LAB MANUAL

Session: 2024-2025 (Odd Semester)

Design and Analysis of Algorithm Lab

SUBJECT CODE: BCS-553

Prepared by

Ms. Kajol Kathuria Assistant Professor

Department of Computer Science and Information Technology
B.Tech, Second Year, Session-2024-25 (ODD)

Dronacharya Group of Institutions
Dr A PJ ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW.

Table of Contents
Vision and Mission of the Institute.

[E—

Vision and Mission of the Department.
Program Outcomes (POs).

Program Educational Objectives (PEOs/PSOs).
University Syllabus.

Course Outcomes (COs).

Course Overview.

List of Experiments mapped with COs.

DO’s and DON’Ts.

A S AN U

10. General Safety Precautions.

11. Guidelines for students for report preparation.

12. Lab Experiments.

DRONACHARYA GROUP OF INSTITUTIONS
GREATER NOIDA
VISION
Instilling core human values and facilitating competence to address global challenges by providing Quality

Technical Education.

MISSION

M1 - Enhancing technical expertise through innovative research and education, fostering creativity and
excellence in problem-solving.

M2 - Cultivating a culture of ethical innovation and user-focused design, ensuring technological progress
enhances the well-being of society.

M3 - Equipping individuals with the technical skills and ethical values to lead and innovate responsibly
in an ever-evolving digital landscape.

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY
VISION
Promoting technologists by imparting profound knowledge in information technology, all while instilling ethics

through specialized technical education.

MISSION

Delivering comprehensive knowledge in information technology, preparing technologists to excel in a
rapidly evolving digital landscape.

Building a culture of honesty and responsibility in tech, promoting smart and ethical leadership.
Empowering individuals with specialized technical skills and ethical values to drive positive change and
innovation in the tech industry.

Program Outcomes (POs)

Engineering Graduates will be able to:

Program
Outcomes

Statement

PO1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex computer engineering problems.

Problem analysis: Identify, formulate, review research literature, and analyse complex computer
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex computer engineering problems
and design system components or processes that meet the specific needs with appropriate
considerations for the public health and safety, and the cultural, societal, and environmental
considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide conclusions

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modelling to complex engineering activities with
an understanding of the limitations

The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent relevant to the professional
engineering practices

Environment and sustainability: Understand the impact of the professional engineering solutions
in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norm of
the engineering practices

Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings

Communications: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions

Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one’s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

PSO1: To adapt to emerging technologies and develop innovative solutions for existing and newer problems.

PSO2: To create and apply appropriate techniques IT tools to complex engineering activities with an
understanding of the limitations.

PSO03: To manage complex IT projects with consideration of the human, financial, ethical and environmental
factors.

BCS-553.1 Understand and implement algorithm to solve problems by iterative approach.

Understand and implement algorithm to solve problems by divide and conquer

BCS-553.2 | . ooch.

BCS-553.3 |Understand and implement algorithm to solve problems by Greedy algorithm approach

Understand and analyze algorithm to solve problems by Dynamic programming,
backtracking..

Understand and analyze the algorithm to solve problems by branch and bound
approach.

BCS-553.4

BCS-553.5

Mapping of Program Outcomes with Course Outcomes (COs)

Course
Outcomes
BCS-553.1
BCS-553.2
BCS-553.3
BCS-553.4
BCS-553.5

CO-PSO Mapping:

Course Overview

This course equips students with the skills to innovate and optimize computational solutions across diverse domains.
e Design and implement algorithms for various computational problems.

e Analyze algorithms to determine their efficiency in terms of time and space.

o Apply appropriate algorithmic paradigms for real-world challenges.

e Understand the limitations of algorithms and explore alternative solutions

Course Objectives

e Practical Implementation: Enable students to implement algorithms using programming languages, reinforcing
theoretical concepts learned in lectures.

o Algorithm Analysis: Develop skills to analyze the efficiency and performance of algorithms through empirical testing
and comparison.

¢ Problem-Solving Skills: Enhance the ability to apply appropriate algorithms to solve complex computational problems
effectively.

Design and Analysis of Algorithm Lab (BCS553)

Course Outcome (CO) Bloom’s Knowledge Level (KL)

At the end of course , the student will be able to:

Co 1 Understand and implement algorithm to solve problems by iterative approach. Kz, K4

Understand and implement algorithm to solve problems by divide and conquer Ks, Ks
CO2 | approach.

O3 Understand and implement algorithm to solve problems by Greedy algorithm approach. K Ks

Understand and analyze algorithm to solve problems by Dynamic programming, Ks, Ks
CO4 | backtracking.

