 0)
{
printf("Enter the data value\n");
scanf ("%d", &) ;
root = insert(root, x);
}
i norder(root);
printf("\nThe nunmber of nodes in tree are : %\ n", count(root));

}

Explanation

. Input: 1. The number of nodes that the tree to be created should have
2. The data values of each node in the tree to be created

. Output: 1. The data value of the nodes of the tree in inorder
2. The count of number of node in a tree.

Example

. Input: 1. The number of nodes the created tree should have =5

file:/l/Z)/Charles%20River/(Charles¥%20River) %20C%20& %20Data%20Structures¥20(2004)/7267/DDU0144.html (2 of 3) [30.06.2007 10:58:05]

COUNTING THE NUMBER OF NODES IN A BINARY SEARCH TREE
2. The data values of the nodes in the tree to be created are: 10, 20, 5, 9, 8

. Output: 1.58910 20
2. The number of nodes in the tree is 5

—_ —

=0 [MExTep |

file:/l/Z)/Charles%20River/(Charles¥%20River) %20C%20& %20Data%20Structures¥20(2004)/7267/DDU0144.html (3 of 3) [30.06.2007 10:58:05]

SWAPPING OF LEFT AND RIGHT SUBTREES OF A GIVEN BINARY TREE

- -

| 4mPREV | | NExT o |

SWAPPING OF LEFT AND RIGHT SUBTREES OF A GIVEN BINARY TREE

I ntroduction

An elegant method of swapping the left and right subtrees of a given binary tree makes use of a recursive algorithm, which
recursively swaps the left and right subtrees, starting from the root.

Program

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
struct tnode

{
i nt data;
struct tnode *lchild, *rchild,
b
struct tnode *insert(struct tnode *p,int val)
{
struct tnode *tenpl, *tenp2,;
i f(p == NULL)
p = (struct tnode *) malloc(sizeof(struct tnode)); /* insert the new node as root node*/
if(p == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
p->data = val;
p- >l chi | d=p->rchi | d=NULL,;
}
el se
{
tenpl = p;
/* traverse the tree to get a pointer to that node whose child will be the newy created node*/
whil e(tenmpl != NULL)
{
tenp2 = tenpl,;
if(tenpl ->data > val)
tenpl = tenpl->lchild;
el se
tenpl = tenpl->rchild;
}
if(tenp2->data > val)
{

temp2->lchild = (struct tnode*)nall oc(sizeof (struct tnode));/ *inserts the newy created node
as left child*/
temp2 = tenp2->|child;
i f(tenmp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
tenp2->data = val;
tenp2- >l chil d=tenmp2->rchild = NULL;
}

el se

{

file:///Z)/Charles%20River/(Charl es¥%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0145.html (1 of 3) [30.06.2007 10:58:05]

SWAPPING OF LEFT AND RIGHT SUBTREES OF A GIVEN BINARY TREE

temp2->rchild = (struct tnode*)nmall oc(sizeof (struct tnode));/ *inserts the newy created node
as left child*/
tenp2 = tenp2->rchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
tenp2->data = val
tenmp2->| chil d=tenp2->rchild = NULL;
}
}
return(p);
}
[* a function to binary tree in inorder */
voi d inorder(struct tnode *p)

{
if(p !'= NULL)

{
i norder(p->lchild);
printf("%\t", p->data);
i norder (p->rchild);
}
}
struct tnode *swaptree(struct tnode *p)
{
struct tnode *tenpl=NULL, *tenp2=NULL;
if(p !'= NULL)
{ tenpl= swaptree(p->lchild);
tenp2 = swaptree(p->rchild);
p->rchild = tenpl;
p->lchild = tenmp2;

}

return(p);

}

voi d nain()
{
struct tnode *root = NULL;
int n,Xx;
printf("Enter the nunmber of nodes\n");
scanf (" %", &n) ;
while(n - > 0)

{
printf("Enter the data val ue\n");
scanf (" %", &) ;
root = insert(root, x);
}

printf("The created tree is :\n");

i norder(root);

printf("The tree after swapping is :\n");
root = swaptree(root);

i norder (root);

printf("\nThe original tree is \n");

root = swaptree(root);

i norder(root);

}

Explanation

. Input: 1. The number of nodes that the tree to be created should have
2. The data values of each node in the tree to be created

file:///Z)/Charles%20River/(Charl es¥%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0145.html (2 of 3) [30.06.2007 10:58:05]

SWAPPING OF LEFT AND RIGHT SUBTREES OF A GIVEN BINARY TREE

. Output: 1. The data value of the nodes of the tree in inorder before interchanging the left and right subtrees
2. The data value of the nodes of the tree in inorder after interchanging the left and right subtrees

Example

. Input: 1. The number of nodes that the created tree should have = 5
2. The data values of the nodes in the tree to be created are: 10, 20, 5, 9, 8

. Output: 1.589 10 20

2.2010985
| mPREV | | NExT o |

file:///Z)/Charles%20River/(Charl es¥%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0145.html (3 of 3) [30.06.2007 10:58:05]

SEARCHING FOR A TARGET KEY IN A BINARY SEARCH TREE

- -

| 4 PREV | | MEXT o |

SEARCHING FOR A TARGET KEY IN A BINARY SEARCH TREE

I ntroduction

Data values are given which we call a key and a binary search tree. To search for the key in the given binary search tree, start with
the root node and compare the key with the data value of the root node. If they match, return the root pointer. If the key is less than
the data value of the root node, repeat the process by using the left subtree. Otherwise, repeat the same process with the right
subtree until either a match is found or the subtree under consideration becomes an empty tree.

Program

A complete C program for this search is as follows:

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
struct tnode
{
i nt data;
struct tnode *lchild, *rchild,;
}
/* A function to serch for a given data value in a binary search tree*/
struct tnode *search(struct tnode *p,int key)

{
struct tnode *tenp;
tenp = p;
while(tenmp !'= NULL)
{

i f(tenp->data == key)
return(tenp);
el se
i f(tenp->data > key)
temp = tenp->lchild;
el se
temp = tenp->rchild;
}
return(NULL) ;

}

[*an iterative function to print the binary tree in inorder*/
voi d inorderl(struct tnode *p)
{
struct tnode *stack[100];
int top;
top = —1;
if(p !'= NULL)
{
top++;
stack[top] = p;
p = p->lchild;
whil e(top >= 0)

while (p!'= NULL)/* push the left child onto stack*/

{
top++;
stack[top] =p;
p = p->lchild;
}
p = stack[top];
top-;

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0146.html (1 of 3) [30.06.2007 10:58:06]

SEARCHING FOR A TARGET KEY IN A BINARY SEARCH TREE

printf("%l\t", p->data);
p = p->rchild,

if (p!'= NULL) /* push right child*/
{
top++;
stack[top] = p;
p = p->lchild,
}

}
}

/* A function to insert a new node in binary search tree to
get a tree created*/
struct tnode *insert(struct tnode *p,int val)

{
struct tnode *tenpl, *tenp2;
if(p == NULL)
{
p = (struct tnode *) nulloc(sizeof(struct tnode)); /* insert the new node as root node*/
i f(p == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
p- >data = val
p- >l chi | d=p->rchi | d=NULL;
}
el se
{
tenpl = p;
/* traverse the tree to get a pointer to that node whose child will be the newy created node*/
whil e(tenpl !'= NULL)
{
tenp2 = tenpl;
if(tenpl ->data > val)
templ = tenpl->lchild,
el se
tenpl = tenmpl->rchild;
}
if(tenp2->data > val)
{

temp2->lchild = (struct tnode*)nmalloc(sizeof (struct tnode));/ *inserts the newmy created node
as left child*/
temp2 = tenp2->lchild;
i f(tenp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
tenp2- >data = val;
tenp2- >l chil d=tenmp2->rchild = NULL;
}

el se

{
tenmp2->rchild = (struct tnode*)mall oc(sizeof (struct tnode));/ *inserts the newy created node
as left child*/
tenp2 = tenp2->rchild;
i f(tenp2 == NULL)
{

printf("Cannot allocate\n");

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0146.html (2 of 3) [30.06.2007 10:58:06]

SEARCHING FOR A TARGET KEY IN A BINARY SEARCH TREE

exit(0);
}
tenp2->data = val;
tenmp2- >l chil d=tenp2->rchild = NULL;

}
}
return(p);
voi d main()
{
struct tnode *root = NULL, *tenp = NULL
int n,x;
printf("Enter the nunber of nodes in the tree\n");
scanf (" %", &) ;
while(n - > 0)
{
printf("Enter the data value\n");
scanf (" %", &) ;
root = insert(root, x);
}
printf("The created tree is :\n");
i norder1(root);
printf("\n Enter the value of the node to be searched\n");
scanf (" %", &n);
t emp=sear ch(root, n);
if(tenp !'= NULL)
printf("The data value is present in the tree \n");
el se
printf("The data value is not present in the tree \n");
}
Explanation

. Input: 1. The number of nodes that the tree to be created should have
2. The data values of each node in the tree to be created
3. The key value

. Output: If the key is present and appears in the created tree, then a message
"The data value is present in the tree" appears. Otherwise the message
"The data value is not present in the tree" appears.

Example

. Input: 1. The number of nodes that the created tree should have =5
2. The data values of the nodes in the tree to be created are: 10, 20, 5, 9, 8
3. The key value = 9

. Output: The data is present in the tree

-

| 4 PREV |

file:///Z)/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0146.html (3 of 3) [30.06.2007 10:58:06]

| MEXT o |

DELETION OF A NODE FROM BINARY SEARCH TREE
| 4w PREV | | MEXT @ |

DELETION OF A NODE FROM BINARY SEARCH TREE

I ntroduction

To delete a node from a binary search tree, the method to be used depends on whether a node to be deleted has one child, two
children, or no children.

Deletion of a node with two children

Consider the binary search tree shown in Figure 21.17.

Figure 21.17: A binary tree before deletion of a node pointed to by x.

To delete a node printed to by x, we start by letting y be a pointer to the node that is the root of the node pointed to by x. We store the
pointer to the left child of the node pointed to by x in a temporary pointer temp. We then make the left child of the node pointed to by y
the left child of the node pointed to by x. We then traverse the tree with the root as the node pointed to by temp to get its right leaf,
and make the right child of this right leaf the right child of the node pointed to by x, as shown in Figure 21.18.

X
clwcNPgC

O ONO

Figure 21.18: A binary tree after deletion of a node pointed to by x.

Another method is to store the pointer to the right child of the node pointed to by x in a temporary pointer temp. We then make the left
child of the node pointed by y to be the right child of the node pointed to by x. We then traverse the tree with the root as the node
pointed to by temp to get its left leaf, and make the left child of this left leaf the left child of the node pointed to by x, as shown in
Figure 21.19.

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0147.html (1 of 8) [30.06.2007 10:58:07]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D17%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D18%5F0%2Ejpg

DELETION OF A NODE FROM BINARY SEARCH TREE

Figure 21.19: A binary tree after deletion of a node pointed to by x.

Deletion of a Node with One Child

Consider the binary search tree shown in Figure 21.20.

Figure 21.20: A binary tree before deletion of a node pointed to by x.

If we want to delete a node pointed to by x, we can do that by letting y be a pointer to the node that is the root of the node pointed to
by x. Make the left child of the node pointed to by y the right child of the node pointed to by x, and dispose of the node pointed to by x,
as shown in Figure 21.21.

Figure 21.21: A binary tree after deletion of a node pointed to by x.

Deletion of a Node with No Child

Consider the binary search tree shown in Figure 21.22.

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0147.html (2 of 8) [30.06.2007 10:58:07]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D19%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D20%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D21%5F0%2Ejpg

DELETION OF A NODE FROM BINARY SEARCH TREE

NULL NULL

Figure 21.22: A binary tree before deletion of a node pointed to by x.

Set the left child of the node pointed to by y to NULL, and dispose of the node pointed to by x, as shown in Figure 21.23.

‘%9\ (e
NULL NULLI ULL

Figure 21.23: A binary tree after deletion of a node pointed to by x.

Program

A complete C program to delete a node, where the data value of the node to be deleted is known, is as follows:

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
struct tnode
{
i nt data;
struct tnode *lchild, *rchild;
b
/* A function to get a pointer to the node whose data value is given
as well as the pointer to its root */
struct tnode *getptr(struct tnode *p, int key, struct tnode **y)
{
struct tnode *tenp;
if(p == NULL)
return(NULL) ;

tenp = p;

*y = NULL;

while(temp !'= NULL)
{

i f(tenp->data == key)
return(tenp);
el se
{
*y = tenp; /*store this pointer as root */
i f(tenp->data > key)

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0147.html (3 of 8) [30.06.2007 10:58:07]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D22%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig21%2D23%5F0%2Ejpg

DELETION OF A NODE FROM BINARY SEARCH TREE

temp = tenp->lchild;

el se
tenmp
}

}
return(NULL) ;

tenp->rchild

}

/* A function to delete the node whose data value is given */
struct tnode *del ete(struct tnode *p,int val)
{
struct tnode *x, *y, *tenp;
X = getptr(p,val, &);
if(x == NULL)

{
printf("The node does not exists\n");
return(p);
}
el se
{
/* this code is for deleting root node*/
if(x == p)
{
temp = x->lchild;
y = x->rchild;
p = tenp;
whil e(tenmp->rchild !'= NULL)
temp = tenp->rchild;
t enp->rchi | d=y;
free(x);
return(p);
}

/* this code is for deleting node having both children */
if(x->lchild !'= NULL & x->rchild != NULL)

{
i f(y->child == x)

{
tenp = x->lchild;
y->lchild = x->lchil d;
whi l e(tenp->rchild !'= NULL)
tenp = tenp->rchild;
tenp->rchil d=x->rchil d;
x->I chi | d=NULL;
x->rchi | d=NULL;
}
el se
{
temp = x->rchild;
y->rchild = x->rchild;
whil e(temp->lchild !'= NULL)
temp = tenp->lchild;
tenp->l chil d=x->l chil d;
x->| chi | d=NULL;
x->rchi | d=NULL;

}
free(x);
return(p);
}
/* this code is for deleting a node with on chil d*/
if(x->lchild == NULL && x->rchild !== NULL)

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0147.html (4 of 8) [30.06.2007 10:58:07]

DELETION OF A NODE FROM BINARY SEARCH TREE

{
if(y->lchild == x)
y->lchild = x->rchild;
el se
y->rchild = x->rchild;
x->rchild; = NULL;
free(x);
return(p);
}
if(x->lchild !'= NULL && x->rchild == NULL)
{
if(y->lchild == x)
y->lchild = x->Ichild ;
el se
y->rchild = x->lchild;
x->lchild = NULL
free(x);
return(p);
}
/* this code is for deleting a node with no child*/
if(x->lchild == NULL && x->rchild == NULL)

{
if(y->lchild == x)
y->lchild = NULL ;
el se
y->rchild = NULL;
free(x);
return(p);
}

}
}

/*an iterative function to print the binary tree in inorder*/
voi d i norder1l(struct tnode *p)

{
struct tnode *stack[100];
int top;
top = —1;
if(p !'= NULL)
{
top++;
stack[top] = p;
p = p->lchild,
whil e(top >= 0)
while (p!'= NULL)/* push the left child onto stack*/
{
t op++;
stack[top] =p;
p = p->lchild,
}

p = stack[top];

top-;

printf("%l\t", p->data);

p = p->rchild,

if (p!= NULL) /* push right child*/

{
t op++;

stack[top] = p;
p = p->lchild,

file:///Z)/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0147.html (5 of 8) [30.06.2007 10:58:07]

DELETION OF A NODE FROM BINARY SEARCH TREE

/* A function to insert a new node in binary search tree to get a tree created*/
struct tnode *insert(struct tnode *p,int val)

{
struct tnode *tenpl, *tenp2;
if(p == NULL)
{
p = (struct tnode *) nalloc(sizeof (struct tnode)); /* insert the new node as root node*/
i f(p == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
p- >data = val;
p- >l chi | d=p->rchil d=NULL;
}
el se
{
tenpl = p;
/* traverse the tree to get a pointer to that node whose child will be the newy created node*/
whil e(tenmpl !'= NULL)
{

temp2 = tenpl;
if(tenpl ->data > val)
tenmpl = tenpl->lchild,
el se
templ = tenpl->rchild;
}
if(tenp2->data > val)

{
tenp2->lchild = (struct tnode*)mall oc(sizeof(struct tnode));/ *inserts the newy created node
as left child*/
tenp2 = tenp2->lchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
tenp2->data = val;
tenp2- >l chil d=tenp2->rchild = NULL;
}

el se

{
temp2->rchild = (struct tnode*)nall oc(sizeof (struct tnode));/ *inserts the newmy created node
as left child*/
tenp2 = tenp2->rchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
tenp2- >data = val;
tenp2->l chil d=tenp2->rchild = NULL;
}
}

return(p);

void main()
{
struct tnode *root = NULL;
int n,Xx;
printf("Enter the nunber of nodes in the tree\n");
scanf (" %l", &n) ;

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0147.html (6 of 8) [30.06.2007 10:58:07]

DELETION OF A NODE FROM BINARY SEARCH TREE

while(n - > 0)

{
printf("Enter the data value\n");
scanf (" %", &) ;
root = insert(root, X);

}

printf("The created tree is :\n");

i norder1(root);

printf("\'n Enter the value of the node to be deleted\n");
scanf (" %", &) ;

r oot =del ete(root, n);

printf("The tree after deletion is \n");

i norder1(root);

}
Explanation

This program first creates a binary tree with a specified number of nodes with their respective data values. It then takes the data
value of the node to be deleted, obtains a pointer to the node containing that data value, and obtains another pointer to the root of the
node to be deleted. Depending on whether the node to be deleted is a root node, a node with two children a node with only one child,
or a node with no children, it carries out the manipulations as discussed in the section on deleting a node. After deleting the specified
node, it returns the pointer to the root of the tree.

. Input: 1. The number of nodes that the tree to be created should have
2. The data values of each node in the tree to be created
3. The data value in the node to be deleted

. Output: 1. The data values of the nodes in the tree in inorder before deletion
2. The data values of the nodes in the tree in inorder after deletion

Example

. Input: 1. The number of nodes taht the created tree should have =5
2. The data values of the nodes in the tree to be created are: 10, 20, 5, 9, 8
3. The data value in the node to be deleted = 9

. Output: 1.58 9 10 20
2581020

Applications of Binary Search Trees

One of the applications of a binary search tree is the implementation of a dynamic dictionary. This application is appropriate because
a dictionary is an ordered list that is required to be searched frequently, and is also required to be updated (insertion and deletion
mode) frequently. So it can be implemented by making the entries in a dictionary into the nodes of a binary search tree. A more
efficient implementation of a dynamic dictionary involves considering a key to be a sequence of characters, and instead of searching

by comparison of entire keys, we use these characters to determine a multi-way branch at each step. This will allow us to make a 26-
way branch according to the first letter, followed by another branch according to the second letter and so on.

General Commentson Binary Trees

1. Trees are used to organize a collection of data items into a hierarchical structure.

2. Atree is a collection of elements called nodes, one of which is distinguished as the root, along with a relation that places a
hierarchical structure on the node.

3. The degree of a node of a tree is the number of descendants that node has.

4. Aleaf node of a tree is a node with a degree equal to 0.

5. The degree of a tree is the maximum of the degree of the nodes of the tree.

6. The level of the root node is 1, and as we descend the tree, we increment the level of each node by 1.

7. Depth of a tree is the maximum value of the level for the nodes in the tree.

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0147.html (7 of 8) [30.06.2007 10:58:07]

DELETION OF A NODE FROM BINARY SEARCH TREE

8. A binary tree is a special case of tree, in which no node can have degree greater than 2.
9. The maximum number of nodes at level i in a binary tree is 21 L,

10. The maximum number of nodes in a binary tree of depth k is 2k™ 1,
11. A complete binary tree of depth k is a tree with n nodes in which these n nodes can be numbered sequentially from 1 to n.

12. If a binary tree is a complete binary tree, it can be represented by an array capable of holding n elements where n is the
number of nodes in a complete binary tree.

13. Inorder, preorder, and postorder are the three commonly used traversals that are used to traverse a binary tree.

14. Ininorder traversal, we start with the root node, visit the left subtree first, then process the data of the root node, followed by
that of the right subtree.

15. In preorder traversal, we start with the root node. First we process the data of the root node, then visit the left subtree, then the
right subtree.

16. In postorder traversal, we start with the root node, visit the left subtree first, then visit the right subtree, and then process the
data of the root node.

17. To construct a unique binary tree, we require two orders of traversal, in which one has to be inorder; the other could be
preorder or postorder.

18. A binary search tree is an important search structure that is dynamic and allows a search by using O(log,") steps.
Exercises
1. Write a C program to count the number of non-leaf nodes of a binary tree.
2. Write a C program to delete all the leaf nodes of a binary tree.
3. How many binary trees are possible with three nodes?

4. Write a C program to construct a binary tree with inorder and preorder traversals. Test it for the following inorder and preorder
traversals:

o Inorder: 5,1, 3,11,6,8,4,2,7

o Preorder: 6,1,5,11,3,4,8,7,2

- -

| 4mPREV | | NEXT o |

file:///Z)/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0147.html (8 of 8) [30.06.2007 10:58:07]

Chapter 22: Graphs

= o

| 4mPREV | | NEXT Wi |

Chapter 22: Graphs
GRAPHS

I ntroduction

Graphs are natural models that are used to represent arbitrary relationships among data objects. We often need to
represent such arbitrary relationships among the data objects while dealing with problems in computer science,
engineering, and many other disciplines. Therefore, the study of graphs as one of the basic data structures is important.

Basic Definitions and Ter minology

A graph is a structure made of two components: a set of vertices V, and a set of edges E. Therefore, a graph is G = (V,
E), where G is a graph. The graph may be directed or undirected. In a directed graph, every edge of the graph is an
ordered pair of vertices connected by the edge, whereas in an undirected graph, every edge is an unordered pair of
vertices connected by the edge. Figure 22.1 shows an undirected and a directed graph.

@

Undirected Graph G, Directed Graph G,
Figure 22.1: Graphs.

Incident edge: (v;,v)) is an edge, then edge(v;,v)) is said to be incident to vertices v; and v;. For example, in graph G,
shown in Figure 22.1, the edges incident on vertex 1 are (1,2), (1,4), and (1,3), whereas in G,, the edges incident on
vertex 1 are (1,2).

Degree of vertex: The number of edges incident onto the vertex. For example, in graph G4, the degree of vertex 1 is

3, because 3 edges are incident onto it. For a directed graph, we need to define indegree and outdegree. Indegree of a
vertex vi is the number of edges incident onto vi, with vi as the head. Outdegree of vertex vi is the number of edges
incident onto vi, with vi as the tail. For graph G,, the indegree of vertex 2 is 1, whereas the outdegree of vertex 2 is 2.

Directed edge: A directed edge between the vertices vi and vj is an ordered pair. It is denoted by <vi,vj>.

Undirected edge: An undirected edge between the vertices v; and v; is an unordered pair. It is denoted by (v;,v)).

Path: A path between vertices v, and v, is a sequence of vertices vy, Vi1, Vjp,..., Vip,Vq Such that there exists a

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0148.html (1 of 5) [30.06.2007 10:58:08]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D1%5F0%2Ejpg

Chapter 22: Graphs

sequence of edges (v, Vi1), (Vi1, Vi2), ---, (Vin, Vg). In case of a directed graph, a path between the vertices v, and v is
a sequence of vertices vy, vy, Vip,..., Vin, Vq Such that there exists a sequence of edges <vy, vj;>, < Vg, Vjp>, ..., <Vj,,
vg>. If there exists a path from vertex v, to vq in an undirected graph, then there always exists a path from v, to v, also.
But, in the case of a directed graph, if there exists a path from vertex v, to v, then it does not necessarily imply that
there exists a path from v, to v, also.

Simple path: A simple path is a path given by a sequence of vertices in which all vertices are distinct except the first
and the last vertices. If the first and the last vertices are same, the path will be a cycle.

Maximum number of edges: The maximum number of edges in an undirected graph with n vertices is n(h—1)/2. In a
directed graph, itis n(n—1).

Subgraph: A subgraph of a graph G = (V,E) is a graph G where V(G) is a subset of V(G). E(G) consists of edges (v1,
v2) in E(G), such that both v1 and v2 are in V(G). [Note: If G = (V,E) is a graph, then V(G) is a set of vertices of G and E
(G) is a set of edges of G.]

If E(G) consists of all edges (v1,v2) in E(G), such that both v1 and v2 are in V(G), then G is called an induced
subgraph of G. For example, the graph shown in Figure 22.2 is a subgraph of the graph G2.

Figure 22.2: The subgraph of graph G2.

For the graph shown in Figure 22.3, one of the induced subgraphs is shown in Figure 22.4.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0148.html (2 of 5) [30.06.2007 10:58:08]

Chapter 22: Graphs

Figure 22.3: Graph G.

Figure 22.4: Induced subgraph of Graph G of Figure 22.3.

In the undirected graph G, the two vertices v, and v, are said to be connected if there exists a path in G from v, to v,

(being an undirected graph, there exists a path from v, to v, also).

Connected graph: A graph G is said to be connected if for every pair of distinct vertices (v;,v)), there is a path from v;

to v;. A connected graph is shown in Figure 22.5.

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0148.html (3 of 5) [30.06.2007 10:58:08]

Chapter 22: Graphs

Figure 22.5: A connected graph.

Completely connected graph: A graph G is completely connected if, for every pair of distinct vertices (v;,v)), there

exists an edge. A completely connected graph is shown in Figure 22.6.

Figure 22.6: A completely connected graph.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0148.html (4 of 5) [30.06.2007 10:58:08]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D6%5F0%2Ejpg

Chapter 22: Graphs

i = - =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0148.html (5 of 5) [30.06.2007 10:58:08]

REPRESENTATIONS OF A GRAPH

= o

| 4mPREV | | NEXT Wi |

REPRESENTATIONS OF A GRAPH

Array Representation

One way of representing a graph with n vertices is to use an n2 matrix (that is, a matrix with n rows and n columns—
that means there is a row as well as a column corresponding to every vertex of the graph). If there is an edge from v; to

vj then the entry in the matrix with row index as v; and column index as vj is set to 1 (adj[v;, vj| = 1, if (v;, v)) is an edge of

graph G). If e is the total number of edges in the graph, then there will 2e entries which will be setto 1, as long as G is
an undirected graph. Whereas if G were a directed graph, only e entries would have been set to 1 in the adjacency
matrix. The adjacency matrix representation of an undirected as well as a directed graph is show in Figure 22.7.

G, G,

1 2 3 4 1 2 3
110 1 1 1 1] © 1 0
2 1 0 1 1 2 1 0 1
3 1 1 1] 1 3| O] a
4 1 1 1 0

Adjacency maltrix of G Adjacency matrix of G,

Figure 22.7: Adjacency matrices.

Example

The adjacency matrix representation of the following diagraph(directed graph), along with the indegree and outdegree
of each node is shown here:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0149.html (1 of 3) [30.06.2007 10:58:08]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D7%5F0%2Ejpg

REPRESENTATIONS OF A GRAPH

The adjacency matrix representation of the above diagraph is shown here:

o B (=1 (=] B [=] =
= |olo|=|o|o|ln
olol=|o|o|o|w
olololo|- o e
= |lol=|lo|o|o|wv
olo|l=|=|o|o|=

M & WMo =

The indegree and outdegree of each node is shown here:

Indegree Outdegree
1 3 0
2 2 2
3 1 2
4 1 3
) 2 1
6 2 3

Linked List Representation

Another way of representing a graph G is to maintain a list for every vertex containing all vertices adjacent to that

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0149.html (2 of 3) [30.06.2007 10:58:08]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu391%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu391%5F2%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu392%5F1%5F0%2Ejpg

REPRESENTATIONS OF A GRAPH

vertex, as shown in Figure 22.8.

i

e MLILL

B

g MLULL

i
B
A.IE_

Gi
1 S —
2 .
3 I
1 N

1

- MULL

—{ 4+

Figure 22.8: Adjacency list of G;.

NN

g MLULL

[_ﬁ PREV

j

(

NEXT wp

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0149.html (3 of 3) [30.06.2007 10:58:08]

j

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D8%5F0%2Ejpg

COMPUTING INDEGREE AND OUTDEGREE OF A NODE OF A GRAPH USING ADJACENCY MATRIX REPRESENTATION

= r

| 4mPREV | | NEXT Wi |

COMPUTING INDEGREE AND OUTDEGREE OF A NODE OF A GRAPH USING
ADJACENCY MATRIX REPRESENTATION

I ntroduction

To compute the indegree of a node n by using the adjacency matrix representation of a graph, use the node number n
as a column index in the adjacency matrix and count the number of 1's in that column of the adjacency matrix. This
count is the indegree of node n. Similarly, to compute the outdegree of a node n of a graph, use the node number n as
the row index in the adjacency matrix and count the number of 1's in that row of the adjacency matrix. This is the
outdegree of the node n. A complete C program to compute the indegree and outdegree of each node of a graph using
the adjacency matrix representation of a graph follows.

Program: Computing the indegree and outdegree

#i ncl ude <stdio. h>
#defi ne MAX 10
/* a function to build an adjacency matrix of the graph*/
voi d buildadjnm(int adj[][MAX], int n)
int i,j;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
printf("Enter 1 if there is an edge from% to %d, otherw se enter 0 \n",
)5

scanf ("%d", &dj [i]1[j]);
}
}

/* a function to conpute outdegree of a node*/
int outdegree(int adj[][MAX],int Xx,int n)

{
int i, count =0;
for(i=0;i<n;i++)
if(adj[x][i] ==1) count ++;
return(count);
}

/* a function to conpute indegree of a node*/
int indegree(int adj[][MAX],int X,int n)

{
int i, count =0;
for(i=0;i<n;i++)
if(adj[i][x] ==1) count++;
return(count);
}
voi d mai n()

{
i nt adj [MAX] [MAX], node, n, i ;
printf("Enter the nunber of nodes in graph naxi mum = %\ n", MAX) ;

scanf ("%d", &n) ;
bui | dadj m(adj , n);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0150.html (1 of 3) [30.06.2007 10:58:09]

COMPUTING INDEGREE AND OUTDEGREE OF A NODE OF A GRAPH USING ADJACENCY MATRIX REPRESENTATION
for(i=0;i<n;i++)

{
printf("The indegree of the node % is %\n",i,indegree(adj,i,n));
printf("The outdegree of the node % is %\ n",
i ,outdegree(adj,i,n));

}
}
Explanation
1. This program uses the adjacency matrix representation of a directed graph to compute the indegree and
outdegree of each node of the graph.
2. It first builds an adjacency matrix of the graph by calling a bui | dadj mfunction, then goes in a loop to compute
the indegree and outdegree of each node by calling the i ndegr ee and out degr ee functions, respectively.
3. The indegree function counts the number of 1's in a column of an adjacency matrix using the node number
whose indegree is to be computed as a column index.
4. The out degr ee function counts the number of 1's in a row of an adjacency matrix by using the node number
whose outdegree is to be computed as a row index.
o Input: 1. The number of nodes in a graph
2. Information about edges, in the form of values, to be stored in adjacency matrix 1, if there is an edge
from node i to node j; O otherwise.
o Output: The indegree and outdegree of each node.
Example

Graph G,

The adjacency matrix for graph G, is:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0150.html (2 of 3) [30.06.2007 10:58:09]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu395%5F1%5F0%2Ejpg

COMPUTING INDEGREE AND OUTDEGREE OF A NODE OF A GRAPH USING ADJACENCY MATRIX REPRESENTATION

For this graph as the input, the output is:

- 010 |0

Wi = |10

0

oo o= |—

el A= (=1 F= N J %]

oo |W

The indegree of node 0 is 1
The outdgree of node 0 is 2
The indegree of node 1is 1
The outdgree of node 1is 1
The indegree of node 2 is 1
The outdgree of node 2 is 1
The indegree of node 3 is 2

The outdgree of node 3is 1

| 4mPREV |

—

| NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0150.html (3 of 3) [30.06.2007 10:58:09]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu395%5F2%5F0%2Ejpg

DEPTH-FIRST TRAVERSAL

| NEXT Wi |

—

| 4mPREV |

DEPTH-FIRST TRAVERSAL

I ntroduction

A graph can be traversed either by using the depth-first traversal or breadth-first traversal. When a graph is traversed
by visiting the nodes in the forward (deeper) direction as long as possible, the traversal is called depth-first traversal.
For example, for the graph shown in Figure 22.9, the depth-first traversal starting at the vertex 0 visits the node in the

orders:
i.012678534

i.h 043586721

Figure 22.9: Graph G and its depth first traversals starting at vertex 0.

A complete C program for depth-first traversal of a graph follows. It makes use of an array visited of n elements where
n is the number of vertices of the graph, and the elements are Boolean. If visited[i] = 1 then it means that the ith vertex
is visited. Initially we set visited[i] = 0.

Program

#i ncl ude <stdio. h>
#defi ne max 10

[* a function to build adjacency matrix of a graph */
void buildadjm(int adj[][max], int n)
{ . - .
int i,j;
for(i=0;i<n;i++)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0151.html (1 of 3) [30.06.2007 10:58:10]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D9%5F0%2Ejpg

DEPTH-FIRST TRAVERSAL

for(j=0;j<n;j++)

{

printf("enter 1 if there is an edge from% to %, otherw se enter

0\n",
i)

scanf ("%d", &dj [i]1[j]);
}
}

[* a function to visit the nodes in a depth-first order */
void dfs(int x,int visited[],int adj[][max],int n)

{ . .
int j;
visited[x] = 1;
printf("The node visited id %\ n", x);
for(j=0;j<n;j+t)
if(adj[x][j] ==1 && visited[j] ==0)
df s(j,visited, adj, n);
}
voi d mai n()
{
i nt adj [max] [max], node, n;
int i, visited]mx];
printf("enter the nunber of nodes in graph maxi num = %\ n", nmax);
scanf ("%", &n);
bui | dadj n(adj , n);
for(i=0; i<n; i++)
visited[i] =0;
for(i=0; i<n; i++)
if(visited[i] ==0)
df s(i, visited, adj, n);
}
Explanation
1. Initially, all the elements of an array named vi si t ed are set to O to indicate that all the vertices are unvisited.

2.

The traversal starts with the first vertex (that is, vertex 0), and marks it visited by setting vi si t ed[0] to 1. It
then considers one of the unvisited vertices adjacent to it and marks it vi si t ed, then repeats the process by
considering one of its unvisited adjacent vertices.

Therefore, if the following adjacency matrix that represents the graph of Figure 22.9 is given as input, the order
in which the nodes are visited is given here:

o Input: 1. The number of nodes in a graph
2. Information about edges, in the form of values to be stored in adjacency matrix 1 if there is an edge from

node i to node j, O otherwise

o Output: Depth-first ordering of the nodes of the graph starting from the initial vertex, which is vertex 0, in
our case.

Example

Input

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0151.html (2 of 3) [30.06.2007 10:58:10]

DEPTH-FIRST TRAVERSAL

0 1 2 3 4 5 & T 8
0 0 1 0 0 1 0 0 0 0
1 1 0] 1 0 0 0 0 0
2 0 1 0 0 0 0 | 0 0
3 0 1 0 0 1 1 0 0 0
4 1 0 0] 0 0 0 0 0
5 0 0 0] 0 0 0 0 1
& 0 0 1 0 0 0 0 0 1
7 Q 1] L1 0 0 [i] [] 1
8 0 0 0 0 0 1 1 0 0

Output

0,1,2,6,8,5,3,4,7

Analysis
1. If the graph G to which the depth-first search (dfs) is applied is represented using adjacency lists, then the
vertices y adjacent to x can be determined by following the list of adjacent vertices for each vertex.
2. Therefore, the f or loop searching for adjacent vertices has the total cost of d; + d, +...+ d,,, where d; is the
degree of vertex v;, because the number of nodes in the adjacency list of vertex v; are di.

3. If the graph G has n vertices and e edges, then the sum of the degree of each vertex (d; + d, + ...+ d,)) is 2e.

Therefore, there are total of 2e list nodes in the adjacency lists of G. If G is a directed graph, then there are a
total of e list nodes only.

4. The algorithm examines each node in the adjacency lists once, at most. So the time required to complete the
search is O(e), provided n<= e. Instead of using adjacency lists, if an adjacency matrix is used to represent a
graph G, then the time required to determine all adjacent vertices of a vertex is O(n), and since at most n
vertices are visited, the total time required is O(n2).

= e

T — ———
| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0151.html (3 of 3) [30.06.2007 10:58:10]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu398%5F1%5F0%2Ejpg

BREADTH-FIRST TRAVERSAL

-

| 4mPREV | | NEXT ap |

BREADTH-FIRST TRAVERSAL

I ntroduction

When a graph is traversed by visiting all the adjacent nodes/vertices of a node/vertex first, the traversal is called breadth-
first traversal. For example, for a graph in which the breadth-first traversal starts at vertex vy, visits to the nodes take

place in the order shown in Figure 22.10.

@&@

(2
OO

Graph G

breadth-first traversal order = v1 v2 v5 v3 v4 v7 v6 v8 v3
Figure 22.10: Breadth-first traversal of graph G starting at vertex v1.

Program

A complete C program for breadth-first traversal of a graph appears next. The program makes use of an array of n visited
elements where n is the number of vertices of the graph. If vi si ted[i] = 1, it means that the ith vertex is visited. The
program also makes use of a queue and the procedures addqueue and del et equeue for adding a vertex to the queue

and for deleting the vertex from the queue, respectively. Initially, we setvi sited[i] = O.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#defi ne MAX 10
struct node

{
i nt data;
struct node *1link;

3

voi d buildadjn(int adj[][MAX], int n)

{
int i,j;
printf("enter adjacency matrix \n",i,j);

for(i=0;i<n;i++)
for(j=0;j<n;j++)

file:/l/Z)/Charles¥%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0152.html (1 of 4) [30.06.2007 10:58:10]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D10%5F0%2Ejpg

BREADTH-FIRST TRAVERSAL

scanf ("%d", &dj [i][j]);
}

/* A function to insert a new node in queue*/
struct node *addqueue(struct node *p,int val)
{
struct node *tenp;
i f(p == NULL)
{
p = (struct node *) malloc(sizeof(struct node)); /* insert the new node first node*/
if(p == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
p->data = val
p- >l i nk=NULL;
}
el se
{
tenmp= p;
whil e(tenmp->link !'= NULL)
{
tenp = tenp->link;
}
tenp->link = (struct node*)mal | oc(sizeof (struct node));
tenp = tenp->link;
i f(tenp == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
t enp- >dat a
tenp->link

val ;
NULL;

}

return(p);
}
struct node *del eteq(struct node *p,int *val)
{ struct node *tenp;

i f(p == NULL)

{

printf("queue is enpty\n");
return(NULL) ;

p = p->link;
free(tenp);
return(p);

void bfs(int adj[][MAX], int x,int visited[], int n, struct node **p)
{

int vy,j,k;
*p = addqueue(*p, x);
do{

file:///Z)/Charles¥%620River/(Charles%20River)%20C%20& %20D ata%20Structures%20(2004)/7267/DDU0152.html (2 of 4) [30.06.2007 10:58:10]

BREADTH-FIRST TRAVERSAL

*p = del eteq(*p, &);
if(visited[y] == 0)
{

printf("\nnode visited = %\t",y);
visited[y] = 1;
for(j=0;j<n;j++)
if((adj[yl[j] ==1) && (visited[j] == 0))
*p = addqueue(*p,j);
}

while((*p) !'= NULL);
}
voi d main()
{
i nt adj [MAX] [MAX] ;

int n;
struct node *start=NULL;
int i, visited] MAX];
printf("enter the nunber of nodes in graph maxi mum = %\ n", MAX) ;
scanf ("%", &n) ;
bui | dadj n(adj , n);
for(i=0; i<n; i++)
visited[i] =0;
for(i=0; i<n; i++)
if(visited[i] ==0)
bfs(adj,i,visited, n, &tart);
}

Example
Input and Output
Enter the number of nodes in graph maximum =109

Enter adjacency matrix

010010000
101100000
010000100
010011000
100100000
000100001
001000011
000000100
000001100
node visited = 0
node visited = 1
node visited = 4
node visited = 2
node visited = 3
node visited = 6
node visited = 5
node visited = 7
node visited = 8

file:///Z)/Charles¥%620River/(Charles%20River)%20C%20& %20D ata%20Structures%20(2004)/7267/DDU0152.html (3 of 4) [30.06.2007 10:58:10]

BREADTH-FIRST TRAVERSAL

e - e

| @m PREV | | NExT#p |

-

file:/l/Z)/Charles¥%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0152.html (4 of 4) [30.06.2007 10:58:10]

CONNECTED COMPONENT OF A GRAPH

= r

| 4mPREV | | NEXT Wi |

CONNECTED COMPONENT OF A GRAPH

I ntroduction

The connected component of a graph is a maximal subgraph of a given graph, which is connected. For example,
consider the graph that follows.

G

1

The connected component of the graph G1 is shown in Figure 22.11.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥20(2004)/7267/DDU0153.html (1 of 7) [30.06.2007 10:58:11]

CONNECTED COMPONENT OF A GRAPH

Figure 22.11: Connected component of G;.

Strongly Connected Component

For a diagraph (directed graph), a strongly connected component is that component of the graph in which, for every
pair of distinct vertices vi and vj, there is a directed path from vi to vj, and also a directed path from vj to vi. For
example, consider the diagraph shown in Figure 22.12.

Figure 22.12: A diagraph.

The strongly connected components of the graph are shown in Figure 22.13.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥20(2004)/7267/DDU0153.html (2 of 7) [30.06.2007 10:58:11]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D12%5F0%2Ejpg

CONNECTED COMPONENT OF A GRAPH

4

Figure 22.13: Strongly connected components of the graph shown in Figure 22.12.

Example

Is the following diagraph strongly connected?

This table shows the possible pairs of vertices, and the forward and backward paths between them, for the previous
graph:

PAIR OF VERTICES FORWARD PATH BACKWARD PATH

<1, 2> 1-2 2-3-4
<1,3> 1-2-3 3-1
<1,4> 1-4 4-3-1
<2,3> 2-3 3-1-2
<2,4> 2-3-1-4 4-3-1-2
<3,4> 3-1-4 4-3

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0153.html (3 of 7) [30.06.2007 10:58:11]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D13%5F0%2Ejpg

CONNECTED COMPONENT OF A GRAPH

Therefore, we see that between every pair of distinct vertices of the given graph there exists a forward as well as a
backward path, so it is strongly connected.

Program

Write a function df s(v) to traverse a graph in a depth-first manner starting from vertex v. Use this function to find
connected components in the graph. Modify df s() to produce a list of newly visited vertices. The graph is represented
as adjacency lists.

#i ncl ude <stdio. h>

#def i ne MAXVERTI CES 20
#def i ne MAXEDGES 20

typedef enum { FALSE, TRUE, TRI STATE} bool ;
typedef struct node node;

struct node {

i nt dst;
node *next;
b
voi d printGaph(node *graph[], int nvert) {
/*
* prints the graph.
*/
int i, j;
for(i=0; i<nvert; ++i) {
node *ptr;
for(ptr=graph[i]; ptr; ptr=ptr->next)
printf("[%] ", ptr->dst);
printf("\n");
}
}
voi d insertEdge(node **ptr, int dst) {
/*
* insert a new node at the start.
*/
node *newnode = (node *)mall oc(sizeof(node));
newnode- >dst = dst;
newnode- >next = *ptr;
*ptr = newnode;
}
voi d buil dG aph(node *graph[], int edges[2][MAXEDGES], int nedges) {
/*
* fills graph as adjacency list fromarray edges.
*/
int i;
for(i=0; i<nedges; ++i) {
i nsert Edge(graph+edges[O][i], edges[1][i]);
i nsert Edge(graph+edges[1][i], edges[O][i]); // undirected graph
}
}

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0153.html (4 of 7) [30.06.2007 10:58:11]

CONNECTED COMPONENT OF A GRAPH

void dfs(int v, int *visited, node *graph[]) {
/*
* recursively traverse graph fromv using visited.
* and mark all the vertices that come in dfs path to TRI STATE.
*/
node *ptr;

visited[v] = TRI STATE;
[lprintf("% \n", v);
for(ptr=graph[v]; ptr; ptr=ptr->next)
if(visited[ptr->dst] == FALSE)
df s(ptr->dst, visited, graph);
}
void printSetTristate(int *visited, int nvert) {
/*
* prints all vertices of visited which are TRI STATE.
* and set themto TRUE
*
int i;

for(i=0; i<nvert; ++i)
if(visited[i] == TRI STATE) {
printf("% ", i);
visited[i] = TRUE
}
printf("\n\n");
}

voi d conpl NC(node *graph[], int nvert) {
/*
* prints all connected components of graph represented using INC |lists.
*/
int *visited;
int i;

visited = (int *)malloc(nvert*sizeof(int));
for(i=0; i<nvert; ++i)
visited[i] = FALSE

for(i=0; i<nvert; ++i)
if(visited[i] == FALSE) {
dfs(i, visited, graph);
[l print all vertices which are TRI STATE.
/1l and mark themto TRUE
printSetTristate(visited, nvert);
}
free(visited);

}

int main() {
int edges[][MAXEDGES] = {

int nvert =7; // no of vertices.
int nedges = 6; // no of edges in the graph
node **graph = (node **)call oc(nvert, sizeof(node *));

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0153.html (5 of 7) [30.06.2007 10:58:11]

CONNECTED COMPONENT OF A GRAPH

bui | dG aph(graph, edges, nedges);
print Gaph(graph, nvert);
conpl NC(graph, nvert);

return O;

}

Explanation

1. The graph is represented as adjacency lists. The graph contains an array of n pointers where n is the number of
vertices in the graph. Each entry i in the array contains a list of vertices to which i is connected. For example, if
the graph is as shown in the first diagram, the adjacency lists for the graph are as shown in the subsequent
diagram.

& = a

0 — I H
([0 [2 14
2 T H
7
RN RN

Each node in listi contains a vertex to which i is connected.

2. df s(v) isimplemented recursively. A Boolean vector vi si t ed[] is maintained whose entries are initially all
FALSE. df s(v) marks v as visited by making vi si t ed[v] = TRUE. It then finds all the adjacent nodes of v
and starts df s() from those nodes that have not yet been visited. For example, if df s(v) is called withv ==
0, it marks 0 and then it traverses the adjacency list gr aph[0] and calls df s('1) . This marks 1 and traverses
the adjacency list gr aph[1] . But since 0 is already marked, df s(2) is called. It marks 2 and starts traversal of
gr aph[2] . But since 1 is marked, it returns. All the previous invocations return as there are no nodes being
considered in the lists. Thus, the marked vertices are {0, 1, 2}.

3. conpl NC() is a function that finds all the connected components of a graph. It maintains a local copy of the

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥20(2004)/ 7267/DDU0153.html (6 of 7) [30.06.2007 10:58:11]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu408%5F1%5F0%2Ejpg

CONNECTED COMPONENT OF A GRAPH

vector vi si t ed[] and passes it as a parameter to df s(v) . conpl NC() passes that vertex as a parameter to
df s() that has not yet been visited. Thus each invocation of df s() finds one connected component of the
graph.

4. In order to modify df s() to produce a list of newly visited vertices, we tag the vertices visited using df s() as
TRI STATE. In conpl NC() , all these TRI STATE vertices will form one connected component. This status is then
converted to TRUE. The next invocation to df s() returns another set of vertices tagged as TRI STATE, which
forms another connected component and so on.

For example, in the previous program, first all vertices are tagged as FALSE. After the invocation of df s(0) , the
vertices tagged as TRI STATE are {0, 1, 2}. These are output and their tags are changed from TRI STATE to TRUE. The
next invocation of df s(3) tags vertices {3, 4, 5, 6} as TRI STATE. These are then output and their tags are changed
from TRI STATE to TRUE. Since there is no vertex remaining whose tag is FALSE, the algorithm stops.

Pointsto Remember
1. All the reachable vertices can be traversed from a source vertex by using depth-first search.
2. The data representation (a graph in this case) should be such that it should make algorithms operate on the
data efficiently. Being represented as adjacency lists, we could easily traverse the list to get the vertices
adjacent to a particular vertex.

3. Note how a simple recursive procedure solves the problem of finding all the reachable vertices from a vertex.

4. Note the use of descriptive words such as FALSE, TRUE and TRI STATE, rather than integers 0, 1 and 2. It
makes the program easily understandable.

- =

| 4mPREV | | NExT mp |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0153.html (7 of 7) [30.06.2007 10:58:11]

DEPTH-FIRST SPANNING TREE AND BREADTH-FIRST SPANNING TREE

| NEXT Wi |

—

| 4mPREV |

DEPTH-FIRST SPANNING TREE AND BREADTH-FIRST SPANNING TREE

I ntroduction

If graph G is connected, the edges of G can be partitioned into two disjointed sets. One is a set of tree edges, which
we denote by set T, and the other is a set of back edges, which we denote by B. The tree edges are precisely those
edges that are followed during the depth-first traversal or during the breadth-first traversal of graph G. If we consider
only the tree edges, we get a subgraph of G containing all the vertices of G, and this subgraph is a tree called
spanning tree of the graph G. For example, consider the graph shown in Figure 22.14.

Figure 22.14: Graph G.

One of the depth-first traversal orders for this tree is 1-2-3-4, so the tree edges are (1,2), (2,3) and (3,4). Therefore,
one of the spanning trees obtained by using depth-first traversal of the graph of Figure 22.14 is shown in Figure 22.15.

Figure 22.15: Depth first spanning tree of the graph of Figure 22.14.

Similarly, one of the breadth-first traversal orders for this tree is 1-2-4-3, so the tree edges are (1,2), (1,4) and (4,3).
Therefore, one of the spanning trees obtained using breadth-first traversal of the graph of Figure 22.14 is shown in

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0154.html (1 of 4) [30.06.2007 10:58:12]

DEPTH-FIRST SPANNING TREE AND BREADTH-FIRST SPANNING TREE

Figure 22.16.

Figure 22.16: Breadth-first spanning tree of the graph of Figure 22.14.

The algorithm for obtaining the depth-first spanning tree (dfst) appears next.

T=1; {initially set of tree nodes is enpty}
df st(v : node);

{
if (visited[v] = fal se)
{
visited[v] = true;
for every adjacent i of v do
{
T=TE{(v,i)}
df st (i);
}
}
}

If a graph G is not connected, the tree edges, which are precisely those edges followed during the depth-first, traversal
of the graph G, constitute the depth-first spanning forest. The depth-first spanning forest will be made of trees, each of

which is one of the connected components of graph G.

When a graph G is directed, the tree edges, which are precisely those edges followed during the depth-first traversal of
the graph G, form a depth-first spanning forest for G. In addition to this, there are three other types of edges. These are
called back edges, forward edges, and cross edges. An edge A —B is called a back edge, if B is an ancestor of A in
the spanning forest. A non-tree edge that goes from a vertex to a proper descendant is called a forward edge. An edge
which goes from a vertex to another vertex that is neither an ancestor nor a descendant is called a cross edge. An
edge from a vertex to itself is a back edge. For example, consider the directed graph G shown in Figure 22.17.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0154.html (2 of 4) [30.06.2007 10:58:12]

DEPTH-FIRST SPANNING TREE AND BREADTH-FIRST SPANNING TREE

Figure 22.17: A directed graph G.

The depth-first spanning forest for graph G of Figure 22.17 is shown in Figure 22.18.

T

Figure 22.18: Depth-first spanning forest for the graph G of Figure 22.17.

In graph G of Figure 22.17, the edges such as C — A and D — A are the back edges, the edges suchas D — C and G
— D are cross edges.

Example

Consider the graph shown in Figure 22.19.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0154.html (3 of 4) [30.06.2007 10:58:12]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D17%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D18%5F0%2Ejpg

DEPTH-FIRST SPANNING TREE AND BREADTH-FIRST SPANNING TREE

Figure 22.19: A graph G.

If we apply the procedure dfst to this graph, one of the depth-first spanning trees that we get by starting with vertex 1 is
shown in Figure 22.20.

> 5

Figure 22.20: Depth-first spanning tree of the graph G of Figure 22.19.

= o

| 4mPREV | | NEXT Wi |

file:///Z)/Charl es¥620River/(Charles¥620River)%620C%208& %20Data%20Structures?620(2004)/ 7267/DDU0154.html (4 of 4) [30.06.2007 10:58:12]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D19%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D20%5F0%2Ejpg

MINIMUM-COST SPANNING TREE

-

| 4mPREV | | NExT mp |

MINIMUM-COST SPANNING TREE

I ntroduction

When the edges of the graph have weights representing the cost in some suitable terms, we can obtain that spanning tree of a graph
whose cost is minimum in terms of the weights of the edges. For this, we start with the edge with the minimum-cost/weight, add it to set
T, and mark it as visited. We next consider the edge with minimum-cost that is not yet visited, add it to T, and mark it as visited. While
adding an edge to the set T, we first check whether both the vertices of the edge are visited; if they are, we do not add to the set T,
because it will form a cycle. For example, consider the graph shown in Figure 22.21.

18

Figure 22.21: A graph G.

The minimum-cost spanning tree of the graph of Figure 22.21 is shown in Figure 22.22.

@ 16 -

11 5

® @
Figure 22.22: The minimum-cost spanning tree of graph G of Figure 22.21.

MST Property

Let G = (V,E) be a connected graph with a cost function defined on the edges. Let U be some proper subset of the set of vertices V. If
(u,v) is an edge of lowest cost such that u is in U, and v is in V-U, there is a minimum-cost spanning tree that includes edge (u,v). Many
of the methods of constructing a minimum-cost spanning tree use the following properties.

file:///Z)/Charles%20River/(Charl es%620River)%620C%620& %20D ata%620Structuresy620(2004)/7267/DDU0155.html (1 of 5) [30.06.2007 10:58:12]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D21%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D22%5F0%2Ejpg

MINIMUM-COST SPANNING TREE

Prim's Algorithm

Let G = (V,E) be a weighted graph, and suppose V ={1,2,...,n}. The Prim's algorithm begins with a set U initialized to {1}, and at each
stage finds the shortest edge (u,v) that connects u in U and v in V-U, and then adds v to U. It repeats this step until U = V.
ncost (G is a graph; T is a set of edges)

Uis a set of vertices

u,v are vertices;

{
T=0
U= {1}
while U'" V
{

Find the lowest-cost edge (u,v) such that uis in U and v is in V-U

add (u,v) to T
add v to U

}

Program

The following program can be used to find the minimum spanning tree of a graph.
#i ncl ude <stdi o. h>

#defi ne MAXVERTI CES 10

#defi ne MAXEDGES 20

typedef enum {FALSE, TRUE} bool;

int getNVert(int edges[][3], int nedges) {

/*

* returns no of vertices = maxvertex + 1;
*/

int nvert = —1;

int j;

for(j=0; j<nedges; ++) {
if(edges[j][0] > nvert)
nvert = edges[j][0];

if(edges[j][1] > nvert)
nvert = edges[j][1];

}
return ++nvert; /1 no of vertices = maxvertex + 1,
}
bool isPresent(int edges[][3], int nedges, int v) {
/*
* checks whether v has been included in the spanning tree.
* thus we see whether there is an edge incident on v which has
* a negative cost. negative cost signifies that the edge has been
* included in the spanning tree.
*/
int j;
for(j=0; j<nedges; ++j)
if(edges[j][2] < O & (edges[j][0] == v || edges[j][1] == v))
return TRUE
return FALSE;
}

file:///Z)/Charles%20River/(Charl es%620River)%620C%620& %20D ata%620Structuresy620(2004)/7267/DDUO155.html (2 of 5) [30.06.2007 10:58:12]

MINIMUM-COST SPANNING TREE

voi d spanni ng(int edges[][3], int nedges) {

/-k

* finds a spanning tree of the graph having edges.
* uses kruskal's nethod

* assunes all costs to be positive.

*/

int i, j;

int tvl, tv2, tcost;

i nt nspanedges = O;

int nvert = getNVert (edges, nedges);

/'l sort edges on cost.
for(i=0; i<nedges—1; ++i)
for(j=i; j<nedges; ++)
if(edges[i][2] > edges[j][2]) {
tvl = edges[i][0]; tv2 = edges[i][1]; tcost = edges[i][2];
edges[i][0] = edges[j][0]; edges[i][1] = edges[j][1]; edges[i][2] = edges[j][2];
edges[j][0] = tvl; edges[j][1l] = tv2; edges[j][2] = tcost;

for(j=0; j<nedges-1; ++j) {
/'l consider edge j connecting vertices vl and v2.
int vl = edges[j][0];
int v2 edges[j][1];

/1 check whether it fornms a cycle in the up until now forned spanning tree.
/'l checking can be done easily by checking whether both vl and v2 are in
/1 the current spanning treel
i f(isPresent(edges, nedges, vl1) && isPresent(edges, nedges, v2)) // cycle.
printf("rejecting: % % %l...\n", edges[j][0], edges[j][1], edges[j]l[2]);
el se {
edges[j][2] = -edges[j][2];
printf("%l % %.\n", edges[j][0], edges[j][1], -edges[j]l[2]);
i f (++nspanedges == nvert-1)
return;
}
}
printf("No spanning tree exists for the graph.\n");

}

mai n() {
int edges[][3] ={
{0, 1, 16},
{0, 4,19},
{0, 5, 21},
{1, 2, 5},
{1, 3, 6},
{1, 5, 11},
{2, 3, 10},
{3, 4, 18},
{3, 5, 14},
{4,5, 33}
H
i nt nedges = sizeof (edges)/ 3/sizeof (int);
spanni ng(edges, nedges);

return O;

}

Explanation

1. Atree consisting solely of edges in a graph G, and including all vertices in G, is called a spanning tree. A minimum spanning
tree of a weighted graph is the spanning tree with minimum total cost of its edges.

file:///Z|/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0155.html (3 of 5) [30.06.2007 10:58:12]

MINIMUM-COST SPANNING TREE

An example graph and its minimum spanning tree.

2. The graph is represented as an array of edges. Each entry in the array is a triplet representing an edge consisting of source
vertex, destination vertex, and the cost associated with the edge. The method used in finding a minimum spanning tree is that
given by Kruskal. In this approach, a minimum spanning tree T is built edge by edge. Edges are considered for inclusion in T in
non- decreasing order of their costs. An edge is included if it does not form a cycle with the edges that are already in T. Since
graph G is connected and has n > 0 vertices, exactly n — 1 edges will be selected for inclusion in T.

3. Kruskal's algorithm is as follows:

T={}; /1 enpty set.
while T contains |less than n-1 edges and E not enpty do
choose an edge (v, w) fromE of |owest cost.
delete (v, w) fromE
if (v, w does NOT create a cycle in T
add (v, w) to T.
el se
discard (v, w.
endwhi | e.
if T contains less than n-1 edges
print("no spanning tree exists for this graph.");

4. In order for the choice of the lowest-cost edge from E to become efficient, we sort the edge array over the cost of edge. To
check whether an edge (v, w) forms a cycle, we simply need to check whether both v and w appear in any of the previously
added edges in T. We assume that all the costs are positive and we make them negative to signify that the edge has been
included in T.

5. Example:

For the example graph in item 1, the run of the algorithm goes as follows:

| STEP | EDGE | COST | ACTION | SPANNING-TREE

E |— | — | — K

|1 | (1.2 | 5 | accept 1 {(L, 2)

| 2 | (1,3) | 6 | accept 1{(1,2), 1, 3)}

| 3 | (2, 3) | 10 | reject 1{(1,2), (1, 3)}

| 4 | (1, 5) | 11 | accept | {@, 2), (1, 3), (1, 5\

| 5 | (3, 5) | 14 | reject | {1, 2), 1, 3), (1, 5)}.

|6 (0,1 |16 | accept 1{(,2), (1, 3), (L, 5), (0, 1)}

|7 | (3. 4) | 18 | accept 1{(1,2), (1,3), (1, 5), (0, 1), (3, 4}

Pointsto Remember

1. A minimum spanning tree of a weighted graph G is a tree that consists of edges solely from the edges of G, which covers all the
vertices in G, and which has the minimum combined cost of its edges.

2. The complexity of Kruskal's method used for finding the minimum spanning tree of a graph G is O(eloge) where e is the number
of edges in G.

3. Note that the union and find algorithms for set representation can be used for checking for cycle and inclusion of an edge in a

file:///Z)/Charles%20River/(Charl es%620River)%620C%620& %20D ata%620Structuresy620(2004)/7267/DDU0155.html (4 of 5) [30.06.2007 10:58:12]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu418%5F1%5F0%2Ejpg

MINIMUM-COST SPANNING TREE
set.

4. There can be multiple minimum spanning trees in a graph.

Application of Minimum-Cost Spanning Tree

A property of a spanning tree of a graph G is that a spanning tree is a minimal connected subgraph of G (by minimal, we mean the one
with the fewest number of edges). Therefore, if nodes of G represent cities and the edges represent possible communication links
connecting two cities, then the spanning trees of graph G represent all feasible choices of the communication network. If each edge
has weight representing cost measured in some suitable terms (such as cost of construction or distance etc.), then the minimum-cost
spanning tree of G is the selection of the required communication network.

- -

| 4w PREV NE=T o |

file:///Z|/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0155.html (5 of 5) [30.06.2007 10:58:12]

DIRECTED ACYCLIC GRAPH (DAG)

| 4mFrREV | | NEMT o |

DIRECTED ACYCLIC GRAPH (DAG)

Concept

A directed acyclic graph (DAG) is a directed graph with no cycles. A DAG represents more general relationships than trees
but less general than arbitrary directed graphs. An example of a DAG is given in Figure 22.23.

Figure 22.23: Directed acyclic graph.

DAGs are useful in representing the syntactic structure of arithmetic expressions with common sub-expressions. For
example, consider the following expression:

(atb)*c + ((a+b + €)

In this expression, the term (a + b) is a common sub-expression, and therefore represented in the DAG by the vertices
with more than one incoming edge, as shown in Figure 22.24.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0156.html (1 of 9) [30.06.2007 10:58:14]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D23%5F0%2Ejpg

DIRECTED ACYCLIC GRAPH (DAG)

Figure 22.24: DAG representation of expression (a+b)*c +((atb) + e).

Topological Sort of Directed Graph

A topological sort is a method for ordering the nodes of the directed graph G in which the nodes represent tasks or
activities, and the edges represent precedence relations between nodes, that is, when the edges of the graph represent
dependency among the node/vertices of graph G. It lists the vertices/nodes in such an order that a vertex vi gets listed
only after all the vertices on which vi depends have been listed. For a topological sort to be feasible, it is required that the
directed graph G not have any directed cycles. In other words, the graph G should be a DAG. This also means that the
precedence relation defined by the edges of G must be irreflexive. The precedence relation defined by the edges of G is
certainly transitive and so is a partial order. It starts with a vertex that does not have any predecessor and lists it. After that
it logically deletes it from the graph and once again searches for that vertex that does not have any predecessor, and
repeats the procedure. It does not give a unique order. For example, consider the directed graph shown in Figure 22.25.

'y

Figure 22.25: A graph G.

The topological sort of the graph in Figure 22.25 gives the following orders:
. 1-2-3-4-5-6

. 1-2-3-5-4-6

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0156.html (2 of 9) [30.06.2007 10:58:14]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D24%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig22%2D25%5F0%2Ejpg

DIRECTED ACYCLIC GRAPH (DAG)
. 1-2-3-4-6-5

The algorithm for a topological sort is presented here:
whil e there exist a node

{

sel ect a node whi ch does not have any predecessor
list the sel ected node
delete it fromthe graph

}

The procedure for a depth first search, with a print statement added to print the nodes, can also be used, as shown in the
following program, to perform a topological sort. This algorithm prints the vertices accessible from x in reverse topological
sort. This algorithm prints the vertices accessible from x in reverse topological order.

Program

Write a program to find the topological order of a diagraph G represented as adjacency lists.
#i ncl ude <stdio. h>

#define N 11 /1 no of total vertices in the graph.

typedef enum { FALSE, TRUE} bool;
typedef struct node node;

struct node {

i nt count; /1 for arraynodes : in-degree.
/1 for listnodes : vertex no this vertex is connected to.
/] if this node is out of graph : -1.

[l if this has 0 indegree then it occurs in zerolist.
node *next;

s

node graph[N ;
node *zeroli st;

voi d addToZerolist(int v) {
/*
* adds v to zerolist as v has 0 predecessors.
*/
node *ptr = (node *)mal |l oc(sizeof (node));
ptr->count = v;
ptr->next = zerolist;
zerolist = ptr;

}

void buildGaph(int a[][2], int edges) {
/*
* fills global graph with input given in a.
* a[i][0] is src vertex and a[i][1l] is dst vertex.
*/
int i;

/1 init graph.

for(i=0; i<N, ++i) {
graph[i].count = O;
graph[i].next = NULL;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0156.html (3 of 9) [30.06.2007 10:58:14]

DIRECTED ACYCLIC GRAPH (DAG)

/! now add the list entries.
for(i=0; i<edges; ++i) {
/1 add new node to src |ist.
node *ptr = (node *)malloc(sizeof (node));
ptr->count = a[i][1];
ptr->next = graph[a[i][0]].next;
graph[a[i][0]].next = ptr;
/1 increase indegree of dst.
graph[a[i][1]].count++;
}

/1l now create list of zero predecessors.
zerolist = NULL; /1 list of vertices having O predecessors.
for(i=0; i<N, ++i)
if(graph[i].count == 0) {
addToZerolist(i);

}
}
void printGaph() {
int i;
node *ptr;

for(i=0; i<N, ++i) {
node *ptr;
printf("%l: pred=%l: ", i, graph[i].count);
for(ptr=graph[i].next; ptr; ptr=ptr->next)
printf("%l ", ptr->count);
printf("\n");

}
printf("zerolist: ");
for(ptr=zerolist; ptr; ptr=ptr->next)
printf("% ", ptr->count);
printf("\n");
}

i nt getZeroVertex() {
/*
* returns the vertex with zero predecessors.
* if no such vertex then returns —1.
*/
int v;
node *ptr;

if(zerolist == NULL)
return —1;

ptr = zerolist;

v = ptr->count;

zerolist = zerolist->next;

free(ptr);

return v

}

voi d renoveVertex(int v) {
/*

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0156.html (4 of 9) [30.06.2007 10:58:14]

DIRECTED ACYCLIC GRAPH (DAG)

* deletes vertex v and its outgoing edges from gl obal graph.
*/
node *ptr;
graph[v].count = -1,
/1 free the list graph[v].next.
for(ptr=graph[v].next; ptr; ptr=ptr->next) {
i f(graph[ptr->count].count > 0) // nornmal nodes.
graph[ptr->count].count-;
i f(graph[ptr->count].count == 0) /1 this is NOT el se of above if.
addToZerolist(ptr->count);

}

void topsort(int nvert) {
/*
* finds recursively topol ogi cal order of global graph.
* nvert vertices of graph are needed to be ordered.
*/
int v;

if(nvert >0) {
v = get ZeroVertex();

if(v=-1){ /1l no such vertex.
fprintf(stderr, "graph contains a cycle.\n");
return;

}

printf("%.\n", v);
removeVert ex(v);
topsort(nvert-1);

}

int min() {
int a[][2] = {
{0! 1}!
{0, 3},
{0, 2},
{1, 4},
{2!4}1
{2!5}!
{3, 4},
{3, 5}
}
bui l dGaph(a, 8);
print Gaph();
topsort(N);
}

Explanation

1. Alinear ordering of vertices of a diagraph G, with the property that if i is a predecessor of j then i precedes j in linear
order, is called a topological order of G.

2. The diagraph G is maintained as adjacency lists. In this representation, G is an array gr aph[0. . n- 1] where each
element graph[i] is alinked list of vertices. Vertex i is connected to, and n is the number of, vertices in G.

3. We also maintain a zer ol i st , which is a list of vertices that have zero predecessors. The necessity of this list will
be clear in the algorithm shown in number four of this explanation.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0156.html (5 of 9) [30.06.2007 10:58:14]

DIRECTED ACYCLIC GRAPH (DAG)

4. The algorithm for topological sort is:
topsort(n) {
if(n>0) {
if every vertex has a predecessor then
error("graph contains a cycle.").
pick a vertex v that has no predecessors. /'l getZeroVertex()
out put v.
delete v and all the edges leading out of v in the graph. // renoveVertex()
topsort(n-1).
}
}

5. The algorithm t opsort () is tail-recursive. From zer ol i st , it removes a vertex v containing zero predecessors

and outputs it. This vertex v has no predecessors in G or all its predecessors have already been output. Thus all the
vertices in zer ol i st are the candidates for the next output. After v is output, all the vertices to which v points may

become the candidates for the next output. Thus we remove all the edges starting from v and rerun t opsort ()
over the remaining vertices.

6. See the following example of a diagraph.

0.
\
© (D
© 2,

STEP ZEROLIST OUTPUT

{0} nil
(1,2, 3}
{2, 3}
{3}
{4,5}
{5}

{

o 00~ WO DN PP O
g A W N PP O

Pointsto Remember

1. Alinear ordering of vertices of a diagraph G, with the property that if i is a predecessor of j then i precedes j in the
linear ordering, is called a topological order of G.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0156.html (6 of 9) [30.06.2007 10:58:14]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu426%5F1%5F0%2Ejpg

DIRECTED ACYCLIC GRAPH (DAG)

. The complexity of topological order is O(n+e) where n is the number of vertices and e is the number of edges in the

diagraph.

Removal of an edge results in a decrease in the predecessor count of the destination vertex. If this count reaches O,
the vertex should be inserted in the zer ol i st .

By maintaining a list of vertices with zero predecessors, the computing time of the algorithm decreases.

. The algorithm is therefore a total time of O(e), if graph G is represented by an adjacency list, and O(n?) if graph G is

represented by an adjacency matrix.

General Comments on Graphs

1.

10.

11.

12.

13.

14.

A graph is a structure that is often used to model the arbitrary relationships among the data objects while solving
many problems.

. A graph is a structure made of two components: a set of vertices V, and the set of edges E. Therefore, a graph is G

= (V,E), where G is a graph.

. The graph may be directed or undirected. When the graph is directed, every edge of the graph is an ordered pair of

vertices connected by the edge.

. When the graph is undirected, every edge of the graph is an unordered pair of vertices connected by the edge.

. The maximum number of edges in an undirected graph with n vertices is n(n — 1)/2, whereas in the case of a

directed graph, itis n(n — 1).

. Adjacency matrices and adjacency lists are used to represent graphs.
. A graph can be traversed by using either the depth first traversal or the breadth first traversal.

. When a graph is traversed by visiting in the forward (deeper) direction as long as possible, the traversal is called

depth first traversal.

. When a graph is traversed by visiting all the adjacencies of a node/vertex first, the traversal is called breadth first

traversal.
A connected component of a graph is a maximal subgraph of a given graph that is connected.

A DAG is an important data structure used for representing syntactic structure of expressions with common
subexpressions.

A DAG is also used in representing partial orders.

A topological sort lists the vertices in such an order that if a vertex vi is a predecessor of vertex vj then vi precedes
vj in the linear ordering.

Topological sort is possible only for a DAG.

Exercises

1.

2.

Find out the minimum number of edges in a strongly connected diagraph on n vertices.

Test the program for obtaining the depth first spanning tree for the following graph:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0156.html (7 of 9) [30.06.2007 10:58:14]

DIRECTED ACYCLIC GRAPH (DAG)

3. Test the program for obtaining the minimum cost spanning tree for the following graph:

4. Test a program for topological sort for the following DAG:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0156.html (8 of 9) [30.06.2007 10:58:14]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu428%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu429%5F1%5F0%2Ejpg

DIRECTED ACYCLIC GRAPH (DAG)

B

— e ——. - -

| 4m PREV | | MEXTmp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0156.html (9 of 9) [30.06.2007 10:58:14]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu429%5F2%5F0%2Ejpg

Part 111: Advanced Problemsin Data Structures

[_ﬁ PREY j [_ NEHT ‘j

Part I11: Advanced Problemsin Data Structures
Chapter 23: Problems in Arrays, Searching, Sorting, Hashing
Chapter 24: Problems in Stacks and Queues
Chapter 25: Problems in Linked Lists
Chapter 26: Problems in Strings
Chapter 27: Problems in Trees
Chapter 28: Problems in Graphs

Chapter 29: Miscellaneous Problems

[_ﬁ PREV j [_ NEXT *j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0157.html [30.06.2007 10:58:14]

Chapter 23: Problemsin Arrays, Searching, Sorting, Hashing

—

| NEXT Wi |

—

| 4mPREV |

Chapter 23: Problemsin Arrays, Searching, Sorting, Hashing

PROBLEM: CALCULATE THE VALUE OF AN N x N DETERMINANT

Program

#i ncl ude <stdi o. h>
#i ncl ude <nat h. h>

#define N 3
#def i ne EPSI LON 1le-10

typedef enum {FALSE, TRUE} bool;

void print(double a[][N) {

/*

* print the matrix.
*/

int i, j;

for(i=0; i<N ++i) {
for(j=0; j<N ++)
printf("98.49 ", a[i][j]);
printf("\n");

}
printf("\n");
}
void di vRowm double a[][N, int row, double divisor) {
/*
* divides row of a by divisor.
*/
int j;
for(j=0; j<N ++j)
af[rowj[j] /= divisor;
}
void subRow double a[][N, int rowl, int row2) {
/*
* rowl -= row2.
*/
int j;
for(j=0; j<N ++4j)
afrom][j] -= a[row2][j];
}
bool anyZero(double a[][N) {
/*
* returns TRUE i f any diagonal entry of a is zero (less than EPSI LON).
*/
int i;

for(i=0; i<N, ++i)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0158.html (1 of 5) [30.06.2007 10:58:15]

Chapter 23: Problemsin Arrays, Searching, Sorting, Hashing

if(fabs(a[i][i]) <= EPSILON)
return TRUE;
return FALSE;

}

doubl e makeUpper(double a[][N) {
/*
* makes a an upper-triangular matri x.
* returns O if any of the diagonal entries are 0; 1 otherw se.

*/
int i, j;
doubl e factor = 1.0;
doubl e tenp;
for(i=1;, i<N, ++i) /1 dont worry about row O.
for(j=0; j<i; +4) {
tenp = ali][j];
if(fabs(tenp) > EPSILON) {
printf("factor=% dividing row % by %g...\n", factor, i, tenmp);
di vRow(a, i, tenp);
print(a);
factor *= tenp;
}
tenp = a[j][j];
if(fabs(tenp) > EPSILON && fabs(tenp-1.0) > EPSILON) {
printf("factor=% dividing row % by %...\n", factor, j, tenmp);
di vRow(a, j, tenp);
print(a);
factor *= tenp;
}
if(fabs(a[i][j]) > EPSILON) {
printf("factor=2g rowf%d] -=row%]...\n", factor, i, j);
subRowm a, i, j);
print(a);
}
i f(anyZero(a) == TRUE)
return O;
}
a[N-1][N-1] *= factor; /1 all but(?) last elenent of row N-1 are zero.
return 1;
}
double nultDia(double a[][N) {
/*
* returns multiplication of diagonal elenents.
*/
int i;
doubl e factor = 1,
for(i=0; i<N, ++i)
factor *= a[i][i];
return factor;
}

int main() {

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0158.html (2 of 5) [30.06.2007 10:58:15]

Chapter 23: Problemsin Arrays, Searching, Sorting, Hashing

}

double a[N [N =

doubl e factor;
print(a);
factor = nakeUpper(a);
print(a);
printf("determinant = %g.\n", factor*nmultDi a(a));

Explanation

1. The usual way of finding the value of an N x N determinant is to take the first element of the first row and
multiply it by the value of the determinant formed by removing that row and that column. This procedure is
followed recursively at every step until only a single element remains whose value itself is the value of the 1 x 1
determinant. The sign of the element being multiplied may change depending on its row and column. In general,
if the element has row i and column j, then its sign is determined by the formula (—1)"(i+j).

2. There is another way to solve the problem. We note that if we perform row or column transformations on the
determinant, its value does not change. We take advantage of this fact to transform the matrix corresponding to
the determinant into an upper or lower triangular matrix and then find its determinant value. It becomes clear
that the determinant value of an upper or lower triangular matrix is the product of the diagonal elements. Thus
the job of finding a determinant value is basically a matter of making a matrix upper or lower triangular.

3. To make a matrix upper triangular (makeUpper ()), we perform row transformations on the matrix. Another
important observation is that multiplication of a determinant D by a value v is a new determinant in which any of
the rows of D are multiplied by v. Multiplication of a row by v means multiplying each element in the row by v.
Thus we maintain a variable factor that keeps track of the multiplier as the rows of the determinant are multiplied
or divided by various factors in the process of upper-triangulation. We assume all elements of the determinant to
be floating-point numbers.

4. In the process of upper-triangulation, if any of the diagonal elements become 0 (anyZer o()), that means the

value of the determinant is 0 (remember that the value of the determinant is the multiplication of diagonal
elements (mul t Di a()).

5. Since here we assume that the elements are floating-point numbers, the calculations might not be exact. To
account for this approximation, we maintain an error term EPSI LON which is set to a sufficiently low value

(tending to 0). Any value in the range +EPSI LON...0...—EPSI LON s considered to be 0.

6. The algorithm for making a matrix upper triangular is as follows:

factor = 1.
for i=1 to N1 do
for j=0 to i-1 do

divide rowi by Di][j] /1 di vRow) .
factor *= DJi][j].
divide rowj by Djllijl /1 di vRow().

factor *= DO[j][j].
subtract elements of row|j fromcorresponding el enents of row i
/1 subRow().
check for any of the diagonal elenments of Dto be O.
/1 anyZero().
determ nant = factor*product of diagonal elenents.

7. Example: Let the determinant be

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0158.html (3 of 5) [30.06.2007 10:58:15]

Chapter 23: Problemsin Arrays, Searching, Sorting, Hashing
| 801
| 213
| 539].
factor = 1.
Snapshots of the algorithm when run on this determinant are shown here.

I J STEP FACTOR DETERMINANT

1 0 divide row 1 by 2 8 0 1]
[10.515|
5 3 9]

1 0 divide row 0 by 8 16 [100.125|
[10515 |
|5 3 9]

1 0 row 1 —=row 0| 16 |1 0 0.125]
|00.51.375 |
[|539]

2 0 divide row 2 by 5 80 [100.125|
|00.51.375]
[10.61.8]

2 0 row 2 —=row 0 80 [100.125|
[00.51.375]
|00.6 1.675 |

2 1 divide row 2 by 0.6 48 [100.125|
|00.51.375|
|012.792 |

2 1 divide row 1 by 0.5 24 |100.125 |
|012.75)|
|012.792 |

2 1 row 2 —=row 1 24 [100.125|
[012.75)|
| 000.0417|

Thus, the determinant = 24*(1*1*0.0417) = 1.

Pointsto Remember

1. The first way to solve the problem recursively was natural but clumsy, as it requires removal of a row and a
column. So, when designing an algorithm, we should try different approaches and then select the most
appropriate one.

2. Note how we reduced the problem of finding a determinant value to making a matrix upper triangular. These
reductions not only simplify a problem but can also help in reusing the code and analysis.

3. An error term such as EPSI LON should be used in floating point computations.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0158.html (4 of 5) [30.06.2007 10:58:15]

Chapter 23: Problemsin Arrays, Searching, Sorting, Hashing

e = e =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0158.html (5 of 5) [30.06.2007 10:58:15]

PROBLEM:WRITE A PROGRAM TO FIND THE SADDLE POINT OF A MATRIX, IFIT EXISTS

—

| NEXT Wi |

—

| 4mPREV |

PROBLEM:WRITE A PROGRAM TO FIND THE SADDLE POINT OF A MATRIX, IFIT
EXISTS

Program
#i ncl ude <stdio. h>

#define M 3
#define N 3

int findMn(int a[][N, int row) {
/*
* find mn value in row of a.
* return the val ue.
x|
int mn=afrow][O0];
int j;

for(j=1; j<N, ++j)
if(a[row[j] < min)
mn=af[row[j];
return mn;

}

int findMax(int a[][N, int col) {
/*
* find max val in col of a.
* return the val ue.
*/
int max = a[0][col];
int i;

for(i=1;, i<M ++i)
if(a[i][col] > max)
max = a[i][col];
return mex;

}

void saddle(int a[][N) {
/*
* finds ALL saddle points of a if exist.
*/
int i, j;

for(i=0; i<M ++i) {
int min=findMn(a, i);

for(j=0; j<N ++) {

i nt nmax;
max = findMax(a, j);
if(mMmn == nmax)
printf("Saddle : (%, %l).\n", i, |);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0159.html (1 of 2) [30.06.2007 10:58:16]

PROBLEM:WRITE A PROGRAM TO FIND THE SADDLE POINT OF A MATRIX, IFIT EXISTS

}
}

int main() {
int aflM[N = {5,7,3,7,7,9,7,1, 2};
int row, col;
saddl e(a);
return 0; }

Explanation

1. An M x N matrix is said to have a saddle point if some entry a[i][j] is the smallest in row i and the largest in
column j. In the following example matrix, 7 is the saddle point.

2. The program is simple and could be completed in O(M x N x M) time by using nested f or loops. The algorithm

is as follows:

for i=0 to M1 {

mn=mnimmvalue in rowi. {1 findMn().

for j=0 to N1 {
max = naxi mum val ue in colum j. {1 findvax().
if (mn == nmax)

print "saddle found at row ", i, "and colum ", j.
}
}

3. Finding the minimum in a row is O(N) and finding the maximum in a column is O(M). Thus the complexity of the
algorithm becomes O(M*(N+N*M)), or O(M*N*M).

Pointsto Remember

1. A saddle point is the value which is minimum in the row and maximum in the column.
2. There can be more than one saddle point in a matrix.
3. There may be no saddle point in a matrix.

4. The complexity of the algorithm is O(M x M x N), where M x N is the size of the matrix.

—

| 4mPREV |

-

| NEXT Wi |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0159.html (2 of 2) [30.06.2007 10:58:16]

PROBLEM: MULTIPLY TWO SPARSE MATRICES

= r

| 4mrFREV | | NExT |

PROBLEM: MULTIPLY TWO SPARSE MATRICES

Write a function mmul t () to multiply two sparse matrices and store the result in another sparse matrix. Each sparse
matrix is represented by an array of triplets. Each triplet consists of a row, a column, and a value.

Program
#i ncl ude <stdio. h>

#define M 10 /] the matrices are MkP, PxN and MN.
#define P 7
#define N 8

void ftrans(int a[][3], int b[][3]) {
/*
* finds fast-transpose of a in b.
*/
int t[P+1];
int i, j, n, terns;
int tenp, tenp2;

n=al0][1];
terns = a[0][2];
b[O][0] = n;
b[O][1] = a[0][O];
b[0] [2] terns;

if(terns <= 0)
return;
for(i=0; i<n; ++i)
t[i] = 0;
for(i=1; i<sterms; ++i)
tlafi][1]]++
tenp = t[0];
t[0] = 1;
for(i=1; i<n; ++i) {
tenmp2 = t[i], t[i] = t[i-1]+tenp, tenp = tenp2;
}
for(i=1; i<sterns; ++i) {
j = tlali][1]];
b[jI1[0] = a[i][1], b[jI[1] = a[i][O0], b[j]l[2] = a[i][2];
tlafi][1]] = j+1;

}

}

void printMatrix(int a[][3]) {
/* prints the matrix in the formof 3-tuples.
int/i;

int nterns = a[0][2];

printf("rows=% col s=%l val s=%l.\n", a[0][0], a[0][1], a[0][2]);
for(i=1; i<=nterns; ++i)

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0160.html (1 of 5) [30.06.2007 10:58:16]

PROBLEM: MULTIPLY TWO SPARSE MATRICES

printf("a[%][%] = %.\n", a[i][0], a[i][1], a[i]l[2]);
putchar("\n");

}
void insert(int c[][3], int row, int col, int val) {
/*
* insert or add the triplet (rowcol,val) in c.
* uypdate c[0][2] if necessary.
*/
int i, terms =c[0][2];
for(i=1; i<=ternms && c[i][0] <row, ++i)
for,(; i<sterns && c[i][1] <col; ++i)
if(1i<=terr'rs && c[i][1] == col) /1 already inserted.
c[i][2] += val;
el se { /1 a new entry should be inserted at i.
c[i][O] =row, c[i][1] = col; c[i]l[2] = val;
c[O] [2] ++;
}
}
void mmult(int a[][3], int b[][3], int c[][3]) {
/*
* ¢ = a*b;
*/
nt i, j, m = MN
nt aterns = a[0][2], bterns = b[0][2];

nt *t = (int *)malloc(rowsof b*sizeof (int));
nt tenp, tenp2;

i
i
int rowsofb = b[0][0];
i
i
int arow, acol, aval, brow, browstart, browend;

c[0][0] = a[0][O];
c[O][1] = b[O][1];
/] init c.
for(1=0; i<=m; ++i)
c[i]l[2] = 0;
[l fill t[] : t[i] points to row of b where actual row i starts.

/1 last+1l entry is also maintained for easing | oops.
for(i=0; i<=rowsofb; ++i)
t[i] = 0;
for(i=1; i<=bterns; ++i)
t[b[i][0]]++;
temp = t[0];
t[0] = 1;
for(i=1; i<=rowsofb; ++i)
temp2 = t[i], t[i] =t[i-1]+tenp, tenp = tenp2;

/1l now start mult.
for(i=1;, i<=aterns; ++i) {
arow = a[i][0]; acol = a[i][1]; aval = a[i][2];
brow = acol ;
browstart = t[brow]; browend = t[browtl];
for(j=browstart; j<browend; ++j)
insert(c, arow, b[j][1], aval*b[j][2]);

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0160.html (2 of 5) [30.06.2007 10:58:16]

PROBLEM: MULTIPLY TWO SPARSE MATRICES

}
}

int min() {
int a[][3]

1
—~

{4, 2, 3},
{0, 1, 2},
{1, 0, 3},
{3, 1,4}

int b[][3]

1
—~

{2, 3, 3},
{0, 2, 5},
{1, 0, 7},
{1, 1, 6}
b
int c[MN+1][3];

printMatrix(a);
printMtrix(b);
mult(a, b, ¢);
printMatrix(c);

return O;

}

Explanation

1. A sparse matrix is represented by an array of triplets. Each triplet consists of a row, a column, and a value
corresponding to one nonzero element in the sparse matrix. Thus, we maintain an array of size N x 3 for each
sparse matrix, where N is the number of non-zero elements in the array. The first row of each sparse matrix
contains the number of rows, columns, and nonzero elements in the matrix. An example follows.

I ADNO] A[N[] A[lI[2]

0 7 7 8

1 1 1 15
2 1 4 22
3 1 6 —15
4 2 2 11
5 2 3 3

6 3 4 -6
7 5 1 91
8 6 3 28

a[0] [0] =7 is the number of rows of the matrix a. a[0] [1] =7 is the number of columns of the matrix a. a[0] [2] =8
is the number of nonzero elements in the matrix a. The nonzero elements are saved inrows i =1 toi =8 where a[i]
[0] istherow, a[i][1] isthe column,and a[i][2] is the value in the matrix a. Note that the elements are sorted
by row, but inside a row they are sorted by columns.

2. The functionmmul t (a, b, c) takes each element of a, with row ar owand column acol , and multiplies with each
element of row acol of b. The product is added to the element in ¢ with row ar ow and column equal to the column
of the element in b. Note that since a and b are sorted by (row, column), the new entries generated for c are also in
the same sorted order. Thus we can easily insert the new entries in ¢ at the end of the currently stored entries.

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0160.html (3 of 5) [30.06.2007 10:58:16]

PROBLEM: MULTIPLY TWO SPARSE MATRICES

3. The only problem now is how to reach the first entry in b with row acol . One way is to use a binary search to reach
the row, as it is sorted by row. But we note that the number of rows of b is fixed. So we maintain an array of indices
pointing to the first entries for each row in b. Thus, if the matrix b is as shown previously, the indices maintained in a
vectort are as shown here.

I T[]

o Ok~ W N P O
0 N O O o b, O

t[i] == 0 signifies thatrow i of b does not contain any elements. Because of this, the original binary search of

order O(log n) can now be done in O(1) time. But this needs extra O(Nb) time to construct t[] where Nb is the number
of non-zero entries in b.

4. Exanpl e: Let
I

a = |
I
I

= O WwOo

~AOONDN
~N O
o o
o Ol

Here M =4, P =2, and N = 3. Then we should get
| 14 0 12 |

c=] 00 15|
| 00 O]
| 28 0 29 |
The algorithm traverses each element of a, and for each element in a with row ar owand column acol :
row acol of b is traversed
the element in a is multiplied by each element in the row-list of b with row acol and column bcol, and

the products are inserted in ¢ as c[arow][bcol].

Thus in every step, an element in a contributes to c. If c[arow][bcol] exists, the product is added to the original value. The
multiplication of a and b is given here for the previous example.

STEP AROW ACOL BCOL A[AROW][ACOL]*B[ACOL][BCOL] C[AROW][BCOL]

1 0 1 0 14 14
2 0 1 2 12 12
3 1 0 2 15 15
4 3 0 2 5 5

5 3 1 0 28 28
6 3 1 2 24 29

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0160.html (4 of 5) [30.06.2007 10:58:16]

PROBLEM: MULTIPLY TWO SPARSE MATRICES

Note that in step 6, the product is 24, while c[3] [2] gets a value of 29. This happens because c[3] [2] already contains
a value 5 in step 4.

Pointsto Remember

1. By storing the sparse matrix as an array of triplets, we save a considerable amount of space required for pointers, in
the case of a sparse matrix represented by horizontal and vertical lists.

2. Note how the matrix multiplication time reduces by storing the indices to the rows of b.

3. The complexity of mmul t () is O(Na*Cb*Nc*Nc) where Na is the number of non-zero elements in a, Cb is the
number of columns in b and Nc is the number of entries in c. The factor Nc*Nc can be reduced by maintaining the
maximum (row, column) inserted in ¢ and by performing a binary search while searching for an existing (row,
column), or by maintaining an array similar to t[] for b. By storing such extra indices, insertion in ¢ can be done in O
(1) which will make mmult() be O(Na*Cb).

—

| NExT 0P |

-

| 4mPREV |

file:/l/Z}/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0160.html (5 of 5) [30.06.2007 10:58:16]

PROBLEM: MULTIPLICATION OF TWO SPARSE MATRICES (DIFFERENT VERSIONS)

- -

| 4mPREV | | NExT o |

PROBLEM: MULTIPLICATION OF TWO SPARSE MATRICES (DIFFERENT VERSIONS)

Let a and b be two sparse matrices. Write a function svat Mul (a, b, c) to set up the structure for c=a*b.

Program
#i ncl ude <stdi o. h>

#define M 10

#define N 10

#define P 10

#defi ne DEFAULTVAL 0O
#defi ne SUCCESS 0
#define ERROR -1

typedef int type
typedef struct node node;

struct node {
type dat a;
int row
int col
node *hnext;
node *vnext;

b

typedef struct {
node *rows;
node *col s;

} spmat;

void slnit(spmat *mat, int rows, int cols) {
/*
* initialize the matrix.
*/
int i;

mat - >rows = (node *)nmal |l oc(sizeof (node)*rows);
mat - >col s = (node *)nmal |l oc(sizeof (node)*cols);
for(i=0; i<rows; ++i) {

mat ->rows[i]. hnext =

mat - >rows+i ; mat->rows[i].row

}
for(i=0; i<cols; ++i) {
mat - >col s[i].vnext =
mat - >col s+i; mat->cols[i].co

}

}

int sAdd(spmat *mat, int row, int col, type data) {
/* adds a new node to the sparse matrix.
nOGe *ptr;

i f(data == DEFAULTVAL)

return;
(node *)mall oc(sizeof(node)); // freed in cCollnsert() if reqd
dat a;

ptr
ptr->data

file:///Z)/Charles%20River/(Charl es¥%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0161.html (1 of 5) [30.06.2007 10:58:17]

PROBLEM: MULTIPLICATION OF TWO SPARSE MATRICES (DIFFERENT VERSIONS)

ptr->row = row,
ptr->col = col;
cRow nsert(mat->rows+row, ptr);
cCol I nsert(mat->col s+col, ptr);

ret urn SUCCESS;

}
int cRowl nsert(node *head, node *dataptr) {
/*
* inserts dataptr in appropriate row of sparse matrix.
*/
node *ptr, *prev;
for(prev=head, ptr=prev->hnext; ptr!=head && ptr->col <dataptr->col; prev=ptr, ptr=ptr->hnext)
if(ptr!=head && ptr->col == dataptr->col) { // data already exists.
ptr->data += dataptr->data; // this is for multiplication.
return SUCCESS;
}
/1 dataptr should be added between prev and ptr.
dat aptr->hnext = ptr;
prev->hnext = dataptr;
return SUCCESS;
}

int cCollnsert(node *head, node *dataptr) {
/*
* inserts dataptr in appropriate col of sparse matrix.
* Assune that cRowi nsert() was called before.
*/
node *ptr, *prev;
for(prev=head, ptr=prev->vnext; ptr!=head && ptr->row<dataptr->row, prev=ptr, ptr=ptr->vnext)

if(ptrl=head && ptr->row == dataptr->row) { // data al ready exists.
free(dataptr);
ret urn SUCCESS;

}

/1 dataptr should be added between prev and ptr.

dat aptr->vnext = ptr;

prev->vnext = dataptr;

ret urn SUCCESS;

}
void cRowPrint(node *head) {
/*
* print a row
*/
node *ptr;
printf("%d : ", head->row);
for(ptr=head->hnext; ptr!=head; ptr=ptr->hnext)
printf("%l(%, %) ", ptr->data, ptr->row, ptr->col);
printf("\n");
}
void cCol Print(node *head) {
/*
* print a col.
*/
node *ptr;

file:///Z)/Charles%20River/(Charl es¥%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0161.html (2 of 5) [30.06.2007 10:58:17]

PROBLEM: MULTIPLICATION OF TWO SPARSE MATRICES (DIFFERENT VERSIONS)

printf("9%d : ", head->col);
for(ptr=head->vnext; ptr!=head; ptr=ptr->vnext)

printf("%d(%, %) ", ptr->data, ptr->row, ptr->col);
printf("\n");

}
void sHPrint(spmat *mat, int rows) {
*
/* print sparse matrix by traversing it roww se.
*
ini i;

for(i=0; i<rows; ++i)
CRowPrint(mat->rows+i);
printf("\n");

}
void sVPrint(spmat *mat, int cols) {
*
/* print sparse matrix by traversing it col-w se.
*
ini i

for(i=0; i<cols; ++i)
cCol Print(mat->cols+i);
printf("\'n");

}
type sGetVal (spmat *a, int row, int col) {
*
/* return afrow][col];
*
noiie *head = a->rows+r ow,
node *ptr;

for(ptr=head->hnext; ptr!=head; ptr=ptr->hnext)

if(ptr->col == col)
return ptr->data,;
return DEFAULTVAL; /1 entry absent in matrix : default val ue O.
}
int svat Mul Bad(spmat *a, spmat *b, spmat *c) {
/*
* original inefficient inplenentation of matrix mult.
*/
int i, j, k;
for(i=0; i<M ++i)
for(j=0; j<N, ++) {
type data = 0;
for(k=0; k<P; ++k)
data += sCetVal (a,i, k)*sGetVal (b, k,j);
sAdd(¢, i, j, data);
}
return SUCCESS;
}
int svatMul (spmat *a, spmat *b, spmat *c) {
/*
* matrix multiplication.
*/
node *ptri, *ptrj;
int i;

file:///Z)/Charl es%20River/(Charl es¥%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0161.html (3 of 5) [30.06.2007 10:58:17]

PROBLEM: MULTIPLICATION OF TWO SPARSE MATRICES (DIFFERENT VERSIONS)

for(i=0; i<M ++i)
for(ptri=a->rows[i].hnext; ptri!=a->rows+i; ptri=ptri->hnext)

int row = ptri->col;
for(ptrj=b->rows[row .hnext; ptrj!=b->rows+row,
ptrj=ptrj->hnext) {
sAdd(¢, i, ptrj->col, ptri->data*ptrj->data);
}
}
return SUCCESS,
}

int min() {
spmat a, b, c;

slnit(&,MP); slnit(&,P,N); slnit(&,MN);

sAdd(&a, 0,1, 2);
sAdd(&a, 1,0, 3);
sAdd(&a, 3,1, 4);
sAdd(&b, 0,2, 5);
sAdd(&b, 1,0, 7);
sAdd(&b, 1,1, 6);

sHPrint(&a, M;
sHPrint (&b, P);

svat Mul (&, &b, &c);
sHPrint (&, M;
sVPrint(&c, N);

return O;

}

Explanation

1. A sparse matrix is represented as two arrays of pointers: one for rows and the other for columns. Each row and each column
is represented by horizontal and vertical circular lists. A nonzeroentrya[i][] is added as a node to the horizontal list of
row i and the same node in the vertical list of column j . A node represents an entry. Thus it contains row, column, and
values along with horizontal and vertical pointers in the lists.

2. Let the sizes of sparse matrices a, b be MxP, PxN. Thus the size of ¢ is MxN. We describe the algorithm using an example.
Let

~N O
o o

o Ol

I
a = |
I
I

= O WwOo
~AOON

I
|, b=
I I
I

Here M =4, P =2, and N = 3. Then we should get

=R

I
c = |
I
I

OO M
[oNelNeNe)
N

© OoOuUIN

2

3. The algorithm traverses each row of a and checks its horizontal list corresponding to each row for any elements in it. For
each element in a with row ar owand column acol , row acol of b is traversed and the element in a is multiplied by each
element in the row-list of b with row acol and column bcol . The products are inserted in ¢ as c[arowj [bcol]. Thus, in
every step, an element in a contributes to c. If c[ar ow] [bcol] exists, then the product is added to the original value. The
multiplication of a and b is given here for the previous example.

file:///Z)/Charles%20River/(Charl es¥%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0161.html (4 of 5) [30.06.2007 10:58:17]

PROBLEM: MULTIPLICATION OF TWO SPARSE MATRICES (DIFFERENT VERSIONS)

STEP AROW ACOL BCOL A[AROW][ACOL]*B [ACOL][BCOL] C[AROW][BCOL]

1 0 0 14 14
2 0 2 12 12
3 1 0 2 15 15
4 2

5 3 2 5 5
6 3 0 28 28
7 3 2 24 29

Step 4 signifies that a[4] is taken for traversal but is not traversed as it is empty. Note that the product is 24 in step 7, while c[3]
[2] gets a value of 29. This happens because c[3][2] already contains a value of 5 in step 5.

4. Let na, nb be the number of nonzero entries in a and b. The basic step in this algorithm is adding the products of the
elements in a and b to c. So even if the outer loop traverses from 0 to M—1, the sAdd() function gets invoked for each entry a
[i1[]]- Thisinvoking is done for each nonzero element in row j of b. Thus at most, the number of multiplications for a[i]
[j] will be equal to N, number of columns of b. Thus the complexity of the matrix multiplication algorithm is O(na*N).
However, if we add the complexity due to the outermost loop, the complexity is O(na*N+M*nb).

Pointsto Remember

1. A slight modification to the usual add(nat ri x, r ow, col , val ue) function resulted in an easing of the implementation of the
matrix multiplication. In general, ifa[i][]j] is inserted and it already exists, then we either overwrite the value or return an
error. By adding the new value to the original value, we can add products of elements of a and b to ¢ incrementally.

2. The sparse matrix, as it is represented by a complicated data structure, should be initialized properly.

3. An array-based matrix multiplication program has the complexity O(M*P*N). If we use a similar procedure in this
representation as in sivat Mul Bad() , the complexity increases to O(M*P*N*P) as sGetVal is O(P).

4. Insertions were simplified by the representation of empty rows and columns by head nodes rather than NULL lists.

- -

| 4mPREV | | NExT o |

file:///Z)/Charl es%20River/(Charl es¥%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0161.html (5 of 5) [30.06.2007 10:58:17]

PROBLEM: IMPLEMENT K-WAY SORT-MERGE TO SORT A FILE CONTAINING RECORDS

| 4mPREV | | NExT o |

PROBLEM: IMPLEMENT K-WAY SORT-MERGE TO SORT A FILE CONTAINING RECORDS

Program

#i ncl ude <stdi o. h>
#i ncl ude <mal |l oc. h>

#define N 80

#define K 2 /1 K-way nerge.
#defi ne DATAFILE "main. txt"

#define TEMPFILE "tenp. txt"

typedef struct node node;
typedef enum { FALSE, TRUE} bool ;

struct node {

int val;
char s[N;
b
node buf[K]; /1 buffer used for nerging.
int rec[K]; /1 record nunbers of nodes in buffer.

int getNRecords(char *filename) {
/*
* returns no of records in file filenane using size of the file.
*/
int off;
FILE *fp = fopen(filename, "r");
fseek (fp, 0, SEEK END);
off = ftell (fp)/sizeof(node); // no of records.

fclose(fp);
return off;
}
void witeToFile(char *filenane, node *n) {
/*
* wites record nto file fil enane.
*/
FILE *fp = fopen(filenane, "a");
fwite(n, sizeof(node), 1, fp);
fclose(fp);
}
voi d readFronFil e(char *filenanme, node *n, int off) {
/*
* reads a record at offset off fromfile filenane into n.
* off is nunber of records before the record in the file (NOT bytes).
* off starts fromO.
*/
FILE *fp;
[lprintf("reading rec no %l...\n", off);
if(off >= getNRecords(filenanme)) {
fprintf(stderr, "ERROR reading beyond the file.\n");
return;
}
printf("total records are %\ n", get NRecords(fil enane));
fp = fopen(filenane, "r");
fseek(fp, off*sizeof(node), SEEK CUR);
fread(n, sizeof(node), 1, fp);
fclose(fp);
}

void witeFun(char *filenanme) {

file:///1Z|/Charles%20River/(Charles%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0162.html (1 of 5) [30.06.2007 10:58:18]

PROBLEM: IMPLEMENT K-WAY SORT-MERGE TO SORT A FILE CONTAINING RECORDS

/*
* wites sone data to fil enane.
*/
node data[10] = {
{5,"five"},
{3,"three"},
{4,"four"},
{8,"eight"},
{7,"seven"},
{6, "six"},
{9, "nine"},
{10,"ten"},
{1,"one"},
{2,"two"}
_ _ I
int i;
for(i=0; i<10; ++i)
witeToFile(filenane, data+i);
}
voi d readFun(char *filename) {
/*
* reads filename and prints the data
*/
node n;
int i, nrec = getNRecords(filenane);
for(i=0; i<nrec; ++i) {
readFronFile(filenanme, &n, i);
printf("9%2d={%d, %5s}.\n", i, n.val, n.s)
}
}
voi d copyrec(int *rec, int *rec2) {
int i;
*rec2 = *rec;
for(i=0; i<K, ++i)
rec2[i] =rec[i];
}
void fillbuf(int start, int I, int nrec, char *srcfile) {
/*
* fills buf and rec with appropriate val ues
* | is length of each run
* start is rec no of first rec in first run
* data is in srcfile in nrec records.
*/
int i;
printf("start=% | =%.\n", start, |);
for(i=0; i<K; ++i) {
int startoff = start+l *i;
if(startoff >= nrec)
br eak;
rec[i] = startoff;
printf("buf[%l]=%.\n", i, startoff);
readFronFil e(srcfile, buf+i, startoff);
}
for(; i<K, ++i)
rec[i] = -1,
getchar () ;
}
voi d updat ebuf (node *buf, int *rec, int *rec2, int prevrec, int I, char *srcfile, int nrec) {
/*

* updates buf+rec2 as rec2[prevrec] was output.
* read appropriate record fromsrcfile if necessary.
* rec still contains the original rec nos which can be used for

file:///1Z|/Charles%20River/(Charles%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0162.html (2 of 5) [30.06.2007 10:58:18]

PROBLEM: IMPLEMENT K-WAY SORT-MERGE TO SORT A FILE CONTAINING RECORDS

* checki ng ends of runs.
* | is runlength.
*/
if(rec2[prevrec] < nrec-1 &k rec2[prevrec] < rec[prevrec]+l -1) {
/1 rec2[prevrec] was NOT the last rec of that run.
rec2[prevrec] ++;
readFrontil e(srcfile, buf+prevrec, rec2[prevrec]);
}
el se {
/'l rec2[prevrec] was the last rec of that run.
rec2[prevrec] = —1; // job of this run is over.
}
}

int getMn(node *buf, int *rec2) {
/*
* returns index in buf of that record which has mn sorting val ue.
* rec2 is needed for checking whether a buf entry is valid.
*/
int mnval = 9999;
int mnindex = —1;
int i;

for(i=0; i<K;, ++i)
if(rec2[i] !'= -1 && buf[i].val < mnval) {
m nval = buf[i].val;
m ni ndex = i;
}

return mni ndex;

void nerge(char *srcfile, char *dstfile, node *buf, int *rec2, int I, int nrec) {
/
rec2 contains record nunbers being conpared; global rec also contains

the sane at this point.

buf contains their actual data.

| is runlength.

srcfile is needed for reading next data.

the data is appended to dstfile.

total no of records being witten is min(l*k,nrec-rec[0]).

/

nt totalrec = | *K;

nt i;

nt nrecremai ning = nrec-rec[0]; /1 no of rec in srcfile yet to be witten to dstfile.

* 0% ok % X % X kX

if(nrecrenmining < totalrec)
total rec = nrecrenaining;
printf("totalrec=%l nrecremaining=%.\n", totalrec, nrecrenaining

for(i=0; i<totalrec; ++i) {
int nextrec = getMn(buf, rec2); // here goes the conparison.
printf("after getMn: nmn=% rec2=% % % buf=% % %l.\n", nextrec, rec2[0], rec2[1], rec2[2], buf
[0].val, buf[1].val, buf[2].val);

if(nextrec == -1) {
fprintf(stderr, "ERROR nerge(): all rec2 are —1!\n");
return;

}

[lprintf("mn=%.\n", nextrec);
/1 this is the index in rec2 of next record to be output.
witeToFile(dstfile, buf+nextrec);
/] remove this witten record. read new record fromsrcfile i f needed.
updat ebuf (buf, rec, rec2, nextrec, |, srcfile, nrec);
[lprintf("after updatebuf : rec2=% % %.\n", rec2[0], rec2[1], rec2[2]);
}
}
voi d nergedriver(char *srcfile, char *dstfile) {
/*

file:///Z|/Charles%20River/(Charles%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0162.html (3 of 5) [30.06.2007 10:58:18]

PROBLEM: IMPLEMENT K-WAY SORT-MERGE TO SORT A FILE CONTAINING RECORDS

* sort+merge srcfile and store in dstfile.
*/

int nrec = getNRecords(srcfile);

int i, I;

int rec2[K];

char tenpnane[N];

for(1=1; I<nrec; I*=K) {
/1 1 is length of each run.
/1 no of runs = ceil(nrec/l);
/1 we need to consider only K runs at a tine.

for(i=0; i<nrec; i+=1*K) {

/1 fill buf with appropriate val ues.

fillbuf(i, I, nrec, srcfile);

copyrec(rec, rec2);

merge(srcfile, dstfile, buf, rec2, |, nrec);

}

unlink(srcfile);

strcpy(tenpnane, srcfile);
strcpy(srcfile, dstfile);
strcpy(dstfile, tenpnane);

}

/1 sorted file is srcfile.
printf("\n\in\n");
readFun(srcfile);

}

int main() {
char srcfile[N] = DATAFI LE;
char dstfile[N = TEWMPFI LE;
unlink(srcfile);
unlink(dstfile);
writeFun(srcfile);
readFun(srcfile);
printf("nrec=%l.\n", getNRecords(srcfile));
mergedriver(srcfile, dstfile);

return O;

}

Explanation

1. The function mai n() creates a test file by using wr i t eFun() and calls mer gedri ver (). nergedri ver () calls the function mer ge()
after reading (fi | | buf ()) K blocks of the file into memory.

2. The function mer ge() compares the blocks and sorts them on the predetermined key. The block with the minimum key (get M n()) is
written to the file and its block is filled (updat ebuf ()) with the next record from the file. The sorting and merging thus proceeds
simultaneously to successively sort the file.

3. The number of blocks being compared are called runs. Each run length increases with each iteration. It is 1 initially, then it becomes K,
then K*K and so on. As it becomes greater than or equal to the number of records in the file (get NRecor ds()), the file is sorted because
all the records in each run are sorted after each iteration.

4. Example: Assume the blocks are saved in a file as shown next and let K=3. Then the algorithm transforms the file as follows:

STEP FILE RUNLENGTH
1 53487691021 1

2 34567829101

3 23456789101 9

4 12345678910 27

Pointsto Remember

1. he complexity of merge-sort is O(n logn) where n is the number of records in the file. However, in general, the statements that are added to
the complexity are comparisons or a nested assignment. But in case of files, one needs to consider reading and writing of records in the

file:///1Z|/Charles%20River/(Charles%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0162.html (4 of 5) [30.06.2007 10:58:18]

PROBLEM: IMPLEMENT K-WAY SORT-MERGE TO SORT A FILE CONTAINING RECORDS
file, as the time required for execution of one such operation is much more than a comparison in memory or a simple assignment.
2. Sorting in files is called external sorting while sorting in main memory is termed internal sort.

3. By exchanging the names of source and destination files in ner gedri ver (), we avoided copying of files in each iteration.

P =g -

| 4mPREV | | NEXT W |

-

file:///Z|/Charles%20River/(Charles%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0162.html (5 of 5) [30.06.2007 10:58:18]

PROBLEM: FIND A PLATEAU IN A MATRIX

-

| 4m PREV |

| NExT o |

PROBLEM: FIND A PLATEAU IN A MATRIX

Find a rectangular region in a matrix with the maximum sum of its elements. The elements may be negative.

Program
#i ncl ude <stdi o. h>

#define COLS 5
#define M NI NT -99999

int filter(int a[][COLS], int i, int j, int k, int I, int rows, int cols) {
/*
* filter the matrix of size k*| starting fromal[i][j].
* size of the matrix is rows*cols.
* k, | start with 1.
*/
int iii, jjj;
int sum= 0;

if(i+k >rows || j+l > cols) // the matrix was al ready considered
/1l with smaller k, I.

return M NI NT;
for(iii=0; iii<k && (i+iii)<rows; ++iii)
for(jjj=0; jjj<l & (j+jjj)<cols; ++jjj) {
sum+= ali+iii]l[j+jil;

i f(sum < 0)
return sum /Il this is reqd: if all vals -ve.
}
return sum
}
void printMatrix(int a[][COLS], int i, int j, int k, int I, int rows, int cols) {
/*
* print a rectangular region of a froma[i][j] of size k*I if possible.
* the matrix is bounded by rows*col s.
*/
int iii, jjj;
for(iii=0; iii<k && (i+iii)<rows; ++iii) {
for(jjj=0; jji<l && (j+jjj)<cols; ++jjj)
printf("od ", a[i+iiil[j+ijjl);
printf("\n");
}
getchar ();
}
void plateau(int a[][COLS], int rows, int cols) {
/*
* finds a rectangul ar region having max sum of elenments in it.
*/

int maxsum = a[0][0];

int maxrowl=0, maxrow2=0, maxcol 1=0, maxcol 2=0;
int i, j, k, I;

int sum

for(i=0; i<rows; ++i)
for(j=0; j<cols; ++j)
/1 generate k*I matrix using a[i][j]-
for(k=1; k<=rows; ++k)
for(l=1; I<=cols; ++) {
sunvfilter(a, i, j, k, |, rows, cols);
i f(sum > maxsum {

file:///Z)/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0163.html (1 of 3) [30.06.2007 10:58:19]

PROBLEM: FIND A PLATEAU IN A MATRIX

}

maxsunFsum maxrowl=i, maxcol 1=j, maxrow2=i +k—1, maxcol 2=j +| —1;

}
printf("sum=%l.\n", filter(a, nmaxrowl, maxcol 1, maxrow2- maxrowl+1l, maxcol 2- maxcol 1+1, rows, cols));
printMatrix(a, maxrowl, maxcol 1, maxrow2- maxrowl+l, maxcol 2- maxcol 1+1, rows, cols);

int main() {

int a[J[oOLS] = {
{5, -1, -2, —4, 1},
{-3, 2,10, -6, 3},
{-1,9, -11, -7, 9},
{3,101, 3, -2, —96},

-1 -20 3 -3 |

{-1,-2,0,3, -3},
{-1, -2, -3,2, -3}
1
pl ateau(a, sizeof(a)/COLS/sizeof (int), COLS);
return O;
}
Explanation
1. Considesr the following matrix. The rectangle of elements with the maximum sum is also given.
| 5 -1 -2 -4 1 | | 5 -1
| -3 210 -6 3 | | -8 2|
| -1 9 -11-7 9 | | =1 9| sum= 115.
| 3101 3 -2 —96 | | 3 101]
I
I

-1 -2 =32 -3 |

An example matrix and its maximum-sum-plateau.

2. A straightforward algorithm to find a maximum sum is as follows.

for i=0 to rows-1

for j=0 to colums-1 {
maxsum = matrix[i][j].
for height=1 to rows

for width=1 to columms {

let M= matrix of size height x width frommatrix[i][j].
I et sum = sum of elenents of M
i f sum > naxsum

maxsum = sum

}

The values of i, j, width, and height at any point represent the matrix. Those values can be saved to print the matrix at the end of the
algorithm.

The complexity of this procedure is O(m*m*m*n*n*n) where the size of the original matrix is m x n. The complexity of finding the sum of
elements of M is O(m*n).

. This procedure can be made more efficient by noting that not every internal matrix M needs to be generated. For an element mat ri x[i]

[j1,the maximum width of the matrix starting from the element can be columns-j and maximum height can be rows—i. Thus, the number
of iterations of loops over width and height can be decreased. Also, for an element e, if the sum of elements of a rectangular region of
size height x width starting from e is negative, then no rectangular region of size more than height x width starting from e can have a
sum higher than the final result. We show this in the example matrix.

Leti=1landj=2.matrix[i][j] = 10.Letheight =2 and width = 1. Thus the matrix contains two elements in it, {10, —11} and the
sum is —1. Since the sum is negative, there is no point in increasing the size of the matrix and considering other elements because
whatever their sum (say s), by adding this matrix to it, the total sum is definitely going to be lower than s. The matrix containing sum s
may be a candidate for the result. So our matrix cannot have a sum greater than the final result. Thus, if we increase the height of the
matrix further so that the elements are {10, —11, 3}, the sum becomes 2 which is less than a 1 x 1 matrix starting from 3. Instead, if we
increase the width so that the elements are {10, —11, —6, —7}, the sum is —14 which is even lower.

file:///Z)/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0163.html (2 of 3) [30.06.2007 10:58:19]

PROBLEM: FIND A PLATEAU IN A MATRIX
The function fi |l t er () implements this strategy.

Pointsto Remember

1. By considering only those matrices that start from an element e, that is those increasing in width to the right of e and increasing in height
downwards from e, we select all the possible rectangular regions without any repetition.

2. We need not increase the size of a submatrix once the sum of its elements becomes negative.
3. If all the values in the input matrix are negative, then the result is a 1x1 matrix with the only element having a minimum magnitude.
4. There can be multiple solutions to this problem.

5. The complexity of finding the sum of elements of a submatrix can be increased by noting the sum incrementally.

-

| 4mPREV | E 3

file:///Z)/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0163.html (3 of 3) [30.06.2007 10:58:19]

PROBLEM: IMPLEMENTATION OF A HASH SEARCH

= r

| 4mPREV | | NEXT Wi |

PROBLEM: IMPLEMENTATION OF A HASH SEARCH

Write a program that takes strings as inputs and stores them in a hash table. It should then ask the user for strings to
be searched in the hash table. Use shift- folding as the hashing function and chaining for overflow handling.

Program

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <mall oc. h>

#define MAXLEN 80
#defi ne HASHSI ZE 23 /] some prinme val
#define SH FTBY 3 /1 each group size in hashing

typedef struct node node;
typedef char *type;
typedef node *hasht abl e[HASHSI ZE] ;

struct node {

int val
char *key;
node *next;
b
int hCetlndex(char *key) {
/*
* returns index into hashtable applying hash function.
* uses shift-folding followed by nod function for hashing.
*/
int i, n, finaln=0;
char *keyptr;
for(keyptr=key; *keyptr; final n+=n)
for(i=0, n=0; i<SH FTBY && *keyptr; ++i, ++keyptr)
n = n*10 + *keyptr;
final n % HASHSI ZE;
return finaln;
}
voi d hlnsert(hashtable h, char *key, int val) {

/*
* insert s in hashtable h.
* use shift-folding followed by nod function for hashing.
* does NOT check for duplicate insertion.

*/
node *ptr = (node *)mal | oc(si zeof (node));
int index = hGetl ndex(key);
ptr->key = strdup(key);
ptr->val = val

ptr->next = h[index];

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0164.html (1 of 3) [30.06.2007 10:58:20]

PROBLEM: IMPLEMENTATION OF A HASH SEARCH

h[index] = ptr;
printf("h[%] = %.\n", index, key);

}
i nt hGetVal (hashtable h, char *key) {
/*
* returns val corresponding to key if present in h else —-1.
*/
node *ptr;
for(ptr=h[hGetlndex(key)]; ptr && strcmp(ptr->key, key); ptr=ptr->next)
if(ptr)
return ptr->val
return —1;
}
voi d printHash(hashtable h) {
/*
* print the hashtable rown se.
*/
int i;
node *ptr;
for(i=0; i<HASHSIZE, ++i) {
printf("%: ", i);
for(ptr=h[i]; ptr; ptr=ptr->next)
printf("%=% ", ptr->key, ptr->val);
printf("\n");
}
}

int main() {
char s[MAXLEN]
int i = 0;
hashtable h = {"abc"};

printf("Enter the string to be hashed: ");
gets(s);

while(*s) {
hinsert(h, s, i++);
printf("Enter the string to be hashed(enter to end): ");

gets(s);

}

printf("Enter the string to be searched: ");

gets(s);

while(*s) {
printf("% was inserted at nunber %.\n", s, hGetVal (h, s));
printf("\nEnter the string to be searched(enter to end): ");
gets(s);

}

/IprintHash(h);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0164.html (2 of 3) [30.06.2007 10:58:20]

PROBLEM: IMPLEMENTATION OF A HASH SEARCH

}

return O;

Explanation

1. The hash table is maintained as an array of lists. Each list is either empty or contains nodes containing strings

that map to the index in the hash table, after application of the hashing function. The string in the node is called
the key. Each node also stores an integer that is the number at which the string was inserted in the hash table.
Thus, each node contains a (key, value) pair. In a realistic situation, a value can be anything that has a key
associated with it.

The program contains two loops. In the first, it asks the user to enter a series of strings and calls hl nsert () to
insert the strings in the hash table. The second loop asks the user to enter a string and returns the number at
which it was inserted. An insertion number of —1 indicates that the string is not present in the hash table. This is
done by using the function hGet Val () . Both these functions make use of the hashing function hGet | ndex(),
which, given a string, returns its hashing index. It folds the string into a pattern of m characters (perhaps except
the last), and forms an integer out of each m characters. It then adds all these integers to get another number.
This is then divided by the size of the hash table array to get the remainder as an index into the hash table.

hl nsert () adds this new string and its insertion sequence to a node and this node is added to the start of the

list in the index. hGet Val () searches the list at this index for the input string. If it finds such a string, its
insertion sequence is returned, otherwise it returns —1.

Since the complexity of insertion of a node in the list is O(1), the complexity of hl nsert () is the complexity of

the hashing function. The complexity of the hashing function is O(p) where p is the average length of the string.
Thus the complexity of hl nsert () is O(p). The complexity of hGet Val () is O(p+q) where q is the average
number of nodes in each list. Chaining involves a linear search.

Pointsto Remember

1.

The complexity of insertion in the hash table is decided by the hashing function if simple chaining is used for
overflow handling.

The complexity of searching is decided by both the hashing function and the overflow handling technique.

An ideal hash function maps every input string to a different index and thus has zero collisions. Assuming that
the complexity of a hash function is O(1), the insertions and searching into an ideal hash table are O(1).

Hash tables are used in compilers for symbol-table management. Hash tables have numerous other applications
as well.

Different overflow handling techniques such as linear probing, quadratic probing, random probing, rehashing,
etc., are in use depending on the application requirement.

| 4mPREY |

- -

| NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0164.html (3 of 3) [30.06.2007 10:58:20]

PROBLEM: IMPLEMENTATION OF REHASHING

= r

| 4mPREV | | NEXT Wi |

PROBLEM: IMPLEMENTATION OF REHASHING

Write functions to insert and search in a hash table by using the rehashing technique. Use linear probing if the
rehashing fails.

Program

#i ncl ude <stdi o. h>

#i ncl ude <string. h>

#i ncl ude <nmal |l oc. h>

#defi ne MAXLEN 80

#defi ne HASHSI ZE 23 /] some prime val
typedef struct node node;
typedef char *type;
t ypedef node *hasht abl e[HASHSI ZE] ;

struct node {
int val;
type key;
3

int hGetlndexl1l(type key) {
/*
* returns index into hashtable applying hash function.
* uses sumof elements followed by nod function for hashing.
*/
i nt n=0;
char *keyptr;

for(keyptr=key; *keyptr; ++keyptr)
n += *keyptr;

return n%iASHSI ZE;
}

i nt hGetlndex2(type key) {
/*
* returns index into hashtable applying hash function.
* sums the products of elenents with their indices and then nod.
*/
| ong n=0;
int i;
type keyptr;

printf("Function 2:).\n");
for(keyptr=key, i=1; *keyptr; ++keyptr, ++i)
n += i **keyptr;

return n%1ASHSI ZE;

}
i nt hGet EnptySl ot (hashtable h, int index) {

/*
* search for an enpty slot in h starting fromindex+1.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0165.html (1 of 5) [30.06.2007 10:58:20]

PROBLEM: IMPLEMENTATION OF REHASHING

*/
int i;

for(i=index+1; i<HASHSIZE; ++i) // index+l to end of hashtable.

if('h[i])
return i;
for(i=0; i<index; ++i) /1l starting fromO to index-
1
if('h[i])
return i;
return —1;
}
i nt hLi near Probe(hashtabl e h, type key, int index) {
/*
* search for node having key in h starting fromindex+1.
*/
int i;

for(i=index+1; i<HASHSIZE; ++i) // index to end of hashtable.
if(h[i] && !strcnmp(h[i]->key, key))

return i;
else if(!'h[i])
return —1;
for(i=0; i<index; ++i) // starting fromO to index-1.
if(h[i] && !strcnp(h[i]->key, key))
return i;
else if(!'h[i])
return —-1;
return —1;
}
void hlnsert(hashtable h, type key, int val) {
/*
* insert s in hashtable h.
* does NOT check for duplicate insertion.
*/
node *ptr = (node *)mal | oc(si zeof (node));
int index = hGetlndexl(key);
i f(h[index]) {
i ndex = hGetl ndex2(key);
i f(h[index]) {
i ndex = hGet EnptySl ot (h, index);
i f(index == —-1) {
printf("ERROR Hashtable full.\n");
return;
}
}
}
ptr->key = strdup(key);
ptr->val = val
h[index] = ptr;
printf("h[%] = %.\n", index, key);
}

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0165.html (2 of 5) [30.06.2007 10:58:20]

PROBLEM: IMPLEMENTATION OF REHASHING

i nt hGetVal (hashtable h, type key) {
/*
* returns val corresponding to key if present in h else —1.
*/
int index = hGetlndexl(key);

i f(h[index] && strcnp(h[index]->key, key)) {
i ndex = hGetl ndex2(key);
i f(h[index] && strcnp(h[index]->key, key)) {
i ndex = hLi near Probe(h, key, index);
i f(index == —-1)
return —1;
}
el se if(!h[index])
return —1;
}
el se if(!h[index])
return —1;

printf("index=% ", index);
return h[index]->val
}
voi d printHash(hashtable h) {
/*
* print the hashtable.
*/
int i;
for(i=0; i<HASHSI ZE;, ++i)
PFChli]) A
printf("%: ", i);
printf("%=% ", h[i]->key, h[i]->val);
printf("\n");

}

int main() {
char s[MAXLEN ;
int i =0;
hashtable h = {"asd"};

printf("Enter the string to be hashed: ");
gets(s);

while(*s) {
hi nsert (h, s, i++);
printf("Enter the string to be hashed(enter to end): ");
gets(s);

}

printf("Enter the string to be searched: ");

gets(s);

while(*s) {
printf("% was inserted at nunmber %.\n", s, hGetVal (h, s));
printf("\nEnter the string to be searched(enter to end): ");
gets(s);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0165.html (3 of 5) [30.06.2007 10:58:20]

PROBLEM: IMPLEMENTATION OF REHASHING

}
print Hash(h);
return O;

}

Explanation

1.

Rehashing is one method of handling collisions. If a single application of the hash function results in a collision,
and we detect that the space is already occupied by another element, we can use some other hash function to
generate another index in the hash table. If this index is also already filled, we can either use another hash
function to generate another index or we can use linear probing or chaining. We use linear probing here to
guarantee full utilization of the hash table in a finite amount of time.

We use simple nmod() function as the first hash function (hGet | ndex1()). We add the ASCII values of the
input characters and apply nod() to get an index in the range of the hash table. We use a modification of this
nod() function as the second hash function (hGet | ndex2()). We add the products of the ASCII values of
characters and their indices to get a final sum to which we apply the mod function to get the second index. If this
slot is also filled, we use linear search (hLi near Pr obe()) over the hash table starting from index to the end of
the hash table, and then starting from the start of the hash table to the index, to get an empty slot. If we do not
find an empty slot, we output an error message. Otherwise the index of the empty slot is returned.

. An identical procedure is used during searching (hGet Val ()). It applies the first hash function to get the first

index. If this is empty, —1 is returned. If it contains the node containing the search key, the value corresponding
to that key is returned. If the key is different, we apply the second hash function to get another index. If this is
empty, —1 is returned. If it contains the node containing the search key, the value corresponding to that key is
returned. If the key is different, we apply linear probing (hLi near Pr obe()) to search for the key in the hash

table. If we get such a node, the value corresponding to the key is returned. If such a node does not exist, an
error message is printed.

Since linear probing (and not chaining) is used, the hash table is simply an array of pointers to nodes where
each node contains only a key and value.

Example:
o Let HASHSI ZE = 23.

o Let strings to be inserted be as follows: dj , *‘na’, *id’, ‘q’.
o hGet |l ndex1(‘dj ") returns 22, so it is inserted in hash table[22].
o hGet | ndex1(*‘na’) returns 0, so it is inserted in hash table[0].
o hGetl ndex1(‘id’) returns 21, so it is inserted in hash table[21].

o hGet | ndex1('q’) returns 21. Since the space is already filled by ‘i d’, hGet | ndex2(*q’) is called. It
returns 22. But it is also filled by ‘dj ’. So a linear search for an empty slot is done starting from index 22
(wrapping over the hash table). It finds that the next index 0 is filled with *na’ and its next index 1 is
empty. Hence ‘q’ gets inserted in hash table[1].

Pointsto Remember

1.

Since no deletions are taking place in the hash table, we can reduce the complexity of searching for an element.
This is because during searching, if we get an empty slot, that means the search key cannot be present beyond
that location. This follows from the predicate that a value is inserted into the first empty slot we get.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0165.html (4 of 5) [30.06.2007 10:58:20]

PROBLEM: IMPLEMENTATION OF REHASHING

2. The hash table could have been an array of nodes instead of node pointers. But our implementation can save
space if the val field is of a larger size and if many slots of the hash table are empty.

3. The complexities of both hash functions is O(n) where n is the average length of the string to be inserted. The
complexity of linear probing is O(HASHSI ZE) where HASHSI ZE is the hashtable size.

4. The advantage of modular programming over hash. c is that the function mai n() remains the same even after
changing the implementation of the hashing procedure.

- -

| 4mPREV | | MEXT WP |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0165.html (5 of 5) [30.06.2007 10:58:20]

Chapter 24: Problemsin Stacks and Queues

- -

| 4 PREV | | MEXT o |

Chapter 24: Problemsin Stacks and Queues

PROBLEM: CONVERT AN INFIX EXPRESSION TO PREFIX FORM

Program
#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <ctype. h>

#define N 80

typedef enum {FALSE, TRUE} bool

#i ncl ude "stack.h"
#i ncl ude "queue. h"

#defi ne NOPS 7

char operators [] = "()" *+-";
int priorities[] ={4,4,3,2,2,1,1};
char associates[] = " RLLLL"

char t[N]; char *tptr =t; // this is where prefix will be saved.

int getlndex(char op) {

/*
* returns index of op in operators.
*
/
int i;
for(i=0; i<NOPS;, ++i)
if(operators[i] == op)
return i;
return -1,
}
int getPriority(char op) {
/*
* returns priority of op.
*
/
return priorities[getlndex(op)];
}
char getAssociativity(char op) {
/*
* returns associativity of op.
*
/
return associ ates[getlndex(op)];
}
voi d processO(char op, queue *q, stack *s) {
/*
* perforns processing of op.
*
/
switch(op) {
case ')':
printf("\t S pushing)...\n");
sPush(s, op);
br eak;
case '(':

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0166.html (1 of 4) [30.06.2007 10:58:21]

Chapter 24: Problemsin Stacks and Queues

while('gEmty(q)) {
*tptr++ = gPop(q);
printf("\tQ popping %...\n", *(tptr-1));

while(!'sempty(s)) {
char popop = sPop(s);
printf("\tS popping %...\n", popop);

if(popop ==")")
br eak;

*tptr++ = popop;
}
br eak;

defaul t: {

int priop; /1 priority of op.
char topop; /'l operator on stack top
int pritop; /1 priority of topop.
char asst op; /'l associativity of topop.

while(!'sempty(s)) {
priop = getPriority(op);
topop = sTop(s);

pritop = getPriority(topop);
asstop = getAssociativity(topop);
if(pritop < priop || (pritop == priop & asstop =="'L"') || topop ==")") [/ IMP

br eak;
while(!qEmty(q)) {
*tptr++ = qPop(q);
printf("\tQ popping %...\n", *(tptr-1));
}
*tptr++ = sPop(s);
printf("\tS popping %...\n", *(tptr-1));

printf("\tS pushing %...\n", op);
sPush(s, op);

br eak;
}
}
}
bool isop(char op) {
/*
* is op an operator?
*/
return (getlndex(op) !'= -1);
}
char *in2pre(char *str) {
/*
* returns valid infix expr in str to prefix.
*/
char *sptr;

queue g = {NULL};

stack s = NULL;

char *res = (char *)malloc(N+sizeof(char));
char *resptr = res

tptr = t;
for(sptr=str+strlen(str)—1; sptrl=str—1; -sptr) {
printf("processing % tptr-t=%l...\n", *sptr, tptr-t);
if(isalpha(*sptr)) // if operand
gqPush(&g, *sptr);
else if(isop(*sptr)) // if valid operator.

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0166.html (2 of 4) [30.06.2007 10:58:21]

Chapter 24: Problemsin Stacks and Queues

}

processQ(*sptr, &q, &);
else if(isspace(*sptr)) // if whitespace.
el se {
fprintf(stderr, "ERROR invalid char %.\n", *sptr);

return ;

}

while(!qEnpty(&q)) {

}

*tptr++ = qPop(&q);
printf("\tQ popping %...\n", *(tptr-1));

while(!sEnpty(&s)) {

}

*tptr++ = sPop(&s);
printf("\tS popping %...\n", *(tptr-1));

*tptr = 0;
printf("t=%.\n", t);

f

}

*

r

}

i nt

}

or(-tptr; tptr!=t-1; -tptr) {
*resptr++ = *tptr;

resptr = 0;

eturn res;

mai n() {
char s[N;

puts("enter infix freespaces max 80.");
gets(s);
whil e(*s) {
puts(in2pre(s));
gets(s);
}

return O;

Explanation

1.

In an infix expression, a binary operator separates its operands (a unary operator precedes its operand). In a postfix
expression, the operands of an operator precede the operator, while in a prefix expression the operator precedes its operands.
Like postfix, a prefix expression is parenthesis-free, that is, any infix expression can be unambiguously written in its prefix
equivalent without the need for parentheses.

. When an infix expression is converted to reverse-prefix, it is scanned from right to left. A queue of operands is maintained,

noting that the order of operands in infix and prefix remains the same. Thus, while scanning the infix expression, whenever an
operand is encountered, it is pushed in a queue. If the scanned element is a right parenthesis (‘)’), it is pushed in a stack of
operators. If the scanned element is a left parenthesis (‘(‘), the queue of operands is emptied to the prefix output followed by
popping of all the operators but excluding a right parenthesis in the operator stack.

If the scanned element is an arbitrary operator o, then the stack of operators is checked for operators with greater priority than
the priority for 0. Such operators are popped and written to the prefix output after emptying the operand queue. The operator o
is finally pushed in the stack.

When the scanning of the infix expression is complete, first the operand queue and then the operator stack are emptied to the
prefix output. Any whitespace in the infix input is ignored. Thus the prefix output we get can be reversed to get the required
prefix expression of the infix input.

Example: If the infix expression is a*b+c/d, then different snapshots of the algorithm while scanning the expression from right
to left are as follows:

file:///Z)/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0166.html (3 of 4) [30.06.2007 10:58:21]

Chapter 24: Problemsin Stacks and Queues

step remaining expression scanned element queue of operands stack of operators prefix output
0 a*b+c/d nil empty empty nil

1 a*b+c/ d d empty nil

2 a*b+c / d / nil

3 a*b+ c dc / nil

4 a*b + empty + dc/

5 a* b b + dc/

6 a * b *+ dc/

7 nil a ba *+ dc/

8 nil nil empty empty dc/ba*+

The final prefix output we get is dc/ba*+, whose reverse is +*ab/cd, which is indeed the prefix equivalent of the input infix expression
a*b+c*d. Note that all the operands are simply pushed to the queue in steps 1, 3, 5, and 7. In step 2, the operator / is pushed to the

empty stack of operators.

In step 4, the operator + is checked against the elements in the stack. Since / (division) has higher priority than + (addition), the
gueue is emptied to the prefix output (thus we get ‘dc’ as the output) and then the operator / is written (thus we get ‘dc/’ as the
output). The operator + is then pushed to the stack. In step 6, the operator * is checked against the stack elements. Since * has a
higher priority than +, * is pushed to the stack. Step 8 signifies that all of the infix expression has been scanned. Thus, the queue of
operands is emptied to the prefix output (to get ‘dc/ba’), followed by emptying of the stack of operators (to get ‘dc/ba*+).

Pointsto Remember

1. A prefix expression is parenthesis-free.

2. When an infix expression is converted to its postfix equivalent, it is scanned from right to left. The prefix expression we get is

the reverse of the required prefix equivalent.

3. Conversion of infix to prefix requires a queue of operands and a stack, as in the conversion of an infix to postfix.

4. The order of operands in a prefix expression is the same as that in its infix equivalent.

5. If the scanned operator 01 and the operator 02 at the stack top have the same priority, then the associativity of 02 is checked.

If 02 is right associative, it is popped from the stack.

-

| 4mPREV |

-

| NExT o |

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0166.html (4 of 4) [30.06.2007 10:58:21]

PROBLEM: IMPLEMENTATION OF TWO STACKSUSING AN ARRAY

= r

| 4mPREV | | NEXT Wi |

PROBLEM: IMPLEMENTATION OF TWO STACKSUSING AN ARRAY

Two stacks are represented in an array t wost acks[0...N-1] , such that one stack starts from start of the array and

grows towards its end while the other one starts from the end of the array and grows towards the start. Thus at any
time, the maximum number of elements that the two stacks together can accommodate is N. Write functions Push

(stacki, data) andDel et e(stacki) toadd element data and to delete an element from stack number st acki ,
1 <=st acki <= 2. The functions should be able to add elements to the stacks as long as there are fewer than N
elements in both stacks together.

Program
#i ncl ude <stdio. h>

#define N 10 /1 conbi ned size of the two stacks.
#def i ne ElI NDEXOUTOFBOUND —1 /1 error code on overflow in the stacks.
#defi ne SUCCESS 0 /'l success code.

typedef int type; /1 type of each data item

type twostacks[N; /'l stacks inplenented using array.

int stopl = —1; /1 pointer for stack 1.

int stop2 = N; /1 pointer for stack 2.

int sPush(int stacki, type data) {
/*
* pushes data on top of stacki.
* returns error on overflow.
*/
if(stop2-stopl == 1) // overflow
return EI NDEXOUTOFBOUND;

if(stacki == 1) { // first stack.
twost acks[++stopl] = data;

}

el se { /1 second stack.
twostacks[-stop2] = data;

}
return SUCCESS;

}

int sDelete(int stacki) {
/*
* deletes elenent at top from stacki.
*/
printf("deleting fromstack %...\n", stacki);

if(stacki == 1) { // first stack.
if(stopl >=0)
-stopl;
el se
return ElI NDEXQUTOFBOUND;

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0167.html (1 of 3) [30.06.2007 10:58:22]

PROBLEM: IMPLEMENTATION OF TWO STACKSUSING AN ARRAY

}

el se { /1l second st ack.
if(stop2 < N)
++st op2;
el se
return El NDEXOUTOFBOUND;

}
return SUCCESS;

}
void sPrint() {
/*
* prints the two stacks.
*/
int i;
for(i=0; i<=stopl;, ++i)
printf("% ", twostacks[i]);
printf(": ");
for(i=stop2; i<N, ++i)
printf("%l ", twostacks[i]);
printf("\n");
}

int main() {
sPush(1, 1);
sPush(2, 1);
sPush(1, 4);
sPush(2,5);
sPrint();
sDel ete(2);
sDel ete(2);
sPrint();
sDel ete(2);
sDel ete(1);
sDel ete(1);
sDel ete(1);
sPrint();
sPush(2, 2);
sPush(1, 9);
sPrint();
sDel ete(1);
sPrint();
sDel ete(2);
sPrint();
sPush(2, 0);
sPush(1,5);
sPush(1, 3);
sPrint();
sDel ete(2);
sPrint();

return O;

}

Explanation

1. The two stacks are characterized by their indices (stack pointers). Index 1 starts from —1 and goesupto N — 1
while index 2 starts from N and goes up to 0. When index 1 equals —1, it signifies that stack 1 is empty. When

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0167.html (2 of 3) [30.06.2007 10:58:22]

PROBLEM: IMPLEMENTATION OF TWO STACKS USING AN ARRAY
index 2 equals to N, that signifies that stack 2 is empty.

2. If the array is full, indices 1 and 2 point to consecutive elements. This situation is characterized as (index2 —

index1 == 1).
-+ Array twostacks]] »
1 2] A 4] 5 e 16 |15 |14 13 | 1211
stack 1 > < stack 2

3. In Push(st acki , dat a), this condition is checked to signify overflow. If space is available, insertion of the
element proceeds. If st acki == 1 then index 1 is incremented and the data is inserted at the index. If st acki
== 2, index 2 is decremented and the data is inserted at the index.

4. In Del et e(st acki), the condition for underflow is checked. If st acki == 1 then index 1 == —1 signifies
underflow of stack 1. If st acki == 2 then index 2 == N signifies underflow of stack 2. If an element exists, then
deletion of the element at the stack top proceeds. If st acki == 1 then index 1 is decremented, whereas if
st acki == 2 thenindex 2 is incremented.

Pointsto Remember

1. To implement two stacks using an array, the two stacks should grow in opposite directions.

2. The maximum number of elements that the two stacks together can accommodate at any time is equal to the
size of the array.

3. For an empty stack, making the stack pointer point to an element beyond the first element helps in an insertion,
without needing to check for an extra condition. Thus, since we have a stack index/value of —1 during insertion,
we need simply to increment it to point to the next empty slot. This is not possible with pointers as we need to
explicitly check it for being NULL as in

i f(stacktop == NULL)
error("stack enpty.");.

— —

| 4mPREY | | NEXT o |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0167.html (3 of 3) [30.06.2007 10:58:22]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu485%5F1%5F0%2Ejpg

Chapter 25: Problemsin Linked Lists

= o

| 4mPREV | | NEXT Wi |

Chapter 25: Problemsin Linked Lists

PROBLEM: IMPLEMENTATION OF POLYNOMIALSUSING LINKED LISTS

Write functions to add, subtract, and multiply two polynomials represented as lists. Also, write a function to evaluate the
polynomial for a given value of its variable.

Program
/* compile with -Imoption. */
#i ncl ude <stdi o. h>
#i ncl ude <stdarg. h>
#i ncl ude <mat h. h>
typedef struct node node;
typedef int type;
typedef node *pol ynom al
struct node {

type coeff;

type power;
node *next;

b
pol ynom al createPoly(int n, ...) {
/*
* create a list fromthe argunents.
* nis the nunber of nodes which will be created.
* thus after n there should be 2n argunents: (coeff, power) pairs.
* it is assumed that their powers are decreasing.
*/
va list vl;
pol ynoni al p = NULL;
int i;
va_start(vl, n);
for(i=0; i<n; ++i) {
node *ptr = (node *)mal | oc(si zeof (node));
ptr->coeff = va_arg(vl, int);
ptr->power = va_arg(vl, int);
ptr->next = p;
p = ptr;
}
va_end(vl);
return p;
}

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0168.html (1 of 5) [30.06.2007 10:58:23]

Chapter 25: Problemsin Linked Lists

voi d pPrint(polynonmal p) {
node *ptr;

for(ptr=p; ptr; ptr=ptr->next)
printf("%lx% + ", ptr->coeff, ptr->power);

printf("\n");
}
pol ynom al pSub(pol ynoni al pl, polynonm al p2) {
/*
* return pl-p2 recursively.
*/

node *ptr = (node *)mal | oc(si zeof (node));

if(pl & & p2 && pl->power == p2->power) {
ptr->coeff = pl->coeff - p2->coeff;
ptr->power = pl->power;
ptr->next = pSub(pl->next, p2->next);

}
else if(pl & ((p2 && pl->power < p2->power) || !'p2)) {
ptr->coeff = pl->coeff;
ptr->power = pl->power;
ptr->next = pSub(pl->next, p2);
}
else if(p2 & ((pl && pl->power > p2->power) || !'pl)) {
ptr->coeff = -p2->coeff;
ptr->power = p2->power;
ptr->next = pSub(pl, p2->next);
}
else { // pl == p2 == NULL
free(ptr);
return NULL
}
return ptr;
}
pol ynom al pAdd(pol ynom al pl, polynom al p2) {
/*
* return pl+p2 recursively.
*/

node *ptr = (node *)mal |l oc(si zeof (node));

if(pl && p2 && pl->power == p2->power) {
ptr->coeff = pl->coeff + p2->coeff;
ptr->power = pl->power;
ptr->next = pAdd(pl->next, p2->next);

}

else if(pl && ((p2 && pl->power < p2->power) || !'p2)) {
ptr->coeff = pl->coeff;
ptr->power = pl->power;
ptr->next = pAdd(pl->next, p2);

}

else if(p2 && ((pl && pl->power > p2->power) || !'pl)) {
ptr->coeff = p2->coeff;
ptr->power = p2->power;

ptr->next = pAdd(pl, p2->next);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0168.html (2 of 5) [30.06.2007 10:58:23]

Chapter 25: Problemsin Linked Lists

}

else { // pl == p2 == NULL
free(ptr);
return NULL;

}

return ptr;

voi d plnsert O Add(pol ynom al p, node *ptr) {
/-k
* p->next anytime contains a partial product.
* add ptr at appropriate place in it keeping powers in order
*/
node *curr, *prev;

for(prev=p, curr=prev->next; curr && curr->power < ptr->power;
prev=curr, curr=curr->next)

/1l prev will always be NON-NULL :).

i f(curr && curr->power == ptr->power)
curr->coeff += ptr->coeff, free(ptr);
el se
prev->next = ptr, ptr->next = curr;
}
pol ynomi al pMul t (pol ynom al pl, polynom al p2) {
/*
* return pl*p2.
*/

node p3, *ptrl, *ptr2, *ptr
p3. next = NULL;

for(ptrl=pl; ptrl; ptrl=ptrl->next)
for(ptr2=p2; ptr2; ptr2=ptr2->next) {
ptr = (node *)mall oc(sizeof (node));
ptr->coeff = ptrl->coeff * ptr2->coeff;
ptr->power = ptrl->power + ptr2->power;
pl nsert Or Add(&p3, ptr);

}
return p3. next;
}
i nt pEval (pol ynom al pl1, int x) {
/*
* evaluate pl at x.
*/
node *ptr;

int result = 0;
for(ptr=pl; ptr; ptr=ptr->next)
result += ptr->coeff * powx, ptr->power);

return result;

}

int main() {
polynom al pl = createPoly(3, 3, 5, -1, 3, -10, 0),

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0168.html (3 of 5) [30.06.2007 10:58:23]

Chapter 25: Problemsin Linked Lists

p2 = createPoly(3, -2, 3, 0, 2, 20, 0);

pPrint(pl);

pPrint (p2);

pPri nt (pAdd(pl, p2));

pPrint (pSub(pl, p2));

pPrint(pMilt(pl, p2));

printf("value of pl at x=% is %.\n", 2, pEval (pl, 2));

return O;

}

Explanation

1. A polynomial, such as ax3+bx+c, is represented by using a linked list of nodes. Each node contains a coefficient
and a power of the variable x. Thus this above expression is stored as follows:

c|l oMb |1l |[—™a

fad

=

2. The function cr eat ePol y() creates a linked list of the given coefficients and powers sent to the function, using
the variable number of arguments technique.

3. pAdd(pl, p2) adds polynomials p1 and p2 and returns the sum. It adds coefficients of the nodes of lists p1

and p2 containing the same power. The nodes in pl and p2 for which there is no node in the other list with the
same power is copied to the result as it is. The traversal of p1 and p2 is done such that the resulting list is also
sorted based on power in ascending order. This traversal is done using recursion. The function pSub() for

subtraction is identical. For example,
(Bx5+4x3+9)+(5x3—4x)=(3x5+9x3 —4x+9)
and
(83x5+4x3+9)+(5x3—-4x)=(3x5—-1x3+4x+9)

4. The function pMul t (pl, p2) traverses each node n2 of list p2 for each node n1 of list p1, and prepares a new
node whose coefficient is the product of the coefficients in the two nodes nl1 and n2 and whose power is the
sum of the powers of nl1 and n2. It is possible to get the same resulting power for two multiplications. So the
procedure pl nsert Or Add() traverses the resulting list p3 for occurrence of the node with the same power. If
such a node n3 exists, then the new coefficient is added to the old coefficient of n3; otherwise a new node with
the new coefficient is inserted in p3. For example,

Bx5+4x3+9)x(5x3—4x)
=(15x8—-12x6)+(20%x 6 — 16 x 4) + (45 x 3 — 36X)
=(15%x8+8x6 — 16 x4 +45 x 3 — 36X).

5. The function pEval(pl, x) evaluates the expression in pl at point x and returns the value. This is done by
traversing the list p1 once and adding the values coefficient *x A power for each node. For example, the value of
the polynomial (3x5+4x3+9) at x=2 is (3*2A5+4*2 A3+9) = (96+32+9) = 137.

6. The complexity of pAdd() and pSub() is O(m1+m2), where m1l and m2 are the lengths of the input lists. The
complexity of pl nsert Or Add() is O(m1+m2). Thus the complexity of pMul t () is O(m1*m2*(m1+m2)). The
complexity of pEval () is O(m) where m is the length of the input list.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0168.html (4 of 5) [30.06.2007 10:58:23]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu491%5F1%5F0%2Ejpg

Chapter 25: Problemsin Linked Lists

Pointsto Remember

1. Polynomials can be represented using linked lists. This has the advantage of reduced space if many of the
coefficients in the list are zero. Also, the procedures operating on polynomials represented by arrays and lists
are not different as far as complexity is concerned.

2. To avoid sending a variable number of arguments to cr eat ePol y(), an array can be passed as a parameter.

3. The program should be compiled with the —Im option in order to link | i bmlibrary for the function pow() .

—

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0168.html (5 of 5) [30.06.2007 10:58:23]

PROBLEM: IMPLEMENTATION OF CIRCULAR LISTSBY USING ARRAYS

= r

| 4mPREV | | NEXT Wi |

PROBLEM: IMPLEMENTATION OF CIRCULAR LISTSBY USING ARRAYS

A linear list is maintained circularly in an array cl i st [0...N-1] with rear and front set up as for circular queues. Write
functions to delete the k-th element in the list and to insert an element e immediately after the k-th element.

Program

#i ncl ude <stdi o. h>

#define N 10 /1 size of the list.

#define FIRSTINDEX O // index of first elenent in the list.

#define | LLEGALI NDEX -1 /1 illegal index - for special cases.
#defi ne EI NDEXQUTOFBOUND -1 // error code on overflowin the list.
#defi ne SUCCESS 0 /'l success code.

typedef int type; /1 type of each data item

type clist[N; /1 list inplenented using array.

int front = | LLEGALI NDEX; /'l points to first elenent in the |ist.
int rear; /[l points to last elenment in the list.

int | Push(type data) {

/*

* appends 'data' to the end of the list if space is avail able.
* otherwi se returns error.

*/
if(front == ILLEGALINDEX) { // list enpty.
front = rear = FI RSTI NDEX
}
else if((rear+1)¥N == front) { // list overflow.
return EI NDEXOUTOFBOUND;
}
el se /! normal case.
rear = (rear+1) %\, [l 9N for wrappi ng around of i ndex.
clist[rear] = data;
ret urn SUCCESS;
}
void [Print() {
/*
* prints elements in the list fromfront to rear
*/
int i;
int nelem= | Get NEl emrent s();
for(i=0; i<nelem ++i)
printf("% ", clist][(front+i)%N]);
printf("\n");
}
int | Get NEl emrents() {
/*
* returns no of elenments in the list.
*/

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0169.html (1 of 5) [30.06.2007 10:58:24]

PROBLEM: IMPLEMENTATION OF CIRCULAR LISTSBY USING ARRAYS

if(front == | LLEGALI NDEX) /] enmpty list.
return O;

else if(front <= rear) // no wapping of rear.
return (rear-front+1);

el se /'l wrapping of rear.
return (N-front+rear+1);

}

int |DeleteK(int k) {
/*
* deletes k'th element in the list if present.
ot herwi se returns error.
k starts from1.
this procedure may be inproved by checking for nunmber of elenents
to be shifted after deleting k'th elenent. thus we can shift either
k+1..N elenments or 1..K-1 el enents.
/
int index, i;
int nelem= | Get NEl emrent s();
printf("deleting %d'th element...\n", k);
if(k >nelem||] k <1)
return EI NDEXOUTOFBOUND;

E I T

i ndex = (front+k-1) %\, /1 index of the elenent to be del eted.

for(i=k+1; i<=nelem ++i)
clist[(front+i-2)WN] = clist][(front+i-1)%N];

if(nelem==1) // list is enpty now.
front = | LLEGALI NDEX;

else if(k ==1)
front = (front+1) W\,

el se
rear = (rear-1+N) W\

return SUCCESS;
}

int llnsertAfterK(type data, int k) {
/*
* inserts 'data' after k'th elenent in the list.
* if list is full or k is out of bounds, error is returned.
* k starts fromO.
*/
int i, index;

int nelem= | Get NEl emrent s();
printf("inserting % after %' th element...\n", data, k);
if(k >nelem|] k <0 |] nelem== N)
return ElI NDEXOQUTOFBOUND;
if(nelem==0) // list enpty.
front = rear = FI RSTI NDEX;
el se
rear = (rear+1) W\

i ndex = (front+k) %\; /1 index at which data shoul d be inserted.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0169.html (2 of 5) [30.06.2007 10:58:24]

PROBLEM: IMPLEMENTATION OF CIRCULAR LISTSBY USING ARRAYS

for(i=nelem i>k; -i)
clist[(front+i)dN] = clist[(front+i-1)%N];
clist[(front+k)¥N] = data;
}
int main() {
| I nsert AfterK(100, 0);
IPrint();
| Push(0);
| Push(4);
| Push(7);
| Push(1);
| Push(13);
| Push(2);
| Push(5);
IPrint();
I InsertAfterK(2,1);
IPrint();
| Del et eK(4);
IPrint();
| Push(6);
| Push(3);
| Push(23);
IPrint();
| Del et eK(9);
IPrint();
I I nsert AfterK(20,9);
IPrint();
| Del et eK(10);
IPrint();
I I nsert Aft er K(20, 0);
IPrint();
return O;

}

Explanation

1. clist[0...N-1] is a global queue of integers. The r ear and f r ont are its two pointers (indices) maintained
for insertion and deletion of elements. The rear points to the last element inserted in the queue while f r ont
points to the next element to be removed from the queue.

2. An empty queue is represented by front =—1. The front and r ear are updated on insertions and deletions.
Since the queue is circular and the array size is fixed, element e is inserted when rear = N — 1 goes to cl i st
[0], if it is empty. Also, after removal of an element from the queue when front = N — 1, front points to cl i st
[0], if it exists. Thus the indices f r ont and r ear wrap around in the range 0...N — 1.

3. The number of elements in the queue at any time (I Get NEI enent s()) can be found using the following

formula:
Number of elements = 0 if front == =1.
= rear - front + 1 if front <= rear.
= N = front + rear + 1 otherwise.

4. To delete the k-th element (k > 0) (I Del et eK()), it is first checked to see if the number of elements in the

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0169.html (3 of 5) [30.06.2007 10:58:24]

PROBLEM: IMPLEMENTATION OF CIRCULAR LISTSBY USING ARRAYS

gueue is less than or equal to k. If there is a k- th element, its index in the array can be found using the formula
(front+k—1)%N. After deletion of the element, all the elements after it are shifted back by one position and r ear

is updated. If k == 1, or if the deleted element was the last element in the queue, then f r ont needs to be
updated accordingly. For example, let the queue look like this:

fik i frafit

""‘-..___‘_-‘i
S A = B = i B BB E

If k ==5, then after | Del et eK() runs, the queue looks like this:

TEAT fronft

_——

G 7| — — —_— 1 2] |

Note that elements 6 and 7 have been shifted back by one position.

5. Toinsert an element after the k-th element (k >=0) (I | nsert Aft er K()), again k is checked against the
number of elements in the queue. The index for the new element would be (f r ont +k) %N. To create space for

the new element, all the elements after k-th element need to be shifted foward by one position. The new element
can then be inserted and the indices f r ont and r ear are updated accordingly. For example, say the queue
looks like the following:

fromt ranr

#
- = —-]- . -] 1 21 3| 4

Then, after | | nsert Aft er K() is run with k == 4, the queue becomes

rear front
ol
[_5 — | — — e — 1 2 3 i

Note how the rear is wrapped around.

6. Because of the shifting required in insertion and deletion, the time complexity of both the functions is O(n). We
note that if insertions and deletions take place at rear and front, respectively, the complexity remains O(1). The
constant of proportionality of the complexity can be improved by checking the number of elements before and
after the k-th element and then shifting the smaller number of the two.

Pointsto Remember

1. In an array-based circular queue implementation, the indices f r ont and r ear wrap around the N elements.
2. The index of a k-th element is calculated as (f r ont +k—1) %\.

3. The number of elements in the queue is calculated as 0, (rear —f r ont +1) , or (N—f r ont +r ear +1) depending

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0169.html (4 of 5) [30.06.2007 10:58:24]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu497%5F2%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu497%5F3%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu498%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu498%5F2%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF CIRCULAR LISTSBY USING ARRAYS

on whether the queue is empty (f ront == —1). There is no wrapping of indices (f ront <=rear) andr ear is
wrapped around (f ront >rear).

4. To insert an element after the k-th element, all the elements after it should be first shifted forward by one
position. To delete an element at the k-th position, all the elements after it should be shifted back by one position.

5. Corner cases such as queue full and queue empty should be handled properly.

- —

| 4mPREV | | MNExT W |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0169.html (5 of 5) [30.06.2007 10:58:24]

PROBLEM: REVERSING LINKS IN THE CASE OF CIRCULAR LIST

-

| 4m PREV |

-

| NExT o |

PROBLEM: REVERSING LINKSIN THE CASE OF CIRCULAR LIST

Write a function for a singly linked circular list that reverses the direction of the links.

Program

#i ncl ude <stdi o. h>

#def i ne SUCCESS 0
#define ERROR -1

typedef int type;
typedef struct node node;

struct node {
type data;
node *next;

}s
node *head = NULL;

int Ilnsert(type data) {
/*
* inserts a new node containing data at start of the list.
*/
node *ptr = (node *)mall oc(sizeof(node));
ptr->data = data;
if(head == NULL) { // this is the first elenment in the I|ist.
ptr->next = ptr;

head = ptr;
}
el se {
ptr->next = head->next;
head- >next = ptr;
}
return SUCCESS;
}
void IPrint() {
node *ptr;
if(head == NULL)
return;
el se
printf("% ", head->data);
for(ptr=head->next; ptr!=head;
ptr=ptr->next) printf("%l ", ptr->data);
printf("\n");
int | Reverse() {
/*
* insitu reverses the list.
*/
node *curr, *prev, *next;
printf("reversing list...\n");
i f(head == NULL)
return SUCCESS;
for(prev=head, curr=prev->next, next=curr->next; curr!=head; prev=curr,
curr->next = prev;
}
head- >next = prev;
return SUCCESS;
}

curr=next,

file:///Z|/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0170.html (1 of 3) [30.06.2007 10:58:24]

next =next - >next) {

PROBLEM: REVERSING LINKS IN THE CASE OF CIRCULAR LIST

int main() {
IPrint();
I I nsert(1);
I Print();
I I nsert(2);
I Insert(3);
I I nsert(4);
I I nsert(5);
I I nsert (6);
I Print();
| Reverse();
[Print();
return O;

}

Explanation

1. mai n() creates a linked list of integers and then calls | Rever se() to reverse the list. Note that the list is circular.

2. The function | Rever se() maintains three pointers, pr ev, curr, and next , while traversing the list. They point to consecutive nodes in the
list. If the list is non-empty, then pr ev points to the head node while cur r and next are accordingly assigned to the next elements in the list.
The circular list is traversed until curr == head of the list. At every step, cur r - >next points to pr ev. At the end of the loop, all the nodes
in the list except the head node point to their original previous nodes. Thus at the end of the loop, head- >next is assigned pr ev which is
the last node in the list.

3. Example:

Head . rev
/

10 I curr

next

-J

Remaining list

After reversal this list appears as shown here:

file:///Z|/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0170.html (2 of 3) [30.06.2007 10:58:24]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu501%5F1%5F0%2Ejpg

PROBLEM: REVERSING LINKS IN THE CASE OF CIRCULAR LIST

Head e

Remaining list

Pointsto Remember

1. Note that the loop advances curr as curr=next rather than curr =curr - >next, because cur r - >next gets changed in the loop.

2. The complexity of the reversal procedure is O(n).

3. If the head is maintained as a fixed node, that is, an empty list is denoted by a single node rather than NULL, then the functions operating on
the list get simplified.

= P

r==8 [NExTop |

file:///Z|/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0170.html (3 of 3) [30.06.2007 10:58:24]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu501%5F2%5F0%2Ejpg

PROBLEM: MEMORY MANAGEMENT USING LISTS

= o

| 4mPREV | | NEXT Wi |

PROBLEM: MEMORY MANAGEMENT USING LISTS

Design a storage management scheme where all requests for memory are of the same size, say K. Write functions to
free and allocate storage in this scheme.

