Database Management System Lab
(BCS-551)

LAB MANUAL

ACADEMIC SESSION 2024-25

COURSE: B. TECH (CSIT)
SEM: Vvt

Department of Computer Science and Information Technology

DRONACHARYA GROUP OF INSTITUTIONS
Knowledge Park III, Gr. Noida

Table of Contents
Vision and Mission of the Institute.

Vision and Mission of the Department.
Program Outcomes (POs).

Program Educational Objectives (PEOs/PSOs).
University Syllabus.

Course Outcomes (COs).

Course Overview.

List of Experiments mapped with COs.

DO’s and DON’Ts.

A S N o

10. General Safety Precautions.
11. Guidelines for students for report preparation.

12. Lab Experiments.

DRONACHARYA GROUP OF INSTITUTIONS
GREATER NOIDA

VISION

Instilling core human values and facilitating competence to address global challenges by providing Quality
Technical Education.

MISSION

M1 - Enhancing technical expertise through innovative research and education, fostering creativity and
excellence in problem-solving.

M2 - Cultivating a culture of ethical innovation and user-focused design, ensuring technological
progress enhances the well-being of society.

M3 - Equipping individuals with the technical skills and ethical values to lead and innovate responsibly
in an ever-evolving digital landscape.

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

VISION

Promoting technologists by imparting profound knowledge in information technology, all while instilling ethics
through specialized technical education.

MISSION

Delivering comprehensive knowledge in information technology, preparing technologists to excel in a
rapidly evolving digital landscape.

Building a culture of honesty and responsibility in tech, promoting smart and ethical leadership.
Empowering individuals with specialized technical skills and ethical values to drive positive change and
innovation in the tech industry.

Program Outcomes (POs)

‘ngineering Graduates will be able to:

Program
Outcomes

Statement

PO1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex computer engineering problems.

PO2

Problem analysis: Identify, formulate, review research literature, and analyse complex computer
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

PO3

Design/development of solutions: Design solutions for complex computer engineering problems
and design system components or processes that meet the specific needs with appropriate
considerations for the public health and safety, and the cultural, societal, and environmental
considerations.

PO4

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide conclusions

POS

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modelling to complex engineering activities with
an understanding of the limitations

PO6

The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent relevant to the professional
engineering practices

PO7

Environment and sustainability: Understand the impact of the professional engineering solutions
in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development

PO8

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norm of
the engineering practices

PO9

Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings

PO10

Communications: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions

PO11

Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one’s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

PO12

Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

PSO1: To adapt to emerging technologies and develop innovative solutions for existing and newer problems.

PSO2: To create and apply appropriate techniques IT tools to complex engineering activities with an
understanding of the limitations.

PSO3: To manage complex IT projects with consideration of the human, financial, ethical and environmental
factors.

Database Management System Lab (BCS-551)

Understand and apply oracle 11 g for creating tables, views, indexes, sequences
BCS-551.1 | and other database objects

Design and implement a database schema for company data base, banking data
BCS-551.2 | base, library information system, payroll processing system, student information
System.

BCS-551.3 | Write and execute simple and complex queries using DDL, DML, DCL and TCL.

Write and execute PL/SQL blocks, procedure functions, packages and triggers,
BCS-551.4 | Cursors.

Enforce entity integrity, referential integrity, key constraints, domain
constraints on database.

BCS-551.5

Mapping of Program Outcomes with Course Outcomes (COs)

Ofljtoclgzlf:es PO1| PO2| PO3| PO4| POS| PO6| PO7| PO8| PO9| PO10| POl11 PO12
BCs-551.1| 2| 2| 3| 3| 3)) - - - - 5
BCsss12| 3| 3| 3| 2] 2] - _ - - - - 3
BCS-5513 | 2| 3| 3| 3| 3] : -) - - .
BCS5514 | 2| 3| 2| 2| 2| - i]] : - 5
BCS551.5 | 2| 3| 2| 2| 2| - i]] : - 3

BCS-551.1

BCS-551.2
BCS-551.3
BCS-551.4
BCS-551.5

List of Experiments

SR. No.

Experiments

Installing oracle/ MYSQL.

Creating Entity-Relationship Diagram using case tools.

Writing SQL statements Using ORACLE /MYSQL.:
a) Writing basic SQL SELECT statements.

b) Restricting and sorting data.

¢) Displaying data from multiple tables.

d) Aggregating data using group function.

¢) Manipulating data.

f) Creating and managing tables.

Creating procedure and functions.

Design and implementation of Student Information System.

Write a CURSOR to display list of clients in the client Master Table.

Execute the queries related to Group By and having Clause on tables SALES ORDER.

Execute the following queries:
a) The NOT NULL
b) The UNIQUE Constraint
c) The PRIMARY KEY Constraint
d) The CHECK Constraint
e) Define Integrity Constraints in ALTER table Command

Execute Nested Queries on tables CLIENT MASTER, PRODUCT MASTER,
SALESMAN MASTER, SALES ORDER, SALES ORDER DETAILS.

10

Execute Queries related to Exists, Not Exists, Union, Intersection, Difference,
Join on tables CLIENT MASTER, PRODUCT_MASTER,
SALESMAN MASTER, SALES ORDER DETAILS>

Experiment No: 1

Program Name: Installing Oracle

Theory Concept: To install the software, you must use the Universal installer.
Implementation:

For this installation, you need either the DVDs or a downloaded version of the DVDs. In this
tutorial, you install from the downloaded version. From the directory where the DVD files
wereunzipped, open Windows Explorer and double-click on setup.exe from the \db\Disk1
directory.

The product you want to install is Database 11g. Make sure the product is selected and
click Next.

DI?ACLE'

Select a Product to Install DATABASE

£ Qracle Database 11g Installation - Select a Product to Install

% Oracle Database 11g

Installs an oplional preconfigured starter database, product opions, management tools, networking
semices, utilities, and basic client software for an Oracle Database senver. This oplion also supports
Autoratic Storage Management database conflguration.

 Oracle Client

Installs enterprize management tools, netwarking services, ulilties, development tools and precompilers,
and basic client software,

T Oracle Clusterware

Installs the Oracle Clustenware components that provide the required infrastructure for Oracle Real
Application Clusters. Oracle Clusterware also enables he management of Oracle Database and other
applications within the cluster. '

Help | Back _ nstal Cancel |

3. You will perform a basic installation with a starter database. Enter orcl for the Global Database

Name and for Database Password and Confirm Password. Then, click Next

Oracle Database 11g Installation - Select Installation Method

ORACLE #
Select Installation Method DATABASE

i Basic Installation

P erform full Oracle Database 1 1u Ins1alra11un with standard r.unﬂguraﬂnn apﬂnns requlrln}; mmimal infut,
This optian usas ﬁl&ay:siﬁm ihr stur,agu ﬁng_l EE as‘amrﬁ farall daiabasa accqurjm

4. Configuration Manager allows you to associate your configuration information with your
Metalink account. You can choose to enable it on this window. Then, click Next.

W Oracle Universal Installer: Oracle Configuration Manager Registration

crcie 496

Oracle Configuration Manager Registration

[Enable Orae Ie canﬁguraﬂnnﬁanagsr

5. Review the Summary window to verify what is to be installed. Then, click Install.

4 Oracle Universal Installer: Summary

Summary
Oracle Database 11g11.1.06.0

ORACLE’
DATABASE

11

E-Global Settings
-Oracle Base: Clapp

“Installation Type: Enterprise Edition
HProduct Languages

I—E nglish

E-Space Reguirements

E-New Installations (132 products)

Help | Installed Broducts... |

Oracle Home: Clappiproducti! 1.1.0ddb_1 (OraDb11g_homet)

Back

Source; CITEMPURDIsk installl fsourcerdDiskl istagefproducts sl

LC:IRequired 2.89GE {includes 163MB termporany) - Available 7.94GB

Cancel)

6. The progress window appears.

“# Oracle Universal Installer: Install

Install

Installing Oracle Database 119 11.1.0.6.0
* Installation in progress
Setup pending...

Configuration pending. .

Extracting files to 'Ciapg\productti1 1. O 1.

fe===—=— 19%

“ou can ﬁ'l!me_'hgmﬂr_is install session at:

Healp Jl Ihstalled Eroducts.,

Back

'Program FlesiOrackeinventorylogsinstall Actions2007-08-21_05-51-544M log

=19
DRACLE‘1 g
DATABASE

Information
Management

OLAP materialized
views

Partitioning
enhancements for

ILM

Flashback Data
Archive

Installl | cancel |

7. The Configuration Assistants window appears.

4 Oracle Universal Installer; Configuration Assistants E] |g|

ORACLE’ 1 1g

DATABASE

Configuration Assistants

The follawing configuration assistants will configure and startthe components you selected earlier.

Tool Kame Status Type
Oracle Database 119

I™ Oracle Net Configuration Assistant Succeaded Recommended

B| Cracle Database Configuratio immended

ety Stap

A

Dietails {see full log at CWProgram FilesiOraclglnventordiogsinstallActions2007-08-21_08-51-54AM. 1 og):

-
=
|

Configuration assistant "Oracle Met Configuration Assistant! succeeded _1
=

Cutput generated frorm configuration assistant"Oracle Database Conflouration Assistant”: =]
Installed Eraducts Back eyt Install | Cancel

8. Your database is now being created.

B¢ Database Configuration Assistant

Ideal Platform for ¥ Copying database files
Grid Computing ¥ Creating and starding Oracle instance

Completing Database Creation
Low cost servers

and storage

Clone database creation in progress

Log files for the current operation are located at:
Chappicfatoollogsidbealare!

9. When the database has been created, you can unlock the users you want to use. Click OK.

E# Database Configuration Assistant

Database creation complete. For details check the logfiles at:
Chappicfotoollogsidbeaiarel.

Database Information:
Global Database Mame: orel
System Identifier(S10); arcl
Server Parameter Filename: Clappipraductil 1.1 Ddb_1\databaseispflearcl.ora

h’he Datahase Control URL is hitps/fmyoung-lap.us.oracle.com:1158em

Management Repository has been placed in secure mode wherein Enterprise
Manager data will be encrypted. The encryption key has been placed in the file; C;
lappiproducti11.1.0db_1ymyoung-lap.us.aracle.com_orchsysmanconfiglermkey,
ora, Pleasze ensure thizs file is hacked up as the encrypted data will hecome
unugable ifthis file is lost.

Mote: All database accounts except 8Y58, SYSTEM, DESNMP, and SYSMARN are
locked. Select the Passwaord Management button to views a complete list of locked
accounts or to manage the database accounts{except DESHMP and SYSMARN).
From the Pazssword Management window, unlock anly the accounts you will use.
Qracle Corparation strangly recammends changing the default passwoards
immediately after unlocking the account.

Password Management...)

%)

10. Click Exit. Click Yes to confirm exit.

e Oracle Universal Installer: End of Installation g:!@
ORACLE’ 11g
DATABASE

End of Installation

The installation of Oracle Database 11g was successful,

Flease remember...
‘four database configuration files have beer instaled in Ci\app while other components =
selected for nstalation have been installed in Chappiproducti11.1.04db._ 1. Be cautious
not to accidentally delete these configuration fles.

Help)| Installed Products,.. | Back | Hext [rstall

/

Experiment No: 2

Program Name: Creating Entity-Relationship Diagram using case tools.

Steps:

Step 1: Install MySQL Workbench
If you don't already have MySQL Workbench installed, you can download it from the official
MySQL website: https://www.mysql.com/products/workbench/

Step 2: Launch MySQL Workbench
After installation, launch MySQL Workbench on your computer.

Step 3: Create a New EER Diagram

Click on "File" in the menu bar.
Select "New Model" to create a new Entity-Relationship Diagram (ERD).
Step 4: Add Entities and Attributes

In the diagram canvas, you can add entities by clicking on the "Entity" button in the toolbar and
then clicking on the canvas to place the entity.

Double-click on the entity to give it a name.

To add attributes to an entity, right-click on the entity and select "Add Attribute."

Step 5: Define Relationships

To define relationships between entities, select the "Relationship" tool from the toolbar.
Click on one entity and then click on the related entity to establish a relationship.
Specify the cardinality and other properties of the relationship.

Step 6: Save Your ERD

It's important to save your work. Click on "File" and then "Save" to save the model.

Step 7: Generate SQL Script (Optional)

MySQL Workbench allows you to generate SQL scripts from your ERD. You can do this by
clicking on "Database" and then "Forward Engineer..." to create a database schema based on your
ERD.

Step 8: Review and Export (Optional)

You can review your ERD, make any necessary changes, and then export it in different formats,
such as PNG or PDF.

Output Examples:

1. First make sure you have a Database and Tables created on the MySQL

server.

SCHEMAS ol o

Search objects
v (| bank
v 1 Tables
» =l account
» = branch
> customer
» = loan
» = trandetails
» B Views
» T Routines

Example :-

Database - bank.

Tables - account, branch, customer, loan, trandetails.

2. Click on Database -> Reverse Engineer.

sy ik P Query Database... Cordsl)
ol alala & :
Reverse Engineer .., CuieR
SCHEMAS g 9]{=
| —— 2 LB a [
Search objects Sicka 1 ank ; L_I
v (2 bank Migration \Wizard..
w3 Tables Edit Type Mappings foc Genesic Migration. [o°°"
» B account - u CHAR(S),
» [branch . fname VARCHAR("),
> El customer ¥ mname VARCHAR(:D),
» 7 loan ' Ltname VARCHAR(:D),
= o s city VARCHAR(1%),
»] trandet, ;. mobileno VARCHAR(10),
» BT Views W eccupation VARCHAR(ID),
» B Routioes i dob OATE, I

3. Select your stored connection (for connecting to your MySQL Server in which

database is present) from the dropdown. Then click Next.

3. Select your stored connection (for connecting to your MySQL Server in which

database is present) from the dropdown. Then click Next.

C -tion Options
R e N Set Parameters for Connecting to a DBMS

+ Select from saved connection settings

Stored Connection: MySQL
» Method to use to connect to the RDBMS

Connection Method: Standard (TCP/IP)

Parameters | Advanced

Hostname; 127.0.0.1

Port: 3306 Name or IP address of the server host. - TCP/IP p

Username: root Name of the user to connect with,

Password: | Storsin Vault ...] [Clear] The user’s password. Will be requested later if it's

s [det J[concd |

4. After the execution gets completed successfully (connection to DBMS),
click Next.

Connect to DBMS and Fetch Information

i

Connect to DBMS

The following tasks will now be executed. Please monitor the execution.
Press Show Logs to see the execution logs.

& Connect to DBMS
(¥ Reftrieve Schema List from Database

Execution Completed Successfully
Fetch finished.

lﬂ-.dclluml[mcdll

5. Select your Database from the MySQL Server for which you want to create
the ER Diagram (in our case the database name is “bank”), then click Next.

Select Schemata to Reverse Engineer

Select Schemata F
] the Sch to be Prc dt:

6. After the retrieval gets completed successfully for the selected Database,
click Next.

Retrieve Object Information

The following tasks will now be executed, Please monitor the execution.
Press Show Logs fo see the execution logs.

Fetch Object Info

(¥ Retrieve Objects from Selected Schemata
) Check Results

Retrieval Completed Successfully
Finished,

7. Select the Tables of the Database which you want to be visible on the ER
Diagram (In this case I am importing all the tables of the DB), then click

Execute>.

Select Objects to Reverse Engineer

[¥] Import MySQL Table jects
Select Objects = by

Hide Filter
5Total Objects, 5 Selected

bank.account .
bank.branch

bank. customer

bank.loan E
bank. randetails

Use the + button to exdude objects matching wildcards such as =and _

[¥] Place imported objects on a disgram

[Bak | [Evecute> | [cancel |

8. After the Reverse Engineering Process gets completed successfully, ¢

Next.

The following tasks will now be executed. Please monitor the execution,
Press Show Logs to see the execution logs,

) Reverse Engineer Selected Objects
& Place Objects on Diagram

Reverse Engineer

Operation Completed Successfully
Finished parsing MySQL SQL script.

lick

gack | [cment] [Lconel]

Summary of Reverse Engineered Objects:
- 5 tables from schema bank’

Back Fosh | [concel

i

4 mydb

(5 Tables

5 Views

£ Routine Groups

4 bank

@ 1l branch =

dem BEO0 & S[o

] a account »

| =l

2 13X sl =l

< fname VARCHAR(30)
s mname VARCHAR(30)

b mm;vmn;(s) | ‘
bid VARCHAR(S) Ho-——

| liname VARGHAR(30)
> ity VARCHAR(15) !
> loan_amount INT(7) | 1
~ > mobslend VARCHAR(10) \
=) > ocaupation VARGHAR(10) | |
> dob DATE 1 :
t 1
lg | !
I
|
|
|

bid VARCHAR(S) i
> briame VARCHAR(30) HOr — — — — — — — — e

7 beity VARCHAR(30)
>

¥ tmenber VARCHAR(E)

«

O acnumber VARTHAR(6)

7 dot DATE

smedum_of_transaction VARCHAR(20)
» transaction_type VARCHAR(20)

2 bansaction_am ount INT(7)

< W

|
I
[}
e =
account 8.4
acnumber VARCHAR(S) |
2 custid VARCHAR(G)
2 bid VARCHAR(E)
(3 opening_balance INT(7)0)
> 864 DATE
> atype VARCHAR(10)
> astatus VARCHAR(10)
i ¥ |
Y. =]

m

Experiment No: - 3

Program Name: Writing SQL statements Using ORACLE /MYSQL:
a) Writing basic SQL SELECT statements.

b) Restricting and sorting data.

¢) Displaying data from multiple tables.

d) Aggregating data using group function.

e) Manipulating data.

f) Creating and managing tables.

SQL statements using MYSQL.:
a) Writing basic SQL SELECT statements.

-- Select all columns from a table
SELECT * FROM employees;

-- Select specific columns from a table
SELECT first_name, last name FROM employees;

-- Select distinct values from a column
SELECT DISTINCT department_id FROM employees;

-- Select data with a filter (WHERE clause)
SELECT * FROM employees WHERE salary > 50000;

-- Select data with a combination of conditions
SELECT * FROM employees WHERE department id =2 AND salary > 50000;

b) Restricting and sorting data.

-- Sorting data in ascending order
SELECT * FROM employees ORDER BY last name;

-- Sorting data in descending order
SELECT * FROM employees ORDER BY hire date DESC;

-- Limiting the number of rows returned
SELECT * FROM employees LIMIT 10;

-- Limiting the number of rows with an offset
SELECT * FROM employees LIMIT 10 OFFSET 20;

¢) Displaying data from multiple tables (JOIN).
-- Inner Join

SELECT orders.order _id, customers.customer name
FROM orders

INNER JOIN customers ON orders.customer id = customers.customer_id;

-- Left Join
SELECT employees.first name, departments.department name
FROM employees
LEFT JOIN departments ON employees.department id = departments.department id;

d) Aggregating data using group function.

-- Calculate the total salary for each department
SELECT department_id, SUM(salary) AS total salary
FROM employees

GROUP BY department _id;

-- Calculate the average salary
SELECT AVG(salary) AS average salary
FROM employees;

e) Manipulating data (INSERT, UPDATE, DELETE):

-- Inserting a new record
INSERT INTO employees (first name, last name, salary)
VALUES ('John', 'Doe', 60000);

-- Updating an existing record
UPDATE employees

SET salary = 65000

WHERE employee id = 101;

-- Deleting a record
DELETE FROM employees
WHERE employee id = 102;

e) Creating and managing tables:

-- Creating a new table

CREATE TABLE products (
product_id INT PRIMARY KEY,
product name VARCHAR(255),
price DECIMAL(10, 2)

);

-- Modifying a table (adding a new column)
ALTER TABLE employees

ADD COLUMN email VARCHAR(255);
-- Dropping a table

DROP TABLE products;

Experiment No: - 4

1. Program Name: Creating procedure and functions.
Theory Concept:

Normalization is a database design process used to organize data in a relational database
efficiently and reduce data redundancy. It is a multi-step process that sets the data into tabular form and
removes the duplicated data from the relational tables. Normalization typically involves dividing a
database into two or more tables and defining relationships between them. Let's go through an example of
normalizing a database with sample data and MySQL queries. We'll start with an unnormalized table and
normalize it step by step.

Step 1: Create an Unnormalized Table
Suppose we have a table called "CustomerOrders" that stores information about customers and their
orders. This table is not normalized because it contains repeating groups and data redundancy:

CREATE TABLE CustomerOrders (
customer_id INT PRIMARY KEY,
customer name VARCHAR(255),
order id INT,
order date DATE,
total amount DECIMAL(10, 2)

)

INSERT INTO CustomerOrders (customer_id, customer name, order_id, order date, total amount)
VALUES

(1,'Alice, 101, '2023-01-15', 100.00),

(1, 'Alice’, 102, '2023-02-20', 150.00),

(2,'Bob', 201, '2023-03-10'", 75.50),

(3, 'Charlie', 301, '2023-04-05', 200.00);

Step 2: Normalize the Data

We'll normalize the data by creating two separate tables: "Customers" and "Orders." The "Customers"
table will store customer information, and the "Orders" table will store order information.

-- Create the Customers table
CREATE TABLE Customers (
customer_id INT PRIMARY KEY,
customer name VARCHAR(255)

);

-- Create the Orders table
CREATE TABLE Orders (
order id INT PRIMARY KEY,
customer_id INT,
order date DATE,

total amount DECIMAL(10, 2),
FOREIGN KEY (customer id) REFERENCES Customers(customer _id)

);

-- Populate the Customers table with unique customer information
INSERT INTO Customers (customer_id, customer name)
SELECT DISTINCT customer _id, customer name FROM CustomerOrders;

-- Populate the Orders table with order information
INSERT INTO Orders (order id, customer 1id, order date, total amount)
SELECT order id, customer _id, order date, total amount FROM CustomerOrders;

Step 3: Query the Normalized Tables

Now that we have normalized our data, we can query the "Customers" and "Orders" tables to
retrieve information:

-- Query to retrieve customer information
SELECT * FROM Customers;

-- Query to retrieve order information
SELECT * FROM Orders;

-- Query to retrieve customer names and their total order amounts
SELECT c.customer name, SUM(o.total amount) AS total order amount
FROM Customers ¢

JOIN Orders o ON c.customer id = o.customer_id

GROUP BY c.customer name;

Output:

These queries demonstrate the result of normalizing the data. The "Customers" table contains
unique customer information, and the "Orders" table stores order details with a reference to the customer.
The last query retrieves the total order amount for each customer, demonstrating the power of relational
databases and normalization.

Experiment No-5

Program Name: Design and implementation of Student Information System.
Theory Concept:

Designing and implementing a Student Information System (SIS) experiment in a Database
Management System (DBMS) is a practical way to learn about database design and development. Below, I’1l
outline a simplified experiment scenario for creating a basic SIS using a relational DBMS (e.g., MySQL,
PostgreSQL). This experiment assumes you have basic knowledge of SQL and database concepts.

Experiment Scenario:

You are tasked with creating a Student Information System (SIS) for a university. The system
should store information about students, courses, and grades. Students can enroll in courses, and teachers can
enter grades for students in those courses.

Experiment Steps:

1. Database Design:
Define the database schema with tables for students, courses, and grades. Here's a simplified schema:

-- Students table

CREATE TABLE students (
student_id INT PRIMARY KEY,
first name VARCHAR(50),
last name VARCHAR(50),
birthdate DATE,
email VARCHAR(100)

);

-- Courses table

CREATE TABLE courses (
course_id INT PRIMARY KEY,
course_name VARCHAR(100),
teacher VARCHAR(100)

);

-- Grades table
CREATE TABLE grades (

grade id INT PRIMARY KEY,

student id INT,

course _id INT,

grade VARCHAR(2),

FOREIGN KEY (student_id) REFERENCES students(student id),
FOREIGN KEY (course_id) REFERENCES courses(course_id)

)i

2. Data Population:
Insert sample data into the tables for testing purposes.

-- Insert sample students
INSERT INTO students (student_id, first name, last name, birthdate, email)
VALUES

(1, John', 'Doe', '1995-01-15', 'john@example.com'),

(2, Jane', 'Smith', '1996-03-22', 'jane@example.com');

-- Insert sample courses
INSERT INTO courses (course_id, course_name, teacher)
VALUES

(101, "Mathematics 101", 'Dr. Smith'),

(102, 'Computer Science 101", 'Prof. Johnson');

-- Enroll students in courses
INSERT INTO grades (student _id, course id, grade)
VALUES

(1, 101,'A",

(1, 102,'B"),

(2, 101, 'B");

3. Querying the Database:

Practice querying the database to retrieve information. For example, you can retrieve a student's
grades or find courses taught by a specific teacher.

-- Get a student's grades

SELECT s.first name, s.last name, c.course_name, g.grade
FROM students s

JOIN grades g ON s.student id = g.student _id

JOIN courses ¢ ON g.course id = c.course _id

WHERE s.student_id = 1;

-- Find courses taught by a specific teacher
SELECT course name

FROM courses

WHERE teacher = 'Dr. Smith';

4. CRUD Operations:

Practice performing CRUD (Create, Read, Update, Delete) operations on the database. For example,
you can add a new student, update a student's information, or delete a course.

-- Create: Add a new student
INSERT INTO students (student_id, first name, last name, birthdate, email)
VALUES (3, 'Alice', 'Johnson', '1997-05-10', 'alice@example.com');

-- Update: Change a student's email
UPDATE students

SET email = 'new_email@example.com'
WHERE student _id = 3;

-- Delete: Remove a course
DELETE FROM courses
WHERE course _id = 102;

Experiment No: 6

Program Name: Write a CURSOR to display list of clients in the client Master Table.

TheoryConcept:The following example would illustrate the concept of CURSORS. We will be using
the CLIENT MASTER table and display records.

Implementation:

DECLARE
CURSOR client_cur
iISSELECT id,name,address
FROM client master;

client_rec
client_cur%rowtype;BEGIN
OPENCclient_cur;
LOOP
FETCH client_cur into
client rec;EXITWHENCclient cur
%notfound;

DBMS OUTPUT.put line(client_rec.id||"||client_rec.name);
END LOOP;
END;

/

Output:Whenthe above codeis executed atSQLprompt,itproduces thefollowing result:

1 Ramesh
2 Khilan
3 kaushik
4 Chaitali
5 Hardik
6 Komal

PL/SQLprocedure successfully completed.

Experiment No -7
Program Name: Execute the queries related to Group By and having Clause on tables SALES ORDER.

TheoryConcept:

The program aims to familiarize the user with grouping of databased on conditions to ensure better
usability of data.

Implementation:

GROUPBY

Q1) Create table sales order with attributes product no and Qty. Insert records into the
table and find the total qty ordered foreach product_no.

Ans:Create table sales order (product novarchar(10), Qty numbe(4));

Output:Tablecreated.

insert into sales_order values(&product no, &qty);

select* from sales_order;
Output:
PRODUCT NO QTY

p 12
1

p 11
2 2

p 9
1

p 23
2

p 23
3

p 23
3

6 rows selected.

selectproduct no, sum(qty) from sales_order group by product no;
Output:
PRODUCT NOSUM(QTY)

pl 21
p2 135
p3 46

3 rows selected.

HAVINGclause
Q2) Find the total Qty for product no‘p1’and ‘p2’fromthe
Table sales_order Ans:select product no, sum(qty) from sales order group by

product no having product no ='"p1' OR product no = "'p2';

Output:

PRODUCT NOSUM(QTY)
pl 21

p3 46

2 rows selected

Experiment No -8
Program Name: Execute the following queries:
a) The NOT NULL
b) The UNIQUE Constraint
c¢) The PRIMARY KEY Constraint
d) The CHECK Constraint
e) Define Integrity Constraints in ALTER table Command

a) The NOT NULL Constraint:
The NOT NULL constraint ensures that a column cannot contain NULL (empty) values.
Here's an example:

-- Create a table with a NOT NULL constraint
CREATE TABLE employees (
employee id INT PRIMARY KEY,
first name VARCHAR(50) NOT NULL,
last name VARCHAR(50) NOT NULL,
hire_date DATE NOT NULL

)

b)The UNIQUE Constraint:

The UI\{IQUE constraint ensures that the values in a column are unique across all rows in a table. Here's an
example:
-- Create a table with a UNIQUE constraint
CREATE TABLE products (
product id INT PRIMARY KEY,
product name VARCHAR(100) UNIQUIE,
price DECIMAL(10, 2)
);

-- Insert rows with unique product names
INSERT INTO products (product_id, product name, price)
VALUES (1, 'Laptop', 1000.00),

(2, 'Smartphone', 600.00);

-- Attempt to insert a row with a duplicate product name, which will result in an error
INSERT INTO products (product_id, product_name, price)
VALUES (3, 'Laptop', 1200.00);

¢) The PRIMARY KEY Constraint:

The PRIMARY KEY constraint defines a unique identifier for each row in a table. Here's an example:
-- Create a table with a PRIMARY KEY constraint
CREATE TABLE students (
student id INT PRIMARY KEY,
first name VARCHAR(50),
last name VARCHAR(50),
birth_date DATE

);

-- Insert rows with unique student IDs
INSERT INTO students (student id, first name, last name, birth_date)
VALUES (1, 'John', 'Doe', '1995-01-15"),
(2, 'Jane', 'Smith', '1996-03-22");
d) The CHECK Constraint:
The CHECK constraint allows you to specify a condition that must be met for data to be valid. Here's an

Example:

-- Create a table with a CHECK constraint
CREATE TABLE orders (
order id INT PRIMARY KEY,
order date DATE,
total amount DECIMAL(10, 2),
payment_status VARCHAR(20) CHECK (payment _status IN ('Paid', 'Unpaid', 'Pending'"))

);

-- Insert rows with valid payment statuses
INSERT INTO orders (order_id, order date, total amount, payment_status)
VALUES (1, 2022-01-01", 500.00, 'Paid"),

(2,'2022-02-01'", 750.00, 'Unpaid');

-- Attempt to insert a row with an invalid payment status, which will result in an error
INSERT INTO orders (order id, order date, total amount, payment status)
VALUES (3, '2022-03-01", 300.00, 'InvalidStatus');

e¢) Define Integrity Constraints in ALTER TABLE Command:

You can also define integrity constraints using the ALTER TABLE command. Here's an example of
adding a NOT NULL constraint to an existing table:

-- Add a NOT NULL constraint to an existing column
ALTER TABLE employees
ALTER COLUMN hire_date DATE NOT NULL;

Experiment No: 9

Program Name: Execute Nested Queries on tables CLIENT MASTER, PRODUCT MASTER,
SALESMAN MASTER,SALES ORDER,SALES ORDER DETAILS

TheoryConcept:
Theprogramintendstofamiliarizenestedqueriessoastoretrievedatafromarecordbyusingfiltereddata from
another record.

Implementation:

Q1) Retrieve the order numbers, client names and their order dates from client master and
sales_ordertables.

Ans:Selectorder no,order date,namefromsales order,client masterwhereclient master.client no=sales
_order.client noorder by order date;

OUTPUT:
Orde order name
_____ rmo_____dae _______.
1 1999/1 akans
2/05 ha
2 1999/1 divya
2/12

Q2) Retrieve the product numbers, description and total quantity ordered for each
productAns:Selectsales_order details.product no, description, sum(qty ordered) from
sales order details,product master where product master.product no =

sales_order details.product no group bysales_order details.product no, description;
OUTPUT:

produc descript sum(qty_ord
S tno _____dom _______ ered) ___
1 chair 2
2 pen 5

Q3) Retrieve the names of employees and names of their respective managers from the employee
table.Ans: Select employee.name, employee.name from employee where employee.manager no
=employee.employee no;

OUTPUT:

Name Name

Akansha Divya
Akshita Divya

UNION . INTERSECTand MINUS CLAUSE

Q1) Retrieve the names of all clients and salesmen in the city of Mumbai from the
tablesclient masterandsalesman_master.
Ans:Selectsalesman_no from salesman_master where city =
‘Mumbai’UNION
Select client no from client master where city = ‘Mumbai’;
OUTPUT:
Name

Akansha
Akshita
Divya

Q2)
RetrievethesalesmannameinMumbaiwhoseeffortshaveresultedintoatleastonesalestransact
ion
Ans:Selectsalesman_no, namefrom salesman_master where city = ‘Mumbai’ INTERSECT
Selectsalesman_master.salesman_no,namefromsalesman_master,sales_orderwheresal
esman_master.salesman_no=sales_order.salesman_no;
OUTPUT:
Saleman _noName

1 akansha
divya

Q3) Retrieve all the product numbers of non-moving items from the product master table
Ans:Selectproduct no from

product_masterMinus

Select product no from sales order details;

OUTPUT:

product_no

VIEWS

Q1) Create a view on salesman_master table for the sales
departmentAns:Create view vw_sales as select * from
salesman master; OUTPUT:

Viewcreated

Q2) Create a view on client_master table
Ans:Createviewvw_clientasselectname,address1,address2,city,pincode,state,bal _duefromclient
master;

OUTPUT:

Viewcreated
Q3) Perform insert, modify and delete operations on the view created in Q2
Ans:

a) Insertintovw_clientvalues(‘C001’,‘Robert’,"AAAAAA’,‘BBB’,‘Delhi’,2000000,'MMM");

OUTPUT:
lrows created

b)Updatevw_client set bal due = 10000 where client no = ‘C001’;
OUTPUT:
1 row updated

c)Delete from vw_client where client no = ‘C001’;
OUTPUT:
1 row deleted

Experiment No-10

ProgramName: Execute queries related to Exists, Not Exists, Union, Intersection, Difference, Join
ontablesCLIENT MASTER,PRODUCT MASTER,SALESMAN MASTER,SALES ORDER,SALES
ORDER_DETAILS

TheoryConcept:
Theprogramretrievesdatafromrecordsbydefiningrelationbetweentwotablessoastoretrievefilteredrecords.

Implementation:

CorrelatedquerieswithEXISTS/NOTEXISTSclause

1)Select all products and order no where order status is ‘in Process’
Ans: Select order no.,product no. from sales order details where exists(select * from
sales_order ,order no = sales order details,order no and order status=’in process’);

QOutput:
Order no Product
no
0003 3
2) Selectorder no and order date for all orders which include product no ‘P001’ and

quantity ordered>10Ans:Select order no,order data from sales order where exists(select * from
sales order details wheresales order details,order no = sales order.Order no and product-no="p001’

and quantity-ordered>10;Qutput:

Order no Product_no
0002 05/feb/13

3)Find all order _no for salesman rashmi.
Ans:Select order no from sales order where exists(select * from salesman_master
wheresalesman _master.saleman-no=sales_order-salesman_noandname="rashmi’);
Output:

Order no
0003

4)Select all clients who have not placed any orders.
Ans:Select * from client_master where not exists(select *
fromsales _order.client no=client master.client no);

Output:

Client_no Name City Pincode State
6 Divya Hapur 35498 U.P.
7 Dorothy Noida 32547 U.P.

5)Select all orders with order date for ‘acrylic colors’
Ans:Select order no,order date from sales_order where exists(select *

fromsales_order details.oder no=sales order.order noANDexists(select*fromproduct]l wheresales order
details.product no=product noAND description="acrylic colors’);
Output:

Order no Order date
0001 23/jan/13

Union.Intersect and minus clause:

1)List all the clients and salesman and their names

Ans:Select client_no, name from client master UNION select salesman_no,name from salesman master;
Output:

Client_no Name
3 Akshita
4 Dhawal

2)List all the clients and their names who are also salesman.

Ans:Selectnamefromclient masterINTERSECT,selectnamefromsalesman_master;
Output:

No rows selected

3)List all the clients who are not salesman.

Ans:Select name from client_master MINUS select name from salesman_master;
Output:

Name
Akshita
Dhawal

Akansha

Divya

Dorothy

4)List all the clients who have placed orders

Ans:Select client_no from client masterINTERSECTselectclient no from sales_order;
Output:

Client_no
6

I 7 |

5)Listalltheclientswhohavenotplacedanyorder.

Ans:Select client_no from client masterMINUS select client no from sales order;
Output:

Client no
3
4
5

6) List all the clients in UPwho have placed orders

Ans:Selectclient_nofromclient_masterwherestate="UP’INTERSECTselectclient nofromsales or
der;

Output:

Client_no
3
4
5

7) FindalltheclientsandtheirnamesfromcityGhaziabadwhohavedeliverydateoftheirordersastoday.Ans:Select
client no from client master where city="Ghaziazbad’ INTERSECT select client no fromsales_order
where delivery date="09-MAR-13’

QOutput:

Client no

5

Queries on Joins
1) List the product no and description of products sold.

Ans:Select product no, description from (productl natural join sales order details)

Output:
Product no Description
1 Chair
1 Chair
2 Table
3 Sofa

2) Find the products which have been sold to ‘akansha’

Ans:Select product no, description from (productl natural join sales order details natural
joinsales_order natural join client master) where name="akansha’;

Output:

Product_no Description
3 Sofa

3) Find the products and their quantities that will have to be delivered in the current month.

Ans:Select sales_order detailsproduct no, productl ,description,

sum(sales_order details,quantity ordered) from sales order details, sales order, productl where
productl,product no=sales order details,product noandsales_order,order no=sales order details,order
_noandto_char (delivery date,’mon-yy’) =to_char(sysdate,’mon-yy’)group by sales order details,
product _no,productl, description ;

Output: no rows selected

4)Find thenamesofclientwhohavepurchased ‘chair’
Ans:Select name from(client master natural join sales order natural join sales order details natural
joinproductl) where description= ‘chair’;

Output:

Name
Akshita
Akansha

5)
6)List theorders forlessthan Sunitsof saleof*chair’
Ans:Select product no, order no from (sales order details natural join productl)
where(description="chair’and qty ordered<5);

Output:
Product no Order no
1 0001
1 0001

7)Find the products and their quantities placed by ‘akansha’or ‘akshita’.
Ans:Selectproduct no,description,qty orderedfrom(productlnaturaljoinsales order detailsnaturaljoin

sales_order natural join client master) where (name="akansha’or name="akshita’);

Output :
Product_no Description Qty ordered
1 Chair 4
1 Chair 3
2 Sofa 2

8)Find the products and their quantities for the orders placed by the client no ‘3’and ‘5’

Ans:Selectproduct no,description,qty orderedfrom(productlnaturaljoinsales order detailsnaturaljoin

sales_order natural join client master) where (client no=3 OR client no=5);

QOutput:
PRODUCT NO DESCRIPTION QTY_ORDERED
1 Chair 4
1 Chair 3

	ACADEMIC SESSION 2024-25
	Department of Computer Science and Information Tec
	Engineering Graduates will be able to:
	Experiment No: 1

	Implementation:
	Experiment No: 2

	Program Name: Writing SQL statements Using ORACLE
	a) Writing basic SQL SELECT statements.
	b) Restricting and sorting data.
	c) Displaying data from multiple tables.
	d) Aggregating data using group function.
	e) Manipulating data.
	f) Creating and managing tables.

	Experiment No: - 4
	Theory Concept:

	Experiment No-5
	Experiment No: 6
	Implementation:

	Experiment No -7
	Program Name: Execute the queries related to Group
	TheoryConcept:
	Implementation:
	GROUPBY

	Output:
	Output:
	HAVINGclause

	Output:

	Experiment No -8
	-- Create a table with a NOT NULL constraint
	CREATE TABLE employees (
	 employee_id INT PRIMARY KEY,
	 first_name VARCHAR(50) NOT NULL,
	 last_name VARCHAR(50) NOT NULL,
	 hire_date DATE NOT NULL
);
	Experiment No: 9
	Program Name: Execute Nested Queries on tables CLI
	TheoryConcept:
	Implementation:
	OUTPUT:
	OUTPUT:
	OUTPUT:
	UNION , INTERSECTand MINUS CLAUSE

	OUTPUT:
	OUTPUT:
	OUTPUT:
	VIEWS

	OUTPUT:
	Ans:

	OUTPUT:
	OUTPUT:
	OUTPUT:
	TheoryConcept:
	Implementation:
	CorrelatedquerieswithEXISTS/NOTEXISTSclause

	Output:
	Output:
	Output:
	Output:
	Union,Intersect and minus clause:

	Output:
	Output:
	Output:
	Output:
	Output:
	Output:
	Output:
	Queries on Joins

	Output:
	Output:
	Output: no rows selected
	Output:
	Output:
	Output :

	Output:

