

## Paul Gerin Fahlstrom and Thomas James Gleason

# Introduction to UAV Systems

**Fourth Edition** 



**Aerospace Series** 

Editors Peter Belobaba, Jonathan Cooper, Roy Langton and Allan Seabridge



# **INTRODUCTION TO UAV SYSTEMS**

#### Aerospace Series List

| Theory of Lift: Introductory Computational Aerodynamics with MATLAB <sup>®</sup> /Octave                                                | McBain                         | August 2012    |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|
| Sense and Avoid in UAS: Research and Applications                                                                                       | Angelov                        | April 2012     |
| Morphing Aerospace Vehicles and Structures                                                                                              | Valasek                        | April 2012     |
| Gas Turbine Propulsion Systems                                                                                                          | MacIsaac and Langton           | July 2011      |
| Basic Helicopter Aerodynamics, Third Edition                                                                                            | Seddon and Newman              | July 2011      |
| Advanced Control of Aircraft, Spacecraft and Rockets                                                                                    | Tewari                         | July 2011      |
| Cooperative Path Planning of Unmanned Aerial Vehicles                                                                                   | Tsourdos et al.                | November 2010  |
| Principles of Flight for Pilots                                                                                                         | Swatton                        | October 2010   |
| Air Travel and Health: A Systems Perspective                                                                                            | Seabridge et al.               | September 2010 |
| Design and Analysis of Composite Structures:<br>With applications to Aerospace Structures                                               | Kassapoglou                    | September 2010 |
| Unmanned Aircraft Systems: UAVS Design,<br>Development, and Deployment                                                                  | Austin                         | April 2010     |
| Introduction to Antenna Placement and Installations                                                                                     | Macnamara                      | April 2010     |
| Principles of Flight Simulation                                                                                                         | Allerton                       | October 2009   |
| Aircraft Fuel Systems                                                                                                                   | Langton et al.                 | May 2009       |
| The Global Airline Industry                                                                                                             | Belobaba                       | April 2009     |
| Computational Modelling and Simulation<br>of Aircraft and the Environment:<br>Volume 1—Platform Kinematics and<br>Synthetic Environment | Diston                         | April 2009     |
| Handbook of Space Technology                                                                                                            | Ley, Wittmann, and<br>Hallmann | April 2009     |
| Aircraft Performance Theory and Practice for Pilots                                                                                     | Swatton                        | August 2008    |
| Surrogate Modelling in Engineering Design:<br>A Practical Guide                                                                         | Forrester, Sobester, and Keane | August 2008    |
| Aircraft Systems, Third Edition                                                                                                         | Moir and Seabridge             | March 2008     |
| Introduction to Aircraft Aeroelasticity And Loads                                                                                       | Wright and Cooper              | December 2007  |
| Stability and Control of Aircraft Systems                                                                                               | Langton                        | September 2006 |
| Military Avionics Systems                                                                                                               | Moir and Seabridge             | February 2006  |
| Design and Development of Aircraft Systems                                                                                              | Moir and Seabridge             | June 2004      |
| Aircraft Loading and Structural Layout                                                                                                  | Howe                           | May 2004       |
| Aircraft Display Systems                                                                                                                | Jukes                          | December 2003  |
| Civil Avionics Systems                                                                                                                  | Moir and Seabridge             | December 2002  |
|                                                                                                                                         |                                |                |

# **INTRODUCTION TO UAV SYSTEMS** FOURTH EDITION

Paul Gerin Fahlstrom UAV Manager US Army Material Command (ret)

Thomas James Gleason Gleason Research Associates, Inc



This edition first published 2012 © 2012 John Wiley & Sons, Ltd

#### Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Fahlstrom, Paul Gerin.
Introduction to UAV systems / Paul Gerin Fahlstrom, Thomas James Gleason. – 4th ed. p. cm.
Includes bibliographical references and index.
ISBN 978-1-119-97866-4 (cloth)
1. Drone aircraft. 2. Cruise missiles. I. Gleason, Thomas J. II. Title.
UG1242.D7.F34 2012
623.74'69–dc23

2012014112

A catalogue record for this book is available from the British Library.

ISBN: 978-1-119-97866-4

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

This book is dedicated to our wives, Beverly Ann Evans Fahlstrom and Archodessia Glyphis Gleason, who have provided support and encouragement throughout the process of its preparation.

## Contents

| Preface          | XV    |
|------------------|-------|
| Series Preface   | xix   |
| Acknowledgments  | xxi   |
| List of Acronyms | xxiii |

| Part One   |                         | Introduction                         |    |
|------------|-------------------------|--------------------------------------|----|
| 1          | Histo                   | ory and Overview                     | 3  |
| 1.1        | Over                    | view                                 | 3  |
| 1.2        | Histo                   | ry                                   | 4  |
|            | 1.2.1                   | Early History                        | 4  |
|            | 1.2.2                   | The Vietnam War                      | 5  |
|            | 1.2.3                   | Resurgence                           | 5  |
|            | 1.2.4                   | Joint Operations                     | 6  |
|            | 1.2.5                   | Desert Storm                         | 6  |
|            | 1.2.6                   | Bosnia                               | 6  |
|            | 1.2.7                   | Afghanistan and Iraq                 | 7  |
| 1.3        | Overview of UAV Systems |                                      | 7  |
|            | 1.3.1                   | Air Vehicle                          | 8  |
|            | 1.3.2                   | Mission Planning and Control Station | 8  |
|            | 1.3.3                   | Launch and Recovery Equipment        | 9  |
|            | 1.3.4                   | Payloads                             | 10 |
|            | 1.3.5                   | Data Links                           | 10 |
|            | 1.3.6                   | Ground Support Equipment             | 11 |
| 1.4        | The A                   | Aquila                               | 11 |
|            | 1.4.1                   | Aquila Mission and Requirements      | 12 |
|            | 1.4.2                   | Air Vehicle                          | 12 |
|            | 1.4.3                   | Ground Control Station               | 13 |
|            | 1.4.4                   | Launch and Recovery                  | 13 |
|            | 1.4.5                   | Payload                              | 13 |
|            | 1.4.6                   | Other Equipment                      | 14 |
|            | 1.4.7                   |                                      | 14 |
| References |                         | rences                               | 15 |

| 2   | Classes   | s and Missions of UAVs                           | 17 |
|-----|-----------|--------------------------------------------------|----|
| 2.1 | Overvie   | ew                                               | 17 |
| 2.2 | Examp     | les of UAV Systems                               | 17 |
|     | 2.2.1     | Very Small UAVs                                  | 18 |
|     | 2.2.2     | Small UAVs                                       | 19 |
|     | 2.2.3     | Medium UAVs                                      | 20 |
|     | 2.2.4     | Large UAVs                                       | 23 |
| 2.3 | Expend    | lable UAVs                                       | 25 |
| 2.4 | Classes   | s of UAV Systems                                 | 26 |
|     | 2.4.1     | Classification by Range and Endurance            | 26 |
|     | 2.4.2     | Informal Categories of Small UAV Systems by Size | 27 |
|     | 2.4.3     | The Tier System                                  | 27 |
|     | 2.4.4     | Another Classification Change                    | 28 |
| 2.5 | Mission   | ns                                               | 28 |
|     | Reference |                                                  | 31 |

#### Part Two The Air Vehicle

| 3   | <b>Basic Aerodynam</b> | ics                                 | 35 |
|-----|------------------------|-------------------------------------|----|
| 3.1 | Overview               |                                     | 35 |
| 3.2 | Basic Aerodynami       | c Equations                         | 35 |
| 3.3 | Aircraft Polar         |                                     | 39 |
| 3.4 | The Real Wing and      | l Airplane                          | 40 |
| 3.5 | Induced Drag           |                                     | 41 |
| 3.6 | The Boundary Lay       | er                                  | 43 |
| 3.7 | Flapping Wings         |                                     | 46 |
| 3.8 | Total Air-Vehicle I    | Drag                                | 48 |
| 3.9 | Summary                |                                     | 48 |
|     | References             |                                     | 49 |
|     | Bibliography           |                                     | 49 |
| 4   | Performance            |                                     | 51 |
| 4.1 | Overview               |                                     | 51 |
| 4.2 | Climbing Flight        |                                     | 51 |
| 4.3 | Range                  |                                     | 53 |
|     | 4.3.1 Range for        | or a Propeller-Driven Aircraft      | 54 |
|     | 4.3.2 Range for        | or a Jet-Propelled Aircraft         | 56 |
| 4.4 | Endurance              |                                     | 57 |
|     | 4.4.1 Enduran          | nce for a Propeller-Driven Aircraft | 57 |
|     | 4.4.2 Enduran          | nce for a Jet-Propelled Aircraft    | 58 |
| 4.5 | Gliding Flight         |                                     | 59 |
| 4.6 | Summary                |                                     | 59 |
| 5   | Stability and Con      | trol                                | 61 |
| 5.1 | Overview               |                                     | 61 |
| 5.2 | Stability              |                                     | 61 |

|        | 5.2.1   | Longitudinal Stability           | 62 |
|--------|---------|----------------------------------|----|
|        | 5.2.2   | Lateral Stability                | 64 |
|        | 5.2.3   | Dynamic Stability                | 65 |
|        | 5.2.4   | Summary                          | 65 |
| 5.3    | Contro  | l                                | 65 |
|        | 5.3.1   | Aerodynamic Control              | 65 |
|        | 5.3.2   | Pitch Control                    | 66 |
|        | 5.3.3   | Lateral Control                  | 67 |
| 5.4    | Autopi  | lots                             | 67 |
|        | 5.4.1   | Sensor                           | 68 |
|        | 5.4.2   | Controller                       | 68 |
|        | 5.4.3   | Actuator                         | 68 |
|        | 5.4.4   | Airframe Control                 | 68 |
|        | 5.4.5   | Inner and Outer Loops            | 68 |
|        | 5.4.6   | Flight-Control Classification    | 69 |
|        | 5.4.7   | Overall Modes of Operation       | 70 |
|        | 5.4.8   | Sensors Supporting the Autopilot | 70 |
| 6      | Propul  | lsion                            | 73 |
| 6.1    | Overvi  | ew                               | 73 |
| 6.2    | Thrust  | Generation                       | 73 |
| 6.3    | Powere  | ed Lift                          | 75 |
| 6.4    | Source  | es of Power                      | 78 |
|        | 6.4.1   | The Two-Cycle Engine             | 78 |
|        | 6.4.2   | The Rotary Engine                | 81 |
|        | 6.4.3   | The Gas Turbine                  | 82 |
|        | 6.4.4   | Electric Motors                  | 83 |
|        | 6.4.5   | Sources of Electrical Power      | 84 |
| 7      | Loads   | and Structures                   | 91 |
| 7.1    | Overvi  | ew                               | 91 |
| 7.2    | Loads   |                                  | 91 |
| 7.3    | Dynam   | nic Loads                        | 94 |
| 7.4    | Materia | als                              | 96 |
|        | 7.4.1   | Sandwich Construction            | 96 |
|        | 7.4.2   | Skin or Reinforcing Materials    | 97 |
|        | 7.4.3   | Resin Materials                  | 97 |
|        | 7.4.4   | Core Materials                   | 98 |
| 7.5    | Constru | uction Techniques                | 98 |
| Part ' | Three M | Mission Planning and Control     |    |

| 8   | Mission Planning and Control Station | 101 |
|-----|--------------------------------------|-----|
| 8.1 | Oerview                              | 101 |
| 8.2 | MPCS Architecture                    | 105 |

|     | 8.2.1    | Local Area Networks                                     | 107 |
|-----|----------|---------------------------------------------------------|-----|
|     | 8.2.2    | Elements of a LAN                                       | 107 |
|     | 8.2.3    | Levels of Communication                                 | 108 |
|     | 8.2.4    | Bridges and Gateways                                    | 110 |
| 8.3 | Physica  | l Configuration                                         | 111 |
| 8.4 | Plannin  | g and Navigation                                        | 113 |
|     | 8.4.1    | Planning                                                | 113 |
|     | 8.4.2    | Navigation and Target Location                          | 115 |
| 8.5 | MPCS     | Interfaces                                              | 117 |
| 9   | Air Vel  | nicle and Payload Control                               | 119 |
| 9.1 | Overvie  | -                                                       | 119 |
| 9.2 | Modes    | of Control                                              | 120 |
| 9.3 | Piloting | g the Air Vehicle                                       | 120 |
|     | 9.3.1    | Remote Piloting                                         | 121 |
|     | 9.3.2    | Autopilot-Assisted Control                              | 121 |
|     | 9.3.3    | Complete Automation                                     | 122 |
|     | 9.3.4    | Summary                                                 | 123 |
| 9.4 | Control  | ling Payloads                                           | 123 |
|     | 9.4.1    | Signal Relay Payloads                                   | 124 |
|     | 9.4.2    | Atmospheric, Radiological, and Environmental Monitoring | 124 |
|     | 9.4.3    | Imaging and Pseudo-Imaging Payloads                     | 125 |
| 9.5 | Control  | ling the Mission                                        | 126 |
| 9.6 | Autono   | my                                                      | 128 |

#### Part Four Payloads

| 10   | Reconnaissance/Surveillance Payloads                      |     |  |
|------|-----------------------------------------------------------|-----|--|
| 10.1 | Overview                                                  | 133 |  |
| 10.2 | Imaging Sensors                                           | 134 |  |
|      | 10.2.1 Target Detection, Recognition, and Identification  | 134 |  |
| 10.3 | The Search Process                                        | 146 |  |
| 10.4 | Other Considerations                                      | 152 |  |
|      | 10.4.1 Stabilization of the Line of Sight                 | 152 |  |
|      | References                                                | 156 |  |
|      | Bibliography                                              | 156 |  |
| 11   | Weapon Payloads                                           | 157 |  |
| 11.1 | Overview                                                  | 157 |  |
| 11.2 | 2 History of Lethal Unmanned Aircraft                     |     |  |
| 11.3 | Mission Requirements for Armed Utility UAVs               | 161 |  |
| 11.4 | Design Issues Related to Carriage and Delivery of Weapons | 161 |  |
|      | 11.4.1 Payload Capacity                                   | 161 |  |
|      | 11.4.2 Structural Issues                                  | 162 |  |
|      | 11.4.3 Electrical Interfaces                              | 163 |  |
|      | 11.4.4 Electromagnetic Interference                       | 165 |  |

|      | 11.4.5   | Launch Constraints for Legacy Weapons | 165 |
|------|----------|---------------------------------------|-----|
|      | 11.4.6   | Safe Separation                       | 166 |
|      | 11.4.7   | · ·                                   | 166 |
| 11.5 | Other Is | ssues Related to Combat Operations    | 166 |
|      | 11.5.1   | Signature Reduction                   | 166 |
|      | 11.5.2   | Autonomy                              | 176 |
|      | Referen  |                                       | 179 |
| 12   | Other I  | Payloads                              | 181 |
| 12.1 | Overvie  |                                       | 181 |
| 12.2 | Radar    |                                       | 181 |
|      | 12.2.1   | General Radar Considerations          | 181 |
|      | 12.2.2   | Synthetic Aperture Radar              | 183 |
| 12.3 | Electror | nic Warfare                           | 184 |
| 12.4 | Chemic   | al Detection                          | 184 |
| 12.5 | Nuclear  | Radiation Sensors                     | 185 |
| 12.6 | Meteoro  | ological Sensors                      | 185 |
| 12.7 | Pseudo-  | Satellites                            | 186 |
| Part | Five D   | Pata Links                            |     |
| 13   | Data-L   | ink Functions and Attributes          | 191 |
| 13.1 | Overvie  | 2W                                    | 191 |
| 13.2 | Backgro  | ound                                  | 191 |
| 13.3 | Data-Li  | nk Functions                          | 193 |
| 13.4 | Desirab  | le Data-Link Attributes               | 194 |
|      | 13.4.1   | Worldwide Availability                | 195 |

|      | 13.7.1  | worrawiae invariability                               | 175 |
|------|---------|-------------------------------------------------------|-----|
|      | 13.4.2  | Resistance to Unintentional Interference              | 196 |
|      | 13.4.3  | Low Probability of Intercept (LPI)                    | 196 |
|      | 13.4.4  | Security                                              | 197 |
|      | 13.4.5  | Resistance to Deception                               | 197 |
|      | 13.4.6  | Anti-ARM                                              | 197 |
|      | 13.4.7  | Anti-Jam                                              | 198 |
|      | 13.4.8  | Digital Data Links                                    | 199 |
| 13.5 | System  | Interface Issues                                      | 199 |
|      | 13.5.1  | Mechanical and Electrical                             | 199 |
|      | 13.5.2  | Data-Rate Restrictions                                | 200 |
|      | 13.5.3  | Control-Loop Delays                                   | 201 |
|      | 13.5.4  | Interoperability, Interchangeability, and Commonality | 202 |
|      | Referen | ce                                                    | 204 |
|      |         |                                                       |     |

| 14   | Data-Li                     | ink Margin        | 205 |
|------|-----------------------------|-------------------|-----|
| 14.1 | Overvie                     | W                 | 205 |
| 14.2 | Sources of Data-Link Margin |                   | 205 |
|      | 14.2.1                      | Transmitter Power | 206 |
|      | 14.2.2                      | Antenna Gain      | 206 |
|      | 14.2.3                      | Processing Gain   | 213 |

| 14.3                      | Definition of AJ Margin                                                                                                                                 | 217                             |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
|                           | 14.3.1 Jammer Geometry                                                                                                                                  | 218                             |  |
|                           | 14.3.2 System Implications of AJ Capability                                                                                                             | 222                             |  |
|                           | 14.3.3 Anti-Jam Uplinks                                                                                                                                 | 224                             |  |
| 14.4                      | Propagation                                                                                                                                             | 225                             |  |
|                           | 14.4.1 Obstruction of the Propagation Path                                                                                                              | 225                             |  |
|                           | 14.4.2 Atmospheric Absorption                                                                                                                           | 226                             |  |
|                           | 14.4.3 Precipitation Losses                                                                                                                             | 227                             |  |
| 14.5                      | Data-Link Signal-to-Noise Budget                                                                                                                        | 227                             |  |
|                           | References                                                                                                                                              | 229                             |  |
| 15                        | Data-Rate Reduction                                                                                                                                     | 231                             |  |
| 15.1                      | Overview                                                                                                                                                | 231                             |  |
| 15.2                      | Compression Versus Truncation                                                                                                                           | 231                             |  |
| 15.3                      | Video Data                                                                                                                                              | 232                             |  |
| 15.4                      | Non-Video Data                                                                                                                                          | 239                             |  |
| 15.5                      | Location of the Data-Rate Reduction Function                                                                                                            | 240                             |  |
|                           | References                                                                                                                                              | 241                             |  |
| 16                        | Data-Link Tradeoffs                                                                                                                                     | 243                             |  |
| 16.1                      | Overview                                                                                                                                                | 243                             |  |
| 16.2                      | Basic Tradeoffs                                                                                                                                         | 243                             |  |
| 16.3                      | Pitfalls of "Putting Off" Data-Link Issues                                                                                                              | 245                             |  |
| 16.4                      | •                                                                                                                                                       |                                 |  |
| _                         | Six Launch and Recovery                                                                                                                                 |                                 |  |
| Part S                    | Six Elaunch and Recovery                                                                                                                                |                                 |  |
| Part S                    | Launch Systems                                                                                                                                          | 249                             |  |
|                           | v                                                                                                                                                       | <b>249</b><br>249               |  |
| 17                        | Launch Systems                                                                                                                                          |                                 |  |
| <b>17</b><br>17.1         | Launch Systems<br>Overview                                                                                                                              | 249                             |  |
| <b>17</b><br>17.1<br>17.2 | Launch Systems<br>Overview<br>Basic Considerations                                                                                                      | 249<br>249                      |  |
| <b>17</b><br>17.1<br>17.2 | <b>Launch Systems</b><br>Overview<br>Basic Considerations<br>UAV Launch Methods for Fixed-Wing Vehicles                                                 | 249<br>249<br>253               |  |
| <b>17</b><br>17.1<br>17.2 | Launch Systems<br>Overview<br>Basic Considerations<br>UAV Launch Methods for Fixed-Wing Vehicles<br>17.3.1 Rail Launchers                               | 249<br>249<br>253<br>254        |  |
| <b>17</b><br>17.1<br>17.2 | Launch Systems<br>Overview<br>Basic Considerations<br>UAV Launch Methods for Fixed-Wing Vehicles<br>17.3.1 Rail Launchers<br>17.3.2 Pneumatic Launchers | 249<br>249<br>253<br>254<br>255 |  |

| 18   | Recovery Systems      | 261 |
|------|-----------------------|-----|
| 18.1 | Overview              | 261 |
| 18.2 | Conventional Landings | 261 |
| 18.3 | Vertical Net Systems  | 262 |
| 18.4 | Parachute Recovery    | 263 |
| 18.5 | VTOL UAVs             | 265 |
| 18.6 | Mid-Air Retrieval     | 267 |
| 18.7 | Shipboard Recovery    | 269 |

| 19    | Launch and Recovery Tradeoffs | 271 |
|-------|-------------------------------|-----|
| 19.1  | UAV Launch Method Tradeoffs   | 271 |
| 19.2  | Recovery Method Tradeoffs     | 274 |
| 19.3  | Overall Conclusions           | 276 |
| Index | x                             | 277 |

### Preface

Introduction to UAV Systems, Fourth Edition has been written to meet the needs of both newcomers to the world of unmanned aerial vehicle (UAV) systems and experienced members of the UAV community who desire an overview and who, though they may find the treatment of their particular discipline elementary, will gain valuable insights into the other disciplines that contribute to a UAV system. The material has been presented such that it is readily understandable to college freshman and to both technical and nontechnical persons working in the UAV field, and is based on standard engineering texts as well as material developed by the authors while working in the field. Most equations have been given without proof, and the reader is encouraged to refer to standard texts of each discipline when engaging in actual design or analysis as no attempt is made to make this book a complete design handbook.

This book is also not intended to be the primary text for an introductory course in aerodynamics or imaging sensors or data links. Rather, it is intended to provide enough information in each of those areas, and others, to illustrate how they all play together to support the design of complete UAV systems and to allow the reader to understand how the technology in all of these areas affect the system-level tradeoffs that shape the overall system design. As such, it might be used as a supplementary text for a course in any of the specialty areas to provide a system-level context for the specialized material.

For a beginning student, we hope that it will whet the appetite for knowing more about at least one of the technology areas and demonstrate the power of even the simplest mathematical treatment of these subjects in allowing understanding of the tradeoffs that must occur during the system design process.

For a UAV user or operator, we hope that it will provide understanding of how the system technology affects the manner in which the UAV accomplishes its objectives and the techniques that the operator must use to make that happen.

For a "subject matter expert" in any of the disciplines involved in the design of a UAV system, we hope that it will allow better understanding of the context in which his or her specialty must operate to produce success for the system as a whole and why other specialists may seem preoccupied with things that seem unimportant to him or her.

Finally, for a technology manager, we hope that this book can help him or her understand how everything fits together, how important it is to consider the system-integration issues early in the design process so that the integration issues are considered during the basic selection of subsystem designs, and help him or her understand what the specialists are talking about and, perhaps, ask the right questions at critical times in the development process. Part One contains a brief history and overview of UAVs in Chapter 1 and a discussion of classes and missions of UAVs in Chapter 2.

Part Two is devoted to the design of the air vehicle including basic aerodynamics, performance, stability and control, propulsion and loads, structures and materials in Chapters 3 through 7.

Part Three discusses the mission planning and control function in Chapter 8 and operational control in Chapter 9.

Part Four has three chapters addressing payloads. Chapter 10 discusses the most universal types of payloads, reconnaissance, and surveillance sensors. Chapter 11 discusses weapons payloads, a class of payloads that has become prominent since its introduction about 10 years ago. Chapter 12 discusses a few of the many other types of payloads that may be used on UAVs.

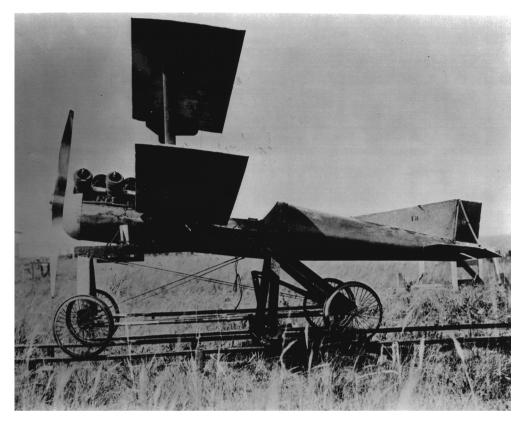
Part Five covers data links, the communication subsystems used to connect the air vehicle to the ground controllers, and deliver the data gathered by the air-vehicle payloads. Chapter 13 describes and discusses basic data-link functions and attributes. Chapter 14 covers the factors that affect the performance of a data link, including the effects or intentional and unintentional interference. Chapter 15 addresses the impact on operator and system performance of various approaches to reducing the data-rate requirements of the data link to accommodate limitations on available bandwidth. Chapter 16 summarizes data-link tradeoffs, which are one of the key elements in the overall system tradeoffs.

Part Six describes approaches for launch and recovery of UAVs, including ordinary takeoff and landing, but extending to many approaches not used for manned aircraft. Chapter 17 describes launch systems and Chapter 18 recovery systems. Chapter 19 summarizes the tradeoffs between the many different launch and recovery approaches.

Introduction to UAV Systems was first published in 1992. Much has happened in the UAV world in the 20 years since the first edition was written. In the preface to the second edition (1998), we commented that there had been further problems in the development process for tactical UAVs but that there had been some positive signs in the use of UAVs in support of the Bosnian peace-keeping missions and that there even was some talk of the possible use of "uninhabited" combat vehicles within the US Air Force that was beginning for the first time to show some interest in UAVs. At that time, we concluded that "despite some interest, and real progress in some areas, however, we believe that the entire field continues to struggle for acceptance, and UAVs have not come of age and taken their place as proven and established tools."

In the 14 years since we made that statement, the situation has changed dramatically. UAVs have been widely adopted in the military world, unmanned combat vehicles have been deployed and used in highly visible ways, often featured on the evening news, and unmanned systems now appear to be serious contenders for the next generation of fighters and bombers.

While civilian applications still lag, impeded by the very-real issues related to mixing manned and unmanned aircraft in the general airspace, the success of military applications has encouraged attempts to resolve these issues and establish unmanned aircraft in nonmilitary roles.


The fourth edition has been extensively revised and restructured. The revisions have, we hope, made some of the material clearer and easier to understand and have added a number of new subjects in areas that have become more prominent in the UAV world during the last decade or so, such as electric propulsion, weapons payloads, and the various levels of autonomy that may be given to an air vehicle. It also revises a number of details that have clearly been overtaken by events, and all chapters have been brought up to date to introduce

some of the new terminology, concepts, and specific UAV systems that have appeared over the last 14 years. However, the basic subsystems that make up a UAV "system of systems" have not greatly changed, and at the level that this text addresses them, the basic issues and design principles have not changed since the first edition was published.

The authors met while participating in a "red team" that was attempting to diagnose and solve serious problems in an early UAV program. The eventual diagnosis was that there had been far too little "system engineering" during the design process and that various subsystems did not work together as required for system-level success. This book grew out of a desire to write down at least some of the "lessons learned" during that experience and make them available to those who designed UAV systems in the future.

We believe that most of those lessons learned are universal enough that they are just as applicable today as they were when they were learned years ago, and hope that this book can help future UAV system designers apply them and avoid having to learn them again the "hard way."

> Paul G. Fahlstrom Thomas J. Gleason January 2012



The Kettering Bug (Photograph courtesy of Norman C. "Dutch" Heilman)

### Series Preface

This book is a welcome addition to the Aerospace Series, continuing the tradition of the Series in providing clear and practical advice to practitioners in the field of aerospace. This book will appeal to a wide readership and is an especially good introduction to the subject by extending the range of titles on the topic of unmanned air vehicles, and more importantly presenting a systems viewpoint of unmanned air systems. This is important as the range of vehicles currently available provides a diverse range of capabilities with differing structural designs, propulsions systems, payloads, ground systems and launch/recovery mechanisms. It is difficult to see any rationalization or standardization of vehicles or support environment in the range of available solutions.

The book covers the history of unmanned flight and describes the range of solutions available world-wide. It then addresses the key aspects of the sub-systems such as structure, propulsion, navigation, sensor payloads, launch and recovery and associated ground systems in a readable and precise manner, pulling them together as elements of a total integrated system. In this way it is complementary to other systems books in the Series.

It is important for engineers and designers to visualise the totality of a system in order to gain an understanding of all that is involved in designing new vehicles or in writing new requirements to arrive at a coherent design of vehicle and infrastructure. Even more important if the new vehicle needs to interact and inter-operate with other vehicles or to operate from different facilities.

If unmanned air systems are going to become accepted in civilian airspace and in commercial applications then it is vital that a set of standards and design guidelines is in place to ensure consistency, to aid the certification process and to provide a global infrastructure similar to that existing for today's manned fleets. Without that understanding certification of unmanned air vehicles to operate in civilian controlled airspace is going to be a long and arduous task.

This book sets the standard for a definitive work on the subject of unmanned air systems by providing a measure of consistency and a clear understanding of the topic.

### Acknowledgments

We would like to thank Engineering Arresting System Corporation (ESCO) (Aston, PA), Division of Zodiac Aerospace and General Atomics Aeronautical Systems, Inc. for providing pictures and diagrams and/or other information relating to their air vehicles and equipment.

The Joint UAV Program Office (Patuxent River Naval Air Station, MD), and the US Army Aviation and Missile Command (Huntsville, AL) both provided general information during the preparation of the first edition.

We especially thank Mr. Robert Veazey, who provided the original drafts of the material on launch and recovery while an employee of ESCO, and Mr. Tom Murley, formerly of Lear Astronics, and Mr. Bob Sherman for their critical reading of the draft and constructive suggestions. We thank Mr. Geoffrey Davis for his careful reading of the manuscript for the Fourth Edition and for many helpful suggestions related to style and grammar.

We are grateful to Mr. Eric Willner, Executive Commissioning Editor for John Wiley and Sons, who first suggested a new and revised edition to be published by Wiley and was very patient with us throughout the process of working out the details of how that might be accomplished. Ms. Elizabeth Wingett, Project Editor at John Wiley and Sons, then provided us with guidance through the preparation of the manuscript.

# List of Acronyms

| AC     | alternating current                                                        |
|--------|----------------------------------------------------------------------------|
| ADT    | air data terminal                                                          |
| AJ     | Antijam                                                                    |
| AR     | aspect ratio                                                               |
| ARM    | antiradiation munition                                                     |
| AV     | air vehicle                                                                |
| BD     | bi-directional                                                             |
| CARS   | Common Automatic Recovery System                                           |
| CCD    | charge-coupled device                                                      |
| CG     | center of gravity                                                          |
| CLRS   | central launch and recovery section                                        |
| CP     | center of pressure                                                         |
| COMINT | communication intelligence                                                 |
| C rate | charge/discharge rate                                                      |
| CW     | continuous wave                                                            |
| dB     | decibel                                                                    |
| dBA    | dBs relative to the lowest pressure difference that is audible to a person |
| dBmv   | dBs relative to 1 mv                                                       |
| dBsm   | dB relative to 1 square meter                                              |
| DF     | direction finding                                                          |
| ECCM   | electronic counter-countermeasures                                         |
| ECM    | electronic countermeasure                                                  |
| ELINT  | electronic intelligence                                                    |
| EMI    | electromagnetic interference                                               |
| ERP    | effective radiated power                                                   |
| ESM    | electronic support measure                                                 |
| EW     | electronic warfare                                                         |
| FCS    | forward control section                                                    |
| FLIR   | forward-looking infrared                                                   |
| FLOT   | Forward Line of Own Troops                                                 |
| FOV    | field of view                                                              |
| fps    | frames per second                                                          |
| FSED   | Full Scale Engineering Development                                         |
| GCS    | ground control station                                                     |
|        |                                                                            |

| GDT      | ground data terminal                                                    |
|----------|-------------------------------------------------------------------------|
| GPS      | global positioning system                                               |
| GSE      | ground support equipment                                                |
| Gyro     | gyroscope                                                               |
| HELLFIRE | helicopter launched fire and forget missile                             |
| HERO     | Hazards of Electromagnetic Radiation to Ordnance                        |
| HMMWV    | High Mobility Multipurpose Wheeled Vehicle                              |
| I        | intrinsic                                                               |
| IAI      | Israeli Aircraft Industries                                             |
| IFF      | identification friend or foe                                            |
| IMC      | Image Motion Compensation                                               |
| IR       | infrared                                                                |
| ISO      |                                                                         |
| JATO     | International Organization for Standardization<br>Jet Assisted Take-Off |
| JII      |                                                                         |
|          | Joint Integration Interface                                             |
| JPO      | joint project office                                                    |
| JSTARS   | Joint Surveillance Target Attack Radar System                           |
| LAN      | local area network<br>lithium ion                                       |
| Li-ion   |                                                                         |
| Li-poly  | lithium polymer                                                         |
| LOS      | line of sight                                                           |
| LPI      | low-probability of intercept                                            |
| MARS     | mid-air recovery system                                                 |
| MART     | Mini Avion de Reconnaissance Telepilot                                  |
| MET      | meteorological                                                          |
| MICNS    | Modular Integrated Communication and Navigation System                  |
| MPCS     | mission planning and control station                                    |
| MRC      | minimum resolvable contrast                                             |
| MRDT     | minimum resolvable delta in temperature                                 |
| MRT      | minimum resolvable temperature                                          |
| MTF      | modulation transfer function                                            |
| MTI      | Moving Target Indicator                                                 |
| N        | negative                                                                |
| NASA     | National Aeronautics and Space Administration                           |
| NDI      | nondevelopmental item                                                   |
| NiCd     | nickel cadmium                                                          |
| NiMH     | nickel metal hydride                                                    |
| OSI      | Open System Interconnection                                             |
| OT       | operational test                                                        |
| Р        | positive                                                                |
| PGM      | precision guided munition                                               |
| PIN      | positive intrinsic negative                                             |
| PLSS     | Precision Location and Strike System                                    |
| RAM      | radar-absorbing material                                                |
| RAP      | radar-absorbing paint                                                   |
| RATO     | rocket assisted takeoff                                                 |
|          |                                                                         |

| RF     | radio frequency                                                 |
|--------|-----------------------------------------------------------------|
| RGT    | remote ground terminal                                          |
| RMS    | root mean square                                                |
| RPG    | rocket propelled grenade                                        |
| RPM    | revolutions per minute                                          |
| RPV    | remotely piloted vehicle                                        |
| SAR    | synthetic aperture radar                                        |
| SEAD   | Suppression of Enemy Air Defense                                |
| shp    | shaft horsepower                                                |
| SIGINT | signal intelligence                                             |
| SLAR   | side-looking airborne radar                                     |
| SOTAS  | Stand-Off Target Acquisition System                             |
| SPARS  | Ship Pioneer Arresting System                                   |
| TADARS | Target Acquisition/Designation and Aerial Reconnaissance System |
| TUAV   | tactical UAV                                                    |
| UAS    | unmanned aerial system                                          |
| UAV    | unmanned aerial vehicle                                         |
| UCAV   | unmanned combat aerial vehicle                                  |
| UD     | unidirectional                                                  |
| VTOL   | vertical takeoff and landing                                    |
|        |                                                                 |

# Part One Introduction

Part One provides a general background for an introduction to the technology of unmanned aerial vehicle systems, called "UAV systems" or "unmanned aerial systems" (UAS).

Chapter 1 presents a brief history of UAVs. It then identifies and describes the functions of the major elements (subsystems) that may be present in a generic UAS. Finally, it presents a short history of a major UAV development program that failed to produce a fielded UAS, despite significant success in many of the individual subsystems, and teaches useful lessons about the importance of understanding the inter-relationship and interactions of the subsystems level. This story is told here to emphasize the importance of the word "system" in the terms "UAV System" and "UAS."

Chapter 2 contains a survey of UAS that have been or presently are in use and discusses various schemes that are used to classify UAV systems according to their size, endurance, and/or mission. The information in this chapter is subject to becoming dated because the technology of many of the subsystems of a UAS is evolving rapidly as they become more and more part of the mainstream after many years of being on the fringes of the aeronautical engineering world. Nonetheless, some feeling for the wide variety of UAS concepts and types is needed to put the later discussion of design and system integration issues into context.