Program
#i ncl ude <stdio. h>

#define N 90
#define K 10

#defi ne SUCCESS 0
#defi ne ERROR -1

typedef struct node node;

struct node {
void *ptr; // points to free block of size K
node *next;

b

struct head {

/'1int nnodes;

node *next;

char *bytes; /1 memw |l be allocated fromthis pool
}freelist;

void init() {
/* initialize the nmenory space.
*
in{ i;
void nenfree(void *);
//freelist.nnodes = O;

freelist.next = NULL;
freelist.bytes = (char *)mall oc(N)

for(i=NK-1; i>=0; -i) {
menfree(freelist.bytes+kK*i);
}
}
void *remal | oc() { /1 assune request to be of size K
/*

* returns a void
* pointer to area fromfreelist.
*/

void *ptr;

node *nodeptr;

if(freelist.next == NULL)

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0171.html (1 of 3) [30.06.2007 10:58:25]

PROBLEM: MEMORY MANAGEMENT USING LISTS

return (void *)NULL;
nodeptr = freelist. next;
ptr = nodeptr->ptr;
freelist.next = freelist. next->next;
free(nodeptr); /[l this is standard free().

return ptr;

}
void nmenfree(void *ptr) {
/*
* adds ptr to freelist.
*/
node *nodeptr;
if(ptr == NULL)
return;
nodept r = (node *)mal | oc(sizeof (node));
nodeptr->ptr = ptr;
nodeptr->next = freelist. nnext;
freelist.next = nodeptr;
}
void print() {
node *ptr;
for(ptr=freelist.next; ptr!=NULL; ptr=ptr->next) {
printf("% ", ptr->ptr);
}
printf("\n\n");
}

int main() {
void *pl, *p2, *p3, *p4,
init();
printf("after init...\n");
print();
pl = nmemal |l oc();
printf("after memalloc(pl)...\n");
p2 = nmemal loc(); p3 = nmemalloc();
print();
menfree(pl); menfree(p2); nmenfree(p3);
printf("after menfree(pl)...\n");

print();

return O;
}
Explanation

1. Since all requests are of the same size, theoretically only one bit is required with each block of size K to tag it as
free or allocated. However, we do not know the number of blocks (the size of the memory pool). So we need a
list of such status bits. An array-based list would have been sufficient but the size of a memory pool can be very
large. So we prefer a linked list of status bits.

2. The functions on the memory pool are nenf ree() and nemal | oc(), which need pointers to the memory areas

to be exchanged between the memory manager and the user program. So instead of bits, we store only the
pointers to the memory areas. We further shorten this list by storing only pointers to the free blocks in the lists.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0171.html (2 of 3) [30.06.2007 10:58:25]

PROBLEM: MEMORY MANAGEMENT USING LISTS
Thus we maintain a free-list of free pointers.

3. We take advantage of all the requests of the same size to make nenf ree() and nemal | oc() functions O(1).
memal | oc() returns the first free pointer in the list and menf r ee() adds the free pointer to the head of the free-

list. The only loop in the program is required only once, for initializing the free-list at the start of the program. A
global memory pool of size N acts as the free pool. It is divided into blocks of size K and pointers to the start of
each block are inserted into the free-list.

Pointsto Remember

1. If all the requests are of the same size, then allocation and free operations can be done in O(1) time.

2. Instead of a separate free-list, each free block of size K can contain a pointer to the next free block of memory.

- —

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0171.html (3 of 3) [30.06.2007 10:58:25]

PROBLEM: MEMORY MANAGEMENT USING VARIOUS SCHEMES

—

| 4mPREV |

—

| MNExT o |

PROBLEM: MEMORY MANAGEMENT USING VARIOUS SCHEMES
Implement a memory allocation scheme by using the algorithms first-fit, next-fit, and best-fit.

Program
#i ncl ude <stdio. h>

#define N 100

typedef struct node node;
typedef enum {FALSE, TRUE} bool

struct node {
char *ptr; // start addr.

int size; /Il size of the free bl ock
node *next; /1 next free bl ock
b
char nmeni N ; /1 total nmenory pool
node freelist; /*
* the freelist should be sorted on start addr
* this will ease coal escing adj acent bl ocks.
*/
void init() {
/*
* jnit freelist to contain the whole nem
*/
node *ptr = (node *)mal | oc(sizeof (node));
ptr->ptr = nmem
ptr->size = N,
ptr->next = NULL
freelist.next = ptr;
}
voi d renovenode(node *ptr, node *prev) {
/*
* renpove a node ptr fromthe |ist whose previous node is prev.
*/
prev->next = ptr->next;
free(ptr);
}

char *firstfit(int size) {
*
* returns ptr to free pool of size size fromfreelist.
*/
node *ptr, *prev;
char *menptr;

for(prev=&freelist, ptr=prev->next; ptr; prev=ptr, ptr=ptr->next)
if(ptr->size > size) {
menptr = ptr->ptr;
ptr->size -= size
ptr->ptr += size;
return nmenptr;

else if(ptr->size == size) {
menptr = ptr->ptr,;
renovenode(ptr, prev);
return nmenptr;

file:///Z)/Charles¥20River/(Charles%20River) %620C%20& %20D ata%20Structures%20(2004)/7267/DDU0172.html (1 of 5) [30.06.2007 10:58:26]

PROBLEM: MEMORY MANAGEMENT USING VARIOUS SCHEMES

return NULL;
}

char *nextfit(int size) {
/*
* returns ptr to free pool of size size fromfreelist.
* the free pool is second allocatable block instead of first.
* if no second block then first is returned.
*/
bool isSecond = FALSE
node *prev, *ptr;
node *firstprev, *firstptr;

for(prev=&freelist, ptr=prev->next; ptr; prev=ptr, ptr=ptr->next)
if(ptr->size >= size & isSecond == FALSE) {
i sSecond = TRUE;
firstprev = prev;
firstptr = ptr;
}
else if(ptr->size > size & isSecond == TRUE) {
char *menptr = ptr->ptr;
ptr->size -= size
ptr->ptr += size;
return nmenptr;
}
else if(ptr->size == size && isSecond == TRUE) {
char *menptr = ptr->ptr;
renovenode(ptr, prev);
return menptr;
}
/1 ptr is NULL.
ptr = firstptr;
prev = firstprev;

if(ptr->size > size &% isSecond == TRUE) {
char *nenptr = ptr->ptr
ptr->size -= size;
ptr->ptr += size;
return menptr;
}
else if(ptr->size == size & isSecond == TRUE) {
char *nenptr = ptr->ptr
removenode(ptr, prev);
return menptr;
}
el se /'l isSecond == FALSE
return NULL;

}

char *bestfit(int size) {
/*
* returns ptr to free pool of size size fromfreelist.
* the allocated block's original size - sizeis mnin the freelist.
*/
node *ptr, *prev;
char *menptr;
i nt mnwaste
node *minptr

N+1;
NULL, *mi nprev;

for(prev=&freelist, ptr=prev->next; ptr; prev=ptr, ptr=ptr->next)
if(ptr->size >= size && ptr->size-size < minwaste) {
m nwaste = ptr->size-size
m nptr = ptr;
m nprev = prev;
}
if(minptr == NULL) /1 could NOT get any allocatable nem

file:///Z)/Charles¥20River/(Charles%20River) %620C%20& %20D ata%20Structures%20(2004)/7267/DDU0172.html (2 of 5) [30.06.2007 10:58:26]

PROBLEM: MEMORY MANAGEMENT USING VARIOUS SCHEMES

return NULL;

ptr = mnptr;

prev = minprev;

if(ptr->size > size) {
menptr = ptr->ptr,;
ptr->size -= size
ptr->ptr += size;
return nmenptr;

else if(ptr->size == size) {
menptr = ptr->ptr,;
renovenode(ptr, prev);
return menptr;

}
return NULL;
}
voi d addtofreelist(char *menptr, int size) {
/*
* add menptr of size to freelist.
* renenber that block ptrs are sorted on nem addr
*/
node *prev, *ptr, *newptr;
for(prev=&freelist, ptr=prev->next; ptr && ptr->ptr<menptr; prev=ptr, ptr=ptr->next)
/1 menmptr is to be added between prev and ptr.
newptr = (node *)mall oc(sizeof (node));
newptr->ptr = nmenptr;
newptr->si ze = size;
newptr->next = ptr
prev->next = newptr;
}
voi d coal esce() {
/*
* conbine adj blocks of list if necessary.
*/
node *prev, *ptr;
for(prev=&freelist, ptr=prev->next; ptr; prev=ptr, ptr=ptr->next)
/'l check for prev mem addr and size agai nst ptr->ptr.
if(prev != &freelist && prev->ptr+prev->size == ptr->ptr) {// prev->size += ptr->size;
prev->next = ptr->next;
free(ptr);
ptr = prev; Il).
}
}

char *memal loc(int size) {
/*
* return ptr to pool of nmem of the size
* return NULL if NOT avail abl e.

* ptr-sizeof (int) contains size of the pool allocated, |ike malloc.
*/
char *ptr = bestfit(size+sizeof(int)); /1 change this to

firstfit() or nextfit().
printf("allocating % using bestfit...\n", size);
if(ptr == NULL)
return NULL;
*(int *)ptr = size;

return ptr+sizeof (int);

}

void nenfree(char *ptr) {

file:///Z)/Charles¥20River/(Charles%20River) %620C%20& %20D ata%20Structures%20(2004)/7267/DDU0172.html (3 of 5) [30.06.2007 10:58:26]

Il

PROBLEM: MEMORY MANAGEMENT USING VARIOUS SCHEMES

/*

* adds ptr to freelist and conbi ne adj bl ocks if necessary.
* size of the membeing freed is at ptr-sizeof(int).

*/

int size = *(int *)(ptr-sizeof(int));

printf("freeing %...\n", size);

addtof reelist(ptr-sizeof(int), size+sizeof(int));

coal esce(); /'l combi ne adj acent bl ocks.

}

void printfreelist() {
node *ptr;
printf("\t");
for(ptr=freelist.next; ptr; ptr=ptr->next)
printf("{% %} ", ptr->ptr, ptr->size);
printf("\'n");
}

int main() {
char *pl, *p2, *p3, *p4, *p5;
init();
printfreelist();

pl = memal | oc(10);
printfreelist();
p2 = nmemal | oc(15);
printfreelist();
p3 = nmemal | oc(23);
printfreelist();
p4 = nemal |l oc(3);
printfreelist();
p5 = nenal | oc(8);
printfreelist();
menf ree(pl);
printfreelist();
menf r ee(p5) ;
printfreelist();
menf ree(p3);
printfreelist();
pl = nmemal |l oc(23)
printfreelist();
pl = memal | oc(23);
printfreelist();
menf ree(p2);
printfreelist();
pl = nemall oc(3);
printfreelist();
menf ree(p4);
printfreelist();
p2 = nemal | oc(1);
printfreelist();
menf ree(pl);
printfreelist();
menf ree(p2);
printfreelist();

return O;

}

Explanation

1. A memory manager provides a pool of memory when requested (menal | oc()) and frees a pool of memory (nmenf r ee()) to be used

for the next allocation request. It maintains a free-list of pointers to memory blocks along with their sizes. Whenever there is a request
for a free pool of memory having the size si ze, this free-list is searched for the appropriate block depending on the algorithm. If such

a block is found, it is removed from the free-list and a pointer to it is returned. Whenever a pool of memory is freed using menf r ee
(p), the pointer p is added to the free-list. If possible, the adjacent blocks are combined using coal esce() to get a bigger free pool.

file:///Z)/Charles¥20River/(Charles%20River) %620C%20& %20D ata%20Structures%20(2004)/7267/DDU0172.html (4 of 5) [30.06.2007 10:58:26]

PROBLEM: MEMORY MANAGEMENT USING VARIOUS SCHEMES

2. In a first-fit algorithm, the first free pool of memory is granted if it has sufficient size to satisfy the request. Thus, if sizes of free pools
in the free-list are {10 9 20 34 43 12 22}, and the request is for size 21, then the pointer to the pool pointed to by the node having size
34 is returned.

3. In a next-fit algorithm, the second free pool of memory is granted if it has sufficient size to satisfy the request. If no such second free
pool is available, then the first such free pool is granted. Thus, if the free-list is as shown earlier, then a request for size 21 is fulfilled
using the block having size 43.

4. In a best-fit algorithm, that free pool of memory is granted which retains the minimum amount of space after allocation. Thus, if the
free-list is as shown earlier, then a request for size 21 is fulfilled by the block having size 22, as its residual memory is 22 — 21 = 1.

5. Note that the free-list is sorted on the address each node saves and not on size. Sorting on size can help improve the performance of
menmal | oc() by a constant factor. The advantage of sorting on addresses is realized during coalescing of adjacent blocks. This
happens when two adjacent blocks that are free are stored in the free-list in adjacent nodes. This may keep a request unsatisfied,
even if a free pool of the requested size existed. So, we check for the start address of a block added to its size with the start address
of the next block. If they match, we combine the two nodes. This procedure is followed until this condition is violated.

6. The complexity of each of the three algorithms is O(n) where n is the number of nodes in the free-list. It has been seen using
experiments that first- and best-fit have nearly similar performances and somewhat better than the next-fit algorithm. The complexity
of memal | oc() is the same as the algorithm it implements. The complexity of nenf r ee() is O(n), as it needs to insert the free

pointer in a sorted list.

Pointsto Remember

1. Infirst-fit, the first free pool satisfying the request is returned. In next-fit, the second such free pool is returned. In best-fit, the free pool
which leaves a free pool of minimum size after allocation is returned.

2. If the application requires two pointers to point to the same area, then the problem of a dangling pointer may arise in the system,
where a pointer may point to an area that is not allocated. This happens when another pointer pointing to the same memory area
frees the pool.

3. Garbage collection is the process of collecting the memory that was previously allocated but is no longer being used by the
application. Garbage is generated as a result of bad programming practice, wherein we allocate memory as required but do not free it
after its use. Algorithms using reference counts and the mark-and-sweep algorithm are generally used for garbage collection.

- -

| 4 PREV | | MNE=T |

file:///Z)/Charles¥20River/(Charles%20River) %620C%20& %20D ata%20Structures%20(2004)/7267/DDU0172.html (5 of 5) [30.06.2007 10:58:26]

PROBLEM: GARBAGE COLLECTION-THE FIRST METHOD

| NEXT Wi |

—

| 4mPREV |

PROBLEM: GARBAGE COLLECTION—THE FIRST METHOD

Implement a mar k() procedure used in garbage collection to mark all the nodes traversible from a head node by using
a stack.

Program

/************************ n«-arkl S.C **************************/

#i ncl ude <stdio. h>

typedef struct snode snode;
typedef list stype;
typedef struct snode *stack

struct snode {

stype op;
snode *next;

b

bool sEmpty(stack *s) {
return (*s == NULL);
}

voi d sPush(stack *s, stype op) {
/*
* pushes op in stack s.
*/
snode *ptr = (snode *)mall oc(sizeof (snode));
ptr->op = op;
ptr->next = *s;
*s = ptr;

}

stype sTop(stack *s) {
/*
* returns top op fromstack s w thout popping.
*/
i f(seEnpty(s))
return NULL;
return (*s)->op;

}

stype sPop(stack *s) {
/*
* pops op fromtop of stack s.
*/
snode *ptr = *s;
stype op;

if(sEmpty(s))

return NULL;
*s = (*s)->next;
op = ptr->op;

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥20(2004)/7267/DDU0173.html (1 of 6) [30.06.2007 10:58:27]

PROBLEM: GARBAGE COLLECTION-THE FIRST METHOD

free(ptr);

return op;

}

/************************ mar kl C ***************************/

#i ncl ude <stdio. h>

typedef struct node node;
typedef int type;

typedef enum {FALSE, TRUE} bool;
typedef node *list;

#i ncl ude "markl.s.c"

struct node {
bool nark;
type val
node *hori z;
node *vert;

s

[ist newNode() {
/*
* return a new node.
*/
return (list)calloc(1l, sizeof(node));

}

list createList() {
/*
* return a dummy list created.
*/
list ptr;
snode *s = NULL;
list sixptr;
l'ist nineptr;

ptr = newNode();
sPush(&s, ptr);
ptr->val = 1;
ptr->horiz = newNode();
ptr = ptr->hori z;
sPush(&s, ptr);
ptr->val = 2;

ptr->vert = newNode();
ptr = ptr->vert;
sPush(&s, ptr);
ptr->val = 3;

ptr->vert = newNode();
ptr = ptr->vert;
ptr->val = 4;

ptr = sPop(&s);
ptr->horiz = newNode();
ptr = ptr->hori z;
ptr->val = 5;

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0173.html (2 of 6) [30.06.2007 10:58:27]

PROBLEM: GARBAGE COLLECTION-THE FIRST METHOD

ptr->horiz = newNode();
ptr = ptr->hori z;
sPush(&s, ptr);

sixptr = ptr;

ptr->val = 6;

ptr->vert = newNode();
ptr = ptr->vert;
ptr->val = 7;

ptr = sPop(&s);
ptr->horiz = newNode();
ptr = ptr->hori z;
ptr->val = 8;

ptr = sPop(&s);
ptr->horiz = newNode();
ptr = ptr->hori z;
sPush(&s, ptr);

ni neptr = ptr;

ptr->val = 9;

ptr->vert = newNode();
ptr = ptr->vert;
ptr->val = 10;
ptr->horiz = newNode();
ptr = ptr->hori z;
ptr->val = 11,

ptr = sPop(&s);
ptr->horiz = newNode();
ptr = ptr->hori z;
ptr->vert = nineptr; /1 an internal link.
ptr->val = 12;
ptr->horiz = newNode();
ptr = ptr->hori z;
sPush(&s, ptr);
ptr->val = 13;
ptr->vert = newNode();
ptr = ptr->vert;
ptr->val = 14;
ptr->horiz = sixptr; /1 an internal |ink.
ptr = sPop(&s);

return sPop(&s);

}
void markList(list ptr) {
*
/* print the horiz and vert lists iteratively using a stack
*
sngde *s = NULL;
l'ist horiz;

if(!ptr || ptr->mark)
return;

ptr->mark = TRUE
printf("marked=%l.\n", ptr->val);
sPush(&s, ptr);

whi | e(! sEnpty(&s)) {

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0173.html (3 of 6) [30.06.2007 10:58:27]

PROBLEM: GARBAGE COLLECTION-THE FIRST METHOD

ptr = sPop(&s);

do {
horiz = ptr->hori z;
i f(horiz && horiz->mark == FALSE) {
hori z->mark = TRUE;
printf("marked=%l.\n", horiz->val);
sPush(&s, hori z);
}

ptr = ptr->vert;
if(!ptr || ptr->mark)
br eak;
ptr->mark = TRUE;
printf("marked=%.\n", ptr->val);
} whil e(TRUE);

}
}
voi d markLi stRec(list ptr) {
/*
* mark the list pointed to by ptr recursively.
*/

for(; ptr &% !ptr->mark; ptr=ptr->horiz) {
ptr->mark = TRUE;
printf("marked=%l.\n", ptr->val);
mar kLi st Rec(ptr->vert);

}

int main() {
list head = createlList();
mar kLi st Rec(head) ;

return O;

Explanation

1. An algorithm called mark-and-sweep is used for garbage collection. In this, from every variable, memory is
traversed and marked as used. Then a traversal over the whole memory is done to add all the unmarked nodes
to the free-list, thus collecting the garbage. The former is called mar k while the latter is called sweep.

2. We implement the marking procedure here. We assume the node structure as follows:

struct node {
bool nark;
type val;
node *hori z;
node *vert;

b
Thus the lists are generalized and can grow in both horizontal and vertical directions.

3. The recursive marking algorithm is as shown here:

mar kLi st Rec(ptr) {
for(; ptr & !ptr->mark; ptr=ptr->horiz) {

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0173.html (4 of 6) [30.06.2007 10:58:27]

PROBLEM: GARBAGE COLLECTION-THE FIRST METHOD

ptr->mark = TRUE;
mar kLi st Rec(ptr->vert);

}

This procedure uses the system stack for recursion (internally).

4. The iterative procedure mar kLi st (pt r) uses an explicit stack to store the nodes. It contains a nested loop in
which the list is traversed horizontally and vertically. The next node on the horizontal list is marked and pushed
on stack and the whole vertical list is then traversed. The same strategy is used for each node in the vertical list.
Whenever a node is visited, it is checked to see if it was marked. If yes, then it is not processed; otherwise, it is

marked.

5. Example: The function cr eat el i st () creates an arbitrary list structure as shown here.

Different steps of the algorithm:

STEP PTR PTR->MARK HORIZ HORIZ->MARK STACK OUTPUT

0 1 F — — 1 1

1 1 T 2 F 2 12

2 2 T 9 F 9 129

3 3 F 9 T 9 1293

4 3 T 5 F 95 12935

5 4 F 5 T 95 129354

6 5 T 6 F 96 1293546

7 6 T 8 F 98 1293546

8 7 F 8 T 98 129354687
9 8 T nil — 9 129354687
10 9 T 12 F 12 12935468712

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0173.html (5 of 6) [30.06.2007 10:58:27]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu518%5F1%5F0%2Ejpg

PROBLEM: GARBAGE COLLECTION-THE FIRST METHOD

11
12
13
14
15
16
17

18

10
10
11
12

9
13
14

14

M4 -4 -4 <4 -7

—

12
11
11
13
13
nil

=1 T 4 T T

12
1211
12
13
13
empty
empty

empty

1293546871210
129354687121011
129354687121011
12935468712101113
12935468712101113
12935468712101113

12935468712101113
14

12935468712101113
14

Thus in each step, the horizontal node is pushed as the return point and the whole vertical list is traversed. The return
point is then popped and the procedure is continued until the stack becomes empty.

In step 9, since 8 is already marked, nothing is output. In step 14, pt r points to 12, which is marked, and hor i z points

to 13, which is unmarked. Thus it marks 13 and pushes it on stack. In the next step, the vertical list is traversed and
pt r points to 9 while hori z is still 13. Since 9 is already marked, it is left and 13 is popped. hor i z is now nil. Now the

vertical list of 13 is traversed and pt r points to 14, which is unmarked, and so is marked. hor i z now points to 6,

which is marked, so nothing is done to it. A vertical pointer of 14 is traversed and it is found to be nil, so the inner loop
quits. The stack is empty at this point, so the outer loop also quits and the procedure terminates.

Pointsto Remember

1. A simple recursive procedure such as mar kLi st Rec() can be more readable and compact than its iterative

version mar kLi st ().

The complexity of the marking algorithm is O(e), where e is equal to the number of links in the graph.

To mark all the memory traversible from program variables, mar kLi st () should be called for each of the

variables.

There is a serious caveat in using this algorithm for garbage collection. Usually, garbage is created when the
user runs out of memory. This algorithm, however, requires a stack to work, so it will not proceed when there is
not enough memory. So an algorithm that does not require more than a constant amount of extra memory
should be used for garbage collection.

| 4mPREY |

-

-

| NEXT o |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥20(2004)/7267/DDU0173.html (6 of 6) [30.06.2007 10:58:27]

PROBLEM: GARBAGE COLLECTION- THE SECOND METHOD

| NEXT Wi |

—

| 4mPREV |

PROBLEM: GARBAGE COLLECTION— THE SECOND METHOD

Implement the marking procedure used in garbage collection without using more than a constant amount of memory.

Program

/************************ r-rarkz S.C *************************/

#i ncl ude <stdi o. h>

typedef struct snode snode;
typedef list stype;
typedef struct snode *stack

struct snode {
stype op;
snode *next;

3

bool sEmpty(stack *s) {
return (*s == NULL);

}

voi d sPush(stack *s, stype op) {
/*
* pushes op in stack s.
*/

snode *ptr = (snode *)mall oc(sizeof (snode));
ptr->op = op;

ptr->next = *s;

*s = ptr;

}

stype sTop(stack *s) {
/*
* returns top op fromstack s w thout popping.
*/
if(sEmpty(s))
return NULL;
return (*s)->op;

}

stype sPop(stack *s) {
/*
* pops op fromtop of stack s.
*/
snode *ptr = *s;
stype op;

if(sEmpty(s))
return NULL;
*s = (*s)->next;
op = ptr->op;
free(ptr);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0174.html (1 of 7) [30.06.2007 10:58:28]

PROBLEM: GARBAGE COLLECTION- THE SECOND METHOD
return op;

/************************ mar k2 c ***************************/

#i ncl ude <stdi o. h>

typedef struct node node;
typedef int type;

typedef enum {FALSE, TRUE} bool;
typedef node *Iist;

struct node {
bool nmark;
bool tag;
type val
node *hori z;
node *vert;

}s
#i ncl ude "mark2.s.c"

st newNode() {
/*
* return a new node.
*/
list ptr = (list)calloc(l, sizeof(node));
return ptr;

}

list createList() {
/*
* return a dumry |ist created.
*/
list ptr;
snode *s = NULL;
list sixptr;
list nineptr;

ptr = newNode();
sPush(&s, ptr);
ptr->val = 1;
ptr->horiz = newNode();
ptr = ptr->hori z;
sPush(&s, ptr);
ptr->val = 2;

ptr->vert = newNode();
ptr = ptr->vert;
sPush(&s, ptr);
ptr->val = 3;

ptr->vert = newNode();
ptr = ptr->vert;
ptr->val = 4;

ptr = sPop(&s);
ptr->horiz = newNode();
ptr = ptr->hori z;
ptr->val = 5;
ptr->horiz = newNode();

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0174.html (2 of 7) [30.06.2007 10:58:28]

PROBLEM: GARBAGE COLLECTION- THE SECOND METHOD

ptr = ptr->hori z;
sPush(&s, ptr);

sixptr = ptr;

ptr->val = 6;

ptr->vert = newNode();
ptr = ptr->vert;
ptr->val = 7;

ptr = sPop(&s);
ptr->horiz = newNode();
ptr = ptr->hori z;
ptr->val = 8;

ptr = sPop(&s);
ptr->horiz = newNode();
ptr = ptr->hori z;
sPush(&s, ptr);

ni neptr = ptr;

ptr->val = 9;

ptr->vert = newNode();
ptr = ptr->vert;
ptr->val = 10;
ptr->horiz = newNode();
ptr = ptr->hori z;
ptr->val = 11;

ptr = sPop(&s);
ptr->horiz = newNode();
ptr = ptr->hori z;
ptr->vert = nineptr; /1 an internal link.
ptr->val = 12;
ptr->horiz = newNode();
ptr = ptr->hori z;
sPush(&s, ptr);
ptr->val = 13;
ptr->vert = newNode();
ptr = ptr->vert;
ptr->val = 14;
ptr->horiz = sixptr; /1 an internal link.
ptr = sPop(&s);

return sPop(&s);

}
void markList(list ptr) {
*
/* print the horiz and vert lists iteratively w thout using a stack.
*
Iigt p, d, t;

p = ptr; t = NULL;
do {
printf("p->val =%l.\n", p->val);
g = p->vert;
if(a)
i f(g->mark == FALSE && gq->tag == FALSE) {
g->mark = TRUE; p->tag = TRUE
p->vert =t; t = p;
p=0q

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0174.html (3 of 7) [30.06.2007 10:58:28]

PROBLEM: GARBAGE COLLECTION- THE SECOND METHOD

}

el se {
g->mark = TRUE;
| abel :
g = p->hori z;
if(a)
i f(g->mark == FALSE && q->tag == FALSE) {
g->mark = TRUE; p->horiz =t;
t =p p=aq
}
el se {
g->mark = TRUE;
| abel 2:
while(t) {
q = t;
if(g->tag) {
t = g->vert; g->vert = p;
g->tag = FALSE;, p = q;
goto | abel;
}
t = g->horiz; g->horiz = p;
P =4
}
}

el se
got o | abel 2;

}

el se
goto | abel;
} while(t);
}

int main() {
list head = createlList();
mar kLi st (head) ;

return O;

}

Explanation

1. The node structure is assumed to be as follows.
struct node {

bool nark;
bool tag;
type val;

node *hori z;
node *vert;

b

Thus, using hori z and ver t, generalized lists can be created containing data in val . mar k is used for

marking the nodes as visited or not. An additional Boolean tag is needed since we are not using an extra
amount of memory in the algorithm, except for a few pointers. The mar k and t ag fields are initially FALSE for

each node.

The explicit stack is used for creating the list (cr eat eLi st ()), not for marking the nodes.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0174.html (4 of 7) [30.06.2007 10:58:28]

PROBLEM: GARBAGE COLLECTION- THE SECOND METHOD

2. This algorithm modifies some of the links in the list. However, by the time it finishes its task, the list structure is
restored. Starting from pt r, mar kLi st () traces all possible paths made up of hori z and vert . Whenever a

choice is to be made, the ver t direction is explored first. Instead of maintaining a stack of return points, we now
maintain the path taken from pt r to the node p that is currently being examined. This path is maintained by
changing some of the pointers along the path from ptr to p.

3. Example: Consider this example list. We omit the val field as it is not important here.

pir
Al | f — 1™ | |nil —1—™ | |nil |nil
I J
k4
Bl f| f — 1™ | |nil [nil
v H
ol £ fF nil
L 4 F G
Dle]r ——» ¢ | |t | ——¥ ¢ ot [ni
. k4
Fl flml |nil

Innaal list.

Initially, all nodes except node A are unmarked. From A we can move down to B or right to I. This algorithm always
moves down when faced with such an alternative. We use p to point to the node currently being examined and t to

point to the node preceding p in the path from ptr to p. The patht to pt r will be examined as a chain composed of
the nodes onthist — ptr (read as"t to pt r") path. If we advance from node p to node q, then either g=p- >hori z
or g=p- >vert, and g will become the node currently being examined. The node preceding g on the pt r —q path is p,
and so the path list must be updated to represent the path from p to pt r . This is done simply by adding the node p to
the t —pt r path that has been already constructed. Nodes will be linked onto this path through either their vert or
hori z field. When node p is added to the path chain, p is linked to t via its vert field, if g=p- >vert . When q=p-
>hori z, pislinked tot viaits hori z field. In order to be able to determine whether a node on the t —pt r path list is
linked through either the vert or hori z field, we make use of the t ag field. When vert is used for linking, this t ag
will be TRUE. Thus, for nodes ont —pt r path we have:

tag = FALSE if the node is linked via horiz field.
= TRUE if the node is linked via vert field.

The t ag will be reset to FALSE when the node gets off the t —pt r path list. Different snapshots of the list are shown
here:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0174.html (5 of 7) [30.06.2007 10:58:28]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu526%5F1%5F0%2Ejpg

PROBLEM: GARBAGE COLLECTION- THE SECOND METHOD

pir
Aly]s nit | =1 £ f]nit [—7—P] £fnil |ni
i J
Bl ——™ | |nil |nil
k& % H
Cle]t nil
g F S
Ol ¢l ¢ I ——® | fnil | —T—™ | Fnil |nil
E t 1 t]ml mil
Status when p is at D
pir
Al] ull 1M | F|nil | —T—™ | F|nil |nil
I o
Bl 1]t % ——® | fnil |nil
H

Clo1 nil

A F L) G o
Dl{t]t]] t]tjml (] Flnil |nil

* -~
Elt] flril [nil

Stalus when pis at G,

At the end of the algorithm, all the nodes are marked and all tag fields are restored to FALSE. Thus the list looks like
this.

ptr
Al f ™ Flmal " ol Jeil
|
v J
Bl v B 1 | rnil |nil
H
¥
Cl f mil
- F G
ol r o | rlnit | —F—® 1| rlnit [nil
k 4
El ¢]| rlnit [nil

Terminal status,

Pointsto Remember

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0174.html (6 of 7) [30.06.2007 10:58:28]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu527%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu528%5F1%5F0%2Ejpg

PROBLEM: GARBAGE COLLECTION- THE SECOND METHOD

1. We require an extra t ag field if the marking is to be done without using an extra amount of memory.
2. The computing time of mar kLi st () is O(m) where m is the number of newly marked nodes.
3. By properly maintaining the predicate for t —pt r list, the code can be easily understood.

4. Itis said that got os should be avoided as much as possible. However, judicious use of got os at proper places
can make an otherwise tiring code easier to understand.

= o

| 4w PREV NE=T w |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures%20(2004)/7267/DDU0174.html (7 of 7) [30.06.2007 10:58:28]

PROBLEM: COMPUTE N EQUIVALENCE CLASSES

-

| NEXT Wi |

—

| 4mPREV |

PROBLEM: COMPUTE N EQUIVALENCE CLASSES

Write a program to produce N equivalent classes as linked lists from a linked list of integers, applying the nod function.

Program

#i ncl ude <stdi o. h>
typedef struct node node;
struct node {

int val;
node *next;
b
node *getList(int a[], int n) {
/*
* forma list of nintegers in af[].
*/
int i;
node *list = NULL;
for(i=0; i<n; ++i) {
node *ptr = (node *)mal |l oc(sizeof (node));
ptr->val = a[i];
ptr->next = list;
list = ptr;
}
return |ist;
}
node **appl yMod(node *list, int n) {
/*
* apply (nod n) on every elenment of list and store that elenent in
* the list nodlists[(nmod n)].
* thus we formarray[n] of |ists.
* each |ist is one equival ence class.
*/
node **nodli sts;
node *ptr, *next;
nmodlists = (node **)calloc(n, sizeof(node *));
for(ptr=list, next=(ptr?ptr->next: NULL); ptr; ptr=next, next=(next?next->next:NULL))
ptr->next = nodlists[ptr->val %], nodlists[ptr->val %] = ptr;
return nodlists;
}
void printMdlists(node **nodlists, int n) {
/*
* prints the equival ence cl asses.
*/
node *ptr;
int i;

for(i=0; i<n; ++i) {

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0175.html (1 of 3) [30.06.2007 10:58:28]

PROBLEM: COMPUTE N EQUIVALENCE CLASSES

printf("%: ", i);

for(ptr=nodlists[i]; ptr; ptr=ptr->next)
printf("% ", ptr->val);

printf("\n");

}
printf("\n");

mai n() {
int a[] = {10, 2, 3, 44, 432, 35, 6576, 34, 12, 5456, 23423, 234, 23};
node *list = getlList(a, sizeof(a)/sizeof(int));
node **nodli sts;
int n;

printf("Enter nunber of equival ence classes: ");
scanf("%l", &n);

modl i sts = appl yMod(list, n);
printMdlists(nmodlists, n);

return O;
}
Explanation

1. Arelation that is symmetric, reflexive, and transitive is termed an equivalence relation. Each equivalence
relation divides its elements into partitions called equivalence classes.

o Arelation R is symmetric if aRb => bRa for all a, b in R and al=b.
o Arelation R is reflexive if aRa for all a in R.
o A relation R is transitive if aRb and bRc => aRc for all a, b, c in R.

2. nod(), (the modulus function) is an equivalence relation. It partitions its set of elements into N equivalence
classes where N is the number used for division.

3. The program creates a linked list of integers (get Li st ()). It then asks for the value of N for applying the nod()
function. The function appl yMod() takes a list of integers and the value of N as arguments and applies nod(N)
over each element e of the list to get a value v as the remainder. The element e is then putin nodl i st s[v],
where nodl i st s[N] is an array of list of integers. Each list rodl i st s[i] represents one partition. Each list is
finally printed.

4. The complexity of appl yMod() is O(m) where m is the number of elements in the original list. For each
element, nod() is applied, which is assumed to be an O(1) operation, and the insertion of the element in the list
is O(1). So appl yMod() has linear complexity.

Pointsto Remember

1. Arelation which is symmetric, reflexive, and transitive is called an equivalence relation.
2. An equivalence relation partitions its elements into disjointed sets.

3. nod() is an equivalence relation.

4. We save space in appl yMod() by reusing the nodes from the original list into the array of lists.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0175.html (2 of 3) [30.06.2007 10:58:28]

PROBLEM: COMPUTE N EQUIVALENCE CLASSES

e = e =

| 4mPREV | | NEXT P |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0175.html (3 of 3) [30.06.2007 10:58:28]

Chapter 26: Problemsin Strings

-

| NExT o |

-

| 4m PREV |

Chapter 26: Problemsin Strings

PROBLEM: MAXIMIZE A COMBINATION UNDER CONSTRAINTS

Given n arbitrary strings S1, S2,...,Sn, maximize the function
f(Si, Si+1, ..., Sj) = length(Si) + length(Si+1)+ ... + length(Sj)
under the given constraints ¢(Sp,...,Sq), which means strings Sp,...,Sg cannot be taken together.

Program
#i ncl ude <stdio. h>

#def i ne NANSWERS 3 /1 max no of strings in the answer.
#def i ne MAXCONS 5 /1 max length of any constraint.

t ypedef enum {FALSE, TRUE} bool;

bool isAbsent(int strnum int *answer, int nans) {
/*
* returns TRUE if answer[nans] does NOT contain strnum
*/
int i;

for(i=0; i<nans; ++i)
if(answer[i] == strnum
return FALSE;
return TRUE;

}

bool satisfies(int *answer, int nans, int constraints[][MAXCONS+1], int ncons)
{
/*
* returns TRUE if nans answers in answer satisfy ncons constraints.
* note that each constraint ends with —1.
*/
int i, j;

for(i=0; i<ncons; ++i) {
for(j=0; constraints[i][j] !'= -1, ++j)
i f(isAbsent(constraints[i][j], answer, nans))
br eak;
if(constraints[i][j] == —-1)
return FALSE;

}
return TRUE;

void findvaxConb(int *lengths, int nstr, int constraints[][MAXCONS+1], int ncons, int *answer, int nans, int
*maxsum int startstr, int startans, int currsum) {

/*

* find the max sum of |engths of nans strings out of nstr strings of

* lengths lengths[] satisfying ncons constraints constraints[].

* save the max sumin *maxsum and the string indices in answer[].

*/

int i;

if(startans < nans) {
for(i=startstr; i<nstr; ++i) {
answer[startans] = i;
fi ndMaxComb(| engt hs, nstr, constraints, ncons, answer, nans, maxsum i +1, startans+l, currsum

+l engths[i]);
}

el se if(currsum> *maxsum {

file:///Z|/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0176.html (1 of 3) [30.06.2007 10:58:29]

Chapter 26: Problemsin Strings

i f(satisfies(answer, nans, constraints, ncons))
*maxsum = currsum

}
}
int main() {
int lengths[] ={9, 8, 6, 5, 4, 3}; // lengths[i] = length(string[i]).
i nt answer [NANSVERS] ; /'l indices of strings.
int constraints[][MAXCONS+1] = { /1 index of string starts with 1 so that
{1, 3, -1}, /1 end of constraint can be signified
{2, -1}, /1 by 0.
{1,5, -1}, /1 we decrenment every index so that
{3, 4, -1}, /] each constraint ends with —1.
{0,4,5, -1},
{0, 4, -1},
{0, 3,5, -1}
b
int ncons = sizeof (constraints)/sizeof(int)/(MAXCONS+1); // no of constraints.
int nstr = sizeof(lengths)/sizeof(int); /1l no of strings.
int i, j;
int maxsum = 0;
for(i=1; i<=NANSVERS; ++i) {
fi ndMaxConb(1l engt hs, nstr, constraints, ncons, answer, i, &muaxsum 0, 0, 0);
printf("After %l strings: maxsum=%d.\n", i, maxsum);
//maxsum = 0; // this will keep all length conbinations separate.
}
return O;
}
Explanation

1. We represent the given strings' lengths in an integer array. Each constraint consists of an array of indices of strings that cannot appear
together in the final answer. Since each constraint can contain different number of indices, we end each constraint by —1. If the final answer
we require consists of at most NANSVEERS strings, we find the combination of i strings, the sum of whose lengths will be maximum, where
1<=i <=NANSWERS. The function f i ndMaxConb() finds such a combination for given value of i, if it exists. The variable maxsumsignifies
the current maximum sum of the combination of strings found so far. In order to find such a combination for every length, one needs to set
nmaxsun¥0 in the loop in mai n() . Also, if one wants to find a combination consisting of only NANSVEERS strings, then the loop in mai n() can
be changed as f or (i =NANSVERS; i <=NANSWERS; ++i) . In our implementation, the loop traverses from 1 to NANSVEERS and maxsumis not
set to 0 inside the loop. Thus we find a combination with any number of strings, up to NANSWERS.

2. The function f i ndMaxSumn() recursively finds a combination of maximum length and successively fills the answer [] array, which contains
the final answer. The variable cur r sumcontains the sum of the current strings selected in answer [] . The number of entries in answer []
to be filled is sent as a parameter from mai n() in the variable nans. If the nans fields in the array answer [] are filled, we check whether
the current sum is greater than the current maximum sum found. If it is, then we check whether the new combination satisfies all constraints.
If it satisfies all constraints, we have found a new combination that becomes the current maximum. So maxsumis updated.

3. Whether a string combination satisfies all constraints is checked in the function sati sfi es() . If there exists a constraint, all of whose
string indices are present in the answer [] array of string indices, then that means the string combination does not satisfy that constraint,
because each constraint c(Sp,...,Sq) says that the strings Sp...Sq cannot be combined. Thus, if we find that the string combination in
answer [] satisfies all the constraints, then the function sat i si f es() returns TRUE, otherwise, it returns FALSE.

4. Example: Let the strings have lengths 9, 8, 6, 5, 4, and 3. The string indices are from 0 to 5. Let the constraints be { {1,3}, {2}, {1,5}, {3,4},
{0,4,5}, {0,4}, and {0,3,5} }, which means strings 1 and 3 cannot be included together, string 2 cannot be taken, strings 1 and 5 cannot
appear together, strings 0, 4, and 5 cannot appear together, strings 0 and 4 cannot appear together, and strings 0, 3, and 5 cannot appear
together. Note that the constraint {0,4,5} is included in the constraint {0,4}. Let NANSWERS = 3. The different steps of the algorithm are
presented in the following table.
string combination currsum maxsum currsum > maxsum satisfies-all-constraints? maxsum

1 0 9 0 yes yes 9
lto5 <9 9 no —
2 01 17 9 yes yes 17
other combinations <17 17 no — 17

file:///Z|/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0176.html (2 of 3) [30.06.2007 10:58:29]

Chapter 26: Problemsin Strings

3 0,12
0,13
0,1,4
0,1,5
0,2,3
0,2,4
0,2,5
0,34
0,3,5
0,4,5
1,23
1,24
1,2,5
2,3,4

other combinations

Pointsto Remember

1. The complexity of the algorithm is exponential over the number of strings.

23
22
21
20
20
19
18
18
17
16
19
18
17
15
<17

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

yes
yes
yes
yes
yes
yes
yes
yes
no
no
yes
yes
no
no
no

no
no
no
no
no
no
no
no

no
no

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

2. Some speed-up can be achieved by sorting the lengths array first, which will result in avoiding some combinations. In that case A* algorithm

can be used to find the answer.

3. If each constraint consists of a fixed number of strings, then this problem can be solved in polynomial time by reducing this problem to the

longest path problem.

| 4mPREV |

file:///Z|/Charles%20River/(Charles%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0176.html (3 of 3) [30.06.2007 10:58:29]

-

-

| NExT W |

PROBLEM: MAXIMIZE A COMBINATION OF STRINGS-THE SECOND METHOD

| dmPREV | | NExXT W |
PROBLEM: MAXIMIZE A COMBINATION OF STRINGS—THE SECOND METHOD
Given n arbitrary strings S1, S2, ..., Sn, maximize the function
f(Si, Si+1, ..., Sj) = length(Si) + length(Si+1)+ ... + length(Sj)
under the given constraints ¢(Si, Sj) which means Si and Sj cannot be taken together.
Program
#i ncl ude <stdio. h>
#define M N NT -1000
#def i ne MAXVERTI CES 10
#def i ne MAXPATHVERT 3
void printCosts(int a[][MAXVERTI CES], int nvert, int pathvert[][MAXVERTICES]) {
/*
* prints min cost matrix a.
*/
int i, j;
for(i=0; i<nvert; ++i) {
for(j=0; j<nvert; ++)
if(a[i][j] <= MNINT)
printf("%c(%) ", "M, pathvert[i][j]);
el se
printf("9%d(%d) ", a[i]l[j], pathvert[i][j]);
printf("\n");
}
printf("\n");
}
int get MaxSum(int a[][MAXVERTI CES], int b[][MAXVERTI CES] [MAXVERTI CES], int i, int j, int k, int *hl, int *h2) {
/*
* find such hl and h2 that b[h1][i][k]+b[h2][Kk][j] is max and > a[i][j];
* and hl+h2—-1 < MAXPATHVERT;
* return the sum
*/
int p, q;
int maxsum = O;
*hl = *h2 = —1;
for(p=2; p<MAXPATHVERT; ++p) // 0 and 1 NOT necessary.
for(q=p; q<=MAXPATHVERT; ++q) {
i f(p+tg—1 <= MAXPATHVERT && b[p][i][k]>0 && b[ql[k][j]1>0 && b[pl[i]l[k]l+b[a][K][j] > maxsum
maxsumeb[p] [i] [k] +b[a]l [K][j], *hl=p, *h2=q;
if(maxsum> af[i][j])
return maxsum
*hl = *h2 = —1;
return —1;
}
void all Costs(int cost[][MAXVERTICES], int a[][MAXVERTICES], int nvert)({

int i, j, k;
i nt pat hvert[MAXVERTI CES] [MAXVERTI CES]
i nt b[MAXPATHVERT+1] [MAXVERTI CES] [MAXVERTI CES]
int sum hl, h2;
int |;
for(i=0; i<nvert; ++i)

for(j=0; j<nvert; ++)

a[i][j] = cost[i][j], pathvert[i][j] =2, b[2][i][j] = cost[i][j];

printCosts(a, nvert, pathvert);

for(l=2; | <=MAXPATHVERT; ++l)

file:///Z|/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0177.html (1 of 3) [30.06.2007 10:58:30]

PROBLEM: MAXIMIZE A COMBINATION OF STRINGS-THE SECOND METHOD

for(k=0; k<nvert; ++k) {
for(i=0; i<nvert; ++i)
for(j=0; j<nvert; ++j) {
sum = get MaxSum(a, b, i, j, k, &1, &h2);
if(sum!= -1 && hl = -1 & a[i][]j]>=0) {
[lprintf("a[i][j]l=%d, hl=%d, h2=%d.\n", sum hl, h2);
a[il[j] = sum b[hl+h2-1][i][j] = sum pathvert[i][j]=h1+h2-1;
}
}
printCosts(a, nvert, pathvert);

}
}

int main() {
i nt cost [MAXVERTI CES] [MAXVERTI CES] =
{ {0,50,10, M NI NT, 45, M NI NT},
{M NI NT, 0, 15, M NI NT, 10, M NI NT},
{20, M NI NT, 0, 15, M NI NT, M NI NT},
{M NI NT, 20, M NI NT, 0, 35, M NI NT},
{M NI NT, M NI NT, M NI NT, 30, 0, M NI NT},
{M NI NT, M NI NT, M NI NT, 3, M NI NT, 0} };
/* {20, 30, 40, 50},
{M NI NT, 40, 50, 60},
{M NI NT, M NI NT, 60, 70},

{M NI NT, M NI NT, M NI NT, 80} ,

{2,3,4,5},
{3,4,5,6},
{4,5,6, M NI NT},
{5,6, M NI NT, 8} ,
{0,1,2, M NI NT},
{3,0, M NI NT, 4},

{M NI NT, M NI NT, 0, 6},
{M NI NT, 5, M NI NT, 0}

oo
i nt a[MAXVERTI CES] [MAXVERTI CES] ;
int nvert = 6; // no of vertices.

[*print(cost, nvert); */
al | Costs(cost, a, nvert);
[/printCosts(a, nvert);

return O;

}

Explanation

1. Consider a graph represented by a cost adjacency matrix cost [n] [n] , where n is the number of vertices in the graph cost[i][i] ==
cost[i][]j] represents the length of the edge from vertex i to vertex j .

2. We used this cost adjacency matrix to solve the problem of finding the shortest path between any pair of vertices in the graph in O(n"3). We set
cost[i][j] =infinity whenever there is no edge from vertex i to vertexj .

We define a similar problem of finding the longest path between any pair of vertices in the graph, called the longest path problem. If we allow
inclusion of a vertex more than once, there is a possibility of getting into an infinite loop and the procedure may not terminate! So we put a limit
on the number of vertices that can be included in the longest path.

3. We reduce the given problem to the longest path problem. Each string Si is mapped to a vertex Vi. In the cost adjacency matrix, an entry cost
[i1[Jj] contains length(Si)+length(Sj). Thus the matrix is symmetric. Also, cost [i][i] is no longer zero. It contains the value length(Si)
+length(Si). After this, we put in the constraints given by c(Si, Sj) and we mark such entriescost[i][j] as -infinity (MININT). Thus we get the
cost adjacency matrix to represent the given constraints.

4. The function al | Cost s() finds the cost of the longest path between any pair of vertices. It contains a matrix a[] [] ,which contains the current

file:///Z|/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0177.html (2 of 3) [30.06.2007 10:58:30]

PROBLEM: MAXIMIZE A COMBINATION OF STRINGS-THE SECOND METHOD

maximum path between any pair of vertices at any given time. It is initialized with cost [][] . In the loop, we find longest paths of lengths 2, 3,
... up to the limit defined by MAXPATHVERT. It starts with length == 2 because cost[][] contains the path containing 2 vertices, that is, an
edge. Thus the original three loops of the shortest path problem are enclosed in another loop that goes from 2 to MAXPATHVERT. We also
maintain a 3-dimensional array b[][] [] . Anentry b[h] [i][]] contains the length of the longest path from vertex i to vertexj of length h.
We also maintain a matrix pat hvert[][] inwhich pathvert[i][j] contains the length of the longest path fromi toj . Inside the
innermost loop, the function get MaxSum() is called. In this function, fora[i][]], all combinations of paths from vertex i to vertex k and from
vertex k to vertex j are checked and the one with the maximum cost is returned. a[i] [j] , then contains this new value if it is greater than the
earlier one. The program finally calculates the cost of the longest path between any pair of vertices in the graph.

5. Let m=MAXPATHVERT. Then the complexity of get MaxSun{) is O(m”2). The complexity of al | Cost s() is then O(m"3n”"3) where n is the
number of strings in the given problem. The complexity of get MaxSun{) may be reduced to O(m logm) using a procedure similar to merge
sort.

Pointsto Remember

1. Reducing one problem to another known problem can help in reusing the code from the earlier problem, as well as in the complexity analysis.
2. The complexity of the problem stated is O(m”~3n"3), where n is the number of strings and m is the number of maximum strings allowed.

3. If we allow the constraint function c() to contain an arbitrary number of strings, then the complexity becomes exponential O(n"n).

| 4mPREV |

| NEXT W |

file://Z|/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0177.html (3 of 3) [30.06.2007 10:58:30]

PROBLEM: CLOSURE OF SETS

—

| 4mPREV |

—

| NEXT Wi |

PROBLEM: CLOSURE OF SETS

Write a program to find closure of a set of characters input as a string.

Program
#i ncl ude <stdio. h>

#defi ne MAXLEN 80

void init(char *answer, int slen) {
/*
* initialize first slen entries in answer[] to O.
*/
int i;

for(i=0; i<slen; ++i)
*answer ++ = 0;
*answer = 0; // eos.

}
void printConb(char *s, int slen, char *answer) {
/*
* fixes a character of s and then calls printConb() recursively
* to get all conbinations of the remaining chars.
*/
int i;
static int count = O;
if(*s == 0) {
count ++;
printf("%d: %.\n", count, answer);
return;
}
for(i=0; i<slen; ++i)
if(answer[i] == 0) {
answer[i] = *s;
print Comb(s+1, slen, answer);
answer[i] = 0;
}
}
void fillBitwise(int i, char *str, char *s, int slen) {
/*
* the pattern in i is the characteristic function of each char
* whenever this bit is 1, fill str.
*/
int j;

for(j=0; j<slen; ++j)
if((i & (1<<j)) '=0)
*str++ = s[j];
*str = 0;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0178.html (1 of 3) [30.06.2007 10:58:31]

PROBLEM: CLOSURE OF SETS
}

void findC osure(char *s, int slen) {
/*
* finds closure of chars in s.
* closure includes all substrings of sizes <= slen.
* this function also prints their conbinations using the
* function printConb().
*/
int i;
char answer [MAXLEN] ;
char str[MAXLEN] ;
for(i=(1l<<slen)-1; i>=0; -i) {
/1 | represents the bit pattern.
/! 1 in the bit pattern neans char shoul d be displ ayed.
fillBitwi se(i, str, s, slen);
init(answer, strlen(str));
printf("printConb(%).\n", str);
print Comb(str, strlen(str), answer);
getchar () ;

int main() {
char s[MAXLEN] ;

printf("Enter characters for closure: ");
gets(s);

while(*s) {
[linit(answer, strlen(s));
[lprintConb(s, strlen(s), answer);
findd osure(s, strlen(s));
printf("Enter characters for closure(press enter to end): ");

gets(s);
}
return O;
}
Explanation

1. Closure of string ‘abc’ is a set of strings that are combinations of all 3- character strings plus combinations of all
2-character strings plus combinations of all 1-character strings plus combinations of all strings of length zero.

Thus, closure(abc) = comb(abc) [* strings of length 3. */
+ comb(ab) + comb(bc) + comb(ac) [* strings of length 2. */
+ comb(a) + comb(b) + comb(c) [* strings of length 1. */
+ comb(*) [* empty string. */

2. Note that the number of times conb() gets called is 2*n where n is the length of the input string. We can
visualize this using bits. For a 3-character string, invocation of conb() with different input parameters can be
represented by 3-bit strings as follows:

abc o] 111

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0178.html (2 of 3) [30.06.2007 10:58:31]

PROBLEM: CLOSURE OF SETS

ab 0 110
ac o] 101
a 0 100
bc o] 011
b 0 010
c o} 001
; o] 000

Thus, we generate bit patterns as shown to represent different strings and then call conb() with these input
parameters. Note further that these bit patterns are nothing but numbers 0 to 2*n—1.

3. The function f i ndd osur e() contains a loop which goes from 2”n—1 to 0 generating 2"n bit patterns
representing 2”*n strings, as just shown. According to these bit patterns, the function fi | | Bi t wi se() builds the
input string. This input string is then given to function pri nt Conb() , which finds all combinations of the input
string.

4. The complexity of pri nt Conb() is O(n!) and it is called 2*n times in the loop. So the complexity of
findC osure() is O(n'2"n).

Pointsto Remember

1. We use hitwise operators to check whether a bit is on (1) or off (0). This speeds the processing.

2. Note carefully the mapping between the bit pattern of an integer and the character string, and how this mapping
helped us build the algorithm.

3. Note the reuse of the procedure pri nt Conb() .

4. The complexity of f i ndC osur e() is O(ni2"n).

- =

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0178.html (3 of 3) [30.06.2007 10:58:31]

PROBLEM: DISTANCE BETWEEN TWO STRINGS

—

| 4mPREV |

—

| NEXT Wi |

PROBLEM: DISTANCE BETWEEN TWO STRINGS

Write a program to find the edit distance between two character strings.

Program
#i ncl ude <stdio. h>

#defi ne MAXLEN 80

int findMn(int dl, int d2, int d3) {
/*
* return mn of dl, d2 and d3.
*/
if(dl < d2 && d1 < d3)
return di;
else if(dl < d3)
return d2;
else if(d2 < d3)
return d2;
el se
return d3;

}

int findEditDi stance(char *sl1, char *s2) {

/*

* returns edit distance between sl1 and s2.

*/
int di, d2, d3;

if(*sl == 0)

return strlen(s2);
if(*s2 == 0)

return strlen(sl);
if(*sl == *s2)

dl = findEditDi stance(sl+l, s2+1);

el se

dl =1 + findEditD stance(sl+1
1+f i ndEdi t Di st ance(sl, s2+1);
1+fi ndEdi t Di st ance(sl+1, s2);

d2
d3

return findMn(dil, d2, d3);
}

int main() {
char s1[MAXLEN], s2[MAXLEN];

printf("Enter string 1. ");

gets(sl);

whil e(*s1) {
printf("Enter string 2: ");
gets(s2);

s2+1);

/1 update.
/] insert.
/] del ete.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0179.html (1 of 2) [30.06.2007 10:58:31]

PROBLEM: DISTANCE BETWEEN TWO STRINGS

printf("Edit distance(%, %) = %l.\n", sl1, s2, findEditDistance(sl, s2));
printf("Enter string 1(enter to end): ");

gets(sl);
}
return O;
}
Explanation

1. The edit distance between two strings is the minimum number of characters in one string to be updated,
inserted, or deleted to get the second string.
Example: The edit distance between ‘abc’ and ‘abd’ is 1, as one character in ‘abc’ needs to be updated to get
‘abd’.
The edit distance between ‘abc’ and ‘bd’ is 2, as one character ‘a’ in ‘abc’ needs to be deleted and one character
‘c’ should be updated to ‘d’ to get ‘bd’. The edit distance between ‘abc’ and ‘abc’ is 0.

2. We solve this problem elegantly using recursion. The function fi ndEdi t Di st ance(sl, s2) checks whether
any of its input strings, s1 and s2, are empty. If so, then it returns the length of the other string as the edit
distance. If not, it checks whether the first characters of the two strings match. If they do, then a count d1 is
obtained by calling f i ndEdi t Di st ance() recursively with inputs s1+1 and s2+1. If the first two characters of
sl and s2 do not match, then it is assumed to be one updation and the count d1 is obtained by adding one (for
updation) to the edit distance between strings s1+1 and s2+1. The function then calls itself recursively again to
get a count d2 by adding one to the edit distance between strings s1 and s2+1, to account for the deletion of
one character from sl to get s2. A symmetrical thing is done for s2 to get the count d3. After finding d1, d2, and
d3, the minimum of the three counts is the edit distance between s1 and s2. The function f i ndM n() does this
job.

3. Since for each character in s1, the function calls itself recursively 3 times, the complexity can be calculated
using the following recurrence relation:

T(n) = 3*T(n—1)

where n is the minimum of the two lengths of the strings. Solving this recurrence relation gives us the complexity
O(3™n).

Pointsto Remember

1. Edit distance between two strings is the minimum number of insertions, deletions, or updations required in one
string to get the other string.

2. Messages over a noisy channel can be compared with some approximation using the edit distance technique.
This technique is also useful in voice and image recognition.

3. The complexity of f i ndEdi t Di st ance() is O(3"n) where n is the minimum of the lengths of the two strings.
The factor of 3 comes into the picture because for approximately each character, the function calls itself 3 times.
To see how enormously this exponential complexity grows, try inputs to this program in increasing order of
lengths.

- -

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0179.html (2 of 2) [30.06.2007 10:58:31]

PROBLEM: FINDING THE MAXIMUM MATCHING PATTERN IN THE STRING

—

| 4mPREV |

-

| NEXT Wi |

PROBLEM: FINDING THE MAXIMUM MATCHING PATTERN IN THE STRING

Find the maximum matching pattern in an input string. Note that the matching pattern may be separated by some other

patterns.

Program

#i ncl ude <stdi o. h>

#defi ne MAXLEN 80

voi d findMaxPat (char *s,
int i;

for(i=0; *s && *pat;
if(*s == *pat)
*nmaxpat ++=i
i f(!*pat)

char *pat, int *nmaxpat) {

++s, ++i)

pat ++;

printf("whole pat found.\n");

el se

printf("whole pat NOT found.\n");
*maxpat = —1; // end of naxpat.

}

voi d print MaxPat (char *s,

char *sptr = s;

put s(s);

int *maxpat) {

for(; *sptr && *maxpat != —1; ++sptr) {
i f(sptr-s == *maxpat) {

printf(""");

maxpat ++;
}
el se
printf("%",
}
printf("\n");

int main() {
char s[MAXLEN];
char pat [MAXLEN ;
i nt nmaxpat [MAXLEN ;

")

printf("Enter main string: ");

gets(s);
while(*s) {

printf("Enter pattern to be searched: ");

get s(pat);

fi ndvaxPat (s, pat, maxpat);
print MaxPat (s, nmaxpat);
printf("Enter main string: ");

gets(s);
}

return O;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0180.html (1 of 2) [30.06.2007 10:58:32]

PROBLEM: FINDING THE MAXIMUM MATCHING PATTERN IN THE STRING

}

Explanation

1. This program finds the maximum match of a pattern in a string. The characters matching the pattern in the string
may be separated by other characters which are of no interest to us. Thus the job of this program is like a noise
disposal parser that parses a valid syntactic entity separated by noise. We restrict ourselves to one string and
one pattern.

2. Example: Let the input string be ‘hello world’ and the matching pattern be ‘lord’. Then the program searches for
each character in the pattern in the input string and marks each matching character as follows:

hell owor | d

N N NN

3. mai n() iterates and asks for the input string and pattern until the input string is empty. It then calls f i ndMaxPat
() to find indices of characters in the input string that match characters in the input pattern. This array of indices
is then passed to pri nt MaxPat () , which marks the indexed characters.

4. The complexity of f i ndMaxPat () is O(n) where n is the length of the input string.

Pointsto Remember

1. Noise disposal parsing is useful in parsing languages such as English. It is also useful in filtering of data (signal).

2. The procedure fi ndMaxPat () can be useful in approximate pattern- matching algorithms.

3. The complexity of f i ndMaxPat () is O(n) where n is the length of the input string.

-

| NEXT Wi |

—

| 4mPREV |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0180.html (2 of 2) [30.06.2007 10:58:32]

PROBLEM: IMPLEMENTATION OF THE SOUNDEX FUNCTION

-

| NEXT Wi |

—

| 4mPREV |

PROBLEM: IMPLEMENTATION OF THE SOUNDEX FUNCTION

Write a function to compare two strings using the soundex method.

Program
#i ncl ude <stdio. h>

#defi ne MAXLEN 80
#defi ne NALPHA 26

char *soundexGoups[] = {

"aei ouhyw',
"kcgj gsxz",
"td",
"bpfv",
e
“m
W

b

i nt soundexCodes[NALPHA] ;

voi d soundexlnit() {
/*
* build an inverted index fromthe gl obal table soundexG oups[].
* the inverted index is stored in gl obal soundexCodes[].
*/
int i;
char *sptr;

for(i=sizeof (soundexG oups)/sizeof (char *)-1; i>=0; -i)
for(sptr=soundexGroups[i]; *sptr; ++sptr)
soundexCodes[*sptr-'a'] =i

i nt conpareCodes(int *soundexl, int *soundex2) {
int *ptrl, *ptr2;

for(ptrl=soundexl, ptr2=soundex2; *ptrll=—1 && *ptr2!=-1 && *ptrl==*ptr2; ++
ptril, ++ptr2)

return *ptrl == *ptr2;
}

voi d findSoundex(char *s, int *soundex, char lastchar) {
/*
* find the soundex code for s and save in soundex.
the stored value is the index in the array of soundex codes.
function is recursive.
start by changing multiple occurrences of chars in consecutive positions
by single occurrences.
end soundex by -—1.

E o S I

*

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0181.html (1 of 3) [30.06.2007 10:58:33]

PROBLEM: IMPLEMENTATION OF THE SOUNDEX FUNCTION

to this function.

* lastchar == -1 inplies this is the first call
*/
if(!*s)
*soundex = -1, lastchar = 0;
else if(*s == |l astchar)
fi ndSoundex(s+1, soundex, |astchar);
else if(lastchar == —-1) // *s is the first char
*soundex=soundexCodes[*s-"a'], findSoundex(s+1, soundex+l, *s);
el se i f(soundexCodes[*s-"a'] == 0) // vowel group
fi ndSoundex(s+1, soundex, *s);
el se
*soundex=soundexCodes[*s-"'a'], findSoundex(s+1l, soundex+l, *s);
}
i nt conpar eSoundex(char *sl1, char *s2) {
/*
* find soundex codes for sl and s2.
* return 1 if codes are equal else 0.
*/
i nt soundex1[MAXLEN], soundex2[MAXLEN] ;
fi ndSoundex(sl, soundexl, -1);
fi ndSoundex(s2, soundex2, -1);
return conpareCodes(soundexl, soundex2);
}

int main() {
char s1[MAXLEN] ;
char s2[MAXLEN] ;
soundexInit();

printf("Enter string 1: ");

gets(sl);

whi |l e(*s1) {
printf("Enter string 2. ");
gets(s2);

printf("(% == %) = %.\n", sl, s2, conpareSoundex(sl, s2));

printf("Enter string 1(enter to end): ");

gets(sl);
}
return O;
}
Explanation

1. Soundex is a technique in phonetics used to compare various phonetic elements. This technique is useful to
compare voices. The soundex scheme can also help in correcting an incorrect phonetic element against its

dictionary.

2. The soundex scheme groups similar-sounding characters in one group. When applied to the English alphabet,

the groups are as follows.

Group Number Characters

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0181.html (2 of 3) [30.06.2007 10:58:33]

PROBLEM: IMPLEMENTATION OF THE SOUNDEX FUNCTION

aeiouhwy
bpfv
cgjkgsxz
dt

I

mn

o 00 W N O

r

Thus, the soundex code for the word ‘cross’ is ‘26022’. By soundex, the words ‘think’ and ‘thing’ will be the same
as they both have the same soundex code, ‘30052’. Note that they both sound similar.

3. The results become more interesting if we do the following:
. The leading character is retained.
. The consecutive duplicate characters are changed to a single character.
= The vowels' group is dropped.
Thus, the new soundex code for ‘cross’ is ‘262" and the one for ‘alpha’ is ‘041’.

4. The function soundexl ni t () builds an inverted index soundexCodes[] from the soundex groups in
soundexG oups|[] . The function conpar eSoundex(sl1, s2) compares strings sl and s2 using the soundex
scheme. It uses functions f i ndSoundex () to find the soundex code for a string and conpar eCodes() to

compare the two soundex codes found. A soundex code of a string is simply an array of integers, so the function
conpar eCodes() is straightforward. The function conpar eSoundex(sl1, s2) returns TRUE if s1 and s2 are

equal by soundex, otherwise it returns FALSE.

5. The function f i ndSoundex() finds the soundex code for its input string. The code is terminated by —1. The
function is recursive and goes characterwise. The input variable | ast char is used to remove multiple
consecutive occurrences of characters. If the soundex group is 0, it is not added to the code.

Pointsto Remember

1. The soundex scheme is used to compare phonetically equal strings. This is useful in voice recognition.

2. Building an inverted index such as soundCodes|[] proves to be more efficient than using soundexGr oups|]
directly.

3. There are additional rules depending on language, dialect, and accents.

- -

| 4mPREY | | NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0181.html (3 of 3) [30.06.2007 10:58:33]

Chapter 27: Problemsin Trees

—

| 4mPREV |

—

| NEXT Wi |

Chapter 27: Problemsin Trees

PROBLEM: WRITE A NON-RECURSIVE VERSION OF PREORDER

Program

/**************** St ack c **********************/

#i ncl ude <stdio. h>

#def i ne SUCCESS 0
#def i ne ERROR -1

struct tnode;

typedef struct tnode *stype;
typedef struct snode snode;

struct snode {
stype dat a;
snode *next;

i
snode *stop = NULL; // signifies enpty stack.

int sPush(stype data) {

/*
* push data at stop.
*/
snode *ptr = (snode *)mal |l oc(sizeof (snode));
ptr->data = dat a;
ptr->next = stop;
stop = ptr;

return SUCCESS;

stype sPop() {
/*
* returns data at stop.
*/
stype dat a;
snode *ptr;

if(sBEmty()) {
fprintf(stderr, "ERROR : popping fromenpty stack.");
return (stype)NULL;

}

data = stop->dat a;
ptr = stop;

stop = stop->next;
free(ptr);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0182.html (1 of 6) [30.06.2007 10:58:33]

Chapter 27: Problemsin Trees

return data;

}

int seEnpty() {
return (stop == NULL);
}

kkhkkhkkhkkhkhkkikkikkkikkkhhkh*k R R R I b b S b b b b S b S b b
/ gueue. c /

#i ncl ude <stdi o. h>

#defi ne SUCCESS 0
#defi ne ERROR -1

struct tnode;

typedef struct tnode *qtype;
typedef struct gnode gnode;

struct qnode {
gtype data;
gnode *next;

s

gnode *front = NULL, // signifies enpty queue.
*rear = NULL;

int glnsert(qtype data) {

/*
* inserts data at rear.
*/
gnode *ptr = (gnode *)mal |l oc(sizeof (gnode));
ptr->data = dat a;
ptr->next = NULL;
if(qEmty())

front = ptr;
el se

rear->next = ptr;
rear = ptr;

return SUCCESS;

}

gtype gRetrieve() {
*
/* retrieve data fromfront and renove it from queue.
q{ype dat a:

if(gEmpty()) {
fprintf(stderr, "ERROR : retrieving fromenpty queue.");
return (qgtype) NULL;

}

data = front->dat a;

front = front->next;

if(qgEnpty()) /1 last node renoved.
rear = NULL;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0182.html (2 of 6) [30.06.2007 10:58:33]

Chapter 27: Problemsin Trees

return data;

}

int gEnpty() {
return (front == NULL);
}

/**************** TTBI n.c **********************/

#i ncl ude <stdio. h>

#i ncl ude <mal |l oc. h>

#i ncl ude "queue.c"

#i ncl ude "stackl.c"

typedef int ttype;

typedef struct tnode tnode;

struct tnode {
ttype data;
t node *left;
tnode *right;
}

tnode *tree = NULL;

int tlnsert(ttype data) {

/*

* insert data into global tree.

*/

tnode *ptr = (tnode *)nmall oc(sizeof (tnode));
ptr->data = dat a;

ptr->left = NULL;
ptr->right = NULL;
tlnserthPtr(&ree, ptr);

}

int tinsertPtr(tnode **tree, tnode *ptr) {
/*
* inserts ptr into tree recursively.
*/

if(*tree !'= NULL) {
if(ptr->data < (*tree)->data)
tinsertPtr(& (*tree)->left), ptr);
el se
tinsertPtr(& (*tree)->right), ptr);
}
el se
*tree = ptr
return SUCCESS;

}

void tPrint(tnode *tree) {
/*
* prints tree in inorder recursively.
*/

if(tree '= NULL) {
printf("going left of %d...\n", tree->data);
tPrint(tree->left);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0182.html (3 of 6) [30.06.2007 10:58:33]

Chapter 27: Problemsin Trees

printf("%l ", tree->data);

printf("going right of %l...\n", tree->data);
tPrint(tree->right);

printf("tree of % is over.\n", tree->data);

}
}
void tlterBFS(tnode *tree) {
/*
* prints tree in breadth-first manner iteratively using a queue.
*/
if(tree !'= NULL) {
glnsert(tree);
while(gEmpty()) {
tree = gRetrieve();
printf("[[%]]\n", tree->data);
if(tree->left !'= NULL)
glnsert(tree->left);
if(tree->right !'= NULL)
glnsert(tree->right);
}
}
}
void tlterPreorder(tnode *tree) {
/*
* prints tree in preorder iteratively using a stack.
*/

if(tree !'= NULL) {
sPush(tree);

while(!'sEmpty()) {
tree = sPop();
printf("[[%d]]\n", tree->data);
if(tree->right !'= NULL)
sPush(tree->right);
if(tree->left !'= NULL)
sPush(tree->left);

}

int main() {

tlnsert(4);
tlnsert(2);
tlnsert(6);
tlnsert(1);
tlnsert(3);
tlnsert(5);
tinsert(7);
tPrint(tree);
tlterPreorder(tree);

}

Explanation

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0182.html (4 of 6) [30.06.2007 10:58:33]

Chapter 27: Problemsin Trees

1. In a preorder traversal, a node is processed first, followed by its left and right children nodes. This is easy with
recursion. But while doing it iteratively, the right child node needs to be saved so that after the processing of the
whole left subtree, the saved node can be taken for execution. This procedure needs to be followed for every
node. Therefore, we need to use a stack.

2. We process the root node, push its right child (if it exists) in a stack, and take its left child (if it exists) for
processing. This is done in a loop which results in the processing of all the nodes in the left subtree of the root
node. We then pop the right child node and start processing it the same way. Thus we get a preorder traversal
of the tree.

3. Example:

The preorder traversal is 12, 7, 3, 9, 8, 11, 18, 14, 13, 15.

The stepwise run of the algorithm is as follows.

step node stack output

0 nil empty nil

1 12 187 12

2 7 1893 127

3 189 1273

4 9 18118 12739

5 8 1811 12739

6 11 18 12739811

7 18 14 1273981118

8 14 1513 1273981118 14

9 13 15 127398111814 13
10 15 empty 127398111814 1315

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0182.html (5 of 6) [30.06.2007 10:58:33]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu560%5F1%5F0%2Ejpg

Chapter 27: Problemsin Trees

Pointsto Remember
1. The preorder traversal needs a stack.
2. Keeping stack processing and tree processing separate helps us make the program modular. This can help us
in using the same implementation of stack/queue for some other application, by making changes in only the data
type contained in the stack/queue.

3. In the preorder traversal, the right child should be pushed in the stack first, followed by the left child.

4. The recursive version is more readable than the iterative version. This is because the tree data structure itself is
inherently recursive.

-

| 4mPREY |

—

| NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0182.html (6 of 6) [30.06.2007 10:58:33]

PROBLEM: WRITE A NON-RECURSIVE VERSION OF POSTORDER

—

| 4mPREV |

—

| NEXT Wi |

PROBLEM: WRITE A NON-RECURSIVE VERSION OF POSTORDER

Program

/******************** St a.Ck [*********************/

#i ncl ude <stdio. h>

#def i ne SUCCESS 0
#def i ne ERROR -1

struct tnode;

typedef struct tnode *stype;
typedef struct snode snode;
typedef struct snode *stack

struct snode {
stype dat a;
snode *next;

s

void slnit(stack *s) {
*s = NULL;
}

int sPush(stack *s, stype data)

/*
* push data in stack s.
*/

snode *ptr = (snode *)mall oc(sizeof (snode));

ptr->data
pt r - >next
*s = ptr;

dat a;
*S;

return SUCCESS;
}

stype sPop(stack *s) {
/*

* returns data at top of stack s.

*/
stype dat a;
snode *ptr;

if(sEnpty(*s)) {

fprintf(stderr, "ERROR :

return (stype) NULL;

}

data = (*s)->dat a;
ptr = *s;

(*s) = (*s)->next;
free(ptr);

return data;

poppi ng fromenpty stack.\n");

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0183.html (1 of 5) [30.06.2007 10:58:34]

PROBLEM: WRITE A NON-RECURSIVE VERSION OF POSTORDER
}

int senpty(stack s) {
return (s == NULL);
}

/******************** ITHI n.c *********************/

#i ncl ude <stdio. h>
#i ncl ude <mall oc. h>
#i ncl ude "stack.c"

typedef int ttype;
typedef struct tnode tnode;

struct tnode {
ttype data;
tnode *left;
tnode *right;
b

tnode *tree = NULL;

int tlnsert(ttype data) {
/*
* insert data into global tree.
*/
tnode *ptr = (tnode *)nmall oc(sizeof (tnode));
ptr->data = dat a;
ptr->left = NULL;
ptr->right = NULL;
tinserthPtr(&ree, ptr);

}
int tinsertPtr(tnode **tree, tnode *ptr) {
/*
* inserts ptr into tree recursively.
*/

if(*tree !'= NULL) {
if(ptr->data < (*tree)->data)
tinsertPtr(& (*tree)->left), ptr);
el se
tinsertPtr(& (*tree)->right), ptr);
}
el se
*tree = ptr
return SUCCESS;

}

void tPrint(tnode *tree) {
/*
* prints tree in inorder recursively.
*/

if(tree '= NULL) {
printf("going left of %d...\n", tree->data);
tPrint(tree->left);
printf("%l ", tree->data);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0183.html (2 of 5) [30.06.2007 10:58:34]

PROBLEM: WRITE A NON-RECURSIVE VERSION OF POSTORDER

printf("going right of %l...\n", tree->data);
tPrint(tree->right);
printf("tree of % is over.\n", tree->data);

}
}
void tlterPostorder(tnode *tree) {
/*
* prints tree in postorder iteratively using 2 stacks.
*/

stack sl1, s2;
slnit(&s1l); slnit(&s2);

if(tree !'= NULL) {
sPush(&s1, tree);

while(!'sEmpty(sl)) {
tnode *t = sPop(&sl);
sPush(&s2, t);
if(t->left = NULL)
sPush(&s1, t->left);
if(t->right !'= NULL)
sPush(&sl1, t->right);

whil e(!sEnmpty(s2))
printf("%\ n", sPop(&s2)->data);

}

int main() {

tlnsert(4);
tlnsert(2);
tlnsert(5);
tlnsert(1);
tlnsert(3);
tlnsert(6);
[ltlnsert(7);
tPrint(tree);
tlterPostorder(tree);

}

Explanation

1. In a postorder traversal, a node's left subtree is first output, followed by the right subtree, and finally the node is
output. Thus, we need a stack in which we push the right child, followed by the left child. But we also need the
node itself in the output. So, we will have to push it again in the stack before pushing its children. But then how
will we keep track of whether that node is already processed? If we don't, we will again push it and its children in
the stack, forming an infinite loop!

2. One way is to tag it as ‘processed.’ This can be done by adding a field to each node that will specify its status.
Another way is to keep a list of processed nodes. We use this latter approach, maintaining a stack of processed
nodes. The reason for using a stack is that when all the nodes in the tree are processed, the nodes in the stack
give postorder traversal in reverse. Thus, by popping the nodes and outputting one by one, we get the required
postorder traversal.

3. Example:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0183.html (3 of 5) [30.06.2007 10:58:34]

PROBLEM: WRITE A NON-RECURSIVE VERSION OF POSTORDER

A

The postorder traversal of this tree is 3, 8, 11, 9, 7, 13, 15, 14, 18, 12. The stepwise run of the algorithm is shown next:

step node stack 1 stack 2

0 nil empty empty

1 12 718 12

2 18 714 12 18

3 14 713 151218 14

4 15 713 12181415

5 13 712 1814 1513

6 39 12181415137

7 3811 121814151379

8 11 38 12181415137911
9 8 3 121814151379118
10 3 empty 1218141513791183

Stack 2 can now be output to get the required postorder traversal of the tree.

Pointsto Remember
1. Iterative postorder requires a stack.
2. Keeping stack processing and tree processing separate helps us to make the program modular. This can help
us in using the same implementation of the stack for some other application, by making changes in only the data
type contained in the stack.

3. The left child of a node is first pushed to the stack, followed by the right child.

4. The recursive version is more readable than the iterative version. This is because the tree data structure itself is
inherently recursive.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0183.html (4 of 5) [30.06.2007 10:58:34]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu566%5F1%5F0%2Ejpg

PROBLEM: WRITE A NON-RECURSIVE VERSION OF POSTORDER

[_ﬁ PREV j [_ NEXT *j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0183.html (5 of 5) [30.06.2007 10:58:34]

PROBLEM: PREORDER TRAVERSAL OF A THREADED BINARY TREE

= r

| 4mPREV | | NEXT Wi |

PROBLEM: PREORDER TRAVERSAL OF A THREADED BINARY TREE

Write a function to traverse an inorder threaded binary tree in preorder.

Program
#i ncl ude <stdio. h>

#def i ne SUCCESS 0
#defi ne ERROR -1

typedef int type;
typedef struct node node;
typedef enum {FALSE, TRUE} bool ;

struct node {
type data;
node *lchild, *rchild;
bool Ithread, rthread;

i

/* NOTE: since this is a threaded binary tree, there wont be any condition */
[* of type (ptr == NULL). */
node tree;

void tinit() {
tree.lchild = tree.rchild = &ree
tree.lthread = TRUE
tree.rthread = FALSE
tree.data = 99999999;

}

node *insucc(node *t) {
/*
* find i norder successor of t.
*/

node *tenp = t->rchild,
if(t->rthread == FALSE)
whil e(tenp->lthread == FALSE)
tenp = tenp->lchild;
return tenp

}

node *inpred(node *t) {
/*
* find inorder predecessor of t.
*/

node *tenp = t->lchild;
if(t->lthread == FALSE)
whil e(tenp->rthread == FALSE)
tenmp = tenp->rchild;
return tenp

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0184.html (1 of 5) [30.06.2007 10:58:35]

PROBLEM: PREORDER TRAVERSAL OF A THREADED BINARY TREE

}
int tinsertRi ght(node *s, node *t) {
*
/* insert t as right child of s.
*
noge *t enp;

t->rchild = s->rchild;

t->rthread = s->rthread;

t->lchild = s;

t->lthread = TRUE;

s->rchild = t;

s->rthread = FALSE

if(t->rthread == FALSE) {
tenmp = insucc(t);
temp->lchild = t;

ieturn SUCCESS
}
int tinsertLeft(node *s, node *t) {
*
/* insert t as left child of s.
*
noge *t enp;

t->lchild = s->lchild;
t->lthread = s->Ithread;
t->rchild = s;
t->rthread = TRUE
s->lchild = t;
s->lthread = FALSE

if(t->thread == FALSE) {
tenmp = inpred(t);
temp->rchild = t;

}
return SUCCESS;
}
node *t Get NewNode(type data) {
/-k
* returns a new node containing the data.
*/
node *ptr = (node *)nall oc(sizeof(node));
ptr->data = dat a;
ptr->lchild = ptr->rchild = NULL;
ptr->lthread = ptr->rthread = FALSE
return ptr;
}

int tlnsert(node *t, type data) {
/*
* insert data in t recursively.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0184.html (2 of 5) [30.06.2007 10:58:35]

PROBLEM: PREORDER TRAVERSAL OF A THREADED BINARY TREE

*/
if(data < t->data)
if(t->lthread == TRUE)
tinsertLeft(t, tCGetNewNode(data));
el se
tinsert(t->lchild, data);
el se
if(t->rthread == TRUE)
tinsertRight(t, tGetNewNode(data));
el se
tinsert(t->rchild, data);
return SUCCESS;

}

void tPrint(node *t) {
/*
* prints t inorder recursively w thout using threads.
*/
if(t !=&ree) {
if(t->lthread == FALSE)
tPrint(t->lchild);
printf("%l\n", t->data);
if(t->rthread == FALSE)
tPrint(t->rchild);

}

void tPrintPreorder(node *t) {
/*
* prints tree preorder (no use of threads).
*/
if(t !=&ree) {
printf("%l\n", t->data);
if(t->thread == FALSE)
tPrintPreorder(t->lchild);
if(t->rthread == FALSE)
tPrintPreorder(t->rchild);

}

void tPrintlnorder(node *tree) {
/*
* prints tree inorder using threads.
*/
node *tenp = tree;
do {
temp = insucc(tenp);
if(tenp !'=tree)
printf("%\ n", tenp->data);
} while(tenp !'=tree);
}

int main() {
tinit();
tinsert(&ree, 4);
tinsert(&ree, 2);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0184.html (3 of 5) [30.06.2007 10:58:35]

PROBLEM: PREORDER TRAVERSAL OF A THREADED BINARY TREE

}

tinsert(&ree, 1
tinsert(&ree, 3
tinsert(&ree, 6
tinsert(&ree, 5
tlnsert(&ree, 7
tPrint(tree.lchil
printf("\n");

tPrintPreorder(tree.lchild);

)
)
),
),
),
d);

return O;

Explanation

1.

2.

In a threaded binary tree, the NULL links of leaf nodes are replaced by pointers (called threads) to other nodes in
the tree. If p—ri ght chi | d is normally equal to NULL, it is replaced by a pointer to the node which would be
printed after p when traversing the tree in inorder. ANULL | eft chi | d link at node p is replaced by a pointer to
the node that immediately precedes node p in inorder. The left link of the first node and the right link of the last

node printed in the inorder traversal point to a dummy head node of the tree, and all the nodes appear in the left
subtree of this head node. For example, in this representation, a tree such as the one shown next, where solid
pointers are normal links and the dotted pointers are threads, t means TRUE and f means FALSE.

I

| T f
2 N0
el f20.]r]
F-
i y !

-'-..
|
|mNE
|

ﬁ Illflﬁtl. [EIII. 5], [I'\‘

-'-.
|
|

In the memory representation, we should be able to distinguish between threads and normal pointers. This is
done by adding two Boolean fields to the structure: | eftt hread and ri ghtt hr ead. If

tree—l eftthread==TRUE, thentree—I| eft chi | d contains a thread; otherwise, it contains a pointer to the
| eftchild. Similarly, iftree—ri ghtthread == TRUE, thentree—ri ghtchil d contains a thread.
Otherwise it contains a pointer to the ri ght chi | d.

The function to traverse a threaded binary tree remains as simple as that for the normal binary tree. One simply
needs to check for a link not that is not a thread, and traverse it. So the recursive function t Pri nt Pr eor der ()

is self-explanatory. For example, the preorder traversal of the tree above is 4, 2,1, 3,6, 5, 7.

Pointsto Remember

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0184.html (4 of 5) [30.06.2007 10:58:35]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu572%5F1%5F0%2Ejpg

PROBLEM: PREORDER TRAVERSAL OF A THREADED BINARY TREE

1. Some traversing algorithms are simplified by making a tree threaded.

2. Making a tree threaded makes insertions and deletions clumsy. Also, the node size increases. So this increased
complexity should be taken into consideration when using a threaded binary tree for an application.

3. Keeping a dummy head node helps in easy insertions, deletions, and traversals.

-

| 4mPREY |

—

| NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0184.html (5 of 5) [30.06.2007 10:58:35]

PROBLEM: IMPLEMENTATION OF A SET USING A BINARY TREE

= r

| 4mPREV | | NEXT Wi |

PROBLEM: IMPLEMENTATION OF A SET USING A BINARY TREE

Implement uni on() and fi nd() operations on sets represented as trees.

Program
#i ncl ude <stdi o. h>

#define N 100 // max no of elenments together in all sets.

typedef int type;
typedef struct node node;

struct node {

type val; /1l this is value of nenber

int parent; /1l this is index of parent in the array.
b
node sets[N; /] all sets are contained in it.
i nt setsindex = 0; /] total no of elements in sets.

int insertRoot(type val) {
/*
* ijnsert val in sets as a root of a new tree.
*/
set s[set si ndex].val = val
set s[set si ndex] . parent = -1;
set si ndex++;

return setsindex-1

}
void insertEl ement(int rootindex, type val) {
*
/* insert elenment val in set whose root is indexed at rootindex.
*
se{s[setsindex].val = val

set s[set si ndex] . parent = rootindex;
set si ndex++;

}
int buildSet(type a[], int n) {
/*
* repeated calls to this fun with diff arrays will insert diff set in sets.

* forns a tree representation of elements in a.
* nis nunber of elenents in the set.

* enpty set(n==0) cannot be represented here.

* returns index of root.

int i, rootindex;

if(n<=0) {
fprintf(stderr, "n should be > 0.\n");
return -1;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0185.html (1 of 4) [30.06.2007 10:58:36]

PROBLEM: IMPLEMENTATION OF A SET USING A BINARY TREE

}

/'l check whether there is enough space for n el enents.
i f(setsindex+n > N) {
fprintf(stderr, "ERROR set overflow \n");

return -1;
}
/1 a[0] becones the root.
rootindex = insertRoot(a[0]);

for(i=1; i<n; ++i)
i nsertEl ement (rootindex, a[i]);

return rootindex;

}
void printSets() {
int i;
printf("\n");
for(i=0; i<setsindex; ++i)
printf("%l %.\n", sets[i].val, sets[i].parent);
printf("\n");
}
int unionSets(int rindexl, int rindex2) {
/*
* makes a union of sets whose root indices are rindexl and rindex2.
*/

sets[rindex2].parent = rindexl;
/1 or the reverse.

return rindexi; /'l root of the union
}
int findSet(int valindex) {
/*
* given a val at index valindex in the array, finds index of its root.
*/
for(; sets[valindex].parent!=-1; valindex=sets[valindex].parent)
return val i ndex;
}
int getlndex(type val) {
/*
* dummy procedure to return index in array of val.
*/
int i;
for(i=0; i<setsindex; ++i)
if(sets[i].val == val)
return i;
return -1;
}
int main() {
type si[] = {1,7,8,9};
type s2[] = {5, 2, 10};
type s3[] = {3, 4, 6};
int il = buildSet(s1, 4);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0185.html (2 of 4) [30.06.2007 10:58:36]

PROBLEM: IMPLEMENTATION OF A SET USING A BINARY TREE

int i2
int i3

buil dSet(s2, 3);
buil dSet (s3, 3);

[lprintSets();

il = unionSets(il, i2);

printf("%l %.\n", 3, sets[findSet(getlndex(3))].val);
printf("%l %.\n", 5, sets[findSet(getlndex(5))].val);
printf("%l %.\n", 2, sets[findSet(getlndex(2))].val);
i3 =unionSets(i3, il);

printf("%l %l.\n", 3, sets[findSet(getlndex(3))].val);
printf("% %.\n", 5, sets[findSet(getlndex(5))].val);
printf("% %.\n", 7, sets[findSet(getlndex(2))].val);

printSets();
return O;

}

Explanation

1. We represent sets as trees in which different elements are stored as nodes in a tree. Since the order of
elements is immaterial in sets, the order of nodes also does not matter in the tree. However, the links of the tree
are reversed, that is, the child nodes have links to the parent instead of the parent pointing to its children. The
reason for this representation is discussed next.

Example:

51 =7 5.
2. Union of two disjointed sets S1 and S2 (uni onSet s()) under the tree representation can be carried out simply

by making any node of S1 the parent node of the root node of S2, or vice-versa. This operation can be carried
out in a constant amount of time.

Example:
S1U s2 ar S1 U 52

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0185.html (3 of 4) [30.06.2007 10:58:36]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu576%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu577%5F1%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF A SET USING A BINARY TREE

3. The find operation (f i ndSet ()) searches for the root of an element in the tree. It travels from that element

upwards in the hierarchy until it reaches a node that has no parent. Thus, its root is determined. The complexity
of the fi nd() operation is O(h) where h is the height of the tree. If the height remains below O(log n), the

operation is faster. However, the worst-case time is linear. This O(n) time appears when each node (except the
root) has only one predecessor.

Example: ple: The root of vertex 8 in S1 in the last example is 1. However, the root of 8 in (S1 U S2)is 1 or 5
depending on how the union is done.

4. The program stores all the sets in a global array of nodes. Each node contains the value of the element and the
index of its parent element. To make fi nd() efficient, each node is connected directly to the root node. The

function uni onSet s(i 1, i 2) take indices of root elements and makes i 1 the parent of the root node pointed
to by i 2. The function fi ndSet s(i ndex) travels backwards from the node pointed to by the index until it
reaches any of the root nodes. The root node has a parent index equal to —1.

Pointsto Remember

1. The function uni on() does not work if the sets are not disjointed.

2. Operations uni on() and fi nd() were devised from specific applications that use symbol tables. This asks for

a specific representation of data in the form of a tree with reversed links. This shows how closely algorithms and
data structures are related.

3. uni on() has a complexily of O(1), while f i nd() has the worst-case complexity of O(h), where h is the height
of the element in the tree.

-

| 4mPREY |

-

| NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0185.html (4 of 4) [30.06.2007 10:58:36]

PROBLEM: HUFFMAN CODING

- -

| 4mPREV | | NExT 0P |

PROBLEM: HUFFMAN CODING

Write a program to find Huffman codes for a set of characters, given the frequency of occurrence of each of these
characters.

Program

R R R I Sk S b b b b b b S S R IR R I b S b b I b b S b S S
/ huf f man. g. h /

#i ncl ude <stdi o. h>

t ypedef struct qgnode gnode;
typedef tree qtype;
t ypedef struct {
gnode *front;
gnode *rear;
} queue;

struct gnode {

qtype op;
gnode *next;

3
bool gEmpty(queue *q) {
return (g->front == NULL);
}
voi d qPushBack(queue *q, qtype op) {
/*
* pushes op at q.rear
*/

gnode *ptr = (gnode *)mall oc(sizeof (gnode));

ptr->op = op;

ptr->next = NULL;

if(qEmpty(q)) /1 first element in q.
g->front = ptr;

el se
g- >rear->next = ptr;

g->rear = ptr;

}
void gl nsert Sorted(queue *q, qtype op) {
/*
* inserts val in sorted q and keeps new q sorted.
*/

gnode *ptr = (gnode *)nal | oc(si zeof (gnode));
gnode *curr, *prev;
ptr->op = op;

for(prev=NULL, curr=g->front; curr && curr->0p->w < Op->W, pPrev=curr, Ccurr=curr->next)
if(lcurr && !prev) /1 q enpty.

ptr->next = NULL, g->rear = g->front = ptr;
else if(lcurr) /1l op is the max val ue.

file:/l/Z|/Charles%20River/(Charles¥%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0186.html (1 of 6) [30.06.2007 10:58:36]

PROBLEM: HUFFMAN CODING

ptr->next = NULL, prev->next = g->rear = ptr;
el se if(!prev) /1l op is the mn value.
ptr->next = curr, g->front = ptr;
else { // if prev and ptr both exist.
ptr->next = curr;
prev->next = ptr;

}

gtype qPopFront(queue *q) {
/*
* pops op fromqg->front.
*/
gnode *ptr = g->front;
qtype op;

if(qEnpty(q))

return (qgtype) NULL;
g->front = g->front->next;
if(qEmpty(q)) g->rear = NULL

op = ptr->op;
free(ptr);
return op;

}

/********************* huffrran C *************************/

#i ncl ude <stdi o. h>
#def i ne MAXLEN 80

typedef struct node node;

t ypedef char type;

t ypedef node *tree;

t ypedef enum {FALSE, TRUE} bool

struct node {

int w

type val

node *left, *right;
1

#i ncl ude "huffman. g. h"

i nt conpare(const void *el, const void *e2) {
/*
* conpare the two elenments in el and e2.
* each elenment is a vector of two el enents.
*/
return ((int *)el)[1] > ((int *)e2)[1];
}

void printTree(tree t, char *outputstr) {
/*
* print the huffman codes for each el enment of t.
* outputstr contains huffman code for t (NOT parent of t).
* assunes t!=NULL.

file:/l/Z|/Charles%20River/(Charles¥%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0186.html (2 of 6) [30.06.2007 10:58:36]

PROBLEM: HUFFMAN CODING

*/
char str[2] = "1";

if(t->right) {
strcat(outputstr, str);
printTree(t->right, outputstr);
outputstr[strlen(outputstr)-1] = 0; // restore.
}
if(t->left) {
str[0] ="'0";
strcat (outputstr, str);
printTree(t->left, outputstr);
outputstr[strlen(outputstr)-1] = 0; // restore.
}
else if(!t->right)
printf("%=%=%.\n", t->val, t->w, outputstr);

}

tree buildTree(int a[][2], int n) {
/*
* build a huffrman tree using frequency in a[i][1l] where a[0][j] indicates
* the character
* for that sort a on frequency.
*nis the size of a.
*/
int i;
tree t = NULL;
gueue sortedq = {NULL};

/1 sort a on frequency.
gsort(a, n, sizeof(a[0]), conpare);

/1 insert each elenent in tree.
for(i=0; i<n; ++i) {
tree tenp = (tree)call oc(l, sizeof(node));
tenp->w = a[i][1];
tenmp->val = (type)ali][0];
gPushBack(&sortedq, temp);
}
/1 assunme n>0.
whi | e(TRUE) ({
tree t2 = NULL,
t1 = gPopFront (&sortedq);
i f(!qEnmpty(&sortedq))
t2 = gPopFront (&sortedq);

el se {
t =t1;
br eak;
}
t = (tree)mal | oc(sizeof (node));
t->w=tl->w + t2->w

t->left = t1;
t->right =t2;
{
gnode *ptr;
for(ptr=sortedq.front; ptr; ptr=ptr->next)

file:/l/Z|/Charles%20River/(Charles¥%20Ri ver) %20C%20& %20Data%620Structures¥20(2004)/7267/DDU0186.html (3 of 6) [30.06.2007 10:58:36]

PROBLEM: HUFFMAN CODING

printf("% ", ptr->op->w);
printf("\n");
}
printf("insertsorted=%.\n", t->w);
gl nsert Sorted(&sortedq, t);
}

return t;

}

int main() {

int a[][2] ={ {'a, 20},
{'b, 23},
{'c, 14},
{*d, 56},
{'e, 35},
{"f", 29},
{"g", 51}

b
char outputstr[MAXLEN] = "";
tree t = buildTree(a, sizeof(a)/2/sizeof(int));

if(t)
printTree(t, outputstr);
return O;
}
Explanation

1. Many applications prefer that frequently occurring messages have smaller lengths during coding, to make
efficient use of the available bandwidth. This can be done by finding a binary tree with minimum weighted
external path length. An external path length of a binary tree is the sum of all external nodes of the lengths of the
paths, from the root to those nodes. The nul | nodes in a tree are called external nodes. Weighted external path
length can be obtained by multiplying the external path length of each node by the frequency contained in the
node, and than adding all of these values.

Example: ple: External path lengths of nodes A, B, C, D are 2, 2, 2, 2 and the weighted external path length of
the tree is
2*2 + 2*4 + 2*5 + 2*15 = 52.

file:/l/Z|/Charles%20River/(Charles¥%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0186.html (4 of 6) [30.06.2007 10:58:36]

PROBLEM: HUFFMAN CODING

A B C D
(@)

Note that this is not the minimum weighted path length. The minimum weighted path length can be obtained by
restructuring the tree as shown here.

The path length of this tree is 1*15 + 2*5 + 3*2 + 3*4 = 43, which is minimum. The numbers 0 and 1 of the edges
will be clear in the following description.

2. An easy and nice solution to the problem of finding a binary tree with minimum weighted external path length is
given by D. Huffman. We implement the algorithm in the function bui | dTr ee() . This algorithm first prepares a
list of nodes out of the input characters and their frequencies. This list is sorted on the frequency in ascending
order. Thus every retrieval retrieves the node with minimum frequency count from the list. The function then
contains a loop that runs until the list becomes empty. In each iteration, two nodes (with minimum frequencies f1
and f2) are retrieved from the list, and another node with the frequency count f1+f2 is added to the list. This node
also becomes the parent node of the two retrieved nodes. Thus every iteration reduces the length of the list by 1.
In the end, when the list contains only one node, the node is returned, as the root of the Huffman tree is built.

file:/l/Z|/Charles%20River/(Charl es¥%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0186.html (5 of 6) [30.06.2007 10:58:36]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu583%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu583%5F2%5F0%2Ejpg

PROBLEM: HUFFMAN CODING

3. If we assume that the codes contain only two symbols, 0 and 1, then the edge to a left child can be named 0
while that to a right child can be named 1, or vice versa, as given in (b) in the last example. Thus, the codes for
A, B, C, and D are 000, 001, 01, and 1.

Pointsto Remember

1. Huffman codes are useful to encode a message using minimum number of symbols.

2. Another big advantage of Huffman codes is that given a message string built from Huffman codes, we can
uniguely divide the message into the patterns of individual characters. For example, the pattern 01001101
uniquely identifies the character sequence CBDC.

3. The complexity of bui | dTr ee() is O(n logn+n+n”2) for gsort (), f or loop, and whi | e loop. Note that the
complexity of qPushBack() is O(1) while that of gl nsert Sort ed() is O(n). Thus the overall complexity of
bui I dTree() is O(n"2). The complexity of ql nsert Sort ed() may be improved by using a heap instead of a
sorted list.

-

| NE=T o |

-

| 4mPREV |

file:/l/Z|/Charles%20River/(Charles¥%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0186.html (6 of 6) [30.06.2007 10:58:36]

PROBLEM: IMPLEMENTATION OF A B-TREE

-

| dmPREV |

| NExXT W |

PROBLEM: IMPLEMENTATION OF A B-TREE
Write procedures for insertion and deletion in a B-tree.

Program
/************************* b q C *****************************/

#i ncl ude <mal |l oc. h>
#i ncl ude <stdlib. h>

typedef struct gnode gnode;
typedef btree qtype;

typedef struct {
gnode *front;
gnode *rear;

} queue;
struct gnode {
qtype op;
gnode *next;
b
bool qEmpty(queue *q) {
return (g->front == NULL);
}
voi d qPush(queue *q, qtype op) {
/*
* pushes op at q.rear.
*/
gnode *ptr = (gnode *)nmall oc(sizeof (gnode));
ptr->op = op;
ptr->next = NULL;
if(qEmpty(q)) /1 first element in q.
g->front = ptr;
el se
g->rear->next = ptr;
g->rear = ptr;
}

qtype gqPop(queue *q) {
/*

* pops op fromqg->front.
*/

gnode *ptr = g->front;
qtype op;

if(qEnpty(q))

return (qtype)-1;
g->front = g->front->next;
if(qEnpty(q))

g->rear = NULL;
op = ptr->op;

free(ptr);

return op;

}

/*************************** b C 'k***************************/

#i ncl ude <stdio. h>
#define K5

typedef struct node node;
typedef int type;

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0187.html (1 of 12) [30.06.2007 10:58:38]

PROBLEM: IMPLEMENTATION OF A B-TREE

typedef node *btree;
typedef enum { FALSE, TRUE} bool ;
#i ncl ude "b.q.c"

struct node {
type val [K]; /1 data in the node.
/1 actually first K-1 vals are valid. Kth entry is used
[/ during breaking of the node.

btree ptr[K+1]; /] pointers to other nodes in the node.

/1 one extra ptr to be used in some | oops.

int nptr; /1 no of pointers in the node = non-null ptrs.
/1 this can also be used to see whether a node is a |eaf.

int nval; /1 no of values in the node.

/1 this is reqd even when nptr is present: for |eaf nodes.
[/ for non-leaf nodes: nptr = nval +1.
/1 for |eaf nodes: nptr = 0.

b
btree bNew() {
/*
* returns a new initialized node.
*/
btree tree = (btree)mal | oc(si zeof (node));
tree->nval = tree->nptr = 0;
return tree;
}
voi d insertVal (btree tree, type val, btree ptr) {
/*
* insert (val, ptr) in node pointed to by tree wi thout any checks.
*/
int i, j;
for(i=0; i<tree->nval && tree->val[i]<val; ++i) /1 since Kis usually < 10, dont use

bi nsrch.

/1 the val should be inserted at tree->val[i].

/1 shift-next the next values by one position.

for(j=tree->nval-1; j>=i; -j) {
tree->val [j+1] = tree->val[j];
tree->ptr[j+2] = tree->ptr[j+1];

}

/1 insert val now at i.

tree->val[i] = val;

tree->nval ++;

tree->ptr[i+1] = ptr;

if(ptr !'= NULL) I/l tree is NOT a |eaf.
tree->nptr++;

printf("\tval %l inserted at position %, tree->nptr=% tree- >nval =%.\n", val, i, tree->nptr, tree->nval);

}
btree get SplitNode(btree tree) {
*
/* returns a new node containing vals and pointers fromtree.
*
ini i, J;

btree ptr = bNew();

/1 copy vals.

for(i=(K-1)/2+1, j=0; i<K, ++i, ++)
ptr->val[j] = tree->val[i];
ptr->nval = K/ 2;
tree->nval = K-K/ 2-1; /1 tenporarily this node contains an extra val.

/'l copy ptrs.

for(i=(K-1)/2+1, j=0; i<=K;, ++i, ++j)
ptr->ptr[j] = tree->ptr[i];

if(tree->nptr > 0) { /1 non-1eaf nodes.
ptr->nptr = K/ 2+1;

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0187.html (2 of 12) [30.06.2007 10:58:38]

PROBLEM: IMPLEMENTATION OF A B-TREE

tree->nptr = K-K/2;

}
el se /'l 1 eaf nodes.
tree->nptr = ptr->nptr = 0;
return ptr;
}
btree bMakeChanges(btree tree, btree ptr, btree parent) {
/*
* |ast val of tree contains an extra val which should be
* inserted in parent.
* if parent == NULL, then tree was root.
* tree = parent->ptr[i] if parent is NOT NULL.
*/
/1l extract the last value fromtree.
type val = tree->val[tree->nval];
printf("in bMakeChanges().\n");
i f(parent == NULL) {
parent = bNew();
parent->ptr[0] = tree;
parent->nptr = 1;
}
i f(parent->nval < K-1) { // parent has space.
i nsertVal (parent, val, ptr);
}
el se { /1 parent full.
printf("parent is full.\n");
i nsertVal (parent, val, ptr);
return get SplitNode(parent);
}
return parent;
}

btree blnsert(btree tree, type val) {
/*
* calls insert to insert val in tree.
* if the return node is diff fromtree, that neans a new node has
* been created. Thus calls bMakeChanges().
*/
btree insert(btree tree, type val);

btree ptr = insert(tree, val);

if(ptr !=tree) // node was split.
return biMakeChanges(tree, ptr, NULL);

return tree;

}

btree insert(btree tree, type val) {
/*
* inserts val in tree.
* returns tree if there is no change.
* if there is creation of a new node then the new node is returned.

*/

int i;

btree ptr;

if(tree->nptr > 0) { /1 non-1 eaf.
for(i=0; i<tree->nval && tree->val[i]<val; ++i) /1 since Kis usually < 10, dont use

bi nsrch.
/1 the val should be in a tree pointed to by tree->ptr[i].
printf("\tval should be inserted in tree->ptr[%].\n", i);
ptr = insert(tree->ptr[i], val);
if(ptr !'=tree->ptr[i])
return bMakeChanges(tree->ptr[i], ptr, tree);

return tree;

}

el se { /] tree is a leaf.

if(tree->nval < K-1) { /1 space is available in the |eaf.

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0187.html (3 of 12) [30.06.2007 10:58:38]

PROBLEM: IMPLEMENTATION OF A B-TREE

insertVal (tree, val, NULL);
return tree;

}

el se { /1 leaf full!
printf("\tleaf is full.\n");
insertVal (tree, val, NULL);
/1 now break the | eaf node.
return get SplitNode(tree);

}

}

btree get Adj Tree(btree tree, int offset, btree parent, int treeindex) {

/*

* returns parent[treeindex+offset] if exists else NULL.

*/

int newi ndex = treei ndex+of fset;

i f(new ndex >= 0 && newi ndex < parent->nptr)

return parent->ptr[new ndex];
return NULL;

}
voi d conbi neNodes(btree left, btree right) {
/*
* left += right.
*/
int i;
int nptrleft = left->nptr;
for(i=0; i<right->nval; ++i)
left->val [l eft->nval ++] = right->val[i];
for(i=0; i<right->nptr; ++i)
left->ptr[nptrieft+i] = right->ptr[i];
if(left->nptr > 0) /1 non-| eaf.
left->nptr +=1i;
}

type get NextVal (btree ptr) {
/*

* return the first value in the first |eaf accessible fromptr.

*/
if(ptr->nptr > 0) // still this is a non-|eaf.
return get NextVal (ptr->ptr[0]);
return ptr->val [0]; /] got it!
}
btree del eteVal (btree tree, int i) {
/*
* renmove (val, ptr) at position i fromtree without any checks.
* and return tree->ptr[i+1].
*/
btree rightptr = tree->ptr[i+1]; /1 ptr being renmoved along with val.
if(i ==-1) /I special case for a dummy call to this function.
return;
for(++i; i<tree->nval; ++i) {
tree->val[i-1] = tree->val[i];
tree->ptr[i] = tree->ptr[i+1];
}
tree->nval -;
if(tree->nptr > 0) [/ if it is a non-|eaf.
tree->nptr-;
return rightptr;
}

btree bAppl yChanges(btree tree, btree parent, int treeindex) {

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0187.html (4 of 12) [30.06.2007 10:58:38]

PROBLEM: IMPLEMENTATION OF A B-TREE

/*

* apply changes: tree is a non-leaf and tree = parent- >ptr[treeindex].
* also tree->nval < K/ 2.

*/

int parentvalindex;

int adjtreevalindex;

btree returntree;

btree adjtree;

int offset = -1; /'l predecessor.

btree adjtreeleft;

if(parent && tree->nval >= K/ 2)
return tree;

el se if(parent == NULL && tree->nval == 0) {
free(tree);
return tree->ptr[0];

el se if(parent == NULL)
return tree;

/1 parent is NOT NULL.

adjtreeleft = adjtree = getAdj Tree(tree, offset, parent, treeindex); // predecessor.
I (

if(ladjtree || (adjtree & adjtree->nval <= K/'2)) { // no extra val.
of fset = 1; /'l successor.
adjtree = get Adj Tree(tree, offset, parent, treeindex); /'l successor.

if(ladjtree || (adjtree &% adjtree->nval <= K/ 2)) { /1 no

extra val here too.
btree parentparent;
i nt parentindex;
type parentval;
btree returntree;

/lprintf("conbine tree, parent nedian val, adjtree.\n");
[/printf("also check parent for having <K/2 vals.\n");
/1 it is NOT possible that adjtreeleft and right both are NULL.
/1 make adjtree point to the one which is NOT NULL.
if(ladjtree) {

adjtree = adjtreel eft;

offset = -1,
}
/] adjtree points to the sibling: left or right.
parentval i ndex = (2*treei ndex+of fset)/?2;
/1 the parent val is indexed.

parentval = parent->val[parentvalindex];
del et eVal (parent, parentvalindex);
/1 the return val is tree/adjtree. Hence dont worry.

if(offset == -1) {
/1 conbine adjtree, parentval and tree.
adj tree->val [adj tree->nval ++] = parentval;
conbi neNodes(adjtree, tree);
free(tree);
returntree = adjtree;

}
else { [// offset == 1: right sibling.
/'l conbine tree, parentval and adjtree.
tree->val [tree->nval ++] = parentval;
conbi neNodes(tree, adjtree); free(adjtree);
returntree = tree;
}
return returntree;
}
el se {
adj treeval i ndex = 0;
returntree = adjtree;
}

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0187.html (5 of 12) [30.06.2007 10:58:38]

PROBLEM: IMPLEMENTATION OF A B-TREE

el se {
adj treeval i ndex = adjtree->nval -1;
returntree = tree;
}
/1 adjtree has an extra val.
parentval i ndex = (2*treei ndex+offset)/?2;
/1 insert parent val in tree.
insertVal (tree, parent->val[parentvalindex], returntree->ptr[0]);
/1 now pronpbte val in adjtree to parent.
parent - >val [parentval i ndex] = adjtree->val [adjtreevalindex];
returntree->ptr[0] = deleteVal (adjtree, adjtreevalindex);

return tree;

}

btree delete(btree tree, type val, int i, btree parent, int treeindex)
{

/*

* delete val fromtree. val == tree->val[i].

* and tree == parent->nptr[treei ndex].

*/

int parentvalindex;

int adjtreevalindex;

btree adjtree;

btree bDel ete(btree tree, type val, btree parent, int treeindex);

if(tree->nptr == 0) { /1l |eaf.
del eteVval (tree, i);

/1 find two adj acent nodes to tree(succ and pred) and
/1l see whether any of themhas >K/2 vals. if yes then bring
/1 the parent value between tree and the node into tree and
/1 pronote the value in the adjacent node into the parent.
/1 if no such adjacent node exists, conbine tree, parent val and
/1 the adjacent node.
/1 if this | eaves parent node having <K/ 2 vals, go into el se.
/1 this is done in bApplyChanges().
}
el se { /1 NOT a |eaf.
/1 find the next val in inorder traversal of this val and replace

/1 this with that val. then delete that val fromtree.
type nextval = getNextVal (tree->ptr[i+1]); // since tree->val[i] exists

/1 tree->val [i+1] exists.
tree->val[i] = nextval;
bDel ete(tree->ptr[i+1], nextval, tree, i+l);

}
return bAppl yChanges(tree, parent, treeindex);
}
btree bDel ete(btree tree, type val, btree parent, int treeindex) {
/*
* delete val fromtree if exists.
* tree == parent[treeindex].
*
/
int i;
for(i=0; i<tree->nval && tree->val[i]<val; ++i) /1 since Kis usually < 10, dont use binsrch.
if(tree->val[i] == val) {
printf("val =% found: to be deleted.\n", val);
return delete(tree, val, i, parent, treeindex);
else if(tree->nptr > 0) { /1 the val should be in a tree pointed to by tree->ptr[i].

[lprintf("val =%l nay be in tree->ptr[%].\n", val, i);
bDel ete(tree->ptr[i], val, tree, i);

//printf("now check tree for <50% val ues.\n");

return bAppl yChanges(tree, parent, treeindex);

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0187.html (6 of 12) [30.06.2007 10:58:38]

PROBLEM: IMPLEMENTATION OF A B-TREE

el se { /1 1eaf reached.
printf("val =%d does NOT exist.\n", val);
return tree;

}
}
void bPrintFormatted(btree tree) {
btree ptr;
int i;
gqueue q = {NULL};
gPush(&q, tree);
gPush(&g, NULL);
[R e R R R \n");
whi | e(gEmpty(&q) == FALSE) {
ptr = qPop(&q);
if(ptr) {
for(i=0; i<ptr->nval-1; ++i)
printf("%l-", ptr->val[i]);
if(i<ptr->nval)
printf("%l ", ptr->val[i]);
for(i=0; i<ptr->nptr; ++i)
gqPush(&q, ptr->ptr[i]);
}
el se {
printf("\n");
i f(gEmpty(&q) == FALSE)
gqPush(&g, NULL);
}
}
[L G R R R R \n");
}

int min() {
btree tree = bNew();

tree = blnsert(tree, 1);
tree = blnsert(tree, 2);
tree = blnsert(tree, 4);
tree = blnsert(tree, 3);
tree = blnsert(tree, 5);
tree = blnsert(tree, 6);
tree = blnsert(tree, 7);
tree = blnsert(tree, 8);
tree = blnsert(tree, 9);
tree = blnsert(tree, 10);
tree = blnsert(tree, 11);
tree = blnsert(tree, 12);
tree = blnsert(tree, 13);
tree = blnsert(tree, 14);
tree = blnsert(tree, 15);
tree = blnsert(tree, 16);
tree = blnsert(tree, 17);

bPrintFormatted(tree);
tree = bDelete(tree, 6, NULL, -320);
bPrint Formatted(tree);
tree = bDelete(tree, 9, NULL, -320);
bPrint Formatted(tree);

return O;

}

Explanation
1. A B-tree of order K is a K-way search tree that is either empty or is of height > 0 and satisfies the following properties:
a. the root node has at least two children.

b. all nodes other than the root node and leaf nodes have at least ceil(K/2) children.

c. all leaf nodes are at the same level.

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0187.html (7 of 12) [30.06.2007 10:58:38]

PROBLEM: IMPLEMENTATION OF A B-TREE

It is easier to insert and delete nodes into a B-tree retaining the B-tree properties than it is to maintain the best possible K-way search
tree at all times. Thus, the reasons for using B-trees rather than optimal K-way search trees for indices are the same as those for using
AVL trees, as opposed to optimal binary search trees, when maintaining dynamic internal tables.

2. Each B-tree node of order K has space for K pointers and K — 1 values. We maintain an extra space for one pointer and one value which will
be useful in insertion. We maintain counts of the number of values and number of pointers present in the node. Thus the node structure for a B-
tree is as follows:

typedef struct node *btree;
struct node {

type val [K];

btree ptr[K+1];

int nptr;

int nval;
H
npt r is the number of non-null pointers and nval is the number of valid values in a node. For a leaf-node, nptr == 0, while for all other
nodes, nptr == nval + 1.

3. Insertion in a B-tree takes place by traversing the search tree for the value starting from root. When the search terminates in a leaf node, the
value is inserted in the node. The node is then checked to see if thus more than K — 1 values. If the node has less than K values, the insertion
is done. Otherwise, the node is split into two nodes of sizes floor(K/2) and the middle value is propagated into the parent node. This procedure
is repeated until either the insertion stops (as there is space for the new value in a node) or nodes at all the levels in the tree get split and,
finally, a new root node needs to be created. The value propagated from the original root is then put into the new root node and its pointers are
adjusted accordingly.

Examples: Orignal tree of order K =3

30
20 40
10 15 25 35 38 45 50
Insertion of value 28
30
20 40
10 15 20 28 35 38 45 50

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0187.html (8 of 12) [30.06.2007 10:58:38]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu597%5F1%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF A B-TREE

Insertion of value 55

S

e 11

ki
=

10 15 25 28 B A] 45

Insertion of valug 37

40 40

/

10 15 25 28 B 38 45

=1
T
(=1}

Insertion of value 5

[15 | |25 28| [a5 | [38 | 45 | [55 |

4. Deletion of a value from a B-tree can be done as simply as performing an insertion. If, even after deletion of the value from a leaf node p, the
node contains >= K/2 values, then nothing needs to be done. Otherwise the sibling nodes are checked to see if they have > K/2 values. If such
a sibling q exists, then the value in the parent node between the two adjacent leaf nodes is demoted to node p, and a value in node q is
promoted to the parent (this is called rotation). However, if the value v to be deleted is in a non-leaf node p, then the next value (w) to v in the
search order (which appears in the right subtree of v in the leaf node) is promoted at the place of v and the value wis deleted from the leaf
node. If, in this promotion and demotion, the parent node r contains less than K/2 values, then its adjacent node s is promoted to its parent t
and the value int is demoted to r . Also, the adjacent pointer to the value promoted from s becomes the adjacent pointer to the parent value
that has been newly inserted inr .

Examples:

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures%20(2004)/7267/DDU0187.html (9 of 12) [30.06.2007 10:58:38]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu598%5F1%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF A B-TREE

Original tree of order K = 3

/ 30 40
10 20 3 o
5] 15 25 28 35 38 45 55
Deletion of value 25
/ d0 40
10 20 3 5
5 15 25 25 35 a8 45 a5

Delation of value 35

Deleticn of value 30

a7

L2]

file:///Z|/Charles%20River/(Charl es%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0187.html (10 of 12) [30.06.2007 10:58:38]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu599%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu600%5F1%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF A B-TREE

5

6

Dealetion of valua 38

L

11

u [i]

: n] [

Note that in the deletion of value 40, since it is a non-leaf node, its next value in the search order, 45, is promoted to its place so that 45 appears
in the root. Then 45 is deleted from the leaf node r . After deletion, r has less than K/2 values. So its sibling s is checked for any extra values. s,
with a value of 55, has only K/2 values. So the values of r, s, and 50 (the value of the parent node t between the two children) are combined to
get a node with the values (50, 55). Now t contains less than K/2 values. Since it is a non-leaf node, it checks its adjacent node to see if it has
more than K/2 values. The node u, with the values (10, 20), actually has more than K/2 values. So the last value of u, 20, is promoted to the root
and the value 45 is demoted to t . The rightmost sibling of u (the node containing a value of 28) becomes the leftmost sibling of t . 20, the
rightmost sibling of u, becomes the leftmost sibling of t . A symetric transformation is done when the adjacent node appears in the right. If none
of the adjacent nodes of t contain any extra values, then t , u, and the value in their parent node between these two pointers are combined to
form one node. Then their parent node is checked to see if it has less than K/2 values, and the procedure continues.

. The function hierarchy for insertion and deletion appears the same. For insertion, the main driver function is bl nsert (), which calls i nsert

() and checks its return value to see whether the level was changed in the function. If it was, then bMakeChanges() , which propagates this
change upwards in the tree is called. i nsert Val () is the function that puts a value (along with its right pointer) in a node. The function

get Spl i t Node() splits a node in two parts, each containing K/2 values. The (K+1)th value in the node being split is stored in the first node as
the (K/2)th value, which is then used in propagation. i nsert () is the main function that checks whether the node is a leaf or a non-leaf, and
accordingly calls the different functions that have jsut been described.

For deletion, the main driver function is bDel et e() , which calls itself recursively until it reaches a node that contains the value being deleted.
It then calls del et e() , which checks for the node to be a leaf or a non-leaf node and takes appropriate action as just described.

During insertion, bAppl yChanges() is called from bDel et e() and del et e() . bAppl yChanges is similar to bMakeChanges, and does the
job of demotion and propagation of values in the current node and its siblings. It uses a function called get Adj Tr ee()) , which returns a node
adjacent to a node with the same parent. conbi neNodes() , a procedure complementary to get Spl i t Node() , combines the second node
with the first. In order to get the next value in the search order from the tree, the function get Next Val () is called. del et eVal () is a function
that is complementary to the function i nsert Val (), and is used to delete a value, along with its right pointer, from a node. It then returns the
pointer.

. The procedure bPri nt For mat t ed() uses a queue to print the tree in the breadth-first manner.

Pointsto Remember

1.

2.

3.

In a B-tree of order K, there can be at most K pointers in a node and K — 1 values.
All the leaf nodes of a B-tree are at the same level.

The complexity of both insertion and deletion is O(h), where h is the height of the B-tree. This is because of the propagation of values upwards
during insertion and downwards during deletion.

file://Z|/Charles%20River/(Charl es%20River) %20C%208& %20Data%20Structures¥20(2004)/7267/DDU0187.html (11 of 12) [30.06.2007 10:58:38]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu601%5F1%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF A B-TREE

4. By writing the functions of insertion and deletion in a similar manner, the code becomes easier to write and understand.

5. A queue is required for printing a tree in the breadth-first format.

6. Searching for a value inside a node can be done using binary search as the values are sorted. However, if K is small enough, even the linear
search will give a similar performance.

-

| NEXT W |

-

-
| 4mPREV |

file:///Z|/Charles%20River/(Charl es%20River)%20C%208& %20Data%20Structures¥20(2004)/7267/DDU0187.html (12 of 12) [30.06.2007 10:58:38]

PROBLEM: IMPLEMENTATION OF A B+ TREE

-

| 4mPREV |

-

| NEXT o |

PROBLEM: IMPLEMENTATION OF A B+ TREE
Write procedures for insertion and deletion in a B+ tree.

Program

/*********************** bpl us q C **************************/

#i ncl ude <nmal | oc. h>
#i ncl ude <stdlib. h>

typedef struct gnode gnode;
typedef btree qtype;
typedef struct {

gnode *front;

gnode *rear;
} queue;

struct gnode {
qtype op;
ghode *next;

b

bool gEnpty(queue *q) {
return (g->front == NULL);

}
voi d qPush(queue *q, qtype op) {
/*
* pushes op at q.rear
*/

gnode *ptr = (qnode *)mal |l oc(sizeof (gnode));
ptr->op = op;
ptr->next = NULL,
if(gempty(q)) // first elenent in q
g->front = ptr
el se
g- >rear->next = ptr;
g->rear = ptr;

}
qtype gPop(queue *q) {
/*

* pops op fromg->front.
*/

gnode *ptr = g->front;
qtype op

if(gEmpty(q))

return (qtype)-1;
g->front = g->front->next;
if(qEmpty(q))

g->rear = NULL;

op = ptr->op;
free(ptr)

return op;

}

khkkkkkkkkhkkhkhkkkkkkkkkkkkhkkhkkhkk*k kkkkkkkkkhkkkhkkkkkhkkhkkkkkkkkhkkk*k
/ bplus.c /

#i ncl ude <mal | oc. h>
#i ncl ude <stdi o. h>
#define K5

file:///Z|/Charles%20River/(Charles%20River)%620C%208& %20Data%20Structures%20(2004)/7267/DDU0188.html (1 of 9) [30.06.2007 10:58:39]

PROBLEM: IMPLEMENTATION OF A B+ TREE

typedef struct node node;
typedef int type

typedef node *btree;

typedef enum { FALSE, TRUE} bool

#i ncl ude "bpl usqg. c"

struct node {
type val [K]; /1 data in the node.
/1 actually first K-1 vals are valid. Kth entry is used
/1 during breaking of the node.

btree ptr[K+1]; /1 pointers to other nodes in the node.
/1 one extra ptr to be used in sonme | oops.
int nptr; /1 no of pointers in the node = non-null ptrs.
/1 this can also be used to see whether a node is a |eaf.
int nval; /1 no of values in the node

/1 this is reqd even when nptr is present: for |eaf nodes.
/1 for non-leaf nodes: nptr = nval +1
/1 for leaf nodes: nptr =0

node *right; /1 if this is a |leaf node, this points to its sibling
b
btree bNew() {
/*
* returns a new initialized node
*/
btree tree = (btree)nal |l oc(sizeof (node));
tree->nval = tree->nptr = 0;
tree->right = NULL;
return tree;
}
void insertVal (btree tree, type val, btree ptr) {
/*
* insert (val, ptr) in node pointed to by tree w thout any checks.
*/
int i, j;

for(i=0; i<tree->nval && tree->val[i]<val; ++i) ;
/1 since Kis usually < 10,dont use binsrch

/1 the val should be inserted at tree->val[i].
/1 shift-next the next val ues by one position
for(j=tree->nval-1; j>=i; --j) {
tree->val [j +1] tree->val [j];
tree->ptr[j+2] tree->ptr[j+1];

}

/1 insert val now at i.

tree->val [i] = val

tree->nval ++;

tree->ptr[i+1] = ptr;

if(ptr = NULL) // tree is NOT a |eaf.
tree->nptr++

printf("\tval %l inserted at position %l, tree->nptr=% tree- >nval =%l.\n", val, i, tree->nptr, tree-
>nval) ;
}
btree getSplitNode(btree tree) {
/*
* returns a new node containing vals and pointers fromtree
*/
int i, j;

btree ptr = bNew();

/'l copy vals.
for(i=(K-1)/2+1, j=0; i<K, ++i, ++)

file:///Z|/Charles%20River/(Charles%20River) %620C%208& %20Data%20Structures%20(2004)/7267/DDU0188.html (2 of 9) [30.06.2007 10:58:39]

PROBLEM: IMPLEMENTATION OF A B+ TREE

ptr->val[j] = tree->val[i];
ptr->nval = K/ 2;
if(tree->nptr > 0) // non-leaf node.

tree->nval = K-K/2-1; // tenporarily this node contains an extra val.
el se /'l 1eaf node.
tree->nval = K-K/ 2;

/1 copy ptrs.
[lfor(i=(K-1)/2, j=0; i<=K, ++i, ++4j)
for(i=(K-1)/2+1, j=0; i<=K, ++i, ++j)
ptr->ptr[j] = tree->ptr[i];
if(tree->nptr > 0) { /'l non-| eaf nodes.
ptr->nptr = K/ 2+1;
tree->nptr = K-K/ 2;
}
el se { /1 | eaf nodes.
tree->nptr = ptr->nptr = 0;
tree->right = ptr; /'l bplus tree: list of |eaves.

}

return ptr;

}

btree bMakeChanges(btree tree, btree ptr, btree parent) {
/-k
* last val of tree should be inserted in parent.
* |f parent == NULL, then tree was root.
* tree = parent->ptr[i] if parent is NOT NULL.
*/
/'l extract the last value fromtree.
type val = (tree->nptr>0 ? tree->val[tree->nval] : tree->val[tree- >nval-1]);
printf("in bMakeChanges().\n");

i f(parent == NULL) {
parent = bNew();
parent->ptr[0] = tree;
parent->nptr = 1;
}
i f(parent->nval < K-1) { // parent has space.
i nsertVal (parent, val, ptr);
}
el se { Il parent full.
printf("parent is full.\n");
i nsertVal (parent, val, ptr);
return get SplitNode(parent);
}

return parent,;

}

btree blnsert(btree tree, type val) {
/*
* calls insert to insert val in tree.
* if the return node is diff fromtree, that neans a new node has
* been created. This calls bMakeChanges().
*/
btree insert(btree tree, type val);

btree ptr = insert(tree, val);

if(ptr !=tree) // node was split.
return bMakeChanges(tree, ptr, NULL);

return tree;

}

btree insert(btree tree, type val) {
/*
* inserts val in tree.
* returns tree if there is no change.

file:///Z|/Charles%20River/(Charles%20River)%620C%208& %20Data%20Structures%20(2004)/7267/DDU0188.html (3 of 9) [30.06.2007 10:58:39]

PROBLEM: IMPLEMENTATION OF A B+ TREE

* if there is creation of a new node then the new node is returned.
*/

int i;

btree ptr

if(tree->nptr > 0) { /'l non-1 eaf.

for(i=0; i<tree->nval && tree->val[i]<val; ++i);

/1 since Kis usually < 10, even sequential search is fine
/'l the val should be in a tree pointed to by tree->ptr[i].
printf("\tval should be inserted in tree->ptr[%l].\n", i);
ptr = insert(tree->ptr[i], val);
if(ptr !=tree->ptr[i])
return bMakeChanges(tree->ptr[i], ptr, tree);
return tree
else { /] tree is a leaf.
if(tree->nval < K-1) { // space is available in the |eaf.
insertVal (tree, val, NULL);
return tree;
}
el se { Il leaf fulll!
printf("\tleaf is full.\n");
insertVal (tree, val, NULL);
/'l now break the | eaf node
return get SplitNode(tree);
}
}
}
tree = blnsert(tree, 6);
tree = blnsert(tree, 7);
tree = blnsert(tree, 8);
tree = blnsert(tree, 9);
tree = blnsert(tree, 10);
tree = blnsert(tree, 11);
tree = blnsert(tree, 12);
tree = blnsert(tree, 13);
tree = blnsert(tree, 14);
tree = blnsert(tree, 15);
tree = blnsert(tree, 16);
tree = blnsert(tree, 17);
bPrint Formatted(tree);
tree = bDelete(tree, 6, NULL, -320);
bPrint Formatted(tree);
tree = bDelete(tree, 5, NULL, -320);
bPrint Formatted(tree);
tree = bDelete(tree, 7, NULL, -320);
bPrint Formatted(tree);
tree = bDelete(tree, 8, NULL, -320);
bPrint Formatted(tree);
tree = bDelete(tree, 9, NULL, -320);
bPrint Formatted(tree);
tree = bDelete(tree, 10, NULL, -320);
bPrint Formatted(tree);
tree = bDelete(tree, 11, NULL, -320);

bPrint Formatted(tree);

printf("The linked list of |eaf nodes:\n");
for(; ptr; ptr=ptr->right) {
for(i=0; i<ptr->nval; ++i)
printf("%-", ptr->val[i]);
printf(" ");

}
printf("\n");

file:///Z|/Charles%20River/(Charles%20River) %620C%208& %20Data%20Structures%20(2004)/7267/DDU0188.html (4 of 9) [30.06.2007 10:58:39]

PROBLEM: IMPLEMENTATION OF A B+ TREE

return O;

}

Explanation
1. A B+ tree of order K is a K-way search tree that is either empty or is of height > 0 and satisfies the following properties:

a. The root node has at least two children.

b. All nodes other than the root node and leaf nodes have at least ceil(K/2) children.
c. All leaf nodes are at the same level.

d. All values appear in the leaf nodes.

e. The leaf nodes are linked from left to right.

2. Each B+ tree node of order K has space for K pointers and K — 1 values. We maintain extra space for one pointer and one value, which
will be useful in insertion. We maintain counts of the number of values and the number of pointers present in the node. For the linked
list of leaf nodes, another pointer is needed. Thus the node structure for a B+ tree is as follows:

typedef struct node *btree;
struct node {

type val [K];

btree ptr[K+1];

int nptr;

int nval;

node *right;
b

npt r is the number of non-null pointers and nval is the number of valid values in a node. For a leaf node, nptr == 0 while for all
other nodes, nptr == nval + 1. The pointer right points to the node to the right of this node.

. Insertion in a B+ tree takes place by traversing the search tree for the value starting from the root. The search always terminates in a
leaf node. The value is inserted in the leaf node. The node is then checked to see if it has more than K-1 values. If the node has less
than K values, the insertion is performed. Otherwise, the node is split into two nodes of sizes floor(K/2) and the middle value is ‘copied’
into the parent node. In case of a non-leaf node, the middle value is ‘moved’ to the parent node. This procedure is repeated until either
the insertion stops (as there is space for the new value in a node) or nodes at all the levels in the tree get split, and finally a new root
node needs to be created. The value propagated from the original root is then put into the new root node and its pointers are adjusted
accordingly.

Examples:

Original tree of order K = 3

28

34

10 15 (= 25 || 35 38 P 45 50

Note that for a value v in a node and its two adjacent pointers on left and right, all values on left are £ v and all values on right are > v.

file:///Z|/Charles%20River/(Charles%20River) %620C%208& %20Data%20Structures%20(2004)/7267/DDU0188.html (5 of 9) [30.06.2007 10:58:39]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu611%5F1%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF A B+ TREE

Inzertion of value 28

Insartion of valus 55

=]}
=)

015 ™ 2528 ™ 35 58 P’ 15 50 P‘

Insartion of valus 37

=
=1

1015 w52z P as a7 P- 38 P- 15 30

Insertion of value 5

% 34

— ¥

1k 1a d 2

5 10 15 25 28 F 35 47 a8 15 50 F 53

4. Deletion of a value from a B+ tree can be done as simply as insertion is done. If, even after deletion of the value from a leaf node p, the

node contains >= K/2 values, then nothing needs to be done. Otherwise the sibling nodes are checked for > K/2 values. If such a
sibling q exists, then the adjacent value in q is moved to the node p and the value in the parent node between the two leaf nodes is

replaced by the last value in its left child. If such a sibling q does not exist, then nodes p and q are combined, and the value in the
parent node between these two leaf nodes is deleted. If in this process, the parent node r contains less than K/2 values, then its
adjacent node s is promoted to its parentt and the value int is demoted to r . Also, the adjacent pointer to the value promoted from s
becomes the adjacent pointer to the parent value newly inserted inr .

Examples

file:///Z|/Charles%20River/(Charles%20River) %620C%208& %20Data%20Structures%20(2004)/7267/DDU0188.html (6 of 9) [30.06.2007 10:58:39]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu611%5F2%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu612%5F1%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF A B+ TREE

Original tree of order K = 3

25 a4

i

5 10 b’ i5 P ag b. 35 a7 k1 b 15 .';.L,-b 55

3 10 1 } 2B F 37 bt

file:///Z|/Charles%20River/(Charles%20River) %620C%208& %20Data%20Structures%20(2004)/7267/DDU0188.html (7 of 9) [30.06.2007 10:58:39]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu613%5F1%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF A B+ TREE

Deletion of value 37

28

10 1% 5 L T

510 |§- 15 I 25— e P- 15 # e 55

Deletion of value 38

28

5 10 P 15 bl 23

Deletion of value 50

bt

Lib ¥ I

Deletion of value 45

I'_
)

10

—> g -
Note that the value 45 is deleted from the leaf node r. After deletion, r has less than K/2 values. So its sibling s is checked for any extra
values. s, with a value of 55, has only K/2 values. So the values of r, s, and 50 (the value of the parent node t between the two

children), are combined to get a node with the value 55, and the value 45 is deleted from t , along with its right pointer. r' s right pointer

is appropriately updated. Now t contains less than K/2 values. Since it is a non-leaf node, it checks its adjacent node to see if it has more
than K/2 values. The node u, with the values (10, 15) actually has more than K/2 values. So the last value of u, 15, is promoted to the

root and the value 28 is demoted to t . The rightmost sibling of u (the node containing a value of 25) becomes the leftmost sibling of t . A
symmetric transformation is done when the adjacent node appears in the right. If none of the adjacent nodes of t contain any extra
values, then the values of r, u, and the value in their parent node between these two pointers are combined to form one node. Then
their parent node is checked to see if it has less than K/2 values, and the procedure continues.

file:///Z|/Charles%20River/(Charles%20River) %620C%208& %20Data%20Structures%20(2004)/7267/DDU0188.html (8 of 9) [30.06.2007 10:58:39]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu614%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu615%5F1%5F0%2Ejpg

PROBLEM: IMPLEMENTATION OF A B+ TREE

5.

6.

The function hierarchy for insertion and deletion appears the same. For insertion, the main driver function is bl nsert (), which calls

i nsert () and checks its return value to see whether the level was changed in the function. If it was, bMakeChanges() is called,
which propagates this change upwards in the tree. i nser t Val () is the function that puts a value (along with its right pointer) in a
node. The function get Spl i t Node() splits a node in two parts, each containing K/2 values. The (K+1)th value in the node being split
is stored in the first node as the (K/2)th value, which is then used in propagation. i nsert () is the main function that checks whether
the node is a leaf or a non-leaf and accordingly calls the different functions that have just been described.

For deletion, the main driver function is bDel et e() , which calls itself recursively until it reaches the leaf node that contains the value
being deleted. It then calls del et e() , which takes appropriate action as just described. During insertion, bAppl yChanges() is called
from bDel et e() and del et e() . bAppl yChanges is similar to bMakeChanges, and does the job of demotion and propagation of
values in the current node and its siblings. It uses a function called get Adj Tr ee() , which returns a node adjacent to a node with the
same parent. comrbi neNodes(), a procedure complementary to get Spl i t Node() , combines the second node with the first. In order
to get the next value in the search order from the tree, the function get Next Val () is called. del et eval () is a function that is
complementary to the function i nsert Val (), and is used to delete a value, along with its right pointer, from a node. It then returns the
pointer.

The procedure bPri nt For mat t ed() uses a queue to print the tree in the breadth-first manner.

Pointsto Remember

1.

2.

In a B+ tree of order K, there can be at most K pointers in a node and K-1 values.
All the leaf nodes of a B+ tree are at the same level.
All the inserted values in a B+ tree are present in leaf nodes. The non-leaf nodes may contain values that are not present in leaf nodes.

The complexity of both insertion and deletion is O(h), where h is the height of the B-tree. This is because of the propagation of values
upwards during insertion and downwards during deletion.

A queue is required for printing a tree in the breadth-first format.

. Searching for a value inside a node can be done using binary search as the values are sorted. However, if K is small enough, even the

linear search will give a similar performance.

. The updation of a value can be simulated by deletion followed by insertion.

| ¢mPREV |

- -

| MEXT o |

file:///Z|/Charles%20River/(Charles%20River) %620C%208& %20Data%20Structures%20(2004)/7267/DDU0188.html (9 of 9) [30.06.2007 10:58:39]

Chapter 28: Problems in Graphs

= r

| 4mPREV | | NEXT Wi |

Chapter 28: Problemsin Graphs

PROBLEM: THE DFSMETHOD FOR GRAPH TRAVERSAL

Write a function df s(v) to traverse a graph in a depth-first manner starting from vertex v. Use this function to find
connected components in the graph. Modify df s()) to produce a list of newly visited vertices. The graph is represented
as an adjacency matrix.

Program
#i ncl ude <stdio. h>

#def i ne MAXVERTI CES 20
#def i ne MAXEDGES 20

typedef enum { FALSE, TRUE, TRI STATE} bool ;

struct graph {
int matrix[MAXVERTI CES] [MAXEDGES]
int vertices, edges;

}agraph;

void buildINC(int edges[][MAXEDGES], int nedges) {
/*
* fills graph.matrix with information from edges.
* graph. edges = nedges.
* graph.vertices is nmaxEntry in edges.

*/
int i, j;
graph.vertices = -1,

gr aph. edges = nedges;
/1 init matrix to FALSE
for(i=0; i<MAXVERTICES; ++i)
for(j=0; j<MAXEDCGES; ++j)
graph.matrix[i][j] = FALSE;

/1 now enter values into it.
for(i=0; i<2; ++i)
for(j=0; j<nedges; ++) {
graph.matrix[edges[i][j] 1[j] = TRUE
i f(edges[i][j] > graph.vertices)
graph.vertices = edges[i][j];

}

graph. verti ces++; /1 no of vertices = naxvertes + 1;
}
void printINC() {

/*

* prints graph.

*/

int i, j;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0189.html (1 of 4) [30.06.2007 10:58:40]

Chapter 28: Problems in Graphs

for(i=0; i<graph.vertices; ++i) {
for(j=0; j<graph.edges; ++)
printf("% ", graph.matrix[i][j]);
printf("\n");

}
printf("\n");
}
int getherVertex(int edge, int v) {
/*
* returns vertex at the other end of edge whose one vertex is v.
*/
int i;
for(i=0; i<graph.vertices; ++i)
if(i !'=v & graph.matrix[i][edge] == TRUE)
return i;
printf("getQherVertex(): This should not be printed.\n");
return -1;
}
int getAdj(int v, int *adjv) {
/*
* using graph, finds adj nodes of v and stores themin adjv.
* returns no of such adj vertices.
*/
int j;
int *adjvptr = adjv;
for(j=0; j<graph.edges; ++)
if(graph.matrix[v][j] == TRUE)
*adjvptr++ = getQtherVertex(j, v);
return adjvptr-adjv;
}
void dfs(int v, int *visited) {
/*
* recursively traverse graph fromyv using visited.
* and mark all the vertices that come in dfs path to TRl STATE.
*/
int adjv[MAXVERTI CES];
int i;
visited[v] = TRI STATE;
for(i=getAdj(v,adjv)-1; i>=0; -i)
if(visited[adjv[i]] == FALSE)
df s(adjv[i], visited);
}
void printSetTristate(int *visited) {

/*

* prints all vertices of visited which are TRI STATE.
* and set themto TRUE

*/

int i;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0189.html (2 of 4) [30.06.2007 10:58:40]

Chapter 28: Problems in Graphs

for(i=0; i<graph.vertices; ++i)
if(visited[i] == TRI STATE) {
printf("o%d ", i);
visited[i] = TRUE;
}
printf("\n\n");
}

voi d conpl NC() {
/*
* prints all connected conmponents of graph represented using | NC
*/
int *visited;
int i;

visited = (int *)malloc(graph.vertices);
for(i=0; i<graph.vertices; ++i)
visited[i] = FALSE

for(i=0; i<graph.vertices; ++i)
if(visited[i] == FALSE) {
dfs(i, visited);
[l print all vertices which are TRI STATE.
/1 and mark themto TRUE.
printSetTristate(visited);
}

free(visited);

int main() {
i nt edges[][MAXEDGES] = { {0,2,4,5,5, 4},
{1,1,3,4,6, 6}

1
bui | dl NC(edges, 6);
printlNC();
conpl NC() ;
return O;

}
Explanation

1. The graph is represented as an incidence matrix. The rows correspond to each vertex and the columns
correspond to each edge in the graph. Anentry matri x[i][] is TRUEif edgej contains vertex i , otherwise it

is FALSE. For example, if the graph is as follows;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0189.html (3 of 4) [30.06.2007 10:58:40]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu621%5F1%5F0%2Ejpg

Chapter 28: Problems in Graphs

and the edges are numbered as shown, then the incidence matrix for the graph is as shown here:

Click To expand

The rows of the incidence matrix are vertices and the columns are edges.

2. df s(v) is implemented recursively. A Boolean vector vi si t ed[] is maintained, whose all entries are initially
FALSE. df s(v) marks v as visited by making vi si t ed[v] = TRUE. It then finds all the adjacent nodes of v
and starts df s() from those nodes which have not yet been visited.

3. compl NC() is a function that finds all the connected components of a graph. It maintains a local copy of the
vector vi si t ed[] and passes it as a parameter to df s(v) . conpl NC() passes that vertex as a parameter to
df s(), which is not yet visited. Thus each invoking of df s() finds one connected component of the graph.

4. In order to modify df s() to produce a list of newly visited vertices, we tag the vertices visited using df s() as
TRI STATE. In conpl NC() , all these TRI STATE vertices will form one connected component. This status is then
converted to TRUE. The next invocation of df s() returns another set of vertices tagged as TRI STATE, which
forms another connected component, and so on.

For example, in this graph, first all vertices are tagged as FALSE. After invoking df s(0) , the vertices tagged as

TRI STATE are {0, 1, 2}. These are output and their tags are changed from TRI STATE to TRUE. The next invoking of
df s(3) tags vertices {3, 4, 5, 6} as TRI STATE. These are then output and their tags are changed from TRI STATE to
TRUE. Since there is no vertex remaining whose tag is FALSE, the algorithm stops.

Pointsto Remember

1. All the reachable vertices can be traversed from a source vertex by using the depth-first search.

2. The data representation (graph in this case) should be such that it should make algorithms operating on the data
efficient.

3. Note how a simple recursive procedure solves the problem of finding all the reachable vertices from a vertex.

4. Note the use of descriptive words such as FALSE, TRUE, and TRI STATE, rather than integers 0, 1, and 2. It
makes the program easily understandable.

- -

| 4mPREY | | NEXT o |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0189.html (4 of 4) [30.06.2007 10:58:40]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu621%5F2%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu621%5F2%5F0%2Ejpg

PROBLEM: CONNECTED COMPONENTSIN A GRAPH

-

| NEXT Wi |

—

| 4mPREV |

PROBLEM: CONNECTED COMPONENTSIN A GRAPH

Write a function df s(v) to traverse a graph in a depth-first manner starting from vertex v. Use this function to find
connected components in the graph. Modify df s() to produce a list of the newly visited vertices. The graph is
represented as adjacency lists.

Program
#i ncl ude <stdio. h>

#def i ne MAXVERTI CES 20
#def i ne MAXEDGES 20

typedef enum {FALSE, TRUE, TRI STATE} bool ;
typedef struct node node;

struct node {
int dst;
node *next;

H

voi d printGaph(node *graph[], int nvert) {
/*
* prints the graph.
*/
int i, j;

for(i=0; i<nvert; ++i) {
node *ptr;
for(ptr=graph[i]; ptr; ptr=ptr->next)
printf("[%l] ", ptr->dst);
printf("\n");

}

voi d i nsertEdge(node **ptr, int dst) {
/*
* insert a new node at the start.
*/
node *newnode = (node *)mall oc(sizeof(node));
newnode- >dst = dst;
newnode- >next = *ptr;
*ptr = newnode;

}

voi d buil dG aph(node *graph[], int edges[2][MAXEDGES], int nedges) {
/*
* fills graph as adjacency list fromarray edges.
*/
int i;
for(i=0; i<nedges; ++i) {
i nsert Edge(gr aph+edges]| 0]
i nsert Edge(gr aph+edges] 1]

, edges[1] :

i [i])
, edges[O0][i]); // undirected graph.

——
[S—py—

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥20(2004)/7267/DDU0190.html (1 of 4) [30.06.2007 10:58:41]

PROBLEM: CONNECTED COMPONENTSIN A GRAPH

}
}

void dfs(int v, int *visited, node *graph[]) {
/*
* recursively traverse graph fromv using visited.
* and mark all the vertices that come in dfs path to TRI STATE.
*/
node *ptr;

visited[v] = TRI STATE;
[lprintf("% \n", v);

for(ptr=graph[v]; ptr; ptr=ptr->next)
if(visited[ptr->dst] == FALSE)
df s(ptr->dst, visited, graph);
}

void printSetTristate(int *visited, int nvert) {
/*
* prints all vertices of visited which are TRI STATE.
* and set themto TRUE
*/
int i;

for(i=0; i<nvert; ++i)
if(visited[i] == TRI STATE) {
printf("% ", i);
visited[i] = TRUE
}
printf("\'n\n");
}

voi d conpl NC(node *graph[], int nvert) {
/*
* prints all connected conponents of graph represented using INC lists.
*/
int *visited,
int i;

visited = (int *)malloc(nvert*sizeof(int));
for(i=0; i<nvert; ++i)
visited[i] = FALSE

for(i=0; i<nvert; ++i)
if(visited[i] == FALSE) {
dfs(i, visited, graph);
[l print all vertices which are TRI STATE.
/1 and mark themto TRUE
printSetTristate(visited, nvert);

}

free(visited);

int main() {
int edges[][MAXEDGES] = { {0, 2,4,5,5,4},

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0190.html (2 of 4) [30.06.2007 10:58:41]

PROBLEM: CONNECTED COMPONENTSIN A GRAPH

{1,1, 3, 4,6, 6}
s

int nvert =7, /1 no of vertices.
int nedges = 6; // no of edges in the graph.
node **graph = (node **)calloc(nvert, sizeof(node *));

bui | dG aph(graph, edges, nedges);
print Gaph(graph, nvert);
conmpl NC(graph, nvert);

return O;

}

Explanation

1. The graph is represented as adjacency lists. The graph contains an array of n pointers where n is the number of
vertices in the graph. Each entry i in the array contains a list of vertices to which i is connected. For example, if
the graph is as follows:

Click To expand

then the adjacency lists for the graph are as shown here:

Click To expand

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0190.html (3 of 4) [30.06.2007 10:58:41]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu625%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu625%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu626%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu626%5F1%5F0%2Ejpg

PROBLEM: CONNECTED COMPONENTSIN A GRAPH

2.

Each node in listi contains a vertex to which i is connected.

df s(v) is implemented recursively. A Boolean vector vi si t ed[] is maintained, whose all entries are initially
FALSE. df s(v) marks v as visited by making vi si t ed[v] = TRUE. It then finds all the adjacent nodes of v
and starts df s() from those nodes which have not yet been visited.

For example, if df s(v) is called with v == 0, it marks 0 and then it traverses the adjacency list gr aph[0] and
calls df s('1) . This marks 1 and traverses the adjacency list gr aph[1] . But since 0 is already marked, df s(2)
is called. It marks 2 and starts traversal of gr aph[2] . But since 1 is marked, it returns. All the previous
invocations return as there are no nodes being considered in the lists. Thus, the marked vertices are {0, 1, 2}.

conmpl NC() is a function that finds all the connected components of a graph. It maintains a local copy of the
vector vi si t ed[] and passes it as a parameter to df s(v) . conpl NC() passes that vertex as a parameter to
df s() which has not yet been visited. Thus each invoking of df s() finds one connected component of the
graph.

In order to modify df s() to produce a list of newly visited vertices, we tag the vertices visited by using df s()
as TRI STATE. In conpl NC() , all these TRI STATE vertices will form one connected component. This status is
then converted to TRUE. The next invocation of df s() returns another set of vertices tagged as TRI STATE,
which forms another connected component, and so on.

For example, in this graph, first all vertices are tagged as FALSE. After invoking df s(0) , the vertices tagged as
TRI STATE are {0, 1, 2}. These are output and their tags are changed from TRI STATE to TRUE. The next
invocation of df s(3) tags vertices {3, 4, 5, 6} as TRI STATE. These are then output and their tags are changed
from TRI STATE to TRUE. Since there is no vertex remaining whose tag is FALSE, the algorithm stops.

Pointsto Remember

1.

2.

All the reachable vertices can be traversed from a source vertex by using the depth-first search.

The data representation (a graph, in this case) should be such that it makes algorithms operating on the data
efficient. Being represented as adjacency lists, we could easily traverse the list to get the vertices adjacent to a
particular vertex.

Note how a simple recursive procedure solves the problem of finding all the reachable vertices from a vertex.

Note the use of descriptive words such as FALSE, TRUE, and TRI STATE, rather than integers 0, 1, and 2. It
makes the program easily understandable.

| 4mPREV |

- -

| MEXT WP |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0190.html (4 of 4) [30.06.2007 10:58:41]

PROBLEM: MINIMUM SPANNING TREE

-

| 4mPREV |

| NEXT b |

PROBLEM: MINIMUM SPANNING TREE

Write a program to find a minimum spanning tree in a graph.

Program
#i ncl ude <stdio. h>

#def i ne MAXVERTI CES 10
#def i ne MAXEDGES 20

typedef enum { FALSE, TRUE} bool

int getNVert(int edges[][3], int nedges) {
/*
* returns no of vertices = naxvertex + 1;
*/
int nvert = -1;
int j;
for(j=0; j<nedges; ++) {
if(edges[j][0] > nvert)
nvert = edges[j][0];

if(edges[j]l[1] > nvert)
nvert = edges[j][1];

}
return ++nvert; /1l no of vertices = maxvertex + 1;
}
bool isPresent(int edges[][3], int nedges, int v) {
/*
* checks whether v has been included in the spanning tree
* thus we see whether there is an edge incident on v which has
* a negative cost. negative cost signifies that the edge has been
* included in the spanning tree.
*/
int j;
for(j=0; j<nedges; ++j)
if(edges[j][2] < O && (edges[j][0] == v || edges[j][1] == v))
return TRUE;
return FALSE
}

voi d spanning(int edges[][3], int nedges) {
/*
* finds a spanning tree of the graph havi ng edges.
* uses kruskal's method.
* assumes all costs to be positive
*/
int i, j;
int tvl, tv2, tcost;
i nt nspanedges = 0
int nvert = getNVert(edges, nedges);
/'l sort edges on cost.
for(i=0; i<nedges-1; ++i)
for(j=i; j<nedges; ++j)
if(edges[i][2] > edges[j][2]) {

tvl = edges[i][0]; tv2 = edges[i][1]; tcost = edges[i][2];

file:/l/Z|/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0191.html (1 of 3) [30.06.2007 10:58:41]

PROBLEM: MINIMUM SPANNING TREE

edges[i][0]
edges[j][0]

edges[j][0]; edges[i][1] = edges[j][1]; edges[i][2] = edges[j][2];
tvl;, edges[j][1] = tv2; edges[j][2] = tcost;

}

for(j=0; j<nedges-1; ++j) {
/'l consider edge j connecting vertices vl and v2.
int vl = edges[j][0];
int v2 edges[j]1[1];

/1 check whether it forns a cycle in the uptil now fornmed spanning tree.
/'l checking can be done easily by checking whether both vl and v2 are in
/1 the current spanning tree!
i f(isPresent(edges, nedges, vl) && isPresent(edges, nedges, v2)) // cycle.
printf("rejecting: % % %...\n", edges[j][0], edges[j][1], edges[j][2]);
el se {
edges[j][2] = -edges[j][2];
printf("%l % %.\n", edges[j][0], edges[j][1l], - edges[j][2]);
i f (++nspanedges == nvert-1)
return;

}

printf("No spanning tree exists for the graph.\n");

}

main() {
int edges[][3] = {
{0, 1, 16},
{0, 4, 19},
{0, 5, 21},
{1, 2, 5},
{1, 3, 6},
{1, 5, 11},
{2, 3, 10},
{3, 4, 18},
{3, 5, 14},
{4,5, 33}
b
i nt nedges = sizeof (edges)/3/sizeof (int);
spanni ng(edges, nedges);

return O;

}

Program Description

1. Atree consisting solely of edges in a graph G and including all vertices in G is called a spanning tree. A minimum spanning tree of
a weighted graph is the spanning tree with the minimum total cost of its edges.
Example:

Click To expand

2. The graph is represented as an array of edges. Each entry in the array is a triplet representing an edge consisting of source vertex,
destination vertex, and the cost associated with the edge. The method used in finding a minimum spanning tree is that given by

file:/l/Z|/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0191.html (2 of 3) [30.06.2007 10:58:41]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu630%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu630%5F1%5F0%2Ejpg

PROBLEM: MINIMUM SPANNING TREE

Kruskal. In this approach, a minimum spanning tree T is built edge by edge. Edges are considered for inclusion in T in a non-
decreasing order of their costs. An edge is included if it does not form a cycle with the edges already in T. Since graph Gis
connected, and has n> 0 vertices, exactly n—1 edges will be selected for inclusion in T.

3. Kruskal's algorithm is as follows:
T={}; /'l enpty set.
while T contains less than n-1 edges and E not enpty do
choose an edge (v, w) fromE of |owest cost.
delete (v, w) fromE.
if (v, w does not create a cycle in T
add (v, w) to T.
el se
discard (v, w).
endwhi | e.
if T contains | ess than n-1 edges
print("no spanning tree exists for this graph.");

4. In order for the choice of the lowest cost edge from E to become efficient, we sort the edge array over the cost of the edge. To
check whether an edge (v, w) forms a cycle, we simply need to check whether both v and wappear in any of the previously added
edges in T. We assume that all the costs are positive and we make them negative to signify that the edge has been included in T.

5. Example:
For the example graph, the run of the algorithm is as follows:

step edge cost action spanning-tree

0 - - = 0
1 1,2 5 accept {@, 2)}

2 1,3) 6 accept {(1, 2), (1, 3)}

3 (2,3) 10 reject {1, 2), (1, 3)}

4 (1, 5) 11 accept {(1, 2), (1, 3), (1, 5)}

5 (3,5) 14 reject {1, 2), (1, 3), (1, 5)}

6 0, 1) 16 accept {@, 2), (1, 3), (1, 5), (0, 1)}

7 (3,4 18 accept {1, 2), (1, 3), (1, 5), (0, 1), (3, 4)}

Pointsto Remember

1. A minimum spanning tree of a weighted graph G is a tree that consists of edges solely from the edges of G, which covers all the
vertices in G, and which has the minimum combined cost of its edges.

2. The complexity of Kruskal's method used for finding the minimum spanning tree of a graph G is O(e loge), where e is the number
of edges in G.

3. Note that the uni on and f i nd algorithms for set representation can be used to check for cycle and inclusion of an edge in a set.

4. There can be multiple minimum spanning trees in a graph.

- -

| 4mPREV | | NExXT b |

file:/l/Z|/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0191.html (3 of 3) [30.06.2007 10:58:41]

PROBLEM: TOPOLOGICAL SORT

—

| 4mPREV |

| NEXT Wi |

PROBLEM: TOPOLOGICAL SORT

Write a program to find the topological order of a digraph G represented as adjacency lists.

Program
#i ncl ude <stdio. h>

#define N 11 /1 no of total vertices in the graph.

typedef enum {FALSE, TRUE} bool ;
typedef struct node node;

struct node {
i nt count; /1 for arraynodes : in-degree.

/] for listnodes : vertex no this vertex is connected to.

/1 if this node is out of graph

/1 if this has 0 indegree then it occurs in zerolist.

node *next;
H
node graph[N];
node *zeroli st;

voi d addToZerolist(int v) {
/*
* adds v to zerolist as v has 0 predecessors.
*/
node *ptr = (node *)nall oc(sizeof(node));
ptr->count = v;
ptr->next = zerolist;
zerolist = ptr;

}

void buildGaph(int a[][2], int edges) {
/*
* fills global graph with input given in a.
* a[i][0] is src vertex and a[i][1] is dst vertex.
*/
int i;

/1 init graph.

for(i=0; i<N ++i) {
graph[i].count = O;
graph[i].next = NULL;

}

/1 now add the list entries.
for(i=0; i<edges; ++i) {
/1 add new node to src |ist.
node *ptr = (node *)mal |l oc(sizeof (node));
ptr->count = a[i][1];
ptr->next = graph[a[i][0]].next;
graph[a[i][0]].next = ptr;

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0192.html (1 of 5) [30.06.2007 10:58:42]

PROBLEM: TOPOLOGICAL SORT

/1 increase indegree of dst.
graph[a[i][1]].count++;
}

/'l now create list of zero predecessors.
zerolist = NULL; // list of vertices having O predecessors.
for(i=0; i<N, ++i)
if(graph[i].count == 0) {
addToZerolist(i);
}
}

void printGaph() {
int i;
node *ptr;

for(i=0; i<N, ++i) {
node *ptr;
printf("%l: pred=%: ", i, graph[i].count);
for(ptr=graph[i].next; ptr; ptr=ptr->next)
printf("%l ", ptr->count);
printf("\n");
}
printf("zerolist: ");
for(ptr=zerolist; ptr; ptr=ptr->next)
printf("%l ", ptr->count);
printf("\n");

i nt getZeroVertex() {
/-k
* returns the vertex with zero predecessors.
* if no such vertex then returns -1.
*/
int v;
node *ptr;

if(zerolist == NULL)
return -1;

ptr = zerolist;

v = ptr->count;

zerolist = zerolist->next;

free(ptr);

return v;

}

void renoveVertex(int v) {
/*
* deletes vertex v and its outgoing edges from gl obal graph
*/
node *ptr;
graph[v].count = -1,
/1l free the list graph[v].next.
for(ptr=graph[v].next; ptr; ptr=ptr->next) {
if(graph[ptr->count].count > 0) // normal nodes.

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0192.html (2 of 5) [30.06.2007 10:58:42]

PROBLEM: TOPOLOGICAL SORT

graph[ptr->count].count-;
if(graph[ptr->count].count == 0) /1 this is NOT el se of above if.
addToZerolist(ptr->count);

}
}

void topsort(int nvert) {
/*
* finds recursively topol ogi cal order of global graph.
* nvert vertices of graph are needed to be ordered.
*/
int v;

if(nvert >0) {
v = get ZeroVertex();

i f(= -1) { /1 no such vertex.
fprintf(stderr, "graph contains a cycle.\n");
return;

}

printf("%l.\n", v);
renoveVertex(v);
topsort(nvert-1);

}

int main() {
int a[][2] = {
{011}!
{0, 3},
{0, 2},
{1, 4},
{214}1
{2, 5},
{314}!
{3, 5}
3
bui | dG aph(a, 8);
print G aph();
topsort(N);
}

Explanation

1. Alinear ordering of vertices of a digraph G, with the property that if i is a predecessor of j , theni precedesj in
the linear ordering, is called a topological order of G.

2. The digraph G is maintained as adjacency lists. In this representation, G is an array gr aph[0...n-1] , where
each element gr aph[i] is a linked list of vertices to which vertex i is connected, and n is the number of
vertices in G.

3. We also maintain a zer ol i st, which is a list of vertices that have zero predecessors. The necessity for this list
will be clear from an algorithm for a topological sort, as follows:
topsort(n) {
if(n>0) {
if every vertex has a predecessor then
error("graph contains a cycle.").

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0192.html (3 of 5) [30.06.2007 10:58:42]

PROBLEM: TOPOLOGICAL SORT

pick a vertex v that has no predecessors. //
get ZeroVertex()
out put v.
delete v and all the edges |eading out of v in the graph. // renmoveVertex()
topsort(n-1).
}
}

4. The algorithm t opsort () is tail-recursive. From zer ol i st , it removes a vertex v containing zero
predecessors, and outputs it. This vertex v either has no predecessors in G, or all its predecessors have already
been output. Thus all the vertices in zer ol i st are candidates for the next output. After v is output, all the
vertices to which v points may become the candidates for the next output. Thus we remove all the edges
starting from v and rerun t opsort () over the remaining vertices.

Example: Let the digraph be as shown here.

Click To expand

Step Zerolist Output

{0} nil
{1,2,3}
{2, 3}
{3}
{4,5}
{5}

{}

D O~ W DN PP O
g A WO N PP O

Pointsto Remember

1. Alinear ordering of vertices of a digraph G, with the property that if i is a predecessor of | , theni precedesj in
the linear ordering, is called the topological order of G.

2. The complexity of topological order is O(n+e) where n is the number of vertices and e is the number of edges in
the digraph.

3. Removal of an edge results in a decrease in the predecessor count of the destination vertex. If this count

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/ 7267/DDU0192.html (4 of 5) [30.06.2007 10:58:42]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu636%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu636%5F1%5F0%2Ejpg

PROBLEM: TOPOLOGICAL SORT

reaches 0, the vertex should be inserted in the zer ol i st .

4. By maintaining a list of vertices with zero predecessors, the computing time of the algorithm decreases.

- -

[4w PREV | [NExTwp |

file:///Z)/Charles¥620River/(Charles¥620River) %20C%208& %20D ata%20Structures¥s20(2004)/7267/DDU0192.html (5 of 5) [30.06.2007 10:58:42]

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY MATRIX

—

| 4mPREV |

-

| NEXT Wi |

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY MATRIX

Given a digraph represented as an adjacency matrix, find the shortest path from a vertex v to all the other vertices in

the graph.

Program
#i ncl ude <stdio. h>

#defi ne MAXI NT 99999

#defi ne MAXVERTI CES 10

typedef enum {FALSE, TRUE} bool ;
void print(int cost[][MAXVERTI CES],

int nvert) {

/*
* prints cost matrix.
*/
int i, j;
for(i=0; i<nvert; ++i) {
for(j=0; j<nvert; ++j)
printf("9d", cost[i][j]);
printf("\n");
}

int choose(int dist[], bool s[], int nvert) {

/*
* returns vertex u such that:

* dist[u] = mn{ dist[w] } where s[w] == FALSE.

*/

int i;

int u=-1;

int mndist = MAXI NT;

for(i=0; i<nvert; ++i)
if(s[i] == FALSE && dist[i] <= mindist)
usi, mndist=dist[i];
return u;
}
void sssp(int v, int cost[][MAXVERTICES], int dist[], int
/*

* finds shortest path fromv to all
* cost is the cost matri x.

* dist is the vector in which output wll

ot her vertices.

be witten.

* nvert is no of vertices in the graph.

*/
bool s[MAXVERTI CES] ;
int i, u, num w,

for(i=0; i<nvert; ++i)

s[i] = FALSE, dist[i] = cost[V][i];

s[v] = TRUE;

nvert) {

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0193.html (1 of 3) [30.06.2007 10:58:43]

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY MATRIX

dist[v] = 0;
num = 1;

while(num< nvert-1) {
u = choose(dist, s, nvert);
s[u] = TRUE;
numt+;
for(w=0; w<nvert; ++w)
if(s[wW == FALSE && dist[u]+cost[u][w < dist[w])
dist[w] = dist[u] + cost[u][wW;

}

void printDist(int v, int dist[], int nvert) {
/*
* prints distance nmatrix which shows mn distance of each vertex
* fromyv.
*/
int i;

printf("mn dist fromvertex %l...\n", v);
for(i=0; i<nvert; ++i)
printf("dist[%]=%.\n", i, dist[i]);

int main() {
int cost[][MAXVERTI CES] = {{0,2,2,1},{3,0,4,1},{5,16,0,9},{1,1, 2,0}};
i nt di st MAXVERTI CES] ;
int nvert = 4; /1 no of vertices.

sssp(2, cost, dist, nvert);
printDist(2, dist, nvert);

return O;

Explanation

1. The digraph is represented as an adjacency matrix. The size of the matrix is NxN where N is the number of
vertices in the digraph. Anentry mat ri x[i][]j] specifies the cost of the directed edge from vertex i to vertex

j . If such an edge does not exist, then the cost is set to MAXI NT. All diagonal entries of the matrix mat ri x[i]
[i] aresettoO.

2. The function sssp(v, cost, dist, nvert) implements the single-source- shortest-path algorithm to find
the shortest path from a vertex v in a digraph that is represented as an adjacency matrix cost . nvert isthe
number of vertices in the digraph and di st is the vector that will finally contain the output. Thus an entry di st
[1] will be the minimum distance of vertex i from vertex v.

3. The function uses a vector s[] of Boolean to represent the status of each vertex: whether processed or not. It is
initialized to FALSE. s[v] is marked, meaning it is processed. di st [v] is setto 0. Then the function chooses a
vertex u that is yet to be processed and which is at a minimum distance from v. Vertex u is marked as
processed. It then processes vector di st [], which may get updated because of the addition of u. The function
checks whether di st[u] +cost[u] [W < dist[w] for each yet-to-be-processed node win the digraph. If it
is, then di st [w] is updated as di st[u] +cost[u][wW .

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0193.html (2 of 3) [30.06.2007 10:58:43]

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY MATRIX

When all the vertices are processed, di st[] contains the required result.
Example:

Click To expand

Let v=0. Then, different steps in the run of the algorithm are as follows:

M signifies MAXI NT, which means that the vertex cannot be reached from v.

step u dist

nil 05010 M 45 M
050103545 M
045103545 M
045103545 M
045103545M
045103545 M

ga A WO N P O
a b~ P WD

Pointsto Remember

1. The complexity of the sssp() is O(N”2) where N is the number of vertices in the digraph.

2. The constant of proportionality of the complexity of choose() may be improved by using a list of yet-to-be-
processed vertices.

3. Representing the digraph as an adjacency matrix makes the retrieval of the cost of an edge O(1).

- -

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0193.html (3 of 3) [30.06.2007 10:58:43]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu640%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu640%5F1%5F0%2Ejpg

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY LIST

| NEXT Wi |

—

| 4mPREV |

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY LIST

Rewrite the function sssp() for finding the shortest path, such that the digraph is represented by its adjacency lists
instead of the adjacency matrix. Also, instead of maintaining set S of vertices to which the shortest paths have already
been found, the set V(G)-S is represented by using a linked list where V(G) is the set of vertices in digraph G.

Program
#i ncl ude <stdio. h>

#defi ne MAXI NT 99999

#defi ne MAXVERTI CES 10

typedef struct node node;
typedef struct setnode setnode;
typedef enum {FALSE, TRUE} bool;

struct node {

i nt dst;
int cost;
node *next;
3
struct setnode {
int v;
set node *next;
b
void print&Gaph(node *cost[], int nvert) {
/*
* prints the graph.
*/
int i, j;
for(i=0; i<nvert; ++i) {
node *ptr;
for(ptr=cost[i]; ptr; ptr=ptr->next)
printf("[%, %] ", ptr->dst, ptr->cost);
printf("\n");
}
}
voi d insertEdge(node **ptr, int dst, int cost) {
/*
* insert a new node at the start.
*/
node *newnode = (node *)mal |l oc(sizeof (node));
newnode- >dst = dst;
newnode- >cost = cost;
newnode- >next = *ptr;
*ptr = newnode;
}

voi d buil dG aph(node *cost[], int costnew][3], int nedges) {

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0194.html (1 of 5) [30.06.2007 10:58:44]

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY LIST

/*
* fills cost as adjacency list fromarray costnew.
*/
int i;
for(i=0; i<nedges; ++i)
i nsert Edge(cost+costnewfi][0], costnewi][1l], costnewi][2]);

int choose(int dist[], setnode *s) {
/*
* returns vertex u such that:
* dist[u] = mn{ dist[w] } where wis in set s.
*/
int u=-1;
int nmindist = MAXI NT;
set node *ptr;

for(ptr=s->next; ptr; ptr=ptr->next)
if(dist[ptr->v] <= mindist)
u=ptr->v, mndist=dist[ptr->v];
return u;

i nt getCost(node **cost, int src, int dst) {
/*
* return cost of edge fromsrc to dst.
*/
node *ptr;
for(ptr=cost[src]; ptr; ptr=ptr->next)
if(ptr->dst == dst)
return ptr->cost;
return MAXI NT;

}

voi d renoveFrontet (setnode *s, int v) {
/*
* renove vertex v from set s.
*/

setnode *prev, *ptr;
for(prev=s, ptr=prev->next; ptr; prev=ptr, ptr=ptr->next)
if(ptr->v == v) {
prev->next = ptr->next;

free(ptr);
return;
}
/1 v does NOT exist in the set.
}
void insertlntoSet(setnode *s, int v) {
/*
* add vertex v to the set s.
*/

setnode *ptr = (setnode *)nmal |l oc(sizeof(setnode));
ptr->v = v;

ptr->next = s->next;

S->next = ptr;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0194.html (2 of 5) [30.06.2007 10:58:44]

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY LIST

}
bool islnSet(setnode *s, int v) {
/*
* returns TRUE if vertex v is in set s.
*

setnode *ptr;
for(ptr=s->next; ptr; ptr=ptr->next)
if(ptr->v == v)
return TRUE;
return FALSE;

}
void sssp(int v, node **cost, int dist[], int nvert) {
/*
* finds shortest path fromv to all other vertices.
* cost is the cost adjacency list.
* dist is the vector in which output will be witten.
* nvert is no of vertices in the graph.
*/
setnode s; // list of vertices yet to be considered.
int i, u, num w,
node *ptr;
for(i=0; i<nvert; ++i) {
insertintoSet(&s, i);
dist[i] = MAXI NT;
}
for(ptr=cost[v]; ptr; ptr=ptr->next)
di st[ptr->dst] = ptr->cost;
renoveFrontet (&S, v);
dist[v] = 0;
num = 1;
while(num< nvert-1) {
u = choose(dist, &s);
renoveFronSet (&, U);
numt+;
for(w=0; w<nvert; ++w) {
int ¢ = getCost(cost, u, w);
if(islnSet(&, w) && dist[u]+c < dist[w])
dist[w = dist[u] + c;
}
}
}
void printDist(int v, int dist[], int nvert) {
/*
* prints mn dist vector.
*/
int i;

printf("mn dist fromvertex %l...\n", v);
for(i=0; i<nvert; ++i)
printf("dist[%]=%.\n", i, dist[i]);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0194.html (3 of 5) [30.06.2007 10:58:44]

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY LIST

}

int main() {
int costnew[][3] = {

}
i nt di st[MAXVERTI CES] ;
int nvert = 6;
i nt nedges = 11;

bui | dG aph(cost, costnew, nedges);

print Gaph(cost, nvert);
sssp(4, cost, dist, nvert);
printDist(4, dist, nvert);

return O;

}

Explanation

{0, 1, 50},

/1 no of vertices.
/1 no of edges in costnew.
node **cost = (node **)call oc(nvert,

si zeof (node *));

1. Costis maintained as an array containing adjacency lists for each vertex in the digraph. The function
bui | dGr aph() fills this array. An adjacency list for a vertex is a linked list where each node contains the

vertex, the cost of the corresponding edge, and a pointer to the next node.

For example, consider the following graph:

Click To expand

The adjacency lists are maintained as follows:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0194.html (4 of 5) [30.06.2007 10:58:44]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu646%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu646%5F1%5F0%2Ejpg

PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY LIST

Click To expand

Note that each node contains a pair of integers, (vert ex, cost).

2. The function sssp() remains nearly the same except getting the cost of an edge and accesses the set S. The
cost of an edge can be retrieved using the function get Cost () . It needs O(n) traversal of the adjacency list
corresponding to the source vertex of the edge, where n is the number of nodes in the list. In the cost matrix-
based algorithm, this was O(1). Removal of a vertex (r emoveFr onet ()) from the list requires O(n) time. This
time was also constant earlier as we flagged the vertex as FALSE. Furthermore, earlier we could check the
status of a vertex to be TRUE or FALSE using s[i], but now the function i sl nSet () needs to traverse the list
s to see whether the node has been processed or NOT. This makes it O(n). However, the function choose(),
which was earlier O(n), now becomes O(1), as we need to remove only the first element from the list s.

3. The overall complexity of sssp() increases from O(n"2) to O(n"3) as get Cost () andi sl nSet () become O
(n), where n is the number of vertices in the digraph.

Pointsto Remember

1. Note how the change in the data structures affected the algorithm efficiency.

2. In order to make choose() O(1), we had to make r enoveFr onSet () andi sl nSet () O(n). This trade-off
should be studied carefully before implementation.

3. The change from an adjacency matrix to adjacency lists may reduce some space, but it increases complexity of
the function get Cost () .

- -

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0194.html (5 of 5) [30.06.2007 10:58:44]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu647%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu647%5F1%5F0%2Ejpg

PROBLEM: THE M SHORTEST PATH

-

| 4 PREV |

-

| MEXT o |

PROBLEM: THE M SHORTEST PATH

Write a function nshortest (cost, src, dst, m) thatfinds mshortest paths 7(if any exist) from sr c to dst in a digraph

represented by its cost adjacency matrix cost .

Program
#i ncl ude <stdio. h>

#define M 8
#def i ne MAXVERTI CES 10
#defi ne MAXI NT 99999

typedef struct node node;
typedef struct ansnode ansnode;
typedef enum {FALSE, TRUE} bool

struct node {

int src; /1 for head node: this is cost of the edges in the list.
int dst;
int dunmy; // used for tenporarily saving the cost of this edge.
node *next;

}

struct ansnode {
node pat h;
node i nedges, exedges;

}

ansnode answers[M;
i nt indexans; /1 no of paths generated so far: >=0 & <= M

void init() {
/*
* sone initialization.
*/
int i;
for(i=0; i<M ++i) {
ansnode *a = answer s+i
a->path.src = 0; /1 this is conbined cost of the edges in this I|ist.
a- >pat h. next = NULL
a- >i nedges. next = a->exedges. next = NULL;

}
i ndexans = 0;
}
voi d pushFront(node *edges, int src, int dst) {
/*
* adds a new node containing (src,dst) at start of edges.
*/
node *ptr = (node *)nmall oc(sizeof(node));
ptr->src = src;
ptr->dst = dst;
ptr->next = edges->next;
edges- >next = ptr;
}
voi d pushBack(node *edges, int src, int dst) {

/*

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0195.html (1 of 9) [30.06.2007 10:58:45]

PROBLEM: THE M SHORTEST PATH

* adds a new node containing (src,dst) at end of edges.
*/

node *ptr;

for(ptr=edges; ptr->next; ptr=ptr->next)

/'l (src,dst) should be inserted after ptr;

pushFront(ptr, src, dst); /1 anot her hack
}
voi d popFront(node *edges, int *src, int *dst) {
*
/* renmove a node fromstart of edges.
*/

node *ptr = edges->next;
if(ptr == NULL) {

*src = *dst = -1;
return;

}

*src = ptr->src;

*dst = ptr->dst;
edges- >next = ptr->next;
free(ptr);

int choose(int dist[], bool s[], int nvert) {
/*
* returns vertex u such that:
* dist[u] = mn{ dist[wj } where s[w == FALSE.
*/
int i;
int u=-1;
int mndi st = MAXI NT;

for(i=0; i<nvert; ++i)
if(s[i] == FALSE && dist[i] <= mndist)
usi, mndist=dist[i];
return u;

}

void printList(char *str, node *edges) {
/*
* prints a node |ist.
*/
node *ptr;
printf("%: ", str);
for(ptr=edges->next; ptr; ptr=ptr->next)
printf("(%l, %) ", ptr->src, ptr->dst);
printf("\n");

}
node *revLi st(node *list) {
/*
* returns reverse of list: nodifies list.
*/
node *ptr=list->next, *tenp, *prev=NULL;
for(; ptr; prev=ptr, ptr=tenmp) {
tenp = ptr->next;
ptr->next = prev;
}
l'ist->next = prev;
return |ist;
}

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0195.html (2 of 9) [30.06.2007 10:58:45]

PROBLEM: THE M SHORTEST PATH

int getlnsertlndex(node *answer, int start) {
/*
* returns index in answers where answer can be inserted.
* uses binsrch.
*/
int md, end=indexans-1
int mdcost=-1, anscost=answer->src;

while(start <= end) {
md = (start+end)/ 2;
m dcost = answers[mid]. path.src;
i f(mdcost == anscost)
return md;
el se if(mdcost < anscost)
start = md+1;
el se
end = md-1
}
if(mdcost == -1)
return start;
i f(mdcost < anscost)
return md+1
el se
return md,

}
void shiftlnsert(int index) {
/*
* shifts answers[index..indexans-1] by one down.
*/
int i;
for(i=index; i<indexans; ++i)
answers[i+1] = answers[i];
}

voi d i nsert Answer(node *answer, node *inedges, node *exedges, int start) {
/*
* inserts answer in answers sorted on cost of the answer.
uses binsrch and then linearly shifts answers down.
start helps in reducing no of iterations of binsrch.
* it is possible that the cost of the answer is >= MAXI NT.

*
*

*/
i nt index;
i f(answer->src >= MAXINT) /1l path length is infinite.

return;
i ndex = getlnsertlndex(answer, start);
shiftlnsert(index);
answer s[i ndex] . path = *answer;
answer s[i ndex] . i nedges = *i nedges;
answer s[i ndex] . exedges = *exedges;

printf("__ % cost=%l.\n", index, answers[index].path.src);
printList("____ inedges: ", inedges);
printList("~ exedges: ", exedges);
i ndexans++;
}
node *copi ed(node *edges) {
/*
* return a copy of the list of edges.
*/

node *ret = (node *)mall oc(sizeof (node));

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0195.html (3 of 9) [30.06.2007 10:58:45]

PROBLEM: THE M SHORTEST PATH

node *retptr = ret;
node *ptr;

ret->src = edges->src;
ret->next = NULL;

for(ptr=edges->next; ptr; ptr=ptr->next) {
retptr->next = (node *)nmall oc(sizeof(node));
retptr = retptr->next;
retptr->src = ptr->src;
retptr->dst = ptr->dst;
retptr->next = NULL

}

return ret;

void findDstSrc(node *edges, int *dstl, int *src2, int dst) {
/*
* returns the first src and last dst of the path ptr.
*/
node *ptr = edges->next;
if(ptr == NULL) {
*dstl = *src2 = dst;
return;
}
*dstl = ptr->src;
for(; ptr->next; ptr=ptr->next)

*src2 = ptr->dst;

}

voi d attachPat hs(node *pathl, node *inedges, node *path2) {
/*
* pat hl = pat h2+i nedges+pat h1l;
*/
node *ptr;

for(ptr=inedges; ptr->next; ptr=ptr->next) ;

ptr->next = pathl->next;
if(path2 !'= NULL) {
for(ptr=path2; ptr->next; ptr=ptr->next) ;

ptr->next = inedges->next;
pat hl- >next = pat h2->next;
pat hl->src += pat h2->src;
}
el se
pat hl- >next = i nedges->next;
pat hl->src += i nedges- >src;

}

node *advanceByl nc(node *path, node *inedges) {
/*
* return a ptr to the first edge in path which is not in inedges.
* sinply traverse no of nodes in path equal to that in inedges and return
* the next pointer.
*/
node *ptrpath, *ptrin;

for(ptrpath=path->next, ptrin=inedges->next; ptrin; ptrpath=ptrpath->next, ptrin=ptrin->next)

return ptrpath;

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0195.html (4 of 9) [30.06.2007 10:58:45]

PROBLEM: THE M SHORTEST PATH

node *sssp(int cost[][MAXVERTICES], int v, int finalv, int nvert) {
/*
* finds shortest path fromv to all other vertices and thus to finalv.
* cost is the cost matrix.
* nvert is no of vertices in the graph.
* returns the shortest path.

*/
bool s[MAXVERTI CES] ;
int i, u num w

i nt spat h[MAXVERTI CES] ;

i nt dist[MAXVERTI CES] ;

node *newpath = (node *)mall oc(sizeof(node));
int src, dst;

printf("solving sssp(%, %d).\n", v, finalv);
newpat h- >next = NULL;
for(i=0; i<nvert; ++i)
spath[i] = -1;
for(i=0; i<nvert; ++i)
s[i] = FALSE, dist[i] = cost[V][i];

s[v] = TRUE;
dist[v] = 0;
num = 1,

while(num< nvert-1) {
u = choose(dist, s, nvert);

s[u] = TRUE;
numt-+;
if(spath[u] == -1)

spath[u] = v;
for(w=0; w<nvert; ++w)
if(s[w == FALSE && dist[u]+cost[u][wW] < dist[w]) {
dist[w] = dist[u] + cost[u][W;
spath[w] = u;
}
}
printf("path=%d ", finalv);
dst = finalv;
for(w=spath[finalv]; w=-1; w=spath[w]) {
printf("% ", w);

src = w,
pushBack(newpath, src, dst);
dst = src;
}
newpat h->src = dist[finalv]; /1 cost of this path.

printf(".\n");

return newpat h;

}

voi d sol veshortest(int index, int cost[][MAXVERTICES], int src, int dst, int nvert) {
/*
* driver for sssp().
* sets constraints for the new path. The constraints are
* inclusion and exclusion of sone edges.
* exclusion is done by tenmporarily making entry cost[i][j] equal to O
* and then restoring it after sssp().
* inclusion of some path is carried out by calling sssp() twice with the included
path removed. The two paths and the inclusion |ist together contain the new
* shortest path.
* the global array of answers is updated as new paths are being cal cul at ed.

*

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0195.html (5 of 9) [30.06.2007 10:58:45]

PROBLEM: THE M SHORTEST PATH

*/

node *path = &answers[i ndex] . path;

node *inedges = &answer s[i ndex].i nedges;
node *exedges = &answer s[i ndex] . exedges;
node *ptr;

for(ptr=exedges->next; ptr; ptr=ptr->next) {// for each exclusion edge.
ptr->dunmmy = cost[ptr->src][ptr->dst]; /'l saving
cost[ptr->src][ptr->dst] = MAXI NT

}

ptr = advanceByl nc(path, inedges);

for(; ptr; ptr=ptr->next) { /1 for each edge.
int dunmyl, dumy?2;
int dstl, src2;
node *pathl, *path2=NULL;

printList("path: ", path);
printList("inedges: ", inedges);
printList("exedges: ", exedges);

/1 excl usion edges.
printf("exedge=(%l, %).\n", ptr->src, ptr->dst);
pushFront (exedges, ptr->src, ptr->dst);
exedges- >next - >dumy = cost[ptr->src][ptr->dst]; // saving.
cost[ptr->src][ptr->dst] = MAXINT; // tenporarily renoved.

/'l inclusion edges.
findDst Src(inedges, &dstl, &src2, dst);
printf("inedges: dstl1=%l, src2=%l.\n", dstl, src2);

pathl = sssp(cost, src, dstl, nvert);
if(src2 = dst)
path2 = sssp(cost, src2, dst, nvert);
attachPat hs(pat hl, revList(copied(inedges)), path2);
printList("attachpath: ", pathl);
i nsert Answer (pat hl, copied(inedges), copied(exedges), index+l);

/'l now restore the cost matri x.
cost[ptr->src][ptr->dst] = exedges->next->dunmy;

/'l renove the exclusion edge.
popFront (exedges, &dunmyl, &dumry2);
/1 update inclusion list with that edge.
pushFront (inedges, dummyl, dumy?2);
i nedges- >src += cost [dunmyl] [dunmmy2];
}
for(ptr=exedges->next; ptr; ptr=ptr->next) // for each exclusion edge.
cost[ptr->src][ptr->dst] = ptr->dumy;

}
voi d nshortest(int cost[][MAXVERTI CES], int src, int dst, int nvert)
{
/*
* finds mshortest paths between src and dst.
*/
int i=0;

node *i nedges
node *exedges
node *newpath

= (node *)mall oc(sizeof (node));
= (node *)mal |l oc(sizeof (node));
= sssp(cost, src, dst, nvert);

i nedges->src = exedges->src = 0;

i nedges- >next = exedges- >next NULL;
i nsert Answer (newpat h, inedges, exedges, i);

file:///Z)/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0195.html (6 of 9) [30.06.2007 10:58:45]

PROBLEM: THE M SHORTEST PATH

whi | e(i <i ndexans && indexans <= M) {
printf(" \nsolving i=%.\n", i);
sol veshortest(i++, cost, src, dst, nvert);

}

int main() {
int cost[][MAXVERTI CES] = { {0, 3,2, MAXI NT, MAXI NT, MAXI NT},
{ MAXI NT, MAXI NT, MAXI NT, MAXI NT, 0, 5},
{ MAXI NT, MAXI NT, MAXI NT, MAXI NT, MAXI NT, O };
{MAXI NT, 0, 5, 7, 4, MAXI NT}, {MAXI NT, MAXI NT, 0, 4, 1, MAXI NT},

{ MAXI NT, MAXI NT, MAXI NT, O, 5, 3},

}7
nshortest(cost, 0, 5, 6);
return O;
}
Explanation
1. The digraph G is maintained as its cost adjacency matrix. cost[i][i] = Oandcost[i][j] = MAXINTfori !=j,andif

there is no edge fromi toj .

2. We assume that every edge has a positive cost. Letpl = vO0,v1, ..., vk be the shortest path from src to dst . If Pis the
set of all simple sr c-to-dst paths in G, then it is easy to see that every path in P-{ p1} differs from p1 in exactly one of the
following k ways.

1. It contains the edges (v1, v2), ..., (vk-1, vk) butnot(vO0, v1).

2. It contains the edges (v2, v3), ..., (vk-1, vk) butnot(vl, v2).

= (k) It does not contain the edge (vk-1, vk).

Thus we see that if we put constraints on a shortest path as for the aforementioned k conditions, then we get more next-
shortest paths satisfying different constraints. These constraints either require certain edges to be included or excluded from
the original shortest path as just given.

3. The algorithm nshort est () is as follows:

Q = {(shortest src-to-dst-path, phi)} /1 phi denotes an enpty set.
for i =1tomdo // generate mshortest paths.

Let (p, C) be the tuple in Qsuch that path p is of minimal length with set of constraints c.

Output path p.

Delete path p from Q

Determine the shortest paths in Gunder the constraints C and the additional constraints imposed for the new path being
generated as described previously.

Add these shortest paths together with their constraints to Q.

Qis a set of (p, C) pairs where p is the shortest path generated after imposing constraints C. Initially, we find the shortest path
from sr c to dst under no constraints. We then generate m paths in a loop. Inside the loop, we select from Qthat (p, C) pair that
has the minimum path length. After outputting, we remove the pair from Q We then find the next shortest paths after imposing
the constraints on C and additional constraints by removing an edge from the exclusion-list of edges, and adding that edge to

the inclusion list. We also add the next edge of the path to the exclusion list. Thus we form a new set of constraints. We add the
shortest paths generated along with the new constraints to the set Qand reiterate.

4. Use the function sssp() to find a single-source shortest path. Make minor modifications to the function to follow the

constraints and exclusion of certain edges. Exclusion is carried out by temporarily removing that edge's cost from the cost
matrix and restoring the cost after running sssp() over cost. Inclusion of consecutive edges is carried out by calling sssp()
twice, once for the path between the first vertex of the shortest path and before the first vertex in the inclusion list, and then for

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0195.html (7 of 9) [30.06.2007 10:58:45]

PROBLEM: THE M SHORTEST PATH
the path between the last vertex of the included path and the last vertex of the shortest path.

For example, if the shortest pathisv0 v1 v2 v3 v5, and the inclusion listis (v2 v3), then sssp() is called for the path vO
v1l v2, and then for the path v3 v5. The new shortest path generated is returned by sssp() . This new path, along with its
constraints and cost, is added to a global ar r ay[M of answers sorted on the cost of the path. A binary search is used to get
the index (get I nsert | ndex()) where the new path should be added. Insertion into the array at position i requires shifting of
the elements from i forward by one position (shi ft1 nsert()).

5. Example:

Click To expand

The shortest paths generated for the above graph for M == 8 are shown here:
shortest path cost included edges excluded edges new path
vO v2 v4 v5 8 none none.
none (v4 v5) vOv2v3v5=9
(v4 v5) (V2 v4) vOvlv4vs =12
(v2 v4) (v4 vb5) (vO v2) vOvliv2v4v5=14
vO v2 v3 v5 9 none (v4 vb).
none (v3 v5) (v4 v5) infinity
(V3 v5) (v2 v3) (v4 vb) vOvlv3v5=13
(v2 v3) (V3 vb) (vO v2) (v4 v5) vOvliv2v3v5=15
vO vl v4 v5 12 (v4 v5) (V2 v4).
(v4 v5) (vl v4) (v2 v4) vOv2v3v4v5=16
(vl v4) (v4 vb) (vO v1) (v2 v4) infinity
vO v1v3v5 13 (V3 vb) (v2 v3) (v4 vb)
(v3 v5) (v1 v3) (v2 v3) (v4 vb5) infinity
(v1v3) (v3V5h) (vO v1) (v2 v3) (v4 v5) infinity
vO vl v2 v4 v5 14 (V2 v4) (v4 v5) (vOv2)
(v2 v4) (v4 v5) (vl v2) (vOv2) infinity
(v1v2) (v2 v4) (v4 v5) (vO v1) (vO v2) nfinity
vO vl v2 v3 v5 15 (v2 v3) (v3 Vv5) (vO v2) (v4 v5)
(v2 v3) (v3 vb) (v1v2) (vO v2) (v4 v5) infinity
(v1v2) (v2 v3) (V3 v5) (vO v1) (vO v2) (v4 v5) infinity
vO v2 v3 v4 v5 16 (v4 v5) (vl v4) (v2 v4)
(v4 v5) (v3v4) (v1v4) (v2 v4) infinity

(v3 v4) (v4 v5)

(v2 v3) (v1 v4) (v2 v4)

vOvlv3v4vs =20

file:///Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0195.html (8 of 9) [30.06.2007 10:58:45]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu659%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu659%5F1%5F0%2Ejpg

PROBLEM: THE M SHORTEST PATH

(v2 v3) (v3 v4) (v4 v5) (VO v2) (v1v4) (v2 v4) vOv1lv2v3v4vs =22

Pointsto Remember

1. The complexity of nshort est () is O(mn”3), where m is the number of shortest paths generated, and n is the number of
vertices in the digraph.

2. Note how we reused the single-source-shortest-path algorithm with some modifications in nshor t est () . This not only eased
programming but also simplified the analysis.

3. Maintaining a reverse list of edges helps in updating the exclusion and inclusion lists easily.

-

| 4mPREV |

—

| MExT o |

file:///Z)/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0195.html (9 of 9) [30.06.2007 10:58:45]

PROBLEM: THE ALL-COST SHORTEST PATH

| NEXT Wi |

—

| 4mPREV |

PROBLEM: THE ALL-COST SHORTEST PATH

Write a function al | Cost s() to find the shortest path between any two vertices in a digraph.

Program
#i ncl ude <stdi o. h>

#defi ne MAXI NT 99999
#def i ne MAXVERTI CES 10

typedef enum {FALSE, TRUE} bool;

void print(int cost[][MAXVERTICES], int nvert) {

/*

* prints the cost nmatrix.
*/

int i, j;

for(i=0; i<nvert; ++i) {
for(j=0; j<nvert; ++j)
printf("9d", cost[i][j]);
printf("\n");

}
}
void printCosts(int a[][MAXVERTICES], int nvert) {
/*
* prints mn cost matrix a.
*/
int i, j;
for(i=0; i<nvert; ++i)
for(j=0; j<nvert; ++)
printf("cost[%][%]=%.\n", i, j, a[il[j]);
}
void all Costs(int cost[][MAXVERTICES], int a[][MAXVERTI CES], int nvert) {
/*
* finds all pairs shortest paths and store in a[][].
*/
int i, j, k;
for(i=0; i<nvert; ++i)
for(j=0; j<nvert; ++j)
a[i]J[j] = cost[i][j];
for(k=0; k<nvert; ++k)
for(i=0; i<nvert; ++i)
for(j=0; j<nvert; ++j)
it afil[Kkl+alkI[j] <alil[j])
a[i][j] = a[i][k] + a[k][j];
}

int main() {

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0196.html (1 of 4) [30.06.2007 10:58:46]

PROBLEM: THE ALL-COST SHORTEST PATH

}

int cost[][MAXVERTI CES] = { {0, 50, 10, MAXI NT, 45, MAXI NT},
{ MAXI NT, 0, 15, MAXI NT, 10, MAXI NT} ,
{20, MAXI NT, 0, 15, MAXI NT, MAXI NT} ,
{ MAXI NT, 20, MAXI NT, 0, 35, MAXI NT},
{ MAXI NT, MAXI NT, MAXI NT, 30, 0, MAXI NT},
{ MAXI NT, MAXI NT, MAXI NT, 3, MAXI NT, 0}

b
i nt a[MAXVERTI CES] [MAXVERTI CES] ;
int nvert = 6; // no of vertices.

al | Costs(cost, a, nvert);
printCosts(a, nvert);

return O;

Explanation

1. One way to solve the all-costs shortest path problem is to apply the algorithm of shortest path sssp() ntimes

for each vertex in the digraph G. The complexity would be O(n”3). For the all-costs problem, we can obtain a
conceptually simpler algorithm that will work even if some edges in G have negative weights, as long as G has
no cycles with negative lengths. The computing time will still be O(n”*3), although the constant factor will be
smaller.

. The digraph G is represented as a cost adjacency matrix withcost[i][i] = Oandcost[i][j] = MAXI NT,

incaseedge<i,j>i !=j isnotinG.

. We define Ak[i][] to be the shortest path fromi toj going through no intermediate vertex of index greater

than k. Then, An[i] []j] will be the cost of the shortesti toj pathin G, since G contains no vertex with an
index greaterthann. AO[i][j] iscost[i][j].

. The basic idea in the algorithm is to successively generate matrices A0, Al, ..., An. If we have already

generated A(k-1) , then we may generate Ak by realizing that for any pair of vertices i , j either:

. the shortest path fromi toj going through no vertex with index greater than k does not go through the
vertex with index k, and so its costis A(k—1)[i][]j];or

. the shortest such path does go through vertex k. Such a path consists of a path from i to k and another
one from k to j . These paths must be the shortest paths fromi to k and from k to j going through no
vertex with index greater than k-1, and so their costs are A(k-1)[i][k] and A(k-1)[K][]j].

Note that this is true only if G has no cycle with negative length containing vertex k. If this is not true, then the
shortesti toj path going through no vertices of index greater than k may make several cycles from k to k, and
thus have a length substantially less than A(k-1)[i][k] +tA(k-1)[k][]]. So, we have the following formulas:
AKLTITI] = mn{ ACk-1)[i][j], ACk-1)[i][k]+ACk-1)[K][j] },

k >0

and
AO[i][j] = cost[i][]j]

5. Example: Let the graph be as shown here.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0196.html (2 of 4) [30.06.2007 10:58:46]

PROBLEM: THE ALL-COST SHORTEST PATH

Click To expand

Here, n = 6. The values of Ak, 0<=k<6 are shown next. Msignifies MAXI NT.

50 M 45
M 10
15 M
35
30 0
M

AD

I

==2=E8=2°
=

S
=

o T 22X

(]

M 45
M 10
15 65
35
i 0
M

Al

I
==2=28=2°
=
ZE2 =2 o ms
=
o 2 222X

[]

45
10
65
M 30
M MM 3 0
M

=)
=
=
= =

A2

I
ot
S
=]
=]
o
un

bt
=
th
=

e IR 2=

=
=
=
w

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0196.html (3 of 4) [30.06.2007 10:58:46]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu664%5F1%5F0%2Ejpg
file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu664%5F1%5F0%2Ejpg

PROBLEM: THE ALL-COST SHORTEST PATH

0 50 10 25 45 M
35 015 30 10 M
A= 2070 0 15 65 M
55 20 35 0 30 M
M MMZ3 0 M
MMM 3 M 0
0 45 10 25 45 M
35 0 15 30 10 M
Ad = 20 35 0 15 45 M
56 20 35 0 30 M
85 50 65 30 0 M
56 23 38 3 33 0
0 45 10 25 45 M
35 015 30 10 M
A5 = 2035 0 15 45 M
55 20 35 0 30 M
85 50 65 30 0 M
56 23 38 3 33 0

Anentryin A5[i][j] gives the minimum path length from vertexi toj .

Pointsto Remember
1. The complexity of the algorithm al | Cost s() is O(n"3).

2. Different options should be considered before implementation, as we did for this problem. This can result not
only in getting an efficient algorithm but also in effectively handling special cases.

3. See how the problem of size k is recursively defined in terms of a problem of size k-1.

= =

[@ rPREV | | NExT Wb |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0196.html (4 of 4) [30.06.2007 10:58:46]

Chapter 29: Miscellaneous Problems

= o

| 4mPREV | | NEXT Wi |

Chapter 29: Miscellaneous Problems

PROBLEM: THE TWO-CLASSCLASSIFICATION PROBLEM

Given a training data set having two classes and the functional form of the decision boundary between them, find the
decision boundary of that form that best separates the two classes. Assume that a linear decision boundary will be
used to classify samples into two classes, and that each sample has M features.

Program
#i ncl ude <stdio. h>

typedef enum {FALSE, TRUE} bool ;

int conputeD(int *x, int n, int Jw) {
/*
* conmpute the value of the discrinmnant function D using the xis and ws.
*D= wo + wlx1l + w2x2 + ... + wnxn.
*/
int i;
int d= wO0];

for(i=l; i<=n; ++i)

d += wi]*x[i];

return d;

}

int signum(int d) {
/*
* signun(d)
*/
if(d =0
return 1;
return -1;

1if d>=0
-1 ot herw se.

}
void updateWint *x, int n, int *w, const int c, const int k, int d) {
/*
* update the ws as the discrininant function was different than the class

* val ue.

* W += cdxi for |<=i<=n.
* wo += cdk.

*/

int i;

Wo] += crdrk;

for(i=l; i<=n; ++i)
Wil += c*d*x[il;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0197.html (1 of 5) [30.06.2007 10:58:47]

Chapter 29: Miscellaneous Problems

void printHeader(int n) {

/*

* print header of the output
*/

int i;

for(i=l; i<=n; ++i)

printf ("x%\t", i) ;
printf ("d\t");
for(i=0; i<=n; ++i)
printf("old wa\t", i) ;
printf("DitError2\t") ;
for(i=0; i<=n; ++i)
printf("new we@\t", i);
printf ("\n");
}

int findK(FILE *fp, int n) {
int tenpk, k=0, count=0;
int i;

whil e(fscanf(fp, "%", & empk) ==1) { [/ x1.

k += tenpk;

for(i=2; i<=n;, ++i) {// x2 to xn.
fscanf(fp, "%", &t enpk);
k += tenpk;

}

fscanf (fp, "%", & empk); [/ d.

count ++

abs(k);
return Kk;
}
void printArray(int *xorw, int n) {
/*
* print xor{0. .n-1].
*/
int i;
for(i=0; i<n; ++i)
printf("%\t", xorwi]);
}
int main() {
int *x, *w
int n, i, D

const int c=l;

int k = 0, tenmpk, count = O0;

bool wChanged = TRUE

FILE *fp = fopen("adb.dat", "r");

fscanf (fp, "%", &n);
x = (int *)malloc((n+l)*sizeof(int)); // 1 d+ n Xxs.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0197.html (2 of 5) [30.06.2007 10:58:47)

Chapter 29: Miscellaneous Problems

}

}
f

r

w = (int *)calloc(n+l, sizeof(int)); // n(w) = n(x) + 1

/1 make first pass in the file to cal cul ate val ue of k.

k = findK(fp, n);
printf("n=%, k=%. \n", n, k) ;

/1 now print the header.

print Header (n) ;

/1 now the loop until there is no change in ws in any iteration.

whi | e(wChanged) {

wChanged = FALSE;
fseek(fp, OL, SEEK SET) ;
fscanf (fp, "%", &n); // again read it.

/!l the xs are stored as d followed by n xs.
/] the ws are stored as w0, wi, ..., wn.
/]l thus xi and wi have the sane indices.

/1 now read each row.

whil e(fscanf(fp, "%", x+1) == 1) { // x1.
for(i=2; i<=n; ++i) [/ x2 to xn.

fscanf(fp, "%d", x+i);

printArray(x+1, n); /[l print xis.
fscanf(fp, "%", X); /1 the d val ue.
printf ("%\t", x[0]);
printArray(w, n+l1); [l print old ws.

D = computeD(x, n, wW;
printf("%\t", D);
if(signum(D) != x[0]) {
wChanged = TRUE;
updateWx, n, w, c, k, x[Q);
printf ("yes\t");
}
el se
printf ("no\ t");
printArray(w, n+l); // print new w s.
printf ("\n");
}

cl ose(fp);

eturn O;

Explanation

1. If the discriminant function is of the form D = w0 + wlxl + ... + wkM then D = 0 is the equation of the

decision boundary between the two classes. The weights w0, wl, ..., wMare to be chosen to provide good
performance on the training set. A sample with feature vector x = (x1, ..., x2) is classified into one class,
say class 1 if D >= 0, and into the other class, say class —1 if D < 0. Geometrically, D = 0 is the equation of

a hyperplane decision boundary that divides the M-dimensional feature space into two regions. Two classes are
said to be linearly separable if there exists a hyperplane decision boundary such that D > 0 for all the samples

inclass 1, and D < O for all the samples in class —1.

2. The adaptive decision boundary algorithm consists of the following steps:

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0197.html (3 of 5) [30.06.2007 10:58:47]

Chapter 29: Miscellaneous Problems

a. Initialize the weights w0, ..., wMto zero or to small random values or to some initial guesses. Choosing
good initial guesses for the weights will speed convergence to a perfect solution if one exists.

b. Choose the next sample x = (xI, ..., xM from the training set. Let the true class of desired value of
Dbed, sothatd = 1 or —1 represents the true class of x.

c. ComputeD = w0 + wixl + ... + wikM

d. Ifsignum(D) != d, replacew byw + cdxi,fori = 1, ..., M where c is a positive constant that
controls the step size for weight adjustment. si gnun(D) == 1ifD >= 0andsi gnum(D) == —1ifD
< 0. Also replace w0 by w0 + cdk where k is a positive constant. If si gnum(D) ==d, then no change
in the weights should be made. We take k to be the average absolute value of all the features for fast
convergence.

e. Repeat steps b through d with each of the samples in the training set. When finished, run through the
entire training data set again. Stop and report perfect classification when all the samples are correctly
classified during one complete pass of the entire training set through the training procedure. An additional
stopping rule is also needed since this process would never terminate if the two classes were not linearly
separable. A fixed maximum number of iterations could be tried, or the algorithm could be terminated
when the running average error rate ceases to decrease significantly. We assume that the classes are
linearly separable.

3. The data is read from a file. The first line of the file should contain a single number n signifying the number of

features. From line 2 onwards, each line contains n+l numbers representing one sample. It contains n feature
values followed by the class value (1 or —1). One pass of the file is done in f i ndK() to find the average

absolute value of the features to be assigned to the constant k for fast convergence to the solution, if it exists.
mai n() then contains a loop that runs as long as there is at least one misclassification in the whole data set.
The inner whi | e loop reads every sample and stores the vector x in an array x[] from indices 1 to n. x[0]
stores the class value d. W O . . n] is another array that stores the values of weights w0, ..., wn. Initially,
all ws are set to zero. The function conput eD() computes the value of the discriminant function D by using X[]
and W] . We then check whether si gnunm(D) == class value d. If they are equal, nothing is done; otherwise, w
[1 vector is changed as given in the preceding algorithm. The function pri nt Array() prints a vector.

. Example: Let the training file be

1

-4 -1

-11.

This means there is only one feature and there are two samples. In the first, the value of x1 is —4 and its class
is —1. The second contains the value of x1 as —1, and its class is 1.

Letc =1.

k = average absolute value of features = abs((—-4—-1)/2) =abs(-2) =2. w0 = w1l = 0.

Using the first sample x1 = —4 results in D = w0 + wlx1 = 0 + 0(—4) = 0, where we have arbitrarily assigned the
sign of 0 to be 1. However, d = —1, so the sample is misclassified and we adapt the weights as follows:
WO0=WO0+cdk=0+1(-1)2=-2.

wl=wl+cdxl=0+1(—-1)(—4) =4.

The algorithm is repeated until both samples are correctly classified.

Different steps of the algorithm are as follows:

step x1 d old wO old wl D Error? new w0 new wl
-4 -1 0 0 0 yes -2
-1 1 -2 4 -6 yes 0 3

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0197.html (4 of 5) [30.06.2007 10:58:47)

Chapter 29: Miscellaneous Problems

3 -4 -1 0 3 -12 no 0 3
4 -1 1 0 3 -3 yes 2 2
5 —4 -1 2 2 -6 no 2 2
6 -1 1 2 2 0 no 2 2

Pointsto Remember

1. One way to assure a sort of convergence, even when the classes are not linearly separable, is to replace the
constant ¢ by a variable step size that decreases with the number of iterations. However, convergence to a

decision boundary that best separates the classes is not guaranteed when the classes are not linearly separable.

2. Nonlinear decision boundaries that are more complex than hyperplanes can also be found by this adaptive
technique.

3. If there are more than two classes, but each pair of classes is linearly separable, then the same algorithm can
be used to find the boundary between each two pairs of classes.

- -

| 4mPREV | | NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥20(2004)/7267/DDU0197.html (5 of 5) [30.06.2007 10:58:47]

PROBLEM: THE N-COINS PROBLEM

- -

| 4mPREV | | NExT 0P |

PROBLEM: THE N-COINSPROBLEM

Given a string of Os and 1s as tails and heads obtained from tossing n coins of arbitrary biases, find the (approximate)
points where the change of coin could have taken place.

Program

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

#defi ne M NGROUPSI ZE 10
#define EPSILON 0.08

int adjustPartition(int *a, int n, double *p, int m int i) {
/*
* slide the partition boundary fromi forward or backward to get
* better partition and return the index of the last elenment in the
* partition.

o R R

*/

int aindex = i*M NGROUPSI ZE;

int j, startj = aindex-M NGROUPSI ZE/ 4, finalj = ai ndex+M NGROUPSI ZE/ 4 ;
int k;

i nt ones, nelem

for(k=(i - 1)*M NGROUPSI ZE, nel enx0; k<startj; ++k, ++nelem
ones += al[Kk];
/!l the bias of the coin uptil now here is ones/nelem

for(j=startj; j<final j; ++) {
ones += al[j]; ++nelem
if (fabs (ones/ (double) nelem p[i]) >= EPSILON) // found the partition.

br eak;
}
return j;
}
int findChange(int *a, int n, double *p, int m {
/*
* the running probabilities are given in p[nj.
* find the points of coin change fromthem
*/
int i;
for(i=l; i<m ++i) {
if(fabs(p[i]-p[i-I]) =>= EPSILON) // found the change.
return adjustPartition(a, n, p, m i);
}
return -1;
}
int findProb(int *a, int n, double *p) {
/*

* find the average probabilities of groups in a[n] and store in p.

file:/l/Z|/Charles%20River/(Charl es¥%20Ri ver) %20C%20& %20Data%620Structures¥20(2004)/7267/DDU0198.html (1 of 4) [30.06.2007 10:58:48]

PROBLEM: THE N-COINS PROBLEM

*/
int i, j=-1, k, ones, nelem
for(i=0; i<n; ++i, ++nelem {
i f(i9%v NGROUPSIZE = 0)
ones=0, nelem=0, ++ j ;
p[i] = (a[il=l ? ++ones, ones/(double)(nelemtl) : ones/
(doubl e) (nel emtl
));
}
return j+l;
}
void printAverage(int *a, int partindex) ({
/*
* print average of this new partition a[O .partindex-1;
*/
int ones = 0, i;
for(i=0 i<partindex; ++i)
ones += a[i];
printf("average = X. 21 f .\n", ones/(doubl e)partindex);
}

void findPartition(int *a, int n, double *p, int startoff) {

int m= findProb(a, n, p);
int partindex = findChange(a, n, p, m;

if(partindex != -1) {
printf("partitiOn at %l.\n", startoff+partindex) ;
print Average(a, partindex);
findPartition(at+tpartindex, n — partindex, p, startoff+partindex);

}
el se
print Average(a, n);
}
int main() {
int a[] = {0,0,0, 1,0,0,0,1,2,1,1,2,0,2,1,2,1,0,0, 0,0,2,0,0,1,0,0,0,1,0};
doubl e *p;
int n = sizeof(a)/sizeof(int);
int m
p = (doubl e *)mal 1 oc((n+M NGROUPSI ZE — 1) / M NGROUPSI ZE*si zeof (doubl e);
findPartition(a, n, p, 0);
return O;
}
Explanation

1. Consider the following input string:
o,0,01,000,1,2,2,1,2,0,12,1,1,1,0,0,0,0,1,0,1,0,0,0,1,0,0,12,0,0,1,0,0,0, 1, 0.

Visually, we may partition it as follows:
0,001,000 12,1,1,1210,2,21,1,12 0o0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0.

file:/l/Z|/Charles%20River/(Charles¥%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0198.html (2 of 4) [30.06.2007 10:58:48]

PROBLEM: THE N-COINS PROBLEM

We define bias of a coin as the probability of tossing a head (1).
Thus, bias of coin 1 = 1/7 = 0.14.

bias of coin 2 =9/10 = 0.9.

bias of coin 3 = 6/22 = 0.27.

Thus, we have to find such partitions in the input string.

Note two extreme cases. First, there was a single coin whose bias is 16/39 = 0.41. Second, there were 39 coins
with biases equal to their outcomes (0 or 1). These conclusions are valid but of no practical importance. What we
are interested in are patterns of Os and 1s that appear uniformly over a length of the string.

2. Since this is a problem with an approximate solution, there can be various ways to get an answer. We have
chosen the following strategy. We patrtition the elements (0Os and 1s) into various groups of a fixed size
M NGROUPSI ZE (perhaps except the last group) and find the average biases of each group. We then compare
adjacent group biases, and if the difference in the biases is >= an error term EPSI LON, we know that these two

partitions have different patterns, and so a possible change of coin took place somewhere near the boundary
between the two partitions. We then try to shift the boundary by some fixed amount and find a suitable partition
point. Thus, we found out one possible change of coin. We run this algorithm recursively to find the next partitions
in the input.

3. The function fi ndParti ti on() is the driver function. It calls f i ndPr ob() to group the elements of the input
string into various partitions and find their average biases. It then calls f i ndChange() to check whether there
are consecutive biases having a difference of >= EPSI LON. The function f i ndChange() returns —1 if there is
no such change. Otherwise, it calls adj ust Parti ti on() to make a smooth change to the partition index for
better accuracy. The function adj ust Parti ti on() slides the end of the partition from - M NGROUPSI ZE/ 3to 0
to +M NGROUPSI ZE/ 3 across the original boundary and stops as soon as the difference in the biases of the
original partition and the sliding partition is >= EPSI LON. The function pri nt Aver age() is a dummy function
used to print values required for understanding and debugging.

4. Example: Let M NGROUPSI ZE=10 and EPSI LON=0. 08.

For this input string, the function f i ndPr ob() groups the elements into the following partitions having the given
biases:

group 0 =0,0,0,1,0,0,0,1,1,1 bias = 4/10 = 0.4.

group1=1,1,0,1,1,1,1,0,0,0 bias = 6/10 = 0.6.

group 2 =0,1,0,1,0,0,0,1,0,0 bias = 3/10 = 0.3.

group 3 =1,0,0,1,0,0,0,1,0 bias = 319 = 0.33.

The first call to f i ndChange() tells that there is a change of >= EPSI LON between group 0 and group 1. Thus,

the partition wall is assumed between the two groups. This wall is shifted from its position from negative to
positive direction in the function adj ust Par ti ti on() . The offset within which this is done is fixed at

M NGROUPSI ZE/ 4. If the difference between the average bias of the partition before this wall and the average
bias of the partition before the original partition wall becomes >= EPSI LON, then the partition wall is fixed at that
point.

Thus the first partition is fixed at index 8, and is 0,0,0,1,0,0,0,1 with average bias of 2/8 = 0.25.
The remaining array is then partitioned recursively in a similar manner. Thus we get the remaining partitions as

1,1,1,1,0,1,1,1 with average bias of 7/8 = 0.88 and 1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0 with average bias
of 7/23 = 0.3.

Pointsto Remember

1. One can find an input string that can fool this algorithm for a fixed group size M NGROUPSI ZE and error term
EPSI LON.

file:/l/Z|/Charles%20River/(Charl es%20Ri ver) %20C%20& %20Data%620Structures¥20(2004)/7267/DDU0198.html (3 of 4) [30.06.2007 10:58:48]

PROBLEM: THE N-COINS PROBLEM

2. There will be greater accuracy if some adaptive algorithm is used that will refine the partitions.

3. This algorithm can be used in noise detection and correction of the input signal.

- -

[@wPREV | [NExTep

file:/l/Z|/Charles%20River/(Charl es%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0198.html (4 of 4) [30.06.2007 10:58:48]

PROBLEM: ALL COMBINATIONS OF STRINGS

| NEXT Wi |

—

| 4mPREV |

PROBLEM: ALL COMBINATIONS OF STRINGS

Write a program to print all the combinations of a string.

Program
#i ncl ude <stdi 0. h>

#define MAXLEN 80

void init(char *answer, int slen) {
/*
* initialize first slen entries in answer[] to O.
*/
int i;

for(i=0Q, i<slen; ++i)

*answer ++ = O;
*answer = 0; // eos.
}
void printConb(char *s, int slen, char "answer) {
/*
* fixes a character of s and then calls printConbO recursively
* to get all conbinations of the remaining chars.
*/
int i;
static int count = O;
if(*s =0) {
count ++;
printf("%d: %.\n", count, answer);
return;
}
for(i=0, i<slen; ++i)
if(answer[i] = 0) {
answer[i] = *s;
print Comb(s+l, slen, answer);
answer[il = 0;
}
}

int main() {
char s[MAXLEN|
char answer CVAXLEN] ;

printf("Enter characters for conbination: ");
gets(s-1;

while(*s) {

init (answer, strlen (s));
printConb(s, strlen(s), answer);

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0199.html (1 of 2) [30.06.2007 10:58:48]

PROBLEM: ALL COMBINATIONS OF STRINGS

printf ("Enter characters for conbination(press enter to end): ");

gets(s);
}
return O;
}
Explanation

1. Consider an input string abc. Various combinations of this string are abc, ach, bac, cab, bca, and cba.
To generate these combinations, we once again make use of recursion.

2. Note that combinations of the string " abc" are obtained by fixing character *a’ at different positions and finding

combinations of string *bc’ . Fixing ‘*a’ at a position means, in the answer string, the character ‘a’ will occur at
a fixed position. Similarly, combinations of string *bc’ can be found by fixing character ‘b’ at different positions
and finding combinations of string *c’. If string ‘¢’ has only one combination, we get the following:

comb('c') = c.

comb('bc') = bc [/* character 'b' fixed at position 1. */

and cb /* character 'b' fixed at position 2. */
conmb(' abc') = a fixed at different places in conmb('bc').
= abc and acb /* character "a' fixed at position 1. */

and bac and cab /* character 'a' fixed at position 2. */
and bca and cha /* character 'a' fixed at position 3. */

3. The program repeatedly asks for a string until the entered string is empty and calls pri nt Conb() . pri nt Conb
() fixes the position of a character and calls pri nt Conb() recursively for the remaining string.

4. The complexity of pri nt Conb() can be easily derived from the following recurrence relation:
T(n) = n*T(n—1).
This is because, for finding combinations of a string of length n, we fix the position of a character at a position
out of n possible positions and then find combinations of the remaining (n—1) characters. After solving the

equation, we get the complexity of pri nt Conb() 1 as O(n!).

Pointsto Remember
1. The complexity of pri nt Comb() is O(n!) where n is the length of the input string .

2. A simple recursive procedure, such as pri nt Conb(), can solve a larger problem in an elegant manner.

3. Care should be taken to end a string with *\ O’ , as done in functioni ni t () .

- -

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥20(2004)/7267/DDU0199.html (2 of 2) [30.06.2007 10:58:48]

PROBLEM: THE 8-KNIGHTS PROBLEM

-

| NExT 0P |

-

| 4mPREV |

PROBLEM: THE 8-KNIGHTS PROBLEM

Solve the problem of a knight's tour without backtracking. Assume that it starts from a corner of the chessboard.

Program
#i ncl ude <stdi o. h>

#define M8
#define NDIR 8 // no of directions.

t ypedef enum { FALSE, TRUE} bool ;

int rowchange[] ={-2, -1, 1, 2, 2, 1, -1, -=-2};
i nt col changel] -2, -1, 1, 2, 2, |};

11
~
I
=
|
N

void printMatrix(int a[][M, int n) {

/*

* print the final solution.
*/

int i, j;

for(i=Q i<n; ++i) {
for(j=Q j<n; *j)
printf("9d ", al[ill[j]);
printf("\n");

}

int getCost(int a[][M, int row, int col, int n) {
/*
* find the nunber of positions which can be visited fromaJrow][col].
*/
int i;
int count = O;

if('(row=0 & rown && col=0 & & col<n && a[row][col]=FALSE))
return NDI R+l ;

for(i=0; i<NDIR; ++i) {

int newow = rowtrowhange[i]

nt newcol = col +col change[i];

i f(newrow>=0 & & new ow<n && newcol>=0 && newcol <n && a[new ow] [newcol] =FALSE)
count ++ ;

’

}

return (count ? count : NDIR+H);

}

void knight(int a[][M, int n, int row, int col, int nunm {
/*
* find the next position in a of size n*n.

file:/l/Z|/Charles%20River/(Charles¥%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0200.html (1 of 4) [30.06.2007 10:58:49]

PROBLEM: THE 8-KNIGHTS PROBLEM

* next position is the position fromwhere mn nunber of positions
* can be reached.
* current position is (row, col): unnarked.

*/
int mncost = NDI R+2; [l infinity.
int mndir = -1;
int i;

a,[rovsﬂ[col] = num
i f(num = n*n)

return;
for(i=C I<NDIR;, ++i) {
int newow = rowtrowchange[i];
int newcol = col +col change[i];
int cost = getCost(a, newow, newcol, n);

i f(cost < mincost)
m ncost =cost, mndir=i ;

}
kni ght (a, n, rowtrowchange[nmi ndir], col+col change[ni ndit—1, numtl);
}
int main() {
int aflM[M ; [//here you have to initialize matrix
int i=0, j=0;
for(i=0; i<M i++)
for(j=0; j<M |++)
a[i][j]=0;
knight(a, M 0, 0, 1);
printMatrix(a, M;
return O;
}
Explanation

1. On an 8 x 8 chessboard, a knight can travel two-and-a-half positions at a time. The problem is to start from a
corner of the chessboard and visit all 64 positions without visiting any position more than once. This travel is
called a knight's tour.

2. There is more than one way to solve this problem. We implement here the strategy suggested by J.C. Warnsdorff
in 1823. His rule is that the knight must always be moved to one of the positions from which the minimum number
of not-yet-visited positions can be traversed.

3. The knight can visit one of the eight (at most) positions from a fixed position. Those are shown in Figure 29.1. Itis

possible that the number of positions that can be traversed is less than eight, depending on the chessboard
boundaries and visit of the knight to other squares.

file:/l/Z|/Charles%20River/(Charles¥%20Ri ver) %20C%20& %20Data%620Structures¥20(2004)/7267/DDU0200.html (2 of 4) [30.06.2007 10:58:49]

PROBLEM: THE 8-KNIGHTS PROBLEM

4 5

Figure 29.1: A knight can move to a maximum of eight positions.

If the board is represented (naturally) by 8x8 matrix of integers a[8] [8], and if the current position of the knight
isa[i][]j],then the next position could be one the eight: a[i —2][j —1], a[i —-1][] —2], a[i+1][] —-2],
a[i+2][j—1),a[i+2][j+1],a[i+1][j+2]),a[i—-2][]j+2],a[i—2][]+l].We maintain two arrays of
these changes in row and column in r owchange[8] and col change[8] . Thus, if the current positionis a[i]
[j], then the next position in direction d, | <=d<=8, as shown in the figure, is given by a[i +r owchange[d
—I11[j +col change[d—-1]].

4. The program initializes the array by zeros and calls function kni ght () with the values of (row. column) as (0,
0), which forms the first position of the knight. Then, for each of the eight directions we find the new position a
[newr ow] [newcol] using the rule in Number 3. From each of these entries, we find the number of positions to
which the knight can travel (get Cost ()) . We select the minimum of such values and call kni ght () recursively

for that position and so on until we finish all the squares. As we visit a position, we mark it to print the path at the
end of the traversal.

Pointsto Remember

1. The knight's tour can be solved with backtracking by the trial-and-error method in which we select the next move
randomly, and, if we find it to be non-feasible, we backtrack and try another direction. Its complexity is
exponential.

2. The problem of the knight's tour can also be solved without backtracking in O(N x N) time where N is the size of
the chessbhoard.

3. There are other heuristics available that can solve the problem of the knight's tour with only a little backtracking.

4. Note how maintaining two vectors r owchange[] and col change[] avoids the use of a long swi t ch statement

file:/l/Z|/Charles%20River/(Charles¥%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0200.html (3 of 4) [30.06.2007 10:58:49]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/fig29%2D1%5F0%2Ejpg

PROBLEM: THE 8-KNIGHTS PROBLEM

containing 8 cases, and keeps the code concise.

[_* FREY j [_ NEAT *j

file:/l/Z|/Charles%20River/(Charl es¥%20Ri ver) %20C%20& %20Data%620Structures%20(2004)/7267/DDU0200.html (4 of 4) [30.06.2007 10:58:49]

PROBLEM: N-QUEENS PROBLEM

-

| NEXT Wi |

—

| 4mPREV |

PROBLEM: N-QUEENS PROBLEM

Solve the N-queens problem in which in an array of NxN positions, N queens are placed such that no two queens are
in attacking positions.

Program

#i ncl ude <stdi o. h>
#define N 10

typedef enum {FALSE, TRUE} bool ;

void printMatrix(int a[]J[N, int n) {

/*

* print one solution.
*/

int i, j;

for(i=0; i<n; ++i) {
for(j=0; j<n; ++j)
printf("%d ", a[il[j]);

printf("\n");
}
/'l getchar();
printf("\n");
}
int getMarkedCol (int a[][N, int n, int row {
/*
* returns the columm marked in row
*/
int j;
for(j=0; j<n; ++4))
if(a[row][j] == TRUE)
return j;
printf("ERROR. No col nmarked in the row %.\n", row;
return -1;
}
bool feasible(int a[] [N]], int n, int row, int col) {
/*
* checks whet her next queen can be kept at a[rowj[col].
*/
int i;
i nt mar kedCol ;
for(i=0; i<row, ++i) { [/ for all rows before this row
mar kedCol = get MarkedCol (a, n, i);
i f(markedCol = col || abs(rowi) = abs(col -nmarkedCol))
return FALSE ;
}
return TRUE;
}

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0201.html (1 of 3) [30.06.2007 10:58:50]

PROBLEM: N-QUEENS PROBLEM

void NQueens(int a[][N, int n, int row) {
/*
* solve n-queens problem the solution is obtained using matrix a.
* the procedure is recursive. current row being considered is row.
* that neans all the rows fromO to row 1 are consi der ed.
*/
int j;

if(row < n) {
for(j=0; j<n; ++) /'l for each col.
if(feasible(a, n, row, j)) {
a[row][j] = TRUE;
NQueens (a, n, rowtl);
a[row [j] = FALSE

}

el se
printMatrix(a, n);
}

int main() {
int afNN[N ;
int i=0, j=0;
for(i=0; i<8; i++)
for(j=0; j<8; j++)
a[i][j]=0;
NQueens(a, 8, 0);

return O;

}

Program Description

1. The N x N positions are naturally represented by using an Nx Narray a[N] [N] of integers (even an array of

Boolean is sufficient). A value of 0 (FALSE) ofa[i][]j] indicates absence of a queen inrowi and columnj,
while a value of 1 (TRUE) indicates her presence.

. Two queens are in attacking position if they are in the same row, column, or diagonal. Thus, queens placed at a

[1]1[2] anda[7] [2] are attacking as they are in the same column (2). Similarly, a[1] [2] and a[5] [6] are
attacking positions as they are present on the same diagonal. Thus, the positionsa[i][j] anda[k][I] are
attacking if:

o i =k, or
o j =1,or

o abs(i -k) ==abs(j-1) where abs(0) returns the absolute value of a number.

3. The program starts by initializing the array a[] [] by 0. It then recursively calls function NQueens() to place

each queen in the next rows. Thus in each recursive call to NQueens(), one queen is placed at the non-

attacking position. Our aim is not to find a single solution but to find all the combinations of positions in which the
N queens can be placed. So we repeat it for each column of the array. Thus, the algorithm is as follows:

NQueens (row) {
if(row< N {
for j=0 to N-1

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0201.html (2 of 3) [30.06.2007 10:58:50]

PROBLEM: N-QUEENS PROBLEM

i f(feasiblePosition(row, j)) {
a[row][j] = TRUE;, // queen pl aced.
NQueens(row+l) ;
a[row][j] = FALSE; // queen renpved fromthis row

}
}

el se {
printMatrix();

}
}

The function f easi bl eSol uti on(row, col) simply checks whether the next queen can be put at a[r ow
[col]. This is done by checking whether none of the previously placed queens are attacking this queen.

The complexity of NQueens () is O(N!) if it finds all solutions. This can be derived easily from the following
recurrence relations:

T(N) = N*(NA2+T(N-1))
and
T(1) =1.

The complexity of f easi bl eSol uti on() is O(N*2). It can be made O(N) by maintaining a vector of columns in
which the queens are placed.

Pointsto Remember

1.

Once again a recursive procedure has played the trick of solving an apparently larger problem easily, by dividing
a problem of size Ninto a problem of size N — 1.

By separating the procedure f easi bl esol uti on(), the function NQueens() itself looks like the algorithm.
This suggests the usefulness of writing a pseudo-code before the implementation details.

The complexity of NQueens () is O(N!).

| 4mPREV |

- -

| MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0201.html (3 of 3) [30.06.2007 10:58:50]

PROBLEM: MAPPING OF N-QUEUES IN AN ARRAY

= r

| 4mPREV | | NEXT Wi |

PROBLEM: MAPPING OF N-QUEUESIN AN ARRAY

Design a data representation sequentially mapping N-queues into an array nqueue[0...N- 1] . Represent each queue
as a circular queue within the array. Write functions gAdd() , gDel et e(), gl sFul | () for this representation.

Program

#i ncl ude <stdio. h>

#define N 50 /1 combi ned size of all queues.

#define NQ 5 /1 number of queues.

/* ASSUMPTION : NQis a divisor of N */

#define | LLEGALI NDEX -1 /1 illegal index - - for special cases.
#defi ne EI NDEXOQUTOFBOUND -1 // error code on overflow in the queue.

#defi ne SUCCESS 0 /1 success code.

typedef int type; /1 type of each data item

type nqueue[N ; /1 queue inpl enented using array.

int front[NQ; // points to first elenent in the queue.
int rear[NQ; // points to last elenent in the queue.

void glnit() {
/*
* initialize front[] to contain | LLEGALI NDEX.
* | LLEGALI NDEX specifies enpty queue.
*/
int i;
for(i=0; i<NQ ++i) {
front[i] = | LLEGALI NDEX;
}

int gAdd(i nt queue, type data) {
/*
* adds 'data' at the end of queue.
*/
int maxel em nelem

if(queue < 0 || queue >= NQ) // invalid queue nunber.
return EI NDEXOUTOFBOUND;

maxel em = N NQ

nel em = qGet NEl enent s(queue);

if(nelem==0) { [l enpty queue.
front[queue] = rear[queue] = naxel enfqueue;

el se if(nel em == nmaxel em) /1 queue full.
return EI NDEXOUTOFBOUND;
el se
rear[queue] = (rear[queue]+l)%maxel em + maxel ent queue;

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0202.html (1 of 4) [30.06.2007 10:58:50]

PROBLEM: MAPPING OF N-QUEUES IN AN ARRAY

printf("inserting at %\ n", rear[queue]);
nqueuel rear [queue]] = data;
return SUCCESS;

}
i nt qGet NEl erent s(i nt queue) {
*
/* returns no of elenments in queue.
*
iré start, end;
i f(front[queue] = | LLEGALI NDEX) /1l queue enpty.
return O;

i f(front[queue] <= rearqueue)
return rearqueue-front[queue] +l;

start
end

N NQ* queue;
N N (queue+l) ;

return (end-front[queue]) + (rear[queue]-start+l);

}
int gDel ete(int queue) {
/* renoves front el enent of queue.
*
ini nel em = gGet NEl enent s(queue);
printf("deleting fromqueue %.. .\n", queue);

if(nelem==0) [/ enpty queue.
return ElI NDEXOQUTOFBOUND;

else if(nelem==1) /1 last elenent getting del eted.
front [queue] = | LLEGALI NDEX;

el se
front[queue] = (front[queue]+l)Y N NQ + N NQ queue;

return SUCCESS;

}
int glskFull(int queue) {
/*
* returns 1 if queue is full, otherw se O.
*/
return (qGet NEl enent s(queue) == N NQ);
}
void gPrint(int queue) {
/*
* prints the queue.
*/

i nt nel em = qGet NEl enent s(queue) ;
int maxel em = N NQ

int start = nmaxel enfqueue;

int i;

for(i=0; i<nelem ++i)

printf("% ", nqueue[(front[queue] +i) %raxel emrstart]);
printf("\n");

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0202.html (2 of 4) [30.06.2007 10:58:50]

PROBLEM: MAPPING OF N-QUEUES IN AN ARRAY

}

int main() {
alnit();
printf("nelem of 3=%\n", qGetNEl enents(3));
gAdd(3, 0);
gPrint(3);
gblel et e(3);
gPrint(3);
printf("nelem of 3=%\n", qGetNEl enents(3));
gAdd(3,1);
gAdd(3, 2);
gAdd(3, 3);
gPrint(3);
gblel et e(3);
gPrint(3);
gAdd(3, 4);
gAdd(3, 5);
gAdd(3, 6) ;
gAdd(3, 7);
gAdd(3, 8);
gPrint(3);
gblel et e(3);
gPrint(3);
gAdd(3, 9);
gPrint(3);

}

Explanation

1. Along with the array nqueue]], front and rear indices for each queue are maintained in arrays f ront [0...NQ
1] andrear[0...NQ 1] .front[i] signifies the first element in queue i . The maximum number of elements
in each queue is N/NQ. It is assumed that NQ is a divisor of N. The index of the first element in queue i is given
by the formula N/NQ*i.

2. The program starts by initializing the front and rear of all the queues to a sentinel value (—1) . The number of
elements in queue i is calculated as follows:

Murmber of elemants = 0 il frondfi] == -1
= raari]-frort]ijs 1 if fronf]i] <= raari]
= (NG (i1 h=fronti]) + (rear[il-NMNO%+1) othanwisa.

Ir-nnl‘,;l] rEI?I!‘lI:_
'-—u.* +_.___._-—
| 1 | 2 | x| I 4 | 5 | (] | T | | Cluswse withaul

WIAREAng

H Ol | .'l

rinr]i] tranii]

L -+

| & | T | | | | i |:-'-_' | 3 | 4 | R | CuaLng wilks
WrapEan

H Cluauwe i ﬂ

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0202.html (3 of 4) [30.06.2007 10:58:50]

file:///Z|/Charles%20River/(Charles%20River)%20C%20&%20Data%20Structures%20(2004)/7267/images/figu691%5F1%5F0%2Ejpg

PROBLEM: MAPPING OF N-QUEUES IN AN ARRAY

3. The function gAdd(queue, dat a) adds data to the end of the queue. It checks for a valid queue number (O...
N NQ 1) and queue-overflow condition. If space is available for the new element in the queue, then r ear
[queue] is incremented and the new element is inserted at the position. The end condition that the queue was
initially empty is also checked as it needs updation of f r ont [queue] . Itis possible for r ear [queue] to get
wrapped to N NQ* queue.

4. The function gDel et e(queue) removes the front element of the queue. It checks for underflow by using the
number of elements in the queue. If the element being deleted is the last element of the queue, r ear [queue]
is also updated. Otherwise, only f r ont [queue] points to the next element in the queue. It is possible for f r ont
[queue] to get wrapped to N/ NQ* queue.

5. The function gl sFul 1(queue) checks whether there is any space for a new element. It is implemented by
calculating the number of elements in the queue.

Pointsto Remember
1. The index of the first element in queue i is calculated as (i * size of each queue).
2. The complexity of insertion and deletion as described is O(1). Instead, if we do not allow wrapping of elements,

then every deletion will cost shifting of elements. That will keep insertion O(1) but deletion would become O(n)
where n is the number of elements in the queue.

3. Since all the queues operate on distinct memory areas, the logic of functions remains the same as in a single
gueue implementation, except that the calculations are w.r.t. the index of the first element in the queue,
compared to an assumed zero for the single queue case.

4. Note how a single procedure qGet NEI enmrent s(i), which returns the number of elements in queue i , simplifies
corner cases of insertion and deletion, and also simplifies the function gl sFul | ().

-

| 4mPREV |

-

| NExT mp |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0202.html (4 of 4) [30.06.2007 10:58:50]

PROBLEM: IMPLEMENTATION OF A* ALGORITHM

= r

| 4mPREV | | NEXT Wi |

PROBLEM: IMPLEMENTATION OF A* ALGORITHM

Given n integers and a sum m,write a program to find the set of integers summing to m by using the A* algorithm.

Program
#i ncl ude <stdi o. h>

typedef enum {FALSE, TRUE} bool;

int subsetsum(int *a, int n, int sum bool *selected, int startoff) {
/*
* for those elenments a[i] which have selected[i] = FALSE
* sol ve subset sum problem for sum
* the elements before startoff are of no use.
*/
int i:

i f(sum= 0)
return TRUE
for(i=startoff; i<n; ++i)
if(selected[i] = FALSE && a[i] <= sunm {
selected[i] = TRUE
i f(subsetsunm(a, n, sumal[i], selected, i+l))
return TRUE;
selected[i] = FALSE

}
return FALSE;

int subsetsunori(int *a, int n, int sum {
/*
* check whether there is any subset in a[n] having sum sum
*/
int i;

for(i=0; i<n; ++i)

if(a[i] == sum|]| (a[i] < sum && !subsetsunori(a+i+l, n-i-1, suma [i])))
{
printf("% ", a[i]);
return O;
{
return 1,
}
int conpare(void *el, void *e2) {
/*
* function used in gsort(0).
* returns values <0, ==0, >0 if e2 is <el, ==el, >el.
* thus we need elenents in non-ascendi ng order
*/
return *(int *)e2-*(int *)el,;
}

void printAnswer(int *a, int n, bool "selected) {

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0203.html (1 of 3) [30.06.2007 10:58:51]

PROBLEM: IMPLEMENTATION OF A* ALGORITHM

/*

* print those a[i] which have selected[i] = TRUE.
*/

int i;

for(i=0; i<n; ++i)
if (selected[i])
printf("% ", a[i]);

printf ("\n");
}
int main() {
int a[] = (5, 3, 4, 8, 9, 6);
int sum= 15;
int size = sizeof(a)/sizeof(int);
bool *selected = (bool *)calloc(size, sizeof(bool)); /1 init with FALSE.
gsort(a, size, sizeof(int, conpare);
i f(subsetsum(a, size, sum selected, 0))
print Answer(a, size, selected);
return O;
}
Explanation

Inputs are an array a[] of n integers and the sum as another integer. We need to find out a subset of a[] that
has the sum of its elements equal to sum. This problem is called a 'subset sum problem.'

. The A* algorithm is an Al technigue which chooses the best of the available options to proceed. It uses

heuristics that apply to most real-world situations but do not guarantee the best solution. We use the heuristic
that courses the element not nearest to the required sum to be added to the current sum.

. The list of elements in array a[] is sorted in non-ascending order using the gsort () library function. mai n()

then calls subset sun{) . The function subset sun() uses the Boolean array sel ect ed[n] , where sel ect ed
[1] indicates whether a[i] was included in the sum. The recursive algorithm of subset sun() follows.

bool ean subsetsum(a[], n, sum selected[], startoffset) {
i f(sum == 0)
return TRUE;
for i=startoffset to n-1

if(selected[i] == FALSE && a[i] <= sum {
selected[i] = TRUE;
i f(subsetsum(a, n, suntal[i], selected, i+l) == TRUE)

return TRUE;
selected[i] = FALSE;

}
return FALSE;

}

Thus, if an element has not yet been selected and it is less than the sum, then we choose it and call subset sum
() recursively for the remaining sum by using the elements after this element. The variable st art of f set is
used to indicate the start of elements which may be of interest to add to the current sum. Since a[i] is

selected, no element before a[i +1] will be of interest because all of them are more than a[i], and so are
either already selected or greater than the sum. Remember that the elements are in non-increasing order and

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0203.html (2 of 3) [30.06.2007 10:58:51]

PROBLEM: IMPLEMENTATION OF A* ALGORITHM

the sum in different invocations of subset sun{) is also non- increasing. When the sum reaches 0, it indicates
the termination condition.

4. But where in the algorithm have we used the A* algorithm? It is used by first sorting the list in non-increasing

order and then traversing it from the highest to the lowest elements. This way, at every step, we choose the
option which is nearest to the required sum. If it fails, we deselect the option and choose another option.

5. Example:
Leta[] ={5, 3, 4, 8,9, 6} and sum = 10.
selected[] = {FALSE, FALSE, FALSE, FALSE, FALSE, FALSE}.a[] is sortedto {9,8,6,5,4,3} and
subsetsum(a, 6,10, selected, 0) is called. subset sum() loops over elements 0 to 5 of a.
fori =0, selected[Q = TRUE i.e. a[(Q = 9 is selected and subsetsum(a, 6, 10-9, selected, 0+1) is
called.
subset sun() loops over elements 1 to 5 of a.

fori=l,a[1] =8 >sum 1.
fori=2,a[2] =6 >sum 1.

fori=5,a[5] =3 >sum 1.

So subset sun() returns FALSE.

Since subset sun{() returned FALSE, sel ected[J = FALSE.

fori=l, sel ected[1] =TRUEthatis,a[l] = 8isselected and subset sum(a, 6, 10 -8, selected, 1
+1) is called.

subset sum() returns FALSE in the similar manner as above.

fori=2, sel ected[2] = TRUE, i.e. a[2] = 6 is selected and subset sun{a, 6, 10- 6, selected, 2
+1) is called.

subset sun() loops over elements 3 to 5 of a.

fori=3,a[3] =5>sum4.

fori=4, a[4] =4 <=sum 4.

Sosel ected[4] =TRUEthatis a[4] =4 is selected and subset sum(a, 6, 4-4, selected, 4+1) is

called.
Since sum is 0, subset sun{) returns TRUE.

Since subset sun{) returned TRUE, this subset sum() returns TRUE.
Since subset sun{() returned TRUE, this subset sum() returns TRUE to rmai n() . The function pri nt Answer
() then prints the elements a[i] for which sel ected[i] == TRUE.

Pointsto Remember
1. The A* algorithm chooses the best possible of the currently available paths for the next exploration of options.
2. A* algorithm uses a heuristic. So it does not guarantee the best outcome in all cases. However, in most of the
instances of the problem, it is able to reach the solution faster than the algorithm generating all the combinations
of the elements.

3. The complexity of subset sun() is exponential.

4. By using the variable st ar t of f , the search space is reduced.

- -

| 4mPREV | | MNExT W |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0203.html (3 of 3) [30.06.2007 10:58:51]

Symbols and Numbers

| 4m FPREV | | NEXT @ |

| ndex

Symbolsand Numbers
#if 76

#line 81

8-Knights Problem 680

| @m PREV | | NEXT &P |

file:///Z|/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0204.html [30.06.2007 10:58:51]

A

[_ﬁ PREY j

(

ME=T @

)

| ndex

A

A* algorithm 692

Actual parameter 106
Address 63

Adjacency list 641
Adjacency matrix 637
Arithmetic operator 32
Array Representation 85, 167 390
ASCII 14, 475
Assignment operator 31

Automatic lifetime, of variables 115

[_* FREV j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0205.html [30.06.2007 10:58:52]

(

ME=T @

j

B

[_ﬁ PREY j

(

ME=T @

)

| ndex
B

Base address 171

Binary representation, of integers 16
Binary search 213

Binary search tree 357

Binary tree Traversal 354
Breadth-first spanning tree 410
Breadth-first traversal 399

br eak Statement 51, 54
bsort 193

Bubble sort 193
Build—initial-heap 209

[_ﬁ PREY j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0206.html [30.06.2007 10:58:52]

(

MEXT s

:

Cc

[_ﬁ PREY j

(

ME=T @

)

| ndex

C

Calling function 113
char 19

Circular list 493, 498
Circular queues 247
Collision handling 218
Comma operator 39, 54
Complex structure 138
Contiguous list 171
cont i nue statement 55
Control Statement 6

Control Structures 45

[_ﬁ PREY j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0207.html [30.06.2007 10:58:52]

(

MEXT s

:

D

[_ﬁ PREY j

(

ME=T @

)

| ndex
D

Data types 13-17

Decimal number conversion from floating point 23

Define directive 72

Depth-first spanning tree 410
Depth-first traversal 396

Direct access files 156
direct-access file 147

Directed acyclic graph (DAG) 420
do- whi | e loop 9, 52

Dynamic memory allocations 123

[_* FREV j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0208.html [30.06.2007 10:58:53]

(

ME=T @

j

E

| 4m PREV | | NExT up |

| ndex

E

Encapsulation structure 46
Error directive 80

Error message 80

Escape Sequence 61

Escape sequence 20

| @m PREV | | NEXT &P |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0209.html [30.06.2007 10:58:53]

F

[_ﬁ PREY j

(

ME=T @

)

| ndex

F

Field-width 58, 59, 69
First-in-first-out (FIFO) 242, 260
File 147

Flags 58, 60

Float family 15

Floating point conversion to decimal number 23
Floating-point numbers 21

for Loop 7, 53, 54

Forced conversion 26

Formal parameter 102, 106

Function 101

[_ﬁ PREY j

file:///Z|/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0210.html [30.06.2007 10:58:53]

(

MEXT s

:

G

| 4m PREV | | NExT up |

I ndex
G
Garbage collection 513

Global variables 108

| @m PREV | | NEXT &P |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0211.html [30.06.2007 10:58:54]

H

| 4m FPREV | | NEXT @ |

| ndex
H

Hash function methods of defining 218
Hashing 217

Heaps 192

Heapsort 206

Hexadecimal numbers 21

| @m PREV | | NEXT &P |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0212.html [30.06.2007 10:58:54]

1-J

[_ﬁ PREY j

(

NEHT ‘j

| ndex

[-J

i f statement 6, 46

if-else if statement 48

i f-el se statement 47

i fdef directive 73

ifelif 78

ifelse77

i fndef 75

i ncl ude directive 72
Increment operator 38

indexed sequential file 147, 163
infix expression 236, 240, 241
Infix notation 236

| norder 355

Integer family 15

Integers binary representation 16
Iteration loop 7

Iteration structure 45

[_# PREV]

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0213.html [30.06.2007 10:58:54]

(

ME=T @

]

K

| 4m PREV | | NExT up |

| ndex
K

K-way sort - mer ge 455

| 4m PREV | | NExT up |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0214.html [30.06.2007 10:58:55]

L

[_ﬁ PREY j [_ NEHT ‘j

| ndex
L

last-in first-out (LIFO) 103, 227, 260

left-shift operation 42
Linear open addressing 219
Linear probing 219

Linear search 210

Linked list 263, 267, 487
sorting 269
reversing 269
erasing 299
deleting a node 276
inserting a node 280
circular linked list 315
splitting 285
merging 321

Local variable 116
Local variables 102

Logical operator 35

[_* FREV j [_ NEXT *j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0215.html [30.06.2007 10:58:55]

M

[_ﬁ PREY j [_ NEHT ‘j

I ndex
M
Macro 82

Matrix
transpose 184

saddle point 189
Memory allocation 63, 123, 140
Memory management 502, 505
merge sort 201
Minimum spanning tree 627
Minimum-cost spanning tree 413

Modulus operator 32

[_ﬁ PREV j [_ NEXT *j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0216.html [30.06.2007 10:58:55]

N

| 4m PREV | | NExT up |

| ndex

N

N equivalence classes 528
N-coins problem 673
n-dimensional array 167
N-queens problem 684
N-queues 687

null parameter 133

null terminator 133

| 4m PREV | | NExT s |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0217.html [30.06.2007 10:58:56]

o

| 4m FPREV | | NEXT @ |

| ndex
@)

Octal numbers 21
One-dimensional array 167
Operator precedence 43

Overflow chaining 219

| 4m FREYV | | NEXT |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0218.html [30.06.2007 10:58:56]

P

[_ﬁ PREY j

(

ME=T @

)

| ndex

P

Parameter passing 106
Placeholders 58

Pointers 64

Postfix expression 236, 240
Precision 60

Precision 58

Prefix expression 236, 240, 241
Preorder 355

Preprocessor 71

Prim's algorithm 414

pri ntf function 57

Programming 141

[_# PREV]

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0219.html [30.06.2007 10:58:56]

(

ME=T @

]

Q

| 4m PREV | | NExT up |

| ndex

Q

gsort 197
Queue 227, 242
Quick sort 195

| @m PREV | | NEXT &P |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0220.html [30.06.2007 10:58:57]

R

[_ﬁ PREY j [_ NEHT ‘j

| ndex

R

Random access 148
Random-access data structure 167
Recursion 127
Recursive function 128
Recursive programs 267
Register variables 118
Rehashing 219
Relational operator 34
Right shift operation 43

Row-major representation 168

[_* FREV j [_ NEXT *j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0221.html [30.06.2007 10:58:57]

S

[@ rPREV | [NexTap]
I ndex
S

Saddle point 189

of a matrix 439
scanf 67
scanf placeholder 68
Searching 192
Selection structure 45

Sequential file operations
open 147
read 147
write 147
close 147

Sequential mapping 167
Sequential search 210
Sequential structure 45
Singly linked circular list 325

Sorted list
merging 180

Sorting 192

Sparse matrices 308
Stack 103

Stack overheads 128

Stacks 227
applications 236
implementation using array 228
implementation using linked representation 231
push operation 228
pop operation 228

Static lifetime, of variables 115
Storage, of variables 115

String argument 67

String 133

Structure pointers 143

Structures 137

Swapping of left and right subtrees 367
swi t ch Statement 10, 50

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0222.html (1 of 2) [30.06.2007 10:58:57]

Symbol table 217

[_* FREV j [_ NEXT *j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0222.html (2 of 2) [30.06.2007 10:58:57]

T

[_ﬁ PREY j

(

ME=T @

)

| ndex

T

Target key 370

Ternary operator 37

The all-cost shortest path 661
Three-dimensional array 95
Topological sort 421, 632
Trees 347

Two-class classification 667
Two-dimensional array 93, 168
Type casting 27

Type conversion 25

Type indicators 68

Type prefixes 59

Type identifiers 58

[_* FREV j

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0223.html [30.06.2007 10:58:58]

(

ME=T @i

:

U

| 4m PREV | | NExT up |

| ndex

U

Unary operators 32
undef directive 72

Union 145

| @m PREV | | NEXT &P |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0224.html [30.06.2007 10:58:59]

\%

| 4m PREV | | NExT up |

| ndex
V

Value 63

| 4m PREV | | NExT up |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0225.html [30.06.2007 10:58:59]

W-Z

| 4m PREV | | NExT up |

| ndex
W-Z
whi | e loop 51

| 4m PREV | | NExT up |

file:///Z|/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0226.html [30.06.2007 10:58:59]

Chapter 18: Arrays, Searching, and Sorting

[@ rPREV | [NexTap]
List of Figures

Chapter 18: Arrays, Searching, and Sorting
Figure 18.1: Representation of an array.
Figure 18.2: Row-major representation of a two-dimensional array.
Figure 18.3: Column major representation of a two-dimensional array.
Figure 18.4: Implementation of a static contiguous list.

Figure 18.5: A heap.

Figure 18.6: Hash table implementation using overflow chaining for collision handling.

Chapter 19: Stacks and Queues
Figure 19.1: Stack operations.
Figure 19.2: Linked stack.

Figure 19.3: Operations on a queue.
Figure 19.4: Circular queue.

Figure 19.5: Linked queue.

Chapter 20: Linked Lists
Figure 20.1: Sorting of a linked list.
Figure 20.2: A linked list showing the previous, current, and next nodes at some point during reversal process.
Figure 20.3: Sorting of a linked list.
Figure 20.4: Reversal of a list.
Figure 20.5: Before deletion.
Figure 20.6: After deletion.
Figure 20.7: Before insertion.
Figure 20.8: After insertion.

Figure 20.9: Insertion in a sorted list.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0227.html (1 of 4) [30.06.2007 10:59:00]

Chapter 18: Arrays, Searching, and Sorting

Figure 20.10: Polynomial representation.

Figure 20.11: A sparse matrix.

Figure 20.12: Linked list representation of sparse matrix of Figure 20.11.
Figure 20.13: Result of application of the procedure sadd.

Figure 20.14: A circular list.

Figure 20.15: (A) A circular list with head node, (B) an empty circular list.
Figure 20.16: List containing 2n nodes.

Figure 20.17: Splitting of a circular list.

Figure 20.18: A doubly linked list maintained as chain.

Figure 20.19: A doubly linked list maintained as a circular list.

Figure 20.20: A doubly linked list maintained as a circular list with a header node.
Figure 20.21: Before termination of process pl.

Figure 20.22: After termination of process p1l.

Chapter 21: Trees

Figure 21.1: A tree structure.

Figure 21.2: A non-tree structure.

Figure 21.3: Binary tree structure.

Figure 21.4: Skewed trees.

Figure 21.5: A full binary tree.

Figure 21.6: A complete binary tree.

Figure 21.7: An array representation of a complete binary tree having 5 nodes and depth 3.
Figure 21.8: An array representation of a complete binary tree with 4 nodes and depth 3.
Figure 21.9: An array representation of a binary tree.

Figure 21.10: Linked representation of a binary tree.

Figure 21.11: A binary tree along with its inorder, preorder and postorder.

Figure 21.12: A binary tree of an expression along with its inorder and postorder.

Figure 21.13: Binary trees constructed using the given inorder.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0227.html (2 of 4) [30.06.2007 10:59:00]

Chapter 18: Arrays, Searching, and Sorting

Figure 21.14: A unique binary tree constructed using its inorder and postorder.
Figure 21.15: The binary search tree.

Figure 21.16: A unique binary tree constructed using the inorder and postorder.
Figure 21.17: A binary tree before deletion of a node pointed to by x.

Figure 21.18: A binary tree after deletion of a node pointed to by x.

Figure 21.19: A binary tree after deletion of a node pointed to by x.

Figure 21.20: A binary tree before deletion of a node pointed to by x.

Figure 21.21: A binary tree after deletion of a node pointed to by x.

Figure 21.22: A binary tree before deletion of a node pointed to by x.

Figure 21.23: A binary tree after deletion of a node pointed to by x.

Chapter 22: Graphs
Figure 22.1: Graphs.
Figure 22.2: The subgraph of graph G2.
Figure 22.3: Graph G.
Figure 22.4: Induced subgraph of Graph G of Figure 22.3.
Figure 22.5: A connected graph.
Figure 22.6: A completely connected graph.
Figure 22.7: Adjacency matrices.

Figure 22.8: Adjacency list of G;.

Figure 22.9: Graph G and its depth first traversals starting at vertex 0.

Figure 22.10: Breadth-first traversal of graph G starting at vertex v1.

Figure 22.11: Connected component of G;.

Figure 22.12: A diagraph.

Figure 22.13: Strongly connected components of the graph shown in Figure 22.12.

Figure 22.14: Graph G.

Figure 22.15: Depth first spanning tree of the graph of Figure 22.14.

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥%20(2004)/7267/DDU0227.html (3 of 4) [30.06.2007 10:59:00]

Chapter 18: Arrays, Searching, and Sorting

Figure 22.16: Breadth-first spanning tree of the graph of Figure 22.14.
Figure 22.17: A directed graph G.

Figure 22.18: Depth-first spanning forest for the graph G of Figure 22.17.
Figure 22.19: A graph G.

Figure 22.20: Depth-first spanning tree of the graph G of Figure 22.19.
Figure 22.21: A graph G.

Figure 22.22: The minimum-cost spanning tree of graph G of Figure 22.21.
Figure 22.23: Directed acyclic graph.

Figure 22.24: DAG representation of expression (a+b)*c +((a+h) + e).

Figure 22.25: A graph G.

Chapter 29: Miscellaneous Problems

Figure 29.1: A knight can move to a maximum of eight positions.

— g -

| 4m PREV | | NEXT & |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%620Structures¥%20(2004)/7267/DDU0227.html (4 of 4) [30.06.2007 10:59:00]

Chapter 2: Data Types

[_ﬁ PREY j [_ NEHT *j

List of Tables

Chapter 2: Data Types

Table 2.1: Integer data type storage allocations

Chapter 3. C Operators
Table 3.1: Comparing the equality operator (= =) with the ‘=" assignment operator.
Table 3.2: Results of AND, OR, and Negation.

Table 3.3: Operator precedence rules

Chapter 17: Files

Table 17.1: Random access

Chapter 19: Stacks and Queues

Table 19.1: Scanning the infex expression a*b+c/d from right to left

[_ﬁ PREY j [_ NERT *j

file:///Z|/Charles%20River/(Charl es%20River)%20C%20& %20Data%20Structures%20(2004)/7267/DDU0228.html [30.06.2007 10:59:00]

CD Content

—

[@ rPREV |

P)
"x.{d;
= CD Content

Following are select files from this book's Companion CD-ROM. These files are for your personal use, are governed by
the Books24x7 Membership Agreement, and are copyright protected by the publisher, author, and/or other third
parties. Unauthorized use, reproduction, or distribution is strictly prohibited.

Click on the link(s) below to download the files to your computer:

File Description Size

® All CD Content 79,201

-

[@mPrREV |

file:/l/Z)/Charles%20River/(Charles%20River)%20C%20& %20Data%20Structures¥20(2004)/7267/DDU0229.html [30.06.2007 10:59:01]

http://images.books24x7.com/cdcontents/id_7267//7267cd.zip

	1584503386
	Table of Contents
	BackCover
	C & Data Structures
	Preface
	Part I: C Language
	Chapter 1: Introduction to the C Language
	INPUTTING THE DATA
	THE CONTROL STATEMENT (if STATEMENT)
	THE ITERATION LOOP (for LOOP)
	THE do...while LOOP
	THE switch STATEMENT

	Chapter 2: Data Types
	VARIOUS DATA TYPES IN C
	THE INTEGER DATA TYPE FAMILY
	OVERFLOW IN char AND UNSIGNED char DATA TYPES
	THE char TYPE
	OCTAL NUMBERS
	HEXADECIMAL NUMBERS
	REPRESENTATION OF FLOATING-POINT NUMBERS
	TYPE CONVERSION
	FORCED CONVERSION
	TYPE CASTING

	Chapter 3: C Operators
	ARITHMETIC OPERATOR
	RELATIONAL OPERATOR
	LOGICAL OPERATOR
	TERNARY OPERATOR
	INCREMENT OPERATOR
	COMMA OPERATOR
	BITWISE OPERATOR
	OPERATOR PRECEDENCE

	Chapter 4: Control Structures
	THE if STATEMENT
	SCOPE OF AN if CLAUSE
	THE if-else STATEMENT
	THE if-else if STATEMENT
	THE switch STATEMENT
	THE while LOOP
	THE do-while LOOP
	THE for LOOP
	THE for LOOP WITH A COMMA OPERATOR
	THE break STATEMENT
	THE continue STATEMENT

	Chapter 5: The printf Function
	PLACEHOLDERS

	Chapter 6: Address and Pointers
	POINTERS

	Chapter 7: The scanf Function
	THE scanf PLACEHOLDERS

	Chapter 8: Preprocessing
	undef
	ifdef
	ifndef
	#if
	ifelse
	ifelif
	ERROR DIRECTIVE
	#line
	MACRO
	MACRO AND FUNCTION

	Chapter 9: Arrays
	ADDRESS OF EACH ELEMENT IN AN ARRAY
	ACCESSING AN ARRAY USING POINTERS
	MANIPULATING ARRAYS USING POINTERS
	ANOTHER CASE OF MANIPULATING AN ARRAY USING POINTERS
	TWO-DIMENSIONAL ARRAY
	THREE-DIMENSIONAL ARRAY
	POINTER ARRAYS

	Chapter 10: Function
	THE CONCEPT OF STACK
	THE SEQUENCE OF EXECUTION DURING A FUNCTION CALL
	PARAMETER PASSING
	CALL BY REFERENCE
	THE CONCEPT OF GLOBAL VARIABLES
	RESOLVING VARIABLE REFERENCES
	SYNTAX OF FUNCTION DEFINITION
	CALLING FUNCTION

	Chapter 11: Storage of Variables
	EXTERNAL REFERENCES
	REGISTER VARIABLES
	SCOPE OF VARIABLES
	FURTHER SCOPE OF VARIABLES

	Chapter 12: Memory Allocation
	Chapter 13: Recursion
	STACK OVERHEADS IN RECURSION
	WRITING A RECURSIVE FUNCTION

	Chapter 14: Strings
	STRING DEFINITION
	STRINGS AS PARAMETERS

	Chapter 15: Structures
	COMPLEX STRUCTURE DEFINITIONS
	MEMORY ALLOCATION TO STRUCTURE
	PROGRAMMING WITH STRUCTURES
	STRUCTURE POINTERS

	Chapter 16: Union
	Chapter 17: Files
	DIRECT ACCESS FILES

	Part II: Data Structures
	Chapter 18: Arrays, Searching, and Sorting
	APPLICATION OF ARRAYS
	MANIPULATIONS ON THE LIST IMPLEMENTED USING AN ARRAY
	MERGING OF TWO SORTED LISTS
	TRANSPOSE OF A MATRIX
	FINDING THE SADDLE POINT OF A MATRIX
	IMPLEMENTATION OF HEAPS
	SORTING AND SEARCHING
	BUBBLE SORT
	QUICK SORT
	MERGE SORT
	HEAPSORT
	SEARCHING TECHNIQUES: LINEAR OR SEQUENTIAL SEARCH
	BINARY SEARCH
	HASHING
	HASHING FUNCTIONS

	Chapter 19: Stacks and Queues
	STACKS
	APPLICATIONS OF STACKS
	QUEUES
	IMPLEMENTATION OF QUEUES
	CIRCULAR QUEUES
	IMPLEMENTATION OF A QUEUE USING LINKED REPRESENTATION
	APPLICATIONS OF QUEUES

	Chapter 20: Linked Lists
	INSERTING A NODE BY USING RECURSIVE PROGRAMS
	SORTING AND REVERSING A LINKED LIST
	DELETING THE SPECIFIED NODE IN A SINGLY LINKED LIST
	INSERTING A NODE AFTER THE SPECIFIED NODE IN A SINGLY LINKED LIST
	INSERTING A NEW NODE IN A SORTED LIST
	COUNTING THE NUMBER OF NODES OF A LINKED LIST
	MERGING OF TWO SORTED LISTS
	ERASING A LINKED LIST
	POLYNOMIAL REPRESENTATION
	REPRESENTATION OF SPARSE MATRICES
	CIRCULAR LINKED LISTS
	SPLITTING A LIST WITH 2N NODES INTO TWO SEPARATE AND EQUAL LISTS
	MERGING OF TWO CIRCULAR LISTS
	REVERSING THE DIRECTION OF LINKS IN A SINGLY LINKED CIRCULAR LIST
	DOUBLY LINKED LISTS
	INSERTION OF A NODE IN A DOUBLY LINKED LIST
	DELETING A NODE FROM A DOUBLY LINKED LIST
	APPLICATION OF DOUBLY LINKED LISTS TO MEMORY MANAGEMENT

	Chapter 21: Trees
	BINARY TREE AND ITS REPRESENTATION
	BINARY TREE TRAVERSAL
	BINARY SEARCH TREE
	COUNTING THE NUMBER OF NODES IN A BINARY SEARCH TREE
	SWAPPING OF LEFT AND RIGHT SUBTREES OF A GIVEN BINARY TREE
	SEARCHING FOR A TARGET KEY IN A BINARY SEARCH TREE
	DELETION OF A NODE FROM BINARY SEARCH TREE

	Chapter 22: Graphs
	REPRESENTATIONS OF A GRAPH
	COMPUTING INDEGREE AND OUTDEGREE OF A NODE OF A GRAPH USING ADJACENCY MATRIX REPRESENTATION
	DEPTH-FIRST TRAVERSAL
	BREADTH-FIRST TRAVERSAL
	CONNECTED COMPONENT OF A GRAPH
	DEPTH-FIRST SPANNING TREE AND BREADTH-FIRST SPANNING TREE
	MINIMUM-COST SPANNING TREE
	DIRECTED ACYCLIC GRAPH (DAG)

	Part III: Advanced Problems in Data Structures
	Chapter 23: Problems in Arrays, Searching, Sorting, Hashing
	PROBLEM:WRITE A PROGRAM TO FIND THE SADDLE POINT OF A MATRIX, IF IT EXISTS
	PROBLEM: MULTIPLY TWO SPARSE MATRICES
	PROBLEM: MULTIPLICATION OF TWO SPARSE MATRICES (DIFFERENT VERSIONS)
	PROBLEM: IMPLEMENT K-WAY SORT-MERGE TO SORT A FILE CONTAINING RECORDS
	PROBLEM: FIND A PLATEAU IN A MATRIX
	PROBLEM: IMPLEMENTATION OF A HASH SEARCH
	PROBLEM: IMPLEMENTATION OF REHASHING

	Chapter 24: Problems in Stacks and Queues
	PROBLEM: IMPLEMENTATION OF TWO STACKS USING AN ARRAY

	Chapter 25: Problems in Linked Lists
	PROBLEM: IMPLEMENTATION OF CIRCULAR LISTS BY USING ARRAYS
	PROBLEM: REVERSING LINKS IN THE CASE OF CIRCULAR LIST
	PROBLEM: MEMORY MANAGEMENT USING LISTS
	PROBLEM: MEMORY MANAGEMENT USING VARIOUS SCHEMES
	PROBLEM: GARBAGE COLLECTION-THE FIRST METHOD
	PROBLEM: GARBAGE COLLECTION- THE SECOND METHOD
	PROBLEM: COMPUTE N EQUIVALENCE CLASSES

	Chapter 26: Problems in Strings
	PROBLEM: MAXIMIZE A COMBINATION OF STRINGS-THE SECOND METHOD
	PROBLEM: CLOSURE OF SETS
	PROBLEM: DISTANCE BETWEEN TWO STRINGS
	PROBLEM: FINDING THE MAXIMUM MATCHING PATTERN IN THE STRING
	PROBLEM: IMPLEMENTATION OF THE SOUNDEX FUNCTION

	Chapter 27: Problems in Trees
	PROBLEM: WRITE A NON-RECURSIVE VERSION OF POSTORDER
	PROBLEM: PREORDER TRAVERSAL OF A THREADED BINARY TREE
	PROBLEM: IMPLEMENTATION OF A SET USING A BINARY TREE
	PROBLEM: HUFFMAN CODING
	PROBLEM: IMPLEMENTATION OF A B-TREE
	PROBLEM: IMPLEMENTATION OF A B+ TREE

	Chapter 28: Problems in Graphs
	PROBLEM: CONNECTED COMPONENTS IN A GRAPH
	PROBLEM: MINIMUM SPANNING TREE
	PROBLEM: TOPOLOGICAL SORT
	PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY MATRIX
	PROBLEM: FINDING THE SHORTEST PATH BY USING AN ADJACENCY LIST
	PROBLEM: THE M SHORTEST PATH
	PROBLEM: THE ALL-COST SHORTEST PATH

	Chapter 29: Miscellaneous Problems
	PROBLEM: THE N-COINS PROBLEM
	PROBLEM: ALL COMBINATIONS OF STRINGS
	PROBLEM: THE 8-KNIGHTS PROBLEM
	PROBLEM: N-QUEENS PROBLEM
	PROBLEM: MAPPING OF N-QUEUES IN AN ARRAY
	PROBLEM: IMPLEMENTATION OF A* ALGORITHM

	Symbols and Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I-J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-Z

	Chapter 18: Arrays, Searching, and Sorting
	Chapter 2: Data Types
	CD Content

