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Preface

This book is based on the experience and the lecture notes of the authors while teaching mathematics
courses to engineering students at the Indian Institute of Technology, Delhi for more than three
decades. A number of available textbooks have been a source of inspiration for introduction of
concepts and formulation of problems. We are thankful to the authors of these books for their
indirect help.

This comprehensive textbook covers syllabus for two courses in Mathematics for engineering
students in various Institutes, Universities and Engineering Colleges. The emphasis is on the presen-
tation of the fundamentals and theoretical concepts inan intelligible and easy to understand manner.

Each chapter in the book has been carefully planned to make it an effective tool to arouse
interest in the study and application of mathematics to solve engineering and scientific problems.
Simple and illustrative examples are used to explain each theoretical concept. Graded sets of
examples and exercises are given in each chapter, which will help the students to understand
every important concept. The book contains 682 solved examples and 2984 problems in the
exercises. Answers to every problem and hints for difficult problems are given at the end of each
chapter which will motivate the students for self-learning. While some problems emphasize the
theoretical concepts, others provide enough practice and generate confidence to use these concepts
in problem solving. This textbook offers a logical and lucid presentation of both the theory and
problem solving techniques so that the student is not lost in unnecessary details.

We hope that this textbook will meet the requirements and the expectations of all the engineering
students.

We will gratefully receive and acknowledge every comment, suggestions for inclusion/exclusion
of topics and errors in the book, both from the faculty and the students.

We are grateful to our former teachers, colleagues and well wishers for their encouragement
and valuable suggestions. We are also thankful to our students for their feed back. We are
grateful to the authorities of IIT Delhi for providing us their support.

We extend our thanks to the editorial and the production staff of M/s Narosa Publishing
House, in particular Mr. Mohinder Singh Sejwal, for their care and enthusiasm in the preparation
of this book.

Last, but not the least, we owe a lot to our family members, in particular, our wives Vinod Jain
and Seetha Lakshmi whose encouragement and support had always been inspiring and rejuvenating.
We appreciate their patience during our long hours of work day and night.

New Delhi R.K. JaIN
October 2001 S.R.K. IYENGAR
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