Review of Probability and Random Processes

Importance of Random Processes

- Random variables and processes talk about quantities and signals which are unknown in advance
- The data sent through a communication system is modeled as random variable
- The noise, interference, and fading introduced by the channel can all be modeled as random processes
- Even the measure of performance (Probability of Bit Error) is expressed in terms of a probability

Random Events

- When we conduct a random experiment, we can use set notation to describe possible outcomes
- Examples: Roll a six-sided die Possible Outcomes: $S = \{1, 2, 3, 4, 5, 6\}$
- An *event* is any subset of possible outcomes: $A = \{1, 2\}$

Random Events (continued)

- The *complementary event*: $\overline{A} = S A = \{3, 4, 5, 6\}$
- The set of all outcomes in the *certain event*: *S*
- The null event: ϕ
- Transmitting a data bit is also an experiment

Probability

• The probability P(A) is a number which measures the likelihood of the event A

Axioms of Probability

- No event has probability less than zero: $P(A) \ge 0$ $P(A) \le 1$ and $P(A) = 1 \Leftrightarrow A = S$
- Let A and B be two events such that: $A \cap B = \phi$ Then: $P(A \cup B) = P(A) + P(B)$
- All other laws of probability follow from these axioms

Relationships Between Random Events

- Joint Probability: $P(AB) = P(A \cap B)$
 - Probability that both A and B occur
- Conditional Probability: $P(A \mid B) = \frac{P(AB)}{P(B)}$
 - Probability that A will occur given that B has occurred

Relationships Between Random Events

- Statistical Independence:
 - Events A and B are statistically independent if:

$$P(AB) = P(A)P(B)$$

- If A and B are independence than:

$$P(A \mid B) = P(A)$$
 and $P(B \mid A) = P(B)$

Random Variables

- A random variable X(S) is a real valued function of the underlying even space: $S \in S$
- A random variable may be:
 - -Discrete valued: range is *finite* (e.g.{0,1}) or *countable* infinite (e.g.{1,2,3.....})
 - -Continuous valued: range is uncountable infinite (e.g. \Re)
- A random variable may be described by:
 - A name: *X*
 - Its range: $X \in \Re$
 - A description of its distribution

Cumulative Distribution Function

- Definition: $F_X(x) = F(x) = P(X \le x)$
- Properties:
 - $\rightarrow F_X(x)$ is monotonically nondecreasing

$$\rightarrow F(-\infty) = 0$$

$$\rightarrow F(\infty) = 1$$

$$\rightarrow P(a < X \le b) = F(b) - F(a)$$

- While the CDF defines the distribution of a random variable, we will usually work with the pdf or pmf
- In some texts, the CDF is called PDF (Probability Distribution function)

Probability Density Function

• Definition:
$$P_X(x) = \frac{dF_X(x)}{dx}$$
 or $P(x) = \frac{dF(x)}{dx}$

- Interpretations: *pdf* measures how fast the CDF is increasing or how likely a random variable is to lie around a particular value
- Properties:

$$P(x) \ge 0 \qquad \int_{-\infty}^{\infty} P(x) dx = 1$$

$$P(a < X \le b) = \int_{a}^{b} P(x) dx$$

Expected Values

- Expected values are a shorthand way of describing a random variable
- The most important examples are:

-Mean:
$$E(X) = m_x = \int_{-\infty}^{\infty} xp(x)dx$$

-Variance:
$$E([X - m_x]^2) = \int_{-\infty}^{\infty} (x - m_x)^2 p(x) dx$$

Probability Mass Functions (pmf)

- A discrete random variable can be described by a pdf if we allow impulse functions
- We usually use probability mass functions (pmf)

$$p(x) = P(X = x)$$

Properties are analogous to pdf

$$p(x) \ge 0$$

$$\sum_{X} p(x) = 1$$

$$P(a \le X \le b) = \sum_{x=a}^{b} p(x)$$

Some Useful Probability Distributions

Binary Distribution

$$p(x) = \begin{cases} 1-p & x=0\\ p & x=1 \end{cases}$$

- This is frequently used for binary data
- Mean: E(X) = p
- Variance: $\sigma_X^2 = p(1-p)$

Some Useful Probability Distributions (continued)

• Let $Y = \sum_{i=1}^{n} X_i$ where $\{X_i, i = 1, ..., n\}$ are independent

binary random variables with

$$p(x) = \begin{cases} 1 - p & x = 0 \\ p & x = 1 \end{cases}$$

- Then $p_y(y) = \binom{n}{y} p^y (1-p)^{n-y}$ y = 0, 1, ..., n
- Mean: E(X) = np
- Variance: $\sigma_x^2 = np(1-p)$

Some Useful Probability Distributions (continued)

Uniform pdf:

$$p(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$

• It is a continuous random variable

• Mean:
$$E(X) = \frac{1}{2}(a+b)$$

• Variance:
$$\sigma_X^2 = \frac{1}{12}(a-b)^2$$

Some Useful Probability Distributions (continued)

• Gaussian pdf:
$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-m_x)/2\sigma^2}$$

• A gaussian random variable is completely determined by its mean and variance

The Q-function

• The function that is frequently used for the area under the tail of the gaussian pdf is the denoted by Q(x)

$$Q(x) = \int_{x}^{\infty} e^{-t^2/2} dt, \qquad x \ge 0$$

• The Q-function is a standard form for expressing error probabilities without a closed form

A Communication System with Guassian noise

The probability that the receiver will make an error is

$$P(R > 0 \mid S = -a) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{n}} e^{\frac{-(x+a)^{2}}{2\sigma_{n}^{2}}} dx = Q\left(\frac{a}{\sigma_{n}}\right)$$

Random Processes

- A random variable has a single value. However, actual signals change with time
- Random *variables* model unknown events
- Random processes model unknown signals
- A random process is just a collection of random variables
- If X(t) is a random process, then X(1), X(1.5) and X(37.5) are all random variables for any specific time t

Terminology Describing Random Processes

- A *stationary* random process has statistical properties which do not change at all time
- A wide sense stationary (WSS) process has a mean and autocorrelation function which do not change with time
- A random process is *ergodic* if the time average always converges to the statistical average
- Unless specified, we will assume that all random processes are WSS and ergodic

Description of Random Processes

- Knowing the pdf of individual samples of the random process is not sufficient.
 - We also need to know how individual samples are related to each other
- Two tools are available to decribe this relationship
 - Autocorrelation function
 - Power spectral density function

Autocorrelation

- Autocorrelation measures how a random process changes with time
- Intuitively, X(1) and X(1.1) will be strongly related than X(1) and X(100000)
- The autocorrelation function quantifies this
- For a WSS random process,

$$\phi_{X}(\tau) = E[X(t)X(t+\tau)]$$

• Note that $Power = \phi_{x}(0)$

Power Spectral Density

- $\Phi(f)$ tells us how much power is at each frequency
- Wiener-Khinchine Theorem: $\Phi(f) = F\{\phi(\tau)\}\$
 - Power spectral density and autocorrelation are a Fourier Transform pair
- Properties of Power Spectral Density

$$\rightarrow \Phi(f) \ge 0$$

$$\rightarrow \Phi(f) = \Phi(-f)$$

$$\rightarrow Power = \int_{-\infty}^{\infty} \Phi(f) df$$

Gaussian Random Processes

- Gaussian random processes have some special properties
 - If a gaussian random process is wide-sense stationary, then it is also stationary
 - If the input to a linear system is a Gaussian random process, then the output is also a Gaussian random process

Linear systems

- Input: x(t)
- Impulse Response: h(t)
- Output: y(t)

Computing the Output of Linear Systems

- Deterministic Signals:
 - Time domain: y(t) = h(t) * x(t)
 - Frequency domain: $Y(f) = F\{y(t)\} = X(f)H(f)$
- For a random process, we can still relate the statistical properties of the input and output signal
 - Time domain: $\phi_Y(\tau) = \phi_X(\tau) * h(\tau) * h(-\tau)$
 - Frequency domain: $\Phi_{Y}(f) = \Phi_{X}(f) |H(f)|^{2}$