DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW, UTTAR PRADESH

FOR B. TECH. 4TH YEAR

Electronics and Computer Engineering

Based On

NEP2020

(Effective from the Session: 2025-26)

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW, UTTAR PRADESH

B. TECH (ELECTRONICS AND COMPUTER ENGINEERING) CURRICULUM STRUCTURE

	SEMESTER- VII													
Sl. No.	Subject Code	Salina	Learning	Periods			Evaluation Scheme				End Semester		Total	G P
		Subject	Mode	L	T	P	CT	TA	Total	PS	TE	PE	Total	Credit
1	BCIT701	Cryptography and Network Security	Offline	3	-	-	20	10	30		70		100	3
2	B**07*	Deptt- Elective-IV	Offline	3	-	-	20	10	30		70		100	3
3	BOEM**	Open Elective-II	MOOC's	3	0	0	20	10	30		70		100	3
4	BCIT751	Cryptography and Network Security LAB	Offline	0	0	2				50		50	100	1
5	BECZ752	Mini Projects or Internship Assessment*		0	0	4	-	-	-	100	-	-	100	2
6	BECZ753	Project-1		0	0	10				150		-	150	5
7	BECZ754	Startup and Entrepreneurial Activity Assessment#		0	0	4				100			100	2
_		Total		9	0	20							750	19

^{*}The Mini Project or internship (5-6 weeks) conducted during summer break after VI semester will be assessed during VII semester. #The Startup and Entrepreneurial Activity Assessment will be done in the 7th semester, under which a student will have to undergo a startup/entrepreneurship activity of at least 60 hours till the 6th semester

	SEMESTER- VII													
Sl.	Subject Code	Subject	Learning		Periods		E	valuatio	n Schen	ne		nd ester	Total	Credit
No.		Subject	Mode	L	Т	P	CT	TA	Total	PS	TE	PE	Totai	Credit
1	BOENM**	Open Elective-III	MOOC'S	3	0	0	20	10	30		70		100	3
2	BOENM**	Open Elective-IV	MOOC'S	3	0	0	20	10	30		70		100	3
4	BECZ851	Project-II		0	0	18				100		350	450	10
		Total		6	0	18							650	16

The Internal Assessment of MOOCs will be done by the respective institute, and the External Assessment (End Semester Examination) will be done by the University.

Departmental Elective-IV

- 1. BCS070- Internet of Things
- 2. BCS071- Cloud Computing
- 3. BECZ070- Electric Vehicle Technology
- 4. BCS073- Design and Development of Applications

B. TECH (ELECTRONICS AND COMPUTER ENIGNEERING) SEVENTH SEMESTER (DETAILED SYLLABUS)

BCIT	C701 Cryptography & Network Security					
	Outcome (CO)	Bloom's Knowledge Level (KL)				
At the er	nd of course, the student will be able:					
CO 1	cryptographic techniques.	K_2, K_3				
CO 2	Understand security protocols for protecting data on networks and be able to digitally sign emails and files.	K_1, K_2				
CO 3	Understand vulnerability assessments and the weakness of using passwords for authentication	K4				
CO 4	Be able to perform simple vulnerability assessments and password audits	K ₃				
CO 5	Summarize the intrusion detection and its solutions to overcome the attacks.	K ₆				
	DETAILED SYLLABUS	3-0-0				
Unit	Торіс	Proposed Lecture				
I	Introduction to security attacks, services and mechanism, Classical encryption techniques- substitution ciphers and transposition ciphers, cryptanalysis, steganography, Stream and block ciphers. Modern Block Ciphers: Block ciphers principles, Shannon's theory of confusion and diffusion, fiestal structure, Data encryption standard(DES), Strength of DES, Idea of differential cryptanalysis, block cipher modes of operations, Triple DES					
II	Introduction to group, field, finite field of the form GF(p), modular arithmetic, prime and relative prime numbers, Extended Euclidean Algorithm, Advanced Encryption Standard (AES) encryption and decryptionFermat's and Euler's theorem, Primarily testing, Chinese Remainder theorem, Discrete Logarithmic Problem, Principals of public key crypto systems, RSA algorithm, security of RSA					
Ш	Message Authentication Codes: Authentication requirements, authentication functions, message authentication code, hash functions, birthday attacks, security of hash functions, Secure hash algorithm (SHA) Digital Signatures: Digital Signatures, Elgamal Digital Signature Techniques, Digital signature standards (DSS), proof of digital signature algorithm,	08				
IV	Key Management and distribution: Symmetric key distribution, Diffie-Hellman Key Exchange, Public key distribution, X.509 Certificates, Public key Infrastructure. Authentication Applications: Kerberos, Electronic mail security: pretty good privacy (PGP), S/MIME.	08				
V	IP Security: Architecture, Authentication header, Encapsulating security payloads, combining security associations, key management. Introduction to Secure Socket Layer, Secure electronic, transaction (SET) System Security: Introductory idea of Intrusion, Intrusion detection, Viruses and related threats, firewalls					

- 1. William Stallings, "Cryptography and Network Security: Principals and Practice", Pearson Education, 2020.
- 2. Behrouz A. Frouzan, "Cryptography and Network Security", McGraw Hill, 2015.
- 3. C K Shyamala, N Harini, Dr. T.R.Padmnabhan, "Cryptography and Security", Wiley, 2011
- 4. Bruce Schiener, "Applied Cryptography", Wiley, 2015.
- 5. Bernard Menezes, "Network Security and Cryptography", Cengage Learning, 2010.
- 6. Atul Kahate, "Cryptography and Network Security", McGraw Hill, 2020.

BCS0	70 Internet of Things	
Course (Outcome (CO)	Bloom's Knowledge Level (KL)
At the er	nd of course, the student will be able to understand	
CO 1		K1,K2
CO 2	Illustrate functioning of hardware devices and sensors used for IoT.	K2
CO 3	Analyze network communication aspects and protocols used in IoT.	K4
CO 4	Apply IoT for developing real life applications using Ardunio programming.	К3
CP 5	To develop IoT infrastructure for popular applications	K2, K3
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
I	Internet of Things (IoT): Vision, Definition, Conceptual Framework, Architectural view, technology behind IoT, Sources of the IoT, M2M Communication, IoT Examples. Design Principles for Connected Devices: IoT/M2M systems layers and design standardization, communication technologies, data enrichment and consolidation, ease of designing and affordability	0.0
II	Hardware for IoT: Sensors, Digital sensors, actuators, radio frequency identification (RFID) technology, wireless sensor networks, participatory sensing technology. Embedded Platforms for IoT: Embedded computing basics, Overview of IOT supported Hardware platforms such as Arduino, NetArduino, Raspberry pi, Beagle Bone, Intel Galileo boards and ARM cortex.	
III	Network & Communication aspects in IoT: Wireless Medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination	08
I V	Programming the Ardunio: Ardunio Platform Boards Anatomy, Ardunio IDE, coding, using emulator, using libraries, additions in ardunio, programming the ardunio for IoT.	08
\mathbf{v}	Challenges in IoT Design challenges: Development Challenges, Security Challenges, Other challenges IoT Applications: Smart Metering, E-health, City Automation, Automotive Applications, home automation, smart cards, communicating data with H/W units, mobiles, tablets,	

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi "The Internet of Things key applications and protocols", Wiley, 2012.
- 2. Jeeva Jose, "Internet of Things", Khanna Publishing House, 2018.
- 3. Michael Miller "The Internet of Things" by Pearson, 2015.
- 4. Raj Kamal, "Internet of Things: Architecture and Design Principles", McGraw-Hill, 2nd Edition, 2017.
- 5. ArshdeepBahga, Vijay Madisetti, "Internet of Things: A Hands-On Approach", 1ST edition, VPI publications, 2014
- 6. Adrian McEwen, Hakin Cassimally, "Designing the Internet of Things" Wiley, 2015.

BCS07	Cloud Computing					
Course Ou	tcome (CO)	Bloom's Knowledge Level (KL)				
At the end of course , the student will be able to understand						
CO 1	Describe architecture and underlying principles of cloud computing.	K_3				
CO 2	Explain need, types and tools of Virtualization for cloud.	K ₃ , K ₄				
CO 3	Describe Services Oriented Architecture and various types of cloud services.	K ₂ , K ₃				
CO 4	Explain Inter cloud resources management cloud storage services and their providers Assess security services and standards for cloud computing.	K ₂ , K ₄				
CO 5	Analyze advanced cloud technologies.	K_3				
	DETAILED SYLLABUS	3-0-0				
Unit	Торіс	Proposed Lecture				
I	Introduction To Cloud Computing: Definition of Cloud – Evolution of Cloud Computing – Underlying Principles of Parallel and Distributed Computing – Cloud Characteristics – Elasticity in Cloud – On- demand Provisioning.	08				
П	Cloud Enabling Technologies Service Oriented Architecture: REST and Systems of Systems – Web Services – Publish, Subscribe Model – Basics of Virtualization – Types of Virtualization – Implementation Levels of Virtualization – Virtualization Structures – Tools and Mechanisms – Virtualization of CPU – Memory – I/O Devices –Virtualization Support and Disaster Recovery.	08				
	Cloud Architecture, Services And Storage: Layered Cloud Architecture Design - NIST Cloud					
III	Computing Reference Architecture – Public, Private and Hybrid Clouds – laaS – PaaS – SaaS – Architectural Design Challenges – Cloud Storage – Storage-as-a-Service – Advantages of Cloud Storage – Cloud Storage Providers – S3.	08				
IV	Resource Management And Security In Cloud: Inter Cloud Resource Management – Resource Provisioning and Resource Provisioning Methods – Global Exchange of Cloud Resources – Security Overview – Cloud Security Challenges – Software-as-a-Service Security – Security Governance – Virtual Machine Security – IAM – Security Standards.	08				
V	Cloud Technologies And Advancements Hadoop: MapReduce – Virtual Box — Google App Engine – Programming Environment for Google App Engine — Open Stack – Federation in the Cloud – Four Levels of Federation – Federated Services and Applications – Future of Federation.	08				

- 1. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing: From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. Rittinghouse, John W., and James F. Ransome, "Cloud Computing: Implementation, Management and Security", CRC Press, 2017.
- 3. Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, "Mastering Cloud Computing", Tata Mcgraw Hill, 2013. 4. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing A Practical Approach", Tata Mcgraw Hill, 2009.
- 5. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud", O'Reilly, 2009.

BEC	Z070 Electric Vehicle Technology	
Course	Outcome (CO)	Bloom's Knowledge Level (KL)
At the	end of course, the student will be able to	
CO 1	To provide knowledge about electric machines and special machine	K_1, K_2
CO 2	To understand the basics of power converters	K ₃
CO 3	To know the concepts of controlling DC and AC drive systems	K ₃ , K ₄
CO 4	To understand the architecture and power train components.	K4
CO 5	To impart knowledge on vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs)	K ₃ , K ₄
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	ROTATING POWER CONVERTERS Magnetic circuits- DC machine and AC machine –Working principle of Generator and Motor-DC and AC - Voltage and torque equations – Characteristics and applications. Working principle of special machines like: Brushless DC motor, Switched reluctance motor and PMSM.	08
II	STATIC POWER CONVERTERS Working and Characteristics of Power Diodes, MOSFET and IGBT. Working of uncontrolled rectifiers, controlled rectifiers (Single phase and Three phase), DC choppers, single and three phase inverters, Multilevel inverters and Matrix Converters.	08
III	CONTROL OF DC AND AC MOTOR DRIVES Speed control for constant torque, constant HP operation of all electric motors - DC/DC chopper based four quadrant operation of DC motor drives, inverter based V/f Operation (motoring and braking) of induction motor drives, Transformation theory, vector control operation of Induction motor and PMSM, Brushless DC motor drives, Switched reluctance motor (SRM) drives	08
IV	HYBRID ELECTRIC VEHICLE ARCHITECTURE AND POWER TRAIN COMPONENTS History of evolution of Electric Vehicles - Comparison of Electric Vehicles with Internal Combustion Engines - Architecture of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) – Plug-in Hybrid Electric Vehicles (PHEV)- Power train components and sizing, Gears, Clutches, Transmission and Brakes.	08
V	MECHANICS OF HYBRID ELECTRIC VEHICLES AND CONTROL OF VEHICLES Fundamentals of vehicle mechanics - tractive force, power and energy requirements for standard drive cycles of HEV's - motor torque and power rating and battery capacity. HEV supervisory control - Selection of modes - power spilt mode - parallel mode - engine brake mode - regeneration mode - series parallel mode	08

- 1. Stephen D. Umans, "Fitzgerald & Kingsley's Electric Machinery", Tata McGraw Hill, 7th Edition, 2020
- 2. Bogdan M. Wilamowski, J. David Irwin, "The Industrial Electronics Handbook", Second Edition, Power Electronics and Motor Drives, CRC Press, 2011
- 3. Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Steven D. Pekarek "Analysis of Electric Machinery and Drive Systems", 3rd Edition, Wiley-IEEE Press, 2013
- 4. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Pearson, fourth Edition, 10th Impression 2021
- 5. Iqbal Husain, "Electric and Hybrid Electric Vehicles", CRC Press, 2021.

BCS0	73 Design and Development of Applications	
Course	Outcome (CO)	Bloom's Knowledge Level (KL)
At the e	end of the course, the student will be able to	
СО	Be exposed to technology and business trends impacting mobile applications	K_1, K_2
CO	Be competent with the characterization and architecture of mobile applications.	
СО	Be competent with understanding enterprise scale requirements of mobile applications.	K ₃ K ₁ , K ₂
СО	Be competent with designing and developing mobile applications using one application development framework.	K ₄
СО	Be exposed to Android and iOS platforms to develop the mobile applications	K_5
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	INTRODUCTION: Introduction to mobile applications – Embedded systems - Market and business drivers for mobile applications – Publishing and delivery of mobile applications – Requirements gathering and validation for mobile applications	08
II	BASIC DESIGN: Introduction – Basics of embedded systems design – Embedded OS - Design constraints for mobile applications, both hardware and software related – Architecting mobile applications – User interfaces for mobile applications – touch events and gestures – Achieving quality constraints – performance, usability, security, availability and modifiability	08
Ш	ADVANCED DESIGN: Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.	08
IV	TECHNOLOGY I – ANDROID: Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI – Persisting data using SQLite – Packaging and deployment – Interaction with server side applications – Using Google Maps, GPS and Wi-Fi – Integration with social media applications.	08
V	TECHNOLOGY II –iOS: Introduction to Objective C – iOS features – UI implementation – Touch frameworks – Data persistence using Core Data and SQLite – Location aware applications using Core Location and Map Kit – Integrating calendar and address book with social media application – Using Wi-Fi - iPhone marketplace. Swift: Introduction to Swift, features of swift	08

- 1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.
- 2. A. Pradhan and A. V. Deshpande, "Composing Mobile Apps: Learn | Explore | Apply using Android", 1st ed. Wiley India, 2014.
- 3. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.
- 4. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.
- 5. D. Mark, J. Nutting, J. LaMarche, and F. Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", 1st ed. Apress, 2013.

CRYPTOGRAPHY and NETWORK SECURITY BCIT751 LAB Bloom's Course Outcome (CO) Knowledge Level (KL) At the end of course, the student will be able to K_3 CO 1 Explain security concepts, Ethics in Network Security. Identify and classify various attacks and explain the same. Compare and contrast symmetric and asymmetric encryption systems and their CO 2 K₄, K₅ vulnerability to various attacks. Comprehend and apply authentication, email security, web security services and CO 3 K_4 mechanisms. Distinguish and explain different protocol like SSL, TLS Vis-à-vis their applications CO 4 K_2 CO 5 Explain the role of third-party agents in the provision of authentication services. K4, K5 DETAILED SYLLABUS

- 1. Write a C program that contains a string(char pointer) with a value \Hello World'. The programs should XOR each character in this string with 0 and display the result.
- 2. Write a C program that contains a string (char pointer) with a value \Hello World'. The program should AND or and XOR each character in this string with 127 and display the result.
- 3. Write a Java program to perform encryption and decryption using the following algorithms: a. Ceaser Cipher b. Substitution Cipher c. Hill Cipher.
- 4. Write a Java program to implement the DES algorithm logic.
- 5. Write a C/JAVA program to implement the Blowfish algorithm logic.
- 6. Write a C/JAVA program to implement the Rijndael algorithm logic.
- 7. 1) Write the RC4 logic in Java Using Java Cryptography, encrypt the text "Hello world" using Blowfish. Create your own key using Java key tool. 2) Write a Java program to implement RSA Algorithm.
- 8. 1. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript. 2. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.
- 9. Calculate the message digest of a text using the MD5 algorithm in JAVA.
- 10. Write a java program for Knapsack using Dynamic Programming based solution.

Note: The Instructor may add/delete/modify/tune experiments

BECZ7	Mini Project or Internship Assessment	
Course Ou	tcome (CO)	Bloom's Knowledge Level (KL)
At the end	of the course, the student will be able to understand	
CO 1	Developing a technical artefact requires new technical skills and effectively utilizing a new software tool to complete a task	K ₅
CO 2	Writing requirements documentation, selecting appropriate technologies, identifying and creating appropriate test cases for systems.	K ₆
CO 3	Demonstrating understanding of professional customs & practices and working with professional standards.	K ₅
CO 4	Improving problem-solving, critical thinking skills and report writing.	K ₅
CO 5	Learning professional skills like exercising leadership, behaving professionally, behaving ethically, listening effectively, participating as a member of a team, and developing appropriate workplace attitudes.	K ₄

BECZ7	53/ BECZ851 Project	
Course Ou	tcome (CO)	Bloom's Knowledge Level (KL)
At the end	of the course, the student will be able to understand	
CO 1	Analyse and understand the real-life problem and apply their knowledge to get a programming solution.	K ₅
CO 2	Engage in the creative design process through the integration and application of diverse technical knowledge and expertise to meet customer needs and address social issues.	K 5
CO 3	Use the various tools and techniques, coding practices for developing real real-life solution to the problem.	K ₆
CO 4	Find out the errors in software solutions and establish the process to design maintainable software applications	K 5
CO 5	Write the report about what they are doing in the project and learning the team working skills	K_6