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PREFACE

'This book is designed for use as an introduction to the study of electric
networks from the so-called pole and zero approach. The subject
matter may be divided into four parts. (1) Chapters 1 through 3 are
concerned with definitions and with the formulation of equilibrium
equations. The first chapter contains a discussion of approximation as
it relates to networks, the relationship between the network abstrac-
tion and the physical system. Here the reader is given the opportunity
to plant his feet firmly on the ground before he becomes involved in
the myriad details of analysis. The elements are introduced, their laws
formulated, their combination into networks discussed. Writing of
equilibrium equations for networks is treated in Chapter 3.

(2) Chapters 4 through 8 have to do with the solution of equilibrium
equations, integrodifferential equations in general, by both classical
and the Laplace transform method. Chapter 8 amplifies the relation-
ship between the time domain and the frequency domain.

These first eight chapters encompass topics classified under the
heading of transient analysis of electric circuits. In the remaining
chapters, this background is exploited in unifying concepts of transient
response and sinusoidal steady-state response by the use of the poles
and zeros of network functions.

(3) In Chapters 9 through 11, the reader is introduced to complex
frequency, impedance functions, transfer functions, and poles and zeros.

(4) The remaining chapters are devoted to applications of the pole
and zero approach to network analysis. Chapters 12 and 13 relate to
reactive networks and include Foster’s reactance theorem and filters
studied from the image parameter point of view. Chapter 14 is an
introduction to stagger-tuned amplifier-networks. In the last two
chapters, the representation of systems by block diagrams and the
stability of feedback systems are studied. References are given at the
end of each chapter for those interested in a more advanced or more
detailed study.

The literature relating to most of the contents of the book dates
back to the 1920’s. It has not been until recent years, however, that
the pole and zero approach has been widely taught in graduate schools
and extensively used by electrical engineers in industry in such areas
as circuit design, electronic circuits, and automatic control. This pole
and zero approach is now finding its way into the undergraduate
curriculum in many different areas of study and in many ways.
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iv PREFACE

The material of N ecwork Analysis has been developed by using it in
the form of classroom notes for a course for junior and senior students
at the University of Utah, which has been offered since 1949. The
objective of this course has been to provide background material for
the study of such subjects as communications engincering, pulsc
techniques, power system analysis, and servomechanisms.

I am deeply indebted to my students at the University of Utah—and
at Stanford University for some chapters—whose questions and class-
room discussions have left many imprints on the book. Indebtedness
is also acknowledged to Dr. Glen Wade of Stanford University and
Dr. Don A. Baker and Doran Baker of the University of Utah for
reading parts of the manuscript and offering helpful suggestions, and
to Dean W. L. Everitt, editor of this series.

It was my good fortune to study network synthesis under Professor
David F. Tuttle, Jr., at Stanford University. In preparing this book, I
have been influenced by his method of approach and his teaching tech-
niques. I also acknowledge the friendly cooperation of the electrical
engineering staff at the University of Utah, particularly Professors
L. Dale Harris and Philip Weinberg,

M. E. Van Valkenburg
Urbana, Illinois
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CHAPTER 1
DEVELOPMENT OF THE CIRCUIT CONCEPT

1-1. Introduction

One of the methods of science is the continual bringing together
of a wide variety of facts to fit into a simple, understandable theory
that will account for as many observations as possible. The name
conceptual scheme has been used by the American chemist and univer-
sity president James Conant for the theory or picture that results.*
Perhaps the most familiar conceptual scheme to students of science
and engineering is that of the atomic theory from which we take our
picture of the electron and of electric charge. Other important con-
ceptual schemes are conservation of energy and conservation of charge.

Although electricity and magnetism were recognized early in the
history of man—the charging of amber by friction, the use of the
lodestone in navigation—it was not until the nineteenth century that
significant progress was made in developing a conceptual scheme. The
discovery by Galvani and Volta about 1800 that electricity could be
produced by chemical means greatly simplified experimentation.
Important discoveries were made in a relatively short interval of time
after Volta. In 1820, Oersted identified the magnpetic field with cur-
rent, and Ampere measured the force caused by the current. In 1831
Faraday, and independently Henry, discovered electric induction.
These and other experiments were brought together to form a success-
ful conceptual scheme by the English physicist James Clerk Maxwell
in 1873. In Maxwell’s equations, as the scheme has come to be known,
all electric and magnetic phenomena are explained in terms of fields
resulting from charge and current. The success of Maxwell’s concep-
tual scheme is evidenced by the persistent agreement of results deduced
from Maxwell’'s equations with observation for a period of over 100
years.

In view of Maxwell’s success, why do we now embark upon a study
of another conceptual scheme for the same phenomena, the electric cir-
cuit? Equally important as a question, how are the two concepts
related? The answer to the first of our questions is the practical utility
of the circuit concept. As a practical matter, we are not often interested

* James B. Conant, Science and Common Sense (Yale University Press, New
Haven, 1951).

1



2 DEVELOPMENT OF THE CIRCUIT CONCEPT Chap. 1

in fields so much as we are in voltages and currents. The circuit concept
favors analysis in terms of voltage and current from which other
quantities such as charge, fields, energy, power, etc. can be computed
if desired. The answer to our second question will require a longer
answer and justification. Briefly, circuit concepts arise from the same
basic experimental facts as do Maxwell’'s equations. However, the
circuit involves approximations that are not included in the more gen-
eral concept of field theory. It is important that we understand the
nature of these approximations—the limitations of circuit theory—
before we develop our subject,

It will be helpful to define the function of the circuit in terms of
two basic building blocks: charge and energy. We regard charge and
energy as the least common denominators in describing electrical phe-
nomena, the primitive quantities in terms of which we can build our
conceptual scheme of the electric circuit. A physical circuit is a sys-
tem of interconnected apparatus. Here we use the word apparatus to
include sources of energy, connecting wires, components, loads, ete. A
circuit functions to transfer and transform energy. Energy transfer is
accomplished by charge transfer. In the circuit, energy is transferred
from a point of supply (the source) to a point of transformation or con-
version called the load (or sink). In the process, the energy may be
stored.

1-9. Electric charge

Thales of Greece is credited with the discovery about 600 B.c. that
amber when briskly rubbed with a piece of silk or fur becomes “elec-
trified”” and is capable of attracting small pieces of thread. This same
technique for producing electricity was used centuries later by Cou-
lomb in France (and independently by Cavendish in England) in
establishing the inverse square law of attraction of charged bodies.

Our present-day understanding of the nature of charge is based on
the conceptual scheme of the atomic theory. We picture the atom as
composed of a positively charged nucleus surrounded by negatively
charged electrons. In the neutral atom, the total charge of the nucleus
is equal to the total charge of the electrons. When electrons are
removed from a substance, that substance becomes positively charged.
A substance with an excess of electrons is negatively charged.

The basic unit of charge is the charge of the electron. Because this
charge is so small, the practical unit of the coulomb is used. The elec-
tron has a charge of 1.601 X 10~** coulomb.

1-3. Electric current

The phenomenon of transferring charge from one point in a circuit
to another is described by the term electric current. An electric current



Art, 1-4 DEVELOPMENT OF THE CIRCUIT CONCEPT 3

may be defined as the time rate of net motion of electric charge across
a cross-sectional boundary. A random motion of electrons in a metal
does not congtitute a current unless there is a net transfer of charge with
time. '

In equation form, the current® is

(1-1)

S

If the charge ¢ is given in coulombs and the time ¢ is measured in sec-
onds, the current is measured in amperes (after the French physicist
André Ampére). Since the electron has a charge of 1.601 X 16— cou-
lomb, it follows that a current of 1 ampere corresponds to the motion of
1/(1.601 X 1071 = 6.25 X 10'® electrons past any cross section of a
conducting path in 1 sec.

In terms of the atomic theory conceptual scheme, all substances are
pictured as made up of atoms. In a solid, some electrons are relatively
free of the nucleus; the attractive 6.24 x 1018 electrons,/sec
forces on these electrons are exceed- Ampere of current
ingly small. Such electrons are dis-
tinguished by the name free elec- é XX @ Charge” éj é
trons. An electric current is the time
rate of flow of these free electrons,
passing from one atom to the next Fig. 1-1. Motion of charge in a con-
as pictured in Fig, 1-1, ductor.

In some materials, there are many free electrons, so that large cur-
rents are easily attained. Such materials are known as conductors.
Most metals and some liquids are good conductors, Materials with
relatively few free electrons are known as insulators. Common insulat-
ing materials include glass, mica, plastics, ete. There is no sharp
dividing line between conductors and insulators. Conduction is pos-
sible in other materials than solids. In vacuum tubes, for example,
electrons pass through a partial vacuum from one metallic plate to
another,

There is a common misconception that since some electric waves
propagate at approximately the speed of light the electrons in a con-
ductor travel with this same velocity. The actual mean velocity of
free electron drift is but a few millimeters per second! (See Prob. 1-2
for a numerical example.)

Cross sectional area

1-4, Sources of energy; electric potential

Another conceptual scheme upon which our thinking is based is the
conservation of energy. By our training in the methods of science, we

* The symbol £ for current is taken from the French word intensité,



4 DEVELOPMENT OF THE CIRCUIT CONCEPT Chap. 1

immediately become suspicious of any scheme that creates energy.
The law of conservation of energy states that energy cannot be created,
nor destroyed, but that it can be converted in form. Electric energy is
energy converted from some other form, There are relatively few ways
that this can be accomplished. In order of economic importance, some
of these methods are the following:

(1) Magnetic induction. The familiar rotating generator invented by
Faraday in 1831 produces electric energy from mechanical
energy of rotation. Often the mechanical energy is converted
from thermal energy by a turbine, and in turn, the thermal
energy is converted from chemical energy by burning coal.

(2) Voltaic methods. Electric batteries produce electric energy by
converting chemical energy.

(8) Electrostatic methods. The friction machines used by Coulomb
and other early experimenters produce electric energy by con-
verting mechanical energy. This method is little used at pres-
ent, an exception being the Van de Graaff generator used to pro-
duce x rays and used in research in nuclear physics.

(4) Other methods. Thermal electricity is produced by heat at a
junction of dissimilar metals such as bismuth and copper. Light
energy can be converted into electric energy by photoelectric
devices.

The function of each of these different sources of electric energy is
the same in terms of energy and charge. In one form of battery, for
example, two metallic electrodes—one of zinc and one of copper—are
immersed in dilute sulfuric acid. The formation of zinc and copper
ions causes negative charge to accu-

Charge flow mulat}e at the electrodes. Energy is
e 1 supplied to the charge by the differ-
~Terminal  +Terminal|} %J_ ence in the energy of ionization of zine

and copper in the chemical reaction.
Once the battery circuit is closed by

External circuit

0y
%

+
-t---—--—-e-—--——«---—/

Device for supplying energy : in
t charged bodies by an external connect.non, a8 sho*gvn i
conversion of chemical energy Fig. 1-2, the chemical energy is ex-

pended as work for each unit of charge
in transporting the charge around the
external circuit. The quantity “energy
per unit charge” or identically, ““ work
per unit charge,” is given the name pofeniial (or the more commonly
used ferm voltage). In the form of an equation,

_w _
V=7 (1-2)

Fig. 1-2. Representaiion of a
battery showing electron flow.



Art. 1-5 DEVELOPMENT OF THE CIRCUIT CONCEPT 5

If w is the work (or energy) in joules and ¢ is the charge in coulombs,
the potential v is in volts (after Alessandro Volta). The potential of an
energy source is sometimes described by the term electromotive force,
abbreviated emf, in the electrical literature. We will avoid designating
potential as a force because it i3 misleading and instead use the terms
voltage or polential.

If a differential amount of charge dg is given a differential increase
in energy dw, the potential of the charge is increased by the amount

dw
If this potential is multiplied by the current, dg/d! as
dw  dg dw _
FrRel il T (1-4)

the result is seen to be a time rate of change of energy, which is power
p. Thus power is the product of potential and current,

p=vi (1-5)
and energy is given by the integral equation
= [pdt= {vidt (1-6)

1-5. The relationship of field and circuit concepts

In developing the circuit conceptual scheme, we will follow the same
three steps for each of three parameters. These steps are the following:

(1) The physical phenomenon. We will discuss in a quantitative
manner an electrical phenomenon which is observed by experi-
ment. We will do this in terms of charge and energy.

(2) Field interpretation. We will next discuss the interpretation of
the phenomenon in terms of a field quantity.

(3) Circuit interpretation. Finally, we will introduce a circuit param-
eter to relate voltage and current in place of the field relationship.

1 6 The capacitance parameter

(1) Physical phenomenon. The presence of charge on two spatially
separated substances—for example, h b bt
those shown in Fig. 1-3—causes E——
an ‘‘action at a distance’” in the
form of a force between the two sub- T
stances. This phenomenon we re- Fig. 1-3. Charged bodics.
gard as a property of nature, a basic
experimental fact. Coulomb found that this force was of such nature
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that “like charges repel’’ and “unlike charges attract” and that the
force varied according to the equation

4192
= drer? (1-7)
In this equation, F is the force in newtons directed from point charge
to point charge, r is the separation of the point charges in meters,
¢ is the permittivity, having the free-space value of 8.854 X 10-!* farad
per meter in the mks system, and ¢, and ¢: are the charges measured
in coulombs. It should be understood that this equation applies
strictly to point charges only. However, the equation may be applied
to any geometry of known charge distribution by vectorially adding all
forces.

(2) Field interpretation. This phenomenon can be described in terms
of a force on a unit charge placed between the two charged bodies.
This force per unit charge, a vector quantity since force is a vector
quantity, is called an electric field of value

F
E . (1-8)
As a conceptual aid, this field may be represented by lines drawn in
the direction of the force that would be exerted on the unit positive
Lt E P rEd exploring charge at each point. Such
lines are illustrated in Fig. 1-4. These
lines are conceptual aids: they should
not be thought of as actually being pres-
""""""" ent. Using Eqs. 1-7-and 1-8, the electric
Fig. 1-4. Electric field lines or  field may be evaluated for a particular
lines of force. problem.
(8) Circuit interpretation. The work necessary to move a charge
from one plate to the other of Fig. 1-4 may be found from the equation

w= [ F cos 6 dr (1-9)

where dr is an increment of distance between the plates and 6 is the
angle between the force and the direction of movement dr. An expres-
sion for the force has been given by Coulomb’s law, Eq. 1-7, which
may be substituted into the equation above to give

= | B 05 0dr (1-10)

w = i Lt L
dxer?

We are more interested in the quantity work per unit charge, which is
the voltage between the plates. When ¢, = —gq: = ¢ (equal but oppo-
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site charges on the plates), the expression for potential becomes

o(fmt)e

The integral of this equation can be evaluated for simple geometry, or
in any case can be measured by measuring ¢ and v. For any fixed
geometry, the integral is a constant which is given the name elastance,
symbolized by the letter S. With this definition,

v = Sq (1-12)

The reciprocal of S is the capacitance, which is represented by the
letter C. Equation 1-12 may be written

g = Cv (1-13)

in terms of capacitance. In these equations, if ¢ is measured in cou-
lombs and v in volts, then the unit of C is the farad (in honor of Michael
Faraday), and the unit for S bears the colorful name daraf (farad
spelled backwards). The quantity € (or the quantity S) which char-
acterizes the system under study and permits the simple relationship
between v and ¢ to be written is known as a circuit parameter, the
capacitance of a system.*

To reach our objective, a relationship between voltage and current
in a capacitive system, there remains the task of studying the relation-
ship of charge and current given by the equation

dq

5 (1-14)

g =
If there is an initial charge on a system, g, and the charge increases
linearly with time, the charge at any time may be written

= go + Kt (1-15)

The current is found by differentiating the charge with respect to
time, giving the value
dg _

=k (1-16)

T =

Thus we see that the current in the system is independent of initial
charge on that system. In going the other direction, computing charge,

* It should be noted that the circuit parameter described by this equation holds
only for the case of two charged bodies with equal and opposite charges. The
capaeitance concept ean be extended, however, to the case of several conductors
with any charge distribution. For example, see Fowler, Introduction to Electric
Theory (Addison-Wesley Publishing Co., Cambridge, 1953), pp. 73 ff.
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given the current, we rearrange __Eq. 1-14 as
dg = i dt (1-17)

which can be integrated as

q
(= [ ia
G o
t
to give q = qo+ f 1dt (1-18)
0

The total charge on the system of plates is seen to be equal to the sum
of the initial charge and the charge deposited by the current.

Returning once more to the relationship, ¢ = Cv, eurrent and volt-
age are related by the equation

Y =2 v (1-19)

If the capacitance C' does not vary with time (or with charge), then

dy

(1-20)

If, however, C is not constant but varies as & function of time, the cur-
rent must be found from the general relationship

. d dv dC
lw'&"i(CU)ECa‘i-i-vTﬁ (1-21)

Similarly, starting with the equation v = Sg, we find that

v=sz‘dtwé-[idt (1-22)

Equations 1-19 and 1-22 relate the voltage and current in the capacitive
system through the circuit parameter C.

Example 1

The sketch of Fig. 1-5(a) shows two plates, one of which is driven
by a constant-speed motor so that the capacitance between the two
plates varies according to the equation

C(t) = Co(l — co8 wl) (1-23)

If the battery potential remains constant at V volts, the current as a
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function of time may be found from Eq. 1-21 as

. d dc .
E—— — =i -, 4
i= 5 (Cr) =V 3 = oCoV sin wf (1-24)

This time variation of current is shown in Fig. 1-5(c).

Battery

4 Plate 03]

Motor /

(constant speed) \/ ¢
{a)

{¢)
Fig. 1-6. Variable capacitance system,

From the equation ¢ = Cu, it is seen that the produet Cv cannot
change instantaneously, since an instantaneous change in ¢ would
mean an infinite current, which is ruled out as a possibility in a phys-
ical system. In terms of the time
interval Af = ¢, — #i, in which ¢ or
Cv changes a finite amount shown
in Fig. 1-6, At cannot be zero.
Instantaneous change of Cv shown
as curve 1 is thus ruled out. Typical
changes of Cv or ¢ which are per-
mitted are shown as curves 2 and 3.

From another approach, the charge is given as

L

2 [possible)
,,—3 {possible}

1 (ruled out}

{Cv) or ¢q

t; Bt t, time
Fig. 1-8. Change of Cv with time.

g(t) = qo + L t idt (1-25)

by Eq. 1-18. The integral portion of this equation cannot have a finite
value in zero time with finite 7; that is,

t
Iim | <dt =0, 77 (1-26)
-0 JO
The integration process is illustrated in Fig. 1-7 as the summation of
infinitesimal areas, 7 in height and dt in width. The interval from¢ = 0
to {; must be greater than zero for any area to be summed.
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These mathematical equations aid in visualizing the requirement
that the charge in a capacitive system cannot increase or decrease
in zero time. However, either capacitance or voltage can change in-
stantaneously so long as the pro-
duct of the two quantities remains
constant, as

C}Ul = 0202 (1*27)

where the subseripts 1 and 2 refer
to conditions existing at times a
vanishingly small interval apart (such as before and after a switch is
closed).

In most cases to be considered, the capacitance of a network does
not change with time. Under this condition, the above discussion
simplifies to the important conclusion that the voltage of a capacitive
syslem cannot change instantaneously.

t-0 't

Fig. 1-7. Integration of current.

1-7. The inductance parameter

(1) Physical phenomenon. Oersted made the important discovery
in 1820 that the force between two charged substances depended on
the time rate of flow of charge (the current), In Oersted’s experiment,
the needle of & compass was deflected by the presence of a current-
carrying conductor, indicating that the effect was related to mag-
netism. In the same year, Ampere measured the force caused by the
current. and expressed the relationship in equation form. This mag-
netic effectis an “action at a distance” just as in the case of the force
between charged bodies. This “action at a distance’’ is a basic observa-
tional fact; it is not deduced from other knowledge.

(2) Field interpretation. The phenomenon described above can be
interpreted in terms of the force per unit magnetic pole at all points

P
dB
a P
r
"\
fo Co— T £ I

dif— U
{a} (A

Fig. 1-8. The magnetic field.

in space. Oersted discovered that this force was directed at right
angles to the current-carrying conductor. In terms of the geometry
of Fig. 1-8(a), Ampere described a magnetic field density B, the force
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per unit magnetic pole, of value

_picosadl y

where p is the magnetic permeability, which is a function of the medium
in which the magnetic field exists, 7 is the eurrent in amperes, and other
quantities are defined on the figure. Figure 1-9(a) shows the cross sec-

B ¢

tath (b)

N conductors

Fig. 1-9. Magnetic field and flux conventions.

tion of a current-carrying conductor. By Eq. 1-28, the magnetic field
density will be constant at a constant distance from the conductor,
Continuous lines with arrows may be drawn to indicate the direction
of B—as a conceptual aid. These are magnetic field density lines or
“lines of force.” For more complicated geometries than that shown in
Fig. 1-9(a), the position of the lines can be found by integrating Xq.
1-28 or by experimentally moving a “point” magnetic pole (if one
existed) from place to place in space. A magnetic compass would give
an approximate measure of directions.

It is sometimes convenient to replace the lines of magnetic field
density by lines of magnetic flux defined by the integral equation

¢ = [ B cos 8 dS (1-29)

where ¢ is the angle between the surface of integration and the field
density B. If the currents in each of N conductors, represented in
Fig. 1-9(b), are in such a direction that the fluxes add, then N¢ flux
linkages* are said to exist. If, however, ¢; lines of flux link N, con-
ductors, ¢. lines link N conductors and so forth, the total number of
flux linkages is found by algebraic summation as

Y o= E N;d; (1-30)
j=1

* For a discussion of some of the problems encountercd in the use (and misuse)
of the concept of flux linkages, see Joseph Slepian, “Lines of force in electric and
magnetic fields,” 4m. J. Phys., 19, 87 (1951), and Keith MeDonald, ‘“Topology
of steady current magnetic fields,” Am. J. Phys., 22, 586 (1954).
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Assuming that all lines link all conductors, Eq. 1-29 may be modified
to give flux linkages, as

¢=N[Bcos 6 dS (1-31;

To Faraday goes credit for the next basic experimental discovery.
Faraday experimented with two conducting circuits in spatial prox-
imity. He found that a changing magnetic field produced by one circuit
induced a voltage in the other circuit. The changing magnetic field
could be caused by (1) a conductor moving in space or (2) a current
changing with time.

Faraday did not envision this method of inducing voltage in terms
of “action at a distance’’ but in terms of changes in flux linkages. A
conductor moving in a magnetic field (as in the ecase of a generator)
is thought of as “cutting flux and hence reducing the flux linkages’;
the voltage induced in a stationary conductor (as in a transformer) is
thought of as caused by ‘‘changing flux linkages’” with time. Such
pictures are valuable as conceptual aids so long as we do not attach
physical significance to flux linkages which are, after all, only a means
for accounting for action at a distance. Faraday’s law is

dy
where k is a proportionality constant. In the mks system the units are
selected to make k have unit value: when ¢ is in weber-turns, { is in
seconds, and k = 1, then v is in volts.
(3) Circuit interpretation. To derive the circuit relationship between
voltage and current in the system deseribed in (2), we begin with
Faraday's law,

y = -(g'—— (1-33)
or the equivalent integral form
v=fvdt (1-34)

Note, incidentally, the similarity of this expression and the onefor charge
in terms of current,
g=[idt (1-35)

We see that ¢ is to voltage as charge is to current, by comparing the
two equations. Now flux linkages are related to the magnetic field by
Eq. 1-31, and in turn, the magnetic field density is related to the cur-
rent by Ampere’s law, Eq. 1-28. Making these substitutions, with the
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assumption that ¢ can be removed from the integral,* we have

-l o

The integral term, which may be evaluated mathematically for simple
geometries or may be found by measuring ¢ and 7, is defined as the
inductance parameter (or the coefficient of inductance). If ¢ and 7 refer
to the same physical system, the parameter is defined as self-induct-
ance, symbolized by the letter L as

v =Li (1-37)

However, if a current ¢; produces flux linkages . in another circuit,
the parameter is one of multual inductance, and the letter symbol is
changed to M as

\l/z = M211:1 (1*38)

(Again, note the similarity of these equations and the relationship
g = Cv.) Substituting Eq. 1-37 into Faraday’s law gives an equation
relating voltage and current in a magnetic circuit,

- % (L) (1-39)

(where M replaces L in appropriate cases). If the inductance does not
vary with time, Eq. 1-39 becomes

di
~LS (1-40)

* If the magnetically coupled system is nonlinear, containing some saturating
medium, we may say that the flux linkages in circuit k is a function of the currents
in all other linked circuits,

¥r = r(in,tats,. . . ia)
By Eq. 1-32, the voltage in circuit k is given by Faraday's law as

dyr O diy dr dis Oy diy di N din

W Tl A T dt T T o dt di. dl

di; dt 61,2 +

Each partial derivative term is evaluated with all other currents held constant.
These terms may be defined as coefficients of inductance so that the voltage
becomes

dh d’lz
dt

Uk"--"Mm + M= + . +kadzk+--- +B/Ikn£f'§f

where M is used for mutual inductance and L for self-inductance. When a system
is linear, this equation reduces to one which will later be written as Eq. 1-51.
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Equation 1-39 can be integrated to give

Y

z’m%/vdt (1-41)

The quantity (1/L) is sometimes symbolized by the upper case Greek
letter gamma. The henry (after the American scientist Joseph Henry)
is the mks unit for inductance.

In the case of the capacitive system, we found that charge and the
product Cv could not change instantaneously. We might be led to
suspect that there is a similar relationship for an inductive system in
view of the analogies that have been pointed out. Indeed there is such
a relationship, which may be found with the help of Eq. 1-34, in definite
integral form.

{
¥ = Yo+ ﬁ v di (1-42)

From arguments given in the last section about capacitance, the inte-
gral in this equation has zero value for ¢ = 0. Thus, in a system altered
instantaneously—say by the closing of a switch—the flux linkages
must be the same before and after the system is altered, but only for
a very small interval of time. In terms of Eq. 1-42

¥ = ¢y = a constant (1-43)

which is to say that the flux linkages cannot be changed instanta-
neously in a given system. This conclusion is described as the prin-
ciple of constant flux linkages. If we let the subscript 1 refer {o the time
just before the system is altered and 2 refer to the same system after
it is altered, our statements can be summarized by the equations

Vi1 =2 or Laty = L (1-44)

The principle of constant flux linkages is similar to the principle of
conservation of momentum in mechanics. The analogy is helpful since
it is sometimes easier to visualize changes in a mechanical system than
in an electric circuit. Newton's force law is

F = d My (1-45)

dt

where F is force, M is mass, and v is velocity, The product Mv is
known as momentum,; the momentum of a system cannot change instan-
taneously. In a system such as a rocket where mass is lost as a function
of time, velocity must change in such a way that momentum remains
constant. We see that there are a number of analogous conservation
laws:
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(1) The conservation of charge:
g1 =gz and Cuw; = Cw,
(2) The conservation of flux linkages:
V1= y: and Lt = Ly
(8) The conservation of momentum:
pr = p: and Mw; = Ma,

When inductance remains constant, an important speciafization of
the principle of constant flux linkages results. I'n a fized inductive sys-
tem, the current cannot change instantaneously.

Example 2

In a certain inductive system, the current waveform shown in Fig.
1-10 exists. We are required to find the voltage that produces this

Fig. 1-10. Current waveform. Fig. 1-11. Voltage waveform,

current waveform and the associated charge, both as functions of time.
We will assume that L remains constant. The relationship v = L{(di/dt)
indicates the voltage can be found by differentiation of the current and
multiplication by a constant. The result is shown in Fig. 1-11. Charge
may be found by integration of the current to
give the result shown in Fig. 1-12.

It is important that we be able to apply the

concept of inductance to several systems which ; ~=
are magnetically coupled. A set of three coupled E >

. A7)

L A 1 ?ig. 1-18, Bet of
0 1 2 3 4 magnetically coupled
Fig. 1-12. Charge waveform. coils.

.

t

coils is shown in Fig. 1-13. To simplify the system for the moment,
let i; and ¢; be zero and consider the effect of the current ¢;. The cur-
rent 4, produces ¥, flux linkages, found from Eq. 1-37 to be

Y1 = Lai; (2 = 13 = 0) (1-46)
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where L; is the self-inductance parameter (usually called just the
inductance). In each other circuit, 7, will produce some number of
flux linkages by the proportionality of the mutual inductance paran-
eter. For the particular system under study,

\l’z o= Mn’i; and yba = Ma;i; (12 s 'l:a = 0) (1-47)

The order of subscripts for M requires some further attention. From
the two equations, it should be clear that the first subscript refers to
the flux linkages and the second to the current, This particular con-
vention is chosen to give a desired symmetry to the general equations,
our next topic of study. A crutch for remembering this particular con-
vention is that the subscripts are in the order “effect, cause,” if we
assume for our conceptual scheme that current produces flux.

In the general case, there will be sources or loads connected to each
of the coils shown in Fig. 1-13 and no current will be zero. We will
assume for the time being that the current directions and winding
senses of the coils are such that all flux linkages are addifive, postponing
the more general case for Chapter 2. The total flux linkages in coil 1
will be made up of flux linkages produced by the current in coil 1 plus
flux linkages produced by currents ¢, and ¢;. In equation form,

Y1 = Laty + Misiz + Misis (1-48)
and similarly for the other two coils,

Y2 = Moty + Lotz + Magts (1-49)

Vs = Mat + Magts + Lats (1-50)

The symmetry discussed in the preceding paragraph is now apparent.
The mutual inductance coefficients have subscripts designating row
and column in the above array of equations.

We are interested in flux linkages only as a stepping stone to volt-
age. The voltage induced in each coil is given by Faraday’s law as the
time rate of change of flux linkages. If the inductance parameters are
constant, these voltages are readily found by differentiation to be

di di di
v;le“&?"}"M;z“a?'{‘Mu-a? (1-—51)
di di di
Uzmﬂfm*gf +Lz“&f+Mgz“d"§ (1-—52)
di di dz
vs = Ma "&? + M gf + L3-£ (1-53)

In Chapters 2 and 3, we will consider the conditions under which some
terms in these equations will be negative.
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1-8. The resistance parameter

(1) Physical phenomenon. The passage of electrons through a mate-
rial is not accomplished without collisions of the electrons with other
atomic particles. Moreover, these collisions are not elastic, and energy
is lost in each collision. This loss in energy per unit charge is inter-
preted as a drop in potential across the material, The amount of energy
lost by the electrons is related to the physical properties of & particular
substance,

(2) Field interpretation. The German physicist Georg Simon Ohm
found experimentally that there is a relationship between the current
in a substance and the potential drop. In terms of the field concept,
the change in energy per unit of charge causes a change in the force
per unit charge—or electric field. This effect may be interpreted in
terms of a field in the direction of current through the conducting sub-

stance. Ohm’s experiment may be stated in terms of this field and the
current per unit cross-sectional area as

J =oE (1-54)

where, in mks units, J is the current density in amperes per square
meter, E is the field along the conducting substance in volts per meter,
and ¢ is the conductivity of the substance, which is a constant for each
particular material. *

(3) Chrcuil interpretation. If the substance which carries the current
has an idealized geometry, as that shown in Fig, 1-14(b), it is possible

Small uniform
section

\m ; N J
<% g
S a )—b i
/ v/E - ! >
{a} {5

Fig. 1-14. Conductors illustrating Ohm’s law,

to reduce the field form of Ohm’s law to relate current and voltage.
If the cross seetion of the conductor is uniform, the current and current
density are related by the equation

i=[JcosfdS =J8 (1-55)

where S is the cross-sectional area. For the same simple geometry,
the electric field is uniform and directed along the length of the wire;

* Btrictly speaking, Fq. 1-54 is a special case valid only for isotropic substances.
Similarly ¢ is independent of the magnitude of B only for linear substances,



18 DEVELOPMENT OF THE CIRCUIT CONCEPT Chap. 1

that is,
v = El (1-56)

as & special case of the more general relationship
v = [ Ecos §dl (1-57)
Substituting Eqgs. 1-656 and 1-56 into the field form of Ohm’s law,

Eq. 1-54, gives
L\.
p = (;g) i (1-58)

The quantity (I/¢8), which is a constant for constant geometry of the
conductor, is given the name the resisiance parameter—or simply the
resistance, and is symbolized by the letter R. For geometries other
than the simple one of Fig. 1-14(b), computation of the coefficient
relating current and voltage for a substance will be more difficult.
However, measurement of current and voltage can establish the value
of the resistance parameter and by-pass the computation problem,
Ohm’s law may be written

_ v = R (1-59)
or, in terms of charge,
- pd

The equation v = Ri is sometimes written in the form
1= Qo (1-61)

where G = 1/R is known as the conductance. In the mks system, the
unit for resistance is the ohm and for conductance is the mho.

As well known as Ohm’s law is (school children are taught the law
and remember it by association with ‘‘Vermont = Rhode Island”),
Ohm was ridiculed by his fellow scientists when he first announced
his law in 1826, and it was some 30 years before his ideas were finally
accepted. We must remember, of course, that the concepts of current
and voltage were not well understood in his day, the first distinction
between the two quantities having been made by Ampere in 1820.
Reading newspaper statements such as “ 10,000 volts passed through
his body’’ can convince one that the distinction is not well understood
by laity today.

1-9. Approximation of a system as a circuit

We have discussed the manner in which three electrical phenomena
observed experimentally can be described in terms of circuit param-
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oters. A problem that we must eventually face in making use of the
circuit concept is that of representing a physical system in terms of
these parameters. For example, can we draw a circuit that will rep-
resent an electric motor, & piezoelectric crystal, a coil of wire, a trans-
mission line, or an antenna, to name but a few systems?

Suppose we examine some arbitrary physical system, looking for
portions of the system to be replaced by equivalent parameters. Pos-
sibly the resistive effects would be most easily recognized. A part of
the system made of material of high resistivity, with small cross-
sectional area and appreciable length, would be recognized as equiv-
alent to large resistance and could
easily be distinguished from another
part of the system of small resist- L
ance. We have found that thereisa ==C =0,
capacitive effect between any two C,
parts of a system. If the two parts R
constitute a system capable of con- TCS
centration of charge, producing a @) © ®)
high electric field~say, large area
for charge storage and small dis- Y18 1-15. One form of equivalent

. cireuit for (a) an end-excited antenna,
tance from part to pa.rtwthe CAPACI~ 14 (1) a piezoelectric crystal.
tance of that portion of the system
is large. Finally, an inductive effect is associated with every current-
carrying conductor, and an effect of mutual inductance between every
pair of conductors at least one of which is carrying current. If the con-
ductors are located in space in such a way that the magnetic fields
reinforce each other, then the inductance, self or mutual, of that por-
tion of the system is large.

So much for large effects. What about smaller or secondary effects
that can be recognized in much the same manner? Just how many
effects must be taken into account in representing a system by equiv-
alent parameters?

We can answer our questions only by asking another: just how good
do we expect the results to be? The accuracy of our results will be
determined by how many separate electrical effects we can take into
account by a parameter, We must stop somewhere. We must, at some
point, make an approximation.

Approximation requires engineering judgment. An approximation
which is valid in one case will not be in another. In many practical
cases, the resistance and inductance of connecting wires are so small
that they may be neglected. Likewise, in most cases of commercial
capacitors, the inductive and resistive parameters may beignored. Much
less frequently the resistance and capacitance of coils ean be neglected.
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In the discussions to follow in other chapters, we will assume that
when & schematic of a system is given, all significant parameters have
been taken into account. Engineering judgment has been exercised by
the individual who made up the problem. But when the student finally
applies the techniques of analysis to a problem that he makes up,
these questions associated with approximation must be answered. It
is difficult to write answers to such questions in textbooks; experience
is usually the best teacher.

Approximation is not unique to circuit analysis by any means. In
solving problems by computing the electric and magnetic fields for all
positions in space, there will assuredly be approximations, either in
representing the physical system by mathematical equations or in
solving the equations. Approximation and analysis are bound together.
To ignore the problem of approximation is to lack understanding of the
results of analysis.

In many cases, we do not start with an unknown system to be rep-
resented by a circuit, but instead with commercial components in
combination forming a circuit. A component labeled inductor, however,
will not behave as a pure inductance. It will, under some circum-
stances, exhibit capacitive and resistive effects. Such unwanted effects
are commonly distinguished by the name parasitic. The decision of
which effects must be taken into account involves the same engineering
judgment as discussed earlier. The parasitic effects can be ignored
only as long as the approximation is useful.

In all cases we have assumed that the magnetic and electric fields are
isolated and that there is no interaction between the two fields. If
there is such an interaction, part of the energy is lost by radiation.
This will be discussed in the next section.

1-10. Other approximations in circuit representation

In arriving at equations for the circuit parameters, Eqgs. 1-11, 1-36,
and 1-58, it was necessary to make simplifying approximations: (1)
that the charge did not vary with dimensions, and (2) that the current
varied with neither the length of the conductor nor the cross-sectional
area. If these assumptions do not hold, the values for the parameters
are different and difficult to compute.

To illustrate how current and charge might vary with space, sup-
pose that the current is made to flow for but a brief interval of time,
and that this pulsed flow is repeated at a periodic rate, a very large
number of times each second. Under such conditions, the current and
the charge will not be uniform throughout the system. We can imagine
some portions of the system with charge and other portions without
charge. This being the case, the general expressions must be used in
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evaluating the capacitance, inductance, and resistance parameters,
These new parameter values, computed or measured, will be different
from those found with uniform current and charge in the system.
Must the parameters of a system be computed for every different
current?

The answer to this question is, again, a practical one of engineering
judgment. Certainly, there will be conditions requiring some effective
value of the parameters—computed for a particular time waveform—
to be used. But in many cases, the approzimation that parameter
values are equal to those found for nonvarying or static conditions
gives usable results This approximation is strictly valid only in the
cases in which the variation of current and charge is slow, the so-called
quast-stationary stale. We will assume that we are operating in this
state in chapters to follow. We thus assume constant parameters for
changing variations of current and charge.

We further assume that the parameters are constant with the varia-
tion of the magnitude of charge and current. This is & good approxima-
tion for most elements in their nominal operating range. A system
composed of such elements is said to be linear. We will assume that all
systems to be considered (unless otherwise specified) are linear, We
thereby exclude nonlinear elements and systems. Some systems con-
taining dielectrics change capacitance with the quantity of charge in
the system. When iron is used in a magnetic system, the flux produced
is not linearly related to current because of saturation. Such resistive
materials as the carbon filament in a lamp bulb change resistance as
a function of magnitude of current. It should be noted, however, that
some nonlinear systems can be considered linear under certain condi-
tions. Vacuum tubes are nonlinear, but for certain analyses may be
considered linear over a restricted range of operation,

Besides the assumption of linearity we will include the requirement
that all elements in a system be bilateral. In a bilateral system, the
same relationship between current and voltage exists for current flow-
ing in either direction. In contrast, a unilateral system has different
laws relating current and voltage for the two possible directions of
current. Examples of unilateral elements are vacuum diodes, ger-
manium diodes, crystal detectors, selenium rectifiers, ete.

Many electric systems are physically distributed in space. A trans-
mission line, for example, may extend for hundreds of miles. When a
source of energy is connected to the transmission line, energy is trans-
ported at nearly the velocity of light. Because of this finite velocity,
all electrical effects do not take place at the same instant of time. This
being the case, the restrictions discussed earlier apply in the computa-
tion of the eircuit parameters. When a system is 8o concentrated in
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space that the assumption of simultancous actions through that sys-
tem is a good approximation, the system is said to be lumped. We will
consider only lumped systems.

Our circuit approach to the approximation of a system has obscured
an effect usually described in terms of the interaction of electric and
magnetic fields. As an approximation, we have assumed that the mag-
netic field is associated only with an inductive system and that the
electric field is associated only with a capacitive system. Fields can-
not actually be so lumped. The consequence of interaction of the fields
is the radiation of electromagnetic energy. Open a switch in an indue-
tive system, and the effects will be observed as a noise in nearby radio
receivers, Similarly, the ignition spark of an automobile may affect
nearby television receivers. Under many conditions, however, the
amount of energy lost by radiation is small, and as an approximation
can be ignored. We will make this approximation.

The systems we shall study will thus be lumped, linear, and bilateral
and will have negligible radiation.

Resistive, capacitive, and inductive elements are identified as pas-
stve elements. Sources of electric energy are identified as active clements.
The physical elements themselves are distinguished by different names
as restslors, induclors, and cepacitors.

1-11. Energy and power

Energy and power are given in terms of voltage and current by
Eqgs. 1-5 and 1-6, which are
p=vi and w= [oidl
In an inductive system, energy has the value (see Prob. 1-8)
. ¥? .
Wo=gli? = %—L-— joules (1-62)

and is spoken of as ‘‘stored in the magnetic field.”” In a capacitive
system, the energy is given by the relationship (see Prob, 1-9)

We = 3Cv® = 3S¢? joules (1-63)

which is spoken of as ““stored in the electric field.”” Current in a resistor
causes energy to be transformed into heat or light. The amount of
energy is

We =R [13dl  joules (1-64)

The equivalence of this energy to mechanical energy was first demon-
strated by Joule. Theinductor and capacitor are energy storage elements,
while the resistor is an energy sink.
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Energy is a scalar quantity, always positive. The sum of the energy
in a given system can be found by algebraic summation. The power
in a system is given in terms of energy by the relationship

aw , , d / ’
P=~&-i“mpr +d_t(WL +WC) (1"’65)

where P, is the total power of all resistive elements given as

n

= 2 Ri® (1-66)

J=1

AW’
T dt

Pr’

and W,.' is the total energy stored in all inductive elements,

W, =5 E Ly;? (1-67)
i=1
and W' is the total energy stored in all capacitive elements,

p

We =4 2 Coy? (1-68)

i=1
where n, m, and p are the total number of elements of each of the three
kinds.

FURTHER READING

The student interested in further reading on the subjects of this
chapter should consult Elementfary Electric-Circuit Theory (MceGraw-
Hill Book Co., New York, 1945) by Richard H. Frazier, pp. 17-41.
More advanced treatments of these concepts are given in Electric
Circuits (John Wiley & Sons, Inc., New York, 1940) by the MIT
Electrical Engineering Staff, pp. 1-8, and in Linear Transient Analysts
(John Wiley & Sons, Inc., New York, 1954) by Ernst Weber, pp. 1-14.
A discussion of physical systems in general is to be found in Chaps. 1
and 2 of Response of Physical Systems (John Wiley & Sons, Inc., New
York, 1950) by John D. Trimmer. Students interested in further
study of electric and magnetic fields as basic concepts should read
The Fundamentals of Electro-Magnetism (The Macmillan Company,
New York, 1939) by Geoffrey Cullwick, starting on p. 1. Maxwell’s
original writings are found in many libraries under the title, 4 T'reatise
on Electricity and Magnetism (Oxford Press, New York, 1892},

PROBLEMS

1-1. A solid eopper sphere 10 cm in diameter is deprived of 1013 elec-
trons by a charging scheme. (a) What is the charge of the sphere in
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the inductor? Answer: 0.23 watt. (h) At what rate is energy being
dissipated as heat? (i) At what rate is the battery supplying energy?

1-16. In the circuit shown below, the capacitor is charged to a volt-
age of 1 volt, and at ¢ = 0 the switch K is closed. The current in the cir-
cuit is known to be of the form () = ¢~ amp, (¢ > 0). At a certain
time the current has a value of 0.37 amp. (a) At what rate is the voltage

'./:
K =
HoV=1lv
I C=-1f R-10
Probh. 1-186.

across the capacitor changing? (b) What is the value of the charge on
the capacitor? (c) What is the time rate of change of the product Cv?
(d) What is the voltage across the capacitor? Answer: 0.37 volt. (e)
How much energy is stored in the electric field of the capacitor? (f)
What is the voltage across the resistor? (g) At what rate is energy
being taken from the electric field of the capacitor? Answer: 0.137 watt.
(h) At what rate is energy being dissipated as heat?
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1-8. From the defining equation for energy, W = [ vi dt show that,
for the inductance, W, = gl4? and W, = 3¢y?/L.

1-9. From the equation for energy in Prob. 1-8, show that for the
capacitance, We = $Cv? and W = §Sq?.

1-10. Assume that the inductance parameter is defined as the con-
stant relating stored energy and the current squared by the equation
W, = gL4%. Making use of the relationship p = vi, show that for
constant inductance the voltage across the inductor is v, = L(di/df).

1-11, Carry out a similar derivation to the one suggested in Prob.
1-10 starting with energy for a capacitive system, W, = £S8¢?* to show
that for constant §,

1-12. Show that the following quantities all have the dimension of
time: (8) RC; (b)Y L/R; (¢) v/LC.

1-13. Show that (a) R?C has the dimension of inductance, (b)
4/L/C has the dimension of resistance, (¢) L/R? has the dimension of
capacitance.

1.14. The current in a 1-henry inductor follows the variation shown
in the accompanying figure. The current increases from ¢ = @ at the
rate of 1 amp/sec (for several seconds, at least). Find: (a) the flux
linkages in the system after 1 sec, (b) the time rate of change of flux

i 1 amp/sec - :{ o
H
= YVemlvy
, -
t=0
Prob. 1-14. Prob. 1-15b.

linkages in the system after 2 sec, (¢) the quantity of charge having
passed through the inductor after 1 sec. Answer: (a) 1 weber-turn,
(b} 1 weber-turn/see, (¢) 0.5 coulomb.

1-16. In the circuit shown above, the switch K is closed at { = 0 (the
reference time). The current flowing in the circuit is given by the equa-
tion () = (1 — ¢} amp, ¢{ > 0. At a certain time the current has a
value of 0.63 amp. (a) At what rate is the current changing? (b) What
is the value of the total flux linkages? (¢) What is the rate of change of
flux linkages? (d) What is the voltage across the inductor? Answer:
0.37 volt. (e¢) How much energy is stored in the magnetic field of the
inductor? Answer: 0.20 joule. (f) What is the voltage across the resis-
tor? (g) At what rate is energy being stored in the magnetic field of
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The photoelectric cell and the pentode vacuum tube amplifier are
examples of practical generators that can be approximated as ideal
current sources with series or parallel passive elements. The current
source is also represented by the symbol of a circle but with an asso-
ciated arrow rather than polarity markings indicating the positive
direction of current flow as shown in Fig. 2-1(c).

For both sources, the associated symbol of a lower case letter v or ¢
infers a time-varying source, while the upper case letter V or I is used
to denote a time-invariant source. The approximate time variation of
output is sometimes sketched within the circle. For example, the sym-
bol ~ placed in the circle indicates a source of sinusoidal voltage or
current.

2-2. Current and voltage conventions

A voltage source causes current to flow within the source in the direc-
tion from the negative to the positive terminal—or out of the positive
terminal and into the negative terminal. This particular convention
follows a decision made by Benjamin Franklin in 1752. Franklin's
choice was made before electricity was identified with the electron,
before the electron or the nature of charge were known. Actually,
electrons flow from the negative terminal to the positive terminal
which is in the opposite direction to that established by Franklin.
To distinguish the two conventions, the flow of electrons is termed
electron current and current assumed positive in the direction of Frank-
lin’s convention is called conventional current (or simply current, since
this is the current we will use).

If the negative terminal is used as a reference in measuring the poten-
tial of the positive terminal of a potential source, that voltage is con-
sidered positive and is spoken of as a vollage rise. Conversely, if the
positive terminal is considered to be the reference in measuring the
potential of the negative terminal of the voltage source, the voltage
is considered negative and is spoken of as a vollage drop.

b ¢
. -
Voitage rise Voltage drop o I +
F] H F':I FI V::_—:_ R Vr
I . I L -
{a) {b) a d
Fig. 2-2. Sign convention for voliage Pig. 2-8. Direction of current and
sources. voltage polaritiea.

In terms of the simple circuit of Fig. 2-3, the voltage source causes
current to flow from a to b and around the circuit a-b-c-d-a. Current
flowing in the passive resistive element is identified with energy loss and
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CONVENTIONS FOR DESCRIBING NETWORKS

2-1. Active element conventions

Active circuit elements are classified by their voltage-current char-
acteristics. Most practical generators maintain approximately con-
stant terminal voltage with increasing load current. Still other types
of sources of electric energy maintain approximately constant output
of current with increasing terminal voltage. Rather than take actual
voltage-current relationships into account, practical energy sources are
approximated as either ideal vollage sources or ideal current sources.
These ideal sources are defined as having the following properties:

The Ideal Voltage Source. The ideal voltage source generates volt-
age with a given time variation. Neither voltage magnitude nor time
variation changes with magnitude of output current. Thus the ter-
minal voltage is assumed to be maintained under all conditions from
open circuit to short circuit. If in some manner the terminal voltage
is made equal to zero, the source behaves as a short circuit. The ideal
voltage source has no resistive, inductive, or capacitive effects. Most
actual generators may be approxi-
mated as an ideal voltage source in

series with a resistor, and in some - V:“:- IT
cases, an inductor. The ideal volt- > -

age source 1s represented by the

symbol of a circle as shown in Fig. (a) (b) (©)
2-1(a). One exception to this prac- Fig. 2-1, Symbols for active circuit

tice is the symbol for a battery
shown in Fig. 2-1(b). The polarity
marks + and — denote positive and negative terminals of the source.

The Ideal Current Source. The ideal current source generates cur-
rent with a given time variation. Neither current magnitude nor time
variation changes with load. This output current is maintained for
any load including zero resistance and infinite resistance.* If the out-
put current of the ideal source is adjusted to be zero, the source is
equivalent to an open circuit. As in the case of the voltage source, the
ideal current source has no resistive, inductive, or capacitive effects.

elements.

* Of course, this property of the ideal source to pump amperes into an open
circuit is & poor approximation for actual sources.

27
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The junction formed by two or more elements being connected
together is given the name node. Elements in series such that iden-
tically the same current flows in them form a branch. A branch may
include active elements. A network or circuit is formed by intercon-
nection of a number of branches or by coupling a number of separate
parts together. We will use the words network and circuit interchange-
ably, except that the network is usually more complex, involving more
elements than the circuit. A loop or mesh is a closed contour drawn on
the schematic, around one or more window panes of the graph of Fig.
2-4, for example. Any two nodes in a network may be considered a
node pair. Parts of the network not directly connected by wires but
magnetically coupled are called separate parts of the network.

Our objective in circuit analysis is to find the currents in the different
branches and the voltages at the different nodes. Two quantities of
importance in this analysis are the number of independent loops and

one node
node node O

+
C) node |3 fode node A

node node - T o

one node
(four branches)

{a) (2] {c}
Fig. 2-6. Identification of nodes.

N

the number of independent node pairs. The meaning inferred by the
word independent will be discussed in the next chapter in more detail.
Briefly, there are as many unknown currents in a system as there are
independent loops, and as many unknown voltages as there are inde-
pendent node pairs.

Let E be the number of elements in the network (counting both
active and passive elements, but not mutual inductance). The num-
ber of branches in the network is designated B. Quantities relating to
nodes will be identified by N, for the number of nodes, J for the num-
ber of different node pairs, and N for the number of independent node
pairs. Also, L is the number of independent loops, and finally, § is the
number of separate parts of the network.

The number of different node pairs is given by the topological
equation

J = 3N(N:e — 1) @1

We are usually not interested in all combinations of nodes, but in
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so there is a drop in potential from ¢ to d. Voltage is a scalar quantity
defined as the quotient of the two scalar quantities work and charge.
Voltage drops and voltage rises are distinguished by a sign, positive
for voltage rise and negative for voltage drop. For this polarity sign to
have meaning, the voltage reference must be given or inferred. A
certain point in a circuit may have a potential of +50 volts with
respect to point @ and —30 volts with respect to point b. Should the
potential of a point be given without reference, it is assumed to be
with respect to & point of zero potential which will be called the ground
or the datum node.

2-3. Network topology (or geometry)

The two-dimensional graph shown in Fig. 2-4 is made up of circles

with interconnecting lines. Suppose that we wish to make a study of
such graphs, say the relationship of the number of circles and lines,
with the following rules imposed:
(1) all lines must terminate on cir-
cles, (2) at least two lines must
join every circle, and (3) the graph
will be in two dimensions; lines will
not cross lines. By definition, all
closed contours having no lines Fig. 2-4. A graph.
within will be called window panes.
Now in any given graph, the number of lines, circles, and window panes
are not independent of each other. For example, if the number of cir-
cles remains constant and the number of lines is increased by one,
there will be one more window pane. Similarly, if the number of win-
dow panes is maintained constant and one more circle is added, the
number of lines must increase by one, a line having been divided in
two by the added circle. There must exist some general law relating
the three quantities we have studied.

Our discussion has been a homely example of an elegant branch of
mathematics known as topology. The general law just mentioned is
known from studies in topology. How can we exploit these topological
laws or facts in circuit analysis?

By.approximating a physical system by ideal circuit elements, as
discussed ‘in the first chapter, we have eliminated consideration of
three-dimensional systems in favor of a system of interconnected ele-
ments usually described as a wiring diagram or a schematic. The sche-
matic is equivalent to the topological graph of Fig. 2-4 with elements
replacing lines. Thus the laws of topology are directly applicable to
network schematics. Before giving these laws, we will define terms
used in network topology.
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discussed in the next chapter). It is, however, not necessary that the
loops be chosen in this manner, but there is the risk that the loops will
not be independent.* In simple networks, the number of independent
loops is equal to the number of ‘‘ window panes” of our earlier discus-
sion and so can be determined at a glance,

Ezample 1

In the network shown in Fig. 2-7, there are five nodes, seven ele-
aments, and one part. Hence the number of independent loops is three,

~

fode b branch a-b¢

A -

NN
01 RI
@
branch a-d branch d-

o < node
AL A :

+
o) () loop i ==C> @ %Ll

node a ¢

branch g
o o "
node g node f node ¢
{same as g} {same as g)

Fig. 2-7. Network of Example 1.
since
L=E-N+8=7-5+1=3
and the number of independent node péirs is four, since
N=N~8=5~-1=4

The loops may be assigned as shown on the figure, following paths
a-d-f-g-a, d-c-e-f-d, and a-b-c-d-a. If node g is selected as the datum
node, a suitable choice of the independent node pairs is a-g, b-g, c-g,
and d-g.

Example 2

Examination of Fig. 2-8 shows that E = 6 (3f does not count, of
course), N, = 6, and S = 2. It follows that

L=E-—~N 4+ 8=6-—6+ 2 = 2independent loops
N =N;—~ 8 =6 — 2 = 4 independent node pairs

* The test to determine independence requires that the system determinant, to
be discussed in Chap. 3, be nonzero. It is usually better to follow the von Helm-
holtz rule than to experiment,
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the number of independent node pairs, which is equal to the number
of unknown voltages, given as

N=N -8 (2-2)

or N = N, — 1 for a network with only one part.
The number of independent loops is given in terms of the number
of elements and number of independent node pairs as

L=E-N (2-3)

If we count only nodes at the ends of branches and let that number of
branches be B’, then the number of independent loops and branches
are related as

L=E-—B (2-4)
Finally, if Eq. 2-2 is substituted into Eq. 2-3, there results
L=E-—-N,+8 (2-5)

From these equations, we may determine for a given network which
quantity, L or N, is smaller, enabling us to decide which of the two
possible approaches to analysis should be taken.

Once the number of independent node pairs is known, there remains
the problem of selecting which N node pairs in the network will be
used in analysis. Analysis is simplified if one node is used as one mem-
ber of each of the N node pairs. It is conventional to select the node
of zero potential as this common node and to designate it the datum
or reference node. Usually, the negative terminal of one of the active
sources is so selected.

There is a similar problem of choice in the case of assigning the
independent loops once the number of such loops is known from Eq.

ta) {b) (e)

Fig. 2-6. Different independent foops in the same system.

2-5. The rule of von Helmholtz may be used to advantage in designat-
ing the paths of the loops. The rule requires that the loops be succes-
sively chosen such that each new loop includes at least one new branch
not previously included in the path of a loop. If the loops of number
required by Eq. 2-5 are so chosen, this process is sufficient to insure
the independence of the loops (and of the voltage equations, as will be
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of the winding is shown marked with a dof. Let us assume that the
current flows into this dot. We will outline, step-by-step, our concep-
tual scheme of what happens as a consequence of this current.

(1) Current in winding 1-1 causes a magnetic field (‘“‘action at a
distance’’) to exist, which is concentrated along the axis of the coil.
The magnitude of the field can be computed from Ampere’s law

ut: dl cos a
4arr?

(These symbols are defined in Chapter 1 in Eq. 1-28.)
(2) There is a magnetic flux ¢ associated with the magnetic field
having a value

dB = (2-6)

b = L Beos 0dA 2-7)

and having a direction determined experimentally and given by the
right-hand rule: if the thumb of the right-hand indicates the direction
of current, the fingers wrap around the current-carrying conductor in
the direction of flux. This flux is assumed confined to the magnetic
core, which has the property of being a preferred path for the flux.
Applying the right-hand rule, the flux is seen to have the direction
indicated by the arrow (clockwise).

(3) Since winding 2-2 is on the same magnetic core as winding 1-1,
the flux produced in winding 1-1 links winding 2-2. This linking flux
can be described as ¢»;, where the subscripts have the order “effect,
cause.”” The number of flux linkages in winding 1-1 is

¥1 = Ni¢a (2-8)

In terms of Faraday’s law ¢, can be computed from the voltage at
terminal 1-1 as

¥ = f v, dt (2-9)

Combining Eqgs. 2-8 and 2-9 gives the value of flux in terms of the volt-
age v,

P21 = “‘K};‘; [ v1 dt (2-10)

(4) Because ¢q, is changing with time, a voltage is induced in wind-
ing 2-2 according to Faraday’s law. The flux linkages in winding 2-2
are

Y2 = Nadu (2-11)
and v, has the magnitude

Py = % (2"12)
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C
i
1Y

LZ @ Rz

Fig. 2-8. Network of Example 2.

9-4. The dot convention for coupled circuits

When the magnetic field produced by a changing current flowing in
one coil induces a voltage in other coils, the coils are said to be coupled,
and the windings constitute a transformer. If the details of transformer
construction are known, then for a current changing in one coil, it is
possible to compute the magnitude and direction of the voltages
induced in all other windings. The necessity for cumbersome blue-
prints showing construction is eliminated by two characterizing fac-
tors. The value of the coefficient of mutual inductance, M (discussed
in Chapter 1) is equivalent to details of construction in computing
magnitude of induced voltage. Most manufacturers mark one end of
each transformer winding with a dot (or some such symbol). The dot
is equivalent to details of construction as far as voltage direction is con-
cerned. In this section, we will discuss the meaning of dot markings,
how they are experimentally established, and their significance in cir-
cuit analysis.

Two windings are shown on a magnetic core in Fig. 2-9. In this
figure, the winding sense is indicated for two windings, winding 1-1

R,

Y

¢12 N

Rz U22 4
- -y,

Fig. 2-9. A two-winding magnetic circuit used to establish meaning
of the dot convention.

(which might be called the primary winding) and winding 2-2 (the
secondary winding). A time-varying source of voltage, v,(f) is connected
to winding 1-1 in series with resistor E,. At a given instant, the voltage
source has the polarity shown, and the current 7,(t) is flowing in the
direction shown by the arrow and is increasing with time. The + end



36 CONVENTIONS FOR DESCRIBING NETWORKS Chap. 2

minal of a battery, connecting the negative terminal to the remaining
end of the winding. The end of winding 2-2 that momentarily goes
positive, as measured with a voltmeter, is the terminal to be dotted in
winding 2-2.

Of what value are the dots, which we can now establish, in circuit
analysis? Figure 2-11 shows the transformer of Fig. 2-9, including

+ > ¢ >
. ( 21 ™
k"""'\-.,
[
“"--
]
< </
Fig. 2-11,

dots, with the generator and resistor load interchanged. The positive
terminal of the voltage source is connected to the dotted end of winding
2-2. A step-by-step analysis of this transformer will show that an
increasing current flowing into the dotted terminal of winding 2-2
causes the upper end of winding 1-1 to be positive and so to be the
dotted terminal. We would expect, after all, that dots established from
1-1 to 2-2 should agree with those established from 2-2 to 1-1.

Now suppose that the voltage source of ¥ig. 2-11 has reverse polarity
to that shown and that an increasing current flows out of the dot.
Another step-by-step analysis or simply intuitive reasoning will show
that the dotted terminal of winding 1-1 becomes negative under such
conditions.

We conclude that, for a transformer with polarity markings (dots),
current flowing info the dot on one winding induces a voltage in the
second winding which is positive at the dotted terminal; conversely,
current flowing out of a dotted terminal induces a voltage in the sec-
ond winding which is positive at the undotted terminal. Thisimportant
rule will be applied in Chapter 3 in formulating circuit equations.

Thus far our discussion has been limited to a transformer with two
windings. In a system with several windings, the same type of anal-
ysis can be carried on for each pair of windings providing some varia-
tion in the form of the dots is employed (such as ¢ m A ¢) to identify
the relationship between each pair of windings. In Chapter 3, after
the concept of assumed positive direction of current is introduced, it
will be shown that the information given by the pair of dots can be
given in the sign of the coefficient of mutual inductance. For a system
with many windings, this scheme avoids the confusion of a large num-
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In the discussion of Chapter 1, the coefficient of mutual inductance
was introduced to relate flux linkages with current as ¢ = M7, For
the system under study

¢2 == le'il (2-13)
and Eq. 2-12 may be written in equivalent (but more useful) form as

diy

Vg = Mn"a"z'

(2-14)
if Mg does not vary with time. Equation 2-14 tells us that a voltage
is induced in winding 2-2 having a magnitude of 3., volts per unit
time rate of change of current ¢;. There remains the problem of the
direction of this voltage.

(5) The direction of voltage in winding 2-2 can be found with the
aid of a law given by the German physicist Lenz in 1834. In terms of
the transformer, Lenz’s law states that the voltage induced in a coil
by a change of flux establishes a current in the coil in a direction to
oppose the change in flux that produced the voltage. The flux ¢ is
directed upward in Fig. 2-9 and is increasing. To produce a flux ¢is°
to oppose this increase in ¢y, requires (by the right-hand rule) that the
current flow in the direction shown by the arrow (right to left). Lenz’s
law is really an application of conservation of energy, since if iy pro-
duced a flux to aid ¢4, another increasing current would be induced in
1-1 and so on in a vicious cycle to produce infinite current.

Now that the direction of current in winding 2-2 is established, the
top end of the winding is seen to be positive and so is marked with a
dot. With a time-varying voltage, the dotted terminals are positive
at the same time (and, of course, neg-

ative at the same time). This action Vg

is illustrated in Fig. 2-10. As shown,

v,(t) increases from zerotoa constant E“ @l ¢
value at time ;. The currents;andso %12 /——'—-’
flux ¢s: increase with time as shown

in (b). Note, incidentally, that Eq. F1 ) ¢
2-10 does not apply directly, since it vz ,\

gives ¢; in terms of v, rather than v,.

The induced voltagev,is proportional i ¢

{c}

Fig. 2-10. Waveforms in the mag-
netie circuit of Fig. 2-9.

to the time rate of change of 7; and
so has the time variation shown in
(e). This example suggests a simple
experimental method for establishing the dotted ends of transformer
windings. On the winding selected as 1-1, arbitrarily mark one end of
the winding with a dot and to this terminal connect the positive ter-
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2-2. Repeat Prob. 2-1 for the network shown in the accompanying
figure.

I
AN "
O o1, °
- v ﬁﬂﬁﬂ/
ifi
i\
Prob. 2-2. Prob. 2-3.

2-3. In the accompanying figure, a number of elements are arranged
on the edges of a cube. For this network, determine L, the number of
independent loops, and N, the number of independent node pairs.

2-4. In the network of the figure, the paths for three loops have been
selected as shown. Are these three loops independent? Why? (What
are the currents in L, and L, in terms of ¢,7)

L
I AYAYAY,
C1’ __________ _ka 7
. /’ Ll "\\ i ;
B 1,7 W NI
1
+ /’”\‘\ is ! :E i §R
. ! 39 2
|
v{t)g) *\11 /l %Lz ! ' : o .
- - }
LTy e st T2 [/ /
"'""/\/\/\I I\ I' : ot -l l- g vl
Ao / S &b
N e - e S i e e e 1 2 23 3

Prob. 2-4. Prob. 2-5.

2-6. The magnetic system shown in the figure has three windings
marked 1-1’, 2-2', and 3-3’. Using three different forms of dots, estab-
lish polarity markings for these windings.

2-6. Place three windings on the core shown for Prob. 2-5 with
winding senses selected such that the following terminals (placed in
the order shown in the figure for Prob. 2-5) have the same mark: (a) 1
and 2,2and 3,3 and 1, (b) ' and 2/, 2’ and 3/, 3’ and 1’.

2-7. The figure shows four windings on a magnetic flux-conducting

i3

- coil 3 !
m———— by ',,,....-——-'w-
| ___peoit 2 { |3y

'--.__}coil 1
coil 4

-

Prob. 2-7.
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ber of similar dots. Both schemes have advantages for particular
problems, and both are used in electrical engineering literature.

Ezample 8

£
piap it
In the system shown in Fig. 2-12, the winding sense of each coil of
the transformer is indicated. The polarity markings for each set of

[ £

A
b
o

|

YL

g
g
[ o

Pig. 2-12. Magnpetic circuit for Example 3.

coils are shown on the figure. In each case, one of the dots for each
winding-pair was arbitrarily selected and the position of the other
dot was then determined.

FURTHER READING

The subject of network topology (or network geometry) is treated
in detail in Guillemin’s Introductory Circuit Theory (John Wiley &
Sons, Inc., New York, 1953) in Chap. 1. Other suggested references
include Matriz Analysis of Electric Networks by LeCorbeiller (John
Wiley & Sons, Inc., New York, 1950) and the article “On the founda-
tions of electrical network theory” by Ingram and Cramlet which
appears in J. Math. Phys., 23, 134-155 (1944). See also the article
“IRE standards for network topology,” Proc. IRE, 39, 27 (1951).
On the subject of the dot convention for mutual inductance, see Prin-
ciples of Electric and Magnetic Circuits by Boast (Harper & Brothers,
New York, 1950), especially Chaps. 15 and 16.

PROBLEMS

2-1. For each of the circuits shown in the figure: (a) determine the
value of the quantities E, S, N,, N, L, and J; (b) select the N independ-

{a) tb)

Prob. 2-1.

ent node pairs, using one datum node; and (¢} following the rule of
von Helmholtz, draw L independent loops.



CHAPTER 3
NETWORK EQUATIONS

3-1. Kirchhoff's equations

Most network equations are formulated from two simple laws first
given by Kirchhoff in 1845.* The first law relates to the sum of the
instantaneous voltages of the elements in a loop. It states that in any
loop the sum of the voltage drops must equal the sum of the voltage rises.

This law follows from the scalar nature of voltage. To illustrate the
concept involved, consider another scalar quantity, elevation. Suppose
that we make a trip in an airplane, visiting a number of cities but
eventually returning to our place of origin. At each stop, we will
determine the elevation and record the elevation increase or decrease.
When the trip is completed, we can be sure if we are sufficiently accu-
rate that the sum of the elevation increases will just equal the sum of
the elevation decreases, Otherwise, we would not be back at our start-
ing elevation.

Next, suppose that we make a tour around some loop in a network
at some fixed instant of time. At each node, we will measure the volt-
age with respect to the previous node and record voltage increases and
voltage decreases. Once the loop is completely traversed, the sum of
the voltage decreases (or drops) must equal the sum of the voltage
increases (or rises), The fact that there are other loops in the same net-
work has no effect on the sum of the drops and rises, just as the exist-
ence of alternate airline routes does not affect the altitude change
summations.

Kirchhoff’s second law relates to the sum of instantaneous currents
at a node. It states that the sum of currents flowing into the node equals
the sum of currents flowing out. In an analogous hydraulic system, the
sum of water flowing out of a junction of pipes must equal the water
flowing in, assuming no storage capacity at the junction. If we assume
no charge storage capacity at the nodes of a network, then, just as in
the hydraulic system, the currents into that node must equal those out.

* Historically, the work of Kirchhoff closely followed the pioneer works of
Faraday in describing electric induction, of Oersted in relating magnetism and
electricity in 1820, of Ampere in relating force and current in 1820-25 and of
Ohm in relating voltage and current in 1826. At the time Kirchhoff published
the work containing these laws, he waa 23 years of age. He made contributions in
several sciences—there are other Kirchhoff laws in other fields,

40
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ocore. Using different shaped dots, establish polarity markings for the
windings.

9.8. The accompanying schematic shows the equivalent circuit of a
system with polarity marks on the three coupled coils. Draw a trans-
former with a core similar to that shown for Prob. 2-7 and place windings
on the legs of the core in such a way as to be equivalent to the sche-
matic. Show connections between the elements in the same drawing.

Prob. 2-8.

2-9. The accompanying schematics each show two inductors with
coupling but with different dot markings. For each of the two systems,
determine the equivalent inductance of the system at terminals 1-1’
by combining inductances.

1 [ . 1 - »
L‘\M/ L; ‘ L;\M/ L l
llc_ 1!

o
{a) (b
Prob. 2-9.

2-10. A transformer has 100 turns on the primary (terminals 1-17)
and 200 turns on the secondary (terminals 2-2’). A current in the pri-
mary causes a magnetic flux which links all turns of both the primary
and the secondary. The flux decreases according to the law ¢ = ¢~
weber, when ¢ = 0. Find: (a) the flux linkages of the primary and
secondary, (b) the voltage induced in the secondary,
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With the loop currents as shown in Fig. 3-3, the Kirchhoff voltage
laws are

R, + Ra(Il - Iz) =V (3'8)
-—R3(I1 — Iz) -+ Roly = 0 (3-9)

The two sets of Kirchhoff equations, Egs. 3-6 and 3-7 and Egs. 3-8 and
3-9, are identical if I; = I, and I = I,. These currents are identical,
of course, since they are the currents flowing in £, and R, respectively.
By Eq. 3-5, we find that I, is expressed in terms of I, and I, as

Ic=1,— I (3-10)

In analysis, we are ultimately interested in determining currents in the
elements—the branch currents. Our example has shown that there are
two routes to determine the branc¢h currents: (1) write equations
directly in terms of the branch currents, or (2) write equations in
terms of loop currents from which the branch currents can be found by
addition or subtraction. Since the number of branches is equal or
greater than the number of loops, the advantage of simplicity is usually
in the second choice.

3-3. Positive directions for currents

Suppose that we were assigned the problem of counting cars travel-
ing each direction on a busy street in a large city. Our first step would
be to distinguish cars traveling in the two directions. We would accom-
plish this by deciding on a positive direction of flow. With this decision
made, each car could be considered as moving in the positive direction
or opposite to the direction considered positive (although handier
terms such as north and south would likely be used).

Similarly, before writing network equations based on Kirchhoff’s
voltage law, a positive direction of the loop (or branch) currents must
be assigned for each loop (or for each branch) and identified with an
arrow. Such a decision establishes a positive or réfe_rér_iée direction.
Currents in the direction opposite to that considered positive are
marked with a negative sign. The direction to be assumed positive is
arbitrary, of course, but for uniformity, loop currents will usually be
assigned a clockwise positive direction.

Once the positive direction for the loop current is assigned, the loop
may be traversed in either direction in applying the Kirchhoff voltage
law. If the loop is traversed in a direction opposite to that assigned
for positive loop current, the Kirchhoff equation is not changed, since
this is equivalent to multiplying all terms by —1,
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Consider the series circuit shown in Fig. 3-1. We see that there are
voltage drops across the three passive elements and a voltage rise due
to the battery. Kirchhoff’s voltage law states that the voltage drops
must equal the voltage rises, or

Vl -+ Ve -+ Vs = Vn (3'1)

A part of a network is shown in Fig. 3-2 with the direction of current
B, - C - D ¢

NV I I
% AR R TG

=V, loop direction vy 0 ——
Lr v

a

¥ig. 3-1. The sum of voltage drops Fig. 8-2. Currents into the node
equals the battery voltage by Kirch- equal those out of the node by Kirch-
hoff’s voltage law. hoff’s current law.

shown for each branch attached to a particular node. At that node,
the currents flowing into the node must equal those flowing out, or

Li+1;=1I+ I, (3-2)

3.9. Branch currents and loop currents

Kirchhoff’s voltage law may be applied by using either branch cur-
rents or loop currents. To show the equivalence of branch and loop
currents, consider the network shown in Fig. 3-3. With currents as
assigned, the Kirchhoff voltage
equations are

R+ Rsl, =V
(for loop 1) (3-3)

~R3l. + Raly = 0
(for loop 2) (3-4)

At node B, the Kirchhoff current
equation is

Fig. 3-3. Two-loop network.

Io=5L+ I, or I.,=1,—~ 1 (3-5)

This equation may be used to eliminate I, from the Kirchhoff voltage
equations of Egs. 3-3 and 3-4 as

Rilos + Ry(Io — In) =V - (3-6)
—R3(Is ~ It) + Ryly = 0 37
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Ezxzample 3

A three-loop network is shown in Fig, 3-6 with loop currents i, 7z,
and 7; assigned positive directions as shown. Traversing the three

Rl Cz
—AM -+t

oD R LD

Fig. 8-8. Three-loop network.

loops in turn gives the three Kirchhoff voltage equations

Ryt + 51; f (21 — 1) dt = v(t) (3-15)
—1~f(i3~i1)dt—l——1—[i2dt+w}m[(z’ i) dt =0 (3-16)
Ci Cq Cs ? :

_Cl_ f (ta — 12) dt + Rot3 = 0 (3-17)
3

3-5. Loop analysis of circuits with coupled coils

The rule developed in Art. 2-4 regarding polarity of induced voltage
and current direction with respect to dots can be used to advantage
in analysis of circuits with coupled coils. To apply the rule, (1) the
polarity markings (dots) for each pair of coupled coils-—or equivalent
information—must be given, and (2) the positive direction of current
flow must be assumed for each loop. A part of a circuit fulfilling these
two requirements is shown in Fig. 3-7(a). By the rule, current 1;

d 2 03

E 4 o3 Ic L]
DRE DI
- 04 20 '

{a) b}

Fig. 3-7. Coupled coils illustrating the relationship of assumed direo-
tion of current, polarity markings, and polarity of induced voltage.

1o

o 4

2o

enters the dotted terminal of winding 1-2 and so will induce a voltage
in winding 3-4 positive at the dotted terminal, terminal 3. The cur-
rent %, thus induces a voltage drop from 3 to 4, or a voltage rise from
4 to 3. Similarly, 72 induces a voltage in winding 1-2 with terminal
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3.4, Formulating equations on the loop basis

A number of examples will illustrate the formulation of equations
of equilibrium using Kirchhoff’s voltage law,

Example 1

Figure 3-4 shows a series RLC circuit. It is quite clear by inspection
that there is but one loop, while there are 3 independent node pairs.
The voltage drops across the passive elements must equal the voltage
rise due to the active element. Expressions for the voltages across the

R, L
AVAYAY rETO

v{t)&) @ ﬁ"—:C@ Rz

ﬂg. 8-4. Series circuit. Fig. 3-6. Two-loop network.

passive elements were derived in Chapter 1. In terms of these expres-
sions, Kirchhoff’s voltage law requires that

N T T
Rz+La%+6fzdtmv(t) (3-11)

at all times. This is an iniegrodiffereniial equalion, which may be
changed to a differential equation by differentiation to give

70

i+ RE i =

dlz (3"12)

where the derivatives have been arranged in descending order.

Erxample 2

The network of Fig. 3-5 has two independent loops, since L = E
—N:+8=5—4+41= 2 and the two loop currents, ¢; and s,
have been assigned positive directions as shown. The equilibrium
equations of the voltages, based on Kirchhoff's law, are

Ruis + é f (s — i2) dt = v(t) (3-13)

C [ (2 — 41) dt + L d“ + Ry = 0 (3-14)



Ezxample 4

The winding sense of three coils on a flux-conducting material is
shown in Fig. 3-9. We are required to write the Kirchhoff voltage
equations, taking into account mutual inductance. With the aid of
dots, the system of Fig. 3-9 can be replaced by the equivalent circuit

r— =77 - - - == -3
l1r—=—FTr2r———1 3E
A - —
Rl Ll L» L3
+
P P
vmg) i I S b — e — I e

v T
Fig. 3-10. Magnetic system of Fig. 3-9 showing polarity markings
and assumed positive direction of current.

of Fig. 3-10. If we use a double subscript notation for mutual induet-
ance to indicate the two coils being considered, the Kirchhoff voltage

equations are

L Al — 1 di
RIT:I + Ll d(tldt 22) + M12 (z2dt za) - MIS ..“(_;,;
+ Ra(is — 42) = v(t) (3-21)
» - 3 d s —_ -
Ro(is — 11) + Ln d——-*——“"""—(zzdt ) — M1 %('det %) -+ Mu%?

s — & d,. .
+ L2 g GG i)+ Mu Lm0 )
) di d . . di
L:%(i;*‘n)”*Mzs-&zf—Mna—t(%z-zz)"f‘Laﬂa?
i d . . :
+Maz(%(’iz—13) "‘anﬁ(zl“"'%z)“{”‘é'['badtmo (3-23)

In this particular problem, the equations would have had simpler form
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1—the dotted terminal-—positive, and so with a voltage drop from ter-
minal 1 to 2.

In Fig. 3-7(b), the current i; has a positive direction reversed from
that shown in Fig. 3-7(a). This cur-
rent is positive when it leaves the
dotted terminal and hence induces
a voltage in winding 1-2 with ter-
minal 2 positive, and so with a volt-
age rise from terminal 1 to 2.

Figure 3-8 shows the coupled coils
of Fig. 3-7(b) incorporated into a

Pig. 3-8. A two-loop coupled

e . cirouit illustrating the sign conven-
two-loop coupled circuit. Applying tion for M.

the rules just discussed, the Kirch-
hoff voltage law applied to the first loop gives the equilibrium equation

diy
di

R+ LS -y 8o (3-18)
The current 1, produces a voltage drop across L,;, but the current 1,,
when positive, with the polarity markings as shown induces a voltage
rise across the same terminals. In the second loop, the equilibrium
equation is 2 i

2 1
L2 ¥ M

—d-z + Rz‘iz = 0 (3*19)

In these equations the sign before a term of the form M(di,/dt) indi-
cates a voltage rise if negative and a voltage drop if positive. As long
as polarity dots are given along with the direction of positive current,
there is no ambiguity, and the rule of Art. 2-4 can be applied succes-
sively to all coupled coils. If the number of coils is large, the use of
dots of various shapes may become cumbersome. In this case, it is
more convenient to assign a plus or minus sign to M, to let M carry
the sign in the equation formulation rather than letting the sign be
specified by the nature of the induced voltage—drop or rise. These two
systems are equivalent, and both will be used in the discussion to
follow, just as both are used in the literature.

Consider the circuit of Fig. 3-8, described by Eqgs. 3-18 and 3-19.
We observe in these equations that the voltages induced by means of
the coupled coils are voltage rises of opposite polarity to the voltage
drops of either loop. With the current directions given, the dots can
be erased, provided a negative sign is identified with mutual inductance
as — M. By this system, Eq. 3-18 is written

Ruir + Ly %331 + (= M) %-‘t’ = (1) (3-20)
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Let us now turn our attention to node ¢. There the current in R, is
marked as [,. Kirchhoff’s current law requires that

IamIQ or 14“1320 (3*29)

Now since I; = -I%;~ (Vo —V,) and I;= —R}—— Ve (3-30)
3 4

we have the second equilibrium equation,

Ve V. V. _
% TR + B 0 (3-31)
Equations 3-28 and 3-31 must be solved simultaneously to give the
unknown values of V, and V..

Have we any flexibility in choosing positive directions of current

for the different nodes? On the network under consideration, a new

current [’ is marked with an arrow such that Iy = — I;. In terms of
this new current, Kirchhoff’s current law is Iy 4+ I, = 0. But since
Iy = —1I; this equation is identical with Eq. 3-29, and so with Egq.

3-31. In other words, the positive direction of the branch currents may
be assumed at each node independent of previous designations. We
thus have two options: (1) Assume positive directions for branch cur-
rents once and for all. (2) Assume new positive directions at each node,
for example that currents flow out of the node for all passive elements
and in the marked direction for active current sources.

As a result of this discussion, we see that the steps to be followed in
node analysis are the following:

(1) Select a datum node and identify all unknown node voltages.

(2) Assume a positive direction for all branch currents.

(3) Apply Kirchhoff’s current law to each node of unknown voltage,
writing each branch current in terms of a node-to-node voltage
and appropriate circuit parameters.

It is sometimes convenient to change a voltage source into a math-
ematically equivalent current source for analysis. In Fig. 3-12(a), let
v(l) be the potential of the voltage source and v,(f) be the potential of
the node located between the resistor R; and the rest of the network.
The current £(t) flows through the resistor B;, Kirchhoff’s voltage law
for the circuit of Fig. 3-12(a) is

v(f) = Bu(t) + v1(t) (3-32)
Solving this equation for ¢(¢) gives

i) = 'ig} - ‘ER%Z (3-33)
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if the generator v(f) and R, had been part of each of the three loops.
(See Prob. 3-14.)

3-6. Formulating equations on the node basis

The node basis for formulating the equilibrium equations for cir-
cuits makes use of the Kirchhoff law that the sum of currents leaving
a node is equal to the sum of currents entering that node. To illustrate
the procedures used in node analysis, consider the simple resistive
petwork shown in Fig. 3-11. For
this network there are four nodes,
marked a, b, ¢, and d. Following l NN AN

[P J— R
+

convention, the negative terminal of
the active element, node d, is se- = Izl I.,l R,
lected as the datum node. There are -[

then three node-pair voltages, the
potentials of nodes a, b, and ¢ with d

respect to node d. However, the Fig. 8-11. Ne.twork iliustra.t.ing pro-
potential from node a to node d is cedures in node analysis.
known to be equal to the battery voltage. There are thus but two
unknown voltages in the network: the voltages of node b and node ¢
with respect to the datum node.

Having identified the unknown voltages, our next task is to write
network equations in terms of these unknown node voltages. This is
accomplished in terms of branch currents (never loop currents). Each
branch current must be assigned a direction considered positive and
so marked with an arrow, just as in the case of loop analysis. At node
b in the network of Fig. 3-11, the branch currents are marked as I,
I., and I;, all directed out of the node. By Kirchhoff’s current law,
we know that

ILi+ 1.4 1:3=0 (3-24)

What are these branch currents in terms of the node voltages? By
Ohm’s law, they are

L=+ (Vs = V) (3-25)
R:
I, = ﬂf— (Vs — 0) (3-26)
2
Iy= o (Vs = V) (3-27)
3
Substituting these three equations into Eq. 3-24 gives
Ve V. VW Vo V. .
EERTRTRE R (3-28)
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of the generator is #(f) in Fig. 3-13(a), we may write

d!'t

o =0 (3-35)

}l‘,_{"l -~ v(h] + l!, [ rvdl + O

1 , H \ .dl‘] n l'(f}
or I:‘"+I.["'”+( dt = R

which is identical with Eq. 3-34. Analyzis may be carried out with

" 2 cither the voltage souree or the

O - cquivalent current souree,
G,

ﬁt() R, 5=Ci G T R, Erample ¢

The network shown in Fig, 3-14
3 is the current souree equivalent to
the three-loop network shown in
Fig. 3-6. Node 3 ix the datum nuode,
and the unknown voltages at nodes
1 and 2 are designated v, and ry. AL node 1, setting 1/08, = ¢, and
l/R: = Gg,

Fig. 3-14. Equivalent circuit of three
loop network of Fig. 3-6.

dr v d U
Gy + Cy :;l‘ +( o (1) — vg) = ;;,1 (3-36)
and at node 2,
d dv
C, T {re — ) + C, ;;; + Gy = 0 (3-37)

In this example, formulation on the node hasis has resulted in fewer
differential equations than on the loop basis in Example 3. Ordinaniy
it requires less work in solving two simultancous differential equations
than in solving three. The choice of method of formulation, loop or
node, also depends on the objective of analysis. In this exampie, if
the voltage at node 2 is desired, the node method has the advantage
over the loop method. But if it is the current flowing in capacitor ('
that is to be found, we must weigh the relative advantages of the two
methods. The loop currents can be assigned so that only one loop cur-
rent flows in C;, but three simultaneous equations must be solved.
Using the node method, we might find the voltage at node 2 first and
then determine the current in the capacitor from the equation

ic, = (3 % (3-38)
The second method appears to involve less computation in this partic-

ular example.
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In this current equation, we will identify each separate term. The
equation tells us that the current ¢(f) flowing into the network is equal
to a current v(f)/ R, minus a current v,(¢)/R,. This equation may be
interpreted in terms of the new network of Fig. 3-12(b) by means of

Ry ult)

- —— -

ity — it} —»

uit) . T() R,

iy

O —— mn R

{a} {b)

Fig. 83-12. Interchange of sources.

Kirchhoff’s current law. The current »(tf)/RE; is from an equivalent
current source. The current v,{(t)/R; is the current flowing through
the resistor B; connected in shunt with the current source., The differ-
ence of these two currents is the current flowing into the network.
Since the two networks of Fig. 3-12 are described by the same equa-~'
tions, Egs. 3-32 and 3-33, they are equivalent.

Ezample 5

Consider the network shown in Fig. 3-13(a). The voltage source may
be converted into an equivalent current source by the procedure just
described, giving the network of Fig. 3-13(b). Node 2 is designated the

1

{b}
¥Pig. 3-13. Network for node analysis.

datum node and all branch currents are assigned to flow out of node 1.
The expressions for the currents in each of the elements in terms of
the voltage were given in Chapter 1. By Kirchhoff’s current law, the
current equation is

1
—Rv1+%fv1dt+0%=v%) (3-34)

Of course, it is not necessary to make the conversion to the current
source before analyzing the network. Since thevoltage of the + terminal



50 NETWORK EQUATIONS Chep. 3
of the generator is v(f) in Fig. 3-13(a), we may write

dl 3

%[v; — o] + 7‘- mdt+ ¢ =0 (3-35)
1 1 Ldry e(f)
or ﬁv; 4 I"; [ th dt -+ ( dt = R

which is identical with Eq. 3-34. Analysis may be carried out with
either the voltage souree or the

1y, 2 .
1 | e equivalent current source.
C;
ﬁLTC C Cs Erample 6
' T T The network shown in Fig. 3-14
3 is the current source equivalent to

the three-loop network shown in
Fig. 3-6. Node 3 is the datum node,
and the unknown voltages at nodes
1 and 2 are designated v, and vis. At node 1, setting 1/R, = G, and
1/Re = @G,

Fig. 3-14. Equivalent circuit of three-
loop network of Fig. 3-6.

dv;

G + Cl + (': Ji (1) — vy) = “: (3-36)

and at node 2,

C:-—*(l’z ) +('xdv:

+ Gws = 0 (3-37)
In this example, formulation on the node bhasis has resulted in fewer
differential equations than on the loop basis in Example 3. Ordinarily
it requires less work in solving two simultaneous differential equations
than in solving three. The choice of method of formulation, loop or
node, also depends on the objective of analysis. In this example, if
the voltage at node 2 is desired, the node method has the advantage
over the loop method. But if it is the current flowing in capacitor s
that is to be found, we must weigh the relative advantages of the {wo
methods. The loop currents can be assigned so that only one loop cur-
rent flows in €3 but three simultaneous equations must he sclved.
Using the node method, we might find the voltage at node 2 first snd
then determine the current in the capacitor from the equation

(3-38)

The second method appears to involve less computation in this partic-
ular example,
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Example 7

The network shown in Fig. 3-15 differs from the networks of other
examples in that there is no series resistance with the voltage source.
Although this network has four independent loops, there is but one
unknown node voltage, that at node

2. From Kirchhoff’s current law, we ff
write ) n 2
d 1 L R
Caa* (02”01)+Z[(02—vx)dt +
t w () o =G
+on+ % -0 (339) R
ke 3

where, as before, ¢ = 1/R. Note
that C; does not appear in the equa-
tion. This is because the voltage at node 1 isindependent of the capaci-
tor Cy or any other shunt element. Capacitor C; is an extraneous ele-
ment. The voltage source must maintain terminal voltage for any load

(or it is not an ideal element), and so C; may be removed without
affecting the network equations.

Fig. 3-15. Network of Example 7.

3-7. Duality

Several analogous situations will have been noted in the preceding
discussions of this chapter. The statements of the two Kirchhoff laws
were almost word for word with voltage substituted for current, inde-
pendent loop for independent node pair, ete. Likewise, the integro-
differential equations that resulted from the application of the Kirch-
hoff laws have been similar in appearance. This repeated similarity
is only part of a larger pattern of identical behavior patterns in the
roles played by voltage and current in network analysis. This similar-
ity, with all the implications, is termed the principle of duality.

U

R/DL TC "“’KD R

{&)

tq
M
I§
9]

Fig. 3-16. Dual networks.

Consider the two networks completely different in physical appear-
ance shown in Fig. 3-16. Inspection shows that the first might be ana-
lyzed to advantage on the loop basis and the other on the node basis,
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The resulting equations are

di S T
L3~§+ Rz-}-««c-,fzdt = (D) (3-40)

H

C%+Gv+éfvdt 0 (3-41)
These two equations specify identical mathematical operations, the
only difference being in letter symbols. The solution of one equation
is also the solution of the other. The two networks are duals. The roles
of current and voltage in the two networks have been interchanged.
As a word of caution, one network is not the equivalent of the other
in the sense that one can replace the other.

An inspection of the terms of Eqgs. 3-40 and 3-41 shows that the
following are analogous quantities.

R: and Gv
di dv
L ¥ and C ;7

-é,[idt and %fvdt

Evidently the following pairs are dual quantities.

R and G
L and C

loop current, ¢ and v, node-pair voltage

g or ] { ¥ or
and

[iat Jvadt
loop and node pair

short circuit and open circuit

A simpie graphical construction* may be followed in finding the dual
of a network.

(1) Inside each loop place a node, giving it a number for conven-
ience. Place an extra node, the datum node, external to the
network. Arrange the same numbered nodes on a separate space
on the paper for construction of the dual.

* Gardner and Barnes, Transients in Linear Systems (John Wiley & Sons, Inec.,
New York, 1942), pp. 46f.
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(2) Draw lines from node to node through the elements in the orig-
inal network, traversing only one element at a time. For each
element traversed in the original network, connect the dual ele-
ment—from the chart above—on the dual network being
constructed.

(8) Continue this process until the number of possible paths through
single elements is exhausted. (Should you slip and go through
a connecting wire which is assumed to be a short circuit, the
dual element is an open circuit.)

(4) The network constructed in this manner is the dual network.
This construction may be checked by writing the differential
equations for the two systems, one on the loop basis and the
other on the node basis,

This graphical construction is illustrated in Fig. 3-17. Networks that
are not planar (that is, cannot be shown schematically in one plane
with no wires crossing) do not have duals.

3
-

(b)
Fig. 8-17. Graphical procedures for finding dual of network: {a) origi-
nal; (b} dual.

(a)

3.8. General network equations

Thus far we have progressed from analysis of very simple networks
to successively more complex network configurations. To systematize
our approach to the analysis of networks, consider an L-loop network,
where L is any number. A representation of such a network is shown
in Fig. 3-18. In this diagram, the circuit elements in each branch have
been replaced by a straight line for simplicity. The effects of mutual
inductance are not indicated but are assumed to be present.

Consider loop 1. This loop may contain resistance, inductance, and
capacitance in any one or all of the branches that make up the loop
Let

;1 be the total resistance in loop 1.
Ly: be the total inductance in loop 1.
Si1 be the total elastance of loop 1.
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We use elastance instead of capacitance here because clastance terms
add directly for a series circuit, while capacitance terms combine as

1 1 1 1
h- G TG .

There will be voltage drops in loop 1 produced by current flow in loop 2,
in loop 3, loop 4—in fact, all loops in the general case. Rather than

specialize on loop 1, consider the effect of currents in the jth loop on

i
gt

P

Fig. 3-18. L-loop network.

voltage in loop k, where j and k are any integers from 1 to L. For
these two loops, let Ri; = the total resistance common to loops k and
7; Li; = the total inductance (including mutual) common to loops &
and j; Si; = the total elastance common to loops k and j. The voltage
drop in loop k produced by current i; is

Ryji; + Ly %? + Skj [ i; di (3-42)

At this point, we will adopt a special notation for equations of this form
by letting the following equation be the equivalent of Eq. 3-42.

(Rkj + ij('%: + Sij [ dt) 1 = Qi (3-43)

This symbolism implies that the variable 7; is operated upon by mul-
tiplication by R;;, multiplication by L;; and differentiation, and finally,
multiplication by S,; and integration. All three operations are sum-
marized in the symbol a;.

The total voltage drop in loop k will be found by successively con-
sidering loop k and the currents flowing in every other loop. Math-
ematically this is done by letting j have all values from 1 to L. This
total voltage drop must be equal to the total voltage rise from active
sources within loop k, which we write as v,. Then by Kirchhoff’s volt-
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age law, we have
L

Z Grjt; = ¥ (3-44)
j=1

There remains only to repeat this process for all loops, by letting k
have all values from 1 to L. Thus the most general form for Kirchhofl’s
voltage law for an L-loop network is

L
E ak,-'i,- = Uk, k= 1, 2, vy L (3-—45)
j= 1

The expansion of this concise equation is the following set of equations.

ayuty 4+ Gits + Gtz + ... b Gt = Uy
Aty + Gats -+ @asis + ... + aauts = V2 (3-46)
@rity + Qrots + arats + ... + Qrls = UL

It is helpful to arrange these equations given above in the form of a
chart (or schedule) in which the a-coefficients are emphasized. Such a
chart is shown below.

Coefficient of

Eq Voita.ge ’4':1 ?:2 13 14 5 ‘e ?:1,
1 vy a1 a2 13 a4 a1 Ce air
2 Vo a1 Qa2 Aoz Aoy [ PY - dsar
L VL ar ars ara Gr4 ars . arr

If the loop currents are all assumed positive in the same path direc-
tion, clockwise for example, then all a; terms are positive and all
ai(j # k) terms are negative. In actual problems, of course, many
of the a-coefficients are zero.

Ezample 8
A two-loop network is shown in Fig. 3-19. In this network there are
two sources of voltage and no mutual inductance. The Kirchhoff volt-

age law is
2

z Qrjly = Oy, k=12

i=1
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loop 1

T

Fig. 3-19. Two-loop network.

or in expanded form,
anty + aietz = vy, a2ty + Qs = Uy

The a-coefficients are found by inspection of the network as follows.

Qy) = (R1+Rz)+(L1+L2)%+(S1+Sz)[dt
Qg = (R2+Ra)+(L2+La)%+(32+83)[dt

Q12 = Qg = —Rz—‘Lﬂg—t—Szfdt

Similarly, the voltage terms are recognized to be
Uy == Vg, Vg = 1

The general equations for node analysis will be similar to those
found for loop analysis, as might be expected from the principle of
duality. Consider a network with N; nodes and only one part such
that there are N = N, — 1 independ-
ent node pairs. Now each of the N
equations is written from Kirchboff’s
current law in terms of current
Prodek  directed into and out of the node.
Currents into the node, in turn, are
written in terms of node-to-node po-
tentials and the parameters of theele-
ments connected between the nodes

Fig. 8-20. Elements appearing being considered. For elements con-
between two nodes, j and k. The nected as shown in Fig. 3-20, the ele-
C's, @'s, and L’'s may be combined ments may be replaced by an equiva-
to give an equivalent system. lent system made up asfollows: (1)all
parallel capacitances replaced by an equivalent capacitance of value
Cu = C1+ C2+ ...; (2) an equivalent resistance found by adding
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conductances as Gy; = 1/Ri; = G1 -+ G2 4+ .. .; and (3) an equivalent
inductance of value Ly;, where 1/Ly; = 1/Ly + 1/L2 + .... Applying
this network simplification to the circuits from node k to all other nodes
fromj = 1toj = N, we have the equation

N
E(ij"f"iji"l-—}—“[dt)v;*———ik, k=12 ...,N (347)
~f dt ' Ly
e

which may be written concisely as

N

Eb;,;v; =iy k=12 ..., N (348)
PR

by letting b:; summarize the operations

(05 + 0w g+ 1= [ @) =t (3-49)
2

The expansion of Eq. 3-48 has the same form as the expansion for the
loop case, Eq. 3-46, with a's replaced by b's, ¢’s by v’s, and v's by ¢’s.

In applying this equation to networks, it is not necessary to simplify
the network by combining elements. At node j, the capacitance Cj; is
the sum of the capacitance connected to node j. The value of C; is the
sum of the capacitances connected between node 7 and node k. Similar
instructions hold for inverse inductance 1/L and for conductance
G = 1/R. Coefficients can thus be found by inspection by simply
noting which elements are ‘“hanging on’’ or “hanging between” the
various nodes.

If the same convention for positive current is maintained in formu-
lating all node equations for a network, the sign of by; will be positive
when & = j, and negative when k » j.

Ezample 9

A network with two independent node pairs is shown in Fig. 3-21.
For this network, Kirchhoff’s current law is

-l Datum node
Fig. 8-21. Two-node network.
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2

2 beiv; = 1y, k=1,2

i=1

or bllvi + bmvz = ?:1, 62101 -+ bzgvz = 19

Values for the b-coefficients and the ¢’s may be summarized in chart
form as follows.

Coeflicient of

Eq. Current v U2
. d 1 1 d 1
1 1a G1+Cld_i+("ljl+m)[dt —Cla-t - E/dt
. d 1 ' d . 1
2 % ‘ -Cla“i“m dt +G2+(Cl+02)a"z+z;fdt

3-9. The solution of equations by determinants

Determinants are the mathematical tools we will use for systematic
solution of simultaneous equations of the type derived in the last sec-
tion. The array of quantities with straight line brackets on either side,

ayy 42 Az ... Gy
Q21 Qz2 G2z ... Q2
Qn1 Qnz  Qny L Qnn (3"'50)

is known as a determinant of order n. Quantities in horizontal lines form
rows, and quantities in vertical lines form columns. Such a deter-
minant is square, having n rows and n columns. Each of the n? quan-
tities in the determinant is known as an element. Element position in
the determinant is identified by a double subseript, the first subseript
indicating row and the second indicating column (numbered from the
upper left-hand corner). Elements along the sloping line extending
from a;; to a., form the principal diagonal of the determinant,

A determinant has a value which is a function of the values of its
elements. In finding this value, we must make use of rules for expan-
sion of the determinant in terms of the elements. Second- and third-
order determinants have expansions that are familiar from studies in
elementary algebra. Expansions for determinants of order higher than
the third are conveniently made in terms of minors.

The minor of any element of a determinant a; is the determinant
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which remains when the column and row containing a;s are deleted.
In terms of the third-order determinant,

i1 Qi2 Qi

A= |ay ax G
@31 Q32 Qaszs (3-51)
the minor for ay;, for example, is
Ay = Qo2 O23
Q3s Qaz (3-—52)

A minor of the element a; multiplied by (—1)7** is given the name
cofactor. The cofactor sign is thus found by raising (—1) to the power
found by adding the row and the column, j + k as

(cofactor) = (—1)#**(minor) (3-53)

Since, according to this rule, the cofactor signs alternate along any row
or column, the proper cofactor sign can be determined by “counting”
(plus, minus, plus, ete.) from a positive a,; position to any element,
proceeding along any horizontal or vertical path.

Expansion of a determinant in terms of minors (or cofactors) con-
sists of successive reduction of determinant order. A determinant of
order n is equal to the sum of the product of the elements of any row
or column multiplied by their corresponding (n — 1) order cofactors.
Applying this rule to the expansion of the determinant of Eq. 3-51
along the first column gives

A = aylyy ~ anlds + a3ldn (3-54)
Aga Q23 2 Qdis a1z Qi3
= an — + as
Azy  Oay A3z A3z Ga2 Qg3

There are 2n equivalent expansions of the determinant about the n
rows or n columns. The minor determinants can, in turn, be expanded
by the same rule and the process continued until the value of A is given
as the sum of n! product factors.

The facts about determinants that we have just reviewed are essen-
tial in solving simultanecus equations of the form

ayty + gty + Gtz 4+ ... 4 @i = 1
arit; + apgte + Grats + ...+ Qrrly = Uz

that have resulted from application of Kirchhoff’s voltage law (and
similar equations from the Kirchhoff current law). The solution teo
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such simultaneous equations is given by Cramer’s rule as

D1 . D2 . DL 3
= = e L fg = -39
(3 A 22 A (37 A ( )
where A is the system delerminant given as

all a12 .. (11,;

A = Qzy Q22 ... Q21

ary Qre e arr (3"56)
which must be different from zero for the solutions 7y, 2, ..., t» t0 be
unique, and Dj is the determinant formed by replacing the jth column
of a-coefficients by the column vy, vs, ..., v,

With Cramer’s rule and the method of expansion by minors, simulta-
neous equations of the form of Eq. 3-46 can be solved. For a third-
order equation, the solution for 7, is

s Dy _ 411 — V20 + v3An

21 = "'K == A (3“57)
or £y = %{—‘ v, — %—“ vy + %—;3 v3 (3-58)
Similarly,

. A A A

@2=-—-—Aﬂvl+-—§vg—~§-sva (3"59)

and so on. The form of these equations is greatly simplified if all v's
except one are zero, corresponding to only one driving voltage source.

E:caﬁple 10
For a certain three-loop network, the following equations are given.
5%y — 24y — 3is = 10
—2i; 4 4dp — iy = 0
3ty — 1éy 4 6i3 = 0

From Cramer’s rule we write the solution for 7, as

-2 -3 -2 -3
R R e
5 -2 -3 T 43
-2 4 -1
-3 -1 6

4 —-1|
1 6

I Dl
%1="“A"
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_Similariy,
-2 -1 -2 4
”(+10)l--3 6' 150 +(10)]___3 mll 140

i = A =@ BT A Ty

3.10. Resistive network analysis

For networks restricted to contain only resistive elements, the
a-coefficients in Eq. 3-46 become resistance terms as

Apj Rx,'
and the b-coefficients become conductance terms as
bkj - ij

Under this restriction, we can postpone our questions relating to the
manipulation of a-coefficients and b-coefficients which include the
operations of integration and differentiation. The general form of
Kirchhoff’s voltage law equations for the resistive case is

L

2 Rkﬂ:j = Uk, k= 1, 2, vy L (3—60)
F=1
where R;; is the total resistance in loop 7, and Ru; is the total resistance
in common to loop 7 and loop k. If the loops are all drawn in the same

2 2
—\ VY ’\/\/\,
1
DEDEL
1 1 Ivoitl
N et YAYAY; AN N AYAYAY,
1 voit
2 ”D SRS
2 1 1
9

prlorioL:

NN
2

Fig. 3-22. Resistive network analyzed in example: values of resistance
in ohmas.

direction (say clockwise), then Rj; is positive and Ry; is negative. As
an example, consider the network of Fig. 3-22. For this example, the
Kirchhoff voltage equations are summarized in the following chart,
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where the first row is the equivalent of the equation

NETWORK EQUATIONS

0 = 41; — 23 + Oy — 14 + O + O + Oy + Ors + 01

Chap. 3

Eq. Voltage Coeflicient of

A A P A A A
1[ o]l=] 4] -1] 0i-1] 0] 0] o] o] o
2| 1l=-1] 5{—-1/ ol =1 o o o o
3] ol=] o[=1] 4| o] o|-1] 0o ol o
4 -1|=]-1] 0| o 5] -1] o -1 o o
5] ol=| o|—-1| 0| —-1] 4/-1| o] -1 o
6| ol=| o 0| -=1] o|~1] 5[ o 0| —1
71 1|=] o 0| o|-1{ o] o] 4| -1 o
8! o0f(=| o 0of o o/ -1, o0 -1| 5| -1
9| o o/ o] o] ol ol -1l o —-1] 4

Several observations of importance can be made from this chart.
(1) The elements of the chart are the elements of the system deter-

%_—Dammnode

Fig. 3-28. Resistive network
analysed on node basis in example:
values of resistance in ohms.

minant. (2) Theelements of the princi-
pal diagonal are positive; all others are
negative or zero. (3) There is a symme-
try about the principal diagonal. This
symmetry and the sign rule always
apply when loops are drawn in a com-
mon direction. This characteristic is
of value in checking equations.

The second example will illustrate
formation of node equations for resis-
tive networks. A network to be ana-
lyzed on the node basis is shown in

Fig. 3-23. The chart equivalent of the six node-pair voltage equations

is shown below.

Eq. for Coeflicient of

node: Current v, % o, va 0, v
a 0 5/21 -1 0 0 0 | —-1/2
b 0 -1 2 —~1 0 0 0
c 0 0 —~1 5/2 1 -1 0 | —-1/2
d 0 0 0 -1 2 -1 0
e 1 0 0 0 -1 5/2 | ~1/2
J 0 ~1/2 0 | —1/2 0 | -1/2 3/2
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FURTHER READING

For discussions of the formulation of equilibrium equations for net-
works, see Johnson’s Mathematical and Physical Principles of Engi-
neering Analysis (McGraw-Hill Book Co., Inc., New York, 1944),
pp. 4567, or Electric Circuits by the Electrical Engineering Staff at
MIT (John Wiley & Sons, Inc., New York, 1940), pp. 112-138. More
advanced treatments are contained in Gardner and Barnes, Transients
in Linear Systems (John Wiley & Sons, Inc., New York, 1942), pp.
25-49, and in Weber’s Linear Transient Analysis (John Wiley & Sons,
Inc., New York, 1954), Chap. 2. The principle of duality is discussed
in many texts, for example those by Johnson and by Gardner and
Barnes cited above.

On the subject of writing circuit equations for magnetically coupled
circuits, see Kerchner and Corcoran, Alfernating-Current Circuits
(John Wiley & Sons, Ine., New York, 1951), pp. 222-230, or LePage
and Seely, General Network Analysis (McGraw-Hill Book Co., Ine.,
New York, 1952), pp. 102-110. Further discussion of determinants
may be found in many texts in mathematics, for example in Pipes’
Applied Mathematics for Engineers and Physicists (McGraw-Hill Book
Co., Inc., New York, 1946), pp. 69-76, in Wylie’s Advanced Engineer-
tng Mathematics (MeGraw-Hill Book Co., Inc.,, New York, 1951),
pp. 573-579, and in Guilleman’s The Mathematics of Circuit Analysis
(John Wiley & Sons, Inc., New York, 1949), Chap. 1.
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PROBLEMS

3-1. For the four networks shown in the figures, formulate the
Kirchhoff voltage equations. For parts a, b, and ¢, use the 100ps indi-
cated; for part d, select four appropriate loops

3
L
+
e (
Ry
4
{a)
+
DD oL
3
(e)
Prob. 3-1.

3-2. In the network shown, we are to write equations that will per-
mit the currents in the inductors to be found. How many simultaneous
differential equations are required to describe the system? Write the
equilibrium equations on the loop basis. Discuss.

L L Lj v; U L]
110 TG I NI\,
IO 7O O_l
+ + + +
by vz Uy Uy TC; TCz =<C3 TC‘
Prob. 3-2. Prob. 8-3.

3-3. In the network shown, the problem is to find the current
through the capacitors. How many simultaneous differential equations
are required to describe the system? Write the equilibrium equations
on the loop basis. Compare conclusions with those found for Prob. 3-2.
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8-4. Formulate a set of node equa-~
tions to describe the network shown
in the figure.

8-6. The network shown in the
figure is known as a ladder network
(because of its physical appearance).
Formulate a set of differential equa-
tions on the loop basis. Suppose that
the ladder is extended indefinitely
by alternately adding inductors and
capacitors. Compare the number of
loops and nodes for each addition to the ladder.

Y™
+ I .L L,
vit) G T Cox=

Prob. 3-5. Prob. 8-6.

3-6. When the values of the parameters are properly selected, the
network shown above is called a Butterworth low-pass filter. For-
mulate a set of differential equations on the basis (loop or node) that
results in the smaller number of simultaneous differential equations.

3-7. The network shown in the figure is of a type designed by the
Darlington insertion-loss method. Repeat Prob. 3-6 for this network.

Ly Ly
R, I i
1
ult) _Cs x=Cs 2 = Cs R,
Prob. 8-T.

3-8. The network shown in the figure represents the interstage net-
work of some vacuum tube amplifiers. Repeat Prob. 3-6 for this

network.
LI

IR
im? B ‘]*Cz L L, 7C: 2R,

Prob. 3-8.



NETWORK EQUATIONS Chap. 3

66
3-9. The network shown in the figure represents the equivalent net-
work of a two-stage vacuum tube amplifier. Repeat Prob. 3-6 for this

network.

{ I
JI\ 1y °
C C;

yie)
+

vit)

PI'Ob [ 3"9-

8.10. The network of this problem represents a bridged-T filter net-
work (the inductor forms the bridge across the T). Repeat Prob. 3-6

for this network.

r%
B w%
Q== m?

_rss-L i e
L \ " L i€
2. Cl CZ 3 C
+ C3 + L..
Owa L, Rg 1@) RO TC R,

Prob. 3-10. Prob. 3-11.

3-11. For the double-T network shown in the figure, repeat Prob. 3-6.
3-12. The network shown in the figure is a symmetrical latiice filler.

Repeat Prob. 3-6 for this network.

Prob. 3-12.

3-13. Consider two magnetically coupled coils with current in each
coil. Show that if the currents are in such a direction that the two
fluxes aid, the sign of M is positive, while if the fluxes oppose, the sign

of M is negative,
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8-14. The circuit shown below is identical to that used in Example
4, Fig. 3-10, but the loops are chosen differently than in the example.
For this network formulate the differential equations on the loop basis.
Compare the number of terms in the equations that result with those
found in Example 4.

R,

MV
+ i L, . Ly
DD

Prob. 83-14.

3-15. A network with mutual inductance is shown below, with the
coil winding sense indicated by dots. Write the Kirchhoff voltage
equations for this network. Note that M,, = 0.

R; I Lo
. -
on
Ml3 /MZE.!
+ . La .
()vm | i2 )Ry
- R
Prob. 3-18.

3-16. Write the loop basis network equations for the system shown
in the accompanying figure.

mhAYAY
Ry —— - - - =
I rm—— i == |
L -Est .—CtLa
-+
| N T
u{t)g> | L.._.___.“J' !_...,___.JI !
R L d
R, gﬂz %&

Probh. §3-16.
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3-17. For the network shown, (a) find the dual and (b) give element
values on the schematic to make the network equations for the duals
have identical coefficients.

5 ampTE) 20 g 1 10 11 amp

Prob, 3-17.

3-18. Find the dual of the network of Prob. 3-5.

3-19. Find the dual of the network of Prob. 3-8.

3-20. Find the dual of the network of Prob. 3-9.

3-21. Find the dual of the network of Prob. 3-10.

8-22. The network of Prob. 3-12 appears to be nonplanar (in which
case it does not have a dual). For this particular network, however,
the crossover point can be removed so that the network is planar.

(a) Draw the equivalent planar network. (b) Find the dual of the
planar network.

3-23. Solve the following system of equations for z;, 75, and 75, using
determinants.

31:1 - 212 + 01:3 =
"‘“"21:1 + 91:3 - 423 = 0
0i1“4‘iz+9‘i3"-—-—"’ 10
Answers. i, = 405/159, 12 = 210/159, i; = 270/159.
3-24. Solve the following system of equations for the three un-
knowns, 4,, %2, and 7; by determinants.
82, — 3ta ~ bHiz= 5
-3t + T — O = —10
—5i, + 02y + 112, = —10

Answers. 1, = —295/342, i, = —615/342, i; = —445/342.
3-26. Evaluate the following determinants by minors.

@] 2 -1 0 o0 ®] 1 -2 0 8 4
-1 3 -2 0 -1 4 -1 1 ©

0 -2 3 -1 2 0 1 1 3

0 0 -1 2 4 -2 4 2 -1

3 1 .3 -2 1

Answers. (8) 49, (b) +133.
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3-26. Consider the equations

3r— y—~3z=1
z—3y+ z2=1
4z + Oy — 5z = 1

(a) Is (4, 2, 3) a solution? Is (—1, —1, —1) a solution? (b) Can these
equations be solved by determinants? Why? (¢) What can you con-
clude regarding the geometry represented by these equations?

3-27. By inspecting the networks in the accompanying figure
(without writing the circuit equations), write the loop basis system
determinant. Element values are in ochms and volts.

N\ -
2 5
3 +
+ ‘
O] DO
10 i
Prob. 3-27.
Answer.l 6 — l Answer.| 7 -4 -3
- 6| -4 11 -3
-3 -3 8

3-28. Repeat Prob. 3-27 for the networks shown in the figure.

Answers.| 9 -3 0 —4 3 -1 0 0 -1
-3 9 -3 0 -1 4 -1 0 0

0o -3 6 O 0 -1 6 -3 0

—4 0 0 5| 6 o0 -3 9 -3

-1 0 0 -3 6
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3-29. By inspecting the network shown (without writing the circuit
equations), write the node basis system determinant.

node 1 nodf 2
- 5
1010 4 1 2
Prob. 3-29.
Answer.| 9 —1
20 5
-1
5 10

3-30. In the network graph shown in the figure, each branch con-
tains & 1-ohm resistor. Four branches, as shown, contain a 1-volt
voltage source. Analyze this network on the loop basis to obtain a set
of equations. Simplify by combining like terms in any one equation.
The number inside each square is the loop number.

2h 2h
1 ih 3
1h lh

P!‘Ob. 3"300 ?IOb. 3"‘31-

3-31. In the network graph shown in the figure, each interior branch
contains an inductor of 1 henry and each exterior branch an inductor
of 2 henrys. A 1-volt source is located in one branch as shown. The
number inside each square is the loop number. Analyze the network
on the loop basis to obtain a set of equations. Simplify by combining
like terms in any one equation.
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3-32. In the network graph shown, R =R, = 1 ohm, and one
pranch contains a current source of 1 amp. Analyze the network on the

node basis to obtain a set of equations. Simplify by combining like
terms in any one equation.

Prob. 3-32.

3-33. Repeat Prob. 3-32 with external branch resistors of B = 2
ohms and interior branch resistors of B; = 1 ohm,



CHAPTER 4
FIRST-ORDER DIFFERENTIAL EQUATIONS

4-1, Definitions for differential equations

In this chapter, we will study a number of techniques for the solu-
tion of the simplest differential equations, those of first order such as

Qg gj

dt

This equation is of first order because the highest-ordered derivative

is the first. Thus differential equations are classified by the highest-

ordered derivative they contain. An nth order differential equation
may be written

d»i dr—ig di ,
Go g+ G o Gt ant = 0(D) (4-2)

+ai=0 (4-1)

for equations of the first degree. The degree of an equation is the power
to which the highest-ordered derivative appears after all possible
algebraic reduction.

In Eq. 4-2, ¢ is the dependent variable and ¢ is the independent var-
iable. When v(¢) represents an energy source, it is known as the forcing
function. The dependent variable ¢, which is to be found, is called the
response or solution. The differential equation is ltnear if the dependent
variable and all its derivatives are of first degree. All other equations
are nonlinear. A differential equation is said to be ordinary if it con-
tains only fotal (and not partial) derivatives. For the type of circuits
assumed in Chapter 1, the differential equations that describe net-
works will all be ordinary, linear differential equations with constant
coeficients. 1t should be remembered that the techniques we will
discuss will not, in general, apply to nonlinear differential equations.

Equation 4-2 is said to be homogeneous when v({) = 0; if v(¢) is not
zero the equation is nonhomogeneous.

4.2, General and particular solutions

In electrical problems, the network is assumed to be initially in a
known state with all voltages and currents fixed. At an instant of
time designated ¢ = 0, the system is altered in & manner that can be
represented by the opening or closing of one or more switches. The
objective of analysis is to obtain mathematical equations for current,

72
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voltage, charge, etc. in terms of time measured from the instant equi-
librium was altered by the switching.

In the network shown in Fig. 4-1, the switch K is changed from posi-
tion 1 to position 2 at the reference time ¢ = 0.* After the switching
has taken place, the Kirchhoff volt- _——11

. . R
age equation 18 K E A
2
OR;
This is a first-order linear differen-
tial equation with constant coeffi-

cients. It can be solved if the vari- Fig. 4-1. RL circuit.

ables can be separated. This may be accomplished by rearranging Eq.
4-3 in the form

1 illl+

LE¥ 1 Ri=0 @ v

di
1

dt (4-4)

e

With the variables separated, the equation can be integrated to give
. R
lnt==-L—t+K (4-5)

where In designates that the logarithm is to the basee = 2.718 .. .. To
simplify the form of this equation, the constant K is redefined in terms
of the logarithm of another constant as

= In k (4-6)
Equation 4-5 may then be written
In¢=Ine®r 4 ink (4-7)

since, by the definition of a logarithm, In e* = z, or logy, 10* = z.
Also, from logarithms we know that

Iny+inz=Iny:z (4-8)
so that Eq. 4-7 may be written

In £ = In (ke-#"F) (4-9)

With the equation in this form, the antilogarithm may be taken to
give,
3 == ke—R¥/L ( 4-1 0)

* It is assumed that the switch is & ‘‘make-before-break” type and that the
transition from position 1 to position 2 does not cause an interruption of the cun

rent 7.
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Redefining the constant K as the logarithm of another constant has
simplified the form of the solution. Equation 4-10 is the network
response or solution. This solution is free of derivatives and expresses
the relationship between the dependent and independent variables.
That it is the solution can be verified by substituting Eq. 4-10 into
Eq. 4-3.

In the form of Eq. 4-10, the solution is known as the general solution.
If the constant of integration is evaluated, the solution is a particular
solution. The general solution applies to any number of situations. A
particular solution fits the specifications of a particular problem.

To evaluate the constant k, we must know something new about the
problem, such as any pair of values of 7 and ¢. In this particular prob-
lem, we know that the current after switching has taken place must be
just the same as before switching because of the inductor in the cir-
cuit.* Thus at ¢ = 0, we know that the current has the value

14

1(0) = B

(4-11)

This value is known as the inilial condition of the circuit. Substituting
this required condition into Eq. 4-10 gives

= =ke® =k (4-12)
The particular solution of this example becomes

i= %e‘“ﬂ‘“ (4-13)

4-3. The integrating factor

Consider a nonhomogeneous equation written
di .

where P is a constant and @ may be a function of the independent
variable ¢ or a constant. The equation is not altered if every term is
multiplied by the same factor. Suppose that we multiply Eq. 4-14 by
the quantity ¢, which wili be known as an integrating factor.t There
results

di ,
ght a—: < Pieft = Qe (4-15)
* This is an application of the principle of constant flux linkages discussed i

Art, 1-7,
t If P is a function of time, the proper integrating factor is ¢fPd, See Prob. 4-5.
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That this multiplication by a factor ‘“pulled out of the hat” has made
possible the solution of Eq. 4-14 can be recognized by recalling the
equation for the derivative of a product:

dlzy) = zdy + yd=x (4-16)
By letting z = ¢ and y = €™, we have
,E,,i__ FaPy . pFt éﬁ?} Yai
7 (ie™*) = e 7 + fePtP (4-17)
which is the left-hand side of Eq. 4-15; thus we have
i oPtY et -
dt(ze )} = Qe (4-18)
This equation may be integrated to give
ie?* = [ Qe™dt + K (4-19)
or 7 == gFt f Qe dt 4+ Ke 1t (4-20)

The first term in Eq. 4-20 is known as the particular integral; the
second is known as the complementary function. Note that the partic-
ular integral does not contain the arbitrary constant, and the comple-
mentary function does not depend on the forcing function @Q.

For any network problem, P will be a positive constant determined
by the network parameters, and @ will be either the forcing function
or a derivative of the forcing function. In the limit, the complemen-
tary function must approach zero, because P is a positive constant;
that is

lim Ke P = 0 (4-21)
t— o
Thus the value of 7 as time approaches infinity is
i(w) = lim () = lim e | Qe dt (4-22)
{—r = t— o

When the particular integral does not approach zero in the limit, its
value at { = <« is spoken of as the sleady-state value. For this case, the
particular integral must contain no exponential factor or otherwise it
would reduce to zero. In electrical engineering, the steady-state values
most frequently encountered have the forms

7= A sin (ot + ¢) and 7 = a constant (4-23)

Let the general solution of Eq. 4-20 be written as the sum of the two
parts of the solution, letting ¢» be the particular integral and ¢ be the
complementary function; thus

T = 1p + ic (4-24)
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If 7; has either of the forms of Eq. 4-23, it may be written as a steady-
state value, designated #,,. A convention has been established for call-
ing the remaining term . the transient portion of the solution. By
this convention, the response is made up of two separate parts:

T = %4 + 1 (4-25)

The steady-state value is regarded as having been established at ¢ = 0,
and the transient must adjust itself, mathematically, to account for
the response at ¢ = 0 and all other times. This is an arbitrary division
of the solution which nevertheless has utility as a conceptual aid. The
division of solution is made purely by convention; the individual elec-
tron in a current has no way of knowing whether it is in the transient
or the steady-state division of the current.

Example 1

To illustrate the transient and steady-state portions of the solution
to a problem, consider the network of Fig. 4-1 with the switch moved
from position 2 to position 1 at { = 0. The Kirchhoff voltage equation
18, after division by L,

di R._ V
a LT
Comparing this equation to Eq. 4-14, we see that

B 14
P = f and Q = E—
The solution to this equation is given as Eq. 4-20 which becomes for

this problem,
i o= e—-Rt/L [LKGR‘/L= dt + Ke--m/,t,

Evaluating the integral, we obtain

i = % + Ke®/L

as the general solution. If the current in the network being considered
is zero before the switching action, it must be zero afterward because
of the inductor. The requirement that ¢(0) = 0 leads to the particular

solution

i= 2 (1~ em) (4-26)

The steady-state and transient divisions of this current are shown in
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Fig. 4-2 along with their sum or the actual current. The steady-state
portion (V/R) is established ab .

=0, and the transient term 1§ fes
adjusted such that there is zero cur-
rent at £ = 0.

° ¢
4-4. Time constants -
The particular solution of Eq. 4-3

given by Eq. 4-13 may be written in
a nondimensional form as

i

i Fig. 4-2. Transient and steady-
v _—y (4-27) state parts of the solution of

I, Example 1.

where I, is the initial value of current at { = 0 and T = (L/R) is the
time constant of the system. The form of Eq. 4-27 is the solution of all
homogeneous first-order differential equations, where I, and T have
different values for different problems. The physical significance
attached to the time constant is of great importance in electrical
engineering. When ¢ = T, by Eq. 4-27,

M < 1= 037 (4-28)
0
or i(T) = 0.371, (4-29)

In other words, the current decreases to 37 % of its initial value in one
time constant. By a similar computation, it can be shown that the
current decreases to approximately 29, of its initial value in four time
constants. A plot of ¢/, against {/T is shown in Fig,. 4-3.

1.00

0.75

l/Io

o

3
/

0.25 \
I | | \\"?-—m_.;
0 i 2 3 4 5

/T

Pig. 4-8. Normalized exponential curve for /7,
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The solution of the first-order nonhomogeneous differential equation
with a constant forcing function is of the form of Eq. 4-26, which may
be written in nondimensional form as

_?:. - 1 — p—t/T -
T, 1 —¢ (4-30)
This function is plotted in Fig. 4-4. When ¢ = T,
W(T) = (1 - 0371, = 0.631, (4-31)

or the current has reached 639 of its steady-state value in one time
constant. Similarly, the current will increase to approximately 989

of its final value in four time constants.

1.00 /—_.ﬁ———

i ]
078 /]
-/

¢/T

Fig. 4-4. Normalized exponential curve for (1 — ¢7#/7),

The time constant is useful in comparing the behavior of one system
with that of another. It is not possible to compare times at which the
transient disappears (or reaches its steady state) since, mathematically
at least, this requires infinite time. However, the time interval for an
exponential function to decrease to 37 %, of its initial value (or increase
to 63% of its final value) is conveniently measured and used as 8
standard for comparison. As an example, consider & series RC circuit
which has a general solution,

t = [qe-t/ReC

The time constant for the circuit is T = RC. Suppose that R has the
value of 100 ohms and C is 1000 uuf; then T = 100 X 1000 X 101
= 0.1 psec. However, if R = 1000 megohms and C = 1 uf, then
T = 1000 sec, or 17 min. For one combination of R and C, the current
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would decrease to 379, of the initial value in the small time of 0.1 usec;
for the other, the current would require about 17 min to decrease to
379, of the initial value.

In experimentally recording a transient, the accuracy of measure-
ment is often of the order of 1 or 2%,. For this reason, a transient is
sometimes assumed to have disappeared when it reaches 2% of the
final value (as accurately as can
be determined). Since the time to
reach 29 of the final value (or 989,
in the case of an increasing expo-
nential) is four time constants, it is
often assumed that a transient dis-
appears in four time constants.
This basisis sometimes used to meas-
ure the time constant of a system.

4-5. The principle of superposition

A series RL circuit with n series Fig. 4-6. RL series circuit with n
voltage sources is shown in Fig. 4-5 voltage sources illustrating the super-
P . '. * ayx th .
To simplify the form of the differ- PO®tion theorem
ential equation, L is taken to be 1 henry. By the Kirchhoff voltage
law, we have

Bt Bi= o) + 020 + ... + 00 (4-32)

In terms of the general solution of a first-order nonhomogeneous
differential equation, given by Eq. 420, P = R, a constant, @ = v,
+ vs + ... 4+ v, and the solution is

i=e¢® [ (0, +va+ ... +va)ert dt + Ke (4-33)

As we have observed before, the particular integral depends on the
nature of the forcing function voltages and, for this reason, is given the
name forced response. On the other hand, the complementary function
does not depend on the forcing function (except that K is fixed by the
magnitude of the forcing function at ¢ = 0 and circuit conditions exist-
ing at that time). The complementary function is given the name
free response. The total response can be thought of as made up of two
parts—forced and free. Wé now have three sets of terms defining the
two parts of the solution of the differential equation.

particular integral and complementary function
steady-state solution and transient solution
forced response and free response
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All three sets are used in electrical engineering literature, and will be
used throughout the text although our preference will be for the last
set.

Next, assume that all voltage sources except v;(¢), are removed and
replaced by short circuits. The response under this condition is

iy = B [ pekt dt 4 kiR (4-34)

If this experiment is repeated for each generator of the circuit of
Fig. 4-5, the response will be similar to that given in Eq. 4-34. Suppose
that the currents found in this manner are added together. This sum
may be wriften

it ... = [f viedt + [ vee® dt
+ ..+ [oeertdl] + by F ko oo ka)em® (4-35)

Since each k is so far an arbitrary constant, we may set
K=k+k+4+ ... +k (4-36)

Because R is a constant, the integral termsin Eq. 4-35 may be combined
to give

ittt ... Fia=e®[ (0 Fva+ ... 4 va)eRt dt + Ke o

This equation is identical with Eq. 4-33 which was found for the
combined forcing functions. In summary, the total response of a linear
network is identical to that found by considering each voltage source
alone with all other sources removed and replaced by short circuits
and then summing the individual responses. This is the application of
a general rule known as the principle of superposition. This principle
holds for voltage sources arbitrarily located in more complex networks
and is of great importance in linear network theory. The fact that it
does not hold for nonlinear systems is the root of the great difficulty in
analyzing such systems.

FURTHER READING

First-order differential equations are discussed by Fich in Transient
Analysis in Electrical Engineering (Prentice-Hall, Inc., New York,
1951) under the heading of ‘“Classical Solution of Single-Energy
Transients,” pp. 36-66. See also Kurtz and Corcoran’s Introduciton
to Electric Transients (John Wiley & Sons, Inc., New York, 1945),
pp. 15-30.
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PROBLEMS

4-1. In the circuit shown in the figure, the switch is changed from
position 1 to position 2 at ¢ = 0, a steady-state current having pre-
viously been established in the RL circuit. Find the particular solution
for the current in the circuit. Answer. 1 = (V/R)e(RrRov/L

N
il
=]
kS *;
9990/
t~
T
-4
B
[\ ]
[ =]
o]

Prob. 4-1. Prob. 4-2.

4-2. Replace the inductor in Fig. 4-1 with a capacitor. (a) Write
the integral equation for the current in the system after the switch
is in position 2, assuming that the capacitor was charged to a voltage
equal to that of the source while the switch was in position 1. (b) Write
the differential equation for the charge under the same conditions as
(8). (c) Solve for the charge as a function of time and evaluate the
arbitrary constant. Answer lo (c). ¢ = CVe VEC

4-3. In the circuit shown, the capacitor C; is charged to a voltage
Vo and at ¢ = 0 the switch is closed. Solve for the charge as a func-
tion of time.

o o AAA——
K R
+
% ::'-' ~C3 —C,
Prob. 4-8.

4-4. In the circuit of Prob. 4-2, suppose that the switch is changed
from position 2 to position 1 at { = 0 and that while in position 2 there
was no charge on the capacitor. Find the charge as a function of time.

4-6. We wish to multiply the differential equation

B+ Payi = QW

by an ‘“integrating factor” R such that the left-hand side of the equa-
tion equals the derivative d(R7)/di. (a) Show that the required inte-
grating factor is R = e/*#  (b) Using this integrating factor, find the
solution to the differential equation that corresponds to Eq. 4-20.
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4-6. In the circuit shown in the accompanying figure, the switch
K is closed at ¢ = 0, a steady-state having previously been attained.
Solve for the current in the circuit as a function of time.

-——Xo—-—-—

K
AVAYAY;
Ry
)

Prob. 4-6.

R,

<
HjIfE

4-7. In the circuit shown, the voltage source follows the law v(s)
= Ve, where « is a constant. The switch is closed at ¢ = 0. (a)
Solve for the current assuming that « # R/L. (b) Solve for the cur-
rent when « = R/L. Suggestion: Make use of 'Hospital’s rule for
indeterminant forms.

Y o AANA

K

+ R
vit} () /‘;_(-t)) L

Prob. 4-7.

4-8. In the circuit shown, the switch is closed at ¢ = 0 connecting
a voltage source v(f) = V sin wf to a series RL circuit. For this sys-
tem, solve for the response #{£).

R
6 V sin wt @ L

Prob. 4£-8.

4-9. Show that the tangent to the curve 1 = I, ¥T at { =0
intersects the time axis at £ = T. This will show that if the current
decreased at the initial rate, it would be reduced to zero value in one
time constant. Similarly, show that the tangent to the curve ¢ =
Io(1 — e¥T) at ¢ = O intersects that line ¢ = I, aft time ¢ = T.
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4-10. In the network shown, the switch K is closed at £ = 0. The
current waveform is observed with a cathode ray oscillograph. The
initial value of the current is measured to be 10 ma. The transient
disappears in 0.1 see. Find (a) the value of R, (b) the value
of C, and (c) the equation of i(f). Answers. (a) B = 10* ohms, (b)
C = 2.5 uf, (c) 2 = 10~ %%,

—o)r'c >

K
. R To cathode ;‘ay
= 100V GD oscillograp
°T

Prob. 4-10. Prob. 4-11.

4-11. The circuit shown in the accompanying figure consists of s
resistor and a relay with inductance L. The relay is adjusted so that
it is actuated when the current through the coil is 0.008 amp. The
switch K is closed at ¢ = 0, and it is observed that the relay is actuated
when ¢ = 0.1 sec. Find: (a) the inductance L of the coil, (b) the equa-
tion of 7(f) with all coefficients evaluated. Answers. (a) L = 620
henrys, (b) 7 = 0.01(1 — ¢~'%) amp.

4-12. A switch is closed at { = 0, connecting a battery of voltage
V with a series RC circuit. (a) Determine the ratio of energy delivered
to the capacitor to the total energy supplied by the source as a function
of time. (b) Show that this ratio approaches 0.50 as { — o,



CHAPTER 5
INITIAL CONDITIONS IN NETWORKS

5-1. Initial conditions in individual elements

In the last chapter, we found that the general solution of a first-
order differential equation contained an unknown designated an arbi-
trary constant. For differential equations of higher order, the pattern
will develop that the number of arbitrary constants equals the equation
order. If the unknown arbitrary constants are to be evaluated for
particular solutions, other things must be known about the network
described by the differential equation. We must form a set of simulta-
neous equations, one of which is the general solution, with additional
equations to total the number of unknowns. The additional equations
are conveniently given as values of voltage, current, charge, ete., or
derivatives of these quantities at the instant network equilibrium is
altered by switching action, { = 0. Conditions existing at this instant
are known as initial conditions.

Before the switching action that alters network equilibrium, the
elements of the network might have voltages across their terminals or
currents through them as a consequence of past history of the driving
forces in the network. To evaluate initial voltages or currents, we
must determine how each voltage and current changes when the net-
work is altered.

In many problems, conditions assumed to exist before switching
action takes place were, in turn, established by switching action at
some remote time in the past. Such voltages and currents in the net-
work are said to be in the steady state.

We assume that switches act in zero time. To differentiate between
the time immediately before and immediately after the closing of a
switch, we will use — and + signs. Thus conditions existing just
before the switch is operated will be designated as 1(0—), v(0—) ete.,
conditions after as 1(0+4), v(0+), ete.

Before analyzing initial conditions in networks, we will study the
action of each different element at the instant equilibrium is altered.

The Resistor. In the ideal resistor, current and voltage are related
by Ohm’s law, v = Ri. If a step input of voltage, shown in Fig. 5-1,
is applied to a resistor network, the current will have the same wave-

form, altered by the scale factor (1/R). The current through a resistor
84
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may change instantaneously if the voltage changes instantaneously.
Similarly, voltage may change instantaneously if current changes
instantaneously. '

The Inductor. It was concluded in Art. 1-7, that the current cannot
change instantaneously in a system of constant inductance. Thus
closing & switch to connect an inductor to a source of energy will not
cause current to flow at the initial instant, and the inductor will act
as if it were an open circuit independent of the voltage at the terminals. |
If a current of value I, flows in the inductor at the instant switching
takes place, that current will continue to flow. For the initial instant,
the inductor can be thought of as a current source of I, amp.

v v
b
a/cb
o i
= JREOE 2
- ; {V/R)
:/ o R
a ¥

t

Fig. 6-1. Current and voltage relationships in a purely resistive
element,

The Capacitor. In Art. 1-6, proof was offered that the voltage can-
not change instantaneously in a system of fixed capacitance. If an
uncharged capacitor is connected to an energy source, a current will
fiow instantaneously, since the capacitor will be equivalent to a short
circust. This follows because voltage and charge are proportional in a
capacitive system, v = ¢/C, so that zero charge corresponds to zero
voltage (or a short circuit). With an initial charge in the system, the
capacitor is equivalent to a voltage source of value Vy = ¢o/C, where
go is the initial charge.

These conclusions are summarized in Fig. 5-2. A similar chart of
final conditions for the special case of constant voltage sources is
shown in Fig. 5-3. These equivalent circuits are derived from the
relationships

di . dv
UL-T-'LR—E and 'LcmCa‘z

the derivatives having zero value in each case for invariant voltage
sources. The equivalent circuits for final conditions for L and C are
opposite to those for the initial conditions for these elements.

It is not always possible to interrupt a current instantaneously in
a network by opening a switch, If an attempt is made to open a switch
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to disconnect an inductor from a voltage source, an arc will be estab-
lished across the switch to permit the current to flow until the energy
of the magnetic field is spent.

Element Equivalent circuit Equivalent
{and initial condition) at¢=0+ circuit at tmoo
Element
R R {for voltage sources
of constant potential)
VvV vV R R
L o ANN—0  —AAA—o
——S T —mts O % o
L
ICI o AL o o d 0
o 1K o O o c
Ia o) {f -0 O oc -

X 2
o— GBI o o @, o

o—fft—o o— Y*—0
V—%‘?- Y%

Fig. 5-2. Initial condition equivalent Fig. 5-3. Final condition equivalent
circuits for the elements. circuits for the elements for voltage
sources of constant potential.

5-2. Geometrical interpretation of derivatives

Consider the differential equation that describes an RL circuif con-
nected to a constant voltage source:

L,dz +Ri=V (5-1)

This equation may be arranged in the form

di

== (V iR) (5-2)

to show the relationship that must exist between current and the time
derivative of current. If the switch connecting the voltage source to
the circuit is closed at ¢ = 0, the current in the system at ¢ = 0 must
be zero. From Eq. 5-2, the initial value of the derivative is

di V
S0+ =7 (53)

Now the quantity di/dt is the slope of the required plot of current as a
function of time. Equation 5-3 teils us that this slope is positive and
has a magnitude V/L. For some small interval of time, this slope must
approximate the actual curve found by solving Eq. 5-1. Assume that
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the current increases linearly at the rate V/L to a new value 7, at time
¢, A second approximation to the curve of current as a function of
time may be made at this point by

v
using Eq. 5-2 a8 di dt
~g
di 1 .
7 (t) = 7 (V — 1,R) (5-4) ; Actual curve
. : . . .‘.i.f.(o+ ]
Continuation of this process, illus- dt
trated in Fig. 5-4, provides a graph- ,
1 t2 ¢

ical interpretation of the solution
of a differential equation. The ¥ig. 6-4. Approximation of an actual
smaller the timeintervalsare chosen, curve by tangents to the curve.
the more closely will the approximate curve approach the actual curve.
Just as the first derivative represents slope so the second derivative
represents curvature or the rate of change of the slope with time. Fig-

{a) {b)

{c) {d)

Fig. 5-6. Curves corresponding to typical initial conditions: (a)
i{(0+) =0, di/dt(0+) =0, d%/dt*(0+) = K; (b) «0+) =0,
di/dt(0+) = + K, d%/di*(0+) = 0; (¢) #(0+) = K, di/dt(0+)
= 0, d*%/di*(0+) = 0; (d) i(0+) = 0, di/di(0+) = +K,,
d%/ di*(0+) = —K,.

ure 5-5 shows several combinations of initial conditions, with the corre-
sponding initial slope and curvature.

5-3. A procedure for evaluating initial conditions

There is no unique procedure that must be followed in solving for
initial conditions. However, it is usually wise practice to solve first
for the initial values of the variables—currents or voltages—and then
solve for derivatives. The first step is essentially routine and based
on the equivalent circuits for £ = 0+ given in Fig. 5-2. In the second,
the details and order of manipulation will be different for each different
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network. A successful approach will not be obvious at all, a faet that
adds interest and offers a challenge in the solution of initial value
problems.

Initial values of current or voltage may be found directly from s
study of the network schematic. For each element in the network, we
must determine just what will happen when the switching action takes
place. From this analysis, a new schematic of an equivalent network
for t = 04 may be constructed according to these rules:

(1) Replace all inductors by open circuits or by current generators
having the value of current flowing at { = 0.

(2) Replace all capacitors by short circuits or by a voltage source of
value Vi = ¢o/C if there is an initial charge.

(3) Resistors are left in the network without change.

Consider the two-loop network shown in Fig. 5-6(a). Suppose that
the switch is closed at ¢ = 0, no voltage having been applied to the

R,

|

{a) (b)

Fig. 6-6. Network illustrating solution for initial conditions: (a) two-
loop network; (b) equivalent network at ¢ = 0.

i

<
Ll
i
K
b~
<
| =M+

passive network prior to that time. Since there is no initial voltage
on the capacitor, it may be replaced by a short circuit; similarly, the
inductor may be replaced by an open circuit, there being no initial
value of current. The resulting equivalent network is shown as (b) in
the figure. In this particular case, there is no need to write equations
for the resistor network. By inspection the initial values of the currents
are 1;(0+) = V/R, and ©3(0-+) = 0 because the second loop is open.

The first step in solving initial values of derivatives is to write the
integrodifferential equations from Kirchhoff’s laws, employing either
the loop or node basis as will give the required quantities more directly.
In terms of the network of Fig. 5-6(a), the Kirchhoff voltage equations
arc

z f iy dt + Ryiy — ia) = V (5-5)

di

= =0 (5-6)

Bi(is — 1) + Ryt + L
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Since these equations hold in general, they hold at ¢ = 0-}, Now the
values of ¢; and 4, are known at { = 0+. Also the term (1/¢) {4, at
has a known value at ¢ = 0+, since this term is the voltage across th,
capacitor, which is known to be zero since the capacitor acts ag 5 short
circuit. (On the node basis, (1/L) f v dt similarly represents current
through the inductor.)

We observe that Eq. 5-6 contains a derivative term in addition to
terms involving only 7, and ¢,, which are known at ¢ = 0+, Algebra-
ically solving for (di,/dt) gives

% - % [Rﬂ:l — (B + Rz)iz] (general) (5-7)

dis 1 v 4
B =t Bg - EmED| =T €-0h) gy

The precaution of marking equations as (general) or (¢ = 0+) is
suggested as a safeguard against differentiating equations that hold
only for ¢ = 0.

Neither Eq. 5-56 nor Eq. 5-6 contain a (d7,/df) term. However, if
Eq. 5-6, which holds in general, is differentiated and manipulated
algebraically, there results

: di di

&+ R -—-;; — R, __;; =0  (general) (5-9)
di di 7
@~ @ " Re  (@enera) (5-10)

Both di/dt and i; are known for ¢ = 0+, so that (d¢1/df) may be
evaluated as

i, V¥ _

Suppose that it is required to evaluate (d%,/d¢?) at ¢ = 0+. From
a practical point of view, second- and higher-order derivatives are less
frequently required than the first derivative in the solution of differ-
ential equations. However, the procedure of continued differentiation
and algebraic manipulation can be applied in solving for all derivatives.
Differentiation of Eq. 5-7, gives

d%, 1], dii cjg:_g] )
—d? == Z {Rl dt (R1 "}‘ Rz) di (generai) (5 12)
d%, 1 Ry

P 04) = *—V(m + z‘g‘) (t =0+) (5-13)
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In each case, the initial conditions have been given in terms of con-
stants (network and driving force parameters); solutions to problems
should not be given in terms of integral or derivative expressions.

Ezample 1

In the circuit shown in Fig. 5-7, V = 10 volts, B = 10 ohms, L = 1
henry, and C = 10 uf. Let it be required to find #(0-+), di/di(0+),
and d*%/dt*(0+). From the Kirch-

N Ki ° VRV V—T LM ] hoff voltage law,
V= - c di .
L [
/> | V——Ldut+Rz+C[zdt

(general) (5-14)

1+

Fig. 5-7. Network of Ex e 1. . . ..
£ chwork of fxampre Analyzing the circuit in terms of

equivalent element values for ¢ = 0 shows that because of the open
circuit,

i0+) =0 (¢t =0+)

The last term in Eq. 5-14, (1/C) f 1 dt, represents the voltage across
the capacitor, which is zero at ¢ = 0. The general expression in Eq.
5-14 becomes the following for ¢ = 0.

V=L%(O+)+RO+0 (t = 0+)

from which
amp
sec

di Vv
SO+ =7 =10 (t = 0+)

To find the second derivative, Eq. 5-14 must be differentiated as

d* di , 1.
L 3P + R 3 + ol = 0 (general) (5-15)
In Eq. 5-15, values for the second and third terms are known at
t = 0+4; thus

d% R dy

335(0%-) = "I‘;“&"E(O*{") = —100

amp
sec?

Ezxample 2

In the network shown in Figure 5-8, a steady state is reached with
the switch K open, and at ¢ = 0 the switch is closed. Let it be required
to find the initial value of all three loop currents. We must first find
the various currents and voltages in the network at ¢ = 0—, before
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the switch is closed. The current flowing through R,, Ry, and L will be
. _ |4
w(0-) = 207 = gy, Vv
(t=0-) 2
The total voltage across the capaci-
tors will be the same as the drop
across Ri; that is,

R,
VatVe=g558 " (5-16)

L
<t

Fig. 5-8. Network of Example 2,

Since the charge on the capacitors must be equal when connected in

series we have g, = gz or C;V¢, = C,V¢,. Hence the voltage across
the capacitors will divide as

V=G -3 (general) (6-17)
and

_ Rl Sl } . - R1 [ SZ ]
Vo, = R+ R, [31 + S Vi Ve, Ry + R, |81+ 8q v

(5-18)

To find ¢, at £ = 0+, apply Kirchhoff’s voltage law around the outside
loop (not drawn on the diagram). Traversing this loop, we write

Ry = V — — Vo = et E, 14 -
. _ Vv _ !
so that 7;(0+) = R TR (t = 0+4) (5-20)

Now, i1(0+)—i3(0+)=zu-,(0+)m—é—1——z—~ﬁ; = 04) (5-21)

sinee the current 4, cannot change instantaneously. Comparing the
last two equations shows that

23(0+) =0 (5-22)

Next, consider the current flowing in the resistor R,. Since the voltage
across the capacitor cannot change instantaneously,

0(04F) — i0+) = 72t =0+) (5-23)

or i(04) = 42(04) — YR{‘ (t = 0+) (5-24)
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. 14 S, 14
W0 = e TS IS E TR

V S,
R1+ R2SI+S2

FURTHER READING

A good discussion of the method of evaluating initial conditions is
to be found in Weber’s Linear Transient Analysis (John Wiley &
Sons, Inc., New York, 1954), pp. 42—45, and in Gardner and Barnes,
Transtents in Linear Systems (John Wiley & Sons, Ine., New York,
1942), pp. 26-34.

(t = 0+4) (5-25)

Finally, ia(0+) = (t = 0+) (5-26)

PROBLEMS

6-1. In the circuit shown, the switch K is closed at { = 0. Find the
values of ¢, di/dt, and d%/dt* at { = 0+, when V = 100 volts, R =
1000 ohms, and ¢ = 1 uf. Answers. 0.1, —100, 100,000.

R K R
=V /‘) pored

Prob. §-1. Probh. 5-2.

T X —— W P o AN
.

i
<
B~

6-2. In the circuit of the figure, the switch K is closed at ¢ = 0.
Find the values of ¢, di/dt, d%/dt* at { = 0+, when R = 10 ohms,
L = 1 henry, and V = 100 volts. Answers. 0, 100, — 1000.

5-3. In the circuit shown, the switch K is changed from position a
to position b at ¢ = 0, having already established a steady state in
position a. Find ¢, di/dt, d*/di?, and d%/dt® at { = 04, when L = 1
henry, ¢ = 10uf, and V = 100 volts. Answers. 0, —100, 0, 107,

'_——:1 L Vﬂ \
rg) ==C T CT G) L

Prob. 5-3. Prob. 5-4.

6-4. In the circuit of the accompanying figure, the switch K is
changed from position a to position b at ¢ = 0. Solve for 3, di/d¢, and
d%/dt* at t = 0+, when B = 1000 ohms, I, = 1 henry, C = 1 4f, and
V = 100 volts. Answers. 0.1, —100, 0.

:EM«&
<
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‘6-5. In the circuit shown, the switch K is opened at ¢ = 0, At
¢ = 0+, solve for v, dv/dt, and d%/d?, when I = 10 amp, R = 1000
obms, and C = 1 pf. Answers. 0, 107, —10".

10 K( ¢ 0O “{ -

Pl'Ob. 5""5- Pl'Ob. 5"‘"6.

Add
b |

p-6. In the circuit of the figure, the switch K is opened at { = 0.
Qolve for v, dv/dt, and d®/dt* at ¢t = 0+, when I = 1 amp, R = 100
ohms, and L = 1 henry. Answers. 100, — 104, 108,

B-7. In the circuit shown, the switch K is closed at ¢ = 0. Solve for:
(8) v; and vy at ¢ = 0+. (b) v, and v; at ¢ = ». (c) dv,/dt and
dvo/dt at t = 0+. (d) d%,/dt* at t = 0+4. Answers. (a) 0, 0. (b)
0, RsV/(RI + Rz)- (C) dvl/dt = V/CR;, dvz/dt = (), (d) d’-vg/dt’ =
R.V/R,LC.

it

Prob. b5-T7.

* §-8. In the network shown in the accompanying figure, the switch
K is changed from a to b at { = 0 (a steady state having been estab-
lished at position a). Show that at § = 0+,

Ri+ R: + Ry

11 = 1 23 = ()

—~Ca
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65-9. In the given network, the capacitor C, is charged to voltage V,
and the switch K isclosed at £ = 0. When B, = 2 megohms, V, = 1000
volts, By = 1 megohm, C; = 10 pf, and C, = 20uf, solve for d%./dt? at
t = 0+. Answer, 1.41 X 107 amp/sec?.

¥ o
K
T {3 w3
C, 2 . C) Y, sin wt
1=/ - ==
Prob. 5-9. Prob. 5-10.

b-10. In the circuit shown in the figure, the switch K is closed at

t = 0 connecting an alternating voltage, V, sin wt, to the parallel
RL~RC cireuit. Find (a) d7,/dt and (b) di./dt at { = 0+.

6-11. In the network shown, a steady state is reached with the

switch K open with V = 100 volts, B, = 10 ohms, R, = 20 chms,

R; = 20 ohms, L = 1 henry, and

¥ C = 1 uf. At time t = 0, the switch
’\/\/:,—l — is closed. (a) Write the integrodiffer-
R,

ential equations for the network after

i‘l R, izl Rs the switch is closed. (b) What is_the

voltage Vyacross C before the switch

is closed? What is its polarity?

L TC Answer. 66.7 volts. (¢) Solve for the

initial value of 7, and 75 (t = 0+).

Prob. 5-11. Answer. 3.33 amp, 1.67 amp. (d)

Solve for the values of di,/dt and

dia/dt at t = 04, Answer. 33.3, —83,300. (e) What is the value of

6-12. The network shown in the figure has two independent node

pairs. If the switch K is opened at { = 0, find the following quantities
at t = 0-+: (a) v, (b) vy, (c) dvy/dt, (d) dvs/di.

v M%Eﬁ‘ vz
WO £/ S, ﬁ. Lo

Ll

P!’Ob- 5""12.
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5-13. In the network shown, the switch K is closed at { = 0. Find
dvs/dt at &t = 0.

- vy Us
X R, Ly
R
+ v 2
v(g}C) = 2 == Cs
- T s L
Prob. 5-13.

6-14. In the network shown in the accompanying figure, an equilib-
rium is reached, and at ¢ = 0, switch K is opened. Find the initial

¥
AYe
—AAA AN —
R, R,
i . L
v ? —C; ~C5 R;
Prob. 5-14.

voltage across the switch and the initial time derivative of the voltage
across the switch,

L, L,
AN T T
R, K Mz N*" Moas
+ Ls
d) ult) @ @ §R3
Rz
Prob. 5-15.

5-16. In the network shown in the figure, the switch K is closed at
the instant { = 0, connecting an unenergized system to a voltage
source. Let M, = 0. Determine the values of

dzy dis
Answer.
d_z:_; (04) = V(L + Lz + 2M33)
dt (Ly + Ly + 2M y3) (Lo + Ly + 2M33) — (Ls + M3 + Ms3)?
@(0+)m V(Ls + M3 + Myy)
dt (Ll‘ + L3 + 2M;3)(L2 + L3 + 2M23) - (La + st + JM%)’l
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6-16. The given network consists of two coupled coils and a capac-
itor. Att¢ = 0, the switch K is closed connecting a generator of voltage,
v(t) = V sin ({/\/MC). Determine the values of

dv,

v=(0+): '"3?

(04), and

Answer. v,(04) = 0, dva/dt (0+) = (V/L) A/M/C, d%./dt* (0+)
= (.

Ug

7 N\t
N/
S_
E
hé
A
H
]
™~
[ ]
-
l,gH-!-
g*
°T
h
Q00 -

Prob. 5-18. Prob. §-117.

5-17. In the network of the figure, the switch K is opened at { = 0
after the network has attained a steady state with the switch closed.
(a) Find an expression for the voltage across the switch at { = 0+,
(b) If the parameters are adjusted such that £(0+) = 1 and di/dt (0+)
= —1, what is the value of the derivative of the voltage across the
switch, dvg/dt (0+)? Answers. (a) VR,/R,, (b) 1/C — R,

6-18. In the network shown in the figure, the switch K is closed at
t = 0 connecting the battery with an unenergized system. (a) Find
the voltage at point a, V, at ¢ = 0+4. (b) Find the voltage across
capacitor C; at [ = o, Vg (o).

R,
AVAAY, .
Vs ¥ = AAA—T—ANN—
"%f’"“—l 3w K R R,
. G G + o=
=V L R v(tig) /,D =2 @ L
Prob. 5-18. Prob. 5-19.

5-19. For the network of the figure, show that

d%, 1 {—1]0@ __dv(t)} d"v(t)}
"d‘zﬂ‘”“)“‘k:{fé?é[m a | T




CHAPTER 6
DIFFERENTIAL EQUATIONS, CONTINUED

Differential equations studied in Chapter 4 were limited to linear
equations of the first order with constant coeflicients. In this chapter,
we will continue our study of differential equations with the same
restrictions as to linearity and constant coefficients but of higher order.
The mathematical procedures given in these two chapters are included
under the heading of the classical method of solution. As we will see,
the classical method affords a better insight into the interpretation of
differential equations and the requirements of a solution. Aside from
conceptual advantages, the operational method using the Laplace
transformation is better suited to our use. For this reason, our treat-
ment will be brief. Topics ordinarily covered using the classical
method but more easily developed with the aid of the Laplace trans-
formation will be reserved for the next chapter.

6-1. Solution of a second-order homogeneous differential equation
A second-order differential equation with constant coefficients may
be written in the general form

d* di .
aow+ala—i+a2130 (6-1)

The solution of this differential equation must be of such form that the
solution itself, its first derivative, and its second derivative, each mul-
tiplied by a constant coefficient, add to zero. To satisfy this require-
ment, the three terms must be of the same form, differing only in their
coefficients. Is there such a function? By whatever method we search,
perhaps trying possible functions, the search always leads to the

exponential®
() = ke™ (6-2)

where & and m are constants. Substituting the exponential solution
into Eq. 6-1 gives

aemike™ + aymke™ 4 a.ke™ = (0 (6-3)

* Taken two at a time, the sine and the cosine or the hyperbolic sine and the
hyperbolic cosine satisfy the requirement; however, the exponentia! solution will
be shown to simplify to these forms.

917
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or, since ke™ can never be zero for finite ¢,
agm® + am + a; = 0 (6-4)

as the requirement for ke™ to be the solution. This equation is known
as the characteristic (or auxiliary) equation. It is satisfied by the two
roots given by the quadratic formula

a;
2&9

1 —
4 S, Va,t ~ daea, (6-5)

My, My = —

We now have discovered that there are two forms of the exponential
solution ke™; they are

11 = k™t and 1; = koe™ (6-6)

Now, if 7; and 7, are each solutions of the differential equation of Eq.
6-1, the sum of these solutions,

’i3 = ’il + 1:2 (6-—7)
is also a solution. This may be shown by direct substitution of Eq. 6-7
into Eq. 6-1, giving

(11 + 22) + a1 a (21 + 22) + asty +43) =0 (6-8)

dt"'
d% di d% di
(ae B“Egl + ay dtl -+ azh) + (ao a*‘in&;g + a; d; + azza) =0 (6-9)
or 0 + 0 = 0. The general solution of the differential equation is thus
(L) = kg™ + kpeme (6-10)

The magnitude of the coeflicients in Eq. 6-1 determines the form
of the roots of the characteristic equation. In Eq. 6-5, the radical
+ 4/a;* — 4a.a, may be real, zero, or imaginary depending on the
value of a,? compared with 4aea;. The forms of the solutions for these
three cases will be given by three simple examples.

oY, o ANl B Ezample 1
K 3ohm 1henry ) ) )
The differential equation for the cur-

=1 volt iy ) 1ferad==  rent in the circuit of Fig. 6-1 is given by
Kirchhoff’s law as

Fig. 8-1. Circuit for Examples L d + Ri + 1 f idt =V (6-11)
1and 3. dt ¢

Differentiating and using numerical values for R, L, and ¢ shown in
Fig. 6-1 gives

a% | . di | ..
Et3gT2=0 (6-12)
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The characteristic equation can be found by substituting the trial
solution 7 = ™ or by the equivalent of substituting m? for (d%/dt?),
and m for (di/dt); thus

m?*+3m+42 =0 (6-13)
This equation has the roots m; = —1 and m,; = —2, so that the gen-
eral solution is

i(t) = ke~ + kg% (6-14)

The arbitrary constants k; and k, can be evaluated for a specific prob-
lem by a knowledge of the initial conditions. If the switch K is closed
at ¢ = 0, then 7(0+) = 0, because current cannot change instanta-
neously in the inductor. In Eq. 6-11, the second and third voltage
terms are zero at the instant of switching, R7(0+4) being zero because
i(0+) = 0 and (1/C) [ ¢ d¢ being zero because it is the initial voltage
across the capacitor. Hence

= (04) = EV: = ] amp/sec

The two initial conditions, substituted into the general solution, Eq.
6-14, gives the equations,

kl + ]Cg == 0, —kl - 2]‘52 = 1 (6-15)

The solution of these equations is k; = +1 and ks = —1; hence the
particular solution to Eq. 6-12 is

i(l) = et — % (6-16)

A plot of the separate parts and their combination is shown in Fig. 6-2.
As discussed in Chapter 4, the total current may be thought of as made

+1.0

+0.5

-10
Fig. 6-2. Current as a function of time for the circuit of Example 1.
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up of two components which exist from { = 0 and combine in such a
way as to satisfy the initial conditions.

Ezample 2

The equilibrium equation for the network shown in Fig. 6-3 for-
mulated on the node basis i8

C +G + = [vdt I (6-17)
or, by differentiation,

¢ eyt (6-18)

Substituting numerical values into this equation as given in Fig. 6-3

Va

1amp 1() % johm < ghenry =<2 farad

——

Fig. 6-8. Circuit for Example 2,

gives
d”v
5 + 8 + 8 =0 (6-19)
The corresponding characteristic equatmn is
2m? + 8m + 8 = 0 (6-20)
which has as roots m; = —2 and m; = —2, or repeated roots. Sub-
stituting into the general form of the solution, Eq. 6-10, gives
v(t) = k1% + ko™ = Ke™% (6-21)

where K = k; + k;. This is not a complete form of the solution, since
the general solution to a second-order differential equation must con-
tain two arbitrary constants. The solution v = ke~% must be modified
in some manner for the condition of repeated roots. If we assume the
new solution to be v = ye—*, where y is a factor to be determined, and
substitute into Eq. 6-19, we arrive at the requirement that y satisfy
the differential equation

dy
=0 (6-22)

Two successive integrations of the equation lead to the solution
y = ki + kat (6-23)
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Thus the solution to our problem with repeated roots becomes
v(l) = ke~ - kyte® (6-24)

To obtain a particular solution for this problem will require knowledge
of two initial conditions. From the network of Fig. 6-3, v(0+) must
equal zero, since the capacitor acts as a short circuit at the initial
instant. In Eq. 6-17, the second and third terms are equal to zero, the
first because v(0-+) = 0 and the second because there is not current
in the inductor at the initial instant. Then, by Eq. 6-17, dv/dt (0+) =
I/C = § volt/sec for this network. Substituting these initial condi-
tions into Eq. 6-24 leads to the result that k; = 0 and k; = }. The
desired particular solution is

v(t) = gte (6-25)
A plot of this solution is shown in Fig. 6-4.

¢, sec

Fig. 6-4. Voltage as a function of time for the circuit of Example 2.

Ezample 3

For this example, we will use the network of Fig. 6-1 with the follow-
ing network parameter values: V = 1 volt, L = 1 henry, R = 2 ohms,
and C = 3 farad. The characteristic equation becomes

ith roots® it 2m o+ 2 =0 (6-26)
wl
ny, my = "'"'1 i jl

The general solution, Eq. 6-10, with these values for m, becomes
z(t) = kle‘—’«‘*‘f”‘ 4 kpeti-it < emt(klejt -+ kge“f‘)

This particular form of the solution is not convenient for interpretg.-
tion. An equivalent form may be found starting with Euler’s equat;on,
’ y

ettt = cost + jsint (6-27)

* We will use the letter 7 for the operator 4/ —1 to reserve the letter ¢ for Current,
The letter j in textbooks of electrical engineering is equivalent to ¢ = ’

X . —11i
textbooks of mathematics and physics, lin
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which reduces our solution to the form
i(t) = e*(kacos t + kqsin f)

where ky = ky + ksand kg = j(k; — ky). The initial conditions are the
same as in Example 1:1(0+) = 0 and di/d{ (0+) = | amp/sec. Sub-
stituting into the solution, we have

t1(0+4) = 0 = e %k;co8 0 4 k(s8in 0) = k,
With £, equal to zero,

% O+) = k(e 08 0 — sin 0.¢%) = 1
whence &k = 1. The particular solution is
t(t) = e*sin ¢ (6-28)

A plot of the two factors in this solution and their product is shown in
Fig. 6-5.

et sint
sint

+1 +1 L -
en‘ /Y /
| \/ \.j |
wip-mm-

{a} {b)

[N ¢! envelope
~& e tsint

\N
S

o

fe}
T¥ig. 6-5. Current as a function of time for the circuit of Example 3:
(a) et; (b) 8in ¢; (¢) e tgin L.
6-2. The standard form of the solution of second-order differential equations

Consider the Kirchhoff voltage equation that describes a series RLC
circuit on the loop basis
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Lg’; + Rt + —é [ 1dt = v(t) (6-29)

If o(t) is either zero or a constant, differentiation reduces this equation
to & homogeneous equation of second order; thus

d% R di
T Ta T Io LC

The two roots of the corresponding characteristic equation may be
found by the quadratic formula to be

R \/R2 1
My, my = — 5r & (E) ~ 16 (6-31)

To begin converting Eq. 6-30 to a standard form, we will define the
value of resistance that causes the radical term in the above equation
to vanish as the critical resistance, R.,. This value is found by solving
the equation

i=0 (6-30)

R\’ 1
(«-ﬁ) =10 (6-32)
or B, =2+/L/C (6-33)

We will next introduce two definitions; we define the quantity

- \/ ¢ (6-34)

as the dimensionless damping ratio. ({ is the lower-case Greek letter
zeta.) The damping ratio is the ratio of the actual resistance to the
critical value of resistance. The other definition is

Wn ‘\/I“:_Ci (6-’35)
The quantity w, is the undamped natural angular frequency. The
reason for giving w, such a name will be discussed under the heading
of Case 3 in this section. For the time being, we note that the dimen-
sions of w, are (time)~! so that it does not seem unreasonable to define
it as a frequency.

Now the product 2¢w, has the value

%wn = 20T = T (6-36)

Lyie L

2o L

and @, 7o

(6-37)
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Substituting these relationships into Eq. 6-30 gives

di?

o+ 2@,.3_: + wati =0 (6-38)

This form of the second-order differential equation is called the stand-
ard form. The corresponding characteristic equation is

m? + 2tw.m + wa? = 0 (6-39)
and the roots of the characteristic equation are
My, My = —ton * wa V2 — 1 (6-40)
The general solution may now be written
{ = Kel=tontenVE =Dt f K el —Son—wn V=Dt (6-41)
Before simplifying this solution, let us examine the behavior of the
roots of the characteristic equation as the dimensionless damping ratio

{ varies from zero (corresponding to B = 0) to infinity (corresponding
to B = «). There are evidently three different forms for the roots:

Case 1: ¢ > 1, the roots are real.
Case 2: ¢ = 1, the roots are real and repeated.
Case 3: ¢ < 1, the roots are complex and conjugates.

If we follow the form of the roots for a variation of { from 0 to «, we
will recognize a locus of roots in the complex plane. To start with,
for { = 0,

my, My = +jwn (6-42)

that is, the roots are purely imaginary. For { < 1, the roots are com-
plex conjugates as

my, Mg = —{wn + jwn '\/I - §-2 (6'43)

Since the roots are complex numbers for ¢ < 1, let us define the real
and imaginary parts of m as

m = ¢ 4+ jw (6-44)

(o is the lower-case Greek letter sigma). The roots of the equation may
be plotted in the complex m plane as shown in Fig. 6-6. The real part is

g = —~lw, (6-45)

and the imaginary part is

we= tw, 1~ {? (6-46)
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In other words, the two roots have the same real part, and the imag-
inary parts differ only by their sign. Since

0! + w? = {Pw,? + w1 = §F) = s’ (6-47)

it follows that the locus of the roots in the complex m plane is a circle
of radius w, and that this locus is formed by { varying from 0 to 1.
This locus is shown in Fig. 6-7. It is interesting to note another prop-
erty of the geometry of the m plane for these second-order roots. The

m-plane =0 Jw
<1 Jjun
m-plane . }-:,2 e
1 N
Y
: 8;‘.\ )
X P
s V1 —-g—z:
I »
M2L—....._.~ <1 Py - Juwy,
Fig. 6-6. Complex roots. Fig. 6-7. Locus of roots with {.

angle to either root measured from the —o axis is given in terms of the

inverse tangent as
— 2
wn V1= (6-48)

= —1 Yn
6, = tan ol

or the inverse tangent of the imaginary part over the real part. Since
the term w, is common to both the numerator and the denominator,

the angle is
v .1..____..;“ & (6-49)

A triangle having the sides ¢ and 4/1 — {? is shown in Fig. 6-8. Evi-
dently, the hypotenuse has unit value, and

B, = tan—i

b, = cos™! 6-50

cos™t { ( ) 1 F
Thus radial lines from the origin of the m plane ?
are lines of constant { as w, is varied. When the ¢

damping ratio has the value { = 1, the imag-
inary part of the roots vanishes, and the roots
have the same value,

Fig.6-8. Righttriangle
relationships.

(my, my) = —wy (6-51)

These two superimposed values are shown in Fig. 6-7. For ¢ > 1, the
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two roots become
my, my = (—¢ + /1 — 1) wa (6-52)

Both of these roots are real. As { becomes large such that 1 is small
compared with {*, the roots approach —2¢w, and 0. The locus of roots
shown in Fig. 6-7 illustrates this separation of the real roots as ¢{
increases.

This discussion has illustrated the three possibilities for the values
of . The damping ratio { is determined by circuit parameters. With
the RLC circuit that served as an example in deriving the relation-
ships, a simple adjustment of the resistance R will vary the roots in
the complex m plane for the three cases. This general solution, Eq.
6-41, reduces to different forms for each of the three cases. We will
next investigate this algebraic reduction for each of the three cases.

Case 1, { > 1. For this case, the solution in exponential form is as
given in Eq. 6-41. If e~“~ is factored from this equation, there results

i = gtunt(K eonVII—1t 4 K o—wnVii=1t) (6-53)

where K; and K, are arbitrary constants of integration. This equation
is sometimes more convenient to evaluate in terms of hyperbolic fune-
tions. The hyperbolic cosine of z is defined as

cosh £ = #(e* + e-%) (6-54)
and the hyperbolic sine of z is defined as
sinh © = (e — %) (6-55)

An equivalent relationship can be obtained by successively adding or
subtracting these two equations; that is,

¢* = sinh z -+ cosh z (6-56)
and e¢~* = cosh x — sinh z (6-57)

These two identities may be used to convert Eq. 6-53 to terms involv-
ing hyperbolic functions; thus

i = e~tot{ K [cosh (ws V2 — 1¢8) + sinh (w. V/{? — 18]
+ Kjfcosh (wa VIE =11 — sinh (wa V2 — 1D]} (6-58)

or ¢ = e~to{Kq cosh (wa V¢ — 118) + K4 ginh (wn /2 — 18]

(6-59)
where Ki=K,+ K, (6-60)
a.nd K4 = K1 — K2 (6-61)

This equation is the equivalent of Eq. 6-53. Each has two arbitrary
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constants, which are usually evaluated to find a particular solution in
terms of the initial conditions.

Case 2, ¢ = 1. For this case, we have shown that the two roots
become identical. With repeated roots, the solution of the equation
is given by Eq. 6-24, giving

i = (K, + Kaf)e (6-62)

The limit of the quantity Ze—+ may be investigated by I’Hospital’s
rule. If this quantity is written as

¢
P
differentiation of numerator and denominator with respect to ¢ shows
that

(6-63)

lim e~ = (6-64)

t— o

Case 3, { < 1. For Case 3, the roots become complex, and Eq. 6-41
may be written

T: — e—{wat(Klejwu‘V 11—ty + Kze“"j‘-’a V1 ""f") (6—65)

This equation may be written in terms of sine and cosine quantities
by making use of Euler’s equation, Eq. 6-27.

et = cosr + jsinz (6-66)

Using Euler’s equation, the solution for Case 3 reduces to
i = e oK cos (wa VT — £22) + Ko sin (wn V1 = (28] (6-67)
where Ki=K,+ K, and K = j(K; — K,) (6-68)

which are, again, arbitrary constants of integration. This equation
may be written in different form by defining

Ky = K sin ¢ (6-69)
K¢ = K cos ¢ (6-70)
Using the trigonometric identity
sin (z + y) = sin z cos y - sin y cos ¥ (6-71)
Eq. 6-67 becomes
i = Ketont sin (wa VI — 2L+ ¢) (6-72)

These algebraic manipulations have resulted in an equation of one
sinusoid equivalent to Eq. 6-67, which contains two sinusoids of the
same frequency. In the revised form, the two arbitrary constants are
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K and ¢, which may be related to K5 and K, by means of Egs. 6-69
and 6-70. Summing the squares of K; and K, gives the relationship

K = /K + K’ (6-73)

Dividing Eq. 6-69 by Eq. 6-70 gives an equation for ¢ in terms of K,
and K 6.
K5
¢ = tan—! o~ . (6-74)
Several terms that have appeared in these solutions are given names.
The expression e~$“ is given the name damping factor. The product
{wn is called the decrement factor or attenuation factor. The three cases
are given the names,

Case 1. the overdamped case
Case 2. the critically damped case
Case 3. the underdamped (or oscillatory) case

In the underdamped case, expressions of the following form appear:
sin (wa V1 — 29

where w, v/1 — {? is an angular frequency. When { = 0, correspond-
ing to R = 0, or no damping, the radical term in the angular frequency
reduces to unity. On this basis, the following definitions are made:

wn V' 1 — {? = the actual angular frequency
ws = the undamped natural angular frequency

To illustrate these definitions, let us return to the series RLC circuit

which is described by the original

Y o—l\/\/\,————— differential equation of this section,

Let the capacitor of Fig. 6-9 be

f._._;_ @ % charged to a voltage V, and at time

- T t = 0 let the switch K be closed.

The value of the resistance R with

Fig. 8-9. RLC circuit. respect to the critical resistance R,

will determine whether the system

is overdamped, critically damped, or underdamped. Consider these
three possibilities in turn.

With B > R,,, the system is overdamped. The general solution can
be reduced to particular solution for a given set of initial conditions.
For the circuit shown in Fig. 6-9, 2(0+) = 0 because of the inductance.
The term (1/C) [¢dt = —V, at ¢ = 0 (the initial voltage on the
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capacitor) such that
di _ Vo
5 O+) = +

The requirement that ¢({) = 0 at { = 0, means that K, in Eq. 6-59 has
zero value; that is,

i = Kt sinh w, \/7? ~ 11 (6-75)
Constant K can be evaluated from the second initial condition as
g_: = Ke=t cosh (waV/$2 — 118) " wa VP — 1
-4 sinh {(w. V{2 — 1 et (—tw,)] (6-76)

The hyperbolic cosine term approaches unity as { — 0, and the hyper-
bolic sine term approaches zero as { — 0. Hence

di - o = Vo
5 (04) = Kwn VT — 1 =+ (6-77)
Vo
K, = o 6-78
and T ol N o1 (6-78)
The particular solution for the overdamped case thus becomes
; Vo ptert ginh (wn V77 =1 0) (6-79)

- w2 — 1

The general shape of the current against time curve for this equation is
shown in Fig. 6-10(a).

i i 2

AN
U\/:

{a) &) e}

Fig. 6-10. Network response corresponding to the three cases:
(a) overdamped; (b) critically damped; and (¢) underdamped or
oscillatory.

For the critically damped case, R = R, and the solution in general is
i = (K, 4+ Kjf)ev (6-80)

subject to the same initial conditions ag the overdamped case. The
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initial current condition implies that K, = 0, since otherwise this
equation does not reduce to zero at { = 0. To apply the derivative
condition, Eq. 6-80 is differentiated as

dz

= Kolte ™t ( —w,) + eon'1] (6-81)
Hence
di _ _ Vo
and the particular solution for the eritically damped case is
VQ —wnl
=7 te (6-83)

This eurve is shown in Fig. 6-10(b) and has much the same appearance
as that of Fig. 6-10(a).

For the underdamped, or oscillatory case, B < R.,, and the solution
is given by Eq. 6-67. The initial condition for the current requires that
K5 be zero, so that the solution can be written

= Kge~tent gin {(wn, v/ 1 — %) (6-84)

The constant K, is evaluated by using the initial condition of the deriv-
ative of the current; thus

g% = Kee 5w, /1 — (% cos (wp V1 — £218)
— {wn 8in (wn V1 — 28] (6-85)

Vn

such that (O+) = Kown /1 — % = (6-86)

The particular solution for the oscillatory case is

i=—7 \V/i = o sin (o, VT = T7) (6-87)

The variation of current with time for the oscillatory case is shown in
Fig. 6-10(c). Since the current is the product of the damping factor
and the oscillatory term, the damping factor represents an envelope or
boundary curve for the oscillations. The attenuation factor determines
how rapidly the oscillations are damped. As R approaches zero, the
oscillations become undamped, and sustained oscillations result.

The physical meaning of this mathematical result might be inter-
preted in terms of an interchange of energy between the electric energy
storage element (C) and the magnetic energy storage element (L).
After the switch is closed, the energy which is stored in the electric
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field is transferred to the inductor as magnetic energy. When the cur-
rent begins to decrease, energy is being returned to the electric field
from the magnetic field. This interchange continues as long as any
energy remains. If the resistance has zero value, the oscillatory cur-
rent will be sustained indefinitely. However, if there is resistance pres-
ent (and there always is in any practical circuit) the current flow
through the resistor will cause energy to be dissipated, and the total
energy will decrease with each cycle. Eventually all the energy will be
dissipated and the current will be reduced to zero. If a scheme can be
devised to supply the energy that is lost in each cycle, the oscillations
can be sustained. This is accomplished in the vacuum-tube oscillator
to produce audio frequency or radio frequency power,

6-3. Higher-order homogeneous differential equations

The method of solution discussed for first- and second-order differ-
ential equations may be followed in the solution of higher-order equa-
tions. For an nth order differential equation, the characteristic equa-
tion will be

agm® + am® 1l 4 ... 4+ apoym 4 a, = 0 (6-88)

A fundamental theorem of algebra states that an equation of order n
has n roots. These roots can be found by factoring Eq. (6-88).

ag(m — m)(m — my)...(Mm — m,) =0 (6-89)

Each root gives rise to a factor of the form ke™* in the solution. The
sum of all such factors constitutes the solution of the differential equa-
tion. Thus, solution of higher-order homogeneous differential equa-
tions is primarily a matter of finding the roots of the characteristic
equation.

Fortunately, there is some simplification in finding these roots
because the coefficients of Eq. 6-88 are positive and real coefficients,
This follows because these coefficients are made up of the system
parameters, R, L, and C. And since R, L, and C must be positive and
real (the only way they appear in nature), so must the a-coefficients.

There are three possible forms for the roots: (1) real roots, (2) imag-
inary roots, and (3) complex roots. For the first-order characteristic
equation

agm + a; = 0 (6-90)

the root is m = —a;/a,, which is negative and real because a, and a,
are always positive and real. For a second-order characteristic equation

agm? 4 am 4 a; = 0 (6-91)
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the roots are
my, mg = 2 4 —E—o Va,? = 4aoa, (6-92)

With the positive real restrictions on the a-coefficients, these roots
may have any of the three possible forms---real, imaginary, or complex.
But if the roots are complex, they occur in conjugate pairs, since this
is the only way complex roots can combine to give positive real coeffi-
cients. Thus, for characteristic equation roots to be complex, they
must occur in conjugate pairs.

Consider next a third-order characteristic equation. In this case,
because of the rule just given for complex roots, at least one root must
be real. The other two may be both real or a conjugate pair of complex
roots.* For a fourth-order characteristic equation, there are more pos-
sibilities: four real roots, two real roots and a conjugate complex pair,
or two sets of conjugate complex roots. The general pattern is thus
established and the following rules may be given:

(1) If the roots are complex, they occur in conjugate pairs,

(2) If the characteristic equation is of odd order, at least one root is
real. The remaining roots may be real or occur in conjugate
complex pairs.

(3) If the characteristic equation is of even order, the roots may be
real or occur in conjugate complex pairs.

Summarizing this discussion, an equation of any order can be factored
into its roots, and the roots determine the solution of the homogeneous
differential equation as the sum of first-order (or second-order) solu-
tions which have already been considered.

An example will illustrate the method of solution of higher order
homogeneous differential equations. The differential equation

A dée

3 d% di | .
o T 6 +17g-£f-+283~2§+243§+8m0 (6-93)

has a characteristic equation which may be factored as
(m + D(m + D(m + 2)(m* + 2m + 4) = 0 (6-94)

In this equation, there are two repeated real roots, one nonrepeated
real root, and one conjugate complex pair with w, = 2 and ¢ = 0.5.
Using the equations already derived for first-order and second-order
systems, we see that the solution is

7 = (K1 -+ th)e"" + K2 + W‘(K; sin ‘\/gt -+ Ky cos ‘\/ﬁ t)
(6-95)

* In this discussion, imaginary roots are considered as & special case of complex
roots.
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6-4. Solution of nonhomogeneous differential equations

In the nonhomogeneous differential equation, the right-hand side of
the equation is not zero, but equal to the forcing function or some
derivative of the forcing function, v(f). In studying such equations, we
first observe that the solution to the corresponding homogeneous dif-
ferential equation is a part of the solution of the nonhomogeneous
equation. To illustrate by a simple example, consider the equation

d% di .
This equation has as roots of its characteristic equation, m, = —2 and
my = —3. Thus the complete solution for the case v(¢) = 0 is
‘ic = kle‘” "}" kz@'—a‘ (6—97)

Suppose that some function 7, which we will presently find, satisfies
the nonhomogeneous equation, Eq. 6-96. Then 7, plus ¢ given above
is also a solution, since substituting either k,e—% or k.e—? into Eq. 6-96
would add nothing to the right-hand side of the equation. In other
words, part of the solution of a nonhomogeneous differential equation
is the solution to the homogeneous differential equation. That part,
by analogy to the discussion in Art. 4-3, is termed the complementary
function. The remaining part of the solution—needed to make the
operations of the differential equation add to v(t)—is the particular
integral. Thus we write the total solution as the sum of two parts of the
solution

1= 1p + ¢ (6-98)

Since we can find 7¢ for any equation, as discussed in the last section,
there remains to be found only the particular integral ..

6-5. The particular integral by the method of undetermined coefficients

In the analysis of electric circuits, the term »(f) in the differential
equation is the driving force or a derivative of the driving force. As
a practical matter, driving forces are represented by only a few math-
ematical forms like V (a constant), sin «f, ki, e, or products of these
terms (or linear combinations to give square waves, pulses, etc.). We
do not ordinarily encounter physical generators of such functions as
the tangent. Several mathematical methods are available for deter-
mining the particular integral. If only driving forces of the practical
forms mentioned are considered, the method of undetermined coefficients
is particularly suited to our use.

Ordinarily, the method of undetermined coefficients is applied by
selecting trial functions of all possible forms that might satisfy the
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differential equation. Each trial function is assigned an undetermined
coefficient. The sum of the trial functions is substituted into the differ-
ential equation, and a set of linear algebraic equations is formed by
equating coefficients of like functions in the equation resulting from
this substitution. The undetermined coefficients are thus determined
by solution of this set of equations. If any trial function is not a solu-
tion, its coefficient will be zero.

It is not necessary to study rules for selecting trial functions for the
forms of driving force function »(f) we are considering. The required
form of the trial functions is given in Table 6-1. In using this table, the
following procedure is suggested:

(1) Determine the complementary function 7. Compare each part
of the complementary function with the form of »(¢). The rules
given in Table 6-1 are modified if these two functions have terms
of the same mathematical form.

TABLE 6-1
Factor in Necessary choice for the

v(£)* particular integralf
1. V (aconstant) | 4
2. ayl® Bytr + Byl 4 ... 4+ B,y + B,
3. a.e™ Cer
4. a3 cO8 wi )

- D cos w! + E sin wt
5. a4 81n wl
6. azl™e™ cos wl (Fr + ... + Fost + Fro)e™ cos wt
7. aglre™ sin wi + (Git» + ... + Go)e sin wl

* When v(f) consists of a sum of several terms, the appropriate particular inte-
gral is the sum of the particular integrals corresponding to these terms individually.

1 Whenever a term in any of the trial integrals listed in this column is already a
part of the complementary function of the given equation, it is necessary to modify
the indicated choice by multiplying it by ¢ before using it. If such a term appears
r times in the complementary function, the indicated choice should be multiplied
by ¢

(By permission from Advanced Engineering Mathematics by Wylie. Copyright,
1951, McGraw-Hill Book Co., Inc.)

(2) Write the trial form of the particular integral, using Table 6-1.
Each different trial solution should be assigned a different letter
coefficient, and all similar functions should be combined,
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(3) Substitute the trial solution into the differential equation. By
equating coefficients of all like terms, form a set of algebraic
equations in the undetermined coefficients.

{4) Solve for the undetermined coefficients and so find the particular
integral. These coefficients must be in terms of circuit and driv-
ing force parameters. There are no arbitrary constants in the
particular integral.

Having determined the particular integral, the total solution may be
found by adding the complementary function to the particular integral.
If a particular solution is required, the arbitrary constants of 7¢ can be
evaluated from a knowledge of the initial conditions. As a precaution,
the initial conditions must always be applied to the total solution—
never to the complementary function alone unless 7 = 0 [when v(¢)
= 0. '

Ezample 4

Consider a series BL circuit with the driving force voltage of the form
v(f) = Ve, where V and a are constants. By Kirchhoff’s voltage
law, the differential equation is, after division by L,

d?' k. s K —at
3}'*“*1—,2—-1)6 (6-99)
The characteristic equation is m + (RE/L) = 0, so that the comple-~

mentary function is
te = ke /L (6-100)

From Table 6-1, the trial solution should be
ip = Ae~= (6-101)

if @ # R/L, where A is the undetermined coefficient. Substituting
this trial solution into the differential equation gives

—adet 4 % Ae~et = %e““‘ (6-102)
V R
or A = m) a # 'L‘ (6—103)
The solution is the sum of 7, and ¢, or
g == }““BWWLK"&“E eg—at o KG_R‘/L, a #E "‘II?; (6-104)

The arbitrary constant can be evaluated from knowledge of the initial
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conditions. If @ = R/L, the form of the trial solution should be

ip = Ale (6-105)
Substituting this solution into the differential equation gives
A(—ate™ + e) + adte™ = }[;e—“‘ (6-106)
Vv
or 4= I (6-107)

The solution for this case is thus

V

i= gl + Kt o= (6-108)

t~ =

Example 5

As a second example, consider a series RC circuit with a sinusoidal
driving force voltage v(t) = V sin wt. The Kirchhoff voltage equation
i8

Ri + %, [ idt = V sin wt (6-109)

or, differentiating and dividing by R,

di 1 . oV
BE‘F-EC,Z == *"I%“C()Swt (6“110)
From Table 6-1, the assumed 7, should be the sum of a sine and a
cosine term, as

1p = A cos wl 4+ B sin ot (6-111)

If this assumed solution is substituted into the differential equation
and coeflicients of like functions are equated, the following system of
linear equations resuits. '

A wV B
R’é + wB = -'—R-': -I"é'-é - c:!A = O (6—112)
Solving for A and B yields
wCV W*RC*V
A= irerey B-1rorc (6-113)

Substituting these values into the assumed solution, there results,
after some simplification,

. 14 1 .
tp = it TR (;“('f cos wt + R sin wt) (6-114)
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This equation can be reduced to a single sinusoid by defining 1/wC =
Ig co8 ¢ and R = K sin ¢, and making use of the trigonometric iden-
tity for the cosine of the difference of two angles. Finally,
- V

V' R? + 1/w2C?
where ¢ = tan—! wRC (6-116)

To this value of 7, must be added ic = Ke~#¢ for the complete
solution.

cos {(wl — ¢) (6-115)

tp

Ezample 6

Knowledge of the response of systems with sinusoidal driving foree
voltages is important in studies of power generation and distribution
systems. Consider the circuit equiv-

alent of such a system shown in ‘;( ° AYA'A
Fig. 6-11. The Kirchhoff voltage + R
equation for this system is @ V sinlwt+6) Lé

Lg%+ Ri = V sin (wf + 6)
(6-117) Fig. 6-11. RL series circuit.

The method for finding the particular integral is like that illustrated
in the last example. The result is

. | 4 . L
1p == ‘\/m sin (wt + g — tan 1?‘) (6—118)

To this result must be added the complementary function, which from

Example 4 1s
ie = Ke RH/L (6-119)

The total solution thus becomes

7 ==

3 o — % 74
i o sin (wt + 6 — tan—! R) 4+ Ke (6-120)

Now if the switch is closed at ¢ = 0, the initial current has zero value
pecause of the inductor, requiring that

vV . _ _ywL 0 :
NG IET% sin (8 tan —R—) + Ke® = 0 (6-121)

or K= — \/Rz_g__.i_z sin (0 — tan™! %) (6-122)
w

1f the angle 8, which represents the angle of the sinusoid at the time the
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switch is closed, has the value

_ .y ol _

f = tan 53 (6-123)
the constant K will have zero value, and the transient term i; will
vanish. In other words, if the switch is closed at the proper instant,
there will be no transient. The same conclusion can be reached for the

RC series network but not for an RLC network.

6-6. Capacitor charge in an RLC series circuit

The circuit shown in Fig. 6-12 is energized by closing the switch K
at £ = Q. It is desired to find charge on the capacitor as a function of

time, ¢(¢). By Kirchhoff’s voltage law,
¥ o AN AT — the differential equation for the charge

K L
- - R 0= is, after division by L,
__E-___ qcu} T~
d’q , Rdq 4

Fig. 6-12. ELC series circuit. This is a nonhomogeneous differential

equation, and the solution will be composed of two parts. The particu-
lar integral or steady-state solution will be

Ges = A (a constant) (6-125)

Substituting this solution into the differential equation gives

040+ nd =" or 4=CV (6-126)

For the three cases previously studied, corresponding. to overdamped,
critically damped or underdamped, the solutions are:
Case 1, ¢ > 1.
¢ = ¢+ @ = CV + e%[K, cosh (w. Vi~ 110)
+ Ka(sinh wa /% — 18] (6-127)
Case 2, = 1.
q = cv + (K1 + Kzt)e'““"‘ (6—-128)

Case 3, ¢ < 1.

q = CV + e#K, cos (wn V1 — {2t) + K sin (0. v/1 — {2 1)]
(6-129)

Each solution has two arbitrary constants, K, and K,. These constants
will not be the same for the three cases, but they can be evaluated from



Art. 6-6 DIFFERENTIAL EQUATIONS, CONTINUED 119

the initial conditions. As initial conditions, we will assume that at
t=0, gc =0 (no initial charge on the capacitor) and i¢ = 0, so
dge/dt = 0O (no initial current because of the inductor). We will carry
out the evaluation of the constants in some detail for Case 3. The two
other cases follow a similar (and easier) pattern. Using the initial value
of g condition gives

0 = CV + e"(K; + KzO)

or K, = —~CV (6-130)
The derivative of ¢ with respect to time is

dq _

dt

Kyt —w, /1 — £2sin (wn V1 — {28) — fwa cos (wa /1T — £214)]
+ Koo w, /1 — £2¢0s (wn V1 — {*1) — {wasin (wa V1 = ¢ 0]

(6-131)
Att = 0,dg/dt = 0, so
0 = Ki(—{wn) 4+ Kolwn V1 ~ %) (6-132)
{ {
s —_—e— = e OV ——2 -
Hence K, = K, N Vo (6-133)

The particular solution is

o) = CV {1 - .-\-/-"';":_—‘F (VI = cos (wn /I =2 0)

+¢sin (wn VT = t)]} (6-134)

This equation may also be written in the form
e—twnt
V1=

where 8 = tan™! \/it—g'—?/g‘.

For Case 2, the particular solution will be found to be

() = CV{1 — (1 + wab)e—] (6-136,

q(t) = CV [1 — sin (wa /1 — 2t + 0)] (6-135)

and for Case 1, the particular solution is
gty = CV {1 — gfunt [cosh (0n VEE—10)

-+

W%Y sinh (wn V52 — 1 c)“ (6-137)
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These three equations give ¢{t) for the three conditions of damping.
Since the damping ratio is determined as the ratio of actual resistance
to critical resistance, the three conditions could be obtained merely
by an adjustment of the resistor B. Figure 6-13 shows the behavior

16
VA

1.2

0 2 4 6 8 10 12
wal
Fig. 6-13. System response for three values of [ illustrating the

underdamped (¢ = 0.2), critically damped (¢ = 1.0), and overdamped
(¢ = 1.4) cases.

of the charge in the circuit as the damping ratio changes. These solu-
tions are valid for any second-order system with these particular
initial conditions, not only in electric networks but also in mechanical
and electromechanical systems (for example, in servomechanisms).

FURTHER READING

Solution of differential equations of the type discussed in this chapter
is concisely treated by Wylie in Advanced Engineering Mathematics
(McGraw-Hill Book Co., Inc., New York, 1951), pp. 1-45. See also
Chap. 4, titled “Classical Analysis of Double-Energy Transients”
in Fich, Transient Analysis in Electrical Engineering (Prentice-Hall,
Inc.,, New York, 1951). Other texts recommended for supplementary
reading include: Skilling, Transient Electric Currents (McGraw-Hill
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Boo? Co., Ine.,, .New Y.Oi‘lf, 1952), Chaps. 3 and 4; Johnson, Mathe-
matical and Physical Principles of Engineering Analysis (McGraw-Hill
Bc.v;k ﬁ:,llzc., 1;T.ew York, 1944), Chap. 6; Salvadori and Schwarz
Differentiac fiquations in Engineering Problems (P ti ,
New York, 1954), Chaps. 3 and 4. * (Prentice-Hal, Ine,

PROBLEMS
6-1. Show that¢ = ke~* and; = ke~
equation

are solutions of the differential

d% di .
371;+33-2+22=0

6-2. Show that ¢ = ke~ and { = kte—* are golutions of the differ-
ential equation
d% di . .,
3{2— + 2 EIE + 1 == 0

6-3. Find the general solution each of the following equations:

® G +35+2 =0 @ 22 +% 46 =0
(b) G+ 5% +6i = 0 () P+ 4oy =0
(@%4-7%-}-12{&0 (@%+2%+qu
(d)g—:g-%S%—%-éva (h)z_z_;_c;g%.{_%mg

6-4. Find the particular solution of the differential equation of
Prob. 6-3(a) and Prob. 6-3(b) subject to the initial conditions:

| di, .
1(0+) = 1, di (0+) =0

Answers. © = 2¢t — e¢~%, § = Je~¥ — 2e7¥,
6-6. Repeat Prob. 6-4 for the differential equations of Prob. 6-3,
parts (c) through (h) subject to the initial conditions

variable (0+4) = 2, adz[variable 0+)] =1
6-6. Write the general solution of the differential equations with the
following characteristic equations:
(@) m+ DH(m 4+ 2Y(m*+m+ 1) =0
(b) (m + 1)*(m + 5) =0
(¢) (m+ a)(m + b)(m —e)(m — d) =0
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6-7. Plot the roots of the characteristic equation in the m-plane
(m = o + jw) for L = 1 henry, C = 1 uf, and (a) R = 500 ohms,
(b) B = 1000 ohms, (¢) B = 2000 ohms, (d) = 3000 ohms, (e) B =
4000 ohms.

6-8. For the system described in Prob. 6-7 and for (a) R = 500
ohms, (b) B = 2000 ohms, and (¢) R = 4000 ohms, find the general
solution to the differential equation. Evaluate all coefficients but not
the arbitrary constants.

6-9. In a certain network, it is found that the current is given by the
expression

z = Kot — ng"""t, > 0, @y > Qg

Show that i(f) reaches a maximum value at time

t - 3. lIl a1K1

] — 2 Oisz

6-10. The graph shown is a record of the current as a function of
time resulting when a switch is closed at ¢ = 0, connecting a battery
to a network. Only slightly more than a cycle is shown in the record,
but the current eventually reaches zero value. (a) Determine the
values of { and w, for the current waveform. (b) Write the equation
of current as a function of time with all coefficients evaluated.

+1
’/‘\\
- -
fo N
§ o
~1
0 1 2 3 4 5
¢, msec
PrOb. 6""10;

6-11. In the network shown in the accompanying figure, the switch
K is opened at { = 0 with equilibrium conditions existing before the
the switch is opened. Find the current through the inductor as a func-
tion of time. Answer. 1.(f) = 10 cos 316%.

1+

=100v 1h 10kt

Prob. 8-11.
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6-12. Show that Eq. 6-67 can be written in the form

i = Ke " cos (wa V1 — P+ ¢)

Give the values for K and ¢ in terms of K; and K, of Eq. 6-67.
6-13. Solve the following nonhomogeneous differential equations.

d* di , .
d* di .
(b) “Jt”'z+3a'i+22—5t
Answer. © = 5t — L2 + ke~ + koe™2.
ax di . .
(c) "&?+3§i+21w 10 sin 10¢

d? d
@ F4 + 55 +6q = te
£

Answer. q = —t—%—-— - g s o T ol

(e) %2;3 + 5 g?v -+ 6y = e~% -} 5%

Answer. v = (K + e % -+ (K, — 5l)e—®,

6-14. A special generator has a voltage variation given by the equa-
tion v(f) = t volts, where ¢ is the time in seconds. This generator is
connected to an RL series circuit, where B = 2 ohms and L = 1
henry, at time { = 0O by the closing of a switch. Find the equation for
the current as a function of time 2(f). Answer. i(t) = 3 — ¢ + 1.

6-16. A bolt of lightning having a waveform which is approximated
asv(f) = te—* strikes a transmission line having resistance £ = 0.1 ohm
and inductance L = 0.1 henry (the line-to-line capacitance is assumed
negligible). An equivalent network is shown in the accompanying
diagram. What is the form of the current as a function of time? (This
current will be in amperes per unit volt of the lightning; likewise the
time base is normalized.) Answer. i(t) = 5i%.

o o AN
L K
+ + 102
v(t)() @ R C)lGe"‘ sin ¢ /:;t}) 10 pfo
Prob. 6-15. Prob. 6-16.

6-16. In the circuit shown in the figure, solve for #(¢) if K is closed
at £ = 0. Answer. 7 = 10~%* (cos t — sin £) — 10410,
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6-17. In the network shown, the switch K is closed at ¢ = 0, with a
steady state having been established previous to this time. For the
parameter values shown in the dia-

R -10°9 N gram, find the current as a function
J L=1h of time (). Answer. i = (203
L){ osutmz €08 377t — 08 cos 1414t + 1485
> ~ sin 1414¢) X 10~ amp.

100 sin 377¢ /‘@ 6-18. On page 118, the statement
is made that the transient term
in the solution cannot vanish in the

Prob. 6-17.

RLC series circuit with a sinusoidal
driving force merely by closing a switch at an appropriate time. Prove
that this statement is correct.

6-19. Starting with Eq. 6-127, verify that Eq. 6-137 is the partic-
alar solution with the initial conditions given for Case 3.

6-20. A switch is closed at { = 0 connecting a battery of voltage V
with a series RL circuit. (a) Show that the energy in the resistor as a
function of time is

v L pun _ 3L
R (t + R R/ L §MR e Ri/L 2R)

(b) Find an expression for the energy in the magnetic field as a
function of time. (c) Sketch we and w;, as a function of time. Show the
steady-state asymptotes, that is, the values that wy and w. approach
as {— . (d) Find the total energy supplied by the voltage source in
the steady state.

6-21. In the series RLC circuit shown in the accompanying diagram,
the frequency of the driving force voltage is

Wr =

(1) w= w, (the undamped natural angular frequency)
(2) w = w, V1 — {2 (the natural angular frequency)

These frequencies are applied in two separate experiments. In each
experiment we measure (a) the peak

value of the transient current when — o o—AAA—/TTT—
the switch is closed at { = 0, and (b) 10000 lh
the maximum value of the steady- (~) 100 sin t . 1t
state current. (a) In which case (that 1”)

is, which frequency) is the maximum
value of the transient greater? (b) In Prob. 6-21.
which case (that is, which frequency)

is the maximum value of the steady-state current greater?




CHAPTER 7
THE LAPLACE TRANSFORMATION

7-1. Introduction

The forerunner of the Laplace transformation method of solving dif-
ferential equations, the operational calculus, was invented by the bril-
liant English engineer Oliver Heaviside (1850-1925). Heaviside was
a practical man and his interest was in the practical solution of electric
circuit problems rather than careful justification of his methods. He
was gifted with an insight into physical problems that enabled him to
pick the correct solution from a number of alternatives. This heuristic
point of view drew bitter and perpetual criticism from the leading
mathematicians of his time. In the years that followed publication of
Heaviside’s work, the rigor was supplied by such men as Bromwich,
Giorgi, Carson, and others. The basis for substantiating the work of
Heaviside was found in the writings of Laplace in 1780. As the years
have passed, the structural members of the framework of Heaviside’s
operational calculus have been replaced, piece by piece, by new mem-
bers derived by the Laplace transformation. This transformation has
provided rigorous substantiation of the operational methods; no impor-
tant errors have been discovered in Heaviside’s results.

The Laplace transformation method for solving differential equa-
tions offers a number of advantages over the classical methods that
were discussed in Chapters 4 and 6. For example:

(1) The solution of differential equations is routine and progresses
systematically.

(2) The method gives the total solution—the particular integral and
the complementary function—in one operation.

(3) Initial conditions are automatically specified in the transformed
equations. Further, the initial conditions are incorporated into
the problem as one of the first steps rather than as the last step.

What is a transformation? The logarithm is an example of a trans-
formation that we have used in the past. Logarithms greatly simplify
such operations as multiplication, division, extracting roots, and rais-
ing quantities to powers. Suppose that we have two numbers, given
to seven-place accuracy, and we are required to find the product,

maintaining the accuracy of the given numbers. Rather than just mul-
125
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tiplying the two numbers together, we transform these numbers by
taking their logarithm. These logarithms are added (or subtracted in
the case of division). The resulting sum itself has little meaning. How-
ever, if we perform an inverse ifransformation, if we find the antilog-
arithm, then we have the desired numerical result. The direct division
looks more straightforward, but our experience has been that the use
of the logarithm often saves time. If the simple problem of multiply-
ing two numbers is not convincing, consider evaluating (1437)0-1328
without logarithms!

Logarithm Logarithms
Numbers *1 of numbers
Direct .
muitiplication Addition
or division of nurbers
Product Antilogarithm Sum of
or quotient fogarithms
{a)
Initial
integro- Conditions
differential Laplace o | Transform ||
equation transformation
| B
Classical Algebraic
solution manipuiation
. Inverse Laplace Revised
Solution
transformation Transtorm
Time domain - | - Frequency domain
{b}

Fig. 7-1. Comparison of logarithms and the Laplace transformation.

A flow sheet of the operation of using logarithms to find a product
of a quotient is shown in Fig. 7-1. The individual steps are: (1) find
the logarithm of the separate numbers, (2) add or subtract the num-
bers to obtain the sum of logarithms, and (3) take the antilogarithm
to obtain the product or quotient. This is roundabout compared with
direct multiplication or division, yet we use logarithms to advantage,
particularly when a good table of logarithms is available.

The flow sheet idea may be used to illustrate what we will do in using
the Laplace transformation to solve a differential equation. The flow
sheet for the Laplace transformation is also shown in Fig. 7-1 with a
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block corresponding to every block of the logarithm flow sheet con-
sidered above. The steps will be as follows. (1) Start with an integro-
differential equation and find the corresponding Laplace fransform.
This is a mathematical process, but there are tables of transforms just
as there are tables of logarithms (and one is included in this chapter).
(2) The transform is manipulated algebraically after the initial con-
ditions are inserted. The result is a revised transform. As step (3), we
perform an inverse Laplace transformation to give us the solution. In
this step, we also can use a table of transforms, just as we use the table
of logarithms in the corresponding step for logarithms. The flow sheet
reminds us that there 1s another way: the classical solution. It looks
more direct (and sometimes it is for simple problems). For complicated
problems, an advantage will be found for the Laplace transformation,
just as an advantage was found for the use of logarithms.

7-2. The Laplace transformation

To construct a Laplace transform for a given function of time f(¢},
we first multiply f(¢) by e~*, where s is a complex number, s = ¢ 4 jw.
This produet is integrated with respect to time from zero to infinity.
The result is the Laplace transform of f(¢), which is designated F(s).
Denoting the Laplace transformation by the script letter £ (in order
to reserve L for inductance), the Laplace transformation is given by
the mathematical expression

L)) = F(s) = [) mf(t)e”"“" di (7-1)

The letter £ ean be replaced by the words ‘‘the Laplace transform of
in the above expression.

Although this equation is a rather formidable appearing integral,
the actual evaluation of F(s) for a given f(f) is usually not difficult.
Furthermore, once the transform of a function is found, it need not be
found again for a new problem but can be tabulated. The time func-
tion f(£) and the transform F(s) of this function are called transform
pairs. A table of transform pairs is given on page 146.

The operation which changes a function of s back to a function of
time is called the tnverse Laplace transformation. This operation is
symbolized as £71. Then by definition,

LHL[fO1} = £7F ()] = f(O) (7-2)
The inverse Laplace transformation is given by the complex inversion

integral,

cti=
f) = é‘i‘j f . F@eas (7-3)
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where ¢ is a constant. This integral is seldom used because of the
uniqueness property of the Laplace transformation that there is a one-
to-one correspondence between the direct and inverse transforms. In
other words, a table can be used to find the f(¢) corresponding to a given
F(s) as well as an F(s) for a given f(¢).

Not all functions can be integrated to find the Laplace transforms.
The usual requirements for an f(¢) are that it be (1) piecewise contin-
vous and (2) of exponential order. These requirements are discussed
in detail in references cited at the end of this chapter. Suffice to say
that all functions of engineering interest have the properties required
for the existence of the transform.

As an example of the evaluation of Eq. 7-1, let f(f) = 1; then

L[1] = [ edl = — le"‘] =
0 8 0

Because of the lower limit of the integral, the value of f(¢) for ¢t <0
does not enter into the final solution. Thus the Laplace transform for
f(t) = 1 is the same as that of a special function having zero value for
¢ < 0 and unit value for ¢ > 0. Such a function was called a unit step
function by Heaviside. We will
fi ult) use the symbol u(¢) for a function

1 described mathematically as

t<0
t>0

(7-4)

o |-

-t 0 +t u(t) = (7-5)

Fig. 7-3. Unit step function. and shown as a function of time
in Fig. 7-2. Such a function is the mathematical equivalent of physically
closing a switch at { = 0. If a battery of voltage V is connected to &
network at ¢ = 0 by closing a switch, that voltage can be described as
Vu(f); that is, V times unity for ¢ > 0 and V times zero for ¢ < 0. The
Laplace transform for Vu(f) is

e[Vu()] =~ (7-6)
As a second example of the calculation of a transform, let f(f) = %,
where a is a constant. Substituting into Eq. 7-1, we have

Ller] = L etett df = fo et df = ML-&, e>a (1-7)

Thus ¢* and 1/(s — a) constitute a transform pair.
For one further.example, let f(f) = sin wf. Substituting into the
defining equation, we have
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-

e‘“"(—»s sin wf — w CO8 wt)]
82 + wﬂ

=2 (7-8)

These two computations can form ghe'beginning of a table of transform
pairs as shown below.,

£lsin wif] = j; (sin wi)e* dt = 0

TasLE oF TRANSFORM PAIRS

f(® F(s)
u(®) /s
e* 1

8§ —a
gin wit “2—“““-,"“"5
884w

More pairs can be added as they are computed. Exhaustive tables are
to be found in reference books cited at the end of the chapter.

7.3. Basic theorems for the Laplace transformation

(1) Transforms of Linear Combinations. If fi(t) and fo(t) are two
functions of time and a and b are constants, then

Llafi(t) + bf2:(0)] = aF.(s) + bFa(s) (7-9)

This theorem is established with Eq. 7-1. It follows from the fact
that the integral of a sum of terms is equal to the sum of the integrals
of the terms; that is,

£lafi(t) + bf:(0] = j; ) [af (t) + bfa(t)]e di

—a j; T fOedt + b f " fae dt
[+
= aF(s) + bF.(s) (7-10)

We will make use of this theorem in taking the Laplace transformation
of the sum of derivative terms appearing in a differential equation.

(2) Transforms of Derivatives. From the defining equation for the
Laplace transformation, we write

d *d . ,
£ [Eif(t)] = L Eif(t)e ¢ dt (7-11)
This equation may be integrated by parts by letting
u=-e¢e* and dv = df(t)
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b b b
fudvmuv] ...,[ vdu (7-12)

Then dy = —se~'dt and v = f()

in the equation

so that the transform of a derivative becomes

£%N4=WW%E%LUW”&2W@&WH(H&

provided lim f(t)e—** = 0, which follows from !'Hospital’s rule, pro-
Ly o

vided that f(f) and all its derivatives are not infinite at { = .
To find the transform of the second derivative, we follow a similar
procedure but make use of the result of Eq. 7-13. Since

dtzf(t) di dtf (®) (7-14)
then
s[i&f—tﬁﬂ]= [f(t)] Y 0+)
= slsF(s) — 700 - L 04) (7-15)

= $F(s) — 8f(0+) — df  0+)

In this expression, the quantity df/dt (0+) is the derivative of f(t)
evaluated at ¢t = 04 (the time immediately after switching action is
initiated). The general expression for an nth order derivative is

28U — o) - sp0+) — o L0y - L - S04
(7-16)

(8) Transforms of Integrals. The transform for an integral expres-
sion, is found by starting with the equation

j; ) fe-* di = F(s) (7-17)

and integrating by parts to give

F(s) = e ff(t) dt}: + 8 /;m [ff(t) dt] etdt (7-18)

The quantity
e [ f8) dtL
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becomes zero at the upper limit, and at the lower limit has the value
of the integral evaluated at { = 0, usually written by the notation

f f(t) dt

where f-P indicates integration. The last term of Eq. 7-18 is recog-
nized as s times the Laplace transform of _f f(¢) dt. Rearranging Eq.
7-18, there results

e { f ) dt] iy gs) +1 H)SH') (7-20)

Similarly, it is found that
e Uf 0 dtﬂ] =19 20 2208 g

= fC(0+) (7-19)
+

=)

82

In the analysis of networks on the loop basis, f(¢) is often a current 7(¢)
and the integral of the current is the charge ¢(¢). Equation 20 then has

the form
e [ f i) dt] =16 Q(Os’*") (7-22)

8

where ¢(0-}) is the charge (say on the plates of a capacitor) at the time
t = 0+.
If f(t) is & voltage, then

£ [ [ v(t) dt] = Vgs) 4 ¥O+) (7-23)

8

since the integral of voltage is flux linkage ¢.

7-4. Examples of the solution of problems with the Laplace transformation

With the short table of transforms that has been given on page 129
and the three basic theorems that have been derived in the previous
section, we are now equipped to solve a network problem (elementary
as yet, to be sure) using the Laplace
transformation. )K( ° AN/

R

= /,;D -~C

Fig. 7-8. RC series circuit.

Ezample 1

<
I

For this example, we will write
the Kirchhoff voltage law for a series
RC network shown in Fig. 7-3. It
will be assumed that the switch K
is closed at £ = 0. This information will be included in the formation
of the network equations by writing the voltage expression as Vu(f).
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Hence

. f Pdt+ Ri = Vu(t) (7-24)
This is the integral equation we wish to solve. Using Eq. 7-20 for the

first term, we take the transforms of the linear combination of terms as

L0 90D gy < v (7-25)
In terms of the flow chart of Fig. 7-1, we have taken the Laplace trans-
formation of the integral equation and there has resulted a transform
expression. The required initial conditions are automatically specified
and may be inserted as the second step (rather than as the final step
as in differential equations solved by classical methods). Now ¢(0+)
is the charge on the capacitor at { = 0. If the capacitor is initially
uncharged, ¢(0+4) = 0 and the last equation reduces to the form

1(s) (-(-;3 + R) =Y (7-26)

8
The next step, again according to the flow chart, is algebraic manipula-
tion. The objective of this manipulation is to solve for I(s). This is
accomplished by multiplying by 8 and dividing by R to give

_V/R
Ie) = s+ 1/RC
which is a ‘‘revised transform” expression. The next step on our flow

chart is to perform the inverse Laplace transformation and obtain the
golution. That is,

(7-27)

e-1{I(s)] = £ (s-__*_fm{?@ﬁ) = i) (7-28)

Using the second transform pair of our short table, the solution is
ift) = e (7-29)

This is the complete solution (the steady state in this case being of
zero value). The arbitrary constant emerges evaluated (and has the
magnitude V/R).

Ezample 2

As our second example, consider the RL series circuit shown in Fig.
7-4. As in Example 1, the switch is closed at ¢ = 0. The differential
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equation for the circuit is, by Kirchhoff’s law,
LY 4 Ri = vu@ 7-30
7] (7-30)
The corresponding transform equation is

LisI(s) — i(0+)] + RI(s) = (7-31)

¥
8
The initial condition specified by the last equation is (0-), the cur-
rent after the switch is closed. Because of the inductance, {(0+) = 0.
Our equation may now be manipulated to solve for I(s); thus

V 1
S AR 7)) (7-42)

This transform, however, is not in our short table. We need something
new (or a larger table). Notice that this term is made up of the prod-
uct of the term (1/s) and the term X

[1/(s + R/L)}. We know the in- K IVJY\'

verse Laplace transformation of

each of these individual terms. /l(tD L
This suggests that the inverse oper-
Pig. 7-4. RL series circuit.

<
L

ation could be performed if there
were some way to break the trans-
form terms into several parts. As an attempt to perform this operation,
let us try the following expansion:

V/L _ K,
s(s + R/L) s

K,

+3+R/L

(7-33)
In this equation K, and K; are unknown coefficients. As the first
step, let us simplify the equation by putting all terms over a common
denominator. Then

v
T “Ko(s‘i“%)‘l"KlS

By equating coefficients of like functions, we obtain a set of linear
algebraic equations:

'me;r K3+K1“-=-‘0

From these two equations, we find the required values for K, and K;:

v

KQ'—'—'-"E

and K; = —

ol <
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This algebraic manipulation has permitted Eq. 7-32 to be written

V 1 Vil 1
O Rt I ERE == I

We have transform pairs corresponding to each of these expressions.
The current as a function of time is found by taking the inverse Laplace
transformation of the individual expressions; thus

: Vifaal 4 1
or it) = T—I; (1 — e~®/z) (7-36)

This is the final (time-domain) solution. The method we used to
expand a transform into the sum of several separate parts is known
under the heading of partial fraction expansion. It is this subject that
we study next.

7-5. Partial fraction expansion

The examples of the last section have suggested the general pro-
cedure in applying the Laplace transformation to the solution of
integrodifferential equations. A differential equation of the general
form

d™ drig di .
ao—&F+a1W+ +au_1gt+anz = U(t) (7—37)

beecomes, as s result of the Laplace transformation, an algebraic equa-
tion which may be solved for the unknown as

£[v(t)] 4+ initial condition terms
ags" + a4 L. 4 @S + A,

The general form of this equation is a quotient of polynomials in s.
Let the numerator and denominator polynomials be designated P(s)
and Q(s), respectively, as

I(s) = (7-38)

0

Q(s)
If the transform term P(s)/Q(s) can now be found in a table of trans-
form pairs, the solution Z(t) can be written directly. In general, how-
ever, the transform expression for I(s) must be broken into simpler
terms before any practical transform table can be used. To simplify

the expression by partial fraction expansion, we find the roots of the
denominator polynomial

Q(s) = aus® + as™ + ...+ @ = ao(s + 81)...(s + 8.) (740)

I(s) (7-39)
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Because the coefficients ao, a1, ..., a, are positive and real (being
functions of network parameters R, L, and C), the roots of Q(s) are
restricted to be: (1) simple and real, (2) conjugate complex pairs, or
(3) repeated (or nonsimple) as discussed in Art. 6-3.

The rules for expanding 7(s) by partial fractions are given in terms
of the three possibilities just mentioned:

(1) If all the roots are simple (that is, not repeated), then the partial
fraction expansion is

P (3) K 1 K! Kn
(s + 8:)(8 + 82)...(8 + 8a) - 8+8;+8+82+ +s+s,.
(7-41)

(2) If a root is repeated r times, the partial fraction expansion corre-
sponding to this one (repeated) root is

P(S) - Kn K;z
(s+s) s+ (84 8)?

Klr

te Tt e Eay

(7-42)

and there will be similar terms for every other repeated root.
(3) Animportant special rule may be given for two roots which form
a complex conjugate pair. For this case, the partial fraction expansion
is
P(s)

Q) (s + a + ju)(s + a — jw)
K, K,*

“GFatim  Gra—de

(7-43)

where K* is the complex conjugate of K;. In other words, when the
roots are conjugates, so are the partial fraction expansion coefficients.
An expansion of the type shown above is necessary for each pair of
complex conjugate roots.

Although the above three rules are sufficient to expand any quotient
of polynomials, it is sometimes more convenient to expand second-
order denominator terms as

P(s) __As+ B Cs + D
Qus)(s*+as+ b)(s? +es+d) s*4as+b s*+es+d
_ As + B Cs+ D
- (S+a1)2+w12+(8+a2)2+w22+ e (49)

+ ...

In an expansion of a quotient of polynomials by partial fractions,
it may be necessary to use a combination of the three rules given above.
Several examples will illustrate the expansion and the determination
of the K's.
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Ezample 3

Consider the quotient of polynomials,

28+ 3
I8) = a3 72

The first step is to factor the denominator polynomial and then expand
by the appropriate rule. For this example, the expansion is

28+3 - K1 + K2
s+ D(E+2) s+1 s+2

since the roots are real and not repeated. Placing each factor over the
common denominator of the equation gives

28 +3 = (s 4+ 2)K; 4+ (s + 1)K,
or 28+ 3 = (K, + K»s + (2K, + K,)

Equating coefficients of like functions, we obtain the following set of
linear equations: 2 = K, + K, 3 = 2K, -+ K,. From these two equa-
tions, we find that K, = 1 and K, = 1. The result of the partial frac-
tion expansion is thus

2s+3 1 + 1
s24+33+2 s+1 "' s+2

The expansion may be checked by combining the two terms of the
partial fraction expansion.

Example 4
For this example, consider a quotient of polynomials with repeated
denominator roots:
s+ 2 = K K,
s+ 1?2 s+4+1 " (s+1)

This form is required by rule (2). Multiplying the equation by (s + 1)?
gives

+

8§+ 2= (24 DK + Ki2

The resulting set of linear algebraic equations is Ky; = 1, Ky; -+ Kis
= 2, or K,;3 = 1. The resulting partial fraction expansion is

s+2 _ 1 + 1
g4+ 12 s4+1 (s+4+1)?

Again, this expansion can be checked, in this case by multiplying the
first term in the expansion by (¢ + 1)/(z + 1).
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Ezample §

This example will illustrate the expansion of a quotient of polyno-
mials where the denominator roots are a complex conjugate pair. Con-
sider the quotient

1 - Kl + K;
8842845 (841472  (s+1-—72

If each term is multiplied by a factor to put all terms over a common
denominator, the following equation results:

1=Ki(s+1—352) +K*s+1+52

Equating the coefficients of like terms,

(1 ""]2)1{1 -+ (1 +J2)K1* = 1 and Ki+K*=0

These two equations may be solved simultaneously for K; and K,*.
This gives
1

=jr and K,* -“3‘2374"‘““.7'%

1
"
In this development, we did not make use of the conjugate relationship
between K; and K,*. If K, is found by any method, it is not necessary
to solve for K,*. If the values for K, and K,* are substituted into the

first equation of this example, there results

2+ 28+ 5 (8+1+]2) (8 + 1~ j2)

To use some transform tables, such terms should be revised by com-
pleting the square. In this example,

(42 +5) =(a+2+1)+4=(s+ 1)+ 2
1 1
2 +2+5 (s+ 1)+ 2

In the general form [(s + a)? 4 b?, a is the real part of the root, and
b is the imaginary part.

The three rules just given for partial fraction expansion are restricted
to the cases in which the order of the numerator polynomial is less than
the denominator polynomial. If this condition is not fulfilled, it is
necessary to first divide the denominator into the numerator to obtain
an expansion of the form

P(s)
Q@)

so that

= Bo+ Bis 4+ Bys + ... + Boasm + Q(“)’ (7-45)
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where 7 is the order of the numerator, d is the order of the denominator,
and P,(s)/Q(s) is a new quotient of polynomials with the order of the
numerator less than that of the denominator such that the usual rules
apply.
As an example, let
P(s) s*+ 28+ 2
Q) s+1

By direct division,
s+1) s*+4+2842 (s+1

8?4 s
s+ 2
s +1
1
s 428+ 2
or S E1 =1 4 8 +s—{-1

so that in Eq. 7-45, By = 1, B, = 1, and Py(s)/Q(s) = 1/(s + 1).

7-6. Heaviside's expansion theorem

Let us return to the problem of Example 3 which was written

28 4 3 _ K1 K2
CFD6+D  GF+D TG+ (7-46)
As the first, step, multiply the equation by (s 4+ 1) as
(2s 4+ 3)(s+ 1) _ s+ 1 s+ 1
S R TS BT (7-47)
or, canceling common factors,
2s +3 _ s 1

In this equation, the coefficient K, is not multiplied by any function

of s. Now s is merely an algebraic factor that can have any value. If

s = —1, the coefficient of K, reduces to zero and we can solve for K, as

28 + 3 —2 43

K, = -

8§42 lgm—1 -1 42

which is the same result as found previously. To evaluate K, and to
follow the same pattern, multiply Eq. 7-46 by (s + 2) to obtain

28 4+ 3 K, s+2
s+1 0 's¥I

To evaluate Ky, we set s = —2 in order to reduce the coefficient of K;

-1 (7-49)

+ Ko (7-50)
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to zero. Then
m243-}-3 —4 4+ 3
8+ 1 |m—g =241

This method, which the example has shown will eliminate much of the
algebraic manipulation of evaluating the coefficients, is known as
Heaviside’s partial expansion method. The method will work as in this
example when Q(s) has no repeated roots. In general, if

P(S) - K1 K2 Ks Kn

Q(.s)“s~{-s;+s~{'-s-¢+.s;+83+"'+s+.<.;,s

K,

=1 (7-51)

(7-52)

then any of the coefficients K, K,, K;, ..., K. can be evaluated by
multiplying by the denominator of that coefficient and setting s to
the value of the root of the denominator. In other words, to find the
coefficient Kj,

P (8)]
K; = [ 8§+ s 7-53
A R o) W (7-53)

In the form given in this equation, Heaviside’s expansion theorem
applied only to functions with nonrepeated denominator roots. To
start our discussion of the case of repeated roots, consider the example,

38 B (: -IT i‘2)2 - sI-{i—nl G {(I»-nl)z (7-54)

Multiplying by (s 4 1)2 gives
$+2=_(+ DK+ Ky, (7-55)
and when s = —1, K, is readily evaluated as K,; = 1. If we attempt
to follow the same pattern to evaluate K, trouble develops. That is,
g—;i—f — Ku + 81_(;21 (7-56)
If, in this equation, 8 = — 1, one term becomes infinite and K, cannot

be evaluated. However, the problem can be resolved if we return to
Eq. 7-55 and differentiate with respect to s. (This is a reasonable thing
to do: we have used differentiation before to remove trouble with
indeterminant forms.) Differentiating with respect to s,

}.+OmK11+O or K11='—"’1
The constants are now evaluated and the partial fraction expansion is

s+2 1 + 1
s+ 1D 541" (s+ 1)

(7-57)
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To consider a general case of r-repeated roots, let

Ps) R(s)  Kan K;, Kin
) "G+ st GFer T GFr T
Kjr
+ o F e (1

where n is any term in the partial fraction expansion and R(s) is defined
as

P(s)
Q(s)

Multiplying Eq. 7-58 by (s - &) gives
R(8) = Ky(s + ) '+ Kjs(a + 85"+ ... + K; (7-60)

From this equation, we can visualize the method to be used to evaluate
each coefficient. If we let s = —g;, all terms in the equation disappear
except K;,, which can be evaluated. Next, differentiate the equation
once with respect to s. The term K, will vanish, but Kj,,.; will remain
without & multiplying function of s. Again, K;,_; can be evaluated
by letting s = —s;. To find the general term Kj., differentiate Eq.

R(s) = (8 + &) (7-59)

7-60 (r — n) times and let s = —s;; then
_ 1 dr_nR(S) 61
B = oyt @ -, (7-61)
- 1 d—n P(s) . -62
or Ko = s g @+ 9] \~ (762

The actual use of this idea is easier than might appear from the com-
plexity of this general equation. For example, consider

28"‘*“38"”'2 - Ku Ku + Kla
s+1D7  (4+1) (41D (s+ 1)

Multiplying the equation by (s 4+ 1)%, we have
282+ 38+ 2 =Ku(s+ 1)*+ Kis(s + 1) + Kus
From this equation,

(7-63)

+

Kis = 25 4+ 33 + 2 w2 —-342=1

g ]

Next, we differentiate with respect to s to obtain
48 4+ 3 = 2K;1(s + 1) + K,
so that K,,n4s+3l = —1

o ]



Art. 1-6 THE LAPLACE TRANSFORMATION 144

Again, we differentiate the last equation to give
4 = 2Ku or Kn = 2
The partial fraction expansion is

2s* + 3s + 2 2 ~1 1
(s -+ 1)? ”s+1+(s+1)2+(3+1)s (7-64)

If @(s) contains both simple and repeated roots, a combination of
both rules may be used. As an example, let

P(s) _ s+ 2

0@ " GFDE+I (7-65)

The form of the partial fraction expansion is
s+ 2 _ Ku Ky K, :
GIDGFY s+1 TG+ Tsrs (760

In this expansion, K; may be evaluated by Eq. 7-53 and K,; and K,
may be found from Eq. 7-62; then

__8+2 -l
K, = (s + Dyu-z3 4
Multiplying Eq. 7-66 by (s -+ 1)%, we have
s+ 2 (s +1)2
8+3—K11(8+1)+K12+ Py K, (7—67)
Constant K, is evaluated directly by letting s = —1; thus
8+ 2 1
Kw=i73|,._, 732

and K ;; will be found by differentiating Eq. 7-67 before letting 8 = —1:

(8+3)-1—(s+2)-1 _ d (s+1)2]
G F3)° ‘K“+K2€z§[s+3

The coefficient of K» vanishes when s = —1 because an (s + 1) term
remains common to all terms in the numerator. In the example

}_f_[(s-f'i)”}_(S+3)2(8+1)—(s+1)2-1
ds{ s+3 | (s + 3)°

and this term vanishes when s = —1, because each term in the differ-
entiation contains (s + 1). This is always the case, since the order of
the multiplying factor (s < s;)" is higher than the number of times
differentiation is required.
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By using these methods, all the coefficients of the partial fraction
expansion can be found and the transform equation can be written

n

_ K;
F(s) = 2 Py (7-68)
i=1
for simple roots (nonrepeated) and as
_ K
F(s) = ,21 GF s (7-69)

for a single root, —s;, repeated r times. The corresponding f(f) may
now be found, for the general case, by taking the inverse Laplace
transformation of F(s) as

_ [P N P@ _
i) =& [Q(s)] 2 (s + &) R (7-70)

i=1

as the time-domain solution for simple roots. Likewise, for repeated
roots,

iy 1 d-rR{(—s;) 1t~
ft) = e ”Z RS T T ey 3 (7-71)
where s;, in this equation, is the root that is repeated r times. By using
both equations for the case of both simple and repeated roots, a general
solution is obtained in the form originally given as Heaviside's expan-
ston theorem.

The method of the Heaviside partial fraction expansion may be used
to give a simplified procedure for finding the inverse transform of the
terms for a conjugate complex pair of roots. Suppose that these roots
have a real part « and an imaginary part, w. The first coefficient is
evaluated by the procedure,

K, = ggsg (8= a+tjo)| = ReH (7-72)
and the second as
K.* = gg % (6 —a=jo)|_ = Re (1-73)

The inverse transformation of these two terms gives

fi(t) = Reflelatiolt 4. Reribgla—in)t (7-74)
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This equation may be rearranged to the form

it 4. 6-:‘(m+a)]

£ = 2Ren |70 F
= 2Re* cos (wi + 8) (7-75)
The factors R and ¢ in this equation are easily found in Eq. 6-72 as
the magnitude and phase angle of the coefficient K,.
1.7. Examples of total solutions by the Laplace transformation
Ezample 6

As an example of the total solution, now that the methods of partial
fraction expansion have been reviewed, consider the differential

equation
d¥ di .
o5 45+ 50 = su() (7-76)

The Laplace transformation of this differential equation is
. di .
[szI(s) — st(0+4) — d—; ((H-)] + 4f{sI(8) — 2(0+)] + 5I(s) = g
Notice that the required initial conditions are automatically specified

in this equation. We must know, from the physical system, 1(0-) and
di/dt (0-+). Suppose the following values are found:

i0+) =1 and % (0+) =2
Inserting these initial conditions simplifies the transform equation to

I(s)(sz+4s+5)=§+s+6

_ 8+ 68+ 5
or I(s) = s(s? + 4s + 5) \

This equation may be expanded by partial fractions as

$? + 65+ 5 _E, K K.*
ss+2+7(s+2~71) s " s+2451 " s+2—l1

To evaluate K,, multiply the equation by s and let s = 0. Then

_ S 6s+5]
K= S5m0

To evaluate K, multiply the equation by (s + 2 -+ j1) and let

I{s) = +
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§ = —2 — jl as

2465+ 5 -4 — j2 2
s+ 2 —J heoa—yn (=2 —JD(=72)  —72

The complete partial fraction expansion becomes

K, =

-..."-j = git?®

j ~j
I =s+sesatsyz—A

To obtain ¢(f) from this transform equation, we take the inverse
Laplace transformation of the first term and use Eq. 7-75 with B = |
and 8 = 90° for the second and third terms to give the solution

i(t) = 1 4 2e*sgin ¢ (7-77)
Ezxzample 7

For this example, consider a series RLC circuit with the capacitor
initially charged to voltage

)E . AAA Vo as indicated in Fig. 7-5.
R=2 ohms The differential equation for

+
V =1 voit == C~1 farad /,@ L=1 henry% the current {(?) is

dz ) 1 .
L%+Rz+—éfzdt=
(7-78)

Fig. 7-b. RLC series circuit.

and the corresponding transform equation is

LisI(s) — «(0+)] + RI(s) + 5, [I(S) + ¢(0+)] =

The parameters have been specified as C = 3 farad, B = 2 ohms, and
L = 1 henry. The initial current ¢(0+) = 0 because of the inductor,
and if C is initially charged to voltage V, (with the given polarity),

g0+) _ _ Vo
- Cs 8
or —1/8if Vo = 1 volt. The transform equation for I(s) then becomes
1
Is) = 8? + 25 + 2
or, completing the square,
1
I6) = g

Using transform pair 15 of page 146,
i(t) = £-1I(s) = e~ gin ¢ (#-79)



As. 1-8 THE LAPLACE TRANSFORMATION 145
Ezample 8

.In the network shown in Fig. 7-6, the switch is closed at ¢ = 0.
With the network parameter values
shown, the Kirchhoff voltage equa-

tions are
di, ) .
a + 206, — 104, = 100u(?),

di . .
-a-f—{»zou«—mumo

Fig. 7-8. Network of Example 8.

If the network is unenergized before the switch is closed, both ¢; and
iz are initially zero, and the transform equations may be written

(8 4 20)1,(8) — 10I,(s) = 1—29: —101(s) + (s + 20)12(s) = 0
Suppose that we are required to find the current 7, as a function of
time. The transform current I:;(s) may be found from the last two

algebraic equations by determinants as

s+ 20 100/s
Ita) = l —10 0 _ 1000
2(8) = 5 +20 —10 | s(s* + 40s + 300)
l —10 s+ 20

The partial fraction expansion of this equation is

1000 _ 333 5 n 1.67
s(s 4+ 10)(s 4+ 30) s s+ 10 " s+ 30

The inverse Laplace transformation gives 7:(¢) as
12 = 3.33 — He~'% 4 1.67¢7%%

7-8. The initial and final value theorems

The initial value theorem and final value theorem find frequent use
in network analysis. To derive the initial value theorem, we allow s
to approach infinity in the equation for the transform of a derivative as

Iim
g+ JO

" et dt = tim [sF(s) — f(0-H)] (7-80)

In writing this equation, we assume that f(¢) and its first derivative
are transformable and that the limit of sF(s) as s approaches infinity
exists. Since the integral has zero value for s — «, and f(0+) is
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TABLE OF TRANSFORMS
@ Fs)
1
1. u(f)orl S
1
2.1 p©
tn—l . }_
3. =D n = integer pe
4, e 1
s —a
1
5. e G = a)t
6 ,.....,___}............_ tnm—-ieat _...__.__}m_,.,m
" (n— D! (s —a)*
7 }' (eat v 6b£) 1
‘a— b (s —a)(s — D)
8 c——at 1
(b —a)c—a) s+ ays+bs+e
e—bt
HICEDIED)
e—ct
+ (@ — ¢)}(b — ¢)
-
9,1 — ¢t G — @
1. 1
10. - sin wl m
] s
11. cos wi m
w2
12. 1 — cos wi m
) ssin 6 + wcos @
13. sin (ot + 6) s ot
gcos 0 — wsin
i w
15. e~ sin wi (s + o) +
. 5+ «a
16. e cos wi (s + o) + o?
17. sinh of 52 f o
18. cosh af 2

8% — w
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independent of s,
ix;: [sF(s) — f(O+)] =0 (7-81)

But f(0+) = Eix(:}z_*_f(t), from which we conclude that
lim sF(s) = lim f(¢) (7-82)
> ® -0+

subject to the restrictions mentioned previously. Equation 7-82 shows
that the value of f(¢) at t = 0+ is equal to the limit of the product
sF(s) as s approaches infinity.

In deriving the final value theorem we start from the same equation
as the initial value theorem, but let s approach zero. Assuming that
f(t) and its first derivative are transformable, we write .

lim 0.., F(e di = lim [sF(s) — f(0+)] (7-83)

Since s and ¢ are independent (and ¢** — 1, as s— 0) the integral
becomes

[ rwa= im0 - g0 (7-84)
This expression may be equated to Eq. 7-83 to give
lim [sF (s)] — f(BF] = Lim [f(0)] - JO+T (7-85)
from which we conclude that

1ing [sF(s)] = Lim [f(t)] (7-86)

which is known as the final value theorem. This result holds provided
all roots of the denominator of sF(s) have negative real parts. Because
of this restriction, the final value theorem does not apply in the case
of sinusoidal excitation, because the denominator roots of the trans-
form of the sinusoid are purely imaginary.

FURTHER READING

An interesting historical summary titled “The Work of Oliver
Heaviside”” by Behrend is contained as an appendix in Berg’s Heavi-
side’s Operational Calculus (McGraw-Hill Book Co., Inc., New York,
1929), pp. 173-208. Heaviside’s original writings have recently been
reprinted as Electromagnetic Theory (Dover Publications, New York,
1950) and contain an extensive presentation of his method. Far a
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more complete treatment of the Laplace transformation than is offered
here, the student is referred to the following: Wylie, Advanced Engi-
neering Mathematics (McGraw-Hill Book Co., Inc.,, New York, 1951),
Chap. 6; Gardner and Barnes, Transients in Linear Systems (John
Wiley & Sons, Inc., New York, 1942), beginning on p. 93; Churchill,
Modern Operational Mathematics in Engineering (McGraw-Hill Book
Co., Inc.,, New York, 1951) and Thomson, Laplace Transformation
(Prentice-Hall, Inc., New York, 1950). Extensive transform tables
may be found in Gardner and Barnes, Transtents in Linear Systems
(John Wiley & Sons, Inc., New York, 1942), pp. 334-356 and in Nixon,
Principles of Automatic Controls (Prentice-Hall, Inc., New York, 1953),
pp. 371-399.

PROBLEMS

7-1. Verify the following transform pair by substituting the value
of f(t) into Eq. 7-1 and integrating.

8

Llcos wit] = PR

In each of the problems that follow, repeat the procedure of Prob. 7-1
for the various transform pairs of the following table.

J(t) F(s)
T-2. 2 3_23
7-3. sinh af 5 j =
74. cosh ot p j pe
e o sin of (s + a‘;’ + w?
7-8. e co8 wt 0 _: (;;"2‘:_ -
7-1. sin (wt + 6) 8 sin 302 i chos 0
7-8. cos (wt + 0) soo = v sin ¢

7-9. Letting u = f(t) and dv = e* df, integrate Eq. 7-1 by parts
to prove Eq. 7-13.

7-10. Rework Example 1, assuming that the capacitor is originally
charged to the voltage V/2 with the upper plate positive at ¢ = 0.
Answer. (V/2R)e+/"c,
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7-11. In the network shown in the figure, C is charged to V,, and

the switch K is closed at ¢ = 0. Solve for the current i(f) using the
Laplace transformation. Answer. (V/R)ev#e,

. g ol &
K < b R
V,==C ) R '
l(ﬂ Rz i{” L
Prodb. 7-11. Prob. 7-12.

7-12. In the network shown in the figure, the switch K is moved
from position @ to position b at ¢ = 0, a steady state having pre-
viously been established at position a. Solve for the current ¢(¢), using
the Laplace transformation, Answer. (V/R,)e~(Ritaaie,

7-13. In the network shown, C is initially charged to V, The
switch K is closed at £ = 0. Solve for the current 4(f), using the Laplace

transformation. Answer. (V/A/L/C) sin (¢//LC).

¥ o »
K

R aéd g
L by

i vE 1
W==C @ %L CT /;@ éL

Prob. 7-18, Prob. 7-14,

I+

7-14. In the network shown, the switch K is moved from position
a to position b at { = 0 (a steady state existing in position a before
t = 0). Solve for the current ¢(f), using the Laplace transformation.
Answer. (V/R) cos (¢/+/LC).

7-16. Check the following partial fraction expansions by expanding

the given quotient of polynomials in partial fractions. Two of the set
are in error.

2s 1 1
@ F -1 s+1 7521
7s + 2 _ 1 2 -3
(b) 83+332+23m8+s+2+s+1
bs +13 2 3
© F¥5s+6 s+3 553

82 1
(d)s-:Tmsm1+s+1
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@ 26T 1441 141
S+T T 54T s g1
S +4s+1 1 1 2

O <+ “sriterTs
3¢ — g2 -3s4+2 1 2 2 i
(&) si(s — 1)2 =sTsats }A-{_(s—l)2
#—-52+9+9 1 61 —J +3
(B) s2(s? + 9) ms+sz+s+33+s——g3

7-16. Expand the following functions by partial fractions and find
the corresponding inverse Laplace transformation, f(f) = £-F(s).

(a) F(s) = GTF 1?"(:2 iy Answer, f(t) = cos ! — cos 21

(b) F(s) = é{m%m Answer. f(f) = 31 + ).

(e) F(s) = e 123 TE Answer. f(t) = [l + }e'(~2 cos 2t
+ sin 2¢)].

@ F6) = 55 I)is sy Answer. J(§) = e — e *(1+1).

(©) Fs) = 83(321-“ 3 Answer. () = =1 = /2 + cosh .

s+ 28+ 1
@ Flo) = (s+2)(s2+4)

(g) F(s) = FFDE + T)E Answer. f(f) = 3t cost -+ ¢ sin £,

Answer. f(t) = e~ % + % cos 2f + Fsin 2t

Solve the following differential equations by the Laplace transfor-
mation subject to the given initial conditions (where specified).

T-17. z:: 1 = 25 + e¥*. Answer. { = Ke' + Kye™ — 25 + {e*.
7-18. f;; 4 4v = gin { — cos 2f. Answer. v = K, sin 2{ + K,

cos 2t — ;,;t sin 2t + % sin ¢,

7-19. dt2 + = % 4 2¢, ¢(0+) = 4, 7 (0+) —2. Answer,
g = §t* + 2¢ + 2.

7-20. Solve Prob. 6-13(d), using the Laplace transformation. Note
that in the Laplace transformation method, special conditions of sim-
ilarity in the form of the driving force »(f) and the roots of the charac-
teristic equation give no concern—the solution of such a problem is as
routine as any other problem,
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7-21. In the series RLC circuit shown below, the applied voltage
iso(t) = sin ¢{. For the parameter values specified, find ¢(¢) if the switch
K is closed at ¢t = 0. Answer. i(f) = 3(cost + 28int —e*cost —
3¢t sin ).

. 4 Y o— AN
K R=2¢ L=1h K R
C) olt)=sin ¢ " c-gtT G, V sin wt /,‘,D L
Prob. 7-21, Prob. 7-22.

7-22. At t = 0, a switch is closed, connecting a voltage source
v = V sin wt to a series RL circuit. By the method of the Laplace
transformation, show that the current is given by the equation

. V. wlV
i = 5 sin (wt — ¢) + 7 e B/ L

where Z = /R*+ (wL)? and ¢ = tan™! %

7-23. Dr. L. A. Woodbury of the University of Utah School of Med-
icine has made use of an electrical analog in studies of convulsions. In
the network shown in the figure, the following quantities are duals:

¥ o
K I\/I}f\ T vt
%:-——-Cl 02;: RZ
Prob. 7-23.

C, represents the volume of drug-containing fluid, R, is the ‘‘resist-
ance” to the passage of the drug from the pool to the blood stream, C,
represents the volume of the blood stream, and R; is equivalent to the
body’s excretion mechanism (kidney, etc.). The concentration of the
drug dose is represented as V and the voltage v,(f) at node a is the dual
of the amount of drug in the blood stream. The analog network has
the advantage that the elements may be readily changed and the
effects studied (to say nothing of the saving of cats). Find the trans-
form equation for V.(s) with the coefficient of the highest-order term
normalized to unity.

7-94. This problem is a continuation of Prob. 7-23 concerning
Dr. Woodbury’s analog. The following constants for the network are
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gelected: C; = 1 uf, Ca = 8 uf, B, = 9 megohms, and R; = 5 meg.
ohms. If Vo = 100 volts and the switch is closed at ¢ = 0, solve for
va(t), the equivalent of the concentration of drug in the bloodstream,
as a function of time. Answer. va(f) = 13e~0021% . |3¢~0.1285¢

7-26. Find the time ¢, when the concentration of drug in the blood
stream for Prob. 7-24, is & maximum. (This information is desired so
that a second dose may be given at that time to build up the concen-
tration to the point where a convulsion is induced.) Answer. 16.7 sec.

7-26. If a second dose (the voltage equivalent having a magnitude
of 100 volts) is injected at ¢ = {, as found in Prob. 7-25, what will be
v, 88 a function of time, and what will be the maximum v, obtained?
(Note: In giving the second dose we will assume that the total voltage

is then 100 volts plus the voltage
X AN on the plates at the time the addi-
tion is made.) Answer. 14 volts in
25 sec.

7-27. In the network shown, the
1h 2h  switch K is closed at ¢ = 0 with
the network previously unenergized.
For the element values shown on
the diagram: (a) find 7,(f), (b) find
12(t). Answer (8). 1, = 3.33 + 1.21¢7%3% — 4 54238,

7-28. With switch K in position a, the network shown in the figure
attains equilibrium. At time ¢{ = 0, the switch is moved to position b.
Find the voltage across R, ag a function of time.

It

aLK
T LY

b 1 puf
i == 2 uf Ry

1 meg @ 5 megQ

iim-b
[
8
<

<

LN

Prob. 7-27.

-y -

|+

o

1000v

Prob. 7-28.

7-29. Find #,(¢) resulting from closing the switch at £ = 0 with the
circuit previously unenergized. The circuit constants are: L, =1
henry, Ly = 4 henrys, M = 2 henrys, R, = Ry = 1 ohm, V = 1 volt.

M
R, . .

+
VZE' /;D L Elfz@ R,

PI'Ob. ?'”u

X
:




CHAPTER 8

TOPICS IN THE TIME DOMAIN
AND THE FREQUENCY DOMAIN

The time-domain response of networks to various driving forces has
been considered in previous chapters. In this chapter, time-domain
studies will be extended by specializing the driving forces (current
sources and voltage sources) to the following cases: (1) single pulses
and related waveforms, (2) time-varying functions which recur a finite
number of times, and (3) recurring waveforms which cannot be
described by a single equation. Examples of such waveforms are shown
in Fig. 8-1. The transient response of networks subjected to these

v v v

AN
vV

{a) {b) {c]
.
Fig. 8-1. Driving force waveforms: (a) pulse; (b) section of sine wave;

(c) square wave,

driving forces will be studied, using the Laplace transformation. The
time-domain studies will be followed by related frequency-domain
studies, using Fourier series and the Fourier integral.

8-1. The unit step function
The unit step function is defined as

1 t>0
u{l) = ! -
(&) } 0 <0 (8-1)
for a function which changes abruptly from zero to unit value at the
time ¢ = 0. This expression may be generalized by the definition

1, l>a (8-2)

u(tma)w)(} t<a

for a step function which changes abruptly at the.time ¢{ = +a. In
general, the step function has unit value when the quantity (¢ — a)
153
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nas 8 positive value, and has zero value when (¢ — a) is negative.
This definition will apply for any form of the variable. Hence the
function u{¢ 4+ a) is one that changes from zero to unit value at{ = —a.
Similarly, the function u(a — t) is one that changes from unit to zero
value (with increasing time) at the time ¢ = a.* These two functions

1 uit) 1 uit—-a)

1 uit+a) 1; ule-l)

t a ¢

Pig. 8-2. Unit step functions:

1,1 > —a; D e Lt <a
u(t+a)={0’t< —a u@ =4 {9,t>a
0 U1 uit-a)~ uit-b
uft—a) ult—al™ u )
r‘—"-_‘--
1 —1
)
! b
; ¢ a bt
~uit~b)
vl uib-t) e Ul wib=t) =~ ula=1)
a
B R SN e b ¢
] s —~ula-t)
v o e e o
vuldb-t) _uft-a)_ v ulb=1) - u(t-a)
I =
i
TS bt P bt

Fig. 8-8. Construction of pulse from unit step functions.

are represented in Fig. 8-2. The use of unit step functions with defini-

tions as illustrated in these examples will make it possible {o represent

functions with the time axis shifted. Further, the unit step functions

can be used as building blocks to represent other time-varying func-

tions such as a pulse. The construction of a pulse from two unit step

functions is illustrated in Fig. 8-3. A unit step function u(f — a) and
* Note that u(a — ¢) % —u(t ~ g).
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a unit step function u(f — b) are shown in the figure. By taking the
difference between these two step functions,

v(f) = u{t — a) — u{t — b) (8-3)

a pulse is formed of unit amplitude from ¢t = a¢ to ¢t = b. The same
unit pulse may be formed in terms of the unit step function building

blocks as
v(t) = u(b — t) — ula — ¢t) (8-4)

or () = ulb — t) - u(t — a) (8-5)

These operations are illustrated in Fig. 8-3.

As another example of the use of unit step functions in constructing
time-varying waveforms, consider the mathematical representation of
a square wave. A pulse of width a starting at ¢ = 0 is given by the

equation
u(t) — u(t — a) (8-6)

as illustrated in Fig. 8-4(a). Instead of subtracting «({ — @) from u(?),
suppose that 2u(f — a) is subtracted. The resulting waveform will

v v
+1 +1 +1
2a a (2a¢ |3a l4a |5a
a 4 a t t
~1} -1} e
(@} {b} {c)

Fig. 8-4. Evolution of a square wave,

then change from the value of +1to —1 at ¢ = a. By next adding the
unit step function u(¢ — 2a) to the function, the waveform assumes
zero value for all time greater than ¢ = 2a. This construction is illus-
trated in Fig. 8-4(b) for the function

() = u(t) — 2u{t — a) + u(t — 2a) (8-7)

By following in this pattern, any square wave (square only if @ = 1,
of course, but known as a square wave for any value of a) form of time
variation can be synthesized. It is clear that a square waveform which
continues infinitely long in duration is given by the infinite series

v(t) = u(f) — 2ult — a) + 2u(t — 2a) — 2u(t — 3a) + ... (8-8)

This waveform is shown in Fig. 8-4(c). This infinite series representa-
tion will be found to be more convenient than it appears when it is
shown that the Laplace transformation reduces to a closed form, As
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& third example of the representation of time-varying waveforms, con-
sider the problem of representing the waveform shown in Fig. 8-5. The
waveform is sinusoidal from { = 1 to{ = 3 and from { =5 to { = 7.

v

Flp---- /\ ““““““““““““““ /\ o
0

Fig. 8-6. Two sine-wave cycles,

It has zero value for all other times from ¢t = —w» tot = 4w, A
gine wave with a period of T is given as

. 2r

SIN 7 t (8-9)

In this particular example, T = 2 and the time axis is shifted by 1 unit
of time for the first wave and by 5 units of time for the second. We
will follow a step-by-step procedure in constructing a function to
represent this waveform.

(1) The function sin #(t — 1) has the waveform shown in the inter-
val? = 1tot = 3, but the waveform also exists for all other time.

(2) Multiplying sin #({ — 1) by u(t — 1) eliminates all waveform
at times before ¢ = 1. Subtracting from this product a similar
product shifted to the time ¢ = 3 cancels all times after { = 3.
This product is u(t — 3) sin #(f — 3). Hence the first cycle of
sine wave is completely represented by

w(t — 1) sinx(t — 1) — u(t — 3) sin (¢ — 3) (8-10)

(3) By the same reasoning, the second cycle of sine wave is rep-
resented as

u(¢ —~ 5) sin x#(t — 5) — u(t — 7) sinx(t — 7) (8-11)

(4) The total waveform is the sum of the two expressions. This
follows because each function is defined only for its interval
(1 to 3 and 5 to 7, respectively) and is zero for all other time.
Hence the waveform of Fig. 8-5 may be represented by the
equation

p(t) = w(t — 1) sinx(t — 1) — u(t — 3) sin (¢ — 3)
+ut ~B) sinw(t — 5) — u(t — ) sinx(t —7) (8-12)
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By following similar patterns, any time function can be represented
by a time series and unit step functions. ] *

8-2. Other unit functions: the impulse, ramp, and doublet

The waveforms which have been described mathematically in the
last section will be used in this chapter to describe driving forces
applied to networks consisting of one or more electric elements, The
voltage-current relationships for the individual elements are

van’i, vLng%’ and vcﬁ%/idt
1

or 'inz%v, ic=0%r and ’inﬁffvdt

Whether the driving force is a voltage source or a current source, volt-
ages and currents in the network are described by integrals and deriv-
atives of waveforms. Consider a step function voltage driving force.
If this waveform were applied to an inductor, the current resulting
from this voltage would be the integral of the voltage. If a voltage
step function were applied to a single capacitor, the current would be
the derivative of this voltage. Evidently we shall be concerned with
both integrals and the derivatives of driving-force functions. For the
unit step function, such waveforms are illustrated by Fig. 8-6. The

Integral = f vdt Ramp function

Function=v .
u Step function

t

8->

Impulse function

o dv
Derivative o

t

Fig. 8-6. Derivative and integral functions.

integral of the step function varies linearly with time, and is known as
a ramp function (or a linear ramp). The derivative of the step function
has a nonzero value only at the beginning of the step function: there
the value is infinite, for all other values of time the value is zero. This
rather unusual function with only one nonzero value (and that infinite)

is known as an impulse function.
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If the step function has unit magnitude, the slope of the correspond-
ing ramp function is unity since the ramp function is the integral of the
step function. A ramp function with unity slope is known as a uni!
ramp. In general, the slope of the ramp function is equal to the mag-
nitude of the step from which it is derived.

The unit impulse is not defined so easily as the unit ramp. Consider
the modified ramp function shown in Fig. 8-7. This function is linear

1
i=[xdt '
S~ f
blem a — € ]
1
i K3
X" 1/a
4
[l 7 B i

Fig. 8-7. Derivation of unit impuise,

from ¢ = bto ¢ = ¢ and then has a constant value of unity for all time,
The time interval (¢ — b) is defined as a. The derivative of this mod-
ified ramp function is a pulse of width a as shown in the figure. (Con-
versely, the integral of the pulse function is the linear ramp.) If the
ramp function is designated as the variable ¢, the pulse has a magnitude
di/dt, the slope of the ramp. The slope of the ramp is the distance 1
divided by the distance a; that is,

di 1

el (8-13)
Now the area of the pulse is ¢ X 1/a = 1, for any value of a. Asa
approaches zero, the modified ramp function approaches a unit step
function. At the same time, the pulse appreaches infinite height and
zero width with the area remaining constant af unily. In the limit, this
function is known as a unst impulse, and is designated (¢ — b).* This
symbolism indicates a function which is zero when ¢ > b and infinite
when ¢ = b. Also, since the total area under the curve is unity,

f st -byde=1 (8-14)

(The integral has the same value for any limits which bound the time
t=1b)

From this discussion, we see that the derivative of a unit step func-
tion is a unit impulse. The same process of reasoning might be used

* In mathematical physics, this function is called a Dirac delta function.
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to ﬁnd.the derivative of the unit impulse. Consider the waveform
ShOWI'l In Fig. 8-8—a trapezoid made up of a pulse with two ramp
functions. In order to visualize the mathematical limit, first let a — 0,
then let d — 0. As a approaches zero, i assumes the form of a pulse

i i foo
§ Unit impulse
tol/d i
3 i
] : & -
o P
I A | B AL
- 1- Vo Unit doublet
1, 1 i lt
b 1 1/ad b ¢
a =

Fig. 8-8. Derivation of unit doublet in the limit, a » 0, d — 0.

and di/dt becomes two impulses, separated by the distance d, one
positive going, the other negative going. As d approaches zero,
1 approaches a unit impulse; di/dt remains in the form of two infinite
going impulses, but the two impulses superimpose at { = b. This
resulting function is called a unit doublet. It is the derivative of a unit
impulse.

This process might be continued to give a unit triplet. These func-
tions, with discontinuous behavior with time, are known as singular
functions. Of this family, the unit step function is an old friend. The
ramp function, while not too familiar, seems friendly enough. But the
unit impulse and unit doublet are rather terrifying! To break the ice,
let us see what happens when the impulse is applied to ordinary ele-
ments—inductance and capacitance.

The basic equation relating current and voltage in an inductance is

.1 f
1=+ | vdl 8-15) + i
L ( () 8it-a) ’;‘%

For this problem,

v(t) = 8(t — a) (8-16) Fig. 8-9.

indicating a unit impulse at time { = a. Substituting into Eq. 8-15 to
find the current, we obtain

1
b = for b >
i(t)m%ﬁ. 8(t — a) dt = I(; fr b<a (8-17)
or a
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That is, application of a unit impulse at { = a causes a step function
of current to start flowing at t = a. The current is

() = u(t - @) (8-18)

t"'!

whlanig s
This is a rather unusual beha E‘or for the conservative inductance, but
after all, it was hit by a rather unusual driving force. Another way of
stating this unusual property of the unit impulse is that a voltage
impulse of L units will cause a current of 1 amp to be established in an
inductance immediately. A similar

relationship may be found for a
m capacitor. Let a current source of

T() $t-al TC " value
i(t) = 8t —a) (8-19)

Fig. §-10. be applied to a capacitance asshown
in Fig. 8-10. The voltage across
the capacitance is given by the basic relationship

v(l) = f i(t) dt (8-20)

This integral is evaluated as before and the resuit is
o(t) = éu(t ~ a) (8-21)

In other words, a unit impulse of current applied to a capacitance
causes 1/C volts to appear instantaneously on the capacitance
because a unit impulse of current delivers a unit charge.

To illustrate the application of the concept of a unit impulse in
terms of a familiar problem, consider the second-order differential
equation

dzz
Lo + + i = (1) (8-22)
If the driving-force voltage is taken as a unit step function v(8) = u(f),
the solution of the equation is the familiar solution for an RLC circuit
studied in Chapter 6. Now suppose that the equation is differentiated

once as
d? d {di ldi d
Ldt’ ( ) + R — (-d_t) + Cai =@ [v(8)] (8-23)

This equation is exactly the same in form as Eq. 8-22 where the var-
iables di/dt and dv/dt have replaced < and v. Now if v(¢) is a unit step
function, the derivative of v(f) with respect to time is a unit impulse
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function, §(f). With the solution for ¢(¢) of Eq. 8-22 known with a
unit step function driving force, the solution for Eq. 8-23 with a unit
impulse driving force can be found by simply differentiating i(t) found
for Eq. 8-22. In other words, the unit impulse response of a network
can be found by solving for the unit step function response of the net-
work and differentiating it.

The same process will work in reverse. The step function response
may be found by integrating the impulse response. Likewise, the ramp
function response may be found by integrating the step function
response. Since all the singular functions are related by differentiation
and integration, once the solution for one singular function is known,
the solution for other singular functions is readily found by simple
differentiation or integration. This is an important property of sin-
gular functions.

8-3. The Laplace transform for shifted and singular functions

The two previous sections of this chapter have been devoted to
mathematical representation of shifted and singular functions. In this
section, we will consider the derivation of the transforms of these
functions.

The unit step function beginning at ¢ = a (where a is a constant),
shown in Fig. 8-2(b), has been represented by the notation u(t — a).
The Laplace transform of this function may be computed from the
defining equation,

F(s) = f " f(e— dt
0

For the case, f() = u(t — a),

— e"""l‘ b

8

Lult — a) = / lemst dt =

4

Lult — a) = e (1) (8-24)

8

This equation is made up of the product of two factors: the factor
1/s is the transform of the unit step function beginning at the time
t = 0; the term e™** is a function which effectively ‘‘ shifts” the trans-
form from one beginning at { = 0 to one beginning at { = a.

The example given for a unit step function may be generalized for
any time function f(f) which is delayed in its beginning to some other
time, { = a. Such a time shifted function is represented as

f(t — a)u(t — a) (8-25)

To find the transform of this equation, we write the defining equation
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1n terms of a new variable, ¢'; that is,

Ps) = L " (e b (8-26)

Let the variable # be defined as ¥ = ¢ — a such that the defining
equation becomes

F(s) = f ) f(t — a)e= (e gj (8-27)

or = [ ) ft — a)et(e*) dt (8-28)

The constant factor ¢ may be removed from within the integral and
the lower limit of the integral changed to 0 if f(f — a) is multiplied by
u(t — a); thus

F(s) = e [0 ) flt — a)u{t — a)e*t dt (8-29)

The integral expression is recognized as the transform of the time func-
tion f(t — a)u{t — a), so that
Lf(t — a)u{t — a) = e~=Lf(t) (8-30)

or, conversely,

L£le 2 Lf(t) = f(t — a)u(t — a) (8-31)
These last two equations tell us that the transform of any function
delayed to begin at the time ¢ = a is equal to ¢~ times the transform
of the funetion beginning at the time ¢ = 0.

A number of examples will illustrate the use of the last two equa-
tions. In the network shown in Fig. 8-11, a pulse of unit amplitude

{a) (]]
Fig. 8-11. Pulsed RL circuit.

v
R=1ohm

L =1 henry

and width a is applied to a series RL ecircuit. Let it be required to find
the current flowing in the network, The pulse is given by the difference
of two unit step functions as

v(f) = u(t) — ult — a) (8-32)
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From Eq. 8-30 the transform of this voltage is
Vis) =+ (1= e=) (8-33)
Substituting this value of V into the transform equation,
LisI(s) — i@-H)] + RI(s) = 5 (1 — &=) (8-34)

Substituting the parameter values and the initial condition, 7(0-4) = 0
gives

_ Q= e
I(s) = SEET) (8-35)
This expression may be written as a sum of terms,
1 g
I(s) = s(e+1) s(z+1) (8-36)

The first term of this equation is easily expanded by partial fractions
to give

1 1 1
ss+1) s s+1 (8-37)
In terms of this expansion, Eq. 8-36 may be written
I() =~ — —— T2y €7 (8-38)

s s+1 s s+ 1

The inverse Laplace transformation may be carried out term by term
in this equation to give

L= I(8) =12(f) = 1 — e —u(t — a) + e Du(t — a) (8-39)

The third and fourth terms of this expression differ from the first and
second only in that they are shifted in time and are opposite in sign.
The waveform represented by this equation is plotted as Fig. 8-12.

—p— b
;T / v / 1-¢
i L
\\ i
\~~/
a t
~ult~a)te t-dyit-q)

¥ig. 8-12. Response of RL circuit.
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The result we have obtained is the same as would be found by using
two voltage sources and the principle of superposition. The resulting
current waveform, shown in Fig. 8-12, is the summation of the two
responses of the circuit caused by the superimposed voltage sources
that make up the pulse.

As a second example, consider the problem of representing the
periodic square wave shown in Fig. 8-13 by a transform. The square

v
+1

Fig. 8-13. Periodic square wave.

wave has been represented by an infinite sum of step functions of the
form ‘

v(t) = u(f) — 2u(t — a) + 2u(t — 2a) — 2u{t — 3a) + ... (8-40)
The Laplace transformation may be applied to this expression term by
term to give
e em-Zaa emsaa

-2 + 2 - 2
8 8 8

Vis) =

@3 | ek

R S (8-41)
By factoring out common terms, the equation becomes

V(s) = = [l — 2e~s(1 — e~ + e~2¢ — g=%¢ 4 )] (8-42)

@]

The infinite series appearing in this equation may be identified by the
following expansion from the binomial theorem,

1

TFom= e~ te™ e+ .. (8-43)
such that V(s) becomes
1 2¢0* 1{1 — g
Ve = ;(1 - "1"“"—}"—"'&":-"7") =; (rw) 644
or, finally,
V(s) = - tanh = (8-45)
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The procedure outlined in the example may be applied to any
periodic function. The transform of any such function of period T is

2r

© T
F(s) = [0 F)e*t dt = -L F(t)et di 4 r f®etdt + ... (8-46)

By successively shifting each transform term by ¢~™7 where n is the
number of shifts necessary to make the limits of the integral expression
0to T, we have

T
F(s) = (1 4 e 4 =27 .. .) j; e~ *f(t) dt (8-47)

Using the binomial theorem to identify the series,

T
F(s) = _1—_——'18_“;;/(; 6—“f(t) di (8"48)

This equation may be used to compute the transform of any periodic
waveform, and requires only one integration.

We now turn our attention to the transform of the unit impulse
8(t — b). The properties of this function were discussed on page 158.
In terms of the sketch shown as Fig. 8-14, the unit impulse may be
defined as the limit

5t — b) = lim %[u(t —b) — ult — b — )] (8-49)

The Laplace transform of this limit equation is

e—---ba _ e—(b+a} L3 v

Lt —b) = ‘1‘13{1) p ’

(8-50) ~tal

This limit may be found by the ¢
application of ’Hospital’s rule. The
result is ~l/a

L£8(f — b) = e P (8-51) Fig. 8-14. The unit impulse.

where b is the time of appearance of the unit impulse. When b = 0
(that is, the impulse occurs at ¢ = 0), we have

L£o(f) =1 (8-52)

This result has significance in terms of a transfer function. The
voltage ratio transfer function of a network is

Vﬂut
=9 - 6 (3-53)
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If v(2) = 8(f), & unit impulse, then Vi.(s) = 1, and
Vou(s) = G(s) (8-54)

that is, the output voltage from a unit impulse input voltage is deter-
mined solely by the transfer function of the network. Such a response
truly characterizes the network. We will exploit this fact in our study
of the convolution integral in the next section.

Consider next the unit doublet and the transform of this function.
The procedure parallels that given for the unit impulse. The unit
doublet is defined by the limit

lim 51-2 () — 2u(t — a) + u(t — 2a)] (8-55)

The Laplace transform, term by term, of this limit is

- G4 208
lim (1 — 22 + e2%)

a0 sa’

(8-56)

Again, I'Hospital’s rule may be used. The second differentiation of
numerator and denominator yields
lm (—ses* + 28e%) = g (8-57)
a—0 -
Thus the unit doublet has the fransform s. This result might have
been anticipated from the fact that the doublet is the derivative of the
unit impulse. If initial conditions are ignored, differentiation corre-
sponds to multiplication by s, while integration corresponds to division
by s. The relationship among the family of singular functions (nof
shifted from ¢ = 0) is tabulated as follows:

Function Laplace transform
Unit ramp 1/s?
Unit step 1/s
Unit impulse H
Unit doublet s
Unit triplet s?

The table might be further extended either direction (up or down).
As was suggested earlier, if the response to any of the singular functions
is known, the response for any other singular function may be found by
differentiation or integration. Further, from one known response (fre-
quently the impulse response), the response for any other driving force
may be found by the use of the convolution integral to be discussed in
the next section.
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8-4. The convolution integral

An integral expression that appears frequently in network theory
has the form

0(O) = SFy()Fa(s) = L A= NAM D (858)
where £y (s) = fi() and £-Fy(s) = fald)

where ) is a variable of integration. This expression is known as the
convolulion integral® in which f,(¢) and f:(f) are convolved to give g(¢) by
the process of convolution. In this section, we will study the applica-
tions of the convolution integral: the use of this equation to find new
transform pairs and the use of this equation to find the response of
networks for complicated inputs.

As an example, suppose that the f(f)’s corresponding to F(s) = 1/s
and to F(s) = 1/(s + 1) are known, and that the inverse transform
for F(8) = 1/s8(s + 1) is to be found. If we designate F1(s) as F1(s) =
1/s, then fi(t) = 1 or u(f), and similarly, if Fu(s) = 1/(s + 1), then
f2(t) = e~t. From Eq. 8-58, fi(f) and f:(f) may be convolved to give
g{t) as follows:

i f

s(s + 1)

i
= — A)e=*
= L u(t — Ne=* da .

The evaluation of this integral ex-
pression requires interpretation of
the terms in the integral which are \L
shown in Fig. 8-15. The exponen- = 5 T
tial e is shown for both positive ¥ig. 818, Functions involved in the
a',nd negative A, Thfe unit step func- evaluation of the convolution integral.
tion u(t — A) has unit valuefor A <¢

and zero value for A > ¢, as was discussed in Art. 8-1. Since the unit
step funetion (¢ — XA) has unit value over the limits of integration, it
may be removed from the integral expression to give

g(t) = £

¢ ¢
g{t) = /; e d\ = --—e“""] = ] e gt (8-59)

0

The same result was given by partial fractions in the last chapter. It

* Proof of this equation can be found in Salvadori and Schwarz, Differential
Equations in Engineering Problems (Prentice-Hall, Inc., New York, 1954), p. 214;

also in Wylie, Advanced Engineering Mathematics (MceGraw-Hill Book Co., Inc.,
New York, 1951), p. 188.
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should be pointed out that the choice of functions to be designated
f1(t) and fi(¢) is arbitrary and does not affect the resuit.
Consider next a two-terminal-pair network, shown in Fig. 8-16, with
a voltage ratio transfer function G(s).*
Vile) Glel Vel Assume that the output voltage trans-
“ form is given in terms of the input
voltage transform by the equation

Fig. 8-18. Two-terminal-pair

network. Vi(s) = G(8)V(s) (8-60)
where V,(s) is the input voltage transform and V;(s) is the output volt
age transform. In terms of the convolution integral, let

Fi(8) = Vi(8) and fi(t) = vi(t) (8-61)
and Fa(s) = G(s) and f2(f) = h(t) (8-62)

Function Fy(s) is identified as the transfer function G(s); f:() = A{f)
is the related time-domain response. From the discussion of the last
section, it will be recognized that h(f) is the unit impulse response of
the network with a transfer function G(s). For a unit impulse input,
the output is determined by the inverse Laplace transform of the
transfer function. This function 7s A(f). From the convolution integral,

g(t) = S HF1(8)F(s)] = &~V (s)G(8)] (8-63)

By Eq. 8-60,
g(t) = £ Wa(s) = v3(2) (8-64)

Thus g(¢) is identified as the output voltage in the time domain., The
convolution integral has the form

po(t) = ﬁ "ot = NAQ) dh (8-65)

This equation indicates that if A(f), the unit impulse response, is
known, only the input voltage v,(f) need be specified in order to deter-
mine the output voltage! In other words, any input convolved with
the unit impulse response gives the output.

In order to get a better picture of the meaning of the convolution
integral of Eq. 8-65, let us examine each term in the expression. First,
consider the term, vi(¢{ — A). An arbitrary v,(t) is shown in Fig. 8-17.
In terms of this plot, what is A\? When ¢ = 0, then v;(t — A) = v,(~MN)
and when ¢ = A, then v;({ — \) = v;(0). Evidently A iz a quantity
measured backward from any ¢; that is, it is a time interval measured

* Transfer functions will be studied in Chap. 10. For the present, assume that
@(s) is an algebrajc function relating V',(s) and Vi(a).
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negatively from some specified reference time £. This is illustrated in
the figure. The quantity A can vary from O to t, the limits of the
integration. As +X\ varies from 0 to {, then v,(f — \) ranges through
all past values of the input (the input is assumed to start at ¢ = 0).
What about h(f) and A(A)? The quantity A(t) is the transient response
to the unit impulse. Its exact form depends on the transfer function,
which we have not yet specified. It might have an appearance gimilar
to the waveform shown in Fig. 8-18. A plot of h(A) could be super-

h
v
e
vt
A
t Y ¢
0 - A t
Fig. 8-17. Arbitrary input voltage. Fig. 8-18. Impuise response.

imposed on Fig. 8-17 with X increasing from { = ¢ to { = 0 (that is,
backward from Fig. 8-18). The product of A(QA) and vi({ — A\) must
next be integrated from O to { to give the output response. This process
can be thought of as weighting all past values of the input by the unit
impulse response. Since A(\) is usually small for large A, the output at
any time—found by integration—is mainly influenced by recent values
of input. “Very old” values of input have very.litile effect on the
present output. Strictly speaking, the present output is determined by
all past history of the input, weighted by the unit input response. For
complicated forms of »:1(?), it may be necessary to use numerical or
graphical integration to find v,(¢) from the

convolution integral. Further, the integra- ° IVthm" °
tion must be repeated for each value of ¢ L1 farad
of interest.

As a very simple application of this o

concept, suppose that the response from the
driving force v; = e~ is required for the
two-terminal-pair network shown in Fig. 8-19. For this network, the
transfer function for the voltage ratio is*

Fig. 8-19. RC network.

1
From a table of transforms, the corresponding h(?) is found to be
h(t) = e (8-67)

* The computation of this transfer functions is given in Chap. 10,
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Then, from the convolution integral,

[ 4
vs(t) = L e~ 2—Ne) g) (8-68)
t 14
= g~ ¥ f ePe=2 g\ = e~ (8-69)
0 0
Finally, Ve(l) = e (et — 1) = et — ¥ (8-70)

For this particular example, expansion by partial fractions is more
direct. For more complicated forms of input, the convolution integral
can be used to advantage.

Thus far the application of the convolution integral has been in
terms of the unit impulse response of a system. If the unit impulse
response is known, the unit step function response can be found by
integration as discussed in the last section. In some cases, however,
the step function response is more conveniently recorded. The con-
volution integral can be put in another form for this case. Equation
8-65, which is ‘

D:(t) = L Ul(t e )\)h(l) dX (8-71)
can be integrated by parts by letting u = v1{f — ) and dv = h(A) dA.
The resulting equation is

ve(t) = k(t)v,(0) + L ‘ k(\vy' (2 — A) dh (8-72)

where k(f) is the unit step function response of the system. We note
that integration of h(\) to give k(A) is compensated within the integral
by differentiation of v, with respect to time.

This last equation illustrates a useful property of convolution. If
the unit step function response of a system is determined, the response
of the system to any input v, is fixed and can be determined by con-
volution. The statements made for the unit impulse and unit step can
be extended to any of the family of singular functions.

8-5. Fourier series

This section marks the turning point in our study. Behind are
studies in the time domain, the response of a network to & given time-
varying driving force. The studies yet to come concern the response of
a network to a sinusoidal driving force of variable frequency in addi-
tion to time-domain topics.

The modern electrical engineer must be bilingual when speaking of
network response. He must speak the language of the time domain
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and must also be trained in the language of the frequency domain. He
may think in either language, but he must be able to translate from
one to the other at a moment’s notice. The translation process may be
purely mechanical, ‘““large bandwidth’ equals ‘‘desirable step function
response.” Or it may be based on an understanding of the concepts
of the two domains in terms of a common root or origin.

To begin with, we have now extended our time-domain studies to
include the response of a network to (1) a nonrecurring pulse and (2)
recurring and periodic waveforms such as the square wave. We will
next study these two classes of driving force functions in terms of
sinusoids.

What do we mean by a periodic function (or waveform)? The
familiar sine wave is periodic. If represented as sin wf, and if 6, is some
value of wt after wt = 0, then for a sine wave,

sin 8, = sin (2nr + 6y), n = any integer

since the function has identical form from wt = 0 to wf = 2r, from
ot = 27 t0 wt = 4w, etc. Similarly, any function is periodic in wt if
f(6;) = f(6; + 2nx) and the period is 2.

Such periodic functions were studied by the French mathematician
Fourier (1768—1830) who was the first to show that periodic functions
could be expanded in series form in terms of harmonically related
sinusoids as

flwt) = ao + a; cos wt + az cos 2wl + ... + a, €OS nwl
+ ...+ bsinwt+ ... basinnwt+ ... (8-73)

"This series is known as the Fourter sertes, and the process of represent-
ing a periodic function by such a series is Fourier analysis. The problem
of analysis is determination of the values of the coefficients of the
Fourier series, ag, a1, @s, . . ., by, by, ..., for a given time function f(w?).

Suppose we select the coefficients of the Fourier series such that
ar = 1, and b, = —1, and all other coeflicients are equal to zero. The
plot of the combination of the two functions with ¢ is shown in Fig.
8-20, and the resulting f(wt) has small amplitude from 0 to » and large
amplitude from = to 2r. This distorted waveform resulted from the
combination of merely two harmonically related terms. It seems quite
possible that any periodic function could be synthesized with the infi-
nite number of terms that are available in the series.

Equations for the coefficients of the Fourier series for use in anal-
ysis are found by the mathematical procedure of (1) multiplication of
the series by a suitable factor, (2) integration of the resulting equations
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Fig. 8-20. Waveform resulting from the addition of (cos wi) and
{ — sin 2wt).

term by term over the period, and (3) simplification by the use of the
following definite integrals.

2%
/ cos nwt dwt = 0 n # 0 (8-74)
0
b .
[ sin nof dot = 0 n#=0 (8-75)
0
2x
[ gin mwt cos nwl dwl = m#n (8-76)
0
o
./; 8in nwt cos nwt dwt = 0 n #0 (8-77)
2x
f sin mwt 8in nwt dwf = 0 m #E n (8-78)
o
2x
f co8 mw! co8 nwt dwt = 0 m#n (8-79)
0
2x
[ cos? nwt dwl = » n 0 (8-80)
0
2x
f 8in? nwt dwt = x n#0 (8-81)
0

These equations also hold for any other period, 8, to 6; -+ 2x, and the
limits of the integrals can be replaced by these more general terms.
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In evaluating ao, no multiplying term specified as step 1 is required.
Integration of each term of the Fourier series gives

2r

2 2% 2%
. flwt) dwt = agﬁ dwt -+ alﬁ cos wi dw! + azﬁ co8 2wt dwt

2%

2x
+...+a,.f cosnwt+...+b1f gin wi dwt + ...
0 0
o
-+ b“.[ sin nwtdwt + ... (8-82)
0

assuming that such term-by-term integration is permitted. In Eq.
8-82, all terms on the right except the first have zero value by Egs. 8-74
and 8-75. Hence the total equation reduces to

2r

. flwt) dot = ao(2n) (8-83)

1 2r
or o = 5- ] flwt) dot (8-84)

To find a, for n other than zero, each term in the Fourier series is
multiplied by cos nwt and integrated from 0 to 2x. In the resulting
expression, all integrals will vanish except the one of the form of
Eq. 8-80, which is the integral with a coefficient a,. The equation thus
simplifies to give

2x
Gn = i / f(wt) cos nwt dwt (8-85)
0

Similarly, the b, coefficient is evaluated by multiplying by sin nwt and
integrating over the period 0 to 2x, giving

2=
bn = 1 f(wt) sin newt dwt (8-86)
0

These three equations determine all coefficients of the Fourier series,
These integrals hold when f(wf) represents a finite periodic function
with at most a finite number of maxima and minima and a finite num-
ber of discontinuities in every finite interval. These are the Dirichlet
conditions, which must be satisfied for the Fourier series representation
of f(wt) to be valid. The practical consequence in terms of engineering
application is that the Fourier series can be written for engineering
functions without concern.

The amount of labor involved in the evaluation of the coefficients
can be reduced when there is symmetry with respect to the axis in the
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plot of f(wt). Figure 8-21(a) shows & plot of sine and cosine functions
for positive and negative values of wf. The cosine function is seen to
have symmetry about the f axis, the same value for +wt and —wi.
Such a funection is said to be an even function. In the case of the sine
function, the value of the function for —wf is the negative of that for

Cosine f Square wave f

-\y o -

(a)
Sine f Triangular wave  f

. /\ /
" *§ -otf \/m

]

Fig. 8-21. (a) Even functions—cosine and square wave: (b} odd
functions—sine and triangular waves.

4wt and vice versa. Such a function is an odd function. Any general
function may be described as odd or even when it meets the following
conditions.

Even function: flwt) = f(—wt)

0Odd function: flwt) = —f(—wt)

An even and an odd funection are shown in Fig. 8-21(b), a square wave
and triangular wave, respectively. The square wave is an even func-
tion (although it might be made odd by shifting the wt axis). Being
an even function, every term in its Fourier series representation must
also be even; a single odd term would destroy the even symmetry.
The same argument can be applied to the triangular wave in that its
Fourier series must contain only odd terms. These conclusions of this
discussion can be verified mathematically.*
The equation for the ao coefficient of the Fourier series is

1 2r
Qo = 5;/;' flwt) dwt

This integral represents the area under the f(wf) curve from 0 to 2r.

* For example, see Wylie, op. cit., p. 122, or SBalvadori and Schwars, op. cif.,
p. 369.
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If, s in the case of the square wave and the triangular wave of Fig.
8-21(b), there is as much positive area as negative area, the value of
ao is zero. These three conclusions are summarized in the following
table.

Simplification of

Condition Fourier series
flot) = f(—wi) bs = 0, all n
flwt) = —f(—wt) an = 0, allnincludinga,
Equal positive and negative gy =0
areas under the waveform over
one cycle,
Ezxample 1

Figure 8-22 shows a square wave function which we wish to represent
by a Fourier series. From the figure it is seen that the symmetry is

volts
+V

-2% - 0 % x 3 2x

—wt wt

Fig. 8-22. Square wave function,

such that v(wf) = v(—wt), and so b, = 0. Since the total area under
any cycle adds to zero, the coefficient ao is zero. The coefficients a,
are determined by evaluating the integral

2r
An = 1 f v{wt) cos nwi dwt
T Jo

The voltage v(wt) has the following set of values over one cycle:

Interval v{wl)
Otown/2 V
r/2 to 3r/2 -V
3r/2 to 2n |4

These values may be substituted into the integral equation to give
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a, 88

ﬂ,.=

1 */2 Bw/2 %
- (V ‘L cos nwl dwt — V [ cos nwldwt + V [ co8 nwl dwt)

/2 8x/2
2x ')
3n/2

3x/2
+ sin nwt

The term in parenthesis has the value of +4 for odd values of n, and

zero for even values; hence

x/2
~ 8in nwt

V( )
= — | 81N Nwi
nr

0 ®/2

4
+V, n=12529 ...
nr
=44V o7, ..
nw
0, n = even integers

Thus the Fourler series is

v{wt) = %-‘_I (cos wt — 3 cos 3wt + § co8 Swt — + cos Twl + ...)

By a Fourier expansion, we have shown that a sum of voltage terms
each varying sinusoidally is equivalent to a square wave, as illustrated
in Fig. 8-23. By the principle of superposition, the response of each

it

it}
; v wi Lo
k3
:‘% KXY
viwt) Network -‘5-:5 5wt Network

t -
-
nwt
@t o
{a) {b)

Fig. 8-28. Two equivalent systems: the Fourier series expansion of g
time-varying driving-force function.

generator can be determined with all other generators short-circuited,
and the total response will be the sum of the individual responses so
found (as discussed in Chapter 4). This may appear to be complicat-
ing the problem rather than simplifying it, many solutions instead of
just one being required. We have yet to show that it is easy to com-
pute the response as a function of frequency by complex algebra and
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that in many cases we are not so interested in the actual response as
we are in the frequency response required for a given waveform. In
solving a problem, we have a choice between the solution of the tran-
gient problem (the time domain) and the solution of response in terms
of & sinusoidal generator of variable frequency (frequency domain).

Example 2

A triangular (or saw-tooth) waveform is shown in Fig. 8-24. This
voltage function is an odd function with a. equal to zero for all n

volts| +V
- - I
2% x C _% w 5 x
-wt wt
“aed-V

Fig. 8-24., Triangular (or sawtooth) function.

including n = 0. To find the b-coefficients, we represent the waveform
by the following equations, each derived in terms of the equation for a
straight line, y = mz + b, where m is the slope, b is the y intercept
and for this problem, y = vand z = £

Interval v{ewt)

0 to g g;g wl

T, 3 -2V -
5 to 5 — (wl) + 27V
3T o 2 2V oty — 4V

2 "

Carrying out the integration, as in Example 1, gives

v(wt) = 8;‘—:’ (sin wl - g;sin 3wt + g-ésin Swt — .. )

Ezample 3

In some practical problems, the waveforms are not known in the form
of mathematical equations but rather as recorded graphs. In such
cases, the coefficients may be evaluated by approximate graphical
integration. As shown in Fig. 8-25, the waveform is divided into m
rectangles of width Awf and height f(wt). In terms of a summation
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AT
ft) /] \

. ¥
0 - |~ x 2x
Awt
wi

Fig. 8-26. A recorded waveform. The Fourier series equivalent of this
waveform may be found by graphical integration.

rather than integration, the approximate equations for the Fourier
coefficients become

) .
a0 = 5 2 f (% 21) Awt (8-87)
i=1
Gp == ! E f (‘—7- 2«) co8 n (—‘l 2«) Awt (8-88)
T m m
i=1
by = = E f (i- 2:) gin n (i o ) Awt (8-89)
T m m
i=1
2
where Awl = — (8-90)
m

The summations required are most conveniently carried out in tabular
form, for example, as follows.

TaAsLE FOR CALCULATION OF g,
n=3 Awl = 15° m = 24

. j -} = _j_ 0 _.i o
3 5(360) 6 cﬂsn(m360) f(m360) f(8) cos no

1 15° cos 45° = 0.707 1.52 1.07
2 30° cos 90° = 0 1.77 0
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The coefficient has the value

as = 2% (8-91)

8-6. Complex exponential form of the Fourier series

The Fourier series studied in the last section can be expressed in
equivalent form in terms of exponential quantities. Suppose that the
terms in the series are grouped together by harmonic number as

f(wt) = gq + z (an cos nwt + b, sin nwt) (8-92)

nw=1

Now the cosine and sine may be expressed in exponential form, as we
learned in Art. 6-2. Starting with Euler’s equation,

et = cos wt + 7 sin wi (8-93)

the cosine is found in terms of exponentials by adding positive and
negative exponential forms as

cos wt = (et 4 g—7ot) (8-94)
Similarly, the sine is found by subtracting these quantities as

sin wf = 233 (et — g-iot) (8-95)

Substituting these equations into Kq. 8-92, there results

jnai —Fr b Jnwt . p—inwt
flat) = ao + 2 (a,. ‘E__“*;e_i..... + b "——2—39-—) (8-96)
nel

In order to simplify this equation, like exponential terms are grouped.
Noting that 1/j = —j, our equation becomes

- 3 [(558) s (§2) ] 0
ne=1

To simplify this expression, we next introduce a new coefficient to
replace the a and b coefficients. By definition,

adpn — an c — Qn +Jbﬂ
mz y o W*z 3

The new form for Eq. 8-97 is

Cp = and ¢ = ap (8-98)

flwt) = ¢ + 2 (nelo™ 4 c_ne—iont) (8-99)
N
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We are now in a position to understand better all the maneuvering
we have just been through. Letting n range through values from 1 to
« in this equation is equivalent to letting n range from — » to 4«
(including zero) in a compact equation,

w0

fat) = Z et (8-100)

nowe — G0

Here we have the exponential form of the Fourier series. The coefhi-
cients ¢, can easily be evaluated in terms of a, and b,, which we already
knew. Then

1 2x J 2r ]
Cn = o j; flwt)cos nwt dwt — o /} flwt) sin nwt dot

1 2x

= fwt)(cos nwt — 7 sin net) dwt
2r Jo

2x
- -2{-; L flwt)e it dut (8-101)

This equation for ¢, holds whether n is positive as we have assumed,
negative, or zero, as can be shown by exactly the same procedure.
Has this form any advantage over the other form of the Fourier series?
In computing coefficients, the sine and cosine form usually may be
used to advantage. But in discussing
the concepts of frequency spectra and
introducing the Fourier integral,
which we will study next, we need
-2% 0 +27 wt this exponential form.

Yolts

Fig. 8-26. Sweep voltage of the Example 4
form used in & cathode ray oscillo-

Thesweep voltage waveform shown
graph.

in Fig. 8-26 may be represented
over one cycle by the equation of a straight line, v = (V/2x)wt. The
en-coefficients, defined by Eq. 8-101, are

o
Cp = '21;_ 0 iv;wte"""“‘ dwt
'V
= %;,a_v n # 0
V
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Hence the exponential form of the Fourier series for this waveform is

= —«ﬂ —J3wd __ J_;MV —F 2wk j_,_V ~—fu! K
vot) = .. 6x ¢ i & ‘ or & +2
+ ‘.7;;..7 giwt + ‘Z...K pi 2wt -+ ... (8-102)
2x 4w

If we wish to reduce this result to the alternate form of Fourier series,
the a and b coefficients may be found from the equations which follow
from the definitions of Eq. 8-98.

Qn = Cn + C_n, bn = jlea — C.n)y, @0 = Co

From these equations, a, = 0, ay = V/2, and b, = —V/nx, and the
Fourier series becomes

vwl) = V [,]; _1 sin wt + 1 sin 2wt + EE’oin 3wt + .. )] (8-103)
2 2 3

8-7. The frequency spectra of periodic waveforms

The second form of the Fourier series of our example of the last
section is the most easily interpreted. We can visualize a large num-
ber of sinusoidal generators of voltage as specified by the appropriate
Fourier coefficient, all connected in series to produce a sweep voltage.
We have some difficulty picturing generators of exponential voltage
terms of the form appearing in Eq. 8-102, but the coefficients contain
the same information as those in Eq. 8-103. This information is con-
veniently displayed in a plot of the magnitude of ¢,, and sometimes of
the phase,* as a function of frequency. Such a plot shows the frequency
specirum corresponding to a particular waveform.

The plot of the magnitude and phase of ¢, as a function of frequency
requires special interpretation. Actually, ¢, has values only for discrete
values of frequency, the harmonics of w, the fundamental frequency.
Such a plot is actually for different values of n, or if we identify w, as
the fundamental frequency (merely » in the equations derived thus
far), the plot is for discrete values of the ratio w/ws, which is equiv-
alent to n. Such a plot is shown in Fig. 8-27 for both positive and
negative values of n or w/wo.

We do not attach any particular significance to negative frequencies
as plotted in the frequency spectrum. We do note that these frequen-
cies are related to exponential factors of the form e**; such a term and
a term of the form e~ may be added to be equivalent to a sine or
cosine function. Thus a positive frequency and a negative frequency

* The phase angle of c, is abbreviated as Ang c..
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combine to form the frequency associated with actual sinusoidal
generators,

Figure 8-28 shows two other spectra, for the examples of Art. 8-5
for the square wave and the triangular wave. Comparing these spectra

feal | ¥
12
!

|I||' |1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

nor“,;;“
Angen |7x/2
-6 -5 -4 =3 -2 =] ] I
l 1 2 3 4 5 6
w
nor -
- /2

Fig. 8-27. The line spectrum corresponding to the sweep voltage
of Fig. 8-26. Separate plots are made for magnitude and phase angle

{Ang) of c,.
feal | leal s
= !
: 3
| l : ' | | : l

-5 -3 ~-101 3 5 -5 -3 -101} 3 5

o [}

nor o= nor o
{a} {b)

Fig. 8-98. The line spectrum for (&) a square wave, and (b) a tri-
angular wave.

to that shown in Fig. 8-27, we see that the amplitude distribution in
terms of the harmonics of the Fourier series must be quite different
for the different waveforms. The triangular wave contains little in
addition to the fundamental, while the sweep voltage waveform con-
tains many harmonic terms of larger magnitude than for the triangular
waveform.
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Because there are components of frequency for discrete values of
frequency only, such plots of the magnitude of ¢, are known as line

spectra.

8.8. The Fourier integral and continuous-frequency spectra

Figure 8-29 shows the waveform of a periodic puise of magnitude V
and duration a. The period, marked on the figure as T, extends from

wit = —= to wet = 4=, where, following the practice established in
voits
\4 \4 14
- .y
~wt L '"'g‘ “g"' +wi
T o

Fig. 8-28. A recurrent pulse of duration a and period 7.

the last section, we is used as the frequency of the fundamental of the
Fourier series rather than w. The Fourier coefficients for the expo-
nential form of the series may be computed for this problem from Eq.
8-101 written
1 [ .
Cn = 5= . flwot)eminwot dloyot (8-104)

Since the voltage waveform has zero value except between the limits
(a/2) and (—a/2), the integral becomes

1 [t
Cn = 5 a Ve ot dugt (8-105)
o
L T o —jreed ol = — "
2r Jjn —a/2 nnr 23 )
_ @@ [ sin (nwea/2)
Vv 21r( R~y ) (8-106)

Now since T = 2nr/w,, the equation finally may be written

a sin (nwea/2)

P T a2 (8-107)

For any particular problem, the ratio a/T will be fixed, and ¢,
as the mathematical function (sin z)/z.

This analysis brings up a number of questions of interest: (1) how
does c, change as the width of the pulse or the ratio ¢/7T changes, and
(2) what happens if the period becomes infinite, leaving us Witi; one
nonrecurring pulse?

will vary
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To help answer the first question, two plots are made in Fig. 8-30,
one for (T/a) = 2 and one for (T/a) = 5. The two plots differ in two
respects: (1) there are more lines in the second plot and (2) the ampli-
tude is smaller by a factor of £ in the second plot. From another point
of view, there are more lines because w, is smaller for the second pulse.
More frequency components are required to make up the shorter pulse,
but the amplitude of the frequency components is smaller.

v v

-wt +ewt  —wl 4t

@ L-2 b L -5

-

-3x -2r ~x {0 x 2r 3x -3x =2 ~7 0 =« 27 3n
Mo e
2 2
T T
‘ﬂ} -;;--2 !b} "&"‘-5

Fig. 8-830. Two recurrent pulses with different values of (7/a) and
the corresponding line spectra holding a constant. The envelope of
the line spectra is of the general form (sin z/x). Because |ca]is plotted,
the envelope is always positive whereas (sin z/z) is negative from r to
2w, ete,

We begin to see a trend that should help answer our second guestion
as to what happens in the case of an aperiodic pulse. As the period
approaches infinity, more frequency components of smaller amplitude
will be added. To accomplish this limit in terms of the expressions for
the Fourier series,* we begin with Eq. 8-100, which is

flwet) = 2 Cneimeet (8-108)

77, - 0

and substitute the equation for ¢,, giving
flwet) = E [% [ J(wet)einaet dwot] einwst  (8-109)

* The following discussion is intended to provide a heuristic proof or motivation
for the Fourier integral theorem. It is not a rigorous derivation.
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We next let wo = Aw as T — » and introduce a new variable by
etting n Aw = If we write Eq. 8-109 in terms of f(f) rather than
flwob)s the limits of integration change to give the following expression.

1 »/Aw
fit) = 2 [-5; ,[_. . f(t) et dt] & Aw (8-110)

7% 7 e O

In the limit, as Aw — 0, the summation becomes a process of integra-
tion, and

() = f_: [g-; [ﬁ: F(t)e—an dt} ¢t dy (8-111)

This equation is one form of what is known as a Fourier integral. 1t

may be written in a slightly different form by calling the bracket term
in the equation g{w), as

g(w) == éI;_ /:_ . f(He it di (8-112)
80 that f(t) — f— g(w)ejwt d(.d (8-«1 13)

and these two equations constitute a Fourier transform pair. These
equations can be used to represent f(t) provided f(t) satisfies the Diri-
chlet conditions, mentioned in Art. 8-5, and if the integral

f_: fo) de (8-114)

is finite.
Now |c.| determined the frequency spectrum in the case of the Fou-

rier series. The term corresponding to ¢, in the Fourier integral expres-
sion is g(w) dw. The amplitude of g(w) dw is vanishingly small, of
course, since dw is an infinitesimal quantity. However, the functiop
g(w) is finite and is plotted in magnitude and phase as the frequency
specirum corresponding to an aperiodic f(f). No longer is this spectrum
given for only discrete values of frequency. The function g(w) is a
continuous function for all w. Because of this difference in spectra,
lg(w)] is sometimes called a continuous spectrum, while |c.| is a line
spectrum. In terms of the synthesis of a pulse by addition of frequency
components, the continuous spectrum requires all frequencies com-
bined as required by Eq. 8-113.

For the single pulse shown in Fig. 8-29, the other two having moved
to infinity in opposite directions, the frequency spectrum may be
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found from Eq. 8-112 as

1 [ Vasin (wa/2)
g(w) s "21—'_ [_.a/g Veiot df = é; W (8-115)

This equation is similar in form to Eq. 8-107 given for recurring pulses,
but is a continuous rather than a line spectrum. The plots of the math-
ematical expression |(sin z)/z! shown in Fig. 8-30 constitute the enve-
lope of the spectrum |g(w)| for the single pulse.

The Fourier transform pair of equations, Eqgs. 8-112 and 8-113,
serves to illustrate the relationship of the time-domain function f(¢)
and the frequency-domain quantity, the frequency spectrum, g(w).
For a given f(t), we can find the corresponding g(w). And for a given
g{w), we can similarly find the corresponding f(¢). The Fourier trans-
form equations provide us with a two-way street with which we can
go from time domain to frequency domain or vice versa. The same
two-way street exists for the Fourier series and the associated concept
of the line spectrum and the time domain.

We know that the waveform of a single pulse can be synthesized
from frequency components specified by Eq. 8-115. Suppose that we
apply a single pulse to the input of a system which does not transmit
the higher-frequency components. The output of this system will no
longer be a square pulse but will be some other time-domain function
that could be computed from Eq. 8113 using the g(w) of the output of
the frequency-selective system. As we change frequency response, we

Ui Vout
{
e aa—c
Frequency
Vin selective Vout
¢ system t
e —0

¥ig. 8-81. Input and output waveforms for a two-terminal-pair
frequency-selective network.

also change time response. An input and the corresponding output for
a frequency sensitive system are illustrated in Fig. 8-31.

8-9. Fourier transforms and their relationship to Laplace transforms

The Fourier transforms, defined by Eqs. 8-112 and 8-113, have been
used in the last section to illustrate the relationship of frequency
domain and time domain concepts. We have not yet discussed the
transform property of these equations which can be used in solving
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circuit equations in much the same manner as the Laplace transforma-
tion has been used. For reference, Eqs. 8-112 and 8-113 are repeated
here.

o(w) = %r- f”: f(B)e=io* dt (8-116)
ft) = f__: g{w)e dw (8-117)

The transform character of these equations is emphasized by the use
of the following notation.

() = g(w) (8-118)
§'g(w) = ft) (8-119)

Equations 8-116 and 8-118 define the direct Fourier transformation,
while Eqgs. 8-117 and 8-119 define the ¢nverse Fourier transformation.
These four equations are similar in appearance to the corresponding
equations for the Laplace transformation, given in Chapter 7 as Eqgs.
7-1 and 7-3, which are

F(s) = ﬁmf(t)e"‘ dt (8-120)
1 o+jw
OB f  F(9eds (8-121)
and L£I(t) = F(s) (8-122)
£-1P(s) = f(£) (8-123)

Comparison of these two sets of equations reveals several differ-
ences: (1) The jw in the Fourier transform occupies the same position
as s in the Laplace transform. (2) The letters F and g signify functions
with similar roles. (3) The limits of integration in Eqs. 8-116 and 8-120
are different, — c in the Fourier transform corresponding to 0 in the
Laplace transform. (4) The multiplying constants (1/2r) and (1/2x7)
occupy different positions although this is a matter of convention since
1/2x may be associated with either f(f) or g(w) in Eq. 8-111. Since we
are stressing the similarities of the two systems of transforms, the fac-
tor 1/2x will be shifted from Eq. 8-116 for g(w) to Eq. 8-117 for f(¢) for
the remainder of this discussion.

To illustrate the consequences of these differences, we will study an
example of the computation of a Fourier transform. In most circuits
studied in past chapters, interest has centered on what happens in a
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circuit after an instant of time corresponding to the opening or closing
of a switch. This instant of time is conveniently taken as the reference
time, ¢ = 0. A function that has been used to denote the closing of a
switch to connect a driving foree to a circuit is the unit step function
u(t). To determine the Fourier transform of u(f), we make use of Eq.
8-116. In this case, the lower limit of the integral may be changed to
zero, since u(t) has zero value for all negative . In this usual circuit
situation in which f(¢) has zero value before { = 0, Eq. 8-116 may be
written with the lower limit of zero, and is then known as the unilateral
Fourier transformation. Carrying out the operations we have just
described, we have, with 1/2x removed from Eq. 8-116

9(w) = f_w F(tye—ot dt = L R (8-124)

o o0

oo —1 S 171 — — @
glw) = T e = (cos wt — j sin wi) . (8-125)

This equation has no meaning, since neither the sine nor the cosine is
defined for infinite wt. This difficulty can be avoided by introducing a
convergence factor defined in the equation

f1(®) = e~f(?) (8-126)

where fi(f) is a modified function and o is real and positive. This
procedure provides the convergence necessary to avoid the difficulty
in evaluating Eq. 8-125, and permits computation of the Fourier trans-
form as the limit as o — 0. Substituting f:(2) = e~"*u(?) into Eq. 8-116
without the factor 1/2n gives

glw) = lim [ filQe et dt = lir% j(; e~vteit gt (8-127)
e—0 J - o o

and g(w) = lim ‘L e~tt df = lim —1- (8-128)
e—0

00 -t jw  Jw

From this equation, we have the Fourier transform of u(f) withe =0
as

1
Fu(®) = o (8-129)

Thus the convergence difficulty has been avoided effectively by intro-
ducing a real part to be added to jw. Since s of the Laplace transforma-
tion is defined as a complex number, 8 = ¢ 4 jw, we see that the
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Laplace transformation automatically has the advantage of stronger
convergence by incorporating a ‘“built-in” convergence factor. How-
ever, the Laplace transform of f(f) is identical with the Fourier trans-
form of f() multiplied by the convergence factor e—¢; that is,

£f(6) = Slf(t)e1] (8-130)

Recognition of this relationship of transforms unifies two important
topics in the study of electric circuits.

The preceding discussion might be regarded as a heuristic derivation
of the Laplace transformation from the Fourier transformation. Since
the Fourier transform conveys more physical meaning than the Laplace
transform, arising as it does out of the Fourier integral and Fourier
series, this tie-in is conceptually important. Aside from this advantage,
the Laplace transformation is a more powerful mathematical tool than
the Fourier transformation and is more extensively used.

Tables of Fourier transforms are available, an example being the
extensive compilation of Campbell and Foster.*

FURTHER READING

For further reading on the subject of the response of a system to
such excitations as the step function, impulse, ramp function, square
wave, etc., see Thomson, Laplace Transformation (Prentice-Hall, Inc.,
New York, 1950), pp. 23-26. The convolution integral is also discussed
by Thomson, pp. 37-38, and in such references as Gardner and Barnes,
Transients in Linear Systems (John Wiley & Sons, Inc., New York.
1942), pp. 228-241; Salvadori and Schwarz, Differeniial Equations in
Engineering Problems (Prentice-Hall, Inc., New York, 1954), pp.
214-219; and Wylie, Advanced Engineering Mathematics (McGraw-
Hill Book Co., Inc., New York, 1951), pp. 188-197. For further
reading on Fourier series, see Kerchner and Corcoran, Alternating-
Current Circuits (John Wiley & Sons, Inc., New York, 1951), Chap. 6.
A very complete discussion of the Fourier series and integral is given
by Guillemin, The Mathematics of Circuit Analysis (John Wiley &
Sons, Inc., New York, 1949), Chap. 7. Chapter 5 of Wylie (op. cit.)
is very concise on these subjects and is especially recommended. Two
additional references containing valuable information on the Fourier
integral and frequency spectra are Fich, Transieni Analysis in Elec-
trical Engineering (Prentice-Hall, Inc., New York, 1951), pp. 199-214;
and LePage and Seely, General Network Analysis (McGraw-Hill Book
Co., Inc., New York, 1952), pp. 444-463.

* Campbell and Foster, Fourier Inlegrals for Practical Applications (D. Van
Nostrand Company, Inc., New York, 1950).
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PROBLEMS

8-1. Write an equation for the nonrecurring waveform shown in
the figure in terms of unit step functions.

v

-

Prob, 8.1,

8-2. Write an equation for the nonrecurring waveform shown in
terms of unit step functions.

v 10

~10

Prob. 8-2.

8-3. In the nonrecurring waveform shown, the function suddenly
increases to a value b at the time { = 0 and then decreases expo-
nentially to a value a at { = ¢ before decreasing suddenly to zero.
The waveform then goes through the same cycle with negative mag-
nitudes. Write an expression for this waveform, using unit step
functions. Partial answer. v = be-Un/Mit/oy(fy — |

v b Exponential v
\< a R

10v
vit} L%
¢ /a 2¢ t § usec
-a
wbh Exponential t

PrOb- 8"8- PrOb. 8“-

8-4. A voltage pulse of 10 volts magnitude and of 5 usec duration
is applied to an RL series circuit where R = 2 ohms and L = 10
whenry. Plot the waveform of the current as a function of time.
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8-5. A voltage pulse of 10 volts magnitude and of 5 usec duration
is applied to an RC series circuit

where B = 100 ohmsand C = 0.05 Y AN/
uf. Find the equation for the cur- 10v R
rent and p}ot the .eurrent waveform @ oit) Co
as a function of time. 5 usec
8-6. A voltage waveform known -

as a ‘‘staircase” is used to shift
the frequency of a radio transmit- Prob. 8-5.

ter. One cycle of staircase is shown

in the figure. (a) Write the equation for this voltage waveform v(t),
assuming it is not repeated. (b) Suppose that this voltage is applied
to & series REL circuit with B = 1 ohm and L = 1 henry. Sketch the

volts 4

01 2 3 4 5 67 sec
Prob. 8-8.
current waveform approximately to scale on the same coordinates as

the ‘“‘staircase’” voltage.
8-7. Show that the transform of the square wave is

1
O = st e
v v
a 2a 3at x 2r Ax t
Prob. 8-7. Prob. 8-8.

8-8. The waveform shown in the figure is that of a full-wave rec-
tified voltage. The equation for the waveform is sin ¢ from 0 to =,
—8in ¢ from r to 2x, etc. Show that the transform of this function is

F(s) = i_ coth = ~f2-
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8-9. The waveform shown is a sweep voltage used to deflect the
beam in a cathode ray oscilloscope. Show that the transform of this
function is

1 e"“‘ﬁS
F&) = go ~ si =
v (4
| S 1h--
\ ; ;
PV
a 2a 3q ¢ a 3a 4a 5a ¢
Prob. 8-9. Prob. 8-10.

8-10. Find the transform of the voltage waveform shown in the
figure.
8-11. By convolution, find the time functions corresponding to the

following transform functions starting with the transform pair f(f) =
e, F(s) = 1/(s — a).

1 1
® = © FTFaeTH
' 1

1
O e=—ac-n Ye—oac-pE-0

8-12. By convolution, find the inverse Laplace transformation of
the following functions.

1 8
® mIn ® T DETD

8-13. Tests on a certain network showed that the current output was
i) = —2e¢~t + 4¢~* when a unit voltage was suddenly applied to the
input terminals at £ = 0. What voltage must be applied to give an
output current of (f) = 2e¢~* if the network remains in the same form
as for the previous test? Answer. v = 4¢' — 3.

8-14. The output of a half-wave rectifier is given by the equation

cos wl, 02wt < %
T 3r
v(wt) = 0, § Sl & "'é"
cos wl, %E S ol £ 2r
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Show that this periodic waveform can be represented by the Fourier
geries

v(wt) #%(1+%coswt+§0052wt-—12—5—cos4wt+ )

8-15. Find the Fourier series representation of the trapazoidal wave-
form shown for Prob. 8-10. Draw the line spectrum for this waveform.

8-18. Draw the line spectrum for the waveform of Prob. 8-14.

8-17. The following table gives the ordinates of a wavefurm as a
function of wt. The values for » to 2= are defined by the relationship

flxr + wt) = —f(wt); in other words, the negative loop from » to 2«
is similar to the positive loop from 0 to =,

wl Sf{wt) wl flwt)

0 0 105° 85.0
15° 49.7 120 77.9
30° 75 135 77.8
45° 77.8 150 75
60° 77.9 165 49.7
75° 85.0 180 0
90° 90

(a) Determine the Fourier coeflicients for the first five harmonics. (b)
Draw the line spectra for this waveform.

8-18. For the waveform shown in the figure, determine the contin-
uous spectrum and sketch g(w)| and Ang g(w).

v
v
]
-2
2 / \s ¢
a ¢
3
-V —%'- 0 +—g— t
Prob. 8-18. Prob. 8-19.

8-19. The aperiodic function shown in the figure is part of a cosine

wave defined only from —x/2 to +=x/2. Determine the continuous
spectrum and sketch |g(w)| and Ang g(w).
8-20. An aperiodic function is defined by the equation

v(t) = Ve sin wol, tz0

and represents a damped oscillation. Determine the continuous spec-
trum for this function and sketch both |g(w)] and Ang g(w).



CHAPTER 9
IMPEDANCE AND ADMITTANCE FUNCTIONS

In this chapter, the operational method studied by the Laplace
transformation will be used to introduce the concepts of impedance and
admittance.

9-1. The concept of complex frequency

The solution of the differential equations for networks has given
rise to time-domain functions of the form

K et (9-1)

where s, is a complex number, a root of the characteristic equation,
expressed as
Sn = an + jwﬂ (9“2)

Here w,, the imaginary part of s,., has been interpreted as radian fre-
quency (or angular frequency) and it appears in time-domain equations
in the forms

Sin wsl O €08 wpt (9-3)

Radian frequency has the dimensions of radians per second and may be
expressed in terms of frequency, fa, in cycles per second, or in terms of
the period T, in seconds, by the equation

wp, = 2nf, = 2 (9-4)

T

By Eq. 9-2 we see that ¢, and w, must be identical in dimensions. The
dimension of w, is (time)~!, since the radian is a dimensionless quantity
(being length of arc per length of radius). The dimension of ¢, must be
‘““something’’ per unit time. Since o, appears as an exponential factor,

I = I (9-5)
1, I

such that Op = — 1N = (9-6)
it I

it is evident that the ‘‘something” per unit time should be a nondimen-
sional logarithmic unit. The usual unit for the natural (or Naperian)
logarithm is the neper. This unit is commonly used making the dimen-
sion for o the neper per second.

194
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The complex sum
8, = an + j‘l’n (9‘7)

is defined as the complex frequency. The imaginary part of the complex
frequency is the radian frequency (or real frequency), and the real part
of complex frequency is neper frequency® (rather than the misleading
term “imaginary frequency’’). The physical interpretation of complex
frequency appearing in the function e*+* will be studied by considering
a number of special cases for the value of s,.

(1) Let 8, = o» + 70 and let o, have positive, zero, and negative
values. The exponential function of Eq. 9-1 becomes K,e’~, an expo-
nential funetion which increases exponentially for ¢, > 0 and decreases
(or decays) exponentially foro, < 0.
When o, = 0, so that s, = 0 +j0, ° >0
the term becomes

Ko = Koe® = K, (9-8) 1 L

& time-invariant quantity which a<0

in terms of current and voltage is :

described as ‘‘direct current.” The

time variation for the three possibili-

ties for real s, are shown in Fig. 9-1.
(2) Let 8, = 0 + jw, (radian frequency only). In this case, the

exponential factor becomes

K.etiont = K, (cos wal 1 F8in wul) (9-9)

Pig. 9-1. Variation of e with time
(¢ = neper frequency).

by Euler's equation. The exponential e+~ is usually interpreted in
terms of the physical model (with no actual physical significance) of
a unit rotating phasor,t the direction of rotation being determined by
the sign. A positive sign, et~ implies counterclockwise (or positive)
rotation, while a negative sign, e~ implies clockwise (or negative)
rotation. For positive rotation, the real part of e/~ {or the projection
on the real axis) varies as the cosine of w,f, while the imaginary part
(or projection on the imaginary axis) varies as the sine of wal. This
concept is illustrated by Fig. 9-2. The variation of the exponential
function with time is sinusoidal and corresponds to the case of the
sinusoidal steady state.

*The terms radian frequency and neper frequency were used by W. H. Huggins,
“The potential analog in network synthesis and analysis,”” Air Force Cambridge
Research Laboratorics, Report No. £5006, March 1951.

{ Many texts used the word vector in place of phasor. A phasor is characterized
by magnitude and phase with respect to a reference.
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Im 1 sin wt

apy /\
|/ /\

-1 wl

AN

Hg. 9-2. Rotating phasor and imaginary and real axis projections
(sine and cosine),

(3) Let 8, = 04 + jwa. (this is the general case and the frequency is
complex). For this case,

Kﬂelqt - Kﬂe(cu‘*-f@u)! — K”ed.‘te;'u,.t (9_}0)

This expression shows that such a term has a time variation which is
the product of the result for 8. = ¢, and for 8, = +jw.. One term is
represented by the rotating phasor model, the other term by an expo-
nentially increasing or decreasing fune-
tion. This result can be thought of as
a rotating phasor with a magnitude

which changes with time. Such a
/ A 9 \\Real axis Phasor is illustrated in Fig. 9-3. The
\\"/ real and imaginary projections of this
phasor are

Re{e*~) = et cos wait (9-11)
and Im{e*") = e~ 8in w.t (9-12)

imaginary axis

Fig. 9-8. Rotating phasor decreas-

ing in itude with time. for a phasor rotating in the positive

direction and negative o. These pro-
jections are shown in Fig. 9-4. Such waveforms have been classified
a8 damped sinusoids.

From this discussion, we see that there is nothing really new in the
concept of complex frequency. The imaginary part of complex fre-
quency, the radian (or real) frequency corresponds to oscillations. The
real part of complex frequency, neper frequency, corresponds to expo-
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nential decay or exponential increase (depending on sign) or to no
variation for zero neper frequency. We have talked about such expo-
nential functions before in terms of the time constant. Since the role
of the two ‘“‘kinds” of frequency is the same, even though the conse-
quences are different, we unify the two concepts under one name—
complex frequency.

Ime™™ e~ sin wt
imaginary axis
L — projection
S - ¢
Re e~

et cos wt .
@ Real axis
P— projection

N o ‘

Fig. 9-4, Time variation of ¢~ where 8 is complex frequency.

We should constantly guard against semantic difficulties in the use
of the work “imaginary” as one part of a complex quantity. The
imaginary part of a quantity is not physically imaginary (that is invis-
ible or ghostlike) in the sense that it is not physically real. We have
borrowed the words ‘“real’”’ and “imaginary” from the mathematicians
as designations of two distinct parts of a quantity or function (which
we often reinterpret in terms of magnitude and phase). The math-
ematician’s “imaginary” carries no connotation about the physical
universe about us!

9-9. Transform impedance and admittance

The ratio of the transform of a voltage to the transform of a current
is defined as the fransform (or generalized) impedance. The reciprocal
ratio is defined as the transform (or generalized) admittance. We will
next determine an expression for the impedance and admittance for
each of the network parameters.

Resistance. The time-domain expression for the voltage across a
resistor is given by Ohm’s law in the forms

v(t) = Ri(t) or (t) = Gu(t) (9-13)
The corresponding transform equations are

V(s) = RI(s) or I(s) = GV(s) (9-14)
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Following the definitions given above for the transform impedance
and transform admittance, we have

V(s)

e = Z(s) = R (9-15)
where Z(s) is the transform impedance, and

I(s)

=t = Y(s) = 9-16

v = Y@ (9-16)

where Y (s) is the transform admittance.

The schematic which shows the actual resistor and the time-domain
voltage and current can be replaced by a diagram to represent equiva-
lent transform quantities. Two such diagrams are shown in Fig. 9-5.

ire Yris) tiw 4o

vit) R = Vis Zis)=R vit} G - Vis) Y(s)=G

{a) {b}

Fig. 9-b. Resistor impedance and admittance.

The time-domain schematic is a representation of the actual physical
system. The transform diagram is composed of time-domain element
representations, but the letter symbol for the actual element is replaced
by an impedance or admittance symbol.

Inductance. The time-domain relationship between voltage and cur-
rent in an inductor is expressed by the following equations.

o) = LU and i = 7 f o(t) dt (9-17)
The equivalent transform equation for the voltage expression is
V(s) = L[sI(s) — 2(0+)] (9-18)
Regrouping the terms, we have
LsI(s) = V(s) + Li(0+) (9-19)

In this expression, V(s) is the transform of the applied voltage, and
Lz(0+) is a transform voltage resulting from the initial current in the
inductor. Designating the transform voltage across Z(s) as Vi(s),
where V(s) = V(s) + Li(0+), the transform impedance becomes

| £ (3)

TG = Z(8) = Ls
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The equivalent transform diagram thus contains a transform imped-
ance and a voltage source due to the initial current. This equivalence
to the time-domain schematic is shown in Fig. 9-6.

The transform equation for the current is

Is) = [V“W+W““”] (9-20)

8

The initial-value integral v='(04) can be evaluated in terms of flux
linkages Lt as

v~ (0+) = fv(t) dt oy Li(0+4) (9-21)
The equation for I(s) may be rewritten
1V (0
19 = 1 79 4 10H) (9-22)
1 »
or V@ = I - 10 (9-23)

In this equation, 1(0+4)/s is an equivalent transform current source
resulting from the initial current in the inductor. Designating the
transform current in Y(s) as Iy(s) = I(s) — ¢(0+)/s, the transform

admittance becomes i) Tis)
e e N
I,(s) _ _ 1 —
Vis) Ys) =75 (929 T% Zis)=Ls
I, L

The equivalent transform diagram ° Uo
thus contains an admittance of -
value 1/Ls and an equivalent cur- it al I
rent source defined in Eq. 9-23. . —_
This equivalent schematic for the fﬂST
time domain diagram is shown in Y(s}--—— Lo
Fig. 9-6. We note that, ’

Z(s) = Vs = Ls (9-25)

( ) Fig. 9-6. {a) Impedance diagram for

Capacitance. The time-domain L (b) admittance diagram for L.

relationship between voltage and current for a capacitor is given as

dv(t)

a mdeﬂé/mwt (9-26)

i(t) = C

The equivalent transform equation for the voltage expression is

Vis) = é[I?) + 9(08+)] (9-27)
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where g(04)/C is the initial voltage of the capacitor which, due to the
charge polarity, is — V. This equation may be written

El"}; I(s) = V(s) + %" (6-28)

Designating the transform voltage of Z(s) as V(8) = V(8) + Vo/s, the
ratio of the transform voltage to the transform current is

Vi(s) 1

T = /(8) = On (9-29)

The capacitor with an initial charge thus has an equivalent transform
diagram with an impedance 1/Cs

it) I(a!
—_— 0 in secries with a voltage source
. Zig) = _é._—l: having a transform —v(0-)/s. The
1% 14 ! schematic of this combination is
-? shown in Fig. 9-7.
b The transform equation for the
it Im current expression of Eq. 9-26 is
—_
. L' I(s) = ClsV(8) — v(0+)]
w3 CRE (@47 (9-30)
or CsV(s) = I(s) — CV,
b (9-31)

Fig. 8-7. éa)_lmpadm}ce diﬂﬂmmcff’f Designating the transform current
C, (b) admittance diagram for C. in Y(s) as I1(s) = I(s) — CV,, the
ratio of transform current to transform voltage becomes

1(3) =Y

8 9-32
Ve~ Y@= (9-32)
The capacitor with an initial charge has an equivalent transform sche-
matic representation of an admittance of value Cs in parallel with a
current source of value C'V,. This schematic is shown in Fig, 9-7(b).
For the capacitor,

1

Z(s) = (9-33)

Y(s)

9-3. Series and paralle! combinations

In this section, we will consider the impedance and admittance of
series, parallel and series-parallel combinations of different elements.
To simplify schematic diagrams, we will use the symbol normally
reserved for the resistor logether with the letters Z(s) or Y(s) to des-
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ignate a transform impedance or admitiance. We will not consistently use
the broken zigzag line for a transform impedance symbol, but either
this symbol or the actual element symbol depending on which is most
convenient and descriptive. Consider the series combination of ele-
ments shown in Fig. 9-8(a) and the equivalent transform impedance
diagram shown in Fig. 9-8(b). In Fig. 9-8(a), the same current i(¢)

= - = - PP LTIT - - - —{f—{f—---
R‘ Rz . . Li Lz . cI cz “ x .
vit)
{a)

(b
Fig. 9-8. Impedance of series networka.

flows in all elements, and so in Fig. 9-8(b), I(s) is common to all ele-
ments, By Kirchhoff’s voltage law, the sum of the drops of voltage
for all elements is equal to »(f). Hence the transform of all voltages of
the elements sum to V(s); that is,

V(g) = Ve,(s) + ... + Vi (&) + ... + Ve () + ... (9-34)

Dividing this equation by I(s) and recognizing that the ratio of the
voltage of each element divided by the current for that element is
impedance, we have

Z(s) = Zp(s)+ ... + Zu,(8) + ... + Zc(s) + ... (9-35)

n

or Z(s) = 2 Z(s) (9-36)

kw1l

for a series combination of elements, where #n is the total number of
elements in series.

It should be recognized that in performing such a summation, the
elements are not being combined. Rather, only a characteristic fea-
ture of the element (its impedance) is being summed and added to a
characteristic of another element.

Consider next the parallel combination of elements shown in Fig.
9-9(a) and in equivalent transform form in Fig. 9-9(b). In this net-
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work, the voltage drop v(Z) is the same across all elements, and so V (s}
is the same for all elements. From Kirchhoff’s current law, the sum of

ﬂt‘L — - S
vit) (e G, --- Iy L SRR ATV 7%
1, -: fal o o
Vsl <Ye, < Y. Y, Y., Ye, Yo,

o (b} o o

Fig. 9-9. Admittance of parallel networks.

the currents in the elements is equal to the total current supplied to
the network; that is,

i) = 16,8 + ... F i) + ... +ic() + ... (9-37)
and the corresponding transform equation is
I(S) = ng(S) + ... + ILl(S) “+ ...+ 101(8) + ... (9“38)

If this equation is divided by V(s) and it is recognized that the ratio
of the current transform to the voltage transform is transform admit-
tance, there results

Y(s) = Yo (s) + .. + Yuls) + ... + Yo(s) + ... (9-39)

n

or Y(s) = Z Yi(s) (9-40)

k=1

for a parallel combination of elements, where 7 is the total number of
all kinds of elements in parallel.

For a series-parallel network, rules for the combination of impedance
and of admittance can be used successively to reduce a network to &
single equivalent impedance or admittance. This procedure will be
illustrated with a number of examples.

Example 1

In the series circuit shown in Fig. 9-10, the switch K is held in posi-
tion a until such a time that a current 7, flows in the inductor and the
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capacitor is charged to voltage Ve At that instant, the switch is
thrown to position b, connecting the circuit to a voltage source v{¢).
The problem is to find I(s) and so (). An equivalent circuit diagram
marked with transform impedances is shown in Fig. 9-11. The imped-

Ial R L
be K T

R
V= . + Lk Y
s
vit) Cm) Cxh _QVI"’ /I-“D i
T"é;'
Fig. 9-10. RLC circuit. Fig. 9-11. Equivaient diagram for

impedance of Fig, 9-10,

ance values and the equivalent voltage source values are taken from
the derivations of this section given on pages 199 and 200. In this
revised form, the current 7(s), a transform current, may be found by
Okm’s law. The current I(s) is given as the total transform voltage
in the network divided by the total transform impedance. Then

I(s) = V{s) - Vi(s) + LIy — Vu/s _ 8V1(8) 4 LIy — Vi
Z(s) R+Ls+1/Cs =~ Ls*+ Rs+1/C

(9-41)

This transform equation can be expanded by partial fractions to find
the corresponding 7(f) by the inverse Laplace transformation. This
solution has been found without writing the differential equation of
the system, and automatically incorporates the required initial
conditions.

Example 2

The dual of the network of Example 1 is shown in Fig. 9-12. In this
network, the switch K, is opened at an instant when the inductor cur-

_‘_}_’1
IK) " KZT iit) §R L%'yo CTY

vit)

Fig. 9-12. Parallel KLC network.

rent is I, and the capacitor is charged to Vo At the same instant,
i{ = 0, the switch K, is closed. It is required to find the transform of
the node voltage V(s) so that v(f) can be determined. From the equiv-
alent admittance diagram shown in Fig. 9-13, the transform voltage
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V{s) is found as

V(s) = I(s) _ Ii(s) + CVy — Io/s _ sli(s) + CVes — I,
Y(s) Cs+G+1/Ls  COst4+Gs+ 1/L

This transform is the dual of the transform of KEq. 9-41 (and could

(9-42)

Vis)

WO o3 HO 28 10w to

Fig. 9-13. Equivalent diagram for admittance of Fig. 9-12.

therefore have been written by inspection). The corresponding time-
domain voltage, v(t) can be found by taking the inverse Laplace trans-
formation after the above transform has been expanded by partial
fractions.

Exzample 8

In this example, we will make use of the laws for the series combina-
tion of impedance and the parallel combination of admittance to deter-
mine current. In the network shown in Fig. 9-14, it will be assumed

a

—— /N NN
1 chm 1 ohm
C) e~tsin 2t == } farad %2 henrys
b

Fig. 9-14. Two-loop network,

that the network is initially relaxed (no current, no charge) and that
the switch was closed at ¢ = 0. It is required to find the current in the
generator i(f) by finding the transform of this current I(s). The imped-
ance of the branch containing the 1-ohm resistor and 2-henry inductor is

Z(s) =1+ 2s (9-43)

This impedance is in parallel with the impedance 2/s of the capacitor.
The admittances may be added directly. Thus

L 1 284+ s+ 2
2 2541 2254 1)

The impedance from a to b is the reciprocal of the admittance; thus

1 2@+ 1)
Yaol(s) 28+ s+ 2

Ya(8) = Yo+ Yier = (9-44)

Za(8) = (9-45)
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The total impedance is now found by adding to Z.(s) the impedance
of the 1-ohm resistor. Then the total impedance is

22s+1) _2¢* + 55+ 4
28 + s+ 2 2s* + s+ 2

This total impedance in series with the transform of the voltage source

me\(S) = ] 4 (9*46)

— V] AAA—
1 ohm 1 ohm }-!;r 26 4 Sa+ 4
2 2 2 2 2 e+ 2
() rhivd ' ()"”’ +é
b
Fig. 9-15. Equivalent diagram for im- Fig. 9-18. Equivalent diagram of
pedance of Fig. 9-14. Fig, 9-15,

is shown in Fig. 9-16. The current may now be found by Ohm’s law
for transform quantities; that is,

V(s 2(2s* + s + 2)
I6) = 7 "G X1 + 4@ + 55 + &) (8-47)

If the inductor has a current flowing through it at ¢ = 0 or if the
capacitor is charged at ¢ = 0, the problem is somewhat more compli-
cated, since several voltage sources are involved.

9-4. Thévenin's theorem and Norton's theorem

When several voltage or current sources are present in a network,
the net effect of all sources, as far as the current in one branch or the
voltage at one node are concerned, may be taken into account by a
theorem due to Thévenin* (and the dual of this theorem due to

Norton).

The network
{fess one branch) ” One branch
active and passive ¢ containing
sources any elfements

Fig. 9-17. Arbitrary network.

Suppose that we are interested in the current in one branch of a
network. The single branch and the remainder of the network as a
box are shown in Fig. 9-17. We will assume that the remainder of the

. * This theorem was first proposed by M. L. Thévenin in the French scientific
journal, Comptes rendus, in 1883. The dual of Thévenin’s theorem is due to E. L.
Norton of the Bell Telephone Laboratories,
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network is arbitrarily complicated and that it contains an arbitrary
number of voltage sources of arbitrary waveform as a function of time.
If a generator is now inserted in the branch under consideration and is
adjusted until the current in this branch is equal to zero at all time,
that voltage source may be said to be an equivalent voliage source in
the sense that it is identical to the net effect of all generators in the
entire network as far as this one branch is concerned. With this equiv-
alent generator connected in the circuit, no current flows in the branch
being considered. If no current flows, the branch could be broken
without affecting the network. The voltage across the network termi-
nals with the branch and generator removed is the voltage of the equiv-
alent generator except for polarity. Thus the equivalent generator
voltage is the same as the voltage measured by removing the branch
and considering the open circuit voltage but of opposite polarity.

Now if the equivalent voltage generator is placed in the loop being
considered with polarity reversed, all active sources within the net-
work could be removed by replacing them with short circuits, and the
current in the branch will be the same as in the original network. The
concept of an equivalent voltage source for a single branch, which is
the basis of Thévenin’s theorem, is illustrated in Fig. 9-18. This net-
work is equivalent to that of Fig. 9-17 as far as the current in the one
branch is concerned.

el
The network ./
{less one branch) - One branch
all active sources it} containing
short-circuited any elements

Fig. 9-18. Thévenin’s equivalent network.

The statements made thus far apply to the time domain. The cur-
rents considered are time-domain currents, and the resulting voltages
are time-domain. To convert to the frequency domain it is necessary
only to find the Laplace transforms for all time-domain quantities
involved.

To summarize our discussion, we can say that by Thévenin’s
theorem we have the equivalent network shown in Fig. 9-18 with one
voltage source, one passive branch (although it is not necessary that
it be passive) and with a network containing passive elements only.
We may consider this network in terms of an equivalent transform
voltage and by impedances of network elements. These impedances
may be combined by the rules for series and parallel combination pre-

viously discussed. Finally, the entire passive network may be made
By,
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equivalent to a single transform impedance. Let this impedance be
Z,,(s) and let the impedance of the branch being considered be Z,.(s).
Then the current int this branch isgiven as

Voo(s) Z.Js)

0=z +z6 *® O ’I@ Zar(s}§

It must be recognized that this analysis
appliesonly toa given branch. Theequiv-
alent circuit, shown in Fig. 9-19, does not
hold for any branch other than the one
under consideration. If another branch current is needed, it is necessary
to start over and reapply the theorem. Thévenin’s theorem can be
stated as follows:

Fig. 9-19. Thévenin’s equiv-
alent transform network.

As far as the current in one branch is concerned, the remainder of
the network may be replaced by an equivalent network having:
(1) as a transform voltage source, the transform of that voltage
appearing at the open-circuit terminals resulting from the removal
of the branch, and (2) as series transform impedance, an equiv-
alent impedance equal to that of the network from the terminals
of the branch with all energy sources replaced by their internal
impedances—zero impedance for voltage sources and infinite
impedance for current sources.

The dual of Thévenin’s theorem is Norton’s theorem. Once more
consider the network shown in Fig. 9-17. The current in the single
branch being considered may be reduced to zero by placing a current
source in parallel with the branch and adjusting the current until the
voltage across the branch is zero. The voltage across the branch is
zero because the current from the network is just balanced by an oppo-
site current from the parallel current source. Since the voltage across

The network One branch
{less one branch) : ini
alt active smérces l beall gg;t:llgr‘r':egnts
remove

Fig. 9-20. Norton’s equivalent network.

the branch is zero, a short circuit may be placed in parallel with the
branch without affecting the network. The current in the short cireuit
will actually be zero, because there will be a current from the equiv-
alent source which exactly cancels the current from the network. If
all sources within the network are replaced by their internal impedance
and the equivalent current source which caused the voltage across the
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branch to reduce to zero (but with opposite direction) is placed in
parallel with the branch, then this network, shown in Fig. 9-20, is
equivalent to the original network. This equivalent current source has
the value and direction that is found by short-circuiting the branch
in consideration and measuring the current in the short circuit. In sum-
mary, Norton’s theorem can be stated as follows:

Asfar as the voltage across any branch is concerned, the remainder
of the network may be replaced by an equivalent network having:
(1) as a transform current source, the transform of that current
in a short circuit across the branch, and (2) as parallel transform
admittance, an equivalent admittance equal to that of the net-
work from the terminals of the branch with all energy sources
replaced by their internal impedances—zero impedance for volt-
age sources and infinite impedance for current sources.

The equivalent network is shown in Fig. 9-21 as a node basis network
with a current source and two parallel transform admittances. The
unknown voltage is given as

_ I(s) . 1,4(s)
In“‘lCD Yy ls) Yeola) Vis) = Y(s)  Yu(s) + Y ools)
(9-49)

These two theorems will allow us
to reduce the form of any network
to an equivalent simple series cir-
cuit, and from this circuit the transform of the current can be found.
These operations will be illustrated by two examples.

Fig. 8-21. Norton’s equivsalent trans-
form network,

Ezxample 4

The network shown is unenergized until the instant { = 0, when the
switch K is closed. It is required to find the current #;{f) flowing in

Rl L; L2
o0
10 ohms 1 henry 1 henry
+
V:’-‘-- 100 voits 10 ohms <R, /;@ R3< 10 chms

Fig. 9-22. Two-loop network.

the resistor B;. The values given on the schematic have the units of
the ohm, the henry, and the farad. An equivalent schematic showing
element impedances is shown in Fig. 9-23. Thévenin’s theorem will be
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applied by disconnecting the branch containing L, and R;. The net-
work that remains is a simple series network, and the voltage across
the 10-ohm impedance will be the open-circuit voltage for the Thévenin
equivalent network. This voltage is found by finding the current in

Thévenin's theorem
C network

AN e
10+s H
s !

O 4 ; m+,§

- :

™y 3 F. -
I
[

Fig. 9-23. Impedance schematic for Fig, 9-22,

the series network and multiplying this current by 10 ohms, the imped-
ance of the resistor; thus

10(100/s) _ 1000
10 + s + 10 — s(s + 20)

Vee(s) = (9-50)

The impedance of the network with the voltage source 100/s short-
circuited is

_10(s + 10)
Zeq(s) = W (9"51)
The current transform, by Eq. 9-48, is
_ Voe(8) _ 1000/s(s + 20}
'O =200 + 2@ " 06 F 10/ + 20) + G+ 10y 2
which simplifies to
1000
I(s) = s(s* + 40s + 300) (9-53)
This equation may be expanded by partial fractions as
1000 _ K, K, K ,
S T 40:7300) - s TGEFi0) T x5

With K, K,, and K; evaluated, the current transform becomes

3.33 —5 1.67
- + s + 10 + s + 30

I(s) (9-55)

The time-domain current () is found by the inverse Laplace trans-
formation as

i(t) = 3.33 — He~1% 4 1.67¢3% (9-56)
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As a check, this equation reduces to the correct values for initial and
final conditions.

Ezample 5

In the network shown in Fig. 9-24, it is required to find the current
in the resistor B;. The equivalent impedance schematic is shown in Fig.
9-25. It is assumed that the capacitor C, is initially uncharged and that
the switch K is closed at ¢ = 0. Thévenin’s theorem is applied at ter-
minals a-a’, and the equivalent impedance and equivalent voltage at

R1 LG
L e
Cs 1
! - 1
+ : RZ ﬂ--.a‘;;"
Yo i
3 i
= L,
18
Fig. 9-24. Two-loop network. Fig. 9-26. Thévenin’s equivalent of
Fig. 9-24,

these terminals will be found. The equivalent impedance is a parallel
combination of the impedance of two branches; thus

(R; + }./018)1/028

Zedls) = By +1/Cis + 1/C3s (9-57)
— (VG/S)(l/Czs)
and VM(S) - R1 e 1/018 + 1/028 (9“58)
The current through R, is
_ Voe(8)
Ii(s) = Z.o(8) + Ro
Vo/Cs (9-59)

= R.Rss® + (R1/C: + R+/C1 + R2/Co)s + 1/C,C,

Suppose that the following values are given for the network: C, = 8 4f,
¢, = 8 uf, By = 9 megohms, R, = 5 megohms, and V, = 75 volts.
With these parameter values, Eq. 9-59 reduces to

0.208 X 10~ (0-60)
(s + 0.045)(s -+ 0.0077)

This equation can be expanded by partial fractions to give

1 1
= —8 —— 1)
I(s) = 5.55 X 10 L 0.0077 ~ 53 0-045] (9-6

The inverse Laplace transformation gives i5(t) as

Iy(s) =
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ta(t) = 5.55 X 108(g—0.0077t _ g-0.0451) (9-62)

which is the required current. If the current in any other branch is
required it is necessary to start over, applying Thévenin’s theorem.

FURTHER READING

For further discussion of the concept of complex frequency, the
student is referred to LePage and Seely, General Nelwork Analysis
(McGraw-Hill Book Co., Inc., New York, 1952), pp. 189-193 and to
Bode, Network Analysis and Feedback Amplifier Design (D. Van
Nostrand Co., Inc., New York, 1945), pp. 18-30. For a discussion of
the direct use of transforms in solving equations for a network, read
Gardner and Barnes, Transients in Linear Systems (John Wiley &
Sons, Inc., New York, 1942), pp. 176-214.

PROBLEMS

For systems described by the differential equations that follow,
determine the complex frequencies that will appear in the solution, and
designate whether these frequencies are natural frequencies determined
by the passive parameters of the system or frequencies determined by
the nature of the driving force. Call these two kinds of frequencies
“free” and ‘“forced,”’ respectively.

@i di . .,
9.1. (a) Ez-é+a~t~+z—-Ae
(b) (p* + 4p + 5)(p* + 2p + 5)v = Be™ sin p = d/dt
" .
9-2. (a) ‘é_f; +5%~§+6i = cos ¢
(b) % + 57 = De * 4 E sin 7t
+2 +v = 1 4 ¢~ sin 3¢
d%z

+2

) dt3 de?

9.4, tf;; + 23 = 34y =

g-5. Consider the two series c;rcults shown in the accompanying
figure. Given that v,(f) = sin 10%, v.(f) = ¢='%% for t > 0, and C =

4+ 21 — 31z = sin ¢,

AN

R L
wi() ) O @) /‘2@ s

(a}

Prob. 9-8.
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1 uf. (a) Show that it is possible to have 7,(t) = 4,(¢) for all ¢ > 0.
(b) Determine the required values of R and L for (a) to hold. (c)
Discuss the physical meaning of this problem in terms of the complex
frequencies of the two series circuits.

9-8. T'wo black boxes with two terminals each are externally iden-
tical. It is known that one box contains the network shown as (a) and
the other contains the network shown as (b) with B = +/L/C. (a)
Show that the input impedance, Z;x(s) = Vin(8)/Lin(8) = R for both

]
]
[ ————

R
A"
e e e

Prob. 9-6.

networks. (b) Investigate the possibility of distinguishing the purely
resistive network. Any external measurements may be made, initial
and final conditions may be examined, etc.

9-7. If the capacitors are initially uncharged and no current flowsin
the inductors at { = 0, determine the transform of the generator cur-
rent I(s) for the network shown in the accompanying figure. Answer.

10(8% <+ 8 4+ 1)

I(S) == (82 + 1)(82 + 25 + 2)
—AW LN VYV it
1a 1h 29 1f
C) 10sintuit) =<1f 10 C)e'z'cos 3t-ulty A= SR 18
Prob. 9-T. Prob. 9-8.

9-8. Repeat Prob. 9-7 for the network shown in the figure. Answer.

I(s) = 3(s + 2)(5s + 6)
(s* 4 4s + 13)(10s? + 18s + 4)

9-9. In the given network, the switch K is in position ¢ until the
network reaches a steady state. Then at { = 0, the switch K is moved
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to position b. Find the transform of
the voltage across the 0.5-farad capac-
itor, using Thévenin’s theorem.

9-10. The network of Example 4,
Fig. 9-22, has been modified as shown
in the accompanying figure. If the
switch K is closed at ¢ = 0, a steady
state having previously existed, find
the current in R;, using Thévenin's
theorem. Compare this result with Eq. 9-56.

K
AN
10Q 10a 1h l1h
o+
100v =V 100 R 100

Prob. 9-10.

9-11. The network shown in the figure is a low-pass filter (to be
studied in Chap. 14). The input voltage Vy(f) is a unit step function,
and the input and load resistors have the value R = +/L/C. By using
Thévenin's theorem, show that the transform of the output voltage is

4 1
Vi(s) = (LCY 2 [8(8’ + 4 v/1/LC s* + 8s/LC + 3/(LC)”’]
R L |
R,
- . c vt)
R L % é L
nit) Ca= RT Uz(ﬂ () 72V E4] §R3

Prob. 9-11. Prob. 9-13.

9-12. In the network shown in the accompanying sketch, the ele-
ments are chosen such that L = CR,? and R, = Rs. If V1(2) is a volt-
age pulse of 1-volt amplitude and T sec duration, show that Vs(l) is
also a pulse, and find its amplitude and time duration.



CHAPTER 10
NETWORK FUNCTIONS

In this chapter, the concept of transform impedance and transform
admittance which was introduced in the last chapter will be studied
and extended. Further, a function relating currents or voltages at
different parts of the network, called a transfer function, will be found
to be mathematically similar to the transform impedance function.
These two functions are called nefwork functions.

10-1. Terminals and terminal pairs

Consider an arbitrary network made up entirely of passive elements.
To indicate the general nature of the network, let it be represented by
the symbol of a rectangle (or a box). If a conductor is fastened to any
node in the network and brought out of the box for access, the end of
this conductor is designated as a terminal. Terminals are required for
connecting driving forces to the network, for connecting some other
network (say a load), or for making measurements. The minimum
number of terminals that are useful is twoe. Further, the terminals are
associated in pairs, one pair for a driving force, another pair for the
load, etec. Two associated terminals are given the name terminal pair.

In Fig. 10-1(a) is shown a symbolic representation of a one-terminal-
pair (or two-terminal) network. The terminal pair is customarily con-
nected to a driving force and so is sometimes given the name driving

T2]

—)

O o 3o
1 2 1

o— o— 0 O] 4,

0
{a) (b} e}
¥ig. 10-1. Network representations.

potnt. Figure 10-1(b) shows a two-terminal-pair network. The ter-
minal pair designated 1 is usually connected to a driving force (or
input) while the terminal pair marked 2 is usually connected to a load
(as an output). The number of terminal pairs in a network can increase
without limit: Fig. 10-1(c) shows a representation of an n-terminal-
pair network. All the discussion in this chapter, however, will be con-
cerned with one- and two-terminal-pair networks.
214



At. 10-2 NETWORK FUNCTIONS 215

10-2. Driving-point immittances

The transform impedance has been defined as the ratio of the voltage
transform to the current transform; that is,

V()

Z 10-1
® = 75 (10-1)
Similarly, the transform admittance is defined as the ratio
1(s)
Y 10-2
®) = 75 (102)

The voltage transform and current transform that define transform
impedance and transform admittance must relate to the same pair of
terminals. The impedance or admittance found at a given terminal
pair is called a driving-point impedance (or admitiance).

Because of the similarity of impedance and admittance (and to
avoid writing “‘impedance and admittance’), the two quantities are
assigned one name, immittance (a combination of impedance and
admitiance). An immittance is thus an impedance or an admittance.

The driving-point immittance of a network is found by combining
impedance terms (Ls, R, and 1/Cs) or admittance terms (Cs, G, and
1/Ls) by adding, multiplying, or dividing. This algebraic combination
of terms results in an immittance function in the form of a quotient of
polynomials as

@os® + st 4 ...+ Guss + Qs
bﬂsm + blsmw:l + e + bm——ls + bm

which is a rational function of s (n and m are integers).

In this equation, n is the order of the numerator polynomial and m
is the order of the denominator polynomial. The polynomials may
be of ,any order including zero, al-

(10-3)

e = 1
though we will later show that there © VNV |
is a restriction in the difference in | & L . |
order of the two polynomials. Zis : o T |

I
Example 1 o ! |

Figure 10-2 shows an RLC series
one-terminal-pair network with trans-
form impedances marked for each element. The driving-point imped-
ance Z(s) is

Fig, 10-2. Series network.

2
2) = R+ Ls+ 5 = L8t RO 41 (10-4)

2
or 2(s) = L&A RI/L+ VIC (10-5)
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The numerator polynomial for this driving-point impedance is of sec-
ond order, while the denominator polynomial is of first order.

Ezample 2

Figure 10-3 shows a more complicated network consisting of a series
RL network shunted by a capacitor. The driving-point impedance is
1 H s+ R/L

Z6) = G TR+ Ls) — 0o % Re/L + 1jzc 100

In this driving-point impedance function, the numerator is of first
order and the denominator is of second order. The driving-point admit-
tance function Y(s) for this network is the reciprocal of Eq. 10-6.

o e e = 1
o i ’\/}t/\; i
| !
Jdo Ls
Zis) I T s ! PR T
* | 1 2
o 4 | PR N
fo i s e v —————— |

Fig. 10-8. Network of Example 2.  Fig. 10-4. Two-terminal-pair network.

10-3. Transfer functions

The concept of a transfer function is identified with networks having
at least two terminal pairs. Such a network is shown in Fig. 10-4.
Although the driving-point immittances at terminal pair 1 and ter-
minal pair 2 are of interest, we are also interested in the ratio of excita-
tion and response for the two terminal pairs. The function relating the
transform of a quantity at one terminal pair to the transform of another
quantity at another terminal pair is given the name transfer function.*
There are several forms for transfer functions in electric networks:

(1) The ratio of one voltage to another voltage, or the voltage
transfer ratio.

(2) The ratio of one current to another current, or the current trans-
fer ratio.

(3) The ratio of one current to another voltage or one voltage to
another current.

The transfer function for a voltage or current ratio is assigned the
symbol G(s). If terminal pair 2 of Fig. 10-4 is designated the output
terminal-pair, and terminal pair 1 is designated the input, then the

* In computing the transfer function, all initial conditions are assumed to be
zero.
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yoltage transfer ratio of the output to the input is

Vout(s) - V2(8)
Vi(s) — Vils)

G(s) = (10-7)
The ratio of voltage to current or current to voltage is dimensionally
immittance, but since the two quantities are not measured at the same
terminals, such a ratio is designated a fransfer immittance in ohms or
mhos. The transfer imtittance is given the same symbol as the
driving-point immittance with subscripts to identify the terminals.
For example,

Vi(s)
I 3(8)

12(3)

le(S) == m

and Y(s) = (10-8)
where the first subscript identifies the numerator quantity and the
second identifies the denominator quantity. The transfer function is
determined by the network immittances and can always be reduced to

& quotient of polynomials,

_Pls) _asmtas '+ ... +a.
Q(s) bes™ +bs™ 4+ ... + b,

(10-9)

The transfer function thus has the same general form as the driving-

point immittance function. oo ——
c 'l

Q

iy
!
Ezample 3 | R .
. . Vils) Its)) | oA
The two-terminal-pair network ' /) Cs : Vals)
t
wad

shown in Fig. 10-5 has marked o |

t -0
Vi(s) as the input voltage and Va(s) L o o —
as the output voltage transform. Fig. 10-5. Two-terminal-pair net-
This network acts as a voltage di- work.

vider. With no current in the output terminals, the voltage equations
are

RI(s) + C*l‘s I(s) = Vi(s) (10-10)

C—%—s I(s) = Vy(s) (10-11)

The ratio of these equations is

IRATO N VOO
R Vi(s) ~ (R + 1/Cs)I(s) ERCs+ 1 (10-12)
. 66) = 417 (10-13)
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for this network. This transfer function has a numerator polynomial
of zero order and a denominator polynomial of first order.

Ezample 4

The two-terminal-pair network shown in Fig. 10-6 is similar to that
of Example 1 except that the resistor has been replaced by an inductor.
It is not necessary to write Kirchhoff’s equations as above to find the
transfer function, since this network is essentially a voltage divider.
The transfer function for the voltage ratio becomes

Vi) 1/Cs 1
Ge) = 5. “Ts +1/Cs — L0 ¥ 1 (10-14)
1/LC
or G(S) == ;2‘"_{?/‘171‘1—6 (10*15)

The numerator polynomial is of zero order, and the denominator poly-
nomisl is of second order.

P T
o e e e e =) | oy }

o t——TTT Lo o L AAK o

Ls | R

j ¢ | ! 1 |

WVitsl | /1@ TG | Vsl Vits) | Ry | Vais)
I ! l !

o { { 0 o } } ©
Lo e e 4 Lo e o o o J

Fig. 10-6. Two-terminal-pair network. Fig. 10-7. Network of Example 5,

Exzample 6

The same voltage-divider network concept can be used with more
than one current loop in the network by using network reduction.
Figure 10-7 shows such a network. The transform impedances R, and
1/Cs can be combined into an equivalent impedance having the value

1 R,

= = H
ZlS) = Gy R, T Bals ¥ 1 (10-16)
Then the transfer function becomes
¥72(8) 132
G(s) = = 10-17
© =70 " Rt 2o (o1
or G(s) By R\Cs + R, (10-18)

" R:E.Cs + Ry + Rz
which may be reduced to

G - s 4 1/R10
ey g A (16-19)
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In this transfer function, the order of the numerator and order of the
denominator are the same. This particular network finds application
in servomechanisms where it is known as a ‘“‘lead’ network.

10-4. Poles and zeros

All network functions have the form of a quotient of polynomials as

Go8™ + a8™t 4 ... 4 Gpy8 4 an
bos™ + big™ 1+ ... - bp_18 + bn

If the numerator polynomial is factored into its n roots, and the
denominator polynomial is factored into its m roots, the equation can
be written in the form

/(3 ~ 8)(8 — 82)...(8 — 8,)
AT R TS (10-21)

(10-20)

where H = ao/bo is a constant known as the scale factor, and the roots
81, 83, - - -, 8a, 8, ... are complex frequencies. When the variable s has
the values 8,, 8y, .. ., 8, the network funetion vanishes. Such complex
frequencies are called zeros of the network function. When s has the
values 8,, 8, ..., 8m, the network function becomes infinite. These
complex frequencies are called poles of the network function. Poles
and zeros are important in network theory; a comparison of the last
two equations shows that a network function is completely specified
by its poles, zeros, and the scale factor.

There is the possibility that roots of Eq. 10-21 may coincide. Such
multiple roots, corresponding to a factor of the form (s — s,)", are
described as poles or zeros (depending on location in the numerator or
denominator) of order r. For a nonrepeated root, such that r = 1, the
pole or zero is said to be simple.

Both zero and infinite values of s are possible pole or zero locations,
From Eq. 10-21 it is seen that:

(1) Whenn > m, s = « is a pole of order n — m.

(2) Whenn < m, s = « is a zero of order m — n.

(3) Whenn = m, s = « is neither a zero nor a pole but an ordinary
point.

If, for any rational network function, poles and zeros at zero and
infinity are taken into aceount in addition to finite poles and zeros,
the total number of zeros 13 equal to the total number of poles. For example,
the network function

s+ DE+24+)(s+2—j1)
(s +3)( +5) (10-22)
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has five zeros and five poles. The zerosareat s; = —1,8 = —2 — jl,
83 = —2 + 1, and s, = s = . The poles occur at the complex fre-
quencies g, = g = s, = 0, 84 = —3, 5, = —5. These poles and zeros

are plotted on the complex s plane (s = ¢ + jw) in Fig. 10-8. The real

Jw
2 zeros
o {1
®<—© 3 poles
e} o 1 ~ +a.
-5 -4 =3 -2 -1
o 47

Magnitude of
network function

<
e

N
s

N
I\
zero
Fig. 10-9. The magnitude of a network function plotted in the com-
plex frequency plane, showing two poles and one zero.

L3

L A f

part is plotted along the ¢ axis, and the imaginary part along the ju
axis. The symbo! O is used to designate the location of a zero and the
symbol X for the location of a pole. )
Poles and zeros designate critical frequencies. At poles the network
function becomes infinite, while at zeros the network function becomes
zero. At other complex frequencies, the network function has a finite,
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nonzero value. A three-dimensional representation of the magnitude
of the transfer function as a function of complex frequency is shown in
Fig. 10-9, for one quadrant of the s plane. The portion of the complex
plane represented in Fig. 10-9 is
shown in Fig. 10-10. This particu-
lar network function has four finite
poles, one finite zero, and a third-
order zero at infinity.

“~The pole represents a frequency
at which the network function
“hlows up.” The zero represents
a frequency at which the opposite
behavior takes place: the network function becomes nothing at all.
Either ‘‘blowing up” or “becoming nothing” sounds like rather drastic
behavior for the network function¥We might wonder if it would not
be wise to completely avoid poles and zeros, to select network functions
without poles or zeros. Such is not the case at all. Poles and zeros are
the lifeblood of a function; without poles and zeros the function reduces
to a dull, drab, grubby constant—a function which does not change
under any conditions. Without poles and zeros, the three-dimensional
representation of the network function becomes a tedious expanse of
mathematical desert—absolutely flat. But add a few poles and a few
geros and we have a land of spectacular peaks (elevation: «) and
beautiful springs (elevation: 0). This picture will become clearer as we
study concepts of network behavior with the aid of poles and zeros.
™~ Consider the transfer function for a voltage ratio

s-plane Jw

Fig. 10-10. s plane for Fig. 10-9.

-

Vout(s) .
Tls) ~ ¢ (10-23)
which may be written
Vour(s) = G(s)Via(s) (10-24)

In the usual problem, v;,(f) is specified, and G(s) can be computed from
the network. The problem is to find the response, v,.(f). When the
last equation is expanded by partial fractions, the denominator of each
partial fraction term gives a pole of either G(s) or Vi.(s); that is, with
no repeated roots in the denominator of Vou(s)

K; o} I.{_’L

8§ — 8 8 — 8

=1 =]

G(s)Vin(s) =

(10-25)

where p is the number of poles of G(s), and v is the number of poles of
Vin(s). Performing the inverse Laplace transformation of this equation
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gives

P v
Voult) = £71G(s) Vinls) = E Kottt + Z K (10-26)
kol

F=1

Thus the frequencies s; are the natural complex frequencies correspond-
ing to free oscillations. The frequencies s, are the driving-force complex
frequencies corresponding to forced oscillations. The poles therefore
determine the waveform of the time variation of the response, the out-
put voltage. The zeros determine the magnitude of each part of the
response, since they determine the magnitude of K; and K, in the par-
tial fraction expansion, as we shall see.

In terms of driving-point immittances, poles and zeros have easily
visualized meanings. Since Z(s) = V(s)/I(s), a pole of Z(s) implies
zero current for a finite voltage, which means an open circuit. A zero
of Z(s), on the other hand, means no voltage for a finite current, or a
short circuzt. Thus a one-terminal-pair network is an open circuit for
pole frequencies and a short circuit for zero frequencies. This can be
visualized easily in terms of single element networks. For a capacitor,
the driving-point impedance is Z(s) = 1/Cs. This network function
has a pole at s = O and a zero at s = . It behaves as an open circuit
at the pole frequency (w = 0) and as a short circuit at infinite fre-
quency. Likewise, for an inductor, the driving-point impedance Z(s)
= Ls (zero at s = 0, pole at s = ) and this element behaves as a
short circuit at zero frequency and as an open circuit at infinite
frequency.

10-5. Restrictions on pole and zero locations in s-plane

The poles and zeros of network functions have limitations as to their
location in the s plane. These restrictions follow from two facts: (1) the
terms in the polynomials of the form

aos® + as® 1+ ...+ @no1s + s (10-27)

have coefficients (ao, @i, ..., @s) which are positive and real. This
follows because each of these coefficients is determined by some combi-
nation of R, L, and C, and these parameters must be positive and resl
(the only way they appear in nature). (2) The networks being consid-
ered are made up of passive elements only. The rules for location of
poles and zeros are different for driving-point functions and for transfer
funetions, and so will be considered separately.

Driving-Point Immittance Functions. (1) Since the coefficients of
both numerator and denominator polynomials of driving-point immit-
tance functions are positive and real, poles and zeros are either real
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or occur in conjugate pairs. This was discussed in more detail in
Art. 6-3. ‘

(2) All poles and zéros of driving-point immittance functions have
negative real parts. Consider a denominator factor (s — s,), where 8
is & pole having a real and imaginary part, 8, = ¢, -+ jw,. If o, 18 posi-
tive, this pole will give rise to a time-domain factor (by finding the
inverse Laplace transformation) of the form

Kaett = K ev0teivat (10-28)

The exponential term (e’+!) increases exponentially as { increases. For
such a pole in Z(s), the voltage would increase without limit for any
current input, and for such a pole in Y(s) the current would increase
without limit for any voltage input. Since this cannot happen phys-
ically with only passive elements in the network, the poles and zeros
of a driving-point immittance function have negative real parts. In
terms of pole and zero location in the s plane, all poles and zeros must
be in the left half plane (LHP) and can never occur in the right half
plane (RHP). Poles and zeros can be on the boundary (the jw axis)
subject to the limitations we discuss next.

(3) Poles and zeros on the jw axis of the s plane (corresponding to
real radian frequency) will always be simple. The reason for this
restriction is the same as that listed in (2). Multiple poles give rise to
time domain functions of the type (¢ cos wt), (f sin wi), etc., and such
terms increase without limit as ¢ increases. Such an increase is not
possible for a network made up of passive elements only. For example,
consider the following transform pair,

gt o = L osin w (10-29)
(8 + w?)? 2w
The transform expression corresponds to two poles at —jw and two at
+jw. The time domain factor of the transform pair is a linearly increas-
ing sinusoid.

Multiple poles and zeros are permitted at other locations in the left
half of the s plane, since such poles give rise to terms of the form
"¢, having the required zero limit since

atlim et = 0
for finite n by I'Hospital’s rule.

(4) The order of the numerator polynomial and denominator poly-
nomial for a driving point immittance function can differ at most by
unity. If the driving-point immittance function is found without
algebraic error, this restriction will always be observed. It can, how-
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gver, be shown to be a requirement which follows from the restriction
listed under (2) above. First, we must further discuss the meaning of
infinite frequency. We usually visualize high frequency in terms of an
increasing sinusoidal frequency. Starting with conventional 60-cycle
generators, we next visualize an audio oscillator, a radio frequency
oscillator, a microwave frequency oscillator, and then, somewhere far
beyond, lies infinite frequency. This is a rather nebulous and hazy
concept, but it is the best we have. In terms of the s plane, we have
followed the jw axis from a value near the origin on out to infinity. It
is not necessary to follow the jw axis. Following any other path in the
s plane will eventually lead us to infinity, and once we get there we are
at the same place as if we had followed the jw axis. In other words,
infinite frequency is just ome frequency, and is reached by traveling
any direction from the origin of the s plane. Infinity is a unique point
(or it would not be infinity). We can say that the s plane is really not
a plane at all--it is a sphere, similar to the earth. Let the north pole
represent the origin of the s plane. Standing at the north pole, the s
plane looks flat, which is really not too unreasonable since it is part of
a sphere of infinite radius. But if you go far enough in any direection
from the north pole of the s plane, you end up at the south pole, which
is one point infinitely far removed from the north pole of the s plane.

Now if infinity is only one point in the s plane, it includes the jw
axis (sort of an international date line in the s world). But by item (3),
poles and zeros on the jw axis must be simple. Hence poles and zeros
at infinity for a driving-point immittance function must be simple.*
The only way we can get a simple pole or a simple zero at infinity is to
have the order of the numerator exceed that of the denominator by
unity for a pole at infinity, and have the order of the denominator
exceed that of the numerator by unity for a zero at infinity. This
rule is satisfied automatically when you compute the driving-point
immittance function. If it is not, you have made an algebraic mistake.

Transfer Functions for Output/Input. The restrictions for transfer
functions are not so rigid as those for driving-point immittances,
because the transfer function is determined as the ratio of two different
quantities at different points in one network. The restrictions will be
given by analogy to those for driving-point immittance functions and
in the same order,

(1) This restriction also holds for transfer functions, Poles and
zeros are either real or occur in conjugate pairs,

(2) The poles of a transfer function must have negative real parts,
but this restriction does not hold for the zeros. A network with zerosin

* This is intended to be only a suggestive or heuristic proof,
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the left half plane only is classified as minimum phase; those with zeros
in the right half plane are nonminimum phase.

(3) This restriction holds for transfer function poles. Poles and
zeros on the jw axis will always be simple,

(4) For (output/input) transfer functions, the order of the numera-
tor may exceed the order of the denominator by one. However, the
numerator order may be any value less than that of the denominator.

10-6. Time-domain behavior from the pole and zero plot

In this section, we will show that the time-domain behavior of a
system can be determined from the s plane plot of the poles and zeros
of its transfer function and those of the transform of the active-source
driving-forces. Suppose that the transform of some variable, say a
current I(s), is found, and the poles and zeros are determined as

_ _ P(s)

I(s) = Y(s)V(s) = 06 (10-30)

P(8) (8 — 8){(s — 83)...(s — 8,)

where m h H(S"'Sa)(s_ Sb)--'(s_sm)

(10-31)

It was shown in Art. 10-4 that the poles of this function determine the
time-domain behavior of i(f). It was suggested that the zeros deter-
mine the magnitude of each of the terms of i(¢). In this section, we
will amplify these concepts by showing how Z(f) can be determined
from a knowledge of the poles, the zeros, and the scale factor H.

In terms of the damping ratio { and the undamped natural fre-
quency, w, as discussed on page 104, the poles and zeros of the last
equation will have the following forms.

§1, 82 = —{wn & jua /1T — 2 <1 (10-32)
81, 82 = ~{ws + wa V1 — 1 r> 1 (10-33)
S1, 82 = —wn =1 (10-34)
81, 83 = tjw, =0 (10-35)

It was also shown on page 105 that contours of constant w, are cireles
in the s plane, that contours of constant damping ratio are straight
iines through the origin, and that contours of constant damping ({wa)
are straight lines parallel to the jw axis of the s plane. Further, lines
parailel to the o axis of the s plane are lines of constant actual frequency
of oscillation, w, V1 — {% These facts are summarized in Fig. 10-11.
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The location of the poles in the s plane can be interpreted in terms
of the general time-domain response in terms of ¢ and wa.

() = K!e(“rwu-i-m-.\/ﬁ—_l)z + ng(mru,_m..\/;l——l)t (10-36)

To illustrate the use of the contours of Fig. 10-11, consider the array of

s-plane Ju s-plane Jw
]
] e
@) {b)
s-plane Ju s-plane Jw
a
a
{c) id)

¥ig. 10-11, Constant contoura in the s plane: (a) constant radius
= wa; (b) constant damping ratio linc @ = tan™' (/1 — p3/1);
(¢} constant negative damping line o = —lw, {or any real part of
8); (d) constant actual frequency of oscillation lines w = tw, /1 — .
{ and w, are defined by the second-order characteristic cquation
8% + 2twns b wat = 0.

poles shown in Fig. 10-12 (zeros have been omitted for clarity). The
pair of poles s, and s,* and the pair s, and s.* correspond to oscillatory
expressions in the time domain. The

#plane X e actual frequency of oscillation corre-
Scx sponding to 8, and s,* is higher than that

Son e o of s, and s.*, just as the damping (or rate
. of decreasing amplitude) is less for s, and

% x 3,* than for s, and s.*. The natural fre-

o x quency of the two pole pairs is approxi-

mately the same, since they are on about
the same radius from the origin. The
difference in actual frequency of oscilla-
tion is due to a lower damping ratio for s, and s,*.

The poles s and sq are quite different from the conjugate pairs just
considered. They correspond to the overdamped case, and have an

Fig. 10-12, Typical polesin the
a plane.
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exponential decay form in the time domain. The damping is greater
for 4 than for s,. From another point of view, the time constant for
the pole s, is greater than that for s;. Typical time-domain response
corresponding to each pole is shown in Fig. 10-13 for an arbitrary

i i

e

s-plane

NN~

Fig. 10-13. Response comparison for various poles in the s plane
(arbitrary amplitudes).

amplitude for each factor. The total response corresponding to these
poles is found by adding each of the individual factors as

i) = Koot + Ko¥e™ + Kyent + Kot + K% + Koot (10-37)

As usual, the terms corresponding to conjugate pairs will combine to
give damped sinusoidal expressions.

_ There remains the problem of determining the multiplying constant
(or magnitude) for each of the terms (or modes). The starting point is
Eq. 10-31. To find the time-domain response corresponding to this
transform equation, we expand by partial fractions. Hence

Ka Kb K,- Km
I(s)msmsa+s-sb+"'+ + ...+

8"""8,- 3—‘87:;

(10-38)

Any of the K-coefficients, say K,, can be found by the Heaviside
meﬁhOd as

K, = (8 — 8:1)(8 — 85)...(8 — 8a)

= H (8 ~ 8a). .. (g)...(s — 8p) (8ms7) -t (10-39)



298 NETWORK FUNCTIONS Chap. 10

Substituting s, for s in Eq. 10-38 gives the following value for K.
(8 — 81)(s, — 83). .. (s, — 8a)
K,=H 2020000 7 72/ A3 ™ $a)
(8 — 8a)(sr — &).. (3, — 8,) (10-40)

This equation is composed of factors of the general form (s, — 8),
where both s, and s, are known complex numbers. The difference of
two complex numbers is another complex number which may be
written in polar form as

(3, — 84) = M, eits (10-41)

where M, is the magnitude of the phasor (s, — ,), and ¢,, is the phase
angle of the same phasor. The difference of the two complex quantities
s, and s, is illustrated in Fig. 10-14 (other poles and zeros are omitted

Jw jw

8

{a) )

Fg. 10-14. Magnitude and phase of (s, — s.) {other poles and
zeros omitted): (a) polar diagram; (b) string diagram.

again for clarity). The term (s, — s.) i8 interpreted as a phasor
directed from s, to s,. The magnitude M, is the distance from s, to s,;
the phase angle ¢., is the angle of the line from s, to s,, measured with
respect to the ¢ = 0 line. The magnitude and phase of the factor
(8, — 8.) are thus easily measured, and so all terms of this general type
in Eq. 10-40 are easily found. In terms of M and ¢ for each factor in
Eq. 1040, the value of K, is seen to become

%"g{{:"g"‘ : 'ﬁ{l"' gitdirtout. . —du—du—..)  (]10-42)

This equation gives K, as a magnitude and phase. By performing the
operations indicated by this equation, the constant K, can be eval
uated. Determining the quantities in Eq. 10-42 is readily accomplished
by a graphical procedure which may be outlined as:

(1) Plot the poles and zeros of I(s) = P(s)/Q(s) to scale on the
¢complex s plane,

K,=H
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(2) Measure (or compute) the distance from each of the other finite
poles and zeros fo a given pole s,.

(3) Measure (or compute) the angle from each of the other finite
poles and zeros fo a given pole s,.

(4) Substitute these quantities into Eq. 10-42 and so evaluate K,.

An example will illustrate this proce- jw
dure. Suppose I(s) has poles 8 = —1
and —3 and a zero at the origin, and H

is given as 5. The current transform has = =% D
the form
I(s) = 28 (10-43)
¥ T EF D + 3) Fig. 10-15. Pole-zero configu-
ration.

This function is easily expanded by par-
tial fractions, but can also be evaluated as outlined above. Referring
to Fig. 10-15, it is seen that

Mmei%: = ]gf180® (10_.44)
Mieitn = 2617 (10-45)
M oef¢n -
Hence Ki = H 37220 = 5 X o410 = —25 (10-46)
Similarly,
M et 3eir80®
Ka = H M138f¢" = § X W = 7.5 (10*47)

Since the poles determine the frequency (in this case neper frequency),
we write for the general solution,

1(f) = Kie™t + Ky ™ (10-48)

and since K; and K; have been evaluated from a knowledge of the pole
and zero locations, we have as a particular solution,

i(t) = —2.5¢~t + 7.5¢~% (10-49)

From this discussion and with the aid of Eq. 10-40, the influence of
a zero on the time-domain response can be visualized. Consider one
pole, say s, in Fig. 10-14. If all other poles and zeros in the s plane
remain fixed in position and the zero s, is moved, the proximity of a
zero to a pole is seen by Eq. 10-42 to reduce the magnitude of the
K-coefficient associated with the complex frequency of the pole s,.
Again, from Eq. 10-42, proximity of a pole to s, is seen to have the
opposite effect—since pole magnitudes appear in the denominator—
and proximity of another pole to s, increases the magnitude of the
coefficient K,. When the zero s, is moved so close to s, that they
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coincide, the pole and zero cansel and reduce the value of the partic-
ular K, to zero.

The magnitude of the K-coefficient corresponding to a particular
pole is thus determined by the proximity of both poles and zeros. If,
in the design of a network, the position of the poles and zeros can be
selected, they should be selected according to the following pattern:

(1) Select pole locations to give the required time behavior. Do this
in terms of complex frequencies.

(2) Fix the position of the zeros in the complex plane to adjust the
magnitudes of the various K coefficients.

1% should be noted that the graphical interpretation of the position
of poles and zeros was discussed for the case of nonrepeated (or simple)
poles. In the case of multiple poles, it is suggested that expansion by
partial fractions be followed rather than seeking a modification of the
procedures that have been discussed to fit the new case.

10-7. Procedure for finding network functions for general two-terminal-pair
networks

For complicated two-terminal-pair networks, the computation of
transfer functions and driving-point immittances may become quite
involved. In this section, we will discuss systematic procedures for
finding such network functions.

Any network can be thought of as made up of the combination of &
number of one-terminal-pair networks. There is no unique rule for

Zy
z, T, Z
g o1, N it W 1,1, )
lo— Ll T °2

i

\ A A A I\

Y, =Y,
==Y,

T

le 02

Fig. 10-16. Grouping of elements in a network to form a system of
alternate impedances in series and admittances in parallel.

dividing the arbitrary network into elementary one-terminal-pair com-
ponents. However, such a division is made on the basis of interest in
the voltage of certain nodes or the current in certain branches in many
cases. The network of Iig. 10-16, for example, is grouped into a num-
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ber of one-terminai-pair networks. For each of the one-terminal-pair
networks, the transform impedance Z(s) or the transform admittance
Y(s) can be computed. This is illustrated for a number of examples in
Fig. 10-17. Such combination is accomplished by the usual rules for
geries and parallel combination of immittances discussed earlier.
Several two-terminal-pair networks occur so often in useful networks
that they are given special names. The general network sometimes
reduces to a series impedance, a parallel impedance, and another series

1 o AAN—BI—|f ~ = = g 2i8) or Yis)

= lo—AAN—o2
20-
lo 1
Zis) or Yig)
=~ = 1ow-ANN~02
20- ' )
1 T Z
w {8} or Yis)
= ]o—ANN—02
20

Fig. 10-17. Immittance of one-terminal-pair networka.

o o o o
{a) b

Fig. 10-18. Network configurations.

impedance as shown in Fig. 10-18(a). Such a network is known as a
T network. Further, if the series impedances are equal, that is if
Z, = Z,, the network is designated as a symmetrical T. Figure 10-18
shows two other network configurations. The network of Fig. 10-18(b)
is a w network, and with ¥, = Y, the network is a symmetrical . The
network of Fig. 10-18(c) is a lattice network or a symmetrical lattice
when Z, = Z4 and Z; = Z,.

If the two terminals of a terminal pair of a two-terminal-pair net-
work are connected to a terminal pair of another two-terminal-pair
network, the networks are said to be connected in tandem or cascade.
If T networks or = networks are connected in cascade, the resulting
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network is an important network structure. It may contain any num-
ber of sections and may begin as shown in Fig. 10-19, or may begin
with Z,(s) = 0. The same thing may be said about the manner in
which the network ends (at terminal pair 2). For convenience in com-
putation, the series immittances are computed as impedances, and the
parallel (or shunt) immittances are computed as admittances.

—ANMTANMTANN c——
Zyls) Zls) Zs)

1 Yois) Yais) Yets} - - - 2

o - nm ©

Fig. 10-19. Ladder network.

The driving-point immittance of any network can be found by
writing loop or node equations. If the network can be made into &
“Jadder structure,” it is possible to find the driving-point immittance
by series and parallel combination of immittances without writing loop
or node equations directly. Assume that the ladder network of Fig.
10-19 is made up of the six immittances shown. Combining immit-
tances at the terminals opposite those for which the driving-point
immittance is required, Y¢(s) is first inverted and combined with Z(s).
Next this sum is inverted and combined with Y(s). This pattern may
be continued until the network reduces to a single immittance. In

summary,

Zas(s) = Zas) + 1 (10-50)
Ya(s) + 1
Zy(s) +

1
Zs(s) + e
’ Ye(s)
which is read from the bottom to the top to give the pattern of com-
bining immittances. Such an alge-

Y(s) +

L, braic configuration is called a con-

OJ\{Z\IA’ tinued fraction or a Stieltjes continued

v fraction. Forming a continued frac-
1

tion for a ladder network provides
a systematic procedure for finding
the driving-point immittance.

The use of a continued fraction
for network reduction applies only
when the network function of interest is a driving-point immittance.
When the transfer function is desired, a different procedure must be

Fig. 10-20. Two-terminal-pair net-
work.
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foliowed. In Fig. 10-20, the ladder network of Fig. 10-19 is redrawn
with several pertinent voltages and currents designated. As in finding
driving-point immittance, the following procedure requires that com-
putations begin at the terminals opposite the driving-point terminals,
For the network, we may write the following equations for Kirchhoff’s
voltage and current laws:

I. = Y.V, (10-51)
Vim Vo4 ZyI, (10-52)
Is=Is4 YW, (10-53)
Ve Vs + 2,1, (10-54)
I= Iy 4 YV, (10-55)
Viw= Vs 4 Z,1, (10'56)

These equations describe the network and they contain the usual trans-
fer quantities, G(8) = V,(8)/V(8), Zu(s) = V(8)/I.(s), etc. Starting
with the first equation and substituting it into the second equation
gives

V: - (1 + YOZI)Vi (19"57)

In turn, this equation may be substituted with Eq. 10-51 into the next
equation to give
Il = [Yc + Yi(l + Yl-zl)]Vi (10‘58)

Continuing according to this pattern,

Vi={(1 4+ YZy) + ZoVs+ Yl + YZ)lIVe (10-59)

I; =
((Ye+ Yl + YeZi)l + Yol(1 4+ YZs) + Zi[Ye+ Yi(l + YZ)}V,
(10-60)

This equation gives the transfer impedance Z4,(s) as the inverse of the
admittance Y,,(s), which is

Ya@ = )0 = Yok Y+ Vil + ZuYo+ Y] (106)

where d =14 Y, (10-62)

The transfer function for the voltage ratio may be found by earrying
this procedure one step further by substituting into Eq. 10-56; that is,

= §+ Zs(Ye+ Yb) +Zi|Ye+ Yid + Yofd + Zs(Ye + YY)}
(10-63)
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The transfer function V(s)/V,(s) is the reciprocal of G(s) as given.
The method illustrated above holds for any number of sections in the
ladder network. The general pat-

oi%fm“ V. i’; oy . tern has been established by this
Z=g Zwg example.

v, lhe“?"..’..: ”‘e“'{,_s== v, To illustrate the method with a

1 farad 1 farad specific example, consider the net-

o o, Wwork of Fig. 10-21, which is made

up of series inductances (1 henry)
and shunt capacitors (1 farad). The
impedance of the series elements
is 8, and likewise, the admittance of the shunt elements is s. For this
network, the driving-point impedance and the transfer function of the
voltage ratio will be found. Other currents and voltages that will aid
in the computation (but not appear in the solution) are shown on the
figure. The driving-point impedance, written in continued-fraction
form, is

Fig. 10-21, Two-terminal-pair net-
work.

1
1

1
8+-§

Zip(8) = 8 + (10-64)

8 +

This equation can be reduced, starting at the bottom and working up,

to the form

8% + 38 4 1
8 + 28

To find the voltage ratio transfer function start at the V, terminals

and proceed as

Zap(8) = (10-65)

I:(S) = YVg = 3V2 (19-66)
Va(s) = Vo I:Z4 = (82 + 1)V, (10-67)
Ii8) = In+ YV. = [8 + 8(s* 4+ 1]V, (10-68)

Vie) = Vo + ZI, = (s* + 1)V, + s(s® + 28)V,  (10-69)
The voltage ratio transfer function thus becomes

Vg(S) _ 1
Vi(s)  s*+3st+ 1

for this particular network, We will show in another chapter that this
network behaves as a low-pass filter.

FURTHER READING

For additional discussion relating to network functions, the reader
is referred to Gardner and Barnes, Transients tn Linear Systems (John

(10-70)
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Wiley & Sons, Inc., New York, 1942), Chap. 5; to Valley and Wallman,
Vacuum Tube Amplifiers (Vol. 18 of the Radiation Laboratory series,
McGraw-Hill Book Co., Inc., New York, 1948), pp. 42-53; to Tuttle,
Network Synthesis, 2 vols. (John Wiley & Sons, Inc., New York, in
preparation); and to Guillemin, Communications Networks, Vol. I
(John Wiley & Sons, Inc., New York, 1932). It should be noted that
the quantity s is equivalent to p and X\ as used by some authors.

PROBLEMS

. 10-1. Find the driving-point impedance for the network shown
in the figure. Arrange the polynomials of this function with the high-
est ordered term normalized to unity coefficient. Answer. Z(s) =

£ +2s2+ 35+ 1
8+ s '

o AAAY 7000 o

1q _J_ 2h
Zls) "

%fT 114< Zis) lh 1g
o= o

Prob. 10-1. Prob. 10-2.

| el

If-h.
s
-~

10-2. Repeat Prob. 10-1 for the network shown in the figure.
£+ 2524 s+ 1

Answer. Z(s) = T i L

10-3. Find the driving-point admittance for the network shown
in the accompanying figure. Arrange the polynamials with the
highest-ordered term normalized to unity coefficient. Answer. Z(s)
IR R
T st R )

_.K_.._ o
L oo 5h
“\Q%?f“ Yis) =e< i h
Yis) R TS "
. . T
Prob. 10-3. Prob. 10-4.

10-4. Repeat Prob. 10-3 for the network shown above. Answer.
R A i
"6 = e 1 1
10-5. Find the transfer function, the output voltage to input voltage
ratio, for the networks shown in the figure. Arrange the polynomials
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with the highest-ordered term normalized to unity coefficient. Answer
1/R\R.C,C,

to (b). G(s) = & F (BC: + RiC: + B:C2)s/RiE:C:0s + 1/RRCCy
O——JW\I—° © V.V V MV °
Ry c R, R;
v v, " ;:C} ‘;‘:Cz by
R;
o ° ° °
Prob. 10-5.
if
1\
Ry L oaa— Cl °
R, AVAVAVe C
Uy v2 R,
vy vz
L R
o © ° ¢
(@) {b
Prob. 10-6.

10-6. Repeat Prob. 10-5 for the networks shown. Answer to (b).
[ 2 + (R:iCy + RaCy)s/RiRoCiCs + 1/R1R:C1Co ]
182 + (R101 + RiCy + chz)S/RlecICz + 1/R1R20102
10-7. Show that both of the networks of the figure have the same
(s + 1)(s +3) }
s(s+ 2)(s +4)

driving-point impedance Z(s) = 2 [

0 A0
A

—i— Y ( ° I\{\é\’ 30
£ 34 é\f \f

Zis) Zis) S i Tu

Q

Prob. 10-7
{
& {{ Ja\
4+ 1f
2Zis} th ih
O
Prob. 10-8.

10-8. Show that the network of the accompanying figure has the
8 + 188 + 24
78 + 123

driving-point impedance Z(s) =
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10-9. Prove that the total number of poles is equal to the total
number of zeros for any network function having the form of quotient
of rational polynomials.

10-10. The network shown below is known to have the pole-zero
configuration shown in the figure. In addition, it is known that the

splane jw
o i Junl bty
yr
Z
R 115 -
Z Ca= 4 7
L VIl !
2 i
£
o i A S
{a) {b)
Prob. 10-10.

impedance at zero frequency (s = 0 or direct current) is 1 ohm, that
is Z(0) = 1. Determine the values of R, L, and C in the network.
Answer. R = 1 ohm, L = § henry, C = 0.1 farad.

10-11. It is known that the response in the time domain of a system
is the summation of terms having the following characteristics: (a)
wa = 2, ¢ = 0.5 (second order); (b) T (the time constant) = 3 sec;
(¢) wn = 1, { = 0. Plot the poles of this system in the s plane,

10-12. A transient is found to be of the form

i(f) = 2e~* — le~™

Find a pole-zero configuration for I(s) that gives this time-domain

response.
10-13. A transient is found to be of the form

i(t) = %_e-t — ¥ 4 _i_e-—ac

Find a pole-zero configuration for I(s) that gives this time domain

response.
10-14. Given that the scale factor of a current transform I(s) has

the value 10 and that the following finite poles and zeros describe the
system:

Poles Zeros
—2 + 71 none
-5

Find the time-domain response corresponding to this [(s). Answer.
i) = % 4+ 4/10 e~ cos (¢ — 108.4°).
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10-18. Given that the scale factor of a current transform I(s) has
the value 5.0 and that the following finite poles and zeros describe the
system.

Poles Zeros
—1 + 52 — 6
-3

Find the time-domain response #(f) corresponding to this I(s).
10-18. For each of the networks shown in the figure, find the transfer
impedance Z,.(s) = V,u(s)/I:n(s) and the voltage ratio transfer func-

tion G(8) = Vou(s)/Vin(s).

I I _
o—TVT ° iR A -0
2h 2h 14 1§
1 —=2f TZt 2 1 1h lh

O
a) ° ° ® °
Ti i "
° y i 0 OV V™=
1f 1f 10 iga
1 10 10 2 1 11 Tlf 2
[« ) [~ 41
{e} {d)
1h 1h 18 1q
1 10 1a 2 1 ih l1h 2
[ o) [+ O
{e} N
o rEYo AT o

(g

L -~C Va (s}

Prob. 10-17.

10-17. The network shown in the figure is driven by a current source
I;. The output voltage is Vi (a) Find the transfer impedance,
Z21(8) = Va(8)/I:(s). (b) Show the pole-zero configuration for Zs(s).
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10-18. For a given network, it is known that

Ly =Vy/I, = (s = 81)3(3 — &)
where 83, 81 = —1 %+ 710. If 4,(¥) = ¢ %%, find v,(2).
10-18. (a) For the network shown, show that the input impedance
at terminal-pair 1 is Z;,(s) = 1 ohm. (b) Find the transfer function
G(s) = Va(s)/Vi(s) for this network.

1h
AVAVAY.
1Q "L2f
14 V2
10 § 10 ==2f
lo o2
Prob. 10-19.

10-20. Two conjugate complex poles are required to meet the var-
ious specifications given below. For each specification, sketch the
region in the s plane (using crosshatching for identification) that
the poles may be located. (a) { = 0.707, w. = 1, {w. = —4. (b)
0 £t £ 0.5 actual frequency = 2, {w. negative. (¢) 1 S w. £ 4,
{w, £05.(d) 0.5 = ¢ = 0866, w, = 2.5.



CHAPTER 11

SINUSOIDAL STEADY-STATE ANALYSIS
FROM POLE-ZERO CONFIGURATIONS

There is something distinctive about the sinuscidal waveform. If
a sinusoidal driving force is applied to a network of linear passive
elements, every voltage and every current in that network will be
sinusoidal in the steady state, differing from the driving-force sinusoid
only in amplitude and phase angle. This property follows from two
facts:

(1) The sinusoid may be repeatedly differentiated or integrated and
still be a sinusoid of the same frequency.

(2) The sum of a number of sinusoids of one frequency with arbi-
trary amplitudes and phase angles is a sinusoid of the same
frequency.

In addition to this mathematical distinction, the sinusoid is gen-
erated rather commonly in nature: a bottle bobbing in the water, a
pendulum, the shadow of a crank-handle on a wheel-—all these devices
describe sinusoidal motion. A sinusoidal voltage is generated by a con-
ductor constrained to move in a circuiar path at right angles to a
magnetic field.

Analysis under the assumption of a sinusoidal driving force and a
steady state is used in such fields as electronics, network theory, and
servomechanisms. In these fields, however, the driving forces are sel-
dom sinusoidal. We might rightfully question how valid such analysis
is. Part of the justification of this method stems from Fourier analysis:
periodic waveforms can be approximated by a finite sum of sinusoids.
Further, nonperiodic (and nonrecurring) waveforms can be expressed
in terms of sinusoids by use of the Fourier integral. This concept of
analysis in terms of harmonic frequency components allows the
response of a network to a nonsinusoidal waveform to be predicted
from a known response as a function of frequency.

In this section, we will develop the relationship between the general
solution of a network problem and the solution for the sinusoidal steady
state. This will be accomplished in terms of the pole-zero configuration
of network functions.

240
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11-1. Radian frequency and the sinusoid

The term sinusoid includes the sine wave, cosine wave, or either the
sine or the cosine with a phase angle. The transforms of the sine and
the cosine are

8
82 -+ w? (11“'1)

£ sin wf = ’ £ cos wl <!

w
82 4 w?

The poles and zeros for these jransform equations, as shown in Fig.
11-1, appear on the jw axis. Such frequencies have been defined as

g-plane Ju s-plane fw
o g

| |

{a} (b)

Fig. 11-1, Pole-zero configurations for sinusoids: (a) sine waire;
{b?cosine wave.

radian frequencies.. Frequencies described by positions on the jw axis
of the s plane represent pure radian frequencies such as occur in the
sinusoidal steady state and correspond to the time-domain factors e«
and e,

Sine and cosine functions are related to exponential factors by the
equations

jwt ... p—jwt

sin wf = "——2-3—‘;— (11-2)
furd —3tod

cos wf = f-w_%m?«— (11-3)

The term e¢™* is commonly interpreted in terms of a unit rotating
phasor* rotating in the positive (or counterclockwise) direction; ¢~

+j1 piwt +ji

, -
/ NI

-j1 -l

[
-1 wl +1 -1

-

Fig. 11-2. Unit rotating phasors.

likewise is interpreted as a unit rotating phasor rotating in the negative
(clockwise) direction. The unit phasors are illustrated in Fig. 11-2,

* For those who prefer, the term phasor may be read as veclor,
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Now the sinusoid, according to Eq. 11-2, is made up of the difference
of two rotating unit phasors, rotating in opposite directions, divided
by the factor (27). The construction of a sine wave in terms of these
unit exponentials is illustrated in Fig. 11-3. The combination of the

i &Y gk

L5 2

+1
e—ut \'\ euig-tot

3 2

= sin ot

Fig. 11-3. The sine wave from rotating phasors,

phasor (e™#t/2) and (—e#*/2) gives a phasor on the jw axis. The factor
(1/7) = —j corresponds to a negative rotation of 90° {~x/2 radians).
The sine of wt is a real number (on the axis of reals}); it has a value of
zero when «f = 0, and a value of unity when wt = /2. As wf increases
from 0 to 2r, the sine function is seen to have values between the limits
of 1 and —1.

The cosine function may be similarly constructed in terms of expo-
nential factors as is illustrated in Fig. 11-4. The cosine is also a real

g fet
R 2
-1 +1
et \'\ giat 4. g it
5 ""’*""’é"""""’"" =Ccost

Fig. 11-4. The cosine wave from rotating phasors.

number having a total variation from +1 to —1. When wt = 0, the
cosine has a value of unity; when ot = /2, the cosine has zero value.
Both the cosine and the sine are generated by two ‘““frequencies”: +ju
and —jw. This is also shown from the pole locations of Fig. 11-1.

The exponential factors corresponding to the cosine or sine terms can
be used in computing impedance for the sinusoidal steady state. Con-
sider a series RL circuit with a cosine driving force given as

jart jook ’
Veoswt="V (f-gé + 5 ) (114)
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-

The single cosine generator generating v(f) = V cos w! is thus seen to
be equivalent to fwo generators, one generating (V/2)e™, the other
generating (V/2)e—¢, Using the principle of superposition, we may
consider the driving forces separately and then combine the resulting
currents to obtain the final solution. For the first generator, the dif-
ferential equation becomes

di | .. V..
La-i—}-Rz_-—z—e“ (11-5)

The steady-state part of the solution (the particular integral) will be
of the form 7,,(f) = Ae/t. Substituting this solution into the equation
gives

joLA + RA = V/2 (11-6)
Ve Ve
or A=pi7=7Z

where Z is the impedance for the sinusoidal steady state. Similarly,
we may let Be—#! be the steady-state solution of Eq. 11-5 with et
replacing e/t to give

v/iz V)2

B=%=75x=7 (11-7)
The total solution for the steady state becomes
. V [erwt  g-iwt
Taa(t) = 3 (""Z“ + 7‘*‘) (11-8)

If V/Z is defined as I, this equation may be written in the form
1oo(f) = g(lei*t + [*e~i) (11-9)

In this equation / is a complex number, I'* is the conjugate of this
complex number, and the exponential factors ¢/t and ¢~#* are complex
numbers relating to the cosine and sine functions according to Euler’s
equation,

etivt = ¢os wt + 7 sin wi (11-10)

If welet I = a + jb, Eq. 11-9 reduces to the form

1ss(f) = a cos wt — b sin wi (11-11)
= Re [(a + jb)(cos wi + j sin wt)] (11-12)

where the letiers Re mean *the real part of’ (similarly, Im means ‘““the
imaginary part of”’). But (a -+ jb) = I and (cos wt + j sin wf) is
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defined by Euler’s equation as ¢*'. Hence

’l:u(t) = Re (Ie""‘) (11"13)
or 1.(f) = Re (% e"“") (11-14)

This last equation tells us that we may use the exponential in place of
the sinusoid for the steady-state solution providing we take only the
real part of the solution. Since the exponential is easily differentiated
and integrated, this method of the solution is convenient. Provideditis
always understood that only the real part has meaning, currents and
voltages may be written in the forms

i(t) = Iewt (11-15)
o(t) = Vet (11-16)

To illustrate the use of the exponential equivalent of the sinusoid,
suppose that we consider the differential equation for an RLC series
circuit given as

di A | . "
La—z—{—Rt-i—Cq/zdthe" (11-17)

The form of the solution must be Ier*. Performing the required dif-
ferentiation and integration gives

1
1 J— B '18
(ij + R + ij) I=YV (11-18)
The sinusoidal impedance is defined as

Z(jw) = 7 = R+ (wL - :}é—) (11-19)

The current is given ag
it) = 7 e (11-20)

provided only the real part of this expression is taken; that is,

i) = Re (—TZ’: e""") (11-21)

For this example,

. |4 ot }
i(f) = Re [R T (ol = 1720 el ] (11-22)

i(f) = Re { W (wLV__ T [R _ j(wL - ;;%)](coswt-i—jsinwt)}
(11-23)
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Since Z = R + j(wL — 1/wC), the real part of i(¢) in this equation is

. v
i) = 17 [R cos wf + (wL - wc"l“) sin m] (11-24)
or, finally,

& (11-25)

This same exponential factor may be used to represent a sinusoid at
a phase angle; for example, let

v(t) = V cos (w0t + ¢) (11-26)

In exponential form, this equation becomes

i(l) = v cos (wt — tan~

Lol — l/w())
|1Z]

f{wt-i-¢) —ji{wit¢)
o(t) = V [“” ? *é" M] (11-27)
or v(t) = F{(Vei*)eiot + (Ve i¢)eiv!] (11-28)

The quantity (Vei*) is a phasor of magnitude V and phase angle ¢,
which will be represented by the notation V. Then

v(t) = $(Veit 4 V¥e—ivt) (11-29)

This equation is of the same form as Eq. 11-9, and by the same reason-
ing as previously given is equivalent to

v(t) = Re (Vei?) (11-30)

This exponential factor may be used in place of Eq. 11-26 to give the
same result with less mathematical manipulation. Again, it is not
necessary to carry the ‘“‘real part of” notation so long as the require-
ment that only the real part of the result has meaning is kept in mind.

In this section, we have seen that the sine and the cosine correspond
to exponential factors and have complex frequencies located on the jw
axis of the s plane.

11-2. Magnitude and phase of network functions
All network functions may be written as a quotient of polynomials
in 8; in general form,
Gi)l  P(s)  aw +asv 4 ... 4+ a,
Z(s) } =0 T b b 5. Y

For the sinusoidal steady state, s = jw, and the network function
becomes

GGw) | _ P(jw) _ (i) + ar(jo)= + ...
Z(jo) } T Q) be(Jo)™ 4+ by(Gu)™r .. (11-32)
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In this equation, terms will alternately be real and imaginary. Which
terms of the general expression are real and which imaginary depends
on whether n and m are even or odd. However, in every case it will be
possible to write the quotient of polynomials in the form

G(jw) | _ A(w) + jB(w) _ . ‘
Z(jw) } = 0le) T D@ ~ Bl +iX(w) (11-33)

where A(w) = Re P(jw) and B(w) = Im P(jo)

Clw) = Re Q(jw) and D(w) = Im Q(jw)
The quantities R{w) and X (w) are found by rationalizing the expression
involving A(w), B{w), C{w), and D(w). Phase and magnitude of the

general network function are defined in terms of R and X. The defin-
ing equation for the phase is

(11-34)

#(w) = tan—! Jlg((:’i (11-35)
and the defining equation for magnitude is
M(w) = V[X ()] + [R{w)]® (11-36)

The complex variable, R(w) + jX(w), is thus defined in polar coor-

dinates as
M (w)ei*® (11-37)

Alternately, the magnitude and phase of the network function may
be computed directly from the quotient form of Eq. 11-33 as

[A@)] + [B@]
MR = cor +1D@r .
¢(w) = tan™! i((w)) tan—! g((w)) (11-39)

By either of the methods that have been described the magnitude
and phase of a network function may be found as a function of fre-
quency. The magnitude and phase characteristics of networks are
important in network theory, partly because measurements of these
quantities are easily made.

The problem before us is the computation and plotting of magnitude
and phase as a function of frequency. The amount of computations
can frequently be reduced by first considering the asymptotic values
of these functions in terms of the original quotient of polynomial form
given as Eq. 11-32.

High-Frequency Asymptotes. Assume that the network function
being considered is a transfer function G(jw). For large values of »,



Art. 11-2 SINUSOIDAL STEADY-STATE ANALYSIS 2417

only the highest—o}dered terms in the numerator and denominator of
G(jw) are significant; that is,

lim G(ju) = lim H %li”%;mm (11-40)
= lim H{jw)™ (11-41)

The limit of this funection depends on which number, n or m, is larger;
that 1s,
oo gitn—mi¥/2 n>m
Im G(jw) = { 0 eitr—mr/2 n<m (11-42)
i H n=m

The limiting value of the magnitude is zero, infinity, or a constant H.
The angles in each case are some multiple of »/2 radians.
Low-Frequency Asymptotes. The low-frequency behavior of the net-
work function is determined by the lowest-ordered terms in the quo-
tient of polynomials. The important part of the network function for

this case is _
.+ anmi(.?w) + an

- - 11-43
.. + bm——l(jw) + bm ( )
If neither a, nor b,, is zero, the low-frequency asymptote is
lim G(ju) = H 3* (11-44)
wr{) m

However, if one or more terms are zero such as by, bp_1, @, Gay, etc.,
then the network function may be written

H ja/(Jo)» + ... + an’] )
Gu)? [bu'(jw)"‘ R S (11-45)

where p may be positive or negative. The limit of this function as w
becomes small is

Hfa,' /bx")

(Jo)?
The limit of this function depends on whether p is positive, zero, or
negative; that is,

im G(jw) =
s ()

oo g=ipn/2, p>0
lim G(jw) = { 0 e-irr/2, p <0 (11-46)
. H(a//bn), p=0

Again, the limiting value of the magnitude is zero, infinity, or a con-
stant, while the angle is some multiple of (x/2) radians.

In practice, the phase and magnitude information is plotted in two
ways: a polar coordinate plot, and separate plots of M and ¢ against



248 SINUSOIDAL STEADY-STATE ANALYSIS Chap. 11

frequency. These two types of plots are illustrated in Fig. 11-5. The
polar plot can be made in terms of either M (w) and ¢(w) or the imag-
inary part and real part of G(jw).

M-\
N

J Im Gljw) =iX{w)

" \  Re Gljw)=Riw)

«

Fig. 11-6. Plotting of phase and magnitude,

o0
fa'lemG(jwl
n-m=1
nwmn-—z n“"‘M"“s .
n-m«0 FReGliw}
n—m-2 n—m-_l
n—m-3\
Wi
wi

Fig. 11-6. High frequency asymptotes of G(jw), where m = order of
denominator and n = order of numerator.

w0
f/’ J Im G{jw)
p-3

[P~ b6 ReGlw
]

w';:-__-* pq--z

p-;\

Fg. 11-7. Low-frequency asymptotes of G(jw).

\p-—-3

Plots on the M(w) and ¢(w) coordinates are made as continuous
curves. The quantity M(w)e*®, however, is usually thought of a8 &
phasor represented by an arrow as shown in Fig. 11-5. To avoid con
fusion, only the “tip” of the phasor is plotted. The locus of the ‘4P
of the phasor is known as the phasor locus of the network function. The
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asymptotic values of the network functions for low and high frequency
are shown in Fig. 11-6 and Fig. 11-7.

Thus the low-frequency and high-frequency behavior of a network
function can be determined by inspection. There remains the tedious
task of computing intermediate points. A number of examples will
illustrate the general procedure.

Ezxample 1

A two-terminal-pair network made up of one resistor and one
capacitor is shown in Fig. 11-8. The voltage ratio transfer function is

_Vas) _ 1/Cs 1

CO) =y " BT 1/0: = RO T (11-47)
The transfer function for the sinusoidal steady state is found by letting
s = jw; thus o ANN o
W) = = MEC gy g K
G(jw) = jwRC + 1  jw+ 1/RC Vi ls) =z Vbl
For low frequencies G(jw) — 1, while for N

high frequencies, the asymptotic value be-
comes 0 X e~*/%; that is, zero magnitude Fig. 11 -8. Two-terminal-
and —90° phase angle. One other frequency pair RC network.

is especially convenient for computation:w = 1/RC. At this frequency,
the magnitude is 0.707 and the phase is —45°. This information is
summarized in Table 11-1.

TABLE 11-1
w G(jw)
0 1at0°
1/RC 0.707 at —45°
oo 0 at —90°

The complete phasor locus is that of a circle as shown in Fig. 11-9. The
equivalent M (w) and ¢(w) plots are also shown in the figure,

jIm Gijw)
1 0.707
M ! | 1_Re Giw)
[} )
0 J S8 -1/re
T W=
:l/RC w o
0° N
g 0.707
N (45
]
e ° t
1/RC w

Fig. 11-9. RC network characteristics,
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Example 2

If the resistor and the capacitor of the RC network used for Exam-
ple 1 are interchanged, there results the two-terminal-pair network
shown in Fig. 11-10. Again, the voltage ratio transfer function is to be
studied. This function has the value

R RCs s

GO = gF10s = RGs+1 - s+ 1/Rc )
corresponding to a zero at s = 0 and a pole at s = —1/RC. Letting
y 8 = jw gives the transfer function for the

© 'l\ sinusoidal steady state as

[} .

Vils) R Vuls) Sy Jw
G(jw) = jo T 1/RC (11-50)

c o - » - -
Fig. 11-10. Network of Ex- This functlc:in gﬁibfe examined for low-fre-
ample 2. quency an 1gh-frequency asymptotes.

As w becomes large, the term 1/RC can be
neglected, and G(jw) approaches unity (alternately, I’Hospital’s rule can
be applied). For small values of w, G(jw) approaches zero magnitude
and 90° phase angle. Again, one frequency causes the function to
reduce to an especially simple form: @ = 1/RC. For that frequency,
G(jw) = 0.707 ¢i*/4, In tabular form, these computations may be sum-
marized as follows:

TABLE 11-2
@ G(jw)
0 0 at +90°
1/RC 0.707 at +45°
% 1at0°

These values serve as a guide to the computation. In order to make the
complete plot, several other values will have to be found. The com-
plete phasor locus is that of a circle, as shown in Fig. 11-11. The equiv-
alent M{w) and ¢{w) plots for this same function are also shown in the
figure. The two plotting systems display the same information. With
practice, it will be possible to visualize one form from an inspection
of the other.

Comparing the two networks of Example 1 and Example 2, it is seen
that the first provides positive phase shift (or phase lead) for all fre-
quencies, while the latter provides negative phase shift (or phase lag)
for all frequencies. For the first, the output per unit input is high at
low frequencies and low at high frequencies. The opposite behavior
takes place in the second network. This result can be correlated with
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the behavior of the individual elements of the two networks. In the
netwprk of Fig. 11-8, the capacitor acts as an open circuit at low fre-
quencies and hence the same voltage appears on the output terminals

)} SO J Int Gljw}
0.707

M : Wy w=]1 /RC

0 : 0707\, -0

90° i ? w=0 [/ 45 Re G
‘ f
+45°

¢ \

0° 5

1/RC w

Fig. 11-11. RC network characteristics.

as appears on the input terminals. At high frequencies, however, the
capacitor acts as a short circuit and the output voltage approaches
zero magnitude (being the drop across the capacitor). For the net-
work of Fig. 11-10, the capacitor acts as an open ecircuit for low fre-
quencies, so that there is no output voltage; however, at high frequen-
cies the capacitor behaves as a short cir-

cuit, causing approximately the same volt- ° IVI;A’

age to appear on the output terminals as
appears on the input terminals.

Zis) and Yis) Ls

(=

Fig. 11-12. RL network.

Ezample 3

Asthe third example, consider the driving-
point immittance of a series EL network shown in Fig. 11-12. The
immittance functions have the forms

Z(s) = R+Ls=1L (s + %) (11-51)
1 1L
Y(s) = Z6) = sF R/L (11-52)
Thus the impedance function has a zero at s = —R/L and a pole at

infinity, while the admittance function has the opposite pole-zero con-
figuration (poles become zeros; zeros become poles). In the sinusoidal
steady state, s = jw, and the immittance functions become

Z(jw) = L (jw + 1—2) - R (1 + o %) (11-53)

1/R

Y(jo) = 7+

(11-54)
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By Eq. 11-53 the real part of Z(jw) is constant and the imaginary part
increases with frequency. Equation 11-54 has the same form ag Eq.
11-48, which has a circular locus. The phasor loci for impedance and

FIm Zijuw) 0 JIm Y{jw)
Tu 1/R Re Y{jw)

« 0
Uw
0 RelZiju)

Fig. 11-18. Immittance characteristics for RL network.

Gis} or Zis) Locus plot Magnitude plot Phase plot
0 o°
- M
1~ lu 1 / ¢

0 -g0°

W

%

JIm G
0.

a2+ astl JO M ]
v,
“ | ~180°
W W
JIm G 50"
ey Re G .
1 M ¢
slas+ 1)
-180°F------=
@\ @ @
0
jImG
w —-180°
1 0 == o Re G ¢
s2las+ 1) . M
~270° -~ ~ S
(5] [

Fig. 11-14.
admittance are shown in Fig. 11-13. Several other plots are shown in
Fig. 11-14 for given transfer functions or immittance functions.

11-3. Sinusoidal network functions in terms of poles and zeros

As was pointed out earlier in this chapter, all voltage and current
waveforms in any linear network are sinusoidal in the steady state if



At 11-3 SINUSOIDAL STEADY-STATE ANALYSIS 953

the network is driven by sinusoidal waveforms. For this reason, if we
are given V{jw) in this equation,

I(jw) = Y(juw)V(jw) (11-55)

we are not interested in solving for the waveform of I{jw). We know
the waveform in advance: # 18 a sinusoid. The information we do need
is: (1) for a given magnitude of the voltage V(jw), what is the mag-
nitude of I(jw), and (2) what is the phase relationship of I(jw) in terms
of V(jw)? In other words, we are interested only in magnitude and
phase relating V(jw) and I(jw). To find this information, it is not
necessary to know the magnitude of V(jw). Since the networks under
consideration are linear, the magnitude of 7(jw) is linearly dependent
on the magnitude of V{(jw): if ¥V is 1 volt to give I of 1 amp, V of 10
volts will give an [ of 10 amp. The quantity that relates the phase of
V{jw) to that of I(jw) is Y (jw); likewise, Y (jw) relates the magnitude
of V(jw) to that of I(jw). In the case of the last equation, the relation-
ship between V(jw) and I{jw) is given completely (for all values of
frequency) by the magnitude and phase of Y (jw),

Y(jw) = |Y (jw)|e# (11-56)
If Eq. 11-55 is written in the form

I(jw) _ ..
Viiw) = Y (jw) (11-57)

this ratio is often described as the complex ratio of current to voltage.
The term complex ratio thus implies not only the magnitude of the
ratio of one quantity to another but also the phase of the one quantity
with respect to the other. Network behavior as a function of frequency
(and, of course, we are now specializing in radian frequency) is deter-
mined entirely by complex ratios; that is, by immittance functions
and transfer functions.

The same arguments given in the previous paragraph apply to the
following typical equations because of their similarity to Eq. 11-55.

Valio) = Gio) V(o (1158
V(jo) = 2(G)I(j) O 19)
Vi(jw) = Zo(juw)I(jw) (11-60)

and so on (Z,, is the transfer impedance). Thus it is seen that the dis-
cussions for YV (jw) apply in general to any network function in the
sinusoidal steady state.
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The admittance function Y(8) has the form of a quotient of poly-
nomials which may be factored into roots of the form

(8 — s,) (11-61)

where s, is either a pole or a zero. In the sinusoidal steady state,
8 = jw, and the typical term becomes

(jo — &) (11-62)

In the complex plane, jw and s, are phasors. We are interested in the
difference of these two phasors—which is also a phasor. The phasor s,
is, in general, complex; the phasor jw is purely imaginary and is on the
jw axis. These two phasors and their difference are shown in Fig. 11-15.

s-plane Jw g-plane Jw
foo , :
A .\1\ Jw—8, w
b
“
~o s
+‘l’ Jw8p 8,
L. o
~ ;
~ ¥
RN
3
~8,
{a} {b}

Fg. 11-18. Direction of the phasor (jo — 8/): () polar diagram;
(b) string diagram.

Figure 11-15(a) shows the phasors with respect to the s plane origin.
Figure 11-15(b) shows the equivalent ‘‘string” phasor diagram. The
phasor difference (jw — &) is seen to be a phasor directed from s, to
jw. As w changes from 0 to «, the position of jw changes—always
remaining on the jw axis. The combination of several of these phasors
can be used to determine sinusoidal network functions. This will be
illustrated by & number of examples.
Consider first the admittance of a series RL circuit. Such a circuit
is shown in Fig. 11-12. The impedance
n of this network is

Z(s) = L (s + f) (11-63)

and so the admittance has the form
| S
L (s + R/L)

Thus Y (s) hasa finite poleat s = —R/L
and a gzero at infinity. This pole-zero configuration is shown in Fig.
11-18. As w increases from zero to infinity, the phasor changes position

-R/L

Y(8) = (11-64)

Fg. 11-16. Phasor diagram.
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Juwy

Jwz

Jw
! g [ . J ¢ hd

~R{L -R/L -R/L

Fig. 11-17. Phasor diagram changing with frequency.

as shown in Fig. 11-17. The frequency variation of the impedance is
found by writing

L (jw + %’) — M ()6 (11-65)
Then the admittance may be found from the equation

Y (je) = e—it@ (11-66)

i
M (w)
It can be seen that the magnitude changes from 1/R to 0 as w changes
from zero to infinity; similarly, the phase changes from 0° to —90° as
@ varies from zero to infinity. The polar coordinate representation of
this variation is shown in Fig. 11-18. The variation of admittance
with frequency is exactly the same as the variation of current with
frequency for a constant magnitude of voltage of 1/R volts. If the

voltage has a different magnitude, the current will increase or decrease
linearly for all values of frequency.

JIm Y{jw)
1/R  Re Yijw) o ANt GOT Ny
) 0 R Ls

Yis) 1/Cs =/~

/m / S

~¢
O
Fig. 11-18. Variation of phasor Fig. 11-19. Series RLC circuit.

with frequency.

11-4. Resonance, circuit @, and bandwidth

The method that has been illustrated by means of the study of t?le
RL series circuit applies to other networks. Consider a series RLC cir-
cuit as shown in Fig. 11-19. The driving-point impedance for this net-
work is

Z(s) = Ls + R + @1-:9 (11-67)
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and the admittance is the reciprocal of Z(s); that is

1 8
Y =1 (s2 FRs/LF1 /LC) (11-68)
1 8
or Y(s) = I ((s TR 8.;*)) (11-69)
where
_ R . H R\? — o A/ — P2

(11-70)

In this expression, w, is the natural undamped frequency of the system,
and { is the dimensionless damp-
ing ratio. If we consider only the

pole Ju .
underdamped (or oscillatory) case
2610 where ¢ < 1, the variation of the posi-
Y 2 tion of the poles of Y (s) for constant

wn and variable { isshown in Fig. 11-20,
where the locus is a circle. In addi-
tion, Y(s) has a zero at the origin of
the s plane.

In the sinusoidal steady state
(8 = jw), the frequency response of
the system, such quantities as |I(jw)|, |Y (jw)| ete., may be found by
allowing w to vary over a range of frequencies. Several steps in such
a frequency variation are shown in Fig. 11-21, together with the com-

A
\\‘
pole

¥ig. 11-20. Pole-zero configura-
tion for Y (s),

Jow Jw Jw ja
/\} . (3 . /"ﬂ . .
A B VJC D
+90*

M : ¢ 0
t
L ~90" : ;
A BCD w A B C D w

Mig. 11-21. Frequency response of an RLC network.

plete magnitude and phase characteristic. Over the range of frequen-
cies, the phase changes from -90° through 0° to —90° while the
magnitude starts from zero value, attains a maximum value, and then
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asymptotically approaches zero for high frequencies. The function
Y(jw) is found from Eq. 11-69, letting 8 = jw in terms of magnitude
and phase factors in the form

M,
MM

The maximum value of ¥ {jw) evidently takes place near the frequency
at which M, has a minimum value. The frequency to cause M, to
have & minimum value is a frequency very near to the point of closest
approach to one of the conjugate poles. In that frequency range, M,
changes rapidly, and at the same time M,* and M, are changing very
slowly. The frequency corresponding to & maximum Y (jw) is defined
as the frequency of resonance. Since I(jw) varies just as Y (jw), the fre-
quency of resonance is also the frequency of maximum I(jw).
The magnitude of Y (jw) may be written in the form
. 1

YGo)l = T = 17e0) (11-72)
and from this equation it is seen that Y (jw) has a maximum value of
(1/R) when

Y(jw) = gl {Pr—da—da®) (1 1._71)

wLwa—é—O or ww\/L__C.mw,. (11-73)
that is to say that resonance occurs at w = w, (and not at the point
opposite the pole on the jw axis).
An enlarged view of the various
phasors for the condition of reso-
nance is shown in Fig. 11-22. The
phase angles from the poles to jws
are marked ¢, and ¢.*. The phasor
from the zero to jw,. is along the jw
axis and thus has a constant phase
angle of +90°. The sum of ¢, and
#.* is equal to 90° because the tri-
angle ABC is a right triangle (being
inscribed in a semicircle). The total
phase angle, which is

1 $w, gjw“
¢ — ¢s — ¢ = +90° "
— (+90°) = 0° (11-74) Fig. 11-22. Phasors drawn for reso-
nance.

thus has zero value. The phase
angle of Y (jw) is zero degrees at resonance. The magnitude of Y (jw) at
resonance is (1/R), and the magnitude of I(jw) at resonance is (V/R).
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The circuit Q or simply Q for an RLC series circuit is defined as

L1, ]
= 9"1"%" ~ 5 R3L (11-75)

Now the quantity (R/2L) is the same as {w. by Eq. 11-70. Thus the
circuit @ is defined as
1 w. 1 _, the length OA

Q= 2Twn 2 X the length EB (11-76)

in terms of quantities shown in Fig. 11-22. The circuit @ can thus be
taken directly from a scale plot of the poles and zeros of the immittance
function for an RLC circuit. The circuit @ can alternately be written
in the form

Q= % (11-77)

~ 2cos 0 (11-78)
where 0 is the angle from the —o axis to the line OB (or OD) of Fig.
11-22. From these last three equations, several conclusions can be
written:

(1) The closer poles s, and s,* are to the jw axis, the higher the
Q. (This follows since @ varies inversely with the distance EB.)

(2) The value of Q varies inversely with damping ratio, {. A high
value of @ infers a low value of damping ratio. A cireuit with
low R thus has high Q.

c--1/Ry, Plots of the magnitude of Y(jw)
; _ for various values of Q are shown
: HighQ  in Fig. 11-23. The circuit Q is an
]

Y| LowQ important factor in circuits (of the
. type being considered) used for
selectors (filters).
Resonance w ep o
o ) ) Another means of specifying the
Fig. 11-23. Vamgon of |¥Y (jw)| with circuit Q is specification in terms

of half-power poinis. As has been
shown, the current at resonance has the magnitude V/R. When the
current has the magnitude

1 (11-79)

A

V2R
the power will be half of that at resonance (being equal to 72R). At the
half-power points, the magnitude of the admittance Y (jw) is (1/4/2 R);
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this requires that

VIR + (WL — T/uC)t = /2 R (11-80)
or (wL e ;}w) = + R (11-81)
This equation reduces to the form

R 1
2 — — e s -
w? + Y~ T0 0 (11-82)

The values of w that satisfy this equation are

w =+ 2% + +/(R/2L)* + 1/LC (11-83)

or, in terms of damping ratio and undamped natural frequency,

w=wa({E{ £ V24 1) (11-84)

in most practical networks used as selectors, the damping ratio [ is
very small, so that {? is negligible compared with unity. Under this
condition, the last equation reduces to an especially simple form,

w = Wy t {wn (11-85)

(considering only positive frequencies). The frequencies defined by
this approximation are the half-power frequencies. Let the highest half-
power frequency be designated w,, which is defined as

Wy = wy + {wy (11-86)
and let the smaller half-power frequency be w, be given as
We = Wp — {n (11-87)

The quantity ({fw,) is the distance EB of Fig. 11-22, or the distance

Jw
RadEUS'Iwn.\_p\, z w2
2 DAL
. ! “
Radius e [Y(iew)] A
¢ b
) 1!
! : :
: 1!
- -+ | le—Bandwidth
T Wit W w
1
{n
{a) {b)

Fig. 11-24. Bandwidth on the s plane.

from th.e Jjw axis to the pole s, (or s,*). The location of the half-power
points in the s plane is shown in Fig. 11-24. A circle of radius (twn)
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and centered at jw, crosses the jw axis at the half-power points. At
these half-power frequencies, Y (jw) has the magnitude 0.707(1/R) by
Eq. 11-79. The range of frequencies given as (w1 — w2) is defined as the
bandwidth. Bandwidth varies inversely with @. A small bandwidth
corresponds to a selective network.

The concepts of resonance, circuit @, and bandwidth can thus be
visualized in terms of the pole-zero configuration of Y(s) for the RLC
circuit. These concepts are easily visualized and do not depend upon
algebraic manipulation of complex numbers. The specific definitions
of resonance, circuit @, and bandwidth given in this section do not
apply to all possible network configurations. For example, resonance
in the sense of a maximum impedance or admittance does not coincide
with the frequency of unity power factor for most networks. However,
all these quantities can be visualized in terms of phasor magnitude and
phase, and design can be accomplished by means of simple graphical
constructions. A number of additional examples of network analysis
by pole-zero configuration will further illustrate these concepts in
Chapter 14.

In some applications, parallel RLC networks are used as selectors.
Since the parallel RLC network is the dual of the series RLC network,
the analysis given in this section applies in terms of impedance and
voltage instead of admittance and current.

11-5. Asymptotic change of magnitude with frequency in terms of poles
and zeros

Both transfer functions and driving-point immittances are made up
of frequency factors of the form

(8 — 85)*! (11-88)
which in the sinusoidal steady state become
(jo — sa)*! (11-89)

For very small values of w, this factor can be approximated as (—s,)*’,
a phasor from the point s, to the origin of the s plane. As w becomes
larger, no such an approximation is valid. But as w becomes very large
compared with the phasor s;, the frequency factor can be represented

as
(Jw)*! = (w)Eletir/z (11_90)

For large w, the magnitude of this factor changes either linearly
or inversely with w. The asymptotic phase angle is either +%°
or —90° depending on whether the factor is a zero or a pole. This
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behavior of magnitude and phase with frequency is illustrated in
Fig. 11-25.

To illustrate, suppose that we are interested in a voltage ratio trans-
fer funetion,

: Va(juw)
G = - 11-91
(jw) Vi(jw) ( )
Assume that the sinusoidal input voltage has a magnitude of unity
and that for frequencies in excess e
of w = || the magnitude of the Magnitude asymptoticall,
voltage Vi(jw) is of the form changes as lw}*!
!Vﬁ( Jw)] = }, (11-92) Transition region
W

Such variation of V, would result
if G(s) had the form

Low frequency ,

Sa

1
G(8) = 11-93
(8) s+ «a ( ) Fig. 11-25. Phasor variation with

provided « is very small compared frequency.

to unity. The magnitude of the transfer function would then be
. 1
G(G)| = (11-94)

The logarithmic unit, the decibel, was originally defined for a ratio
of powers but is now often used for voltage and current ratios. The
voltage amplitude ratio in decibels is defined by the equation

. - Vz( Jw) ~
|G(jw)| = 20 logio Vlj0) (11-95)
For the example being considered, the voltage amplitude ratio in
dectbels (abbreviated db) has the form

20 iog;a% = —20 log w (11-96)

When @ = 1, G(jw) has a value of 0 db, and when w = 2, ((jw) has the

value
—20 logic 2 = —20 X 0.301 = —6 db (11-97)

Two frequencies having a ratio of 2:1 are said to be separated by an
octave. In one octave, the magnitude of this example has decreased 6
decibels. In another octave (to w = 4), the magnitude would decrease
an additional 6 decibels. The magnitude is thus changing at the rate of

_ decibels
octave

(11-98)
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due to one pole in G(s) given in Eq. 11-93.* Had G(s) been of the form
G(s) = s + «a (11-99)

corresponding to one zero in G(s), the asymptotic change in the mag-
nitude of the voltage ratio transfer function would have been an
increase of 6 decibels per octave. This case would correspond to the
asymptotic form resulting from the choice of the positive sign in
Eq. 11-90.

A transfer function in general will be made up of a number of fac-
tors of the form considered; that is,

g (8 —s1)(s — 82)... (s — 5,)
Gs) = H (s — 8a)(s — 8)...(s — 8m) (11-100)

Each zero in this expression will cause an asymptotic increase in the
magnitude of G(s) of +6 db per octave, while each pole will cause an
asymptotic decrease in magnitude of G(s) of —6 db per octave. In the
frequency limit, these increases and decreases will cancel in pole-zero
pairs (one pole cancels the effect of one zero). The net asymptotic
change of magnitude with frequency will thus be the number of finite
geros less the number of finite poles times 6 db per octave.

As an example, consider a two-terminal-pair network having a volt-
age ratio transfer function of the form

8

(s — 8;)(8 — s)(8 — &)

This transfer function has three finite poles and one finite zero. For
s = jw and for large values of w, the magnitude of G(jw) has the form

G(s) = H (11-101)

Gjw) = H—E—s , (11-102)
8 = Jeo

The output of this two-terminal-pair network will fall off at a rate
determined by the excess of poles over zeros. The rate for this partic-
ular network is — 12 db per octave. The asymptotic phase of the out-
put compared to the input will be 180° as given by Eq. 11-90.

The RLC selector network studied in the previous section has the
admittance function

1 1
L (s — sa)(s — 8.%)

Y(s) = {11-103)

corresponding to two poles and one zero. The current passing through
this selective network for constant voltage will vary with frequency

* Quantities in the ratio of 10: 1 are said to be separated by a decade. Six decibels
per octave is equivalent to 20 decibels per decade.
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as the M(w) curve of Fig. 11-21. For large frequency, the current will
decrease with frequency at the rate of —6 db per octave.

11-6. An application: the symmetrical lattice

The symmetrical lattice network shown in Fig. 11-26 is a two-terminal-
pair network that finds frequent application for phase correction. The

Fils) Lis)
o ! Za 2
Viis) % Z, | Vzla)
o Z,

Fig. 11-26. The symmetrical lattice,

properties of this network are easily visualized in terms of the pole-
zero configuration, as we shall show in this section.

The lattice structure can be put in & more familiar form by ““unwrap-
ping” it as shown in Fig. 11-27 as o
a bridge network. Assume that the |
network is terminated in a load
impedance Z.(s) and that we are
interested in the voltage ratio trans-
fer function, G(s) = Va(s)/V:(s).
Several currentsareidentified in Fig.
11-27. The two currents marked ©
I and the two currents marked [/ Fig. 11-27. Bridge form of the sym-
are equal because of the symmetry metrical lattice.
of the network configuration. The load current is marked as I,. From
Kirchhoff’s voltage law, we write

V= Zol + Zi(I — I') + Z,I (11-104)
Vi= ZJ + Z,I' (11-105)

In these equations, the functional notation has been omitted for sim-
plicity-—each of the quantities shown is a function of the complex fre-
quency 8. If these equations are arranged in the forms

Vi= (2Z. + Z)I — Z, T (11-106)
Vi = Zod + Z,I' (11-107)

the unknown currents I and I’ may be found conveniently by the use
of determinants; thus



V1 ""ZL

- AL VB Z) oy
l @Za + Z1) —Z4|  Zo(2Za + Z1) + ZaZs
Z. A
] (2Z. + Z) Vi '
Z.___ W ViZo + Z1)
r - g L _
= A = 707, + 7o ¥ 2.2, 1

The load current I, may be found in terms of 7 and I’ as

Vl(Zb - Za)

IL=1-1I-= Z(2Z, + Z1) + ZaZ1

(11-110)

The voltage across the load impedance is I,Z,; hence the voltage ratio
transfer function becomes

Ve _DZ. _  ZuZ — Z)
Vi~ Vi 327 + Zi(Z. + %)

(11-111)

The lattice network has very useful properties when the network ele-
ments are selected such that

Z, =R and Z,Z, = R? (11-112)
With these restrictions, the equation becomes

Vo  (Z—Z) R? — 7.2
Vi 2R+ (Z.+2,) R*+ Z,2+ 2RZ,
(R~ Z)R+Z) R-—12Z,

" R+ZJ(RF¥Z,) RIFZ,

(11-113)

To apply this derivation to a specific network, let the impedance Z, be
represented by the parallel LC network shown in Fig. 11-28. The net-

Ly
et BOY e .
T O——— o o—lTUE—f—o
z, I L, ¢
1\ 2
G Z,

Fig. 11-28. Networks for Z, and Z,.

work to represent Z, must be the dual of that representing Z,. The
series LC network for Z, is also shown in Fig. 11-28. The impedance
for the parallel LC network is

1 Lis

7O = e s T LCw ¥l (MW
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while the series LC network has impedance given by

2
Zy(s) = Las + ci,s - fﬁe__zgﬁi,} (11-115)

Now the parameters Ly, Ly, C;, C2, and R must be selected to satisfy
Eq. 11-112. One set of parameters that satisfies the requirements is
Li = Ls = 1 henry, C; = Cy = 1 farad, end B = 1 ohm. There are
other such values; these are selected for their simplicity in illustrating
the frequency behavior of the lattice network. With this choice of
parameters, the impedance functions become

s _ 8t 1
pe + 1’ Zb - P ’

The voltage ratio transfer function is given by Eq. 11-113. With the
assigned parameters, this transfer function becomes

Va(s) 1 —s/(s*+ 1)
Vils)  14s/(st4+1)

Va(s) s?—s8+1 (s~ s)(s ~ &%)
or Viis) S+sF+1 (85— ) — sa¥)

The two zeros of the voltage transfer function have the values

Z, = ZJZy, =1 =R (11-116)

(11-117)

(11-118)

s1, 81* = -+ %— + jl{% (11-119)
and the poles have the values ‘
Say Sa* = — % + j% (11-120)

The pole-zero configuration for the network of Fig. 11-29 is shown in
Fig. 11-30. The poles and zeros are located on a unit circle about the

1 farad
I
1Y
1 hen Juw
ry 8.-. X -1 - ..0\83
//’ ™
1 ohm g ] \\
1 henry : ! g
{ | /
1 farad N\ e
Q00 s.,&"‘ . '°;1-
1 henry
Fig. 11-29. Symmetrical lattice with Fig. 11-80. Pole-zero configura-
element values assigned. tion.

origin of the s plane. They are symmetrically located with respect to
the axis of reals and axis of imaginaries. The two poles and two zeros so
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arranged in the s plane are known as a quad. If other parameter:values

are selected still satisfying the requirements of Eq. 11-112, the poles

and zeros will still be located symmetrically with respect to the axis of

imaginaries. The zeros will always be located in the right half plane

and the poles in the left half plane, and both poles and zeros will occur
either in conjugate pairs or on the
real axis.

We now come to the problem of
finding the frequency response—the
variation of the magnitude and

o phase angle of the transfer function

with frequency. As outlined in

previous sections, the frequency re-

sponse 1s found by drawing phasors

8,* x- Yo gy to different points on the jw axis. A

¢, & typical graph is shown in Fig. 11-31

Fig. 11-81. Frequency response com- for s — Jo1. Each phase angle is

putation. found with respect to the positive

o axis. First lef us examine the

frequency behavior of the transfer function relating V, and V,. For
8 = jw, Eq. 11-118 becomes

Va(jo) _ (Jo — $)(jo ~ 81*)
Vi(ju) (Jo = 8a)(Jo — 8™)

(11-121)

But from the figure, we see that the magnitude of (jw — sy) is always
equal to the magnitude of (jo — s;); likewise, the magnitude of
(jw — 8;*) is always equal to the magnitude of (jo — s:*). In terms of
the last equation we have discovered that

Va(jw) | _ 1
Vi(jw)

(11-122)

In other words, we have arrived at the remarkable conclusion that for
this network, the magnitude of the output is always equal to the mag-
nitude of the input—for any frequency. Our network is made up of four
inductors, four capacitors, and one resistor, and yet it has the same
frequency invariant characteristic associated with purely resistive net-
works. There must be something else of interest in this network after
we have come this far. Let us examine the phase of the transfer funec-
tion as a function of frequency.

In computing the phase, we regard the phase from zero terms as
positive and from pole terms as negative. When « = 0 the phase is
given as
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¢ =1+ " ~ ¢y — ¢,.* = 240° + 120° — 300° — 60° = 0°
(11-123)

There is no phase shift at zero frequency. (It is seen from the network
of Fig. 11-29 that the input and output are identical at zero frequency,
with the inductor acting as a short circuit, the capacitor acting as an
open circuit, and thus the two-terminal-pairs directly connected
together.) As the frequency increases, the phase of Vi(jw)/Vi(jw)
becomes negative, approaching —360° as the frequency becomes
infinite. The phase and magnitude characteristics are shown in Fig.
11-32. This network finds application as a phase-shifting network in

: j Im Gjwl
M X
\m Re Gljol
o 0
.,, W
- 360°

w

Fig. 11-32. Phase and magnitude characteristics of a symmetrical
lattice network.

telephone circuits. Note, incidentally, that for the first time we have
found zeros located in the right half plane. As discussed in the last
chapter, zeros are permitted in the right half plane for (output/input)
transfer functions, but poles are not. This is true only for the transfer
function; neither poles nor zeros are permitted in the right half plane
for driving-point immittances.

FURTHER READING

For further reading on analysis in the sinusoidal steady state in
terms of poles and zeros, see LePage and Seely, General Network Analy-
828 (McGraw-Hill Book Co., Inc., New York, 1952), pp. 8-12, 193-196;
and Guillemin, Introductory Circuit Theory (John Wiley & Sons, Inc.,
New York, 1953), Chap. 6. See also D. F. Tuttle, Jr., Network Syn-
thesis, 2 vols. (John Wiley & Sons, Inc., New York, in preparation).

PROBLEMS
11-1. By manipulating unit phasors as in Art. 11-1, show that
sin? wf 4 cos® wt = 1

(That is, start with the phasors ¢«* and e and manipulate these
phasors to prove the identity given above by a graphical construction.)
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11-2. Find the steady-state solution of the differential equation

Ri(t) + _é [ i@ dt = v(2)

for a sinusoidal v(?), by letting »(¢) have the form Ve,
11-3. Find the steady-state solution of the differential equation

di(t)

L=

1 .
+ o f i(t) dt = v(f)
for a sinusoidal driving force v(¢), by letting v(¢) have the exponential
form Vetivt.

11-4. For the network shown in the figure, find the steady-state
component of i(f) when »(f) = V sin wi, by using Eq. 11-14.

O
—
1]
R el I'I' D o
vit} C== L
I 1A R v,
o Ly O
Prob. 11-4. Prob. 11-5.

11-5. For the network shown in the figure, sketch G(jw) = V,(ju)/
V.(jw) as a function of « for (a) polar coordinates M (w) and ¢(w), and
(b) rectangular coordinates M vs w and ¢ vs w. On the plots, clearly
indicate the low- and high-frequency asymptotes.

11-6. Repeat Prob. 11-5 for the network shown.

e AVAVAY -0
o AN ° Ry
R R,
TC
o O < )
Prob. 11-6. Prob. 11-7.

11-7. Repeat Prob. 11-6 for the network shown.

11-8. Show that the phasor locus representation of Eq. 11-48 given
as Fig. 11-0 is a semicircle centered at Re G(jw) = 0.5.

11-9. For the one-terminal-pair network shown in the figure, sketch:
(a) the driving-point impedance Z(jw) as a function of w, and (b) the
driving-point admittance Y (jw) as a function of w, using polar coor-
dinates as in Fig. 11-13. The sketches should have one point located
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accurately and the low- and high-frequency asymptotes clearly

indicated.
o AYAYAY o—AA N/ AN
R lg 19
Zjw) and ¥jw) CT= Zijw) and Yiw) 11
o o
PrOb. 11"'9, Prolb- 11""10-

11-10. Repeat Prob. 11-9 for the one-terminal-pair network shown.

11-11. Repeat Prob. 11-9 for the one-
terminal-pair network shown.

o e GG N
L
Zijw) and Y{w) Ca"’-‘:
O
Prob. 11-11,

11-12. The pole-zero configuration
shown in the figure represents the admit-
tance function for the series RLC circuit
shown in Fig. 11-19. From the pole-zero
configuration, determine: (a) the undamped
natural frequency ws, (b) the damping ratio
t, {¢) the circuit @, (d) the bandwidth (to
the half-power points), (e) the actual fre-
quency of oscillation of the transient re-
sponse, (f) the damping factor of the
transient response, (g) the frequency of
resonance, (h) the parameter values (in
terms of L if the values cannot otherwise be
uniquely determined). (i) Sketch the mag-
nitude of the admittance | ¥ (jw)| as a func-
tion of frequency. (j) If the frequency
scale is magnified by a factor of 1000, how
do the values of the parameters, R, L, and
C change? Answers. (a) 4.04, (b) 0.124,
(c) 4.04, (d) 1.0, (e) 4.0, (f) 0.5, (g) 4.04,
(h) R =L, ¢ = 0.061/L.

1 pole

+55

+j4

+j3

+j2

1 zero

+j1

D 0

FanY

_JI

-j2

1 pole

--]3

-j4

-j5

Prob. 11-12,
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11-13. The passive network shown in the accompanying figure is
known as a double-tuned circuit. It consists of two parallel RLC net-
works coupled with a capacitor C.. For a certain combination of

LY {From tube}

i
° ]y T
C.

[+
o

....0.5+j 2.0)( jw ,__,o.s_i.-,ax jw
~054j15x {Scale factor = 1)
{Scale factor = 1) ~-0.5+j1x
3 zeros\‘\ - 3 zeros \ .
-05-51¢«x
~-0.5-51.5x
; ~-0.5~j2 «x ~05-j2x
: la} (b

Prob. 11-18.

parameters the pole-zero configuration is as shown in the figure as (a)
and (b) for the transfer impedance, Z::(s) = Va(s)/1.(s). From the
pole-zero configuration (accurately plotted), plot the magnitude of the
transfer impedance as a function of frequency w.

M

Rate of decrease is
12 db/octave at high
frequency

0 W w

Prob. ii-14.

11-14. The frequency response shown in the figure is observed for a
given network, Draw a pole-zero configuration that can give this
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response. {Note: there is no unique solution to the problem, but every
solution must be such as to meet the requirements at low frequencies,
high frequencies, and resonance.)

11-15. A black box is marked ‘“ RLC Series Circuit” but no compo-
nent values are indicated. You are seeking a circuit that will oscillate
if a battery is connected to the box by the closing of a switch. In your
laboratory, you have standard test equipment such as vacuum tube
voltmeters, ammeters, sine wave generators—any frequency range.
However, you have no adequate cathode ray oscillograph. You are
not certain that you could detect oscillation with the instruments you
have, since the frequency of oscillation may be very high. The prob-
lem you face is this: with measurements made in the sinusoidal steady
state, how can you determine whether the current through the black
box will oscillate when the switch is closed and what will be the fre-
quency of oscillation. Describe the experiment you would perform.

11-16. Show that the bandwidth B varies inversely with the circuit
¢ for a series RLC circuit.

11-17. Show that for an RLC series network the product of |Y|...
and the bandwidth B equals 1/L, where L is the inductance.

11-18. Draw the phasor locus corresponding to the transfer function,
G(s) = 1/(s* + «). Carefully identify the high- and low-frequency
asymptotes.

11-19. Draw the phasor locus for the function G(s) = 1/3(s* + as
+ 1). Carefully identify the high-frequency and low-frequency
asymptotes.

11-20. The two poles and zero shown in the s plane of the accom-
panying sketch are for the transfer function of a two-terminal-pair
network, G(s) = V(s)/V1(s). The zeroison the
real axis at a position to correspond with the
same real part of the poles. The poles have
positions corresponding to ¢ = 0.707(6 = 45°);
wn 18 the distance from the origin to the pole as
shown. In this problem, we will investigate the
effect of the finite zero by computations with
and without the zero. (a) The bandwidth of the
system is modified from the definition given in
the chapter as the range of frequencies from
w =0 to the halfpower point. Compute the
bandwidth of the system with the pole-zero Prob. 11-20.
configuration shown above; compute the band-
width with the zero removed. In which case is the bandwidth greater
and by what factor? A graphical construction is suggested. (b) We

Jw

Wn

B . el X ]
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define the per cent overshoot in response to a step function input as

maximum value — final value
final value

100%

Compute the per cent overshoot for the two cases described in (a). In
which case is the overshoot greater? By what factor? Check point:

o 4.3 % without the zero. (c¢) Discuss qualita-
Poles and zeros tively the effect of another pole on the real
of Gis) = Vaisl/V;is) . . (o .
o axis but with a position ten times further
“14j2 x from the origin than the zero with respect
Test to (1) the transient response and (2) the
=5 -4 zer0 ¢ bandwidth.

| 11-21. For the pole-zero configuration
shown in the figure, compute a curve of
-1-j2x bandwidth (as defined in Prob. 11-20) as
a function of zero position from ¢ = —4 {0
o = (. Show any changes in curvature

Prob. 11-31. carefully.

11-22. Consider the pole-zero configuration of Prob. 11-21 without
the ‘“test zero.” To the configuration is added a so-called ‘“dipole”
of a zeroat ¢ = —0.1 and a pole at ¢ = ~0.105. Show that this dipole

R
Yis) L

+0°

Phase of voltage with respect
+30° to current in series RL circuit

/
\
+60° S
+90° :
0 10 20 30 40 50 €@ 70

Frequency in cycles/sec
Pl’Ob. 11"'28-
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does not appreciably affect the bandwidth or the transient response
to a step input. (The use of a dipole to change certain characteristics
of network response without changing bandwidth is described in the
literature relating to servomechanisms as lag or integral compensation.)

11-23. For a series RL circuit, the phase of the voltage waveform
with respect to the current waveform is measured and plotted in the
figure. Plot (with coordinate values) the pole-zero configuration for
the driving-point admittance of the RL circuit.

1.00 Frequency response of ___|
/\ // RLC series circuit
0.80 / R Lic
Il 0.60 \
0.40

_ \
0.20 / /

-

1 ] 1 i 3 ]

0 10 20 30 40 50 60
Frequency in cycles/sec.

Prob. 11-24.

11-24. The curve of the accompanying figure represents the current
magnitude as a function of frequency with constant input voltage for
an RLC series circuit. From this plot, determine the locations of the
poles and zeros in the s plane for the network under study.



CHAPTER 12
ONE-TERMINAL-PAIR REACTIVE NETWORKS

192-1. Reactive networks

The networks to be studied in this chapter will be restricted in two
ways. (1) The networks will be assumed to be made up of induetances
and capacitances only. Since these networks contain no resistive ele-
ments, they are said to be disstpationless. (2) Only one-terminal-pair
networks will be considered. The appropriate network funection for the
one-terminal-pair network is the driving-point immittance (either
impedance or admittance). The driving-point impedance and admit-

tance are V() It
8 s
T@J Y(S) = W;)

respectively, where V(s) is the voltage and I(s) is the current at the
driving-point terminals.

Driving-point immittances are found by combining impedance or
admittance expressions for elements in the network. These expressions
for inductance and capacitance are summarized in the following table.

Z(s) = (12-1)

Impedance Admittance
Inductance Ls 1/Ls
Capacitance 1/Cs Cs

Any arbitrarily complicated network can be broken into parts con-
sisting of series and parallel combinations of elements. For a series
combination of any number of inductances and capacitances, the total
impedance is

Zs) =718 + Zax(s) + ... + Z.(s) (12-2)

or Zg(s)=(L;+L2+L;+...)s+(~é;+~é—'~;+...)% (12-3)
1

£ L,qs + Ceqs (12'4)

In this expression L,, is the equivalent inductance and C,, is the equiv-

alent capacitance of the series system. Equation 12-4 may be manip-

ulated algebraically to the form

8% - 1/ Leqcoq
s

Z;(S) == L.q
274

(12-5)
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Similarly, the total admittance of a parallel combination of any
npumber of inductances and capacitances is

Yi(s) = Yi(s) + Yaols) + ... + Yau(s) (12-6)
or  Yis) = (C1 + Cy + Cs + ...)s+(£~; +I%2+ )}é (12-7)
= Cugs + 7 (12-8)

eq
where C,, and L,, are the equivalent capacitance and inductance of the
parallel combination of elements (hence this set of equivalent values
is different from those symbolized identically in Eq. 12-4). The last
equation may be rearranged in a form similar to Eq. 12-5; thus

§% 4 1/Leqccq
h

Y, (3) = Ceq (12—-9)

for a parallel system. The only difference in the form of the two equa-
tions for Y, and Z, is the multiplying constant.

O TE— G — - - - ——{f—---—0 > T —|{o
L, Lo G C: Ley Cey

{a}
[+

|

L1 Lg% st Ln Cl - Cz;
[+

H

{b)
Fig. 12-1. Equivalent immittance function representations.

The driving-point immittance for a complex network is found by
adding impedances and the reciprocals of admittances, or admittances
and the reciprocals of impedances. Since all networks can be arbi-
trarily divided into a number of series and parallel networks, the
expression for driving-point immittance will be a combination of terms
of the form of Eqgs. 12-5 and 12-9, and '
their reciprocals. Several examples *° KUE?\ H b

will illustrate such combinations. 2
L, Com
Ezample 1
The network shown in Fig. 12-2
is seen to bfa ma,t.ie up of a series Fig. 12-2. LC network.
LC network in series with a parallel
LC network. The driving-point impedance is given as
1
Zac = Za + (12-10)

ch
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or, in terms of individual element immittances,

+ 1
01 Caes + 1/Lss
This equation may be rearranged in the form of Eqs. 12-5 and 12-9 as
st 4+ 1/L,C, s

Zac = Lls + (12-11)

Zoe = Ly R G LTS (12-12)
of Zg =L 8t + (1/LiCy + 1/LsCy + 1/L1\Cs)s* + 1/14L,C,C,
“ o & + 8/LsCs
oammle 2 (12-13)
zamp

The network shown in Fig. 12-3 is a ladder network with specific
element values designated. The driving-point admittance for this

a network will be found by grouping
*W m the network elements into several
1 | series and parallel combinations.
1 farad == 1arad == The impedance from node a to node
ro 4 . b is

¢ coer2_ 26211
Fig. 12-3. LC ladder network. Za(s) =25 + s P (12-14)
The reciprocal of this impedance Y., can be combined with the admit-

tance of the 1-farad capacitor; thus

Yir(®) = Yoo+ 5= = 8+ 5055, (12-15)
3
or Yar(s) = ;:rﬁ% (12-16)

The driving-point impedance at terminals 1-1’ is found by combining
the impedance of the 1-henry inductance with the reciprocal of Yay;

thus
2(s2 4+ 1)

1,
Z1(8) = Z1a + Yo 8 -+ 28 F 3¢ (12-17)
. e _ 28 + 55?4+ 2
Simplifying, Ziv(8) = =553, (12-18)

The driving-point admittance is the reciprocal of Z,,r and so is given
by the expression

28 4 3s
28* 4 58 + 2

& -+ 1.5s
g+ 2582+ 1

Yiv(s) = (12"19)

or Yiv(s) =

(12-20)
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A comparison of the various derived expressions for driving-point
immittance will show a number of common features:

(1) All the equations—Eqs. 12-5, 12-9, 12-13, and 12-20, as well as
intermediate steps—are quotients of polynomials in s with a
constant multiplier.

(2) The order of the numerator and denominator polynomials never
differs by more than unity.

(3) The polynomials have only even powers of 8 or odd powers of 8
in any one polynomial. Further, if the numerator polynomial
has only odd powers of 8, the denominator polynomial always
has only even powers of &, and vice versa.

(4) In a polynomial with even powers of 8, no even term of degree
less than the term of maximum degree can be missing. The
same condition holds for odd terms in odd polynomials.

Now a polynomial with only even powers of s (or whatever the var-
iable may be) is by definition an even polynomial. Similarly, a poly-
nomial with only odd powers of s is by definition an odd polynomial.
Hence statement (3) may be expressed in different words as: the
driving-point immittance functions are all odd to even or even to odd
quotients of polynomials.
To illustrate further the concept of even and odd polynomials, the
equation
Pi(8) = ass® + ae8® 4+ a8t -+ a28% + a8’ (12-21)

is an even polynomial, since it contains only even powers of 8. Sim-
ilarly, the equation

Pi(8) = a:8" + ass® + a:8® + a8 (12-22)
is an odd polynomial containing only odd powers of s. The equation
Pi(8) = a,8* + a38® + a:8* + a18 + ao (12-23)

contains both even and odd powers of s and so is neither an even nor
an odd polynomial, but has both an even and an odd part.

The four statements just given are made on the basis of only a
limited number of examples. However, these statements are shown
to be true in general for LC networks in advanced textbooks.* Fur-
ther, statements (1) and (2) are true for the driving-point immittance
of any network—RL, RC, or the general RLC. Only statements (3)
and (4) apply only in the case of the dissipationless LC network.

*8ee Guillemin, Communications Nelwork, Vol. II (John Wiley & Bons, Ine,,
New York, 1935), pp. 184 f,, or Tuttle, Network Synthesis, 2 vols. (John Wiley &
Sons, Inc., New York, in preparation).
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On the basis of the above discussion, we will assume that driving-
point immittances for dissipationless (LC) networks are quotients of
even to odd polynomials or odd to even polynomials. Further, the
order of the numerator and denominator polynomials will never differ
by more than unity. Such a general impedance (and the same will hold
for admittance) can be written in the form

Z(s) = A2n8*" + Q328?24 ... + 028" 4 a0
T bga_18? ! 4 baa3s?E 4 .. + bis

(12-24)

as a quotient of an even to odd polynomial, and with ay = 0 such that
an s may be factored out of both numerator and denominator, an odd
to even polynomial. The numerator polynomial may be considered to
be an equation in s* which may be factored into its n roots. After the
common s is factored from the denominator of the last equation, the
equation can be factored into n — 1 roots in s%. In factored form, the
equation becomes

= H (32 + 812)(82 + s83%).. .(32 + Sgn_12)

Z(s) S(SE + 822) (82 + s42). .. (SE + Somsd) (12-25)
where H = 9 a constant (12-26)
n—1

Typical form of the factorsin Eq. 12-25 is (s? 4 $;%), which factors into
two roots as
§? = —g,2; s = +is; (12-27)

The roots are thus purely imaginary. Such imaginary values of roots
have previously been associated with radian frequency. To emphasize
this identification, we will change notation at this point by letting
terms of the form s, become w,. Hence typical roots of the impedance
equation will have roots occurring in pairs as purely imaginary numbers
of the form :

8 = tjw, (12-28)

Then the driving-point impedance expression becomes

_H (s* 4 0 (s 4+ ws?). ..
2@ = 5 T ot F el (1229

or, if @y = 0 in Eq. 12-24,

gy (8% we?) (8 + wi?). ..
Z(s) = Hs (ot Tt (12:30)

The reason for the particular choice of subscripts for w will be discussed
later.
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From this point on, we will restrict our considerations to the special
case of the sinusoidal steady state. The mathematical consequence of
this restriction is that s = jw and that the s terms in the previous
equations become §? = —w? For the two cases of the last two equa-
tions, the substitution s = jw gives

Z(jo) H (w? ~ 0,?){w? ~ ws?)...

.'l"_‘-" (w? = w)(w? — w?). ..

(12-31)

(w? — we?)(w? — we?)...
(032 e w;”)(wz - waz). .

or Z(juw) = tjuH (12-32)
The + sign in these equations is introduced to account for there being
more (—1) factors removed from the numerator than the denominator
or vice versa.

In the sinusoidal steady state, the general driving-point immittance
functions are complex and of the form

Z(jw) = R(w) + jX(w) (12-33)
or Y(jw) = G{w) + jB(w) (12-34)
where R{w) = resistance, X(w) = reactance, ((w) = conductance,
B(w) = susceptance. According to Eqs. 12-31 and 12-32 written for
the driving-point impedance (and of the same form for the driving-
point admittance), Z(jw) is purely imaginary. This follows because

terms of the form (w? — w,?) are always real, and likewise the multiply-
ing constant H is always real as well as positive. Thus for LC networks,

Z(jw) = jX(@) and Y(jo) = jB(w) (12-35)

Since the impedance function is purely reactive, LC networks are
spoken of as reactive networks.

12-2. Separation property for reactive networks

When the reactance funetion X(w) discussed in the previous section
is differentiated with respect to radian frequency w, the resultant func-

X| 4 siope , X \ - slope

w &
Fig. 12-4. Geometry of positive and negative slope.

tion is always positive; that is,

dX
== >0 (12-36)
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We will postpone the proof for this statement until the partial fraction
expansion of X (w) is studied. In terms of a plot of X as a function of
frequency, the slope of the curve must always be positive; that is,
must be increasing with increasing w. If we start with a given value
of reactance, X; at some frequency w;, then as frequency increases, X
must increase, finally to an infinite value. This is illustrated in Fig.
12-5. At the frequency of infinite reactance, the sign of X changes.
00

t
[+ ¢}
t
+X : /
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Fig. 12-6. Reactance as a function of frequency.
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Starting again at X(w) = — «, the slope must again be positive. The
curve of X is shown to increase to zero value, thence increase to infinite
value before the cycle of change is repeated. The reactance function
has & magnitude which varies from zero value to infinite value as fre-
quency changes. Those values of frequency which result in a zero value
for the reactance are zeros (of freguency). Frequencies resulting in
infinite magnitude of reactance are poles (of frequency). The zero fre-
quencies are also sometimes spoken of as resonant frequencies (frequen-
cies of zero reactance), and the pole frequencies are called antiresonant
Jrequencies (infinite reactance).

Because of the property of reactive networks that the derivative
dX /dw always be positive, the poles and zeros of the reactive network
function must alternate. The poles must be separated by zeros and the
zeros by poles. This is referred to as the separation property for reac-
tive networks.

The poles and zeros of the reactance function illustrated in Fig. 12-5
can be located by inspection of the reactance function. A term of
the form (w? — w,?) in the numerator of X(w) locates two zeros at
@ = tw, Similarly, a term (w? — w,?) in the denominator of X{w)
locates two poles at w = * w,. There remain only to consider the poles
and zeros at zero frequency and at infinite frequency. We will start our
study of these lower and upper limit frequencies by considering the be-
havior of elements and combinations of elements at w = 0and w = «.

The reactance of an inductance varies with frequency as given by
the equation
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X;: = ol (12-37)

Thus X, has a zero at w = 0 and a pole at w = «, since X, varies
directly with w. The expression for the reactance of a capacitance .
-1

Xe=—5 (12-38)
showing that since X¢ varies inversely with w, X is infinite at zero
frequency so that zero frequency is a pole and is zero at infinite fre-
quency so that infinite frequency defines a zero. These relationships
for inductance and capacitance are summarized below.

w X o X L
0 pole zero
e Zero pole

In the case of LC networks, we can attach a physical significance to
the terms pole and zero. A pole of reactance means an infinite value
of reactance which we interpret physically as an open circuit. The
capacitance does appear to be an open circuit at zero frequency (direct
current) since the capacitor plates are not in physical contact. Sim-
ilarly, an inductance appears to be an open circuit at very high
(approaching infinite) frequencies. The word ‘‘choke” is applied to
the inductor because of this high reactance at high frequency. By dual
reasoning, a zero of reactance means zero value of reactance. Zero
reactance (and thus zero impedance, since there is no resistance pres-
ent in the networks being considered) is interpreted as a short circuit.
An inductance appears to be a short circuit at zero frequency (direct
current) because (d/dt)(Li) = 0 and no voltage appears across the
inductance. Likewise, the capacitance appears to be a short circuit at
infinite frequency. This physical interpretation of poles and zeros at
w=0and @ = « allows the zero and infinite poles and zeros of a net-
work to be found by inspection. Several examples will illustrate this

feature.
o— BT Hé If _l_
i

C2

Li TC@; Lz
O &

{a) (b
Pig, 12-6. LC networks for examples,

Z—> Z—

Figure 12-6(a) shows a simple series LC network. At zero frequency
(direct current) the capacitor acts as an open circuit. Hence the
driving-point impedance for this network has a pole at zero. At infinite
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frequency, the inductance acts as an open circuit. Thus the impedance
function also has a pole at infinity. A more complicated network is
shown in Fig. 12-6(b). At zero frequency, C, acts as an open circuit,
making the behavior of any other elements in the network at zero fre-
quency ‘irrelevant. The driving-point impedance thus has a pole at
zero frequency. At o = «, (', (', and C; behave as short cireuits,
and LY and L, as open circuits. There is a zero impedance path from
terminal to terminal through C,-C,-C3;. Then the driving-point imped-
ance has a zero at infinite frequency. We conclude that the network
of Fig. 12-6(b) has a pole at zero and a zero at infinity.

The behavior of the driving-point impedance at zero and infinite
frequencies can be determined from the mathematical form of the
impedance function. Using s in place of jo to simplify notation, the
driving-point impedance given as Eq. 12-24 may be rewritten as

_ @nS" At @nas™? 4 .. 4 4o
26) = e T b F .. F b

(12-39)

where n 1s even and m odd. As s = jw approaches a very large value,
only the highest-ordered term of the numerator and denominator
polynomials need be considered. This is to say that

lim Z(s) = lim 25 (12-40)

Fedr 00 bmsm

Now n and m can differ at most by unity and are never equal, as
discussed in the last section. Hence as s approaches infinity, Z(s)
approaches either zero or infinity, depending on whether m is larger
than n or n larger than m. In either case, because n and m can differ
by unity at most, the pole or zero at infinity will be simple (not mul-
tiple). In summary: If the order of the numerator polynomial is greater
than the order of the denominator polynomial, there will be a simple
pole at infinity. If the converse is true, there will be a simple zero at
infinity.

For the low-frequency case, only the lowest-ordered terms in the
polynomials of the impedance function need be considered. In Eg.
12-39, the higher-order terms may be ignored as

et ass? + ag
%(s) = e.. + bss® -+ bys (12-41)

The two possible cases of an even-to-odd or odd-to-even quotient of
polynomials can be taken into account by considering two possibilities
in this equation: (1) ao # 0, and (2) ao = 0. For case (1),
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. . H
lim Z(s) = lim — = 4 (12-42)
=0 a0 8

and there is a pole at zero frequency. For case (2),

Im Z(s) = im Hs =0 (12-43)
&0 0

and there is a zero at zero frequency. From this discussion, we see that
when the lowest-ordered term of the numerator is of higher order
than the lowest-ordered term of the denominator, there will be a sim-
ple zero at zero. If the converse is true, there will be a simple pole at
zero.

In all cases, zero and infinity (frequency) are either poles or zeros
for LC networks. Further, these poles and zeros are always simple.
Two examples will illustrate these conclusions.

Ezample 8

For this example, suppose that the driving-point impedance is given
by the expression

26) =2 & ‘:(Si)_ifz 4”)*‘“ 9) (12-44)

The order of the numerator polynomial is 4, and that of the denom-
inator is 3. Applying the rule for infinite frequency stated on page 282,
infinity is a pole, since the order of the numerator is greater than that
of the denominator. Since for small values of s, Z(s) approaches the
form H/s, zero frequency is also a pole. By inspection, there are finite

X at @
-plane .
5p w : cP/
é +X : 0
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Fig. 12-7. s plane and reactance plot of Example 3.

zerosat w = +1 and w = 3, and a finite pole at w = +2. The pole-
zero configuration and a plot of this reactance function are shown in
Fig. 12-7. The reactance function X(w) may be found from Eq. 12-44
and different values of wsubstituted into this equation to make the plot.
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Ezample 4

For this example, consider an impedance function with the order
of the denominator greater than that of the numerator. Let

- 8(82 -+ 4) 12-45)
Z6) = 3 G 1y (e 0) (12-45)

In this equation, the order of the numerator is 3 and that of the
denominator is 4. Analysis of this equation shows that both zero and
infinity are zeros and that there are finite polesat w = t+1landw = *3
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Fig. 12-8. Plots of Example 4.

and one finite zero at w = +2. The s-plane representation and the
reactance function plot are shown in Fig. 12-8.

12-3. The four reactance function forms

It has been shown in the previous section that zero and infinite
frequencies are always either poles or zeros. The four possibilities for
the two possible conditions at the two frequencies are tabulated below.

Case w=0 W = o
1 pole pole
2 zZero Zero
3 pole Zero
4 zero pole

There remains the task of finding the form of the driving-point imped-
ance (or admittance) corresponding to each of these four cases. There
are but two forms of factors for the numerator and the denominator:
(8* -+ 8a?) and s.

Case 1. With a pole at both zero and infinity, there must be an
8 in the denominator and one more (s* 4 s8,2) type factor in the
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numerator than in the denominator. The general form for this driving-
point impedance is

_H @t o). . (8 + w?) -46
Z(s) = 8 (87 + ws)... (8 + wat)) (12-46)
where W < wt < ws < ... < Wpi < o (1M7)

The first and last finite critical frequencies (poles or zeros) are in Phe
numerator of this equation. The general form of the corresponding
reaction function is shown in Fig. 12-9.
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Yig. 12-9. Reactance plot for Case 1.,

Case 2. This is the inverse of Case 1. With a zero both at zero and
at infinity, it is necessary that there be an s term in the numerator and
an additional (s? + s,?) type term in the denominator. For Case 2, the
driving-point impedance has the form

(82 + we?). .. (8? + wpi?)
2(s) = He orE oty (1248)

where the same relationship exists for the w's of this equation as given
in Eq. 12-47. The reactance function plot for Case 2 is shown in Fig.
12-10.
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Fig. 12-10. Reactance plot for Case 2.

Case 3. To have a pole at zero frequency requires an H /s multiplier
for the impedance function. For there to be a zero at infinity, the total
order of the denominator must be greater than that of the numerator,
Since there is already an s in the denominator, there must be just as
many (82 -+ 8,%) type terms in the numerator as in the denominator.
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The driving-point impedance becomes

_CH (824 @), .. (8 + wash) :
Z6) = 5 T T o T o (12-49)

‘The Case 3 reactance function is plotted in Fig. 12-11.
X /{
t
!
w) w2 As s b,
i
H

e

Fig. 12-11. Reactance plot for Case 3.

Case 4. For this case, there must also be an equal number of
(s? + s,?) factors in the numerator and denominator with, in addition,
an (Hs) multiplying factor in the numerator. The driving-point imped-
ance for Case 4 is

_ (8% + we?)...(s% + w,?)
Z(s) = Hs (87 + wi?)...(s2 + Wnee1?)

The Case 4 reactance function is plotted in Fig. 12-12.

(12-50)
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Fig. 12-12. Reactance plot for Case 4.

From the four cases just discussed, it is seen that in the sinusoidal
steady state (s = jw) the form of the reactance function for Case 1 and
Case 3 is

H (0 = w?){0? — ws?)...

Xlw) = & w (08 — @) (0® — w?). .. (1251
and that for Case 2 and Case 4, the form is
2 . —_ 2
X(0) = +Ho =9 — o). .. (12:52)

(@ — 1% (@f — wad). ..

In each case the sign of the reactance function must be selected to give
a positive slope to dX/dw (see Prob. 12-7). In order to have this pos-
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tive slope, the value of X at w = 0 must either be zero or negative
' ;nfinity. The sign of X changes each time the frequency passes a pole
or & zero. Consider the factor

(w? — wa?) (12-53)

For w less than w,, the sign of the factor is negative. When w exceeds
ws, the sign of the factor becomes positive. Since the poles and zeros
must alternate (the separation property), the sign of the reactance
function alternates from positive to negative, changing successively
at the pole and zero frequencies. In the two forms of the reactance
function given above, the pole and zero frequencies must satisfy the
condition

O<wm<m<uw <ws <... (12—54)

The statements made in this section for the reactance function X(w)
apply directly to the admittance case, where Y (jw) = jB(w), and B(w)
is the susceptance function.

The factor H which appears in all the reactance equations is a posi-
tive real constant known as the multiplying or scale factor. The func-
tion of H in terms of the reactance is to fix the scale of the reactance.
Doubling the value of H, for example, doubles the values of the react-
ance function for all values of frequency. Thus H fixes the level of
impedance.

192-4. Specifications for reactance functions

In this section, we will discuss the nature and number of quantities
which must be known to completely specify the impedance function
for an LC network. The term critical frequency will be defined to mean
either a pole or a zero frequency. From the last section, we know that
zero frequency and infinite frequency are always critical frequencies.
These poles and zeros at zero and infinity (frequency) are defined as
external critical frequencies. Poles and zeros at finite, nonzero frequen-
cies are defined as infernal critical

frequencies. Theinternaland exter- Interral ~

nal critical frequencies for a particu- _I N . o

lar pole-zero configuration are iden- “ \\ “

tified in Fig. 12-13. We know that External

the poles and zeros must alternate T¥3€- 12-13. Designations for critical
frequencies.

as frequency increases because of the
separation property for LC networks. If the internal critical frequencies
are specified as poles or zeros, there remains no choice for the external
critical frequencies. They must be the opposite of the nearest finite (or
internal) critical frequency in order that the poles and zeros alternate
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a8 required. In summary: If the nature of the internal critical frequen-
cies is specified, the nature of the external critical frequencies is fixed.
The specification of internal critical frequencies specifies all critical
frequencies.

We next observe, from Eqgs. 12-51 and 12-52, the only possible forms
of the reactance function, that if all critical frequencies are known,
there remains only the scale factor H (or the equivalent) to be specified
in order to determine completely the driving-point impedance function
for reactive networks. In place of the value of H, an equivalent spec-
ification would be either (a) a value of the reactance at some noncritical
frequency, or (b) a value of the slope of the reactance curve dX/dw at
some frequency other than a pole frequency. This information is sum-
marized below.

Specifications for Reactive Networks

A. The internal critical frequencies.

B. One additional bit of information to give H or to allow H
to be computed. The three most common forms of this second
specification are:

(a) the value of H,
(b) the value of X at a noncritical frequency, or
(¢) the value of dX/dw at some nonpole frequency.

When these two types of specification are made, Z(s) can be found by
making the substitution w = 8/f in the equations of the form of Eq.
12-51 or Eq. 12-52. We will next study the problem of designing net-
works to meet the Z(8) specification.

Reactance functions of the type studied in the chapter thus far
were first investigated in 1924 by R. M. Foster, then of the Bell Tel-
ephone Laboratories but now at Brooklyn Polytechnic Institute
Features of this study are classified under the heading of Foster's
reactance theorem.

12-5. Foster form of reactive networks

The partial fraction expansion of reactance functions may be studied
by considering Case 1 and then specializing to the other three cases
The driving-point impedance function for Case 1 is given in Eq. 1246,
which is

H (82 + w1} (8* + ws?). ..

2@) = S T T o) (T F o). .. (12-55)

where there is one more factor of the form (s* 4 w;*) in the numerator
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than in the denominator. In the partial fraction expression of this
equation, terms of the type (8? + ws?) will expand as

N(s) N(s) K, K,*

Tt b = GT oG —Jan ~ GFjey T G=jay (12%)

where K,* is the conjugate of K, It is shown in advanced texts that
the K-coefficients in the partial fraction expansion of terms with imag-
inary roots are always positive and real. This being the case, K, and
K,* are equal, so that

Kg Kg* 2K28

(8 + jws) + (8 — jows) BN (12-57)

Using this form of expansion for the (s? + w,?) terms, Eq. 12-55 for
Case 1 expands as

2K 38 2K,s

Gt Lt T Hs (12:58)

2 = 50 4

The last term in the expansion, Hs, is necessary to give the pole at
infinity in Case 1. The H value of the coefficient may be verified either
by application of 1’Hospital’s rule or by direct division.

For a series combination of impedances, the total impedance will be
the sum of the series impedances; that is,

Z(8) = Z1(8) + Za(s) + Zs(s) + ... + Za(s) (12-59)

The philosophy of the design procedure to arrive at a Foster network
is to identify each term in the last equation as the impedance of a sim-
ple network configuration. These configurations will then be combined
in series to give a composite network having the required driving-point
impedance Z(s).

Following this philosophy, we will associate the impedance Z, in
the last equation with the term Ko/s in Eq. 12-58. Thus Z1(s) = Ko/s
represents a capacitor of value C = 1/K,. Similarly associating Z n(8)
and Hs leads to the conclusion that Z,(s) represents an snductor of
value L = H henrys. All other terms in the impedance expression are
of the same form and represent a parallel combination of inductor and
capacitor. The impedance of such a network is

1 (1/C)s

2(6) = Gs ¥ 1/Ls ~ % + 1/IC (12-60)

Comparing this equation with, for example, Eq. 12-57, gives values
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for the capacitors and inductors in the network as

1
= e 12-61
1 2K, g
Ly = w i, T wn? (12-62)

for the nth term in the partial fraction expansion. These conclusions
sre summarized in Fig. 12-14.

Term Network Element values
Ko I o .
— o (!3; Co K; farad
Hs o—FYH \—o0 Lo=H henry
Lo
Cn= ! farad
2K.s L,ﬂ 2Kn
ot Lu-zﬁ" henry
Cn "

Fig. 12-14. Impedance expressions and equivalent networks.

The realization of the network corresponding to the expanded
expression for Z(s) is shown in Fig. 12-15. This realization is known
as the first Foster form (series impedances). The network of thefigure
is for Case 1. There remains the problem of specializing to the other

Co BV
omrefet L2 L, A
T4 Ti
i\ i\
Zis) C: Cs s Cn
Pole at origin Pole at infinity

Fig. 12-16. Network of the first Foster type.

three cases. Before undertaking this study, let us consider the role
of each element in the network in terms of the known pole-zero
configuration.

(1) Capacitor Co. Capacitor Co appears in the network because of
the term K,/s in the partial fraction expansion. This term corresponds
to a pole at the origin. Hence the presence of C depends on there being
& pole at the origin.

(2) Inductor L,. Inductor Lo appears in the network from the imped-
ance expression Hs in the partial fraction expansion. This term is pres-
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ent because of the pole at infinily. Hence the presence of Ly depends on
there being a pole at infinity. '

(3) Parallel L,C, network. Each term of the type (s* + w,?) in the
denominator of Z(s) gives rise to a parallel LC network. The frequency
wy Of each term is a pole frequency. Thus antiresonance in the individ-
ual LC parallel networks gives rise to the poles of Z(s). The zeros of
Z(s) cannot be associated with any specific elements. In terms of the
reactance function X (w), each of the parallel circuits changes sign as
the frequency increases through antiresonance. At some frequency,
the reactance of a group of parallel circuits is equal to and opposite in
sign to the reactance of all remaining parallel circuits. Under this con-
dition there is a zero of Z(s). There will be as many zeros as there are
poles because of the separation property. These zeros can be thought of
as being caused by the first parallel network being in ‘““series” res-
onance (the resonance of zero impedance) with the rest of the network,
then the first and second parallel networks in resonance with the
remaining network and so on, until finally the last parallel network
resonates with the combined preceding network.

Since the distinguishing features of the four cases of reactive net-
works considered are the poles and zeros at zero and infinity, it follows
that Cases 2, 3, and 4 can be specialized from Case 1 simply by leaving
out either or both of Cy and Ly. For example, if there isno s term in the
denominator of Z(s), there will be no K,/s term in the partial fraction
expansion. Similarly, if the order of the denominator polynomial is
greater than the numerator polynomial, there will be no Hs factor in
the partial fraction expansion, and consequently, in terms of the phys-
ical elements, no series inductor in the circuit. The nature of the ‘‘end
elements” for the four cases is summarized below.

Enp ELemeENT VALUEs IN First FostErR NETWORKS

Case w = 0 W = Co Lg
1 pole pole present present
2 Zero Zero short-circuited short-circuited
3 pole Z€eT0 present short~circuited
4 %eT0 pole short-circuited present

In his 1924 paper, Foster pointed out that if the admittance corre-
sponding to a given impedance function Y (s8) = 1/Z(s) is determined,
it is possible to realize a physical network for the admittance function.
Networks found by an admittance expansion are known as networks
of the second Foster form,

Consider an admittance function of Case 1 with a pole at both zero
gnd infinity. This function has the same form as Eq. 12-55 with Y (s)
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replacing Z(s). The partial fraction expansion for Y(s) is the same as
Eq. 12-58. There remains the problem of identifying individual terms
in the partial fraction expansion as admittance expressions for LC
network configurations. The driving-point admittance of parallel net-
works is the sum of the admittances of the networks in parallel; that is,

Y(S) == Y1(8) ‘+‘ Yz(s) '+' Y3(3) + s + Yﬂ(s) (12'63)

Comparing this equation with Eq. 12-58, we see that the term K/s
corresponds to the first admittance, so that Y1(s) = Ky/s. Then Y,(s)
represents the admittance of an inductor of value I = 1/K, henry.
Similarly Y.(s) = Hsis the admittance of a capacitor of H farad value.
All other terms in the admittance expression are the same and represent
the admittance of a series inductor and capacitor (the dual of the net-
work found for the first Foster form). The admittance of the series
LC network is

1 _ s/L
s+ 1/Cs & + 1/LC (12-64)

Y(s) =

Comparing this equation with Eq. 12-57 permits identification of the
required values of L and C for the network corresponding to the nth
pole of admittance as

1

L, = 5K (12-65)
1 2K,

C. = Tk = oo (12-66)

These conclusions are summarized in Fig, 12-16.

Term Network Element values

Ky 1

e o—fdg'ﬁ'\mo LQ' 'K:o- henry

0

Hs L Co~H farad

2K O—fﬁwf'a—'l ( L,- E'}K"m henry
24wl L 2K,
n Ca Cn =—~ farad

Fig. 12-18. Admittance expressions and equivalent networks.

The combination of networks of the types shown in Fig. 12-16 to
conform with Eq. 12-63 for parallel admittances is shown in Fig, 12-17.
The network shown is for Case 1 but specializes to the other three cases
just as in the first Foster type of network. The role of each type o
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network configuration in terms of the poles and zeros of the driving-
point admittance function is summarized as follows:

(1) Inductor Lo. Inductor Ly appears because of the pole (of Y) at
the origin which gives rise to the K,/s term in the partial fraction
expansion,

(2) Capacitor Cy. Capacitor Cy appears because of the pole (of Y)
at infinity which causes the Hs term to appear in the partial fraction
expansion.

(3) Series L.Cn nelwork. Each series LC network corresponds to a
factor of the type (s* + w,?) in the denominator of Y (s). The fre-
quency w, of each such term is a pole frequency which is associated

Yis}~
Z
Pole at Tcz Pole at

origin infinity
o

Fig. 12-17. Network of the second Foster type.

with resonance (in contrast to antiresonance in the series impedance
realization) of the LC networks. Thus all poles can be associated
directly with specific elements in the sense that resonance within
individual networks cause the entire network to have a pole of admit-
tance. As in the case of the first Foster form, the zeros of Y(s) cannot
be so identified. Every element contributes some part to the condi-
tions associated with a zero of admittance, in much the same way as
discussed for the first Foster form.

The “end elements’ (that is, L, and () are associated with the poles
of Y(s) at zero and infinity (frequency). The presence of a zero in
place of a pole thus infers the absence of an end element. End condi-
tions for the four cases of the second Foster type of networks are sum-
marized below for impedance functions.

Enp ErEMENT VaLUEs IN Stconp FosTErR NETWORKS

Case w=10 @ = ®© Lo Co
1 pole pole present present
2 Zero Zero absent absent
3 pole ZEero present absent
4 Zero pole absent present

From this discussion, we see that from any specifications two com-
pletely equivalent networks can be designed. The first Foster network
form is a series impedance realization of Z(s); the second Foster net-
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work form is found by forming Y(s) by inverting Z(s), as Y(s) =
1/Z(s), and then expanding as parallel admittance functions which
are identified with specific network forms. It is important to observe
that Z(s) and Y (s) will never be of the same case classifications for one
set of specifications. Inverting a function interchanges poles and zeros,
and since Z(s) will never have the same number of internal poles as
internal zeros, the case designation will differ for Z(s) and Y(s) =
1/Z(s). The following conclusions can easily be verified.

If a given Z(s) is: The corresponding Y (s) is:
Case 1 "~ Case 2
Case 2 Case 1
Case 3 Case 4
Case 4 Case 3

An example will illustrate the procedure for finding the first and
second Foster networks for a given Z(s). Consider the impedance

oS+ D2+ 9)
Z(s) =2 T (12-67)
This impedance function is of Case 1 and the partial fraction expansion
is
_ K K, K,*
Z(s) = S + TF -+ P + Hs (12-68)
K The constants of this equation may
o i ffarad Al be evaluated by the Heaviside rule
ffarad L5000 ~ 1 as follows.
Zlis) ¥ henry 2% 9 9
BRo="3"=3
O
Fig. 12-18. First Foster network of g .. 2+ (P + 9) - 15
example. ? s(s — j2) £=—j2 4
and since H = 2 by inspection,
_9/2 | 2(15s/4)
Z(s) = - + e + 2s (12-69)

Using the equations displayed in Fig. 12-14, the element values and
first Foster form network are found as shown in Fig. 12-18.

To determine the second Foster form of network, the admittance
function is found as

1 s(s? + 4)

1
YO =7 " F T DE 9 (12-70)
_ 2K18 2K38
=gxriTa T (12-71)
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The two constants K, and K, are found by the Heaviside method as

K, = s(s* + 4) _3

P2 — (s A 9) = 32 '
Ky = s(s? + 4) _ 3

YT F (S — 43) lem—jz 32

Making use of the chart of Fig. 12-16, the network configuration and
clement values are determined as o
shown in Fig. 12-19. The two equiv-
alent networks have the same number Zis)
of elements.

Before we consider two other forms % faradT ’?‘famd’r
of equivalent networks, let us digress ©
to consider the unfinished business of
s proof for the separation property.
Now that we have completed the partial fraction expansion for immit-
tance functions, we know that any immittance function is composed
of, at most, three types of terms:

K 0 2K 28

s b |
s 8% 4 w,?

2§ henry ¥ henry

Fig. 12-19. Second Foster net-
work of example.

Hs (12-72)

The reactance expressions for these terms are

x, = - Ko (12-73)
w
2K .
Xo= e (12-74)
X,y = ol (12-75)

(Susceptance expressions have exactly the same form.) The deriva-
tives of these three expressions are

X, | Ko
- TR (12-76)
dX,  +2K.0? + 2K.w.2
deo (wp? — w?)? (12-77)
dXs
o= +H (12-78)

Each of the three typical terms is positive for both positive and neg-
ative values of frequency w. Since the reactance function for the
driving-point terminals (and the same thing might be said for the sus-
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ceptance function) is given as a sum of reactances,

. X = 2 X, (12-79)
i=1
which may be differentiated term by term to give
dX dX;
o= - (12-80)
i=1
Then dX /dw is positive,
dX
i >0 (12-81)

for both positive and negative values of frequency ». From this con-
clusion, the separation property follows.

12-6. Cauer form of reactive networks

An important extension to the Foster reactance theorem was made
in Germany by W. Cauer* in 1927. He first pointed out that the react-
ance function could be represented by two different network configura-
tions by a continued fraction expansion of the driving-point impedance.
The basic form of the network for the Cauer realization is the iadder

ANN NNN— = --
Z Z3 Zg Z

Zis) Y, Y, Ys

O =

Fig. 12-20. Ladder network.

shown with impedance and admittance designations in Fig. 12-20. The
driving-point impedance of such a network may be written in the form
of a continued fraction as

Z(8) = Z, + (12-82)

Y, +

Zs +

Y+
Zy +

* W. Cauer, Arch. Elekirotech., 1T, 355 (1927).



At 126 ONE-TERMINAL-PAIR REACTIVE NETWORKS 297

Let us restrict our discusssion to an impedance function with a pole
at infinity. In the general expression for the driving-point immpedance

 Ga8" F Gugs™ L
Z(s) = T S (12-83)

this means that n is greater than m. The procedure for forming the
continued fraction is to divide, then invert and divide, invert and
divide, and continue this process until the expansion terminates (as
it must). This procedure can best be illustrated with a numerical
example. Consider the impedance function

_12s* 4 128 + 1

Z(s) = =i as (12-84)

Direct division proceeds as follows.

6s® 4+ 35) 12s* 4+ 1282+ 1 (28
12s* + ©6s?
6s% 4+ 1

6s?+1
68 + 3s

so that Z(s) = 2s + (12-85)

Inverting the remainder term and dividing gives

6s? 4+ 1) 68+ 3s (s
6s® + s

2s

1
s + 28/(6s® + 1)

or Z(s) = 28 + (12-86)

Continuing the invert and divide procedure,

2s) 65?4+ 1 (3s
6s?

1

such that, finally,
1

1
1
38+§§

Z(s) = 28 +
8 +

(12-87)

Comparing this expression with Eq. 12-82, we see that: Z, = 2s rep-
resents an inductor of 2 henrys, Y; = § represents a capacitor of
1farad, Zy = 3s represents an inductor of 3 henrys, ¥; = 2s represents
a capacitor of 2 farads. The network configuration for this specific
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example is shown in Fig. 12-22. For this case, a pole at infinity, the
first Cauer network will always be of the form of Fig. 12-21 with
‘“series” inductors and ‘‘parallel” capacitors extending as far as
required by the continued fraction expansion. There is only one other

o o0 YT rHE0 IR -
L L, Ls L,

=C; = o ==Cs ~Cq

c — - ——
Pig. 12-21. General form of first Cauer network (pole at «).

case to be considered: a zero at infinity. For this case, m exceeds n by
unity in Eq. 12-83, and before the continued fraction expansion can
be made, it is necessary to invert the polynomial. The form of the
expansion will be

Z(s) = (12-88)

Y, + i

Zs + i
Y‘+zs+...

Comparing this equation with Eq. 12-82, we see that the only differ-
ence is that Z; = 0 in the second case. If Z, = 0, then L,, the first

series inductor, is absent from Fig.
° m ?,;2}?,}“‘ 12-22. The form of the first Cauer net-
work with a zero at infinity is shown
in Fig. 12-23. In summary, the first or
“end” element in the first Cauer net-
work form is determined by the behav-
ior of the network function at infinite
frequency. A pole at infinity requires
that the first element be a series inductor. A zero at infinity requires
that the first element be a parallel (or shunt) capacitor.

Zis) 1 farad == 2 farad ==

[

Fig. 12-22. First Cauer network
for Eq. 12-84.

o AT Tt O —— T —— - -
LS LS L7 Lg

Zis) _C pest S s “—~Cs T~Cio

[ JR—

Fig. 12-28. General form of first Cauer network (zero at «).

Let us focus our attention on the way the Cauer network ends now
that we have studied the factor controlling the way it begins. There



-
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are but two possible ways the ladder network can end. One is with an
inductor as shown in Fig. 12-24(a); the other is with a capacitor as in
Fig. 12-24(b). Imagine these networks attached to the general form
of the network (with any number of elements in a ladder arrangement)
shown in Figs. 12-22 and 12-23. With the inductor as the last element,
there are series inductors in a path from one terminal to the other. At

- T, ---——-—rm'\-l

avpasd
pe

-

la) (b
Fig. 12-24. Last element forms for first Cauer network.

I

zero frequency (direct current), these inductors offer zero impedance
such that zero frequency is a zero of impedance. Alternately, if the
last element is a capacitor, there is & ‘“break” in the path from ter-
minal to terminal and at zero frequency there is a pole of impedance.
In summary: The last (or far end) element in a first Cauer network is
determined by the nature of the impedance function at zero frequency.
A zero at zero requires that the last element be an inductor. A pole at
zeTo requires a capacitor as the last element. These conclusions are
summarized below.

Firsr Cauer Nerwork END ELEMENTS

Case w=20 W = © First element Last element
1 pole pole L ¢
2 ZEro Zero C L
3 pole Zero C C
4 Zero pole L L

The basic form for the second Cauer network is again the ladder
network, but with the position of capacitor and inductor interchanged.

o I I T Y ——-
I\ i\ I 1

G Cy Cs Cy
L, Ls Le Ly

o ——
Fig. 12-2B6. Second Cauer network form (pole at 0),
Such a ladder network is illustrated in Fig. 12-25. The impedance of

the first element is Zi(s) = 1/C;s; similarly, the admittance of the
second (parallel or shunt) element is ¥ = 1/Lss. The continued frac-
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tion expansion for the realization of this network form must be

1 1
Z(s) = o +
018 1
..1..

Lgs
Css

1 (12-89)

+ .

To obtain this form of continued fraction expansion will require a
different procedure than that used for the first Cauer network. To
illustrate, consider the case of an impedance function with a pole at
zero. An example of such a function is

4 2
Z(s) = > ;;,71 ;; 6 (12-90)

To expand this function in the form of Eq. 12-89, we first turn it end
for end as

6 4 7s? + st

Z(s) = 35 T 05 (12-91)

The ‘“invert-and-divide” procedure may now be started. We divide
the denominator into the numerator to obtain one term; the remainder
is then inverted and the division repeated. In our example,

38+ 2s%) 64 T7s? 4+ 8¢ (2/s
6 4+ 4s?
3s? + st
33 3s? 4 ot st
38 + 2s%

or Z(s) = (12-92)

Inverting the remainder term and dividing gives

38+ %) 3s+ 28 (1/s
3s + &
88

such that Z(s) is
g 1
s 1 st
8 s T 3s? 4 gt

The final “invert-and-divide” step gives

Z(s) =

(12-93)

s 38+ (3/s
351

gt
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guch that the final form of the continued fraction is

2 1
2@ =3+ 1

s 3
-§+

(12-94)

Co |l e

Comparing this expression with Eqs. 12-82 and 12-89, the following
identifications are made:

Zy(s) = %represents a capacitor of } farad.
Yis) = —lérepresents an inductor of 1 henry,
Zy(s) = %represents a capacitor of § farad.

Yis) = }é represents an inductor of 1 henry.

The network configuration of the second Cauer form, which is equiv-
alent to the last equation, is shown in
Fig. 12-26. The impedance function for LC
networks must be an even-to-odd or odd- 5
to-even quotient of polynomials. For the
procedure just shown by example to work,
the quotient must be an even-to-odd poly-
nomial. This is equivalent to saying that
the function expanded must have a pole
at zero. If the impedance function has a zero at zero, it is necessary
to invert first before dividing such that the continued fraction will be
of the form

o Ti i
n i
4 farad 4 farad
1 henry 1 henry

o

Fig. 12-268. Second Cauer net-
work for example.

1
1 i
Ls T T N 1
Czs “}__
LQS

Z(s) = (12-95)

Comparison of Eq. 12-95 and Eq. 12-89 shows that with a zero at zero
the first element is an inductor and that C, is not present. In summary:
The first element in the second Cauer network is a capacitor if the
impedance function has a pole at zero; it is an inductor if the impedance
function has a zero at zero,
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By analogy to the other Cauer case, the infinite frequency behavior
of the network is determined by the way the network ends; that is,
whether the last element is an inductor or a capacitor. The two pos-
sible networks are shown in Fig. 12-27. Attaching these terminating

- L I —— 1t
1 I 1

{a) b

Fig. 12-27. Last element forms for second Cauer network.

networks to the general network of Fig. 12-25, we can see that if the
last element is a capacitor, the network has zero impedance at infinite
frequency, there being a short-circuited path from terminal to ter-
minal. On the other hand, if the last element is an inductor, the net-
work has a pole of impedance at infinite frequency. In summary: The
last element in the second Cauer network is an inductor if the imped-
ance function has a pole at infinity; it is a capacitor if the impedance
function has a zero at infinity. These conclusions are summarized
below.

Srconp Cauver NETWORK IEND KLEMENTS

Case w=20 o = First element Last element
1 pole pole C L
2 ZEero Zero L C
3 pole Zero C ¢
4 Zero pole L L

192.7. Choice of network realizations

In discussing the specifications for a reactive network leading to the
summary on page 288 it was found that the specification of (1) the
internal critical frequencies and (2) the scale factor H, or some equiv-
alent specification, was sufficient to fix the driving-point impedance
Z(s). In the last two sections, we have shown that a network can be
realized in four basic forms from the driving-point impedance only.
In any network there are as many unknowns as there are elements,
and these unknowns must be specified by Z(s). In the solution of any
system of equations, there must be as many specifications as there are
unknowns. The total number of specifications that we have found
sufficient is one more than the number of internal eritical frequencies.
The total number of unknowns equals the total number of elements.
From the equality of specifications and unknowns, we conclude that
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the minimum number of elements in a network realization is one more
than the number of internal critical frequencies. It should be noted
that in this statement each pair of conjugate critical frequencies count
as one critical frequency. We do not distinguish between w, and —w,.
A knowledge of the number of elements required to realize a net-
work specification along with our association of end elements with
network behavior at zero and infinite frequency can be used in drawing
the four possible network configurations directly by inspection of the
pole-zero configuration. As example will illustrate the procedure.

Example 5

Consider the pole-zero specifications given in Fig. 12-28. The inter-
nal critical frequencies consist of two poles and one zero for Z(s). The

s-plane P ¢y

w=0 w0

Fig. 12-28. Pole-zero configuration of Example 5.

external critical frequencies are constrained by the separation prop-
erty to be zeros. Since there are three internal critical frequencies,
there must be four elements in each network realization. Consider the
realizations one at a time.

(1) First Foster network. Because zero and infinity are both zeros,
the end elements are missing in the basic Foster form of network
Fig. 12-15. The network must have two parallel LC networks to give
the two poles (antiresonant frequencies). The network is shown in
Fig. 12-29(a).

(2) Second Foster network. In finding the critical frequencies for
Y(s) = 1/Z(s), the poles of Z(s) become zeros of Y(s) and vice versa.
Since both zero and infinity are poles, both end elements are present.
The one internal pole is caused by a single series LC network in the
basic network shown in Fig. 12-17. The four-element network is shown
in Fig. 12-29(b). °

(3) First Cauer network. The end elements will first be found for the
first Cauer network. Referring to the table of page 299, we see that
s zero of Z(s) at infinity means the first element is a capacitor. Also
since there is a zero of Z(s) at zero, the last element is.an inductor.
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There being only four elements in the network, specification of the
first and last element determines the schematic shown in Fig. 12-29(c).

(4) Second Cauer network. The table of page 302 may be used to
advantage in investigating the second Cauer network form. From the

>
o.mnm
i !
1Y ' i(—' % o=
o T
° {a} (b}
i It
o ’m\ o 19 i\
O C
{c) (d)

Fig. 12-29. The four network realizations of Example 5.

table, a zero at zero implies that the first element is an inductor. The
zero at infinity identifies the last element as a capacitor. The four-
element realization is shown in Fig. 12-29(d).

To find element values, the value of H must be given, and the partial
or continued fraction expansions must be completed.

There are a number of practical matters involved in selecting a net-
work from the four possible forms for a specific application. These
include:

(1) Element component values. There are but a limited range of com-
ponent sizes available in commercial quantities. For example, 1-farad
capacitors with any reasonable voltage rating are hard to come by.
Economic factors may thus give one network form the advantage over
the other three.

(2) Stray capacitance. It is impossible to construct inductors with-
out stray capacitance, This capacitance can be taken into account by
reducing the size of the parallel capacitor in the first Foster form of
realization. This is especially important when specifications are rigid
or when the operating frequency is high.

(83) Use in vacuum tube circuits. Vacuum tube circuits frequently
require blocking capacitors in interstage coupling networks. This
requirement may specify which network must be used.

12-8. Use of normalized frequency

The examples given in this chapter have made use of small integer
critical frequency values to advantage in simplifying numerical opera-
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tions. In many practical problems, the critical frequencies are in thou-
sands or millions of radians per second. In such cases, the arithmetic
can be simplified by normalizing frequency to some value that makes
the critical frequency values small integers. To normalize frequency
and observe the effect on element values, let

X: = whoot = woliga (;"3-) = Laormts’ (12-96)

0
alld Bc = wCacg = woC“; ("‘wu"";) = Cnam@, (12‘97)
where L, = the actual inductance, C.x = the actual capacitance
Lmorm = the normalized inductance = woliaer (12-98)
Crorm = the normalized capacitance = woCae (12-99)
«' = the normalized frequency = w/we (12-100)

The actual element values can be found from the normalized values
from the equations

Wy
Coct = Cnorn (12-102)
wo

With frequency normalized, the actual values of capacitance and
inductance can be found from the normalized values found in the
partial fraction or continued fraction expansion. An example will
illustrate the procedure in normalizing an equation in frequency.

Ezample 6

A driving-point impedance is known to have zeros at 1000 and 4000
cycles per second and a pole at 3000 cycles per second. From the data,
the reactance function is

w? + (27 X 109 —w? + (8x X 10%)3

- _pgl=
X(w = ~H = F (65 X 1097 (12-103)
Let the normalizing frequency be
wo = 27 X 10® radians/sec (12-104)

Several other choices of normalizing frequency might have been made.

Substituting « = wew’ into Eq. 12-103 gives

—~Hog (—w'? 4+ 1)(—w'? + 16)
w' (—w'? 4+ 9)

X (o) = (12-105)
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Suppose that it is required that the reactance be 100 ohms when
w = 4r X 10® radians/sec corresponding to o' = 2. Substituting
these values into Eq. 12-105 fixes the value of Hw, at 1000/36 so that

the normalized impedance function becomes

s 1000(s’? + 1)(s'? + 16)
Z(s'") = 36567 1 0) (12-106)

After normalized values of the elements are found by the expansion of
this equation, the actual values can be found by division by w. as

me
Lget = 5x X 1000 (12-107)

Cﬂorm
Cact = 57 X 1000 (12-108)

FURTHER READING

For further study on the topic of one-terminal-pair networks,
E. A. Guillemin's Communications Networks, Vol. 11 (John Wiley &
Sons, Inc., New York, 1935), Chap. 5, is recornmended, as well as
D. F. Tuttle, Jr., Network Synthesis, 2 vols. (John Wiley & Sons, New
York, in preparation). Source material may be found in articles by
R. M. Foster, “A reactance theorem,” Bell System Tech. J., 3, 259
(1924), and W. Cauer, “ Die Verwirklichung von Wechselstromwider-
stinden vorgeschriebener Frequenzabhéngigkeit,” Arch. Elektrotech.,

17, 355 (1927).
PROBLEMS

12-1. For the networks shown in the figure, find the driving-point
impedance as a quotient of polynomials. Identify the even and odd

ao 1y ao
. I
+h
1h 1f
2f ~ 300
T ao—n] 2
“ I
@ 3t
{a) (b)
PrOb. 12"1.

polynomials. Compare the order of the numerator and denominator
polynomials. Answer. (a) (s* + 4s* + 1)/(3s* + 8); (b) 3s/(s* + 1).
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13-2. Repeat Prob. 12-1 but find the driving-point admittance of
the networks shown below. Answer. (a) (s* + 118%/6 + 1/6)/(s* + 8/2);
(b) 3(s® + 7s/2)/(s* + 14s* + 30).

lo 1 10——4&5\—4f

3
2t 1h 2f
3h§ Lok % I
1h e 1¢
o T T
(a) ' {b)
Prob. 12-2,

1o

12-3. A certain LC network is known to have a driving-point imped-
ance with poles at the frequencies of 0 and 2 radians/sec and zeros at
1 and 3 radians/sec. Determine the driving-point impedance as a
quotient of polynomials (expanded) if H, the multiplying factor, is
unity. Answer. Z(s) = (st + 10s? + 9)/(s* + 4s).

12-4. Which of the following functions may represent driving-point
impedances for LC networks? In each case, why?

(0 — 4)(w? — 25) 10 _ (0 — 25)(c® — 36)
W10 =60 © T XTra T

(o — 3) (w? — 16)(w? — 25)
(w? — 1) {(w® — B) (w? — 4)(w? — 9)

Answer. (&) No—no pole or zero at «; (b) No—-separation property.

12-6. For the LC networks shown in the figure, determine: (a)
whether zero frequency represents a pole or a zero, and (b) whether
infinity (frequency) represents a pole or a zero of the impedance func-
tion. Do this by inspection of the networks (and not by determining
the driving-point impedance).

c% \ I IO I

{
\ HY \ 1
i\ 1)

(8) £73 X

(€) xjo X

(d) 750 X

o o
{a) {b)
P 1,1 1 W, 7,7, W
° | %
== — ‘\-\
o T 7
° {c) (d}

Prob. 12-b.
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12-6. For the following network functions (representing LC net-
works), (a) sketch the pole-zero configuration in the s plane, and
(b) sketeh the reactance function X as a function of frequency w.
Examples of the type of sketches desired are given in Fig. 12-7 and in
Fig. 12-8.

(s? 4+ 36)(s? 4+ 100) 10 (s? + 1)(s? + 36)

(8) 5s (st + 16)(s* + 81) (b) s (s* 4+ 9)(s? + 64)
(© s(s? + 5)(s? + 49) d) 64 (s* + 25)(s? + 81)(s* 4 144)
(st F 4)(s + 25)(s* + 81) s(st & 64)(s% + 100)

12-7. In this problem, we will consider which sign should be used in
Eqgs. 12-51 and 12-52. Show that for Case 2 and Case 3 the sign of the
equation should be negative and that for case 1 and Case 4 the sign
should be positive.

o ST L, 12-8. A network function has a pole
L {{ at w = 4 and a zero at w = 10. These

c two are the only internal critical fre-

quencies. It is required that the magni-

o tude of reactance be 100 ohmsat w = 6
Prob. 12-8. radians/sec. Determine (a) the sche-

matic diagrams of the {wo Foster net-
works corresponding to these specifications, and (b) the element values
for the two networks.

12-9. A reactive network is to be designed to serve as the load fora
vacuum tube amplifier. The following specifications are given for the
LC impedance function. (1) The internal critical frequencies are:
1000 cycles/sec (a zero), 3000 cycles/sec, 4000 cycles/sec. (2) The
slope of the reactance vs. frequency curve must be 100 ohms per kilo-
cycle/sec at a frequency of 1000 cycles per second. From these spec-
ifications: (a) Sketch the pole-zero configuration and the X{w) curve.
(b) Determine the schematic diagrams for the two Foster networks.
(¢) Determine each element value in the two networks of part (b). (d)
Which of the two networks would you select for a practical applica-
tion? Consider such factors as estimated cost of elements, taking into
account the stray capacitance of coils, ete.

12-10. A driving-point impedance is given by the equation,

_ 158% 4+ 29s% | 6s
Z6) = T ea F 7 F 1

For this impedance function: (a) Determine the first Cauer network
configuration. (b) Determine the value of each element in the network.
(c) Find the nature of the external critical frequencies (that is, does
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gero frequency represent a pole or a zero, etc.). (d) Sketch the pole-
gero configuration for Z(s).
12-11. A driving-point impedance is given as

2+ 132+ 5
Z(s) = 128 + 5s

For this impedance function: (a) Determine the second Cauer network
configuration. (b) Find the value for each element in the network.
(c) Investigate the nature of the external critical frequencies (are they
poles or zeros?). (d) Sketch the pole-zero configuration for Z(s).
12-12. For the pole-zero configuration shown, draw the schematic
diagrams of the two Foster and two Cauer networks. (Do not deter-
mine element values.) Plots are of impedance unless otherwise noted.
f—ot e » ¢ $ - —i

W‘O w=x ﬂ)-o w ™ 0
« w

Prob. 12-12. Prob. 12-13.

12-13. For the pole-zero configuration shown, draw the schematic
diagrams of the two Foster and two Cauer networks. (Do not deter-
mine element values.)

12-14. Repeat Prob. 12-13 for the pole-zero configuration of the

figure.
¢ * ¢

w=0 W=
w

Prob. 12-14.

12-16. Starting with Eq. 12-103, verify Eq. 12-106.
12-16. Draw the two Foster and two Cauer networks for the pole-
zero configuration shown in the figure.

-

1
} e
w=0 W=
w

Prob. 12-16.

12-17. The following specifications are made for an LC network:
(a) the first element must be a capacitor in series (to avoid a d-c path),
(b) the network must have zero impedance at w = 2 radians/sec, {c)
at 1 radian/sec, the impedance must have a magnitude of 10 ohms;
that is, {Z(j1)| = 10, (d) the network must have the smallest possible
number of elements. Draw the neitwork schematic and indicate ele-
ment values. Answer. L = 42 henrys, ¢ = % farad.



CHAPTER 13

TWO-TERMINAL-PAIR REACTIVE
NETWORKS (FILTERS)

The discussions in Chapter 12 were confined to networks with one
terminal pair (the driving-point terminals). In this chapter, we will
study fwo-terminal-pair networks. One of the terminal pairs will be
identified as the input, the other as the output. Our ultimate objective
is to design networks to give a specified relationship between voltages
or currents at one terminal pair and voltages or currents at the other.

The concepts in this chapter are thus

L S— 02 {transfer as well as driving-point in
Input Output nature in contrast to exclusively
10—} [——2 driving-point in Chapter 12. A rep-

resentation of a two-terminal-pair
network is shown in Fig. 13-1. In
the work to follow, the two terminals
marked 1-1 will be identified with the input and the two marked 2-2
with the output unless otherwise specifically noted.

Fig. 18-1. Two-terminal-pair net-
work.

13-1. The ladder network

Most of our studies will concern the ladder network structure. The
ladder structure is important historically; it was the first structure used
in constructing a design procedure for filters. In addition, the concepts
developed for the ladder structure can be applied to other structures

- 02

- o2

Fig. 13-2. Standard Iadder network designations.

such as the lattice. A standard ladder network is shown in Fig. 13-2.
By convention, the impedance of all series elements is Z,(s) and of all
shunt elements is Z;(s). For our studies, it will be convenient to sep-
arate the standard ladder network into two other network structures:
the T section and the » section. This separation and the resulting

values for the series and shunt impedances is illustrated in Fig. 13-3.
310
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The network shown in Fig. 13-3(c), together with the specific imped-
ance designations, will be adopted as a standard T section. The net-
work of Fig. 13-3(d) will likewise be adopted as a standard = section.
All equations we shall develop for T or » sections will refer to these
specific standard networks. The T and = section building blocks can

i [}
] 1
I i
i I
{ 1
1 t
: t
; !
1 i
1 1
t i
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P A R ) -

- ——

&
N
N

N
DN
"

N
o

AVAAY
Z,/2 Z,/2 Zy Z,/2
Z, 22, 2Z, 2Z,

O O O o O O
{c} {d} {e}
Fig. 18-8. Evolution of the ladder network into tandem networks
of (a) T sections; (b) = sections; (c¢) a T section; (d) a = section; and (e)
an L section.

TN °
Zy2  Z)f2
'
22, : 2Z,
i
o : o
(@) (b)
Fig. 13-4. (a) T section from two L sections; (b} = section from {two
L sections.

be divided one step further into a more primitive network shown in
Fig. 13-3(e). This primitive network is designated as a standard L
section (although the term “inverted L,” or gamma network when
turned end-for-end, might seem more appropriate from the point of
view of geometrical similarity). The construction of the standard T
section and the standard = section from the primitive L section is shown

in Fig. 13-4. These three network structures will form the basis of the
studies to follow.
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13-2. Image impedance

The T section and » section just discussed are symmetrical in the
sense that terminals 1-1 and 2-2 could be interchanged. The L sec-
tion, however, is unsymmelrical. In order to derive an equation that
will apply to either a symmetrical or an unsymmetrical network, con-
sider the unsymmetrical T section shown in Fig. 13-5. Let the gen-

erator impedance be Z, and the load impedance be Z.. We will also

AASRS 2V
v Zy —> Z, <+ 2y
O 1"‘ 326

Fig. 13-5. T network.

define Z,; as the impedance at terminals 1-1 with Z, connected (and
Z, disconnected), and similarly Z;; as the impedance at terminals 2-2
with Z, connected (but Z. disconnected). When the impedances Z,
and Z. are adjusted such that

Z, e Zu &Hd ZL == Z:: (13*1)

an tmage malch is said to exist at terminals 1-1 and 2-2. To add empha-
sis to the special impedance defined by Eq. 13-1, Z,; will be written
Zy;, the image impedance at terminal pair 1, and similarly Z,: will be
written Z,,, the image impedance at terminal pair 2.

The reason for using the word image is suggested by Eq. 13-1.
Under the specified conditions, the impedance seen ““looking in” at
terminals 1-1 is the same as that ‘“seen’’ in a mirror (constructed to see
impedance) which views the generator impedance. An image match
‘exists when the driving-point impedance is the same as the image
impedance of the generator if terminals 2-2 are also terminated in their
image impedance.

For the network of Fig. 13-5, expressions for Z; and Zj; can be
written in terms of Z;, Zs, and Z;. These equations are

ZyZs + Zy)

Zy =12+ ZeF 7o F 7 (13-2)
- Zy(Zy + Zy)
In=12Z:+ I+ Zy+ Zy (133)

We have here two equations in two unknowns, Z,; and Z,;. By routine
algebraic operation, it is possible to solve for the unknowns. However,
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a more useful result is found by solving for Zy; and Zy in terms of open-
circuit and short-circuit impedances. Let
71, = the impedance at terminal-pair 1 with terminal-pair 2 open,
Z1, = the impedance at terminal-pair 1 with terminal-pair 2 short-
circuited,
Zsw = the impedance at terminal-pair 2 with terminal-pair 1 open,
Z,, = the impedance at terminal-pair 2 with terminal-pair 1 short-
. circuited.
For the network of Fig. 13-5, the open-circuit and short-circuit imped-
ances for terminal pair 1 have the values

Zw =214+ 2, (13-4)
_ YAYA
Zyw =71+ m (13—5)

By algebraic manipulation of the last four equations, it is found that

= v/ Z14 (13-6)
Similarly, Zsi = \Z2wZo (13-7)

These two equations are the foundation of much of the analysis to fol-
low. For the symmetrical network, the image impedances are equal.
For this case, the notation will be simplified by letting

Zy = Ly = Z; (13-8)

Several examples, important in terms of the discussion to follow, will
be given next.

Image Impedance of the T Section. For the T section shown in Fig.
13-3(c) the image impedance is

Zy YAVAYY: Zy
Liv = A/ Z 1Ly, = \/( + 772 F Z)(? + Zz) (13-9)

Zi = V214 + Z:1Z, (13-10)

Image Impedance of the = Section. The = section is shown in Fig.
13-3(d). The image impedance is found as follows:

e | 2Z4(Z,F 2Zy) 2Z.Z» )

Zn - Zlozla — 222 _+_ 2Z2 + Z;_ (Zl + 222) (13 ii)
VAV

Zir = = (13-12)

VZ*/4 + 2,2
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Image I'mpedance of the L Section. The L section shown in Fig,
13-3(e) is reproduced below as Fig. 13-6. This network is unsymmet-
rical, and the image impedance must be computed for each terminal pair.

At terminals 1-1, the image impedance is

lo—AAN 02
Zf2 Zyip = '\/(Zl/z + 222)2,/2
222 = ‘\/212/4: "}" ZlZE (13"13}
10 02 Comparison with Eq. 13-10 shows that
Fig. 13-6. L section. Zi = Zip (13-14)

or that the image impedance of the L section at terminals 1-1 is the
image impedance of the T section. At the other terminal pair

274(Z.1/2) AL
Zyr = [(2Z = 13-15
w2 3 s = e (M
Comparison of this equation with Eq. 13-12 shows that
Zw. = Z{r (13"16)

Thus at terminal pair 2 the image impedance is that of the symmetrical
« section. The image impedance of the L section appears as a T section
looking in one direction, and as a = section looking in the other. From
another point of view this conclusion seems reasonable. Two L sections
can be combined with an image match to form a T section, with the
image impedance Z;r on each end as shown in Fig. 13-7. Similarly,

SANAN——o- == o—TAAA

— - . e Lo —— -
Z; =T Zir Zix ‘ Z;;
o O O« wl re]

L o = C O

{c) {b}

Fig. 13-7. Combination of image matched I sections to form (a) the
T section, and (b) the r section.

L sections combine with an image match to form a = section with Z,,
at both terminal pairs as required.

13-3. Image transfer function

It is evident that we need something in addition to the image imped-
ance concept in the two-terminal-pair problem. The image impedance
is a driving-point concept. We need a function to relate variables at
one terminal pair to the other terminal pair. For the time being, we
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will restrict the transfer function to the ratio of currents; thus

I:(s) -

) = G(s) (13-17)
where I, is the input current, I, is the output (or load) current, and
G(s) is the transfer function. In the sinusoidal steady state, the trans-
fer function becomes a complex number which may be expressed as a

magnitude and phase angle as
G(jw) = |G(jw)|efane 66 (13-18)

In practice, the magnitude [G(jw)| is measured in a logarithmic unit

(the neper) so that
G ()| = e (13-19)

The angle of G(jw) is designated 8, so that
G(jw) = e%ef = ev (13-20)

where a = the attenuation (nepers), § = the phase shift (radians),
v = the image transfer function. As a practical matter, the most com-
mon unit for attenuation is the decibel, abbreviated db, even though
the definition for the decibel involves the ratio of powers—not voltages
or currents—as follows.

an = 10 logie (P1/P2) db (13-21)
If the power ratio is related to the voltage or current ratio as

I
1.

2

Py

P, =

B
E,

2 Pl

o= (13-22)

Then agn = 20 logie E or 20 logo

—
E,

I,
I ' (13-23)

To find the number of decibels corresponding to a neper, under the
restriction that Eq. 13-22 applies, we substitute for the current ratio
in the last equation as

agp = 20 logie e = 8.686 a db (13-24)

Thus ag in decibels is found by multiplying « in nepers by the factor
8.686 (the neper being the larger unit).

It should be emphasized that the quantities « and 8 are {ransfer in
nature, The attenuation is a measure of the ratio of the magnitude of
the input current (which must be sinusoidal for « to have meaning)
to the magnitude of the output current. The phase angle 8 is the phase
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of the input sinusoid measured with respect to the output sinusoid.
Knowing the input current and the image transfer function, the out-
put current is determined when the nefwork is terminated in the image
impedance.

Fig. 18-8. Network for computing image transfer function.

To find the image transfer function for a symmetrical network,
consider the T section shown in Fig. 13-8. The currents are related
by the equation

L _ 2+ 2,/2+ 2,

I. Z,

_ Z, | Z;
= 1 “2“““2.2 + "2"; (13-25)
Solving this equation for Z;, there results
Z: = 7, [(e’f —1) - Eﬁ] (13-26)
' 2Z 2 ’

This image impedance is the image impedance of the T section which
is given by Eq. 13-10, which is

2
Zar = 25 4 2.2, (13-27)

Squaring Eq. 13-26 and equating this squared equation to Eq. 13-27,
there results, after common terms are canceled,

Zot(e? — 2e7 + 1) — Z1Zye” = 0 (13-28)
e — 20+ 1 7,
or pe =7 (13-29)

This equation can be put in hyperbolic form by recognizing that
§{e* + e7) = cosh v, so that finally

z,

coshy =1 —{-22,2

(13-30)

A similar expression for the hyperbolic sine is found by making use of
the identity

cosh v 4 sinh y = e¥ (13-31)
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Comparing this equation with Eq. 13-25, it is seen that
sinh y = 3% (13-32)

Dividing Eq. 13-32 by 13-30 and canceling the common Z,, an equa-
tion is found for the hyperbolic tangent of v, which is

Z;
This equation can be expressed in terms of the open- and short-circuit
parameters by making use of Eq. 13-6.

Zs' = '\/Zlozla (13"‘34)

(which eould be written for side 2 by replacing the 1's by 2's, since the
network is symmetrical) and the expression for the open-circuit imped-
ance for the T network.

22+ Zy =2y, (13-35)
Using these two identities, Eq. 13-33 may be written
tanh v = v/Z1,/Z (13-36)

This is a most useful form of the equation for the image-transfer func-
tion, which with Eq. 13-34 forms the basis of much of the discussion
to follow. This equation is more general than is implied by our deriva-
tion. It holds for any passive reciprocal network. (See Prob. 13-2, for
example.)

13-4. Application to LC networks

In a very important class of two-terminal-pair networks, all the
elements within the network are inductors and capacitors. Since all
practical elements have resistance, any result based on the assumption

L and C only Z,

Fig. 13-9. Two-terminal-pair LC network.

of purely L.C networks is approximate. The results conform to meas-
urements sufficiently well, however, to be of engineering value. From
Chapter 12, we know that the driving-point impedance of an LC net-
work is purely reactive (and the admittance purely susceptive) such
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that
Z(jw) = +jX(w) and Y(jw) = £7B(w) (13-37)

The foundation equations for our analysis are
Z; = v ZrZyy = vV YAWAS (13"38)
tanh Y = N Zl./zio A Vi Zz,/Zzo (13""39)

for symmetrical networks. In the equations to follow, the subscript 1
will be used with the understanding that it can be replaced by a 2 agin
these equations given above, as long as the network is symmetrical.
For reactive networks in the sinusoidal steady state, equations for the
image impedance and image transfer function become

Zi = V(Fi X)) (£ X 1) (13-40)
_ |EX, ,
tanh vy = o (13-41)

From our knowledge of the properties of LC networks discussed in
Chapter 12, we know that the sign of the reactance function changes
with frequency for driving-point reactances. Here X, and X, are
driving-point reactance functions, although their quotient relates to
a transfer function. As frequency changes, the sign as well as the
magnitude of X4, and X,, changes. There are four possible sign con-
ditions summarized below.

C&S& .X 1s X 1o i tanh b
1 -+ + iX; real
2 —— — 1 X real
3 + - R; imaginary
4 — + R; imaginary

If the signs are the same for X,, and X, the image impedance is
imaginary and tanh v is real. ¥or opposite signs, Z; is real and tanh vy
is imaginary. These are the only choices. Both Z; and tanh v must be
real or imaginary, but can never be complex. We next turn our atten-
tion to an investigation of the conditions under which tanh y can be
real or imaginary. Since v = a -+ jB, tanh vy can be expanded as

ginh y _ sinh a cos 8 + j cosh asin g

im'nhy=coshﬂy " cosh a cos 8 + j sinh a sin 8

(13-42)

Dividing both numerator and denominator of the equation by the
factor cosh a cos 8 gives

tanh « 4+ j tan 8
1 + 7 tanh « tan 8

tanh v == (13-43)
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Our problem is to make this expression either purely real or purely
imaginary. There are several possibilities.
(1) Let « = 0 such that tanh o = 0. For this condition,

tanh v = j tan 8 (for @ = 0) (13-44)

and tanh vy is purely imaginary.
(2) Let 8 = 0 such that tan 8 = 0; then

tanh v = tanh «a {for8 =0, +», +2r, ...} (13-45)

and tanh v is purely real.
(3) Let 8 = »/2 (or odd multiples of this angle) such that tan g8

approaches infinity. In the limit,

1
tanh a

(forﬁ - i%’ i%’f, 15—%’, ) (13-46)

tanh v =

and again tanh v is purely real.

Any other values of « and 8 will make tanh vy complex, and this is
not permitted. Hence there are only three possibilities for values for
« and for 8, as summarized below.

Value of tanh v Conditions of « and 8
Xla
= -1
a = tanh X,
B8=0 tw, +2m, ... (13-47)
Real or
. a = tanh—! \/Xlo
Xla
T 3
ﬁ——ié—;ié—,... (13-48)
a =0
Tmaginar b'd
gy 8 = tan-! §" (13-49)
lo

It is now possible to extend the table given on page 318 to include
the values of « and 8 for the four cases.

Case 73X 1s 71X 10 Z; tanh ¥y o 8
1 -+ + 31X real a # 0 0 or»/2
) - - iX; real a # 0 0 orrx/2
3 - o R; imaginary 0 B8 #0
4 — 4 R; imaginary 0 B#0

We now have sufficient information to examine the different cases in
terms of both a transfer quantity, the image transfer function, and a
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driving-point quantity, the image impedance. At some value of fre-
quency, assume that the signs of X,, and X,, are such that the con-
ditions of Case 1 or Case 2 apply. Then the image impedance at
terminals 1-1 is imaginary. This is the impedance of the network
presented to the generator when terminated in Z;. We associate this
reactive load with the condition of no power transfer. From the trans-
fer point of view, the attenuation « is positive and real, which means
that the load current I; is smaller than the generator current I; (see
Eq. 13-17). The current is attenuated or, so to speak ‘‘stopped.”
Under the conditions of Case 1 and Case 2, the frequencies are desig-
nated stop frequencies, and the band of stop frequencies is designated
the stop band.

When the signs of X,;, and X, are opposite, we have Case 3 and
Case 4, where the image impedance is real and the attenuation « is
zero. From the driving-point impedance point of view, the load is now
resistive and there is power transfer. With no attenuation, the mag-
nitude of I, is equal to the magnitude of I, (although there will be a
difference in the phase of the two currents). For these cases, the cur-
rent is ‘“passed.” Such frequencies as give the conditions of Case 3
and Case 4 are designated pass frequencies. A band of pass frequencies
is identified as a pass band. The frequency of transition from pass band
to stop band or vice versa is assigned the name culoff frequency.

The reactance function X, and X, vary with frequency according
to several rules discussed in Chapter 12:

(1) The slope of the reactance curve dX /dw is always positive.

(2) As a consequence of the slope property, the poles and zeros (or
points of resonance and antiresonance) alternate as a function of
frequency.

{3) The external frequencies (that is, w = 0 and w = «) are always
either poles or zeros.

Since the critical frequencies of the reactance function determine the
nature of the reactance versus frequency plot, we suspect that the
critical frequencies somehow relate to the pass band, the stop band,
and the cutoff frequencies. We can study the relationships by compar-
ing the reactance curves made for X,, and X,,. Both plots will have
the general appearance of the plot shown in Fig. 13-10. In comparing
the critical frequencies of X, and X,,, we recognize that there are three
possibilities: (1) the critical frequencies will coincide but be opposite
in nature, (2) the critical frequencies will coincide but be the same
type, and (3) the critical frequencies will not coincide. These three
possibilities are illustrated in Fig. 13-11,
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The reactance plots for X;, and X,, for the first possibility are
shown in Fig. 13-12. At noncritical frequencies, the signs for X,, and
X1, are always opposile. At critical frequencies, the two functions
change signs at the same time to preserve this opposite sign nature.
From the table on page 319, we see that opposite signs for X, and X,

+ 1
]
Xlo ! :
or X !
Xh i !
N 1
0 " &
i :
i 1
! 1
: 1
Fig. 13-10. Reactance plot for LC network,
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Fig. 13-11. Comparison of critical frequencies of X, and Xy,.
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Fig. 13-12. Reactance plot for opposite signs of Xy, and X ..

i

correspond to Case 3 and Case 4 for which « = 0. At all frequencies
where X, and X, are opposite in sign, there is no attenuation and the
frequencies are pass frequencies. A band of frequencies for which this
condition holds is thus a pass band.

The second possibility shown in Fig. 13-11(b) results in reactance
plots having the same sign for all values of frequency. Such a reactance
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plot is shown in Fig. 13-13. With the same sign for X,. and X,,, we
have Case 1 or Case 2 on the table of page 319, corresponding to
sttenuation, A band of frequencies with the same sign for X, and X,,
is therefore a stop band.

The last possibility is illustrated in Fig. 13-14: a critical frequency
exists in either X, or X, without being in the other one. At the crit-

+X

+X

-X

zls+ f .; f ™) *
t

: : !
t N ¥

zlo]‘ é & : w *
'

pass ' stop .

w=0 cutoft w =

Fig. 13-18. Stop and pass bands and cutoff frequency.

ical frequency, the sign of one reactance function changes but the
other does not. This condition corresponds to changing from a pass
band to a stop band or vice versa. Such critical frequencies are thus
culoff frequencies. An example of a plot with each of the three condi-
tions existing and with the corresponding designation of pass band,
stop band, and cutoff frequency is shown in Fig. 13-15.
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We are now in & position to study further the nature of the image
impedance Z; in terms of the critical frequencies of the open- and short-
circuit impedance functions, Z,, and Z,,. The image impedance is
given by Eq. 13-6 as

Z; = \/Z1oZy, (13-50)

“In terms of the poles and zeros of Z,, and Z,,, the image impedance
may be written

_ T F ol @ F ol L Fod
Z; = \/ B o e T ad) . s (T F ety . 135D

where two of the possible impedance forms have been assumed for Z,,
and Z,. In the pass band, the poles of Z,, are zeros of Z,, or vice versa.,
Such factors, for example (s? + we?) and (82 4+ wy?) if wy = wy, cancel
term by term and hence are not critical frequencies of Z;. In the stop
band, the poles and zeros of Z1, and Z,, coincide and so may be removed
from the radical. Stop-band critical frequencies are thus critical fre-
quencies of Z;. A cufoff frequency appears as a critical frequency in
either Z;, or Z,, (never both). In a typical frequency term (in the
sinusoidal steady state where s = juw),

(—o? + w?) (13-52)

the sign of the term changes as w exceeds w,, causing a change of sign
within the radical. This change of sign changes Z; from a real number
to an imaginary number or vice versa. One plot of Z; for a filter is
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Fig. 13-16. Image impedance variation in the pass band and stop
band.

shown in Fig. 13-16. Note that Z; changes from a resistance to a react-
ance at the cutoff frequency, and again, that the critical frequencies
of Z,, and Z;, in the stop band are the critical frequencies of Z; in the

stop band.
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Ezample 1

To illustrate the application of the concepts of this section to specific
network configurations, consider first the T section shown in Fig. 13-17.

! L2
/
1o—"JIT LGV e, O Z, ==C
L2 L2 2
lo
o gz‘, )
Lj2
lo 2 | ., L2 TC
lo

Fig. 18-17. T network of Example 1 with open-circuit and short-
circuit networks.

We will determine the poles and zeros of the impedance functions Z,,
and Z,,, and from this determine the pass band, the stop band, and the
cutoff frequency. The open-circuit impedance is

Ls 1 LCs*+ 2

Z1(8) = > + Cs = 9Cs (13-53)
and the short-circuit impedance function is
_Ls i _ L(LCs* 4 4s)
Zu®) = 5+ G2/ - 2LCF T D) (13-54)

From these two impedance functions, the poles and zeros are found to
have the values tabulated below.

Z 1o Z 1ls
Poles zero infinity
' infinity w = 4/2/LC
Zeros w = 4/2/LC zero
2
“ T VIC

These are shown in Fig. 13-18, together with the designations of the
frequencies in the pass band and in the stop ba.nd The value of the
cutoff frequency for this network is seen to be

(i3—55)

which is a zero of Z,;,. As a filter, this network passes the low frequen-
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cies and rejects the high frequencies. Filters of this type are given the
pame low-pass filters.
Ezample 2

Another T section is shown in Fig. 13-19, together with the corre-
sponding open-circuit and short-circuit networks. For this network we

0 2. 2 o
Z,, ¥ # 1
[ ' ’ g
t }
; i
zlt:i‘!l i ! l
;) : ol
pass t stop -
cutoff
Fig. 13-18. Low-pass filter poles and zeros.
- 2C
1 1A %( 02 Z1s L
C 2C
L Z, {
% —%
1 o 32 le L% g 2C
o

Fig. 13-19. T network of Example 2 with the open-circuit and short-
circuit networks.

Z, e ¥ +
i '
i :
{
zlo E ? . .i'
w =0 ......._.].‘___ — W =0
cutoff 2\IC Va2LC
stop \’\4‘ pass .
Fig. 18-20. High-pass filter poles and zeros.
see that
1 _2LCs* 4 1
2y, = 5Cs + Ls = 2Cs (13-56)
1 1 _ 4LCst 41
Zu =g, T o0s T 7Ls ~ 305@LCE ¥ 1) (135D

The poles and zeros for these two functions are shown in Fig. 13-20,
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together with the pass band, stop band, and cutoff frequency designa-
tions. As a filter, this network rejects low frequencies but passes high
frequencies. This type of filter is designated a high-pass filter.

Ezxample 3

The network for this example has element values given in order to
simplify the algebra in computing impedances. The network is a T

TZ

Fig. 13-21. T network of Example 3 with the open-circuit and short-
circuit networks.

l . |
AT T T T
H t i {
i 1 : : ;
! ! 8 i
Z, } : . n:i s '
i
w=0 V3-2J2 2-y3 1 2+ V3 J3+2/2 @ =00

cutoff cutoff
stop pass stop
- i |

Fig. 18-22. Band-pass filter poles and zeros.

with two elements in each branch. From the schematic diagrams the
impedance expressions are found to be

_ 8,1 1 st 448241
21 = 3Tt +1/s 2s(s®+ 1) (13-58)
and similarly,
7 __£+l+ 1 88 Tt Tst 41
T2V T s+ 1/8+ 1/(8/2 + 1/28) ©  28(s* + 4t + 1) 0
(13-

This last equation looks rather formidable, being of sixth order (or
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rather third order in s?). However, the fact that an s* 4 1 term appears
in the equation for Z,, as a pole leads one to suspect that (s? + 1)
might also be a zero of Zi,. Inspection of the pole zero plot of Fig.
13-22 with all poles and zeros plotted except the zeros of Z,, adds to
the suspicion. Factoring, there results

S+ T4+ 782+ 1= (2+ 1){s*+6s241) (13-60)

from which all zeros can be found using the quadratic formula. A
summary of values for the poles and zeros follows.

Z 1o Z is
Zero Zero
Poles w =1 mw\/Zix/g
infinity infinity

Zeros = V2 + /3 w=1
w#\/3i2\/§

A plot of these poles and zeros is shown in Fig. 13-22. It is seen that
there are two cutoff frequencies and that both low-frequency and
high-frequency bands are stop bands. Frequencies in a center band
are pass-band frequencies. Filters of this type are designated band-
pass filters. An opposite type of filter with pass bands at low and high
frequencies and a stop band at a center band of frequencies is a band-
elimination filter.

Short-circuit and open-circuit measurements can be used as a prac-
tical means of analyzing an unknown two-terminal-pair network in the
laboratory. Suppose that the two-terminal-pair network is connected

I
()
/1 7

Ammeter I

Sine wave Open or

generator C) Network f " closed
2

1

Fig. 13-28. Experimental apparatus to study filters.

to a sine wave generator as shown in Fig. 13-23. If the current is
measured by an ammeter marked I (or a dropping resistor together
with a cathode ray oscillograph) as frequency is changing with output



328 TWO-TERMINAL-PAIR REACTIVE NETWORKS Chap. 13

voltage maintained constant, a plot shown in Fig. 13-24 will be
obtained. The current will have 8 maximum value at a zero of imped-
ance and a8 minimum value at a pole of impedance. The incidental
resistance of the elements prevents the current from becoming zero or
infinity. The same rules that have been used in our network analysis
can be applied to the experimental results. If 7,.is at a minimum value
when I, is at a maximum and vice versa, measurements are being

pass , stop

|| cutoft

-
-

P I

| Zad}

b - A A e L]

AR

0 1 Wy ("4

Fig. 13-24. Results for low-pass filter.

made in the pass band. When a maximum or minimum is recorded for
I, or I, but not for the other, that frequency is a cutoff frequency.
When 1., and I, are both maximum or minimum at a given frequency,
that frequency is in the stop band. The case illustrated in Fig. 13-24
evidently corresponds to a low-pass filter.

We now have practice in locating pass bands, stop bands, and eut-
off frequencies. We next turn our attention to the problem of com-
puting the attenuation « in the stop band, and the phase shift g in the
pass band, for a number of important filter networks. We will also be
concerned with the variation of the image impedance with frequency
for these networks.

13-5. Attenuation and phase shift in symmetrical T and * networks

Expressions for the image impedance of symmetrical T and x net-
works were derived as Eqgs. 13-10 and 13-12. These equations may be
rearranged to show the significance of the factor (Z,/4Z;) as

Zﬂl = \/Z;’/-i + ZIZS = \/ZxZ:(l + 21/421) (13‘61)
le, lel

212/4 + Z;Z, = m—;

We have shown that in the pass band the image impedance is real and

Z‘l’ fad (13—62)
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that in the stop band the image impedance is imaginary. These equa-
tions permit determination of pass bands and stop bands, using this
image impedance criterion. When the factor

1+ Z./4Z, (13-63)

changes sign, the nature of the image impedance must change, real to
imaginary or imaginary to real. Hence cutoff frequencies occur when

Zy

iz ="
This equation offers an alternate method for analyzing a network
directly in terms of the series and shunt impedances rather than in
terms of open- and short-circuit impedances used in the last section.
The factor (Z,/4Z,) is evidently of importance in the analysis of fiiters,
since once cutoff frequencies are known, the nature of the network is
readily established by knowing whether the network passes or stops
at one additional frequency.

An equation may be derived relating the image transfer function to
the factor (Z,/4Z,). The derivation begins with Eq. 13-30, which is

1z,
27,

This equation was derived for a T section, but also applies to a » sec-
tion (see Prob. 13-2). Dividing both sides of the equation by 2 and
rearranging, we have

1 (13-64)

cosh v = 1 -+ (13-65)

coshy -1 7,

2 T 47, (13-66)
By an identity for hyperbolic functions,
coshy -1 . .,v _ Z1
——— = sinh 5 = 7. (13-67)

Expanding this equation in terms of the real and imaginary part of
v gives

o iB A a . fB 7—1.
5 +Jcosh-2-sm

. a B8 B |4
= ginh = cos 3 = iz,

ginh 5 5

(13-68)
Now for reactive networks, Z; = +jX,and Z, = +jX,, so that there
are two possibilities in the radical expression depending on whether
Zy and Z; have the same or opposite signs. We will consider these
possibilities separately.

(1) When Z, and Z, have opposite signs, that is, Z; = +jX: and
Zy = —sz or Z, = "'le and Z; = +jX2, then (21/422) is negative.



330 TWO-TERMINAL-PAIR REACHIVE NETWORKS Chap. 13

The last equation may be interpreted in terms of a positive factor
(“21/422). Then

o 8
sinh 5 C08 5 = 0 (13-69)
cosh g sin -g == \/ %ZZ;E (13-70)

This equation may be satisfied in two ways: a = 0 or 8 = %, +3x,
etc. Thus either

a=0 (13-71)
and B = 2sin—t \/—Z,/4Z, (13-72)
or B = 4w, +37, £5mr ... (13-73)
and a = 2 cosh~t~/—2Z,/4Z, (13-74)

(2) When (Z./47Zs) is positive, the radical of Eq. 13-68 is real, and

cosh 3 sing ~ 0 (13-75)
sinh 2 cos-g _ \/4%’; (13-76)

In this case cosh (a/2) can never equal zero, so that there is only one
way in which these equations can be satisfied: 8 must be 0, + 2z, etc.
Thus the solution is

B =0, +2r, +4x, ... (13-77)
a = 2 sinh™! \/Z./4Z; (13-78)

These two equations apply when (Z,/4Z,) is positive, However,
when (Z,/4Z,) is negative there are the two possibilities corresponding
to Egs. 13-71 and 13-72 for a pass band, and to Egs. 13-73 and 13-74
for a stop band.

Since we arrive at different conclusions for positive and for negative
values of (Z,/4Z,), zero value for (Z,/4Z,) is evidently a point of
division for the various forms of equations for « and 8. When (Z,/4Z,)
is negative there are two possibilities. The point of division for these
two equations is given by Eq. 13-64 as Z,/4Z, = —1. The different
possibilities are summarized in the following table. The equations for
negative values of (Z,/4Z,) find the most frequent application, because
most of our studies will concern networks with opposite signs for X
and X 2.
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Z,/4Z,

Type of Attenuation Phase shift
Lower | Upper | band a B
Imit | limit

—1 stop |2 cosh™! N/ —Z./4Z, +x, +3r, ...
~1 0 pass 0 2 sin—t \/—Z,/4Z,
® stop (2 sinh~'~/Z,/4Z, |0, +2x, +4nr, ...

13.6. Constant-K filters

An important class of filters is designed under the condition that Z;
and Z; (as defined for the standard T and standard = section) are
related by the equation below, where E is a constant both positive
and real.

Z:Z, = R? (13-79)

This equality requires that the impedances Z, and Z. be purely reac-
tive and of opposite sign. In the first discussion of filters of this type,
Zobel* used the letter K in place of the R of our equation. Actually
It is a preferred symbol because the quantity is dimensionally ohms,
and E turns out to be the value of the terminating resistance. Even
though R has replaced K in the defining equation, filters designed on
the assumption of Eq. 13-79 are universally designated as constant-K
filters. The advantages, if not the justification of the assumed relation-
ship between Z, and Z,, will become evident by algebraic simplifica~
tion, and later by simple network structures.

To simplify the equations derived in the last section, we will define
a new variable for the quantity (Z./4Z,) as

—Z

2t = (13-80)

This particular choice of sign is made in order to make z? a positive
quantity, since Z; and Z, have opposite signs for constant-K filters,
The impedance expressions in Eq. 13-79 are, for reactive networks,

Z:Zs = (25X )(TjX2) = + X1 X2 = R? (13-81)

It is now possible to write the expressions for the image impedance in
very simple form in terms of R and z. Equations 13-61 and 13-62

* See reference at end of chapter.
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become
Zir = R /1 — x? (13-82)

Ty = L (13-83)

Vizz

Similarly, the expressions for the attenuation and phase of the last
section become simple in form. Since we are considering only positive
values for z?, only negative values for (Z,/4Z,) in the table on page 331
need be considered for the time being. In the stop band, by Eq. 13-74,
we have

a = 2 cosh™!z (13-84)
B = tm, +3=, etc. (13-85)
In the pass band, by Eq. 13-72,
a=10 (13-86)
B =2sin"'z (13-87)

Plots of Z;r, Zir, @, and 8 against z are shown in Fig. 13-25. These are
generalized plots. In order for the plots to be specialized to specifie

Zy Zy
f h
i
~ R - !\j}?{x’
e - i
X~z Ri-x) Rix) Xz : R !
\\\ \/’ : :
stop pass | stop S~ Stop: pass stop -~
-x -1 0 +i +x - \":-1 0 +i,/’ +x
Xi{—x) Al :; {x}
. t: ']
la) {b)
« B
+x
2 coshl x 2sinlx
]
‘ ;
stop | pass stop stop + /Pass | stop
vt ‘ i -
- -1 0 +1 +x -x —1/ 0 +1 +x
-
{c} d)

Fig. 13-25. Normalized plots in terms of z = 1/ —~Z, /42,

networks, only z as a function of frequency w need be determined.
Once z{w) i8 known, the coordinates may be adjusted for the special
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cases. This procedure will be illustrated for several examples con-
sidered earlier in the chapter.

Ezample 4

Consider the standard T section shown in Fig. 13-17, (page 324).
For this network, Z, = jwL and Z» = —j/wC (note that Z, and Z,

are opposite in sign as required). The normalized variable z then
becomes

L =4y wl, w?
T = \/Tz‘;“ = \/4/wC = \NI/LC (13-88)

Now by Eq. 13-55, the cutoff frequency for this T section is

2
wo Lo ( )
so that z becomes
g = — (13-90)
wo

Then for this T section, we have the following information:

a=0 and B =2sin'> 0=ws w (13-91)

G
a = 2 cosh—1 =, 8 = =, w = we (13-92)
g
2
R ——— (13-93)
@ = VIc
R = A/L/C (13-94)

The plots for Zir, a, and 8 given in Fig. 13-25 apply directly to this
network, with = replaced by w/w,. As discussed previously, the atten-
uation « is usually computed in decibels using the relationship, ag
= 8.6860tnepere.

Ezample 5

For this example, consider the T network of Fig. 13-19 (page 325).
The variation of z with w is found as

_ 1/eC 1w
T = 4oL, VN4uLC ~ w

where the cutoff frequency w, is identified from Fig. 13-20. Thi.s T
section has an ¢nverse relationship to that of Example 1. The equations

(13-95)
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become

v

a=0 and B = -2sin‘1%9; w = wo (13-96)

wo

a =2 cosh"‘-; and B8 = —n, 0= wZw (1397)

1
g = 2 —\/I':C' (13-98)
R = L/C (13-99)

These equations evidently identify a high-pass filter. In order to make
use of the normalized plots of Fig. 13-25, only the z axis need be
inverted, the origin becoming infinity and infinity becoming the origin.
The resulting plots for Z;r, ¢, and g8 are shown in Fig. 13-26.

Zy |t
\
VX
\ R
\
| \ /
~ - A Y
~ AN
-~ AN
w fug 0 i w/fuwy
pass » stop 1 pass - N

Fig. 13-26. Characteristics of high-pass filter.

Ezample 6

For the » section of Fig. 13-27, Z, = jwL and Z; = —j/wC. The
variable z for this network becomes

wl w? w
v =i =i = o (13-100)
since the cutoff condition, Z,/4Z; = —1 defines w,. This equation is
) p— . identical with Eq. 13-90, indicat-
© L 2 ing that the attenuation and phase

shift of this » network are idents-

. —r— ==Cj2 Z,, .
Za cr2 ¢l cal with those of the T network of
o o2 Example 1, and are given in Fig.
! 13-25. There is one important dif-
FPig. 13-27. » section network of

ference, however. Theimage imped-
ance vanation with w/we is differ-
ent, being that given in Fig. 13-25(b). For these two different networks,
the impedance characteristics are quite different even though « and g
are identical.

Example 3.
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Exzample 7

For this example consider the network of Example 3 shown in Fig.
13-21. This network was shown to be a band-pass filter. The reactance
functions for this network are

2
Zi =791 and z, = - e (13-101)
=2y w1 )
so that T = \/422 = —5= (13-102)

This last equation relates the frequency w for the filter to the variable
z of the standard attenuation, phase shift, and image impedance char-
acteristics. By this equation, we perform a frequency transformation.
The same technique can be used for any filter—band-pass, band-
elimination, or any combination of such specifications. Plots of « and
8 for the band-pass filter of this example as shown in Fig. 13-28.

[+3

NE

- s e

N\.

17

Fig. 13-28. Attenuation and phase characteristics for s band-pass filter.

The networks of our four examples have been very simple, but the
same concepts apply to more complicated networks necessary to
accomplish multiple-pass or multiple-stop bands. All networks of the
constant-K type must have Z; and Z, obeying the inverse relationship

-

Zy = (13-103)

2

and this restriction limits the possible forms for Z, and Z;. We are
familiar with two forms of networks that obey this relationship, the
Foster forms of networks. The relationship

Z _
7. =B (13-104)
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is satisfied if, for example,

~ R? (s2 4+ &%) ...

Zy = s(s? + 82%). .. (13-105)
I G Y L) O )
and R e (13-106)

(Other multiplying factors will also satisfy Eq. 104.) Hence if Z, is
realized as a Foster No. 1 type of network and Y is realized as a Foster

Dy T

5} i

Y/
H

T

O L=

Fig. 18-29. Foster network forms.

No. 2 admittance network, the resulting filter will be constant-K. A
typical term in the admittance expansion of Y, is given by Eq. 12-64;
it is

s/Ly
(s? + 1/L.C,)

for a series L(C network. Similarly, typical terms of the impedance
expansion of Z(s) will have a form given by Eq. 12-60, as

8/Cn
(8> + 1/LmCwm)

Since by Eq. 13-104 these equations for Y (s) and Z(s) containing the
above typical terms must be equal, we have

Y(s) = (13-107)

Z(s) = (13-108)

Z1(s) = R*Y s(s) (13-109)
or, in terms of the product forms for Y (s) and Z(s),
N 1(8) — P2 N 2(8)
F LT+ UGy~ ¥ ooy 1310
This equality is possible only if, term by term,
1
LywCr = LpCp = o (13-111)

or, for similar network configurations, in the two Foster forms,

%ﬂ = -g-”- (13-112)
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for the constant-K network. As an illustration of these conclusions,
consider the network shown in Fig. 13-30. In order for this network to
be constant-K, it is necessary that

LiCy = LaCs = (13-113)

wo
This concept is useful in the design of constant-K filters,
lo—rgs—oi{

{ rEEE o
N 2°
L2 2c, 2¢, 12
C, o< L, §Z‘
lo o O

Fig. 13-80. €onstant-K filter when I,C, = L.C,.
S VAVAY NV N\N— - -~
Z, Zy Zy

Zpy
z, z Zs z,
&
o AAAT—AAA— - -
Rzlzé 32/24 szZn
Zz'Rzlzl szZi Rzlz?, Rz/zn—l

O

Fig. 13-31. Ladder networks satisfying the requirement of recipro-

cal impedances, Z:Z; = R® Note that Z; is the driving-point imped-
ance and that Z,” is the impedance of a ladder element.

el 1] R a1 [ R Bt A 111 A g 7,7, ) S W
L2 L2 L2 L2

Z,~—» S5C e Z, > ~C - Z;, —> Z,

o O = ~O Qroam e s

1 2 . 7
¥ig. 18-82. Composite filter of T sections.

The networks used for Z; and Z, need not be of the Foster forms.
The two ladder structures shown in Fig. 13-31 satisfy the requirement
that Z:Z, = R2.

We will define a composite filler as a filter made up of the cascade
connection of a number of standard T or standard » sections. Con-
stant-K networks can be connected in tandem to form a composite
filter provided an image impedance match exists at each terminal pair.
To illustrate, consider a standard T section. Figure 13-32 shows a
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representation of n such sections connected in tandem. Note that at

each terminal pair in the composite structure there exists an image

malch (such that the equations we have derived hold). The attenua-
tion of n sections is

o
n-3/ 2 o = 2n cosh—1 < (13-114)
1 Wy
/ from Eq. 13-92. Attenuation curves
0 1 ol for several values of n are shown in

Fig. 13-83. Attenuation in com- Fig. 13-33. Evidex}tly the .effeeti\.fcu

posite filters. ness of the composite filter in provid-

ing attenuation in the stop band is

increased by increasing the number of T sections in tandem. However,

if & “sharp’’ cutoff is required by specifications, a large number of T

sections must be used in the composite filter. The limitations of con-
stant-K composite filters are:

(1) A large number of T sections is required to attain high atten-
uation in the stop band near the cutoff frequency. This large
number of elements may make the cost of the composite filter
prohibitive,

(2) The composite network cannot be terminated in the required
image impedance shown in Fig. 13-25(a), because no such ter-
minating impedance exists. Terminating the filter with a con-
stant resistance K introduces mismatch at all but one frequency.

13-7. The m-derived filter

The need for a filter section with high attenuation in the stop band
near cutoff frequency led to development of the m-derived filter by
O. J. Zobel in 1923. The filters considered in the last section were a

Z/2 272
zl?'_—’ Zé i
')
° ial o1
¥ig. 13-34. Networks with the same image impedances: (a) new; (b)

old.

very restricted class of filters satisfying the requirement that the prod-
uct Z,Z; be a constant. If other combinations of elements are per-
mitted, it seems intuitively possible that some arrangement of elements
will give the required high attenuation near cutoff frequency. Zobel
approached this problem with one specification for the new network.
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Anticipating that the resulting section might be used in tandem with
constant-K filter sections, he specified that the image impedance of
the new network be the same as the standard T or standard « section.
This requirement is illustrated in Fig. 13-34. The new impedance terms
are designated Z, and Zo' : the impedance terms for the constant-K
sections are designated Z, and Z,. We have the requirement that the
two networks have the same image impedances; we need some further
premise in order to relate Zi, Zs, Z:/, and Z,'. Zobel assumed that
Zy' and Z, were related by the equation

7 = mZs (13-115)

where m is a constant. This may seem to be an unusual assumption to
make. We should expect that our assumption might instead relate to
the attenuation properties of the new filters, or perhaps the desired
form of image impedance. It is difficult to anticipate the surprising
results that follow from this simple beginning.

With Z,’ fixed, let us see what happens to Z,' in terms of Z; and Z,.
Equating image impedances,

Zy?

%_.., + 2024 = T+ D2 (13-116)

Substituting the condition Zi’ = mZ into this equation and solving
for Z2', there results

— 1
Zy = (1 4mm ) Z+ — 2y (13-117)

The schematic representation of the new m-derived network is shown
in Fig. 13-35.

Asimilar derivation may be given  ° ;1\2,/2\’ m °2
for the = section by assuming that 1om?
any new network structure must 4m
have the same image impedance as
the standard = network and further (1/miZy
making the assumption that 1o 02
Z, = é (13-118) Fig. 13-86. m-derived T section.
m

The image impedance of the = section is given by Eq. 13-12. Using this
equation and 13-118, the impedance Z,’ is found to have the value

Zy = 1 (13-119)
o
le 4 Z2

1 — m?
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which is the impedance of a parallel combination of the impedances

4m

T3 Zs (13-120)

mZ, and

The resulting m-derived = section is shown in Fig. 13-36, together with
the schematic for the standard » section.

(dm/1=m2)Z,
o AVAVAY o
Zy
2Z, 22, 2Z,/m mZy 2Z,/m
On e o O
{a) b

Fig. 18-86. Comparison of (a) standard section, and (b) m-derived
section.

Now that we have the m-derived structures, our next task is to
compute the attenuation to see that we have attained our objective.
First, a physical interpretation of the results thus far can be seenin a
specific example. Suppose that we select a low-pass filter of the type
shown in Fig. 18-17 and in Fig. 13-27 for the T and = sections, respec-

mCe== o =nen

Fig. 18-37. m-derived low-pass filter sections: (a) T section; (b) »
section.

tively. The equivalent m-derived sections are shown in Fig. 13-37.
For these networks, let us ask, what can possibly give infinite attenus-
tion at a particular frequency? The m-derived T section shown in
Fig. 13-37 will have infinite attenuation (or no transmission) when the
series LC circuit is in resonance. Under this resonance condition, the
series LC circuit is the equivalent of a short circuit, such that all cur-
rent by-passes the load. This resonant frequency is thus a frequency
of infinite attenuation designated as w,. It has the value

1

= 13-121
VI — m?)/4m]L(mC) ( )

Wy
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W
or Weo T (13-122)
since the cutoff frequency wo has the value 2/4/LC by Eq. 13-55.

At this same frequency, the parallel circuit of Fig. 13-37(b) will be
in parallel resonance (antiresonance) having infinite impedance. Under
this open-circuit condition, no current can pass through the series ele-
ments, and hence there will be no current in the output. This corre-
sponds to infinite attenuation for the » section. We now begin to see
that altering Z, in the T, and Z, in the » has introduced a new element
either in series or in parallel in such a way as to prevent transmission
at one particular frequency.

The equations for attenuation and phase shift in the m-derived filter
sections can be found by computing the factor z defined by Eq. 13-80
in terms of the new reactance functions Z," and Z,". Thus

"""Z}’ - ~—mZ1

474 4{Z:(1 — m?)/4m + Zs/m]
w2

1 —m*+ 4Zz/f1

In this expression, we recognize that —4Z,/Z, = 1/z% where z is the

factor used in the study of the constant-K filter sections. When this
factor is substituted into Eq. 13-124, there results

(13-123)

xz'?

(13-124)

m2
T (1 —mY) F 1/7

From this equation, we see that as x approaches the value given by

1
% o T
o 1 — m?

(13-125)

z'?

(13-126)

then 2’2 approaches infinity such that cosh—! z’, the attenuation, also
approaches an infinite value. The value of z causing infinite attenua-~
tion will be designated z,, such that

r = 1 (13-127)

T 1 — m?

With this definition, Eq. 13-125 may be written

27 = (13-128)

In this equation, z = a normalized frequency relating to constant-K
filters, z’ = a normalized frequency derived for m-derived filters as a
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function of z, z, = the value of z causing =’ to be infinite, and m = a
constant for the m-derived filter section. Inspection of this equation
shows that when z is less than z,, then z’? is negative, while for z
larger than z,, z'? is positive. In order to associate these conditions
with pass band or stop band and the equation for attenuation, we will
refer to the table on page 331. Comparing this table with the different
possibilities for the sign of z?, we reach the conclusions summarized
below.

Sign of Limits of Type of Attenuation Phase shift  Derived as

z't z? band :] equations
positive 0 s z* =51 pass a =0 g = 2sin~1z" 13-71, 13-72
positive 1 <zt £z ? stop a = 2cosh™!z’ ta 13-73, 13-74
negative £ 2 S 2 S w 8top a = 2sinhtz’ 0 13-77, 13-78

m i

r

PV ey T /7% T om

A plot of these equations (for positive values of z) is shown in Fig.
13-38, together with the same characteristics for the constant-K filter

a ] o
8 : 8
K3 : o T / B
B ' o
8 _ B/
8 I“um ;
0 1 X x ) 1 x
{a) {b)

Fig. 18-88. Characteristics of the m-derived filter: (a) m-derived;
(b) constant-K.

section. The plot illustrates the high attenuation near the edge of the
stop-band feature of the m-derived filter. Comparing the plot with
that for the constant-K filter, it is seen that the attenuation for the
m~derived filter approaches & minimum value for large values of z,
whereas the constant-K filter attenuation approaches a large value for
large x. Each type of filter sections has advantages and disadvantages.
Since both sections have the same image impedance, there is a pos-
sibility of use of a combination of both filter types to get both the high
attenuation near the edge of the stop band and at large values of z.
Figure 13-38 shows that whenz = z,, the phase shift in the m-derived
filter section changes abruptly from » to 0 degrees. In terms of the
equations, this is caused by the sign of z’? changing from positive to
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negative. A physical reason for this phenomena can be seen in the low-
pass filter illustrated in Fig. 13-37(a) in terms of the series LC circuit.
As frequency increases through resonance, the LC circuit reactance
changes from negative to positive (or from capacitive toinductive).
Since no phase shift is possible in a network with the same kind of
reactance in all arms, the ‘““effective’ inductive network above res-
onance gives no phase shift. This resonant frequency, incidently,
corresponds t0 .

In designing m-derived filters, the question will arise, why not make
1, = | by making m = 0 to make the filter have an extremely sharp
cutoff in the stop band? More generally, what happens to the atten-
uation characteristics as m is varied? To answer this question, we will
investigate the attenuation of the m-derived filter at large values of
z. From the equation for attenuation given in the table on page 342,
the attenuation for large x approaches a value a;m given as

m
Apim = 2 8inh™! ———e (13-129)
1 — m?
or, from the identity cosh? aym — sinh? aym = 1,
cosh? %% = 1 4 sinh2 %m = 1 4 T L (13-130)
sinh (ah-,,./Z) i Xlim m/\/l - m? e .
NV cosh e/ P S i BD
Hence aim = 2 tanh—''m (13-132)

From the last equation, it is seen that as m becomes small, approach-
ing zero, the attenuation for large z,
aim also becomes small, Also, from
Eq. 13-125, z’ is seen {0 become small
as m becomes small (for any value of
z), and this in turn reduces the mag-
nitude of the attenuation for all
values of z. Thus the price paid for g 1\ f ,
sharp cutoff is reduced attenuation for L
all frequencies, z being some func- Fig. 13-39. Variation of attenu-
tion of frequency. These conclusions ation characteristics of m-derived
are illustrated in Fig. 13-39 for two filters as z, moves closer to cutoff
values of m.* (@ =1

* Another reason for avoiding small values of m is that finite dissipation in the
filter elements results in finite attenuation at x., this finite attenuation being
smaller as m — 0.
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From this discussion, the value of the constant m of the m~derived
filter is seen to determine the nature of the variation of attenua-
tion with z. The constant m also determines element values in the
m-derived T and x sections. Since in these structures, element values
are determined by a multiplying factor (1 — m?), it follows that m
cannot exceed unity in value; that is,

0<m<l1 (13-133)

(Note: This limitation applies only to the ladder structures. Values of
m larger than 1 are used in lattice structures to give linear phase char-
acteristics.) There is another significance attached to the value of m
in terms of image impedance of the m-derived sections. This will be
our next subject for study.

13-8. Image impedance of m-derived half (or L) sections

The m-denived T section is shown in Fig. 13-35, and the m-derived
» section in Fig, 13-36. These sections were found under the assumption
that the image impedances are the same as the constant-K filter sec-
tions. If the T and x sections are divided into half (or L) sections, an
unexpected image impedance characteristic is found. This result we
must regard as a bonus; certainly it is not a consequence of any require-
ments made of the m-derived filter. A different image impedance

@2m/1-mAZ,
mZ,/2
Loy > 2Z,/m Mz&

{8)

Yig. 13-40. m-derived filter half-sections: (a) m-derived haf T; (b)
m-derived half x.

behavior at the other terminals of a divided T or » section (the half
section) might be expected from the discussion of the image impedance
of the L section on page 314. There it was found that the image
impedance at one terminal pair was Z,r, and at the other terminal pair
was Z;,. The half-sections for the m-derived filter are shown in Fig.
13-40. The image impedances at the ‘“back door’’ terminals are des-
ignated Z;yw and Z;,.. They may be determined by using Eq. 13-6.
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For the T section, we have

Zﬂ‘m = Y Zxozu

le ( — m? 2 )
Zi+ 2z
[1 ™ g+ 2 za] 2\ o T m )| asas)

2 Y
™ (’L"+1 T zz+;n2-z=)
2, [ ZiZs
=1 _ t 1Z2 13-135
[ + 1 = m) 422] 1 ¥ Z./4Z, ( )

Since B* = Z,Z,, the image impedance becomes

1 — (1 — m¥a?

A1 =z

where z? = — Z,/4Z, is the factor defined for the constant-K filter.

The same procedure may be used to find Z;. for the filter of Fig.
13-40(b); thus

Ziom = B L (13-136)

Zirm = 4 Z]ozl,

,_,\/ 1 L2, 1 }
2/mZy + (1 —m?)/2mZs " m ’] [2/m21 + (1 — m%)/2mZ.

(13-137)
NI T A )
=T F (0 = mHZ:/4Z3] (13-138)

0 that Zon =R Y1 (13-139)

1= (= m)z]

In Fig. 13-41, Zirm and Z,,,. are shown plotted as a function of x for
several values of m. The plot for m = 0.6 gives an image impedance
constant within 49 over 909% of the pass band. Other values of m
give variations greater than this. This image impedance variation is
much more constant than the constant-K image impedance functions
We note that for m = 0, Z,,.. = Zi, by Eq. 13-83, and that form = 1,
Ziwm = Zir by Eq. 13-82 and vice versa for Z;r,. In other words, the
m-derived filter sections reduce to constant-K filter sections with
m = 1. The new image impedance function Z;, or Z;r, for m = 0.6
more nearly approximates a constant, and so an image impedance
match with a constant terminating resistor is a reasonable approxima-
tion. This is a very important advantage for the m-derived half sec-
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tion. With these remarkable properties of the m-derived filter estab-
lished, we next turn to the use of such filters in combination with
constant-K filters.

zl’Tm Zn‘tm
me-l1
R 08
0.6
m=0 0.4
0 1: T “x
" I
3 pass i stop - pass | stop

Fig. 18-41. Zirm and Z,,m characteristics.

13-9. Composite filters

The following table summarizes the advantages and disadvantages
of constant-K and m-derived filters.

Constant-K m-derived
Attenuation near cutoff (x = 1): small large
Attenuation at large x: large small

more nearly
constant; depends
on m; best when
m = (.6.

Image impedance in pass band: not constant

The table illustrates the inverse attenuation characteristics of the two
types and suggests that a combination of the two types would have
advantages over either type alone. Such a filter is called a composite
filter. The constant-K filter which forms the nucleus about which the
composite filter is designed is known as the prototype. The m-derived
filter sections will have the same image impedance as the prototype
and will have element values found in terms of the constant-K section
element values.

In designing a composite filter, two factors must be kept in mind:
(1) there must be an image impedance match at the terminals of each
filter section, and (2) the attenuation properties of each section must
be so selected that the composite attenuation characteristic is that
desired. The impedance and attenuation properties of the various net-
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work configurations are summarized in Fig. 13-42 and Fig. 13-43.
These building blocks are the basis of filter design on the image basis.
Several examples will illustrate.

mé;/2 mZ, /2
I-m?
znw—b 4m Z
Zy/m
c_
LA VAVAY
m21/ 2 2
l-m
m %
Z‘T - —L.rm
ij —p
2Z:/m

°
[+]

id}

Fig. 13-42. Image impedance properties of networks: (a) con-
stant-K filter sections; (b) constant-K half (L) sections; (c) m-derived
filter sections; (d) m-derived half (L) sections.

Ezample 8

For the first example, one prototype constant-K filter and one
m-derived filter will be used in a cascade connection. This is to be g
low-pass filter. For this case, we have shown in Eq. 13-90 that z =
w/wg. The prototype (a T section in this case) and the m-derived sec-
tion are shown in Fig. 13-44. These two sections will make up the com-
posite section of filter. The m-derived section is first split into half
sections in order to realize the best impedance properties. An arrange-
ment of the three sections such that there is an image match at each
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input is shown in Fig. 13-44. The match, however, is only approximate
at the load, so that the computed properties are only approximately

constant-K o m-derived o |
i 3
! H
i
! !
i |
-% -1 0 1 +x —~x ~Xp —1 0 1 =x, +x
constantK 8 m-derived B
| +r
! -X —Xp—1
-

T-section w-section , y Zir '
|

ZET /I \ / :

Rix) -7 / i

:
]
|
/ \ f’/{xi S0 |Rw
7 e i
5
E
§
]
t

i
i
- A1 101 +x -z ~1 10 1 "4z
i
1
i

«section : .
T I3 Zim " 7-section Z,
/] i /S / Rt |
/ |
/ ; :R(x) 4 4 [_—

i i
1 : R
T N 4
~x xe =1 |01 /1w tax -x 2w 71 0 1 = _+x
// I N & / -
1 1 Xlx) / ’
e ! v/ { !
! i !

Fig. 18-48. Attenuation, phase and image impedance properties as a
function of z,

correct. The input impedance is Z;y,, for this arrangement of sections.
The attenuation is found by adding the separate attenuations,

o = ay + am (13-140)
as shown in the figure. Similarly,

B: = Br + Bm (13-141)

The input impedance and attenuation of the composite filter are supe-
rior to those of either the constant-K filter or the m-derived filter
separately, The series inductors of the prototype and the m-derived
half section are lumped together when actually constructing the filter.
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constant-k ke m-derived
prototype section
o~ £ © T -0
- ~t-o="TUT gy 40
Zitm=> “-Zir Zyp—> ‘[ ~—2Zr Zig—> J *Zipn| R~
o T O 4 =0 -4~ O T Q= =~ O
m-derived m-derived
half section Prototype - haif section | Load
- -~ > "1

Zm [+ 4 f
) 8
3 F; :
! ’
) 7 e
i 7 B
i a1
0 i« 0 0 1 we @
wo Wy wo
Fig. 18-44. Composite low-pass filter characteristics.
Ezample 9

In some cases, the attenuation property of the low-pass filter of
Example 8 would not be satisfactory, either because the attenuation
near cutoff frequency was not sufficiently sharp or because the o, curve
dropped to too low a value before beginning to rise again. In this case,

e 1,1
o FEO0 o o y

_l_ | i l
o T O [o? T 0

{a} {b)

¥ig. 18-46. (a) Constant-K prototype and (b} m-derived low-pass
sections.

M
1
AM

two or more m-derived sections can be used as long as an image match
is realized at each input terminal of the cascade connection of sections.
To illustrate, suppose that a = section is sclected for the prototype of
the low-pass filter and a decision is made to use two m-derived sections,
one withm = 0.6 and one withm = 0.3. The prototype and m-derived
section are shown in Fig. 13-45. Since the m = (.6 section has superior
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image impedance characteristics, it will be divided into two half sec-
tions for use at the ends of the filter. An arrangement of sections and
half sections giving an image impedance match at each terminal pair
is shown in Fig. 13-46. The input impedance in this case is Z,,, and
the total attenuation is

a: = ay + an(0.3) + a.(0.6) (13-142)

The impedance and attenuation properties of the resulting filter section
are also shown in Fig. 13-46. Note the improvement in the attenuation

_.._o...m\—o---o— —p-o_—GD.og.‘
yA
Q. = == | == == z.| R
Zl'l’m Tzﬂ zu’ Tzlt
o O=3= O Owd O O b = O O-1 -
Half section Half sectiun
m=0.6 Prototype m=0.3 section m=0.6 i load
zlﬂ o
X
/’,
rs
F 4
0 i wilwg 0 1 \\ \‘\1.25 wlwg

105
Fig. 13-48. Composite low-pass filter characteristics.

with higher attenuation at all frequencies and sharper cutoff in the
stop band.

In practice, the various parallel capacitors of the schematic of Fig.
13-46 would be combined into equivalent capacitors.

Example 10

From the conclusions of the first two examples, let us now formulate
a design procedure to use on any filter sections.

(1) First, we should decide on the specifications to be required for
the attenuation as a function of frequency. The attenuation
requirement may be met with some combination of constant-K
filters and m-~derived filters according to the equation

o = Aak + 2 B;a,,.; (13-143)

Fml
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where A is the number of constant-K sections, B; is the number
of sections for a specific m, and n is the number of different m
used. There is usually no unique solution to the type and num-
ber of sections required, and cut-and-try must often be used to
find a solution to meet the specifications.

(2) Select a constant-K prototype and find the element values.
From these element values, find all element values for the
m~derived sections.

(3) Include at least one m-derived filter section with m = 0.6 for
the beginning and ending section of the filter. This gives the
optimum image impedance properties.

(4) The type of prototype selected and the number of sections used
are usually limited by cost considerations.

13-10. The problem of termination

The constant-K and m~derived sections and half sections can easily
be arranged such that there is an image impedance match at each point

Z; resistive p

z ;£ 2z
L
m=0.6 e e Z, (reactive)
0 X
pass | stop
- !
LC elements

Fig. 18-47. Actual termination of image designed filters.

of connection. But when we come to the beginning or to the termina-
tion of the filter, we have a problem in approximating an image match.
There are no resistors with the properties of our image impedances,
especially the ability to change from resistance to reactance at the
cutoff frequency. The best that can be done is to terminate (and make
the generator impedance) a constant. What value should this constant
resistance be? Let us review the expressions for image impedances as
a function of z. By Egs. 13-82 and 13-83,

Ziw = RA/1T =22 (13-144)
R

Zix = \_/T:_xﬂ (13-145)
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From Eqs. 13-136 and 13-139,

—— — 2 2
Zige = R \2___“_'; )z (13-146)
— 2
Zon=p. M-z (13-147)

1 — (1__—'};{25;2'

Note that all these impedance expressions reduce to Z; = R when
z = 0. This constant value is a good approximation to either Z;r, or
Zism With m = 0.6 in the pass band. This is the termination commonly
used.* The terminating resistor has a value determined from the con-
stant-K prototype as

R = +72.7Z, (13-148)

All results given thus far have been found on the basis of (1) dissi-
pationless elements in the network and (2) an image match throughout
the filter network including the termination. What are the conse-
quences of using elements with finite dissipation (primarily the resist-
ance of inductors)? What are the consequences of terminating the filter
in a nonimage impedance, R?

In answer to the first question, the computed values of attenuation
are only approximately correct because of finite dissipation. This dis-
sipation causes attenuation in the pass band and finite attenuation
at the so-called frequencies of infinite attenuation. A rule of thumb
states that the results of image basis design will be acceptable in most
engineering applications if the Q of the inductors is 15 or higher.

An answer to the second question requires that we first define the
quantity insertion loss as the loss resulting when a network is intro-
duced between a generator and a load. The insertion loss is defined by
the equation

(13-149)

where N is the insertion loss in nepers, I’ is the current in the load
connected directly to the generator, and I is the load current with the
network in place. For numerical computation of insertion loss, we let
Iy = I,. We thus assume that the generator current is the same with
and without the network and so have a basis for comparison. This
computation is best made by assuming a unit value for I; and then
tracing through the network to find the corresponding value for I,. A

* A slightly better approximation results if the terminating resistor is smalier
than R for the m-derived half x section or larger than R for the m-derived half T
pection as the termination,
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comparison of insertion loss N and attenuation « for the network of
Fig. 13-44 with m = 0.6 is shown in Fig. 13-48.

Even though the image basis attenuation is only approximately
equal to the actual insertion loss, the results are usually sufficiently

o Attenuation o
i ”
N IU
-
l .
: Insertion loss N
|
H
:‘ I
f i
/ t
————— - v i
0 1 welwg w /g

Fig. 18-48. The effect of non-image termination on filter attenuation.

close to be useful. Design on the image basis has the advantage of
being simple and routine. Tables showing various networks with their
corresponding attenuation characteristics are found in handbooks.*

13-11. Lattice filters

The discussion to this point has related to the ladder structure of
networks. Another common structure used in filter design is the lattice.
A symmetrical laltice is shown in Fig. 13-49(a), and the “bridge cir-

lo AVAYAY, o2 lo
Z,
Z, Z,
Za
lo AN\ 02 1o
{a} (b}

Fig. 13-49. Lattice network structure for filters.

cuit” equivalent is shown in Fig. 13-49(b). The advantage of the
lattice representation over that of the bridge is that sections connected
in cascade are more easily drawn as lattice structures.

For the symmetrical lattice, the image impedance may be computed
from open-circuit and short-circuit impedances. Since

g, Lt T

(13-150)

* For example, see Terman, Radio Engineers’ Handbook (McGraw-Hill Book
Co., Inc., New York, 1943), pp. 228-236. '
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and 7 = 2t

it follows that Zi = \Z1Z\, = \Z.Z (13-152)

(13-151)

The equation for the image transfer function is also a function of Z,
and Z, as

v = 2 tanh~! \/Zi/Z, (13-153)
Comparing these equations with Eq. 13-6, which is

Zi = \/ZwZ, (13-154)
and Eq. 13-39, v = tanh~' A/Z,/Z1, (13-155)

it is seen that the analysis made previously for pass-band, stop-band,
and cutoff frequency in terms of the poles and zeros of Z;, and Z,,
holds for the lattice filter, with Z, replacing Z,, and Z, replacing Z,,!
In summary, when poles of Z, coincide with zeros of Z,, or vice versa,
there is defined a pass band. When poles or zeros of Z, coincide with
poles or zeros, respectively, of Z,, there is defined a stop band. A critical
frequency in Z, but not in Z,, or vice versa, defines a cutoff frequency.
These rules assume that Z, and Z, are reactance functions (that is,
LC elements only).

We also have the results we need to compute the attenuation and
phase shift. By Eq. 13-43,

tanh Y = tanh (a/2) + j tan (8/2) _ g
2 1 jtanh (a/2) tan (8/2) A

(13-156)

If the sign of Z, is opposite to that of Z,, then tanh (v/2) is imaginary,

and
B _ _Za
tan 3 = \/ A (13-157)
a=20 (13-158)

If Z, and Z; have the same sign, then either
tanh% = tanh% and 8 =20 (13-159)
by Eq. 13-45, or

tanh X 1

by Eq. 13-46. Now tanh (a/2) cannot exceed unit value corresponding
to infinite «. It follows that the choice of these two possibilities
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depends on the magnitude of Z, and Z,. Then

a = 2 tanh~! \/Z,/Z,, B =0 whenZ,>Z, (13-161)
a = 2 tanh~! \/Z,/Z,, B=r whenZ, < Z, (13-162)

These equations permit computation of « and g in the pass and stop
bands.

From Eq. 13-161, we see that the attenuation becomes infinite as
7./ %, approaches unit value. Similarly, the attenuation is small when
Z./7% is small. In selecting positions for the poles and zeros for Z,
and Z, the pass-band poles and zeros determine the phase variation,
and their position is determined by the desired form of phase variation
(for example, linear variation is often required). In the stop band,
however, the poles and zeros of Z, and Z, are selected so that the quo-
tient Z./Z, remaing as nearly unity as possible ag frequency varies.
A procedure for locating these poles and zeros has been given by Bode
and Dietzold.*

From Eqgs. 13-161 and 13-162, it is seen that as Z, exceeds Z, in
magnitude, or vice versa, the phase of the output changes by 180°.
Under this condition, the output voltage of the lattice effectively
reverses polarity. The filtering action in the case of the lattice takes
place by there being a balance of the bridge circuit shown in Fig
13-43(b). For a perfect balance, corresponding to infinite attenuation,
the components must be of high quality and carefully matched. This
is one disadvantage of lattice filters. However it is possible to get
infinite attenuation at the frequency of balance even with finite
dissipation, if the effective resistances also balance.

1 henry
o- B0 o
z,,+ I
1 henry I henry T
1 farad 1 farad Zy ¢
pass | stop
1 henry 0 i 0

Fig. 13-560. Lattice and poles and zeros of Z. and Z,.

Example 11
The lattice shown in Fig. 13-50 has element values such that
2
Zo=s snd 2= 211 (13-163)

*H. W. Bode and R. L. Dietzold, “Ideal Wave Filters,” Bell System Tech. J.,
14, 215 (1935).
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The pole-zero plot shown in Fig. 13-50 indicates that this is a low-
pass filter with a cutoff frequency of we = 1. Since Z, = jw and Z;, =

j(w2 - 1/(.0),
a=0B=2tan'Ve/(wP—1), O0Zw=z1 (13-164)
by Eqgs. 13-157 and 13-158 and

a = 2 tanh—! /(w? — 1)/w?, B8 =m, l fEw= o (13-165)
by Eq. 13-162, since Z, > Z, for w = 1. For this particular lattice, the
image impedance is

Z; = /1 — w? (13-166)

Another example illustrating properties of the symmetrical lattice

was given in Art. 11-6, page 263. For that particular case, the entire

frequency range was pass band, and the phase characteristic was given
by an equation of the form of Eq. 13-157.

13-12. Bartlett's bisection theorem

A relationship between the lattice impedances Z, and Z, and the
open-circuit and short-circuit impedances was suggested on page 354.
The equivalence of these quantities is given in a theorem originally due
to Bartlett. This theorem applies only for symmetrical two-terminal-
pair networks. Bartlett’s bisection theorem provides a means for find-
ing the lattice impedances for a lattice network equivalent to a symmet-
rical ladder network.

The first step in the application of this theorem is bisection of the
symmetrical ladder network. By the term bisection, we mean that we
divide the network into identical parts such that the two networks,
when reversed end for end, have identical geometrical as well as elec-
trical properties. Such a bisected network with only connecting wires

1 0w—i —Y

10— 249 o) 2

'
1
1
H
i
1
1
H
1
4

Al
T

Half section —}e"—Half section
Fig. 18-81. Bisected symmetrical network.

showing appears in Fig. 13-51. Bartlett’s bisection theorem,* given
here without proof, states: The lattice equivalent of a symmetrical
ladder network has a series arm Z, equal to the impedance of a half

* Bartlett, A. C., Theory of Electrical Artificial Lines and Filters, (John Wiley &

Sons, Inc., New York, 1931), pp. 53-58; Brune, Otto, “Note on Bartlett's bisec-
tion theorem,” Phil. Mag., 14, 806 (1932).
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of the bisected network measured at terminals I-1 or 2-2, with the
other terminals short-circusted; the shunt arm Z, is equal to the imped-
ance of the half network with the bisected terminals open. Two exam-
ples will illustrate the application of this theorem.

Ezample 12

The standard T section is shown in original form and also bisected
in Fig. 13-52. Following Bartlett’s bisection theorem, the open-circuit

. Z,2
—"NAN o AVAYAY; ©
i
i Z,/2
: Z/2 Zf2
: 222 2Z2 222
}
i £ o
' Z/2
{a) {b} {c)

Fig. 13-52. Application of Bartlett's theorem: (a) original network;
(b) bisected network; (c) equivalent lattice.
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Fig. 18-63. Networks of Example 13: (a) original network; (b)
bisected network; (c) equivalent lattice.

and short-circuit impedances are found for the half network. The
resulting equivalent lattice is shown in the figure.

Ezample 13

For this example, the standard =
section is shown for the low-pass
filter case. The bisected network and
resulting equivalent lattice are also
shown in the figure.

To avoid the complicated struc-
ture of the lattice in drawings, it is
usual practice to replace one of the series arms and one of the shunt
arms by a dashed line, Thus the lattice of Fig. 13-54 is defined to be
identical with the lattice of Fig. 13-53.

Fig. 13-54. Conventional represen-
tation of the lattice network.
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FURTHER READING

The original articles on the constant-K and m-derived filters by
0. J. Zobel are found in the Bell System Technical Journal under the
titles, “Theory and design of uniform and composite electric wave
filters’’ in the volume for 1923 and ‘ Extensions to the theory and
design of electric wave filters’’ in 1931. For additional discussion of
these topics see: Guillemin’s Communication Networks, Vol. II (John
Wiley & Sons, Inc., New York, 1935), Chaps. 5, 8, 9; D. F. Tuttle,
Jr., Network Synthestis, 2 vols. (John Wiley, & Sons, Inc., New York,
in preparation); W. L. Everitt, Communication Engineering (Mec-
Graw-Hill Book Co., Inc.,, New York, 1937), pp. 179-240; J. D.
Ryder, Networks, Lines, and Fields (Prentice-Hall, Inc., New York,
1949), pp. 114-163; LePage and Seely, General Network Analysis
(McGraw-Hill Book Co., Inc., New York, 1952), pp. 218-236; and
Reed, 4-C Circuit Theory (Harper & Brothers, New York, 1948),
pp- 553-597.

PROBLEMS

13-1. The T and = networks shown in the accompanying figure are
also known in electrical engineering literature as Y and delta networks,

o AVAVAV ) e AVAYAY NNN—o
Yp 2, Z

o o ° o
{a) {b)

Prob. 18-1. (a) = or delta network; (b) T or wye network.

respectively. Networks can sometimes be simplified by converting
from a Y to an equivalent delta or from a delta to an equivalent Y.*
(a) Show that, if a delta equivalent of a Y network exists, the following
relationships hold.

YA = 22
Z1Zy + ZoZiy + Zsley

YB = Za
2o+ ZyZs + Z:Zy

Z

Ye = 20 T 22, + 2.7,

* The notion of delta-Y equivalence is originally due to A. E. Kennelly in 1899,
His article, ““The equivalence of triangles and three-point stars in conducting net-
works,” appeared in Electric World and Engineering.
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(b) Find the corresponding transformation for the ¥ network equiv-
alent of a delta network. Give the values for Z,, Z», and Z; in terms of
YA, YB, and Yc.

13-2. A two-terminal-pair = network is shown in the figure. Show
that for this network, coth v = +/Z1,/Z.., where ¥ = a + j8 and
I/I: = e, and Z,, = the impedance at terminal pair 1 with terminal
pair 2 open, Z;, = the impedance at terminal pair 1 with terminal-
pair 2 short-circuited.

1 2 1 Ot O BT o 2
Z, 1h 1h
2Z, 2Z, ~2f
1o 02 1o 02
PrOb. 13‘2. PI'Ob- 13—30

13-3. For the T network shown above in the figure, determine and,
plot the image-impedance Z; for the frequency range w = Qtow = 1.
Answer. Z; = /1 — w’.

13-4. Repeat Prob. 13-3 for the = network shown in the figure.

Answer. Z; = 1/4/1 — 2.

io L LUR 02 l !
2h Tut— — f
1] Y
==1f ==1f ; i i ,
X10+ _f I f 1
1o o2 w=0 Wy w2 w3 w =0
Prob. 13-4, Prob, 13-5.

13-6. A pole-zero plot for Z,, and Z,, is shown in the accompanying
figure. From the plots, Determine: (a) the pass bands, (b) the stop
bands, (¢) the cutoff frequencies.

13-6. Repeat Prob. 13-5 for the pole-zero plot shown in the figure,

lo—Jo YIT——o02

X1 b—o—

1

A A S L2 Lj2
: ' , ¥ t
N P ==C
I - H— i
Xio i H % R )
w0 W wp w3 Wy ws w=® lo 02
Prob. 13-6. Prob. 13-7.

13-7. The symmetrical T network shown in the figure has element
values as indicated. Starting with Eqgs. 13-30 and/or 13-32, which
apply to the T network, derive an equation in terms of L, C, and « for
the attenuation « in the stop band and for the phase shift 8 in the pass
band. Answer. a = cosh~! (2 — w2L()/2, 8 = cos™! (2 — W?LC)/2.
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183-8. For the schematic shown in the figure, (2) Analyze the net-
work to determine the pass bands and the stop bands. (b) Determine
all cutoff frequencies. Answer. we; = 0.781, wee = 1.282.

GO0 Ny ~ OO0
Io_..........._.. '}h '}h <) o
I T 2
Ly 1
21

2t 1h
z,g
1f
io T azc

Prob. 13-8.

13-9. Repeat Prob. 13-8 for the » section shown below.

if
lo it - 2 o
1uf
O.1h 0.1h Z;
lo 0 2 O
Prob. 18-9.

13-10. Design a low-pass filter having a cutoff frequency of 1000
cycles per second and a purely resistive image impedance of 100 ohms
at 0 cycles per second. Give element values. Answer. C = 3.18 uf,
L = 31.8 mh,

13-11. In Prob. 13-3, it was found that Z; = 4/1 — w? in the pass
band. The attenuation found, for example, in Prob. 13-7 applies only

1 Ot YUY Voo
lh l1h
==z 2f 1
10
Prob. 18-11.

when the T section is terminated in this Z;. As a practical approxima-
tion, let Z; = R = 1 ohm (constant). To investigate how good such
an approximation is: (a) Plot the insertion loss of the circuit shown
above by solving for [I,'/I.] = e¥ defined by Eq. 13-149for0 < w < 2.
(b) On the same coordinates, plot the function, a = 2 cosh~! w for
1 < w < 2. This is the approximate resuit.

13-12. For the filter given in Prob. 13-8, determine the value of z
as a function of w. Make a careful sketch of: (a) the attenuation aasa
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function of w, (b) the phase shift 8 as a function of w, (¢) the image
impedance as a function of w. Make use of the normalized plots of
Fig. 13-25 in working this problem. (d) What is the value of R in
Eq. 13-817

13-13. Repeat Prob. 13-12 for the network given in Prob. 13-9.

13-14. Show that if F is the number of cutoff frequencies, a single
section of a constant-K filter requires 3F elements.

13-16. Design a composite m-derived low-pass filter to the following
specifications: (a) the termination is a 600-ohm resistor, (b) the cutoff

o- HO0 SDOLN S0 o ©
0.127h 0.136h | 0.104h
0.085h 0.028h S0.085h
==0.442 uf 6000

0.133 uf 0.313 uf 0.133 uf
o 1 T T,

Prob. 13-15. Solution.

frequency is 1200 cycles per second, (¢) the frequencies of infinite
attenuation, w,, are 1500 and 1700 cycles per second. Draw the sche-
matic diagram for the filter with all possible series and parallel elements
combined. Indicate all element values.

13-16. Design a filter to the following specifications:

Pass band: 0 to 2000 cycles per second.

Cutoff: Output must be no more than 5% of the
input at 2100 cycles per second and all higher
frequencies.

Termination: Load resistor will have a value of 600 ohms.

End section: End sections should be m-derived half sections
with m = 0.6.

(a) Draw the schematic diagram of the filter and indicate all ele-
ment values. (Note: As in most design problems, there is no unique
solution to this problem.) (b) How many sections of constant-K filter
are needed to meet specifications?

13-17. A network is to be composed of the cascade connection of
four constant-K half sections (or L sections) and fwe m-derived half
sections. Draw schematic diagrams of all the possible ways these half
gections can be combined such that there is an image impedance match
at each of the cascaded terminal pairs. Consider both the = and T
m-derived half sections.
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13-18. For the lattice filter shown below, determine (a) the pass
band, (b) the stop band, (c) the cutoff frequency, (d) the phase shift

Prob. 13-18.

in the pass band, (e) the attenuation in the stop band, (f) the phase
shift in the stop band and (g) the image impedance. Answer. (a)
0 — 1 radians/sec, (b) 1 — = radians/sec, (¢) w, = 1 radians/sec,
(d) B = 2 tan~! v/o?/(w? — 1), () a = 2 tanh—! v/(w? — 1)/u?, () =,
@) Z: = 1//1 — o2

13-19. Determine the lattice equivalent of the network of Prob.
13-8. Show all element values.

13-20. The network shown in the figure is known as a bridged T.
Determine the lattice equivalent of the network if L, = L,.

1

C,
lo SO0 o0 02
L, Ly
10 02 lo—dee e 2
Prob. 13-20. Prob. 13-21.

13-21. A lattice structure is shown without element values. Deter-
mine & possible ladder equivalent of this lattice by studying Z, and Z.

Mark element values (L,, Ls, C), etc.) noting which elements in Z,
and Z, must be equal.



CHAPTER 14
AMPLIFIER NETWORKS

14.1. Shunt peaked amplifier network

Frequency-sensitive networks are often used in conjunction with
vacuum tube amplifiers to give a combination filter-amplifier. Such a
network is shown in Fig, 14-1. In
some practical networks, the inductor
may be the only element connected to
the plate of the vacuum tube, usually
a pentode. The resistor R represents Vs R
the resistance of the inductor, and the
capacitor ¢ may represent the wiring ©
capacitance and interelectrode capaci- ¥ig- 14-1. Shunt peaked amplifier
tance of the tube. If the plate resist- network.
ance of the vacuum tube is very high (as in the case of pentodes), the
output voltage is given by the equation*

Vo= —gnZV, (14-1)

where ¢, is the tube transconductance and Z is the impedance of the
network connected to the plate. The impedance for the network of
Fig. 14-1 is

Z(s) = V/C)Ls +R) _ 1 [ s + R/L ] (14-2)
1/Cs + Ls + R ~ C | s* + Rs/L + 1/LC

The denominator polynomial has been encountered many times before
and may also be written in terms of the dimensionless damping ratio ¢
and the natural undamped frequency w,.. From Eq. 14-1, the voltage
ratio transfer function may be written in terms of the impedance
expression. The resulting equation is

Vals) _ _ gm 8+ 20w
Vi(s) C s 4+ 2tw,8 + wn?

The pole-zero configuration of the transfer function is evident from this
equation: there are a pair of conjugate poles and one real zero. How-
ever, analysis is frequently made in terms of the circuit @ discussed

(14-3)

* Equation 14-1 is derived in Ryder, FElectronic Engineering Principles, 2d ed.
(Prentice-Hall, Inc., New York, 1952}, p. 220.
363
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in Art. 11-4, and so this equation will be rearranged in terms of this
quantity. Circuit @ is defined as

S T = o (14-4)

The complex frequency s will be normalized by division by w,. This
new frequency variable will be designated by the letter p and defined
as

P = S/w,., = “/wn +]W/wn = Oy -+ jwp (14"5)

With these substitutions, the equation for the transfer function
becomes

Vi(p) _ gm[ p+1/Q ] (14-6)

Vip) ~ el PP+ p/Q + 1

The poles of this function are evidently

p p*g_.}, +\/(.._1..)2—-1 Q<3 (14-7)
ay Ma 2Q~— 2Q

=“§%ij\/l—(§%) Q> 1 (14-8)

In practical networks, @ is much larger than 4, and so the second equa-
tion will be considered the typical case. The pole-zero configuration
in terms of circuit @ is shown in Fig. 14-2, The locus of the poles and

-plane ;
p-plan N Jor fap p-plane juoleom
7
VI-(1/2Q1 1 -1/2q 1/Q/%
i "
P o l ! a/wa :°2 I_LQ poles alw,
-1/Q i / _lf&
! zero
]
RoRe==o1 A
>,
Pig. 14-2. Pole-zero location in terms Fig. 14-8 Pole-zero locus in terms of
of Q. Q.

zero is shown in Fig. 14-3 for various values of @ greater than the crit-
ical value of 1. As @ decreases toward 4, the zero approaches the point
—2, and the poles approach the point —1.

Frequency response of the shunt peaked amplifier is found by letting
p = jw, and computing the gain and phase for a number of frequen-
cies. The magnitude of the voltage ratio or the amplifier gain is found
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from the relationship

Va(jowy) Jm [Jwp — P4
p) | _ . : 14-9
V(i) | ~ @aC [y — palljor — P2l (14-9)

As the frequency varies from 0 to «, the length |jw, — p.| changes
rapidly, going through a minimum value when w, is nearest p,. The
response magnitude reaches a maximum value at a frequency near
(but not at) this minimum. As frequency increases, the magnitude
function falls at the rate of 6 db
per octave for high frequencies. A
typical response curve is shown in
Fig. 14-4. In contrast to the series g,
ELC circuit considered in Art. 11-4,
the phase angle is not zero at res-
onance for this network. This fact
can be readily established by inspec-
tion of the pole-zero configuration.
This method of visualizing the re-
sults in terms of the pole-zero configuration is simpler than an alge-
braic investigation which involves manipu'ation of complex numbers.

Yo
Vi

II 2 3 wlw,
Fig. 14-4. Typical response curve for
a shunt peaked amplifier network.

14-2. Stagger-tuned amplifier networks

An important property of the shunt peaked amplifier network,
shown in Fig, 14-1, was not discussed in the previous section. This
property follows from the fact that the input to the grid of the vacuum
tube draws negligible current and thus has high internal impedance.
Specifically, the property is that this amplifier network may be con-
nected to another network without loading; that is, without causing
any significant current to flow such that the output voltage of the
other network would be altered by connecting the amplifier network.
For this reason, successive stages of amplifier networks may be con-
nected together in cascade (or tandem), and each network will be

-independent of all others.

Ol > ol

V1 Gﬁs, Vé Gz(S] Vé G3(S] Vé

O] > » T
Stage 1 Stage 2 Stage 3

Fig. 14-5. Cascade connettion of amplifier networks.

A cascade connection of amplifier stages is shown in Fig. 14-5, where
each stage is represented by a block. The output of the first amplifier
is connected to the input of the second, the output of the second
amplifier is connected to the input of the third, and so on. Any num-
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ber of stages may be so connected. If the amplifier input has a very
high impedance and the amplifier output has a low impedance, the
stages of amplification and filtering will be independent in the sense
that the second amplifier will not affect the first, the third will not
affect the second, and so on. Each stage is isolated from all other
stages; each stage lives in a world of its own, accepting the voltage it
receives without influencing the ‘“‘giver,” and in turn without being
influenced by the stage that receives its output.

The practical reason for cascade connection of stages of amplifiers
is that one stage does not provide enough voltage gain. The ordinary
superheterodyne receiver uses at least two stages of amplification (the
so-called intermediate frequency, or IF amplifiers); it is common for
six to eight stages of amplification to be used in radar receivers. Each
stage is ordinarily terminated in a network made up of resistors, indue-
tors, and capacitors. For such networks, the output voltage is a func-
tion of frequency. In this section, we will investigate desirable forms
of the variation of the output voltage to the input voltage with radian
frequency.

Under the assumption of no loading, the voltage ratio transfer func-
tions may be written

G =P 6o =Y 66 = 7 a)

where G, G2, and G are successively the voltage ratio transfer fune-
tions for the first, second, and third stages. The output voltage V,(s)
may be found in terms of the input voltage V(s) by the following
manipulation.

Va(s) Va(s) Va(s) _ Vals)
Vi(s) Va(s) Vals)  Vai(s)

where G,(s) is the voltage transfer function for the three stages con-
nected in cascade. This mathematical operation would not have been
possible had not the output voltage been a function of the input voltage
only for each stage (i.e., each stage isolated from the others),

In the sinusoidal steady state, two properties of the total transfer
function G(jw) are important in design. The first is the maximum mag-
nitude of the transfer function, or the maximum gain. The other is the
variation of magnitude with radian frequency. It has been found that
desired combinations of gain and gain variation with frequency cannot
be attained by simply cascading identical amplifier network stages.
Better performance can be realized if each stage is made slightly differ-
ent. The composite amplifier network is then said to be stagger funed.
The design of stagger-tuned amplifier networks is easily accomplished

= G;(s) = Gl(S)Gz(S)Ga(S) (14-11)



Art. 14-2 AMPLIFIER NETWORKS 367

in terms of the pole-zero configuration. Our approach to this design
problem will be to consider first the desirable pole-zero configurations
for stagger-tuned amplifiers. We will then show how such pole-zero
configurations can be realized by the design of the amplifier networks
of each stage.

In the discussion to follow, we will restrict ourselves to the case of
& low-pass filter; that is, a filter which passes low frequencies with
high gain and attenuates high frequencies by means of a low gain.
The techniques will apply directly to the case of band-pass filters and
high-pass filters, as will later be illustrated by several examples. For
the time being, we will also restriet our discussion to voltage ratio
transfer functions having the form

Vn+1(8) - 1

7 Kb b . T (14-12)
where n is the number of stages of amplification. In the sinusoidal
steady-state, the magnitude of this transfer function has the form

] Vﬂ-'i"l(Jw) ’ 1
Vi(w) Vo + At + .+ A,

This magnitude is a function of w?, designated M(w?), as may be
seen by reviewing the way the magnitude of a complex funection
is formed; that is, the magnitude is equal to the square root of the real
part of the function squared, plus the imaginary part squared. The
frequency w raised to either an even or an odd power has an even
exponent when squared. For example,

l 1

a + jw

(14-13)

1

Vo ta
and the magnitude function contains w to even exponents only.

The function represented by Eq. 14-13 has the value K’/+/A4,, for
@ = 0. As frequency becomes larger, the magnitude decreases at the
rate of —n X 6 db per octave. An |,
ideal form for the magnitude as a ‘Tz{}
function of frequency curve to have
for intermediate frequencies is shown
in Fig. 14-6. The curve is flat from
w =0 up to a frequency called the
cutoff frequency and then asymptoti-
cally approaches the —n X 6 db per
octave rate of decrease. We now face & number of problems: Just how
flat can the curve be made? How do we go about accomplishing this
flat characteristic in terms of Eq. 14-137

(14-14)

L
i
i
I ~
t
t
¢

w+=0 w
Fig. 14-6. Ideal flat characteristie.
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The slope of the voltage ratio function with frequency can be made
equal to zero by requiring that the derivative of M with respect to
w? (rather than w since M is a function of »?) be equal to zero. If the
rate of change of the slope of the M(w?) curve is also made equal to
zero, the flatness of the curve will be improved. The pattern becomes
clear: make just as many derivatives of M(w?) zero as we can. The
more derivatives that are zero at w = 0, the flatter the curve will be
at a band of frequencies above w = 0.

If Eq. 14-13 is differentiated with respect to w? there results

d | Veulo) | g Are™ 2 + Ae™ + ... + Aua
7 | TG | = (14-15)

(w2ﬂ. + Alw2n-2 .,i,,. L. .+,, Au)3/2

This expression can be made equal to zero at w = 0 by setting A..,
equal to zero. Setting successively higher derivatives equal to zero
will make all the A-coefficients zero up to A;. Under these conditions,
Eq. 14-13 has the form

Venlio)| K’
Vi(jw) Vo + A.

To simplify the form of this equation, let 4, = 8 and w/8 = w,.
Then

(14-16)

L U
K~ Japt1

When staggered amplifiers are designed to satisfy the relationship
given by this equation, they are said to be mazrimally flat. Such stag-
gered amplifiers are also called Butterworth amplifiers after an author
who first described such amplifier design in 1930. (Networks with no
amplifiers and no isolation may also have the maximally flat character-
istic and are called Butterworth fil-
ters.) The actual curve realized by
the last equation does not exactly
fit the ideal shown in Fig. 14-6.
The larger the value of n can be
made, the better the approximation
to the ideal curve. A plot of the

Vn+ 1(.7 “’p)
V 1(.7 “’p)

(14-17)

K
'

8
Vi
g

_1 2 % function given by Eq. 14-17 for
Fig. 14-T. M”""‘iﬁ?fy flat character-  goveral values of n is shown in Fig.

i4-7. All the curves pass through

the point 0.707 (the half-power point) at w, = 1. This will be shown
later in the chapter.

The next problem is to find the positions of the poles of the voltage

ratio transfer function that will give an absolute magnitude function
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of the form of Eq. 14-17. To simplify notation, let p = jw, or w, =
p/j. The square root factor of Eq. 14-17 then becomes

—p* + 1 if n is odd (14-18)
p¥ + 1 if n is even (14-19)

We proceed in our investigation by taking what appears to be an
indirect route. Consider the functions

1

F(p) = PETS n is even (14-20)
i .
H(p) == w: n is odd (14-21)

The poles of F(p) occur when the denominator of the first of these
equations is equal to zero; that is,

p»+1=0 or p= —1 (14-22)
Similarly, the poles of H(p) occur under the condition

—p¥ 41 =0 or p= +1 (14-23)
To find the 2nth roots of +1, we write this number in polar form as

v ] == gHIT = gkl — ekib® o= (14“24)
.+.1 o eH0F w k2T = pibfdr o (}.4‘25)

These equations may be written in generalized form as

-1 = ei::'w,,,-'m, m=1,23, ... (14-26)

+1 = cditkr k=012 ... (14-27)

Setting these equations equal to p?* and taking the 2nth root of both
sides of the equation gives

P = eHEm—Dx/in m=1,23,...,n (14-28)

Pr = edikw/n k=012 ...,n (14-29)

These expressions locate the poles of F(p) and H(p) given above. The

magnitude of each root of the last two equations is unity, and the roots

are separated by =/n radians. The location of the roots for an odd

n {n = 3) and an even n (n = 4) are shown in Fig, 14-8. Similar plots
for other values of n are readily made by following these rules:
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(1) For odd values of n, a root is always located on the 4o, and on
the —g, axis. Other roots are displaced from these real roots
by x/n radians.

(2) For even values of n, no roots are located on the real axis.
Roots are located x/2n radians from the positive and negative
real axis. All roots are displaced by »/n radians.

(3) There is a symmetry with respect to both the real axis and the
imaginary axis. No roots occur on the jw, axis.

Jjw Jw
k=2 m=3 m=2
m=4 m=1

kw3 . ¢

m”%\L,e/JmM
k=-2 m=-3 m»—2

la) b
Fig. 14-8. Location of roots of +1: (a)n =3 (odd); (b) n = 4
(even).

The roots plotted in Fig. 14-8 are really poles of the functions F(p)
and H(p) defined by Egs. 14-20 and 14-21. We know that impedance
functions and transfer functions cannot have poles in the right half
plane as F(p) and H(p) have. These functions, however, are not neces-
sarily network functions. They are only arbitrary functions that have
been invented in the expectation that they might somehow relate to
the transfer functions having magnitudes of the maximally flat form.

Because of rule (3) stated above, there are always as many poles of
the functions F(p) and H(p) in the right half plane as in the left half
plane. If the right half-plane poles are grouped together and desig-
nated f,(p), and the left half-plane poles are similarly grouped as
fi(p), we can write

F(p) = f.(»)fi(p) (14-30)

When p = juw, in the sinusoidal steady state, the magnitude of f.(p) is
always equal to the magnitude of f;(p). This can be seen from the pole
configuration: phasors drawn from each of the poles to & point on the
Jwp axis can be matched in identical pairs as far as magnitude is con-
cerned. Because of this equality,

Ifr(j‘-‘-‘p)i = lfl(j“’p)l (14-31)
the magnitude of F(jw) may be written

[F(jwa)| = Ife(Gonllfi(ea)] = |fi(jew,)|? (14-82)
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N
Extracting the square root of this equation gives
|fl(.7""p)‘ = '\/IF(j‘-'-‘t)! (14‘33)

Now F(p) is defined by Eq. 14-20 for even n only. For these even values
of n, F(jw) is a real number having the value

. 1
F(jw) = I F o (14-34)
Substituting this magnitude into Eq. 14-33 yields
fi(jw) = V/1/(1 + w,) (14-35)

This equation is precisely of the form of Eq. 14-17 which defined the
maximally flat function. Thus the pole configuration described by
fi(p) is the one required to give a maximally flat magnitude character-
istic. These poles are readily found by Eqs. 14-28 and 14-29—alter-
nately by the rules of page 370-—provided only poles in the left half
plane are retained. Similarly, it follows that for odd values of n, that

]hl(jwp)‘ = VH(jw,) = ‘\/1/(1 + w,™") (14-36)

under the same requirement that only left half-plane poles be con-

n=2 Juw n«3 Jw n=4 Jw
N N \‘
‘\ \ y
\\ 3 ™ \
~ @ N -4 RS, -3
T g-=a5° 7| 8- 260° N ge2225
," I’ 0° C .r, *67'5"
/ !
n=5 Juw Juw n=7 Jw
< \
1 N
- L] b \\ i
\\\‘ o ", [+4 ""-\_“ 2
’,"r g 0* §=-x15° _":;J =0
., 7 'J + 36' E3 45‘ ¢ ,' ,‘ * 22.8°
; *72° +75° o +51.8°
i +77.3°

Pig. 14-9. Pole locations for maximally flat frequency response (6
measured from the negative real axis).

sidered. The pole configurations to give maximally flat magnitude
characteristics for several values of n are shown in Fig. 14-9.
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Now the w, of the two network functions we have found, Eq. 14-35
and Eq. 14-36, is normalized radian frequency. If this term is rewritten
as w/wa, then in each case we are considering terms of the form

1
‘\/1 + (“’/‘*’ﬂ)gﬂ

This function has the value 1 at w/w, = 0. And when w/w, = 1 or
@ = wys, the function has the value (1/4/2) independent of the value
of n! This frequency i8 designated the half-power frequency as was done
in Eq. 11-79, and there is another half-power frequency at negative
wn. The response curve more nearly approximates a constant value
for larger values of n.

(14-37)

14-3. Overstaggered amplifiers (Chebyshev polynomials)

This last discussion points to a disadvantage of stagger-tuning an
amplifer for the maximally flat (or Butterworth) condition. The mag-
pitude function approximates a constant for a range of frequencies,
but as frequency becomes larger the approximation is poor. This is
illustrated in Fig. 14-10. The ideal characteristic is a constant shown

|G G|

{a) (b)
Fig. 14-10. Comparison of responses.

as a dashed line. The Butterworth response closely approximates the
ideal characteristic for low frequencies, but the difference between the
ideal and actual characteristic becomes large as frequency increases.
All the error (the difference between the ideal and the actual) is lumped
at high frequency. The total characteristic would seem to be better
if this error could be spread out over the entire band of low frequencies
(for this low-pass filter case). Such a frequency response is shown in
Fig. 14-10(b). The error is spread out from w = 0 to w = w, as an
‘““equal ripple,” a series of hills and dales. The maximum error is the
same for several points. Such a frequency response appears to be
better than the maximally fiat response. We face two problems: Can
we write an expression in mathematical form for this response? Can
we find the pole configuration that gives this response?

The equal ripple type of functions illustrated in Fig. 14-10(b) were
originally studied by the Russian mathematician P. L. Chebyshev
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some 100 years ago. Chebyshev found a certain type of polynomial
useful in his studies of the action of linkages used in steam engines.
These polynomials, which we will call Chebyshev* polynomials,
approximate a constant in the characteristic equal ripple form we have
illustrated. The general Chebyshev polynomial of order n is defined
by the equation

Cu(w) = cos (n cos™! w) (14-38)
Chebyshev polynomials for several values of n are as follows.

Cy = cos (cos~t w) = w (14-39)

Cs = 20 — 1 (14-40)

C; = 40® — 3w (14-41)

Cy = 8uw* — 8w? 41 (14-42)

Cs = 16w’ — 20w® 4 bw (14-43)

Cs = 320 — 48w* + 18w? — 1 (14-44)

Cori = 20Cs — Cay (14-45)

The last equation may be used to calculate higher-ordered Chebyshev
polynomials.

The equation for the magnitude of the voltage ratio transfer func-
tion (for the sinusoidal steady state) corresponding to the maximally
flat case defined by Eq. 14-17 has the form, for n stages,

Vﬂ+1(jwp) . , — 1
Vi(jws) Glioe) = A1 F Cr(wy) (14-46)
where ¢ is a constant (to be defined). Just as in the maximally flat case,
n will be related to the number and location of the poles (and hence to
the number of amplifier stages).

To construct this equal ripple function, we must start with a Cheby-
shev polynomial of order n and square it. The squared function is mul-
tiplied by the constant ¢ and added to unity. The reciprocal of the
square root of the resulting function is the transfer function magni-
tude. This process can be duplicated by performing each step graphi-
cally. The Chebyshev polynomial

Ca(w) = cos (n cos™ w) (1447)
is defined for a range of w from +1 to —1 (thatis —1 £ w £ +1).

* Chebyshev is also variously spelled as Tchebycheff, Tchebichef, ete. These
forms apparently resulted from repeated translation: Russian to German, Ger-
man to French, etec. The spelling used is considered the best Russian to English
translation.
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When |o| > 1, cos™! w = j cosh~! w and
Cu(w) = cosh (n cosh—! w) (14-48)

This function does not have a “rippling” nature but increases with «
at a rate determined by the value of n. Plots of C.{w) for several values
of n are shown in Fig. 14-11. The functions vary from -1 to —1 over
the frequency range 0 £ w < 1. Several features of the Chebyshev

50+
40
I
': Cn 30 -
1 w
\ 20}
L
]
i 10k
n~5%
0 1
{a} {b)
Fig. 14-11. Chebyshev polynomials: (a) plot for 0 < w < 1; (b) plot
for w > 1.
Gt G2
L S S
1
! I
‘ t
N ¥
L] ]
0 1 w O 1 w
n=4 {even) n=5 {odd)

Fig. 14-12. Squared Chebyshev polynomiala.

polynomials ¢an be seen from the plots of Fig. 14-11. For all odd values
of n, C,{w) has zero value at w = 0 and the initial slope is alternately
positive and negative. For even values of n, C,.(w) alternately has the
value +1 and —1 at w = 0. When the Chebyshev polynomials are
squared, all the negative values of the C.(w) plot will be “reflected”
as positive values. For odd n all plots of C,%(w) start from zero and have
initially increasing values; for even n all plots of C,*(w) start from +1
and have an initially decreasing values. Typical plots of the squared
function are shown in Fig. 14-12.
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To construct our equal-ripple frequency response, the curves of
Fig. 14-12 above are multiplied by e (which will merely reduce the
scale) and substituted into the equation

1
V1 + Ca¥(wy)
When C,.(w,) has zero value, G(jw,) will have unit value; when Ca{w,)

has the value of unity (the maximum value it can have), the magnitude
function will be

IG(J "’ﬂ)i = (14'49)

1
V1+e

The ripples will vary between these two limits as shown in Fig. 14-13
for two typical values of n (corresponding to Fig. 14-12). The ripple

(14-50)

|6l G|
1

[
i - -

n=4 (even) n =5 {odd)
Fig. 14-13. Equal-ripple frequency response.

width is often specified in decibels. This width and e are related by the
equation

ripple width = § = 420 log;s 1 —~ 20 log;e (14-51)

qu

or 8 = 10 logy (1 + € (14-52)

where § is in decibels. From this equation e can be found if § is specified
(in a design problem).

At this point, the quantity e will be defined in terms of a new factor,
a in order to simplify the computation. This relationship will be jus-
tified later in this chapter and will appear as Eq. 14-71. Then, by
definition,

1 .
€ = Snh? (na) (14-53)
1 1
or a = -~ sinh—1 - 14-54
- 7 ( )

where n is the order of the Chebyshev polynomial.
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In the maximally flat case, the frequency response curve had
dropped t0 0.707 at w, = 1. For the Chebyshev equal-ripple frequency
response, the curve has a value 1/4/1 + ¢ at the same frequency. In
the Chebyshev case, another frequency has significance. Let v, =
cosh a, corresponding to a particular frequency larger than w, = 1.
By the equation for the Chebyshev polynomial,

Cn(cosh @) = cosh [n cosh—! (cosh a)] (14-55)
= cosh na (14-56)

Now the factor a is defined by Eq. 14-54. Substituting this value for
a in Eq. 14-56 gives

C.(cosh a) = cosh (sinh“‘ '\E/";) (14-57)

The hyperbolic sine and hyperbolic cosine are related by the identity
cosh? z — sinh? z = 1 (14-58)

If, from Eq. 14-57, sinh ¢ = —— (14-59)

Ve

then, by the above identity,

cosh £ = /1 4 1/e (14-60)
or z = cosh~! 4/1 4 1/e (14-61)

Then Eq. 14-57 may be written
C.(cosh a) = cosh (cosh—! /1 + 1/e) = v/1 + 1/ (14-62)

If this equation is squared and unity is added to both sides of the equa-
tion, there results
1 4 eC.2(cosh a) = 2 + ¢ (14-63)

This equation is in the form of the square root factor of the frequency
response given by Eq. 14-49. Making this substitution gives

IG(j cosh @)] = ———v =~ 0.707 (14-64)

V24 e

if ¢ is much smaller than 1. Thus for the approximation that ¢ is small
(the usual case), the frequency w,, = cosh a corresponds to the ‘“half-
power”’ frequency in the maximally flat case. This is illustrated in
Fig. 14-14 (along with other information that we have deduced thus
far). The approximate half-power frequency, cosh g, is determined by



Art, 14-3 AMPLIFIER NETWORKS 377

the value of a, which is determined by both n and e. For a large value
of n, a is small and cosh a has a value only slightly larger than unity.
In other words, the larger the value of n, the faster the frequency
response falls off with frequency above w, = 1 (giving better filtering
action). This steepness of the response characteristic is also dependent
upon ¢, which is in turn dependent upon the size of the ripples in the
frequency range w, = 0 to w, = 1, The summary of our knowledge
of equal-ripple frequency response characteristics, shown in Fig. 14-14,

Gl

1

Jite
0.707 {approx.}

0 Ncosha

Fig. 14-14. Half-power point of frequency response (n = number of
half eycles of ripple).

indicates that specifications are complete and given in terms of ¢, a, 8,
and n. We next turn our attention to the pole configuration that will
give the equal-ripple characteristics.

The procedure for determining the locations for the poles parallels
that for the maximally fiat (or Butterworth) case. In this procedure, a
function of the form of Eq. 14-49 with w, replaced by some other var-
iable is written, and the poles of this function are determined. As in
the maximally flat case, the poles in the right half plane are rejected
to give the magnitude function. Paralleling the discussion leading to
Egs. 14-18 and 14-19, we let p = jw, or w, = p/j and examine the
function appearing under the radical in Eq. 14-49 which is

1+ C.2(p/j) =0 or C.Xp/j) = —1/e (14-65)

Now C.(z), where z is any variable, is defined as C.(z) = cos n cos™! z,
lz| £ 1, so that the last equation becomes

cos n cos~! (p/f) = +j/Ve (14-66)

Since the inverse cosine of a complex number is complex in general, we
define cos™* (p/j} = a — ja such that

cos (na — jna) = +j/Ve (14-67)
Expansion of the cosine of the difference of two angles gives

cos na cosh na + 7 sin na sinh na = +j/ \/; (14-68)
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The real and imaginary parts of this equation may be equated togive
cos na cosh na = 0 and gin na sinh na = £1/4/¢  (14-69)

Since cosh na cannot equal zero for any value of a, « must have values
given by the equation

_2N +1

2 rudmns N=0,12 ...,n (14-70)

For these values of «, sin na = +1 and
a=+ }tsinh“’ (1/4/¢) (14-71)

This equation was introduced without proof as Eq. 14-534 in order to
simplify the discussion at that point.

Since we have now determined the required values of « and a in the
equation, p/j = cos (a — ja), we write

p=jc03(2Nn+ ‘;mja), N=012..,n (1472

N+lr+.(‘mg_fy+11mr_),
2 J n 2

or p=cosha (wtanh a sin
N=0012...,n (147)

This equation defines the roots of Eq. 14-65 as required. Our next
step will be to modify the form of this equation for comparison with
the results of the maximally flat case. From the identities, cos z =

sin (% — )and sinz = cos | = — x)r Eq. 14-73 may be written

2
p = cosh a (—tanh a cos b + j 8in b) (14-74)
where bw"_z;,f_lm N=012..,n (14-75)

We have already found that the poles for the maximally flat case aré
located on a circle with locations given by the equation

p =e¥ = cos b’ + j sin b’ (14-76)

where b’ values are given by Eq. 14-28 for even values of n and by
Eq. 14-29 for odd values of n as

po=2m =1 x, neven (14-77)
2n

b = kx/n, nodd (14-78)
We next compare these angles with those of Eq. 14-73. These tWO
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angles are equa!l for the following integer values for m and k, found by
equating Eq. 14-75 to Eqs. 14-77 and 14-78

m = (n — 2N)/2 for even n (14-79)
and k=(n—1-2N)/2 for odd n
where N = 0, 1, 2, ..., n. For a given value of n, the angles b and b’

are equal although they are specified in different orders according to
Eq. 14-79. The equality of these angles for the equal ripple and max-
imally flat cases is the basis for a simplified method for locating the
roots in the equal ripple case.

Comparing the equations, p, = cos b’ + jsin ¥’ and p: = cosh a
(—tanh a cos b -+ j sin b), we see that the roots for the equal ripple
case can be found from the roots for the maximally flat case by the
following steps: (1) Change the radius of the circle of the maximally
flat case from 1 to cosh a. (2) Multiply the real part of the poles located
for the maximally flat case by tanh a. This construction is illustrated
in Fig. 14-15. The angles tabulated in Fig. 14-9 will be found useful in
constructing the new pole configurations for the equal ripple case.

n=3 Jw

o) cosh a .
n=4 Jw

Ls— Ellipse .{ cosh &
o sinh g ~J_/ a

3

Circle

cosh a

bt~ cosh a

Fig. 14-1B8. Location of poles for Fig. 14-18. Pole locations for Cheby-
Chebyshev case. Real parts of poles on shev case.
circle are multiplied by (tanh a).

The roots for the equal ripple case are located on the periphery of
an ellipse. This can be demonstrated by noting from Eq. 14-74 that if
P = 0, + jw,, then ¢, = —sinh a cos b and w, = cosh a sin b. From

these two equations it follows that
oyl wp?

sinh?a ' cosh?’a

= ] (14-80)

This is the equation of an ellipse with its major axis along the jw, axis
having a major semiaxis of length cosh ¢ and a minor semiaxis of
length sinh a. These features are illustrated in Fig. 14-186,
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All computations thus far have been for unit transfer function mag-
nitude and unit cutoff frequency. In a practical case where the cutoff
frequency may be kilocycles/sec and the magnitude is large (as deter-
mined by the gain of the tube), the magnitude and frequency can be
scaled by multiplying all normalized frequencies by w, (usually taken
as the half-power frequency) and the magnitude which is the maximum
gain of the system under study. In many cases, there will be advantage
in leaving the scaling to the last step in the design, because of the
relative ease of working with small numbers. We turn next to the actual
amplifier networks used to realize these stagger-tuned characteristics.

Low-Pass Filter Amplifier. An examination of the complex plane
for the Chebyshev case shows that only poles are present; no zeros have
been required. There are networks with this transfer characteristic,
or & network can be constructed by using results that have already
been found. Consider the shunt peaked amplifier network studied in
Art. 14-1. The voltage ratio transfer function for this network has,
for the high Q case, two poles (conjugate pair) and one zero. The
location of the poles in the complex plane can be controlled by control-
ling the @ of the network. This is ac-
complished in practice by adjusting
the inductance by means of a tuning
slug (alternately, the resistance might
be varied). But we still have a zero,
and that zero cannot beignored. Keep
o o this problem in mind, and let us turn
Fig. 14-17. RC amplifier network. our attention to another network

shown in Fig. 14-17. If the tube has
a high plate resistance (and acts as a current source), the transfer func-
tion for the voltage ratio is

Vs
£

where Z(s) is the impedance of the plate circuit (termination). For
the network shown, the impedance has the value

Vyis) C/= R Vs

= —gnZ(s) (14-81)

1 1
and the voltage transfer function is, in terms of p = 8/w,
Vip) . gm ( 1 )
Vi) = @xC \p F 1/anRC (14-83)

The network has a pole on the negative real axis of the s plane; its
position can be adjusted by adjusting either R or C. Return now to our



Art. 14-3 AMPLIFIER NETWORKS 381

problem of the zero: Here we have a network with a single pole. Might
this pole be used to cancel the unwanted zero? If the two stages can
be connected together in cascade such that the two networks are iso-
lated (and this s the case because of the isolating action of the ampli-
fiers), the answer is yes. The cascade connection has a transfer function

G(p) = G:i(p)G:(p) (14-84)

The two appropriate transfer functions are Eqs. 14-6 and 14-83; the
over-all transfer function is

1
Vout(D) _ Gmgm, (P + Q—)

Vald) ~ @2C:C G F 970+ Do ¥ VankCy| 145
where p = $/w, i8 normalized frequency. If we set
1 1
Q0 w.RC (14-86)

the pole and zero cancel, and the transfer function has only two poles
defined in terms of @. This cancellation is illustrated in Fig. 14-18.*

b
I

Q
Q

Stage 1 * |jw Stage 2 Ju

Composite poles x [jw

X

Fig. 14-18. Use of two stages of amplification to give conjugate poles
{no zeros).

* Another amplifier network with the same charaeteristics is shown in Prob,
14-6. For a discussion of stagger-tuned amplifier design, see McWhorter and Pettit,
Proc. IRE, 48, 923 (1955),
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This basic network unit shown in Fig. 14-18 may now be used to
build a pole configuration to give either maximally flat or Chebyshev
frequency response. This is illustrated in Fig. 14-19, where the net-
works are adjusted by varying parameters to give maximally flat
response, These poles might be adjusted to give a Chebyshev fre-
quency response, using the same basic building blocks in the form of
the networks of Fig. 14-18.

Jw

Ja e
X

lPoEe pair
v Network of Network of v
in Fig. 14.18 Fig. 14.18 out
Ot —

Fig. 14-19. Cascade connection of networks to give maximally flat
response (n = 4).

Band-Pass Filter Amplifier. Since the poles and zeros can be moved
to any position in the s plane by merely adjusting parameters (of
course, within the range of practical adjustment: the network @ can
be made only so large with practical elements), the poles can be
adjusted to give band-pass filter characteristics, using the same basic
ideas as in the low-pass filter case. As the building block in this exam-
ple, we will make use of the shunt peaked network which is the first
half of the network of Fig. 14-18. The transfer function of this net-
work amplifier was derived as Eq. 14-6 and has two poles and one zero as

Vop) g (» — pv) .
Ve =~ & | =) (1487
where, as in the low-pass filter case, p = s/w,. Suppose that four such
networks are cascaded and the poles are adjusted for the configuration
shown in Fig. 14-20. This time we have zeros. The effect of the zeros
must be taken into account. The over-all transfer function for the
four stages is (using subseript numbers to designate the stage)

Vout(p) - G GmsmGm,
Vs'ﬂ(p) wu‘wﬂ,wn,wmc 102C3C
v (p — pu)(p — p1a)
(@ — Pa)(P — goal*)(p -)-( Pa,) (P -; Pa,*)
P — Pua)\p — Pus
X P — P (@ — Pa,) (@ — D)@ — Pa™) (14-88)
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The cascaded system thus has eight poles and four zeros. The position
of the poles and zeros can be fixed by adjusting the circuit @ for each
stage (fixing the poles also fixes the zeros, however). For a maximally
flat response, suppose that the poles are assigned positions as shown in
Fig. 14-20(b). One stage contributes one pole in the upper half plane,
one pole in the lower half plane, and one zero. The poles have positions

A
1

b -
(e)

[
}
_— __f,__ — = ~0.707 Gmax
"
]
]
]

i
1
|
;
¥
[
% i

¢ wp wp Wy w
(d)

Fig. 14-20. Maximally flat band-pass filter characteristics (four
stages of amplifier networks): (a) four cascaded stages; (b) pole-zero
configuration for maximally flat response; (c¢) basic unit of each stage
(shunt peaking network); (d) maximally flat response curve.

on the periphery of a circle having a diameter (wp1 — wp2), Where wps
and w, are half-power frequencies for the maximally flat case. For
the sinusoidal steady state, when p = jw, each frequency term in
Eq. 14-88 can be represented by a phasor as shown in Fig. 14-20(b).
For frequencies from w,; 10 wys, the poles in the upper half plane have
the greatest effect on the transfer function magnitude. The phasors
from these poles are changing rapidly in magnitude, while the phasors
from the poles in the lower half plane and the zeros are changing slowly.
In many practical designs, the mid-band frequency w, is high and the
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band of pass frequencies (wp2 10 w,1) 18 small. Under these conditions
the last equation can be written in approximate form as

Vout(p) — 1 R
Vin(p) =K (P - Pm)('P - paz) (P - pa:) ('P - pm) (14 89)

where K is only approximately constant and is given as

K = GmgmlmGm, (P~ pu)(p — Pro)(p — p1a)(p — P1y)
® w0000 @00 C102C0Cs (p — Pa*) (P — Pa) (P — Pa*) (P — Pu¥)
(14-90)

This equation for the voltage ratio is of the form required for the two
types of responses that have been studied. The poles of this equation
can be adjusted to give either maximally flat (Butterworth) frequency
response as illustrated or equal ripple (Chebyshev) frequency response.
The response for the maximally flat case is shown in Fig. 14-20(d).
The band-pass features of this response are evident. Such response
characteristics are required in such applications as intermediate fre-
quency amplifiers in superheterodyne receivers.

The usual specifications for design are: (a) the mid-band frequency
wo, (b) the over-all bandwidth, (c) the rate of decrease of the frequency
response outside of the pass band, and (d) the over-all gain. ¥From
these specifications, n (the number of stages) is determined.

For the maximally flat case (Butterworth), the pole configuration is
then selected from the chart of Fig. 14-9 or from corresponding equa-
tions. The parameters of the actual network are used and then
adjusted to give the required real and imaginary part for each pole.

For the equal ripple (Chebyshev) case, the ripple width is usually
specified in addition to the list given above. From these specifications,

(1) Determine é from Eq. 14-52 as

6 = 10 logio (1 + €) decibels (14-91)
(2) Calculate the factor a from Eq. 14-54.
1 1
a = - ginh™* — 14-92
7 inh (1492

(3) Compute cosh a and tanh a. Draw a circle of radius (cosh a),
equal to the bandwidth, with a center at the mid-band frequency.
Locate the poles on this circle as in the maximally flat case (given
above). Multiply the real part of each pole by tanh a. This
gives the pole locations for the Chebyshev case.

(4) Adjust the parameters of the network being used to give these
pole locations,
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An example will illustrate the design procedure just outlined. Three
stages of amplification with shunt peaking are to be stagger-tuned
with an equal-ripple characteristic. The mid-band frequency is to be
5.0 megacycles/sec, and the bandwidth to the half-power frequencies
is to be 500 kilocycles/sec. The ripple width is specified as 1.0 db.
We are required to find the mid-band frequency and the @ for each of
the three stages. The parameters K, L, and C of the shunt peaking
network ean in turn be found if one of the three is fixed (as it often is
in practice—for example, the interelectrode and wiring capacitance).

Following the steps just given we first find ¢ from the equation

& = 10 logw (1 + ¢ decibels (14-93)

Since & = 1 db, we have
1 =10log (1 +¢ or e=10%—1 (14-94)
and e = 0.259 (14-95)

We next compute the factor a from Eq. 14-92 as

o= Lainh-t L = Lsinh—11.963 = 0475 (14-96)
n

Ve 3

For this value of the factor a, the hyperbolic tangent has the value
tanh a = 0.442 (14-97)

We next turn our attention on the pole-zero configuration—in partic-
ular to the location of the poles. Figure 14-9 shows the pole locations
forn = 3 as occurring at § = 0° and +60° with respect to the negative
real axis. These pole locations for a bandwidth of 0.500 megacycle are
shown in Fig. 14-21. With respect to the midband frequency, the poles

3 poles

e JJw Jo

¢ 7935 {5.25 mc/s)

0.50 me
3 zeros Jjo {5.00 mc/s)

“‘---—-G s

3 poles _
¢ 5025 ¢ {4.75 mc/s}
ta) {b)

Fig. 14-21. Pole location for maximally flat frequency response:
(a) full scale (approximately); (b) region of interest.



386 AMPLIFIER NETWORKS Chap. 14

have the locations:
81 = (—0.5 -+ j0.866)0.25,
s2 = (—1.0 + j0)0.25, (14-98)
83 = (—0.5 — j0.866)0.25

i

The actual locations in the s plane are shown in Fig. 14-21 (hardly to
scale even so). For the equal ripple response, the real part of the pole
location is multiplied by (tanh a = 0.442). The new locations for the
poles then become

s’ = (—0.221 + j0.866)0.25,
sy’ = (—0.442 + 70)0.25, (14-99)
s’ = (—0.221 — j0.866)0.25

|

where all measurements indicated by these equations are made with
respect to 5.0 megacycles/sec.

For the high-) case (corresponding to { < 1), the bandwidth B is
found from Eqs. 11-86 and 11-87 as

B = 2twa (14-100)
and @ is defined by Eq. 11-77 as

=L
=3

Combining these two equations, we have

(14-101)

_ Wy fn
R (14-102)

where f, is the natural undamped frequency in cycles per second, and
B; is the bandwidth in cycles per second (the common 2x term cancels).
In Fig. 14-22(b) the distance from the jw axis to & pole location is

s-plane Jo }
jjw

la) {b)

Fig. 14-22. (a) New pole location for the equal ripple case; (b) &, pole
enlarged to show distance to jw axis.
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marked d. By Eq. 11-70 this real part of the complex pole has the value
(tws). But by Eq. 14-100, the bandwidth is given as B = 2{w.. From
this it is seen that

d = -2’3 (14-103)

or that the distance d is the ‘“half bandwidth.”

We next make use of these last two identities to design the stagger-
tuned amplifier corresponding to the computed pole configuration,
under the assumption that the zeros have negligible effect. Assume
that stage 1 will be made to correspond to the pole s,’ and its conjugate,
stage 2 to 82’ and its conjugate, and stage 3 to pole s;’ and its conjugate.

For stage 1 (s,"),
f= = 5.0 4+ (0.866 X 0.25) = 5.2i7 megacycles/sec
By = 2 X 0.221 X 0.25 = 0.110 megacycle/sec
Q = fu/B; = 472
For stage 2 (ss),
f» = 5.0 megacycles/sec
By = 2 X 0.442 X 0.25 = 0.221 megacycle/sec
Q = 226
For stage 3 (s4'),
T = 5.0 — 0.866 X 0.25 = 4.783 megacycles/sec
By = 2 X 0.221 X 0.25 = 0.110 megacycle/sec
Q = 43.2

The amplifier-network realization of the required equal-ripple char-
acteristic is shown in Fig. 14-23. If required, the circuit parameters

Stage 1 Stage 2 Stage 3 o

Al
/

Fig. 14-28. Equal-ripple realization.

Stage 1 Stage 2 Stage 3
fr, me/sec 5.217 5.00 4.783
By, me/sec 0.110 0.221 0.110

Q 47.2 22.6 43.2
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R, L, and C can be found, if one is assumed fixed. Figure 14-24 shows
how the characteristics of the individual stages are combined by the
tandem connection to give the equal-ripple frequency response.

— S o0 db

e =S -10db
:/ \\\
7 \
0.707’ / e~ 3 -3db
,' Stage 3 Stage 2 Stage 1\ '
by \
s f,
475 4.783 5.00 5217 525 mc/s

Fig. 14-24. Combined frequency characteristic.

The frequencies marked f, and f, are frequencies corresponding to the
end of the ripple band. In most of the preceding discussion this fre-
quency has been normalized to unity. By the specifications of this
problem, it was more convenient to work with the 3-db point frequen-
cies (4.75 and 5.25 megacycles/sec). The frequencies f, and f, are
given as
fon fa = 500 + 0.25

cosh a

megacycles/sec (14-104)

= 4,776 megacycles/sec, 5.224 megacycles/sec (14-105)

One advantage of the equal-ripple case over the maximally flat case
is that the gain is higher for the equal-ripple configuration. This
follows because the poles are closer to the jw axis in the equal-ripple
case. Referring to Fig. 14-22(a), the gain at the mid-band frequency
(5.00 megacycles/sec) may be found in terms of phasor lengths. The
ratio of gains of the equal-ripple case to the maximally flat case is

given as
Isq} - lsq] - |s3| - (other pole and zero

distances)
I8y - |82'] - |85’} - (the same pole and (14-106)

zero distances)

ratio of gains =

The distances to each of the other poles and zeros is approximately the
same for both cases. The three significant distances may be found by
converting the complex numbers of Egs. 14-98 and 14-99 to polar
form. For this particular problem

equal ripple gain (0.25)*
maximally flat gain  (0.223)* X 0.1105

at 5.00 megacycles/sec.

=28 (14-107)
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Offsetting this gain advantage is the disadvantage that the phase
angle of the output with respect to the input as a function of frequency
is not so linear in the equal-ripple case as in the maximally flat case.
This nonlinear characteristic restricts the application of equal-ripple
designed amplifiers in such applications as television.

FURTHER READING

The best known treatment of stagger tuning is that in Valley and
Wallman, Vacuum Tube Amplifiers, Vol. 18 of the Radiation Labora-
tory Series (McGraw-Hill Book Co., Inc., New York, 1948) Chap. 4.
This account is based on an MIT Radiation Laboratory report by
Henry Wallman issued in 1944. Two earlier papers on stagger tuning
are Butterworth, “On the theory of filter amplifiers,” Wireless Engi-
neer, T, 536 (1930) and V. D. Landon, ‘“Cascade amplifiers with
maximal flatness,” RCA Rev., b, 347 (1941). Further discussions of
stagger-tuned amplifiers are to be found in T. L. Martin, Jr., Electronic
Circuits (Prentice-Hall, Inc., New York, 1955), LePage and Seely,
General Network Analysis (McGraw-Hill Book Co., Inc., New York,
1952), pp. 238-256, and R. F. Baum, “Design of broad-band IF
amplifiers,” Jour. Appl. Phys., 17, 519 and 721 (1946). An extensive
bibliography on the subject is given by H. A. Wheeler, “The
potential analog applied to the synthesis of stagger-tuned filters,”
Proc. IRE, CT-2, 86 (1955).

PROBLEMS

14-1. For the amplifier network shown in the accompanying figure,
find the voltage ratio transfer function. The vacuum tube has high

Prob. 14-1.

plate resistance and can be considered a current source. Show a
typical pole-zero configuration if the components have values to corre-
spond to the oscillatory case. Networks of this type find application
in cascade-connected amplifiers.

14-2. The amplifier network shown in Fig. 14-3 is to be designed
according to the following specifications. The tube used in a 6AKS5,
for which & g.. of 4500 pumho may be assumed. The capacitance of the
amplifier stage is the interstage capacitance only (including the tube,
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socket, and wiring) which has a value of 12 puf. If the circuit @ has a
value of 75 and the frequency at resonance is 12.00 megacycles/sec,
determine: (a) the values of R and L, (b) the maximum gain of the
amplifier stage, and (¢) the bandwidth. Answer. (a) 14.7 ohms,
14.7 uh, (b) 375, (c) 160 ke.

14-3. The network is to be used as a voltage coupling network.
(a) For the voltage ratio transfer function to have a maximally flat

Prob. 14-3.

frequency characteristic of the form, 1/ v/1 4 w™, where  is in
radians/sec, what must be the relationship between K and L? (b)
Determine a value for R and for L such that the half-power frequency
(of the maximally flat characteristic) is 10 radians/sec.

14-4. Plot the function 1/4/1 + o™ for 0 £ w £ 4 for n = 1, 2,
and 3.

14-5. The network shown in the figure is known as a second-order
Butterworth filter. Find the magnitude of the transfer impedance
defined as
Va(jw)

|Z12(jw)l = (%)

and show that it has maximally flat frequency characteristics. Sketch
the frequency response curve and identify significant points such as the
half-power frequencies, ete.

L 1/\/2h

Prob. 14-5. Prob. 14-6.

14-6. In this problem, the second-order Butterworth network of
Prob. 14-5 is to be used in the amplifier network shown. It is desired
that the frequency characteristic be maximally flat, but for this net-
work two changes must be made: (1) the load resistance R must be
50 ohms (purely resistive) and (2) the hali-power frequency must be
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950 kilocycles/sec. Determine the values of I and C to meet these
requirements. Answer. L = 1.414 X 10~ henry, ' = 0.113 uf.

14-7. The network shown in the figure is a third-order Butterworth
filter (that might be used in a pentode circuit as shown in the last
problem). For this network, show that the magnitude of the transfer
impedance, |Z12(jw)| has a maximally flat frequency characteristic and
that the transfer impedance has the form

Z1a(8) = (s = s1)(s j 82)(8 ~ 83)

where 81 = —1, 82 = —3 -+ 7 4/3/2, and s3 = sp*.

rFO0N —0
4h

©

Prob. 14-T. Prob. 14-8.

14-8. Show that the transfer impedance, Z;s(s) = V(s)/1:(s), of
the network shown in the figure differs from that given in Prob. 14-7
only by a constant multiplier. Determine the constant.

14-9. Plot the function 1/4/1 + €,*(w) where C,.(w) is the nth
order Chebyshev polynomial defined by Eq. 14-38 if ¢ = 0.25 for 0 =
wS4forn = 1,2 and 3.

14-10. Write the 8th order Chebyshev polynomial, Cs{w), in the
form of a polynomial.

14-11. Write the 9th order Chebyshev polynomial, Cy(w), in the
form of a polynomial.

14-12. An equal-ripple frequency response of the form given by
Eq. 14-49 has the following fixed parameters:n = 5 and ¢ = 0.1. For
this response, determine: (a) the maximum value of |G(jw){, (b) the
minimum value of |G(jw)| in the pass band, (¢) the ripple width § in
decibels, (d) the half-power frequency. Answers. (a) 1, (b) 0.953, (¢)
0.414 db, (d) 1.07.

14-13. Repeat Prob. 14-12 for n = 4 and ¢ = 0.2. Answers. (a) 1,
(b) 0.913, (¢) 0.79 db, (d) 1.076.

14-14. It is required that a system having the frequency-response
equation given by Eq. 14-49 have a half-power frequency at v = 1.10.
If the ripple width is limited to 0.5 db, what is the minimum value n
may have?

14-16. The constant factor a in Eq. 14-54 is assumed fixed in value.
Under this condition, derive a relationship between n and 8. Sketch &
and a funection of n.
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14-16. Refer to Fig. 14-16 plotted for n = 5. For this case, give
the locations of the poles for the Chebyshev case if @ = 3.

14-17. A maximally flat low-pass filter-amplifier with n = 3 has a
half-power frequency of w = 1.00. An equal ripple (Chebyshev) filter
i8 to be designed with the same half-power frequency, the same value
of n, and a ripple width of 0.5 db. Determine the upper and lower fre-
quency limits of the pass band (the frequency at which the equal ripple
ends).

14-18. A filter-amplifier is to be designed on the Chebyshev basis,
It is specified that the magnitude of the voltage transfer ratio must be

IG(jw}i
G~1
VS 0.5db
T
G~02

P77 777777777

0 10 1.1 w
Prob. 14-18.

inside the crosshatch sections. (No specifications are given for the
range o = 1.0 to 1.1.) What is the required value of n?

14-19. The network of Fig. 14-18 is to be used to give a maximally
flat frequency characteristic for a low-pass filter amplifier. The ampli-
fier is to have a bandwidth of 100 kilocycles/sec (measured from « = 0
to the half-power frequency). (a) Design an amplifier to meet these
requirements, Select a vacuum tube for each stage. Specify all com-
ponent values. (b) Compute the maximum gain for the composite sys-
tem. (¢) Plot the frequency response (gain vs. w) for the first stage.
Repeat for the second stage. Plot the frequency response for the com-
posite system.

14-20. A band-pass ampiifier network is to be designed to the fol-
lowing specifications: the mid-band frequency is 10.0 megacycles/sec,
the bandwidth to the half-power frequencies is to be 500 kilocycles/sec
the ripple is limited to 0.5 db. Based on gain requirements, a decision
is made to use 3 stages. Stagger tune these three stages of amplifica-
tion to give a Chebyshev equal ripple characteristic, using the basic
network shown in Fig. 14-23. Determine f,, By, and @ for each stage.
Determine the ratio of the maximally flat gain to the equal ripple gain
at the mid-band frequency.

14-21. Design a band-pass amplifier network having the mid-band
frequency and bandwidth given in Prob. 14-20 but for the maximally
flat case.

14-22. In this problem, we will investigate the transient response of
amplifier networks designed on the equal ripple and maximally fiat
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pasis. For this problem, let n = 2 corresponding to two poles in the
s plane of the form,

_ Va(s) _ 1
Z1a(s) = Ii(s) (8 — 8)(8 — 82)

where 8, and s, have different values for the two cases (equal ripple
and maximally flat). Two time-domain quantities of interest are the

i Maximum overshoot
100% e Steady state
GOX o e = = T y

i
t
i
]
10x} - '

I Rise time ’ t

Prob. 14-22.

rise itme and overshoot resulting from a step-function input. One def-
inition of rise time is the time interval, measured in seconds between
the times the response, that has 109, and 909, of the final (steady-
state) value. The overshoot is defined as

(maximum transient value) — (final value)
(final value)

X 100%

If the driving-force current is a step function; that is, i(t) = u(?),
determine the rise time and overshoot for (a) a maximally flat designed
amplifier network, and (b) an equal-ripple design amplifier network.
Compare these quantities for the two amplifier networks. Which
amplifier seems to have superior transient response? (Check point:
the overshoot for the maximally flat amplifier is about 4%,.)



CHAPTER 15
BLOCK DIAGRAMS

Biock diagrams are widely used by engineers as a shorthand sym-
bolism in describing a system. The block represents components:
entirely, in part, or in combination. Lines given direction by arrows
indicate the sequence of operations that take place in the system. Block
diagrams, as we shall use them, are not pictorial representations of
components. Several blocks may be used to represent a single compo-
nent or one block may represent a complex mechanism such as a digital
computer. Indeed, the blocks may represent the solution of a math-
ematical equation with no direct physical significance. The block
diagram provides a method for representing a system in such a way as
to express a cause-and-effect relationship between the input and the
output. Block diagrams are also referred to by the descriptive name
stgnal flow diagrams, where we define the signal as any causal quantity
intentionally introduced into a system (in contrast to noise).

As we study block diagrams, we should keep in mind the underlying
objectives in their use:

(1) Block diagrams are easier to draw than detailed schematic
diagrams. The block diagram is shorthand notation.

(2) Block diagrams, together with the transfer function, indicate
the dynamic behavior of the system. They tell the engineer not
only “what it is”’ but ‘“what it does.”

(3) The construction of a block diagram is one step in system anal-
ysis. Once constructed, the blocks may be manipulated by a
system of algebra to find a simplified equivalent block diagram.
This reduction in complexity is equivalent to algebraic reduction
of system equations,

15-1. Basic operations for block diagrams

Let the input to a system be designated as v, and the output as v,
(where v is any variable such as voltage, current, ete.). The relation-
ship between the input and output

. SN G Y2 may be expressed in terms of an
operator (, such that
Fig. 15-1. Block diagram. vy = Gy (15-1)

We define the block diagram shown in Fig. 15-1 to be equivalent to
394
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this equation. The function G may be any operator or any linear com-
bination of operators. For example, suppose that G represents differen-
tiation with respect to time. This means that the input v,(f) is differ-
entiated as dv,(f)/dt to be equal to the output, v2(t). The block diagram
equivalent to this statement is shown in Fig. 15-2(a). If the operation
to be performed is multiplication of a transform funetion Vi(s) by &
transfer funetion K s, then the block diagram and algebraic equivalent
are as shown in Fig. 15-2(b). A linear combination of operations,

L
it d vait) el = d::;:t)

()

N | ke 29 L yeeKsWi
{b)
Vis) Kys2+K, | Yol Vals) = K352 Vy(s) + KpVils)

(e}

Fig. 15-2. Block diagram and equation equivalents,

i v+~ ¥

> = WB=V:¥;
£
V2

Fig. 16-3. Summing point symbol.

Vi

V; * Va

25 A L 2 2 A
VaT

Fig. 16-4. Summing point.

expressed as G(s) = K;s? 4+ K, is shown in Fig. 15-2(c). Each term
in the expression operates on Vi(s) independently as illustrated.

Another basic symbol is shown in Fig. 15-3. The circle with arrows
pointing into it is a summing poini. Quantities entering the circle or
summing point are either added or subtracted according to directions
in the form of a + sign or a — sign on the arrow. If the sign on the
arrow marked V' is omitted in a diagram, it is presumed to be positive.
In constructing a block diagram, however, it is wise to use a sign for
each input whenever there might be doubt. This is very necessary in
the case when more than two inputs enter a summing point as illus-
trated in Fig. 15-4.
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When a single line on a block diagram separates into two or more
lines leaving the same point, all lines carry the same unaltered variable,
Such a point is called a pickoff point. A pickoff point in a system is
illustrated in Fig. 15-5.

Vi
V1 p GV1 c 1
i WV i
Vi
Vi mn
T, VI
{a} (b}
Fig. 16-6. Pickoff points.
.....Y.'...,.,. Gyls) Vi, Gyis) Ve, (i3] ---qu;-

Fig. 16-6. Tandem system.

Suppose that several blocks are connected in cascade (or tandem) as
shown in Fig. 15-6. The transfer function for each block is given on
the figure, and is the ratio of the output to the input for each of the
three cases. Since

Ve Vs Ve V,

VXXV T (15-2)
the total (or over-all) transfer function is
G = GGG (15-3)

This equality depends on there being ‘“no loading’ between blocks,
as will be discussed in a later section. Thus blocks connected in tandem

I
Y

e’ GIGZ — 61 » Gz -

Fig. 16-7. Expansion of blocks.

may be combined into a single equivalent block by multiplying the
transfer functions together for the equivalent transfer function. Like-

wise & system may be expanded into several parts as illustrated in
Fig. 15-7.

15-2. Block diagrams for electrical elements

Instantaneous value of voltage and current for the electrical ele-
ments are related by the following equations.
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resistance: va(l) = Rip(t) or <a(t) = Guat), G = 1/R
inductance: v.(t) = L di (t)/dt or 4.(t) = 1/L [ vi(t) dt (15-4)
capacitance: ve(t) = 1/C f 1e(t) dt or ic(t) = Cduc(t)/dt

These equations are equivalent to the block diagrams shown in Fig.

15-8.
Voltage output Current oulput

Resistance Bt} R vigh olt) G i)

i) viel ule) i)

Inductance e L-‘%— e R -}:-fdt jo—

. . ,
Capacitance LU %fdt WL U C% |4

Fig. 16-8. Block diagrams for electrical elements.

To construet a similar chart for the transform voltages and currents,
the Laplace transformation of each expression in Eq. 15-4 will be taken
with initial conditions ignored. The resulting equations are:

resistance: Vge(s) = RI.(s) or Iz(s) = QGVe(s), G =1/R
inductance: Vi(s) = L8l (s) or I.(s) = (1/L8)V.(s) (15-5)
capacitance: Ve(s) = (1/C8)Ic(8) or I¢(s) = Csle(s)

The same equations apply for the sinusoidal steady state, with s
replaced by (jw). Since the transform impedance is the ratio of the
voltage to the current transform (and, similarly, the transform admit-
tance is the ratio of the current to the voltage transform), a chart of
block diagrams for electrical elements may be constructed as shown in
Fig. 15-9 for transform impedance or admittance. The block diagrams
and the expressions for impedance and admittance shown in Fig. 15-9

Impedance Admittance

Iis) Vis)
e

Vi I
Resistance ——s| R Bl g (8}

Vi b{
Inductance _{{_8_’_’_ Ls .—Y.{.s_’.'- ............’.s) i (8}.

Vi Iis}
Capacitance _ﬁﬂ’_.. -é—‘ —--Vis) ......_.,.."’ Cs s

Mg. 15-9. Block diagrams and transfer functions for electrical
elements.
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reduce to the sinusoidal steady state with the substitution of (jw)
for s.

The use of this chart of block diagrams for the elements will be
illustrated by an example. Consider the electric circuit of Fig. 15-10.
The equation relating current and voltage is

—VVV ;
R o) = LY 1 Ry (156)
Qo C@ L%
or, in terms of voltage and current trans-
forms,
Fig. 16-10. RL circuit. V(s) = LsI(s) ++ RI(s) (15-7)

if 2(0-+) = 0. This last equation tells us that the applied voltage is
equal to the voltage drop across the inductor added to the voltage drop
across the resistor; that is,

V{(s) = Vi(s) + Vg(s) (15-8)

Equations 15-7 and 15-8 may be written in the following form and
order:

V(s) — Vr(s) = Vi(s) (15-9)
To(s) = 1_% Vi(s) (15-10)
Vi(s) = RI(s) (15-11)

There remains one task before we draw the block diagram equivalent
of these equations. We must identify the input and output quantities.
For this problem, let us identify the input as V(s) and the output as
I(s), corresponding to the excitation and the response. Now, following
the pattern suggested by Eq. 15-1 and the equivalent block of Fig. 15-1,

Vis) Vi 1 Iis)
i Ls >
Ve Vis} 1/R Is)
R {L/R)s+1 o
Fig. 15-11. Block diagram of net- Fig. 16-12. Block diagram for RL
work of Fig. 15-10. network.

we arrive at the system of Fig. 15-11. Instead of this diagram with a
block for each element in the network, a single block representation
may be found by solving Eq. 15-7 for the ratio of output to input, that
is, current to voltage. Thus

I(s) _ 1 - 1/R
V(i) Ls+ R Ls/R+1

(15-12)
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Thus an equivalent of the block diagram of Fig. 15-11, simplified in
form, is shown in Fig. 15-12. The two diagrams for one network sug-
gest that a method can be found for reducing one to the other. Rules
for such manipulations will be given in a later section.

15-3. Open-loop and closed-loop block diagram equivalents

An open-loop system is represented in Fig. 15-13 with E(s) as the
input (which will later be called the error input) and Vs(s) as the out-
put. This block diagram is equivalent to the algebraic equation

Va(s) = G(s)E(s) (15-13)
Suppose that a loop is closed around the system of Fig. 15-13 as shown
: Vals)
Et) A ek —>
e s Gls} B L x
Fig. 16-13. Open-loop system, Fig. 16-14. Closed-loop system.

in Fig. 15-14, with a new input identified as V:(s). The new system is
described by two equations:

E(s) = Vi(s) £ Va(s) (15-14)

Va(s) = G(8)E(s) (15-15)

The quantity E(s) is now identified as the error transform. Eliminat-
ing E(s) from the two equations gives

Vals) _ G(s)

Vi) " Y T TR 6w (15-19)

In this equation G(s) is sometimes spoken of as the open-loop transfer
function and L(s) as the closed-loop transfer function. The last equation
relates the open-loop to the closed-loop transfer function.

Viis) Bis} Gls)
E
t Als)
His) pe

-

Vals]

Fig. 16-16. Closed-loop system.

In & more generalized representation of a closed-loop system, an
element or combination of elements is included in the feedback loop
having a transfer function H(s). Such a system is shown in Fig, 15-15.
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The equations for this system are

B(s) = Vi(s) + A(s) (15-17)
Va(s) = G(s)B(s) (15-18)
A(s) = H(s)Va(s) (15-19)

If the two quantities A (s) and B(s) are eliminated from these equa-
tions, there results
Va(s) _ _ G(s)
Vi - 1O T TE A

Thus, the two blocks of Fig. 15-16 are equivalent, and one may be
substituted for the other.

v,
Vi Gls) 2
* i G Vo

1#GH

(15-20)

His) e

Pig. 16-16. Equivalent open- and closed-loop system.

15-4. Block diagram transformations

Manipulations of block diagrams in the last two sections can be
generalized into a system of block diagram algebra. The objective in
the use of this algebra is simplification; that is, reduction in the num-
ber of blocks and the number of loopa of a system. A large number of
rules for manipulations are given in the literature;* a few of the most

important are tabulated below.
Rule 1. Summation points may be interchanged without altering
the system. As illustrated in the figure,

Vi=Vi+ Vet Ve=Vi+Vi+ Vs

(by the associative law of algebra).

Vi + + Vi i+ + Vs

Vz Vi VS Vé

Rule 1
Rule 2. Blocks in tandem are multiplied.

\/ Vi
.ﬁ—’ Gx am— GZ —"‘2"'" - ‘*""5""‘. G]Gz """'Vz"""“""‘

Rule 2
» Qee references at the end of the chapter.
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Rule 3. Blocks in parallel are added.

V, V;
1 o G - 2 ,
- - Ay gug, 2
P> Gg
Rule 3

The following four rules indicate the procedure for shifting blocks
past summing-points or take-off points.

Rule 4.
L?—u G w‘-{ﬁ- —VLh G ——‘?—i*
W
3 G Vi
Rule 4
Rule 5.
v V; Y V5
LN PH —-?-A : ¢ -2
V2 V. [T
Rule 5
Rule 6.
LR J ¢ % LN e L
Y,
Ly o 176 |
Rule 6
Rule 7.
v, T o 1%
Rule 7

The following rules are applications of the rules given above.

Rule 8. Removing a block in the feedback loop.
Y

Ya Y
H

Rule B

\
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Rule 9. Transformation from open-loop to closed-loop.

Vi G, Va
/N G | Ve, - - f 1-G
Rute 9
Rule 10. Transformation from closed-loop to open-loop.
Vi Gis) %5
A - Vi a W
1% GH
His)
Rute 10

15-5. Limitations in the block diagram representation of physical systems

Care must be exercised in dividing a system into parts to be repre-
sented by block diagrams. This limitation may be illustrated by refer-
ence to Fig. 15-17. Two systems are shown, characterized by transfer
functions G and H. The two systems can be connected together in

Ix .....I.g..,.
[S—— ]
Va Y Vi Y
L G 5 -l H ---Vi>~ ' )
Fig. 16-17. Fig. 156-18. Two-terminal-pair net-
work.

tandem, making V,; = V,, only if in making this connection V; is
unaffected. This is the assumption of negligible loading of one system
by another. In terms of the electrical network shown in Fig. 15-18,
the assumption of negligible loading means that the output current
I, must equal zero or be so small that it may be neglected. If this is
not the case, the interaction must be considered in writing the dynamic
equations to describe the system. In other words, a section of a
dynamic system cannot be separated from the system for analysis
without considering the interaction of this section of the system with
the rest of the system.

To illustrate, consider the double BC network of Fig. 15-19, shown
separated into two separate RC networks. The transfer function for
the entire system cannot be found by multiplying the transfer func-
tions of the parts of the system, since the second network loads the
first; that is, it causes a current to flow in the output of the first RC
network. This will be discussed in Example 5 of this section. However,
if some isolating device, such as an amplifier, is connected between the

two networks, then
G: = GGGy (15-21)
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where G, is the over-all transfer function, G is the transfer function of
the first RC section, G; is the transfer function of the second RC sec-
tion, and G,; is the transfer function of the cathode follower amplifier

AN -0 AAN—T—0
Ry R,

Vla - Cl 02:"'_" ‘5..:

O L O 0

R I Cathode R, [
C

V. G follower 2 4
- T isolation) T out

()
Fig. 15-19. (a) Double RC network; (b) modification of (a).

(considered a constant). This follows because the cathode follower
has high input impedance and draws negligible current at its input.

Several examples will be given to illustrate the concept of the trans-
fer function, of block diagram representation of physical systems, and
of the restrictions on tandem connection

of blocks. o 'Vg\' "LC ©

Ezample 1 v /D vy
The electrical network shown in Fig. Ry

15-20 is known as a lag nefwork. It finds 4 o

application as a compensating network in  pjp 1520, Lag network.
servomechanisms, The relationships be-

tween the instantaneous voltages and currents are given by Kirch-
hoff’s law as

vy = (B + Ra)t + -@,]7- [ 1dt (15-22)

o [ P dt 4 R (15-23)

From these equations, the transfer function is found to be

Vals) _ G(s) = E:Cs 41 R, (s + 1/RsC)
Vi(s) (Ri+ R)Cs ¥ 17 B, F Rals + 1/(B1 + R2)C]

(15-24)
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The block diagram equivalent of the lag network of Fig. 15-20 is shown
in Fig. 15-21 where T, = R,C and
T+l V2. T:= (R,+ RyC.

T+l "

Vi

Ezxample 2

Fig. 16-21. Lag network block  An electronic amplifier is shown
diagram. in Fig. 15-22. From the equivalent
circuit, the transfer function is found to be

Vo  uRy
V.= T Rx (15-25)
B, Tp ’\/r\/\r ©
= S wf‘f’i()’bné "
" Ry v, +
L]
° f——i— <
{a) {b}

Fig. 15-22. Vacuum tube amplifier: (a) schematic; (b) equivalent
circuit.

Ezample 3

A cathode follower schematic and the equivalent circuit are shown
in Fig. 15-23. The transfer function can be determined from the

wr, ’\/\/\/
:3 ulv —iRgl C) q
b D)
N
0 i *
0

{a}
F¥ig. 16-23. Cathode follower: (a) schematic; (b) equivalent circuit.

equivalent circuit to be

Va_ (/1 + wRe
vV ro/ (1 4+ u) + Bx

The value of the transfer function is a constant equal to the gain of the
electronic circuit.

(15-26)
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Example 4

The network for this example is shown in Fig. 15-24. The resistance
R, bas a very high value such that the current flowing through it is
negligible compared with that through R, (in other words, R, does not

i !
o—AANN . L
R, C._L ! !
H { "
v t e
i ‘UZ §R‘ :03
R; t | Ry
4 i U
- { |
o , L
)
0
Fig. 16-24. Amplifier network.
Vi 1+ Tys Va V3 (w/ut+HBRe | Vg
> 1+ Tos g 1 | tre/u+ D+ Ry

Fig. 16-26. Block diasgram equivalent of Fig. 15-24,

load the remainder of the network). Also, it may be assumed that the
grid draws negligible current. With these assumptions, it is seen that
the network is actually composed of a lag network, shown in Fig. 15-20,
and a cathode follower, shown in Fig. o __AaA, AAA o

15-23. The block diagram representa- R, R,

tion of the system is shown in Fig. D) a==< L) =RC: v
15-25.

Ezample § ° °

For thisexample, consider the double Fig. 16-26. Double EC network.

RC network shown in Fig. 15-26. The two currents are marked 7; and
t2. By Kirchhoff’s law, the system equations are

. 1 . .
Py = R;’bl + ‘C—lf('tx fd '1.2) dt

0= —-1w / (tg — 1) dt + Rtz + "}— [ 12 di (15-27)

Ugﬂ-}—/izdt
2

The corresponding transform equations are, if the capacitors are
initially uncharged,
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Vi(s) = Rils(s) + @%[Il(s) — In(s)]

1
018

Vi(s) = ‘C};“é Is(s)

0 = o [Is(s) — Ii(s)] + Rala(s) + 6,1?8 I(s)  (15-28)

Considering V', as the input and V' as the output, the block diagram
of Fig. 15-27 is constructed from the algebraic equations of Eq. 15-28.
The block diagram reduction procedure, following the rules stated in

Vi I Ii~L V5 I ;i
1 1 : 1 1o 1/Cis 2 1 : 2, 1/Cys BN
- Ri+ ﬁ;’; —-— Rg“i‘a;
2
1/Cls

Fig. 16-27. Double EC network block diagram.

Combined

3
D
1
A E C - G

4

2 la)

Vi 1 V2
R1 RzC] 02824— {R,\Cz'&‘ R;C1+R2C2}s +1

!
Fig. 16-28. Block diagram reduction.
Art. 15-4, is outlined by the sequence of blocks in Fig. 15-28(a). The
simplified block diagram and composite transfer function are shown in

Fig. 15-28(b). The same result could be found by algebraic manipula-
tion of the equations of Eq. 15-28 instead of the manipulation of blocks.

FURTHER READING

Excellent discussions of the use of block diagrams are found in the
literature by T. M. Stout, “A block diagram approach to network
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analysis,” Trans. AIEE (Applications and Industry), 8, 255 (1952)
and ‘‘Block-diagram solutions for vacuum-tube ecircuits,” T,-amf
AIEE (Communication and Electronics), 9, 561 (1953), and by T. p
Graybeal, ‘Block diagram network transformation,” Elec. Eng,, 70;
985 (1951). For a different approach to the same subject, the paper
by 8. J. Mason, “Feedback theory-—some properties of signal flow
graphs,”’ Proc. IRE, 41, 1144 (1953) is especially recommended.

PROBLEMS

16-1. For the network shown in the accompanying figure, (a) draw
a block diagram with one block for each element, considering V,(s) to
be the excitation (or input) and I(s) the response (or output). (b)
Repeat part (a) with V,(s) as the excitation but V1(s) as the response.

<l) M i °
f) T w O /> i v

O

[+]

Prob. 15-1. Prob. 15-2.

16-2. Repeat Prob. 15-1 for the network shown in the figure.
16-3. Repeat Prob. 15-1 for the network shown in the figure.

s AAY
o] Ry o—2Ult I o
T i\ I\
1\ G C;
Ci RZ
v - v2 n R @ Ry v;
' /D T
o O o ]
Prob. 15-3. Prob. 15-4.

15-4. Repeat Prob. 15-1 for the network shown in the figure.

16-b6. The schematic shown in the figure is the equivalent circuit of
a vacuum tube amplifier. The accompanying block diagram represen-
tation shows a number of blocks and arrows labeled @, b, ..., g for
identification. Give the transfer function for each block and identify
the quantity associated with all marked arrows.

R B-v--b-ab A » f
' 14

Prob. 15-8.

Y




15-8. Simplify the block diagram shown as (a) to the form of (b).
Give the value of G in terms of G1, Gs, G, and G..

V- - v,
: 'Gx"—:?"ﬁ'z >é)—"03 > G >
(a)

.....‘:!........._’. G‘ ....__Ez_p

)]

Prob. 15-8.

16-7. Reduce the block diagram shown in (a) to the form shown in

(b), giving the value for A and B in the feed-forward and feedback
loops.

G
Vi |/
A
v *(L V2
— G, G >
B

{a} b
Prob. 15-1.

16-8. Repeat Prob. 15-7 for the block diagram shown in the accom-
panying figure.

G

Gy

Prob. 15-8.

16-9. T. M. Stout* has shown that many networks containing one
nonlinear element can be represented by a block diagram having the
form shown below in (a). The nonlinear element in the circuit of (b)
is a diode described by a conductance function, s = G(v1 — vy). The
equivalent block diagram for the systemis shown in (¢). Donot attempt

*T. M. Btout, “Block diagram simplification of some nonlinear circuits,”
Report No. 9, E. E. Dept., University of Washington, 1952,
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to combine the nonlinear block with other blocks (this is not permitted
since superposition does not hold). By manipulation and combination
of the blocks, reduce the block diagram of (¢) to the standard form
shown in (a). Give the values for G1(s), Ga(s), and H(s).

Input block Forward block Qutput block
— Gyl %ol lw sl gl
‘(EFeedback block
His)
{a}
R

Q

1
W2
i 2 _l_
T TR
o .

O
{b)
41 v
v wERL! 1 P 2| R, U2
YOm0 O G P RGen
iz
{e)
Prob. 16-9.

15-10. The accompanying figure shows a general ladder network
with alternating series and shunt elements or combinations of elements.
Show by discussion and equations that the ladder network can be
represented by the block diagram of the figure.

_{3’ I3 15 In— 1
v v, —_— Vi — . Y
Ot 2 Z3 Zs --- Z, o
Zg 24 Zin
o o

I3 15
Vi Vi~V L-X L1 % V- Va X I5-1 v
LO2hz, L O 2, Oz, : Ql)i—i Zy b
f TVB 3

Prob. 15-10.




CHAPTER 16
STABILITY IN FEEDBACK SYSTEMS

16-1. Feedback systems

Many electric and electromechanical systems incorporate a so-called
feedback path by means of which a part of the output is reintroduced
at the input. For example, Fig. 16-1(a) shows a plate-tuned oscillator.

A
1

{a}
: Comparison
o device === Tnermocouple
error
(standard) detector) C y .
R
Motor
Steam ——»{ T3 y
Valve Ty
(b
Input  ~ Eror | Dynamic Qutput .
equipment >

Feedback | Modification
of output

{c)

Fig. 16-1. Examples of feedback systems: (a) plate-tuned oscillator;
(b) temperature regulating system; (c) feedback system representation.

Feedback, which is essential to the operation of an oscillator, is accom-

plished by means of the coupled coils returning the output from the

plate to the grid. Figure 16-1(b) shows an electromechanical tempera-

ture-regulating system. Feedback is accomplished in this system by

means of the thermocouple, which produces a voltage proportional to

the temperature in the vat. This feedback is compared with the stand-
410
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ard to produce an ‘“error voltage’ which in turn controls the amount
of steam introduced into the system.

By means of block diagram algebra, discussed in the last chapter,
such systems as the oscillator and the temperature control system can
be reduced to a standard form of a feedback system shown in Fig.
16-1(c).

Feedback systems afford many advantages such as accurate control
and improved time of response. These advantages are partially offset
by such systems being capable of instability.

A system is said to be stable if, for small values of input, the output
remains small or does not increase with time. We do not ordinarily
think of a linear system as being capable of instability by this defini-
tion. If the system is made up entirely of passive linear elements,
there is no energy source to supply an output which increases with time
and thus without limit. There will be a distinct relationship between
input and output as expressed by the transfer function. Linear ele-
ments can at most modify the form or the power level of the input.

If the output is to increase without limit, energy must be supplied to
the system. This supply must be within the system closed by the feed-
back loop for the output to increase with the input remaining small.
The feedback path is required for an unstable system to introduce
& new input into the system from the output to override the initial
small input.

Thus there are two essential features of a system capable of being
unstable: (1) there must be a source of energy within the system, and (2)
there must be at least one feedback path.

These are necessary but not sufficient conditions for instability.
That is to say, feedback systems are, with proper design, not only
stable but superior in many respects to systems without feedback. An
important problem for the engineer is to meet specifications and yet
avoid instability. This can be done from transfer functions by a math-
ematical or a graphical procedure. It is these procedures we will con-
sider in this chapter,

16-2. System stability in terms of the characteristic equation

The question of stability is, by the definition just given, fundamen-
tally transient in nature, and is related to the transient response of the
closed-loop system. The transfer function of the closed loop written
in terms of the open-loop transfer function was studied in Chapter 15,
and is *

‘72(8)
Vi(s)

G(s)
1 + G(s)H(s)

= L(s) = (16-1)
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where G(s) and H(s) are defined in Fig. 15-15; V1(s) and V(s) are the
output and input, respectively. This transfer function has the fornm
of a quotient of polynomials in s. Expanding the denominator polyno-
mial, we write

Va(s) _ G(s)
Vi(s)  aos® + ai8*' + ... F an8 + @, (16-2)
or (@es™ 4+ as™1 4+ ... + a)Va(s) = G(8)Vi(s) (16-3)

Written in this form, the denominator polynomial, that is [l +
G(s)H(s)], when set equal to zero is recognized as the characleristic
equation of the system.* If the characteristic equation is factored into
its » roots, Eq. 16-2 can be written

Va(s) _ G(s)

Vi(s) = ao(s — 3a)(s — $)...(8 — 8,) (16-4)
_ G - 1
T w G- (16-5)

In solving for the time-domain solution of this equation with v(f)
specified, the usual procedure is to expand this equation by partial
fractions, thus evaluating the arbitrary constants of the transient
portion of the solution. (In using the transfer function, we assume that
all initial conditions are zero in this particular time domain solution.)
If there are no repeated roots in the characteristic equation, the expres-
sion for vy(f) will be

n
vet) = vy, + E Kje'it (16-6)
J=1
In other words, the transient portion of the time-domain solution is

determined in form by the roots of the characteristic equation. For
the general case, the roots of the equation are complex and written as

8 = ¢ 4 juw (16-7)

The form of the time domain solution corresponding to each root
depends on the magnitude and signs of ¢ and w. Several cases are of

interest:
Case 1. ¢ negative for a finite w. For this case, the solution will be
(for the combined terms of the conjugate pair ¢ + jw),

Ket sin (wt + ¢) (16-8)
* Compare this equation with Eq. 6-88 and Egs. 7-37 and 7-38.
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This expression is termed a damped sinusoid; the magnitude reduces
to zero as time ¢ becomes large.

Case 2. ¢ = 0 and finite w. For the conjugate pair of roots +jw,
the solution will be similar in form to Eq. 16-8 with ¢ = 0; that is,

K sin (wt 4+ ¢) (16-9)

This funetion oscillates at constant amplitude as a function of time.
Case 3. ¢ positive and a finite w. Again, the solution is similar to
Eq. 16-8 and is
Ketet sin (wt + ¢) (16-10)

In this case, the magnitude of oscillations increases exponentially and
without limit for large values of time {.

Case 4. ¢ = 0 and « = 0. For this limiting case, the solution is a
constant and does not change with time.

Pole
position

Pole
position

. . , Vi bo
Jw G « P o -
g o 7\‘-—..

t \/_\J
X -7 ¢

-
-

(@) 2 {d)
Jw V5 Jw | A

; AW AN
SRRV
(&) {e)

Juw ‘6—/ Jw Vo -7
X -

AW

) ' AV U

m -

{c}

Time response Time response

x

Fig. 16-2. Comparison of the time response of a system (Vy) with
pole position in the complex s plane.

Case 5. ¢ either positive or negative, but « = 0. The solution for
this case (for a simple root) has the form

Keet (16-11)

For negative values of s, the magnitude of the term diminishes with
time. For positive o, the term increases exponentially. These several
cases are illustrated in Fig. 16-2. From the figure, the effect of the
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gign of ¢ and the role of w can be seen. A finite nonzero value of
corresponds to oscillation. For negative values of o, the response
decreases with time, but for positive values of ¢, the response increases
without limit with time. Our concept of stability evidently ties in
directly with the sign of the real part of the roots of the characteristic
equation,

By our definition of stability, that the output should remain small
or not increase with time, the responses of parts {(¢) and (f) of Fig. 16-2
are identified with unstabie systems. These both correspond to positive
values of ¢. The transition case shown as part (e) of Fig. 16-2 is,
strictly speaking, a stable case. The output does not increase without
limit. It corresponds to sustained oscillations as, for example, in an
electronic oscillator. With negative values of o, there is damping, and
the system is stable. Just as stability is rciated directly to the sign
of the real part of the roots of the characteristic equation, so the basic
problem in determining stability is finding an answer to this question:
Does the characteristic equalion, 1 + G(8)H (s) = 0, have any roots with
positive real parts? This is the basis of all stability studics.

The problem of determining stability is thus one of finding the roots
of the equation
1 +G@)H(8) = aes" + ais™!' + as"?*+ ... + a8+ an=0

(16-12)
or some equivalent to finding the roots. For first- and second-order
equations, n = 1 and n = 2, this is a simple matter: merely factor the
equation and so find the roots. But as the order of the equation
increases, the task of finding the roots becomes very tedious and time
consuming (unless computing machines are available), and alternate
methods are used.

Suppose that the characteristic equation is of first order,
as +a; =0 (16-13)
The root of this equation is
= - 3 1
8 . (16-14)

The real part of this root is negative as long as a, and a, are positive
and real; this requirement is met for all physical systems. Likewise
a second-order characteristic equation,

a8 + a8+ ax =0 (16-15)
will have two roots given by the equation

S
81, 8% = — %’i + \/fi;,— — gi (16-16)
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The two roots s; and s;*, will have negative real parts only as long as
the coeflicients ao, a1, and a; are positive.

For both the first- and second-order system, a requirement that the
sign of all coefficients be positive is sufficient to guarantee that the
real part of the roots will be negative. But for higher-ordered systems,
this rule is not sufficient. To illustrate, consider the third-order poly-
nomial formed as follows.

(s + 4)(s? — 25 4+ 10) = s* 4 282 4+ 28 + 40 (16-17)

In this example, the coefficients of the third-order polynomial are al
positive even though there are clearly two roots with positive real
parts. There are further requirements that must be satisfied in addi-
tion to the positive coefficient requirement. The requirements take
the form of relationships of the magnitudes of the coefficients of the
polynomial given by Routh’s criterion. Before turning to a study of
this criterion, let us summarize our findings thus far:

{1) In order that there be no roots of a polynomial with positive
real parts, it is necessary but not sufficient that the coefficients
of the polynomial be positive.

(2) If a coefficient of a polynomial is negative, the polynomial has
at least one positive real root (since that is the only way the
coefficient could be made negative).

16-3. The Routh criterion or Routh rule*

The Routh rule gives a procedure for determining the number of
roots of a polynomial with positive real parts without actually finding
the roots. Consider the polynomial

@os™ 4 a18™t F st + ... a8+ a, =0 (16-18)

As the first step in the application of the rule, form two rows made up
of alternate coefficients of the equation; that is, from the first, third,
fifth, etc. coefficient form one row, and from the second, fourth, sixth,
etc. coefficients form a second row as follows:

row 1

@o8™ + a18" + 28"t + 58" + g8t - aps" T - aes™t L.

| |

row 2
(16-19)

* E. J. Routh, Advanced Part of Dynamics of a System of Rigid Bodies, Vol. 11
(6th ed.), (Maemillan & Co. Ltd., London, 1930},
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Write the two rows in the form

Qg as ay g (£ cae (16'20)
az asj ag a7 g

As the next step, complete the following array of numbers (shown for
a sixth-order system):

_use

E Qo ; ag 17} ag
é Gy asz ag

. by bs bs

E €y C3

Ll ds

o |

¥

where the b, ¢, d, ¢, f, and g coefficients are defined in terms of the &
coefficients by the following pattern:

do Qs ai1ds ~— Quds Qg aa aitsy — Qols
by = Bosgr® o G Galy o 210 ol
ai s ax ay as a

N bias — bsa
lAba ....}:..._E_.__._l., ete.

In general, any new element is found from the two elements above
the element in the same column and the two elements above but in
the column to the right. These elements form a determinant-like
structure. The elements joined by a line with positive slope have a
positive sign, while the elements joined by a line with negative slope
have a negative sign (just the opposite of the rule for determinants).
We subtract these two products and divide this difference by the
element on the lower left-hand corner of the array. This process is
continued to give the Routh array.

The number of changes in sign in elements of the first column
(marked use) indicates the number of roots of the equation with posi-
tive real parts. For there to be no roots with positive real parts, all
elements of the first column must have the same sign.

For the rule as given to hold, it is necessary that no powers of 8 in
the equation be missing. However, if any such terms are missing, the
equation has at least one root with a positive real part and so fails the
test by inspection. An exception occurs when the equation contains
terms which are all even powers or all odd powers, indicating that all
roots are purely imaginary.
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Example 1
Consider the identity
8+ 1)(s + 2)(s + 3)(s + 4) = s* + 10s* + 355 + 508 -+ 24
(16-21)
The Routh array is formed to give the following:
1 35 24
10 50
30 24
42
24

From the first column, it is seen that there are no roots with positive
real parts (agreeing with the known roots).

Ezample 2

As a second example, consider Eq. 16-17.
8 4 28 4- 25 4+ 40 =0 (16-22)

which is known to have two roots with positive real parts.

1 2

2 40
—18
40

There are two changes of sign (2 to —18 and — 18 to 40) as required.

Ezample 3

Consider a third-order equation,
aes® + a18? + ass + az =0 (16-23

The Routh array for this equation is

Qo asz

a; ag
a1y — dgla

a1

U]

From the array we conclude that it is necessary that all coefficients in
the equation be positive and, in addition, that a:a: > aeas in order
that there be no roots with positive real paris in a third-order equation.



|6-4. The Hurwitz criterion

A Hurwitz polynomial is a polynomial having roots with negative
-eal parts only. Polynomials representing the characteristic equations
»f stable systems are therefore Hurwitz polynomials. To apply the
Hurwits criterion to a polynomial, carry out the following steps:

(1) Separate the polynomial into even and odd parts (that is, parts
with even powers in s and with odd powers in s). Form a quo-
tient of these two polynomials with the part of higher degree
as the numerator polynomial,

(2) Expand the quotient of polynomials as a Stieltjes conlinued frac-

ton; thus
P
‘Q% = a8 + 1 . (16-24)
ass -+
1
ays + i
oS +
s + 1
b eSS + .

For the polynomial to be Hurwitz, it is necessary that all of the
a-coefficients be positive.* However, the test we have described does
not rule out the possibility of roots without real parts (i.e., on the jw
axis of the s plane) in the polynomial under test. Such roots correspond
to (s* + w,?) factors in the polynomial which are incorporated in both
the even and odd parts of the polynomial. Thus

(s* + 0)[P(s) + Q(s)]
= (s* + @)P(s) + (s* + o) Q(s) = Pafs) + Qu(s) (16-25)

Hence, terms of the type (s* 4 w®) cancel when the quotient Pi(s)/
Q.(s) is formed in applying the test. The test does assure that the poly-
nomial is either Hurwits or a Hurwitz polynomial multiplied by fac-
tors of the form, (s* 4 w:?).

Formation of the continued fraction is most easily accomplished
by an “invert-and-divide” procedure. After completion of step (1)
listed above, divide the part of lower degree into the other part and
complete one step only. Invert the remainder and continue the process
until it comes to an end (as it must). This is best illustrated by an
example. Consider the polynomial

45 4+ 2588 + 85+ 35+ 156 =0 (16-26)

* A derivation of this criterion is given by Guillemin; see reference at end of
chapter.
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The quotient of polynomials is formed as follows.

45t + 8s2 4+ 1.5
16-27
28 4 3s ( )

Dividing one step gives
283 + 3s) 4s' 4+ 82+ 1.5 (2s

48t 4+ 6s?
2s? 4+ 1.5

Again, we invert and divide as

2s? 4 1.5) 2s® 4 3s (s

1.5s
and again, 1.55) 28*+ 1.5 (3s
2s?
1.5
and finally, 1.5) 1.5s (ls
Hence the continued fraction expansion is
4st 4 8s* + 1.5 1
25T 3 =28+ —— (16-28)
8 + i
38+

Since all the a-coefficients are positive, the polynomial is Hurwitz.
The operations shown in four steps above are conveniently carried
out as a continued operation as illustrated below.

28 4 3s) 4st +8s2+ 15 (2s

48* -} 6s*
2s% 4 1.5) 2834+ 3s (s
288 4 1.58
1.58) 252+ 1.5 (gs
2s*
1.6) 158 (s

1.5s

0

16-5. The Nyquist criterion

The stability criterion we will study next was developed by Nyquist*
of the Bell Telephone Laboratories in 1932. While the objective of this
criterion is the same as the Routh criterion and the Hurwitz criterion,
the approach differs in several respects.

* H, Nyquist, ‘‘Regeneration theory,” Bell System Tech. J., 11, 126 (1932).
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(1) Analysis is made in terms of the open-loop transfer function
rather than the closed-loop characteristic equation.

(2) The method is partially graphical and, as will be shown, inspec-
tion of the graphical plot gives more than the ‘“yes or no”
answer of the Routh and Hurwitz criteria.

(8) Analysis is made in terms of the sinusoidal steady state where the
concepts of phase and magnitude ratio are readily related to
experiments.

The basic operation in applying the Nyquist criterion is a mapping
from the s plane to the F(s) plane. By the term mapping, we mean
that a set of values of s (for example, 8, 82, and s3) have, for a given
F(s), a corresponding set of values of F(s), [namely, F(s;), F(ss), and
F(s35)]. These three—and an infinite number of other—points are shown
in Fig. 16-3. Here an arbitrary contour in the s plane is “ mapped” into

g-plane Jo Fig)-plane JImFis)

‘ Flsy)
‘33 ) v F(sﬂ/\F (sa) Re Fis)
) D,
5

Fig. 16-3. Mapping illustration.

splane }Jjw Fistplane | jImKFis)
Jurg
Jon P © Re Fis)
w2
wy

Fig. 16-4. Mapping example for F(s) = 1/s(sT + 1).

a corresponding contour in the F(s) plane. A specific example is shown
in Fig. 16-4. The mapping is made for imaginary values of s; that is,
8 = jw for w = 0. The specific function is

1

F(s) =

As another example of a mapping operation, not so difficult as the
one given above, suppose that two function are related by the equation

F(s) = P(s) + 1 (16-30)
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that is, the function P(s) plus a constant (unity) is equal to the func-
tion F(s). A typical plot in the two planes is shown in Fig. 16-5. The
transformation evidently moves the plot one unit to the left.

Fplane |jImPF P-plane jim P

TN ReF En ReP
J |/

Fig. 16-6. Mapping of F(s) = P(s) + 1.

Next, suppose that F(s) is factored to find its poles and zeros which
are given in the equation

(8 — 81)}(s — 82)...(5 — 84)
F(s) K(s—s,,)(s—sb)...(s—ns,,.) ( )
where s, 82, ..., 8, are the zeros and s,, 8, . .., 8. are the poles. These

poles and zeros are displayed on a plot of the s plane shown in Fig,.
16-6(a) (an arbitrary array for purposes of illustration). A single zero,

§-plane Jjw g-plane |jw ¢
P, I -0“
X 2ero M
Fd
pole 4 bag®™ -
\ £
* -3 ’I, ’
3 A v
[+
X
tee) {b)

Fig. 16-6. Pole-zero configuration.

81, is isolated in Fig. 16-6(b). This zero comes from the term (s — 8;)
in Eq. 16-31. At some particular frequency s,, this term has a value
(s« — 81) which may be expressed in polar form as

(8« — 81) = M (16-32)

where M is the magnitude and ¢, is the phase angle of the phasor
(s« — $1). This magnitude and phase are shown on the s plane in
Fig. 16-6(b). Any other term in Eq. 16-31 can be similarly expressed;

for example,
(82 — &) = Mye® (16-33)

When all terms are so expressed, Eq. 16-31 takes the form

KM M MM, ..

T T— AvgF{g) .
M = |F(s)le MMM,

er® (16-34)
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where =1+ a2+ ... — s — P — ... (16-35)

This last equation tells us that the total phase at some frequency s,
for the function F(s) may be found by adding the phase of the ‘‘zero
phasors” and subtracting the phase of the ‘“pole phasors”; in other
words,

AngF(s) = Ang (s — 81) -+ Ang(s — 82) + ... — Ang (s — 8;) — ...
(16-36)

for any value of s.
Figure 16-7 shows the s plane with two zeros, s; and s;, and a map-

splane j, c ping contour C (s. is a point on
82 the contour). Consider the effect of

Pathofs, 8 (ignoring sz) as s, moves along C

Sa / in a clockwise direction. After one

complete traversing of the closed
contour C, the phase of the phasor
term (s — s;) has increased by — 2=
radians. Next, consider the effect of
8, on the factor (s — ), this time
ignoring s;, as the same closed contour C is traversed in the same clock-
wise direction. There is no net gain in phase of the phasor term (s — s3).
In summary, if the closed contour encircles a zero in traversing a closed
path in the clockwise direction, the function changes in phase by —2r
radians; if no zero is encircled, there is no change in phase,

Exactly the same conclusion may be reached in the case of a pole
except that the phase is changed by 2= radians.

Suppose next that a contour is selected in the s plane of Fig. 16-6(a)
such that P poles and Z zeros are encircled as the contour is traversed
in a clockwise direction. The net change in the phase of the function
F(s) will be given by the equation

Fig. 16-7. Mapping from s-plane.

A Ang F(8) = 2r(P — Z) radians (16-37)

Return next to the mapping of the s plane into the F(s) plane. Let
us examine the behavior of the F(s) plot in the complex plane as the
closed contour in the s plane is traversed. An increase in the phase of
F(s) manifests itself in the F(s) plane by an encirclement of the origin
for every 2 radian increase. Further, every zero encircled will cause
one counterclockwise encirclement of the origin just as every pole will
cause 8 clockwise encirclement. Should the contour not encircle any
poles or zeros—or if it encircles equal numbers of poles and zeros—the
contour in the F(s) plane will not encircle the origin. In summary, if
the closed contour C in the s plane encircles in a clockwise (or negative)
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direction P poles and Z zeros, the corresponding contour in the F(s)
plane encircles the origin (P — Z) times in a counterclockwise (or

g-plane Jw Fisiplane  |ipn @
‘ A
L Re F
-
{a)
s-plane Jw Fis)-plane jImF
X
o ‘ ) ReF
) ()

()
Fig. 16-8. Illustration of the rule A¢ = 2x(P — Z).

positive) direction. T'wo examples are given in Fig, 16-8 to illustrate
this conclusion.

16-6. Application to a closed-loop system

The concepts reviewed in the last section will next be applied to a
closed-loop system having a feed-forward transfer function G(s) and
a feedback transfer function H(s), shown in Fig. 16-9. The input and
output are related by the closed-loop

transfer function, written in terms of v Gis) LN
G{(s) and H(s) by the equation -
His) }=
Va(s) G(s) (16-38) 5)

Vi(s) 1+ G(s)H(s)

The poles and zeros of the two func-
tions (1 + GH) and (GH) must be considered in the derivation of the

Nyquist criterion. Let

Fig. 16-9. Closed-loop system.,

P(s) (8~ s)(s — 82)...(8 — 8a)
Q(s) K (s — 80(s = &)...(8 — Sm (16-39)

,(8 — 8a)(s — 88)...(8 — Su)
GOH(s) = K (oSt 8:). Sy (16-40)

The two functions have the same poles. In Eq. 16-39, the order of the

14 G(s)H(s) =
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polynomial P(s8) is n, and the order of Q(s) is m. In deriving the
Nyquist criterion, the orders are restricted to the case n < m, such
that
lim G(s)H(s) = 0 or a constant (16-41)
e

It is important to distinguish the various poles and zeros. They are
tabulated as follows:

81, 83...8, are zeros of {1 + G(s)H(s)].
Sa, 8...8x are poles of [1 + G(s)H(s)l.
8a, 8. . .8 are also the poles of G(s)H (s).
84, 85. . .8, are the zeros of G(s)H (s).

The sy, 83, ..., 8, roots are of vital coneern to us because these zeros are
zeros of the equation 1 + GH = 0, which is the characteristic equation
of the closed-loop system. These roots must not have positive real
parts for the system they represent to be stable. Note that the zeros
of (1 4 GH) are, by Eq. 16-38, the poles of (V/V,).

In studying stability, our specific interest is the zeros of the polyno-
mial (1 4+ GH) with positive real parts. This suggests that we choose
a contour in the s plane to include the entire right half plane as shown
in Fig. 16-10. This contour will enclose

s-plane ., .
all the zeros of interest. The contour is

+joo 3

Jw
} N Rmoo traced in the direction 1-2-3-4-1, start-
ing at 8 = —jo, avoiding the origin
2) 4 ¢ (8 = 0) for the time being, and con-
j

\ tinuing to s = -jeo, thence on a circle

of infinite radius to the point of begin-

—j® 1 ning. This contour is traversed in a

Fig. 16-10. Contour in the s clockwise:, (or negative) direction. The

plane. contour in the s plane can be mapped

in either the (1 -+ GH) plane or the

GH plane (the simple relationship between these mappings was con-

sidered in Eq. 16-30). If any poles or zeros of (1 4 GH) are encir-

cled in the right half of the s plane, then (1) the locus in the (1 + GH)

plane will encircle the origin, or (2) the locus in the GH plane will
encircle the point (—1 + j0).

Let Z = the zeros of (1 + GH) with positive real parts, P = the
poles of (1 + GH) with positive real parts (also the poles of (GH) with
positive real parts), R = the net counterclockwise encirclements of
the point (—1 + j70) in the (GH) plane or the origin in the (1 + GH)
plane. Then

R=P—12 (16-42)
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Since Z, the zeros of (1 -+ GH) and the poles of Vy/V, with positive
real parts, must be equal to zero for the system to be stable, the system
with the characteristic equation (1 + GH) = 0 1s stable if and only if

R=P (16-43)

In most cases P = 0, and the criterion reduces to the requirement that
R = 0 for stability.

To apply the Nyquist criterion, plot the G(s) H(8) locus for the range
of frequencies, —® < w < «. If K is the net counterclockwise
encirclements* of the point {(—1 4 j0) and P is the number of poles
of G(s)H(s) with positive real parts (and so in the right half plane),
the system is stable if and only if B = P.

We have thus far avoided any problems that might arise because of
a pole of G(s)H(s) at the origin or several poles at the origin. Actually,
there is a practical matter involved in taking into account these poles
at the origin deserving of special attention. To illustrate the problem,
consider a transfer function,

K

G(S‘)H(S) = m

(16-44)

which is plotted in Fig. 16-11 for frequencies in the range — o < w
< 4w, The plot is complete except

for one detail. The points (4+0) and CHplane ~0;|jIm GH

(—0) should be joined together (as '..-“'

the same point), If the locus closes -, Re GH
through the right half plane, the sys- +ee

tem is stable, since B = 0; however, A\

if the locus closes the other direction

in the left half plane, then R = 1 and +0

the system is unstable. This is, as we wig 16-11. Plot of G(jw) H(jw).
see, a vital point.

As s becomes small, only the pole at the origin has an effect on the
transfer function G(s)H(s). Thus for small s, the transfer function can

be written
K

GEHE) = 3 (16-45)

where n is the order (or multiplicity) of the poles at the origin. For

* To find the value of R, imagine a phasor with one end securely tied to the point
(—1 + jO) pointing away from this point. Let the end of this phasor trace the
locus starting at — « through —0 and 40 finally ending at -} «. Count the net
number of counterclockwise rotations of this phasor. This is the value of B. A
clockwise rotation is designated by a negative number for R.
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the semicircular path shown in Fig. 16-12, the equation of the s plane
phasor locus is
(s — 0) = gei® (16-46)

where § is the radius of the semicircle and 6 is the angle of the phasor
(s — 0) directed from the origin to a point on the circle. As 6— 0,
the transfer function has the limiting value

lim G(s)H(s) = lim — ¢=in? = oo gint (16-47)
50 50 O™

Hence as 4 shown in Fig. 16-12 varies from —#/2 to +x/2, the phase

of G(s)H (s) ranges from nxr/2 to —nx/2. In summary, the n poles at

the origin in the transfer function G(s)H(s) cause (n/2) clockwise rota-

tions at infinite radius of the phasor locus of G(jw)H (jw).

s-plane Jw GH-plane JIm GH
} o) R
+0 ,
\ s=de’?
g -
) 1
-0

Fig. 16-12. Path at origin. Fig. 16-13. Nyquist plot completed.

Applying this rule to the example of Eq. 16-44, we see that n = 1
causes 3 clockwise rotation of the phasor locus of G(jw)H (jw) in going
from s = —0 to s = +40. Figure 16-11 is completed in Fig. 16-13.

In making the Nyquist plot, only positive values for w need be con-
sidered. Because the real part of G(jw) H{(jw) is even and the imaginary
part odd, it follows that

Im G(—~jw)H(—jw) = —Im G(+jw)H(+jw) (16-48)
Re G(—jw)H(—jw) = +Re G(+jw)H(+jw)

The plot for negative values of @ can be made by reflecting the plot
for positive frequency upon the real axis of the GH plane.

If the transfer function G(s) H(s) has no poles in the right half plane
(and the Routh or Hurwitz criteria can be used to advantage in making
this determination) such that P = 0 in Eq. 16-43, a rule of thumb may
be used to advantage. Trace (““walk’) from w = 0 to w = -+ on
the Nyquist plot. If the point (—1 + jO) is on the right at the point
{w) of nearest approach of G(jw)H(jw) to (—1 - jO), the system is
unstable; if on the left the system is stable (P = 0 only).
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Several examples will next be considered to illustrate the application
of the Nyquist eriterion to the studies of system stability.

Example 4

For this example, consider the transfer function

K

GUWH(jo) = 7y

(16-49)
The Nyquist plot is shown in Fig. 16-14, where K is the diameter of the
circle. No matter how large K becomes, the locus cannot encircle the
point —1, Hence the transfer function represents an unconditionally
stable system.

JIm GH
—0‘.--_ "'\.\
jIm GH
-
/" \‘
7 AY
-1 o0 \-0 Re GH
+00 +0
4

Fig. 18-14. GH = K/(sT + 1) plotted. Fig. 16-15. Nyquist plot of ¥q. 16-50.

Ezample &

Let the locus plotted as Fig. 16-13 serve as a second example. Again,
it is impossible for the locus to encircle the point —1 for any positive
value of gain except infinite gain.

Ezample 6

The transfer function

K
jw(GaT: + DGwT: + 1)

is shown in Fig. 16-15 for two values of the constant K. For a value of
K such that curve B results, the system is stable, since £ = 0. How-
ever, if the value of K is increased to give the curve marked A, then
E = —2, and since P = 0 by inspection of Eq. 16-50, the system is
unstable. Such a system is described as a conditionally stable system.

G(jw)H(jw) = (16-50)

Ezample 7

The exact nature of the transfer function for the plots shown in Fig,
16-16 is not given, but it is known that P = 0 for both cases. The
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locus of Fig. 16-16(a) represents a conditionally stable system. The
locus shown in Fig. 16-16(b) is similar to that of (a) except the shape
of part of the locus has been altered. Since there are no net rotations

JIm GH JIm GH
) . ~0 4o
""I \b‘ ; ,’ \\:‘
L= \ i \
oo v -~ \
=21\ J+w  LRe GH £ Th J+o i ReGH

i R <) TN el
= 4 b 4
+0 +{
(a) (b)

Fig. 16-16. Loci for conditionally stable systems: (a) and (b)
P=R=7Z7=0

about the point —1, the system is stable. However, if the gain either
increases or decreases corresponding to a shift of the —1 point into
one of the two other loops, the system becomes unstable. This locus
represents a system that is conditionally stable.

Ezample 8

Figure 16-17(a) shows a system having a transfer function

K
G(s}H(s) = ~oe -
(s}H(s) STs = 1) (16-51)
For this locus, P = 1, B = —1 (one clockwise rotation) and so there
+0 jImGH +0(j Im GH
/4 | / /
-1 +00 Re GH -1, t+® Re GH
't Vi hadst ‘l u‘-—' ~Q
\\ " \\ .
\ e
Q‘\\\ \? \!\\ \\‘
-3 it
{a} tb}

Fig. 16-17. Loci for transfer functions having poles with positive
real parts: (@) P= 1, R = —1, Z =2; b)P=1,R=1,Z =0,

are two zeros of (1 -+ GH) with positive real parts and the system will

be unstable for any value of gain. Such a system can be designated as
unconditionally unstable,
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Example 9

The locus plotted in Fig. 16-17(b) comes from a transfer function
with one pole with a positive real part. For this particular system,
however, the locus encircles the point —1 once in a counterclockwise
direction such that Z = 0, and the system is stable. With the loop
closed, this system is stable, However, with the loop open, the system
is unstable. This open-loop instability is, of course, caused by another

feedback path within the ““open-loop” (as discussed at the beginning
of the chapter).

FURTHER READING

For an interesting comparison of the various stability criteria, see
F. E. Bothwell’s article “Nyquist diagrams and the Routh-Hurwitz
stability criterion,” Proc. IRE, 88, 1345 (1950). Bothwell points out
that Nyquist, Routh, and Hurwitz all employed essentially the same
procedures in their original writings. The articles of these three
authors are: E. J. Routh, Dynamics of a System of Rigid Bodies
(Macmillan & Co., Ltd., London, Part II, 1905), Chap. 6; H. Nyquist,
‘““Regeneration theory,” Bell System Tech. J., 11, 126 (1932); and
A. Hurwitz, “Ueber die Bedingungen unter welchen eine Gleichung
nur Wurzeln mit negativen reelen Teilen besitzt,” Math. Ann., 46,
273 (1895). For additional reading on the Routh-Hurwitz criterion,
see Guillemin, The Mathematics of Circuit Analysis (John Wiley &
Sons, Inc.,, New York, 1949), pp. 395-409, or Tuttle, Network Syn-
thesis, 2 vols. (John Wiley & Sons, Inc., New York, in preparation).
In addition, see Chesnut and Mayer, Servomechanisms and Regulating
System Design (John Wiley & Sons, Inc.,, New York, 1951), pp.
124-156.

For an interesting explanation of the process of organic evolution
in terms of feedback system concepts and language, see p. 126 of
Homer Jacobson, “Information, reproduction and the origin of life,”
American Scientist, 43, 119-127 (1955).

PROBLEMS

16-1. Determine by means of Routh’s stability criterion whether
the systems having the following characteristic equations are stable or
not. (a) 483 + 782+ 78+ 2 =0. (b) 28 + 8 — 58+ 2 = 0. (¢} &
4+ 382 4 48+ 1 = 0. (d) 58 + s + 6s + 2 = 0. Answers. (a) stable,
(d) not stable.

16-2. Repeat Prob. 16-1 for the characteristic equations: (a) 5s* +
6s* + 452 4+ 28 +3 =0. (b) 4 +3s* + 282+ s+ 1=0. (¢) 2s* +
383 4 682 + 7s + 2 = 0. Answer. (a) not stable.
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16-3. Repeat Prob. 16-1 for the characteristic equations: (a) 720s5
+ 144s* 4+ 21483 4+ 38s? 4+ 10s + 1 = 0. (b) 258° + 105s* 4 120s®
120s% -+ 20s 4+ 1 = 0. Answer. (a) stable.

16-4. A system has the characteristic equation,

83+ 582+Ks+1=20

(a) Using the Routh criterion, determine the range of the values of
K that will make the system stable. (b) Investigate system stability
when K = 3. Discuss your resuits.

18-b. The feedback system shown in the accompanying figure has
been analyzed by J. F. Koenig in his paper ‘‘Stability diagrams for

ANA— T ——|f
R L 1\

C
Amplifier
R: v} gain=K |02
—— —
Prob. 16-5.

feedback systems,” AIEE Conference Paper, Baltimore, Oct., 1950.
(a) Using Routh’s criterion, find the relationship that must exist
between Ri, R, and K for the system to be stable. (b) For the system
to oscillate without damping, what must be the relationship between
Ry, Rs, and K? From this equation, plot K as a function of Ri/R,.
On the same plot, show regions of stability and instability.

16-6. For a fourth-order characteristic equation,

apst + a18% 4+ ass? + a3 +a;, = 0

find a set of rules, similar to those given in Example 3, by Routh’s
criterion, that will insure that all roots of the characteristic equation
have negative real parts such that the equation will represent a stable
system. Assume that all coefficients must be positive.

16-7. Repeat Prob. 16-6 for a fifth-order characteristic equation.

16-8. Classify the polynomials given in Prob. 16-1 as Hurwitz
(having all roots in the left half plane) or not.

16-9. Apply the Hurwitz test to the polynomials given in Prob. 16-2.

16-10. Test the polynomials given in Prob. 16-3 using the Hurwitz
criterion.

16-11. Rework Prob. 16-4 making use of the Hurwitz criterion.
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168-12. The figure below shows an equivalent circuit of a phase-shifi
oscillator first deseribed by Ginzton and Hollingsworth in Proc. IRE,
29, 43 (1941). Show that the necessary condition for oscillation is
gnB: 2 29. (b) Show that the frequency of oscillation when gnRy = 29

is wo = 1/4/6 RC.

i H J
" I\ |
. c c L c .
()-ankie QB SR RS by ()"g,,.v, +c Sk L, gL,v,
- - i)
=]
Prob. 16-12. Prob. 16-18.

16-18. The tuned-plate oscillator shown in Fig. 16-1 of the text
may be represented by the equivalent circuit shown in the accompany-
ing schematic. Show that the smallest value that the tube constant
gm can have if oscillations are to start is g, = L,/MR and that the
frequency of oscillation under this condition is wo = 1/4/LyC.

16-14. Consider the following transfer functions:

() GOH() = K 5
(b) G(8)H(s) = K 3 f 1
(¢) G(s)H(8) = qf——?lgo._ﬁ“ﬁéj

For each of these functions: (a) plot G(jw)H(jw) in the complex
GH-plane from w = 0 tow = « with K = 1. (b) Determine the range
of values of K that will result in a stable system by means of the
Nyquist criterion.

16-16. (a) The locus of G(jw)H{(jw) shown in the figure is for a sys-
tem with two poles of G(s)H(s) with positive real parts. Apply the

GH-plane  }j Im GluwH{jw) GH-plane JIm Gu)Hijw)

<
x X
[ w-0 . w =0 /mRe GliwlHljw)
\_../ w=% Re GljwiH{jw) & ‘///
-

la) 1.3
PrOb. 13"16-
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Nyquist criterion to determine if the system is stable with the loop
closed. (b) The G(jw)H(jw) locus shown in (b) is known to represent
a system with no poles of G(s)H(s) in the right half plane. Will the
system be stable with the loop closed?

16-16. The following transfer functions relate to two servomech-
anisms:

3000
@) GOH) = &677.004s)

1500(1 + 0.04s)
8*(1 4 0.004s)*

Investigate the closed-loop stability of system 1 and system 2 by
means of the Nyquist criterion. Answer. System (a) is unstable.

16-17. In the network of Prob. 16-12, let R = 1 ohm and C = 1
farad (these are normalized values). Plot the Nyquist diagram for
(a) gmPr = 10 and (b) g.Rr = 40. Which of the two conditions will
represent a stable (nonoscillating) system?

16-18. A certain closed-loop system is described by the transfer
functions

(b) G(s)H(s) =

K
8(T18 + 1)(Tas + 1)

Determine the maximum value of K that may be used without making
the system unstable.
16-19. (a) Consider two functions:

G(s) = and H(s) = 1

) = 212, HE) =1

s(s — 3)
66) = gy HE =1

Plot these two functions for values of s along the contour shown for
the s plane in (a) of the figure. Discuss how your results relate to the
Nyquist criterion.

s-plane jw s-plane Jo
r-4
™ 3
.-t h o‘ d
11
r=1 4 5
(a) o

Prﬂb - 18"' 19.
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(b) Consider two functions:
1

G(s) == m! H(S) = 1
1
6@ = s  HO =1

433

Plot these functions for values of s along the contour shown in (b) of
the figure. Does this suggest how the Nyquist criterion might be gen-
eralized as a criterion for other than poles in the right half plane?

Discuss,
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Current ratio in networks, 315
Current source, 27
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Fourier transformation, 187
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pass, 320
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Free response, 79
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Frequency domain, 126, 177
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Frequency scaling, 304
Frequency plane, 220
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Gain, 364

General solution, 75, 113
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Half sections, impedance properties,
314, 344

Harmonices, 171, 182

Heaviside, Oliver, 125

Heavisido’s expansion theorem, 138, 142
real roots, 139
repeated (multiple) roots, 140
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High-pass filters, 325, 333

Homogeneous differential equations, 72,
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Hurwitz criterion, 418

Hurwitz polynomials, 418

Hyperbolic functions, 108

IMAGE impedance, 312
L section, 314
m-derived L sections, 344
x section, 313
T section, 313
variation with frequency, 323
Image match, 312, 338
Image transfer function, 314
Imaginary numbers, 101
Imaginary part of function, 246
Immittance, 215
driving-peoint, 215, 230
equivalent, 275
transfer, 217, 232, 301
Impedance, 197
capacitor, 200
driving-point, 215, 230
inductor, 198
parallel combinations, 200
poles and zeros of, 222
resistor, 198
series combinations, 200
transfer, 217, 232, 391
Impulse function, 157
unit, 158
Independent loops, 30
Independent variable, 72
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mutual, 13
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Initial conditions, 84
evaluation procedure, 87
Initial value theorem, 145
Insertion loss, 352
Instability conditions, 411
Insulators, 3
Integrating factor, 74, 81
Integration, numerical, 178
Integrodifferential equations, 43
Inverse tranaforination, 126

J, pEriNeD, 101
Junetion (see Node)
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KrrcHHOFF-LAW equations, 40
Kirchhoff’s laws:

current law, 57

voltage law, 55

L SecrioN network, 311

T.adder network, 65, 232, 310
method of analysis for, 230

Lag network, 403

Lagging phase angle, 250

Laplace transform pairs, 127
tables, 129, 164

Laplace transformation, 125

related to Fourier transformation, 186
Laplace transformation theorems, 129

differentiation, 129
final value, 145
initial value, 145
integration, 130
linearity, 129
Lattice equivalent of networks, 356
Lattice filter, 353
Lattice network, 66, 231, 353
Lead network, 219
Leading phase angle, 250
Lenz's law, 35
Line spectrum, 183
Linear elements, 21
Locus of complex frequencies, 105
Logarithm, 125
Loop analysis, 43
coupled systems, 44
Loop currents, 41
Loops, 30
related to the number of nodes,
branches and separate parts, 31
Loops, independent, 30
Loss, ingertion, 352
Low-pass filter, 324, 333
Lumped system, 22

m~-DERIVED filter, 338
Magnetic field, 10
Magnetic flux, 11
Magnetically coupled systems, 15
dot convention, 33
loop analysis of, 44
Magnitude of phasor, 228
Mapping, 420
Maximally flat characteristics, 368
Mesh (also see Loop), 30
Minimum-phase functions, 225

INDEX

Minors, 58
Multiplication of phasors, 228, 421
Mutual inductance, 45, 66

NaTurAL frequencies:
damped and undamped, 108, 225
open- and short-circuit, 321
Negative frequency, 181, 242
Neper {frequency, 195
Neper unit, 315
Network, 30
one terminal pair, 214, 374
two terminal-pair, 310
Network analysis, resistive, 61
Network equations, general, 53
Network functions, 214
change of magnitude at high fre-
quency, 260
computation procedure, 230
high-frequency asymptotes, 246
low-frequency asymptotes, 247
magnitude, 245
magnitude interpretation, 220
phase, 245
phasor locus, 248
Network theorems:
bisection, 353
delta-Y transformation, 358
Foster’s reactance, 288
Norton's, 205
source interchange, 48
superposition, 79
Thévenin's, 205
Node, 30
Node analysis, 47
Node, datum, 29
Node pair, 30
Nonhomogeneous differential equations,
113
Nonlinear elements, 21
Nonsinusoidal wave analysis, 170
Normalized frequency, 304
Norton's theorem, 205
Numerical integration, 178
Nyquist criteria, 419
poles at origin, 426

Opp function, 174

0Odd polynomial, 277

Ohm’s law, 17, 84

Open-circuit impedance function, 313
Operational caleulus, 125
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Oscillator:

phase-shift, 431

tuned-plate, 431
Oscillatory transient response, 108
QOverdamped response, 108
Overshoot, 393

PARALLEL combination of admittances,
200
Parasitic effects, 20
Partial fraction expansion, 134
for complex conjugate roots, 142
Particular integral, 75, 113
Pass band, 320, 332, 354
Periodic function, 171
Phase angle of phasor, 228
Phase shift, 328
image transfer function, 315
Phasor, 195
unit rotating, 241
Phasor addition, 228, 254, 421
= network, 231, 311
Pickoff point, 398
Polarity, 28
Polarity markings, 44
Poles, 219
restriction on locations, 222
Positive current direction, 42
Potential, 3
Power, 5, 22
Principal diagonal, 58
Prototype, 346
Pulse, 154, 162

Q, 255, 363

related to bandwidth, 386
Quad, 266
Quadratic equation, 112, 414
Quasi-stationary state, 21

Ravian frequency, 194
Radiation loss, 20
Ramp function, 157
Rational function, 215
Reactive networks, 274
Cauer form, 296
comparison of features, 302
Foster form, 288
Reactance functions
cases, 284
specifications, 287
Reactance plots, 284
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Repeated (multiple) roots, 100
Resistance, 18
critical, 103
definition, 18
parsmeter, 17
Resistor, 22
Resonance, 255
Resonant frequencies, 280
Response, 72
sinusoidal, 252
transient, from pole-zero locations,
225
Right-hand rule, 34
Rise time, 393
Roots of equations, possible forms, 112
Rotating phasoer, 242
Reuth criterion, 415

3-FLANE, 220

constant coptours, 226
Sawtooth waveform, 177
Scale factor, 219, 287
Schedule, 55
Selectors, 258
Self-inductance, 13
Separate parts, 30
Separation property of poles and zeros,

279, 205

Series combination of impedances, 200
Series resonance, 255
Series RLC network, 255
Short-circuit impedance function, 313
Signal flow diagrams, 394
Singular functions, 159

tranaforms (table), 166
Sinusocid, damped, 196
Solution, general, 72
Solution, particular, 72
Sources, 27

transformation of, 48
Spectrum;

continuous, 183

line, 181
Square wave, 155, 164
Stability, 410
Stability criteria:

Hurwitz, 418

Nyquist, 419

Routh, 415
Stagger-tuned amplifiers, 365
Staircase waveform, 191
Standard form of solution, 102
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Steady-state, 75

Step function, 128, 170

Stop band, 320, 332, 354

Subscript convention for mutual induc-
tance, 16

Summing point, 395

Superposition, principle of, 79

Susceptance, 279

Sustained oscillations, 110

Symmetrical lattice network, 231, 263

Symmetrical » network, 231

Symmetrical T network, 231

Symmetry rules for Fourier series, 175

System determinant, 60

T network, 231, 311
Tandem connection, 365
Tchebycheff (see Chebyshev), 373
Terminal pair, 214
Terminals, 214
Termination problem, 351
Theorems (see Nctwork theorems)
Thévenin’s theorem, 205
Time constants, 77
Time domain, 126
Topology of networks, 29
Transfer functions, 216
minimum phase, 225
restrictions on poles and zeros, 224
Transform:
Fourier, 188
Laplace, 127

INDEX

Transform pairs (lable), 129, 164
periodic function, 165
Transient response, oscillatory, 108
from pole-zero locations, 225
Triangular waveform, 177
Trigonometric functions in terms of
exponentials, 241

Undamped natural angular frequency,
103
Undetermined coefficients method, 113
Unilateral systems, 21
Unit doublet, 21
transform, 166
Unit impulse, 158
applied to capacitor, 160
applied to inductor, 159
response, 168
transform, 165
Unit step function, 128
definition, 153
shifted transform, 161

Vector (phasor), 195
Voltage conventions, 28
Voltage divider, 218
Voltage source, 27

von Helmholtz rule, 31

Y nerworks, 358
Y-delta transformation, 358

ZEros, 219



