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Availability and Irreversibility 
 
1.0  Overview 
 
A critical application of thermodynamics is finding the maximum amount of work that can be 
extracted from a given energy resource.  This calculation forms the benchmark against which the 
performances of real, less efficient energy systems are evaluated. 
 
In basic thermodynamics we often use Carnot cycles as indicators of the maximum work that can 
be extracted by heat engines.  Carnot cycles are, however, often unrealistic and overly restrictive 
since they are limited to cycles that operate between two constant temperature reservoirs.  In 
general, power cycles do not operate between two reservoirs.  Let us illustrate this point by a 
simple example.  Figure 1 illustrates how a Rankine cycle is customarily fit between two 
reservoirs for simple analysis.  Here, the actual cycle efficiency can be compared to the Carnot 
efficiency between the same two reservoirs. 
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Figure 1.  Idealized Rankine cycle operating between two temperature reservoirs. 
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Figure 2.  Realistic Rankine cycle based on the boiler acting as a heat exchanger. 
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However, the heat source in the boiler is not a constant temperature reservoir, but instead a hot 
combustion product gas that cools as it gives up its heat to the steam, as illustrated in Figure 2.  
This requires us to develop a somewhat more general benchmark for the maximum work 
possible, something more appropriate than the Carnot cycle.  Fortunately, this is a relatively 
simple thing to do. 
 
The general idea is that any stream of material that is out of thermal and/or mechanical 
equilibrium with the environment (such as the 2000 K air stream in Figure 2) represents a source 
of useful work.  The key result from the second law is: 
 

"The maximum work that can be extracted from such a stream occurs 
when the stream is reversibly brought into thermal and mechanical 
equilibrium with the environment." 
 

In other words, if the air stream in Figure 2 (at 100 kPa and 2000 K) is brought by some process 
reversibly to 100 kPa and 300 K, we will have wrung as much work as we possible can from the 
air stream.  Once it is at 300 K and 100 kPa, there is no more ∆T or ∆P available to drive any 
process, and the air is said to be in the "dead state".  The correct way to think of the air is as a 
resource.  If our process involves irreversibility, then we do not get as much work out going to 
the dead state.  If we stop short of the dead state (e.g., at 450 K as shown in Figure 2), then there 
is still ∆P or ∆T left to make more work.  Almost everything we deal with in energy systems can 
be thought of in this way: 
 

• A gallon of gasoline is out of chemical equilibrium with the environment.  The maximum 
work is achieved by reversibly converting it to CO2 and H2O at 300 K and 100 kPa 
(thermal, mechanical, and chemical equilibrium with the environment). 

• Steam extracted from a geothermal well is out of thermal equilibrium with the 
environment.  The maximum work is achieved by converting the steam reversibly to 300 
K and 100 kPa. 

• A supply of compressed air at 1 MPa and 300 K will provide maximum work if it is 
reversibly converted into a stream of air at 100 kPa and 300 K. 

 
Fortunately, these calculations are easy to perform and do not require you to know any of the 
details of the process. 
 
We will make use of these concepts to develop two further ideas: 
 

1. We will find the maximum amount of work that can be achieved for a fluid going 
between any two points (e.g., air going from 1000 K, 1 MPa to 500 K, 400 kPa). 

2. We will find an expression for the lost work potential for any process.  This is termed the 
"irreversibility", and it corresponds to how much more work you would achieve if the 
same process were done reversibly. 

 
2.0  Maximum Work Potential, or Availability 
 
Consider a fluid stream at T1, P1, where the environment is at T0, P0.  We hypothesize some 
generic process that takes the fluid stream to T0 and P0 reversibly.  Although we do not need to 
specify such a process to do the calculation, it may be more comforting to give some kind of an 
example, so let's do so now. 
Example 1.  An air stream is at 1 MPa, 400 K.  Specify a reversible process to take it to the dead 
state, and find the maximum amount of work that can be extracted.  For simplicity, assume 
constant specific heats at room temperature. 
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We will do the process in two steps.  The first is to use a reversible, adiabatic turbine to take the 
air to room temperature, but with a pressure that is still above ambient.  The second process is to 
use a constant temperature turbine to expand the air to 100 kPa while absorbing heat from the 
surroundings.  This is shown in the following figure: 
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Figure 3.  A totally reversible process for taking air at 1 MPa, 400 K to the dead state. 

 
The first turbine is adiabatic and reversible, while the second is internally reversible, and 
involves only isothermal heat transfer with the environment.  Thus the entire process is totally 
reversible.  We get P2 via an isentropic relation: 
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For the second turbine, an entropy balance for steady-state operation is 
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so for reversible operation we have: 
 

q0=T0(s3-s2) 
 

We can get ∆s from the relations in the thermodynamics text: 
 

s3-s2 = -R•ln(P3/P2) = -(0.287 kJ/kg-K)•ln(100/365) = 0.371 kJ/kg-K 
 

So q0=111.5 kJ/kg.  The first law on the second turbine is: 
 

q0-w2=h3-h2 
 
But since ∆T=0, then ∆h=0 and q0=w2.  The maximum work (or availability) for this process is 
then the sum of the work from the two turbines: 
 

Wmax = CP(T1-T2)+w2 = (1.005 kJ/kg-K)•(400-300 K) + 111.5 kJ/kg = 212 kJ/kg 
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So this tells us that the maximum amount of work that can possibly be extracted from an air 
stream at 400 K and 1 MPa is 212 kJ for every kg of air processed.  The calculation can be 
repeated for air at any inlet temperature and pressure. 
 
As I promised, this calculation can be set up without needing to know the details of the process.  
We want to take a stream from P1 and T1 to P0 and T0 via a totally reversible process.  This will 
look like the following figure: 
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Figure 4.  A generic totally reversible process leading to the dead state.  The process may involve isothermal heat 

transfer with the surroundings. 
 

Here, the heat transfer is with the environment.  The first law for the process is: 
 

W = q + (h1-h0)     (1) 
 
An entropy balance on the steady-state process is: 
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so for a reversible process: 
 

q0=-T0(s1-s0)      (3) 
 

Substituting into the first law (Eq. 1) finally yields: 
 

Wmax= (h1-h0)-T0(s1-s0)           (4) 
 

This is then the expression calculating the maximum work attainable for taking a stream that is 
out of equilibrium with the environment to the dead state, and it can be applied to any material.  
Let's check our calculation from the first example: 
 
Example 2.  Find the maximum amount of work that can be extracted from the air stream from 
Example 1. 
 
First we find ∆s for the process: 
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Replacing ∆h with CP∆T in Equ. 4 gives: 
 

wmax= CP(T1-T0)-T0(s1-s0)=(1.005 kJ/kg-K)•(400-300 K)-(300 K)•(-.372 kJ/kg-K) = 212 kJ/kg 
 

This matches the answer from Example 1! 
 
Example 3.  You have a flow of steam from a geothermal field at 200 kPa, 600°C, and 5 kg/s.  
Find the maximum amount of work that can be extracted from this resource.  The environment is 
at 20°C and 100 kPa. 
 
Here the dead state will be liquid water at 100 kPa and 20°C.  We will approximate the liquid 
water state as that of saturated liquid at 20°C.  This is then just a table lookup with the values 
inserted in Eq. 4: 
 
wmax= (h1-h0)-T0(s1-s0)=(3704.0-83.96 kJ/kg)-(293 K)•(8.777-0.2966 kJ/kg-K) = 1135.3 kJ/kg 
 
Including the mass flow rate yields a maximum possible power output of 5.68 MW. 
 
3.0  Maximum Work between any two States 
 
In Section 2.0 we worked out the way to find the maximum work that could be extracted by 
reversibly bringing a stream into thermal and mechanical equilibrium with the environment.  The 
next step is to get the maximum work that can be extracted between any two states, such as 
steam starting at 1000 kPa, 600°C and ending at 100 kPa, 150°C.  This is a simple extension of 
what we did in Section 2.0.  See the figure below for the idea: 
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Figure 5.  Illustration of two process pathways for reaching the dead state from T1 and P1.  One pathway is via T2 

and P2. 
 
Each of the paths involves the generation of reversible work and a reversible heat interaction 
with the environment.  We know that all reversible paths connecting the same two endpoints give 
the same q and w, so: 
 

w1 = w2 + w1-2, or w1-2=w1-w2    (5) 
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Since both Paths 1 and 2 represent maximum work potentials going to the dead state, we can take 
their difference to get w1-2. 
 

w1-2 = [h1-h0-T0(s1-s0)]-[h2-h0-T0(s2-s0)]           (6) 
 

or, 
 

w1-2 = h1-h2-T0(s1-s2)          (7) 
 

This equation can be used to calculate the maximum work that can be obtained for a stream 
going between any two arbitrary states. 
 
Example 4.  Find the maximum work that can be obtained from a flow of steam that goes 
between 1000 kPa, 600°C and 100 kPa, 150°C. 
 
This is just a table lookup for values going into Eq.7: 
 

w1-2 = h1-h2-T0(s1-s2)=(3697.9-2776.4 kJ/kg)-(293 K)•(8.0290-7.6134 kJ/kg-K)=799.7 kJ/kg 
 

So this is the maximum work that can be realized for steam passing between these two states. 
 
At this point the following logical question often comes up:  "Why does the environmental 
temperature, T0, figure into this calculation?  It does not seem intuitively obvious why this plays 
a part."   
 
In fact, T0 does play a part.  If we go back to Example 1, the fully reversible process was 
constructed by first expanding the fluid isentropically until it reached T0, and then performing an 
isothermal expansion (while exchanging heat with the environment) until P0 was reached.  The 
same idea follows here.  To illustrate, let's construct a reversible process for Example 4. 
 
Example 5.  Find a reversible process for Example 4 and evaluate the reversible work manually. 
 
This will require a three-stage process which is best illustrated by the T-s diagram shown in 
Figure 6.  The first step is isentropic expansion to 20°C, which results in a two-phase mixture (1-
2).  The second is isothermal heat extraction from the two-phase mix to the environment, which 
will condense some of the vapor to liquid, and decrease the steam quality (2-3).  The pressure 
here is the saturation pressure at 20°C, which is 2.339 kPa.  The third step is isentropic 
compression to 100 kPa and 150°C (3-4).  All three steps are totally reversible.  Since all three 
processes involve T0, the results will depend on T0 as indicated by Eq. 7. 
 
To carry out the calculation, state 2 will be specified by T2=20°C and s2=s1=8.029 kJ/kg-K 
(where s1 is from the table for 600°C and 1000 kPa).  Entering the tables, we find state 2 is a 
two-phase mix with x2=0.924 and h2=2350.9 kJ/kg.  Working backwards from state 4, we have 
T3=20°C and s3=s4=7.6134 kJ/kg-K (where s4 is from the table for 150°C and 100 kPa).  This 
also results in a two-phase mix for state 3, with x3=0.874 and h3=2228.8 kJ/kg.  From the tables, 
h1=3697.9 kJ/kg and h4=2776.4 kJ/kg.  The total work will be the work released by the expansion 
from 1-2, minus the work required for the recompression (3-4), or: 
 

wmax = (h1-h2)-(h4-h3)=(3697.9-2350.9)-(2776.4-2228.8)=799.4 kJ/kg 
 
This is the same answer as Example 4 within rounding.  Note that T0 played a part in each of the 
three reversible segments. 
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Figure 6.  A T-s diagram for the totally reversible expansion of steam from 600°C, 1 MPa to 150°C, 100 kPa. 

 
4.0  Lost Work or Irreversibility 
 
In introductory thermodynamics, we often use the Carnot cycle efficiency to see how close a real 
cycle comes to an ideal.  This does not tell us what part of the real cycle has the most 
inefficiency associated with it.  Irreversibility calculations actually allow us to assign the blame 
for the difference between ideal and real cycles to specific parts of the cycle.  For example, in a 
Brayton cycle, we can find whether most of the inefficiency is associated with the heat addition 
step or the heat rejection step.  The lost work, or irreversibility, is the amount of potential work 
that is lost due to irreversibilities in specific parts of a cycle.   
 
Let's consider the heat addition step in a Brayton cycle.  Let's assume we heat air from 540 to 
1600 K via contact with a thermal reservoir that is at 2000 K: 
 

TH=2000 K

QH

540 K 1600 K
Heat Addition Step

1 2  
Figure 7.  A simple representation for the heat addition step in a Brayton cycle. 

 
We know there is irreversibility associated with this since we are transferring heat across a finite 
∆T.  The question for a cycle calculation is how much work potential are we losing due to this. 
 
To do this, we need to construct a system with the following three attributes: 
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1. The system must convert the air at state 1 into state 2. 
2. The system must remove the original amount of QH from the high temperature reservoir. 
3. The entire process must be done totally reversibly. 

 
The following figure shows one process for achieving this. 
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Figure 8.  A totally reversible means of achieving the Brayton cycle heating and debiting the same amount of QH 

from the high temperature reservoir. 
 

The heat addition step is now isolated from the high temperature reservoir.  The maximum work 
that can be produced from heat addition step is wrev, which can be calculated via the methods 
from Section 3 (Eq. 7): 
 

Wrev = h1-h2-T0(s1-s2)          (7) 
 

Now we need to reversibly debit the original amount of QH from the high temperature reservoir.  
This is easiest to do via a Carnot cycle, which gives: 
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Adding these two together gives the maximum work that can be extracted from this situation, 
which is equivalent to the work that is lost by doing it the original, irreversible way: 
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But the first law on the original process says that QH=h2-h1, so the QH and ∆h terms cancel, and 
we are left with: 
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It is customary to express the sign of QH with respect to the reservoir instead of to the process.  
With this reversal of sign in mind, the final equation becomes: 
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where the sign of QH is now referenced to the reservoir by definition. 
 
Example 6.  Find the lost work associated with the heat addition step outlined above using Eq. 
11. 
 
Since there is no pressure change across the heater, 
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We get QH from the first law on the system: 
 

QH=h2-h1=1757.57-544.35=1213.22 kJ/kg-K 
 
In the final equation, QH will be negative since if flows out of the reservoir.  The irreversibility is 
then: 
 

i=(300 K)•[1.22458 +(-1213.22/2000)] = 185.4 kJ/kg 
 
5.0  Some Applications 
 
Let's apply Eq. 11 to the simple Rankine cycle shown in Figure 1.  Assume the condenser 
operates at  20 kPa, that state 1 is a saturated liquid, that the boiler pressure is 10 MPa, and that 
the boiler outlet temperature is 500°C.  Assume the turbine efficiency is 87% but the pump is 
isentropic. 
 
Using the usual Rankine cycle analysis procedures, we find: 
 

Point 1: h1=251.40 kJ/kg  s1=0.832 kJ/kg-K 
Point 2: h2=261.55 kJ/kg  s2=0.832 kJ/kg-K 
Point 3: h3=3373.7 kJ/kg  s3=6.5966 kJ/kg-K 
Point 4: h4=2328.47 kJ/kg  s4=7.066 kJ/kg-K  x4=0.881 
 

From this we get: 
 

QH=h3-h2=3112.15 kJ/kg 
 

QL=h4-h1=2077.07 kJ/kg 
 

Wnet=QH-QL=1035.08 kJ/kg 
 

ηcycle = Wnet/QH = 0.332 
 
Next we will get the irreversibility associated with each process in the cycle using Equ. 11. 
 

i1-2 = 0 
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i2-3 = (300 K)•[6.5966-0.832 +(-3112.15/2000)] = 1262.56 kJ/kg 
 

i3-4 = (300 K)•[7.066-6.5966] = 140.82 kJ/kg 
 

i4-1 = (300 K)•[0.832-7.066 + (+2077.07/300)] = 206.87 kJ/kg 
 

One way to think of the maximum possible cycle efficiency is to add the actual cycle work to all 
the lost work (irreversibilities) and divide by QH.  If we do that we get: 
 

ηmax = (1035.08 + 1262.56 + 140.82 + 206.87)/(3112.15) = 0.8500 
 
If we compare this with the Carnot efficiency for an engine operating between the same two 
reservoirs, we get: 
 

ηCarnot = 1 – T0/TH = 1 – (300)/(2000) = 0.8500  
 
So the irreversibility calculation gives the same result as the Carnot calculation!  The difference 
is that the irreversibility calculation takes the overall inefficiency and divides it between the 
various components.  This allows the designer to decide where to most profitably focus cycle 
improvements.   
 
One way to think about this is that the total work potential [=Qin*(Carnot efficiency] must equal 
the net work plus all the irreversibilities.  The following is a table showing this:  
 

Component   Percent of Total Availability 
Net Work    39.13 
Pump       0.0 
Heat Addition    47.73 
Turbine      5.32 
Heat Rejection      7.82 
 

 
So the second law efficiency (fraction of total possible work realized) is 39.13% 
 
Next, let's apply the same analysis to the more realistic configuration shown in Figure 2.  All the 
properties associated with states 1-4, as listed above, stay the same, as do QH, Wnet, i3-4 and i4-1.  
The only difference is the heat exchanger.  The first law on the exchanger is: 
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This is rearranged to give the ratio of air flow to steam flow: 
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= 1.729  kg air/kg steam 

 
Now, we get the availability of the air stream at 2000 K from Equ. 4: 
 

Wmax = (2252.1-300.19 kJ/kg)-(300 K)•(3.7994-1.70203 kJ/kg-K) = 1322.70 kJ/kg air 
 

So this is the maximum amount of work that can be extracted from the 2000 K air stream on a 
kg-air basis.  Now we convert Wnet from the previous calculation to a kg-air basis for 
comparison: 
 



11 

Wnet,air = Wnet,steam/(1.729 kg air/kg steam) = 1035.08/1.729 = 598.66 kJ/kg-air 
 

This means our process is losing 1322.7-598.66 = 724.05 kJ/kg-air of work potential.  Let's see 
where it is going. 
 
The irreversibilities associated with the turbine and the heat rejection step stay the same, 
although we need to adjust them to a kg-air basis: 
 

i3-4 = 81.45 kJ/kg-air 
 

i4-1 = 119.65 kJ/kg-air 
 

The irreversibility associated with the heat addition step requires that we modify Eq. 11 to 
account for two inlets and two exits.  Note that no heat crosses the boundary of the heat 
exchanger.  On a kg-air basis: 
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  = 493.88 kJ/kg-air 
 
The final issue is the availability lost to the system associated with the exhaust of the air at 450 K 
(i.e., above the ambient).  More work could theoretically be extracted by taking this stream 
reversibly to the dead state.  The availability of this stream can be obtained from Eq. 4: 
 
Wmax= (h6-h0)-T0(s6-s0)=(451.8-300.19 kJ/kg)-(300 K)•(2.11161-1.70203 kJ/kg-K)  

= 28.74 kJ/kg-air 
 

Now we can add all the irreversibilities and lost availability and see if they sum to the total lost 
work of 724.05 kJ/kg-air: 
 

itotal = 81.45 + 119.65 + 493.88 + 28.74 = 723.72 kJ/kg-air 
 

So within rounding we have accounted for all the lost work in detail.  Now let's look at how the 
total availability of the resource represented by the 2000 K air is allocated: 
 

Element     Percent of Availability 
Net work recovered     45.27 
Irreversibility for high-T heat exchange  37.35 
Irreversibility for heat rejection     9.05 
Turbine irreversibility       6.16 
Irreversibility for hot air exhaust     2.17 
 

So we see that the biggest problem is in the boiler heat transfer process, due to the large ∆T 
between the air and steam.  The second law efficiency (Wnet/Wmax) is 45.27% for this more 
realistic cycle.  This is a much more meaningful number than the 39.06% based on the existence 
of a high temperature reservoir as a heat source, since no such reservoir really exists. 
 
6.0  Summary 
 
Energy resources can generally be thought of as streams that are out of thermal or mechanical 
equilibrium with the environment.  The maximum possible work (availability) is achieved when 



12 

these streams are brought into equilibrium with the environment (the dead state) in a reversible 
way.  For a process that moves between a state 1 and 2, neither of which is the dead state, the 
maximum possible work is realized by constructing a totally reversible path connecting the two.  
Simple equations for calculating both of these are available, and they do not require you to 
specify the process. 
 
One can calculate the amount of work potential that is lost for any real operation (irreversibility).  
The sum of all these irreversibilities and the actual work recovered must equal the availability of 
the resource stream that drives the process.  This allows one to evaluate the relative importance 
of each of the irreversiblities within a complex process, something that is valuable when 
deciding where you want to invest design effort and capital.  Simple equations are available for 
calculating irreversibility for the common situations of adiabatic flow systems, heat exchangers, 
or flow systems involving heat exchange with a single reservoir.  These cover all the situations 
normally encountered in analyzing energy systems. 


