

This page
intentionally left

blank

Copyright © 2006, New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.
No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the publisher.
All inquiries should be emailed to rights@newagepublishers.com

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit us at www.newagepublishers.com

ISBN (13) : 978-81-224-2864-3

TTTTTo mo mo mo mo my fy fy fy fy fatheratheratheratherather, G, G, G, G, G. V. V. V. V. Valsala Dasalsala Dasalsala Dasalsala Dasalsala Das,,,,,
and motherand motherand motherand motherand mother, S. Usha K, S. Usha K, S. Usha K, S. Usha K, S. Usha Kumarumarumarumarumariiiii

This page
intentionally left

blank

PREFACE
It gives me immense pleasure in presenting the first edition of the book-Principles of

DATA STRUCTURES Using C and C++ which is a unique text valuable for professionals
that covers both theoretical and practical aspects of the data structures.

The study of data structures is an essential subject of every under graduate and
graduate programs related to computer science. A thorough understanding of the basics
of this subject is inevitable for efficient programming. This book covers all the fundamen-
tal topics to give a better understanding about the subject. This book is written in accord-
ance with the revised syllabus for BTech/BE (both Computer Science and Electronics
branches) and MCA students of Kerala University, MG University, Calicut University, CUSAT
Cochin (deemed) University, NIT Calicut (deemed) University, Anna University, UP Techni-
cal University, Amritha Viswa (deemed) Vidyapeeth, Karunya (deemed) University, Pune
University, Bangalore University and Rajasthan Vidyapeeth (deemed) University. Moreo-
ver this book covers almost all the topics of the other Indian and International Universities
where this subject is there in their under graduate and graduate programs.

While writing the book, I have always considered the examination requirements of
the students and various difficulties and troubles, which they face, while studying the
subject.

All effort is made to cover the topics in the simplest possible way without loosing its
qualities. Almost five hundred questions from various university question papers have
been included in this book. In short, I earnestly hope that the book will earn the apprecia-
tion of the teachers and students alike.

Although I have tried to check mistakes and misprints, yet it is difficult to claim
perfection. Any suggestions for the improvement of any topics, when brought to my notice,
will be thankfully acknowledged and will be incorporated in the next edition.

Vinu V Das

This page
intentionally left

blank

ACKNOWLEDGEMENT
I praise and give thanks to the Almighty Living Holy God, without His grace
nothing is possible for any one.

I take this opportunity to thank everyone, especially my friends and students
who have inspired me to write and complete this book. I am indebted to the many
published works available on the subject, which have helped me in the prepara-
tion of the manuscript.

I express my sincere thanks to Mr. Sreelal, Mr. Rajesh, Mr. Ajith and others for
digitalizing the manuscript.

I am also thankful to the following Indian Universities and examination bodies,
whose examination papers have been included in the text as self-review ques-
tions. Moreover, their syllabus has been kept in view while writing this treatise.

Kerala University Anna University

Calicut University Mahatma Gandhi University

NIT, Calicut CUSAT, Kochi

UP Technical University Amritha Viswa Vidyapeeth

Karunya University Rajasthan Vidyapeeth

Pune University Bangalore University

Vinu V Das

This page
intentionally left

blank

CONTENTS

Preface ... (vii)

Acknowledgement ... (ix)

1. Programming Methodologies ... 1

1.1. An Introduction to Data Structure ... 1
1.2. Algorithm ... 2
1.3. Stepwise Refinement Techniques ... 2
1.4. Modular Programming ... 3
1.5. Top-Down Algorithm Design ... 3
1.6. Bottom-Up Algorithm Design ... 4
1.7. Structured Programming ... 4
1.8. Analysis of Algorithm ... 5
1.9. Time-Space Trade Off ... 8

1.10. Big “OH” Notation ... 8
1.11. Limitation of Big “OH” Notation ... 9
1.12. Classification of Data Structure ... 9
1.13. Arrays ... 10
1.14. Vectors ... 13
1.15. Lists ... 13
1.16. Files and Records ... 14
1.17. Characteristics of Strings ... 14

Self Review Questions ... 16

2. Memory Management ... 18

2.1. Memory Allocation in C ... 18
2.2. Dynamic Memory Allocation in C++ ... 22
2.3. Free Storage List ... 22
2.4. Garbage Collection ... 23
2.5. Dangling Reference ... 23
2.6. Reference Counters ... 24
2.7. Storage Compaction ... 24
2.8. Boundary Tag Method ... 24

Self Review Questions ... 25

3. The Stack ... 26

3.1. Operations Performed on Stack ... 27
3.2. Stack Implementation ... 27
3.3. Stack Using Arrays ... 27
3.4. Applications of Stacks ... 34
3.5. Converting Infix to Postfix Expression ... 46
3.6. Evaluating Postfix Expression ... 57

Self Review Questions ... 63

4. The Queue ... 65

4.1. Algorithms for Queue Operations ... 67
4.2. Other Queues ... 71
4.3. Circular Queue ... 71
4.4. Deques ... 77
4.5. Applications of Queue ... 86

Self Review Questions ... 86

5. Linked List ... 88

5.1. Linked List ... 88
5.2. Representation of Linked List ... 89
5.3. Advantages and Disadvantages ... 89
5.4. Operation on Linked List ... 90
5.5. Types of Linked List ... 90
5.6. Singly Linked List ... 91
5.7. Stack Using Linked List ... 107
5.8. Queue Using Linked List ... 114
5.9. Queue Using Two Stacks ... 122

5.10. Polynomials Using Linked List ... 126
5.11. Doubly Linked List ... 131
5.12. Circular Linked List ... 140
5.13. Priority Queues ... 146

Self Review Questions ... 151

6. Sorting Techniques ... 153

6.1. Complexity of Sorting Algorithms ... 154
6.2. Bubble Sort ... 154
6.3. Selection Sort ... 159
6.4. Insertion Sort ... 163
6.5. Shell Sort ... 168
6.6. Quick Sort ... 170
6.7. Merge Sort ... 176
6.8. Radix Sort ... 183
6.9. Heap ... 189

6.10. External Sorting ... 200
Self Review Questions ... 205

7. Searching and Hashing ... 207

7.1. Linear or Sequential Searching ... 207
7.2. Binary Search ... 209
7.3. Interpolation Search ... 212
7.4. Fibanocci Search ... 216

(xii)

7.5. Hashing ... 219
Self Review Questions ... 227

8. The Trees ... 229

8.1. Basic Terminologies ... 229
8.2. Binary Trees ... 230
8.3. Binary Tree Representation ... 233
8.4. Operations on Binary Tree .. 235
8.5. Traversing Binary Trees Recursively ... 236
8.6. Traversing Binary Tree Non-Recursively ... 246
8.7. Binary Search Trees ... 258
8.8. Threaded Binary Tree ... 272
8.9. Expression Trees ... 273

8.10. Decision Tree ... 275
8.11. Fibanocci Tree ... 275
8.12. Selection Trees ... 277
8.13. Balanced Binary Trees ... 283
8.14. AVL Trees ... 284
8.15. M-Way Search Trees ... 287
8.16. 2-3 Trees ... 287
8.17. 2-3-4 Trees ... 289
8.18. Red-Black Tree ... 290
8.19. B-Tree ... 293
8.20. Splay Trees ... 296
8.21. Digital Search Trees ... 300
8.22. Tries ... 302

Self Review Questions ,.. 303

9. Graphs ... 305

9.1. Basic Terminologies ... 305
9.2. Representation of Graph ... 309
9.3. Operations on Graph ... 313
9.4. Breadth First Search ... 318
9.5. Depth First Search ... 325
9.6. Minimum Spanning Tree ... 327
9.7. Shortest Path ... 347

Self Review Questions ... 355

Bibliography ... 357

Index ... 358

(xiii)

This page
intentionally left

blank

Programming Methodologies

Programming methodologies deal with different methods of designing programs.
This will teach you how to program efficiently. This book restricts itself to the basics of
programming in C and C++, by assuming that you are familiar with the syntax of C and
C++ and can write, debug and run programs in C and C++. Discussions in this chapter
outline the importance of structuring the programs, not only the data pertaining to the
solution of a problem but also the programs that operates on the data.

Data is the basic entity or fact that is used in calculation or manipulation process.
There are two types of data such as numerical and alphanumerical data. Integer and
floating-point numbers are of numerical data type and strings are of alphanumeric data
type. Data may be single or a set of values, and it is to be organized in a particular fashion.
This organization or structuring of data will have profound impact on the efficiency of the
program.

1.1. AN INTRODUCTION TO DATA STRUCTURE

Data structure is the structural representation of logical relationships between ele-
ments of data. In other words a data structure is a way of organizing data items by consid-
ering its relationship to each other.

Data structure mainly specifies the structured organization of data, by providing
accessing methods with correct degree of associativity. Data structure affects the design
of both the structural and functional aspects of a program.

Algorithm + Data Structure = Program

Data structures are the building blocks of a program; here the selection of a particu-
lar data structure will help the programmer to design more efficient programs as the
complexity and volume of the problems solved by the computer is steadily increasing day
by day. The programmers have to strive hard to solve these problems. If the problem is
analyzed and divided into sub problems, the task will be much easier i.e., divide, conquer
and combine.

A complex problem usually cannot be divided and programmed by set of modules
unless its solution is structured or organized. This is because when we divide the big
problems into sub problems, these sub problems will be programmed by different pro-
grammers or group of programmers. But all the programmers should follow a standard
structural method so as to make easy and efficient integration of these modules. Such
type of hierarchical structuring of program modules and sub modules should not only
reduce the complexity and control the flow of program statements but also promote the
proper structuring of information. By choosing a particular structure (or data structure)
for the data items, certain data items become friends while others loses its relations.

1

1

PROGRAMMING METHODOLOGIES 3

1. In the first stage, modeling, we try to represent the problem using an appropriate
mathematical model such as a graph, tree etc. At this stage, the solution to the
problem is an algorithm expressed very informally.

2. At the next stage, the algorithm is written in pseudo-language (or formal algo-
rithm) that is, a mixture of any programming language constructs and less for-
mal English statements. The operations to be performed on the various types of
data become fixed.

3. In the final stage we choose an implementation for each abstract data type and
write the procedures for the various operations on that type. The remaining in-
formal statements in the pseudo-language algorithm are replaced by (or any
programming language) C/C++ code.

Following sections will discuss different programming methodologies to design a
program.

1.4. MODULAR PROGRAMMING

Modular Programming is heavily procedural. The focus is entirely on writing code
(functions). Data is passive in Modular Programming. Any code may access the contents of
any data structure passed to it. (There is no concept of encapsulation.) Modular Program-
ming is the act of designing and writing programs as functions, that each one performs a
single well-defined function, and which have minimal interaction between them. That is,
the content of each function is cohesive, and there is low coupling between functions.

Modular Programming discourages the use of control variables and flags in param-
eters; their presence tends to indicate that the caller needs to know too much about how
the function is implemented. It encourages splitting of functionality into two types: “Mas-
ter” functions controls the program flow and primarily contain calls to “Slave” functions
that handle low-level details, like moving data between structures.

Two methods may be used for modular programming. They are known as top-down
and bottom-up, which we have discussed in the above section. Regardless of whether the
top-down or bottom-up method is used, the end result is a modular program. This end
result is important, because not all errors may be detected at the time of the initial testing.
It is possible that there are still bugs in the program. If an error is discovered after the
program supposedly has been fully tested, then the modules concerned can be isolated
and retested by them.

Regardless of the design method used, if a program has been written in modular
form, it is easier to detect the source of the error and to test it in isolation, than if the
program were written as one function.

1.5. TOP-DOWN ALGORITHM DESIGN

The principles of top-down design dictates that a program should be divided into a
main module and its related modules. Each module should also be divided into sub mod-
ules according to software engineering and programming style. The division of modules
processes until the module consists only of elementary process that are intrinsically un-
derstood and cannot be further subdivided.

4 PRINCIPLES OF DATA STRUCTURES USING C AND C++

M a in

F u n c tio n 2 F u n c tio n 3F u n c tio n 1

F u n c tio n b F u n c tio n cF u n c tio n a F u n c tio n c F u n c tio n b F u n c tio n c

F u n c tio n s c a l le d b y m a in

F u n c tio n s c a l le d b y F u n c tio n 1
F u n c tio n c a lle d
b y F u n c t io n 2

F u n c tio n s c a l le d b y F u n c tio n 3

Fig. 1.2

Top-down algorithm design is a technique for organizing and coding programs in
which a hierarchy of modules is used, and breaking the specification down into simpler
and simpler pieces, each having a single entry and a single exit point, and in which control
is passed downward through the structure without unconditional branches to higher lev-
els of the structure. That is top-down programming tends to generate modules that are
based on functionality, usually in the form of functions or procedures or methods.

In C, the idea of top-down design is done using functions. A C program is made of
one or more functions, one and only one of which must be named main. The execution of
the program always starts and ends with main, but it can call other functions to do special
tasks.

1.6. BOTTOM-UP ALGORITHM DESIGN

Bottom-up algorithm design is the opposite of top-down design. It refers to a style of
programming where an application is constructed starting with existing primitives of the
programming language, and constructing gradually more and more complicated features,
until the all of the application has been written. That is, starting the design with specific
modules and build them into more complex structures, ending at the top.

The bottom-up method is widely used for testing, because each of the lowest-level
functions is written and tested first. This testing is done by special test functions that call
the low-level functions, providing them with different parameters and examining the re-
sults for correctness. Once lowest-level functions have been tested and verified to be cor-
rect, the next level of functions may be tested. Since the lowest-level functions already
have been tested, any detected errors are probably due to the higher-level functions. This
process continues, moving up the levels, until finally the main function is tested.

1.7. STRUCTURED PROGRAMMING

It is a programming style; and this style of programming is known by several names:
Procedural decomposition, Structured programming, etc. Structured programming is not
programming with structures but by using following types of code structures to write
programs:

PROGRAMMING METHODOLOGIES 5

1. Sequence of sequentially executed statements

2. Conditional execution of statements (i.e., “if” statements)

3. Looping or iteration (i.e., “for, do...while, and while” statements)

4. Structured subroutine calls (i.e., functions)

In particular, the following language usage is forbidden:

• “GoTo” statements

• “Break” or “continue” out of the middle of loops

• Multiple exit points to a function/procedure/subroutine (i.e., multiple “return”
statements)

• Multiple entry points to a function/procedure/subroutine/method

In this style of programming there is a great risk that implementation details of
many data structures have to be shared between functions, and thus globally exposed.
This in turn tempts other functions to use these implementation details; thereby creating
unwanted dependencies between different parts of the program.

The main disadvantage is that all decisions made from the start of the project de-
pends directly or indirectly on the high-level specification of the application. It is a well-
known fact that this specification tends to change over a time. When that happens, there
is a great risk that large parts of the application need to be rewritten.

1.8. ANALYSIS OF ALGORITHM

After designing an algorithm, it has to be checked and its correctness needs to be
predicted; this is done by analyzing the algorithm. The algorithm can be analyzed by
tracing all step-by-step instructions, reading the algorithm for logical correctness, and
testing it on some data using mathematical techniques to prove it correct. Another type of
analysis is to analyze the simplicity of the algorithm. That is, design the algorithm in a
simple way so that it becomes easier to be implemented. However, the simplest and most
straightforward way of solving a problem may not be sometimes the best one. Moreover
there may be more than one algorithm to solve a problem. The choice of a particular
algorithm depends on following performance analysis and measurements :

1. Space complexity

2. Time complexity

1.8.1. SPACE COMPLEXITY

Analysis of space complexity of an algorithm or program is the amount of memory it
needs to run to completion.

Some of the reasons for studying space complexity are:

1. If the program is to run on multi user system, it may be required to specify the
amount of memory to be allocated to the program.

2. We may be interested to know in advance that whether sufficient memory is
available to run the program.

3. There may be several possible solutions with different space requirements.

4. Can be used to estimate the size of the largest problem that a program can solve.

6 PRINCIPLES OF DATA STRUCTURES USING C AND C++

The space needed by a program consists of following components.

• Instruction space : Space needed to store the executable version of the program
and it is fixed.

• Data space : Space needed to store all constants, variable values and has further
two components :

(a) Space needed by constants and simple variables. This space is fixed.

(b) Space needed by fixed sized structural variables, such as arrays and struc-
tures.

(c) Dynamically allocated space. This space usually varies.

• Environment stack space: This space is needed to store the information to resume
the suspended (partially completed) functions. Each time a function is invoked
the following data is saved on the environment stack :

(a) Return address : i.e., from where it has to resume after completion of the
called function.

(b) Values of all lead variables and the values of formal parameters in the func-
tion being invoked .

The amount of space needed by recursive function is called the recursion stack
space. For each recursive function, this space depends on the space needed by the local
variables and the formal parameter. In addition, this space depends on the maximum
depth of the recursion i.e., maximum number of nested recursive calls.

1.8.2. TIME COMPLEXITY

The time complexity of an algorithm or a program is the amount of time it needs to
run to completion. The exact time will depend on the implementation of the algorithm,
programming language, optimizing the capabilities of the compiler used, the CPU speed,
other hardware characteristics/specifications and so on. To measure the time complexity
accurately, we have to count all sorts of operations performed in an algorithm. If we know
the time for each one of the primitive operations performed in a given computer, we can
easily compute the time taken by an algorithm to complete its execution. This time will
vary from machine to machine. By analyzing an algorithm, it is hard to come out with an
exact time required. To find out exact time complexity, we need to know the exact instruc-
tions executed by the hardware and the time required for the instruction. The time com-
plexity also depends on the amount of data inputted to an algorithm. But we can calculate
the order of magnitude for the time required.

That is, our intention is to estimate the execution time of an algorithm irrespective
of the computer machine on which it will be used. Here, the more sophisticated method is
to identify the key operations and count such operations performed till the program com-
pletes its execution. A key operation in our algorithm is an operation that takes maximum
time among all possible operations in the algorithm. Such an abstract, theoretical ap-
proach is not only useful for discussing and comparing algorithms, but also it is useful to
improve solutions to practical problems. The time complexity can now be expressed as
function of number of key operations performed. Before we go ahead with our discussions,
it is important to understand the rate growth analysis of an algorithm, as shown in Fig.
1.3.

PROGRAMMING METHODOLOGIES 7

log2 n

n log2 n

n

n2

n3

2nn!nn

Fig. 1.3

The function that involves ‘n’ as an exponent, i.e., 2n, nn, n ! are called exponential
functions, which is too slow except for small size input function where growth is less than
or equal to nc,(where ‘c’ is a constant) i.e.; n3, n2, n log2n, n, log2 n are said to be polyno-
mial. Algorithms with polynomial time can solve reasonable sized problems if the constant
in the exponent is small.

When we analyze an algorithm it depends on the input data, there are three cases :

1. Best case

2. Average case

3. Worst case

In the best case, the amount of time a program might be expected to take on best
possible input data.

In the average case, the amount of time a program might be expected to take on
typical (or average) input data.

In the worst case, the amount of time a program would take on the worst possible
input configuration.

1.8.3. AMSTRONG COMPLEXITY

In many situations, data structures are subjected to a sequence of instructions
rather than one set of instruction. In this sequence, one instruction may perform certain
modifications that have an impact on other instructions in the sequence at the run time

8 PRINCIPLES OF DATA STRUCTURES USING C AND C++

itself. For example in a for loop there are 100 instructions in an if statement. If if condition
is false then these 100 instructions will not be executed. If we apply the time complexity
analysis in worst case, entire sequence is considered to compute the efficiency, which is
an excessively large and unrealistic analysis of efficiency. But when we apply amortized
complexity, the complexity is calculated when the instructions are executed (i.e., when if
condition is true)

Here the time required to perform a sequence of (related) operations is averaged over
all the operations performed. Amortized analysis can be used to show that the average
cost of an operation is small, if one averages over a sequence of operations, even though a
simple operation might be expensive. Amortized analysis guarantees the average perform-
ance of each operation in the worst case.

1.9. TIME-SPACE TRADE OFF

There may be more than one approach (or algorithm) to solve a problem. The best
algorithm (or program) to solve a given problem is one that requires less space in memory
and takes less time to complete its execution. But in practice, it is not always possible to
achieve both of these objectives. One algorithm may require more space but less time to
complete its execution while the other algorithm requires less time space but takes more
time to complete its execution. Thus, we may have to sacrifice one at the cost of the other.
If the space is our constraint, then we have to choose a program that requires less space
at the cost of more execution time. On the other hand, if time is our constraint such as in
real time system, we have to choose a program that takes less time to complete its execu-
tion at the cost of more space.

1.10. BIG “OH” NOTATION

Big Oh is a characteristic scheme that measures properties of algorithm complexity
performance and/or memory requirements. The algorithm complexity can be determined
by eliminating constant factors in the analysis of the algorithm. Clearly, the complexity
function f(n) of an algorithm increases as ‘n’ increases.

Let us find out the algorithm complexity by analyzing the sequential searching algo-
rithm. In the sequential search algorithm we simply try to match the target value against
each value in the memory. This process will continue until we find a match or finish
scanning the whole elements in the array. If the array contains ‘n’ elements, the maximum
possible number of comparisons with the target value will be ‘n’ i.e., the worst case. That
is the target value will be found at the nth position of the array.

f (n) = n

i.e., the worst case is when an algorithm requires a maximum number of iterations or
steps to search and find out the target value in the array.

The best case is when the number of steps is less as possible. If the target value is
found in a sequential search array of the first position (i.e., we need to compare the target
value with only one element from the array)—we have found the element by executing only
one iteration (or by least possible statements)

f (n) = 1

PROGRAMMING METHODOLOGIES 9

Average case falls between these two extremes (i.e., best and worst). If the target
value is found at the n/2nd position, on an average we need to compare the target value
with only half of the elements in the array, so

f (n) = n/2

The complexity function f(n) of an algorithm increases as ‘n’ increases. The function
f (n)= O(n) can be read as “f of n is big Oh of n” or as “f (n) is of the order of n”. The total
running time (or time complexity) includes the initializations and several other iterative
statements through the loop.

The generalized form of the theorem is

f (n) = ckn
k + ck–1nk –1 + ck–2nk–2 + + c2n

2 + c1n1 + c0n0

Where the constant ck > 0

Then, f (n) = O(nk)

Based on the time complexity representation of the big Oh notation, the algorithm
can be categorized as :

1. Constant time O(1)

2. Logarithmic time Olog(n)

3. Linear time O(n)

4. Polynomial time O(nc)

5. Exponential time O(cn)
Where c > 1

1.11. LIMITATION OF BIG “OH” NOTATION

Big Oh Notation has following two basic limitations :

1. It contains no effort to improve the programming methodology. Big Oh Notation
does not discuss the way and means to improve the efficiency of the program,
but it helps to analyze and calculate the efficiency (by finding time complexity) of
the program.

2. It does not exhibit the potential of the constants. For example, one algorithm is
taking 1000n2 time to execute and the other n3 time. The first algorithm is O(n2),
which implies that it will take less time than the other algorithm which is O(n3).
However in actual execution the second algorithm will be faster for n < 1000.

We will analyze and design the problems in data structure. As we have discussed to
develop a program of an algorithm, we should select an appropriate data structure for that
algorithm.

1.12. CLASSIFICATION OF DATA STRUCTURE

Data structures are broadly divided into two :

1. Primitive data structures : These are the basic data structures and are directly
operated upon by the machine instructions, which is in a primitive level. They
are integers, floating point numbers, characters, string constants, pointers etc.
These primitive data structures are the basis for the discussion of more sophis-
ticated (non-primitive) data structures in this book.

10 PRINCIPLES OF DATA STRUCTURES USING C AND C++

2. Non-primitive data structures : It is a more sophisticated data structure empha-
sizing on structuring of a group of homogeneous (same type) or heterogeneous
(different type) data items. Array, list, files, linked list, trees and graphs fall in
this category.

Fig. 1.4. Classifications of data structures

The Fig. 1.4 will briefly explain other classifications of data structures. Basic opera-
tions on data structure are to create a (non-primitive) data structure; which is considered
to be the first step of writing a program. For example, in Pascal, C and C++, variables are
created by using declaration statements.

int Int_Variable;

In C/C++, memory space is allocated for the variable “Int_Variable” when the above
declaration statement executes. That is a data structure is created. Discussions on
primitive data structures are beyond the scope of this book. Let us consider non-primitive
data structures.

1.13. ARRAYS

Arrays are most frequently used in programming. Mathematical problems like ma-
trix, algebra and etc can be easily handled by arrays. An array is a collection of homogene-
ous data elements described by a single name. Each element of an array is referenced by
a subscripted variable or value, called subscript or index enclosed in parenthesis. If an
element of an array is referenced by single subscript, then the array is known as one
dimensional array or linear array and if two subscripts are required to reference an ele-
ment, the array is known as two dimensional array and so on. Analogously the arrays
whose elements are referenced by two or more subscripts are called multi dimensional
arrays.

1.13.1. ONE DIMENSIONAL ARRAY

One-dimensional array (or linear array) is a set of ‘n’ finite numbers of homogenous
data elements such as :

PROGRAMMING METHODOLOGIES 11

1. The elements of the array are referenced respectively by an index set consisting
of ‘n’ consecutive numbers.

2. The elements of the array are stored respectively in successive memory loca-
tions.

‘n’ number of elements is called the length or size of an array. The elements of an array ‘A’
may be denoted in C as

A[0], A[1], A[2], A[n –1].

The number ‘n’ in A[n] is called a subscript or an index and A[n] is called a subscripted
variable. If ‘n’ is 10, then the array elements A[0], A[1]......A[9] are stored in sequential
memory locations as follows :

A[0] A[1] A[2] A[9]

In C, array can always be read or written through loop. To read a one-dimensional
array, it requires one loop for reading and writing the array, for example:

For reading an array of ‘n’ elements

for (i = 0; i < n; i ++)

scanf (“%d”,&a[i]);

For writing an array

for (i = 0; i < n; i ++)

printf (“%d”, &a[i]);

1.13.2. MULTI DIMENSIONAL ARRAY

If we are reading or writing two-dimensional array, two loops are required. Similarly
the array of ‘n’ dimensions would require ‘n’ loops. The structure of the two dimensional
array is illustrated in the following figure :

int A[10][10];

A00 A01 A02 A08 A09

A10 A11 A19

A20

A30

A69

A70 A78 A79

A80 A81 A87 A88 A89

A90 A91 A92 A96 A97 A98 A99

12 PRINCIPLES OF DATA STRUCTURES USING C AND C++

1.13.3. SPARSE ARRAYS

Sparse array is an important application of arrays. A sparse array is an array where
nearly all of the elements have the same value (usually zero) and this value is a constant.
One-dimensional sparse array is called sparse vectors and two-dimensional sparse arrays
are called sparse matrix.

The main objective of using arrays is to minimize the memory space requirement
and to improve the execution speed of a program. This can be achieved by allocating
memory space for only non-zero elements.

For example a sparse array can be viewed as

0 0 8 0 0 0 0

0 1 0 0 0 9 0

0 0 0 3 0 0 0

0 31 0 0 0 4 0

0 0 0 0 7 0 0

Fig. 1.5. Sparse array

We will store only non-zero elements in the above sparse matrix because storing all
the elements of the sparse array will be consisting of memory sparse. The non-zero ele-
ments are stored in an array of the form.

A[0......n][1......3]

Where ‘n’ is the number of non-zero elements in the array. In the above Fig. 1.4 ‘n = 7’.
The space array given in Fig. 1.4 may be represented in the array A[0......7][1.....3].

1 2 3

0 5 7 7

1 1 3 8

2 2 2 1

3 2 6 9

4 3 4 3

5 4 2 31

6 4 6 4

7 5 5 7

Fig. 1.6. Sparse array representation

The element A[0][1] and A[0][2] contain the number of rows and columns of the
sparse array. A[0][3] contains the total number of nonzero elements in the sparse array.

A[0][1] A[0][2]

PROGRAMMING METHODOLOGIES 13

A[1][1] contains the number of the row where the first nonzero element is present in the
sparse array. A[1][2] contains the number of the column of the corresponding nonzero
element. A[1][3] contains the value of the nonzero element. In the Fig. 1.4, the first nonzero
element can be found at 1st row in 3rd column.

1.14. VECTORS

A vector is a one-dimensional ordered collection of numbers. Normally, a number of
contiguous memory locations are sequentially allocated to the vector. A vector size is fixed
and, therefore, requires a fixed number of memory locations. A vector can be a column
vector which represents a ‘n’ by 1 ordered collections, or a row vector which represents a
1 by ‘n’ ordered collections.

The column vector appears symbolically as follows :

A =

�

1

2

3

A

A

A

An

A row vector appears symbolically as follows :

A = (A1, A2, A3, An)

Vectors can contain either real or complex numbers. When they contain real num-
bers, they are sometime called real vectors. When they contain complex numbers, they are
called complex vectors.

1.15. LISTS

As we have discussed, an array is an ordered set, which consist of a fixed number of
elements. No deletion or insertion operations are performed on arrays. Another main dis-
advantage is its fixed length; we cannot add elements to the array. Lists overcome all the
above limitations. A list is an ordered set consisting of a varying number of elements to
which insertion and deletion can be made. A list represented by displaying the relation-
ship between the adjacent elements is said to be a linear list. Any other list is said to be
non linear. List can be implemented by using pointers. Each element is referred to as
nodes; therefore a list can be defined as a collection of nodes as shown below :

x

Head

Fig. 1.7

14 PRINCIPLES OF DATA STRUCTURES USING C AND C++

1.16. FILES AND RECORDS

A file is typically a large list that is stored in the external memory (e.g., a magnetic
disk) of a computer.

A record is a collection of information (or data items) about a particular entity. More
specifically, a record is a collection of related data items, each of which is called a filed or
attribute and a file is a collection of similar records.

Although a record is a collection of data items, it differs from a linear array in the
following ways:

(a) A record may be a collection of non-homogeneous data; i.e., the data items in a
record may have different data types.

(b) The data items in a record are indexed by attribute names, so there may not be a
natural ordering of its elements.

1.17. CHARACTERISTICS OF STRINGS

In computer terminology the term ‘string’ refers to a sequence of characters. A finite
set of sequence (alphabets, digits or special characters) of zero or more characters is called
a string. The number of characters in a string is called the length of the string. If the
length of the string is zero then it is called the empty string or null string.

1.17.1. STRING REPRESENTATION

Strings are stored or represented in memory by using following three types of struc-
tures :

• Fixed length structures

• Variable length structures with fixed maximum

• Linear structures

FIXED LENGTH REPRESENTATION. In fixed length storage each line is viewed as a
record, where all records have the same length. That is each record accommodates maxi-
mum of same number of characters.

The main advantage of representing the string in the above way is :

1. To access data from any given record easily.

2. It is easy to update the data in any given record.

The main disadvantages are :

1. Entire record will be read even if most of the storage consists of inessential blank
space. Time is wasted in reading these blank spaces.

2. The length of certain records will be more than the fixed length. That is certain
records may require more memory space than available.

c P R O G R A M T O P R I N T

100 110 120
Fig. 1.8. Input data

PROGRAMMING METHODOLOGIES 15

T W O I N T E G E R S

210 220 230
Fig. 1.9. Fixed length representation

Fig. 1.9 is a representation of input data (which is in Fig. 1.8) in a fixed length
(records) storage media in a computer.

Variable Length Representation: In variable length representation, strings are
stored in a fixed length storage medium. This is done in two ways.

1. One can use a marker, (any special characters) such as two-dollar sign ($$), to
signal the end of the string.

2. Listing the length of the string at the first place is another way of representing
strings in this method.

c p r o g r a m t o P r i n t t w o i n t e g e r s $$

Fig. 1.10. String representation using marker

31 c p r o g r a m t o p r i n t t w o i n t e g e r s

Fig. 1.11. String representation by listing the length

Linked List Representations: In linked list representations each characters in a
string are sequentially arranged in memory cells, called nodes, where each node contain
an item and link, which points to the next node in the list (i.e., link contain the address of
the next node).

......

Fig. 1.12. One character per node

Fig. 1.13. Four character per node

We will discuss the implementation issues of linked list in chapter 5.

1.17.2. SUB STRING

Group of consecutive elements or characters in a string (or sentence) is called sub
string. This group of consecutive elements may not have any special meaning. To access a
sub string from the given string we need following information :

(a) Name of the string

(b) Position of the first character of the sub string in the given string

(c) The length of the sub string

Finding whether the sub string is available in a string by matching its characters is
called pattern matching.

16 PRINCIPLES OF DATA STRUCTURES USING C AND C++

SELF REVIEW QUESTIONS

1. Explain how sparse matrix can be stored using arrays?

[Calicut - APR 1997 (BTech), MG - MAY 2002 (BTech)

KERALA - MAY 2002 (BTech)]

2. Distinguish between time and space complexity?

[ANNA - MAY 2004 (MCA), MG - MAY 2004 (BTech)]

3. Discuss the performance analysis and evaluation methods of algorithm?

[KERALA - DEC 2004 (BTech), MG - MAY 2004 (BTech)]

4. Define and explain Big O notation?

[MG - NOV 2004 (BTech), MG - NOV 2003 (BTech)]

5. What are sparse matrixes? Give an example?

[CUSAT - NOV 2002 (BTech), Calicut - APR 1995 (BTech),

CUSAT - JUL 2002 (MCA), MG - NOV 2004 (BTech)

KERALA - MAY 2001 (BTech), KERALA - MAY 2003 (BTech)]

6. Explain the schemes of data representations for strings? [MG - NOV 2004 (BTech)]

7. Define complexity of an algorithm. What is meant by time-space trade off ?

[CUSAT - MAY 2000 (BTech), MG - NOV 2004 (BTech),

KERALA - DEC 2002 (BTech), MG - MAY 2000 (BTech)]

8. Discuss the different steps in the development of an algorithm?

[MG - NOV 2004 (BTech)]

9. Discuss the advantages and disadvantages of Modular Programming.

[Calicut - APR 1995 (BTech)]

10. What is an Algorithm? Explain with example the time and space analysis of an algo-
rithm. [Calicut - APR 1995 (BTech)]

11. Pattern matching in strings. [Calicut - APR 1997 (BTech)]

12. Distinguish between primitive and non-primitive data structures. Explain how integer
data are mapped to storage. [CUSAT - APR 1998 (BTech)]

13. Explain what is meant by dynamic storage management?

[ANNA - DEC 2004 (BE), CUSAT - MAY 2000 (BTech)]

14. Explain in detail about top-down approach and bottom-up approach with suitable pro-
gramming examples. [ANNA - MAY 2003 (BE), ANNA - DEC 2003 (BE)]

15. What do you mean by stepwise refinement?

[KERALA - DEC 2004 (BTech), ANNA - DEC 2003 (BE)

KERALA - DEC 2003 (BTech), KERALA - JUN 2004 (BTech)

KERALA - MAY 2003 (BTech)]

16. What are the features of structured programming methodologies? Explain.
[ANNA - MAY 2003 (BE), ANNA - DEC 2004 (BE)]

17. Differentiate linear and non-linear data structures.

[ANNA - MAY 2004 (BE), ANNA - MAY 2004 (MCA)]

18. What are the primitive functions in a string handling system? [ANNA - DEC 2004 (BE)]

19. What is meant by unstructured program? [ANNA - MAY 2004 (BE)]

PROGRAMMING METHODOLOGIES 17

20. What is meant by algorithm ? What are its measures? [ANNA - MAY 2004 (BE)]

21. What are primitive data types ? [ANNA - MAY 2003 (BE)]

22. Explain (i) Array vs. record. (ii) Time complexity

[KERALA - MAY 2001 (BTech), KERALA - JUN 2004 (BTech)]

23. Explain Programming methodology. [KERALA - DEC 2003 (BTech)]

24. Explain about analysis of algorithms.

[KERALA - MAY 2003 (BTech), KERALA - DEC 2003 (BTech)]

25. What is structured programming ? Explain. [KERALA - MAY 2001 (BTech)]

26. Distinguish between a program and an algorithm. [KERALA - MAY 2002 (BTech)]

27. Explain the advantages and disadvantage of list structure over array structure.
[KERALA - MAY 2002 (BTech)]

28. Explain the term “data structure”. [KERALA - NOV 2001 (BTech)]

29. What do you understand by best, worst and average case analysis of an algorithm ?

[KERALA - NOV 2001 (BTech)]

30. What are the uses of an array ? What is an ordered array ?

[KERALA - NOV 2001 (BTech)]

31. How will you specify the time complexity of an algorithm ? [CUSAT - OCT 2000 (BTech)]

18

2
Memory Management

A memory or store is required in a computer to store programs (or information or
data). Data used by the variables in a program is also loaded into memory for fast access.
A memory is made up of a large number of cells, where each cell is capable of storing one
bit. The cells may be organized as a set of addressable words, each word storing a se-
quence of bits. These addressable memory cells should be managed effectively to increase
its utilization. That is memory management is to handle request for storage (that is new
memory allocations for a variable or data) and release of storage (or freeing the memory) in
most effective manner. While designing a program the programmer should concentrate on
to allocate memory when it is required and to deallocate once its use is over.

In other words, dynamic data structure provides flexibility in adding, deleting or
rearranging data item at run-time. Dynamic memory management techniques permit us
to allocate additional memory space or to release unwanted space at run-time, thus
optimizing the use of storage space. Next topic will give you a brief introduction about the
storage management, static as well as dynamic functions available in C.

2.1. MEMORY ALLOCATION IN C

There are two types of memory allocations in C:

1. Static memory allocation or Compile time

2. Dynamic memory allocation or Run time

In static or compile time memory allocations, the required memory is allocated to the
variables at the beginning of the program. Here the memory to be allocated is fixed and is
determined by the compiler at the compile time itself. For example

int i, j; //Two bytes per (total 2) integer variables

float a[5], f; //Four bytes per (total 6) floating point variables

When the first statement is compiled, two bytes for both the variable ‘i’ and ‘j’ will be
allocated. Second statement will allocate 20 bytes to the array A [5 elements of floating
point type, i.e., 5 × 4] and four bytes for the variable ‘f ’. But static memory allocation has
following drawbacks.

If you try to read 15 elements, of an array whose size is declared as 10, then first 10
values and other five consecutive unknown random memory values will be read. Again if
you try to assign values to 15 elements of an array whose size is declared as 10, then first
10 elements can be assigned and the other 5 elements cannot be assigned/accessed.

The second problem with static memory allocation is that if you store less number of
elements than the number of elements for which you have declared memory, and then the
rest of the memory will be wasted. That is the unused memory cells are not made available

MEMORY MANAGEMENT 19

to other applications (or process which is running parallel to the program) and its status is
set as allocated and not free. This leads to the inefficient use of memory.

The dynamic or run time memory allocation helps us to overcome this problem. It
makes efficient use of memory by allocating the required amount of memory whenever is
needed. In most of the real time problems, we cannot predict the memory requirements.
Dynamic memory allocation does the job at run time.

C provides the following dynamic allocation and de-allocation functions :

 (i) malloc() (ii) calloc()

(iii) realloc() (iv) free()

2.1.1. ALLOCATING A BLOCK OF MEMORY

The malloc() function is used to allocate a block of memory in bytes. The malloc
function returns a pointer of any specified data type after allocating a block of memory of
specified size. It is of the form

ptr = (int_type *) malloc (block_size)

‘ptr’ is a pointer of any type ‘int_type’ byte size is the allocated area of memory block.
For example

ptr = (int *) malloc (10 * sizeof (int));

On execution of this statement, 10 times memory space equivalent to size of an ‘int’
byte is allocated and the address of the first byte is assigned to the pointer variable ‘ptr’ of
type ‘int’.

Remember the malloc() function allocates a block of contiguous bytes. The alloca-
tion can fail if the space in the heap is not sufficient to satisfy the request. If it fails, it
returns a NULL pointer. So it is always better to check whether the memory allocation is
successful or not before we use the newly allocated memory pointer. Next program will
illustrate the same.

PROGRAM 2.1

//THIS IS A PROGRAM TO FIND THE SUM OF n ELEMENTS USING

//DYNAMIC MEMORY ALLOCATION

#include<stdio.h>

#include<conio.h>

#include<process.h>

//Defining the NULL pointer as zero

#define NULL 0

void main()

{

int i,n,sum;

//Allocate memory space for two-integer pointer variable

int *ptr,*ele;

20 PRINCIPLES OF DATA STRUCTURES USING C AND C++

clrscr(); //Clear the screen

printf(“\nEnter the number of the element(s) to be added = ”);

scanf(“%d”,&n); //Enter the number of elements

//Allocating memory space for n integers of int type to *ptr

ptr=(int *)malloc(n*sizeof(int));

//Checking whether the memory is allocated successfully

if(ptr == NULL)

{

printf(“\n\nMemory allocation is failed”);

exit(0);

}

//Reading the elements to the pointer variable *ele

for(ele=ptr,i=1;ele<(ptr+n);ele++,i++)

{

printf(“Enter the %d element = ”,i);

scanf(“%d”,ele);

}

//Finding the sum of n elements

for(ele=ptr,sum=0;ele<(ptr+n);ele++)

sum=sum+(*ele);

printf(“\n\nThe SUM of no(s) is = %d”,sum);

getch();

}

Similarly, memory can be allocated to structure variables. For example

struct Employee

{

int Emp_Code;

char Emp_Name[50];

float Emp_Salary;

};

Here the structure is been defined with three variables.

struct Employee *str_ptr;

str_ptr = (struct Employee *) malloc(sizeof (struct Employee));

When this statement is executed, a contiguous block of memory of size 56 bytes (2
bytes for integer employee code, 50 bytes for character type Employee Name and 4 bytes
for floating point type Employee Salary) will be allocated.

MEMORY MANAGEMENT 21

2.1.2. ALLOCATING MULTIPLE BLOCKS OF MEMORY

The calloc() function works exactly similar to malloc() function except for the fact
that it needs two arguments as against one argument required by malloc() function. While
malloc() function allocates a single block of memory space, calloc() function allocates mul-
tiple blocks of memory, each of the same size, and then sets all bytes to zero. The general
form of calloc() function is

ptr = (int_type*) calloc(n sizeof (block_size));

ptr = (int_type*) malloc(n* (sizeof (block_size));

The above statement allocates contiguous space for ‘n’ blocks, each of size of block_size
bytes. All bytes are initialized to zero and a pointer to the first byte of the allocated memory
block is returned. If there is no sufficient memory space, a NULL pointer is returned. For
example

ptr = (int *) calloc(25, 4);

ptr = (int *) calloc(25,sizeof (float));

Here, in the first statement the size of data type in byte for which allocation is to be
made (4 bytes for a floating point numbers) is specified and 25 specifies the number of
elements for which allocation is to be made.

Note : The memory allocated using malloc() function contains garbage values, the
memory allocated by calloc() function contains the value zero.

2.1.3. RELEASING THE USED SPACE

Dynamic memory allocation allocates block(s) of memory when it is required and
deallocates or releases when it is not in use. It is important and is our responsibility to
release the memory block for future use when it is not in use, using free() function.

The free() function is used to deallocate the previously allocated memory using malloc()
or calloc() function. The syntax of this function is

free(ptr);

‘ptr’ is a pointer to a memory block which has already been allocated by malloc() or
calloc() functions. Trying to release an invalid pointer may create problems and cause
system crash.

2.1.4. RESIZE THE SIZE OF A MEMORY BLOCK

In some situations, the previously allocated memory is insufficient to run the cor-
rect application, i.e., we want to increase the memory space. It is also possible that the
memory allocated is much larger than necessary, i.e., we want to reduce the memory
space. In both the cases we want to change the size of the allocated memory block and this
can be done by realloc() function. This process is called reallocation of the memory. The
syntax of this function is

ptr = realloc(ptr, New_Size)

Where ‘ptr’ is a pointer holding the starting address of the allocated memory block.
And New_Size is the size in bytes that the system is going to reallocate. Following example
will elaborate the concept of reallocation of memory.

ptr = (int *) malloc(sizeof (int));

22 PRINCIPLES OF DATA STRUCTURES USING C AND C++

ptr = (int *) realloc(ptr, sizeof (int));

ptr = (int *) realloc(ptr, 2);
Both the statements are same

ptr = (int *) realloc(ptr, sizeof (float));

ptr = (int *) realloc(ptr, 4);
Both the statements are same

2.2. DYNAMIC MEMORY ALLOCATION IN C++

Although C++ supports all the functions (i.e., malloc, calloc, realloc and free) used in
C, it also defines two unary operators new and delete that performs the task of allocating
and freeing the memory in a better and easier way.

An object (or variable) can be created by using new, and destroyed by using delete,
as and when required. A data object created inside a block with new, will remain in exist-
ence until it is explicitly destroyed by using delete. Thus, the lifetime of an object is di-
rectly under our control and is unrelated to the block structure of the program.

The new operator can be used to create objects of any type. It takes the following
general form:

Pointer_Variable = new data_type;
Here, Pointer_Variable is a pointer of type data_type. The new operator allocates

sufficient memory to hold a data object of type data_type and returns the address of the
object. The data_type may be any valid data type. The Pointer_Variable holds the address
of the memory space allocated. For example:

int *Var1 = new int;
float *Var2 = new float;

Where Var1 is a pointer of type int and Var2 is a pointer of type float.
When a data object is no longer needed, it is destroyed to release the memory space

for reuse. The general form of its use is:
delete Pointer_Variable;

The Pointer_Variable is the pointer that points to a data object created with new.
delete Var1;
delete Var2

2.3. FREE STORAGE LIST

Now we have discussed several functions to allocate and freeing storage (or deallocate).
To store any data, memory space is allocated dynamically using the function we have
discussed in the earlier sections. That is storage allocation is done when the programmer
requests it by declaring a structure at the run time.

But freeing storage is not as easy as allocation. When a program or block of program
(or function or module) ends, the storage allocated at the beginning of the program will be
freed. Dynamically a memory cell can be freed using the operator delete in C++.

In memory a special list of unused (including the deallocated) memory cells is main-
tained to provide (or allocate) memory space. This list, which has its own pointer, is called
the list of available space or the free storage list or the free pool.

MEMORY MANAGEMENT 23

Two problems arise in the context of storage release. One is the accumulation of
garbage (called garbage collection) and another is that of dangling reference, which is dis-
cussed in following sections.

2.4. GARBAGE COLLECTION

Suppose some memory space becomes reusable when a node (or a variable) is de-
leted from a list or an entire list is deleted from a program. Obviously, we would like the
space to be made available for future use. One way to bring this about is to immediately
reinsert the space into the free-storage list-using delete or free. However, this method may
be too time-consuming for the operating system and most of the programming languages,
reserve themselves the task of storage release, even if they provide operator like delete. So
the problem arises when the system considers a memory cell as free storage.

The operating system of a computer may periodically collect all the deleted space
onto the free-storage list. Any technique that does this is called garbage collection. Gar-
bage collection usually takes place in two steps. First the computer runs through all lists,
tagging those cells which are currently in use, and then the computer runs through the
memory, collecting all untagged space onto the free-storage list. The garbage collection
may take place when there is only some minimum amount of space or no space at all left
in the free-storage list, or when the CPU is idle and has time to do the collection. Generally
speaking, the garbage collection is invisible to the programmer. Any future discussion
about this topic of garbage collection lies beyond the scope of this text.

2.5. DANGLING REFERENCE

A dangling reference is a pointer existing in a program, which still accesses a block
of memory that has been freed. For example consider the following code in C++.

int ptr,temp;

ptr = new int;

temp = ptr

delete ptr;

24 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Here temp is the dangling reference. temp is a pointer which is pointing to a memory
block ptr, which is just deleted. This can be overcome by using a reference counters.

2.6. REFERENCE COUNTERS

In the reference-counter method, a counter is kept that records how many pointers
have direct access to each memory block. When a memory block is first allocated, its
reference counter is set to 1. Each time another link is made pointing to this block, the
reference counter is incremented. Each time a link to its block is broken, the reference
counter is decremented. When the count reaches 0, the memory block is not accessed by
any other pointer and it can be returned to the free list. This technique completely elimi-
nates the dangling reference problem.

2.7. STORAGE COMPACTION

Storage compaction is another technique for reclaiming free storage. Compaction
works by actually moving blocks of data from one location in the memory to another so as
to collect all the free blocks into one single large block. Once this single block gets too
small again, the compaction mechanism is called gain to reclaim the unused storage. Here
no storage releasing mechanism is used. Instead, a marking algorithm is used to mark
blocks that are still in use. Then instead of freeing each unmarked block by calling a
release mechanism to put it on the free list, the compactor simply collects all unmarked
blocks into one large block at one end of the memory segment.

2.8. BOUNDARY TAG METHOD

Boundary tag representation is a method of memory management described by Knuth.
Boundary tags are data structures on the boundary between blocks in the heap from
which memory is allocated. The use of such tags allow blocks of arbitrary size to be used
as shown in the Fig. 2.1.

Fig. 2.1

MEMORY MANAGEMENT 25

Suppose ‘n’ bytes of memory are to be allocated from a large area, in contiguous
blocks of varying size, and that no form of compaction or rearrangement of the allocated
segments will be used.

To reserve a block of ‘n’ bytes of memory, a free space of size ‘n’ or larger must be
located. If we could locate a large size memory, then the allocation process will divide it
into an allocated space, and a new smaller free space. Suppose free space is subdivided in
this manner several times, and some of the allocated regions are “released” (after use i.e.,
deallocated).

If we try to reserve more memory; even though there is a large contiguous chunk of
free space, the memory manager perceives it as two smaller segments and so may falsely
conclude that it has insufficient free space to satisfy a large request.

For optimal use of the memory, adjacent free segments must be combined. For
maximum availability, they must be combined as soon as possible. The task of identifying
and merging adjacent free segments should be done when a segment is released, called
the boundary tag method. The method consistently applied to ensure that there would
never be two adjacent free segments. This guarantees the largest available free space short
of compacting the string space.

SELF REVIEW QUESTIONS

1. Explain the representation of array in memory. [MG - MAY 2004 (BTech)]

2. Write a note on garbage collection and compaction.

[MG - NOV 2003 (BTech), MG - MAY 2000 (BTech)]

3. Discuss the garbage collection techniques and drawbacks of each.

[MG - MAY 2002 (BTech)]

4. Write note on storage allocation and storage release. [MG - MAY 2002 (BTech)]

5. Explain the different storage representations for string.

[KERALA - MAY 2001 (BTech), CUSAT - MAY 2000 (BTech)]

6. What is the need for Garbage collection? Explain a suitable data structure to implement
Garbage collection. [CUSAT - NOV 2002 (BTech)]

7. Write a note on Storage Management. [ANNA - DEC 2004 (BE)]

8. Explain about free storage lists. [KERALA - DEC 2004 (BTech)]

9. Explain Storage Compaction. [KERALA - JUN 2004 (BTech)]

10. Explain Garbage Collection. [KERALA - DEC 2003 (BTech)]

11. What are reference counters ? [KERALA - MAY 2001 (BTech)]

12. Explain about boundary tag method. [KERALA - MAY 2001 (BTech)]

13. Write in detail the garbage collection and the compaction process.

[KERALA - NOV 2001 (BTech)]

The Stack

A stack is one of the most important and useful non-primitive linear data structure
in computer science. It is an ordered collection of items into which new data items may be
added/inserted and from which items may be deleted at only one end, called the top of the
stack. As all the addition and deletion in a stack is done from the top of the stack, the last
added element will be first removed from the stack. That is why the stack is also called
Last-in-First-out (LIFO). Note that the most frequently accessible element in the stack is
the top most elements, whereas the least accessible element is the bottom of the stack.
The operation of the stack can be illustrated as in Fig. 3.1.

Fig. 3.1. Stack operation.

The insertion (or addition) operation is referred to as push, and the deletion (or
remove) operation as pop. A stack is said to be empty or underflow, if the stack contains no

26

3

THE STACK 27

elements. At this point the top of the stack is present at the bottom of the stack. And it is
overflow when the stack becomes full, i.e., no other elements can be pushed onto the
stack. At this point the top pointer is at the highest location of the stack.

3.1. OPERATIONS PERFORMED ON STACK

 The primitive operations performed on the stack are as follows:

PUSH: The process of adding (or inserting) a new element to the top of the stack is
called PUSH operation. Pushing an element to a stack will add the new element at the top.
After every push operation the top is incremented by one. If the array is full and no new
element can be accommodated, then the stack overflow condition occurs.

POP: The process of deleting (or removing) an element from the top of stack is called
POP operation. After every pop operation the stack is decremented by one. If there is no
element in the stack and the pop operation is performed then the stack underflow condi-
tion occurs.

3.2. STACK IMPLEMENTATION

Stack can be implemented in two ways:

1. Static implementation (using arrays)

2. Dynamic implementation (using pointers)

Static implementation uses arrays to create stack. Static implementation using arrays
is a very simple technique but is not a flexible way, as the size of the stack has to be
declared during the program design, because after that, the size cannot be varied (i.e.,
increased or decreased). Moreover static implementation is not an efficient method when
resource optimization is concerned (i.e., memory utilization). For example a stack is imple-
mented with array size 50. That is before the stack operation begins, memory is allocated
for the array of size 50. Now if there are only few elements (say 30) to be stored in the
stack, then rest of the statically allocated memory (in this case 20) will be wasted, on the
other hand if there are more number of elements to be stored in the stack (say 60) then we
cannot change the size array to increase its capacity.

The above said limitations can be overcome by dynamically implementing (is also
called linked list representation) the stack using pointers.

3.3. STACK USING ARRAYS

Implementation of stack using arrays is a very simple technique. Algorithm for push-
ing (or add or insert) a new element at the top of the stack and popping (or delete) an
element from the stack is given below.

Algorithm for push

Suppose STACK[SIZE] is a one dimensional array for implementing the stack, which
will hold the data items. TOP is the pointer that points to the top most element of the
stack. Let DATA is the data item to be pushed.

28 PRINCIPLES OF DATA STRUCTURES USING C AND C++

1. If TOP = SIZE – 1, then:

(a) Display “The stack is in overflow condition”

(b) Exit

2. TOP = TOP + 1

3. STACK [TOP] = ITEM

4. Exit

Algorithm for pop

Suppose STACK[SIZE] is a one dimensional array for implementing the stack, which
will hold the data items. TOP is the pointer that points to the top most element of the
stack. DATA is the popped (or deleted) data item from the top of the stack.

1. If TOP < 0, then

(a) Display “The Stack is empty”

(b) Exit

2. Else remove the Top most element

3. DATA = STACK[TOP]

4. TOP = TOP – 1

5. Exit

PROGRAM 3.1

//THIS PROGRAM IS TO DEMONSTRATE THE OPERATIONS PERFORMED

//ON THE STACK AND IT IS IMPLEMENTATION USING ARRAYS

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<conio.h>

//Defining the maximum size of the stack

#define MAXSIZE 100

//Declaring the stack array and top variables in a structure

struct stack

{

int stack[MAXSIZE];

int Top;

};

//type definition allows the user to define an identifier that would

//represent an existing data type. The user-defined data type identifier

//can later be used to declare variables.

typedef struct stack NODE;

THE STACK 29

//This function will add/insert an element to Top of the stack

void push(NODE *pu)

{

int item;

//if the top pointer already reached the maximum allowed size then

//we can say that the stack is full or overflow

if (pu->Top == MAXSIZE–1)

{

printf(“\nThe Stack Is Full”);

getch();

}

//Otherwise an element can be added or inserted by

//incrementing the stack pointer Top as follows

else

{

printf(“\nEnter The Element To Be Inserted = ”);

scanf(“%d”,&item);

pu->stack[++pu->Top]=item;

}

}

//This function will delete an element from the Top of the stack

void pop(NODE *po)

{

int item;

//If the Top pointer points to NULL, then the stack is empty

//That is NO element is there to delete or pop

if (po->Top == -1)

printf(“\nThe Stack Is Empty”);

//Otherwise the top most element in the stack is popped or

//deleted by decrementing the Top pointer

else

{

item=po->stack[po->Top--];

printf(“\nThe Deleted Element Is = %d”,item);

}

}

//This function to print all the existing elements in the stack

void traverse(NODE *pt)

{

int i;

//If the Top pointer points to NULL, then the stack is empty

30 PRINCIPLES OF DATA STRUCTURES USING C AND C++

//That is NO element is there to delete or pop

if (pt->Top == -1)

printf(“\nThe Stack is Empty”);

//Otherwise all the elements in the stack is printed

else

{

printf(“\n\nThe Element(s) In The Stack(s) is/are...”);

for(i=pt->Top; i>=0; i--)

printf (“\n %d”,pt->stack[i]);

}

}

void main()

{

int choice;

char ch;

//Declaring an pointer variable to the structure

NODE *ps;

//Initializing the Top pointer to NULL

ps->Top=–1;

do

{

clrscr();

//A menu for the stack operations

printf(“\n1. PUSH”);

printf(“\n2. POP”);

printf(“\n3. TRAVERSE”);

printf(“\nEnter Your Choice = ”);

scanf (“%d”, &choice);

switch(choice)

{

case 1://Calling push() function by passing

//the structure pointer to the function

push(ps);

break;

case 2://calling pop() function

pop(ps);

break;

case 3://calling traverse() function

traverse(ps);

break;

THE STACK 31

default:

printf(“\nYou Entered Wrong Choice”) ;

 }

printf(“\n\nPress (Y/y) To Continue = ”);

//Removing all characters in the input buffer

//for fresh input(s), especially <<Enter>> key

fflush(stdin);

scanf(“%c”,&ch);

}while(ch == 'Y' || ch == 'y');

}

PROGRAM 3.2

//THIS PROGRAM IS TO DEMONSTRATE THE OPERATIONS

//PERFORMED ON STACK & IS IMPLEMENTATION USING ARRAYS

//CODED AND COMPILED IN TURBO C++

#include<iostream.h>

#include<conio.h>

//Defining the maximum size of the stack

#define MAXSIZE 100

//A class initialized with public and private variables and functions

class STACK_ARRAY

{

int stack[MAXSIZE];

int Top;

public:

//constructor is called and Top pointer is initialized to –1

//when an object is created for the class

STACK_ARRAY()

{

Top=–1;

}

void push();

void pop();

void traverse();

};

32 PRINCIPLES OF DATA STRUCTURES USING C AND C++

//This function will add/insert an element to Top of the stack

void STACK_ARRAY::push()

{

int item;

//if the top pointer already reached the maximum allowed size then

//we can say that the stack is full or overflow

if (Top == MAXSIZE–1)

{

cout<<“\nThe Stack Is Full”;

getch();

}

//Otherwise an element can be added or inserted by

//incrementing the stack pointer Top as follows

else

{

cout<<“\nEnter The Element To Be Inserted = ”;

cin>>item;

stack[++Top]=item;

}

}

//This function will delete an element from the Top of the stack

void STACK_ARRAY::pop()

{

int item;

//If the Top pointer points to NULL, then the stack is empty

//That is NO element is there to delete or pop

if (Top == –1)

cout<<“\nThe Stack Is Empty”;

//Otherwise the top most element in the stack is poped or

//deleted by decrementing the Top pointer

else

{

item=stack[Top--];

cout<<“\nThe Deleted Element Is = ”<<item;

}

}

//This function to print all the existing elements in the stack

void STACK_ARRAY::traverse()

{

THE STACK 33

int i;

//If the Top pointer points to NULL, then the stack is empty

//That is NO element is there to delete or pop

if (Top == -1)

cout<<“\nThe Stack is Empty”;

//Otherwise all the elements in the stack is printed

else

{

cout<<“\n\nThe Element(s) In The Stack(s) is/are...”;

for(i=Top; i>=0; i--)

cout<<“\n ”<<stack[i];

}

}

void main()

{

int choice;

char ch;

//Declaring an object to the class

STACK_ARRAY ps;

do

{

clrscr();

//A menu for the stack operations

cout<<“\n1. PUSH”;

cout<<“\n2. POP”;

cout<<“\n3. TRAVERSE”;

cout<<“\nEnter Your Choice = ”;

cin>>choice;

switch(choice)

{

case 1://Calling push() function by class object

ps.push();

break;

case 2://calling pop() function

ps.pop();

break;

34 PRINCIPLES OF DATA STRUCTURES USING C AND C++

case 3://calling traverse() function

ps.traverse();

break;

default:

cout<<“\nYou Entered Wrong Choice” ;

 }

cout<<“\n\nPress (Y/y) To Continue = ”;

cin>>ch;

}while(ch == ‘Y’ || ch == ‘y’);

}

3.4. APPLICATIONS OF STACKS

There are a number of applications of stacks; three of them are discussed briefly in
the preceding sections. Stack is internally used by compiler when we implement (or ex-
ecute) any recursive function. If we want to implement a recursive function non-recursively,
stack is programmed explicitly. Stack is also used to evaluate a mathematical expression
and to check the parentheses in an expression.

3.4.1. RECURSION

Recursion occurs when a function is called by itself repeatedly; the function is called
recursive function. The general algorithm model for any recursive function contains the
following steps:

1. Prologue: Save the parameters, local variables, and return address.

2. Body: If the base criterion has been reached, then perform the final computation
and go to step 3; otherwise, perform the partial computation and go to step 1
(initiate a recursive call).

3. Epilogue: Restore the most recently saved parameters, local variables, and re-
turn address.

A flowchart model for any recursive algorithm is given in Fig. 3.2.

It is difficult to understand a recursive function from its flowchart, and the best way
is to have an intuitive understanding of the function. The key box in the flowchart con-
tained in the body of the function is the one, which invokes a call to itself. Each time a
function call to itself is executed, the prologue of the function saves necessary information
required for its proper functioning.

THE STACK 35

Start

Stop

Initialization

Decision
Partial

computation
Done

Final
computation

Function
Call to
itself

Not done
Update

Return

Prologue

Body

Epilogue

Fig. 3.2. Flowchart model for a recursive algorithm

The Last-in-First-Out characteristics of a recursive function points that the stack is
the most obvious data structure to implement the recursive function. Programs compiled
in modern high-level languages (even C) make use of a stack for the procedure or function
invocation in memory. When any procedure or function is called, a number of words (such
as variables, return address and other arguments and its data(s) for future use) are pushed
onto the program stack. When the procedure or function returns, this frame of data is
popped off the stack.

As a function calls a (may be or may not be another) function, its arguments, return
address and local variables are pushed onto the stack. Since each function runs in its own
environment or context, it becomes possible for a function to call itself — a technique
known as recursion. This capability is extremely useful and extensively used — because
many problems are elegantly specified or solved in a recursive way.

36 PRINCIPLES OF DATA STRUCTURES USING C AND C++

The stack is a region of main memory within which programs temporarily store data
as they execute. For example, when a program sends parameters to a function, the param-
eters are placed on the stack. When the function completes its execution these parameters
are popped off from the stack. When a function calls other function the current contents
(ie., variables) of the caller function are pushed onto the stack with the address of the
instruction just next to the call instruction, this is done so after the execution of called
function, the compiler can backtrack (or remember) the path from where it is sent to the
called function.

The recursive mechanism can be best described by an example. Consider the follow-
ing program to calculate factorial of a number recursively, which explicitly describes the
recursive framework.

PROGRAM 3.3

//PROGRAM TO FIND FACTORIAL OF A NUMBER, RECURSIVELY

#include<conio.h>

#include<iostream.h>

void fact(int no, int facto)

{

if (no <= 1)

{

//Final computation and returning and restoring address

cout<<“\nThe Factorial is = ”<<facto;

return;

}

else

{

//Partiial computation of the program

facto=facto*no;

//Function call to itself, that is recursion

fact(--no,facto);

}

}

void main()

{

clrscr();

int number,factorial;

THE STACK 37

//Initialization of formal parameters, local variables and etc.

factorial=1;

cout<<“\nEnter the No = ”;

cin>>number;

//Starting point of the function, which calls itself

fact(number,factorial);

getch();

}

Fig. 3.3. Flowchart for finding factorial recursively

3.4.2. RECURSION vs ITERATION

Recursion of course is an elegant programming technique, but not the best way to
solve a problem, even if it is recursive in nature. This is due to the following reasons:

1. It requires stack implementation.

2. It makes inefficient utilization of memory, as every time a new recursive call is
made a new set of local variables is allocated to function.

3. Moreover it also slows down execution speed, as function calls require jumps,
and saving the current state of program onto stack before jump.

Though inefficient way to solve general problems, it is too handy in several problems
as discussed in the starting of this chapter. It provides a programmer with certain pitfalls,

38 PRINCIPLES OF DATA STRUCTURES USING C AND C++

and quite sharp concepts about programming. Moreover recursive functions are often
easier to implement d maintain, particularly in case of data structures which are by na-
ture recursive. Such data structures are queues, trees, and linked lists. Given below are
some of the important points, which differentiate iteration from recursion.

No. Iteration Recursion

1 It is a process of executing a statement
or a set of statements repeatedly, until
some specified condition is specified.

Recursion is the technique of defining
anything in terms of itself.

2 Iteration involves four clear-cut Steps
like initialization, condition, execution,
and updating.

There must be an exclusive if statement
inside the recursive function, specifying
stopping condition.

3 Any recursive problem can be solved
iteratively.

Not all problems have recursive solution.

4 Iterative counterpart of a problem is
more efficient in terms of memory
1,1tilization and execution speed.

Recursion is generally a worse option to
go for simple problems, or problems not
recursive in nature.

3.4.3. DISADVANTAGES OF RECURSION

1. It consumes more storage space because the recursive calls along with auto-
matic variables are stored on the stack.

2. The computer may run out of memory if the recursive calls are not checked.

3. It is not more efficient in terms of speed and execution time.

4. According to some computer professionals, recursion does not offer any concrete
advantage over non-recursive procedures/functions.

5. If proper precautions are not taken, recursion may result in non-terminating
iterations.

6. Recursion is not advocated when the problem can be through iteration. Recur-
sion may be treated as a software tool to be applied carefully and selectively.

3.4.4. TOWER OF HANOI

So far we have discussed the comparative definition and disadvantages of recursion
with examples. Now let us look at the Tower of Hanoi problem and see how we can use
recursive technique to produce a logical and elegant solution.

The initial setup of the problem is shown below. Here three pegs (or towers) X, Y and
Z exists. There will be four different sized disks, say A, B, C and D. Each disk has a hole in
the center so that it can be stacked on any of the pegs. At the beginning, the disks are
stacked on the X peg, that is the largest sized disk on the bottom and the smallest sized
disk on top as shown in Fig. 3.4.

THE STACK 39

X Y Z

D
C

B

A

Fig. 3.4. Initial position of the Tower of Hanoi

Here we have to transfer all the disks from source peg X to the destination peg Z by
using an intermediate peg Y. Following are the rules to be followed during transfer :

1. Transferring the disks from the source peg to the destination peg such that at
any point of transformation no large size disk is placed on the smaller one.

2. Only one disk may be moved at a time.

3. Each disk must be stacked on any one of the pegs.

Now Tower of Hanoi problem can be solved as shown below :

X Y Z

D
C

B

A

Fig. 3.5. Move disk A from the peg X to peg Y

X Y Z

D
C

B
A

Fig. 3.6. Move disk B from the peg X to peg Z

40 PRINCIPLES OF DATA STRUCTURES USING C AND C++

X Y Z

D
C

B

A

Fig. 3.7. Move disk A from the peg Y to peg Z

X Y Z

D C B

A

Fig. 3.8. Move disk C from the peg X to peg Y

X Y Z

D C B

A

Fig. 3.9. Move disk A from the peg Z to peg X

X Y Z

D C
B

A

Fig. 3.10. Move disk B from the peg Z to peg Y

THE STACK 41

X Y Z

D C
B

A

Fig. 3.11. Move disk A from the peg X to peg Y

X Y Z

DC
B

A

Fig. 3.12. Move disk D from the peg X to peg Z

X Y Z

DC
B

A

Fig. 3.13. Move disk A from the peg Y to peg Z

X Y Z

DCB

A

Fig. 3.14. Move disk B from the peg Y to peg X

42 PRINCIPLES OF DATA STRUCTURES USING C AND C++

X Y Z

DCB

A

Fig. 3.15. Move disk A from the peg Z to peg X

X Y Z

D
C

B

A

Fig. 3.16. Move disk C from the peg Y to peg Z

X Y Z

D
C

B
A

Fig. 3.17. Move disk A from the peg X to peg Y

X Y Z

D
C

B

A

Fig. 3.18. Move disk B from the peg X to peg Z

THE STACK 43

X Y Z

D
C

B

A

Fig. 3.19. Move disk A from the tower Y to tower Z

We can generalize the solution to the Tower of Hanoi problem recursively as follows :

To move n disks from peg X to peg Z, using Y as auxiliary peg:

1. If n = 1, move the single disk from X to Z and stop.

2. Move the top(n – 1) disks from the peg X to the peg Y, using Z as auxiliary.

3. Move nth disk to peg Z.

4. Now move n – 1 disk from Y to Z, using Z as auxiliary.

PROGRAM 3.4

//PROGRAM TO SIMULATE THE TOWER OF HANOI PROBLEM

//CODED AND COMPILED IN TURBO C++

#include<conio.h>

#include<iostream.h>

class tower

{

//Private variables are declared

int NoDisk;

char FromTower,ToTower,AuxTower;

public:

void hanoi(int,char,char,char);

};

void tower::hanoi(int NoDisk,char FromTower,char ToTower, char AuxTower)

{

//if only one disk, make the move and return

if (NoDisk == 1)

{

44 PRINCIPLES OF DATA STRUCTURES USING C AND C++

 cout<<“\nMove from disk 1 from tower ”<<FromTower<<“ to tower ”<<ToTower;

 return;

}

//Move top n–1 disks from X to Y, using Z as auxiliary tower

hanoi(NoDisk–1,FromTower,AuxTower,ToTower);

//Move remaining disk from X to Z

cout<<“\nMove from disk ”<<NoDisk<<“ from tower ”<<FromTower<<“ to tower
”<<ToTower;

//Move n–1 disk from Y to Z using X as auxiliary tower

hanoi(NoDisk–1,AuxTower,ToTower,FromTower);

return;

}

void main()

{

int No;

tower Ob;

clrscr();

cout<<“\n\t\t\t--- Tower of Hanoi ---\n”;

//Imput the number of disk in the tower

cout<<“\n\nEnter the number of disks = ”;

cin>>No;

//We assume that the towers are X, Y and Z

Ob.hanoi(No,‘X’,‘Z’,‘Y’);

cout<<“\n\nPress any key to continue...”;

getch();

}

3.4.5. EXPRESSION

Another application of stack is calculation of postfix expression. There are basically
three types of notation for an expression (mathematical expression; An expression is de-
fined as the number of operands or data items combined with several operators.)

1. Infix notation

2. Prefix notation

3. Postfix notation

The infix notation is what we come across in our general mathematics, where the
operator is written in-between the operands. For example : The expression to add two
numbers A and B is written in infix notation as:

A + B

Note that the operator ‘+’ is written in between the operands A and B.

The prefix notation is a notation in which the operator(s) is written before the oper-
ands, it is also called polish notation in the honor of the polish mathematician Jan

THE STACK 45

Lukasiewicz who developed this notation. The same expression when written in prefix
notation looks like:

+ A B

As the operator ‘+’ is written before the operands A and B, this notation is called
prefix (pre means before).

In the postfix notation the operator(s) are written after the operands, so it is called
the postfix notation (post means after), it is also known as suffix notation or reverse polish
notation. The above expression if written in postfix expression looks like:

A B +

The prefix and postfix notations are not really as awkward to use as they might look.
For example, a C function to return the sum of two variables A and B (passed as argument)
is called or invoked by the instruction:

add(A, B)

Note that the operator add (name of the function) precedes the operands A and B.
Because the postfix notation is most suitable for a computer to calculate any expression
(due to its reverse characteristic), and is the universally accepted notation for designing
Arithmetic and Logical Unit (ALU) of the CPU (processor). Therefore it is necessary to
study the postfix notation. Moreover the postfix notation is the way computer looks to-
wards arithmetic expression, any expression entered into the computer is first converted
into postfix notation, stored in stack and then calculated. In the preceding sections we will
study the conversion of the expression from one notation to other.

Advantages of using postfix notation

Human beings are quite used to work with mathematical expressions in infix nota-
tion, which is rather complex. One has to remember a set of nontrivial rules while using
this notation and it must be applied to expressions in order to determine the final value.
These rules include precedence, BODMAS, and associativity.

Using infix notation, one cannot tell the order in which operators should be applied.
Whenever an infix expression consists of more than one operator, the precedence rules
(BODMAS) should be applied to decide which operator (and operand associated with that
operator) is evaluated first. But in a postfix expression operands appear before the opera-
tor, so there is no need for operator precedence and other rules. As soon as an operator
appears in the postfix expression during scanning of postfix expression the topmost oper-
ands are popped off and are calculated by applying the encountered operator. Place the
result back onto the stack; likewise at the end of the whole operation the final result will
be there in the stack.

Notation Conversions

Let A + B * C be the given expression, which is an infix notation. To calculate this
expression for values 4, 3, 7 for A, B, C respectively we must follow certain rule (called
BODMAS in general mathematics) in order to have the right result. For example:

A + B * C = 4 + 3 * 7 = 7 * 7 = 49

The answer is not correct; multiplication is to be done before the addition, because
multiplication has higher precedence over addition. This means that an expression is
calculated according to the operator’s precedence not the order as they look like. The error

46 PRINCIPLES OF DATA STRUCTURES USING C AND C++

in the above calculation occurred, since there were no braces to define the precedence of
the operators. Thus expression A + B * C can be interpreted as A + (B * C). Using this
alternative method we can convey to the computer that multiplication has higher prec-
edence over addition.

Operator precedence

Exponential operator ^ Highest precedence

Multiplication/Division *, / Next precedence

Addition/Subtraction +, - Least precedence

3.5. CONVERTING INFIX TO POSTFIX EXPRESSION

The method of converting infix expression A + B * C to postfix form is:

A + B * C Infix Form

A + (B * C) Parenthesized expression

A + (B C *) Convert the multiplication

A (B C *) + Convert the addition

A B C * + Postfix form

The rules to be remembered during infix to postfix conversion are:

1. Parenthesize the expression starting from left to light.

2. During parenthesizing the expression, the operands associated with operator
having higher precedence are first parenthesized. For example in the above ex-
pression B * C is parenthesized first before A + B.

3. The sub-expression (part of expression), which has been converted into postfix,
is to be treated as single operand.

4. Once the expression is converted to postfix form, remove the parenthesis.

Problem 3.4.2.1. Give postfix form for A + [(B + C) + (D + E) * F] / G

Solution. Evaluation order is

A + { [(BC +) + (DE +) * F] / G}

A + { [(BC +) + (DE + F *] / G}

A + { [(BC + (DE + F * +] / G} .

A + [BC + DE + F *+ G /]

ABC + DE + F * + G / + Postfix Form

Problem 3.4.2.2. Give postfix form for (A + B) * C / D + E ^ A / B

Solution. Evaluation order is

[(AB +) * C / D] + [(EA ^) / B]

[(AB +) * C / D] + [(EA ^) B /]

[(AB +) C * D /] + [(EA ^) B /]

THE STACK 47

(AB +) C * D / (EA ^) B / +

AB + C * D / EA ^ B / + Postfix Form

Algorithm

Suppose P is an arithmetic expression written in infix notation. This algorithm finds
the equivalent postfix expression Q. Besides operands and operators, P (infix notation)
may also contain left and right parentheses. We assume that the operators in P consists of
only exponential (^), multiplication (*), division (/), addition (+) and subtraction (-).
The algorithm uses a stack to temporarily hold the operators and left parentheses. The
postfix expression Q will be constructed from left to right using the operands from P and
operators, which are removed from stack. We begin by pushing a left parenthesis onto
stack and adding a right parenthesis at the end of P. the algorithm is completed when the
stack is empty.

1. Push “(” onto stack, and add“)” to the end of P.

2. Scan P from left to right and repeat Steps 3 to 6 for each element of P until the
stack is empty.

3. If an operand is encountered, add it to Q.

4. If a left parenthesis is encountered, push it onto stack.

5. If an operator ⊗ is encountered, then:

(a) Repeatedly pop from stack and add P each operator (on the top of stack),
which has the same precedence as, or higher precedence than ⊗ .

(b) Add ⊗ to stack.

6. If a right parenthesis is encountered, then:

(a) Repeatedly pop from stack and add to P (on the top of stack until a left
parenthesis is encountered.

(b) Remove the left parenthesis. [Do not add the left parenthesis to P.]

7. Exit.

Note. Special character ⊗ is used to symbolize any operator in P.

Consider the following arithmetic infix expression P

P = A + (B / C - (D * E ^ F) + G) * H

Fig. 3.20 shows the character (operator, operand or parenthesis) scanned, status of
the stack and postfix expression Q of the infix expression P.

Character Stack Postfix Expression (Q)

scanned

A (A

+ (+ A

((+ (A

B (+ (A B

/ (+ (/ A B

C (+ (/ A B C

48 PRINCIPLES OF DATA STRUCTURES USING C AND C++

– (+ (- A B C /

((+ (- (A B C /

D (+ (- (A B C / D

* (+ (- (* A B C / D

E (+ (- (* A B C / D E

^ (+ (- (* ^ A B C / D E

F (+ (- (* ^ A B C / D E F

) (+ (- A B C / D E F ^ *

+ (+ (+ A B C / D E F ^ * -

G (+ (+ A B C / D E F ^ * - G

) (+ A B C / D E F ^ * - G +

* (+ * A B C / D E F ^ * - G +

H (+ * A B C / D E F ^ * - G + H

) A B C / D E F ^ * - G + H * +

Fig. 3.20

PROGRAM 3.5

//THIS PROGRAM IS TO COVERT THE INFIX TO POSTFIX EXPRESSION

//STACK IS USED AND IT IS IMPLEMENTATION USING ARRAYS

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<conio.h>

#include<string.h>

//Defining the maximum size of the stack

#define MAXSIZE 100

//Declaring the stack array and top variables in a structure

struct stack

{

char stack[MAXSIZE];

int Top;

};

//type definition allows the user to define an identifier that would

//represent an existing data type. The user-defined data type identifier

//can later be used to declare variables.

typedef struct stack NODE;

THE STACK 49

//This function will add/insert an element to Top of the stack

void push(NODE *pu,char item)

{

//if the top pointer already reached the maximum allowed size then

//we can say that the stack is full or overflow

if (pu->Top == MAXSIZE-1)

{

printf(“\nThe Stack Is Full”);

getch();

}

//Otherwise an element can be added or inserted by

//incrementing the stack pointer Top as follows

else

pu->stack[++pu->Top]=item;

}

//This function will delete an element from the Top of the stack

char pop(NODE *po)

{

char item=‘#’;

//If the Top pointer points to NULL, then the stack is empty

//That is NO element is there to delete or pop

if(po->Top == –1)

printf(“\nThe Stack Is Empty. Invalid Infix expression”);

//Otherwise the top most element in the stack is poped or

//deleted by decrementing the Top pointer

else

item=po->stack[po->Top--];

return(item);

}

//This function returns the precedence of the operator

int prec(char symbol)

{

switch(symbol)

{

case '(':

return(1);

case ')':

return(2);

case '+':

50 PRINCIPLES OF DATA STRUCTURES USING C AND C++

case '-':

return(3);

case '*':

case '/':

case '%':

return(4);

case '^':

return(5);

default:

return(0);

}

}

//This function will return the postfix expression of an infix

void Infix_Postfix(char infix[])

{

int len,priority;

char postfix[MAXSIZE],ch;

//Declaring an pointer variable to the structure

NODE *ps;

//Initializing the Top pointer to NULL

ps->Top=–1;

//Finding length of the string

len=strlen(infix);

//At the end of the string inputting a parenthesis ')'

infix[len++]=')';

push(ps,'(');//Parenthesis is pushed to the stack

for(int i=0,j=0;i<len;i++)

{

switch(prec(infix[i]))

{

 //Scanned char is '(' push to the stack

case 1:

push(ps,infix[i]);

break;

//Scanned char is ')' pop the operator(s) and add to //the postfix

expression

case 2:

ch=pop(ps);

while(ch != '(')

{

THE STACK 51

postfix[j++]=ch;

ch=pop(ps);

}

break;

//Scanned operator is +,– then pop the higher or same

//precedence operator to add postfix before pushing

//the scanned operator to the stack

case 3:

ch=pop(ps);

while(prec(ch) >= 3)

{

postfix[j++]=ch;

ch=pop(ps);

}

push(ps,ch);

push(ps,infix[i]);

break;

//Scanned operator is *,/,% then pop the higher or

//same precedence operator to add postfix before

//pushing the scanned operator to the stack

case 4:

ch=pop(ps);

while(prec(ch) >= 4)

{

postfix[j++]=ch;

ch=pop(ps);

}

push(ps,ch);

push(ps,infix[i]);

break;

//Scanned operator is ^ then pop the same

//precedence operator to add to postfix before pushing

//the scanned operator to the stack

case 5:

ch=pop(ps);

while(prec(ch) == 5)

{

postfix[j++]=ch;

ch=pop(ps);

}

push(ps,ch);

push(ps,infix[i]);

break;

52 PRINCIPLES OF DATA STRUCTURES USING C AND C++

//Scanned char is a operand simply add to the postfix

//expression

default:

postfix[j++]=infix[i];

break;

 }

}

//Printing the postfix notation to the screen

printf (“\nThe Postfix expression is = ”);

for(i=0;i<j;i++)

printf (“%c”,postfix[i]);

}

void main()

{

char choice,infix[MAXSIZE];

do

{

clrscr();

printf(“\n\nEnter the infix expression = ”);

fflush(stdin);

gets(infix);//Inputting the infix notation

Infix_Postfix(infix);//Calling the infix to postfix function

printf(“\n\nDo you want to continue (Y/y) =”);

fflush(stdin);

scanf(“%c”,&choice);

}while(choice == 'Y' || choice == ‘y’);

}

PROGRAM 3.6

//THIS PROGRAM IS TO COVERT THE INFIX TO POSTFIX EXPRESSION

//AND IT IS IMPLEMENTATION USING ARRAYS

//CODED AND COMPILED IN TURBO C++

#include<iostream.h>

#include<conio.h>

#include<string.h>

THE STACK 53

//Defining the maximum size of the stack

#define MAXSIZE 100

//A class initialised with public and private variables and functions

class STACK_ARRAY

{

int stack[MAXSIZE];

int Top;

public:

//constructor is called and Top pointer is initialised to –1

//when an object is created for the class

STACK_ARRAY()

{

Top=–1;

}

void push(char);

char pop();

int prec(char);

void Infix_Postfix();

};

//This function will add/insert an element to Top of the stack

void STACK_ARRAY::push(char item)

{

//if the top pointer already reached the maximum allows size then

//we can say that the stack is full or overflow

if (Top == MAXSIZE-1)

{

cout<<“\nThe Stack Is Full”;

getch();

}

//Otherwise an element can be added or inserted by

//incrementing the stack pointer Top as follows

else

 stack[++Top]=item;

}

//This function will delete an element from the Top of the stack

char STACK_ARRAY::pop()

{

54 PRINCIPLES OF DATA STRUCTURES USING C AND C++

char item='#';

//If the Top pointer points to NULL, then the stack is empty

//That is NO element is there to delete or pop

if (Top == –1)

cout<<“\nThe Stack Is Empty. Invalid Infix expression”;

//Otherwise the top most element in the stack is poped or

//deleted by decrementing the Top pointer

else

item=stack[Top--];

return(item);

}

//This function returns the precedence of the operator

int STACK_ARRAY::prec(char symbol)

{

switch(symbol)

{

case '(':

return(1);

case ')':

return(2);

case '+':

case '-':

return(3);

case '*':

case '/':

case '%':

return(4);

case '^':

return(5);

default:

return(0);

}

}

//This function will return the postfix expression of an infix

void STACK_ARRAY::Infix_Postfix()

{

int len,priority;

char infix[MAXSIZE],postfix[MAXSIZE],ch;

cout<<"\n\nEnter the infix expression = ";

cin>>infix;//Inputting the infix notation

THE STACK 55

//Finding length of the string

len=strlen(infix);

//At the end of the string inputting a parenthesis ‘)’

infix[len++]=')';

push('(');//Parenthesis is pushed to the stack

for(int i=0,j=0;i<len;i++)

{

switch(prec(infix[i]))

{

 //Scanned char is '(' push to the stack

case 1:

push(infix[i]);

break;

//Scanned char is ')' pop the operator(s) and add to

//the postfix expression

case 2:

ch=pop();

while(ch != '(')

{

postfix[j++]=ch;

ch=pop();

}

break;

//Scanned operator is +,- then pop the higher or

//same precedence operator to add postfix before

//pushing the scanned operator to the stack

case 3:

ch=pop();

while(prec(ch) >= 3)

{

postfix[j++]=ch;

ch=pop();

}

push(ch);

push(infix[i]);

break;

//Scanned operator is *,/,% then pop the higher or

//same precedence operator to add postfix before

//pushing the scanned operator to the stack

case 4:

ch=pop();

while(prec(ch) >= 4)

{

56 PRINCIPLES OF DATA STRUCTURES USING C AND C++

postfix[j++]=ch;

ch=pop();

}

push(ch);

push(infix[i]);

break;

//Scanned operator is ^ then pop the same

//precedence operator to add to postfix before

//pushing the scanned operator to the stack

case 5:

ch=pop();

while(prec(ch) == 5)

{

postfix[j++]=ch;

ch=pop();
}
push(ch);
push(infix[i]);
break;

//Scanned char is a operand simply add to the
//postfix expression
default:

postfix[j++]=infix[i];
break;

 }
}
//Printing the postfix notation to the screen
cout<<“\nThe Postfix expression is = ”;
for(i=0;i<j;i++)

cout<<postfix[i];

}

void main()

{

char choice;

INFI_POST ip;

do

{

clrscr();

ip.Infix_Postfix();//Calling the infix to postfix function

cout<<“\n\nDo you want to continue (Y/y) =”;

cin>>choice;

}while(choice == ‘Y’ || choice == ‘y’);

}

THE STACK 57

3.6. EVALUATING POSTFIX EXPRESSION

Following algorithm finds the RESULT of an arithmetic expression P written in postfix
notation. The following algorithm, which uses a STACK to hold operands, evaluates P.

Algorithm

1. Add a right parenthesis “)” at the end of P. [This acts as a sentinel.]

2. Scan P from left to right and repeat Steps 3 and 4 for each element of P until the
sentinel “)” is encountered.

3. If an operand is encountered, put it on STACK.

4. If an operator ⊗ is encountered, then:

(a) Remove the two top elements of STACK, where A is the top element and B is
the next-to-top element.

(b) Evaluate B ⊗ A.

(c) Place the result on to the STACK.

5. Result equal to the top element on STACK.

6. Exit.

PROGRAM 3.7

//THIS PROGRAM IS TO EVALUATE POSTFIX EXPRESSION. THE STACK

//IS USED AND IT IS IMPLEMENTATION USING ARRAYS

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<math.h>

#include<conio.h>

#include<string.h>

//Defining the maximum size of the stack

#define MAXSIZE 100

//Declaring the stack array and top variables in a structure

struct stack

{

int stack[MAXSIZE];

int Top;

};

//type definition allows the user to define an identifier that would

//represent an existing data type. The user-defined data type identifier

58 PRINCIPLES OF DATA STRUCTURES USING C AND C++

//can later be used to declare variables.

typedef struct stack NODE;

//This function will add/insert an element to Top of the stack

void push(NODE *pu,int item)

{

//if the top pointer already reached the maximum allowed size then

//we can say that the stack is full or overflow

if (pu->Top == MAXSIZE-1)

{

printf(“\nThe Stack Is Full”);

getch();

}

//Otherwise an element can be added or inserted by

//incrementing the stack pointer Top as follows

else

pu->stack[++pu->Top]=item;

}

//This function will delete an element from the Top of the stack

int pop(NODE *po)

{

int item;

//If the Top pointer points to NULL, then the stack is empty

//That is NO element is there to delete or pop

if (po->Top == –1)

printf(“\nThe Stack Is Empty. Invalid Infix expression”);

//Otherwise the top most element in the stack is poped or

//deleted by decrementing the Top pointer

else

item=po->stack[po->Top--];

return(item);

}

//This function will return the postfix expression of an infix

int Postfix_Eval(char postfix[])

{

int a,b,temp,len;

//Declaring an pointer variable to the structure

NODE *ps;

//Initializing the Top pointer to NULL

ps->Top=–1;

THE STACK 59

//Finding length of the string

len=strlen(postfix);

for(int i=0;i<len;i++)

{

if(postfix[i]<='9' && postfix[i]>='0')

//Operand is pushed on the stack

push(ps,(postfix[i]-48));

else

{

//Pop the top most two operand for operation

a=pop(ps);

b=pop(ps);

switch(postfix[i])

{

case '+':

temp=b+a; break;

case '-':

temp=b–a;break;

case '*':

temp=b*a;break;

case '/':

temp=b/a;break;

case '%':

temp=b%a;break;

case '^':

temp=pow(b,a);

}/*End of switch */

push(ps,temp);

}

}

return(pop(ps));

}

void main()

{

char choice,postfix[MAXSIZE];

do

{

clrscr();

printf(“\n\nEnter the Postfix expression = ”);

60 PRINCIPLES OF DATA STRUCTURES USING C AND C++

fflush(stdin);

gets(postfix);//Inputting the postfix notation

printf(“\n\nThe postfix evaluation is = %d”,Postfix_Eval(postfix));

printf(“\n\nDo you want to continue (Y/y) =”);

fflush(stdin);

scanf(“%c”,&choice);

}while(choice == ‘Y’ || choice == ‘y’);

}

PROGRAM 3.8

//THIS PROGRAM IS TO COVERT THE INFIX TO POSTFIX EXPRESSION

//AND IT IS IMPLEMENTATION USING ARRAYS

//CODED AND COMPILED IN TURBO C++

#include<iostream.h>

#include<math.h>

#include<conio.h>

#include<string.h>

//Defining the maximum size of the stack

#define MAXSIZE 100

//A class initialised with public and private variables and functions

class POST_EVAL

{

int stack[MAXSIZE];

int Top;

public:

//constructor is called and Top pointer is initialised to –1

//when an object is created for the class

POST_EVAL()

{

Top=–1;

}

void push(int);

int pop();

int Postfix_Eval();

THE STACK 61

};

//This function will add/insert an element to Top of the stack

void POST_EVAL::push(int item)

{

//if the top pointer already reached the maximum allows size

//then we can say that the stack is full or overflow

if (Top == MAXSIZE-1)

{

cout<<“\nThe Stack Is Full”;

getch();

}

//Otherwise an element can be added or inserted by

//incrementing the stack pointer Top as follows

else

stack[++Top]=item;

}

//This function will delete an element from the Top of the stack

int POST_EVAL::pop()

{

int item;

//If the Top pointer points to NULL, then the stack is empty

//That is NO element is there to delete or pop

if (Top == -1)

cout<<“\nThe Stack Is Empty. Invalid Infix expression”;

//Otherwise the top most element in the stack is poped or

//deleted by decrementing the Top pointer

else

item=stack[Top--];

return(item);

}

//This function will return the postfix expression of an infix

int POST_EVAL::Postfix_Eval()

{

int a,b,temp,len;

char postfix[MAXSIZE];

cout<<“\n\nEnter the Postfix expression = ”;

cin>>postfix;//Inputting the postfix notation

//Finding length of the string

62 PRINCIPLES OF DATA STRUCTURES USING C AND C++

len=strlen(postfix);

for(int i=0;i<len;i++)

{

if (postfix[i]<='9' && postfix[i]>='0')

push(postfix[i]-48);

else

{

a=pop();

b=pop();

switch(postfix[i])

{

case '+':

temp=b+a; break;

case '-':

temp=b–a;break;

case '*':

temp=b*a;break;

case '/':

temp=b/a;break;

case '%':

temp=b%a;break;

case '^':

temp=pow(b,a);

}/*End of switch */

push(temp);

}/*End of else*/

}/*End of for */

return(pop());

}

void main()

{

char choice;

int RESULT;

POST_EVAL ps;

do

{

clrscr();

RESULT=ps.Postfix_Eval();

cout<<“\n\nThe postfix evaluation is = ”<<RESULT;

THE STACK 63

cout<<“\n\nDo you want to continue (Y/y) =”;

cin>>choice;

}while(choice == ‘Y’ || choice == ‘y’);

}

SELF REVIEW QUESTIONS

1. What is meant by recursive algorithm ? [MG - MAY 2004 (BTech)]

2. Define and explain the data structure stacks. [MG - MAY 2004 (BTech)]

3. What are the operations on stack and an important use for this structure?

[Calicut - APR 1995 (BTech), MG - NOV 2003 (BTech),

MG - NOV 2002 (BTech)]

4. Explain how infix expressions are converted to polish notation. Illustrate the answer
with suitable example ?

[CUSAT - DEC 2003 (MCA), MG - MAY 2002 (BTech)

ANNA - DEC 2004 (BE), CUSAT - JUL 2002 (MCA)

KERALA - MAY 2002 (BTech)]

5. Discuss the use of a stack in implementing recursive procedures.

[MG - MAY 2002 (BTech)]

6. Explain recursion with one example. [ANNA - DEC 2004 (BE), MG - MAY 2000 (BTech)]

7. Write an algorithm for deleting an element from a stack. [Calicut - APR 1995 (BTech)]

9. Show how to evaluate the expression in the postfix using stack.

[Calicut - APR 1995 (BTech)]

10. Discuss the application of stacks. [Calicut - APR 1997 (BTech)]

11. Write an algorithm to transform from prefix to postfix. [CUSAT - APR 1998 (BTech)]

12. Explain the principle of recursive algorithm. [CUSAT - MAY 2000 (BTech)]

13. Outline an algorithm to convert a given postfix expression to infix form.

[CUSAT - MAY 2000 (BTech)]

14. Explain the implementation of stack using arrays and linked list. Write appropriate func-
tions to perform valid operations on stack. [CUSAT - MAY 2000 (BTech)]

15. What is a Stack? Explain any two operations performed on a Stack with required algo-
rithms. [KERALA - NOV 2001 (BTech), ANNA - DEC 2004 (BE)]

16. Convert the following infix expression into postfix form (A + B)* (C + B)* (ElF).
[ANNA - MAY 2004 (MCA)]

17. What is recursion? Give the application of recursion with programs.

[ANNA - MAY 2003 (BE)]

18. What are the various stack operations? Explain.

[KERALA - MAY 2003 (BTech), ANNA - MAY 2003 (BE)]

19. Explain the application of stack for conversion of infix to postfix.

[ANNA - MAY 2003 (BE)]

64 PRINCIPLES OF DATA STRUCTURES USING C AND C++

20. Write procedures for Push and Prop operations on stacks.

[KERALA - DEC 2004 (BTech)]

21. Write procedure to convert infix to portfix expressions.

[KERALA - JUN 2004 (BTech), KERALA - DEC 2004 (BTech)

KERALA - NOV 2001 (BTech)]

22. Explain the linked list implementation of a LIFO structure.

[KERALA - DEC 2002 (BTech)]

23. Write the prefix and postfix form for: A + B * (C - D) / (E - F).

[KERALA - MAY 2002 (BTech)]

24. Which data structure would you use for recursive procedures?

[KERALA - MAY 2002 (BTech)]

25. Explain how a postfix expression is evaluated using stack with suitable example ?

[KERALA - NOV 2001 (BTech)]

The Queues

A queue is logically a first in first out (FIFO or first come first serve) linear data struc-
ture. The concept of queue can be understood by our real life problems. For example a
customer come and join in a queue to take the train ticket at the end (rear) and the ticket
is issued from the front end of queue. That is, the customer who arrived first will receive
the ticket first. It means the customers are serviced in the order in which they arrive at the
service centre.

It is a homogeneous collection of elements in which new elements are added at one
end called rear, and the existing elements are deleted from other end called front.

The basic operations that can be performed on queue are

1. Insert (or add) an element to the queue (push)

2. Delete (or remove) an element from a queue (pop)

Push operation will insert (or add) an element to queue, at the rear end, by
incrementing the array index. Pop operation will delete (or remove) from the front end by
decrementing the array index and will assign the deleted value to a variable. Total number
of elements present in the queue is front-rear+1, when implemented using arrays. Follow-
ing figure will illustrate the basic operations on queue.

Fig. 4.1. Queue is empty.

Rear = 0
Front = 0

Front

Rear

 10

Fig. 4.2. push(10)

Rear = 1
Front = 0

Front

Rear

 10 3

Fig. 4.3. push(3)

65

4

66 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Rear = 2
Front = 0

Front

Rear

 10 3 41

Fig. 4.4. push(41)

Rear = 3
Front = 0

Front

Rear

 10 3 41 70

Fig. 4.5. push(70)

Rear = 3
Front = 1

Front

Rear

3 41 70

Fig. 4.6. x = pop() (i.e.; x = 10)

Rear = 4
Front = 1

Front

Rear

3 41 70 11

Fig. 4.7. push(11)

Rear = 4
Front = 2

Front

Rear

 41 70 11

Fig. 4.8. x = pop() (i.e.; x = 3)

THE QUEUES 67

Rear = 4
Front = 3

Front

Rear

 70 11

Fig. 4.9. x = pop() (i.e., x = 41)

Queue can be implemented in two ways:

1. Using arrays (static)

2. Using pointers (dynamic)

Implementation of queue using pointers will be discussed in chapter 5. Let us dis-
cuss underflow and overflow conditions when a queue is implemented using arrays.

If we try to pop (or delete or remove) an element from queue when it is empty,
underflow occurs. It is not possible to delete (or take out) any element when there is no
element in the queue.

Suppose maximum size of the queue (when it is implemented using arrays) is 50. If
we try to push (or insert or add) an element to queue, overflow occurs. When queue is full
it is naturally not possible to insert any more elements

4.1. ALGORITHM FOR QUEUE OPERATIONS

Let Q be the array of some specified size say SIZE

4.1.1. INSERTING AN ELEMENT INTO THE QUEUE

1. Initialize front=0 rear = –1

2. Input the value to be inserted and assign to variable “data”
3. If (rear >= SIZE)

(a) Display “Queue overflow”
(b) Exit

4. Else
(a) Rear = rear +1

5. Q[rear] = data

6. Exit

4.1.2. DELETING AN ELEMENT FROM QUEUE

1. If (rear< front)

(a) Front = 0, rear = –1

(b) Display “The queue is empty”

(c) Exit

68 PRINCIPLES OF DATA STRUCTURES USING C AND C++

2. Else

(a) Data = Q[front]

3. Front = front +1

4. Exit

PROGRAM 4.1

//PROGRAM TO IMPLEMENT QUEUE USING ARRAYS

//CODED AND COMPILED USING TURBO C

#include<conio.h>

#include<stdio.h>

#include<process.h>

#define MAX 50

int queue_arr[MAX];

int rear = –1;

int front = –1;

//This function will insert an element to the queue

void insert ()

{

int added_item;

if (rear==MAX-1)

{

printf("\nQueue Overflow\n");

getch();

return;

}

else

{

if (front==–1) /*If queue is initially empty */

front=0;

printf(“\nInput the element for adding in queue: ”);

scanf(“%d”, &added_item);

rear=rear+1;

//Inserting the element

queue_arr[rear] = added_item ;

}

}/*End of insert()*/

THE QUEUES 69

//This function will delete (or pop) an element from the queue

void del()

{

if (front == –1 || front > rear)

{

printf ("\nQueue Underflow\n");

return;

}

else

{

//deleteing the element

printf ("\nElement deleted from queue is : %d\n",

queue_arr[front]);

front=front+1;

}

}/*End of del()*/

//Displaying all the elements of the queue

void display()

{

int i;

//Checking whether the queue is empty or not

if (front == –1 || front > rear)

{

printf (“\nQueue is empty\n”);

return;

}

else

{

printf(“\nQueue is :\n”);

for(i=front;i<= rear;i++)

printf(“%d ”,queue_arr[i]);

printf(“\n”);

}

}/*End of display() */

void main()

{

int choice;

while (1)

{

clrscr();

70 PRINCIPLES OF DATA STRUCTURES USING C AND C++

//Menu options

printf(“\n1.Insert\n”);

printf(“2.Delete\n”);

printf(“3.Display\n”);

printf(“4.Quit\n”);

printf(“\nEnter your choice:”);

scanf(“%d”, & choice);

switch(choice)

{

case 1 :

insert();
break;

case 2:
del();
getch();
break;

case 3:
display();
getch();
break;

case 4:
exit(1);

default:

printf (“\n Wrong choice\n”);

getch();

}/*End of switch*/

}/*End of while*/

}/*End of main()*/

Suppose a queue Q has maximum size 5, say 5 elements pushed and 2 elements popped.

Front Rear

 70 11 13

Q[0] Q[1] Q[2] Q[3] Q[4]

Fig. 4.10

Now if we attempt to add more elements, even though 2 queue cells are free, the
elements cannot be pushed. Because in a queue, elements are always inserted at the rear
end and hence rear points to last location of the queue array Q[4]. That is queue is full
(overflow condition) though it is empty. This limitation can be overcome if we use circular
queue.

THE QUEUES 71

4.2. OTHER QUEUES

There are three major variations in a simple queue. They are

1. Circular queue

2. Double ended queue (de-queue)

3. Priority queue

Priority queue is generally implemented using linked list, which is discussed in the
section 5.13. The other two queue variations are discussed in the following sections.

4.3. CIRCULAR QUEUE

In circular queues the elements Q[0],Q[1],Q[2] Q[n – 1] is represented in a circu-
lar fashion with Q[1] following Q[n]. A circular queue is one in which the insertion of a new
element is done at the very first location of the queue if the last location at the queue is
full.

Suppose Q is a queue array of 6 elements. Push and pop operation can be per-
formed on circular. The following figures will illustrate the same.

Q[0]

Q[1]

Q[5]

Q[4]

Q[2]Q[3]

18

7

4267

Front

Rear

Fig. 4.11. A circular queue after inserting 18, 7, 42, 67.

72 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Q[0]

Q[1]

Q[5]

Q[4]

Q[2]
Q[3]

4267

Front

Rear

Fig. 4.12. A circular queue after popping 18, 7

After inserting an element at last location Q[5], the next element will be inserted at
the very first location (i.e., Q[0]) that is circular queue is one in which the first element
comes just after the last element.

Q[0]

Q[1]

Q[5]

Q[2]
Q[3]

42
67

Front

Rear

30

47
14

Fig. 4.13. A circular queue after pushing 30, 47, 14

At any time the position of the element to be inserted will be calculated by the
relation Rear = (Rear + 1) % SIZE

After deleting an element from circular queue the position of the front end is calcu-
lated by the relation Front= (Front + 1) % SIZE

After locating the position of the new element to be inserted, rear, compare it with
front. If (rear = front), the queue is full and cannot be inserted anymore.

THE QUEUES 73

4.3.1. ALGORITHMS

Let Q be the array of some specified size say SIZE. FRONT and REAR are two point-
ers where the elements are deleted and inserted at two ends of the circular queue. DATA is
the element to be inserted.

Inserting an element to circular Queue

1. Initialize FRONT = – 1; REAR = 1

2. REAR = (REAR + 1) % SIZE

3. If (FRONT is equal to REAR)

(a) Display “Queue is full”

(b) Exit

4. Else

(a) Input the value to be inserted and assign to variable “DATA”

5. If (FRONT is equal to – 1)

(a) FRONT = 0

(b) REAR = 0

6. Q[REAR] = DATA

7. Repeat steps 2 to 5 if we want to insert more elements

8. Exit

Deleting an element from a circular queue

1. If (FRONT is equal to – 1)

(a) Display “Queue is empty”

(b) Exit

2. Else

(a) DATA = Q[FRONT]

3. If (REAR is equal to FRONT)

(a) FRONT = –1

(b) REAR = –1

4. Else

(a) FRONT = (FRONT +1) % SIZE

5. Repeat the steps 1, 2 and 3 if we want to delete more elements

6. Exit

PROGRAM 4.2

/// PROGRAM TO IMPLEMENT CIRCULAR QUEUE USING ARRAY

//CODED AND COMPILED USING TURBO C++

74 PRINCIPLES OF DATA STRUCTURES USING C AND C++

#include<conio.h>

#include<process.h>

#include<iostream.h>

#define MAX 50

//A class is created for the circular queue

class circular_queue

{

int cqueue_arr[MAX];

int front,rear;

public:

//a constructor is created to initialize the variables

circular_queue()

{

front = –1;

rear = –1;

}

//public function declarations

void insert();

void del();

void display();

};

//Function to insert an element to the circular queue

void circular_queue::insert()

{

int added_item;

//Checking for overflow condition

if ((front == 0 && rear == MAX-1) || (front == rear +1))

{

cout<<“\nQueue Overflow \n”;

getch();

return;

}

if (front == –1) /*If queue is empty */

{

front = 0;

rear = 0;

}

THE QUEUES 75

else

if (rear == MAX-1)/*rear is at last position of queue */

rear = 0;

else

rear = rear + 1;

cout<<“\nInput the element for insertion in queue:”;

cin>>added_item;

cqueue_arr[rear] = added_item;

}/*End of insert()*/

//This function will delete an element from the queue

void circular_queue::del()

{

//Checking for queue underflow

if (front == –1)

{

cout<<“\nQueue Underflow\n”;

return;

}

cout<<“\nElement deleted from queue is:”<<cqueue_arr[front]<<“\n”;

if (front == rear) /* queue has only one element */

{

front = –1;

rear = –1;

}

else

if(front == MAX-1)

front = 0;

else

front = front + 1;

}/*End of del()*/

//Function to display the elements in the queue

void circular_queue::display()

{

int front_pos = front,rear_pos = rear;

//Checking whether the circular queue is empty or not

if (front == –1)

{

cout<<“\nQueue is empty\n”;

return;

}

76 PRINCIPLES OF DATA STRUCTURES USING C AND C++

//Displaying the queue elements

cout<<“\nQueue elements:\n”;

if(front_pos <= rear_pos)

while(front_pos <= rear_pos)

{

cout<<cqueue_arr[front_pos]<<“, ”;

front_pos++;

}

else

{

while(front_pos <= MAX-1)

{

cout<<cqueue_arr[front_pos]<<“, ”;

front_pos++;

}

front_pos = 0;

while(front_pos <= rear_pos)

{

cout<<cqueue_arr[front_pos]<<“, ”;

front_pos++;

}

}/*End of else*/

cout<<“\n”;

}/*End of display() */

void main()

{

int choice;

//Creating the objects for the class

circular_queue co;

while(1)

{

clrscr();

//Menu options

cout <<“\n1.Insert\n”;

cout <<“2.Delete\n”;

cout <<“3.Display\n";

cout <<“4.Quit\n”;

cout <<“\nEnter your choice: ”;

cin>>choice;

switch(choice)

THE QUEUES 77

{

case 1:

co.insert();

break;

case 2 :

co.del();

getch();

break;

case 3:

co.display();

getch();

break;

case 4:

exit(1);

default:

cout<<“\nWrong choice\n”;

getch();

}/*End of switch*/

}/*End of while*/

}/*End of main()*/

4.4. DEQUES

A deque is a homogeneous list in which elements can be added or inserted (called
push operation) and deleted or removed from both the ends (which is called pop opera-
tion). ie; we can add a new element at the rear or front end and also we can remove an
element from both front and rear end. Hence it is called Double Ended Queue.

Fig. 4.14. A deque

There are two types of deque depending upon the restriction to perform insertion or
deletion operations at the two ends. They are

1. Input restricted deque

2. Output restricted deque

78 PRINCIPLES OF DATA STRUCTURES USING C AND C++

An input restricted deque is a deque, which allows insertion at only 1 end, rear end,
but allows deletion at both ends, rear and front end of the lists.

An output-restricted deque is a deque, which allows deletion at only one end, front
end, but allows insertion at both ends, rear and front ends, of the lists.

The possible operation performed on deque is

1. Add an element at the rear end

2. Add an element at the front end

3. Delete an element from the front end

4. Delete an element from the rear end

Only 1st, 3rd and 4th operations are performed by input-restricted deque and 1st, 2nd

and 3rd operations are performed by output-restricted deque.

4.4.1. ALGORITHMS FOR INSERTING AN ELEMENT

Let Q be the array of MAX elements. front (or left) and rear (or right) are two array
index (pointers), where the addition and deletion of elements occurred. Let DATA be the
element to be inserted. Before inserting any element to the queue left and right pointer will
point to the – 1.

INSERT AN ELEMENT AT THE RIGHT SIDE OF THE DE-QUEUE

1. Input the DATA to be inserted

2. If ((left == 0 && right == MAX–1) || (left == right + 1))

(a) Display “Queue Overflow”
(b) Exit

3. If (left == –1)
(a) left = 0
(b) right = 0

4. Else
(a) if (right == MAX –1)

 (i) left = 0

(b) else

 (i) right = right+1

5. Q[right] = DATA

6. Exit

INSERT AN ELEMENT AT THE LEFT SIDE OF THE DE-QUEUE

1. Input the DATA to be inserted

2. If ((left == 0 && right == MAX–1) || (left == right+1))

(a) Display “Queue Overflow”

(b) Exit

THE QUEUES 79

3. If (left == – 1)

(a) Left = 0

(b) Right = 0

4. Else

(a) if (left == 0)

 (i) left = MAX – 1

(b) else

(i) left = left – 1

5. Q[left] = DATA

6. Exit

4.4.2. ALGORITHMS FOR DELETING AN ELEMENT

Let Q be the array of MAX elements. front (or left) and rear (or right) are two array
index (pointers), where the addition and deletion of elements occurred. DATA will contain
the element just deleted.

DELETE AN ELEMENT FROM THE RIGHT SIDE OF THE DE-QUEUE

1. If (left == – 1)

(a) Display “Queue Underflow”

(b) Exit

2. DATA = Q [right]

3. If (left == right)

(a) left = – 1

(b) right = – 1

4. Else

(a) if(right == 0)

 (i) right = MAX-1

(b) else

 (i) right = right-1

5. Exit

DELETE AN ELEMENT FROM THE LEFT SIDE OF THE DE-QUEUE

1. If (left == – 1)

(a) Display “Queue Underflow”

(b) Exit

2. DATA = Q [left]

3. If(left == right)

(a) left = – 1

(b) right = – 1

80 PRINCIPLES OF DATA STRUCTURES USING C AND C++

4. Else

(a) if (left == MAX-1)

 (i) left = 0

(b) Else

 (i) left = left +1

5. Exit

PROGRAM 4.3

//PROGRAM TO IMPLEMENT INPUT AND OUTPUT

//RESTRICTED DE-QUEUE USING ARRAYS

//CODED AND COMPILED USING TURBO C

#include<conio.h>

#include<stdio.h>

#include<process.h>

#define MAX 50

int deque_arr[MAX];

int left = –1;

int right = –1;

//This function will insert an element at the

//right side of the de-queue

void insert_right()

{

int added_item;

if ((left == 0 && right == MAX-1) || (left == right+1))

{

printf (“\nQueue Overflow\n”);

getch();

return;

}

if (left == –1) /* if queue is initially empty */

{

left = 0;

right = 0;

}

else

THE QUEUES 81

if(right == MAX-1) /*right is at last position of queue */

right = 0;

else

right = right+1;

printf("\n Input the element for adding in queue: ");

scanf (“%d”, &added_item);

//Inputting the element at the right

deque_arr[right] = added_item ;

}/*End of insert_right()*/

//Function to insert an element at the left position

//of the de-queue

void insert_left()

{

int added_item;

//Checking for queue overflow

if ((left == 0 && right == MAX-1) || (left == right+1))

{

printf ("\nQueue Overflow \n");

getch();

return;

}

if (left == –1)/*If queue is initially empty*/

{
left = 0;
right = 0;

}
else
if (left== 0)

left = MAX –1;
else

left = left-1;

printf("\nInput the element for adding in queue:");

scanf ("%d", &added_item);

//inputting at the left side of the queue

deque_arr[left] = added_item ;

}/*End of insert_left()*/

//This function will delete an element from the queue

//from the left side

void delete_left()

{

82 PRINCIPLES OF DATA STRUCTURES USING C AND C++

//Checking for queue underflow

if (left == –1)

{

printf("\nQueue Underflow\n");

return;

}

//deleting the element from the left side

printf ("\nElement deleted from queue is: %d\n",deque_arr[left]);

if(left == right) /*Queue has only one element */
{

left = –1;
right=–1;

}
else

if (left == MAX-1)
left = 0;

else
left = left+1;

}/*End of delete_left()*/

//Function to delete an element from the right hand
//side of the de-queue

void delete_right()

{

//Checking for underflow conditions

if (left == –1)

{

printf(“\nQueue Underflow\n”);

return;

}

printf(“\nElement deleted from queue is : %d\n”,deque_arr[right]);

if(left == right) /*queue has only one element*/

{

left = –1;

right=–1;

}

else

if (right == 0)

right=MAX-1;

else

right=right-1;

}/*End of delete_right() */

THE QUEUES 83

//Displaying all the contents of the queue

void display_queue()

{

int front_pos = left, rear_pos = right;

//Checking whether the queue is empty or not

if (left == –1)
{

printf (“\nQueue is empty\n”);
return;

}
//displaying the queue elements
printf ("\nQueue elements :\n");
if (front_pos <= rear_pos)
{

while(front_pos <= rear_pos)
{

printf (“%d ”,deque_arr[front_pos]);
front_pos++;

}
}
else
{

while(front_pos <= MAX-1)
{

printf(“%d ”,deque_arr[front_pos]);

front_pos++;

}

front_pos = 0;

while(front_pos <= rear_pos)

{

printf (“%d ”,deque_arr[front_pos]);

front_pos++;

}

}/*End of else */

printf (“\n”);

}/*End of display_queue() */

//Function to implement all the operation of the

//input restricted queue

void input_que()

{

int choice;

while(1)

84 PRINCIPLES OF DATA STRUCTURES USING C AND C++

{

clrscr();

//menu options to input restricted queue

printf ("\n1.Insert at right\n");

printf ("2.Delete from left\n");

printf ("3.Delete from right\n");

printf ("4.Display\n");

printf ("5.Quit\n");

printf ("\nEnter your choice : ");

scanf ("%d",&choice);

switch(choice)

{

 case 1:

insert_right();

break;

 case 2:

delete_left();

getch();

break;

 case 3:

delete_right();

getch();

break;

 case 4:

display_queue();

getch();

break;

 case 5:

exit(0);

 default:

printf("\nWrong choice\n");

getch();

}/*End of switch*/

}/*End of while*/

}/*End of input_que() */

//This function will implement all the operation of the

//output restricted queue

void output_que()

{

int choice;

THE QUEUES 85

while(1)

{

clrscr();

//menu options for output restricted queue

printf (“\n1.Insert at right\n”);

printf (“2.Insert at left\n”);

printf (“3.Delete from left\n”);

printf (“4.Display\n”);

printf (“5.Quit\n”);

printf (“\nEnter your choice:”);

scanf (“%d”,&choice);

switch(choice)

{

 case 1:

insert_right();

break;

 case 2:

insert_left();

break;

 case 3:
delete_left();
getch();
break;

 case 4:
display_queue();
getch();
break;

 case 5:
exit(0);

 default:
printf(“\nWrong choice\n”);
getch();

}/*End of switch*/

}/*End of while*/

}/*End of output_que() */

void main()

{

int choice;

clrscr();

//Main menu options

printf (“\n1.Input restricted dequeue\n”);

86 PRINCIPLES OF DATA STRUCTURES USING C AND C++

printf (“2.Output restricted dequeue\n”);

printf (“Enter your choice:”);
scanf (“%d”,&choice);

switch(choice)
{
 case 1:

input_que();
break;

 case 2:
output_que();
break;

 default:
printf(“\nWrong choice\n”);

}/*End of switch*/

}/*End of main()*/

If we analyze the algorithms in this chapter the time needed to add or delete a data is
constant, i.e. time complexity is of order O(1).

4.5. APPLICATIONS OF QUEUE

1. Round robin techniques for processor scheduling is implemented using queue.

2. Printer server routines (in drivers) are designed using queues.

3. All types of customer service software (like Railway/Air ticket reservation) are
designed using queue to give proper service to the customers.

SELF REVIEW QUESTIONS

1. Write an algorithm to add a new element of information to a circular queue?

[Calicut - APR 1995 (BTech), Calicut APR 1997 (BTech),

MG - NOV 2002 (BTech)]

2. Write algorithms for inserting and deleting items from a DEQUE?

[MG - MAY 2004 (BTech), MG - MAY 2003 (BTech),

[MG - NOV 2002 (BTech), CUSAT - JUL 2002 (MCA)]

3. Distinguish between Queues and Deques? [MG - NOV 2004 (BTech)]

4. Describe a circular DEQUEUE? Write algorithms for insertion into front end and deletion
from the back end of this structure?

[MG - NOV 2003 (BTech), MG - MAY 2000 (BTech)]

5. Explain the implementation of circular queue using array. How an “empty queue” is
distinguished from a “full queue”? Write necessary functions to perform all valid opera-
tions on circular queue. [CUSAT - NOV 2002 (BTech)]

THE QUEUES 87

6. Discuss the advantages of Circular queue with example. [ANNA - DEC 2003 (BE)]

7. What are the various queue operations? Explain. [ANNA - MAY 2003 (BE)]

8. What are dequeues ? Explain various representations of dequeues.

[KERALA - MAY 2001 (BTech), KERALA - DEC 2003 (BTech)]

9. What are the difference between a stack and a queue?

[KERALA - NOV 2001 (BTech), KERALA - DEC 2002 (BTech)]

10. Write the insertion and deletion procedures in a queue.

[KERALA - NOV 2001 (BTech), KERALA - MAY 2001 (BTech)]

11. Mention and explain various types of queues. Compare them.

[KERALA - MAY 2001 (BTech)]

12. What is meant by circular queue and deque ? [KERALA - MAY 2002 (BTech)]

LINKED LIST 89

DATA 0x80010

0x80017

DATA 0x80031 DATA NULL

0x80017 0x80010 0x80031

Fig. 5.3. Linked List representation in memory.

Fig. 5.2 shows a schematic diagram of a linked list with 3 nodes. Each node is
pictured with two parts. The left part of each node contains the data items and the right
part represents the address of the next node; there is an arrow drawn from it to the next
node. The next pointer of the last node contains a special value, called the NULL pointer,
which does not point to any address of the node. That is NULL pointer indicates the end of
the linked list. START pointer will hold the address of the 1st node in the list START =
NULL if there is no list (i.e.; NULL list or empty list).

5.2. REPRESENTATION OF LINKED LIST

Suppose we want to store a list of integer numbers using linked list. Then it can be
schematically represented as

30

START

31 32 33 34

Fig. 5.4. Linked list representation of integers

The linear linked list can be represented in memory with the following declaration.

struct Node

{

int DATA; //Instead of ‘DATA’ we also use ‘Info’

struct Node *Next; //Instead of ‘Next’ we also use ‘Link’

};

typedef struct Node *NODE;

5.3. ADVANTAGES AND DISADVANTAGES

Linked list have many advantages and some of them are:

1. Linked list are dynamic data structure. That is, they can grow or shrink during
the execution of a program.

2. Efficient memory utilization: In linked list (or dynamic) representation, memory
is not pre-allocated. Memory is allocated whenever it is required. And it is
deallocated (or removed) when it is not needed.

90 PRINCIPLES OF DATA STRUCTURES USING C AND C++

3. Insertion and deletion are easier and efficient. Linked list provides flexibility in
inserting a data item at a specified position and deletion of a data item from the
given position.

4. Many complex applications can be easily carried out with linked list.

Linked list has following disadvantages

1. More memory: to store an integer number, a node with integer data and address
field is allocated. That is more memory space is needed.

2. Access to an arbitrary data item is little bit cumbersome and also time consuming.

5.4. OPERATION ON LINKED LIST

The primitive operations performed on the linked list are as follows

1. Creation

2. Insertion

3. Deletion

4. Traversing

5. Searching

6. Concatenation

Creation operation is used to create a linked list. Once a linked list is created with
one node, insertion operation can be used to add more elements in a node.

Insertion operation is used to insert a new node at any specified location in the
linked list. A new node may be inserted.

(a) At the beginning of the linked list

(b) At the end of the linked list

(c) At any specified position in between in a linked list

Deletion operation is used to delete an item (or node) from the linked list. A node
may be deleted from the

(a) Beginning of a linked list

(b) End of a linked list

(c) Specified location of the linked list

Traversing is the process of going through all the nodes from one end to another end
of a linked list. In a singly linked list we can visit from left to right, forward traversing,
nodes only. But in doubly linked list forward and backward traversing is possible.

Concatenation is the process of appending the second list to the end of the first list.
Consider a list A having n nodes and B with m nodes. Then the operation concatenation
will place the 1st node of B in the (n+1)th node in A. After concatenation A will contain
(n+m) nodes

5.5. TYPES OF LINKED LIST

Basically we can divide the linked list into the following three types in the order in
which they (or node) are arranged.

LINKED LIST 91

1. Singly linked list

2. Doubly linked list

3. Circular linked list

5.6. SINGLY LINKED LIST

All the nodes in a singly linked list are arranged sequentially by linking with a
pointer. A singly linked list can grow or shrink, because it is a dynamic data structure.
Following figure explains the different operations on a singly linked list.

30

START

Fig. 5.5. Create a node with DATA(30)

4030

START

Fig. 5.6. Insert a node with DATA(40) at the end

3010

START

40

Fig. 5.7. Insert a node with DATA(10) at the beginning

2010

START

30 40

Fig. 5.8. Insert a node with DATA(20) at the 2nd position

2010

START

30 40 50

Fig. 5.9. Insert a node with DATA(50) at the end

Output → 10, 20, 30, 40, 50
Fig. 5.10. Traversing the nodes from left to right

2010

START

40 50

Fig. 5.11. Delete the 3rd node from the list

92 PRINCIPLES OF DATA STRUCTURES USING C AND C++

20

START

40 50

Fig. 5.12. Delete the 1st node

20

START

40

Fig. 5.13. Delete the last node

5.6.1. ALGORITHM FOR INSERTING A NODE

33

3420

START

30

New Node

Fig. 5.14. Insertion of New Node

Suppose START is the first position in linked list. Let DATA be the element to be
inserted in the new node. POS is the position where the new node is to be inserted. TEMP
is a temporary pointer to hold the node address.

Insert a Node at the beginning

1. Input DATA to be inserted

2. Create a NewNode

3. NewNode → DATA = DATA

4. If (SATRT equal to NULL)

(a) NewNode → Link = NULL

5. Else

(a) NewNode → Link = START

6. START = NewNode

7. Exit

Insert a Node at the end

1. Input DATA to be inserted

2. Create a NewNode

3. NewNode → DATA = DATA

4. NewNode → Next = NULL

8. If (SATRT equal to NULL)

(a) START = NewNode

LINKED LIST 93

9. Else

(a) TEMP = START

(b) While (TEMP → Next not equal to NULL)

(i) TEMP = TEMP → Next

10. TEMP → Next = NewNode

11. Exit

Insert a Node at any specified position

1. Input DATA and POS to be inserted

2. intialise TEMP = START; and j = 0

3. Repeat the step 3 while(k is less than POS)

(a) TEMP = TEMP è Next

(b) If (TEMP is equal to NULL)

 (i) Display “Node in the list less than the position”

 (ii) Exit

(c) k = k + 1

4. Create a New Node

5. NewNode → DATA = DATA

6. NewNode → Next = TEMP → Next

7. TEMP → Next = NewNode

8. Exit

5.6.2. ALGORITHM FOR DELETING A NODE

33 3420

START

30

Node to be deleted (ie; POS =3)

TempPTR

Fig. 5.15. Deletion of a Node.

Suppose START is the first position in linked list. Let DATA be the element to be
deleted. TEMP, HOLD is a temporary pointer to hold the node address.

1. Input the DATA to be deleted

2. if ((START → DATA) is equal to DATA)

(a) TEMP = START

(b) START = START → Next

(c) Set free the node TEMP, which is deleted

(d) Exit

94 PRINCIPLES OF DATA STRUCTURES USING C AND C++

3. HOLD = START

4. while ((HOLD → Next → Next) not equal to NULL))

(a) if ((HOLD → NEXT → DATA) equal to DATA)

 (i) TEMP = HOLD → Next

 (ii) HOLD → Next = TEMP → Next

(iii) Set free the node TEMP, which is deleted

(iv) Exit

(b) HOLD = HOLD → Next

5. if ((HOLD → next → DATA) == DATA)

(a) TEMP = HOLD → Next

(b) Set free the node TEMP, which is deleted

(c) HOLD → Next = NULL

(d) Exit

6. Disply “DATA not found”

7. Exit

5.6.3. ALGORITHM FOR SEARCHING A NODE

Suppose START is the address of the first node in the linked list and DATA is the
information to be searched. After searching, if the DATA is found, POS will contain the
corresponding position in the list.

1. Input the DATA to be searched

2. Initialize TEMP = START; POS =1;

3. Repeat the step 4, 5 and 6 until (TEMP is equal to NULL)

4. If (TEMP → DATA is equal to DATA)

(a) Display “The data is found at POS”

(b) Exit

5. TEMP = TEMP → Next

6. POS = POS+1

7. If (TEMP is equal to NULL)

(a) Display “The data is not found in the list”

8. Exit

5.6.4. ALGORITHM FOR DISPLAY ALL NODES

Suppose START is the address of the first node in the linked list. Following algo-
rithm will visit all nodes from the START node to the end.

1. If (START is equal to NULL)

(a) Display “The list is Empty”

(b) Exit

2. Initialize TEMP = START

LINKED LIST 95

3. Repeat the step 4 and 5 until (TEMP == NULL)

4. Display “TEMP → DATA”

5. TEMP = TEMP → Next

6. Exit

PROGRAM 5.1

//THIS PROGRAM WILL IMPLEMENT ALL THE OPERATIONS

//OF THE SINGLY LINKED LIST

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<conio.h>

#include<malloc.h>

#include<process.h>

//Structure declaration for the node

struct node

{

int info;

struct node *link;

}*start;

//This function will create a new linked list

void Create_List(int data)

{

struct node *q,*tmp;

//Dynamic memory is been allocated for a node

tmp= (struct node*)malloc(sizeof(struct node));

tmp->info=data;

tmp->link=NULL;

if(start==NULL) /*If list is empty*/

start=tmp;

else

{ /*Element inserted at the end*/

q=start;

while(q->link!=NULL)

q=q->link;

q->link=tmp;

}

96 PRINCIPLES OF DATA STRUCTURES USING C AND C++

}/*End of create_list()*/

//This function will add new element at the beginning of the linked list

void AddAtBeg(int data)

{

struct node *tmp;

tmp=(struct node*)malloc(sizeof(struct node));

tmp->info=data;

tmp->link=start;

start=tmp;

}/*End of addatbeg()*/

//Following function will add new element at any position

void AddAfter(int data,int pos)

{

struct node *tmp,*q;

int i;

q=start;

//Finding the position to add new element to the linked list

for(i=0;i<pos-1;i++)

{

q=q->link;

if(q==NULL)

{

printf ("\n\n There are less than %d elements",pos);

getch();

return;

}

}/*End of for*/

tmp=(struct node*)malloc(sizeof (struct node));

tmp->link=q->link;

tmp->info=data;

q->link=tmp;

}/*End of addafter()*/

//Delete any element from the linked list

void Del(int data)

{

struct node *tmp,*q;

if (start->info == data)

{

LINKED LIST 97

tmp=start;

start=start->link; /*First element deleted*/

free(tmp);

return;

}

q=start;

while(q->link->link ! = NULL)

{

if(q->link->info == data) /*Element deleted in between*/

{

tmp=q->link;

q->link=tmp->link;

free(tmp);

return;

}

q=q->link;

}/*End of while */

if(q->link->info==data) /*Last element deleted*/

{

tmp=q->link;

free(tmp);

q->link=NULL;

return;

}

printf ("\n\nElement %d not found",data);

getch();

}/*End of del()*/

//This function will display all the element(s) in the linked list

void Display()

{
struct node *q;
if(start == NULL)
{

printf ("\n\nList is empty");
return;

}
q=start;
printf("\n\nList is : ");
while(q!=NULL)
{

printf ("%d ", q->info);
q=q->link;

98 PRINCIPLES OF DATA STRUCTURES USING C AND C++

}
printf ("\n");
getch();

}/*End of display() */

//Function to count the number of nodes in the linked list

void Count()

{

struct node *q=start;

int cnt=0;

while(q!=NULL)

{

q=q->link;

cnt++;

}

printf ("Number of elements are %d\n",cnt);

getch();

}/*End of count()*/

//This function will reverse the linked list

void Rev()

{

struct node *p1,*p2,*p3;

if(start->link==NULL) /*only one element*/

return;

p1=start;

p2=p1->link;
p3=p2->link;
p1->link=NULL;
p2->link=p1;
while(p3!=NULL)
{

p1=p2;
p2=p3;
p3=p3->link;
p2->link=p1;

}

start=p2;

}/*End of rev()*/

//Function to search an element from the linked list

void Search(int data)

{

LINKED LIST 99

struct node *ptr = start;

int pos = 1;

//searching for an element in the linked list

while(ptr!=NULL)

{

if (ptr->info==data)

{

printf ("\n\nItem %d found at position %d", data, pos);

getch();

return;

}

ptr = ptr->link;

pos++;

}

if (ptr == NULL)

printf ("\n\nItem %d not found in list",data);

getch();

}

void main()

{

int choice,n,m,position,i;

start=NULL;
while(1)
{

clrscr();
printf ("1.Create List\n");
printf ("2.Add at beginning\n");
printf ("3.Add after \n");
printf ("4.Delete\n");
printf ("5.Display\n");
printf ("6.Count\n");
printf ("7.Reverse\n");
printf ("8.Search\n");
printf ("9.Quit\n");
printf ("\nEnter your choice:");
scanf ("%d",&choice);
switch (choice)

{

 case 1:

printf ("\n\nHow many nodes you want:");

scanf ("%d",&n);

100 PRINCIPLES OF DATA STRUCTURES USING C AND C++

for(i = 0;i<n;i++)

{

printf ("\nEnter the element:");

scanf ("%d",&m);

Create_List(m);

}

break;

 case 2:

printf ("\n\nEnter the element : ");

scanf ("%d",&m);

AddAtBeg(m);

break;

 case 3:

printf ("\n\nEnter the element:");

scanf ("%d",&m);

printf ("\nEnter the position after which this element is inserted:");

scanf ("%d",&position);

Add After(m,position);

break;

 case 4:

if (start == NULL)

{

printf("\n\nList is empty");

continue;

}

printf ("\n\nEnter the element for deletion:");

scanf ("%d",&m);

Del(m);

break;

 case 5:

Display();

break;

 case 6:

Count();

break;

 case 7:

Rev();

break;

 case 8:

printf("\n\nEnter the element to be searched:");

scanf ("%d",&m);

LINKED LIST 101

Search(m);

break;

 case 9:

exit(0);

 default:

printf ("\n\nWrong choice");

}/*End of switch*/

}/*End of while*/

}/*End of main()*/

PROGRAM 5.2

//THIS PROGRAM WILL IMPLEMENT ALL THE OPERATIONS

//OF THE SINGLY LINKED LIST

//CODED AND COMPILED IN TURBO C++

#include<iostream.h>

#include<conio.h>

#include<process.h>

class Linked_List

{

//Structure declaration for the node

struct node

{

int info;

struct node *link;

};

//private structure variable declared

struct node *start;

public:

Linked_List()//Constructor defined

{

start = NULL;

}

//public fucntion declared

void Create_List(int);

102 PRINCIPLES OF DATA STRUCTURES USING C AND C++

void AddAtBeg(int);

void AddAfter(int,int);

void Delete();

void Count();

void Search(int);

void Display();

void Reverse();

};

//This function will create a new linked list of elements

void Linked_List::Create_List(int data)

{

struct node *q,*tmp;

//New node is created with new operator

tmp= (struct node *)new(struct node);

tmp->info=data;

tmp->link=NULL;

if (start==NULL) /*If list is empty */

start=tmp;

else

{ /*Element inserted at the end */

q=start;

while(q->link!=NULL)

q=q->link;

q-> link=tmp;

}

}/*End of create_list()*/

//following function will add new element at the beginning

void Linked_List::AddAtBeg(int data)

{

struct node *tmp;

tmp=(struct node*)new(struct node);

tmp->info=data;

tmp->link=start;

start=tmp;

}/*End of addatbeg()*/

//This function will add new element at any specified position

void Linked_List::AddAfter(int data,int pos)

{

LINKED LIST 103

struct node *tmp,*q;

int i;

q=start;

//Finding the position in the linked list to insert

for(i=0;i<pos-1;i++)

{

q=q->link;

if(q==NULL)

{

cout<<“\n\nThere are less than “<<pos<<” elements”;

getch();

return;

}

}/*End of for*/

tmp=(struct node*)new(struct node);

tmp->link=q->link;

tmp->info=data;

q->link=tmp;

}/*End of addafter()*/

//Funtion to delete an element from the list

void Linked_List::Delete()

{

struct node *tmp,*q;

int data;

if(start==NULL)

{

cout<<“\n\nList is empty”;

getch();

return;

}

cout<<“\n\nEnter the element for deletion : ”;

cin>>data;

if(start->info == data)

{

tmp=start;

start=start->link; //First element deleted

delete(tmp);

return;

}

104 PRINCIPLES OF DATA STRUCTURES USING C AND C++

q=start;

while(q->link->link != NULL)

{

if(q->link->info==data) //Element deleted in between

{

tmp=q->link;

q->link=tmp->link;

delete(tmp);

return;

}

q=q->link;

}/*End of while */

if(q->link->info==data) //Last element deleted

{

tmp=q->link;

delete(tmp);

q->link=NULL;

return;

}

cout<<“\n\nElement “<<data<<” not found”;

getch();

}/*End of del()*/

void Linked_List::Display()

{

struct node *q;

if(start == NULL)

{

cout<<“\n\nList is empty”;

return;

}

q=start;

cout<<“\n\nList is : ”;

while(q!=NULL)

{

cout<<q->info;

q=q->link;

}

cout<<“\n”;

getch();

}/*End of display() */

LINKED LIST 105

void Linked_List::Count()

{

struct node *q=start;

int cnt=0;

while(q!=NULL)

{

q=q->link;

cnt++;

}

cout<<“Number of elements are \n”<<cnt;

getch();

}/*End of count() */

void Linked_List::Reverse()

{

struct node *p1,*p2,*p3;

if(start->link==NULL) /*only one element*/

return;

p1=start;

p2=p1->link;

p3=p2->link;

p1->link=NULL;

p2->link=p1;

while(p3!=NULL)

{

p1=p2;

p2=p3;

p3=p3->link;

p2->link=p1;

}

start=p2;

}/*End of rev()*/

void Linked_List::Search(int data)

{

struct node *ptr = start;

int pos = 1;

while(ptr!=NULL)

{

if(ptr->info==data)

{

cout<<“\n\nItem “<<data<<” found at position ”<<pos;

106 PRINCIPLES OF DATA STRUCTURES USING C AND C++

getch();

return;

}

ptr = ptr->link;

pos++;

}

if(ptr == NULL)

cout<<“\n\nItem “<<data<<” not found in list”;

getch();

}

void main()

{

int choice,n,m,position,i;

Linked_List po;

while(1)

{

clrscr();

cout<<“1.Create List\n”;

cout<<“2.Add at begining\n”;

cout<<“3.Add after \n”;

cout<<“4.Delete\n”;

cout<<“5.Display\n”;

cout<<“6.Count\n”;

cout<<“7.Reverse\n”;

cout<<“8.Search\n”;

cout<<“9.Quit\n”;

cout<<“\nEnter your choice:”;

cin>>choice;

switch(choice)

{

 case 1:

cout<<“\n\nHow many nodes you want:”;

cin>>n;

for(i=0;i<n;i++)

{

cout<<“\nEnter the element:”;

cin>>m;

po.Create_List(m);

}

break;

LINKED LIST 107

 case 2:

cout<<“\n\nEnter the element:”;

cin>>m;

po.AddAtBeg(m);

break;

 case 3:

cout<<“\n\nEnter the element:”;

cin>>m;

cout<<“\nEnter the position after which this element is inserted:”;

cin>>position;

po.AddAfter(m,position);

break;

 case 4:

po.Delete();

break;

 case 5:

po.Display();

break;

 case 6:

po.Count();

break;

 case 7:

po.Reverse();

break;

 case 8:

cout<<“\n\nEnter the element to be searched:”;

cin>>m;

po.Search(m);

break;

 case 9:

exit(0);

 default:

cout<<“\n\nWrong choice”;

}/*End of switch */

}/*End of while */

}/*End of main()*/

5.7. STACK USING LINKED LIST

In chapter 3, we have discussed what a stack means and its different operations.
And we have also discussed the implementation of stack using array, i.e., static memory

108 PRINCIPLES OF DATA STRUCTURES USING C AND C++

allocation. Implementation issues of the stack (Last In First Out - LIFO) using linked list is
illustrated in following figures.

10 NULL

TOP

Fig. 5.11. push (10)

20

TOP

10 NULL

Fig. 5.12. push (20)

20

TOP

10 NULL30

Fig. 5.13. push (30)

20

TOP

10 NULL

Fig. 5.14. X = pop() (ie; X = 30)

20

TOP

10 NULL40

Fig. 5.15. push (40)

5.7.1. ALGORITHM FOR PUSH OPERATION

Suppose TOP is a pointer, which is pointing towards the topmost element of the
stack. TOP is NULL when the stack is empty. DATA is the data item to be pushed.

1. Input the DATA to be pushed

2. Creat a New Node

3. NewNode → DATA = DATA

4. NewNode → Next = TOP

5. TOP = NewNode

6. Exit

LINKED LIST 109

5.7.2. ALGORITHM FOR POP OPERATION

Suppose TOP is a pointer, which is pointing towards the topmost element of the
stack. TOP is NULL when the stack is empty. TEMP is pointer variable to hold any nodes
address. DATA is the information on the node which is just deleted.

1. if (TOP is equal to NULL)

(a) Display “The stack is empty”

2. Else

(a) TEMP = TOP

(b) Display “The popped element TOP → DATA”

(c) TOP = TOP → Next

(d) TEMP → Next = NULL

(e) Free the TEMP node

3. Exit

PROGRAM 5.3

//THIS PROGRAM IS TO DEMONSTRATE THE OPERATIONS

//PERFORMED ON THE STACK INPLEMENTED USING LINKED LIST

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

#include<malloc.h>

#include<process.h>

//Structure is created a node

struct node

{

int info;

struct node *link;//A link to the next node

};

//A variable named NODE is been defined for the structure

typedef struct node *NODE;

//This function is to perform the push operation

NODE push(NODE top)

{

NODE NewNode;

int pushed_item;

//A new node is created dynamically

110 PRINCIPLES OF DATA STRUCTURES USING C AND C++

NewNode = (NODE)malloc(sizeof(struct node));

printf(“\nInput the new value to be pushed on the stack:”);

scanf(“%d”,&pushed_item);

NewNode->info=pushed_item;//Data is pushed to the stack

NewNode->link=top;//Link pointer is set to the next node

top=NewNode;//Top pointer is set

return(top);

}/*End of push()*/

//Following function will implement the pop operation

NODE pop(NODE top)

{

NODE tmp;

if(top == NULL)//checking whether the stack is empty or not

printf (“\nStack is empty\n”);

else

{

tmp=top;//popping the element

printf(“\nPopped item is %d\n”,tmp->info);

top=top->link;//resetting the top pointer

tmp->link=NULL

free(tmp);//freeing the popped node

}

return(top);

}/*End of pop()*/

//This is to display the entire element in the stack

void display(NODE top)

{

if(top==NULL)

printf(“\nStack is empty\n”);

else

{

printf(“\nStack elements:\n”);

while(top != NULL)

{

printf(“%d\n”,top->info);

top = top->link;

}/*End of while */

}/*End of else*/

}/*End of display()*/

LINKED LIST 111

void main()

{

char opt;

int choice;

NODE Top=NULL;

do

{

clrscr();

printf(“\n1.PUSH\n”);

printf(“2.POP\n”);

printf(“3.DISPLAY\n”);

printf(“4.EXIT\n”);

printf(“\nEnter your choice:”);

scanf(“%d”, &choice);

switch(choice)

{

case 1:

Top=push(Top);

break;

case 2:

Top=pop(Top);

break;

case 3:

display(Top);

break;

case 4:

exit(1);

default:

printf(“\nWrong choice\n”);

}/*End of switch*/

printf (“\n\nDo you want to continue (Y/y) = ”);

fflush(stdin);

scanf(“%c”,&opt);

}while((opt == ‘Y’) || (opt == ‘y’));

}/*End of main() */

PROGRAM 5.4

//THIS PROGRAM IS TO DEMONSTRATE THE OPERATIONS
//PERFORMED ON THE STACK IMPLEMENTATION

112 PRINCIPLES OF DATA STRUCTURES USING C AND C++

//USING LINKED LIST
//CODED AND COMPILED IN TURBO C++

#include<conio.h>
#include<iostream.h>
#include<process.h>

//Class is created for the linked list
class Stack_Linked
{

//Structure is created for the node
struct node

{

int info;

struct node *link;//A link to the next node

};

//A variable top is been declared for the structure

struct node *top;

//NODE is defined as the data type of the structure node

typedef struct node *NODE;

public:

//Constructer is defined for the class

Stack_Linked()

{

//top pointer is initialized

top=NULL;

}

//function declarations

void push();

void pop();

void display();

};

//This function is to perform the push operation

void Stack_Linked::push()

{

NODE NewNode;

int pushed_item;

//A new node is created dynamically

NewNode=(NODE)new(struct node);

cout<<“\nInput the new value to be pushed on the stack:”;

LINKED LIST 113

cin>>pushed_item;

NewNode->info=pushed_item;//Data is pushed to the stack

NewNode->link=top;//Link pointer is set to the next node

top=NewNode;//Top pointer is set

}/*End of push()*/

//Following function will implement the pop operation

void Stack_Linked::pop()

{

NODE tmp;

if(top == NULL)//checking whether the stack is empty or not

cout<<“\nStack is empty\n”;

else

{ tmp=top;//popping the element

cout<<“\nPopped item is:”<<tmp->info;

top=top->link;//resetting the top pointer

tmp->link=NULL;

delete(tmp);//freeing the popped node

}

}/*End of pop()*/

//This is to display all the element in the stack

void Stack_Linked::display()

{

if(top==NULL)//Checking whether the stack is empty or not

cout<<“\nStack is empty\n”;

else

{

NODE ptr=top;

cout<<“\nStack elements:\n”;

while(ptr != NULL)

{

cout<<“\n”<<ptr->info;

ptr = ptr->link;

}/*End of while */

}/*End of else*/

}/*End of display()*/

void main()

{

char opt;

int choice;

114 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Stack_Linked So;

do

{

clrscr();

//The menu options are listed below

cout<<“\n1.PUSH\n”;

cout<<“2.POP\n”;

cout<<“3.DISPLAY\n”;

cout<<“4.EXIT\n”;

cout<<“\nEnter your choice : ”;
cin>>choice;

switch(choice)
{
case 1:

So.push();//push function is called
break;

case 2:
So.pop();//pop function is called
break;

case 3:
So.display();//display function is called
break;

case 4:
exit(1);

default:
cout<<“\nWrong choice\n”;

}/*End of switch */

cout<<“\n\nDo you want to continue (Y/y) = ”;
cin>>opt;

}while((opt == ‘Y’) || (opt == ‘y’));

}/*End of main() */

5.8. QUEUE USING LINKED LIST

Queue is a First In First Out [FIFO] data structure. In chapter 4, we have discussed
about stacks and its different operations. And we have also discussed the implementation
of stack using array, ie; static memory allocation. Implementation issues of the stack (Last
In First Out - LIFO) using linked list is illustrated in the following figures.

116 PRINCIPLES OF DATA STRUCTURES USING C AND C++

30

Rear

Front

NULL 20 NULLNULL

Fig. 5.21. X = pop() (i.e.; X = 20)

5.8.1. ALGORITHM FOR PUSHING AN ELEMENT TO A QUEUE

REAR is a pointer in queue where the new elements are added. FRONT is a pointer,
which is pointing to the queue where the elements are popped. DATA is an element to be
pushed.

1. Input the DATA element to be pushed

2. Create a New Node

3. NewNode → DATA = DATA

4. NewNode → Next = NULL

5. If(REAR not equal to NULL)

(a) REAR → next = NewNode;

6. REAR =NewNode;

7. Exit

5.8.2. ALGORITHM FOR POPPING AN ELEMENT FROM A QUEUE

REAR is a pointer in queue where the new elements are added. FRONT is a pointer,
which is pointing to the queue where the elements are popped. DATA is an element popped
from the queue.

1. If (FRONT is equal to NULL)

(a) Display “The Queue is empty”

2. Else

(a) Display “The popped element is FRONT → DATA”

(b) If(FRONT is not equal to REAR)

 (i) FRONT = FRONT → Next

(c) Else

(d) FRONT = NULL;

3. Exit

PROGRAM 5.5

//THIS PROGRAM WILL IMPLEMENT ALL THE OPERATIONS

//OF THE QUEUE, IMPLEMENTED USING LINKED LIST

LINKED LIST 117

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<conio.h>

#include<malloc.h>

//A structure is created for the node in queue

struct queu

{

int info;

struct queu *next;//Next node address

};

typedef struct queu *NODE;

//This function will push an element into the queue

NODE push(NODE rear)

{

NODE NewNode;

//New node is created to push the data

NewNode=(NODE)malloc(sizeof(struct queu));

printf ("\nEnter the no to be pushed = ");

scanf ("%d",&NewNode->info);

NewNode->next=NULL;

//setting the rear pointer

if (rear != NULL)

rear->next=NewNode;

rear=NewNode;

return(rear);

}

//This function will pop the element from the queue

NODE pop(NODE f,NODE r)

{

//The Queue is empty when the front pointer is NULL

if(f==NULL)

printf (“\nThe Queue is empty”);

else

{

printf (“\nThe poped element is = %d”,f->info);

if(f ! = r)

f=f->next;

118 PRINCIPLES OF DATA STRUCTURES USING C AND C++

else

f=NULL;

}

return(f);

}

//Function to display the element of the queue

void traverse(NODE fr,NODE re)

{

//The queue is empty when the front pointer is NULL

if (fr==NULL)

printf (“\nThe Queue is empty”);

else

{

printf (“\nThe element(s) is/are = ”);

while(fr != re)

{

printf(“%d ”,fr->info);

fr=fr->next;

};

printf (“%d”,fr->info);

}

}

void main()

{

int choice;

char option;

//declaring the front and rear pointer

NODE front, rear;

//Initializing the front and rear pointer to NULL

front = rear = NULL;

dos

{

clrscr();

printf (“1. Push\n”);

printf (“2. Pop\n”);

printf (“3. Traverse\n”);

printf (“\n\nEnter your choice = ”);

scanf (“%d”,&choice);

switch(choice)

{

LINKED LIST 119

case 1:

//calling the push function

rear = push(rear);

if (front==NULL)

{

front=rear;

}

break;

case 2:

//calling the pop function by passing

//front and rear pointers

front = pop(front,rear);

if (front == NULL)

rear = NULL;

break;

case 3:

traverse(front,rear);

break;

}

printf (“\n\nPress (Y/y) to continue = ”);

fflush(stdin);

scanf (“%c”,&option);

}while(option == ‘Y’ || option == ‘y’);

}

PROGRAM 5.6

//THIS PROGRAM WILL IMPLEMENT ALL THE OPERATIONS

//OF THE QUEUE, IMPLEMENTED USING LINKED LIST

//CODED AND COMPILED IN TURBO C++

#include<iostream.h>

#include<conio.h>

#include<malloc.h>

//class is created for the queue

class Queue_Linked

{

//A structure is created for the node in queue

struct queu

120 PRINCIPLES OF DATA STRUCTURES USING C AND C++

{

int info;

struct queu *next;//Next node address

};

struct queu *front;

struct queu *rear;

typedef struct queu *NODE;

public:

//Constructor is created

Queue_Linked()

{

front = NULL;

rear = NULL;

}

void push();

void pop();

void traverse();

};

//This function will push an element into the queue

void Queue_Linked::push()

{

NODE NewNode;

//New node is created to push the data

NewNode=(NODE)malloc(sizeof(struct queu));

cout<<“\nEnter the no to be pushed = ”;

cin>>NewNode->info;

NewNode->next=NULL;

//setting the rear pointer

if (rear != NULL)

rear->next = NewNode;

rear=NewNode;

if (front == NULL)

front = rear;

}

//This function will pop the element from the queue

void Queue_Linked::pop()

{

//The Queue is empty when the front pointer is NULL

if (front == NULL)

LINKED LIST 121

{

cout<<“\nThe Queue is empty”;

rear = NULL;

}

else

{

//Front element in the queue is popped

cout<<“\nThe popped element is = ”<<front->info;

if (front != rear)

front=front->next;

else

front = NULL;

}

}

//Function to display the element of the queue

void Queue_Linked::traverse()

{

//The queue is empty when the front pointer is NULL

if (front==NULL)

cout<<“\nThe Queue is empty”;

else

{

NODE Temp_Front=front;

cout<<“\nThe element(s) is/are = ”;

while(Temp_Front ! = rear)

{

cout<<Temp_Front->info;

Temp_Front=Temp_Front->next;

};

cout<<Temp_Front->info;

}

}

void main()

{

int choice;

char option;

Queue_Linked Qo;

do

{

clrscr();

122 PRINCIPLES OF DATA STRUCTURES USING C AND C++

cout<<“\n1. PUSH\n”;

cout<<“2. POP\n”;

cout<<“3. DISPLAY\n”;

cout<<“\n\nEnter your choice = ”;

cin>>choice;

switch(choice)

{

case 1:

//calling the push function

Qo.push();

break;

case 2:

//calling the pop function by passing

//front and rear pointers

Qo.pop();

break;

case 3:

Qo.traverse();

break;

}

cout<<“\n\nPress (Y/y) to continue = ”;

cin>>option;

}while(option == ‘Y’ || option == ‘y’);

}

5.9. QUEUE USING TWO STACKS

A queue can be implemented using two stacks. Suppose STACK1 and STACK2 are
the two stacks. When an element is pushed on to the queue, push the same on STACK1.
When an element is popped from the queue, pop all elements of STACK1 and push the
same on STACK2. Then pop the topmost element of STACK2; which is the first (front)
element to be popped from the queue. Then pop all elements of STACK2 and push the
same on STACK1 for next operation (i.e., push or pop). PROGRAM 5:5 gives the program to
implement the queue using two stacks by singly linked list, coded in C language.

PROGRAM 5.7

//IMPLEMENTING THE QUEUE USING TWO STACKS

//BY SINGLY LINK LIST

//CODED AND COMPILED USING TURBO C

LINKED LIST 123

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

//Stack node is created with structure

struct stack

{

int info;

struct stack *next;

};

typedef struct stack *NODE;

//A new element is pushed to the stack

NODE push(NODE top)

{

NODE NewNode;

//New node is created

NewNode=(NODE)malloc(sizeof(struct stack));

NewNode->next=top;

printf(“\nEnter the no: to be pushed = ”);

scanf(“%d”,&NewNode->info);

top=NewNode;

return(top);

}

NODE pop(NODE top1)

{

//checking for whether the queue is empty or not

if(top1 == NULL)

{

printf(“\nThe Queu is empty”);

return(top1);

}

//when top1->next == NULL the queue contains only one element

if(top1->next == NULL)

{

//popping the only one element present in the queue

printf(“\nThe popped element is = %d”,top1->info);

124 PRINCIPLES OF DATA STRUCTURES USING C AND C++

free(top1);

top1=NULL;

return(top1);

}

NODE NewNode,top2,TEMP;

//popping the elements from the first stack and pushing the

//same element to the second stack

top2=NULL;

while(top1 != NULL)

{

TEMP=top1;

//Creating the new node for the second stack

NewNode=(NODE)malloc(sizeof(struct stack));

NewNode->next=top2;

NewNode->info=top1->info;

top2=NewNode;

top1=top1->next;

free(TEMP);

};

//popping the top most element from the stack so as to

//pop an element from the queue

printf(“\nThe popped element is = %d”,top2->info);

top2=top2->next;

//popping rest of the element from the second stack and

//pushing the same elements to the first stack

top1=NULL;

while(top2 != NULL)

{

TEMP=top2;

//creating new nodes for the first stack

NewNode=(NODE)malloc(sizeof(struct stack));

NewNode->next=top1;

NewNode->info=top2->info;

top1=NewNode;

top2=top2->next;

free(TEMP);//freeing the nodes

};

return(top1);

LINKED LIST 125

}

//this function is to display all the elements in the queue

void traverse(NODE top)

{

if(top == NULL)

{

printf(“\nThe Queue is empty”);

return;

}

printf (“\nThe element(s) in the Queue is/are =”);

do

{

printf (“ %d”,top->info);

top=top->next;

}while(top != NULL);

return;

}

void main()

{

int choice;

char ch;

NODE top;

top=NULL;

do

{

clrscr();

//A menu for the stack operations

printf(“\n1. PUSH”);

printf(“\n2. POP”);

printf(“\n3. TRAVERSE”);

printf(“\nEnter Your Choice = ”);

scanf (“%d”, &choice);

switch(choice)

{

case 1://Calling push() function by passing

//the structure pointer to the function

top=push(top);

126 PRINCIPLES OF DATA STRUCTURES USING C AND C++

break;

case 2://calling pop() function

top=pop(top);

break;

case 3://calling traverse() function

traverse(top);

break;

default:

printf(“\nYou Entered Wrong Choice”);

break;

 }

printf(“\n\nPress (Y/y) To Continue = ”);

//Removing all characters in the input buffer

//for fresh input(s), especially <<Enter>> key

fflush(stdin);

scanf(“%c”,&ch);

}while(ch == ‘Y’ || ch == ‘y’);

}

5.10. POLYNOMIALS USING LINKED LIST

Different operations, such as addition, subtraction, division and multiplication of
polynomials can be performed using linked list. In this section, we discuss about polyno-
mial addition using linked list. Consider two polynomials f(x) and g(x); it can be repre-
sented using linked list as follows in Fig. 5.22.

f(x) = ax3 + bx + c

g(x) = mx4 + nx3 + ox2 + px + q

a 3 b 1 c 0

m 4 n 3 o 2 p 1 q 0

START

START

Fig. 5.22. Polynomial Representation

These two polynomials can be added by

h(x) = f(x) + g(x) = mx4 + (a + n) x3 + ox2 + (b + p)x + (c + q)

LINKED LIST 127

i.e.; adding the constants of the corresponding polynomials of the same exponentials. h(x)
can be represented as in Fig. 5.23.

Fig. 5.23

PROGRAM 5.8

//Program of polynomial addition using linked list

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<malloc.h>

//structure is created for the node

struct node

{

float coef;

int expo;

struct node *link;

};

typedef struct node *NODE;

//Function to add any node to the linked list

NODE insert(NODE start,float co,int ex)

{

NODE ptr,tmp;

//a new node is created

tmp= (NODE)malloc(sizeof(struct node));

tmp->coef=co;

tmp->expo=ex;

/*list empty or exp greater than first one */

if(start==NULL || ex>start->expo)

{

tmp->link=start;//setting the start

start=tmp;

}

else

128 PRINCIPLES OF DATA STRUCTURES USING C AND C++

{

ptr=start;

while(ptr->link!=NULL && ptr->link->expo>ex)

ptr=ptr->link;

tmp->link=ptr->link;

ptr->link=tmp;

if(ptr->link==NULL) /*item to be added in the end */

tmp->link=NULL;

}

return start;

}/*End of insert()*/

//This function is to add two polynomials

NODE poly_add(NODE p1,NODE p2)

{

NODE p3_start,p3,tmp;

p3_start=NULL;

if(p1==NULL && p2==NULL)

return p3_start;

while(p1!=NULL && p2!=NULL)

{

//New node is created

tmp=(NODE)malloc(sizeof(struct node));

if(p3_start==NULL)

{

p3_start=tmp;

p3=p3_start;

}

else

{

p3->link=tmp;

p3=p3->link;

}

if(p1->expo > p2->expo)

{

tmp->coef=p1->coef;

tmp->expo=p1->expo;

p1=p1->link;

}

else

if(p2->expo > p1->expo)

LINKED LIST 129

{

tmp->coef=p2->coef;

tmp->expo=p2->expo;

p2=p2->link;

}

else

if(p1->expo == p2->expo)

{

tmp->coef=p1->coef + p2->coef;

tmp->expo=p1->expo;

p1=p1->link;

p2=p2->link;

}

}/*End of while*/

while(p1!=NULL)

{

tmp=(NODE)malloc(sizeof(struct node));

tmp->coef=p1->coef;

tmp->expo=p1->expo;

if (p3_start==NULL) /*poly 2 is empty*/

{

p3_start=tmp;

p3=p3_start;

}

else

{

p3->link=tmp;

p3=p3->link;

}

p1=p1->link;

}/*End of while */

while(p2!=NULL)

{

tmp=(NODE)malloc(sizeof(struct node));

tmp->coef=p2->coef;

tmp->expo=p2->expo;

if (p3_start==NULL) /*poly 1 is empty*/

{

p3_start=tmp;

p3=p3_start;

}

else

130 PRINCIPLES OF DATA STRUCTURES USING C AND C++

{

p3->link=tmp;

p3=p3->link;

}

p2=p2->link;

}/*End of while*/

p3->link=NULL;

return p3_start;

}/*End of poly_add() */

//Inputting the two polynomials

NODE enter(NODE start)

{

int i,n,ex;

float co;

printf(“\nHow many terms u want to enter:”);

scanf(“%d”,&n);

for(i=1;i<=n;i++)

{

printf(“\nEnter coeficient for term %d:”,i);

scanf(“%f”,&co);

printf(“Enter exponent for term %d:”,i);

scanf(“%d”,&ex);

start=insert(start,co,ex);

}

return start;

}/*End of enter()*/

//This function will display the two polynomials and its

//added polynomials

void display(NODE ptr)

{

if (ptr==NULL)

{

printf (“\nEmpty\n”);

return;

}

while(ptr!=NULL)

{

printf (“(%.1fx^%d) + ”, ptr->coef,ptr->expo);

ptr=ptr->link;

}

LINKED LIST 131

printf (“\b\b \n”); /* \b\b to erase the last + sign*/

}/*End of display()*/

void main()

{

NODE p1_start,p2_start,p3_start;

p1_start=NULL;

p2_start=NULL;

p3_start=NULL;

printf(“\nPolynomial 1 :\n”);

p1_start=enter(p1_start);

printf(“\nPolynomial 2 :\n”);

p2_start=enter(p2_start);

//polynomial addition function is called

p3_start=poly_add(p1_start,p2_start);

clrscr();

printf(“\nPolynomial 1 is: ”);

display(p1_start);

printf (“\nPolynomial 2 is: ”);

display(p2_start);

printf (“\nAdded polynomial is: ”);

display(p3_start);

getch();

}/*End of main()*/

5.11. DOUBLY LINKED LIST

A doubly linked list is one in which all nodes are linked together by multiple links
which help in accessing both the successor (next) and predecessor (previous) node for any
arbitrary node within the list. Every nodes in the doubly linked list has three fields:
LeftPointer, RightPointer and DATA. Fig. 5.22 shows a typical doubly linked list.

LPoint DATA RPoint

Fig. 5.24. A typical doubly linked list node

LPoint will point to the node in the left side (or previous node) that is LPoint will hold
the address of the previous node. RPoint will point to the node in the right side (or next

LINKED LIST 133

START

NULL 10 30 NULL

Fig 5.30. Delete a node at the 2nd position

5.11.2. ALGORITHM FOR INSERTING A NODE

Fig. 5.31. Insert a node at the 2nd position

Suppose START is the first position in linked list. Let DATA be the element to be
inserted in the new node. POS is the position where the NewNode is to be inserted. TEMP
is a temporary pointer to hold the node address.

1. Input the DATA and POS

2. Initialize TEMP = START; i = 0

3. Repeat the step 4 if (i less than POS) and (TEMP is not equal to NULL)

4. TEMP = TEMP → RPoint; i = i +1

5. If (TEMP not equal to NULL) and (i equal to POS)

(a) Create a New Node

(b) NewNode → DATA = DATA

(c) NewNode → RPoint = TEMP → RPoint

(d) NewNode → LPoint = TEMP

(e) (TEMP → RPoint) → LPoint = NewNode

(f) TEMP → RPoint = New Node

6. Else

(a) Display “Position NOT found”

7. Exit

134 PRINCIPLES OF DATA STRUCTURES USING C AND C++

5.11.3. ALGORITHM FOR DELETING A NODE

Fig. 5.32. Delete a node at the 2nd position

Suppose START is the address of the first node in the linked list. Let POS is the
position of the node to be deleted. TEMP is the temporary pointer to hold the address of the
node. After deletion, DATA will contain the information on the deleted node.

1. Input the POS

2. Initialize TEMP = START; i = 0

3. Repeat the step 4 if (i less than POS) and (TEMP is not equal to NULL)

4. TEMP = TEMP → RPoint; i = i +1

5. If (TEMP not equal to NULL) and (i equal to POS)

(a) Create a New Node

(b) NewNode → DATA = DATA

(c) NewNode → RPoint = TEMP → RPoint

(d) NewNode → LPoint = TEMP

(e) (TEMP → RPoint) → LPoint = NewNode

(f) TEMP → RPoint = New Node

6. Else

(a) Display “Position NOT found”

7. Exit

PROGRAM 5.9

// PROGRAM TO IMPLEMENT ALL THE OPERATIONS IN THE

//DOUBLY LINKED LIST

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

#include<malloc.h>

#include<process.h>

LINKED LIST 135

//Structure is created for the node

struct node

{

struct node *prev;

int info;

struct node *next;

}*start;

typedef struct node *NODE;

//fucntion to create a doubly linked list

void create_list(int num)

{

NODE q,tmp;

//a new node is created

tmp=(NODE)malloc(sizeof(struct node));

tmp->info=num;//assigning the data to the new node

tmp->next=NULL;

if(start==NULL)

{

tmp->prev=NULL;

start->prev=tmp;

start=tmp;

}

else

{

q=start;

while(q->next!=NULL)

q=q->next;

q->next=tmp;

tmp->prev=q;

}

}/*End of create_list()*/

//Function to add new node at the beginning

void addatbeg(int num)

{

NODE tmp;

//a new node is created for inserting the data

tmp=(NODE)malloc(sizeof(struct node));

tmp->prev=NULL;

tmp->info=num;

136 PRINCIPLES OF DATA STRUCTURES USING C AND C++

tmp->next=start;

start->prev=tmp;

start=tmp;

}/*End of addatbeg()*/

//This fucntion will insert a node in any specific position

void addafter(int num,int pos)

{

NODE tmp,q;

int i;

q=start;

//Finding the position to be inserted

for(i=0;i<pos-1;i++)

{

q=q->next;

if(q==NULL)

{

printf (“\nThere are less than %d elements\n”,pos);

return;

}

}

//a new node is created

tmp=(NODE)malloc(sizeof(struct node));

tmp->info=num;

q->next->prev=tmp;

tmp->next=q->next;

tmp->prev=q;

q->next=tmp;

}/*End of addafter() */

//Function to delete a node

void del(int num)

{

NODE tmp,q;

if(start->info==num)

{

tmp=start;

start=start->next; /*first element deleted*/

start->prev = NULL;

free(tmp);//Freeing the deleted node

return;

}

LINKED LIST 137

q=start;

while(q->next->next!=NULL)

{

if(q->next->info==num) /*Element deleted in between*/

{

tmp=q->next;

q->next=tmp->next;

tmp->next->prev=q;

free(tmp);

return;

}

q=q->next;

}

if (q->next->info==num) /*last element deleted*/

{ tmp=q->next;

free(tmp);

q->next=NULL;

return;

}

printf(“\nElement %d not found\n”,num);

}/*End of del()*/

//Displaying all data(s) in the node

void display()

{

NODE q;

if(start==NULL)

{

printf(“\nList is empty\n”);

return;

}

q=start;

printf(“\nList is :\n”);

while(q!=NULL)

{

printf(“%d ”, q->info);

q=q->next;

}

printf(“\n”);

}/*End of display() */

//Function to count the number of nodes in the linked list

138 PRINCIPLES OF DATA STRUCTURES USING C AND C++

void count()

{

NODE q=start;

int cnt=0;

while(q!=NULL)

{

q=q->next;

cnt++;

}

printf(“\nNumber of elements are %d\n”,cnt);

}/*End of count()*/

//Reversing the linked list

void rev()

{

NODE p1,p2;

p1=start;

p2=p1->next;

p1->next=NULL;

p1->prev=p2;

while(p2!=NULL)

{

p2->prev=p2->next;

p2->next=p1;

p1=p2;

p2=p2->prev; /*next of p2 changed to prev */

}

start=p1;

}/*End of rev()*/

void main()

{

int choice,n,m,po,i;

start=NULL;

while(1)

{

//Menu options for the doubly linked list operation

clrscr();

printf(“\n1.Create List\n”);

printf(“2.Add at begining\n”);

printf(“3.Add after\n”);

printf(“4.Delete\n”);

LINKED LIST 139

printf(“5.Display\n”);

printf(“6.Count\n”);

printf(“7.Reverse\n”);

printf(“8.exit\n”);

printf(“\nEnter your choice:”);

scanf(“%d”,&choice);

//switch instruction is called to execute

//correspoding function

switch(choice)

{

 case 1:

printf(“\nHow many nodes you want:”);

scanf(“%d”,&n);

for(i=0;i<n;i++)

{

printf(“\nEnter the element:”);

scanf(“%d”,&m);

//create linked list function is called

create_list(m);

}

break;

 case 2:

printf(“\nEnter the element:”);

scanf(“%d”,&m);

addatbeg(m);

break;

 case 3:

printf(“\nEnter the element:”);

scanf(“%d”,&m);

printf(“\nEnter the position after which this element is inserted:”);

scanf(“%d”,&po);

addafter(m,po);

break;

 case 4:

printf(“\nEnter the element for deletion:”);

scanf(“%d”,&m);

//Delete a node fucntion is called

del(m);

break;

 case 5:

display();

getch();

140 PRINCIPLES OF DATA STRUCTURES USING C AND C++

break;

 case 6:

count();

getch();

break;

 case 7:

rev();

break;

 case 8:

exit(0);

 default:

printf(“\nWrong choice\n”);

getch();

}/*End of switch*/

 }/*End of while*/

}/*End of main()*/

5.12. CIRCULAR LINKED LIST

A circular linked list is one, which has no beginning and no end. A singly linked list
can be made a circular linked list by simply storing the address of the very first node in the
linked field of the last node. A circular linked list is shown in Fig. 5.33. Implementation of
circular linked list is in PROGRAM 5:8.

2010

START

40 5030

Fig. 5.33. Circular Linked list

A circular doubly linked list has both the successor pointer and predecessor pointer
in circular manner as shown in the Fig. 5.34. Implementation of circular doubly linked list
is left to the readers.

 30

START

10 20

Fig. 5.34. Circular Doubly Linked list

LINKED LIST 141

PROGRAM 5.10

// PROGRAM TO IMPLEMENT CIRCULAR SINGLY LINKED LIST

//CODED AND COMPILED INTO TURBO C++

#include<iostream.h>

#include<process.h>

//class is created for the circular linked list

class Circular_Linked

{

//structure node is created

struct node

{

int info;

struct node *link;

};

struct node *last;

typedef struct node *NODE;

public:

//Constructor is defined

Circular_Linked()

{

last=NULL;

}

void create_list(int);

void addatbeg(int);

void addafter(int,int);

void del();

void display();

};

//A circular list created in this function

void Circular_Linked::create_list(int num)

{

NODE q,tmp;

//New node is created

tmp = (NODE)new(struct node);

tmp->info = num;

142 PRINCIPLES OF DATA STRUCTURES USING C AND C++

if (last == NULL)

{

last = tmp;

tmp->link = last;

}

else

{

tmp->link = last->link; /*added at the end of list*/

last->link = tmp;

last = tmp;

}

}/*End of create_list()*/

//This function will add new node at the beginning

void Circular_Linked::addatbeg(int num)

{

NODE tmp;

tmp = (NODE)new(struct node);

tmp->info = num;

tmp->link = last->link;

last->link = tmp;

}/*End of addatbeg()*/

//Function to add new node at any position of the circular list

void Circular_Linked::addafter(int num,int pos)

{

NODE tmp,q;

int i;

q = last->link;

//finding the position to insert a new node

for(i=0; i < pos-1; i++)

{

q = q->link;

if (q == last->link)

{

cout<<“There are less than “<<pos<<” elements\n”;

return;

}

}/*End of for*/

//creating the new node

tmp = (NODE)new(struct node);

tmp->link = q->link;

LINKED LIST 143

tmp->info = num;

q->link = tmp;

if(q==last) /*Element inserted at the end*/

last=tmp;

}/*End of addafter()*/

//Function to delete a node from the circular linked list

void Circular_Linked::del()

{

int num;

if(last == NULL)

{

cout<<"\nList underflow\n";

return;

}

cout<<"\nEnter the number for deletion:";

cin>>num;

NODE tmp,q;

if(last->link == last && last->info == num) /*Only one element*/

{

tmp = last;

last = NULL;

//deleting the node

delete(tmp);

return;

}

q = last->link;

if(q->info == num)

{

tmp = q;

last->link = q->link;

//deleting the node

delete(tmp);

return;

}

while(q->link != last)

{

if(q->link->info == num) /*Element deleted in between*/

{

tmp = q->link;

q->link = tmp->link;

144 PRINCIPLES OF DATA STRUCTURES USING C AND C++

delete(tmp);

cout<<"\n"<<num<<" deleted\n";

return;

}

q = q->link;

}/*End of while*/

if(q->link->info == num) /*Last element deleted q->link=last*/

{

tmp = q->link;

q->link = last->link;

delete(tmp);

last = q;

return;

}

cout<<"\nElement "<<num<<" not found\n";

}/*End of del()*/

//Function to display all the nodes in the circular linked list

void Circular_Linked::display()

{

NODE q;

if(last == NULL)

{

cout<<"\nList is empty\n";

return;
}
q = last->link;
cout<<"\nList is:\n";
while(q != last)
{

cout<< q->info;
q = q->link;

}
cout<<"\n"<<last->info;

}/*End of display()*/

void main()

{

int choice,n,m,po,i;

Circular_Linked co;//Object is created for the class

while(1)

{

//Menu options

LINKED LIST 145

cout<<"\n1.Create List\n";

cout<<"2.Add at begining\n";

cout<<"3.Add after \n";

cout<<"4.Delete\n";

cout<<"5.Display\n";

cout<<"6.Quit\n";

cout<<"\nEnter your choice:";

cin>>choice;

switch(choice)

{

 case 1:

cout<<"\nHow many nodes you want:";

cin>>n;

for(i=0; i < n;i++)

{

cout<<"\nEnter the element:";

cin>>m;

co.create_list(m);

}

break;

 case 2:

cout<<"\nEnter the element:";

cin>>m;

co.addatbeg(m);

break;

 case 3:

cout<<"\nEnter the element:";

cin>>m;

cout<<"\nEnter the position after which this element is inserted:";

cin>>po;

co.addafter(m,po);

break;

 case 4:

co.del();

break;

 case 5:

co.display();

break;

 case 6:

exit(0);

 default:

146 PRINCIPLES OF DATA STRUCTURES USING C AND C++

cout<<"\nWrong choice\n";

}/*End of switch*/

}/*End of while*/

}/*End of main()*/

5.13. PRIORITY QUEUES

Priority Queue is a queue where each element is assigned a priority. In priority
queue, the elements are deleted and processed by following rules.

1. An element of higher priority is processed before any element of lower priority.

2. Two elements with the same priority are processed according to the order in
which they were inserted to the queue.

For example, Consider a manager who is in a process of checking and approving
files in a first come first serve basis. In between, if any urgent file (with a high priority)
comes, he will process the urgent file next and continue with the other low urgent files.

Fig. 5.35. Priority queue representation using arrays

Above Fig. 5.35 gives a pictorial representation of priority queue using arrays after
adding 5 elements (10,14,12,60,13) with its corresponding priorities (9,10,17,30,46). Here
the priorities of the data(s) are in ascending order. Always we may not be pushing the data
in an ascending order. From the mixed priority list it is difficult to find the highest priority
element if the priority queue is implemented using arrays. Moreover, the implementation
of priority queue using array will yield n comparisons (in liner search), so the time com-
plexity is O(n), which is much higher than the other queue (ie; other queues takes only
O(1)) for inserting an element. So it is always better to implement the priority queue using
linked list - where a node can be inserted at anywhere in the list - which is discussed in
this section.

A node in the priority queue will contain DATA, PRIORITY and NEXT field. DATA
field will store the actual information; PRIORITY field will store its corresponding priority
of the DATA and NEXT will store the address of the next node. Fig. 5.36 shows the linked
list representation of the node when a DATA (i.e., 12) and PRIORITY (i.e., 17) is inserted in
a priority queue.

LINKED LIST 147

Fig. 5.36. Linked list representation of priority queue

When an element is inserted into the priority queue, it will check the priority of the
element with the element(s) present in the linked list to find the suitable position to insert.
The node will be inserted in such a way that the data in the priority field(s) is in ascending
order. We do not use rear pointer when it is implemented using linked list, because the
new nodes are not always inserted at the rear end. Following figures will illustrate the
push and pop operation of priority queue using linked list.

Front

10 9 12 17

Fig. 5.37. push(DATA =10, PRIORITY = 9)

Fig. 5.38. push(DATA = 60, PRIORITY = 30)

Fig. 5.39. push(DATA = 13, PRIORITY = 46)

Fig. 5.40. push(DATA = 14, PRIORITY = 10)

148 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Front

12 17 60 30 13 4614 10

Fig. 5.41. x = pop() (i.e., 10)

Front

12 17 60 30 13 46

Fig. 5.42. x = pop() (i.e., 14)

PROGRAM 5.11

//PROGRAM TO IMPLEMENT PRIORITY QUEUE USING LINKED LIST

//CODED AND COMPILED USING TURBO C

#include<conio.h>

#include<stdio.h>

#include<malloc.h>

#include<process.h>

//A structure is created for a node

struct node

{

int priority;

int info;

struct node *link;

};

typedef struct node *NODE;

//This function will insert a data and its priority

NODE insert(NODE front)

{

NODE tmp,q;

int added_item,item_priority;

//New node is created

LINKED LIST 149

tmp = (NODE)malloc(sizeof(struct node));

printf("\nInput the item value to be added in the queue:");

scanf("%d",&added_item);

printf("\nEnter its priority:");

scanf("%d",&item_priority);

tmp->info = added_item;

tmp->priority = item_priority;

/*Queue is empty or item to be added has priority more than first item*/

if(front == NULL || item_priority < front->priority)

{

tmp->link = front;

front = tmp;

}

else

{

q = front;

while(q->link != NULL && q->link->priority <= item_priority)

q=q->link;

tmp->link = q->link;

q->link = tmp;

}/*End of else*/

return(front);

}/*End of insert()*/

//Following function is to delete a node from the priority queue

NODE del(NODE front)

{

NODE tmp;

if(front == NULL)

printf("\nQueue Underflow\n");

else

{

tmp = front;

printf("\nDeleted item is %d\n",tmp->info);

front = front->link;

free(tmp);

}

return(front);

}/*End of del()*/

void display(NODE front)

{

150 PRINCIPLES OF DATA STRUCTURES USING C AND C++

NODE ptr;

ptr = front;

if(front == NULL)

printf("\nQueue is empty\n");

else

{ printf("\nQueue is:\n");

printf("\nPriority Item\n");

while(ptr != NULL)

{

printf("%5d %5d\n",ptr->priority,ptr->info);

ptr = ptr->link;

}

}/*End of else */

}/*End of display() */

void main()

{

int choice;

NODE front=NULL;

while(1)

{

clrscr();

//Menu options

printf("\n1.Insert\n");

printf("2.Delete\n");

printf("3.Display\n");

printf("4.Quit\n");

printf("\nEnter your choic");

scanf("%d", &choice);

switch(choice)

{

 case 1:

front=insert(front);

break;

 case 2:

front=del(front);

getch();

break;

 case 3:

display(front);

LINKED LIST 151

getch();

break;

 case 4:

exit(1);

 default :

printf("\nWrong choice\n");

}/*End of switch*/

}/*End of while*/

}/*End of main()*/

SELF REVIEW QUESTIONS

1. Write an algorithm to count the number of nodes in a singly linked list?

[Calicut - APR 1997 (BTech), MG - MAY 2000 (BTech)]

2. Write an algorithm to insert a node in a linked list? [MG - MAY 2004 (BTech)]

3. Describe how a polynomial is represented using singly linked lists. Write an algorithm to
add two polynomials represented using linked list?

[MG - MAY 2004 (BTech), MG - MAY 2003 (BTech),

MG - NOV 2003 (BTech), MG - NOV 2002 (BTech),

MG - MAY 2002 (BTech), MG - MAY 2000 (BTech)

CUSAT - DEC 2003 (MCA)]

4. What is doubly linked list? Write an algorithm to add and delete a node from it?

[MG - NOV 2004 (BTech), MG - MAY 2000 (BTech)

ANNA - DEC 2003 (BE), CUSAT - DEC 2003 (MCA)

ANNA - MAY 2004 (MCA), ANNA - DEC 2004 (BE)

KERALA - MAY 2003 (BTech)]

5. Explain the array representation of a priority queue? Write an algorithm for deleting and
inserting in a priority queue? Mention its Applications?

[MG - NOV 2004 (BTech), MG - MAY 2003 (BTech),

MG - NOV 2003 (BTech), CUSAT - NOV 2002 (BTech),

MG - NOV 2002 (BTech)]

6. Discuss the advantages and disadvantages of singly linked list?

[MG - MAY 2003 (BTech)]

7. Explain the structure of a doubly linked list. Write a general algorithm for inserting and
deleting nodes in the middle? [MG - MAY 2003 (BTech), MG - NOV 2002 (BTech)]

8. Compare and distinguish between singly linked lists and doubly linked lists?

[CUSAT - APR 1998 (BTech), MG - NOV 2003 (BTech)

KERALA - MAY 2001 (BTech), CUSAT - JUL 2002 (MCA)]

9. Discuss the advantages and disadvantages of linked list over arrays?

[MG - NOV 2002 (BTech)]

152 PRINCIPLES OF DATA STRUCTURES USING C AND C++

10. Write down the steps to invert a singly-linked circular linked list?

[CUSAT - MAY 2000 (BTech), MG - MAY 2002 (BTech)

11. How do you use circular queue in programming? [MG - MAY 2000 (BTech)]
12. How doubly linked list can be used for dynamic storage? [MG - MAY 2000 (BTech)]
13. What is a Priority queue? How is it represented in the memory?

[ANNA - DEC 2004 (BE), CUSAT - APR 1998 (BTech)]
14. What is a linked list? What are its advantages over array? How is linked list implemented

in the memory? [CUSAT - APR 1998 (BTech)]
15. Develop an algorithm to insert a node to the right of kth node of a singly linked linear list.

[CUSAT - APR 1998 (BTech)]
16. Evaluate the complexity of the algorithm to add two polynomials in the form of linked

lists [CUSAT - MAY 2000 (BTech)]
17. Compare linear data structures with linked storage data types.

[CUSAT - MAY 2000 (BTech)]
18. Explain the representation of polynomials using linked lists.

[CUSAT - NOV 2002 (BTech)]
19. Write algorithms for adding and deleting elements from a circular queue implemented as

linked list. [CUSAT - DEC 2003 (MCA)]
20. Explain any three operations on a linked list. Write algorithms for these operations.

[ANNA - DEC 2003 (BE)]
21. Discuss the advantage of circular queue with examples. [ANNA - MAY 2004 (MCA)]
22. Explain how pointers are used to implement linked list structures.

[ANNA - MAY 2004 (BE)]
23. Differentiate singly linked list and circularly linked list.

[KERALA - DEC 2003 (BTech), ANNA - MAY 2003 (BE)]
24. Write an algorithm to traverse elements in a singly linked list

[KERALA - DEC 2004 (BTech)]
25. Explain about frequency count and give an example. Write procedures for circular queue

operations. [KERALA - JUN 2004 (BTech)]
26. Write procedure for searching an element in a singly linked list.

[KERALA - JUN 2004 (BTech)]
27. What is the advantage of a doubly linked list compared to a singly linked list?

[KERALA - MAY 2002 (BTech)]

Sorting Techniques

The operation of sorting is the most common task performed by computers today.
Sorting is used to arrange names and numbers in meaningful ways. For example; it is easy
to look in the dictionary for a word if it is arranged (or sorted) in alphabetic order .

Let A be a list of n elements A1, A2, An in memory. Sorting of list A refers to the
operation of rearranging the contents of A so that they are in increasing (or decreasing)
order (numerically or lexicographically); A1 < A2 < A3 < < An.

Since A has n elements, the contents in A can appear in n! ways. These ways corre-
spond precisely to the n! permutations of 1,2,3, n. Each sorting algorithm must take
care of these n! possibilities.

For example

Suppose an array A contains 7 elements, 42, 33, 23, 74, 44, 67, 49. After sorting,
the array A contains the elements as follows 23, 33, 42, 44, 49, 67, 74. Since A consists of
7 elements, there are 7! =.5040 ways that the elements can appear in A.

The elements of an array can be sorted in any specified order i.e., either in ascend-
ing order or descending order. For example, consider an array A of size 7 elements 42, 33,
23, 74, 44, 67, 49. If they are arranged in ascending order, then sorted array is 23, 33, 42,
44, 49, 67, 74 and if the array is arranged in descending order then the sorted array is 74,
67, 49, 44, 42, 33, 23. In this chapter all the sorting techniques are discussed to arrange
in ascending order.

Sorting can be performed in many ways. Over a time several methods (or algo-
rithms) are being developed to sort data(s). Bubble sort, Selection sort, Quick sort, Merge
sort, Heap sort, Binary sort, Shell sort and Radix sort are the few sorting techniques
discussed in this chapter.

It is very difficult to select a sorting algorithm over another. And there is no sorting
algorithm better than all others in all circumstances. Some sorting algorithm will perform
well in some situations, so it is important to have a selection of sorting algorithms. Some
factors that play an important role in selection processes are the time complexity of the
algorithm (use of computer time), the size of the data structures (for Eg: an array) to be
sorted (use of storage space), and the time it takes for a programmer to implement the
algorithms (programming effort).

For example, a small business that manages a list of employee names and salary
could easily use an algorithm such as bubble sort since the algorithm is simple to imple-
ment and the data to be sorted is relatively small. However a large public limited with ten
thousands of employees experience horrible delay, if we try to sort it with bubble sort
algorithm. More efficient algorithm, like Heap sort is advisable.

153

6

154 PRINCIPLES OF DATA STRUCTURES USING C AND C++

6.1. COMPLEXITY OF SORTING ALGORITHMS

The complexity of sorting algorithm measures the running time of n items to be
sorted. The operations in the sorting algorithm, where A1, A2 ….. An contains the items to
be sorted and B is an auxiliary location, can be generalized as:

(a) Comparisons- which tests whether Ai < Aj or test whether Ai < B

(b) Interchange- which switches the contents of Ai and Aj or of Ai and B

(c) Assignments- which set B = A and then set Aj = B or Aj = Ai

Normally, the complexity functions measure only the number of comparisons, since
the number of other operations is at most a constant factor of the number of comparisons.

6.2. BUBBLE SORT

In bubble sort, each element is compared with its adjacent element. If the first
element is larger than the second one, then the positions of the elements are interchanged,
otherwise it is not changed. Then next element is compared with its adjacent element and
the same process is repeated for all the elements in the array until we get a sorted array.

Let A be a linear array of n numbers. Sorting of A means rearranging the elements of
A so that they are in order. Here we are dealing with ascending order. i.e., A[1] < A[2] < A[3]
< A[n].

Suppose the list of numbers A[1], A[2], ………… A[n] is an element of array A. The bubble
sort algorithm works as follows:

Step 1: Compare A[1] and A[2] and arrange them in the (or desired) ascending order,
so that A[1] < A[2].that is if A[1] is greater than A[2] then interchange the position of data
by swap = A[1]; A[1] = A[2]; A[2] = swap. Then compare A[2] and A[3] and arrange them so
that A[2] < A[3]. Continue the process until we compare A[N – 1] with A[N].

Note: Step1 contains n – 1 comparisons i.e., the largest element is “bubbled up” to
the nth position or “sinks” to the nth position. When step 1 is completed A[N] will contain
the largest element.

Step 2: Repeat step 1 with one less comparisons that is, now stop comparison at
A [n – 1] and possibly rearrange A[N – 2] and A[N – 1] and so on.

Note: in the first pass, step 2 involves n–2 comparisons and the second largest
element will occupy A[n-1]. And in the second pass, step 2 involves n – 3 comparisons and
the 3rd largest element will occupy A[n – 2] and so on.

Step n – 1: compare A[1]with A[2] and arrange them so that A[1] < A[2]

After n – 1 steps, the array will be a sorted array in increasing (or ascending) order.

The following figures will depict the various steps (or PASS) involved in the sorting of
an array of 5 elements. The elements of an array A to be sorted are: 42, 33, 23, 74, 44

FIRST PASS

33 swapped 33 33 33

42 23 swapped 23 23

23 42 42 no swapping 42

74 74 74 44 swapped

44 44 44 74

SORTING TECHNIQUES 155

 23 swapped 23 23

33 33 no swapping 33

42 42 42 no swapping

44 44 44

74 74 74

23 no swapping 23

33 33 no swapping

42 42

44 44

74 74

23 no swapping

33

42

44

74

Thus the sorted array is 23, 33, 42, 44, 74.

ALGORITHM

Let A be a linear array of n numbers. Swap is a temporary variable for swapping (or
interchange) the position of the numbers.

1. Input n numbers of an array A

2. Initialise i = 0 and repeat through step 4 if (i < n)

3. Initialize j = 0 and repeat through step 4 if (j < n – i – 1)

4. If (A[j] > A[j + 1])

(a) Swap = A[j]

(b) A[j] = A[j + 1]

(c) A[j + 1] = Swap

5. Display the sorted numbers of array A

6. Exit.

PROGRAM 6.1

//PROGRAM TO IMPLEMENT BUBBLE SORT USING ARRAYS

//STATIC MEMORY ALLOCATION

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

156 PRINCIPLES OF DATA STRUCTURES USING C AND C++

#define MAX 20

void main()

{

int arr[MAX],i,j,k,temp,n,xchanges;

clrscr();

printf (“\nEnter the number of elements : ”);

scanf (“%d”,&n);

for (i = 0; i < n; i++)

{

printf (“E\nnter element %d : ”,i+1);

scanf (“%d”,&arr[i]);

}

printf (“\nUnsorted list is :\n”);

for (i = 0; i < n; i++)

printf (“%d ”, arr[i]);

 printf (“\n”);

/* Bubble sort*/
for (i = 0; i < n–1 ; i++)
{

xchanges=0;
for (j = 0; j <n–1–i; j++)
{

if (arr[j] > arr[j+1])
{

temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
xchanges++;

}/*End of if*/
}/*End of inner for loop*/
if (xchanges==0) /*If list is sorted*/

break;
printf(“\nAfter Pass %d elements are : ”,i+1);

for (k = 0; k < n; k++)

printf(“%d ”, arr[k]);

printf(“\n”);

}/*End of outer for loop*/

printf(“\nSorted list is :\n”);

for (i = 0; i < n; i++)

printf(“%d ”, arr[i]);

getch();

}/*End of main()*/

SORTING TECHNIQUES 157

PROGRAM 6.2

//PROGRAM TO IMPLEMENT BUBBLE SORT

//USING DYNAMIC MEMORY ALLOCATION

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<conio.h>

#include<malloc.h>

//this function will bubble sort the input

void bubblesort(int *a,int n)

{

int i,j,k,temp;

for(i=1;i < n;i++)

for(j=0;j < n–1;j++)

if (a[j] > a[j+1])

{

temp=a[j];

a[j]=a[j+1];

a[j+1]=temp;

}

}

void main()

{

int *a,n,*l,*temp;

clrscr();

printf (“\nEnter the number of elements :”);

scanf (“%d”,&n);

//allocating the array of memory dynamically

a=((int*)malloc(n*sizeof (int)));

temp=a;//storing the memnory address

l=a+n;

printf (“\nEnter the elements\n”);

while(a < l)

{

scanf (“%d”,a);

a++;

}

158 PRINCIPLES OF DATA STRUCTURES USING C AND C++

bubblesort(temp,n);

printf (“\nSorted array is : ”);

a=temp;

while(a < l)

{

printf (“ %d”,*a);

a++;

}

getch();

 }

TIME COMPLEXITY

The time complexity for bubble sort is calculated in terms of the number of compari-
sons f (n) (or of number of loops); here two loops (outer loop and inner loop) iterates (or
repeated) the comparisons. The number of times the outer loop iterates is determined by
the number of elements in the list which is asked to sort (say it is n). The inner loop is
iterated one less than the number of elements in the list (i.e., n-1 times) and is reiterated
upon every iteration of the outer loop

f (n) = (n – 1) + (n – 2) + + 2 + 1

= n(n – 1) = O(n2).

BEST CASE

In this case you are asked to sort a sorted array by bubble sort algorithm. The inner
loop will iterate with the ‘if’ condition evaluating time, that is the swap procedure is never
called. In best case outer loop will terminate after one iteration, i.e., it involves performing
one pass, which requires n–1 comparisons

f (n) = O(n)

WORST CASE

In this case the array will be an inverted list (i.e., 5, 4, 3, 2, 1, 0). Here to move first
element to the end of the array, n–1 times the swapping procedure is to be called. Every
other element in the list will also move one location towards the start or end of the loop on
every iteration. Thus n times the outer loop will iterate and n (n-1) times the inner loop will
iterate to sort an inverted array

f(n) = (n(n – 1))/2 = O(n2)

AVERAGE CASE

Average case is very difficult to analyse than the other cases. In this case the input
data(s) are randomly placed in the list. The exact time complexity can be calculated only if
we know the number of iterations, comparisons and swapping. In general, the complexity
of average case is:

f(n) = (n(n–1))/2 = O(n2).

SORTING TECHNIQUES 159

6.3. SELECTION SORT

Selection sort algorithm finds the smallest element of the array and interchanges it
with the element in the first position of the array. Then it finds the second smallest ele-
ment from the remaining elements in the array and places it in the second position of the
array and so on.

Let A be a linear array of ‘n’ numbers, A [1], A [2], A [3],...... A [n].

Step 1: Find the smallest element in the array of n numbers A[1], A[2], A[n]. Let
LOC is the location of the smallest number in the array. Then interchange A[LOC] and A[1]
by swap = A[LOC]; A[LOC] = A[1]; A[1] = Swap.

Step 2: Find the second smallest number in the sub list of n – 1 elements A [2] A [3]
...... A [n – 1] (first element is already sorted). Now we concentrate on the rest of the
elements in the array. Again A [LOC] is the smallest element in the remaining array and
LOC the corresponding location then interchange A [LOC] and A [2].Now A [1] and A [2] is
sorted, since A [1] less than or equal to A [2].

Step 3: Repeat the process by reducing one element each from the array

Step n – 1: Find the n – 1 smallest number in the sub array of 2 elements (i.e., A(n–
1), A (n)). Consider A [LOC] is the smallest element and LOC is its corresponding position.
Then interchange A [LOC] and A(n – 1). Now the array A [1], A [2], A [3], A [4],………..A [n] will
be a sorted array.

Following figure is generated during the iterations of the algorithm to sort 5 num-
bers 42, 33, 23, 74, 44 :

ALGORITHM

Let A be a linear array of n numbers A [1], A [2], A [3], ……… A [k], A [k+1], …….. A [n]. Swap
be a temporary variable for swapping (or interchanging) the position of the numbers. Min is
the variable to store smallest number and Loc is the location of the smallest element.

1. Input n numbers of an array A

2. Initialize i = 0 and repeat through step5 if (i < n – 1)

(a) min = a[i]

(b) loc = i

160 PRINCIPLES OF DATA STRUCTURES USING C AND C++

3. Initialize j = i + 1 and repeat through step 4 if (j < n – 1)

4. if (a[j] < min)

(a) min = a[j]

(b) loc = j

5. if (loc ! = i)

(a) swap = a[i]

(b) a[i] = a[loc]

(c) a[loc] = swap

6. display “the sorted numbers of array A”

7. Exit

PROGRAM 6.3

//PROGRAM TO IMPLEMENT SELECTION SORT

//USING STATIC MEMORY ALLOCATION, THAT IS USING ARRAYS

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

#define MAX 20

void main()

{

int arr[MAX], i,j,k,n,temp,smallest;

clrscr();

printf (“\nEnter the number of elements : ”);

scanf (“%d”, & n);

for (i = 0; i < n; i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”, &arr[i]);

}

printf (“\nUnsorted list is : \n”);

for (i = 0; i < n; i++)

printf (“%d ”, arr[i]);

printf (“\n”);

/*Selection sort*/

for (i = 0; i < n – 1 ; i++)

{

SORTING TECHNIQUES 161

/*Find the smallest element*/

smallest = i;

for(k = i + 1; k < n ; k++)

{

if (arr[smallest] > arr[k])

smallest = k ;

}

if (i != smallest)

{

temp = arr [i];

arr[i] = arr[smallest];

arr[smallest] = temp ;

}

printf (“\nAfter Pass %d elements are : ”,i+1);

for (j = 0; j < n; j++)

printf (“%d ”, arr[j]);

printf (“\n”);

}/*End of for*/

printf (“\nSorted list is : \n”);

for (i = 0; i < n; i++)

printf (“%d ”, arr[i]);

getch();

}/*End of main()*/

PROGRAM 6.4

//PROGRAM TO IMPLEMENT SELECTION SORT

//USING DYNAMIC MEMORY ALLOCATION

//CODED AND COMPILED USING TURBO C

#include<stdio.h>

#include<conio.h>

#include<malloc.h>

//this function will sort the input elements using selection sort

void selectionsort(int *a,int n)

{

int i,j,temp;

for(i=0;i< n–1;i++)

for(j=i+1;j < n;j++)

162 PRINCIPLES OF DATA STRUCTURES USING C AND C++

if (a[i]>a[j])

{

temp=a[i];

a[i]=a[j];

a[j]=temp;

}

}

void main()

{

int *a,n,*l,*temp;

clrscr();

printf (“\nEnter the number of elements\n”);

scanf (“%d”,&n);

//dynamically allocate the memory array block

a=((int*)malloc(n*sizeof (int)));

temp=a;

l=a+n;

printf (“\nEnter the elements\n”);

while(a < l)

{

scanf (“%d”,a);

a++;

}

//calling the selection sort fucntion

selectionsort(temp,n);

printf (“\nSorted array : ”);

a=temp;

while(a < l)

{

printf (“ %d”,*a);

a++;

}

getch();

}

TIME COMPLEXITY

Time complexity of a selection sort is calculated in terms of the number of compari-
sons f (n). In the first pass it makes n – 1 comparisons; the second pass makes n – 2

SORTING TECHNIQUES 163

comparisons and so on. The outer for loop iterates for (n - 1) times. But the inner loop
iterates for n*(n – 1) times to complete the sorting.

f (n) = (n – 1) + (n – 2) + + 2 + 1

= (n(n – 1))/2

= O(n2)

Readers can go through the algorithm and analyse it for different types of input to
find their (efficiency) Time complexity for best, worst and average case. That is in best case
how the algorithm is performed for sorted arrays as input.

In worst case we can analyse how the algorithm is performed for reverse sorted
array as input. Average case is where we input general (mixed sorted) input to the algo-
rithm. Following table will summarise the efficiency of algorithm in different case :

Best case Worst case Average case

n – 1 = O(n)
(1)

2

n n −
 = O(n2)

(1)

2

n n −
 = O(n)

6.4. INSERTION SORT

Insertion sort algorithm sorts a set of values by inserting values into an existing
sorted file. Compare the second element with first, if the first element is greater than
second, place it before the first one. Otherwise place is just after the first one. Compare
the third value with second. If the third value is greater than the second value then place
it just after the second. Otherwise place the second value to the third place. And compare
third value with the first value. If the third value is greater than the first value place the
third value to second place, otherwise place the first value to second place. And place the
third value to first place and so on.

Let A be a linear array of n numbers A [1], A [2], A [3], A[n]. The algorithm scan
the array A from A [1] to A [n], by inserting each element A[k], into the proper position of
the previously sorted sub list. A [1], A [2], A [3], A [k – 1]

Step 1: As the single element A [1] by itself is sorted array.

Step 2: A [2] is inserted either before or after A [1] by comparing it so that A[1], A[2]
is sorted array.

Step 3: A [3] is inserted into the proper place in A [1], A [2], that is A [3] will be
compared with A [1] and A [2] and placed before A [1], between A [1] and A
[2], or after A [2] so that A [1], A [2], A [3] is a sorted array.

Step 4: A [4] is inserted in to a proper place in A [1], A [2], A [3] by comparing it; so
that A [1], A [2], A [3], A [4] is a sorted array.

Step 5: Repeat the process by inserting the element in the proper place in array

Step n : A [n] is inserted into its proper place in an array A [1], A [2], A [3], A [n –
1] so that A [1], A [2], A [3], ,A [n] is a sorted array.

To illustrate the insertion sort methods, consider a following array with five ele-
ments 42, 33, 23, 74, 44 :

164 PRINCIPLES OF DATA STRUCTURES USING C AND C++

42 33 23 74 44

temp

4233 23 74 44

temp

4233 23 74 44

temp

4233 2374 44

temp

SORTING TECHNIQUES 165

4233 2374 44

temp

4233 2374 44

temp

423323 74 44

temp

423323 74 44

temp

423323 74 44

temp

423323 74 44

temp

423323 74 44

temp

423323 7444

temp

166 PRINCIPLES OF DATA STRUCTURES USING C AND C++

ALGORITHM

Let A be a linear array of n numbers A [1], A [2], A [3], ,A [n]......Swap be a tempo-
rary variable to interchange the two values. Pos is the control variable to hold the position of
each pass.

1. Input an array A of n numbers

2. Initialize i = 1 and repeat through steps 4 by incrementing i by one.

(a) If (i < = n – 1)

(b) Swap = A [I],

(c) Pos = i – 1

3. Repeat the step 3 if (Swap < A[Pos] and (Pos >= 0))

(a) A [Pos+1] = A [Pos]

(b) Pos = Pos-1

4. A [Pos +1] = Swap

5. Exit

PROGRAM 6.5

//PROGRAM TO IMPLEMENT INSERTION SORT USING ARRAYS

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

#define MAX 20

void main()

{

int arr[MAX],i,j,k,n;

clrscr();

printf (“\nEnter the number of elements : ”);

scanf (“%d”,&n);

for (i = 0; i < n; i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”, &arr[i]);

}

printf (“\nUnsorted list is :\n”);

for (i = 0; i < n; i++)

printf (“%d ”, arr[i]);

printf (“\n”);

SORTING TECHNIQUES 167

/*Insertion sort*/

for(j=1;j < n;j++)

{

k=arr[j]; /*k is to be inserted at proper place*/

for(i=j–1;i>=0 && k<arr[i];i--)

arr[i+1]=arr[i];

arr[i+1]=k;

printf (“\nPass %d, Element inserted in proper place: %d\n”,j,k);

for (i = 0; i < n; i++)

printf (“%d ”, arr[i]);

printf (“\n”);

}

printf (“\nSorted list is :\n”);

for (i = 0; i < n; i++)

printf (“%d ”, arr[i]);

getch();

}/*End of main()*/

TIME COMPLEXITY

In the insertion sort algorithm (n – 1) times the loop will execute for comparisons and
interchanging the numbers. The inner while loop iterates maximum of ((n – 1) × (n – 1))/2
times to computing the sorting.

WORST CASE

The worst case occurs when the array A is in reverse order and the inner while loop
must use the maximum number (n – 1) of comparisons. Hence

f(n) = (n – 1) + 2 + 1

= (n (n – 1))/2

= O(n2).

AVERAGE CASE

On the average case there will be approximately (n – 1)/2 comparisons in the inner
while loop. Hence the average case

f (n) = (n – 1)/2 + + 2/2 +1/2

= n (n – 1)/4

= O(n2).

BEST CASE

The best case occurs when the array A is in sorted order and the outer for loop will
iterate for (n – 1) times. And the inner while loop will not execute because the given array
is a sorted array

i.e., f (n) = O(n).

168 PRINCIPLES OF DATA STRUCTURES USING C AND C++

6.5. SHELL SORT

Shell Sort is introduced to improve the efficiency of simple insertion sort. Shell Sort
is also called diminishing increment sort. In this method, sub-array, contain kth element of
the original array, are sorted.

Let A be a linear array of n numbers A [1], A [2], A [3], A [n].

Step 1: The array is divided into k sub-arrays consisting of every kth element. Say k
= 5, then five sub-array, each containing one fifth of the elements of the original array.

Sub array 1 → A[0] A[5] A[10]

Sub array 2 → A[1] A[6] A[11]

Sub array 3 → A[2] A[7] A[12]

Sub array 4 → A[3] A[8] A[13]

Sub array 5 → A[4] A[9] A[14]

Note : The ith element of the jth sub array is located as A [(i–1) × k+j–1]

Step 2: After the first k sub array are sorted (usually by insertion sort) , a new
smaller value of k is chosen and the array is again partitioned into a new set
of sub arrays.

Step 3: And the process is repeated with an even smaller value of k, so that A [1],
A [2], A [3], A [n] is sorted.

To illustrate the shell sort, consider the following array with 7 elements 42, 33, 23,
74, 44, 67, 49 and the sequence K = 4, 2, 1 is chosen.

Pass = 1

Span = k = 4

Pass = 2
span = k = 2

Pass = 3

Span = k = 1

SORTING TECHNIQUES 169

23, 33, 42, 44, 49, 67, 74

ALGORITHM

Let A be a linear array of n elements, A [1], A [2], A [3], A[n] and Incr be an array
of sequence of span to be incremented in each pass. X is the number of elements in the
array Incr. Span is to store the span of the array from the array Incr.

1. Input n numbers of an array A

2. Initialise i = 0 and repeat through step 6 if (i < x)

3. Span = Incr[i]

4. Initialise j = span and repeat through step 6 if (j < n)

(a) Temp = A [j]

5. Initialise k = j-span and repeat through step 5 if (k > = 0) and (temp < A [k])

(a) A [k + span] = A [k]

6. A [k + span] = temp

7. Exit

PROGRAM 6.6

//PROGRAM TO IMPLEMENT SHELL SORT USING ARRAYS

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

#define MAX 20

void main()

{

int arr[MAX], i,j,k,n,incr;

clrscr();

printf (“\nEnter the number of elements : ”);

scanf (“%d”,&n);

for (i=0;i < n;i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”,&arr[i]);

}

printf (“\nUnsorted list is :\n”);

for (i = 0; i < n; i++)

printf (“%d ”, arr[i]);

printf (“\nEnter maximum increment (odd value) : ”);

170 PRINCIPLES OF DATA STRUCTURES USING C AND C++

scanf (“%d”,&incr);

/*Shell sort algorithm is applied*/

while(incr>=1)

{

for (j=incr;j<n;j++)

{

k=arr[j];

for(i = j–incr; i > = 0 && k < arr[i]; i = i–incr)

arr[i+incr]=arr[i];

arr[i+incr]=k;

}

printf (“\nIncrement=%d \n”,incr);

for (i = 0; i < n; i++)

printf(“%d ”, arr[i]);

printf (“\n”);

incr=incr–2; /*Decrease the increment*/

}/*End of while*/

printf (“\nSorted list is :\n”);

for (i = 0; i < n; i++)

printf (“%d ”, arr[i]);

getch();

}/*End of main()*/

TIME COMPLEXITY

The detailed efficiency analysis of the shell sort is mathematically involved and
beyond the scope of this book. The time complexity depends on the number of elements in
the array increment (i.e., number of spans) and on their actual values. One requirement is
that the elements of increments should be relatively prime (i.e., no common divisor other
than 1). This guarantees that after successive iteration of the sub arrays, the entire array
is almost sorted when the span = 1 (i.e., in the last iteration). If an appropriate sequence of
increments is classified, then the order of the shell sort is

f (n) = O(n (log n)2)

6.6. QUICK SORT

It is one of the widely used sorting techniques and it is also called the partition-
exchange sort. Quick sort is an efficient algorithm and it passes a very good time complexity
in average case. This is developed by C.A.R. Hoare. It is an algorithm of the divide-and-
conquer type.

The quick sort algorithm works by partitioning the array to be sorted. And each
partitions are internally sorted recursively. In partition the first element of an array is
chosen as a key value. This key value can be the first element of an array. That is, if A is an
array then key = A (0), and rest of the elements are grouped into two portions such that,

172 PRINCIPLES OF DATA STRUCTURES USING C AND C++

ALGORITHM

Let A be a linear array of n elements A (1), A (2), A (3)......A (n), low represents the
lower bound pointer and up represents the upper bound pointer. Key represents the first
element of the array, which is going to become the middle element of the sub-arrays.

1. Input n number of elements in an array A

2. Initialize low = 2, up = n , key = A[(low + up)/2]

3. Repeat through step 8 while (low < = up)

4. Repeat step 5 while(A [low] > key)

5. low = low + 1

6. Repeat step 7 while(A [up] < key)

7. up = up–1

8. If (low < = up)

(a) Swap = A [low]

(b) A [low] = A [up]

(c) A [up] = swap

(d) low=low+1

SORTING TECHNIQUES 173

(e) up=up–1

9. If (1 < up) Quick sort (A, 1, up)

10. If (low < n) Quick sort (A, low, n)

11. Exit

PROGRAM 6.7

//PROGRAM TO IMPLEMENT QUICK SORT

//USING ARRAYS RECURSIVELY

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

#define MAX 30

enum bool {FALSE,TRUE};

//Function display the array

void display(int arr[],int low,int up)

{

int i;

for(i=low;i<=up;i++)

printf (“%d ”,arr[i]);

}

//This function will sort the array using Quick sort algorithm

void quick(int arr[],int low,int up)

{

int piv,temp,left,right;

enum bool pivot_placed=FALSE;

//setting the pointers

left=low;

right=up;

piv=low; /*Take the first element of sublist as piv */

if (low>=up)

return;

printf (“\nSublist : ”);

display(arr,low,up);

174 PRINCIPLES OF DATA STRUCTURES USING C AND C++

/*Loop till pivot is placed at proper place in the sublist*/

while(pivot_placed==FALSE)

{

/*Compare from right to left */

while(arr[piv]<=arr[right] && piv!=right)

right=right–1;

if (piv==right)

 pivot_placed=TRUE;

if (arr[piv] > arr[right])

{

temp=arr[piv];

arr[piv]=arr[right];

arr[right]=temp;

piv=right;

}

/*Compare from left to right */

while(arr[piv]>=arr[left] && left!=piv)

left=left+1;

if (piv==left)

pivot_placed=TRUE;

if (arr[piv] < arr[left])

{

temp=arr[piv];

arr[piv]=arr[left];

arr[left]=temp;

piv=left;

}

}/*End of while */

printf (“-> Pivot Placed is %d -> ”,arr[piv]);

display(arr,low,up);

printf ("\n");

quick(arr,low,piv–1);

quick(arr,piv+1,up);

}/*End of quick()*/

void main()

{

int array[MAX],n,i;

clrscr();

printf (“\nEnter the number of elements : ”);

scanf (“%d”,&n);

SORTING TECHNIQUES 175

for (i=0;i<n;i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”,&array[i]);

}

printf (“\nUnsorted list is :\n”);

display(array,0,n–1);

printf (“\n”);

quick (array,0,n–1);

printf (“\nSorted list is :\n”);

display(array,0,n–1);

getch();

}/*End of main() */

TIME COMPLEXITY

The time complexity of quick sort can be calculated for any of the following case. It
is usually measured by the number f (n) of comparisons required to sort n elements.

WORST CASE

The worst case occurs when the list is already sorted. In this case the given array is
partitioned into two sub arrays. One of them is an empty array and another one is an
array. After partition, when the first element is checked with other element, it will take n
comparison to recognize that it remain in the position so as (n – 1) comparisons for the
second position.

f (n) = n + (n – 1) + + 2 + 1

= (n (n + 1))/2

= O(n2)

AVERAGE CASE

In this case each reduction step of the algorithm produces two sub arrays. Accord-
ingly :

(a) Reducing the array by placing one element and produces two sub arrays.

(b) Reducing the two sub-arrays by placing two elements and produces four sub-
arrays.

(c) Reducing the four sub-arrays by placing four elements and produces eight sub-
arrays.

And so on. Reduction step in the kth level finds the location at 2k–1 elements; how-
ever there will be approximately log2 n levels at reduction steps. Furthermore each level
uses at most n comparisons,

so f (n) = O(n log n)

176 PRINCIPLES OF DATA STRUCTURES USING C AND C++

BEST CASE

The base case analysis occurs when the array is always partitioned in half, That key
= A [(low+up)/2]

f (n) = Cn +f (n/2) + f (n/2)

= Cn + 2f (n/2)

= O(n) where C is a constant.

6.7. MERGE SORT

Merging is the process of combining two or more sorted array into a third sorted
array. It was one of the first sorting algorithms used on a computer and was developed by
John Von Neumann. Divide the array into approximately n/2 sub-arrays of size two and
set the element in each sub array. Merging each sub-array with the adjacent sub-array
will get another sorted sub-array of size four. Repeat this process until there is only one
array remaining of size n.

Since at any time the two arrays being merged are both sub-arrays of A, lower and
upper bounds are required to indicate the sub-arrays of a being merged. l1 and u1 repre-
sents the lower and upper bands of the first sub-array and l2 and u2 represents the lower
and upper bands of the second sub-array respectively.

Let A be an array of n number of elements to be sorted A[1], A[2] A[n].

Step 1: Divide the array A into approximately n/2 sorted sub-array of size 2. i.e., the
elements in the (A [1], A [2]), (A [3], A [4]), (A [k], A [k + 1]), (A [n – 1], A [n]) sub-arrays are in
sorted order.

Step 2: Merge each pair of pairs to obtain the following list of sorted sub-array of size
4; the elements in the sub-array are also in the sorted order.

(A [1], A [2], A [3], A [4)),...... (A [k – 1], A [k], A [k + 1], A [k + 2]),

...... (A [n – 3], A [n – 2], A [n – 1], A [n].

Step 3: Repeat the step 2 recursively until there is only one sorted array of size n.

To illustrate the merge sort algorithm consider the following array with 7 elements
[42], [33], [23], [74], [44], [67], [49]

SORTING TECHNIQUES 177

ALGORITHM

Let A be a linear array of size n, A [1], A [2], A [3] A [n], l1 and u1 represent lower
and upper bounds of the first sub-array and l2 and u2 represent the lower and upper
bound of the second sub-array. Aux is an auxiliary array of size n. Size is the sizes of
merge files.

1. Input an array of n elements to be sorted

2. Size = 1

3. Repeat through the step 13 while (Size < n)

(a) set l1 = 0; k = 0

4. Repeat through step 10 while ((l1+Size) < n)

(a) l2 = l1+Size

(b) u1 = l2–1

5. If ((l2+Size–1) < n)

(i) u2 = l2+Size–1

(b) Else

 (i) u2 = n-1

6. Initialize i = l1; j = l2 and repeat through step 7 if (i <= u1) and (j < = u2)

7. If (A [i] < = A[j])

(i) Aux [k] = A [i++]

(b) Else

 (i) Aux [k] = A [j++]

8. Repeat the step 8 by incrementing the value of k until (i < = u1)

(a) Aux [k] = A [I++]

9. Repeat the step 9 by incrementing the value of k until (j < = u2)

(a) Aux [k] = A [j++]

10. L1=u2+1

11. Initialize I = l1 and repeat the step 11 if (k < n) by incrementing I by one

(a) Aux [k++] = A[I]

12. Initialize I=0 and repeat the step 12 if (I < n) by incrementing I by one

(a) A [i] = A [I]

13. Size = Size*2

14. Exit

PROGRAM 6.8

//PROGRAM TO IMPLEMENT MERGING OF TWO SORTED ARRAYS

//INTO A THIRD SORTED ARRAY

//CODED AND COMPILED IN TURBO C

178 PRINCIPLES OF DATA STRUCTURES USING C AND C++

#include<conio.h>

#include<stdio.h>

void main()

{

int arr1[20],arr2[20],arr3[40];

int i,j,k;

int max1,max2;

clrscr();

printf (“\nEnter the number of elements in list1 : ”);

scanf (“%d”,&max1);

printf (“\nTake the elements in sorted order :\n”);

for (i=0;i<max1;i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”,&arr1[i]);

}

printf (“\nEnter the number of elements in list2 : ”);

scanf (“%d”,&max2);

printf (“\nTake the elements in sorted order :\n”);

for (i=0;i<max2;i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”,&arr2[i]);

}

/* Merging */

i=0; /*Index for first array*/

j=0; /*Index for second array*/

k=0; /*Index for merged array*/

while((i < max1) && (j < max2))

{

if (arr1[i] < arr2[j])

arr3[k++]=arr1[i++];

else

arr3[k++]=arr2[j++];

}/*End of while*/

/*Put remaining elements of arr1 into arr3*/

while(i < max1)

arr3[k++]=arr1[i++];

/*Put remaining elements of arr2 into arr3*/

SORTING TECHNIQUES 179

while(j < max2)

arr3[k++]=arr2[j++];

/*Merging completed*/

printf (“\nList 1 : ”);

for (i=0;i<max1;i++)

printf (“%d ”,arr1[i]);

printf (“\nList 2 : ”);

for (i=0;i<max2;i++)

printf(“%d ”,arr2[i]);

printf (“\nMerged list : ”);

for(i=0;i<max1+max2;i++)

printf (“%d ”,arr3[i]);

getch();

}/*End of main()*/

PROGRAM 6.9

//PROGRAM TO IMPLEMENT MERGE SORT WITHOUT RECURSION

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<conio.h>

#define MAX 30

void main()

{

int arr[MAX],temp[MAX],i,j,k,n,size,l1,h1,l2,h2;

clrscr();

printf (“\nEnter the number of elements : ”);

scanf (“%d”,&n);

for (i=0;i<n;i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”,&arr[i]);

}

printf (“\nUnsorted list is : ”);

for (i = 0 ; i<n ; i++)

printf(“%d ”, arr[i]);

/*l1 lower bound of first pair and so on*/

180 PRINCIPLES OF DATA STRUCTURES USING C AND C++

for (size=1; size < n; size=size*2)

{

l1 = 0;

k = 0; /*Index for temp array*/

while(l1+size < n)

{

h1=l1+size–1;

l2=h1+1;

h2=l2+size–1;

if (h2>=n) /* h2 exceeds the limlt of arr */

h2=n-1;

/*Merge the two pairs with lower limits l1 and l2*/

i=l1;

j=l2;

while(i<=h1 && j<=h2)

{

if (arr[i] <= arr[j])

temp[k++]=arr[i++];

else

temp[k++]=arr[j++];

}

while(i<=h1)

temp[k++]=arr[i++];

while(j<=h2)

temp[k++]=arr[j++];

/**Merging completed**/

l1 = h2+1; /*Take the next two pairs for merging */

}/*End of while*/

for (i=l1; k<n; i++) /*any pair left */

temp[k++]=arr[i];

for(i=0;i<n;i++)

 arr[i]=temp[i];

printf (“\nSize=%d \nElements are : ”,size);

for (i = 0 ; i<n ; i++)

printf (“%d ”, arr[i]);

}/*End of for loop */

printf (“\nSorted list is :\n”);

for (i = 0 ; i<n ; i++)

printf (“%d ”, arr[i]);

SORTING TECHNIQUES 181

getch();

}/*End of main()*/

PROGRAM 6.10

//PROGRAM TO IMPLEMENT MERGE SORT THROUGH RECURSION

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<conio.h>

#define MAX 20

int array[MAX];

//Function to merge the sub files or arrays

void merge(int low, int mid, int high)

{

int temp[MAX];

int i = low;

int j = mid +1 ;

int k = low ;

while((i < = mid) && (j < =high))

{

if (array[i] < = array[j])

temp[k++] = array[i++] ;

else

temp[k++] = array[j++] ;

}/*End of while*/

while(i <= mid)

temp[k++]=array[i++];

while(j <= high)

temp[k++]=array[j++];

for (i= low; i < = high ; i++)

array[i]=temp[i];

}/*End of merge()*/

//Function which call itself to sort an array

void merge_sort(int low, int high)

182 PRINCIPLES OF DATA STRUCTURES USING C AND C++

{

int mid;

if (low ! = high)

{

mid = (low+high)/2;

merge_sort(low , mid);

merge_sort(mid+1, high);

merge(low, mid, high);

}

}/*End of merge_sort*/

void main()

{

int i,n;

clrscr();

printf (“\nEnter the number of elements : ”);

scanf (“%d”,&n);

for (i=0;i<n;i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”,&array[i]);

}

printf (“\nUnsorted list is :\n”);

for (i = 0 ; i<n ; i++)

printf (“%d ”, array[i]);

merge_sort(0, n–1);

printf (“\nSorted list is :\n”);

for (i = 0 ; i<n ; i++)

printf (“%d ”, array[i]);

getch();

}/*End of main()*/

TIME COMPLEXITY

Let f (n) denote the number of comparisons needed to sort an n element array A
using the merge sort algorithm. The algorithm requires almost log n passes, each involving
n or fewer comparisons.

In average and worst case the merge sort requires O(n log n) comparisons.

The main drawback of merge sort is that it requires O(n) additional space for the
auxiliary array.

SORTING TECHNIQUES 183

6.8. RADIX SORT

Radix sort or bucket sort is a method that can be used to sort a list of numbers by
its base. If we want to sort list of English words, where radix or base is 26, then 26 buckets
is used to sort the words.

To sort an array of decimal numbers, where the radix or base is 10, we need 10
buckets and can be numbered as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Number of passes required to
have a sorted array depends upon the number of digits in the largest element. To illustrate
the radix sort, consider the following array with 7 elements :

42, 133, 7, 23, 74, 670, 49

In this array the biggest element is 670 and the number of digit is 3. So 3 passes are
required to sort the array. Read the element(s) and compare the first position (2 is in first
position of 42) digit with the digit of the bucket and place it.

Now read the elements from left to right and bottom to top of the buckets and place
it in array for the next pass. Read the array element and compare the second position (4 is
in second position of the element 042) digit with the number of the bucket and place it.

Again read the element from left to right and from bottom to top to get an array for
the third pass. (0 is in the third position of 042) Compare the third position digit in each
element with the bucket digit and place it wherever it matches.

184 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Read the element from the bucket from left to right and from bottom to top for the
sorted array. i.e., 7 23, 42, 49, 74, 133, 670.

ALGORITHM

Let A be a linear array of n elements A [1], A [2], A [3],...... A [n]. Digit is the total
number of digits in the largest element in array A.

1. Input n number of elements in an array A.

2. Find the total number of Digits in the largest element in the array.

3. Initialise i = 1 and repeat the steps 4 and 5 until (i <= Digit).

4. Initialise the buckets j = 0 and repeat the steps (a) until (j < n)

(a) Compare ith position of each element of the array with bucket number and
place it in the corresponding bucket.

5. Read the element(s) of the bucket from 0th bucket to 9th bucket and from first
position to higher one to generate new array A.

6. Display the sorted array A.

7. Exit.

PROGRAM 6.11

//PROGRAM TO IMPLEMENT RADIX SORT USING LINKED LIST

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<conio.h>

#include<malloc.h>

struct node

{

int info ;

SORTING TECHNIQUES 185

struct node *link;

}*start=NULL;

//Display the array elements

void display()

{

struct node *p=start;

while(p !=NULL)

{

printf (“%d ”, p->info);

p= p->link;

}

printf (“\n”);

}/*End of display()*/

/* This function finds number of digits in the largest element of the list */

int large_dig(struct node *p)

{

int large = 0,ndig = 0 ;

while (p != NULL)

{

if (p ->info > large)

large = p->info;

p = p->link ;

}

printf (“\nLargest Element is %d , ”,large);

while (large != 0)

{

ndig++;

large = large/10 ;

}

printf (“\nNumber of digits in it are %d\n”,ndig);

return(ndig);

} /*End of large_dig()*/

/*This function returns kth digit of a number*/

int digit(int number, int k)

{

int digit, i ;

for (i = 1 ; i <=k ; i++)

186 PRINCIPLES OF DATA STRUCTURES USING C AND C++

{

digit = number % 10 ;

number = number /10 ;

}

return(digit);

}/*End of digit()*/

//Function to implement the radix sort algorithm

void radix_sort()

{

int i,k,dig,maxdig,mindig,least_sig,most_sig;

struct node *p, *rear[10], *front[10];

least_sig=1;

most_sig=large_dig(start);

for (k = least_sig; k <= most_sig ; k++)

{

printf (“\nPASS %d : Examining %dth digit from right ”,k,k);

for(i = 0 ; i <= 9 ; i++)

{

rear[i] = NULL;

front[i] = NULL ;

}

maxdig=0;

mindig=9;

p = start ;

while(p != NULL)

{

/*Find kth digit in the number*/

dig = digit(p->info, k);

if (dig>maxdig)

maxdig=dig;

if (dig<mindig)

mindig=dig;

/*Add the number to queue of dig*/

if (front[dig] == NULL)

front[dig] = p ;

else

rear[dig]->link = p ;

rear[dig] = p ;

SORTING TECHNIQUES 187

p=p->link;/*Go to next number in the list*/

}/*End while */

/* maxdig and mindig are the maximum amd minimum

 digits of the kth digits of all the numbers*/

printf (“\nmindig=%d maxdig=%d\n”,mindig,maxdig);

/*Join all the queues to form the new linked list*/

start=front[mindig];

for i=mindig;i<maxdig;i++)

{

if (rear[i+1]!=NULL)

rear[i]->link=front[i+1];

else

rear[i+1]=rear[i];

}

rear[maxdig]->link=NULL;

printf (“\nNew list : ”);

display();

}/* End for */

}/*End of radix_sort*/

void main()

{

struct node *tmp,*q;

int i,n,item;

clrscr();

printf (“\nEnter the number of elements in the list : ”);

scanf (“%d”, &n);

for (i=0;i<n;i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”,&item);

/* Inserting elements in the linked list */

tmp=(struct node*)malloc(sizeof(struct node));

tmp->info=item;

tmp->link=NULL;

if (start==NULL) /* Inserting first element */

start=tmp;

else

188 PRINCIPLES OF DATA STRUCTURES USING C AND C++

{

q=start;

while(q->link!=NULL)

q=q->link;

q->link=tmp;

}

}/*End of for*/

printf (“\nUnsorted list is :\n”);

display();

radix_sort();

printf (“\nSorted list is :\n”);

display ();

getch();

}/*End of main()*/

TIME COMPLEXITY

Time requirement for the radix sorting method depends on the number of digits and
the elements in the array. Suppose A is an array of n elements A1, A2………..An and let r
denote the radix (for example r = 10 for decimal digits, r = 26 for English letters and r = 2
for bits). If Ai is the largest number then Ai can be represented as

Ai = ai s ai s–1 ai k ai 2 ai 1

Then radix sort algorithm requires s passes. In pass k, ai k of the each element is
compared with the bucket element. So radix sort requires the total comparison f (n) of:

f (n) <= r × s × n

WORST CASE

In the worst case s = n so

f (n) = O(n2)

BEST CASE

In the best case s = logd n

So f (n) = O(n logn)

AVERAGE CASE

In the average case, it is very hard to define the time complexity. Because it will
depend on the choice of the radix r and also the number of digits on the largest element
(i.e., number of passes) But on an average (logd n) comparison is required. So

f (n) = O(n log n)

In other words, radix sort performs well only when the number s of digits in the
representation of the Ai is small. The main disadvantage of radix sort is that, it need d × n

SORTING TECHNIQUES 189

memory location to store bucket information. However this drawback may be minimized
to 2 × n memory locations by using linked list rather than arrays.

6.9. HEAP

A heap is defined as an almost complete binary tree of n nodes such that the value
of each node is less than or equal to the value of the father. It can be sequentially repre-
sented as

A[j] <= A[(j – 1)/2]

for 0 <= [(j – 1)/2] < j <= n – 1

The root of the binary tree (i.e., the first array element) holds the largest key in the
heap. This type of heap is usually called descending heap or mere heap, as the path from
the root node to a terminal node forms an ordered list of elements arranged in descending
order. Fig. 6.1 shows a heap.

74

42

23 33

67

4944

Fig. 6.1. Heap representation

74 42 67 23 33 44 49

Fig. 6.2. Sequential representation

We can also define an ascending heap as an almost complete binary tree in which
the value of each node is greater than or equal to the value of its father. This root node has
the smallest element of the heap. This type of heap is also called min heap.

6.9.1. HEAP AS A PRIORITY QUEUE

A heap is very useful in implementing priority queue. The priority queue is a data
structure in which the intrinsic ordering of the data items determines the result of its
basic operations. Primarily queues can be classified into two types:

1. Ascending priority queue

2. Descending priority queue

An ascending priority queue can be defined as a group of elements to which new
elements are inserted arbitrarily but only the smallest element is deleted from it. On the
other hand a descending priority queue can be defined as a group of elements to which
new elements are inserted arbitrarily but only the largest element is deleted from it.

The implementation of the Heap as a priority queue is left to the readers.

190 PRINCIPLES OF DATA STRUCTURES USING C AND C++

6.9.2. HEAP SORT

A heap can be used to sort a set of elements. Let H be a heap with n elements and it
can be sequentially represented by an array A. Inset an element data into the heap H as
follows:

1. First place data at the end of H so that H is still a complete tree, but not necessar-
ily a heap.

2. Then the data be raised to its appropriate place in H so that H is finally a heap.

To understand the concept of insertion of data into a heap is illustrated with follow-
ing two examples:

INSERTING AN ELEMENT TO A HEAP

Consider the heap H in Fig. 6.1. Say we want to add a data = 55 to H.

Step 1: First we adjoin 55 as the next element in the complete tree as shown in Fig.
6.2. Now we have to find the appropriate place for 55 in the heap by rearranging it.

74

42

23 33

67

4944

55

Fig. 6.2.

Step 2: Compare 55 with its parent 23. Since 55 is greater than 23, interchange 23
and 55. Now the heap will look like as in Fig. 6.3.

74

42

55 33

67

4944

23

Fig. 6.3

SORTING TECHNIQUES 191

Step 3: Compare 55 with its parent 42. Since 55 is greater than 42, interchange 55
and 42. Now the heap will look like as in Fig. 6.4.

74

55

42 33

67

4944

23

Fig. 6.4

Step 4: Compare 55 with its new parent 74. Since 55 is less than 74, it is the
appropriate place of node 55 in the heap H. Fig. 6.4 shows the final heap tree.

CREATING A HEAP

A heap H can be created from the following list of numbers 33, 42, 67, 23, 44, 49, 74
as illustrated below :

Step 1: Create a node to insert the first number (i.e., 33) as shown Fig 6:5

33

Fig. 6.5

Step 2: Read the second element and add as the left child of 33 as shown Fig. 6.6.
Then restructure the heap if necessary.

42

33

Fig. 6.6

Compare the 42 with its parent 33, since newly added node (i.e., 42) is greater than
33 interchange node information as shown Fig. 6.7.

33

42

Fig. 6.7

192 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Step 3: Read the 3rd element and add as the right child of 42 as shown Fig. 6.8.
Then restructure the heap if necessary.

6733

42

Fig. 6.7

Compare the 67 with its parent 42, since newly added node (i.e., 67) is greater than
42 interchange node information as shown Fig. 6.8.

4233

67

Fig. 6.8

Step 4: Read the 4th element and add as the left child of 33 as shown Fig. 6.9. Then
restructure the heap if necessary.

4233

67

23

Fig. 6.9

Since newly added node (i.e., 23) is less than its parent 33, no interchange.

Step 5: Read the 5th element and add as the right child of 33 as shown Fig. 6.10.
Then restructure the heap if necessary.

44

4233

67

23

Fig. 6.10

SORTING TECHNIQUES 193

Compare the 44 with its parent 33, since newly added node (i.e., 44) is greater than
33 interchange node information as shown Fig. 6.11.

33

4244

67

23

Fig. 6.11

Step 6: Read the 6th element and add as the left child of 42 as shown Fig. 6.12. Then
restructure the heap if necessary.

33

4244

67

23 49

Fig. 6.12

Compare the (newly added node) 49 with its parent 42, since newly added node (i.e.,
49) is greater than 42 interchange node information as shown Fig. 6.13.

33

4944

67

23 42

Fig. 6.13

Step 7: Read the 7th element and add as the left child of 49 as shown Fig. 6.14. Then
restructure the heap if necessary.

194 PRINCIPLES OF DATA STRUCTURES USING C AND C++

33

4944

67

23 42

Fig. 6.14

Compare the (newly added node) 74 with its parent 49, since newly added node (i.e.,
74) is greater than 49 interchange node information as shown Fig. 6.15.

33

7444

67

23 42 49

Fig. 6.15

Compare the recently changed node 74 with its parent 67, since it is greater than 67
interchange node information as shown Fig. 6.16.

33

6744

74

23 42 49

Fig. 6.16

ALGORITHM

Let H be a heap with n elements stored in the array HA. This procedure will insert a
new element data in H. LOC is the present location of the newly added node. And PAR
denotes the location of the parent of the newly added node.

SORTING TECHNIQUES 195

1. Input n elements in the heap H.

2. Add new node by incrementing the size of the heap H: n = n + 1 and LOC = n

3. Repeat step 4 to 7 while (LOC < 1)

4. PAR = LOC/2

5. If (data <= HA[PAR])

(a) HA[LOC] = data

(b) Exit

6. HA[LOC] = HA[PAR]

7. LOC = PAR

8. HA[1] = data

9. Exit

DELETING THE ROOT OF A HEAP

Let H be a heap with n elements. The root R of H can be deleted as follows:

(a) Assign the root R to some variable data.

(b) Replace the deleted node R by the last node (or recently added node) L of H so
that H is still a complete tree, but not necessarily a heap.

(c) Now rearrange H in such a way by placing L (new root) at the appropriate place,
so that H is finally a heap.

Consider the heap H in Fig. 6.4 where R = 74 is the root and L = 23 is the last node
(or recently added node) of the tree. Suppose we want to delete the root node R = 74. Apply
the above rules to delete the root. Delete the root node R and assign it to data (i.e., data =
74) as shown in Fig. 6.17.

55

42 33

67

4944

23

Fig. 6.17

Replace the deleted root node R by the last node L as shown in the Fig. 6.18.

196 PRINCIPLES OF DATA STRUCTURES USING C AND C++

23

55

42 33

67

4944

Fig. 6.18

Compare 23 with its new two children 55 and 67. Since 23 is less than the largest
child 67, interchange 23 and 67. The new tree looks like as in Fig. 6.19.

67

55

42 33

23

4944

Fig. 6.19

Again compare 23 with its new two children, 44 and 49. Since 23 is less than the
largest child 49, interchange 23 and 49as shown in Fig. 6.20.

67

55

42 33

49

2344

Fig. 6.20

The Fig. 6.20 is the required heap H without its original root R.

ALGORITHM

Let H be a heap with n elements stored in the array HA. data is the item of the node
to be removed. Last gives the information about last node of H. The LOC, left, right gives
the location of Last and its left and right children as the Last rearranges in the appropriate
place in the tree.

SORTING TECHNIQUES 197

1. Input n elements in the heap H

2. Data = HA[1]; last = HA[n] and n = n – 1

3. LOC = 1, left = 2 and right = 3

4. Repeat the steps 5, 6 and 7 while (right <= n)

5. If (last >= HA[left]) and (last >= HA[right])

(a) HA[LOC] = last

(b) Exit

6. If (HA[right] <= HA[left])

(i) HA[LOC] = HA[left]

(ii) LOC = left

(b) Else

(i) HA[LOC] = HA[right]

(ii) LOC = right

7. left = 2 × LOC; right = left +1

8. If (left = n) and (last < HA[left])

(a) LOC = left

9. HA[LOC] = last

10. Exit

PROGRAM 6.12

//PROGRAM TO IMPLEMENT HEAP SORT USING ARRAYS

//CODED AND IMPLEMENTED IN TURBO C

#include<conio.h>

#include<stdio.h>

int arr[20],n;

//Function to display the elements in the array

void display()

{ int i;

for(i=0;i<n;i++)

printf (“%d ”,arr[i]);

printf (“\n”);

}/*End of display()*/

//Function to insert an element to the heap

void insert(int num,int loc)

{

198 PRINCIPLES OF DATA STRUCTURES USING C AND C++

int par;

while(loc>0)

{

par=(loc–1)/2;

if (num<=arr[par])

{

arr[loc]=num;

return;

}

arr[loc]=arr[par];

loc=par;

}/*End of while*/

arr[0]=num;

}/*End of insert()*/

//This function to create a heap

void create_heap()

{

int i;

for(i=0;i<n;i++)

insert(arr[i],i);

}/*End of create_heap()*/

//Function to delete the root node of the tree

void del_root(int last)

{

int left,right,i,temp;

i=0; /*Since every time we have to replace root with last*/

/*Exchange last element with the root */

temp=arr[i];

arr[i]=arr[last];

arr[last]=temp;

left=2*i+1; /*left child of root*/

right=2*i+2;/*right child of root*/

while(right < last)

{

if (arr[i]>=arr[left] && arr[i]>=arr[right])

return;

if (arr[right]<=arr[left])

{

SORTING TECHNIQUES 199

temp=arr[i];

arr[i]=arr[left];

arr[left]=temp;

i=left;

}

else

{

temp=arr[i];

arr[i]=arr[right];

arr[right]=temp;

i=right;

}

left=2*i+1;

right=2*i+2;

}/*End of while*/

if (left==last–1 && arr[i]<arr[left])/*right==last*/

{

temp=arr[i];

arr[i]=arr[left];

arr[left]=temp;

}

}/*End of del_root*/

//Function to sort an element in the heap

void heap_sort()

{

int last;

for(last=n–1; last>0; last--)

 del_root(last);

}/*End of del_root*/

void main()

{

int i;

clrscr();

printf (“\nEnter number of elements : ”);

scanf (“%d”,&n);

for(i=0;i<n;i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”,&arr[i]);

}

200 PRINCIPLES OF DATA STRUCTURES USING C AND C++

printf (“\nEntered list is :\n”);

display();

create_heap();

printf (“\nHeap is :\n”);

display();

heap_sort();

printf (“\nSorted list is :\n”);

display();

getch();

}/*End of main()*/

TIME COMPLEXITY

When we calculate the time complexity of the heap sort algorithm, we need to ana-
lyse the two phases separately.

Phase 1: Let H be a heap and suppose you want to insert a new element data in H.
Then few comparisons are required to locate the appropriate place, and it cannot exceed
the depth of H. Since H is a complete tree, its depth is bounded by log m where m is the
number of elements in H. Then

f (n) = O(n log n)

Note that the number of comparison in the worst case is O(n log n)

In the second phase we analyse the complexity of the algorithm to delete a root
element from the heap H with n elements.

Phase 2: Suppose H is a complete tree with n – 1 = m elements, and suppose the left
and right sub tree of H are heaps and L is the root of H. Rearranging the node L will take
four comparisons to move one step down in the tree H. Since the depth of H does not
exceed log2 m, rearranging will take at most 4 log2 m comparisons to find the appropriate
place of L in the tree H.

f (n) = 4n log2 n

6.10. EXTERNAL SORT

In the previous section, we discussed different internal sorting algorithms and its
importance. Now we will discuss about external sorting. These are methods employed to
sort elements (or items), which are too large to fit in the main memory of the computer.
That is any sort algorithm that uses external memory, such as tape or disk, during the
sort is called external sort. Since most common sort algorithms assume high-speed ran-
dom access to all intermediate memory, they are unsuitable if the values to be sorted do
not fit in main memory. Internal sorting refers to the sorting of an array of data which is in
RAM. The main concern with external sorting is to minimize external disk access since
reading a disk block takes about a million times longer than accessing an item in RAM.

SORTING TECHNIQUES 201

To study external sorting, we need to study the various external memory devices in
addition to external sorting algorithms. The involvement of external storage device makes
sorting algorithms more complex because of the following reasons:

1. The cost of accessing an item is much higher than any computational cost.

2. Different procedures and methods have to be implemented and executed for dif-
ferent external storage devices.

In this section, we will discuss some data storage devices and sorting algorithms for
external storage devices. A cards reader (or punch) can be considered as a primitive exter-
nal storage. However, this section deals with devices that allow more rapid data transfer
and more convenient storage medium than punch cards. External storage devices can be
categorized into two types based on the access method. They are:

• Sequential Access Devices (e.g., Magnetic tapes)

• Random Access Devices (e.g., Disks)

6.10.1. MAGNETIC TAPES

The principle behind magnetic tapes is similar to audio tape recorders. Magnetic
tape is wound on a spool. Tracks run across the length of the tape. Usually there are 7 to
9 tracks across the tape width and the data is recorded on the tape in a sequence of bits.
The number that can be written per inch of track is called the tape density — measured in
bits per inch.

Information on tapes is usually grouped into blocks, which may be of fixed or vari-
able size. Blocks are separated by an inter-block gap. Because request to read or write
blocks do not arrive at a tape drive at constant rate, there must be a gap between each pair
of blocks forming a space to be passed over as the tape accelerates to read/write speed.
The medium is not strong enough to withstand the stress that it would sustain with
instantaneous starts and stops. Because the tape is not moving at a constant speed, a gap
cannot contain user data. Data is usually read/written from tapes in terms of blocks. This
is shown in following Fig. 6.21 :

Data

block

Data
block

Data
block Data

block Data
block Data

block Data
block Data

block

Gaps

Fig. 6.21. Interblock gaps

In order to read or write data to a tape the block length and the address in memory
to/from which the data is to be transferred must be specified. These areas in memory

202 PRINCIPLES OF DATA STRUCTURES USING C AND C++

from/to which data is transferred will be called buffers. The block size (or length) will
respond to its buffer size. And it is a crucial factor in tape access. A large block size is
preferred because of the following reasons:

1. Consider a tape with a tape density of 600 bdp and an inter block gap of ¾ inch;
generally this gap is enough to write 450 characters. With a small block size, the
number of blocks per tape length will increase. This means a larger number of
inter block gaps, i.e., bits of data, which cannot be utilized for data storage, and
thus tape utilization decreased. Thus the larger the block size, fewer the number
of blocks, fewer the number of inter block gaps and better the tape utilization.

2. Larger block size reduces the input/output time. The delay time in tape access is
the time needed to cross the inter block gap. This delay time is larger when a tape
starts from rest than when the tape is already moving. With a small block size
the number of halts in a read are considerable causing the delay time to be
incurred each time.

6.10.2. DISKS

Disks are an example of direct access storage devices. In contrast to the way infor-
mation is recorded on a gramophone record, data are recorded on disk platter in concen-
tric tracks. A disk has two surfaces on which data can be recorded. Disk packs have
several such disks or platters rigidly mounted on a common spinder. Data is read/written
to the disk by a read/write head. A disk pack would have one such head per surface.

Each disk surface has a number of concentric circles called tracks. In a disk pack,
the set of parallel tracks on each surface is called a cylinder. Tracks are further divided
into sectors. A sector is the smallest addressable segment of a track.

Data is stored along the tracks in blocks. Therefore to access a disk, the track or
cylinder number and the sector number of the starting block must be specified. For disk
packs, the surface must also be specified. The read/write head moves horizontally to
position itself over the correct track for accessing disk data.

This introduces three time components into disk access :

Seek time: The time taken to position the read/write head over the correct cylinder.

Latency time: The time taken to position the correct sector under head.

Transfer time: The time taken to actually transfer the block between main memory
and the disk.

Having seen the structure of data storage on disks and tapes and the methods of
accessing them, we now turn to specific cases of external sorting. Sorting data on disks
and sorting data on tapes. The general method for external sorting is the merge sort. In
this, file segments are sorted using a good internal sort method. These sorted file seg-
ments, called runs, are written out onto the device. Then all the generated runs are merged
into one run.

6.10.3. EXTERNAL SORTING ALGORITHMS

Perhaps the simplest form of external sorting is to use a fast internal sort with good
locality of reference (which means that it tends to reference nearby items, not widely
scattered items). Quicksort is one sort algorithm that is generally very fast and has good

SORTING TECHNIQUES 203

locality of reference. If the file is too huge, even virtual memory might be unable to fit it.
Also, the performance may not be too great due to the large amount of time it takes to
access data on disk.

Merge sort is an ideal candidate for external sorting because it satisfies the two
criteria for developing an external sorting algorithm. Merge sort can be implemented ei-
ther top-down or bottom-up. The top-down strategy is typically used for internal sorting,
whereas the bottom-up strategy is typically used for external sorting.

The top-down strategy works by:

1. Dividing the data in half

2. Sorting each half

3. Merging the two halves

Merge sort typically break a large data file into a number of shorter, sorted runs.
These can be produced by repeatedly reading a section of the data file into RAM, sorting it
with ordinary quicksort, and writing the sorted data to disk. After the sorted runs have
been generated, a merge algorithm is used to combine sorted files into longer sorted files.
The simplest scheme is to use a 2-way merge: merge 2 sorted files into one sorted file, and
then merge 2 more, and so on until there is just one large sorted file.

One example of external sorting is the external mergesort algorithm. For the sake of
clarity, let us assume that 900 megabyte of data needs to be sorted using only 100 mega-
bytes of RAM.

1. Read 100 MB of the data in main memory and sort by some conventional method
(usually quicksort).

2. Write the sorted data to disk.

3. Repeat steps 1 and 2 until all of the data is sorted in chunks of 100 MB. Now you
need to merge them into one single sorted output file.

4. Read the first 10 MB of each sorted chunk (call them input buffers) in main
memory (90 MB total) and allocate the remaining 10 MB for output buffer.

5. Perform a 9-way merging and store the result in the output buffer. If the output
buffer is full, write it to the final sorted file. If any of the 9 input buffers gets
empty, fill it with the next 10 MB of its associated 100 MB sorted chunk or
otherwise mark it as exhausted if there is no more data in the sorted chunk, do
not use it for merging.

Let us analyse how the merge sort algorithm responds when it is practically applied
to run using slow tape drives as input and output devices. It requires very little memory,
and the memory required does not change with the number of data elements. If you have
four tape drives, it works as follows:

1. Divide the data to be sorted in half and put half on each of two tapes.

2. Merge individual pairs of records from the two tapes; write two-record chunks
alternately to each of the two output tapes.

3. Merge the two-record chunks from the two output tapes into four-record chunks;
write these alternately to the original two input tapes.

4. Merge the four-record chunks into eight-record chunks; write these alternately
to the original two output tapes.

204 PRINCIPLES OF DATA STRUCTURES USING C AND C++

5. Repeat until you have one chunk containing all the data, sorted --- that is, for log
n passes, where n is the number of records.

On tape drives that can run both backwards and forwards, you can run merge
passes in both directions, avoiding rewind time. For the same reason it is also very useful
for sorting data on disk that is too large to fit entirely into primary memory.

The above described algorithm can be generalized by assuming that the amount of
data to be sorted exceeds the available memory by a factor of K. Then, K chunks of data
need to be sorted and a K-way merge has to be completed. If X is the amount of main
memory available, there will be K input buffers and 1 output buffer of size X/(K+1) each.
Depending on various factors (how fast the hard drive is, what is the value of K) better
performance can be achieved if the output buffer is made larger (for example twice as large
as one input buffer).

Note that you do not want to jump back and forth between 2 or more files in trying
to merge them (while writing to a third file). This would likely produce a lot of time-con-
suming disk seeks. Instead, on a single-user PC, it is better to read a block of each of the
2 (or more) files into RAM and carry out the merge algorithm there, with the output also
kept in a buffer in RAM until the buffer is filled (or we are out of data) and only then
writing it out to disk. When the merge algorithm exhausts one of the blocks of data, refill
it by reading from disk another block of the associated file. This is called buffering. On a
larger machine where the disk drive is being shared among many users, it may not make
sense to worry about this as the read/write head is going to be seeking all over the place
anyway.

mergesort(int a[], int left, int right)

{

 int i, j, k, mid;

 if (right > left) {

mid = (right + left) / 2;

mergesort(a, left, mid);

mergesort(a, mid+1, right);

/* copy the first run into array b */

for (i = left, j = 0; i <= mid; i++, j++)

 b[j] = a[i];

b[j] = MAX_INT;

/* copy the second run into array c */

for (i = mid+1, j = 0; i <=right; i++, j++)

 c[j] = a[i];

c[j] = MAX_INT;

/* merge the two runs */

i = 0;

j = 0;

for (k = left; k <= right; k++)

SORTING TECHNIQUES 205

 a[k] = (b[i] < c[j]) ? b[i++] : c[j++];

 }

}

The bottom-up strategy for merge sort works by:

1. Scanning through data performing 1-by-1 merges to get sorted lists of size 2.

2. Scanning through the size 2 sub-lists and perform 2-by-2 merges to get sorted
lists of size 4.

3. Continuing the process of scanning through size n sub-lists and performing n-
by-n merges to get sorted lists of size 2n until the file is sorted (i.e., 2n >= N,
where N is the size of the file).

6.10.4. Mergesort Performance

Mergesort has an average and worst-case performance of O(n log n). In the worst
case, merge sort does about 30% fewer comparisons than quicksort does in the average
case; thus merge sort very often needs to make fewer comparisons than quicksort. In
terms of moves, merge sort’s worst case complexity is O(n log n); the same complexity as
quicksort’s best case, and merge sort’s best case takes about half as much time as the
worst case.

However, merge sort performs 2n – 1 method calls in the worst case, compared to
quicksort’s n, thus has roughly twice as much recursive overhead as quicksort. Mergesort’s
most common implementation does not sort in place, that is memory size of the input
must be allocated for the sorted output to be stored in. Sorting in-place is possible but
requires an extremely complicated implementation.

Although merge sort can sort linked list, it is also much more efficient than quicksort
if the data to be sorted can only be efficiently accessed sequentially. Unlike some optimized
implementations of quicksort, merge sort is a stable sort, as long as the merge operation is
implemented properly.

More precisely, merge sort does between [n log n – n + 1] and [n log n – 0.914·n]
comparisons in the worst case.

SELF REVIEW QUESTIONS

1. Explain the method of external sorting with disks. [MG - MAY 2004 (BTech)]

2. Write and explain insertion sort algorithm. What is the complexity of the algorithm?

[MG - MAY 2004 (BTech), MG - NOV 2004 (BTech)]

3. Explain quick sort algorithm. What is the complexity of your algorithm?

[CUSAT - JUL 2002 (MCA), MG - MAY 2004 (BTech)

KERALA - MAY 2001 (BTech)]

4. Explain the method of external sorting with tapes?

[KERALA - DEC 2003 (BTech), MG - NOV 2004 (BTech)

KERALA - MAY 2001 (BTech)]

5. Explain merging of sequential files. [MG - MAY 2003 (BTech)]

206 PRINCIPLES OF DATA STRUCTURES USING C AND C++

6. What is external sorting methods?

[KERALA - DEC 2003 (BTech), KERALA - JUN 2004 (BTech)

MG - NOV 2003 (BTech), MG - MAY 2000 (BTech)

ANNA - DEC 2004 (BE), ANNA - MAY 2004 (MCA)]

7. Write the Quick sort algorithm. [MG - NOV 2003 (BTech)]

8. With suitable example, explain radix sort.

[CUSAT - APR 1998 (BTech), MG - NOV 2002 (BTech)]

9. Explain bubble sort with example. Construct Heap sort for the initial key set 42 23 74 11
65 58 94 36 99 87. [Calicut - APR 1995 (BTech)]

10. Explain Heap sort with an example. [Calicut - APR 1997 (BTech)]

11. Explain quicksort algorithm? Write an iterative program fragment for quicksort?

[KERALA - JUN 2004 (BTech), CUSAT - NOV 2002 (BTech)]

12. Write an algorithm for merging two sorted list of numbers represented as linked lists. No
new memory space may be used. The merged list should be also sorted.

[CUSAT - DEC 2003 (MCA)]

13. For the following input list explain how Merge sort works. What is the time complexity
involved in the algorithm? [CUSAT - JUL 2002 (MCA)]

14. Differentiate between heap sort and Radix sort. [ANNA - MAY 2004 (MCA)]

15. Distinguish between internal sorting and external sorting.

[KERALA - DEC 2004 (BTech), ANNA - MAY 2004 (MCA)

KERALA - DEC 2002 (BTech), KERALA - MAY 2003 (BTech)]

16. How many key comparisons and interchanges are required to sort a file of size n using
bubble sort? [ANNA - DEC 2004 (BE)]

17. What is an external storage device? Explain in detail about any two devices.
[ANNA - DEC 2004 (BE)]

18. Explain Internal sorting Methods.

[KERALA - DEC 2003 (BTech), KERALA - JUN 2004 (BTech)]

19. Write an algorithm for merge sort method. [KERALA - JUN 2004 (BTech)]

20. Write a procedure for bubble sort method with example.

[KERALA - DEC 2002 (BTech), KERALA - DEC 2003 (BTech)]

21. Write an algorithm to sort elements by partition exchange method.

[KERALA - MAY 2003 (BTech)]

22. Compare merge sort and insertion sort methods. [KERALA - MAY 2001 (BTech)]

23. When is the bubble sort better than quick sort? [KERALA - MAY 2002 (BTech)]

24. Write a function to implement the queue operation using two stacks.

[KERALA - NOV 2001 (BTech)]

25. Write an algorithm for selection sort method. [KERALA - NOV 2001 (BTech)]

Searching and Hashing

Searching is a process of checking and finding an element from a list of elements.
Let A be a collection of data elements, i.e., A is a linear array of say n elements. If we want
to find the presence of an element “data” in A, then we have to search for it. The search is
successful if data does appear in A and unsuccessful if otherwise. There are several types
of searching techniques; one has some advantage(s) over other. Following are the three
important searching techniques :

1. Linear or Sequential Searching

2. Binary Searching

3. Fibanocci Search

7.1. LINEAR OR SEQUENTIAL SEARCHING

In linear search, each element of an array is read one by one sequentially and it is
compared with the desired element. A search will be unsuccessful if all the elements are
read and the desired element is not found.

7.1.1. ALGORITHM FOR LINEAR SEARCH

Let A be an array of n elements, A[1],A[2],A[3], A[n]. “data” is the element to be
searched. Then this algorithm will find the location “loc” of data in A. Set loc = – 1,if the
search is unsuccessful.

1. Input an array A of n elements and “data” to be searched and initialise loc = – 1.

2. Initialise i = 0; and repeat through step 3 if (i < n) by incrementing i by one .

3. If (data = A[i])

(a) loc = i

(b) GOTO step 4

4. If (loc > 0)

(a) Display “data is found and searching is successful”

5. Else

(a) Display “data is not found and searching is unsuccessful”

6. Exit

207

7

208 PRINCIPLES OF DATA STRUCTURES USING C AND C++

PROGRAM 7.1

//PROGRAM TO IMPLEMENT SEQUENTIAL SEARCHING

//CODED AND COMPILED USING TURBO C

#include<conio.h>

#include<stdio.h>

void main()

{

char opt;

int arr[20],n,i,item;

clrscr();

printf (“\nHow many elements you want to enter in the array : ”);

scanf (“%d”,&n);

for(i=0; i < n;i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”, &arr[i]);

}

printf (“\n\nPress any key to continue....”);

getch();

do

{

clrscr();

printf (“\nEnter the element to be searched : ”);

scanf (“%d”,&item); //Input the item to be searched

for(i=0;i < n;i++)

{

if item == arr[i])

{

printf (“\n%d found at position %d\n”,item,i+1);

break;

}

}/*End of for*/

if (i == n)

printf (“\nItem %d not found in array\n”,item);

printf (“\n\nPress (Y/y) to continue : ”);

fflush(stdin);

SEARCHING AND HASHING 209

scanf (“%c”,&opt);

}while(opt == ‘Y’ || opt == ‘y’);

}

7.1.2. TIME COMPLEXITY

Time Complexity of the linear search is found by number of comparisons made in
searching a record.

In the best case, the desired element is present in the first position of the array, i.e.,
only one comparison is made. So f (n) = O(1).

In the Average case, the desired element is found in the half position of the array,
then f (n) = O[(n + 1)/2].

But in the worst case the desired element is present in the nth (or last) position of
the array, so n comparisons are made. So f (n) = O(n + 1).

7.2. BINARY SEARCH

Binary search is an extremely efficient algorithm when it is compared to linear
search. Binary search technique searches “data” in minimum possible comparisons. Sup-
pose the given array is a sorted one, otherwise first we have to sort the array elements.
Then apply the following conditions to search a “data”.

1. Find the middle element of the array (i.e., n/2 is the middle element if the array
or the sub-array contains n elements).

2. Compare the middle element with the data to be searched, then there are follow-
ing three cases.

(a) If it is a desired element, then search is successful.

(b) If it is less than desired data, then search only the first half of the array, i.e.,
the elements which come to the left side of the middle element.

(c) If it is greater than the desired data, then search only the second half of the
array, i.e., the elements which come to the right side of the middle element.

Repeat the same steps until an element is found or exhaust the search area.

7.2.1. ALGORITHM FOR BINARY SEARCH

Let A be an array of n elements A[1],A[2],A[3],...... A[n]. “Data” is an element to be
searched. “mid” denotes the middle location of a segment (or array or sub-array) of the
element of A. LB and UB is the lower and upper bound of the array which is under consid-
eration.

Fig. 7.1

1. Input an array A of n elements and “data” to be sorted

210 PRINCIPLES OF DATA STRUCTURES USING C AND C++

2. LB = 0, UB = n; mid = int ((LB+UB)/2)

3. Repeat step 4 and 5 while (LB <= UB) and (A[mid] ! = data)

4. If (data < A[mid])

(a) UB = mid–1

5. Else

(a) LB = mid + 1

6. Mid = int ((LB + UB)/2)

7. If (A[mid]== data)

(a) Display “the data found”

8. Else

(a) Display “the data is not found”

9. Exit

Suppose we have an array of 7 elements

Following steps are generated if we binary search a data = 45 from the above array.

Step 1:

LB = 0; UB = 6

mid = (0 + 6)/2 = 3

A[mid] = A[3] = 30

Step 2:

Since (A[3] < data) - i.e., 30 < 45 - reinitialise the variable LB, UB and mid

LB = 3 UB = 6

mid = (3 + 6)/2 = 4

A[mid] = A[4] = 40

Step 3:

Since (A[4] < data) - i.e., 40 < 45 - reinitialise the variable LB, UB and mid

SEARCHING AND HASHING 211

LB = 4 UB = 6

mid = (4 + 6)/2 = 5

A[mid] = A[5] = 45

Step 4:

Since (A[5] == data) - i.e., 45 == 45 - searching is successful.

PROGRAM 7.2

//PROGRAM TO IMPLEMENT THE BINARY SEARCH

//CODED AND COMPILED USING TURBO C

#include<conio.h>

#include<stdio.h>

void main()

{

char opt;

int arr[20],start,end,middle,n,i,item;

clrscr();

printf (“\nHow many elements you want to enter in the array : ”);

scanf (“%d”,&n);

for(i=0; i < n; i++)

{

printf (“\nEnter element %d : ”,i+1);

scanf (“%d”,&arr[i]);

}

printf (“\n\nPress any key to continue...”);

getch();

do

{

clrscr();

printf (“\nEnter the element to be searched : ”);

scanf (“%d”,&item);

start=0;

end=n – 1;

middle=(start + end)/2;

212 PRINCIPLES OF DATA STRUCTURES USING C AND C++

while(item != arr[middle] && start <= end)

{

if (item > arr[middle])

start=middle+1;

else

end=middle-1;

middle=(start+end)/2;

}

if (item==arr[middle])

printf(“\n%d found at position %d\n”,item,middle + 1);

if (start>end)

printf (“\n%d not found in array\n”,item);

printf (“\n\nPree (Y/y) to continue : ”);

fflush(stdin);

scanf (“%c”,&opt);

}while(opt == ‘Y’ || opt == ‘y’);

}/*End of main()*/

7.2.2. TIME COMPLEXITY

Time Complexity is measured by the number f (n) of comparisons to locate “data” in
A, which contain n elements. Observe that in each comparison the size of the search area
is reduced by half. Hence in the worst case, at most log2 n comparisons required. So f (n)
= O([log2 n]+1).

Time Complexity in the average case is almost approximately equal to the running
time of the worst case.

7.3. INTERPOLATION SEARCH

Another technique for searching an ordered array is called interpolation search.
This method is even more efficient than binary search, if the elements are uniformly
distributed (or sorted) in an array A.

Consider an array A of n elements and the elements are uniformly distributed (or
the elements are arranged in a sorted array). Initially, as in binary search, low is set to 0
and high is set to n – 1.

Now we are searching an element key in an array between A[low] and A[high]. The
key would be expected to be at mid, which is an approximately position.

mid = low + (high – low) × ((key – A[low])/(A[high] – A[low]))
If key is lower than A[mid], reset high to mid–1; else reset low to mid+1. Repeat the

process until the key has found or low > high.
Interpolation search can be explained with an example below. Consider 7 numbers :

2, 25, 35, 39, 40, 47, 50
CASE 1: Say we are searching 50 from the array
Here n = 7 Key = 50
low = 0

SEARCHING AND HASHING 213

high = n – 1 = 6

mid = 0+(6–0) × ((50–2)/(50–2))

= 6 × (48/48)

= 6

if (key == A[mid])

⇒ key == A[6]

⇒ 50 == 50

⇒ key is found.

CASE 2: Say we are searching 25 from the array

Here n = 7 Key = 25

low = 0

high = n – 1 = 6

mid = 0 + (6–0) × ((25–2)/(50–2))

= 6 × (23/48)

= 2.875 Here we consider only the integer part of the mid

i.e., mid = 2

if (key == A[mid])

⇒ key == A[2]

⇒ 25 == 25

⇒ key is found.

CASE 3: Say we are searching 34 from the array

Here n = 7 Key = 34

low = 0

high = n – 1 = 6

mid = 0 + (6 – 0) × ((34 – 2)/(34 – 2))

= 6 × (32/48)

= 4

if(key < A[mid])

⇒ key < A[4]

⇒ 34 < 40

so reset high = mid–1

⇒ 3

low = 0

high = 3

Since(low < high)

mid = 0+(3–0) × ((34–2)/(39–2))

= 3 × (32/37)

= 2.59 Here we consider only the integer part of the mid

i.e., mid = 2

214 PRINCIPLES OF DATA STRUCTURES USING C AND C++

if (key < A[mid])

⇒ key < A[2]

⇒ 34 < 35

so reset high = mid–1

⇒ 1

low = 0

high = 1

Since (low < high)

mid = 0+(1–0) × ((34–2)/(25–2))

= 3 × (32/23)

= 1

here (key > A[mid])

⇒ key > A[1]

⇒ 34 > 25

so reset low = mid+1

⇒ 2

low = 2

high = 1

Since (low > high)

DISPLAY “ The key is not in the array”

STOP

ALGORITHM

Suppose A be array of sorted elements and key is the elements to be searched and
low represents the lower bound of the array and high represents higher bound of the
array.

1. Input a sorted array of n elements and the key to be searched

2. Initialise low = 0 and high = n – 1

3. Repeat the steps 4 through 7 until if(low < high)

4. Mid = low + (high – low) × ((key – A[low]) / (A[high] – A[low]))

5. If(key < A[mid])

(a) high = mid–1

6. Elseif (key > A[mid])

(a) low = mid + 1

7. Else

(a) DISPLAY “ The key is not in the array”

(b) STOP

8. STOP

SEARCHING AND HASHING 215

PROGRAM 7.3

//PROGRAM TO IMPLEMENT INTERPOLATION SEARCH

//CODED AND COMPILED USING TURBO C++

#include<conio.h>

#include<iostream.h>

class interpolation

{

int Key;

int Low,High,Mid;

public:

void InterSearch(int*,int);

};

//This function will search the element using interpolation search

void interpolation::InterSearch(int *Arr,int No)

{

int Key;

//Assigning the pointer low and high

Low=0;High=No–1;

//Inputting the element to be searched

cout<<“\n\nEnter the Number to be searched = ”;

cin>>Key;

while(Low < High)

{

//Finding the Mid position of the array to be searched

Mid=Low+(High–Low)*((Key–Arr[Low])/(Arr[High]–Arr[Low]));

if (Key < Arr[Mid])

//Re-initializing the high pointer if the

//key is greater than the mid value

High=Mid–1;

else if (Key > Arr[Mid])

//Re initializing the low pointer if the

//key is less than the mid value

Low=Mid+1;

else

{

//if the key value is equal to the mid value

216 PRINCIPLES OF DATA STRUCTURES USING C AND C++

//of the array, the key is found

cout<<“\nThe key “<<Key<<” is found at the location ”<<Mid;

return;

}

};

cout<<“\n\nThe Key “<<Key<<” is NOT found”;

}

void main()

{

int *a,n,*b;

interpolation Ob;

clrscr();

cout<<“\n\nEnter the number of elements : ”;

cin>>n;

a=new int[n];

b=a;

//Input the elements in the array

for (int i=0;i<n;i++)

{

cout<<“\nEnter the “<<i<<” element : ”;

cin>>*a;

a++;

}

//calling the InterSearch function using objects

Ob.InterSearch(b,n);

cout<<“\n\nPress any key to continue...”;

getch();

}

7.4. FIBONACCI SEARCH

A possible improvement in binary search is not to use the middle element at each
step, but to guess more precisely where the key being sought falls within the current
interval of interest. This improved version is called fibonacci search. Instead of splitting
the array in the middle, this implementation splits the array corresponding to the fibonacci
numbers, which are defined in the following manner:

F0 = 0, F1 = 1

Fn = Fn – 1 + Fn – 2 for n >= 2.

Let’s assume that our array has the Fn – 1 (n = Fn – 1) elements. Now we divide the
array into two subsets according to the both preceding fibonacci numbers and compare
‘item’ to the element at the position Fn – 2. If ‘item’ is greater than the element, we continue

SEARCHING AND HASHING 217

in the right subset, otherwise in the left subset. In this algorithm we don’t have to make a
division to calculate the middle element, but we get along only with additions and subtrac-
tions. In our implementation we assumed that the fibonacci numbers are given explicitly
(e.g., as constants in the frame program).

PROGRAM 7.4

//PROGRAM TO IMPLEMENT THE FIBONACCI SEARCH

//CODED AND COMPILED IN TURBO C

#include<iostream.h>

#include<conio.h>

//This function will find the fibonacci number

int fib(int n)

{

int f1,f2,temp;

f1=0;f2=1;

for (int i=0;i<n;i++)

{

temp=f2;

f2=f1+f2;

f1=temp;

}

return(f2);

}

//Function to search an item using fibonacci numbers

int fibonacci_search(int list[],int n,int item)

{

int f1,f2,t,mid;

for (int j=1;fib(j)<n;j++);

f1=fib(j–2); //find lower fibonacci numbers

f2=fib(j–3); //f1=fib(j–2), f2=fib(j–3)

mid=n–f1+1;

while (item != list[mid]) //if not found

if (mid<0 || item > list[mid])

{ //look in lower half

if (f1==1)

return(–1);

218 PRINCIPLES OF DATA STRUCTURES USING C AND C++

mid=mid+f2;//decrease fibonacci numbers

f1 = f1–f2;

f2 = f2–f1;

}

else

{ //look in upper half

if (f2==0) //if not found return –1

return(–1);

mid=mid–f2; //decrease fibonacci numbers

t=f1–f2; //this time, decrease more

f1=f2; //for smaller list

f2=t;

}

return(mid);

}

void main()

{

int loc,n,item,list[50];

cout<<“\n\nEnter the total number of list : ”;

cin>>n;

cout<<“\nEnter the elements in the list:”;

for (int i=0;i<n;i++)

{

cout<<“\nInput “<<i<<” th number : ”;

cin>>list[i];

}

cout<<“\nEnter the number to be searched :”;

cin>>item;

loc=fibonacci_search(list,n,item);

if (loc != –1)

cout<<“\nThe number is in the list”;

else

cout<<“\nThe number is not in the list”;

getch();

}

SEARCHING AND HASHING 219

WORST CASE PERFORMANCE

Beginning with an array containing Fj – 1 elements, the length of the subset is bounded
to Fj-1-1 elements. To search through a range with a length of Fn-1 at the beginning we
have to make n comparisons in the worst case. Fn = (1/sqrt(5))*((1+sqrt(5))/2)n, that’s
approximately c*1,618n (with a constant c). For N+1 = c*1,618n elements we need n com-
parisons, i.e., the maximum number of comparisons is O (ld N).

7.5. HASHING

The searching time of the each searching technique, that were discussed in the
previous section, depends on the comparison. i.e., n comparisons required for an array A
with n elements. To increase the efficiency, i.e., to reduce the searching time, we need to
avoid unnecessary comparisons.

Hashing is a technique where we can compute the location of the desired record in
order to retrieve it in a single access (or comparison). Let there is a table of n employee
records and each employee record is defined by a unique employee code, which is a key to
the record and employee name. If the key (or employee code) is used as the array index,
then the record can be accessed by the key directly. If L is the memory location where each
record is related with the key. If we can locate the memory address of a record from the key
then the desired record can be retrieved in a single access. For notational and coding
convenience, we assume that the keys in k and the address in L are (decimal) integers. So
the location is selected by applying a function which is called hash function or hashing
function from the key k. Unfortunately such a function H may not yield different values (or
index or many address); it is possible that two different keys k1 and k2 will yield the same
hash address. This situation is called Hash Collision, which is discussed in the next topic.

7.5.1. HASH FUNCTION

The basic idea of hash function is the transformation of the key into the correspond-
ing location in the hash table. A Hash function H can be defined as a function that takes
key as input and transforms it into a hash table index. Hash functions are of two types:

1. Distribution- Independent function

2. Distribution- Dependent function

We are dealing with Distribution - Independent function. Following are the most
popular Distribution - Independent hash functions :

1. Division method

2. Mid Square method

3. Folding method.

7.5.1.1. Division Method

TABLE is an array of database file where the employee details are stored. Choose a
number m, which is larger than the number of keys k. i.e., m is greater than the total
number of records in the TABLE. The number m is usually chosen to be prime number to
minimize the collision. The hash function H is defined by

H(k) = k (mod m)

220 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Where H(k) is the hash address (or index of the array) and here k (mod m) means the
remainder when k is divided by m.

For example:

Let a company has 90 employees and 00, 01, 02, 99 be the two digit 100
memory address (or index or hash address) to store the records. We have employee code as
the key.

Choose m in such a way that it is grater than 90. Suppose m = 93. Then for the
following employee code (or key k) :

H(k) = H(2103) = 2103 (mod93) = 57

H(k) = H(6147) = 6147 (mod 93) = 9

H(k) = H(3750) = 3750 (mod93) = 30

Then a typical employee hash table will look like as in Fig. 7.2.

Hash Address Employee Employee Name

Code (keys) and other Details

0

1

..

..

..

9 6147 Anish

..

..

30 3750 Saju

..

..

57 2103 Rarish

..

..

99

Fig. 7.2. Hash table

So if you enter the employee code to the hash function, we can directly retrieve
TABLE[H(k)] details directly. Note that if the memory address begins with 01-m instead of
00-m, then we have to choose the hash function

H(k) = k (mod m)+1.

SEARCHING AND HASHING 221

7.5.1.2. Mid Square Method

The key k is squared. Then the hash function H is defined by

H(k) = k2 = l

Where l is obtained by digits from both the end of k2 starting from left. Same number
of digits must be used for all of the keys. For example consider following keys in the table
and its hash index :

K 4147 3750 2103

K2 17197609 14062500 4422609

H(k) 97 62 22

17197609

14062500
4422609

Hash Address Employee Employee Name

Code (keys) and other Details

0

1

..

..

..

22 2103 Giri

..

..

62 3750 Suni

..

..

..

97 4147 Renjith

..

99

Fig. 7.3. Hash table with mid square division

7.5.1.3. Folding Method

The key K, k1, k2,...... kr is partitioned into number of parts. The parts have same
number of digits as the required hash address, except possibly for the last part. Then the
parts are added together, ignoring the last carry. That is

222 PRINCIPLES OF DATA STRUCTURES USING C AND C++

H(k) = k1 + k2 + + kr

Here we are dealing with a hash table with index form 00 to 99, i.e., two-digit hash
table. So we divide the K numbers of two digits.

K 2103 7148 12345

k1 k2 k3 21, 03 71, 46 12, 34, 5

H(k) H(2103) H(7148) H(12345)

= k1 + k2 + k3 = 21+03 = 24 = 71+46 = 19 = 12+34+5 = 51

Fig. 7.4

Extra milling can also be applied to even numbered parts, k2, k4, are each
reversed before the addition.

K 2103 7148 12345

k1, k2, k3 21, 03 71, 46 12, 34, 5

Reversing 21, 30 71, 64 12, 43, 5

k2, k4

H(k) H(2103) H(7148) H(12345)

= k1 + k2 + k3 = 21+30 = 51 = 71+64 = 55 = 12+43+5 = 60

Fig. 7.5

H(7148) = 71 + 64 = 155, here we will eliminate the leading carry (i.e., 1). So H(7148)
= 71 + 64 = 55.

7.5.2. HASH COLLISION

It is possible that two non-identical keys K1, K2 are hashed into the same hash
address. This situation is called Hash Collision.

Location (Keys) Records

0 210

1 111

2

3 883

4 344

 5

 6

SEARCHING AND HASHING 223

7

8 488

9

Fig. 7.6

Let us consider a hash table having 10 locations as shown in Fig. 7.6. Division
method is used to hash the key.

H(k) = k (mod m)

Here m is chosen as 10. The Hash function produces any integer between 0 and 9
inclusions, depending on the value of the key. If we want to insert a new record with key
500 then

H(500) = 500(mod 10) = 0.

The location 0 in the table is already filled (i.e., not empty). Thus collision occurred.
Collisions are almost impossible to avoid but it can be minimized considerably by intro-
ducing any one of the following three techniques:

1. Open addressing

2. Chaining

3. Bucket addressing

7.5.2.1. Open Addressing

In open addressing method, when a key is colliding with another key, the collision is
resolved by finding a nearest empty space by probing the cells.

Suppose a record R with key K has a hash address H(k) = h. then we will linearly
search h + i (where i = 0, 1, 2, m) locations for free space (i.e., h, h + 1, h + 2, h + 3
hash address).

To understand the concept, let us consider a hash collision which is in the hash
table shown in Fig. 7.6.

If we try to insert a new record with a key 500 then

H(500) = 500(mod 10) = 0.

The array index 0 is already occupied by H(210). With open addressing we resolve
the hash collision by inserting the record in the next available free or empty location in the
table. Here next location, i.e., array hash index 1, is also occupied by the key 111. Next
available free location in the table is array index 2 and we place the record in this free
location.

224 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Location (Keys) Records

0 210

1 111

2 500

3 883

4 344

5

6

7

8 488

9

Fig. 7.7

The position in which a key can be stored is found by sequentially searching all
positions starting from the position calculated by the hash function until an empty cell is
found. This type of probing is called Linear Probing.

The main disadvantage of Linear Probing is that substantial amount of time will
take to find the free cell by sequential or linear searching the table. Other two techniques,
which are discussed in the following sections, will minimize this searching time consider-
ably.

QUADRATIC PROBING

Suppose a record with R with key k has the hash address H(k) = h. Then instead of
searching the location with address h, h + 1, h + 2,...... h + i, we search for free hash
address h, h + 1, h + 4, h + 9, h + 16, h + i2,...... .

DOUBLE HASHING

Second hash function H1 is used to resolve the collision. Suppose a record R with
key k has the hash address H(k) = h and H1(k) = h1, which is not equal to m. Then we
linearly search for the location with addresses

h, h + h1, h + 2h1, h + 3h1, h + i (h1)2 (where i = 0, 1, 2,).

Note : The main drawback of implementing any open addressing procedure is the
implementation of deletion.

7.5.2.2. Chaining

In chaining technique the entries in the hash table are dynamically allocated and
entered into a linked list associated with each hash key. The hash table in Fig. 7.8 can
represented using linked list as in Fig. 7.9.

226 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 7.10

7.5.2.3.Bucket Addressing

Another solution to the hash collision problem is to store colliding elements in the
same position in table by introducing a bucket with each hash address. A bucket is a
block of memory space, which is large enough to store multiple items.

Fig. 7.11. Avoiding collision using buckets

SEARCHING AND HASHING 227

Fig. 7.11 shows how hash collision can be avoided using buckets. If a bucket is full,
then the colliding item can be stored in the new bucket by incorporating its link to previ-
ous bucket.

7.5.3. HASH DELETION

A data can be deleted from a hash table. In chaining method, deleting an element
leads to the deletion of a node from a linked list. But in linear probing, when a data is
deleted with its key the position of the array index is made free. The situation is same for
other open addressing methods.

SELF REVIEW QUESTIONS

1. Write an algorithm for binary search and discuss its speed compared with linear search.

[MG - MAY 2003 (BTech)]

2. Write a general algorithm for inserting a name into the structure using hashing tech-
niques. [MG - MAY 2003 (BTech)]

3. Compare and contrast between sequential search and binary search.

[ANNA - DEC 2003 (BE), MG - MAY 2002 (BTech)

KERALA - DEC 2002 (BTech), ANNA - DEC 2004 (BE)]

4. Write about the complexities of linear search, binary search and fibonaci search.
[MG - MAY 2000 (BTech)]

5. What is hashing ? Explain with illustrative examples. Discuss any two hashing tech-
niques you are familiar with. [ANNA - DEC 2003 (BE), Calicut - APR 1995 (BTech)]

6. Write a note on Hashing functions.

[CUSAT - MAY 2000 (BTech), Calicut - APR 1997 (BTech)

ANNA - MAY 2003 (BE), ANNA - MAY 2004 (MCA)

KERALA - MAY 2002 (BTech), KERALA - DEC 2002 (BTech)]

7. Explain the organization of hash table. How are collisions handled?

[CUSAT - NOV 2002 (BTech)]

8. What is clustering in a Hash table? Describe two methods for collision resolution.
[ANNA - DEC 2003 (BE)]

9. Write down the binary search algorithm and obtain the complexities of both worst and
average cases. [ANNA - DEC 2004 (BE)]

10. Describe various hashing techniques.

[KERALA - DEC 2003 (BTech), ANNA - MAY 2003 (BE)]

11. Explain (i) hash collision (ii) Linear Searching. [KERALA - JUN 2004 (BTech)]

12. Write a recursive procedure for binary search method. [KERALA - JUN 2004 (BTech)]

13. Write an algorithm for binary search method by iteration method.

[KERALA - MAY 2003 (BTech)]

14. What are the hash collision resolution techniques?

[KERALA - NOV 2001 (BTech), KERALA - DEC 2002 (BTech)]

228 PRINCIPLES OF DATA STRUCTURES USING C AND C++

15. What is searching ? Compare various search methods. [KERALA - MAY 2001 (BTech)]

16. Write an algorithm for a hashing method. [KERALA - MAY 2001 (BTech)]

17. Describe in detail one hash table method with a suitable method. Explain different prob-
ing technique. [KERALA - MAY 2002 (BTech)]

18. What is meant by collision processing ? [KERALA - NOV 2001 (BTech)]

19. Explain open addressing technique. [KERALA - NOV 2001 (BTech)]

The Trees

In this chapter we will discuss one of the important non-liner data structure in
computer science, Trees. Many real life problems can be represented and solved using
trees.

Trees are very flexible, versatile and powerful non-liner data structure that can be
used to represent data items possessing hierarchical relationship between the grand fa-
ther and his children and grand children as so on.

Fig. 8.1. A tree

A tree is an ideal data structure for representing hierarchical data. A tree can be
theoretically defined as a finite set of one or more data items (or nodes) such that :

1. There is a special node called the root of the tree.

2. Removing nodes (or data item) are partitioned into number of mutually exclusive
(i.e., disjoined) subsets each of which is itself a tree, are called sub tree.

8.1. BASIC TERMINOLOGIES

Root is a specially designed node (or data items) in a tree. It is the first node in the
hierarchical arrangement of the data items. ‘A’ is a root node in the Fig. 8.1. Each data
item in a tree is called a node. It specifies the data information and links (branches) to
other data items.

229

8

THE TREES 231

Consider a binary tree T in Fig. 8.3. Here ‘A’ is the root node of the binary tree T.
Then ‘B’ is the left child of ‘A’ and ‘C’ is the right child of ‘A’ i.e., ‘A’ is a father of ‘B’ and ‘C’.
The node ‘B’ and ‘C’ are called brothers, since they are left and right child of the same
father. If a node has no child then it is called a leaf node. Nodes P,H,I,F,J are leaf node in
Fig. 8.3.

A

B

J

D E

H I

C

F G

Fig. 8.3. Binary tree

The tree is said to be strictly binary tree, if every non-leaf made in a binary tree has
non-empty left and right sub trees. A strictly binary tree with n leaves always contains 2n–
1 nodes. The tree in Fig. 8.4 is strictly binary tree, where as the tree in Fig. 8.3 is not. That
is every node in the strictly binary tree can have either no children or two children. They
are also called 2-tree or extended binary tree.

A

B

D E

H I

C

F G

Fig. 8.4. Strictly binary tree

The main application of a 2-tree is to represent and compute any algebraic expres-
sion using binary operation.

For example, consider an algebraic expression E.

E = (a + b)/((c – d)*e)

E can be represented by means of the extended binary tree T as shown in Fig. 8.5.
Each variable or constant in E appears as an internal node in T whose left and right sub
tree corresponds to the operands of the operation.

232 PRINCIPLES OF DATA STRUCTURES USING C AND C++

/

+

a b

c d

*

- e

Fig. 8.5. Expression tree

A complete binary tree at depth ‘d’ is the strictly binary tree, where all the leaves are
at level d. Fig. 8.6 illustration the complete binary tree of depth 2.

A

B

D E

C

F G

Fig. 8.6. Complete binary tree

A binary tree with n nodes, n > 0, has exactly n – 1 edges. A binary tree of depth d,
d > 0, has at least d and at mast 2d – 1 nodes in it. If a binary tree contains n nodes at level
l, then it contains at most 2n nodes at level l + 1. A complete binary tree of depth d is the
binary tree of depth d contains exactly 2 l nodes at each level l between 0 and d.

Finally, let us discuss in briefly the main difference between a binary tree and
ordinary tree is:

1. A binary tree can be empty where as a tree cannot.

2. Each element in binary tree has exactly two sub trees (one or both of these sub
trees may be empty). Each element in a tree can have any number of sub trees.

3. The sub tree of each element in a binary tree are ordered, left and right sub trees.
The sub trees in a tree are unordered.

If a binary tree has only left sub trees, then it is called left skewed binary tree. Fig.
8.7(a) is a left skewed binary tree.

THE TREES 233

H

I

H

I

H

I

H

I

Fig. 8.7(a). Left skewed Fig. 8.7(b). Right skewed

If a binary tree has only right sub trees, then it is called right skewed binary tree.
Fig. 8.7(b) is a right skewed binary tree.

8.3. BINARY TREE REPRESENTATION

This section discusses two ways of representing binary tree T in memory :

1. Sequential representation using arrays

2. Linked list representation

8.3.1. ARRAY REPRESENTATION

An array can be used to store the nodes of a binary tree. The nodes stored in an
array of memory can be accessed sequentially.

Suppose a binary tree T of depth d. Then at most 2d – 1 nodes can be there in T.(i.e.,
SIZE = 2d–1) So the array of size “SIZE” to represent the binary tree. Consider a binary tree
in Fig. 8.8 of depth 3. Then SIZE = 23 – 1 = 7. Then the array A[7] is declared to hold the
nodes.

A

B

D E

C

G

0

1 2

3 4 65

Fig. 8.8. Binary tree of depth 3

234 PRINCIPLES OF DATA STRUCTURES USING C AND C++

A B C D E FA[]

[0] [1] [2] [3] [4] [5] [6]

Fig. 8.9. Array representation of the binary tree

The array representation of the binary tree is shown in Fig. 8.9. To perform any
operation often we have to identify the father, the left child and right child of an arbitrary
node.

1. The father of a node having index n can be obtained by (n – 1)/2. For example to
find the father of D, where array index n = 3. Then the father nodes index can be obtained

= (n – 1)/2

= 3 – 1/2

= 2/2

= 1

i.e., A[1] is the father D, which is B.

2. The left child of a node having index n can be obtained by (2n+1). For example to
find the left child of C, where array index n = 2. Then it can be obtained by

= (2n +1)

= 2*2 + 1

= 4 + 1

= 5

i.e., A[5] is the left child of C, which is NULL. So no left child for C.

3. The right child of a node having array index n can be obtained by the formula (2n
+ 2). For example to find the right child of B, where the array index n = 1. Then

= (2n + 2)

= 2*1 + 2

= 4

i.e., A[4] is the right child of B, which is E.

4. If the left child is at array index n, then its right brother is at (n + 1). Similarly, if
the right child is at index n, then its left brother is at (n – 1).

The array representation is more ideal for the complete binary tree. The Fig. 8.8 is
not a complete binary tree. Since there is no left child for node C, i.e., A[5] is vacant. Even
though memory is allocated for A[5] it is not used, so wasted unnecessarily.

8.3.2. LINKED LIST REPRESENTATION

The most popular and practical way of representing a binary tree is using linked list
(or pointers). In linked list, every element is represented as nodes. A node consists of three
fields such as :

(a) Left Child (LChild)

(b) Information of the Node (Info)

(c) Right Child (RChild)

236 PRINCIPLES OF DATA STRUCTURES USING C AND C++

4. Deleting a Node

5. Searching for a Node

6. Copying the mirror image of a tree

7. Determine the total no: of Nodes

8. Determine the total no: leaf Nodes

9. Determine the total no: non-leaf Nodes

10. Find the smallest element in a Node

11. Finding the largest element

12. Find the Height of the tree

13. Finding the Father/Left Child/Right Child/Brother of an arbitrary node

Some primitive operations are discussed in the following sections. Implementation
other operations are left to the reader.

8.5. TRAVERSING BINARY TREES RECURSIVELY

Tree traversal is one of the most common operations performed on tree data struc-
tures. It is a way in which each node in the tree is visited exactly once in a systematic
manner. There are three standard ways of traversing a binary tree. They are:

1. Pre Order Traversal (Node-left-right)

2. In order Traversal (Left-node-right)

3. Post Order Traversal (Left-right-node)

8.5.1. PRE ORDERS TRAVERSAL RECURSIVELY

To traverse a non-empty binary tree in pre order following steps one to be processed

1. Visit the root node

2. Traverse the left sub tree in preorder

3. Traverse the right sub tree in preorder

That is, in preorder traversal, the root node is visited (or processed) first, before
traveling through left and right sub trees recursively. It can be implement in C/C++ func-
tion as below :

void preorder (Node * Root)

{

If (Root != NULL)

{

printf (“%d\n”,Root → Info);

preorder(Root → L child);

preorder(Root → R child);

}

}

THE TREES 237

A

B

D E

H I

C

F G

J

Fig. 8.12

The preorder traversal of a binary tree in Fig. 8.12 is A, B, D, E, H, I, C, F, G, J.

8.5.2. IN ORDER TRAVERSAL RECURSIVELY

The in order traversal of a non-empty binary tree is defined as follows :

1. Traverse the left sub tree in order

2. Visit the root node

3. Traverse the right sub tree in order

In order traversal, the left sub tree is traversed recursively, before visiting the root.
After visiting the root the right sub tree is traversed recursively, in order fashion. The
procedure for an in order traversal is given below :

void inorder (NODE *Root)

{
If (Root != NULL)
{
inorder(Root → L child);
printf (“%d\n”,Root → info);
inorder(Root → R child);
}

}

The in order traversal of a binary tree in Fig. 8.12 is D, B, H, E, I, A, F, C, J, G.

8.5.3. POST ORDER TRAVERSAL RECURSIVELY

The post order traversal of a non-empty binary tree can be defined as :

1. Traverse the left sub tree in post order

2. Traverse the right sub tree in post order

3. Visit the root node

238 PRINCIPLES OF DATA STRUCTURES USING C AND C++

In Post Order traversal, the left and right sub tree(s) are recursively processed be-
fore visiting the root.

void postorder (NODE *Root)

{

If (Root != NULL)

{

postorder(Root → Lchild);

postorder(Root → Rchild);

printf (“%d\n”,Root à info);

}

}

The post order traversal of a binary tree in Fig. 8.12 is D, H, I, E, B, F, J, G, C, A

PROGRAM 8.1

//PROGRAM TO IMPLEMENT THE INSERTION AND DELETION IN B TREE

//CODED AND COMPILED USING TURBO C

#include<stdlib.h>

#include<malloc.h>

#include<conio.h>

#include<stdio.h>

#define M 5

//Structure is defined

struct node{

int n; /* n < M No. of keys in node will always less than order of B tree */

int keys[M–1]; /*array of keys*/

struct node *p[M]; /* (n+1 pointers will be in use) */

}*root=NULL;

typedef struct node *NODE;

enum Key Status { Duplicate,Search Failure,Success,InsertIt,Less Keys };

//Function declrations

void insert(int key);

void display(NODE root,int);

THE TREES 239

void DelNode(int x);

void search(int x);

enum KeyStatus ins(NODE r, int x, int* y, NODE * u);

int searchPos(int x,int *key_arr, int n);

enum KeyStatus del(NODE r, int x);

void main()

{

int key;

int choice;

while(1)

{

clrscr();//Clear the screen

//Menu options

printf (“\n1.Insert\n”);

printf (“2.Delete\n”);

printf (“3.Search\n”);

printf (“4.Display\n”);

printf (“5.Quit\n”);

printf (“\nEnter your choice : ”);

scanf (“%d”,&choice);

switch(choice)

{

case 1:

printf (“\nEnter the key : ”);

scanf (“%d”,&key);

insert(key);

break;

case 2:

printf (“\nEnter the key : ”);

scanf (“%d”,&key);

DelNode(key);

break;

case 3:

printf (“\nEnter the key : ”);

scanf (“%d”,&key);

search(key);

getch();

break;

case 4:

printf (“\nBtree is :\n”);

240 PRINCIPLES OF DATA STRUCTURES USING C AND C++

display(root,0);

getch();

break;

case 5:

exit(1);

default:

printf (“\nWrong choice\n”);

getch();

break;

}/*End of switch*/

}/*End of while*/

}/*End of main()*/

void insert(int key)

{

NODE newnode;

int upKey;

enum KeyStatus value;

value = ins(root, key, &upKey, &newnode);

//Cheking for duplicate keys

if (value == Duplicate)

{

printf(“\nKey already available\n”);

getch();

}

if (value == InsertIt)

{

NODE uproot = root;

//Allocating memory

root=(NODE)malloc(sizeof(struct node));

root->n = 1;

root->keys[0] = upKey;

root->p[0] = uproot;

root->p[1] = newnode;

}/*End of if */

}/*End of insert()*/

enum KeyStatus ins(NODE ptr, int key, int *upKey,NODE *newnode)

{

NODE newPtr,lastPtr;

int pos, i, n,splitPos;

THE TREES 241

int newKey, lastKey;

enum KeyStatus value;

if (ptr == NULL)

{

*newnode = NULL;

*upKey = key;

return InsertIt;

}

n = ptr->n;

pos = searchPos(key, ptr->keys, n);

if (pos < n && key == ptr->keys[pos])

return Duplicate;

value = ins(ptr->p[pos], key, &newKey, &newPtr);

if (value != InsertIt)

return value;

/*If keys in node is less than M–1 where M is order of B tree*/

if (n < M – 1)

{

pos = searchPos(newKey, ptr->keys, n);

/*Shifting the key and pointer right for inserting the new key*/

for (i=n; i>pos; i--)

{

ptr->keys[i] = ptr->keys[i–1];

ptr->p[i+1] = ptr->p[i];

}

/*Key is inserted at exact location*/

ptr->keys[pos] = newKey;

ptr->p[pos+1] = newPtr;

++ptr->n; /*incrementing the number of keys in node*/

return Success;

}/*End of if */

/*If keys in nodes are maximum and position of node to be inserted is last*/

if (pos == M – 1)

{

lastKey = newKey;

lastPtr = newPtr;

}

else /*If keys in node are maximum and position of node to be inserted is not last*/

{

lastKey = ptr->keys[M–2];

lastPtr = ptr->p[M–1];

for (i=M–2; i>pos; i--)

242 PRINCIPLES OF DATA STRUCTURES USING C AND C++

{

ptr->keys[i] = ptr->keys[i–1];

ptr->p[i+1] = ptr->p[i];

}

ptr->keys[pos] = newKey;

ptr->p[pos+1] = newPtr;

}

splitPos = (M – 1)/2;

 (*upKey) = ptr->keys[splitPos];

(*newnode)=(NODE)malloc(sizeof(struct node));/*Right node after split*/

ptr->n = splitPos; /*No. of keys for left splitted node*/

(*newnode)->n = M–1-splitPos;/*No. of keys for right splitted node*/

for (i=0; i < (*newnode)->n; i++)

{

(*newnode)->p[i] = ptr->p[i + splitPos + 1];

if(i < (*newnode)->n – 1)

(*newnode)->keys[i] = ptr->keys[i + splitPos + 1];

else

(*newnode)->keys[i] = lastKey;

}

(*newnode)->p[(*newnode)->n] = lastPtr;

return InsertIt;

}/*End of ins()*/

void display(NODE ptr, int blanks)

{

if (ptr)

{

int i;

for(i=1;i<=blanks;i++)

printf (“ ”);

for (i=0; i < ptr->n; i++)

printf (“%d ”,ptr->keys[i]);

printf (“\n”);

for (i=0; i <= ptr->n; i++)

display(ptr->p[i], blanks+10);

}/*End of if*/

}/*End of display()*/

void search(int key)

{

THE TREES 243

int pos, i, n;

NODE ptr = root;

printf (“\nSearch path:\n”);

while (ptr)

{

n = ptr->n;

for (i=0; i < ptr->n; i++)

printf (“ %d”,ptr->keys[i]);

printf (“\n”);

pos = searchPos(key, ptr->keys, n);

if (pos < n && key == ptr->keys[pos])

{

printf (“\nKey %d found in position %d of last dispalyed node\n”,key,i);

return;

}

ptr = ptr->p[pos];

}

printf (“\nKey %d is not available\n”,key);

}/*End of search()*/

int searchPos(int key, int *key_arr, int n)

{

int pos=0;

while (pos < n && key > key_arr[pos])

pos++;

return pos;

}/*End of searchPos()*/

void DelNode(int key)

{

NODE uproot;

enum KeyStatus value;

value = del(root,key);

switch (value)

{

case SearchFailure:

printf(“\nKey %d is not available\n”,key);

break;

case LessKeys:

uproot = root;

root = root->p[0];

free(uproot);

244 PRINCIPLES OF DATA STRUCTURES USING C AND C++

break;

}/*End of switch*/

}/*End of delnode()*/

enum KeyStatus del(NODE ptr, int key)

{

int pos, i, pivot, n ,min;

int *key_arr;

enum KeyStatus value;

NODE *p,lptr,rptr;

if (ptr == NULL)

return SearchFailure;

/*Assigns values of node*/

n=ptr->n;

key_arr = ptr->keys;

p = ptr->p;

min = (M – 1)/2;/*Minimum number of keys*/

pos = searchPos(key, key_arr, n);

if (p[0] == NULL)

{

if (pos == n || key < key_arr[pos])

return SearchFailure;

/*Shift keys and pointers left*/

for (i=pos+1; i < n; i++)

{

key_arr[i–1] = key_arr[i];

p[i] = p[i+1];

}

return --ptr->n >= (ptr==root ? 1 : min) ? Success : LessKeys;

}/*End of if */

if (pos < n && key == key_arr[pos])

{

struct node *qp = p[pos], *qp1;

int nkey;

while(1)

{

nkey = qp->n;

qp1 = qp->p[nkey];

if (qp1 == NULL)

THE TREES 245

break;

qp = qp1;

}/*End of while*/

key_arr[pos] = qp->keys[nkey–1];

qp->keys[nkey – 1] = key;

}/*End of if */

value = del(p[pos], key);

if (value != LessKeys)

return value;

if (pos > 0 && p[pos–1]->n > min)

{

pivot = pos – 1; /*pivot for left and right node*/

lptr = p[pivot];

rptr = p[pos];

/*Assigns values for right node*/

rptr->p[rptr->n + 1] = rptr->p[rptr->n];

for (i=rptr->n; i>0; i--)

{

rptr->keys[i] = rptr->keys[i–1];

rptr->p[i] = rptr->p[i–1];

}

rptr->n++;

rptr->keys[0] = key_arr[pivot];

rptr->p[0] = lptr->p[lptr->n];

key_arr[pivot] = lptr->keys[--lptr->n];

return Success;

}/*End of if */

if (pos<n && p[pos+1]->n > min)

{

pivot = pos; /*pivot for left and right node*/

lptr = p[pivot];

rptr = p[pivot+1];

/*Assigns values for left node*/

lptr->keys[lptr->n] = key_arr[pivot];

lptr->p[lptr->n + 1] = rptr->p[0];

key_arr[pivot] = rptr->keys[0];

lptr->n++;

rptr->n--;

for (i=0; i < rptr->n; i++)

{

rptr->keys[i] = rptr->keys[i+1];

246 PRINCIPLES OF DATA STRUCTURES USING C AND C++

rptr->p[i] = rptr->p[i+1];

}/*End of for*/

rptr->p[rptr->n] = rptr->p[rptr->n + 1];

return Success;

}/*End of if */

if(pos == n)

pivot = pos–1;

else

pivot = pos;

lptr = p[pivot];

rptr = p[pivot+1];

/*merge right node with left node*/

lptr->keys[lptr->n] = key_arr[pivot];

lptr->p[lptr->n + 1] = rptr->p[0];

for (i=0; i < rptr->n; i++)

{

lptr->keys[lptr->n + 1 + i] = rptr->keys[i];

lptr->p[lptr->n + 2 + i] = rptr->p[i+1];

}

lptr->n = lptr->n + rptr->n +1;

free(rptr); /*Remove right node*/

for (i=pos+1; i < n; i++)

{

key_arr[i–1] = key_arr[i];

p[i] = p[i+1];

}

return --ptr->n >= (ptr == root ? 1 : min) ? Success : LessKeys;

}/*End of del()*/

8.6. TRAVERSING BINARY TREE NON-RECURSIVELY

In this section we will discuss the implementation of three standard traversals algo-
rithms, which were defined recursively in the last section, non-recursively using stack.

8.6.1. PREORDER TRAVERSAL NON-RECURSIVELY

The preorder traversal non-recursively algorithms uses a variable PN (Present Node),
which will contain the location of the node currently being scanned. Left(R) denotes the
left child of the node R and Right(R) denoted the right child of R. A stack is used to hold the
addresses of the nodes to be processed. Info(R) denotes the information of the node R.

THE TREES 247

Preorder traversal starts with root node of the tree i.e., PN = ROOT. Then repeat the
following steps until PN = NULL.

Step 1: Process the node PN. If any right child is there for PN, push the Right (PN)
into the top of the stack and proceed down to left by PN = Left (PN), if any left child is there
(i.e., Left (PN) not equal to NULL).

Repeat the step 2 until there is no left child (i.e., Left (PN) = NULL).

Step 2: Now we have to go back to the right node(s) by backtracking the tree. This
can be achieved by popping the top most element of the stack. Pop the top element from
the stack and assigns to PN.

Step 3: If (PN is not equal to NULL) go to the Step 1

Step 4: Exit

The implementation of the preorder non-recursively traversal algorithm can be il-
lustrated with an example. Consider a binary tree in Fig. 8.13. Following steps are gener-
ated when the algorithm is applied to the following binary tree :

A

B

D E

H I

C

F

G
J

Fig. 8.13

1. Initialize the Root node to PN

SATCK :

PN = ROOT (i.e., PN = A)

2. Process the node PN (i.e., A)

If PN has the right child push it into stack (i.e., C)

If PN has the left child proceed down to left by PN = Left(A) (i.e., PN = B)

STACK: C

3. Process the node PN (i.e., B)

If PN has the right child (i.e., Right (PN) not equal to NULL) then push the right child
of PN into the stack (i.e., Right(B) is E)

If PN has the left child proceed down to left by PN = Left(B) (i.e., Now PN = D)

STACK: C, E

4. Process or display the node PN (i.e., D)

If PN has the right child, then push the right child of PN into the stack (i.e., Right(D)
is G)

248 PRINCIPLES OF DATA STRUCTURES USING C AND C++

If PN has the left child proceed down to left. Here Left(PN) is equal to NULL, so no left
child.

STACK: C, E, G

5. Now the backtracking process will start (i.e., when Left(PN) = NULL)

Pop the top element G from the stack and assign it to PN (i.e., PN = G)

STACK: C, E

6. Process the node G

Check for right child of PN (i.e., G) No right child (i.e., Right(G) = NULL

Check for left child of PN (i.e., G) No left child also (i.e., Left(G) = NULL)

STACK: C, E

7. Again pop the top element E from the stack and assign it to PN (i.e., PN = E)

STACK: C

8. Process the node E (PN)

Since (Right(E) is not equal to NULL)

Push(Right(E)) (i.e., Right(E) is E)

Since (Left(E) is not equal to NULL)

PN = Left(PN) = Left(E) (i.e., PN = H)

STACK: C, I

9. Process the node H

Since (Right(H) = NULL)

Do nothing

Since (Left(H) = NULL)

Do nothing

STACK: C, I

10. Backtracking to right sub tree elements

Pop the top element I from the stack and assign it to PN (i.e., PN = I)

STACK: C

11. Process the node I

No left child for I

No right child for I

STACK: C

12. Again backtracking

Pop the top element C and assign it to PN (i.e., PN=C)

STACK:

13. Display (or process) the node C

Since (Right(C) = NULL)

Do nothing

Since (Left(C) is not equal to NULL)

THE TREES 249

PN = Left(PN) = Left(C) (i.e., PN = F)

STACK:

14. Display the node F

Since (Right(F) is not equal to NULL)

Push Right(F) to the stack (i.e., J)

Since (Left(F) = NULL)

Do Nothing

STACK: J

15. Backtracking to right node(s)

Pop the top element J and assign it to PN (i.e., PN = J)

STACK:

16. Display the node J

(Right(J) = NULL)

(Right(J) = NULL)

STACK:

17. Backtracking for right nodes. Now the top pointer is pointing to NULL. Assign
the top value to PN. (i.e., PN=NULL)

18. When (PN = NULL) STOP

The nodes are processed or displayed in the order A, B, D, G, E, H, I, C, F, J.

ALGORITHM

An array STACK is used to hold the addresses of nodes. TOP pointer points to the
top most element of the STACK. ROOT is the root node of tree to be traversed. PN is the
address of the present node under scanning. Info(PN) if the information contained in the
node PN.

1. Initialize TOP = NULL, PN = ROOT

2. Repeat step 3 to 5 until (PN = NULL)

3. Display Info(PN)

4. If (Right(PN) not equal to NULL)

(a) TOP = TOP+1

(b) STACK(TOP) = Right(PN);

5. If(Left(PN) not equal to NULL)

(a) PN = Left(PN)

6. Else

(a) PN = STACK[TOP]

(b) TOP = TOP–1

7. Exit

250 PRINCIPLES OF DATA STRUCTURES USING C AND C++

PROGRAM 8.2

//FUNCTION TO IMPLEMENT NON RECURSIVE PRE ORDER TRAVERSAL

//CODED AND COMPILED IN TURBO C++

void preorder(struct tnode *p)

{

struct node *stack[100];

int top;

top = –1;

if(p != NULL)

{

cout<<“ ”<<p->info;

if(p->rchild != NULL)

{

top++;

stack[top] = p->rchild;

}

p = p->lchild;

while(top >= –1)

{

while (p!= NULL)/* push the left child onto stack*/

{
printf(“%d\t”,p->data);

if(p->rchild != NULL)
{

top++;
stack[top] = p->rchild;

}
p = p->lchild;
}
p = stack[top];

top--;
}

}

}

8.6.2. IN ORDER TRAVERSAL NON-RECURSIVELY

The in-order traversal algorithm uses a variable PN, which will contain the location
of the node currently being scanned. Info (R) denotes the information of the node R, Left
(R) denotes the left child of the node R and Right (R) denotes the right child of the node R.

THE TREES 251

In-order traversal starts from the ROOT node of the tree (i.e., PN = ROOT). Then
repeat the following steps until PN = NULL :

Step 1: Proceed down to left most node of the tree by pushing the root node onto the
stack.

Step 2: Repeat the step 1 until there is no left child for a node.

Step 3: Pop the top element of the stack and process the node. PN = STACK[TOP]

Step 4: If the stack is empty then go to step 6.

Step 5: If the popped element has right child then PN = Right(PN). Then repeat the
step from 1.

Step 6: Exit.

The in-order traversal algorithm can be illustrated with an example. Consider a
binary tree in Fig. 8.13. Following steps may generate if we try to traverse the tree in in-
order fashion :

1. Initialize root Node to PN (i.e., PN = ROOT = A)

STACK:

2. Since(Left(PN) is not equal to NULL

Push (PN) to the stack

PN = Left(PN) (i.e., = B)

STACK: A

3. Since(Left(PN) is not equal to NULL

Push (PN) to the stack (i.e., = B)

PN = Left(PN) (i.e., = D

STACK: A, B

4. Since(Left(PN) = NULL

Display the node D

STACK: A, B

5. Since(Right(PN) is not equal to NULL

PN = Right(PN) = G

STACK: A, B

6. Since(Left(PN) = NULL

Display the node G

STACK: A, B

7. Since(Right(PN) = NULL)

Pop the topmost element of the stack

PN = STACK[TOP] (i.e., = B)

Display the node B

STACK: A

8. Since(Right(PN) is not equal to NULL)

PN = Right(PN) = E

STACK: A

252 PRINCIPLES OF DATA STRUCTURES USING C AND C++

9. Since(Left(PN) is not equal to NULL

Push(PN) to the stack (i.e., E)

PN = Left(PN) = H

STACK: A, E

10 Since(Left(PN) = NULL)

Display the node H

STACK: A, E

11. Since(Right(PN) = NULL

Pop the topmost element of the stack

PN = STACK[TOP] = E

Display the node E

STACK: A

12. Since(Right(PN) is not equal to NULL)

PN = Right(PN) = I

STACK: A

13. Since(Left(PN) = NULL)

Display the node I

STACK: A

14. Since(Right(PN) = NULL)

Pop the topmost element of the stack

PN = STACK[TOP] = A

Display the node A

STACK:

15. Since(Right(PN) not equal to NULL)

PN = Right(PN) = C

STACK:

16. Since(Left(PN) is not equal to NULL)

Push(PN) to the stack (i.e., = C)

PN = Left(PN) = F

STACK: C

17. Since(Left(PN) = NULL)

Display the node F

STACK: C

18. Since(Right(PN) is not equal to NULL)

PN = Right(PN) = J

STACK: C

19. Since(Left(PN) = NULL

Display the node J

STACK: C

THE TREES 253

20. Since(Right(PN) = NULL)

Pop the element from the stack

PN = STACK[TOP] = C

Display the node C

STACK:

21. Since(Right(PN) = NULL)

Try to pop an element from the stack. Since the stack is empty PN=NULL and Stop

The nodes are displayed in the order of D, G, B, H, E, I, A, F, J, C.

ALGORITHM

An array STACK is used to temporarily store the addresses of the nodes. TOP pointer
always points to the topmost element of the STACK.

1. Initialize TOP = NULL and PN = ROOT

2. Repeat the Step 3, 4 and 5 until (PN = NULL)

3. TOP = TOP +1

4. STACK[TOP] = PN

5. PN = Left(PN)

6. PN = STACK[TOP]

7. TOP = TOP–1

8. Repeat steps 9, 10, 11 and 12 until (PN = NULL)

9. Display Info(PN)

10. If(Right(PN) is not equal to NULL

(a) PN = Right(PN)

(b) Go to Step 6

11. PN = STACK[TOP]

12. TOP = TOP –1

13. Exit

PROGRAM 8.3

//FUNCTION TO IMPLEMENT NON RECURSIVE IN ORDER TRAVERSAL

//CODED AND COMPILED IN TURBO C++

void inorder(struct tnode *p)

{

struct tnode *stack[100];

int top;

top = –1;

if(p != NULL)

{

254 PRINCIPLES OF DATA STRUCTURES USING C AND C++

top++;

stack[top] = p;

p = p->lchild;

while(top >= 0)

{

while (p!= NULL)/* push the left child onto stack*/

{

top++;

stack[top] =p;

p = p->lchild;

}

p = stack[top];

top--;

cout<<“ ”<<p->data;

p = p->rchild;

if (p != NULL) /* push right child*/

{

top++;

stack[top] = p;

p = p->lchild;

}

}

}

}

8.6.3. POSTORDER TRAVERSAL NON-RECURSIVELY

The post-order traversal algorithm uses a variable PN, which will contain the location
of the node currently being scanned. Left (R) denotes the left child of the node R and Right
(R) denotes the right child of the node R. Info (R) denotes the information of the node R.

The post-order traversal algorithm is more complicated than the proceeding two
algorithms, because here we have to push the information of the node PN to stack in two
different situations. These two situations are distinguished between by pushing Left(PN)
and - Right(PN) on to stack. That is whenever a negative node sees in the stack; it means
that it was a right child of a node. Post-order traversal starts from the ROOT node of the
tree (i.e., PN = ROOT).

Step 1: Proceed down to left most node of the tree by pushing the root node and -
Right(PN) on the stack.

Step 2: Repeat the Step 1 until there is no left child for the node.

Step 3: Pop and display the positive nodes on the stack.

Step 4: If the stack is empty, go to Step 6

Step 5: If a negative node is popped, then PN = – PN (i.e., to remove the negative sign
in the node) and go to Step 1.

THE TREES 255

Step 6: Exit.

The post-order traversal algorithm can be illustrated with a binary tree in Fig. 8.13.

1. Initialize ROOT Node to PN (i.e., PN = A)

STACK:

2. Push(PN) to the stack

Since(Right(A) is not equal to NULL)

Push(-Right(A)) to the stack

Then If(Left(A) is not equal to NULL)

PN = Left(PN) (i.e., PN=B)

STACK: A, – C

3. Push (B) to the stack

Since (Right(B) is not equal to NULL)

Push(-Right(B)) to the stack

Then If(Left(B) is not equal to NULL)

PN=Left(PN) (i.e., PN =D)

STACK : A, – C, B, –E

4. Push (D) to the stack

Since (Right(D) is not equal to NULL)

Push(-Right(D)) to the stack

Since(Left(D) = NULL)

STACK : A, – C, B, – E, D, –G

Next step is pop and display all the positive elements from the top until a negative
element is reached. Here the top element is a negative one, so only the top of the stack is
popped (i.e., -G) and assigned to PN. Now PN= – G. Set PN = – PN (i.e., PN = G)

STACK: A, – C, B, – E, D

5. Push(G) to the stack

If(Right(G) = NULL)

Do nothing

If(Left(G) = NULL)

STACK: A, – C, B, – E, D, G

Pop and display all the positive elements from the top of the stack until a negative
element is reached. Here the G, D are popped and displayed. – E is popped and assigned it
to PN then PN = – PN = E

STACK: A, – C, B,

6. Push(E) to the stack

Since(Right(E) is not equal to NULL)

Push(– Right(E)) to the stack

Since(Left(E) is not equal to NULL)

PN=Left(PN) (i.e., PN=H)

STACK: A, – C, B, E, – I

256 PRINCIPLES OF DATA STRUCTURES USING C AND C++

7. Push(H) to the stack

If(Right(H) = NULL)

Do nothing

If(Left(H) = NULL)

STACK: A, – C, B, E, – I, H

Pop and display H then pop and assign I to PN (i.e., PN = I)

STACK: A, – C, B, E,

8. Push(I) to the stack

If(Right(I) = NULL)

Do nothing

If(Left(I) = NULL)

STACK: A, – C, B, E, I

Pop and display all positive elements of stack from top, until a negative number is
reached. Here I, E, B are popped and displayed. And – C is popped and assigned to PN (i.e.,
PN = C)

STACK: A,

9. Push(C) to the stack

If(Right(C) = NULL)

Do nothing

If(Left(C) = NULL)

PN = Left(C) = F

STACK: A, C

10. Push(F) to the stack

Since(Right(F) is not equal to NULL)

Push(-Right(F))s

Since(Left(F) = NULL)

STACK: A, C, F, – J

Pop the top element and assign it to PN. (i.e., PN = J)

11. Push(J) to the stack

Since(Right(J) = NULL)

Do nothing

Since(Left(J) = NULL)

Pop all positive elements from top, until a negative element is reached. Here all the
elements J, F, C, A are popped and displayed. Now the stack is empty and PN = NULL and
STOP.

The nodes are displayed in the following order G, D, H, I, E, B, J, F, C, A.

ALGORITHM

An array STACK is used to temporarily store the addresses of the nodes. TOP pointer
always points to the top most element of the stack.

THE TREES 257

1. Initialize TOP = NULL and PN = ROOT

2. Repeat the steps 3 to 6 until (PN = NULL)

3. TOP = TOP+1

4. SATCK(TOP)=PN

5. If (Right(PN) is not equal to NULL)

(a) TOP = TOP+1

(b) STACK(TOP) = – Right(PN)

6. PN = Left(PN)

7. PN = STACK(TOP)

8. TOP = TOP–1

9. Repeat the step 9 until (PN less than or equal to 0)

(a) Display Info(PN)

(b) PN = STACK(TOP)

(c) TOP = TOP=1

10. If(PN < 0)

(a) PN = – PN

(b) Go to step 2

11. Exit

PROGRAM 8.3

//FUNCTION TO IMPLEMENT NON RECURSIVE POST ORDER TRAVERSAL

//CODED AND COMPILED IN TURBO C++

void postorder(struct node *p)

{

struct node *stack[100];

int top,sig, sign[100];

top = –1;

if(p != NULL)

{

 top++;

 stack[top] = p;

 sign[top]=1;

if(p->rchild != NULL)

{

top++;

stack[top] = p->rchild;

sign[top]=–1;

}

258 PRINCIPLES OF DATA STRUCTURES USING C AND C++

p = p->lchild;

while(top >= 0)

{

while (p!= NULL)/* push the left child onto stack*/

 {

top++;

stack[top] = p;

sign[top]=1;

if(p->rchild != NULL)

{

top++;

stack[top] = p->rchild;

sign[top]=–1;

}

p = p->lchild;

}

p = stack[top];

sig=sign[top];

top--;

while((sig > 0) && (top >= -1))

{

cout<<“ ”<<p->info;

p = stack[top];

sig=sign[top];

top--;

}

}

}

}

8.7. BINARY SEARCH TREES

A Binary Search Tree is a binary tree, which is either empty or satisfies the following
properties :

1. Every node has a value and no two nodes have the same value (i.e., all the values
are unique).

2. If there exists a left child or left sub tree then its value is less than the value of the
root.

THE TREES 259

3. The value(s) in the right child or right sub tree is larger than the value of the root
node.

All the nodes or sub trees of the left and right children follows above rules. The Fig.
8.14 shows a typical binary search tree. Here the root node information is 50. Note that
the right sub tree node’s value is greater than 50, and the left sub tree nodes value is less
than 50. Again right child node of 25 has large values than 25 and left child node has
small values than 25. Similarly right child node of 75 has large values than 75 and left
child node has small values that 75 and so on.

50

25

20 40

30 45

75

60 80

65 85
10

Fig. 8.14

The operations performed on binary tree can also be applied to Binary Search Tree
(BST). But in this section we discuss few other primitive operators performed on BST :

1. Inserting a node

2. Searching a node

3. Deleting a node

Another most commonly performed operation on BST is, traversal. The tree traversal
algorithm (pre-order, post-order and in-order) are the standard way of traversing a binary
search tree.

8.7.1. INSERTING A NODE

A BST is constructed by the repeated insertion of new nodes to the tree structure.
Inserting a node in to a tree is achieved by performing two separate operations.

1. The tree must be searched to determine where the node is to be inserted.

2. Then the node is inserted into the tree.

Suppose a “DATA” is the information to be inserted in a BST.

Step 1: Compare DATA with root node information of the tree

(i) If (DATA < ROOT → Info)

Proceed to the left child of ROOT

(ii) If (DATA > ROOT → Info)

Proceed to the right child of ROOT

260 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Step 2: Repeat the Step 1 until we meet an empty sub tree, where we can insert the
DATA in place of the empty sub tree by creating a new node.

Step 3: Exit

For example, consider a binary search tree in Fig. 8.14. Suppose we want to insert
a DATA = 55 in to the tree, then following steps one obtained :

1. Compare 55 with root node info (i.e., 50) since 55 > 50 proceed to the right sub
tree of 50.

2. The root node of the right sub tree contains 75. Compare 55 with 75. Since 55 <
75 proceed to the left sub tree of 75.

3. The root node of the left sub tree contains 60. Compare 55 with 60. Since 55 < 60
proceed to the right sub tree of 60.

4. Since left sub tree is NULL place 55 as the left child of 60 as shown in Fig. 8.15.

50

25

20 40

30 45

75

60 80

65 85
10 55

Fig. 8.15

ALGORITHM

NEWNODE is a pointer variable to hold the address of the newly created node. DATA
is the information to be pushed.

1. Input the DATA to be pushed and ROOT node of the tree.

2. NEWNODE = Create a New Node.

3. If (ROOT == NULL)

(a) ROOT=NEW NODE

4. Else If (DATA < ROOT → Info)

(a) ROOT = ROOT → Lchild

(b) GoTo Step 4

5. Else If (DATA > ROOT → Info)

(a) ROOT = ROOT → Rchild

(b) GoTo Step 4

THE TREES 261

6. If (DATA < ROOT → Info)

(a) ROOT → LChild = NEWNODE

7. Else If (DATA > ROOT → Info)

(a) ROOT → RChild = NEWNODE

8. Else

(a) Display (“DUPLICATE NODE”)

(b) EXIT

9. NEW NODE → Info = DATA

10. NEW NODE → LChild = NULL

11. NEW NODE → RChild = NULL

12. EXIT

8.7.2. SEARCHING A NODE

Searching a node was part of the operation performed during insertion. Algorithm
to search as element from a binary search tree is given below.

ALGORITHM

1. Input the DATA to be searched and assign the address of the root node to ROOT.

2. If (DATA == ROOT → Info)

(a) Display “The DATA exist in the tree”

(b) GoTo Step 6

3. If (ROOT == NULL)

(a) Display “The DATA does not exist”

(b) GoTo Step 6

4. If(DATA > ROOT→Info)

(a) ROOT = ROOT→RChild

(b) GoTo Step 2

5. If(DATA < ROOT→Info)

(a) ROOT = ROOT→Lchild

(b) GoTo Step 2

6. Exit

Suppose a binary search tree contains n data items, A1, A2, A3………..An. There are n!
permutations of the n items. The average depth of the n! tree is approximately C log 2 n,
where C=1.4. The average running time f (n) to search for an item in a binary tree with n
elements is proportional to Log2 n, that is

f (n) = O(Log2 n)

8.7.3. DELETING A NODE

This section gives an algorithm to delete a DATA of information from a binary search
tree. First search and locate the node to be deleted. Then any one of the following condi-
tions arises :

262 PRINCIPLES OF DATA STRUCTURES USING C AND C++

1. The node to be deleted has no children

2. The node has exactly one child (or sub tress, left or right sub tree)

3. The node has two children (or two sub tress, left and right sub tree)

Suppose the node to be deleted is N. If N has no children then simply delete the node
and place its parent node by the NULL pointer.

If N has one child, check whether it is a right or left child. If it is a right child, then
find the smallest element from the corresponding right sub tree. Then replace the smallest
node information with the deleted node. If N has a left child, find the largest element from
the corresponding left sub tree. Then replace the largest node information with the deleted
node.

The same process is repeated if N has two children, i.e., left and right child. Ran-
domly select a child and find the small/large node and replace it with deleted node. NOTE
that the tree that we get after deleting a node should also be a binary search tree.

Deleting a node can be illustrated with an example. Consider a binary search tree in
Fig. 8.15. If we want to delete 75 from the tree, following steps are obtained :

Step 1: Assign the data to be deleted in DATA and NODE = ROOT.

Step 2: Compare the DATA with ROOT node, i.e., NODE, information of the tree.

Since (50 < 75)

NODE = NODE → RChild

Step 3: Compare DATA with NODE. Since (75 = 75) searching successful. Now we
have located the data to be deleted, and delete the DATA. (See Fig. 8.16)

50

25

20 40

30 45

60 80

65 85
10 55

Fig. 8.16

Step 4: Since NODE (i.e., node where value was 75) has both left and right child
choose one. (Say Right Sub Tree) - If right sub tree is opted then we have to find the
smallest node. But if left sub tree is opted then we have to find the largest node.

Step 5: Find the smallest element from the right sub tree (i.e., 80) and replace the
node with deleted node. (See Fig. 8.17)

THE TREES 263

50

25

20 40

30 45

80

60

65 85
10 55

Fig. 8.17

Step 6: Again the (NODE → Rchild is not equal to NULL) find the smallest element
from the right sub tree (Which is 85) and replace it with empty node. (See Fig. 8.18)

50

25

20 40

30 45

80

60 85

65
10 55

Fig. 8.18

Step 7: Since (NODE→Rchild = NODE→Lchild = NULL) delete the NODE and place
NULL in the parent node. (See Fig. 8.19)

50

25

20 40

30 45

80

60 85

65
10 55

Fig. 8.19

Step 8: Exit.

264 PRINCIPLES OF DATA STRUCTURES USING C AND C++

ALGORITHM

NODE is the current position of the tree, which is in under consideration. LOC is
the place where node is to be replaced. DATA is the information of node to be deleted.

1. Find the location NODE of the DATA to be deleted.

2. If (NODE = NULL)

(a) Display “DATA is not in tree”

(b) Exit

3. If(NODE → Lchild = NULL)

(a) LOC = NODE

(b) NODE = NODE → RChild

4. If(NODE → RChild= =NULL)

(a) LOC = NODE

(b) NODE = NODE → LChild

5. If((NODE → Lchild not equal to NULL) && (NODE → Rchild not equal to NULL))

(a) LOC = NODE → RChild

6. While(LOC → Lchild not equal to NULL)

(a) LOC = LOC → Lchild

7. LOC → Lchild = NODE → Lchild

8. LOC → RChild= NODE → RChild

9. Exit

PROGRAM 8.5

//PROGRAM TO IMPLEMENT THE OPERATION SUCH AS

//INSERTION, DELETION AND TRAVERSAL IN BINARY SEARCH TREE

//CODED AND COMPILED USING TURBO C++

#include<iostream.h>

#include<process.h>

#include<conio.h>

//Class is created for the implementation of BST

class BST

{

struct node

{

int info;

struct node *lchild;

struct node *rchild;

THE TREES 265

};

typedef struct node *NODE;

public:

struct node *root;

BST()

{

root=NULL;

}

//public functions declarations

void find(int,NODE *,NODE *);

void case_a(NODE,NODE);

void case_b(NODE,NODE);

void case_c(NODE,NODE);

void insert(int);

void del(int);

void preorder(NODE);

void inorder(NODE);

void postorder(NODE);

void display(NODE,int);

};

//Function to find the item form the tree

void BST::find(int item,NODE *par,NODE *loc)

{

NODE ptr,ptrsave;

if(root==NULL) /*tree empty*/

{

*loc=NULL;

*par=NULL;

return;

}

if(item==root->info) /*item is at root*/

{

*loc=root;

*par=NULL;

return;

}

/*Initialize ptr and ptrsave*/

if(item<root->info)

ptr=root->lchild;

THE TREES 267

if(par==NULL) /*Item to be deleted is root node*/

root=child;

else

if(loc==par->lchild) /*item is lchild of its parent*/

par->lchild=child;

else /*item is rchild of its parent*/

par->rchild=child;

}/*End of case_b()*/

void BST::case_c(NODE par,NODE loc)

{

NODE ptr,ptrsave,suc,parsuc;

/*Find inorder successor and its parent*/

ptrsave=loc;

ptr=loc->rchild;

while(ptr->lchild!=NULL)

{

ptrsave=ptr;

ptr=ptr->lchild;

}

suc=ptr;

parsuc=ptrsave;

if(suc->lchild==NULL && suc->rchild==NULL)

case_a(parsuc,suc);

else

case_b(parsuc,suc);

if(par==NULL) /*if item to be deleted is root node */

root=suc;

else

if(loc==par->lchild)

par->lchild=suc;

else

par->rchild=suc;

suc->lchild=loc->lchild;

suc->rchild=loc->rchild;

}/*End of case_c()*/

//This function will insert an element to the tree

268 PRINCIPLES OF DATA STRUCTURES USING C AND C++

void BST::insert(int item)

{ NODE tmp,parent,location;

find(item,&parent,&location);

if(location!=NULL)

{

cout<<“\nItem already present”;

getch();

return;

}

//creating new node to insert

tmp=(NODE)new(struct node);

tmp->info=item;

tmp->lchild=NULL;

tmp->rchild=NULL;

if(parent==NULL)

root=tmp;

else

if(item<parent->info)

parent->lchild=tmp;

else

parent->rchild=tmp;

}/*End of insert()*/

//Function to delete a node

void BST::del(int item)

{

NODE parent,location;

if(root==NULL)

{

cout<<“\nTree is empty”;

getch();

return;

}

find(item,&parent,&location);

if(location==NULL)

{

cout<<“\nItem not present in tree”;

return;

}

THE TREES 269

if(location->lchild==NULL && location->rchild==NULL)

case_a(parent,location);

if(location->lchild!=NULL && location->rchild==NULL)

case_b(parent,location);

if(location->lchild==NULL && location->rchild!=NULL)

case_b(parent,location);

if(location->lchild!=NULL && location->rchild!=NULL)

case_c(parent,location);

delete(location);

}/*End of del()*/

//Function to traverse in a preorder fashion

void BST::preorder(NODE ptr)

{

if(root==NULL)

{

cout<<“\nTree is empty”;

getch();

return;

}

if(ptr!=NULL)

{

cout<<“ ”<<ptr->info;

preorder(ptr->lchild);

preorder(ptr->rchild);

}

}/*End of preorder()*/

//Function for Inorder traversal

void BST::inorder(NODE ptr)

{

if(root==NULL)

{

cout<<“Tree is empty”;

getch();

return;

}

if(ptr!=NULL)

{

inorder(ptr->lchild);

cout<<“ ”<<ptr->info;

inorder(ptr->rchild);

270 PRINCIPLES OF DATA STRUCTURES USING C AND C++

}

}

//This function will travel in a postorder fashion

void BST::postorder(NODE ptr)

{

if(root==NULL)

{

cout<<“\nTree is empty”;

getch();

return;

}

if(ptr!=NULL)

{

postorder(ptr->lchild);

postorder(ptr->rchild);

cout<<“ ”<<ptr->info;

}

}/*End of postorder()*/

//Function to display all the nodes of the tree

void BST::display(NODE ptr,int level)

{

int i;

if (ptr!=NULL)

{

display(ptr->rchild, level+1);

cout<<“\n”;

for (i = 0; i < level; i++)

cout<<“ ”;

cout<<ptr->info;

display(ptr->lchild, level+1);

}/*End of if*/

}/*End of display()*/

void main()

{

int choice,num;

BST bo;

while(1)

{

clrscr();

THE TREES 271

//Menu options

cout<<“\n1.Insert\n”;

cout<<“2.Delete\n”;

cout<<“3.Inorder Traversal\n”;

cout<<“4.Preorder Traversal\n”;

cout<<“5.Postorder Traversal\n”;

cout<<“6.Display\n”;

cout<<“7.Quit\n”;

cout<<“\nEnter your choice : ”;

cin>>choice;

switch(choice)

{

 case 1:

cout<<“\nEnter the number to be inserted : ”;

cin>>num;

bo.insert(num);

break;

 case 2:

cout<<“\nEnter the number to be deleted : ”;

cin>>num;

bo.del(num);

break;

 case 3:

bo.inorder(bo.root);

getch();

break;

 case 4:

bo.preorder(bo.root);

getch();

break;

 case 5:

bo.postorder(bo.root);

getch();

break;

 case 6:

bo.display(bo.root,1);

getch();

break;

 case 7:

exit(0);

 default:

272 PRINCIPLES OF DATA STRUCTURES USING C AND C++

cout<<“\nWrong choice\n”;

getch();

}/*End of switch */

}/*End of while */

}/*End of main()*/

8.8. THREADED BINARY TREE

Traversing a binary tree is a common operation and it would be helpful to find more
efficient method for implementing the traversal. Moreover, half of the entries in the Lchild
and Rchild field will contain NULL pointer. These fields may be used more efficiently by
replacing the NULL entries by special pointers which points to nodes higher in the tree.
Such types of special pointers are called threads and binary tree with such pointers are
called threaded binary tree.

Fig. 8.20 shows the threaded binary tree with threads replacing NULL pointer of
binary tree in Fig. 8.13. The threads are drawn with dotted lines to differentiate then from
tree pointers.

A

B

D E

H I

C

F

G
J

Fig. 8.20. Threaded binary tree

There are many ways to thread a binary tree. Right most nodes in the threaded
binary tree have a NULL right pointer (i.e., in-order successor). Such trees are called right
in threaded binary trees. A left in threaded binary tree may be defined similarly as one in
which each NULL left pointer is altered to contain a thread (i.e., in-order predecessor). An
in-threaded binary tree may be defined as a binary tree that is both left-in-threaded and
right-in-threaded.

We can implement a right in threaded binary tree using arrays by distinguishing
threads from ordinary pointers. Threads are denoted by negative numbers, when ordinary
pointers are denoted by positive integers. The array representation of the right in thread
binary tree in Fig.8.20 is shown below table (Fig. 8.21)

THE TREES 273

Info Lchild Rchild

A[0] A 1 2

A[1] B 3 4

A[2] C 5

A[3] D 8

A[4] E 9 10

A[5] F 12

A[6]

A[7]

A[8] G – 1

A[9] H – 4

A[10] I – 0

A[11]

A[12] J – 2

A[13]

A[14]

Fig. 8.21

To implement a right-in-threaded binary tree using dynamic memory allocation, an
extra 1 bit logical field, rthread, is used to distinguish threads from ordinary pointers. If a
right pointer of a node is threaded, then the rthread = TRUE otherwise FALSE. Following
program will construct a right-in-threaded binary tree and will traverse in-order fashion.

8.9. EXPRESSION TREE

An ordered tree may be used to represent a general expressions, is called expression
tree. Nodes in one expression tree contain operators and operands.

For example: The expression, f(A,B,C) * (Sin(D) – Log(E * F!)), is represented in Fig.
8.22.

274 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 8.22

A binary tree is used to represent a binary expression called binary expression tree.
Root node of the binary expressions trees contains operator and two children node contain
its operand.

a b

+

Fig. 8.23

For example, a+b can be represented in Fig. 8.23. And the expression E = (a + b) * (c
/ (d – e)))with more operators and operands) can be represented in binary expression tree
as follows :

Fig. 8.24

THE TREES 275

Expression tree can be evaluated, if its operands are numerical constants. Follow-
ing section will explain a C/C++ program that accepts a pointer of an expression tree and
returns the value of the expression represented by the tree.

8.10. DECISION TREE

A decision tree is a binary tree, where sorting of elements is done by only compari-
sons. That is a decision tree can be applied to any sorting algorithms that sorts by using
comparisons. (The sorting techniques were discussed in chapter 6). The external nodes (or
leafs) correspond to the n! ways that n items can appear, because we are trying to sort n
items a1, a2,, an. And internal nodes correspond to the different comparison that may
take place during the execution. The decision tree is Fig. 8.25 represents an algorithm that
sorts the tree elements x, y and z. The first comparison prefers at the root node between x
and y and goes down.

Fig. 8.25

The sorting techniques discussed in chapter 6 takes minimum of 0(n log n) to sort
an array of n elements. The objective of decision tree is to develop an algorithm, which can
sort n items of the order less than 0(n Log n).

The decision tree is more suitable when extremely small input size is to be sorted.
The number at comparisons in the worst case is equal to the depth of the deepest leaf (i.e.,
the largest path). In Fig. 8.25, maximum of three comparisons used, which is a worst case
i.e., O(n) and it is less than O(n log n). Moreover, in the average case, the average number(s)
of comparisons are sufficient to sort the elements, which is equal to the average external
path length of the tree (i.e., average depth of the leaves).

8.11. FIBANOCCI TREE

Fibanocci tree of order n is a binary tree, which build by the following restriction :
1. If n = 0, then the empty tree is a fibanocci tree of order 0.
2. If n = 1, then the tree with a single node is a fibanocci tree of order 1.
3. If n > 1, the tree consists of a root with a left subtree of order n – 1 and right sub

tree of order n – 2.

276 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Here are some exmples of fibanocci tree

Fig. 8.26. Fibanocci tree of order 0

A

Fig. 8.27. Fibanocci tree of order 1

A

B

Fig. 8.28. Fibanocci tree of order 2

A

B C

D

Fig. 8.29. Fibanocci tree of order 3

A

B C

D F

G

E

Fig. 8.30. Fibanocci tree of order 4

THE TREES 277

Fig 8.31. Fibanocci tree of order 5

8.12. SELECTION TREES

Suppose we have k ordered set of arrays, called runs, which are to be merged into a
single ordered array. Each run consists of some elements and is in ascending order. The
merging task can be accomplished by repeatedly outputting the smallest element from the
k runs. The most general way to merge k runs is to make (k – 1) comparisons to output the
smallest element, (from the k runs) in every iteration. By using the data structure selec-
tion tree, we can reduce the number of comparisons needed to find the next smallest
element. There are two kinds of selection trees :

(a) Winner trees

(b) Loser trees

8.12.1. WINNER TREES

A Winner Tree is a complete binary tree in which each node represents the smallest
of its children. Thus the root node represents the smallest node in the tree, which is the
next element in the merged single ordered array.

The construction of the winner tree may be compared to the playing of a tennis
tournament. Then, each non-leaf node in the tree represents the winner of a tournament
and root node represents the over all winner. Winner tree can be illustrated with the
following example. Here we want to merge 8 runs into single sorted array.

280 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Here we have restructured the tree by replacing along the path. That is we have
located the smallest element (The winner) with just 3 comparisons. And repeat the proc-
ess.

Fig. 8.36

Fig. 8.37

THE TREES 281

Fig. 8.38

Fig. 8.39

282 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 8.40

The final merged sorted array of 8 runs is, 10, 13, 14, 19, 30, 31, 40, 41, 46, 47, 48,
61, 71, 90, 94, 98.

8.12.2. LOSER TREES

The restructuring process in winner tree can be further simplified by placing in
each non-leaf node of the loser instead of winner. A selection tree in which each non-leaf
node retains the information of the loser is called a loser tree. Fig. 8.41 shows the loser
tree that corresponds to the winner tree of Fig. 8.34.

Fig. 8.41

THE TREES 283

8.13. BALANCED BINARY TREES

A balanced binary tree is one in which the largest path through the left sub tree is
the same length as the largest path of the right sub tree, i.e., from root to leaf. Searching
time is very less in balanced binary trees compared to unbalanced binary tree. i.e., bal-
anced trees are used to maximize the efficiency of the operations on the tree. There are two
types of balanced trees :

1. Height Balanced Trees

2. Weight Balanced Trees

8.13.1. HEIGHT BALANCED TREES

In height balanced trees balancing the height is the important factor. There are two
main approaches, which may be used to balance (or decrease) the depth of a binary tree :

(a) Insert a number of elements into a binary tree in the usual way, using the algo-
rithm given in the previous section (i.e., Binary search Tree insertion). After
inserting the elements, copy the tree into another binary tree in such a way that
the tree is balanced. This method is efficient if the data(s) are continually added
to the tree.

(b) Another popular algorithm for constructing a height balanced binary tree is the
AVL tree, which is discussed in the next section.

8.13.2. WEIGHT BALANCED TREE

A(9)

B(7) C(5)

D(2)

Fig. 8.42

A weight-balanced tree is a balanced binary tree in which additional weight field is
also there. The nodes of a weight-balanced tree contain four fields :

(i) Data Element

(ii) Left Pointer

(iii) Right Pointer

(iv) A probability or weight field

The data element, left and right pointer fields are save as that in any other tree
node. The probability field is a specially added field for a weight-balanced tree. This field
holds the probability of the node being accessed again, that is the number of times the
node has been previously searched for.

284 PRINCIPLES OF DATA STRUCTURES USING C AND C++

When the tree is created, the nodes with the highest probability of access are placed
at the top. That is the nodes that are most likely to be accessed have the lowest search
time. And the tree is balanced if the weights in the right and left sub trees are as equal as
possible. The average length of search in a weighted tree is equal to the sum of the prob-
ability and the depth for every node in the tree.

The root node contain highest weighted node of the tree or sub tree. The left sub tree
contains nodes where data values are less than the current root node, and the right sub
tree contain the nodes that have data values greater than the current root node.

8.14. AVL TREES

This algorithm was developed in 1962 by two Russian Mathematicians, G.M. Adel’son
Vel’sky and E.M. Landis; here the tree is called AVL Tree. An AVL tree is a binary tree in
which the left and right sub tree of any node may differ in height by at most 1, and in
which both the sub trees are themselves AVL Trees. Each node in the AVL Tree possesses
any one of the following properties :

(a) A node is called left heavy, if the largest path in its left sub tree is one level larger
than the largest path of its right sub tree.

(b) A node is called right heavy, if the largest path in its right sub tree is one level
larger than the largest path of its left sub tree.

(c) The node is called balanced, if the largest paths in both the right and left sub
trees are equal. Fig. 8.37 shows some example for AVL trees.

Fig. 8.43. AVL tree

The construction of an AVL Tree is same as that of an ordinary binary tree except
that after the addition of each new node, a check must be made to ensure that the AVL
balance conditions have not been violated. If the new node causes an imbalance in the
tree, some rearrangement of the tree’s nodes must be done. Following algorithm will insert
a new node in an AVL Tree :

THE TREES 285

ALGORITHM

1. Insert the node in the same way as in an ordinary binary tree.

2. Trace a path from the new nodes, back towards the root for checking the height
difference of the two sub trees of each node along the way.

3. Consider the node with the imbalance and the two nodes on the layers immedi-
ately below.

4. If these three nodes lie in a straight line, apply a single rotation to correct the
imbalance.

5. If these three nodes lie in a dogleg pattern (i.e., there is a bend in the path) apply
a double rotation to correct the imbalance.

6. Exit.

The above algorithm will be illustrated with an example shown in Fig. 8.44, which is
an unbalance tree. We have to apply the rotation to the nodes 40, 50 and 60 so that a
balance tree is generated. Since the three nodes are lying in a straight line, single rotation
is applied to restore the balance.

Fig. 8.44

Fig. 8.45 is a balance tree of the unbalanced tree in Fig. 8.44. Consider a tree in Fig.
8.46 to explain the double rotation.

Fig. 8.45

286 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 8.46

While tracing the path, first imbalance is detected at node 60. We restrict our atten-
tion to this node and the two nodes immediately below it (40 and 50). These three nodes
form a dogleg pattern. That is there is bend in the path. Therefore we apply double rota-
tion to correct the balance. A double rotation, as its name implies, consists of two single
rotations, which are in opposite direction. The first rotation occurs on the two layers (or
levels) below the node where the imbalance is found (i.e., 40 and 50). Rotate the node 50
up by replacing 40, and now 40 become the child of 50 as shown in Fig. 8.47.

Fig. 8.47

Apply the second rotation, which involves the nodes 60, 50 and 40. Since these
three nodes are lying in a straight line, apply the single rotation to restore the balance, by
replacing 60 by 50 and placing 60 as the right child of 50 as shown in Fig. 8.48.

Fig. 8.48

THE TREES 287

Balanced binary tree is a very useful data structure for searching the element with
less time. An unbalanced binary tree takes O(n) time to search an element from the tree, in
the worst case. But the balanced binary tree takes only O(Log n) time complexity in the
worst case.

8.15. M-WAY SEARCH TREES

Trees having (m–1) keys and m children are called m-way search trees. A binary tree
is a 2-way tree. It means that it has m – 1 = 2 – 1 = 1 key (here m = 2) in every node and it
can have maximum of two children. A binary tree is also called an m-way tree of order 2.

Similarly an m-way tree of order 3 is a tree in which key values could be either 1 or
2 (i.e., inside every node and it can have maximum of two children). For example an m-way
tree at order (degree) 4 is shown in Fig. 8.49.

Fig. 8.49

8.16. 2-3 TREES

Every node in the 2-3 trees has two or three children. A 2-3 tree is a tree in which
leaf nodes are the only nodes that contains data values. All non-leaf nodes contain two
values of the sub trees. All the leaf nodes have the same path length from the root node.
Fig. 8.50 show a typical 2-3 tree.

Fig. 8.50

The first value in the non-leaf root node is the maximum of all the leaf values in the
left sub tree. The second value is the maximum value of the middle sub tree. With this root
node information following conclusion can be obtained :

288 PRINCIPLES OF DATA STRUCTURES USING C AND C++

1. Every leaf node in the left sub tree of any non-leaf node is equal to or less than the
first value.

2. Every leaf node in the middle sub tree is less than or equal to the second value
and greater than the first value.

3. Every leaf node in the right sub tree is greater than the second value

Following figures will illustrate the construction (or insertion) of the 2-3 trees :

Fig. 8.51. Insert 13

Fig. 8.52. Insert 41

Fig. 8.53. Insert 21

Fig. 8.54. Insert 7

THE TREES 289

Fig. 8.55. Insert 18, 39

Fig. 8.56. Insert 50, 59

8.17. 2-3-4 TREES

A 2-3-4 tree is an extension of a 2-3 tree. Every node in the 2-3-4 trees can have
maximum of 4 children. A typical 2-3-4 tree is shown in Fig. 8.57.

Fig. 8.57

290 PRINCIPLES OF DATA STRUCTURES USING C AND C++

A 2-3-4 tree is a search tree that is either empty or satisfies the following properties.

1. Every internal node is a 2, 3, or 4 node. A 2 node has one element, a 3 node has
two elements and a 4 node has three elements.

2. Let LeftChild and RightChild denote the children of a 2 node and Data be the
element in this node. All the elements in LeftChild have the elements less than
the data, and all elements in the RightChild have the elements greater than the
Data.

3. Let LeftChild, MidChild and RightChild denote the children of a 3 node and
LeftData and RightData be the element in this node. All the elements in LeftChild
have the elements less than the LeftData, all the elements in the MidChild have
the element greater than LeftData but less than RightData, and all the elements
in the RightChild have the elements greater than Right Data.

4. Let LeftChild, LeftMidChild, RightMidChild, and RightChild denote the children
of a 4 node. Let LeftData, MidData and RightData be the three elements in this
node. Then LeftData is less than MidData and it is less than RightData. All the
elements in the LeftChild is less than LeftData, all the elements in the Left MidChild
is less than MidData but greater than LeftData, all the elements in RightMidChild
is less than RightData but greater than MidData, and all the elements in RightChild
is greater than RightData.

5. All external nodes are at the same level.

Consider a tree in Fig. 8.58. If we want to insert an element, 77, top-down insertion
method is used by splitting the root, Fig. 8.59.

Fig. 8.58

Fig. 8.59

If a 2-3-4 tree of highest h has only 2 nodes, then it contains 2h–1 elements. If it
contains only 4 nodes, then the number of elements is 4h-1. A 2-3-4 tree is height h with
a mixture of 2, 3 and 4 nodes, has between 2h–1 and 4h–1 elements. In other words, the
height of a 2-3-4 with n elements is between log4(n + 1) and log2(n + 1). A 2-3-4 tree can be
represented efficiently as a binary tree called a red-black tree, which will be discussed in
the next section.

8.18. RED-BLACK TREE

A red-black tree is a balanced binary search tree with the following properties :

1. Every node is colored red or black.

THE TREES 291

2. Every leaf is a NULL node, and is colored black.

3. If a node is red, then both its children are black.

4. Every simple path from a node to a descendant leaf contains the same number of
black nodes.

The red-black tree algorithm is a method for balancing trees. The name derives from
the fact that each node is colored red or black, and the color of the node is instrumental in
determining the balance of the tree. During insert and delete operations, nodes may be
rotated to maintain tree balance. Both average and worst-case search time is O(log n).

We classify red-black trees according to the order n, the number of internal nodes.
In the Fig. 8.60, n = 6. Among all red-black trees of height 4, this is one with the minimum
number of nodes. A red-black tree with n nodes has height at least O(log n) and at most
2O(log n + 1).

Fig. 8.60

To insert a node, we search the tree for an insertion point, and add the node to the
tree. A new node replaces an existing NULL node at the bottom of the tree, and has two
NULL nodes as children. In the implementation, a NULL node is simply a pointer to a
common sentinel node that is colored black. After insertion, the new node is colored red.
Then the parent of the node is examined to determine if the red-black tree properties have
been violated. If necessary, we recolor the node and do rotations to balance the tree.

By inserting a red node with two NULL children, we have preserved black-height
property (property 4). However, property 3 may be violated. This property states that both
children of a red node must be black. Although both children of the new node are black
(they’re NULL), consider the case where the parent of the new node is red. Inserting a red
node under a red parent would violate this property. There are two cases to consider:

• Red parent, red uncle: Fig. 8.61 illustrates a red-red violation. Node X is the
newly inserted node, with both parent and uncle colored red. A simple recoloring
removes the red-red violation. After recoloring, the grandparent (node B) must be
checked for validity, as its parent may be red. Note that this has the effect of
propagating a red node up the tree. On completion, the root of the tree is marked
black. If it was originally red, then this has the effect of increasing the black-
height of the tree.

292 PRINCIPLES OF DATA STRUCTURES USING C AND C++

• Red parent, black uncle: Fig. 8.62 illustrates a red-red violation, where the uncle
is colored black. Here the nodes may be rotated, with the subtrees adjusted as
shown. At this point the algorithm may terminate as there are no red-red con-
flicts and the top of the subtree (node A) is colored black. Note that if node X was
originally a right child, a left rotation would be done first, making the node a left
child.

Each adjustment made while inserting a node causes us to travel up the tree one
step. At most 1 rotation (2 if the node is a right child) will be done, as the algorithm
terminates in this case. The technique for deletion is similar.

 Fig. 8.61

294 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 8.63. B-tree

Nodes in a B-Tree are usually represented as an ordered set of elements and child
pointers. Every node but the root contains a minimum of m elements, a maximum of n
elements, and a maximum of n + 1 child pointers, for some arbitrary m and n. For all
internal nodes, the number of child pointers is always one more than the number of
elements. Since all leaf nodes are at the same height, nodes do not generally contain a way
of determining whether they are leaf or internal.

Each inner node’s elements act as separation values which divide its subtrees. For
example, if an inner node has three child nodes (or subtrees) then it must have two sepa-
ration values or elements a1 and a2. All values in the leftmost subtree will be less than a1
, all values in the middle subtree will be between a1 and a2, and all values in the rightmost
subtree will be greater than a2.

ALGORITHMS

SEARCH

Search is performed in the typical manner, analogous to that in a binary search
tree. Starting at the root, the tree is traversed top to bottom, choosing the child pointer
whose separation values are on either side of the value that is being searched. Binary
search is typically used within nodes to determine this location.

INSERTION

For a node to be in an illegal state, it must contain a number of elements which is
outside of the acceptable range.

1. First, search for the position into which the node should be inserted. Then, in-
sert the value into that node.

2. If no node is in an illegal state then the process is finished.

3. If some node has too many elements, it is split into two nodes, each with the
minimum amount of elements. This process continues recursively up the tree
until the root is reached. If the root is split, a new root is created. Typically the
minimum and maximum number of elements must be selected such that the
minimum is no more than one half the maximum in order for this to work.

THE TREES 295

DELETION

1. First, search for the value which will be deleted. Then, remove the value from the
node which contains it.

2. If no node is in an illegal state then the process is finished.

3. If some node is in an illegal state then there are two possible cases:

(a) Its sibling node, a child of the same parent node, can transfer one or more of
its child nodes to the current node and return it to a legal state. If so, after
updating the separation values of the parent and the two siblings the proc-
ess is finished.

(b) Its sibling does not have an extra child because it is on the lower bound. In
that case both siblings are merged into a single node and we recurse onto
the parent node, since it has had a child node removed. This continues until
the current node is in a legal state or the root node is reached, upon which
the root’s children are merged and the merged node becomes the new root.

Several variants on the B-tree are listed in following table :

B-Tree B*-Tree B′-Tree B′′ -Tree

Data stored in Any node Any node Leaf only Leaf only

On insert, 1 × 1 → 2 × 1 → 1 × 1 → 3 × 1 →
split 2 × 1/2 3 × 2/3 2 × 1/2 4 × 3/4

On delete, 2 × 1/2 → 3 × 2/3 → 2 × 1/2 → 3 × 1/2 →
join 1 × 1 2 × 1 1 × 1 2 × 3/4

As we have discussed earlier the standard B-tree stores keys and data in both inter-
nal and leaf nodes. When descending the tree during insertion, a full child node is first
redistributed to adjacent nodes. If the adjacent nodes are also full, then a new node is
created, and half the keys in the child are moved to the newly created node. During dele-
tion, children that are 1/2 full first attempt to obtain keys from adjacent nodes. If the
adjacent nodes are also 1/2 full, then two nodes are joined to form one full node. B*-trees
are similar, only the nodes are kept 2/3 full. This results in better utilization of space in
the tree, and slightly better performance.

Fig. 8.64. B′′′′′-Tree

296 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 8.64 illustrates a B+-tree. All keys are stored at the leaf level, with their associ-
ated data values. Duplicates of the keys appear in internal parent nodes to guide the
search. Pointers have a slightly different meaning than in conventional B-trees. The left
pointer designates all keys less than the value, while the right pointer designates all keys
greater than or equal to the value. For example, all keys less than 22 are on the left
pointer, and all keys greater than or equal to 22 are on the right. Notice that key 22 is
duplicated in the leaf, where the associated data may be found. During insertion and
deletion, care must be taken to properly update parent nodes. When modifying the first
key in a leaf, the tree is walked from leaf to root. The last greater than or equal to pointer
found while descending the tree will require modification to reflect the new key value.
Since all keys are in the leaf nodes, we may link them for sequential access.

The organization of B++-trees is similar to B+-trees, except for the split/join strategy.
Assume each node can hold k keys, and the root node holds 3k keys. Before we descend to
a child node during insertion, we check to see if it is full. If it is, the keys in the child node
and two nodes adjacent to the child are all merged and redistributed. If the two adjacent
nodes are also full, then another node is added, resulting in four nodes, each 3/4 full.
Before we descend to a child node during deletion, we check to see if it is 1/2 full. If it is,
the keys in the child node and two nodes adjacent to the child are all merged and redis-
tributed. If the two adjacent nodes are also 1/2 full, then they are merged into two nodes,
each 3/4 full. This is halfway between 1/2 full and completely full, allowing for an equal
number of insertions or deletions in the future.

Recall that the root node holds 3k keys. If the root is full during insertion, we
distribute the keys to four new nodes, each 3/4 full. This increases the height of the tree.
During deletion, we inspect the child nodes. If there are only three child nodes, and they
are all 1/2 full, they are gathered into the root, and the height of the tree decreases.

8.20. SPLAY TREES

A splay tree is a self-balancing binary search tree with the additional unusual prop-
erty that recently accessed elements are quick to access again. It performs basic opera-
tions such as insertion, search and removal in O(log(n)) amortized time. For many non-
uniform sequences of operations, splay trees perform better than other search trees, even
when the specific pattern of the sequence is unknown. The splay tree was invented by
Daniel Sleator and Robert Tarjan.

All normal operations on a splay tree are combined with one basic operation, called
splaying, also called rotations. That is the efficiency of splay trees comes not from an
explicit structural constraint, as with balanced trees, but from applying a simple restruc-
turing heuristic, called splaying, whenever the tree is accessed. Splaying the tree for a
certain element rearranges the tree so that the element is placed at the root of the tree.
One way to do this is to first perform a standard binary tree search for the element in
question, and then use tree rotations in a specific fashion to bring the element to the top.
Alternatively, a bottom-up algorithm can combine the search and the tree reorganization.

There are several ways in which splaying can be done. It always involves inter-
changing the root with the node in operation. One or more other nodes might change

THE TREES 297

position as well. The purpose of splaying is to minimize the number of (access) operations
required to recover desired data records over a period of time.

SPLAY OPERATION

The most important tree operation is splay, also called rotation. If we apply splay
rotation to splay(N), which moves an element N to the root of the tree. In case N is not
present in the tree, the last element on the search path for N is moved instead.

To do a splay, we carry out a sequence of rotations, each of which moves the target
node N closer to the root. Each particular step depends on only two factors:

Whether N is the left or right child of its parent node, P,

Whether P is the left or right child of its parent, G (for grandparent node).

Thus, there are four cases:

Case 1: N is the left child of P and P is the left child of G. In this case we perform a
double right rotation, so that P becomes N’s right child, and G becomes P’s right child.

Case 2: N is the right child of P and P is the right child of G. In this case we perform
a double left rotation, so that P becomes N’s left child, and G becomes P’s left child.

Case 3: N is the left child of P and P is the right child of G. In this case we perform
a rotation so that G becomes N’s left child, and P becomes N’s right child.

Case 4: N is the right child of P and P is the left child of G. In this case we perform
a rotation so that P becomes N’s left child, and G becomes N’s right child.

Finally, if N doesn’t have a grandparent node, we simply perform a left or right
rotation to move it to the root. By performing a splay on the node of interest after every
operation, we keep recently accessed nodes near the root and keep the tree roughly bal-
anced, so that we achieve the desired amortized time bounds.

The run time for a splay(N) operation is proportional to the length of the search path
for N: While searching for N we traverse the search path top-down. Let Z be the last node
on that path. In a second step, we move Z along that path by applying rotations. There are
six different rotations :

1. Zig Rotation (Right Rotation)

2. Zag Rotation (Left Rotation)

3. Zig-Zag (Zig followed by Zag)

4. Zag-Zig (Zag followed by Zig)

5. Zig-Zig

6. Zag-Zag

Consider the path going from the root down to the accessed node. Each time we
move left going down this path, we say we “zig” and each time we move right, we say we
“zag.”

Zig Rotation and Zag Rotation: Note that a zig rotation is the same as a right rota-
tion whereas the zag step is the left rotation. See Fig. 8.65.

300 PRINCIPLES OF DATA STRUCTURES USING C AND C++

The above scheme of splaying is called bottom-up splaying. In top-down splaying, we
start from the root and as we locate the target element and move down, we splay as we go.
This is more efficient.

ADVANTAGES AND DISADVANTAGES

Good performance for a splay tree depends on the fact that it is self-balancing, and
indeed self-optimising, in that frequently accessed nodes will move nearer to the root
where they can be accessed more quickly. This is an advantage for nearly all practical
applications, and is particularly useful for implementing caches; however it is important
to note that for uniform access, a splay tree’s performance will be considerably (although
not asymptotically) worse than a somewhat balanced simple binary search tree.

Splay trees also have the advantage of being considerably simpler to implement
than other self-balancing binary search trees, such as red-black trees or AVL trees, while
their average-case performance is just as efficient. Also, splay trees don’t need to store any
bookkeeping data, thus minimizing memory requirements. However, these other data struc-
tures provide worst-case time guarantees, and can be more efficient in practice for uni-
form access.

One worst-case issue with the basic splay tree algorithm is that of sequentially
accessing all the elements of the tree in the sort order. This leaves the tree completely
unbalanced (this takes n accesses- each an O(1) operation). Re-accessing the first item
triggers an operation that takes O(n) operations to rebalance the tree before returning the
first item. This is a significant delay for that final operation, although the amortized per-
formance over the entire sequence is actually O(1). However, recent research shows that
randomly rebalancing the tree can avoid this unbalancing effect and give similar perform-
ance to the other self-balancing algorithms.

It is possible to create a persistent version of splay trees which allows access to both
the previous and new versions after an update. This requires amortized O(log n) space per
update.

8.21. DIGITAL SEARCH TREES

A digital search tree is a binary tree in which each node contains one element. The
element-to-node assignment is determined by the binary representation of the element
keys. Suppose that we number the bits in the binary representation of a key from left to
right beginning at one. Then bit one of 1000 is 1, and bits two, three, and four are 0. All
keys in the left subtrees of a node at level I have bit I equal to zero whereas those in the
right subtrees of nodes at this level have bit I = 1. Fig. 8.71 shows a digital search tree.
This tree contains the keys 1000, 0010, 1001, 0001, 1100, 0000.

THE TREES 301

Fig. 8.71

Suppose we are searching for a key k = 0011 in the tree (Fig. 8.71). k is first com-
pared with the key in the root. Since k is different from the key in the root, and since bit
one of k is 0, we move to the left child (i.e., 0010) of the root. Now, since k is different from
the key in node and bit two of k is 0, we move to the left chills (i.e., 0001). Since k is
different from the key in node and bit three of k is one, we move to the right child of node
0001, which is NULL. From this we conclude that k = 0011 is not in the search tree. If we
wish to insert k into the tree, then it is added as the right child of node 0001 as shown in
the Fig. 8.72.

Fig. 8.72

The digital search tree functions to search and insert are quite similar to the corre-
sponding functions for binary search trees. The essential difference is that the subtree to
move to is determined by a bit in the search key rather than by the result of the compari-
son of the search key in the current node. The deletion of an item in a leaf is done by
removing the leaf node. To delete from any other node, the deleted item must be replaced
by a value from any leaf in its subtree and that leaf removed.

Each of these operations can be performed in O(h) time, where h is the height of the
digital search tree. If each key in a search tree has SIZE bits, then the height of the digital
search tree is at most SIZE + 1.

302 PRINCIPLES OF DATA STRUCTURES USING C AND C++

8.21. TRIES

The trie is a data structure that can be used to do a fast search in a large text. And
a trie (from retrieval), is a multi-way tree structure useful for storing strings over an alpha-
bet and it was introduced in the 1960’s by Fredkin. It has been used to store large diction-
aries of English (say) words in spelling-checking programs and in natural-language “un-
derstanding” programs.

A trie is an ordered tree data structure that is used to store an associative array
where the datas (or key or information) are strings. Unlike a binary search tree, no node in
the tree stores the key associated with that node; instead, its position in the tree shows
what key it is associated with. All the descendants of any one node have a common prefix
of the string associated with that node. Values are normally not associated with every node,
only with leaves and some inner nodes that happen to correspond to keys of interest.

That is no node in the trie contains full characters (or information) of the word
(which is a key). But each node will contain associate characters of the word, which may
ultimately lead to the full word at the end of a path. For example consider the data: an,
ant, cow, the corresponding trie would look like be in Fig. 8.73, which is a non-compact
trie.

a b c z

a n z

a t z

a o z

a w z

Fig. 8.73

The idea is that all strings sharing a common stem (or character or prefix) hang off
a common node. When the strings are words over {a, z}, a node has at most 27 children —
one for each letter plus a terminator.

The elements in a string can be recovered in a scan from the root to the leaf that
ends a string. All strings in the trie can be recovered by a depth-first scan of the tree. The
height of a trie is the length of the longest key in the trie.

ADVANTAGES AND DISADVANTAGES

There are three main advantages of tries over binary search trees (BSTs):

Searching a data is faster in tries. Searching a key (or data) of length m takes worst
case O(m) = O(1) time; where BST takes O(log n) time, because initial characters are exam-

THE TREES 303

ined repeatedly during multiple comparisons. Also, the simple operations tries use during
search, such as array indexing using a character, are fast on real machines.

Tries require less space. Because the keys are not stored explicitly, only an amor-
tized constant amount of space is needed to store each key.

Tries make efficient longest-prefix matching, where we wish to find the key sharing
the longest possible prefix with a given key. They also allow one to associate a value with
an entire group of keys that have a common prefix.

Although it seems restrictive to say a trie’s key type must be a string, many common
data types can be seen as strings; for example, an integer can be seen as a string of bits.
Integers with common bit prefixes occur as map keys in many applications such as rout-
ing tables and address translation tables.

Tries are most useful when the keys are of varying lengths and we expect some key
search to fail, because the key is not present. If we have fixed-length keys, and expect all
search to succeed, then we can improve key search by combining every node with a single
child (such as “i” and “in” above) with its child, producing a patricia trie. That is when we
are dealing with very long keys, the cost of a key comparison is high. We can reduce the
number of key compariosns to one by using a related structure called patricia (Practical
Algorithm To Retrieve Information Coded In Alphanumeric). We shall develop this struc-
ture in three steps. First, we introduce a structure called binary tries. Then we transform
binary tries into compressed binary tries. Finally from compressed binary tries we obtain
patricia. Binary tries and compressed binary tries are introduced only as a means of
arriving at patricia.

SELF REVIEW QUESTIONS

1. Define and explain trees and binary trees.

[KERALA - DEC 2004 (BTech), MG - MAY 2004 (BTech)]

2. What is binary search tree? Write an algorithm to insert and delete an item from a binary
search tree. [CUSAT - NOV 2002 (BTech), MG - MAY 2004 (BTech)

ANNA - MAY 2004 (BE)]

3. What are different methods of binary tree traversal with examples?

[MG - NOV 2004 (BTech), MG - NOV 2003 (BTech)

KERALA - DEC 2003 (BTech)]

4. Write an algorithm for the in-order traversal of a binary tree. [MG - NOV 2004 (BTech)]

5. Explain the structure of a threaded tree. What are the conventions of representing threads?

[MG - MAY 2003 (BTech), MG - MAY 2000 (BTech)]

6. Explain a height balanced binary tree.

[CUSAT - MAY 2000 (BTech), MG - MAY 2003 (BTech)

ANNA - MAY 2004 (MCA)]

7. Discuss the improvement in performance of binary trees brought by using threads.

[MG - NOV 2003 (BTech)]

8. Discuss the difference between a general tree and a binary tree. What is a complete
binary tree? Give an algorithm for deleting an information value X from a given lexically
ordered binary tree. [MG - NOV 2003 (BTech)]

304 PRINCIPLES OF DATA STRUCTURES USING C AND C++

9. What is a threaded binary tree? Explain in-order threading. [MG - NOV 2002 (BTech)]

10. Given an account of the different classification of trees. [MG - NOV 2002 (BTech)]

11. What are common operations performed on binary trees? [MG - MAY 2002 (BTech)]

12. Write notes on height balanced and weight balanced trees. [MG - MAY 2002 (BTech)]

14. Discuss the linked storage representation for binary trees. [MG - MAY 2002 (BTech)]

15. What is a height of a binary tree? [MG - MAY 2000 (BTech)]

16. Draw a binary tree for the expression A*B–(C+D)*(P/Q). [MG - MAY 2000 (BTech)]

17. Discuss the internal memory representation of a binary tree using sequential and linked
representation? [MG - MAY 2000 (BTech)]

18. How to insert a node to the right of a given node in a threaded binary tree?

[Calicut - APR 1995 (BTech)]

19. Give a non-recursive algorithm for post order traversal of a binary tree.

[Calicut - APR 1995 (BTech)]

20. What are the applications of tree data structure?

[Calicut - APR 1997 (BTech), Calicut - APR 1995 (BTech)]

21. Explain preorder, Inorder and Post order traversals. [CUSAT - MAY 2000 (BTech)]

22. Explain binary tree traversals. Write an iterative function for inorder traversal. Explain
the advantages of threaded binary tree over ordinary binary tree.

[CUSAT - JUL 2002 (MCA), CUSAT - MAY 2000 (BTech)

ANNA - MAY 2004 (MCA)]

23. Explain the techniques for balancing heights of a binary tree.

[CUSAT - NOV 2002 (BTech)]

24. What is a threaded binary tree? Write algorithm for adding an element to a threaded
binary tree. [CUSAT - DEC 2003 (MCA)]

25. Define Binary search tree and its operations. [ANNA - DEC 2003 (BE)]

26. Define various tree traversal methods. Write non-recursive algorithm for in-order tree
traversal. [ANNA - DEC 2004 (BE), ANNA - DEC 2003 (BE)

ANNA - MAY 2003 (BE)]

27. What is Weight balanced tree? [ANNA - MAY 2004 (MCA)]

28. Write an algorithm to convert a general tree to binary tree.

[ANNA - MAY 2004 (BE), ANNA - MAY 2003 (BE)]

29. Define single rotation on AVL tree. [ANNA - MAY 2003 (BE)]

30. What is the difference between binary tree and binary search tree?

[ANNA - MAY 2003 (BE)]

31. Write iterative procedure for preorder tree traversal. [KERALA - DEC 2004 (BTech)]

32. Write an algorithm to traverse a binary tree in port order. [KERALA - MAY 2003 (BTech)]

33. What are the uses of tree traversals? [KERALA - DEC 2002 (BTech)]

34. Give the binary tree representation. [KERALA - MAY 2001 (BTech)]

35. Write an iterative procedure for post-order tree traversal. [KERALA - MAY 2001 (BTech)]

36. Draw a binary tree for the following expression A * B - (C - D) * (P / Q).

[KERALA - MAY 2002 (BTech)]

37. Write an algorithm to count the leaf nodes in a binary tree.

[KERALA - MAY 2002 (BTech)]

Graphs

This chapter discusses another nonlinear data structures, graphs. Graphs repre-
sentations have found application in almost all subjects like geography, engineering and
solving games and puzzles.

A graph G consist of

1. Set of vertices V (called nodes), (V = {v1, v2, v3, v4......}) and

2. Set of edges E (i.e., E {e1, e2, e3......cm}

A graph can be represents as G = (V, E), where V is a finite and non empty set at
vertices and E is a set of pairs of vertices called edges. Each edge ‘e’ in E is identified with
a unique pair (a, b) of nodes in V, denoted by e = [a, b].

v1 v2

v4 v3

v6

v5

e1

e3 e2

e4 e5

e6

Fig. 9.1

Consider a graph, G in Fig. 9.1. Then the vertex V and edge E can be represented as:
V = {v1, v2, v3, v4, v5, v6} and E = {e1, e2, e3, e4, e5, e6} E = {(v1, v2) (v2, v3) (v1, v3) (v3, v4),
(v3, v5) (v5, v6)}. There are six edges and vertex in the graph

9.1. BASIC TERMINOLOGIES

A directed graph G is defined as an ordered pair (V, E) where, V is a set of vertices
and the ordered pairs in E are called edges on V. A directed graph can be represented
geometrically as a set of marked points (called vertices) V with a set of arrows (called
edges) E between pairs of points (or vertex or nodes) so that there is at most one arrow
from one vertex to another vertex. For example, Fig 9.2 shows a directed graph, where G =
{a, b, c, d }, {(a, b), (a, d), (d, b), (d, d), (c, c)}

305

9

306 PRINCIPLES OF DATA STRUCTURES USING C AND C++

a d

b c

Fig. 9.2

An edge (a, b), in said to the incident with the vertices it joints, i.e., a, b. We can also
say that the edge (a, b) is incident from a to b. The vertex a is called the initial vertex and
the vertex b is called the terminal vertex of the edge (a, b). If an edge that is incident from
and into the same vertex, say (d, d) of (c, c) in Fig. 9.2, is called a loop.

Two vertices are said to be adjacent if they are joined by an edge. Consider edge
(a, b), the vertex a is said to be adjacent to the vertex b, and the vertex b is said to be
adjacent from the vertex a. A vertex is said to be an isolated vertex if there is no edge
incident with it. In Fig. 9.2 vertex C is an isolated vertex.

An undirected graph G is defined abstractly as an ordered pair (V, E), where V is a
set of vertices and the E is a set at edges. An undirected graph can be represented
geometrically as a set of marked points (called vertices) V with a set at lines (called edges)
E between the points. An undirected graph G is shown in Fig. 9.3.

Fig. 9.3

Two graphs are said to be isomorphic if there is a one-to-one correspondence be-
tween their vertices and between their edges such that incidence are prevented. Fig. 9.4
show an isomorphic undirected graph.

GRAPHS 307

a b

d c

a1

b1

d1

c1

Fig. 9.4

Let G = (V, E) be a graph. A graph G1 = (V1, E1) is said to be a sub-graph of G if E1 is
a subset at E and V1 is a subset at V such that the edges in E1 are incident only with the
vertices in V1. For example Fig 9.5 (b) is a sub-graph at Fig. 9.5(a). A sub-graph of G is said
to be a spanning sub-graph if it contains all the vertices of G. For example Fig. 9.5(c) shows
a spanning sub-graph at Fig. 9.5(a).

Fig. 9.5

The number of edges incident on a vertex is its degree. The degree of vertex a, is
written as degree (a). If the degree of vertex a is zero, then vertex a is called isolated vertex.
For example the degree of the vertex a in Fig. 9.5 is 3.

A graph G is said to be weighted graph if every edge and/or vertices in the graph is
assigned with some weight or value. A weighted graph can be defined as G = (V, E, We, Wv)
where V is the set of vertices, E is the set at edges and We is a weights of the edges whose
domain is E and Wv is a weight to the vertices whose domain is V. Consider a graph.

N

C

M K
39

47
55

113
27

N � New Delhi
K � Kolkotta
M � Mumbai
C � Chennai

Fig. 9:6

308 PRINCIPLES OF DATA STRUCTURES USING C AND C++

In Fig 9:6 which shows the distance in km between four metropolitan cities in India.
Here V = {N, K, M, C,} E = {(N, K), (N,M,), (M,K), (M,C), (K,C)} We = {55,47, 39, 27, 113} and
Wv = {N, K, M, C} The weight at the vertices is not necessary to maintain have become the
set Wv and V are same.

An undirected graph is said to be connected if there exist a path from any vertex to
any other vertex. Otherwise it is said to be disconnected.

Fig. 9.7 shows the disconnected graph, where the vertex c is not connected to the
graph. Fig. 9.8 shows the connected graph, where all the vertexes are connected.

a b

d
c

Fig. 9.7

a b

d
c

Fig. 9.8

A graph G is said to complete (or fully connected or strongly connected) if there is a
path from every vertex to every other vertex. Let a and b are two vertices in the directed
graph, then it is a complete graph if there is a path from a to b as well as a path from b to
a. A complete graph with n vertices will have n (n – 1)/2 edges. Fig 9.9 illustrates the
complete undirected graph and Fig 9.10 shows the complete directed graph.

a b

d c

Fig. 9.9

GRAPHS 309

a

bc

Fig 9:10

In a directed graph, a path is a sequence of edges (e1, e2, e3, en) such that the
edges are connected with each other (i.e., terminal vertex en coincides with the initial
vertex e1). A path is said to be elementary if it does not meet the same vertex twice. A path
is said to be simple if it does not meet the same edges twice. Consider a graph in Fig. 9.11

v1 v2 v3

v4

v5

v9

v6

v8

v7

e1 e2

e3

e4

e9

e10

e8

e7
e12

e11

e6 e5

Fig. 9.11

Where (e1, e2, d3, e4, e5) is a path; (e1, e3, e4, e5, e12, e9, e11, e6, e7, e8, e11) is a path
but not a simple one; (e1, e3, e4, e5, e6, e7, e8, e11, e12) is a simple path but not elementary
one; (e1, e3, e4, e5, e6, e7, e8) is an elementary path.

A circuit is a path (e1, e2, en) in which terminal vertex of en coincides with initial
vertex of e1. A circuit is said to be simple if it does not include (or visit) the same edge
twice. A circuit is said to be elementary if it does not visit the same vertex twice. In
Fig. 9:11 (e1, e3, e4, e5, e12, e9, e10) is a simple circuit but not a elementary one; (e1, e3,
e4, e5, e6, e7, e8, e10) is an elementary circuit.

9.2. REPRESENTATION OF GRAPH

Graph is a mathematical structure and finds its application is many areas, where
the problem is to be solved by computers. The problems related to graph G must be repre-

310 PRINCIPLES OF DATA STRUCTURES USING C AND C++

sented in computer memory using any suitable data structure to solve the same. There
are two standard ways of maintaining a graph G in the memory of a computer.

1. Sequential representation of a graph using adjacent

2. Linked representation of a graph using linked list

9.2.1. ADJACENCY MATRIX REPRESENTATION

The s A of a graph G = (V, E) with n vertices, is an n × n matrix. In this section let us
see how a directed graph can be represented using adjacency matrix. Considered a di-
rected graph in Fig. 9.12 where all the vertices are numbered, (1, 2, 3, 4...... etc.)

1 2

3 4

5

Fig. 9.12

The adjacency matrix A of a directed graph G = (V, E) can be represented (in Fig
9.13) with the following conditions

Aij = 1 {if there is an edge from Vi to Vj or if the edge (i, j) is member of E.}

Aij = 0 {if there is no edge from Vi to Vj}

1 2 3 4 5

1 0 1 1 0 0

2 0 0 0 0 1

3 0 0 0 1 0

4 1 0 0 0 0

5 0 0 0 0 1

Fig. 9.13

We have seen how a directed graph can be represented in adjacency matrix. Now let
us discuss how an undirected graph can be represented using adjacency matrix. Consid-
ered an undirected graph in Fig. 9.14

i
j

GRAPHS 311

1 2

3 4

5

Fig. 9.14

The adjacency matrix A of an undirected graph G = (V, E) can be represented (in Fig
9.15) with the following conditions

Aij = 1 {if there is an edge from Vi to Vj or if the edge (i, j) is member of E}

Aij = 0 {if there is no edge from Vi to Vj or the edge i, j, is not a member of E}

1 2 3 4 5

1 0 1 1 1 0

2 1 0 0 0 1

3 1 0 0 1 0

4 1 0 1 0 0

5 0 1 0 0 1

Fig. 9.15

To represent a weighted graph using adjacency matrix, weight of the edge (i, j) is
simply stored as the entry in i th row and j th column of the adjacency matrix. There are
some cases where zero can also be the possible weight of the edge, then we have to store
some sentinel value for non-existent edge, which can be a negative value; since the weight
of the edge is always a positive number. Consider a weighted graph, Fig. 9.16

1 2

3 1

5

5

7
23

4
0

Fig. 9.16

i
j

312 PRINCIPLES OF DATA STRUCTURES USING C AND C++

The adjacency matrix A for a directed weighted graph G = (V, E, We) can be repre-
sented (in Fig. 9.17) as

Aij = Wij { if there is an edge from Vi to Vj then represent its weight Wij.}

Aij = – 1 { if there is no edge from Vi to Vj}

1 2 3 4 5

1 – 1 5 3 – 1 – 1

2 – 1 – 1 – 1 – 1 7

3 – 1 – 1 – 1 4 – 1

4 2 – 1 – 1 – 1 – 1

5 – 1 – 1 – 1 – 1 0

Fig. 9.17

In this representation, n2 memory location is required to represent a graph with n
vertices. The adjacency matrix is a simple way to represent a graph, but it has two disad-
vantages.

1. It takes n2 space to represent a graph with n vertices, even for a spars graph and

2. It takes O(n2) time to solve the graph problem

9.2.2. LINKED LIST REPRESENTATION

In this representation (also called adjacency list representation), we store a graph as
a linked structure. First we store all the vertices of the graph in a list and then each
adjacent vertices will be represented using linked list node. Here terminal vertex of an
edge is stored in a structure node and linked to a corresponding initial vertex in the list.
Consider a directed graph in Fig. 9.12, it can be represented using linked list as Fig. 9.18.

Fig. 9.18

Weighted graph can be represented using linked list by storing the corresponding
weight along with the terminal vertex of the edge. Consider a weighted graph in Fig. 9.16,
it can be represented using linked list as in Fig. 9.19.

i
j

GRAPHS 313

Fig. 9.19

Although the linked list representation requires very less memory as compared to
the adjacency matrix, the simplicity of adjacency matrix makes it preferable when graph
are reasonably small.

9.3. OPERATIONS ON GRAPH

Suppose a graph G is maintained in memory by the linked list representation. This
section discuss the different operations such as creating a graph, searching, deleting a
vertices or edges.

9.3.1. CREATING A GRAPH

To create a graph, first adjacency list array is created to store the vertices name,
dynamically at the run time. Then the node is created and linked to the list array if an edge
is there to the vertex.

Step 1: Input the total number of vertices in the graph, say n.
Step 2: Allocate the memory dynamically for the vertices to store in list array.
Step 3: Input the first vertex and the vertices through which it has edge(s) by linking

the node from list array through nodes.
Step 4: Repeat the process by incrementing the list array to add other vertices and

edges.
Step 5: Exit.

9.3.2. SEARCHING AND DELETING FROM A GRAPH

Suppose an edge (1, 2) is to be deleted from the graph G. First we will search through
the list array whether the initial vertex of the edge is in list array or not by incrementing
the list array index. Once the initial vertex is found in the list array, the corresponding
link list will be search for the terminal vertex.

Step 1: Input an edge to be searched

Step 2: Search for an initial vertex of edge in list arrays by incrementing the array
index.

Step 3: Once it is found, search through the link list for the terminal vertex of the
edge.

Step 4: If found display “the edge is present in the graph”.

314 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Step 5: Then delete the node where the terminal vertex is found and rearrange the
link list.

Step 6: Exit

PROGRAM 9.1

//PROGRAM TO IMPLEMENT ADDITION AND DELETION OF NODES

//AND EDGES IN A GRAPH USING ADJACENCY MATRIX

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

#include<process.h>

#define max 20

int adj[max][max];

int n;

void create_graph()

{

int i,max_edges,origin,destin;

clrscr();

printf (“\nEnter number of nodes:”);

scanf(“%d”,&n);

max_edges=n*(n–1); /* Taking directed graph */

for(i=1;i<=max_edges;i++)

{

printf (“\nEnter edge %d(0 0) to quit:”,i);

scanf (“%d %d”,&origin,&destin);

if ((origin==0) && (destin==0))

break;

if (origin > n || destin > n || origin<=0 || destin<=0)

{

printf (“\nInvalid edge!\n”);

i--;

}

else

adj[origin][destin]=1;

}/*End of for*/

GRAPHS 315

}/*End of create_graph()*/

void display()

{

int i,j;

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

printf(“%4d”,adj[i][j]);

printf(“\n”);

}

}/*End of display()*/

void insert_node()

{

int i;

n++; /*Increase number of nodes in the graph*/

printf (“\nThe inserted node is %d \n”,n);

for(i=1;i<=n;i++)

{

adj[i][n]=0;

adj[n][i]=0;

}

}/*End of insert_node()*/

void delete_node(char u)

{

int i,j;

if(n==0)

{

printf (“\nGraph is empty\n”);

return;

}

if (u>n)

{

printf (“\nThis node is not present in the graph\n”);

return;

}

for(i=u;i<=n-1;i++)

 for(j=1;j<=n;j++)

 {

adj[j][i]=adj[j][i+1]; /* Shift columns left */

adj[i][j]=adj[i+1][j]; /* Shift rows up */

316 PRINCIPLES OF DATA STRUCTURES USING C AND C++

 }

n--; /*Decrease the number of nodes in the graph */

}/*End of delete_node*/

void insert_edge(char u,char v)

{

if (u > n)

{

printf (“\nSource node does not exist\n”);

return;

}

if(v > n)

{

printf(“\nDestination node does not exist\n”);

return;

}

adj[u][v]=1;

}/*End of insert_edge()*/

void del_edge(char u,char v)

{

 if (u>n || v>n || adj[u][v]==0)

 {

printf(“\nThis edge does not exist\n”);

return;

 }

 adj[u][v]=0;

}/*End of del_edge()*/

void main()

{

int choice;

int node,origin,destin;

create_graph();

while(1)

{

clrscr();

printf (“\n1.Insert a node\n”);

printf (“2.Insert an edge\n”);

printf (“3.Delete a node\n”);

printf (“4.Delete an edge\n”);

printf (“5.Dispaly\n”);

printf (“6.Exit\n”);

GRAPHS 317

printf ({\nEnter your choice:”);

scanf (“%d”,&choice);

switch(choice)

{

 case 1:

insert_node();

break;

 case 2:

printf(“\nEnter an edge to be inserted:”);

fflush(stdin);

scanf(“%d %d”,&origin,&destin);

insert_edge(origin,destin);

break;

 case 3:

printf (“\nEnter a node to be deleted:”);

fflush(stdin);

scanf (“%d”,&node);

delete_node(node);

break;

 case 4:

printf (“\nEnter an edge to be deleted:”);

fflush(stdin);

scanf (“%d %d”,&origin,&destin);

del_edge(origin,destin);

break;

 case 5:

display();

break;

 case 6:

exit(0);

 default:

printf(“\nWrong choice\n”);

break;

 }/*End of switch*/

}/*End of while*/

}/*End of main()*/

9.3.3. TRAVERSING A GRAPH

Many application of graph requires a structured system to examine the vertices and
edges of a graph G. That is a graph traversal, which means visiting all the nodes of the
graph. There are two graph traversal methods.

318 PRINCIPLES OF DATA STRUCTURES USING C AND C++

(a) Breadth First Search (BFS)

(b) Depth First Search (DFS)

9.4. BREADTH FIRST SEARCH

Given an input graph G = (V, E) and a source vertex S, from where the searching
starts. The breadth first search systematically traverse the edges of G to explore every
vertex that is reachable from S. Then we examine all the vertices neighbor to source vertex
S. Then we traverse all the neighbors of the neighbors of source vertex S and so on. A
queue is used to keep track of the progress of traversing the neighbor nodes.

BFS can be further discussed with an example. Considering the graph G in Fig. 9.20

Vertex Adjacency list

A B, C

B C, D, E

C E, F

D G

E D, F

F H

G E

H E, G

I G, H

Fig. 9.20

The linked list (or adjacency list) representation of the graph Fig. 9.20 is also shown.
Suppose the source vertex is A. Then following steps will illustrate the BFS.

Step 1: Initially push A (the source vertex) to the queue.

Step 2: Pop (or remove) the front element A from the queue (by incrementing front =
front +1) and display it. Then push (or add) the neighboring vertices of A to the queue, (by
incrementing Rear = Rear +1) if it is not in queue.

GRAPHS 319

Step 3: Pop the front element B from the queue and display it. Then add the
neighboring vertices of B to the queue, if it is not in queue.

One of the neighboring element C of B is preset in the queue, So C is not added to
queue.

Step 4: Remove the front element C and display it. Add the neighboring vertices of C,
if it is not present in queue.

One of the neighboring elements E of C is present in the queue. So E is not added.

Step 5: Remove the front element D, and add the neighboring vertex if it is not
present in queue.

GRAPHS 321

So A, B, C, D, E, F, G, H is the BFS traversal of the graph in Fig. 9.20

ALGORITHM

1. Input the vertices of the graph and its edges G = (V, E)

2. Input the source vertex and assign it to the variable S.

3. Add or push the source vertex to the queue.

4. Repeat the steps 5 and 6 until the queue is empty (i.e., front > rear)

5. Pop the front element of the queue and display it as visited.

6. Push the vertices, which is neighbor to just, popped element, if it is not in the
queue and displayed (i.e., not visited).

7. Exit.

PROGRAM 9.2

//PROGRAM TO IMPLEMENT BFS USING LINKED LIST

//CODED AND COMPILED USING TURBO C

#include<conio.h>

#include<stdio.h>

struct node

{

int data;

struct node *next;

};

typedef struct node *node;

node bpush(node,int);

node create(int n)

{

node b,t;

322 PRINCIPLES OF DATA STRUCTURES USING C AND C++

int i, j;

char c;

b=(node)malloc(n*sizeof (struct node));

printf (“\nEnter The %d Vertices”,n);

for(i=0;i<n;i++)

{

scanf (“%d”,&b[i].data);

b[i].next=NULL;

}

for(i=0;i<n;i++)

for(j=0;j<n;j++)

{

do

{

printf (“\nThe vertice %d have any edge to %d (y/n)....:”,b[i].data,b[j].data);

c=getche();

}while(c!=‘n’&&c!=‘N’&&c!=‘y’&&c!=‘N’);

if(c==‘y’||c==‘Y’)

{

t=&b[i];

while(t->next!=NULL)

t=t->next;

t->next=(node)malloc(sizeof(struct node));

t=t->next;

t->next=NULL;

t->data=b[j].data;

}

}

return b;

}

void bfs(node b,int n)

{

node h=NULL,f,t,m=NULL;

int s,j=-1,i;

printf (“\nEnter the Starting Vetice:”);

scanf (“%d”,&s);

do

{

j++;

}while(b[j].data!=s && j<n);

GRAPHS 323

printf (“\n\tBFS Traversal:”);

if(j >= n)

{

printf (“\n%d is Not Present in the Graph”,s);

bfs(b,n);

return;

}

h=bpush(h,b[j].data);

m=h;

while(h!=NULL)

{

t=&b[j];

while(t!=NULL)

{

t=t->next;

if(t->data!=0)

bpush(m,t->data);

}

i=bpop(h);

h=h->next;

j=-1;

do

{

j++;

}while(b[j].data!=i && j<n);

}

getch();

return;

}

node bpush(node s,int i)

{

int fla=1;

node f=s,n=s;

if(s==NULL)

{

s=(node)malloc(sizeof(struct node));

f=s;

s->next=NULL;

s->data=i;

}

else

324 PRINCIPLES OF DATA STRUCTURES USING C AND C++

{

while(n!=NULL)

{

if(n->data==i)

fla=0;

n=n->next;

}

if(fla==1)

{

while(s->next!=NULL)

s=s->next;

s->next=(node)malloc(sizeof(struct node));

s=s->next;

s->next=NULL;

s->data=i;

}

}

return f;

}

int bpop(node f)

{

int i=f->data;

f=f->next;

printf(“\t%d”,i);

return i;

}

void main()

{

node b;

int n;

clrscr();

printf(“\nEnter The Number Of Vertices :”);

scanf(“%d”,&n);

b=create(n);

bfs(b,n);

return;

}

GRAPHS 325

9.5. DEPTH FIRST SEARCH

The depth first search (DFS), as its name suggest, is to search deeper in the graph,
when ever possible. Given an input graph G = (V, E) and a source vertex S, from where the
searching starts. First we visit the starting node. Then we travel through each node along
a path, which begins at S. That is we visit a neighbor vertex of S and again a neighbor of a
neighbor of S, and so on. The implementation of BFS is almost same except a stack is used
instead of the queue. DFS can be further discussed with an example. Consider the graph
in Fig. 9.20 and its linked list representation. Suppose the source vertex is I.

The following steps will illustrate the DFS
Step 1: Initially push I on to the stack.
STACK: I
DISPLAY:
Step 2: Pop and display the top element, and then push all the neighbors of popped

element (i.e., I) onto the stack, if it is not visited (or displayed or not in the stack.
STACK: G, H
DISPLAY: I
Step 3: Pop and display the top element and then push all the neighbors of popped

the element (i.e., H) onto top of the stack, if it is not visited.
STACK: G, E
DISPLAY: I, H
The popped element H has two neighbors E and G. G is already visited, means G is

either in the stack or displayed. Here G is in the stack. So only E is pushed onto the top of
the stack.

Step 4: Pop and display the top element of the stack. Push all the neighbors of the
popped element on to the stack, if it is not visited.

STACK: G, D, F

DISPLAY: I, H, E

Step 5: Pop and display the top element of the stack. Push all the neighbors of the
popped element onto the stack, if it is not visited.

STACK: G, D

DISPLAY: I, H, E, F

The popped element (or vertex) F has neighbor(s) H, which is already visited. Then H
is displayed, and will not be pushed again on to the stack.

Step 6: The process is repeated as follows.

STACK: G

DISPLAY: I, H, E, F, D

STACK: //now the stack is empty

DISPLAY: I, H, E, F, D, G

So I, H, E, F, D, G is the DFS traversal of graph Fig 9:20 from the source vertex I.

326 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Algorithm

1. Input the vertices and edges of the graph G = (V, E).

2. Input the source vertex and assign it to the variable S.

3. Push the source vertex to the stack.

4. Repeat the steps 5 and 6 until the stack is empty.

5. Pop the top element of the stack and display it.

6. Push the vertices which is neighbor to just popped element, if it is not in the
queue and displayed (ie; not visited).

7. Exit.

PROGRAM 9.3

//PROGRAM TO IMPLEMENT DFS USING ADJACENCY MATRIX
//CODED AND COMPILED IN TURBO C

#include<conio.h>
#include<stdio.h>
#define max 10
/* a function to build adjacency matrix of a graph */
void buildadjm(int adj[][max], int n)
{
 int i,j;
 for(i=0;i<n;i++)

for(j=0;j<n;j++)
{
 printf(“\nEnter 1 if there is an edge from %d to %d, otherwise enter 0 \n”,i,j);
 scanf(“%d”,&adj[i][j]);
}

}

/* a function to visit the nodes in a depth first order */
void dfs(int x,int visited[],int adj[][max],int n)
{
 int j;
 visited[x] = 1;
 printf(“\nThe node visited id %d\n”,x);
 for(j=0;j<n;j++)
 if (adj[x][j] ==1 && visited[j] ==0)

 dfs(j,visited,adj,n);
}
void main()

{

 int adj[max][max],node,n;

GRAPHS 327

 int i, visited[max];

 printf(“\nEnter the number of nodes in graph maximum = %d\n”,max);

 scanf(“%d”,&n);

 buildadjm(adj,n);

 for(i=0; i<n; i++)

 visited[i] =0;

 for(i=0; i<n; i++)

if(visited[i] ==0)

dfs(i,visited,adj,n);

}

9.6. MINIMUM SPANNING TREE

A minimum spanning tree (MST) for a graph G = (V, E) is a sub graph G1 = (V1, E1) of
G contains all the vertices of G.

1. The vertex set V1 is same as that at graph G.

2. The edge set E1 is a subset of G.

3. And there is no cycle.

If a graph G is not a connected graph, then it cannot have any spanning tree. In this
case, it will have a spanning forest. Suppose a graph G with n vertices then the MST will
have (n – 1) edges, assuming that the graph is connected.

A minimum spanning tree (MST) for a weighted graph is a spanning tree with mini-
mum weight. That is all the vertices in the weighted graph will be connected with mini-
mum edge with minimum weights. Fig. 9.22 shows the minimum spanning tree of the
weighted graph in Fig. 9.21.

3

2

4

1

9

5

7

68

7

6

2

4

10

5

7
3

1

5

2

4

2

1
6

4

Fig. 9.21

328 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 9.22

Three different famous algorithms can be used to obtain a minimum spanning tree
of a connected weighted and undirected graph.

1. Kruskal’s Algorithm
2. Prim’s Algorithm
3. Sollin’s Algorithm
All three algorithms are using a design strategy called the greedy methods that is

one which seeks maximum gain at each step.

9.6.1. KRUSKAL’S ALGORITHM

This is a one of the popular algorithm and was developed by Joseph Kruskal. To
create a minimum cost spanning trees, using Kruskalls, we begin by choosing the edge
with the minimum cost (if there are several edges with the same minimum cost, select any
one of them) and add it to the spanning tree. In the next step, select the edge with next
lowest cost, and so on, until we have selected (n – 1) edges to form the complete spanning
tee. The only thing of which beware is that we don’t form any cycles as we add edges to the
spanning tree. Let us discuss this with an example. Consider a graph G in Fig. 9.21 to
generate the minimum spanning tree.

Fig. 9.23

GRAPHS 329

The minimum cost edge in the graph G in Fig. 9.21 is 1. If you analyze closely there
are two edges (i.e., (7, 3), (4, 9)) with the minimum cost 1. As the algorithm says select any
one of them. Here we select the edge (7, 3) as shown in Fig. 9.23. Again we select minimum
cost edge (i.e., 1), which is (4, 9) as shown in Fig. 9.24.

Fig 9:24

Next we select minimum cost edge (i.e., 2). If you analyze closely there are two edges
(i.e., (1, 2), (2, 3), (3, 6)) with the minimum cost 2. As the algorithm says select any one of
them. Here we select the edge (1, 2) as shown in the above Fig. 9.25. Again we select
minimum cost edge (i.e., 2), which is (2, 3) as shown in Fig. 9.26. Next we select minimum
cost edge (i.e., 2), which is (3, 6) as shown in Fig. 9.27.

Fig. 9.25

330 PRINCIPLES OF DATA STRUCTURES USING C AND C++

2

2

3

2

4

1

9

5

7

68

1

1

Fig. 9.26

2

2

2

3

2

4

1

9

5

7

68

1

1

Fig. 9.27

Next minimum cost edge is (1, 9) with cost 3. Add the minimum cost edge to the
minimum spanning tree as shown in Fig. 9.28. If we analyze, next minimum cost edge is
(1, 5) with cost 4. Add the minimum cost edge to the minimum spanning tree as shown in
Fig. 9.29.

GRAPHS 331

3

2

2

2

3

2

4

1

9

5

7

68

1

1

Fig. 9.28

4

3

2

2

2

3

2

4

1

9

5

7

68

1

1

Fig. 9.29

Next minimum cost edge is (4, 8) with cost 5. Add the minimum cost edge to the
minimum spanning tree as shown in Fig 9.30.

332 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 9.30

Above figures shows different stages of Kruskasl’s Algorithm.

ALGORITHM

Suppose G = (V, E) is a graph, and T is a minimum spanning tree of graph G.

1. Initialize the spanning tree T to contain all the vertices in the graph G but no
edges.

2. Choose the edge e with lowest weight from graph G.

3. Check if both vertices from e are within the same set in the tree T, for all such
sets of T. If it is not present, add the edge e to the tree T, and replace the two sets
that this edge connects.

4. Delete the edge e from the graph G and repeat the step 2 and 3 until there is no
more edge to add or until the panning tree T contains (n-1) vertices.

5. Exit

PROGRAM 9.4

//PROGRAM TO CREATING A MINIMUM SPANNING TREE

//USING KRUSKAL’S ALGORITHM

//CODED AND COMPILED IN TURBO C

#include<stdio.h>

#include<conio.h>

#include<malloc.h>

#include<process.h>

GRAPHS 337

Fig. 9.31

Consider all the edges adjacent to the vertices of the recently selected edge (here
recently selected edge is (4, 9)). And find the minimum cost edge that connects from
recently selected edge. Here it is (9, 1) as shown in Fig. 9.32.

Fig. 9.32

Again consider all the edges adjacent to the vertices of the recently selected edge
(here recently selected edge is (9, 1)). And find the minimum cost edge that connects from
recently selected edge. Here it is (1, 2) as shown in Fig. 9.33.

338 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 9.33

Consider all the edges adjacent to the vertices of the recently selected edge (here
recently selected edge is (1, 2)). And find the minimum cost edge that connects from
recently selected edge. Here it is (2, 3) as shown in Fig 9:34. And repeat the process of
finding the minimum cost edge that connects from recently selected edge.

Fig. 9.34

GRAPHS 339

Fig. 9.35

Since all the vertices in the adjacent edges that can be reached from the recently
selected edge (i.e., (2, 3)) are visited, backtrack (or go back) to the path so as any other
minimum cost adjacent edges is there to connect the vertices which are not connected yet.
Thus we find the adjacent edge (3, 6) as shown in the Fig. 9.36.

Fig. 9.36

Again since all the vertices in the adjacent edges that can be reached from the
recently selected edge (i.e., (3, 6)) are visited, backtrack (or go back) to the path so as any
other minimum cost adjacent edges is there to connect the vertices which are not con-
nected yet. Thus we find the adjacent edge (1, 5) as shown in the Fig. 9.37.

340 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Fig. 9.37

Next we find the minimum cost adjacent edges (4, 8) as shown in the Fig. 9.38.

Fig. 9.38

ALGORITHM

Suppose G = (V,E) is a graph and T is a minimum spanning tree of grph G.

1. Initialize the spanning tree T to contain a vertex v1.

2. Choose an edge e = (v1, v2) of G such that v2 not equal to v1 and e has smallest
weight among the edges of G incident with v1.

3. Select an edge e = (v2, v3) of G such that v2 is not equal to v3 and e has smallest
weight among the edge of G incident with v2.

GRAPHS 341

4. Suppose the edge e1, e2, e3, ei Then select an edge ei + 1 = (Vj, Vk) such that

(a) Vj ∈ {v1, v2, v3, vi, vi + 1} and

(b) Vk ∉ {v1, v2, v3, vi, vi + 1} such that ei+1 has smallest weight among the
edge of G

5. Repeat the step 4 until (n – 1) edges have been chosen

6. Exit

PROGRAM 9.5

//PROGRAM TO CREATE MINIMUM SPANNING TREE

//USING PRIM'S ALGORITHM

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

#include<process.h>

#define MAX 10

#define TEMP 0

#define PERM 1

#define FALSE 0

#define TRUE 1

#define infinity 9999

struct node

{

int predecessor;

int dist; /*Distance from predecessor */

int status;

};

struct edge
{

int u;
int v;

};

int adj[MAX][MAX];
int n;

void create_graph()
{

int i,max_edges,origin,destin, wt;

342 PRINCIPLES OF DATA STRUCTURES USING C AND C++

printf (“Enter number of vertices:”);

scanf (“%d”,&n);

max_edges=n*(n-1)/2;

for(i=1;i<=max_edges;i++)

{

printf (“Enter edge %d(0 0 to quit):”,i);

scanf (“%d %d”,&origin,&destin);

if((origin==0) && (destin==0))

break;

printf (“Enter weight for this edge:”);

scanf (“%d”,&wt);

if(origin > n || destin > n || origin<=0 || destin<=0)

{

printf (“Invalid edge!\n”);

i--;

}

else

{

adj[origin][destin]=wt;

adj[destin][origin]=wt;

}

}/*End of for*/

if(i<n-1)

{

printf (“Spanning tree is not possible\n”);

exit(1);

}

}/*End of create_graph()*/

void display()

{

int i,j;

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

printf (“%3d”,adj[i][j]);

printf (“\n”);

}

}/*End of display()*/

GRAPHS 343

/*This function returns TRUE if all nodes are permanent*/

int all_perm(struct node state[MAX])

{

int i;

for (i=1;i<=n;i++)

 if(state[i].status == TEMP)

 return FALSE;

return TRUE;

}/*End of all_perm()*/

int maketree(struct edge tree[MAX],int *weight)

{

struct node state[MAX];

int i, k, min, count, current, newdist;

int m;

int u1,v1;

*weight=0;

/*Make all nodes temporary*/

for(i=1;i<=n;i++)

{

state[i].predecessor=0;

state[i].dist = infinity;

state[i].status = TEMP;

}

/*Make first node permanent*/

state[1].predecessor=0;

state[1].dist = 0;

state[1].status = PERM;

/*Start from first node*/

current = 1;

count = 0; /*count represents number of nodes in tree */

while(all_perm(state) != TRUE) /*Loop till all the nodes become PERM*/

{

for(i=1;i<=n;i++)

{

if(adj[current][i] > 0 && state[i].status == TEMP)

{

if(adj[current][i] < state[i].dist)

{

state[i].predecessor = current;

state[i].dist = adj[current][i];

344 PRINCIPLES OF DATA STRUCTURES USING C AND C++

}

}

}/*End of for*/

/*Search for temporary node with minimum distance

and make it current node*/

min=infinity;

for(i=1;i<=n;i++)

{

if (state[i].status == TEMP && state[i].dist < min)

{

min = state[i].dist;

current=i;

}

}/*End of for*/

state[current].status=PERM;

/*Insert this edge(u1,v1) into the tree */

u1=state[current].predecessor;

v1=current;

count++;

tree[count].u=u1;

tree[count].v=v1;

/*Add wt on this edge to weight of tree */

*weight=*weight+adj[u1][v1];

}/*End of while*/

return (count);

}/*End of maketree()*/

void main()

{

int i, j;

int path[MAX];

int wt_tree,count;

struct edge tree[MAX];

clrscr();

create_graph();

printf(“\nAdjacency matrix is:\n”);

display();

count = maketree(tree,&wt_tree);

GRAPHS 345

printf(“\nWeight of spanning tree is:%d\n”, wt_tree);

printf(“\nEdges to be included in spanning tree are:\n”);

for(i=1;i<=count;i++)

{

printf (“%d->”,tree[i].u);

printf (“%d\n”,tree[i].v);

}

getch();

}/*End of main()*/

9.6.3. SOLLIN’S ALGORITHM

Sollin’s Algorithm construct the minimum cost spanning tree by selecting several
edge at each stage. Select few edges of lowest weight, to form a spanning forest. If more
than one edge exists with minimum cost, select all the edges. Next stage, we select one
edge of minimum weight for each tree in this forest. It is possible for two trees in the forest
to select the same edge. So multiple copies of the same edge is eliminated. Also, when the
graph has several edges with the same cost, it is possible to select two different edges that
connect them together. Repeat the steps until there is only one three or when no edges
remain to be selected.

Construction of the minimum-cost spanning tree using Prim’s algorithm can be
explained with an example. Consider a graph G in Fig. 9.21. Following figures shows
different stages in Sollin’s Algorithm.

The minimum cost edge in the graph G in Fig. 9.21 is 1. If you analyze closely there
are two edges (i.e., (7, 3), (4, 9)) with the minimum cost 1. As the algorithm says select all
minimum cost edges as the edges in the minimum-cost spanning tree as shown in Fig.
9.39.

Fig. 9.39

346 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Next select minimum weight edge incident to recently selected edge(s). Here (4,9),
(7, 3) are the recently selected edges. Minimum cost edges incident to this edges are (9, 1)
and (3, 6) respectively. As the algorithm says select these minimum cost edges as the
edges in the minimum-cost spanning tree as shown in Fig. 9.40. And repeat the same
process.

Fig. 9.40

Fig. 9.41

GRAPHS 347

Fig. 9.42

Fig. 9.43

9.7. SHORTEST PATH

A path from a source vertex a to b is said to be shortest path if there is no other path
from a to b with lower weights. There are many instances, to find the shortest path for
traveling from one place to another. That is to find which route can reach as quick as
possible or a route for which the traveling cost in minimum. Dijkstra's Algorithm is used
find shortest path.

348 PRINCIPLES OF DATA STRUCTURES USING C AND C++

9.7.1. DIJKSTRA’S ALGORITHM

Let G be a directed graph with n vertices V1, V2, V3 Vn. Suppose G = (V, E, We) is
weighted graph. i.e., each edge e in G is assigned a non- negative number, we called the
weight or length of the edge e. Consider a starting vertices. Dijstra’s algorithm will find the
weight or length to each vertex from the source vertex.

ALGORITHM

Set V = {V1, V2, V3 Vn} contains the vertices and the edges E = {e1, e2, em} of
the graph G. W(e) is the weight of an edge e, which contains the vertices V1 and V2. Q is a
set of vertices, which are not visited. m is the vertex in Q for which weight W(m) is mini-
mum, i.e., minimum cost edge. S is a source vertex.

1. Input the source vertices and assign it to S

(a) Set W(s) = 0 and

(b) Set W (v) = ___ for all vertices V is not equal to S

2. Set Q = V which is a set of vertices in the graph

3. Suppose m be a vertices in Q for which W(m) is minimum

4. Make the vertices m as visited and delete it from the set Q

5. Find the vertices I which are incident with m and member of Q (That is the
vertices which are not visited)

6. Update the weight of vertices I = {i1, i2 ik} by

(a) W(i1) = min [W(i1), W(m) + W(m, i1)]

7. If any changes is made in W(v), store the vertices to corresponding vertices i,
using the array, for tracing the shortest path

8. Repeat the process from step 3 to 7 until the set Q is empty

9. Exit

The above algorithm is illustrated with a graph in Fig. 9.44

Fig. 9.44

GRAPHS 349

Source vertices is = A W (A) = 0

V = {A, B, C, D, E, F) = Q

V A B C D E F

W(V) 0

Q A B C D E F

ITERATION 1:

m = A

W(A, A) = 0 (Distance from A to A)

Now the Q = { B, C, D, E, F}

Two edges are incident with m

i.e., I = { B, C}

W(B) = min (W(B), W (A) + W (A, B)]

= Min (_, 0 + 6)

= 6

W(C) = min (w(c), W (A) + W (A,C)]

= min (–, 0 + 5) = 5

V A B C D E F

W(V) 0 6 5

Q B C D E F

ITERATION 2:

m = C (Because W(v) in minimum vertex and is also a member of Q)

Now the Q become (B, D, E, F)

Two edge are incident with C = {D, F} = I

W(D) = min (W(D), [W(C) + W(C, D)])

= min (_, [5+2]) =7

W(F) = min (W(F), [W(C) + W (C, F)])

= min (_, [5+3]) =8

V A B C D E F

W(V) 0 6 5 7 8

Q B D E F

A

B

C

D

E

F

A

B A

C A

D

E

F

A

B A

C A

D C

E

F C

350 PRINCIPLES OF DATA STRUCTURES USING C AND C++

ITERATION 3:

m = B (Because w (V) in minimum in vertices B and is also a member of Q)

Now the Q become (D, E, F)

Three edge are incident with B = { C, E, F}

Since C is not a member of Q so I = {E, F}

W(E) = min (_ , 6 + 3) =9

W(F) = min (8, 6 + 2) =8

V A B C D E F

W(V) 0 6 5 7 9 8

Q D E F

ITERATION 4:

m = D

Q = {E, F)

Incident vertices of D = { F } = I

W(F) = min (W(F) , [W(D) + W(D,F))

W(F) = min (8 , 7 + 1) =8

V A B C D E F

W(V) 0 6 5 7 9 8

Q E F

ITERATION 5:

s = F

Q = { F)

Incident vertices of F = { E }

W(E) = min (W(F) , [W(E) + W(F,E))

W(E) = min (9 , 9 + 3) = 9

V A B C D E F

W(V) 0 6 5 7 9 8

Q E

A

B A

C A

D C

E B

F C

A

B A

C A

D C

E B

F C

A

B A

C A

D C

E B

F C

GRAPHS 351

now E is the only chain, hence we stop the iteration and the final table is

V A B C D E F

W(V) 0 6 5 7 9 8

If the source vertex is A and the destination vertex is D then the weight is 7 and the
shortest path can be traced from table at the right side as follows.

Start finding the shortest path from destination vertex to its shortest vertex. For
example we want to find the shortest path from A to D. Then find the shortest vertex from
D, which is C. Check the shortest vertex, is equal to source vertex. Otherwise assign the
shortest vertex as new destination vertex to find its shortest vertex as new destination
vertex to find its shortest vertex. This process continued until we reach to source vertex
from destination vertex.

D → C

C → A

A, C, D is the shortest path

The efficiency of the Dijskras’s algorithm is analyzed by the iteration of the loop
structures. The while loop iteration n – 1 times to visit the minimum weighted edge. Poten-
tially loop must be repeated n times to examine every vertices in the graph. So the time
complexity is O(n2).

PROGRAM 9.6

//PROGRAM OF SHORTEST PATH BETWEEN TWO NODE IN

//GRAPH USING DJIKSTRA ALGORITHM

//CODED AND COMPILED IN TURBO C

#include<conio.h>

#include<stdio.h>

#include<process.h>

#define MAX 10

#define TEMP 0

#define PERM 1

#define infinity 9999

struct node

{

A

B A

C A

D C

E B

F C

352 PRINCIPLES OF DATA STRUCTURES USING C AND C++

int predecessor;

int dist; /*minimum distance of node from source*/

int status;

};

int adj[MAX][MAX];

int n;

void create_graph()

{

int i,max_edges,origin,destin,wt;

printf (“\nEnter number of vertices:”);

scanf (“%d”,&n);

max_edges=n*(n-1);

for(i=1;i<=max_edges;i++)

{

printf (“\nEnter edge %d(0 0 to quit):”,i);

scanf(“%d %d”,&origin,&destin);

if((origin==0) && (destin==0))

break;

printf (“\nEnter weight for this edge:”);

scanf (“%d”,&wt);

if (origin > n || destin > n || origin<=0 || destin<=0)

{

printf(“\nInvalid edge!\n”);

i--;

}

else

adj[origin][destin]=wt;

}/*End of for*/

}/*End of create_graph()*/

void display()

{

int i,j;

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

printf(“%3d”,adj[i][j]);

printf (“\n”);

GRAPHS 353

}

}/*End of display()*/

int findpath(int s,int d,int path[MAX],int *sdist)

{

struct node state[MAX];

int i,min,count=0,current,newdist,u,v;

*sdist=0;

/* Make all nodes temporary */

for(i=1;i<=n;i++)

{

state[i].predecessor=0;

state[i].dist = infinity;

state[i].status = TEMP;

}

/*Source node should be permanent*/

state[s].predecessor=0;

state[s].dist = 0;

state[s].status = PERM;

/*Starting from source node until destination is found*/

current=s;

while(current!=d)

{

for(i=1;i<=n;i++)

{

/*Checks for adjacent temporary nodes */

if (adj[current][i] > 0 && state[i].status == TEMP)

{

newdist=state[current].dist + adj[current][i];

/*Checks for Relabeling*/

if (newdist < state[i].dist)

{

state[i].predecessor = current;

state[i].dist = newdist;

}

}

}/*End of for*/

/*Search for temporary node with minimum distand make it current node*/

354 PRINCIPLES OF DATA STRUCTURES USING C AND C++

min=infinity;

current=0;

for(i=1;i<=n;i++)

{

if(state[i].status == TEMP && state[i].dist < min)

{

min = state[i].dist;

current=i;

}

}/*End of for*/

if(current==0) /*If Source or Sink node is isolated*/

return 0;

state[current].status=PERM;

}/*End of while*/

/* Getting full path in array from destination to source*/

while(current!=0)

{

count++;

path[count]=current;

current=state[current].predecessor;

}

/*Getting distance from source to destination*/

for(i=count;i>1;i––)

{

u=path[i];

v=path[i–1];

*sdist+= adj[u][v];

}

return (count);

}/*End of findpath()*/

void main()

{

int i,j;

int source,dest;

int path[MAX];

int shortdist,count;

clrscr();

create_graph();

GRAPHS 355

printf(“\nThe adjacency matrix is:\n”);

display();

getch();

while(1)

{

clrscr();

printf(“\nEnter source node(0 to quit):”);

scanf(“%d”,&source);

printf(“\nEnter destination node(0 to quit):”);

scanf(“%d”,&dest);

if(source==0 || dest==0)

exit(1);

count = findpath(source,dest,path,&shortdist);

if(shortdist!=0)

{

printf(“\nShortest distance is:%d\n”, shortdist);

printf(“\nShortest Path is:”);

for(i=count;i>1;i––)

printf(“%d–>”,path[i]);

printf(“%d”,path[i]);

printf(“\n”);

}

else

printf(“\nThere is no path from source to destination node\n”);

}/*End of while*/

}/*End of main()*/

SELF REVIEW QUESTIONS

1. Define a graph. Explain depth first search of traversing ? [MG - MAY 2004 (BTech)]

2. Write an algorithm for the depth first search of a graph? State its advantages and disad-
vantages? [MG - MAY 2004 (BTech), MG - NOV 2004 (BTech),

MG - MAY 2003 (BTech)]

3. Distinguish between adjacency matrix and adjacency list? [MG - NOV 2004 (BTech)]

4. Explain the method of representing graphs by using matrices?

[MG - NOV 2002 (BTech)]

5. Explain the use of graph in data structures? [MG - MAY 2000 (BTech)]

6. Explain the two methods of graph traversing? [MG - MAY 2000 (BTech)]

356 PRINCIPLES OF DATA STRUCTURES USING C AND C++

7. Write an algorithm to find the shortest path between any two nodes of a given graph.
Illustrate with an example. [Calicut - APR 1995 (BTech), CUSAT - JUL 2002 (MCA)]

8. Give the various representations of a graph.

[ANNA - DEC 2004 (BE), Calicut - APR 1997 (BTech)

ANNA - MAY 2004 (MCA)]

9. What is a spanning tree? Present algorithms to obtain the spanning trees for a graph.
Illustrate them with examples. [ANNA - MAY 2004 (BE), Calicut - APR 1997 (BTech)]

10. Discuss the implementation of dfs and bfs graph traversals with suitable example.

[ANNA - DEC 2004 (BE), CUSAT - NOV 2002 (BTech)

KERALA - MAY 2002 (BTech), ANNA - DEC 2004 (BE)]

11. Explain the Dijkstra's algorithm for shortest path in a graph with suitable example.

[CUSAT - NOV 2002 (BTech)]

12. Explain the following:

(a) Graph (b) Multigraph (c) Digraph (d) Spanning tree.

(e) Give anyone representations for a graph structure.

(f) Explain what is a minimum spanning tree.

(g) Explain Kruskal's algorithm. [CUSAT - JUL 2002 (MCA)]

13. Explain the Prim's algorithm to find minimal spanning tree for a graph.

[ANNA - MAY 2004 (BE)]

14. Explain various application of the graph

[KERALA - JUN 2004 (BTech), KERALA - DEC 2004 (BTech) ;]

KERALA - DEC 2003 (BTech)]

15. Distinguish between DFS and BFS

[KERALA - DEC 2002 (BTech), KERALA - DEC 2004 (BTech)

16. Explain complete Graph. KERALA - DEC 2004 (BTech)]

17. What are graphs? Give various representation of graphs?

[KERALA - MAY 2003 (BTech)]

18. Define Directed graph and Undirected graph. [KERALA - DEC 2002 (BTech)]

19. What is the time required to determine the total number of edges in G ?

[KERALA - DEC 2002 (BTech)]

20. Explain the various procedure for finding the shortest path in a network.
[KERALA - DEC 2002 (BTech)]

21. What are graphs? Explain the applications of graphs. [KERALA - MAY 2001 (BTech)]

BIBLIOGRAPHY
1. Tremblay, Sorenson: “An Introduction to Data Structures with Applications,” Sec-

ond Edition, Tata McGraw-Hill.

2. R. S. Salaria: “Data Structures and Algorithm,” Khanna Book Publications.

3. Drozdek: “Data Structures and Algorithms in C++,” Vikas Publishing House.

4. “Data Structures and Algorithms in 24 Hours” SAMS teach yourself, Techmedia.

5. Lipschutz, “Data Structures,” Tata McGraw-Hill.

6. Kruse, Tondo, Leung, “Data Structures and programming Design in C,” Seciond
Edition, Low Price Edition, Person Education Asia.

7. Aho, Hopcraft, Ullman, “Data Structures and Algorithm,” Low Price Edition, Per-
son Education Asia.

8. Lengsan, Augenstein, Tanenbaun, “Data Structures Uisng C and C++,” Low Price
Edition, Person Education Asia.

9. Ellis Horowitz, Sartaj Sahini, Dinesh Mehtha, “Fundamentals of Data Structures
in C++,” Galgotia Publications.

10. Glenn W. Rowe, “Introduction to Data Structures and Algorithms with C++,” Pentice-
Hall of Inida.

11. P.S. Deeshpande, O.G. Kakde, “C & Data Structures,” Dreamtech Press.

12. Maria Litvin, Gary Litvin, “Programming with C++ and Data Structures,” Vikas
Publishing House.

13. E. BalaGurusmy, “Programming in ANSI C,” Edition 2.1, Tata McGraw-Hill.

14. Ajay Kumar, “Data structures for C programming,” Firewall Media.

15. Mark Allen Weiss, “Data Structures and Algorithm analysis in C++,” Low Price
Edition, Person Education Asia.

16. Sanjeev Safat, “Data Structures with C and C++,” Khanna Book Publications.

17. R.B. Patel, M.M.S. Rautham, “Expert Data Structures with C++,” Khanna Book
Publications.

18. D. Knuth, “The Art of Computer Programming: Sorting and Searching”, Second
Edition, Addison-Wesley.

358

Index
Symbols

2-3 Trees 287
2-3-4 Trees 289

A

Adjacency list representation 312
Allocating a block of memory 19
Amstrong complexity 7
Analysis of algorithm 5
Arrays 10
Ascending priority queue 189
Average case 7
AVL tree 284

B

B*-Tree 293, 295
Backtrack 339
Balanced binary tree 283
Best case 7
Big “Oh” notation 8
Binary search 209
Binary tree 230
Bottom-up algorithm design 4
Boundary tag method 24
Breadth first search 318
Breadth First Search (BFS) 318
Bubble sort 154
Bucket addressing 223, 226
Bucket sort 183
Buffer size 202
Buffers 202

C

Chaining 223, 224
Circuit 309
Circular linked list 91, 140
Circular queue 71
Compile time 18
Connected 308
Constant time 9

D

Dangling reference 23
Decision tree 275

Degree 307
Degree of a tree 230
Depth First Search (DFS) 318
Depth of a tree 230
Descending priority queue 189
Digital search trees 300
Dijkstra’s algorithm 348
Diminishing increment sort 168
Directed graph 305
Disconnected 308
Disconnected graph 308
Disks 202
Divide-and-conquer type 170
Division method 219
Double ended queue (de-queue) 71
Double hashing 224
Doubly linked list 91, 131
Dynamic memory allocation 18
Dynamic memory allocation in C++ 22

E

Edges 305
Elementary 309
Empty 26
Empty string 14
Empty tree 230
Exponential time 9
Expression tree 273
Extended binary tree 231
External sort 200

F

Fibanocci tree 275
Fibonacci search 216
Files and records 14
First come first serve 65
First in first out (FIFO) 65
Fixed length representation 14
Folding method 219, 221
Free storage lists 22
Front 65
Fully connected 308

PROGRAMMING METHODOLOGIES 359

G

Garbage collection 23
Graphs 305

H

Hash collission 219, 222
Hash deletion 227
Hash function 219
Hashing 219
Heap 189
Heap sort 190
Height 230
Height balanced trees 283

I

In order traversal 236
In order traversal recursively 237
Infix notation 44
Initial vertex 306
Input restricted deque 77
Inserting a node 259
Insertion sort 163
Interpolation search 212
Isolated vertex 306
Isomorphic 306
Isomorphic undirected 306
Isomorphic undirected graph 306

J

Jarnik-prim’s algorithm 336

K

Kruskal’s algorithm 328

L

Last-in-first-out (LIFO) 26
Leaf 230
Left skewed binary 232
Left sub trees 232
Linear array 10
Linear search 207
Linear time 9
Linked list 88
Linked list representation 15, 312
Lists 13
Logarithmic time 9
Loser trees 277

M

M-way search trees 287
Magnetic tapes 201
Malloc() function 19
Merge sort 176
Mid square method 219, 221
Minimum cost spanning trees 328
Minimum spanning 327
Modular programming 3
Multi dimensional array 11
Multiple blocks of memory 21

N

Node 229
Non-terminal node 230
Null pointer 19
Null string 14
Null tree 230

O

One dimensional array 10
Open addressing 223
Output restricted deque 77
Overflow 27

P

Partition-exchange sort 170
Path 309
Polynomial time 9
Pop 26
Post order traversal 236
Post order traversal recursively 237
Postfix notation 44
Pre orders traversal 236
Prefix notation 44
Prim’s algorithm 328, 336
Priority queue 71, 146

Q

Quadratic probing 224
Queue 65
Quick sort 170

R

Radix sort 183
Random access devices 201
Rear 65

360 PRINCIPLES OF DATA STRUCTURES USING C AND C++

Recursion 34
Recursion vs iteration 37
Red-block tree 290
Reference counters 24
Releasing the used space 21
Resize the size of a memory block 21
Right skewed binary tree 233
Right sub trees 233
Root 229
Run time 18

S

Searching 207
Selection sort 159
Selection trees 277
Sequential access devices 201
Sequential searching 207
Shell sort 168
Shortest path 347
Simple 309
Singly linked list 91
Skewed binary tree 233
Sollin’s algorithm 328, 345
Sorting 153
Space complexity 5
Spanning sub-graph 307
Sparse arrays 12
Splay trees 296
Stack 26
Static memory allocation 18
Stepwise refinement method 2
Stepwise refinement techniques 2
Storage compaction 24
Strictly binary tree 231, 232
String 14

String representation 14
Strongly connected 308
Structured programming 4

T

Terminal node 230
Terminal vertex 306
Threaded binary tree 272
Threads 272
Time complexity 5, 6
Time-space trade off 8
Top of the stack 26
Top-down algorithm design 3
Tower of handi 38
Traversing a graph 317
Trees 229
Tries 302
Two-dimensional 11
Two-dimensional array 11

U

Underflow 26
Undirected graph 306

V

Variable length representation 15
Vectors 13
Vertices 305

W

Weight balanced Tree 283
Weighted graph 307
Winner grees 277
Worst case 7

	Preface
	Acknowledgement
	Contents
	Chapter 1 Programming Methodologies
	1.1 An Introduction to data Structure
	1.2 Algorithm
	1.3 Stepwise Refinement Techniques
	1.4 Modular Programming
	1.5 Top-Down Algorithm Design
	1.6 Bottom-Up Algorithm Design
	1.7 Structured Programming
	1.8 Analysis of Algorithm
	1.9 Time-Space Trade off
	1.10 Big "OH" Notation
	1.11 Limitation of Big "OH" Notation
	1.12 Classification of Data Structure
	1.13. Arrays
	1.14. Vectors
	1.15. Lists
	1.16. Files and Records
	1.17 Characteristics of Strings
	Self Review Questions

	Chapter 2 Memory Management
	2.1 Memory Allocation in C
	2.2 Dynamic Memory Allocation in C++
	2.3 Free Storage List
	2.4 Garbage Collection
	2.5 Dangling Reference
	2.6 Reference Counters
	2.7 Storage Compaction
	2.8 Boundary Tag Method
	Self Review Questions

	Chapter 3 The Stack
	3.1 Operations Performed on Stack
	3.2 Stack Implementation
	3.3 Stack Using Arrays
	3.4 Applications of Stacks
	3.5 Converting Infix to Postfix Expression
	3.6 Evaluating Postfix Expression
	Self Review Questions

	Chapter 4 The Queues
	4.1 Algorithm for Queue Operations
	4.2 Other Queues
	4.3 Circular Queue
	4.4. Deques
	4.5 Applications of Queue
	Self Review Questions

	Chapter 5 Linked List
	5.1. Linked Lists
	5.2. Representation of Linked List
	5.3 Advantages and Disadvantages
	5.4 Operation on Linked List
	5.5 Types of Linked List
	5.6 Singly Linked List
	5.7 Stack Using Linked List
	5.8 Queue Using Linked List
	5.9 Queue Using Two Stacks
	5.10 Polynomials Using Linked List
	5.11 Doubly Linked List
	5.12 Circular Linked List
	5.13 Priority Queues
	Self Review Questions

	Chapter 6 Sorting Techniques
	6.1 Complexity of Sorting Algorithms
	6.2 Bubble Sort
	6.3 Selection Sort
	6.4 Insertion Sort
	6.5 Shell Sort
	6.6 Quick Sort
	6.7 Merge Sort
	6.8 Radix Sort
	6.9. Heap
	6.10 External Sort
	Self Review Questions

	Chapter 7 Searching and Hashing
	7.1 Linear or Sequential Searching
	7.2 Binary Search
	7.3 Interpolation Search
	7.4 Fibonacci Search
	7.5. Hashing
	Self Review Questions

	Chapter 8 The Trees
	8.1 Basic Terminologies
	8.2 Binary Trees
	8.3 Binary Tree Representation
	8.4 Operations on Binary Tree
	8.5 Traversing Binary Trees Recursively
	8.6 Traversing Binary Tree Non-Recursively
	8.7 Binary Search Trees
	8.8 Threaded Binary Tree
	8.9 Expression Tree
	8.10 Decision Tree
	8.11 Fibanocci Tree
	8.12 Selection Trees
	8.13 Balanced Binary Trees
	8.14 AVL Trees
	8.15 M-Way Search Trees
	8.16. 2-3 Trees
	8.17. 2-3-4 Trees
	8.18. Red-Black Tree
	8.19. B-Tree
	8.20 Splay Trees
	8.21 Digital Search Trees
	8.21. Tries
	Self Review Questions

	Chapter 9 Graphs
	9.1 Basic Terminologies
	9.2 Representation of Graph
	9.3 Operations on Graph
	9.4 Breadth First Search
	9.5 Depth First Search
	9.6 Minimum Spanning Tree
	9.7 Shortest Path
	Self Review Questions

	Bibliography
	Index