Understand and analyze the algorithm to solve problems by branch and bound Ks, K4

COs5
approach.

DETAILED SYLLABUS

1. Program for Recursive Binary & Linear Search.
2. Program for Heap Sort.
3. Program for Merge Sort.
4. Program for Selection Sort.
5. Program for Insertion Sort.
6. Program for Quick Sort.
7. Knapsack Problem using Greedy Solution
8. Perform Travelling Salesman Problem
9. Find Minimum Spanning Tree using Kruskal’s Algorithm
10. Implement N Queen Problem using Backtracking
11. Sort a given set of n integer elements using Quick Sort method and compute its time complexity. Run the program for
varied values of n> 5000 and record the time taken to sort. Plot a graph of the time taken versus non graph sheet. The
elements can be read from a file or can be generated using the random number generator. Demonstrate using Java how the
divide and- conquer method works along with its time complexity analysis: worst case, average case and best case.
12. Sort a given set of n integer elements using Merge Sort method and compute its time complexity. Run the program for
varied values of n> 5000, and record the time taken to sort. Plot a graph of the time taken versus non graph sheet. The
elements can be read from a file or can be generated using the random number generator. Demonstrate how the divide and-
conquer method works along with its time complexity analysis: worst case, average case and best case.
13.6. Implement , the 0/1 Knapsack problem using
(a) Dynamic Programming method
(b) Greedy method.
14. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
15.Find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal's algorithm. Use Union-Find
algorithms in your program.
16. Find Minimum Cost Spanning Tree of a given undirected graph using Prim’s algorithm.
17. Write programs to (a) Implement All-Pairs Shortest Paths problem using Floyd's algorithm.
(b) Implement Travelling Sales Person problem using Dynamic programming.
18. Design and implement to find a subset of a given set S = {Sl, S2, ,Sn} of n positive integers whose SUM is equal to
a given positive integer d. For example, if § ={1, 2, 5, 6, 8} and d=9, there are two solutions {1,2,6}and {1,8}. Display a
suitable message, if the given problem instance doesn't have a solution.
19. Design and implement to find all Hamiltonian Cycles in a connected undirected Graph G of n vertices using
backtracking principle.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner
It is also suggested that open source tools should be preferred to conduct the lab (C, C++ etc)

Curriculum & Evaluation Scheme: Computer Engineering and Information Technology,
Computer Science and Information Technology, IT (V & VI semester)

List Of Programs:

Programl

Write a program for iterartive and recursive Binary Search

Program
2

Write a program for Quick sort.

Program
3

Write a program for Merge Sort

Program
4

Write a program for Heap Sort

Program
5

Write a program for insertion Sort

Program
6

Write a program for for Selection Sort

Program
7

a. To implement knapsack problem using Greedy
Technique

b. To implement 0/1 Knapsack problem using Dynamic
Programming

Program
8

Find Minimum Cost Spanning Tree of a given undirected
graph using Kruskal’s algorithm

Program
9

To Implement Floyd’s warshall algorithm.

Program
10

To Implement N Queen Problem using Backtracking.

1. Program to implement Recursive and iterative Linear and Binary Search

Linear Search:

« Iterative: Loops through the array to find the element.
« Recursive: Calls itself with the next index until the element is found or the end is reached.

Binary Search (for sorted arrays):

Iterative: Uses a while loop to narrow down the search range.
Recursive: Divides the range into two halves, searching recursively in the appropriate half.

#include <stdio.h>

// Function prototypes

int iterative linear search(int art[], int n, int key);

int recursive linear search(int arr[], int n, int key, int index);
int iterative _binary search(int arr[], int n, int key);

int recursive_binary search(int arr[], int left, int right, int key);

// Main function

int main() {
intarr[]={1,3,5,7,9, 11, 13, 15};
int n = sizeof(arr) / sizeof(arr[0]);

int key;

printf("Enter the number to search: ");

scanf("%d", &key);

// Tterative Linear Search
int linear iter result = iterative linear search(arr, n, key);
printf("Iterative Linear Search: Element %s found\n",

(linear iter result ==-1) ? "not" : "is");

// Recursive Linear Search

int linear _recur result = recursive linear search(arr, n, key, 0);

printf("Recursive Linear Search: Element %s found\n",

(linear recur result ==-1) ? "not" : "is");

// Iterative Binary Search
int binary_iter result = iterative binary search(arr, n, key);
printf("Iterative Binary Search: Element %s found\n",

(binary iter result==-1) ? "not" : "is");

// Recursive Binary Search
int binary _recur_result = recursive_binary search(arr, 0, n - 1, key);
printf("Recursive Binary Search: Element %s found\n",

(binary recur result==-1) ? "not" : "is");

// Tterative Linear Search
int iterative linear search(int arr[], int n, int key) {
for (inti=0; 1 <n; i++) {
if (arr[i] == key)

return i;

/I Recursive Linear Search
int recursive linear search(int arr[], int n, int key, int index) {
if (index >=n)
return -1;
if (arr[index] == key)
return index;

return recursive linear search(arr, n, key, index + 1);

// Iterative Binary Search

int iterative_binary search(int arr[], int n, int key) {
int left =0, right=n - 1;
while (left <= right) {

int mid = left + (right - left) / 2;

if (arr[mid] == key)
return mid;

if (arr[mid] < key)
left=mid + 1;

else

right =mid - 1;

// Recursive Binary Search
int recursive binary search(int arr[], int left, int right, int key) {
if (left > right)
return -1;
int mid = left + (right - left) / 2;
if (arr[mid] == key)
return mid;
if (arr[mid] < key)

return recursive binary search(arr, mid + 1, right, key);

return recursive binary search(arr, left, mid - 1, key);

Enter the number to search: 7

Output:

5qQ

Tterative
Recursive
Iterative

Recursive

Linear
Linear
Binary

Binary

Search:
Search:
Search:

Search:

Element
Element
Element
Element

is found
is found
is found

is found

¥ Copy code

@ Copy code

2. Write a Program to implement Quick Sort

QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the given
array around the picked pivot.

There are many different versions of QuickSort that pick pivot in different ways.

1.

2.
3.
4

Always pick first element as pivot.

Always pick last element as pivot (implemented below)
Pick a random element as pivot.

Pick median as pivot.

The key process in QuickSort is partition. Target of partitions is, given an array and an element x
of array as pivot, put x at its correct position in sorted array and put all smaller elements (smaller
than x) before x, and put all greater elements (greater than x) after x.

include <stdio.h>
include <time.h>
voidExch(int *p, int *q){

}

int temp = *p;
*p="*q;
*q = temp;

voidQuickSort(int a[], int low, int

high){int i, j, key, k;
if(low>=high)

return;
key=low;

i=low+1;
j=high;
while(i<=j){
while (a[i] <= a[key])
i=i+1;
while (a[j] > alkey])
i=-1

if(i<j)

Exch(&ali], &al[j]);

Exch(&alj],
&alkey]);
QuickSort(a,
low, i-1);
QuickSort(a,
j+1, high);
}
void main(){
int n, a[1000],k;
clock_tst,et; double ts; clrscr();
printf("\n Enter How many
Numbers: "); scanf("%d", &n);
printf("\nThe Random
Numbers are:\n"); for(k=1;
k<=n; k++){
alk]=rand();
printf("%d\t",a[k])

’

}

st=clock();

QuickSor

t(a, 1, n);

et=clock();

ts=(double)(et-st)/CLOCKS

_PER_SEC; printf("\nSorted

Numbers are: \n "); for(k=1;

k<=n; k++)
printf("%d\t", a[k]); printf("\nThe time taken is %e",ts);

Unsorted

Sorted

3. WRITE A PROGRAM TO IMPLEMENT MERGE SORT
ttinclude <stdio.h>

// Function prototypes

void mergeSort(int arr[], int left, int right);
void merge(int arr[], int left, int mid, int right);
void printArray(int arr[], int size);

// Main function
int main() {
intarr[] ={12, 11, 13, 5, 6, 7};
int n = sizeof(arr) / sizeof(arr[0]);

printf("Unsorted array: ");
printArray(arr, n);

mergeSort(arr, 0, n - 1);

printf("Sorted array: ");
printArray(arr, n);

return O;

}

// Merge Sort function
void mergeSort(int arr[], int left, int right) {
if (left < right) {
// Calculate the mid-point
int mid = left + (right - left) / 2;

// Recursively sort the left and right halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);

// Merge the sorted halves
merge(arr, left, mid, right);
}
}

// Merge function

void merge(int arr[], int left, int mid, int right) {
int n1 = mid - left + 1; // Size of left subarray
int n2 = right - mid; // Size of right subarray

// Temporary arrays
int L[n1], R[n2];

// Copy data to temporary arrays L[] and R[]
for (inti=0;i<nl;i++)

L[i] = arr[left +i];
for (intj=0; j< n2; j++)

R[j] = arr[mid + 1 +j];

inti=0; // Initial index of left subarray
int j = 0; // Initial index of right subarray
int k = left; // Initial index of merged subarray

while (i< nl &&j < n2){
if (L[i] <= R[j1) {
arr[k] = L[i];
i++;
}else {
arr[k] = R[jl;
i+
}
k++;

}

// Copy the remaining elements of L[], if any
while (i< n1) {
arr[k] = L[i];
i++;
k++;

’

}

// Copy the remaining elements of R[], if any
while (j < n2) {
arr[k] = R[j];
i+
k++;
}
}

// Function to print the array
void printArray(int arr[], int size) {
for (inti=0; i< size; i++) {
printf("%d ", arrli]);
}
printf("\n");
}

4. Write a program to implement heap sort
#include <stdio.h>

// Function prototypes

void heapify(int arr[], int n, int i);
void heapSort(int arr[], int n);
void printArray(int arr[], int n);

// Main function

int main() {
intarr[] ={12, 11, 13,5, 6, 7};
int n = sizeof(arr) / sizeof(arr[0]);

printf("Unsorted array: ");
printArray(arr, n);

heapSort(arr, n);

printf("Sorted array: ");
printArray(arr, n);

return 0;

}

// Function to heapify a subtree rooted at index i
void heapify(int arr[], int n, int i) {
int largest = i; // Initialize largest as root
intleft=2 *i+1; // Left child index
int right =2 * i + 2; // Right child index

// If left child is larger than root
if (left < n && arr[left] > arr[largest])
largest = left;

// If right child is larger than the largest so far
if (right < n && arr[right] > arr[largest])
largest = right;

// If the largest is not the root

if (largest =) {
// Swap arr[i] with arr[largest]
int temp = arr[i];
arr[i] = arr[largest];
arr[largest] = temp;

// Recursively heapify the affected subtree
heapify(arr, n, largest);

// Function to perform heap sort

// Build a max heap
for (inti=n/2-1;i>=0;i-)
heapify(arr, n, i);

// Extract elements from heap one by one
for(inti=n-1;i>=0;i-){

// Move current root to the end

int temp = arr[0];

arr[0] = arr[i];

arr[i] = temp;

// Call heapify on the reduced heap
heapify(arr, i, 0);
}
}

// Function to print the array
void printArray(int arr[], int n) {
for (inti=0;i<n;i++) {
printf("%d ", arrl[i]);
}
printf("\n");

}

#include<stdio.h>
#include<conio.h>
void main() {
int a[50],i,j,key,n;
clrscr();
printf("\n Enter how many
no:"); scanf("%d",&n);
printf("\n Enter the array
elements:"); for(i=0;i<n ;i++)
scanf("%d",&ali]);
for(j=1;j<n;j++) {
key=a[j];
i=j-1;
while(i>=0 && a[i]>key)

{
ali+1]=ali];
i=i-1;

}
ali+1]=key;

}
printf("\n Sorted array
is:\n"); for(i=0;i<n;i++)

printf("%d\n",a[i]);
getch();
}

6. WRITE A PROGRAM FOR FOR SELECTION SORT
#include <stdio.h>

// Function prototypes
void selectionSort(int arr[], int n);
void printArray(int arr[], int n);

// Main function

int main() {
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr) / sizeof(arr[0]);

printf("Unsorted array: ");
printArray(arr, n);

selectionSort(arr, n);

printf("Sorted array: ");
printArray(arr, n);

return O;

}

// Function to perform selection sort
void selectionSort(int arr[], int n) {
for(inti=0;i<n-1;i++){
// Find the index of the minimum element
int minindex =i;
for(intj=i+1;j<n;j++){
if (arr[j] < arr[minindex]) {
minindex = j;
}
}

// Swap the found minimum element with the first element of the unsorted part
int temp = arr[minindex];
arr[minindex] = arr[i];
arr[i] = temp;
}
}

// Function to print the array
void printArray(int arr[], int n) {
for (inti=0;i<n;i++){
printf("%d ", arr[i]);
}
printf("\n");
}

7. A.TO IMPLEMENT KNAPSACK PROBLEM USING GREEDY TECHNIQUE

ttinclude <stdio.h>

// Structure to store items
typedef struct {

int weight;

int value;

double ratio;
} ltem;

// Function to compare items based on value/weight ratio
int compare(const void *a, const void *b) {

Item *item1 = (Item *)a;

Item *item2 = (Iltem *)b;

if (item1->ratio < item2->ratio) return 1;

else if (item1->ratio > item2->ratio) return -1;

else return 0;

}

// Function to solve the fractional knapsack problem using the greedy technique
double knapsack(ltem items([], int n, int capacity) {
gsort(items, n, sizeof(ltem), compare); // Sort items by value/weight ratio

double totalValue = 0.0;
for (inti=0;i<n;i++) {
if (capacity >= itemsJ[i].weight) {
// Take the full item
totalValue += items[i].value;
capacity -= items|i].weight;
}else {
// Take a fraction of the item
totalValue += items]i].value * ((double)capacity / items][i].weight);
break; // Knapsack is full
}
}

return totalValue;

}

// Main function
int main() {
int n, capacity;

printf("Enter the number of items: ");
scanf("%d", &n);

Item items[n];
printf("Enter the weight and value of each item:\n");
for (inti=0;i<n;i++) {
printf("Item %d - Weight: ", i + 1);
scanf("%d", &items[i].weight);
printf("ltem %d - Value: ", i + 1);
scanf("%d", &items[i].value);
items]i].ratio = (double)items][i].value / items[i].weight; // Calculate value/weight ratio

printf("Enter the capacity of the knapsack: ");
scanf("%d", &capacity);

double maxValue = knapsack(items, n, capacity);
printf("Maximum value in Knapsack = %.2f\n", maxValue);

return 0;

b. TO IMPLEMENT 0/1 KNAPSACK PROBLEM USING DYNAMIC PROGRAMMING

/* A Naive recursive implementation
of 0-1 Knapsack problem */
#include <stdio.h>

// A utility function that returns
// maximum of two integers
int max(int a, intb) {return (a>b)?a:b;}

// Returns the maximum value that can be
// put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
// Base Case
if(n==0]| W==0)
return O0;

// If weight of the nth item is more than
// Knapsack capacity W, then this item cannot
// be included in the optimal solution
if (wt[n-1]>W)
return knapSack(W, wt, val, n - 1);

// Return the maximum of two cases:
// (1) nth item included
// (2) not included
else
return max(
val[n - 1]
+ knapSack(W - wt[n - 1], wt, val, n - 1),
knapSack(W, wt, val, n - 1));

int main()

int profit[] = {60, 100, 120 };

int weight[] = { 10, 20, 30 };

int W = 50;

int n = sizeof(profit) / sizeof(profit[0]);
printf("%d", knapSack(W, weight, profit, n));
return O;

}

OUTPUT: 220

#tinclude <stdio.h>
#include <stdlib.h>

#tdefine MAX 100

// Structure to represent an edge
typedef struct {

int src, dest, weight;
} Edge;

// Structure to represent a graph
typedef struct {

int vertices, edges;

Edge edge[MAX];
} Graph;

// Structure to represent a subset for Union-Find
typedef struct {

int parent;

int rank;
} Subset;

// Function to find set of an element using path compression
int find(Subset subsets(], int i) {
if (subsets][i].parent !=i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;

}

// Function to perform union of two sets
void Union(Subset subsets[], int x, int y) {
int xroot = find(subsets, x);
int yroot = find(subsets, y);

if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;

else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;

else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;

}

}

// Compare function for gsort to sort edges by weight

Edge *el = (Edge *)a;
Edge *e2 = (Edge *)b;
return el->weight - e2->weight;

}

// Kruskal's Algorithm to find Minimum Cost Spanning Tree
void KruskalMST(Graph *graph) {
int vertices = graph->vertices;
Edge result[MAX]; // To store the resulting MST
inte=0; // Number of edges in MST
inti=0; // Index variable for sorted edges

// Step 1: Sort all the edges in non-decreasing order of weight
gsort(graph->edge, graph->edges, sizeof(graph->edge[0]), compare);

// Allocate memory for subsets
Subset *subsets = (Subset *)malloc(vertices * sizeof(Subset));

// Create subsets with single elements

for (int v = 0; v < vertices; ++v) {
subsets[v].parent = v;
subsets[v].rank = 0;

}

// Step 2: Pick the smallest edge and check if it forms a cycle
while (e < vertices - 1 && i < graph->edges) {
Edge next_edge = graph->edgel[i++];

int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);

// If including this edge does not form a cycle, include it in result
if (x !=y){
result[e++] = next_edge;
Union(subsets, x, y);
}
}

// Print the result
printf("Edges in the Minimum Cost Spanning Tree:\n");
int minimumCost = 0;
for(i=0;i<e;++){
printf("%d -- %d == %d\n", result[i].src, result[i].dest, result[i].weight);
minimumCost += result[i].weight;
}

printf("Minimum Cost = %d\n", minimumCost);

free(subsets);

int vertices, edges;
printf("Enter the number of vertices and edges: ");
scanf("%d %d", &vertices, &edges);

Graph *graph = (Graph *)malloc(sizeof(Graph));
graph->vertices = vertices;
graph->edges = edges;

printf("Enter the edges (source destination weight):\n");
for (inti=0;i< edges; i++) {

scanf("%d %d %d", &graph->edgel[i].src, &graph->edge[i].dest, &graph->edge[i].weight);
}

KruskalMST(graph);
free(graph);
return O;

}
e Kruskal's Algorithm:
o Sort edges by weight.
e Use a Union-Find data structure to detect cycles.
e Add the smallest edge that does not form a cycle to the MST.

e Steps:

o Sort edges in non-decreasing order.
e Use the Union-Find technique to add edges one by one while ensuring no cycles are formed.
e Stop when (V-1)(V - 1)(V—1) edges are added to the MST.

e Key Components:

e Edge Structure: Stores the source, destination, and weight of edges.
o Union-Find: Helps to find cycles and connect components efficiently.
e Sorting: Edges are sorted by weight using gsort.

Input/Output Example:

Input:

mathematica

& Copy code

Minimum Cost = 19

9. To Implement Floyds Warshall Algorihm.
#include <stdio.h>

#define INF 99999 // Representation of infinity
#define V4 // Number of vertices in the graph

// Function to print the solution matrix
void printSolution(int dist[V][V]) {
printf("Shortest distances between every pair of vertices:\n");
for(inti=0;i<V;i++){
for (intj=0;j<V;j++){
if (dist[i][j] == INF)
printf("%7s", "INF");
else
printf("%7d", dist[i][j]);
}
printf("\n");

// Floyd-Warshall Algorithm
void floydWarshall(int graph[V][V]) {
int dist[V][V], i, j, k;

// Initial

Shortest distances between every pair of vertices:

5] 3 7
2 2

INF 1

INF INF

10. Implement N Queen's problem using Back Tracking.
#include <stdio.h>
#define MAX 20 // Maximum size of the chessboard
int board[MAX][MAX]; // Chessboard to represent queens' positions
// Function to print the solution
void printSolution(int n) {
for(inti=0;i<n;i++){
for (intj=0;j<n;j++) {
if (board[i][j])
printf("Q");
else
printf(".");
}
printf("\n");
}
printf("\n");

}

// Function to check if a queen can be placed on board[row][col]

bool isSafe(int row, int col, int n) {
// Check this column on the upper side
for (inti=0;i<row;i++){
if (board[i][col])

return false;

// Check the upper-left diagonal

for (inti=row,j=col;i>=0&&j>=0;i-,j-){
if (board[i][j])

return false;

}

// Check the upper-right diagonal

for (inti=row,j=col;i>=0&&j<n;i-, j++){
if (board[i][j])

return false;

return true;
}
// Function to solve the N-Queens problem using backtracking
bool solveNQueens(int row, int n) {
// Base case: If all queens are placed, return true
if (row >=n) {
printSolution(n);
return true;

}

bool hasSolution = false;

// Try placing a queen in all columns of the current row

for (int col = 0; col < n; col++) {
if (isSafe(row, col, n)) {

// Place the queen

// Recur to place the rest of the queens

hasSolution = solveNQueens(row + 1, n) | | hasSolution;

// Backtrack: Remove the queen

board[row][col] =0;

return hasSolution;

int main() {

int n;

// Input the size of the chessboard
printf("Enter the number of queens (N): ");

scanf("%d", &n);

// Initialize the chessboard
for(inti=0;i<n;i++){
for (intj=0;j<n;j++) {

board[i][j] = 0;

// Solve the N-Queens problem
if (!solveNQueens(0, n)) {

printf("No solution exists for %d queens.\n", n);
}else {

printf("Solutions displayed above.\n");

return O;

The program uses backtracking to explore all possible configurations of queens.
It ensures no two queens attack each other by validating column and diagonal constraints.
The time complexity is approximately O(N!)O(N!)O(N!) for NNN-Queens.

This program works for any N>1N \geq 1N>1 and prints all possible solutions for the N-Queens

problem

Input

mathematica ¥ Copy code

ter the number of queens (N): 4

	Engineering Graduates will be able to:

