
Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

DESIGN AND ANALYSIS OF ALGORITHM LAB

LABORATORY MANUAL

B.Tech. Semester –V

Subject Code: BCS-553

Session: 2024-25, Odd Semester

Name:

Roll. No.:

Group/Branch:

DRONACHARYA GROUP OF INSTITUTIONS

DEPARTMENT OF ECE

#27 KNOWLEDGE PARK 3

GREATER NOIDA

AFFILATED TO Dr. ABDUL KALAM TECHNICAL UNIVERSITY,

LUCKNOW

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 Table of Contents

1. Vision and Mission of the Institute

2. Vision and Mission of the Department

3. Programme Educational Objectives (PEOs)

4. Programme Outcomes (POs)

5. Programme Specific Outcomes (PSOs)

6. University Syllabus

7. Course Outcomes (COs)

8. CO- PO and CO-PSO mapping

9. Course Overview

10. List of Experiments

11. DOs and DON‟Ts

12. General Safety Precautions

13. Guidelines for students for report preparation

14. Lab assessment criteria

15. Details of Conducted Experiments

16. Lab Experiments

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Vision and Mission of the Institute

Vision:

Instilling core human values and facilitating competence to address global

challenges by providing Quality Technical Education.

Mission:

• M1 - Enhancing technical expertise through innovative research and

education, fostering creativity and excellence in problem-solving.

• M2 - Cultivating a culture of ethical innovation and user-focused design,

ensuring technological progress enhances the well-being of society.

• M3 - Equipping individuals with the technical skills and ethical values to

lead and innovate responsibly in an ever-evolving digital landscape.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Vision and Mission of the Department

VISION

To achieve excellence in Electronics and Computer engineering through

quality education, research contributing to the emerging technologies and

innovation to serve industry and society.

MISSION

• M1: To help students achieve their goals by recognizing, identifying, and

to bring up their unique strengths through quality education and cutting-

edge research training.

• M2: To facilitate adequate exposure to the students through training in

the state of-the art technologies.

• M3: To imbibe ability in the students to solve real life problems as per

need of the society through nurturing their skills, creative thinking, and

research acumen.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Programme Educational Objectives

(PEOs)

PEO 1.

 To develop a strong foundation of engineering fundamentals to build successful

careers maintaining high ethical standards.

PEO 2.

To prepare graduates for higher studies and research activities, facilitating a

commitment to lifelong learning.

PEO 3.

To prepare graduates for higher studies and research activities, facilitating a

commitment to lifelong learning.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Programme Outcomes (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the

cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments, analysis and

interpretation of data, and synthesis of the information to provide valid

conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and

modelling to complex engineering activities with an understanding of the

limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate

the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able

to comprehend and write effective reports and design documentation, make

effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply these

to one’s own work, as a member and leader in a team, to manage projects and

in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability

to engage in independent and life-long learning in the broadest context of

technological change.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Program Specific Outcomes (PSOs)

PSO1:

To analyses electronics systems applying principles of mathematics

and engineering sciences, to develop innovative ethical solutions to

complex engineering problems with team spirit and social commitment.

PSO2:

To develop solution for real world problems based on principles of

computer hardware, advanced software and simulation tools with a focus to

devise indigenous, eco-friendly and energy efficient projects.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

University Syllabus

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 Course Outcomes (COs)

CO1
Understand and implement algorithm to solve problems by iterative

approach.

CO2
Understand and implement algorithm to solve problems by divide and

conquer approach.

CO3
Understand and implement algorithm to solve problems by Greedy

algorithm approach

CO4
Understand and analyze algorithm to solve problems by Dynamic

programming, backtracking.

CO5
Understand and analyze the algorithm to solve problems by branch and

bound approach.

CO-PO Mapping

CO-PSO Mapping

CO-PO Matrix

Course

Outcomes
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1 2 2 3 3 3 - - - - - - 2

CO2 3 3 3 2 2 - - - - - - 3

CO3 2 3 3 3 3 - - - - - - 2

CO4 2 3 2 2 2 - - - - - - 2

CO5 2 3 2 2 2 - - - - - - 3

 PSO1 PSO2 PSO3

CO1 1 2 1

CO2 1 3 1

CO3 1 3 1

CO4 2 2 1

CO5 2 2 1

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Course Overview
This course equips students with the skills to innovate and optimize computational solutions

across diverse domains.

• Design and implement algorithms for various computational problems.

• Analyze algorithms to determine their efficiency in terms of time and space.

• Apply appropriate algorithmic paradigms for real-world challenges.

• Understand the limitations of algorithms and explore alternative solutions.

Course Objectives

• Practical Implementation: Enable students to implement algorithms using

programming languages, reinforcing theoretical concepts learned in lectures.

• Algorithm Analysis: Develop skills to analyze the efficiency and performance of

algorithms through empirical testing and comparison.

• Problem-Solving Skills: Enhance the ability to apply appropriate algorithms to

solve complex computational problems effectively.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

List of Experiments

Program 1 Write a program for iterartive and recursive

Binary Search

Program 2 Write a program for for Selection Sort.

Program 3 Write a program for Insertion Sort.

Program 4 Write a program for Quick sort.

Program 5 Write a program for Merge Sort.

Program 6 Write a program for Heap Sort.

Program 7 a. To implement Fractional knapsack

problem using Greedy Technique

b. To implement 0/1 Knapsack problem

using Dynamic Programming

Program 8 Find Minimum Cost Spanning Tree of a given

undirected graph using Kruskal’s algorithm

Program 9 To Implement All Pair Shortest Path Problem

using Warshall's and Floyd's Algorithms.

Program 10 To Implement N Queen Problem using

Backtracking.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

DOs and DON’Ts

DOs

1. Login-on with your username and password.

2. Log off the computer every time when you leave the Lab.

3. Arrange your chair properly when you are leaving the lab.

4. Put your bags in the designated area.

5. Ask permission to print.

DON’Ts

1. Do not share your username and password.

2. Do not remove or disconnect cables or hardware parts.

3. Do not personalize the computer setting.

4. Do not run programs that continue to execute after you log off.

5. Do not download or install any programs, games or music on computer in Lab.

6. Personal Internet use chat room for Instant Messaging (IM) and Sites is strictly

prohibited.

7. No Internet gaming activities allowed.

8. Tea, Coffee, Water & Eatables are not allowed in the Computer Lab.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

General Safety Precautions

Precautions (In Case of Injury or Electric Shock)

1. Break Contact Safely: If a person is in contact with a live electrical source, use

an insulator such as a plastic chair or a wooden object to break the contact. Avoid

touching the victim with bare hands to prevent electric shock to yourself.

2. Disconnect Power: Unplug the affected equipment or turn off the main circuit

breaker if accessible. Ensure all systems are powered down to prevent further risk.

3. Provide Immediate Aid: If the victim is unconscious, begin CPR immediately.

Perform chest compressions and use mouth-to-mouth resuscitation if necessary.

4. Seek Emergency Help: Call emergency services and campus security

immediately. Time is critical, so act swiftly and efficiently.

Precautions (In Case of Fire)

1. Power Down Equipment: Turn off the affected system immediately. If the power

switch is not accessible, unplug the device.

2. Contain the Fire: If safe to do so, use a fire extinguisher or cover the fire with a

heavy cloth to smother it. Ensure the fire does not spread to other devices or

components in the lab.

3. Raise the Alarm: Activate the nearest fire alarm switch located in the hallway to

alert others in the building.

4. Contact Security and Emergency Services: Call the security office and

emergency services without delay to report the fire and get professional help on

site.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Guidelines for Report Preparation for Students

in Design and Analysis of Algorithms Lab

All students are required to maintain a comprehensive record of the experiments

conducted in the Design and Analysis of Algorithms Lab. The guidelines for preparing

this record are as follows:

1. File Structure:

o Each file must begin with a title page, followed by an index page. Faculty

will not sign the file unless there is an entry on the index page.

2. Student Information:

o Student’s Name, Roll Number, and Date of Conduction of the

experiment must be clearly mentioned on all pages of the record.

3. Experiment Documentation:

o For each algorithm experiment, the record must include the following

sections:

▪ Algorithm Name

▪ Code Implementation

▪ Analysis of Time and Space Complexity

▪ Output and Observations

4. Additional Notes:

o Students must bring their lab record to every lab session.

o Ensure that the lab record is regularly evaluated by the faculty.

Consistent updates and evaluations are essential for accurate assessment.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Lab Assessment Criteria for Design and Analysis of

Algorithms Lab

In a semester, approximately 10 lab classes are conducted for each lab course. These classes

are assessed continuously based on five assessment criteria. The performance in each

experiment contributes to the computation of Course Outcome (CO) attainment and internal

marks. The grading criteria are detailed in the following table:

Grading

Criteria

Exemplary (4) Competent (3) Needs

Improvement

(2)

Poor (1)

AC1:

Designing

Algorithms

The student

identifies

optimal

algorithms and

explores

innovative

approaches to

solve problems.

The student

identifies

appropriate

algorithms but

lacks a clear

goal or strategy

for optimization.

The student

struggles to

define the

problem or

select suitable

algorithms.

The student

does not

identify or

apply relevant

algorithms.

AC2:

Implementing

and Testing

Develops a

clear, efficient

procedure for

coding and

testing

algorithms.

Implementation

is correct and

adheres to best

practices.

Completes the

implementation

with necessary

corrections, but

with minor

issues in

efficiency or

adherence to

best practices.

Completes the

implementation

but with

significant

errors or

deviations from

expected

practices.

Implementation

is incomplete or

incorrect, with

major

deviations or

errors.

AC3:

Analyzing

Algorithm

Efficiency

Correctly

interprets time

and space

complexities,

providing

thorough

analysis and

verification of

results.

Provides a

reasonable

analysis of time

and space

complexities,

but with minor

inaccuracies.

Attempts

analysis but

with several

inaccuracies or

gaps in

understanding.

Lacks

understanding

or does not

attempt to

analyze

algorithm

efficiency.

AC4:

Drawing

Conclusions

Thoroughly

interprets and

analyzes the

results,

proposing viable

improvements or

optimizations.

Provides

conclusions, but

they are

somewhat

incomplete or

lack depth.

Attempts to

draw

conclusions, but

they are largely

inaccurate or

superficial.

Does not

provide

conclusions or

the conclusions

are irrelevant.

AC5: Lab

Record

Well-organized,

clear, and

confidently

The record is

acceptable but

may have minor

The record lacks

clarity,

organization,

No effort

exhibited; the

record is poorly

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

presented record

that correlates

theoretical

concepts with

practical results.

issues with

clarity or

organization.

and

completeness.

presented or

incomplete.

Additional Notes:

• Continuous Assessment: Each experiment is evaluated during the lab sessions.

• CO Attainment: Performance in each experiment contributes to the Course Outcome

(CO) attainment.

• Internal Marks: The cumulative performance determines the internal marks for the

lab course.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Details of Conducted Experiments

The following is a list of the experiments conducted in the Design and Analysis of

Algorithms Lab. Each experiment focuses on implementing and analyzing various

algorithms fundamental to the field.

Program 1: Iterative and Recursive Binary Search

• Objective: Write and implement both iterative and recursive versions of the

binary search algorithm. Analyze and compare their performance in terms of time

complexity.

Program 2: Selection Sort

• Objective: Write a program for the Selection Sort algorithm. Discuss the

algorithm’s efficiency and its practical applications.

Program 3: Insertion Sort

• Objective: Create a program to implement the Insertion Sort algorithm. Evaluate

its performance for small data sets and discuss its best and worst-case scenarios.

Program 4: Quick Sort

• Objective: Develop a program to implement the Quick Sort algorithm. Analyze

its average, best, and worst-case time complexities.

Program 5: Merge Sort

• Objective: Implement the Merge Sort algorithm and evaluate its performance.

Focus on understanding the divide-and-conquer approach.

Program 6: Heap Sort

• Objective: Write a program to implement the Heap Sort algorithm. Analyze the

time complexity and understand the use of a binary heap in sorting.

Program 7: Knapsack Problem

• Objective:

o Part A: Implement the Fractional Knapsack problem using the Greedy

Technique.

o Part B: Implement the 0/1 Knapsack problem using Dynamic

Programming. Compare the results of both approaches.

Program 8: Minimum Cost Spanning Tree using Kruskal’s Algorithm

• Objective: Write a program to find the Minimum Cost Spanning Tree (MST) of

a given undirected graph using Kruskal’s algorithm. Analyze the algorithm’s

efficiency.

Program 9: All Pair Shortest Path Problem

• Objective: Implement the All-Pair Shortest Path Problem using both Warshall's

and Floyd's algorithms. Compare the time complexities of the two methods.

Program 10: N Queen Problem using Backtracking

• Objective: Write a program to solve the N Queen problem using backtracking.

Analyze the solution’s complexity and discuss the efficiency of the backtracking

approach.

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Lab Experiments

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

1. Program to implement Recursive and iterative Linear and Binary

Search

Linear Search:

• Iterative: Loops through the array to find the element.

• Recursive: Calls itself with the next index until the element is found or

the end is reached.

Binary Search (for sorted arrays):

• Iterative: Uses a while loop to narrow down the search range.

• Recursive: Divides the range into two halves, searching recursively in the

appropriate half.

Code:

#include <stdio.h>

// Function prototypes

int iterative_linear_search(int arr[], int n, int key);

int recursive_linear_search(int arr[], int n, int key, int index);

int iterative_binary_search(int arr[], int n, int key);

int recursive_binary_search(int arr[], int left, int right, int key);

// Main function

int main() {

 int arr[] = {1, 3, 5, 7, 9, 11, 13, 15};

 int n = sizeof(arr) / sizeof(arr[0]);

 int key;

 printf("Enter the number to search: ");

 scanf("%d", &key);

 // Iterative Linear Search

 int linear_iter_result = iterative_linear_search(arr, n, key);

 printf("Iterative Linear Search: Element %s found\n",

 (linear_iter_result == -1) ? "not" : "is");

 // Recursive Linear Search

 int linear_recur_result = recursive_linear_search(arr, n, key, 0);

 printf("Recursive Linear Search: Element %s found\n",

 (linear_recur_result == -1) ? "not" : "is");

 // Iterative Binary Search

 int binary_iter_result = iterative_binary_search(arr, n, key);

 printf("Iterative Binary Search: Element %s found\n",

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 (binary_iter_result == -1) ? "not" : "is");

 // Recursive Binary Search

 int binary_recur_result = recursive_binary_search(arr, 0, n - 1, key);

 printf("Recursive Binary Search: Element %s found\n",

 (binary_recur_result == -1) ? "not" : "is");

 return 0;

}

// Iterative Linear Search

int iterative_linear_search(int arr[], int n, int key) {

 for (int i = 0; i < n; i++) {

 if (arr[i] == key)

 return i;

 }

 return -1;

}

// Recursive Linear Search

int recursive_linear_search(int arr[], int n, int key, int index) {

 if (index >= n)

 return -1;

 if (arr[index] == key)

 return index;

 return recursive_linear_search(arr, n, key, index + 1);

}

// Iterative Binary Search

int iterative_binary_search(int arr[], int n, int key) {

 int left = 0, right = n - 1;

 while (left <= right) {

 int mid = left + (right - left) / 2;

 if (arr[mid] == key)

 return mid;

 if (arr[mid] < key)

 left = mid + 1;

 else

 right = mid - 1;

 }

 return -1;

}

// Recursive Binary Search

int recursive_binary_search(int arr[], int left, int right, int key) {

 if (left > right)

 return -1;

 int mid = left + (right - left) / 2;

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 if (arr[mid] == key)

 return mid;

 if (arr[mid] < key)

 return recursive_binary_search(arr, mid + 1, right, key);

 return recursive_binary_search(arr, left, mid - 1, key);

}

Complexity:

Linear Search:

• Time Complexity:

• Best Case: O(1) (The target element is the first element in the array)

• Worst Case: O(n) (The target element is the last element or not present)

• Average Case: O(n) (On average, the element is in the middle of the array)

• Space Complexity: O(1) (No additional space is used) for Iterative approach.

O(logn) for recursive implementation due to the call stack.

Binary Search:

• Time Complexity:

• Best Case: O(1) (The middle element is the target)

• Worst Case: O(logn) (Each iteration halves the search space)

• Average Case: O(logn) (Dividing the search space in half each time)

• Space Complexity: O(1) for iterative implementation, O(logn) for recursive

implementation due to the call stack.

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

2. Write a Program to implement Selection Sort.

Selection Sort is a simple comparison-based sorting algorithm. It works by repeatedly

selecting the smallest (or largest, depending on sorting order) element from the unsorted

portion of the list and moving it to the beginning (or end) of the sorted portion.

Code:
// C program for implementation of selection sort

#include <stdio.h>

void selectionSort(int arr[], int n) {

 for (int i = 0; i < n - 1; i++) {

 // Assume the current position holds

 // the minimum element

 int min_idx = i;

 // Iterate through the unsorted portion

 // to find the actual minimum

 for (int j = i + 1; j < n; j++) {

 if (arr[j] < arr[min_idx]) {

 // Update min_idx if a smaller element is found

 min_idx = j;

 }

 }

 // Move minimum element to its

 // correct position

 int temp = arr[i];

 arr[i] = arr[min_idx];

 arr[min_idx] = temp;

 }

}

void printArray(int arr[], int n) {

 for (int i = 0; i < n; i++) {

 printf("%d ", arr[i]);

 }

 printf("\n");

}

int main() {

 int arr[] = {64, 25, 12, 22, 11};

 int n = sizeof(arr) / sizeof(arr[0]);

 printf("Original array: ");

 printArray(arr, n);

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 selectionSort(arr, n);

 printf("Sorted array: ");

 printArray(arr, n);

 return 0;

}

Complexity:
• Time Complexity:

• Best Case: O(n2)

• Even if the array is already sorted, the algorithm still performs

n(n−1)/2n(n-1)/2n(n−1)/2 comparisons.

• Worst Case: O(n2)

• The algorithm always makes n(n−1)/2n(n-1)/2n(n−1)/2 comparisons

regardless of the initial order of the elements.

• Average Case: O(n2)

• The average case also involves n(n−1)/2n(n-1)/2n(n−1)/2 comparisons,

making the overall time complexity O(n2).

• Space Complexity:

• Space Complexity: O(1)

o Selection Sort is an in-place sorting algorithm, which means it does not

require additional space proportional to the input size.

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

3. Write a Program to implement Insertion Sort.

Insertion Sort is a simple and intuitive sorting algorithm that builds the final sorted array

one element at a time. It is much like the way you might sort playing cards in your hands.

Code:
// C program for implementation of Insertion Sort

#include <stdio.h>

/* Function to sort array using insertion sort */

void insertionSort(int arr[], int n)

{

 for (int i = 1; i < n; ++i) {

 int key = arr[i];

 int j = i - 1;

 /* Move elements of arr[0..i-1], that are

 greater than key, to one position ahead

 of their current position */

 while (j >= 0 && arr[j] > key) {

 arr[j + 1] = arr[j];

 j = j - 1;

 }

 arr[j + 1] = key;

 }

}

/* A utility function to print array of size n */

void printArray(int arr[], int n)

{

 for (int i = 0; i < n; ++i)

 printf("%d ", arr[i]);

 printf("\n");

}

// Driver method

int main()

{

 int arr[] = { 12, 11, 13, 5, 6, 1, 10 };

 int n = sizeof(arr) / sizeof(arr[0]);

 insertionSort(arr, n);

 printArray(arr, n);

 return 0;

}

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Complexity:
• Time Complexity

• Best case: O(n), If the list is already sorted, where n is the number of

elements in the list.

• Average case: O(n2), If the list is randomly ordered

• Worst case: O(n2), If the list is in reverse order

• Space Complexity

• Auxiliary Space: O(1), Insertion sort requires O(1) additional space, making

it a space-efficient sorting algorithm.

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

4. Write a Program to implement Quick Sort

QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and
partitions the given array around the picked pivot.

There are many different versions of QuickSort that pick pivot in different ways.
1. Always pick first element as pivot.

2. Always pick last element as pivot (implemented below)
3. Pick a random element as pivot.
4. Pick median as pivot.

The key process in QuickSort is partition. Target of partitions is, given an array and

an element x of array as pivot, put x at its correct position in sorted array and put all

smaller elements (smaller than x) before x, and put all greater elements (greater than

x) after x.

Code:
// C program to implement Quick Sort Algorithm

#include <stdio.h>

void swap(int* a, int* b) {

 int temp = *a;

 *a = *b;

 *b = temp;

}

int partition(int arr[], int low, int high) {

 // Initialize pivot to be the first element

 int p = arr[low];

 int i = low;

 int j = high;

 while (i < j) {

 // Find the first element greater than

 // the pivot (from starting)

 while (arr[i] <= p && i <= high - 1) {

 i++;

 }

 // Find the first element smaller than

 // the pivot (from last)

 while (arr[j] > p && j >= low + 1) {

 j--;

 }

 if (i < j) {

 swap(&arr[i], &arr[j]);

 }

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 }

 swap(&arr[low], &arr[j]);

 return j;

}

void quickSort(int arr[], int low, int high) {

 if (low < high) {

 // call partition function to find Partition Index

 int pi = partition(arr, low, high);

 // Recursively call quickSort() for left and right

 // half based on Partition Index

 quickSort(arr, low, pi - 1);

 quickSort(arr, pi + 1, high);

 }

}

int main() {

 int arr[] = { 7, 9, 4, 2, 5, 3, 1 };

 int n = sizeof(arr) / sizeof(arr[0]);

 // calling quickSort() to sort the given array

 quickSort(arr, 0, n - 1);

 for (int i = 0; i < n; i++)

 printf("%d ", arr[i]);

 return 0;

}

Complexity:

• Time Complexity

• Best case: O(nlogn)

▪ Occurs when the pivot divides the array into two nearly equal halves at

every step.

▪ The recurrence relation for the best case is T(n)=2T(n/2)+O(n)T(n) =

2T(n/2) + O(n)T(n)=2T(n/2)+O(n), which resolves to (nlogn).

• Average case: O(nlogn)

▪ On average, the pivot divides the array into reasonably balanced

parts, leading to logarithmic depth of recursion with linear work per

level.

• Worst case: O(n2)

▪ Occurs when the pivot is the smallest or largest element, causing

unbalanced partitions.

▪ The recurrence relation for the worst case is T(n)=T(n−1)+O(n)T(n) =

T(n-1) + O(n)T(n)=T(n−1)+O(n), which resolves to O(n2).

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

• Space Complexity: O(logn) (for the recursive call stack)

• In the best and average cases, the depth of recursion is O(logn)O(\log

n)O(logn) due to balanced partitions.

• In the worst case, the space complexity can go up to O(n)O(n)O(n) due to

highly unbalanced partitions.

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

5. Write a Program to implement Merge Sort.

Merge Sort is a popular, efficient, and stable sorting algorithm that follows the divide-and-
conquer strategy. It divides the input array into two halves, recursively sorts them, and then
merges the sorted halves.

Code:
// C program for the implementation of merge sort

#include <stdio.h>

#include <stdlib.h>

// Merges two subarrays of arr[].

// First subarray is arr[left..mid]

// Second subarray is arr[mid+1..right]

void merge(int arr[], int left, int mid, int right) {

 int i, j, k;

 int n1 = mid - left + 1;

 int n2 = right - mid;

 // Create temporary arrays

 int leftArr[n1], rightArr[n2];

 // Copy data to temporary arrays

 for (i = 0; i < n1; i++)

 leftArr[i] = arr[left + i];

 for (j = 0; j < n2; j++)

 rightArr[j] = arr[mid + 1 + j];

 // Merge the temporary arrays back into arr[left..right]

 i = 0;

 j = 0;

 k = left;

 while (i < n1 && j < n2) {

 if (leftArr[i] <= rightArr[j]) {

 arr[k] = leftArr[i];

 i++;

 }

 else {

 arr[k] = rightArr[j];

 j++;

 }

 k++;

 }

 // Copy the remaining elements of leftArr[], if any

 while (i < n1) {

 arr[k] = leftArr[i];

 i++;

 k++;

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 }

 // Copy the remaining elements of rightArr[], if any

 while (j < n2) {

 arr[k] = rightArr[j];

 j++;

 k++;

 }

}

// The subarray to be sorted is in the index range [left-right]

void mergeSort(int arr[], int left, int right) {

 if (left < right) {

 // Calculate the midpoint

 int mid = left + (right - left) / 2;

 // Sort first and second halves

 mergeSort(arr, left, mid);

 mergeSort(arr, mid + 1, right);

 // Merge the sorted halves

 merge(arr, left, mid, right);

 }

}

int main() {

 int arr[] = { 10, 12, 11, 13, 5, 6, 7, 4 };

 int n = sizeof(arr) / sizeof(arr[0]);

 // Sorting arr using mergesort

 mergeSort(arr, 0, n - 1);

 for (int i = 0; i < n; i++)

 printf("%d ", arr[i]);

 return 0;

}

Complexity:
Time Complexity:

1. Best Case: O(nlogn)

o Even if the array is already sorted, Merge Sort will still divide the array

and merge it back, performing O(nlogn) operations.

2. Average Case: O(nlogn)

o The array is divided into halves log nnn times, and merging each level

requires O(n) operations.

3. Worst Case: O(nlogn)

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

o The time complexity remains O(nlogn) in the worst case because the

process of dividing and merging is the same irrespective of the initial

order of elements.

Space Complexity:

• Space Complexity: O(n)

o Merge Sort requires additional space proportional to the size of the

input array to hold the temporary arrays during the merge process.

Each level of recursion uses space for merging subarrays, resulting in a

total space complexity of O(n).

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

6. Write a Program to implement Heap Sort.

Heap sort is a comparison-based sorting algorithm that uses a binary heap data structure

to sort elements. It's known for its efficiency and in-place sorting capability. Here's a

breakdown of how it works:

1. Building the Heap:

• The algorithm first transforms the input array into a max-heap. A max-heap is a

complete binary tree where the value of each parent node is greater than or equal to

the value of its children.

• This is done by starting from the middle of the array and working backwards,

"heapifying" each element. Heapifying means ensuring that the subtree rooted at that

element satisfies the max-heap property.

2. Sorting:

• Once the max-heap is built, the largest element (which is at the root of the heap) is

swapped with the last element in the array.

• The heap size is then reduced by one, and the new root is heapified to maintain the

max-heap property.

• This process is repeated until the heap size is 1, at which point the entire array is

sorted in ascending order.

Code:
#include <stdio.h>

// Function to swap two integers

void swap(int *a, int *b) {

 int temp = *a;

 *a = *b;

 *b = temp;

}

// Function to heapify a subtree rooted at index i

void heapify(int arr[], int n, int i) {

 int largest = i; // Initialize largest as root

 int l = 2 * i + 1; // Left = 2*i + 1

 int r = 2 * i + 2; // Right = 2*i + 2

 // If left child is larger than root

 if (l < n && arr[l] > arr[largest]) {

 largest = l;

 }

 // If right child is larger than largest so far

 if (r < n && arr[r] > arr[largest]) {

 largest = r;

 }

 // If largest is not root

 if (largest != i) {

 swap(&arr[i], &arr[largest]);

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 // Recursively heapify the affected sub-tree

 heapify(arr, n, largest);

 }

}

// Main function to perform heap sort

void heapSort(int arr[], int n) {

 // Build heap (rearrange array)

 for (int i = n / 2 - 1; i >= 0; i--) {

 heapify(arr, n, i);

 }

 // One by one extract an element from heap

 for (int i = n - 1; i > 0; i--) {

 // Move current root to end

 swap(&arr[0], &arr[i]);

 // call max heapify on the reduced heap

 heapify(arr, i, 0);

 }

}

// Function to print an array

void printArray(int arr[], int size) {

 for (int i = 0; i < size; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

// Driver program to test above functions

int main() {

 int arr[] = {12, 11, 13, 5, 6, 7};

 int n = sizeof(arr) / sizeof(arr[0]);

 printf("Unsorted array: \n");

 printArray(arr, n);

 heapSort(arr, n);

 printf("Sorted array: \n");

 printArray(arr, n);

 return 0;

}

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Complexity:

Time Complexity:

• O(n log n) in all cases (worst, average, and best). This means the time

it takes to sort grows proportionally to n multiplied by the logarithm of

n, where n is the number of items being sorted.

Space Complexity:

• O(1). This means Heap Sort uses a constant amount of extra memory,

regardless of the size of the input. It sorts the data in place.

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

7.

a. To implement Fractional knapsack problem using Greedy

Technique

The fractional knapsack problem is a classic optimization problem

where you have a knapsack with a maximum weight capacity and a

set of items, each with a weight and a value. The goal is to maximize

the total value of items you can put in the knapsack, with the key

difference from the 0/1 knapsack problem being that you can take

fractions of items.

A greedy approach works optimally for the fractional knapsack

problem.

Code:

#include <stdio.h>

int n = 5;

int p[10] = {3, 3, 2, 5, 1};

int w[10] = {10, 15, 10, 12, 8};

int W = 10;

int main(){

 int cur_w;

 float tot_v;

 int i, maxi;

 int used[10];

 for (i = 0; i < n; ++i)

 used[i] = 0;

 cur_w = W;

 while (cur_w > 0) {

 maxi = -1;

 for (i = 0; i < n; ++i)

 if ((used[i] == 0) &&

 ((maxi == -1) || ((float)w[i]/p[i] > (float)w[maxi]/p[maxi])))

 maxi = i;

 used[maxi] = 1;

 cur_w -= p[maxi];

 tot_v += w[maxi];

 if (cur_w >= 0)

 printf("Added object %d (%d, %d) completely in the bag. Space left:

%d.\n", maxi + 1, w[maxi], p[maxi], cur_w);

 else {

 printf("Added %d%% (%d, %d) of object %d in the bag.\n", (int)((1 +

(float)cur_w/p[maxi]) * 100), w[maxi], p[maxi], maxi + 1);

 tot_v -= w[maxi];

 tot_v += (1 + (float)cur_w/p[maxi]) * w[maxi];

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 }

 }

 printf("Filled the bag with objects worth %.2f.\n", tot_v);

 return 0;

}

Complexity:

Time Complexity

The time complexity of the Fractional Knapsack problem using the greedy

approach can be broken down as follows:

1. Sorting the Items: The main computational step involves sorting the

items based on their value-to-weight ratio. Sorting n items takes

O(nlogn) time.

2. Iterating through the Items: After sorting, we iterate through the list

of items, which takes O(n) time.

Thus, the overall time complexity is:

O(nlogn)+O(n)= O(nlogn)

Space Complexity

The space complexity is determined by the space needed for:

1. Storing the Items: An array of n items is used, each holding a value

and weight. This requires O(n) space.

2. Auxiliary Space for Sorting: The sorting algorithm (e.g., quicksort,

mergesort) requires additional space. The space complexity for sorting

is generally O(logn) due to recursive stack space in quicksort or O(n)

in mergesort.

Thus, the overall space complexity is:

O(n)+O(logn) or O(n)= O(n)

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

b. To implement 0/1 Knapsack problem using Dynamic

Programming

The 0/1 Knapsack problem is a classic optimization problem where you're given

a knapsack with a maximum weight capacity (W) and a set of items, each with a

weight (wt) and a value (val). The goal is to select items to put in the knapsack

such that the total value is maximized, but you can either take an entire item or

not take it at all (hence "0/1"—you can't take fractions of items).

Dynamic programming is a suitable technique to solve the 0/1 Knapsack problem

optimally.

Code:

#include <stdio.h>

#include <stdlib.h>

// Function to find the maximum of two integers

int max(int a, int b) {

 return (a > b) ? a : b;

}

// Function to solve the 0/1 Knapsack problem using dynamic programming

int knapsack(int W, int wt[], int val[], int n) {

 int i, w;

 int K[n + 1][W + 1];

 // Build table K[][] in bottom up manner

 for (i = 0; i <= n; i++) {

 for (w = 0; w <= W; w++) {

 if (i == 0 || w == 0)

 K[i][w] = 0;

 else if (wt[i - 1] <= w)

 K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i -

1][w]);

 else

 K[i][w] = K[i - 1][w];

 }

 }

 return K[n][W];

}

int main() {

 int val[] = {60, 100, 120};

 int wt[] = {10, 20, 30};

 int W = 50;

 int n = sizeof(val) / sizeof(val[0]);

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 printf("Maximum value: %d\n", knapsack(W, wt, val, n)); // Output:

Maximum value: 220

 int val2[] = {10,40,30,50};

 int wt2[] = {5,4,6,3};

 int W2 = 10;

 int n2 = sizeof(val2) / sizeof(val2[0]);

 printf("Maximum value: %d\n", knapsack(W2, wt2, val2, n2)); // Output:

Maximum value: 90

 return 0;

}

Complexity:

• Time Complexity: O(n×W)

• Space Complexity:

• O(n×W) for the standard 2D dynamic programming table.

• O(W) for the space-optimized 1D array approach.

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

8. Find Minimum Cost Spanning Tree of a given undirected graph using

Kruskal’s algorithm

Kruskal's algorithm is a greedy algorithm used to find the Minimum Spanning Tree

(MST) of a weighted, undirected graph. An MST is a subset of the edges that connects all

the vertices together, without any cycles and with the minimum possible total edge

weight.

Code:
// C code to implement Kruskal's algorithm

#include <stdio.h>

#include <stdlib.h>

// Comparator function to use in sorting

int comparator(const void* p1, const void* p2)

{

 const int(*x)[3] = p1;

 const int(*y)[3] = p2;

 return (*x)[2] - (*y)[2];

}

// Initialization of parent[] and rank[] arrays

void makeSet(int parent[], int rank[], int n)

{

 for (int i = 0; i < n; i++) {

 parent[i] = i;

 rank[i] = 0;

 }

}

// Function to find the parent of a node

int findParent(int parent[], int component)

{

 if (parent[component] == component)

 return component;

 return parent[component]

 = findParent(parent, parent[component]);

}

// Function to unite two sets

void unionSet(int u, int v, int parent[], int rank[], int n)

{

 // Finding the parents

 u = findParent(parent, u);

 v = findParent(parent, v);

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 if (rank[u] < rank[v]) {

 parent[u] = v;

 }

 else if (rank[u] > rank[v]) {

 parent[v] = u;

 }

 else {

 parent[v] = u;

 // Since the rank increases if

 // the ranks of two sets are same

 rank[u]++;

 }

}

// Function to find the MST

void kruskalAlgo(int n, int edge[n][3])

{

 // First we sort the edge array in ascending order

 // so that we can access minimum distances/cost

 qsort(edge, n, sizeof(edge[0]), comparator);

 int parent[n];

 int rank[n];

 // Function to initialize parent[] and rank[]

 makeSet(parent, rank, n);

 // To store the minimun cost

 int minCost = 0;

 printf(

 "Following are the edges in the constructed MST\n");

 for (int i = 0; i < n; i++) {

 int v1 = findParent(parent, edge[i][0]);

 int v2 = findParent(parent, edge[i][1]);

 int wt = edge[i][2];

 // If the parents are different that

 // means they are in different sets so

 // union them

 if (v1 != v2) {

 unionSet(v1, v2, parent, rank, n);

 minCost += wt;

 printf("%d -- %d == %d\n", edge[i][0],

 edge[i][1], wt);

 }

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 }

 printf("Minimum Cost Spanning Tree: %d\n", minCost);

}

// Driver code

int main()

{

 int edge[5][3] = { { 0, 1, 10 },

 { 0, 2, 6 },

 { 0, 3, 5 },

 { 1, 3, 15 },

 { 2, 3, 4 } };

 kruskalAlgo(5, edge);

 return 0;

}

Complexity:
Time Complexity: O(E * logE) or O(E * logV)

• Sorting of edges takes O(E * logE) time.

• After sorting, we iterate through all edges and apply the find-union algorithm. The

find and union operations can take at most O(logV) time.

• So overall complexity is O(E * logE + E * logV) time.

• The value of E can be at most O(V2), so O(logV) and O(logE) are the same.

Therefore, the overall time complexity is O(E * logE) or O(E*logV)

Auxiliary Space: O(V + E), where V is the number of vertices and E is the number of

edges in the graph.

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

9. To Implement Floyd’s warshall algorithm.

Floyd-Warshall is an algorithm for finding the shortest paths between all pairs of vertices

in a weighted graph. Unlike Dijkstra's algorithm, which finds shortest paths from a single

source, Floyd-Warshall handles all sources simultaneously. It also works with graphs that

have negative edge weights (but not negative cycles, which would lead to infinite loops).

Code:
// C Program for Floyd Warshall Algorithm

#include <stdio.h>

// Number of vertices in the graph

#define V 4

/* Define Infinite as a large enough

 value. This value will be used

 for vertices not connected to each other */

#define INF 99999

// A function to print the solution matrix

void printSolution(int dist[][V]);

// Solves the all-pairs shortest path

// problem using Floyd Warshall algorithm

void floydWarshall(int dist[][V])

{

 int i, j, k;

 /* Add all vertices one by one to

 the set of intermediate vertices.

 ---> Before start of an iteration, we

 have shortest distances between all

 pairs of vertices such that the shortest

 distances consider only the

 vertices in set {0, 1, 2, .. k-1} as

 intermediate vertices.

 ----> After the end of an iteration,

 vertex no. k is added to the set of

 intermediate vertices and the set

 becomes {0, 1, 2, .. k} */

 for (k = 0; k < V; k++) {

 // Pick all vertices as source one by one

 for (i = 0; i < V; i++) {

 // Pick all vertices as destination for the

 // above picked source

 for (j = 0; j < V; j++) {

 // If vertex k is on the shortest path from

 // i to j, then update the value of

 // dist[i][j]

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 if (dist[i][k] + dist[k][j] < dist[i][j])

 dist[i][j] = dist[i][k] + dist[k][j];

 }

 }

 }

 // Print the shortest distance matrix

 printSolution(dist);

}

/* A utility function to print solution */

void printSolution(int dist[][V])

{

 printf(

 "The following matrix shows the shortest distances"

 " between every pair of vertices \n");

 for (int i = 0; i < V; i++) {

 for (int j = 0; j < V; j++) {

 if (dist[i][j] == INF)

 printf("%7s", "INF");

 else

 printf("%7d", dist[i][j]);

 }

 printf("\n");

 }

}

// driver's code

int main()

{

 /* Let us create the following weighted graph

 10

 (0)------->(3)

 | /|\

 5 | |

 | | 1

 \|/ |

 (1)------->(2)

 3 */

 int graph[V][V] = { { 0, 5, INF, 10 },

 { INF, 0, 3, INF },

 { INF, INF, 0, 1 },

 { INF, INF, INF, 0 } };

 // Function call

 floydWarshall(graph);

 return 0;

}

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

Complexity:
• Time Complexity: O(V3), where V is the number of vertices in the graph and we run three

nested loops each of size V
• Auxiliary Space: O(V2), to create a 2-D matrix in order to store the shortest distance for each

pair of nodes.

Output:

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

10. To Implement N Queen Problem using Backtracking.

The N-Queens problem is a classic constraint satisfaction problem in which you need to

place N queens on an N×N chessboard so that no two queens threaten each other. This

means no two queens can share the same row, column, or diagonal. Backtracking is a

very effective way to solve this.

Code:
// C program to solve N Queen Problem using backtracking

#define N 4

#include <stdbool.h>

#include <stdio.h>

// A utility function to print solution

void printSolution(int board[N][N])

{

 for (int i = 0; i < N; i++) {

 for (int j = 0; j < N; j++) {

 if(board[i][j])

 printf("Q ");

 else

 printf(". ");

 }

 printf("\n");

 }

}

// A utility function to check if a queen can

// be placed on board[row][col]. Note that this

// function is called when "col" queens are

// already placed in columns from 0 to col -1.

// So we need to check only left side for

// attacking queens

bool isSafe(int board[N][N], int row, int col)

{

 int i, j;

 // Check this row on left side

 for (i = 0; i < col; i++)

 if (board[row][i])

 return false;

 // Check upper diagonal on left side

 for (i = row, j = col; i >= 0 && j >= 0; i--, j--)

 if (board[i][j])

 return false;

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

 // Check lower diagonal on left side

 for (i = row, j = col; j >= 0 && i < N; i++, j--)

 if (board[i][j])

 return false;

 return true;

}

// A recursive utility function to solve N

// Queen problem

bool solveNQUtil(int board[N][N], int col)

{

 // Base case: If all queens are placed

 // then return true

 if (col >= N)

 return true;

 // Consider this column and try placing

 // this queen in all rows one by one

 for (int i = 0; i < N; i++) {

 // Check if the queen can be placed on

 // board[i][col]

 if (isSafe(board, i, col)) {

 // Place this queen in board[i][col]

 board[i][col] = 1;

 // Recur to place rest of the queens

 if (solveNQUtil(board, col + 1))

 return true;

 // If placing queen in board[i][col]

 // doesn't lead to a solution, then

 // remove queen from board[i][col]

 board[i][col] = 0; // BACKTRACK

 }

 }

 // If the queen cannot be placed in any row in

 // this column col then return false

 return false;

}

// This function solves the N Queen problem using

// Backtracking. It mainly uses solveNQUtil() to

// solve the problem. It returns false if queens

// cannot be placed, otherwise, return true and

Design and Analysis of Algorithm Lab (BCS-553)

Department of ECE, Dronacharya Group of Institutions, Greater Noida

// prints placement of queens in the form of 1s.

// Please note that there may be more than one

// solutions, this function prints one of the

// feasible solutions.

bool solveNQ()

{

 int board[N][N] = { { 0, 0, 0, 0 },

 { 0, 0, 0, 0 },

 { 0, 0, 0, 0 },

 { 0, 0, 0, 0 } };

 if (solveNQUtil(board, 0) == false) {

 printf("Solution does not exist");

 return false;

 }

 printSolution(board);

 return true;

}

// Driver program to test above function

int main()

{

 solveNQ();

 return 0;

}

Complexity:

Time Complexity: O(N!)

Auxiliary Space: O(N2)

Output:

