
Chapter 4

Entropy and the second law of
thermodynamics

4.1 Heat engines

In a cyclic transformation the final state of a system is by
definition identical to the initial state. The overall change
of the internal energy U hence vanishes,

ΔU = 0, ΔW = −ΔQ .

A cycle transformation is by definition reversible and the
work done by the system during a cycle is equal to the heat
absorbed.

Work. The (negative) of the work

−ΔW =

�
PdV = area enclosed.

corresponds for a reversible cyclic process to the area enclosed by the loop in the V − P
state diagram.

Heat engine. Work is converted by a cyclic process into heat, and vice versa. A cyclic
process can hence be regarded as an heat engine.

Consider a heat engine operating between T1 >
T2. Part of the heat that is transferred to the
system from a heat bath with temperature T1,
Q1, is converted into work, W , and the rest, Q2,
is delivered to a second bath with T2 < T1 (con-
denser). Following the first law of thermody-
namics,

|Q1|− |Q2| = |W | .
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4.1.1 Carnot cycle

The Carnot process is a reversible cycle process bounded by two isotherms and two
adiabatic lines.

One Carnot cycle consists of four consecutive thermodynamic processes, which can be
realized with an arbitrary working substance. We shall consider here however the case of
an ideal gas.

(1) A → B isothermal expansion T = T1 VA → VB Q1 absorbed

(2) B → C adiabatic expansion T1 → T2 VB → VC ΔQ = 0

(3) C → D isothermal compression T = T2 VC → Vd Q2 released

(4) D → A adiabatic compression T2 → T1 VC → Va ΔQ = 0

Work. We note that Q1 > 0 (absorbed from hot bath) and Q2 < 0 (released to cold
bath). Total energy conservation, viz the first law of thermodynamics, dictates that

0 =

�
dU =

�
(δQ+ δW ) = Q+W = Q1 +Q2 +W ,

where −W is the work performed by the system, equal to the area enclosed in the loop.

Efficiency. The efficiency of the Carnot engine is defined as

η ≡ performed work

absorbed heat
=

−W

Q1

=
Q1 +Q2

Q1

=
Q1 − |Q2|

Q1

.

η is 100% if there is no waste heat (Q2 = 0). However, we will see that this is impossible
due to the second law of thermodynamics.

4.2 Second law of thermodynamics

Definition by Clausius :

“There is no thermodynamic transformation whose sole effect is to deliver heat
from a reservoir of lower temperature to a reservoir of higher temperature.”

Summary : heat does not flow upwards.
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Definition by Kelvin:

“There is no thermodynamic transformation whose sole effect is to extract heat
from a reservoir and convert it entirely to work.”

Summary : a perpetuum mobile of second type does not exist.

Equivalence. In order to prove that both definition are equivalent, we will show that
the falsehood of one implies the falsehood of the other. For that purpose, we consider two
heat reservoirs with temperatures T1 and T2 with T1 > T2.

heat engine heat pump

W W

Q1 Q1

Q2
Q2

cold reservoir T2

hot reservoir T1
If Kelvin’s statement were false, we
could extract heat from T2 and con-
vert it entirely to work. We could
then convert the work back to heat
entirely and deliver it to T1 (there is
no law against this). Thus, Clausius’
statement would be negated.

If Clausius’ statement were false, we
could let an amount of heat Q1 flow
from T2 to T1 (T2 < T1). Then, we
could connect a Carnot engine be-
tween T1 and T2 such as to extract
Q1 from T1 and return an amount
|Q2| < Q1 back to T2. The net work
output of such an engine would be
|Q1|− |Q2| > 0, which would mean that an amount of heat |Q1|− |Q2| is converted into
work, without any other effect. This would contradict Kelvin’s statement.

Order vs. chaos. From the microscopic point of view

- heat transfer is an exchange of energy due to the random motion of atoms;

- work ’s performance requires an organized action of atoms.

In these terms, heat being converted entirely into work means chaos changing sponta-
neously to order, which is a very improbable process.

4.2.1 Universality of the Carnot cycle

The second law of thermodynamics has several consequences regarding the Carnot cycle.

– A 100% efficient Carnot engine would convert all heat absorbed from a warm reser-
voir into work, in direct contraction to the second law. We hence conclude that
η < 1.

– All reversible heat engines operating between heat bath with temperatures T1 and
T2 have the same efficiency.
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– No irreversible engine working between two given temperatures can be more efficient
than a reversible thermodynamic process.

For the last two statements we consider two engines C and X (with X not necessarily
reverisble) working between the baths at T1 (warm) and T2 (cold). We run the Carnot
engine C in reverse, as a refrigerator C̄, and feed the work output of X to C̄.

Work. The total work output of such a system is

Wtot =
�
|Q�

1|− |Q�
2|
�
−

�
|Q1|− |Q2|

�
.

– If we adjust the two engines such that |Q�
1| = |Q1|, no net heat is extracted from

the heat bath at T1.

– In this case, an amount of heat |Q2| − |Q�
2| is extracted from the heat bath at T2

and converted entirely to work, with no other effect.

This would violate the second law of thermodynamics, unless

|Q2| ≤ |Q�
2|.

Efficiencies. We divide this inequality by |Q1| and, using the fact that |Q1| = |Q�
1|, get

|Q2|
|Q1|

≤ |Q�
2|

|Q�
1|
,

|Q1|− |Q2|
|Q1|

≥ |Q�
1|− |Q�

2|
|Q�

1|
, ηC ≥ ηX .

The opposite inequality ηC ≤ ηX is also true if both X and C are reversible. In that case
X could be run as a heat pump and C as a heat engine.

Universality. We made here use only of the fact that the Carnot machine is reversible.
All reversible engines working between two heat baths have hence the same efficiency,
since X could be, as a special case, a Carnot engine.

⇒ The Carnot engine is universal.
It depends only on the temperatures involved
and not on the working substance.
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Efficiency of irreversible heat engines. All reversible heat engines have the same
efficiency ηC . Is it then possible that a heat engine X exist such that ηX > ηC? In this
case we would have for Q�

1 = Q1 that W � > W , as shown above, and hence a violation of
the second law.

The efficiency of irreversible heat engines is
lower that that of any reversible engine.

Irreversible heat pumps Exchanging X and C we may consider the case of irreversible
heat pumps. One is then interested in the figure of merit

Q2

W
=

heat absorbed at low temperature

work required
.

Repeating the arguments for Q�
2 = Q2 we find that the second law requires W � ≤ W

and hence Q�
2/W

� ≥ Q2/W . The figure of merit of reversible heat pumps is consequently
larger than the figure of merit of a irreversible heat pump.

4.3 Absolute temperature

The Carnot cycle is universal and may hence be used to define the temperature θ in an
absolute way, i.e. independent of working substances.

θ2
θ1

≡ |Q2|
|Q1|

, 1− η =
|Q2|
|Q1|

=
−Q2

Q1

, (4.1)

where η is the efficiency of a Carnot engine operating between the two reservoirs.

– The second law of thermodynamics implies that |Q2| is strictly greater than zero,
|Q2| > 0. The same holds for |Q1|, which is anyhow larger (or equal) than |Q2|.

Using (4.1) for defining the temperature via

θi ∝ |Qi| , θi > 0 , i = 1, 2 ,

leads hence to strictly positive temperature θ.

– This means that the absolute zero θ = 0 is a limiting value that can never be reached
since this would violate the second law of thermodynamics.

Ideal gas. The proportionality θ ∼ |Q| is defined such that

T =
PV

NkB
≡ θ.

when the an ideal gas is used as the working substance in a Carnot engine.
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4.3.1 Clausius’s inequality

The temperature defined by (4.1) allows to transform the differential of the heat, δQ,
which is not reversible into a reversible expression.

The inequality �

Pc

δQ

T
≤ 0

holds for arbitrary cyclic processes P . The equality holds
when Pc is reversible.

Proof of Clausius’s ’s inequality. For a derivation we divide the cycle Pc into n
segments so that on each segment its temperature Ti (i = 1, . . . , n) is constant.

Reference reservoir. We consider now a reservoir at reference temperature T0 > Ti(∀i)
and introduce Carnot engines between the reservoir at T0 and Ti. Energy is conserved
both by the Carnot engine and by the cycle Pc,

Wi = Qi −Q
(0)
i , W = −

n�

i=1

Qi ,

where (−W ) is the work performed by P . Note that W is negative/positive for a heat
engine/pump and that Qi is the heat flowing into Pc at Ti, viz out of Ci.

Temperature. The definition

Q
(0)
i

T0

=
Qi

Ti

of absolute temperature allows us then to rewrite the total heat Q
(0)
T absorbed from the

reservoir at T0 as

Q
(0)
T =

n�

i=1

Q
(0)
i , Q

(0)
T = T0

n�

i=1

Qi

Ti

. (4.2)
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Global balance. The work WT performed by the overall system composed of cycle Pc

and of the n Carnot engines is given by the overall energy balance

WT = W +
n�

i=1

Wi = −
n�

i=1

Qi −
n�

i=1

�
Q

(0)
i −Qi

�
= −

n�

i=1

Q
(0)
i = −Q

(0)
T .

If Q
(0)
T > 0, the combined machine would convert heat from the reservoir at T0 completely

into mechanical work.

– Kelvin’s principle state, that no reversible or irreversible process can convert heat
fully into mechanical work.

– There is no law forbidding to convert work into heat, that is Q
(0)
T ≤ 0 is allowed.

Clausius’s inequality Using (4.2) we obtain finally with

T0

n�

i=1

Qi

Ti

= Q
(0)
T ≤ 0,

�

P

δQ

T
≤ 0

Clausius’s inequality.

Reversible processes. We may reverse a process, if it is reversible. This implies that
both

�
Pc
δQ/T ≤ 0 and

�
Pc
δQ/T ≥ 0 are valid. This implies that

�

Pc

δQ

T
= 0

Pc reversible

. (4.3)

Both the total work WT and the total heat Q
(0)
T extracted from the reference reservoir T0

then vanish.

4.3.2 Entropy

The equality (4.3) implies that

� B

A

δQ

T
≡ S(B)− S(A) (4.4)

depends only on the end points A and B and not on the particular path, as long as it
reversible, and that

dS =
δQ

T
(4.5)

is an exact differential.

Entropy. Eq. (4.4) states that there exists a state function S, defined up to an additive
constant, whose differential is dS = δQ/T . It is denoted entropy,
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Irreversible processes. We consider that the
states A and B occurring in (4.4) are connected
both by a reversible path PR and by an irre-
versible path PI?
Clausius’ inequality for the combined cycle yields

� B

A

�
δQ

T

�

R

+

� A

B

�
δQ

T

�

I

≤ 0

and hence
� A

B

�
δQ

T

�

I

≤ −
� B

A

�
δQ

T

�

R

= S(A)− S(B) .

Therefore, in general
� A

B

δQ

T
≤ S(A)− S(B) , (4.6)

where the equality holds for a reversible process.

Thermally isolated systems. From (4.6) it follows with

ΔS ≥ 0
δQ=0

that the entropy can only increase for thermally isolated systems which does not exchange
heat with a reservoir.

“The entropy of an isolated system can only increase.”

Notes.

– The joint system of a system and its environment is called ”universe”. Defined in this
way, the ”universe” is an isolated system and, therefore, its entropy never decreases.
However, the entropy of a non-isolated system may decrease at the expense of the
system’s environment.

– Since the entropy is a state function, S(B) − S(A) is independent of the path, re-
gardless whether it is reversible or irreversible. For an irreversible path, the entropy
of the environment changes, whereas for a reversible one it does not.

– Remember that the entropy difference is

S(B)− S(A) =

� B

A

δQ

T

only when the path is reversible; otherwise the difference is larger that the integral.
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4.4 Entropy as a thermodynamic variable

For a reversible process in a closed system the first law of thermodynamics can be written
as

δU = δQ+ δW, dU = TdS − PdV , δQ = TdS . (4.7)

This representation implies that the entropy S and the volume V are the two state vari-
ables for which the differential of the internal energy U = U(S, T ) becomes exact. In this
section we transform one basic pair of state variables to another, namely from (S, V ) to
(T, V ), when one of the variables, here the entropy S, takes also the role of a thermody-
namic potential.

Differential of the entropy. Inserting dS and dU/T ,

dS =

�
∂S

∂T

�

V

dT +

�
∂S

∂V

�

T

dV, dU =

�
∂U

∂T

�

V

dT +

�
∂U

∂V

�

T

dV ,

into (4.7) leads to
�
∂S

∂T

�

V

dT +

�
∂S

∂V

�

T

dV =
1

T

�
∂U

∂T

�

V� �� �
≡ cV

dT +
1

T

��
∂U

∂V

�

T

dV + P

�
dV ,

where we have used (3.7), namely that (δQ/δT )V = (∂U/∂T )V = CV . Comparing coeffi-
cients we then find with

�
∂S

∂T

�

V

=
CV

T

�
∂S

∂V

�

T

=
1

T

��
∂U

∂V

�

T

+ P

� (4.8)

the partial derivatives of the entropy, as a state function, with respect, with respect to T
and V .

4.4.1 Entropy of the ideal gas

We recall (3.9) and (3.6), namely that the specific heat CV and the free energy U of the
ideal gas are

CV =
3

2
nR U =

3

2
nRT

�
∂U

∂V

�

T

= 0 .

Using the partial derivatives (4.8) and the equation of state PV = nRT of the ideal gas
then leads with

dS =
3

2
nR

dT

T
+ nR

dV

V
to the entropy difference

S(T, V )− S(T0, V0) =
3nR

2
log

�
T

T0

�
+ nR log

�
V

V0

�
. (4.9)

Note that the number of moles n is here constant.
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4.4.2 Maxwell equations

The commutativity of differentiation operations, Schwarz’s theorem, can be used to derive
relations between thermodynamic quantities. For the case of the differential (4.7) this
implies that ∂2U/(∂S∂V ) = ∂2U/(∂V ∂S) and hence

dU = TdS − PdV,
∂T

∂V
= −∂P

∂S
,

�
∂V

∂T

�

P

= −
�
∂S

∂P

�

T

, (4.10)

where we used an inversion for the last step. The relation (∂V/∂T )P = −(∂S/∂P )T is
denoted a Maxwell equation.

4.4.3 Energy equation

The entropy is not an experimentally controllable variable, in contrast to T , V and P ,
which allow to measure the thermal equation of state

P = P (T, V ) . (4.11)

We however use (4.7) to deduce an relation, the energy equation, which allows to determine
the caloric equation of state U = U(T, V ).

Energy equation. We use the commutativity of differentiation operations, as in Sect. 4.4.2,
but this time for the derivatives of the entropy:

∂

∂V

�
1

T

∂U

∂T

�
=

∂

∂V

�
∂S

∂T

�

=
∂

∂T

�
∂S

∂V

�
=

∂

∂T

�
1

T

�
∂U

∂V
+ P

��

= − 1

T 2

�
∂U

∂V
+ P

�
+

1

T

�
∂2U

∂T∂V
+

∂P

∂T

�
.

Canceling identical terms we get

�
∂U

∂V

�

T

= T

�
∂P

∂T

�

V

− P ⇒ energy equation. (4.12)

The derivative of the internal energy is written with (4.12) in terms of measurable quan-
tities. It is fulfilled for an ideal gas, for which PV = nRT and (∂U/∂V )T = 0.

4.5 Eulers’s cyclic chain rule

The partial derivative (∂P/∂T )V entering the energy equation (4.12) may be related to
thermodynamic coefficients as well. The involved type of variable transformation is can
be applied to a large set of thermodynamic quantities.
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Implicit variable dependencies. We are dealing in general with a set of variables, e.g.
P , V and T , which are related we a equation of state

f(P, V, T ) = 0,
∂f

∂P
dP +

∂f

∂T
dT +

∂f

∂V
dV = df(P, V, T ) = 0 .

From the relative partial derivatives of the state variables

�
∂P

∂T

�

V

= −∂f/∂T

∂f/∂P
,

�
∂T

∂V

�

P

= −∂f/∂V

∂f/∂T
,

�
∂V

∂P

�

T

= −∂f/∂P

∂f/∂V

it follows that �
∂P

∂T

�

V

�
∂T

∂V

�

P

�
∂V

∂P

�

T

= −1 (4.13)

The importance of (4.13), Euler’s chain rule, lies in the fact that one does not know the
equation-of-state function f(P, V, T ) explicitly, only that it exists.

Expansion and compression coefficients. Using (4.13), we get

�
∂P

∂T

�

V

= − 1

(∂T/∂V )P (∂V/∂P )T
= −(∂V/∂T )P

(∂V/∂P )T
,

�
∂P

∂T

�

V

=
α

κT

, (4.14)

where have made use of the thermodynamic coefficients

α =
1

V

�
∂V

∂T

�

P

(coefficient of thermal expansion)

κT = − 1

V

�
∂V

∂P

�

T

(isothermal compressibility)

κS = − 1

V

�
∂V

∂P

�

S

(adiabatic compressibility)

Using (4.14) the energy equation (4.12) reads

�
∂U

∂V

�

T

+ P = T

�
∂P

∂T

�

V

= T
α

κT

. (4.15)

Mayer’s relation between CP and CV . The energy equation (4.15) can be used to
rewrite Mayer’s relation (3.12), which we derived
considering the chain rule for (∂U/∂T )P , as

CP = CV +

�
P +

�
∂U

∂V

�

T

�

� �� �
Tα/κT

�
∂V

∂T

�

P� �� �
V α

,



44 CHAPTER 4. ENTROPY AND THE SECOND LAW OF THERMODYNAMICS

which leads then to

CP − CV =
α2

κT

TV > 0 . (4.16)

Note that the thermal expansion κT is normally positive. Water close to the freezing
point has however an anomalous κT < 0.

4.5.1 Entropy differentials

The rewritten energy equation (4.15) can be used to rewrite also the the differential (4.8)
of the entropy as

TdS = CV dT +

��
∂U

∂V

�

T

+ P

�
dV = CV dT + T

α

κT

dV . (4.17)

T and V as independent variables. Expression (4.17) for the differential of the
entropy implies that the absorbed heat δQ can be expressed likewise in terms of directly
measurable coefficients,

δQ = TdS = CV dT +
α

κT

TdV , (4.18)

where T and V are here the independent variables.

T and P as independent variables. We use the Maxwell equation (4.10), (∂V/∂T )P =
−(∂S/∂P )T ,

dS =

�
∂S

∂T

�

P

dT +

�
∂S

∂P

�

T

dP =
CP

T
dT −

�
∂V

∂T

�

P

dP ,

and obtain

TdS = CPdT − αTV dP , (4.19)

where the independent variables are now T and P .

V and P as independent variables. We note that dT can be rewritten in terms of dV
and dP as

dT =

�
∂T

∂V

�

P

dV +

�
∂T

∂P

�

V

dP =
1

αV
dV +

κT

α
dP ,

where we have used (4.14), viz (∂P/∂T )V = α/κT , in the last step. Inserting dT into
(4.19) we obtain

TdS =
CP

αV
dV +

�
CPκT

α
− αTV

�
dP (4.20)

for TdS, where the independent pair of state variables is now V and P .
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4.6 Third law of thermodynamics (Nernst law)

Analyzing experimental data, Nernst has concluded that in the limit T → 0 the entropy
becomes a constant independent of other thermodynamic parameters such as volume and
pressure, �

∂S

∂V

�

T→0

=

�
∂S

∂P

�

T→0

= 0 . (4.21)

The entropy is defined via (4.4) only up to constant, which can be selected hence such
that

lim
T→0

S(T ) = 0 . (4.22)

This equation is equivalent in statistical mechanics, as we will discus in Sect. 8.2, that
nearly all states of matter are characterized by a unique ground state. Macroscopically
degenerate ground state leading to finite T = 0 entropies are observed only for exotic
phases of matter.

Heat capacities vanish for T → 0. The heat capacities disappear at T = 0 as a
consequence of (4.22):

lim
T→0

CV = lim
T→0

T

�
∂S

∂T

�

V

= 0,

lim
T→0

CP = lim
T→0

T

�
∂S

∂T

�

P

= 0 .

The ideal gas does not fulfill the third law. The heat capacities (3.9) and (3.11) of
the ideal gas are constant,

CV =
3

2
nR, CP =

5

2
nR ,

in contradiction with the third law. This is because the idea gas corresponds the high-
temperature limit of the state of matter, which undergoes further gas → liquid → solid
transitions upon cooling.

No thermal expansion for T → 0. The Maxwell equation (4.10), (∂V/∂T )P =
−(∂S/∂P )T , implies

lim
T→0

α = lim
T→0

1

V

�
∂V

∂T

�

P

= lim
T→0

−1

V

�
∂S

∂P

�

T

= 0 ,

where the last step follows from the fact that any derivative of a constant vanishes.

The absolute T = 0 (zero point) is unattainable. We analyze what happens when
we are trying to reach low and lower temperatures by subsequently performing adiabatic
and isothermal transformations.
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Using a gas as a working substance, cooling is achieved by the Linde method through a
sequence isothermal and adiabatic transformations.

A → B isothermal compression

Work is performed on the gas and an amount of heat Q1 < 0 is transferred from
the substance to be cooled (characterized by a low temperature T1), to the reservoir
(having a higher temperature) in a reversible process. The entropy of the substance
being cooled diminishes consequently by

ΔS1 =
Q1

T1

.

B → C adiabatic expansion

The gas cools by performing work. The entropy remains however with δQ = 0
constant.

Note that all entropy curves converge to S(T → 0) → 0. The process becomes hence
progressively ineffective and an infinite number of Linde iterations would be needed to
reach the limit T → 0.


